
Oracle® AI Database
Transactional Event Queues and Advanced
Queuing User's Guide

26ai
G43539-01
October 2025

Oracle AI Database Transactional Event Queues and Advanced Queuing User's Guide, 26ai

G43539-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Maitreyee Chaliha

Contributing Authors: Sanjay Goil, Denis Raphaely, Neerja Bhatt, Charles Hall

Contributors: Ishan Chokshi, Yaohua Zhao, Amit Ketkar, Mukesh Jaiswal, Alan Downing, Padmanabha Bhat, Longxing
Deng , John Leinaweaver , Stella Kister, Qiang Liu, Anil Madan, Abhishek Saxena, James Wilson

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Related Documents i

Conventions ii

 Changes in This Release for Oracle Database Advanced Queuing User's
Guide

Changes in Oracle AI Database Transactional Event Queues and Advanced Queuing
Release 26ai i

Changes in Oracle Database Advanced Queuing Release 21c ii

Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2 v

Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2.) vi

Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2) vi

Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1) vii

1 Introduction to Transactional Event Queues and Advanced Queuing

What Is Queuing? 1

Transactional Event Queues Leverage Oracle Database 2

Transactional Event Queues and Advanced Queuing in Integrated Application Environments 6

Transactional Event Queues and Advanced Queuing Client/Server Communication 7

Multiconsumer Dequeuing of the Same Message 8

Transactional Event Queues and Advanced Queuing Implementation of Workflows 10

Transactional Event Queues and Advanced Queuing Implementation of Publish/
Subscribe 11

Buffered Messaging 14

Asynchronous Notifications 18

Views on Registration 20

Event-Based Notification 20

Notification Grouping by Time 20

Enqueue Features 21

Dequeue Features 23

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of xvii

Propagation Features 29

Message Format Transformation 36

Other Oracle Database Advanced Queuing Features 37

Polyglot Programming with Transactional Event Queues 41

2 Basic Components of Oracle Transactional Event Queues and Advanced
Queuing

Object Name 1

Type Name 2

AQ Agent Type 2

AQ Recipient List Type 3

AQ Agent List Type 3

AQ Subscriber List Type 3

AQ Registration Information List Type 3

AQ Post Information List Type 3

AQ Registration Information Type 3

AQ Notification Descriptor Type 5

AQ Message Properties Type 5

AQ Post Information Type 6

AQ$_NTFN_MSGID_ARRAY Type 6

Enumerated Constants for AQ Administrative Interface 6

Enumerated Constants for AQ Operational Interface 7

AQ Background Processes 8

Queue Monitor Processes 8

Job Queue Processes 8

AQ Background Architecture 9

3 Oracle Transactional Event Queues and Advanced Queuing:
Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Database Advanced Queuing 1

Using PL/SQL to Access Oracle Database Advanced Queuing 2

Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing 3

Python and Node.js programming interfaces for Advanced Queuing 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces 4

Oracle Transactional Event Queues and Advanced Queuing Administrative
Interfaces 4

Oracle Database Advanced Queuing Operational Interfaces 7

Using OCCI to Access Oracle Database Advanced Queuing 15

Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced
Queuing 15

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of xvii

Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database
Advanced Queuing 17

4 Managing Oracle Transactional Event Queues and Advanced Queuing

Oracle Database Advanced Queuing Compatibility Parameters 1

Queue Security and Access Control 1

Oracle Database Advanced Queuing Security 2

Administrator Role 2

User Role 3

Access to Oracle Database Advanced Queuing Object Types 3

Queue Security 3

Queue Privileges and Access Control 4

OCI Applications and Queue Access 4

Security Required for Propagation 4

Security Required for AQ Buffered Messages on Oracle RAC 5

Queue Table Export/Import 5

Exporting Queue Table Data 5

Importing Queue Table Data 7

Data Pump Export and Import 7

Oracle Enterprise Manager Support for AQ Queues 8

Using Oracle Database Advanced Queuing with XA 8

Restrictions on Queue Management 8

Subscribers 9

DML Not Supported on Queue Tables or Associated IOTs 9

Propagation from Object Queues with REF Payload Attributes 9

Collection Types in Message Payloads 9

Synonyms on Queue Tables and Queues 10

Synonyms on Object Types 10

Tablespace Point-in-Time Recovery 10

Virtual Private Database 10

Managing Propagation 10

EXECUTE Privileges Required for Propagation 11

Propagation from Object Queues 11

Optimizing Propagation 11

Handling Failures in Propagation 12

5 Kafka APIs for Oracle Transactional Event Queues

Apache Kafka Overview 1

Kafka Java Client for Transactional Event Queues 1

Configuring Kafka Java Client for Transactional Event Queues 2

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of xvii

Kafka Client Interfaces 4

Kafka API Examples 5

Kafka REST APIs for TxEventQ 19

Overview of Kafka Producer Implementation for TxEventQ 19

Overview of Kafka Consumer implementation for TxEventQ 21

Overview of Kafka Admin Implementation for TxEventQ 23

Kafka REST APIs for TxEventQ 23

Kafka Connectors for TxEventQ 24

Monitoring Message Transfer 24

6 Java Message Service for Transactional Event Queues and Advanced
Queuing

Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced
Queuing 1

General Features of JMS and Oracle JMS 1

JMS Connection and Session 2

JMS Destination 6

System-Level Access Control in JMS 7

Destination-Level Access Control in JMS 8

Retention and Message History in JMS 8

Supporting Oracle Real Application Clusters in JMS 8

Supporting Statistics Views in JMS 9

Structured Payload/Message Types in JMS 9

JMS Message Headers 10

JMS Message Properties 11

JMS Message Bodies 12

Using Message Properties with Different Message Types 14

Buffered Messaging with Oracle JMS 15

Buffered Messaging in JMS 16

JMS Point-to-Point Model Features 19

JMS Publish/Subscribe Model Features 20

JMS Publish/Subscribe Overview 21

DurableSubscriber 21

RemoteSubscriber 22

TopicPublisher 22

Recipient Lists 22

TopicReceiver 22

TopicBrowser 23

Setting Up JMS Publish/Subscribe Operations 23

JMS Message Producer Features 24

Priority and Ordering of Messages 24

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of xvii

Specifying a Message Delay 25

Specifying a Message Expiration 25

Message Grouping 25

JMS Message Consumer Features 26

Receiving Messages 26

Message Navigation in Receive 26

Browsing Messages 27

Remove No Data 27

Retry with Delay Interval 28

Asynchronously Receiving Messages Using MessageListener 28

Exception Queues 28

JMS Propagation 29

RemoteSubscriber 30

Scheduling Propagation 30

Enhanced Propagation Scheduling Capabilities 31

Exception Handling During Propagation 32

Message Transformation with JMS AQ 33

JMS Streaming 33

JMS Streaming with Enqueue 34

JMS Streaming with Dequeue 34

Java EE Compliance 37

Oracle Java Message Service Basic Operations 38

EXECUTE Privilege on DBMS_AQIN 38

Registering a ConnectionFactory 38

Registering Through the Database Using JDBC Connection Parameters 38

Registering Through the Database Using a JDBC URL 39

Registering Through LDAP Using JDBC Connection Parameters 40

Registering Through LDAP Using a JDBC URL 41

Unregistering a Queue/Topic ConnectionFactory 41

Unregistering Through the Database 42

Unregistering Through LDAP 42

Getting a QueueConnectionFactory or TopicConnectionFactory 43

Getting a QueueConnectionFactory with JDBC URL 43

Getting a QueueConnectionFactory with JDBC Connection Parameters 43

Getting a TopicConnectionFactory with JDBC URL 44

Getting a TopicConnectionFactory with JDBC Connection Parameters 44

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 45

Getting a Queue or Topic in LDAP 45

Creating an AQ Queue Table 46

Creating a Queue 47

Creating a Point-to-Point Queue 47

Creating a Publish/Subscribe Topic 47

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of xvii

Creating a TxEventQ Queue for Point-to-Point Queue and Publish/Subscribe Topic 49

Getting an AQ Queue Table 49

Granting and Revoking Privileges 50

Granting Oracle Database Advanced Queuing System Privileges 50

Revoking Oracle Database Advanced Queuing System Privileges 51

Granting Publish/Subscribe Topic Privileges 51

Revoking Publish/Subscribe Topic Privileges 52

Granting Point-to-Point Queue Privileges 52

Revoking Point-to-Point Queue Privileges 52

Managing Destinations 53

Starting a Destination 53

Stopping a Destination 54

Altering a Destination 54

Dropping a Destination 55

Propagation Schedules 55

Scheduling a Propagation 55

Enabling a Propagation Schedule 56

Altering a Propagation Schedule 56

Disabling a Propagation Schedule 57

Unscheduling a Propagation 57

Oracle Java Message Service Point-to-Point 58

Creating a Connection with User Name/Password 58

Creating a Connection with Default ConnectionFactory Parameters 59

Creating a QueueConnection with User Name/Password 59

Creating a QueueConnection with an Open JDBC Connection 59

Creating a QueueConnection with Default ConnectionFactory Parameters 60

Creating a QueueConnection with an Open OracleOCIConnectionPool 60

Creating a Session 60

Creating a QueueSession 61

Creating a QueueSender 61

Sending Messages Using a QueueSender with Default Send Options 61

Sending Messages Using a QueueSender by Specifying Send Options 62

Creating a QueueBrowser for Standard JMS Type Messages 63

Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages 64

Creating a QueueBrowser for Oracle Object Type Messages 64

Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages 65

Creating a QueueReceiver for Standard JMS Type Messages 66

Creating a QueueReceiver for Oracle Object Type Messages 67

Oracle Java Message Service Publish/Subscribe 68

Creating a Connection with User Name/Password 69

Creating a Connection with Default ConnectionFactory Parameters 69

Creating a TopicConnection with User Name/Password 69

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of xvii

Creating a TopicConnection with Open JDBC Connection 70

Creating a TopicConnection with an Open OracleOCIConnectionPool 70

Creating a Session 71

Creating a TopicSession 71

Creating a TopicPublisher 71

Publishing Messages with Minimal Specification 71

Publishing Messages Specifying Topic 73

Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive 73

Publishing Messages Specifying a Recipient List 74

Creating a DurableSubscriber for a JMS Topic Without Selector 75

Creating a DurableSubscriber for a JMS Topic with Selector 76

Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector 77

Creating a DurableSubscriber for an Oracle Object Type Topic with Selector 78

Specifying Transformations for Topic Subscribers 79

Creating a Remote Subscriber for JMS Messages 80

Creating a Remote Subscriber for Oracle Object Type Messages 81

Specifying Transformations for Remote Subscribers 83

Unsubscribing a Durable Subscription for a Local Subscriber 84

Unsubscribing a Durable Subscription for a Remote Subscriber 84

Creating a TopicReceiver for a Topic of Standard JMS Type Messages 85

Creating a TopicReceiver for a Topic of Oracle Object Type Messages 86

Creating a TopicBrowser for Standard JMS Messages 87

Creating a TopicBrowser for Standard JMS Messages, Locking Messages 88

Creating a TopicBrowser for Oracle Object Type Messages 89

Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages 90

Browsing Messages Using a TopicBrowser 91

Oracle Java Message Service Shared Interfaces 91

Oracle Database Advanced Queuing JMS Operational Interface: Shared Interfaces 92

Starting a JMS Connection 92

Getting a JMS Connection 92

Committing All Operations in a Session 92

Rolling Back All Operations in a Session 93

Getting the JDBC Connection from a Session 93

Getting the OracleOCIConnectionPool from a JMS Connection 93

Creating a BytesMessage 93

Creating a MapMessage 93

Creating a StreamMessage 94

Creating an ObjectMessage 94

Creating a TextMessage 94

Creating a JMS Message 94

Creating an AdtMessage 94

Setting a JMS Correlation Identifier 95

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of xvii

Specifying JMS Message Properties 95

Setting a Boolean Message Property 95

Setting a String Message Property 96

Setting an Integer Message Property 96

Setting a Double Message Property 96

Setting a Float Message Property 97

Setting a Byte Message Property 97

Setting a Long Message Property 97

Setting a Short Message Property 97

Setting an Object Message Property 98

Setting Default TimeToLive for All Messages Sent by a MessageProducer 98

Setting Default Priority for All Messages Sent by a MessageProducer 98

Creating an AQjms Agent 99

Receiving a Message Synchronously 99

Using a Message Consumer by Specifying Timeout 99

Using a Message Consumer Without Waiting 100

Receiving Messages from a Destination Using a Transformation 101

Specifying the Navigation Mode for Receiving Messages 102

Receiving a Message Asynchronously 102

Specifying a Message Listener at the Message Consumer 102

Specifying a Message Listener at the Session 104

Getting Message ID 104

Getting the Correlation Identifier 104

Getting the Message Identifier 104

Getting JMS Message Properties 104

Getting a Boolean Message Property 105

Getting a String Message Property 105

Getting an Integer Message Property 105

Getting a Double Message Property 105

Getting a Float Message Property 105

Getting a Byte Message Property 106

Getting a Long Message Property 106

Getting a Short Message Property 106

Getting an Object Message Property 106

Closing and Shutting Down 107

Closing a MessageProducer 107

Closing a Message Consumer 107

Stopping a JMS Connection 107

Closing a JMS Session 107

Closing a JMS Connection 107

Troubleshooting 108

Getting a JMS Error Code 108

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of xvii

Getting a JMS Error Number 108

Getting an Exception Linked to a JMS Exception 108

Printing the Stack Trace for a JMS Exception 108

Setting an Exception Listener 108

Getting an Exception Listener 109

Oracle Java Message Service Types Examples 113

How to Set Up the Oracle Database Advanced Queuing JMS Type Examples 113

JMS BytesMessage Examples 116

JMS StreamMessage Examples 121

JMS MapMessage Examples 126

More Oracle Database Advanced Queuing JMS Examples 131

7 Oracle Database Advanced Queuing Operations Using PL/SQL

Using Secure Queues 1

Enqueuing Messages 2

Enqueuing an Array of Messages 10

Listening to One or More Queues 11

Dequeuing Messages 13

Dequeuing an Array of Messages 20

Registering for Notification 22

Unregistering for Notification 23

Posting for Subscriber Notification 23

Adding an Agent to the LDAP Server 24

Removing an Agent from the LDAP Server 25

8 Oracle Transactional Event Queues and Advanced Queuing Performance
and Scalability

Transactional Event Queues 1

Transactional Event Queues and the Message Cache 2

Transactional Event Queues and Enqueuing / Dequeuing Messages 2

Transactional Event Queues and Native JMS Support 2

Transactional Event Queues and Partitioning 3

Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC) 3

Transactional Event Queues and Message Retention 4

Transactional Event Queues and Seekable Subscribers 4

Transactional Event Queues Restrictions 5

Transactional Event Queues Tuning 5

User Event Streaming 6

AQ Queues 9

Persistent Messaging Basic Tuning Tips 9

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of xvii

Memory Requirements 9

Using Storage Parameters 9

I/O Configuration 10

Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table 10

Running Enqueue and Dequeue Processes Serially in a Single Queue Table 10

Creating Indexes on a Queue Table 11

Other Tips for Queues 11

Propagation Tuning Tips 11

Buffered Messaging Tuning 12

Persistent Messaging Performance Overview for Queues 12

Queues and Oracle Real Application Clusters 12

Oracle Database Advanced Queuing in a Shared Server Environment 13

Performance Views 13

Migrating from AQ to TxEventQ 14

Monitoring TxEventQ with Prometheus/Grafana 21

Monitoring Data Flow and UI Framework Setup 22

Key Metrics Measured 26

9 Oracle Transactional Event Queue and Advanced Queuing Views

DBA_QUEUE_TABLES: All Queue Tables in Database 3

USER_QUEUE_TABLES: Queue Tables in User Schema 3

ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User 3

DBA_QUEUES: All Queues in Database 4

USER_QUEUES: Queues In User Schema 4

ALL_QUEUES: Queues for Which User Has Any Privilege 4

DBA_QUEUE_SCHEDULES: All Propagation Schedules 5

USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema 5

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege 5

AQ$<Queue_Table_Name>: Messages in Queue Table 5

AQ$<Queue_Table_Name_S>: Queue Subscribers 9

AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules 10

AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue 10

AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue 11

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database 11

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema 11

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges 12

DBA_TRANSFORMATIONS: All Transformations 12

DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions 12

USER_TRANSFORMATIONS: User Transformations 12

USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions 13

DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations 13

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of xvii

USER_SUBSCR_REGISTRATIONS: User Subscription Registrations 13

AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for
Internet Access 14

V$AQ: Number of Messages in Different States in Database 14

V$BUFFERED_QUEUES: All Buffered Queues in the Instance 14

V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance 15

V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance 15

V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance 15

V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for
Persistent Queues 16

V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the
Instance 16

V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the
Instance 16

V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending
(Source) Side 17

V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving
(Destination) Side 17

V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications 17

V$METRICGROUP: Information About the Metric Group 18

V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues 18

V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics 18

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics 19

V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List 19

V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Primary
Background Coordinator Process (AQPC) 19

V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator 20

V$AQ_SERVER_POOL: Performance Statistics for all Servers 20

V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description 20

V$AQ_IPC_ACTIVE_MSGS 21

V$AQ_IPC_MSG_STATS 21

V$AQ_IPC_PENDING_MSGS 21

V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations 21

V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections 22

V$AQ_SUBSCRIBER_LOAD: Durable Subscribers 22

V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers 22

V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber 23

V$AQ_MESSAGE_CACHE: Performance Statistics 23

10

Troubleshooting Oracle Database Advanced Queuing

Debugging Oracle Database Advanced Queuing Propagation Problems 1

Oracle Database Advanced Queuing Error Messages 2

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xi of xvii

11

Internet Access to Oracle Database Advanced Queuing

Overview of Oracle Database Advanced Queuing Operations Over the Internet 1

Oracle Database Advanced Queuing Internet Operations Architecture 1

Internet Message Payloads 2

Configuring the Web Server to Authenticate Users Sending POST Requests 3

Client Requests Using HTTP 3

Oracle Database Advanced Queuing Servlet Responses Using HTTP 3

Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS 4

Deploying the Oracle Database Advanced Queuing XML Servlet 4

Internet Data Access Presentation (IDAP) 6

SOAP Message Structure 6

SOAP Envelope 6

SOAP Header 6

SOAP Body 7

SOAP Method Invocation 7

HTTP Headers 7

Method Invocation Body 7

Results from a Method Request 8

Request and Response IDAP Documents 8

IDAP Client Requests for Enqueue 9

IDAP Client Requests for Dequeue 11

IDAP Client Requests for Registration 12

IDAP Client Requests to Commit a Transaction 13

IDAP Client Requests to Roll Back a Transaction 13

IDAP Server Response to an Enqueue Request 13

IDAP Server Response to a Dequeue Request 14

IDAP Server Response to a Register Request 14

IDAP Commit Response 14

IDAP Rollback Response 14

IDAP Notification 15

IDAP Response in Case of Error 15

Notification of Messages by E-Mail 15

12

Oracle Database Advanced Queuing Administrative Interface

Managing AQ Queue Tables 1

Creating an AQ Queue Table 1

Altering an AQ Queue Table 8

Dropping an AQ Queue Table 10

Purging an AQ Queue Table 10

Migrating an AQ Queue Table 12

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xii of xvii

Managing AQ Queues 13

Creating an AQ Queue 13

Altering an AQ Queue 16

Starting an AQ Queue 16

Stopping an AQ Queue 17

Dropping an AQ Queue 17

Managing Transformations 17

Creating a Transformation 18

Modifying a Transformation 19

Dropping a Transformation 19

Granting and Revoking Privileges 19

Granting Oracle Database Advanced Queuing System Privileges 19

Revoking Oracle Database Advanced Queuing System Privileges 20

Granting Queue Privileges 21

Revoking Queue Privileges 21

Managing Subscribers 22

Adding a Subscriber 22

Altering a Subscriber 24

Removing a Subscriber 24

Managing Propagations 25

Scheduling a Queue Propagation 25

Verifying Propagation Queue Type 27

Altering a Propagation Schedule 28

Enabling a Propagation Schedule 29

Disabling a Propagation Schedule 29

Unscheduling a Queue Propagation 30

Managing Oracle Database Advanced Queuing Agents 30

Creating an Oracle Database Advanced Queuing Agent 31

Altering an Oracle Database Advanced Queuing Agent 31

Dropping an Oracle Database Advanced Queuing Agent 31

Enabling Database Access 32

Disabling Database Access 32

Adding an Alias to the LDAP Server 32

Deleting an Alias from the LDAP Server 32

A Nonpersistent Queues

Creating Nonpersistent Queues A-1

Managing Nonpersistent Queues A-2

Compatibility of Nonpersistent Queues A-2

Nonpersistent Queue Notification A-2

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiii of xvii

Restrictions on Nonpersistent Queues A-3

B Oracle JMS and Oracle AQ XML Servlet Error Messages

Oracle JMS Error Messages B-1

Oracle AQ XML Servlet Error Messages B-13

C Oracle Messaging Gateway

Introduction to Oracle Messaging Gateway C-1

Oracle Messaging Gateway Overview C-1

Oracle Messaging Gateway Features C-2

Oracle Messaging Gateway Architecture C-3

Administration Package DBMS_MGWADM C-4

Oracle Messaging Gateway Agent C-4

Oracle Database C-4

Non-Oracle Messaging Systems C-4

Propagation Processing Overview C-5

Oracle Database AQ Buffered Messages and Messaging Gateway C-6

Getting Started with Oracle Messaging Gateway C-6

Oracle Messaging Gateway Prerequisites C-6

Loading and Setting Up Oracle Messaging Gateway C-6

Loading Database Objects into the Database C-7

Modifying listener.ora for the External Procedure C-7

Modifying tnsnames.ora for the External Procedure C-8

Setting Up an mgw.ora Initialization File C-9

Creating an Oracle Messaging Gateway Administrator User C-10

Creating an Oracle Messaging Gateway Agent User C-10

Configuring Oracle Messaging Gateway Connection Information C-10

Configuring Oracle Messaging Gateway in an Oracle RAC Environment C-10

Setting Up Non-Oracle Messaging Systems C-12

Setting Up for TIB/Rendezvous C-12

Setting Up for WebSphere MQ Base Java or JMS C-13

Verifying the Oracle Messaging Gateway Setup C-13

Unloading Oracle Messaging Gateway C-14

Understanding the mgw.ora Initialization File C-14

mgw.ora Initialization Parameters C-14

mgw.ora Environment Variables C-15

mgw.ora Java Properties C-16

mgw.ora Comment Lines C-18

Working with Oracle Messaging Gateway C-19

Configuring the Oracle Messaging Gateway Agent C-19

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xiv of xvii

Creating a Messaging Gateway Agent C-20

Removing a Messaging Gateway Agent C-20

Setting Database Connection C-20

Setting the Resource Limits C-20

Starting and Shutting Down the Oracle Messaging Gateway Agent C-21

Starting the Oracle Messaging Gateway Agent C-21

Shutting Down the Oracle Messaging Gateway Agent C-21

Oracle Messaging Gateway Agent Scheduler Job C-21

Running the Oracle Messaging Gateway Agent on Oracle RAC C-22

Configuring Messaging System Links C-23

Creating a WebSphere MQ Base Java Link C-24

Creating a WebSphere MQ JMS Link C-25

Creating a WebSphere MQ Link to Use SSL C-27

Creating a TIB/Rendezvous Link C-29

Altering a Messaging System Link C-29

Removing a Messaging System Link C-30

Views for Messaging System Links C-30

Configuring Non-Oracle Messaging System Queues C-30

Registering a Non-Oracle Queue C-31

Unregistering a Non-Oracle Queue C-32

View for Registered Non-Oracle Queues C-32

Configuring Oracle Messaging Gateway Propagation Jobs C-32

Propagation Job Overview C-33

Creating an Oracle Messaging Gateway Propagation Job C-33

Enabling and Disabling a Propagation Job C-34

Resetting a Propagation Job C-35

Altering a Propagation Job C-35

Removing a Propagation Job C-35

Propagation Jobs, Subscribers, and Schedules C-36

Propagation Job, Subscriber, Schedule Interface Interoperability C-37

Propagation Job, Subscriber, Schedule Views C-37

Single Consumer Queue as Propagation Source C-38

Configuration Properties C-38

WebSphere MQ System Properties C-38

TIB/Rendezvous System Properties C-40

Optional Link Configuration Properties C-41

Optional Foreign Queue Configuration Properties C-43

Optional Job Configuration Properties C-44

Oracle Messaging Gateway Message Conversion C-45

Converting Oracle Messaging Gateway Non-JMS Messages C-45

Overview of the Non-JMS Message Conversion Process C-45

Oracle Messaging Gateway Canonical Types C-46

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xv of xvii

Message Header Conversion C-47

Handling Arbitrary Payload Types Using Message Transformations C-47

Handling Logical Change Records C-49

Message Conversion for WebSphere MQ C-50

WebSphere MQ Message Header Mappings C-51

WebSphere MQ Outbound Propagation C-54

WebSphere MQ Inbound Propagation C-55

Message Conversion for TIB/Rendezvous C-55

AQ Message Property Mapping for TIB/Rendezvous C-57

TIB/Rendezvous Outbound Propagation C-58

TIB/Rendezvous Inbound Propagation C-58

JMS Messages C-59

JMS Outbound Propagation C-60

JMS Inbound Propagation C-61

Monitoring Oracle Messaging Gateway C-61

Oracle Messaging Gateway Log Files C-61

Sample Oracle Messaging Gateway Log File C-61

Interpreting Exception Messages in an Oracle Messaging Gateway Log File C-63

Monitoring the Oracle Messaging Gateway Agent Status C-63

MGW_GATEWAY View C-63

Oracle Messaging Gateway Irrecoverable Error Messages C-64

Other Oracle Messaging Gateway Error Conditions C-67

Monitoring Oracle Messaging Gateway Propagation C-68

Oracle Messaging Gateway Agent Error Messages C-69

Oracle Messaging Gateway Views C-75

MGW_GATEWAY: Configuration and Status Information C-75

MGW_AGENT_OPTIONS: Supplemental Options and Properties C-77

MGW_LINKS: Names and Types of Messaging System Links C-77

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links C-77

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links C-78

MGW_FOREIGN_QUEUES: Foreign Queues C-79

MGW_JOBS: Messaging Gateway Propagation Jobs C-79

MGW_SUBSCRIBERS: Information for Subscribers C-80

MGW_SCHEDULES: Information About Schedules C-81

D Advanced Queuing Sharded Queues

Managing Sharded Queues D-1

Creating a Sharded Queue D-1

Dropping a Sharded Queue D-2

Altering a Sharded Queue D-3

Setting a Queue Parameter D-3

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvi of xvii

Unsetting a Queue Parameter D-4

Getting a Queue Parameter D-4

Creating an Exception Queue D-5

Glossary

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xvii of xvii

List of Examples

4-1 Creating Objects Containing VARRAYs 9

6-1 Registering Through the Database Using JDBC Connection Parameters 39

6-2 Registering Through the Database Using a JDBC URL 39

6-3 Registering Through LDAP Using JDBC Connection Parameters 40

6-4 Registering Through LDAP Using a JDBC URL 41

6-5 Unregistering Through the Database 42

6-6 Unregistering Through LDAP 42

6-7 Getting a QueueConnectionFactory with JDBC URL 43

6-8 Getting a QueueConnectionFactory with JDBC Connection Parameters 44

6-9 Getting a TopicConnectionFactory with JDBC URL 44

6-10 Getting a TopicConnectionFactory with JDBC Connection Parameters 45

6-11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 45

6-12 Getting a Queue or Topic in LDAP 45

6-13 Creating a Queue Table 46

6-14 Creating a Point-to-Point Queue 47

6-15 Creating a Publish/Subscribe Topic 48

6-16 Specifying Max Retries and Max Delays in Messages 48

6-17 Getting a Queue Table 50

6-18 Granting Oracle Database Advanced Queuing System Privileges 50

6-19 Revoking Oracle Database Advanced Queuing System Privileges 51

6-20 Granting Publish/Subscribe Topic Privileges 51

6-21 Revoking Publish/Subscribe Topic Privileges 52

6-22 Granting Point-to-Point Queue Privileges 52

6-23 Revoking Point-to-Point Queue Privileges 53

6-24 Starting a Destination 53

6-25 Stopping a Destination 54

6-26 Altering a Destination 54

6-27 Dropping a Destination 55

6-28 Scheduling a Propagation 56

6-29 Enabling a Propagation Schedule 56

6-30 Altering a Propagation Schedule 57

6-31 Disabling a Propagation Schedule 57

6-32 Unscheduling a Propagation 58

6-33 Creating a QueueConnection with User Name/Password 59

6-34 Creating a QueueConnection with an Open JDBC Connection 60

6-35 Creating a QueueConnection from a Java Procedure Inside Database 60

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xviii of xvii

6-36 Creating a QueueConnection with an Open OracleOCIConnectionPool 60

6-37 Creating a Transactional QueueSession 61

6-38 Creating a Sender to Send Messages to Any Queue 62

6-39 Creating a Sender to Send Messages to a Specific Queue 62

6-40 Sending Messages Using a QueueSender by Specifying Send Options 1 63

6-41 Sending Messages Using a QueueSender by Specifying Send Options 2 63

6-42 Creating a QueueBrowser Without a Selector 63

6-43 Creating a QueueBrowser With a Specified Selector 63

6-44 Creating a QueueBrowser Without a Selector, Locking Messages 64

6-45 Creating a QueueBrowser With a Specified Selector, Locking Messages 64

6-46 Creating a QueueBrowser for ADTMessages 65

6-47 Creating a QueueBrowser for AdtMessages, Locking Messages 66

6-48 Creating a QueueReceiver Without a Selector 67

6-49 Creating a QueueReceiver With a Specified Selector 67

6-50 Creating a QueueReceiver for AdtMessage Messages 68

6-51 Creating a TopicConnection with User Name/Password 70

6-52 Creating a TopicConnection with Open JDBC Connection 70

6-53 Creating a TopicConnection with New JDBC Connection 70

6-54 Creating a TopicConnection with Open OracleOCIConnectionPool 70

6-55 Creating a TopicSession 71

6-56 Publishing Without Specifying Topic 72

6-57 Publishing Specifying Correlation and Delay 72

6-58 Publishing Specifying Topic 73

6-59 Publishing Specifying Priority and TimeToLive 74

6-60 Publishing Specifying a Recipient List Overriding Topic Subscribers 74

6-61 Creating a Durable Subscriber for a JMS Topic Without Selector 75

6-62 Creating a Durable Subscriber for a JMS Topic With Selector 76

6-63 Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector 77

6-64 Creating a Durable Subscriber for an Oracle Object Type Topic With Selector 79

6-65 Sending Messages to a Destination Using a Transformation 79

6-66 Specifying Transformations for Topic Subscribers 80

6-67 Creating a Remote Subscriber for Topics of JMS Messages 81

6-68 Creating a Remote Subscriber for Topics of Oracle Object Type Messages 82

6-69 Specifying Transformations for Remote Subscribers 83

6-70 Unsubscribing a Durable Subscription for a Local Subscriber 84

6-71 Unsubscribing a Durable Subscription for a Remote Subscriber 85

6-72 Creating a TopicReceiver for Standard JMS Type Messages 86

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xix of xvii

6-73 Creating a TopicReceiver for Oracle Object Type Messages 87

6-74 Creating a TopicBrowser Without a Selector 88

6-75 Creating a TopicBrowser With a Specified Selector 88

6-76 Creating a TopicBrowser Without a Selector, Locking Messages While Browsing 89

6-77 Creating a TopicBrowser With a Specified Selector, Locking Messages 89

6-78 Creating a TopicBrowser for AdtMessage Messages 90

6-79 Creating a TopicBrowser for AdtMessage Messages, Locking Messages 91

6-80 Creating a TopicBrowser with a Specified Selector 91

6-81 Getting Underlying JDBC Connection from JMS Session 93

6-82 Getting Underlying OracleOCIConnectionPool from JMS Connection 93

6-83 Setting Default TimeToLive for All Messages Sent by a MessageProducer 98

6-84 Setting Default Priority Value for All Messages Sent by QueueSender 99

6-85 Setting Default Priority Value for All Messages Sent by TopicPublisher 99

6-86 Using a Message Consumer by Specifying Timeout 99

6-87 JMS: Blocking Until a Message Arrives 100

6-88 JMS: Nonblocking Messages 100

6-89 JMS: Receiving Messages from a Destination Using a Transformation 101

6-90 Specifying Navigation Mode for Receiving Messages 102

6-91 Specifying Message Listener at Message Consumer 103

6-92 Getting Message Property as an Object 107

6-93 Specifying Exception Listener for Connection 109

6-94 Using ExceptionListener with MessageListener 109

6-95 Getting the Exception Listener for the Connection 112

6-96 Setting Up Environment for Running JMS Types Examples 113

6-97 Setting Up the Examples 116

6-98 Populating and Enqueuing a BytesMessage 117

6-99 Dequeuing and Retrieving JMS BytesMessage Data 119

6-100 Populating and Enqueuing a JMS StreamMessage 121

6-101 Dequeuing and Retrieving Data From a JMS StreamMessage 123

6-102 Populating and Enqueuing a JMS MapMessage 126

6-103 Dequeuing and Retrieving Data From a JMS MapMessage 128

6-104 Enqueuing a Large TextMessage 131

6-105 Enqueuing a Large BytesMessage 132

7-1 Enqueuing a Message, Specifying Queue Name and Payload 6

7-2 Enqueuing a Message, Specifying Priority 7

7-3 Creating an Enqueue Procedure for LOB Type Messages 7

7-4 Enqueuing a LOB Type Message 7

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xx of xvii

7-5 Enqueuing Multiple Messages 7

7-6 Adding Subscribers RED and GREEN 8

7-7 Enqueuing Multiple Messages to a Multiconsumer Queue 9

7-8 Enqueuing Grouped Messages 9

7-9 Enqueuing a Message, Specifying Delay and Expiration 10

7-10 Enqueuing a Message, Specifying a Transformation 10

7-11 Enqueuing an Array of Messages 11

7-12 Listening to a Single-Consumer Queue with Zero Timeout 12

7-13 Dequeuing Object Type Messages 17

7-14 Creating a Dequeue Procedure for LOB Type Messages 17

7-15 Dequeuing LOB Type Messages 18

7-16 Dequeuing Grouped Messages 18

7-17 Dequeuing Messages for RED from a Multiconsumer Queue 19

7-18 Dequeue in Browse Mode and Remove Specified Message 19

7-19 Dequeue in Locked Mode and Remove Specified Message 20

7-20 Dequeuing an Array of Messages 21

7-21 Registering for Notifications 23

7-22 Posting Object-Type Messages 24

8-1 Setting REMOTE_LISTENER Parameter for Cross Instance Enqueues 8

12-1 Setting Up AQ Administrative Users 6

12-2 Setting Up AQ Administrative Example Types 6

12-3 Creating a Queue Table for Messages of Object Type 7

12-4 Creating a Queue Table for Messages of RAW Type 7

12-5 Creating a Queue Table for Messages of LOB Type 7

12-6 Creating a Queue Table for Messages of XMLType 7

12-7 Creating a Queue Table for Grouped Messages 7

12-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers 7

12-9 Creating a Queue Table with Commit-Time Ordering 8

12-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers 8

12-11 Creating a Queue Table in a Specified Tablespace 8

12-12 Creating a Queue Table with Freelists or Freelist Groups 8

12-13 Altering a Queue Table by Changing the Primary and Secondary Instances 9

12-14 Altering a Queue Table by Changing the Comment 9

12-15 Dropping a Queue Table 10

12-16 Dropping a Queue Table with force Option 10

12-17 Purging All Messages in a Queue Table 11

12-18 Purging All Messages in a Named Queue 11

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxi of xvii

12-19 Purging All PROCESSED Messages in a Named Queue 12

12-20 Purging All Messages in a Named Queue and for a Named Consumer 12

12-21 Purging All Messages from a Named Sender 12

12-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible 13

12-23 Creating a Queue for Messages of Object Type 14

12-24 Creating a Queue for Messages of RAW Type 15

12-25 Creating a Queue for Messages of LOB Type 15

12-26 Creating a Queue for Grouped Messages 15

12-27 Creating a Queue for Prioritized Messages 15

12-28 Creating a Queue for Prioritized Messages and Multiple Consumers 15

12-29 Creating a Queue to Demonstrate Propagation 15

12-30 Creating an 8.1-Style Queue for Multiple Consumers 15

12-31 Altering a Queue by Changing Retention Time 16

12-32 Starting a Queue with Both Enqueue and Dequeue Enabled 16

12-33 Starting a Queue for Dequeue Only 16

12-34 Stopping a Queue 17

12-35 Dropping a Standard Queue 17

12-36 Creating a Transformation 18

12-37 Granting AQ System Privileges 20

12-38 Revoking AQ System Privileges 20

12-39 Granting Queue Privilege 21

12-40 Revoking Dequeue Privilege 21

12-41 Adding a Subscriber at a Designated Queue at a Database Link 23

12-42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber 23

12-43 Adding a Subscriber with a Rule 23

12-44 Adding a Subscriber and Specifying a Transformation 23

12-45 Propagating from a Multiple-Consumer Queue to a Single Consumer Queue 24

12-46 Altering a Subscriber Rule 24

12-47 Removing a Subscriber 25

12-48 Scheduling a Propagation to Queues in the Same Database 27

12-49 Scheduling a Propagation to Queues in Another Database 27

12-50 Scheduling Queue-to-Queue Propagation 27

12-51 Verifying a Queue Type 28

12-52 Altering a Propagation Schedule to Queues in the Same Database 29

12-53 Altering a Propagation Schedule to Queues in Another Database 29

12-54 Enabling a Propagation to Queues in the Same Database 29

12-55 Enabling a Propagation to Queues in Another Database 29

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxii of xvii

12-56 Disabling a Propagation to Queues in the Same Database 30

12-57 Disabling a Propagation to Queues in Another Database 30

12-58 Unscheduling a Propagation to Queues in the Same Database 30

12-59 Unscheduling a Propagation to Queues in Another Database 30

C-1 Adding Static Service Information for a Listener C-7

C-2 Configuring MGW_AGENT C-8

C-3 Creating a Messaging Gateway Administrator User C-10

C-4 Creating a Messaging Gateway Agent User C-10

C-5 Configuring Messaging Gateway Connection Information C-10

C-6 Setting Java Properties C-13

C-7 Creating a Messaging Gateway Agent C-20

C-8 Removing a Messaging Gateway Agent C-20

C-9 Setting Database Connection Information C-20

C-10 Setting the Resource Limits C-21

C-11 Starting the Messaging Gateway Agent C-21

C-12 Shutting Down the Messaging Gateway Agent C-21

C-13 Configuring a WebSphere MQ Base Java Link C-25

C-14 Configuring a WebSphere MQ JMS Link C-26

C-15 Configuring a WebSphere MQ Base Java Link for SSL C-28

C-16 Configuring a TIB/Rendezvous Link C-29

C-17 Altering a WebSphere MQ Link C-29

C-18 Removing a Messaging Gateway Link C-30

C-19 Listing All Messaging Gateway Links C-30

C-20 Checking Messaging System Link Configuration Information C-30

C-21 Registering a WebSphere MQ Base Java Queue C-31

C-22 Unregistering a Non-Oracle Queue C-32

C-23 Checking Which Queues Are Registered C-32

C-24 Creating a Messaging Gateway Propagation Job C-34

C-25 Enabling a Messaging Gateway Propagation Job C-34

C-26 Disabling a Messaging Gateway Propagation Job C-34

C-27 Resetting a Propagation Job C-35

C-28 Altering Propagation Job by Adding an Exception Queue C-35

C-29 Altering Propagation Job by Changing the Polling Interval C-35

C-30 Removing a Propagation Job C-36

C-31 Transformation Function Signature C-48

C-32 Creating a Transformation C-48

C-33 Registering a Transformation C-48

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxiii of xvii

C-34 Outbound LCR Transformation C-50

C-35 Inbound LCR Transformation C-50

C-36 Sample Messaging Gateway Log File C-62

C-37 Sample Exception Message C-63

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxiv of xvii

List of Figures

1-1 Integrated Application Environment Using TxEventQ and AQ 6

1-2 Client/Server Communication Using TxEventQ and AQ 7

1-3 Communication Using a Multiconsumer Queue 9

1-4 Explicit and Implicit Recipients of Messages 10

1-5 Implementing a Workflow using TxEventQ and AQ 11

1-6 Point-to-Point Messaging 12

1-7 Publish/Subscribe Mode 12

1-8 Implementing Publish/Subscribe using TxEventQ and AQ 13

1-9 Message Propagation in Oracle Database Advanced Queuing 32

1-10 Transformations in Application Integration 37

1-11 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP 41

5-1 Kafka Application Integration with Transactional Event Queue 2

6-1 Structure of Oracle Database Advanced Queuing Entries in LDAP Server 3

8-1 Flowchart: Migration from AQ to TxEventQ 15

8-2 Monitoring Transaction Event Queue 23

8-3 Welcome Page 23

8-4 Database Summary 25

8-5 Database Wait Class Latency 25

8-6 System Summary 26

11-1 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP 2

11-2 HTTP Oracle Database Advanced Queuing Propagation 4

C-1 Messaging Gateway Architecture C-3

C-2 Non-JMS Message Conversion C-46

C-3 Oracle Database Advanced Queuing Message Conversion C-47

C-4 Message Conversion for WebSphere MQ Using MGW_BASIC_MSG_T C-51

C-5 Message Conversion for TIB/Rendezvous C-56

C-6 JMS Message Propagation C-60

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxv of xvii

List of Tables

2-1 AQ$_REG_INFO Type Attributes 4

2-2 AQ$_DESCRIPTOR Attributes 5

2-3 Enumerated Constants in the Oracle Database Advanced Queuing Administrative Interface 7

2-4 Enumerated Constants in the Oracle Database Advanced Queuing Operational Interface 7

3-1 Oracle Database Advanced Queuing Programmatic Interfaces 1

3-2 Comparison of Oracle Transactional Event Queues and Advanced Queuing Programmatic

Interfaces: Administrative Interface 4

3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Create Connection, Session, Message Use Cases 7

3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases 7

3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use

Cases 9

3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe

Model Use Cases 11

3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Browse Messages in a Queue Use Cases 12

3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Receive Messages from a Queue/Topic Use Cases 12

3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational

Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use Cases 14

4-1 Operations and Required Privileges 4

6-1 StreamMessage Conversion 12

6-2 MapMessage Conversion 13

6-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants 16

8-1 Unsupported Features and Workarounds 20

8-2 Unsupported Features without Workarounds 21

9-1 AQ$<Queue_Table_Name> View 7

9-2 AQ$<Queue_Table_Name_S> View 9

9-3 AQ$<Queue_Table_Name_R> View 10

9-4 AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue 10

9-5 AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue 11

9-6 AQ$INTERNET_USERS View 14

A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified A-2

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxvi of xvii

A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified A-2

C-1 SID_DESC Parameters C-8

C-2 Messaging Gateway Propagation Job Subprograms C-36

C-3 WebSphere MQ Link Properties C-38

C-4 Optional Configuration Properties for WebSphere MQ Base Java C-39

C-5 Optional Configuration Properties for WebSphere MQ JMS C-40

C-6 TIB/Rendezvous Link Properties C-41

C-7 Optional Properties for TIB/Rendezvous C-41

C-8 MGW Names for WebSphere MQ Header Values C-52

C-9 Default Priority Mappings for Propagation C-54

C-10 TIB/Rendezvous Datatype Mapping C-56

C-11 TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing Message Properties C-57

C-12 Oracle JMS Message Conversion C-60

C-13 MGW_GATEWAY View Properties C-75

C-14 MGW_AGENT_OPTIONS View C-77

C-15 MGW_LINKS View Properties C-77

C-16 MGW_MQSERIES_LINKS View Properties C-78

C-17 MGW_TIBRV_LINKS View Properties C-78

C-18 MGW_FOREIGN_QUEUES View Properties C-79

C-19 MGW_JOBS View C-79

C-20 MGW_SUBSCRIBERS View Properties C-80

C-21 MGW_SCHEDULES View Properties C-81

D-1 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces for Sharded

Queues: Administrative Interface D-1

D-2 CREATE_SHARDED_QUEUE Procedure Parameters D-3

D-3 ALTER_SHARDED_QUEUE Procedure Parameters D-3

D-4 SET_QUEUE_PARAMETER Procedure Parameters D-4

D-5 UNSET_QUEUE_PARAMETER Procedure Parameters D-4

D-6 GET_QUEUE_PARAMETER Procedure Parameters D-4

D-7 CREATE_EXCEPTION_QUEUE Procedure Parameters D-5

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page xxvii of xvii

Preface

This guide describes features of application development and integration using Oracle
Database Advanced Queuing (AQ). This information applies to versions of the Oracle
Database server that run on all platforms, unless otherwise specified.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for developers of applications that use Oracle Database Advanced
Queuing.

To use this guide, you need knowledge of an application development language and object-
relational database management concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Development Guide

• Oracle Database PL/SQL Language Reference

• Oracle Database Advanced Queuing Java API Reference

• Oracle Database Transactional Event Queues Java API Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle XML DB Developer's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Many of the examples in this guide use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. See Oracle
Database Sample Schemas for information on how these schemas were created and how you
can use them.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of ii

Changes in This Release for Oracle Database
Advanced Queuing User's Guide

This preface contains:

• Changes in Oracle AI Database Transactional Event Queues and Advanced Queuing
Release 26ai

• Changes in Oracle Database Advanced Queuing Release 21c

• Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2

• Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2)

• Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2)

• Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1)

Changes in Oracle AI Database Transactional Event Queues and
Advanced Queuing Release 26ai

The following are changes in Oracle AI Database Transactional Event Queues and Advanced
Queuing User's Guide for Oracle AI Database Release 26ai.

New Features
The following features are new in this release:

• Transactional Event Queue (TxEventQ) Propagation

Transactional Event Queue (TxEventQ) Propagation enables events at source to be sent
to destination queues reliably honoring the ordering semantics, with JMS session level
ordering.

TxEventQ gets created with set of “Event Streams” which is configurable, and it allow the
applications to parallelize the publish activity using multiple subscribers. “Event Streams”
are viewed as a storage mechanism for TxEventQ. Applications publish events in
TxEventQs under 'Event Streams'

Facility of Propagation leads to multiple benefits, the ability to process published messages
remotely, the ability to backup critical data at remote locations and any others.

See Propagation Features for more information

• Enhancement of Kafka Implementation for Transactional Event Queues

Enhancement to the client library now allows the Kafka applications to atomically produce
and or consume messages from multiple queues of Transactional Event Queues
(TxEventQ). Support for Kafka Rebalancing which facilitates distribution of topic partitions
among available Kafka consumers is also now available.

See Kafka APIs for Oracle Transactional Event Queues for more information

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of viii

• Oracle Database Advanced Queuing (AQ) to Transactional Event Queue (TxEventQ)
online Migration Tool

AQ to TxEventQ online Migration Tool enables online and automated migration of a AQ
deployment to next generation messaging product TxEventQ. The migration interface
works without blocking queuing operations. It creates an internal Oracle managed
TxEventQ for the AQ that is being migrated. Migration framework will internally drain (or
dequeue) messages from AQ and enqueue them into the internal TxEventQ. At an
appropriate time, the TxEventQ will assume the name of the AQ, and the AQ will be
dropped.

The online migration tool first help assess the feature mapping between AQ and TxEventQ
to flag any mismatches. Once this phase passes an online migration is attempted, and a
choice is given after some time to continue with the migration or cancel it.

See Migrating from AQ to TxEventQ and DBMS_AQMIGTOOL for more information

• Python, Node.js and REST drivers for Transactional Event Queues (TxEventQ)

Starting with Oracle Database 23ai, Transactional Event Queues (TxEventQ) also have
support for Python, Node.js and REST drivers.

See Polyglot Programming with Transactional Event Queues for more information.

• Prometheus/Grafana for Oracle

Oracle Database 23ai introduces Prometheus/Grafana for Oracle (PGO), which provides
database metrics for developers running in a Kubernetes/Docker (K8S) environment.
Database metrics are stored in Prometheus, a time-series database and metrics tailored
for developers are displayed using Grafana dashboards.

The metrics give a picture of database performance colored by various applications and
the modules it comprises.

See Monitoring Transactional Event Queues for more information.

Deprecated Features
The following features are deprecated in this release:

• Oracle Messaging Gateway

– DBMS_MGWADM

See Oracle Messaging Gateway for more information.

Changes in Oracle Database Advanced Queuing Release 21c
The following are changes in Oracle Database Advanced Queuing User's Guide for Oracle
Database Release 21c.

• New Features

• Deprecated Features

New Features
The following features are new in this release:

• Advanced Queuing: Kafka Java Client for Transactional Event Queues

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of viii

https://github.com/oracle/oracle-db-appdev-monitoring#monitoring-transactional-event-queues

Kafka Java Client for Transactional Event Queues (TxEventQ) enables Kafka application
compatibility with Oracle Database. This provides easy migration of Kafka applications to
TxEventQ.

Starting from Oracle Database 21c, Kafka Java APIs can connect to Oracle Database
server and use Transactional Event Queues (TxEventQ) as a messaging platform.
Developers can migrate an existing Java application that uses Kafka to the Oracle
Database. A client side library allows Kafka applications to connect to Oracle Database
instead of Kafka cluster and use TxEventQ messaging platform transparently. Kafka
interoperability is supported by configuring Kafka JMS Connectors to move messages
between the two messaging systems.

See Kafka APIs for Oracle Transactional Event Queues for more information.

• PL/SQL Enqueue and Dequeue Support for JMS Payload in Transactional Event Queues

PL/SQL APIs perform enqueue and dequeue operations for Java Message Service (JMS)
payload in Transactional Event Queues. Similarly, the PL/SQL Array APIs are exposed to
Transactional Event Queues JMS users. Since JMS support of heterogeneous messages,
dequeue gets one of the five JMS message types back, but cannot predict what is the type
of the next message received. Therefore, it can run into application errors with PL/SQL
complaining about type mismatch. Oracle suggests that the application always dequeue
from Transactional Event Queues using the generic type AQ$_JMS_MESSAGE. PL/SQL
administration is also supported.

See Transactional Event Queues and Enqueuing / Dequeuing Messages for more
information

• PL/SQL Enqueue and Dequeue Support for non-JMS Payload in Transactional Event
Queues

To improve throughput and reduce overhead and latency, enqueues and dequeues are
optimized to use the message cache, the rules engine, and background processing when
possible.

See Transactional Event Queues and Enqueuing / Dequeuing Messages for more
information

• Transactional Event Queues for Performance and Scalability

Oracle Database 21c introduces Transactional Event Queues (TxEventQ), which are
partitioned message queues that combine the best of messaging, streaming, direct
messages, and publish/subscribe. TxEventQs have their Queue tables partitioned into
multiple Event Streams, which are distributed across multiple RAC nodes for high
throughput messaging and streaming of events.

See Oracle Transactional Event Queues and Advanced Queuing Performance and
Scalability for more information

• Simplified Metadata and Schema in Transactional Event Queues

Oracle Database 21c introduces Transactional Event Queues (TxEventQ), which are
partitioned message queues that combine the best of messaging, streaming, direct
messages, and publish/subscribe. TxEventQ operates at scale on the Oracle Database.
TxEventQ provides transactional event streaming, and runs in the database in a scale of
10s to 100s of billions of messages per day on 2-node to 8-node Oracle RAC databases,
both on-premise and on the cloud. TxEventQ has Kafka client compatibility, which means,
Kafka producer and consumer can use TxEventQ in the Oracle Database instead of a
Kafka broker.

• Support for Message Retention and Seekable Subscribers in Transactional Event Queues

A user can specify a time for which the message can be retained, even after the
subscribers have consumed the message. The retention time is specified in seconds by

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of viii

user. It can vary from 0 to INIFINITE. Without retention, when a message is dequeued by
all subscribers in sharded queues, the message is permanently removed from the queuing
system.

The typical way a subscriber can consume from the queue is through a dequeue operation,
which now supports seeking an offset into the message queue. Many queueing
applications require subscriber to consume messages that were enqueued prior to its
creation. Using this seek capability for subscribers, applications can reposition dequeue
point to messages that were enqueued prior to the subscriber creation. This offers
flexibility for applications to make the communication truly asynchronous between the
producer and the consumer of the message.

See Transactional Event Queues and Message Retention and Transactional Event
Queues and Seekable Subscribers for more information.

• Native JSON data type support in AQ and Transactional Event Queues

Starting from Oracle Database 21c, Advanced Queuing also supports JSON datatype.
Along with RAW/ADT payload type we can also specify JSON payload type during queue
table creation of classic queue and during queue creation of sharded queue. Users can
also specify embedded element JSON with simple adt. DBMS_AQ, DBMS_AQADM procedures
like create_queue_table/create_sharded_queue/enqueue/dequeue and procedures for
OGG/DG replication also accepts JSON datatype.

Deprecated Features
The following features are deprecated in this release:

• Sharded Queue APIs

– CREATE_SHARDED_QUEUE

– DROP_SHARDED_QUEUE

– ALTER_SHARDED_QUEUE

– ISSHARDEDQUEUE

– VERIFY_SHARDED_QUEUE

• Sharded Queue Views

– ALL_QUEUE_SHARDS

– DBA_QUEUE_SHARDS

– USER_QUEUE_SHARDS

– GV$AQ_CACHED_SUBSHARDS

– GV$AQ_CROSS_INSTANCE_JOBS

– GV$AQ_DEQUEUE_SESSIONS

– GV$AQ_INACTIVE_SUBSHARDS

– GV$AQ_MESSAGE_CACHE

– GV$AQ_MESSAGE_CACHE_ADVICE

– GV$AQ_MESSAGE_CACHE_STAT

– GV$AQ_NONDUR_SUBSCRIBER_LWM

– GV$AQ_REMOTE_DEQUEUE_AFFINITY

– GV$AQ_SHARDED_SUBSCRIBER_STAT

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of viii

– GV$AQ_SUBSCRIBER_LOAD

– GV$AQ_UNCACHED_SUBSHARDS

– GV$AQ_NONDUR_SUBSCRIBER

– GV$AQ_PARTITION_STATS

– GV$AQ_MESSAGE_CACHE_STAT

See Deprecation of Sharded Queues for more information.

Changes in Oracle Database Advanced Queuing Release 19c,
Version 19.2

The following are changes in Oracle Database Advanced Queuing User's Guide for Oracle
Database Release 19c, Version 19.2

New Features
The following feature is new in this release:

• Enhanced Key-based Messaging

AQ sharded queues perform substantially better when compared to AQ classic (non-
sharded) queues. This is achieved by sharding the queue, where each shard is owned by
a specific instance of the database. By default, sharding is completely transparent to the
user when it comes to enqueue and dequeue operations. AQ internally puts the message
in the appropriate shard to get maximum performance and session level ordering as
required by the JMS specification. Session level ordering ensures that no two messages
will be dequeued in the reverse order of their enqueue order if both the messages are
enqueued by the same session and have the same priority and delivery mode.

In some cases, user applications want to control the sharding. The user application can
choose the shard where a message is enqueued. The users can decide the way they plan
to shard their messages in the sharded queue to support the application logic as needed.
The performance and ordering benefits of AQ sharded queues are still maintained even if
the sharding is under control of the user. Applications can control the following:

– The number of shards of the queue

– Key based enqueues: The enqueue session can choose the shard of the queue where
the message will be enqueued by providing a key with the message at the time of
enqueue. AQ server ensures that all the messages of a key are enqueued in the same
shard. A shard can have messages of different keys.

– Sticky dequeues: A shard can have only one active dequeue session for a single-
consumer queue or JMS Queue. Similarly, a shard can have only one dequeue
session per subscriber for a multi-consumer queue or JMS Topic. That dequeue
session will stick to that shard of the queue for the session’s lifetime. Such functionality
is also available for JMS listeners.

See Also

User Event Streaming

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of viii

Desupported Features
The following feature is desupported in this release:

• Desupport of Oracle Streams

Starting in Oracle Database 19c, the Oracle Streams feature is desupported. Use Oracle
GoldenGate to replace all replication features of Oracle Streams.

Changes in Oracle Database Advanced Queuing 12c Release 2
(12.2.)

The following are changes in Oracle Database Advanced Queuing User's Guide for Oracle
Database 12c Release 2 (12.2).

New Features
The following features are new in this release:

• PL/SQL enqueue and dequeue support for JMS and non-JMS (ADT or RAW) payload in
Sharded Queues

Oracle Database 12c Release 2 (12.2) extends and supports PL/SQL APIs to perform
enqueue and dequeue operations for JMS, ADT, and RAW payload in sharded queues.
The PL/SQL Array APIs also support sharded queues. Many existing non-JMS applications
can now use sharded queues with little or no change.

Starting from Oracle Database 12c Release 2 (12.2), JMS customers using sharded
queues can make use of PL/SQL notification to register a PL/SQL procedure that gets
automatically invoked by AQ Server on successful enqueue. PL/SQL notification can
eliminate the need for clients to poll the queue for messages because messages can be
automatically dequeued and processed at the server.

See Managing Sharded Queues for more information.

• Sharded Queue Diagnosability and Manageability

Starting from 12c Release 2 (12.2), AQ sharded queues provides an advisor, views, and
automated management for its message cache to optimize STREAMS_POOL memory
allocation and throughput.

See Transactional Event Queues Tuning for more information.

• Longer Identifiers for Oracle Database Advanced Queuing

Starting from 12c Release 2 (12.2), the maximum length of AQ queue names has been
increased to 122 bytes. The maximum length of subscriber and recipient names is
increased to 128 characters. For the AQ Rules Engine, the maximum length of rule names
and rule set names is now 128 bytes.

Changes in Oracle Database Advanced Queuing 12c Release 1
(12.1.0.2)

The following are changes in Oracle Database Advanced Queuing User's Guide for Oracle
Database 12c Release 1 (12.1.0.2).

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of viii

New Features
The following feature is new in this release:

• JMS Streaming

In Oracle Database 12c Release 1 (12.1.0.2), Advanced Queuing introduces JMS
Streaming with enqueue and dequeue for sharded queues through AQjmsBytesMessage
and AQjmsStreamMessage, for the applications interested in sending and receiving large
message data or payload.

See "JMS Streaming" for more information.

Changes in Oracle Database Advanced Queuing 12c Release 1
(12.1)

The following are changes in Oracle Database Advanced Queuing User's Guide for Oracle
Database 12c Release 1 (12.1).

New Features
The following features are new in this release:

• JMS Sharded Queues

In Oracle Database 12c Release 1 (12.1), Advanced Queuing introduces high performing
and scalable sharded JMS Queues. A sharded queue is a single logical queue that is
divided into multiple, independent, physical queues through system-maintained
partitioning. A sharded queue increases enqueue-dequeue throughput, especially across
Oracle RAC instances, because ordering between two messages on different queue
shards is best effort. Each shard is ordered based on enqueue time within a session.
Sharded queues automatically manage table partitions so that enqueuers and dequeuers
do not contend among themselves. In addition, sharded queues use an in-memory
message cache to optimize performance and reduce the disk and CPU overhead of AQ-
JMS enqueues and dequeues. Sharded queues are the preferred JMS queues for queues
used across Oracle RAC instances, for queues with high enqueue or dequeue rates, or for
queues with many subscribers.

In 12.2, Sharded Queues have been enhanced to support more than JMS. See Sharded
Queues for more information.

• Result Cache Enhancement

In Oracle Database 12c Release 1 (12.1), the Rules Engine introduces a result cache to
improve the performance of many commonly used rules. The result cache will bypass the
evaluation phase if an expression with the same attributes has already been evaluated
earlier. Not all rule results are cached, such as when rule results are potentially non-
deterministic or when not all rules are evaluated or when attributes include non-scalar data
types. For Advanced Queues, the cache is most useful when subscriptions and their
dequeue sessions are long-lived.

• LONG VARCHAR Support

The LONG VARCHAR data type is supported by Oracle Database Advanced Queuing in
Oracle Database 12c Release 1 (12.1).

• 3-Tier Background Architecture

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of viii

Oracle Database 12c Release 1 (12.1) introduces the AQ background process architecture
with a new a 3-tier design.

See "AQ Background Architecture" for more information.

• Support for Data Guard Database Rolling Upgrade

Databases that use Oracle Database Advanced Queuing can now be upgraded to new
Oracle database releases and patch sets in rolling fashion using Data Guard database
rolling upgrades (transient logical standby database only). Rolling upgrades are supported
beginning in Oracle Database 12c Release 1 (12.1).

Data Guard database rolling upgrades reduce planned downtime by enabling the upgrade
to new database releases or patch sets in rolling fashion. Total database downtime for
such an upgrade is limited to the small amount of time required to execute a Data Guard
switchover.

The following packages will have support for rolling upgrade using logical standby:

– DBMS_AQ

– DBMS_AQJMS

– DBMS_AQADM, except for the following procedures:

* SCHECULE_PROPAGATION

* UNSCHEDULE_PROPAGATION

* ALTER_PROPAGATION_SCHEDULE

* ENABLE_PROPAGATION_SCHEDULE

* DISABLE_PROPAGATION_SCHEDULE

See Also

– Oracle Database PL/SQL Packages and Types Reference for more
information on the Oracle Database AQ packages

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of viii

1
Introduction to Transactional Event Queues
and Advanced Queuing

Transactional Event Queues (TxEventQ) and Advanced Queuing (AQ) are robust and feature-
rich message queuing systems integrated with Oracle database. When web, mobile, IoT, and
other data-driven and event-driven applications stream events, or communicate with each
other as part of a workflow, producer applications enqueue messages and consumer
applications dequeue messages.

These topics discuss the newly introduced Transactional Event Queues (TxEventQ) that are
highly optimized implementation of AQ previously called AQ Sharded Queues. Both TxEventQ
and AQ in the Oracle database address the requirements from data-driven and event-driven
architectures in modern enterprise applications.

• What Is Queuing?

• Oracle Database Advanced Queuing Leverages Oracle Database

• Oracle Database Advanced Queuing in Integrated Application Environments

• Buffered Messaging

• Asynchronous Notifications

• Enqueue Features

• Dequeue Features

• Propagation Features

• Message Format Transformation

• Other Oracle Database Advanced Queuing Features

• Interfaces to Oracle Database Advanced Queuing

What Is Queuing?
Transactional Event Queue (TxEventQ) and Advanced Queuing (AQ) stores user messages in
abstract storage units called queues. When web, mobile, IoT, and other data-driven and event-
driven applications stream events or communicate with each other as part of a workflow,
producer applications enqueue messages and consumer applications dequeue messages.

At the most basic level of queuing, one producer enqueues one or more messages into one
queue. Each message is dequeued and processed once by one of the consumers. A message
stays in the queue until a consumer dequeues it or the message expires. A producer can
stipulate a delay before the message is available to be consumed, and a time after which the
message expires. Likewise, a consumer can wait when trying to dequeue a message if no
message were available. An agent program or application could act as both a producer and a
consumer.

Producers can enqueue messages in any sequence. Messages are not necessarily dequeued
in the order in which they are enqueued. Messages can be enqueued without being dequeued.

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 41

At a slightly higher level of complexity, many producers enqueue messages into a queue, all of
which are processed by one consumer. Or many producers enqueue messages, each
message being processed by a different consumer depending on type and correlation
identifier.

Enqueued messages are said to be propagated when they are reproduced on another queue,
which can be in the same database or in a remote database.

Applications often use data in different formats. A transformation defines a mapping from one
data type to another. The transformation is represented by a SQL function that takes the
source data type as input and returns an object of the target data type. You can arrange
transformations to occur when a message is enqueued, when it is dequeued, or when it is
propagated to a remote subscriber.

Transactional Event Queues Leverage Oracle Database
Oracle Transactional Event Queues (TxEventQ) provide database-integrated message
queuing functionality. This highly optimized and partitioned implementation leverages the
functions of Oracle database so that producers and consumers can exchange messages with
high throughput, by storing messages persistently, and propagate messages between queues
on different databases. Oracle Transactional Event Queues (TxEventQ) are a high
performance partitioned implementation with multiple event streams per queue, while
Advanced Queuing (AQ) is a disk-based implementation for simpler workflow use cases.

Naming nomenclature for TxEventQ and AQ in Oracle Database Release 20c are as follows:

Message type Old Name New Name

Persistent messages AQ classic queues AQ queues

Persistent messages AQ Sharded queues TxEventQ queues

Buffered messages AQ classic queues AQ buffered queues

You can decide about which queue to use as follows:

• For buffered messages use AQ buffered queues.

• For persistent messages, use the high performance Transactional Event Queues.

• If you are currently using AQ classic queues, then consider moving to Transactional Event
Queues with one event stream (to preserve total ordering in the queue) or consider taking
advantage of multiple event streams where messages are ordered within each event
stream. This is similar to Apache Kafka's approach of Topics consisting of multiple
partitions to which producers and consumers can publish to or subscribe from.

AQ sharded queues are being deprecated in this release.

Because TxEventQs are implemented in database tables, all operational benefits of high
availability, scalability, and reliability are also applicable to queue data. Standard database
features such as recovery, restart, and security are supported by TxEventQ. You can use
standard database development and management tools to monitor queues. Like other
database tables, queue tables can be imported and exported. Similarly, TxEventQ queues are
supported by Oracle Data Guard for high availability, which can be critical to preserve
messages when using a stateless middle tier. By being in the database, enqueues and
dequeues can be incorporated in database transactions without requiring distributed
transactions

Messages can be queried using standard SQL. This means that you can use SQL to access
the message properties, the message history, and the payload. With SQL access you can also

Chapter 1
Transactional Event Queues Leverage Oracle Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 41

audit and track messages. All available SQL technology, such as in-memory latches, table
indices, are used to optimize access to messages in TxEventQ and AQ.

Note

TxEventQ and AQ do not support data manipulation language (DML) operations on a
queue table, or associated index-organized table (IOT) for AQ, or associated system-
partitioned tables used by TxEventQs, if any. The only supported means of modifying
queue tables is through the supplied APIs. Queue tables and IOTs can become
inconsistent and therefore effectively ruined, if DML operations are performed on
them.

System-Level Access Control

TxEventQ and AQ support system-level access control for all queuing operations, allowing an
application developer or DBA to designate users as queue administrators. A queue
administrator can invoke TxEventQ or AQ administrative and operational interfaces on any
queue in the database. This simplifies administrative work because all administrative scripts for
the queues in a database can be managed under one schema.

Queue-Level Access Control

TxEventQ and AQ support queue-level access control for enqueue and dequeue operations.
This feature allows the application developer to protect queues created in one schema from
applications running in other schemas. The application developer can grant only minimal
access privileges to applications that run outside the queue schema.

Performance

Requests for service must be separated from the supply of services to increase efficiency and
enable complex scheduling. TxEventQ and AQ deliver high performance as measured by:

• Number of messages and bytes enqueued and dequeued each second (messages/second
and MB/second)

• Time to evaluate a complex query on a message warehouse

• Time to recover and restart the messaging process after a failure

Scalability

Queuing systems must be scalable. TxEventQ and AQ deliver high performance when the
number of programs using the application increases, when the number of messages increases,
and when the size of the message warehouse increases.

Persistence for Security

Messages that constitute requests for service must be stored persistently and processed
exactly once for deferred execution to work correctly in the presence of network, computer, and
application failures. TxEventQ and AQ can meet requirements in the following situations:

• Applications do not have the resources to handle multiple unprocessed messages arriving
simultaneously from external clients or from programs internal to the application.

• Communication links between databases are not available all the time or are reserved for
other purposes. If the system falls short in its capacity to deal with these messages
immediately, then the application must be able to store the messages until they can be
processed.

Chapter 1
Transactional Event Queues Leverage Oracle Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 41

• External clients or internal programs are not ready to receive messages that have been
processed.

Persistence for Scheduling

Queuing systems must deal with priorities, and those priorities can change:

• Messages arriving later can be of higher priority than messages arriving earlier.

• Messages may wait for later messages before actions are taken.

• The same message may be accessed by different processes.

• Messages in a specific queue can become more important, and so must be processed with
less delay or interference from messages in other queues.

• Messages sent to some destinations can have a higher priority than others.

Persistence for Accessing and Analyzing Metadata

Queuing systems must preserve message metadata, which can be as important as the
payload data. For example, the time that a message is received or dispatched can be crucial
for business and legal reasons. With the persistence features of TxEventQ and AQ, you can
analyze periods of greatest demand or evaluate the lag between receiving and completing an
order.

Object Type Support

TxEventQ and AQ support enqueue, dequeue, and propagation operations where the queue
type is an abstract datatype, ADT. It also supports enqueue and dequeue operations if the
types are inherited types of a base ADT. Propagation between two queues where the types are
inherited from a base ADT is not supported.

TxEventQ and AQ also support ANYDATA queues, which enable applications to enqueue
different message types in a single queue. TxEventQ and AQ support the LONG VARCHAR data
type.

If you plan to enqueue, propagate, or dequeue user-defined type messages, then each type
used in these messages must exist at every database where the message can be enqueued in
a queue. Some environments use directed networks to route messages through intermediate
databases before they reach their destination. In such environments, the type must exist at
each intermediate database, even if the messages of this type are never enqueued or
dequeued at a particular intermediate database.

In addition, the following requirements must be met for such types:

• Type name must be the same at each database.

• Type must be in the same schema at each database.

• Shape of the type must match exactly at each database.

• Type cannot use inheritance or type evolution at any database.

• Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier need not match at each database.

Structured and XMLType Payloads

You can use object types to structure and manage message payloads. Relational database
systems in general have a richer typing system than messaging systems. Because Oracle
Database is an object-relational database system, it supports traditional relational and user-

Chapter 1
Transactional Event Queues Leverage Oracle Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 41

defined types. Many powerful features are enabled because of having strongly typed content,
such as content whose format is defined by an external type system. These include:

• Content-based routing

TxEventQ and AQ can examine the content and automatically route the message to
another queue based on the content.

• Content-based subscription

A publish and subscribe system is built on top of a messaging system so that you can
create subscriptions based on content.

• Querying

The ability to run queries on the content of the message enables message warehousing.

You can create queues that use the new opaque type, XMLType. These queues can be used to
transmit and store messages that are XML documents. Using XMLType, you can do the
following:

• Store any type of message in a queue

• Store more than one type of payload in a queue

• Query XMLType columns using the operator ExistsNode()

• Specify the operators in subscriber rules or dequeue conditions

Integration with Oracle Internet Directory

You can register system events, user events, and notifications on queues with Oracle Internet
Directory. System events are database startup, database shutdown, and system error events.
User events include user log on and user log off, DDL statements (create, drop, alter), and
DML statement triggers. Notifications on queues include OCI notifications, PL/SQL
notifications, and e-mail notifications.

You can also create aliases for TxEventQ and AQ agents in Oracle Internet Directory. These
aliases can be specified while performing TxEventQ and AQ enqueue, dequeue, and
notification operations. This is useful when you do not want to expose an internal agent name.

Note

Transactional Event Queues (TxEventQ) does not support OCI and thick drivers.

Support for Oracle Real Application Clusters(Oracle RAC)

Oracle Real Application Clusters can be used to improve TxEventQ and AQ performance by
allowing different queues (and event streams in the case of TxEventQ) to be managed by
different instances. You do this by specifying different instance affinities (preferences) for the
queue tables that store the queues. This allows queue operations (enqueue and dequeue) on
different queues to occur in parallel. TxEventQs are recommended for applications with
enqueuers or dequeuers on multiple Oracle RAC instances. Refer to Transactional Event
Queues and Oracle Real Application Clusters (Oracle RAC) for more information.

If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can specify the
instance affinity for a queue table. When TxEventQ and AQ is used with Oracle RAC and
multiple instances, this information is used to partition the queue tables between instances for
queue-monitor scheduling and, also for propagation. The queue table is monitored by the
queue monitors of the instance specified by the user. If the owner of the queue table is

Chapter 1
Transactional Event Queues Leverage Oracle Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 41

terminated, then the secondary instance or some available instance takes over the ownership
for the queue table.

If an instance affinity is not specified, then the queue tables are arbitrarily partitioned among
the available instances. This can result in pinging between the application accessing the queue
table and the queue monitor monitoring it. Specifying the instance affinity prevents this, but
does not prevent the application from accessing the queue table and its queues from other
instances.

Transactional Event Queues and Advanced Queuing in
Integrated Application Environments

TxEventQ and AQ provides the message management and communication needed for
application integration. In an integrated environment, messages travel between the Oracle
Database server, applications, and users.This is shown in Figure 1-1.

Figure 1-1 Integrated Application Environment Using TxEventQ and AQ

Internet Users

Advanced

queues

Internet Access

XML-Based Internet

Transport

(HTTP(s))

Internet

Propagation

Internet

Propagation

(Oracle

Net)

OCI, PL/SQL,

Java clients

Global Agents,

Global Subscriptions,

Global Events

MQ Series

Rules and

Transformations

Advanced

queues

Rules and

Transformations

Advanced

queues

Rules and

Transformations

Oracle

Messages are exchanged between a client and the Oracle Database server or between two
Oracle Database servers using Oracle Net Services. Oracle Net Services also propagates
messages from one Oracle Database queue to another. Or, as shown in Figure 1-1, you can
perform TxEventQ and AQ operations over the Internet using HTTP(S). In this case, the client,
a user or Internet application, produces structured XML messages. During propagation over
the Internet, Oracle Database servers communicate using structured XML also.

Application integration also involves the integration of heterogeneous messaging systems.
Oracle Database Advanced Queuing seamlessly integrates with existing non-Oracle Database
messaging systems like IBM WebSphere MQ through Messaging Gateway, thus allowing
existing WebSphere MQ-based applications to be integrated into an Oracle Database

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 41

Advanced Queuing environment. Oracle Transactional Event Queues can interoperate with
Apache Kafka using a Kafka JMS connector. TxEventQ can also work with a Kafka Java client.
Both capabilities are described in Kafka APIs for Oracle Transactional Event Queues.

Topics:

• Oracle Database Advanced Queuing Client/Server Communication

• Multiconsumer Dequeuing of the Same Message

• Oracle Database Advanced Queuing Implementation of Workflows

• Oracle Database Advanced Queuing Implementation of Publish/Subscribe

Transactional Event Queues and Advanced Queuing Client/Server
Communication

TxEventQ and AQ provide an asynchronous alternative to the synchronous manner in which
Client/Server applications usually run. This figure exemplifies Client/Server Communication
Using TxEventQ and AQ.
In this example Application B (a server) provides service to Application A (a client) using a
request/response queue.

Figure 1-2 Client/Server Communication Using TxEventQ and AQ

Application B

consumer & producer

Enqueue

Dequeue

Application A

producer & consumer

Server

Client

Response

Queue

Dequeue

Enqueue

Request

Queue

Application A enqueues a request into the request queue. In a different transaction, Application
B dequeues and processes the request. Application B enqueues the result in the response
queue, and in yet another transaction, Application A dequeues it.

The client need not wait to establish a connection with the server, and the server dequeues the
message at its own pace. When the server is finished processing the message, there is no

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 41

need for the client to be waiting to receive the result. A process of double-deferral frees both
client and server.

Multiconsumer Dequeuing of the Same Message
A message can only be enqueued into one queue at a time. If a producer had to insert the
same message into several queues in order to reach different consumers, then this would
require management of a very large number of queues. TxEventQ and AQ provides for queue
subscribers and message recipients to allow multiple consumers to dequeue the same
message.
To allow for subscriber and recipient lists, the queue must reside in a queue table that is
created with the multiple consumer option. Each message remains in the queue until it is
consumed by all its intended consumers.

Queue Subscribers

Multiple consumers, which can be either applications or other queues, can be associated with
a queue as subscribers. This causes all messages enqueued in the queue to be made
available to be consumed by each of the queue subscribers. The subscribers to the queue can
be changed dynamically without any change to the messages or message producers.

You cannot add subscriptions to single-consumer queues or exception queues. A consumer
that is added as a subscriber to a queue is only able to dequeue messages that are enqueued
after the subscriber is added. No two subscribers can have the same values for name,
address, and protocol. At least one of these attributes must be different for two subscribers.

It cannot be known which subscriber will dequeue which message first, second, and so on,
because there is no priority among subscribers. More formally, the order of dequeuing by
subscribers is indeterminate.

Subscribers can also be rule-based. Similar in syntax to the WHERE clause of a SQL query, rules
are expressed in terms of attributes that represent message properties or message content.
These subscriber rules are evaluated against incoming messages, and those rules that match
are used to determine message recipients.

In Figure 1-3, Application B and Application C each need messages produced by Application
A, so a multiconsumer queue is specially configured with Application B and Application C as
queue subscribers. Each receives every message placed in the queue.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 41

Figure 1-3 Communication Using a Multiconsumer Queue

Application B

Dequeue

Application C

Dequeue

Application A

Enqueue

Multiple

Consumer

Queue

Message Recipients

A message producer can submit a list of recipients at the time a message is enqueued into a
TxEventQ or AQ queue. This allows for a unique set of recipients for each message in the
queue. The recipient list associated with the message overrides the subscriber list associated
with the queue, if there is one. The recipients need not be in the subscriber list. However,
recipients can be selected from among the subscribers.

A recipient can be specified only by its name, in which case the recipient must dequeue the
message from the queue in which the message was enqueued. It can be specified by its name
and an address with a protocol value of 0. The address should be the name of another queue
in the same database or another installation of Oracle Database (identified by the database
link), in which case the message is propagated to the specified queue and can be dequeued
by a consumer with the specified name. If the recipient's name is NULL, then the message is
propagated to the specified queue in the address and can be dequeued by the subscribers of
the queue specified in the address. If the protocol field is nonzero, then the name and address
are not interpreted by the system and the message can be dequeued by a special consumer.

Subscribing to a queue is like subscribing to a magazine: each subscriber can dequeue all the
messages placed into a specific queue, just as each magazine subscriber has access to all its
articles. Being a recipient, however, is like getting a letter: each recipient is a designated target
of a particular message.

Figure 1-4 shows how TxEventQ and AQ can accommodate both kinds of consumers.
Application A enqueues messages. Application B and Application C are subscribers. But
messages can also be explicitly directed toward recipients like Application D, which may or
may not be subscribers to the queue. The list of such recipients for a given message is
specified in the enqueue call for that message. It overrides the list of subscribers for that
queue.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 41

Figure 1-4 Explicit and Implicit Recipients of Messages

Application B

consumer (subscriber)

Dequeue

Application C

consumer (subscriber)

Dequeue

Application A

producer

Enqueue

Application D

consumer (recipient)

Implicit RecipientImplicit Recipient

Explicit Recipient

Note

Multiple producers can simultaneously enqueue messages aimed at different targeted
recipients.

Transactional Event Queues and Advanced Queuing Implementation of
Workflows

TxEventQ and AQ allows us to implement a workflow, also known as a chained application
transaction.The figure exemplifies how a workflow is implemented using TxEventQ and AQ.

1. Application A begins a workflow by enqueuing Message 1.

2. Application B dequeues it, performs whatever activity is required, and enqueues Message
2.

3. Application C dequeues Message 2 and generates Message 3.

4. Application D, the final step in the workflow, dequeues it.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 41

Figure 1-5 Implementing a Workflow using TxEventQ and AQ

Application A

producer

Enqueue

(Message 1)

Enqueue

(Message 3)

Application B

consumer & producer

Enqueue

(Message 2)

Dequeue

(Message 1)

Application C

consumer & producer

Dequeue

(Message 2)

Application D

consumer

Dequeue

(Message 3)

Note

The contents of the messages 1, 2 and 3 can be the same or different. Even when
they are different, messages can contain parts of the contents of previous messages.

The queues are used to buffer the flow of information between different processing stages of
the business process. By specifying delay interval and expiration time for a message, a
window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message flows is a
business asset quite apart from the value of the payload data. TxEventQ and AQ helps you
gain this knowledge by supporting the optional retention of messages for analysis of historical
patterns and prediction of future trends.

Transactional Event Queues and Advanced Queuing Implementation of
Publish/Subscribe

A point-to-point message is aimed at a specific target. Senders and receivers decide on a
common queue in which to exchange messages. Each message is consumed by only one
receiver.

Figure 1-6 shows that each application has its own message queue, known as a single-
consumer queue.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 41

Figure 1-6 Point-to-Point Messaging

Oracle

Advanced

queues

Application Application
Dequeue

Enqueue

Dequeue

Enqueue

A publish/subscribe message can be consumed by multiple receivers, as shown in Figure 1-7.
Publish/subscribe messaging has a wide dissemination mode called broadcast and a more
narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a given
program. The dequeuers are subscribers to multiconsumer queues. In contrast, multicast is
like a magazine publisher who knows who the subscribers are. Multicast is also referred to as
point-to-multipoint, because a single publisher sends messages to multiple receivers, called
recipients, who may or may not be subscribers to the queues that serve as exchange
mechanisms.

Figure 1-7 Publish/Subscribe Mode

Oracle

Advanced

queues

Application

Application

Application

Application

Publish

Publish

Subscribe

Subscribe

Publish

Publish/subscribe describes a situation in which a publisher application enqueues messages to
a queue anonymously (no recipients specified). The messages are then delivered to subscriber
applications based on rules specified by each application. The rules can be defined on
message properties, message data content, or both.

You can implement a publish/subscribe model of communication using TxEventQ and AQ as
follows:

1. Set up one or more queues to hold messages. These queues should represent an area or
subject of interest. For example, a queue can be used to represent billed orders.

2. Set up a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive. A null
rule indicates that the subscriber wishes to receive all messages.

3. Publisher applications publish messages to the queue by invoking an enqueue call.

4. Subscriber applications can receive messages with a dequeue call. This retrieves
messages that match the subscription criteria.

5. Subscriber applications can also use a listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive messages
that arrive in any of the queues.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 41

6. Subscriber applications can also use the Oracle Call Interface (OCI) notification
mechanism. This allows a push mode of message delivery. The subscriber application
registers the queues (and subscriptions specified as subscribing agent) from which to
receive messages. This registers a callback to be invoked when messages matching the
subscriptions arrive.

Figure 1-8 illustrates the use of TxEventQ and AQ for implementing a publish/subscribe
relationship between publisher Application A and subscriber Applications B, C, and D:

• Application B subscribes with rule "priority = 1".

• Application C subscribes with rule "priority > 1".

• Application D subscribes with rule "priority = 3".

Figure 1-8 Implementing Publish/Subscribe using TxEventQ and AQ

Application B

consumer

(rule-based subscriber)

Dequeue

Application C

consumer

(rule-based subscriber)

Dequeue

Register

Application A

producer

Enqueue

Application D

consumer

(rule-based subscriber)

"priority > 1""priority = 1"

"priority = 3"

priority 3

priority 1
priority 2

If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then the
messages will be delivered as follows:

• Application B receives a single message (priority 1).

• Application C receives two messages (priority 2, 3).

• Application D receives a single message (priority 3).

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 41

Buffered Messaging
Buffered messaging combines the rich functionality that this product has always offered with a
much faster queuing implementation. Buffered messaging is ideal for applications that do not
require the reliability and transaction support of Oracle Database Advanced Queuing persistent
messaging.

Buffered messaging is faster than persistent messaging, because its messages reside in
shared memory. They are usually written to disk only when the total memory consumption of
buffered messages approaches the available shared memory limit.

Note

The portion of a queue that stores buffered messages in memory is sometimes
referred to as a buffered queue.

Message retention is not supported for buffered messaging.

When using buffered messaging, Oracle recommends that you do one of the following:

• Set parameter streams_pool_size

This parameter controls the size of shared memory available to Oracle Database
Advanced Queuing. If unspecified, up to 10% of the shared pool size may be allocated for
the Oracle Database Advanced Queuing pool from the database cache.

Refer to manually tuning sharded queues for more information about setting the message
cache for buffered messaging with TxEventQs.

• Turn on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA for
Oracle Database Advanced Queuing, based on Oracle Database Advanced Queuing
usage and, also usage of other components that use the SGA. Examples of such other
components are buffer cache and library cache. If streams_pool_size is specified, it is
used as the lower bound.

Topics:

• Enqueuing Buffered Messages

• Dequeuing Buffered Messages

• Propagating Buffered Messages

• Flow Control

• Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)

• Buffered Messaging Restrictions

• Error Handling

Enqueuing Buffered Messages

Buffered and persistent messages use the same single-consumer or multiconsumer queues
and the same administrative and operational interfaces. They are distinguished from each
other by a delivery mode parameter, set by the application when enqueuing the message to an
Oracle Database Advanced Queuing queue.

Chapter 1
Buffered Messaging

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 41

Recipient lists are supported for buffered messaging enqueue.

Buffered messaging is supported in all queue tables created with compatibility 8.1 or higher.
Transaction grouping queues and array enqueues are not supported for buffered messages in
this release. You can still use the array enqueue procedure to enqueue buffered messages, but
the array size must be set to one.

Buffered messages can be queried using the AQ$Queue_Table_Name view. They appear with
states IN-MEMORY or SPILLED.

The queue type for buffered messaging can be ADT, XML, ANYDATA, or RAW. For ADT types with
LOB attributes, only buffered messages with null LOB attributes can be enqueued.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and buffered
messages enqueued in the same session is not currently supported.

Both enqueue and dequeue buffered messaging operations must be with IMMEDIATE visibility
mode. Thus they cannot be part of another transaction. You cannot specify delay when
enqueuing buffered messages.

See Also

• "Enqueuing Messages"

• "AQ$<Queue_Table_Name>: Messages in Queue Table"

• "Priority and Ordering of Messages in Enqueuing"

Dequeuing Buffered Messages

Rule-based subscriptions are supported with buffered messaging. The procedure for adding
subscribers is enhanced to allow an application to express interest in persistent messages
only, buffered messages only, or both.

For AQ queues, array dequeue is not supported for buffered messaging, but you can still use
the array dequeue procedure by setting array size to one message.

Dequeuing applications can choose to dequeue persistent messages only, buffered messages
only, or both types. Visibility must be set to IMMEDIATE for dequeuing buffered messages. All of
the following dequeue options are supported:

• Dequeue modes BROWSE, LOCK, REMOVE, and REMOVE_NO_DATA

• Navigation modes FIRST_MESSAGE and NEXT_MESSAGE

• Correlation identifier

• Dequeue condition

• Message identifier

See Also

• "Adding a Subscriber"

• "Dequeue Options"

Chapter 1
Buffered Messaging

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 41

Propagating Buffered Messages

Propagation of buffered messages is supported. A single propagation schedule serves both
persistent and buffered messages. The DBA_QUEUE_SCHEDULES view displays statistics and error
information.

Oracle Database AQ deletes buffered messages once they are propagated to the remote sites.
If the receiving site fails before these messages are consumed, then these messages will be
lost. The source site will not be able to re-send them. Duplicate delivery of messages is also
possible.

See Also

• "DBA_QUEUE_SCHEDULES: All Propagation Schedules"

• "Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)"

Flow Control

Oracle Database Advanced Queuing implements a flow control system that prevents
applications from flooding the shared memory with messages. If the number of outstanding
messages per sender exceeds a system-defined threshold, the enqueue call will block and
timeout with an error message. A message sender is identified by sender_id.name in the
enqueue options. A sender blocked due to flow control on a queue does not affect other
message senders. The resolution is to dequeue messages, thereby resolving flow control, after
which new messages can be enqueued.

Flow control threshold varies with memory pressure and could come down to the system-
defined limit if streams pool usage becomes significant. Message senders will block on event
Streams AQ: enqueue blocked due to flow control and time out with error ORA-25307 if
flow control is not resolved. Applications are expected to handle this error, and re-enqueue the
failed message.

Even with flow control, slow consumers of a multiconsumer queue can cause the number of
messages stored in memory to grow without limit. Provided there is at least one subscriber
who is keeping pace, older messages are spilled to disk and removed from the pool to free up
memory. This ensures that the cost of disk access is paid by the slower consumers, and faster
subscribers can proceed unhindered.

Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)

TxEventQ and AQ queues handle buffered messaging with Oracle RAC differently.

TxEventQs perform cross-instance communication but avoid simultaneous writes to the same
block across Oracle RAC instances. Typically, dequeues occur on an event stream that is local
to a message’s enqueuing instance, but in certain situations, Oracle will efficiently forward
messages across instances for dequeuing on another instance. For example, if a TxEventQ
has a single enqueuing session on one Oracle RAC instance and a single dequeuing session
on another instance, then TxEventQs will forward messages between the Oracle RAC
instances. The forwarding of messages is done asynchronously to the enqueuing transaction
to improve performance. Dequeuers may get an ORA-25228 if they are connected to an
instance whose event streams have no messages.

For AQ queues, an application can enqueue and dequeue buffered messages from any Oracle
RAC instance as long as it uses password-based authentication to connect to the database.
The structures required for buffered messaging are implemented on one Oracle RAC instance.

Chapter 1
Buffered Messaging

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 41

The instance where the buffered messaging structures are implemented is the OWNER_INSTANCE
of the queue table containing the queue. Enqueue and dequeue requests received at other
instances are forwarded to the OWNER_INSTANCE over the interconnect. The REMOTE_LISTENER
parameter in listener.ora must also be set to enable forwarding of buffered messaging
requests to correct instance. Internally, buffered queues on Oracle RAC may use dblinks
between instances. Definer's rights packages that enqueue or dequeue into buffered queues
on Oracle RAC must grant INHERIT REMOTE PRIVILEGES to users of the package.

A service name is associated with each queue in Oracle RAC and displayed in the DBA_QUEUES
and USER_QUEUES views. This service name always points to the instance with the most efficient
access for buffered messaging, minimizing pinging between instances. OCI clients can use the
service name for buffered messaging operations.

Oracle recommends that you specify instance affinity when using buffered messaging with
queue-to-queue propagation. This results in transparent failover when propagating messages
to a destination Oracle RAC system. You do not need to re-point your database links if the
primary AQ Oracle RAC instance fails.

See Also

• "ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User" for more
information on OWNER_INSTANCE

• "REMOTE_LISTENER" in Oracle Database Reference for more information on
setting the REMOTE_LISTENER parameter

• "DBA_QUEUES: All Queues in Database" or "USER_QUEUES: Queues In User
Schema"

• "Support for Oracle Real Application Clusters(Oracle RAC)"

Buffered Messaging Restrictions

The following Oracle Database Advanced Queuing features are only supported for buffered
messaging on TxEventQs:

• Message delay

• Array enqueue

• Array dequeue

• PL/SQL Notification

The following Oracle Database Advanced Queuing features are not currently supported for
buffered messaging:

• Message retention

• Transaction grouping

• Message export and import

• Messaging Gateway

• OCI notification

Chapter 1
Buffered Messaging

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 41

Error Handling

Retry count and retry delay are not supported for buffered messages. Message expiration is
supported. When a buffered message has been in the queue beyond its expiration period, it is
moved into the exception queue as a persistent message.

Asynchronous Notifications
Asynchronous notification allows clients to receive notifications of messages of interest.

The client can use these notifications to monitor multiple subscriptions. The client need not be
connected to the database to receive notifications regarding its subscriptions. Asynchronous
notification is supported for buffered messages. The delivery mode of the message is available
in the message descriptor of the notification descriptor.

The client specifies a callback function which is run for each message. Asynchronous
notification cannot be used to invoke an executable, but it is possible for the callback function
to invoke a stored procedure.

Clients can receive notifications procedurally using PL/SQL, Java Message Service (JMS), or
OCI callback functions, or clients can receive notifications through e-mail or HTTP post. Clients
can also specify the presentation for notifications as either RAW or XML.

Note

TxEventQs only support PL/SQL notification.

For JMS queues, the dequeue is accomplished as part of the notification; explicit dequeue is
not required. For RAW queues, clients can specify payload delivery; but they still must
dequeue the message in REMOVE_NO_DATA mode. For all other persistent queues, the
notification contains only the message properties; clients explicitly dequeue to receive the
message.

Payload Delivery for RAW Queues

For RAW queues, Oracle Database Advanced Queuing clients can now specify that the
message payload be delivered along with its notification.

See Also

"AQ Registration Information Type"

Reliable Notification

Clients can specify persistent message notification. If an Oracle RAC instance fails, its
notifications are delivered by another Oracle RAC node. If a standalone instance fails, its
notifications are delivered when the instance restarts.

Chapter 1
Asynchronous Notifications

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 41

Note

Notification reliability refers only to server failures. If Oracle Database Advanced
Queuing cannot deliver client notifications for any other reason, then the notifications
are purged along with the client registration.

Designated Port Notification

For AQ queues, Oracle Database Advanced Queuing clients can use the OCI subscription
handle attribute OCI_ATTR_SUBSCR_PORTNO to designate the port at which notifications are
delivered. This is especially useful for clients on a computer behind a firewall. The port for the
listener thread can be designated before the first registration, using an attribute in the
environment handle. The thread is started the first time an OCISubscriptionRegister is called.
If the client attempts to start another thread on a different port using a different environment
handle, then Oracle Database Advanced Queuing returns an error.

Note

Designated port notification and IP address notification apply only to OCI clients.

See Also

"Publish-Subscribe Registration Functions in OCI" in Oracle Call Interface
Programmer's Guide

IPv6 Compliance and Designated IP Support

For AQ queues, Oracle Database AQ supports IPv6 and Oracle Database AQ clients can use
the OCI subscription handle attribute OCI_ATTR_SUBSCR_IPADDR to designate the IP address at
which notifications are delivered. This is especially useful for clients on a computer that has
multiple network interface cards or IP addresses. The IP address for the listener thread can be
designated before the first registration using an attribute in the environment handle. The thread
is started the first time an OCISubscriptionRegister is called. If the client attempts to start
another thread on a different IP address using a different environment handle, Oracle
Database AQ returns an error. If no IP address is specified, Oracle Database AQ will deliver
notifications on all IP addresses of the computer the client is on.

Registration Timeout

In earlier releases of Oracle Database Advanced Queuing, registrations for notification
persisted until explicitly removed by the client or purged in case of extended client failure. From
Oracle Database Advanced Queuing 10g Release 2 (10.2) onwards, clients can register for a
specified time, after which the registration is automatically purged.

When the registration is purged, Oracle Database Advanced Queuing sends a notification to
the client, so the client can invoke its callback and take any necessary action.

Chapter 1
Asynchronous Notifications

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 41

See Also

"AQ Registration Information Type" for information on the timeout parameter

Purge on Notification

Clients can also register to receive only the first notification, after which the registration is
automatically purged.

An example where purge on notification is useful is a client waiting for enqueues to start. In this
case, only the first notification is useful; subsequent notifications provide no additional
information. Previously, this client would be required to unregister once enqueuing started; now
the registration can be configured to go away automatically.

Buffered Message Notification

Clients can register for notification of buffered messages. The registration requests apply to
both buffered and persistent messages. The message properties delivered with the PL/SQL or
OCI notification specify whether the message is buffered or persistent.

See Also

• "Registering for Notification" for more information on PL/SQL notification

• Appendix C, "OCI Examples", which appears only in the HTML version of this
guide, for an example of OCI notification

Reliable notification is not supported.

Views on Registration
The dictionary views DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_REGISTRATIONS display the
various registrations in the system.

The diagnostic view GV$SUBSCR_REGISTRATION_STATS may be used to monitor notification
statistics and performance.

Event-Based Notification
Event-based notifications are processed by a set of coordinator (EMNC) and subordinate
processes.

The event notification load is distributed among these processes. These processes work on
the system notifications in parallel, offering a capability to process a larger volume of
notifications, a faster response time and lower shared memory use for staging notifications.

Notification Grouping by Time
Notification applications may register to receive a single notification for all events that occur
within a specified time interval. Notification Clients may specify a start time for the notifications.
Additionally, they must specify a time as the grouping class and the time interval as the
grouping value.

Chapter 1
Asynchronous Notifications

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 41

A repeat count may be used to limit the number of notifications delivered. Clients can receive
two types of grouping events, Summary or Last. A summary notification is a list of Message
Identifiers of all the messages for the subscription. If last was specified as a grouping type,
notification would have information about the last message in the notification interval. A count
of the number of messages in the interval is also sent. The registration interfaces in PLSQL
and OCI allow for specification of the START_TIME, REPEAT_COUNT, GROUPING CLASS, GROUPING
VALUE, GROUPING TYPE in the AQ$_REGISTRATION_INFO and the OCI subscription Handle.

The notification descriptor received by the client initiated AQ notification provides information
about the group of message identifiers and the number of notifications in the group.

See Also

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Call Interface Programmer's Guide

Enqueue Features
This topic describes the enqueue features Enqueuing an Array of Messages, Correlation
Identifiers, Priority and Ordering of Messages in Enqueuing, Message Grouping, Sender
Identification, and Time Specification and Scheduling.

The following features apply to enqueuing messages:

• Enqueue an Array of Messages

• Correlation Identifiers

• Priority and Ordering of Messages in Enqueuing

• Message Grouping

• Sender Identification

• Time Specification and Scheduling

Enqueue an Array of Messages

When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
enqueue operations. When enqueuing an array of messages into a queue, each message
shares the same enqueue options, but each message can have different message properties.
You can perform array enqueue operations using PL/SQL or OCI.

Array enqueuing is not supported for buffered messages in this release.

Correlation Identifiers

You can assign an identifier to each message, thus providing a means to retrieve specific
messages at a later time.

Priority and Ordering of Messages in Enqueuing

You can specify the priority of an enqueued message and its exact position in the queue. This
means that users can specify the order in which messages are consumed in three ways:

• A priority can be assigned to each message.

Chapter 1
Enqueue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 41

• A sort order specifies which properties are used to order all messages in a queue. This is
set when the queue table is created and cannot be changed. You can choose to sort
messages by priority, enqueue time, or commit time.

See Also

– "Creating a Queue Table" for more information on sort order

• A sequence deviation positions a message in relation to other messages.

If several consumers act on the same queue, then each consumer gets the first message that
is available for immediate consumption. A message that is in the process of being consumed
by another consumer is skipped.

Priority ordering of messages is achieved by specifying priority, enqueue time as the sort order.
If priority ordering is chosen, then each message is assigned a priority at enqueue time by the
enqueuing agent. At dequeue time, the messages are dequeued in the order of the priorities
assigned. If two messages have the same priority, then the order in which they are dequeued
is determined by the enqueue time. A first-in, first-out (FIFO) priority queue can also be created
by specifying enqueue time, priority as the sort order of the messages.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be consumed by
one user at a time. This requires that the queue be created in a queue table that is enabled for
message grouping. All messages belonging to a group must be created in the same
transaction, and all messages created in one transaction belong to the same group.

This feature allows users to segment complex messages into simple messages. For example,
messages directed to a queue containing invoices can be constructed as a group of messages
starting with a header message, followed by messages representing details, followed by a
trailer message.

Message grouping is also useful if the message payload contains complex large objects such
as images and video that can be segmented into smaller objects.

Group message properties priority, delay, and expiration are determined solely by the message
properties specified for the first message in a group, irrespective of which properties are
specified for subsequent messages in the group.

The message grouping property is preserved across propagation. However, the destination
queue where messages are propagated must also be enabled for transactional grouping.
There are also some restrictions you must keep in mind if the message grouping property is to
be preserved while dequeuing messages from a queue enabled for transactional grouping.

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle Database
Advanced Queuing also automatically identifies the queue from which a message was
dequeued. This allows applications to track the pathway of a propagated message or a string
message within the same database.

Time Specification and Scheduling

Messages can be enqueued with an expiration that specifies the interval of time the message
is available for dequeuing. The default for expiration is never. When a message expires, it is
moved to an exception queue. Expiration processing requires that the queue monitor be
running.

Chapter 1
Enqueue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 41

Dequeue Features
This topic discusses the dequeue features Concurrent Dequeues, Dequeue Methods,
Dequeue Modes, Dequeue an Array of Messages, Message States, Navigation of Messages in
Dequeuing, Waiting for Messages, Retries with Delays, Optional Transaction Protection, and
Exception Queues.

The following features apply to dequeuing messages:

• Concurrent Dequeues

• Dequeue Methods

• Dequeue Modes

• Dequeue an Array of Messages

• Message States

• Navigation of Messages in Dequeuing

• Waiting for Messages

• Retries with Delays

• Optional Transaction Protection

• Exception Queues

Concurrent Dequeues

When there are multiple processes dequeuing from a single-consumer queue or dequeuing for
a single consumer on the multiconsumer queue, different processes skip the messages that
are being worked on by a concurrent process. This allows multiple processes to work
concurrently on different messages for the same consumer.

Dequeue Methods

A message can be dequeued using one of the following dequeue methods:

• Specifying a correlation identifier

A correlation identifier is a user-defined message property. Multiple messages with the
same correlation identifier can be present in a queue, which means that the ordering
(enqueue order) between messages might not be preserved on dequeue calls.

• Specifying a message identifier

A message identifier is a system-assigned value (of RAW datatype). Only one message with
a given message identifier can be present in the queue.

• Specifying a dequeue condition

A dequeue condition is expressed in terms of message properties or message content and
is similar in syntax to the WHERE clause of a SQL query. Messages in the queue are
evaluated against the condition, and messages that satisfy the given condition are
returned. When a dequeue condition is used, the order of the messages dequeued is
indeterminate, and the sort order of the queue is not honored.

• Default dequeue

A default dequeue retrieves the first available message.

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 41

Note

Dequeuing with correlation identifier, message identifier, or dequeue condition does
not preserve the message grouping property.

Dequeue Modes

A dequeue request can browse a message, remove it, or remove it with no data. If a message
is browsed, then it remains available for further processing. If a message is removed or
removed with no data, then it is no longer available for dequeue requests. Depending on the
queue properties, a removed message can be retained in the queue table. A message is
retained in the queue table after it has been consumed only if a retention time is specified for
its queue.

The browse mode has three risks. First, there is no guarantee that the message can be
dequeued again after it is browsed, because a dequeue call from a concurrent user might have
removed the message. To prevent a viewed message from being dequeued by a concurrent
user, you should view the message in the locked mode.

Second, your dequeue position in browse mode is automatically changed to the beginning of
the queue if a nonzero wait time is specified and the navigating position reaches the end of the
queue. If you repeat a dequeue call in the browse mode with the NEXT_MESSAGE navigation
option and a nonzero wait time, then you can end up dequeuing the same message over and
over again. Oracle recommends that you use a nonzero wait time for the first dequeue call on
a queue in a session, and then use a zero wait time with the NEXT_MESSAGE navigation option
for subsequent dequeue calls. If a dequeue call gets an "end of queue" error message, then
the dequeue position can be explicitly set by the dequeue call to the beginning of the queue
using the FIRST_MESSAGE navigation option, following which the messages in the queue can be
browsed again.

Third, if the sort order of the queue is ENQ_TIME, PRIORITY, or a combination of these two, then
results may not be repeatable from one browse to the next. If you must have consistent browse
results, then you should use a commit-time queue.

See Also

• "Creating a Queue Table"

When a message is dequeued using REMOVE_NODATA mode, the payload of the message is not
retrieved. This mode can be useful when the user has already examined the message payload,
possibly by means of a previous BROWSE dequeue.

Dequeue an Array of Messages

When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance of
dequeue operations. If you are dequeuing from a transactional queue, you can dequeue all the
messages for a transaction with a single call, which makes application programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can perform
array enqueue and array dequeue operations using PL/SQL or OCI.

Array dequeuing is not supported for buffered messages in this release.

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 41

Message States

Multiple processes or operating system threads can use the same consumer name to dequeue
concurrently from a queue. In that case Oracle Database Advanced Queuing provides the first
unlocked message that is at the head of the queue and is intended for the consumer. Unless
the message identifier of a specific message is specified during dequeue, consumers can
dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have successfully
dequeued the message. A message is considered EXPIRED if one or more consumers did not
dequeue the message before the EXPIRATION time. When a message has expired, it is moved
to an exception queue.

Expired messages from multiconsumer queues cannot be dequeued by the intended recipients
of the message. However, they can be dequeued in the REMOVE mode exactly once by
specifying a NULL consumer name in the dequeue options.

Note

If the multiconsumer exception queue was created in a queue table with the
compatible parameter set to 8.0, then expired messages can be dequeued only by
specifying a message identifier.

Queues created in a queue table with compatible set to 8.0 (referred to in this guide
as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or
newer and that you migrate existing 8.0-style queues at your earliest convenience.

Beginning with Oracle Database Advanced Queuing release 8.1.6, only the queue monitor
removes messages from multiconsumer queues. This allows dequeuers to complete the
dequeue operation by not locking the message in the queue table. Because the queue monitor
removes messages that have been processed by all consumers from multiconsumer queues
approximately once every minute, users can see a delay between when the messages have
been completely processed and when they are physically removed from the queue.

Navigation of Messages in Dequeuing

You have several options for selecting a message from a queue. You can select the first
message with the FIRST_MESSAGE navigation option. Alternatively, once you have selected a
message and established its position in the queue, you can then retrieve the next message
with the NEXT_MESSAGE navigation option.

The FIRST_MESSAGE navigation option performs a SELECT on the queue. The NEXT_MESSAGE
navigation option fetches from the results of the SELECT run in the FIRST_MESSAGE navigation.
Thus performance is optimized because subsequent dequeues need not run the entire SELECT
again.

If the queue is enabled for transactional grouping, then the navigation options work in a slightly
different way. If FIRST_MESSAGE is requested, then the dequeue position is still reset to the
beginning of the queue. But if NEXT_MESSAGE is requested, then the position is set to the next
message in the same transaction. Transactional grouping also offers a NEXT_TRANSACTION
option. It sets the dequeue position to the first message of the next transaction.

Transaction grouping has no effect if you dequeue by specifying a correlation identifier or
message identifier, or if you dequeue some of the messages of a transaction and then commit.

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 41

If you reach the end of the queue while using the NEXT_MESSAGE or NEXT_TRANSACTION option,
and you have specified a nonzero wait time, then the navigating position is automatically
changed to the beginning of the queue. If a zero wait time is specified, then you can get an
exception when the end of the queue is reached.

Waiting for Messages

Oracle Database Advanced Queuing allows applications to block on one or more queues
waiting for the arrival of either a newly enqueued message or a message that becomes ready.
You can use the DEQUEUE operation to wait for the arrival of a message in a single queue or the
LISTEN operation to wait for the arrival of a message in more than one queue.

Note

Applications can also perform a blocking dequeue on exception queues to wait for
arrival of EXPIRED messages.

When the blocking DEQUEUE call returns, it returns the message properties and the message
payload. When the blocking LISTEN call returns, it discloses only the name of the queue where
a message has arrived. A subsequent DEQUEUE operation is needed to dequeue the message.

When there are messages for multiple agents in the agent list, LISTEN returns with the first
agent for whom there is a message. To prevent one agent from starving other agents for
messages, the application can change the order of the agents in the agent list.

Applications can optionally specify a timeout of zero or more seconds to indicate the time that
Oracle Database Advanced Queuing must wait for the arrival of a message. The default is to
wait forever until a message arrives in the queue. This removes the burden of continually
polling for messages from the application, and it saves CPU and network resources because
the application remains blocked until a new message is enqueued or becomes READY after its
DELAY time.

An application that is blocked on a dequeue is either awakened directly by the enqueuer if the
new message has no DELAY or is awakened by the queue monitor process when the DELAY or
EXPIRATION time has passed. If an application is waiting for the arrival of a message in a
remote queue, then the Oracle Database Advanced Queuing propagator wakes up the blocked
dequeuer after a message has been propagated.

Retries with Delays

If the transaction dequeuing a message from a queue fails, then it is regarded as an
unsuccessful attempt to consume the message. Oracle Database Advanced Queuing records
the number of failed attempts to consume the message in the message history. Applications
can query the RETRY_COUNT column of the queue table view to find out the number of
unsuccessful attempts on a message. In addition, Oracle Database Advanced Queuing allows
the application to specify, at the queue level, the maximum number of retries for messages in
the queue. The default value for maximum retries is 5. If the number of failed attempts to
remove a message exceeds this number, then the message is moved to the exception queue
and is no longer available to applications.

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 41

Note

If a dequeue transaction fails because the server process dies (including ALTER SYSTEM
KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not
incremented.

A bad condition can cause the transaction receiving a message to end. Oracle Database
Advanced Queuing allows users to hide the bad message for a specified retry delay interval,
during which it is in the WAITING state. After the retry delay, the failed message is again
available for dequeue. The Oracle Database Advanced Queuing time manager enforces the
retry delay property. The default value for retry delay is 0.

If multiple sessions are dequeuing messages from a queue simultaneously, then RETRY_COUNT
information might not always be updated correctly. If session one dequeues a message and
rolls back the transaction, then Oracle Database AQ notes that the RETRY_COUNT information for
this message must be updated. However RETRY_COUNT cannot be incremented until session
one completes the rollback. If session two attempts to dequeue the same message after
session one has completed the rollback but before it has incremented RETRY_COUNT, then the
dequeue by session two succeeds. When session one attempts to increment RETRY_COUNT, it
finds that the message is locked by session two and RETRY_COUNT is not incremented. A trace
file is then generated in the USER_DUMP_DESTINATION for the instance with the following
message:

Error on rollback: ORA-25263: no message in queue schema.qname with message ID ...

Note

Maximum retries and retry delay are not available with 8.0-style multiconsumer
queues.

Queues created in a queue table with compatible set to 8.0 (referred to in this guide
as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or
newer and that you migrate existing 8.0-style queues at your earliest convenience.

Optional Transaction Protection

Enqueue and dequeue requests are usually part of a transaction that contains the requests,
thereby providing the wanted transactional action. You can, however, specify that a specific
request is a transaction by itself, making the result of that request immediately visible to other
transactions. This means that messages can be made visible to the external world when the
enqueue or dequeue statement is applied or after the transaction is committed.

Note

Transaction protection is not supported for buffered messaging.

Exception Queues

An exception queue is a repository for expired or unserviceable messages. Applications cannot
directly enqueue into exception queues. Also, a multiconsumer exception queue cannot have

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 41

subscribers associated with it. However, an application that intends to handle these expired or
unserviceable messages can dequeue them exactly once from the exception queue using
remove mode. The consumer name specified while dequeuing should be null. Messages can
also be dequeued from the exception queue by specifying the message identifier.

Note

Expired or unserviceable buffered messages are moved to an exception queue as
persistent messages.

Messages intended for single-consumer queues, or for 8.0-style multiconsumer
queues, can only be dequeued by their message identifiers once the messages have
been moved to an exception queue.

Queues created in a queue table with compatible set to 8.0 (referred to in this guide
as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or
newer and that you migrate existing 8.0-style queues at your earliest convenience.

After a message has been moved to an exception queue, there is no way to identify which
queue the message resided in before moving to the exception queue. If this information is
important, then the application must save this information in the message itself.

The exception queue is a message property that can be specified during enqueue time. If an
exception queue is not specified, then a default exception queue is used. The default exception
queue is automatically created when the queue table is created.

A message is moved to an exception queue under the following conditions:

• It was not dequeued within the specified expiration interval.

For a message intended for multiple recipients, the message is moved to the exception
queue if one or more of the intended recipients was not able to dequeue the message
within the specified expiration interval. The default expiration interval is never, meaning the
messages does not expire.

• The message was dequeued successfully, but the application that dequeued it rolled back
the transaction because of an error that arose while processing the message. If the
message has been dequeued but rolled back more than the number of times specified by
the retry limit, then the message is moved to the exception queue.

For a message intended for multiple recipients, a separate retry count is kept for each
recipient. The message is moved to the exception queue only when retry counts for all
recipients of the message have exceeded the specified retry limit.

The default retry limit is five for single-consumer queues and 8.1-style multiconsumer
queues. No retry limit is supported for 8.0-style multiconsumer queues, which are
deprecated in Oracle Database Advanced Queuing 10g Release 2 (10.2).

Note

If a dequeue transaction fails because the server process dies (including ALTER
SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not
incremented.

Chapter 1
Dequeue Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 41

• The statement processed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception.

If the dequeue procedure succeeds but the PL/SQL procedure raises an exception, then
Oracle Database Advanced Queuing increments the retry count of the message returned
by the dequeue procedure.

• The client program successfully dequeued a message but terminated before committing
the transaction.

Propagation Features
Messages can be propagated from one queue to another, allowing applications to
communicate with each other without being connected to the same database or to the same
queue. The destination queue can be located in the same database or in a remote database.

Propagation enables you to fan out messages to a large number of recipients without requiring
them all to dequeue messages from a single queue. You can also use propagation to combine
messages from different queues into a single queue. This is known as compositing or funneling
messages.

Starting from 23, TxEventQ propagation creates number of schedules equal to the number of
shards(Event Streams) present in the source queue. If the source queue has 5 shards, there
will be 5 propagation schedules created with the same frequency, duration, and next_time
defined by the user when schedule_propagation was executed. This one-to-one mapping of
shard-schedule propagation increases the total throughput. This change can be seen in
propagation related tables and views, for each shard there will be a row available at
sys.aq$_schedules and DBA_QUEUE_SCHEDULES.

Note

• You can propagate messages from a multi-consumer queue to a single-consumer
queue. Propagation from a single-consumer queue to a multi-consumer queue is
not possible.

• For AQ queues, you can propagate messages from a multi-consumer queue to a
single-consumer queue. Propagation from a single-consumer queue to a multi-
consumer queue is not possible.

• For TxEventQs, you can propagate between single-consumuer and multi-
consumer queues.

• You cannot propagate between TxEventQ and AQ queues.

A message is marked as processed in the source queue immediately after the message has
been propagated, even if the consumer has not dequeued the message at the remote queue.
Similarly, when a propagated message expires at the remote queue, the message is moved to
the exception queue of the remote queue, and not to the exception queue of the local queue.
Oracle Database Advanced Queuing does not currently propagate the exceptions to the
source queue.

To enable propagation, one or more subscribers are defined for the queue from which
messages are to be propagated and a schedule is defined for each destination where
messages are to be propagated from the queue.

Oracle Database Advanced Queuing automatically checks if the type of the remote queue is
structurally equivalent to the type of the local queue within the context of the character sets in

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 41

which they are created. Messages enqueued in the source queue are then propagated and
automatically available for dequeuing at the destination queue or queues.

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination queues.
This means that you must grant schemas of the source queues enqueue privileges to the
destination queues.

Propagation runs as an Oracle Scheduler job. A background process, the JOB_QUEUE_PROCESS
will run the job. Propagation scheduling may be a dedicated process, running continuously and
without end, or it may be event driven, in which case it runs only if there is a message to be
propagated.

Oracle Database Advanced Queuing offers two kinds of propagation:

• Queue-to-dblink propagation

• Queue-to-queue propagation

Queue-to-dblink propagation delivers messages or events from the source queue to all
subscribing queues at the destination database identified by the dblink. Queue-to-dblink
propagation feature is not supported for sharded queues. Propagation is always a queue-to-
queue, and a destination queue that is remote can be accesses by a dblink.

A single propagation schedule is used to propagate messages to all subscribing queues.
Hence any changes made to this schedule will affect message delivery to all the subscribing
queues.

Queue-to-queue propagation delivers messages or events from the source queue to a specific
destination queue identified on the dblink. This allows the user to have fine-grained control on
the propagation schedule for message delivery.

This new propagation mode also supports transparent failover when propagating to a
destination Oracle RAC system. With queue-to-queue propagation, you are no longer required
to re-point a database link if the owner instance of the queue fails on Oracle RAC.

Oracle Database Advanced Queuing provides detailed statistics about the messages
propagated and the schedule itself. This information can be used to tune propagation
schedules for best performance.

Remote Consumers

Consumers of a message in multiconsumer queues can be local or remote. Local consumers
dequeue messages from the same queues into which the producer enqueued the messages.
Local consumers have a name but no address or protocol in their agent descriptions.

Remote consumers dequeue from queues that are different from the queues where the
messages were enqueued. Remote consumers fall into three categories:

• The address refers to a queue in the same database.

In this case the consumer dequeues the message from a different queue in the same
database. These addresses are of the form [schema].queue_name. If the schema is not
specified, then the schema of the current user is used.

• The address refers to a queue in a different database.

In this case the database must be reachable using database links and the protocol must be
either NULL or 0. These addresses are of the form [schema].queue_name@dblink. If the
schema is not specified, then the schema of the current user is used. If the database link
does not have a domain name specified, then the default domain as specified by the
DB_DOMAIN init.ora parameter is used.

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 41

• The address refers to a destination that can be reached by a third party protocol.

You must refer to the documentation of the third party software to determine how to specify
the address and the protocol database link and schedule propagation.

Propagation to Remote Subscribers

Oracle Database Advanced Queuing validates the database link specified in a propagation
schedule when the schedule runs, but not when the schedule is created. It is possible,
therefore, to create a queue-to-dblink or queue-to-queue propagation before creating its
associated database link. Also, the propagation schedule is not disabled if you remove the
database link.

Oracle Database AQ offers two kinds of propagation:

A) Queue-to-dblink propagation - specified by providing a (source) queue and (destination)
databaselink. Messages from the source queue for any queues at the destination specified by
the dblink will be handled by this propagation. Queue-to-dblink propagation is not supported for
sharded queues.

In this scenario, we cannot have multiple propagations from a source queue, with dblinks
connecting to the same database. Thus(q1, dblink1) and (q1, dblink2) cannot coexist if both
dblinks connect to the same database. However (q1, dblink1) and (q2, dblink1) OR (q1,
dblink1) and (q2, dblink2) can coexist as source queues are different.

B) Queue-to-queue propagation - specified by providing a (source) queue, (destination)
dblink and (destination) queue. Messages from the source queue for the indicated queue at the
destination dblink will be handled by this propagation. Here, either (q1, dblink1, dq1), (q1,
dblink1, dq2) OR (q1, dblink1, dq1), (q1, dblink2, dq2) succeeds. This strategy works because
the destination queues are different even though source queue is the same and dblink
connects to the same database.

In this scenario, we cannot have multiple propagations between a source queue, destination
queue, even if using different dblinks: (q1, dblink1, q2) and (q1, dblink2, q2) cannot coexist, if
dblink1 and dblink2 are pointing to the same database.

Priority and Ordering of Messages in Propagation

The delay, expiration, and priority parameters apply identically to both local and remote
consumers in both queue-to-dblink and queue-to-queue propagation. Oracle Database
Advanced Queuing accounts for any delay in propagation by adjusting the delay and expiration
parameters accordingly. For example, if expiration is set to one hour, and the message is
propagated after 15 minutes, then the expiration at the remote queue is set to 45 minutes.

Inboxes and Outboxes

Figure 1-9 illustrates applications on different databases communicating using Oracle
Database Advanced Queuing. Each application has an inbox for handling incoming messages
and an outbox for handling outgoing messages. Whenever an application enqueues a
message, it goes into its outbox regardless of the message destination. Similarly, an
application dequeues messages from its inbox no matter where the message originates.

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 41

Figure 1-9 Message Propagation in Oracle Database Advanced Queuing

Application B

consumer & producer

Inbox

Enqueue

Dequeue

Application A

producer & consumer

Dequeue

Enqueue

Database 1

Outbox

Application C

consumer & producer

Inbox

Enqueue

Dequeue

Outbox

Database 2

AQ's

Message

Propagation

Infrastructure

Outbox Inbox

Propagation Scheduling

A queue-to-dblink propagation schedule is defined for a pair of source and destination
database links. A queue-to-queue propagation schedule is defined for a pair of source and
destination queues. If a queue has messages to be propagated to several queues, then a
schedule must be defined for each of the destination queues. With queue-to-dblink
propagation, all schedules for a particular remote database have the same frequency. With
queue-to-queue propagation, the frequency of each schedule can be adjusted independently of
the others

A schedule indicates the time frame during which messages can be propagated from the
source queue. This time frame can depend on several factors such as network traffic, load at
the source database, and load at the destination database. If the duration is unspecified, then
the time frame is an infinite single window. If a window must be repeated periodically, then a

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 41

finite duration is specified along with a NEXT_TIME function that defines the periodic interval
between successive windows.

When a schedule is created, a job is automatically submitted to the job queue facility to handle
propagation.

The propagation schedules defined for a queue can be changed or dropped at any time during
the life of the queue. You can also temporarily disable a schedule instead of dropping it. All
administrative calls can be made irrespective of whether the schedule is active or not. If a
schedule is active, then it takes a few seconds for the calls to be processed.

Propagation of Messages with LOBs

Large Objects can be propagated using Oracle Database Advanced Queuing using two
methods:

• Propagation from RAW queues

In RAW queues the message payload is stored as a BLOB. This allows users to store up to
32KB of data when using the PL/SQL interface and as much data as can be contiguously
allocated by the client when using OCI. This method is supported by all releases after 8.0.4
inclusive.

• Propagation from object queues with LOB attributes

The user can populate the LOB and read from the LOB using Oracle Database LOB handling
routines. The LOB attributes can be BLOBs or CLOBs (not NCLOBs). If the attribute is a CLOB,
then Oracle Database Advanced Queuing automatically performs any necessary character
set conversion between the source queue and the destination queue. This method is
supported by all releases from 8.1.3 inclusive.

Note

Payloads containing LOBs require users to grant explicit Select, Insert and
Update privileges on the queue table for doing enqueues and dequeues.

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide

Propagation Statistics

Detailed runtime information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULES view for each propagation schedule. This information can be used by
queue designers and administrators to fix problems or tune performance. Similarly, errors
reported by the view can be used to diagnose and fix problems. The view also describes
additional information such as the session ID of the session handling the propagation and the
process name of the job queue process handling the propagation.

For each schedule, detailed propagation statistics are maintained:

• Total number of messages propagated in a schedule

• Total number of bytes propagated in a schedule

• Maximum number of messages propagated in a window

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 41

• Maximum number of bytes propagated in a window

• Average number of messages propagated in a window

• Average size of propagated messages

• Average time to propagated a message

Propagation Error Handling

Propagation has built-in support for handling failures and reporting errors. For example, if the
specified database link is invalid, if the remote database is unavailable, or if the remote queue
is not enabled for enqueuing, then the appropriate error message is reported. Propagation
uses a linear backoff scheme for retrying propagation from a schedule that encountered a
failure.

If a schedule encounters failures, then the retry happens at every minute for 24 hours. Once
we exhaust all the retry attempts, the frequency of retry will be changed to hourly once, and the
max retries are set to 65535 by default. Users can change the max retry attempts by setting a
queue level parameter PROP_MAXRETRY_VAL with a positive value within the range of 0-65535.

Note

Once a retry attempt slips to the next propagation window, it will always do so; the
exponential backoff scheme no longer governs retry scheduling. If the date function
specified in the next_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION results in
a short interval between windows, then the number of unsuccessful retry attempts can
quickly reach 16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is written
into the alert log. A check for scheduling failures indicates:

• How many successive failures were encountered

• The error message indicating the cause for the failure

• The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable the
schedule. If propagation is successful during a retry, then the number of failures is reset to 0.

In some situations that indicate application errors in queue-to-dblink propagations, Oracle
Database Advanced Queuing marks messages as UNDELIVERABLE and logs a message in
alert.log. Examples of such errors are when the remote queue does not exist or when there
is a type mismatch between the source queue and the remote queue. The trace files in the
background_dump_dest directory can provide additional information about the error.

When a new job queue process starts, it clears the mismatched type errors so the types can
be reverified. If you have capped the number of job queue processes and propagation remains
busy, then you might not want to wait for the job queue process to terminate and restart.
Queue types can be reverified at any time using DBMS_AQADM.VERIFY_QUEUE_TYPES.

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 41

Note

When a type mismatch is detected in queue-to-queue propagation, propagation stops
and throws an error. In such situations you must query the DBA_SCHEDULES view to
determine the last error that occurred during propagation to a particular destination.
The message is not marked as UNDELIVERABLE.

Propagation with Oracle Real Application Clusters

Propagation has support built-in for Oracle Real Application Clusters. It is transparent to the
user and the queue administrator. The job that handles propagation is submitted to the same
instance as the owner of the queue table where the queue resides.

If there is a failure at an instance and the queue table that stores the source queue is migrated
to a different instance, then the propagation job is also migrated to the new instance. This
minimizes pinging between instances and thus offers better performance.

The destination can be identified by a database link or by destination queue name. Specifying
the destination database results in queue-to-dblink propagation. If you propagate messages to
several queues in another database, then all queue-to-dblink propagations to that database
have the same frequency. Specifying the destination queue name results in queue-to-queue
propagation. If you propagate messages to several queues in another database, then queue-
to-queue propagation enables you to adjust the frequency of each schedule independently of
the others. You can even enable or disable individual propagations.

This new queue-to-queue propagation mode also supports transparent failover when
propagating to a destination Oracle RAC system. With queue-to-queue propagation, you are
no longer required to re-point a database link if the owner instance of the queue fails on Oracle
RAC.

See Also

"Scheduling a Queue Propagation" for more information on queue-to-queue
propagation

Propagation has been designed to handle any number of concurrent schedules. The number of
job queue processes is limited to a maximum of 4000, and some of these can be used to
handle jobs unrelated to propagation. Hence, propagation has built-in support for multitasking
and load balancing.

If propagation found to be starving other database client that are waiting for the job queue
processes to complete their task, users can tweak the scheduling parameters.
SCHEDULE_PROPAGATION or ALTER_PROPAGATION_SCHEDULE APIs provide duration and next_time
parameters, by setting these parameters users can control the amount of time the
job_queue_processes are going to execute a schedule. For instance, a 10 seconds duration
and a next_time to SYSTIMESTAMP, that is, immediate time, will make the scheduler to yield the
job_queue_process once 10 seconds elapsed, and re-schedule immediately after.

The propagation algorithms are designed such that multiple schedules can be handled by a
single job queue process. The propagation load on a job queue process can be skewed based
on the arrival rate of messages in the different source queues.

Chapter 1
Propagation Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 41

Transactional Event Queues (TxEventQ) Propagation with Oracle RAC

When the destination queue is created on an Oracle RAC setup, then schedule propagation
using a Queue-to-dblink model. In a Queue-to-dblink propagation, single dblink is created and
passed as a parameter to the schedule_propagation API. In case of a destination with Oracle
RAC setup, create set of unique dblinks for each node at the destination.

The dblinks to the destination nodes should follow certain naming convention. The instance-ID
is appended to the dblink name which is used in the schedule_propagation API. For example,
if the propagation setup involves 2 nodes at the destination, a dblink with name ‘samplelnk’ is
passed to schedule_propagation API, and the instance IDs are 1 and 2, then the rest of the
dblinks will be ‘samplelnk1’ and ‘samplelnk2’.

Create and validate these dblinks before scheduling the propagation. Internally these dblinks
are used to access each nodes involved in the propagation schedule.

If any node at the destination is temporarily down for more than three minutes, then the current
propagation schedule is stopped and the corresponding error message is logged in an alert
log.

TxEventQ propagation on Oracle RAC needs to know the metadata from destination to redirect
the propagation schedules in case of any instance going down in the destination database.
This look up requires granting SELECT_CATALOG_ROLE to the propagation user.

Third-Party Support

If the protocol number for a recipient is in the range 128 - 255, then the address of the recipient
is not interpreted by Oracle Database Advanced Queuing and the message is not propagated
by the Oracle Database Advanced Queuing system. Instead, a third-party propagator can
dequeue the message by specifying a reserved consumer name in the dequeue operation. The
reserved consumer names are of the form AQ$_Pprotocol_number. For example, the consumer
name AQ$_P128 can be used to dequeue messages for recipients with protocol number 128.
The list of recipients for a message with the specific protocol number is returned in the
recipient_list message property on dequeue.

Another way for Oracle Database Advanced Queuing to propagate messages to and from
third-party messaging systems is through Messaging Gateway. Messaging Gateway dequeues
messages from an Oracle Database Advanced Queuing queue and guarantees delivery to
supported third-party messaging systems. Messaging Gateway can also dequeue messages
from these systems and enqueue them to an Oracle Database Advanced Queuing queue.

Propagation Using HTTP

In Oracle Database 10g you can set up Oracle Database Advanced Queuing propagation over
HTTP and HTTPS (HTTP over SSL). HTTP propagation uses the Internet access infrastructure
and requires that the Oracle Database Advanced Queuing servlet that connects to the
destination database be deployed. The database link must be created with the connect string
indicating the Web server address and port and indicating HTTP as the protocol. The source
database must be created for running Java and XML. Otherwise, the setup for HTTP
propagation is more or less the same as Oracle Net Services propagation.

Message Format Transformation
Applications often use data in different formats. A transformation defines a mapping from one
Oracle data type to another.

Chapter 1
Message Format Transformation

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 41

The transformation is represented by a SQL function that takes the source data type as input
and returns an object of the target data type. Only one-to-one message transformations are
supported.

To transform a message during enqueue, specify a mapping in the enqueue options. To
transform a message during dequeue, specify a mapping either in the dequeue options or
when you add a subscriber. A dequeue mapping overrides a subscriber mapping. To transform
a message during propagation, specify a mapping when you add a subscriber.

You can create transformations by creating a single PL/SQL function or by creating an
expression for each target type attribute. The PL/SQL function returns an object of the target
type or the constructor of the target type. This representation is preferable for simple
transformations or those not easily broken down into independent transformations for each
attribute.

Creating a separate expression specified for each attribute of the target type simplifies
transformation mapping creation and management for individual attributes of the destination
type. It is useful when the destination type has many attributes.

As Figure 1-10 shows, queuing, routing, and transformation are essential building blocks to an
integrated application architecture. The figure shows how data from the Out queue of a CRM
application is routed and transformed in the integration hub and then propagated to the In
queue of the Web application. The transformation engine maps the message from the format of
the Out queue to the format of the In queue.

Figure 1-10 Transformations in Application Integration

Out Queue In QueueRouting and
Transformation

CRM
Application

Web
Application

Spoke Spoke

Propagation

Integration Hub

XML Data Transformation

You can transform XML data using the extract() method supported on XMLType to return an
object of XMLType after applying the supplied XPath expression. You can also create a PL/SQL
function that transforms the XMLType object by applying an XSLT transformation to it, using the
package XSLPROCESSOR.

Other Oracle Database Advanced Queuing Features
This topic describes the AQ features Queue Monitor Coordinator, Integration with Oracle
Internet Directory, Integration with Oracle Enterprise Manager, Retention and Message History,
Cleaning Up Message Queues, Tracking and Event Journals, Non-repudiation, and Internet
Integration.

• Queue Monitor Coordinator

• Integration with Oracle Internet Directory

• Integration with Oracle Enterprise Manager

• Retention and Message History

• Cleaning Up Message Queues

Chapter 1
Other Oracle Database Advanced Queuing Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 41

• Tracking and Event Journals

• Non-repudiation

• Internet Integration

Queue Monitor Coordinator

Before 10g Release 1 (10.1), the Oracle Database Advanced Queuing time manager process
was called queue monitor (QMNn), a background process controlled by setting the dynamic
init.ora parameter AQ_TM_PROCESSES. Beginning with 10g Release 1 (10.1), time
management and many other background processes are automatically controlled by a
coordinator-secondary architecture called Queue Monitor Coordinator (QMNC). QMNC dynamically
spawns secondary processes named qXXX depending on the system load. The secondary
processes provide mechanisms for:

• Message delay

• Message expiration

• Retry delay

• Garbage collection for the queue table

• Memory management tasks for buffered messages

Because the number of processes is determined automatically and tuned constantly, you are
saved the trouble of setting it with AQ_TM_PROCESSES.

Although it is no longer necessary to set init.ora parameter AQ_TM_PROCESSES, it is still
supported. If you do set it (up to a maximum of 40), then QMNC still autotunes the number of
processes. But you are guaranteed at least the set number of processes for persistent queues.
Processes for a buffered queue however, are not affected by this parameter.

Note

If you want to disable the Queue Monitor Coordinator, then you must set
AQ_TM_PROCESSES = 0 in your pfile or spfile. Oracle strongly recommends that you
do NOT set AQ_TM_PROCESSES = 0.

Integration with Oracle Internet Directory

Oracle Internet Directory is a native LDAPv3 directory service built on Oracle Database that
centralizes a wide variety of information, including e-mail addresses, telephone numbers,
passwords, security certificates, and configuration data for many types of networked devices.
You can look up enterprise-wide queuing information—queues, subscriptions, and events—
from one location, the Oracle Internet Directory.

Integration with Oracle Enterprise Manager

You can use Oracle Enterprise Manager to:

• Create and manage queues, queue tables, propagation schedules, and transformations

• Monitor your Oracle Database Advanced Queuing environment using its topology at the
database and queue levels, and by viewing queue errors and queue and session statistics

Chapter 1
Other Oracle Database Advanced Queuing Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 41

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Database Advanced Queuing stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and retention for
messages destined for local or remote receivers. The information contains the enqueue and
dequeue times and the identification of the transaction that executed each request. This allows
users to keep a history of relevant messages. The history can be used for tracking, data
warehouse, data mining operations, and, also specific auditing functions.

Message retention is not supported for buffered messaging.

Cleaning Up Message Queues

The Oracle Database Advanced Queuing retention feature can be used to automatically clean
up messages after the user-specified duration after consumption.

If messages are accidentally inserted into a queue for the wrong subscriber, you can dequeue
them with the subscriber name or by message identifier. This consumes the messages, which
are cleaned up after their retention time expires.

To clean up messages for a particular subscriber, you can remove the subscriber and add the
subscriber again. Removing the subscriber removes all the messages for that subscriber.

Tracking and Event Journals

Retained messages can be related to each other to form sequences. These sequences
represent event journals, which are often constructed by applications. Oracle Database
Advanced Queuing is designed to let applications create event journals automatically.

Non-repudiation

Oracle Database Advanced Queuing maintains the entire history of information about a
message along with the message itself. This information serves as proof of sending and
receiving of messages and can be used for non-repudiation of the sender and non-repudiation
of the receiver.

The following information is kept at enqueue for non-repudiation of the enqueuer:

• Oracle Database Advanced Queuing agent doing the enqueue

• Database user doing the enqueue

• Enqueue time

• Transaction ID of the transaction doing enqueue

The following information is kept at dequeue for non-repudiation of the dequeuer:

• Oracle Database Advanced Queuing agent doing dequeue

• Database user doing dequeue

• Dequeue time

• Transaction ID of the transaction doing dequeue

After propagation, the ORIGINAL_MSGID field in the destination queue of the propagation
corresponds to the message ID of the source message. This field can be used to correlate the
propagated messages. This is useful for non-repudiation of the dequeuer of propagated
messages.

Chapter 1
Other Oracle Database Advanced Queuing Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 41

Stronger non-repudiation can be achieved by enqueuing the digital signature of the sender at
the time of enqueue with the message and by storing the digital signature of the dequeuer at
the time of dequeue.

Internet Integration

You can access Oracle Database Advanced Queuing over the Internet by using Simple Object
Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification
for Oracle Database Advanced Queuing operations. IDAP defines the XML message structure
for the body of the SOAP request.

An IDAP message encapsulates the Oracle Database Advanced Queuing request and
response in XML. IDAP is used to perform Oracle Database Advanced Queuing operations
such as enqueue, dequeue, send notifications, register for notifications, and propagation over
the Internet standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates
transactions, security, transformation, and the character set ID for requests.

You can create an alias to an Oracle Database Advanced Queuing agent in Oracle Internet
Directory and then use the alias in IDAP documents sent over the Internet to perform Oracle
Database Advanced Queuing operations. Using aliases prevents exposing the internal name of
the Oracle Database Advanced Queuing agent.

Figure 1-11 shows the architecture for performing Oracle Database Advanced Queuing
operations over HTTP. The major components are:

• Oracle Database Advanced Queuing client program

• Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet

• Oracle Database server

The Oracle Database Advanced Queuing client program sends XML messages (conforming to
IDAP) to the Oracle Database Advanced Queuing servlet, which understands the XML
message and performs Oracle Database Advanced Queuing operations. Any HTTP client, a
Web browser for example, can be used. The Web server/servlet runner hosting the Oracle
Database Advanced Queuing servlet, Apache/Jserv or Tomcat for example, interprets the
incoming XML messages. The Oracle Database Advanced Queuing servlet connects to the
Oracle Database server and performs operations on user queues.

Note

This feature is certified to work with Apache, along with the Tomcat or Jserv servlet
execution engines. However, the code does not prevent the servlet from working with
other Web server and servlet execution engines that support Java Servlet 2.0 or
higher interfaces.

Chapter 1
Other Oracle Database Advanced Queuing Features

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 41

Figure 1-11 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

AQ

Queue

Web

Server

AQ Client

Oracle �

Database�

Server

AQ Servlet

XML Message

over HTTP

Polyglot Programming with Transactional Event Queues
AQ and TxEventQ support multiple languages to use the messaging and streaming features in
the database.

In addition to multiple languages, the queues support multiple message types like RAW, ADT,
JMS Types, and JSON. For applications that use multiple languages to exchange messages,
JSON is the recommended message type to use. It is the most widely supported format with
the drivers of many languages. Message header, message body, and message properties are
supported in this format by encoding them as the key:value structure in JSON (or nested
JSON) format.

The following languages are supported by TxEventQ and AQ:

• PL/SQL using DBMS_AQ, DBMS_AQADM, and DBMS_AQELM

• Java (with JDBC driver)

• Java Message Service (JMS) using the oracle.jms Java package

• Python using the python-oracledb thick driver

• JavaScript using the Node.js node-oracledb driver

• .NET using the AQ classes

• Kafka Java Client APIs using the oracle.kafka Java package

See Also

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Advanced Queuing Java API Reference

• python-oracledb API Documentation

• node-oracledb API Documentation

• Oracle Data Provider for .NET Developer's Guide

• Oracle Database Transactional Event Queues Java API Reference

Chapter 1
Polyglot Programming with Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 41

https://python-oracledb.readthedocs.io/en/latest/api_manual/aq.html#aq
https://node-oracledb.readthedocs.io/en/latest/api_manual/aq.html

2
Basic Components of Oracle Transactional
Event Queues and Advanced Queuing

This topic lists the basic components of Oracle Database Advanced Queuing.

• Object Name

• Type Name

• AQ Agent Type

• AQ Recipient List Type

• AQ Agent List Type

• AQ Subscriber List Type

• AQ Registration Information List Type

• AQ Post Information List Type

• AQ Registration Information Type

• AQ Notification Descriptor Type

• AQ Message Properties Type

• AQ Post Information Type

• AQ$_NTFN_MSGID_ARRAY Type

• Enumerated Constants for AQ Administrative Interface

• Enumerated Constants for AQ Operational Interface

• AQ Background Processes

See Also

– Oracle Database Advanced Queuing Administrative Interface

– Oracle Database Advanced Queuing Operations Using PL/SQL

Object Name
This component names database objects.

object_name := VARCHAR2
object_name := [schema_name.]name

This naming convention applies to queues, queue tables, and object types.

Names for objects are specified by an optional schema name and a name. If the schema name
is not specified, then the current schema is assumed. The name must follow the reserved
character guidelines in Oracle AI Database SQL Language ReferenceOracle Database SQL
Language Reference. The schema name, agent name, and the object type name can each be

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 9

up to 128 bytes long. However starting from 12c Release 2 (12.2.), queue names and queue
table names can be a maximum of 122 bytes.

Type Name
This component defines queue types.

type_name := VARCHAR2
type_name := object_type | "RAW"

The maximum number of attributes in the object type is limited to 900.

To store payloads of type RAW, Oracle Database Advanced Queuing creates a queue table with
a LOB column as the payload repository. The size of the payload is limited to 32K bytes of
data. Because LOB columns are used for storing RAW payload, the Oracle Database Advanced
Queuing administrator can choose the LOB tablespace and configure the LOB storage by
constructing a LOB storage string in the storage_clause parameter during queue table creation
time.

Note

Payloads containing LOBs require users to grant explicit Select, Insert and Update
privileges on the queue table for doing enqueues and dequeues.

AQ Agent Type
This component identifies a producer or consumer of a message.

TYPE AQ$_AGENT IS OBJECT (
 name VARCHAR2(30),
 address VARCHAR2(1024),
 protocol NUMBER);

All consumers that are added as subscribers to a multiconsumer queue must have unique
values for the AQ$_AGENT parameters. Two subscribers cannot have the same values for the
NAME, ADDRESS, and PROTOCOL attributes for the AQ$_AGENT type. At least one of the three
attributes must be different for two subscribers.

You can add subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER procedure up to
a maximum of 1024 subscribers for a multiconsumer queue.

This type has three attributes:

• name

This attribute specifies the name of a producer or a consumer of a message. It can be the
name of an application or a name assigned by an application. A queue can itself be an
agent, enqueuing or dequeuing from another queue. The name must follow the reserved
character guidelines in Oracle Database SQL Language Reference.

• address

This attribute is interpreted in the context of protocol. If protocol is 0 (default), then
address is of the form [schema.]queue[@dblink].

• protocol

Chapter 2
Type Name

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 9

This attribute specifies the protocol to interpret the address and propagate the message.
The default value is 0.

AQ Recipient List Type
This component identifies the list of agents that receive a message.

TYPE AQ$_RECIPIENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY_INTEGER;

AQ Agent List Type
This component identifies the list of agents for DBMS_AQ.LISTEN to listen for.

TYPE AQ$_AGENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

AQ Subscriber List Type
This component identifies the list of subscribers that subscribe to this queue.

TYPE AQ$_SUBSCRIBER_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

AQ Registration Information List Type
This component identifies the list of registrations to a queue.

TYPE AQ$_REG_INFO_LIST AS VARRAY(1024) OF sys.aq$_reg_info;

AQ Post Information List Type
This component identifies the list of anonymous subscriptions to which messages are posted.

TYPE AQ$_POST_INFO_LIST AS VARRAY(1024) OF sys.aq$_post_info;

AQ Registration Information Type
This component identifies a producer or a consumer of a message.

TYPE SYS.AQ$_REG_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 callback VARCHAR2(4000),
 context RAW(2000) DEFAULT NULL,
 qosflags NUMBER,
 timeout NUMBER
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER DEFAULT 600,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

Its attributes are described in the following list.

Chapter 2
AQ Recipient List Type

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 9

Table 2-1 AQ$_REG_INFO Type Attributes

Attribute Description

name Specifies the name of the subscription. The subscription name is of the
form schema.queue if the registration is for a single consumer queue
or schema.queue:consumer_name if the registration is for a
multiconsumer queues.

namespace Specifies the namespace of the subscription. To receive notification
from Oracle Database AQ queues, the namespace must be
DBMS_AQ.NAMESPACE_AQ. To receive notifications from other
applications through DBMS_AQ.POST or OCISubscriptionPost(),
the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification. For HTTP
notifications, use http://www.company.com:8080. For e-mail
notifications, use mailto://xyz@company.com. For raw message
payload for the PLSQLCALLBACK procedure, use plsql://
schema.procedure?PR=0. For user-defined type message payload
converted to XML for the PLSQLCALLBACK procedure, use plsql://
schema.procedure?PR=1

context Specifies the context that is to be passed to the callback function

qosflags Can be set to one or more of the following values to specify the
notification quality of service:

• NTFN_QOS_RELIABLE- This value specifies that reliable notification
is required. Reliable notifications persist across instance and
database restarts.

• NTFN_QOS_PAYLOAD - This value specifies that payload delivery is
required. It is supported only for client notification and only for RAW
queues.

• NTFN_QOS_PURGE_ON_NTFN - This value specifies that the
registration is to be purged automatically when the first notification
is delivered to this registration location.

ntfn_grouping_class Currently, only the following flag can be set to specify criterion for
grouping. The default value will be 0. If ntfn_grouping_class is 0, all
other notification grouping attributes must be 0.

• NTFN_GROUPING_CLASS_TIME - Notifications grouped by time, that
is, the user specifies a time value and a single notification gets
published at the end of that time.

ntfn_grouping_value Time-period of grouping notifications specified in seconds, meaning the
time after which grouping notification would be sent periodically until
ntfn_grouping_repeat_count is exhausted.

ntfn_grouping_type • NTFN_GROUPING_TYPE_SUMMARY - Summary of all notifications
that occurred in the time interval. (Default)

• NTFN_GROUPING_TYPE_LAST - Last notification that occurred in
the interval.

ntfn_grouping_start_time Notification grouping start time. Notification grouping can start from a
user-specified time that should a valid timestamp with time zone. If
ntfn_grouping_start_time is not specified when using grouping,
the default is to current timestamp with time zone

Chapter 2
AQ Registration Information Type

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 9

Table 2-1 (Cont.) AQ$_REG_INFO Type Attributes

Attribute Description

ntfn_grouping_repeat_cou
nt

Grouping notifications will be sent as many times as specified by the
notification grouping repeat count and after that revert to regular
notifications. The ntfn_grouping_repeat_count, if not specified, will
default to

• NTFN_GROUPING_FOREVER - Keep sending grouping notifications
forever.

AQ Notification Descriptor Type
This component specifies the Oracle Database Advanced Queuing descriptor received by AQ
PL/SQL callbacks upon notification.

TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (
 queue_name VARCHAR2(61),
 consumer_name VARCHAR2(30),
 msg_id RAW(16),
 msg_prop MSG_PROP_T,
 gen_desc AQ$_NTFN_DESCRIPTOR,
 msgid_array SYS.AQ$_NTFN_MSGID_ARRAY,
 ntfnsRecdInGrp NUMBER);

It has the following attributes:

Table 2-2 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_name Name of the queue in which the message was enqueued which resulted in the
notification

consumer_name Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

gen_desc Indicates the timeout specifications

msgid_array Group notification message ID list

ntfnsRecdInGrp Notifications received in group

AQ Message Properties Type
The message properties type msg_prop_t has these components.

TYPE AQ$_MSG_PROP_T IS OBJECT(
 priority number,
 delay number,
 expiration number,
 correlation varchar2(128),
 attempts number,
 recipent_list aq$_recipient_list_t,
 exception_queue varchar2(51),
 enqueue_time date,
 state number,

Chapter 2
AQ Notification Descriptor Type

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 9

 sender_id aq$_agent,
 original_misgid raw(16),
 delivery_mode number);

The timeout specifications type AQ$_NTFN_DESCRIPTOR has a single component:

TYPE AQ$_NTFN_DESCRIPTOR IS OBJECT(
 NTFN_FLAGS number);

NTFN_FLAGS is set to 1 if the notifications are already removed after a stipulated timeout;
otherwise the value is 0.

See Also

"MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages and
Types Reference

AQ Post Information Type
This component specifies anonymous subscriptions to which you want to post messages.

TYPE SYS.AQ$_POST_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 payload RAW(2000));

It has three attributes:

• name

This attribute specifies the name of the anonymous subscription to which you want to post.

• namespace

This attribute specifies the namespace of the anonymous subscription. To receive
notifications from other applications using DBMS_AQ.POST or OCISubscriptionPost(), the
namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS.

• payload

This attribute specifies the payload to be posted to the anonymous subscription. The
default is NULL.

AQ$_NTFN_MSGID_ARRAY Type
This component is for storing grouping notification data for AQ namespace, value 230 which is
the max varray size.

TYPE SYS.AQ$_NTFN_MSGID_ARRAY AS VARRAY(1073741824)OF RAW(16);

Enumerated Constants for AQ Administrative Interface
When enumerated constants such as INFINITE, TRANSACTIONAL, and NORMAL_QUEUE are
selected as values, the symbol must be specified with the scope of the packages defining it.

All types associated with the administrative interfaces must be prepended with DBMS_AQADM.
For example:

Chapter 2
AQ Post Information Type

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 9

DBMS_AQADM.NORMAL_QUEUE

Table 2-3 lists the enumerated constants in the Oracle Database Advanced Queuing
administrative interface.

Table 2-3 Enumerated Constants in the Oracle Database Advanced Queuing
Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE,NON_PERSISTENT_QUEUE

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

Note

Nonpersistent queues are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that you use buffered messaging instead.

Enumerated Constants for AQ Operational Interface
When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the PL/SQL
constants must be specified with the scope of the packages defining them.

All types associated with the operational interfaces must be prepended with DBMS_AQ. For
example:

DBMS_AQ.BROWSE

Table 2-4 lists the enumerated constants in the Oracle Database Advanced Queuing
operational interface.

Table 2-4 Enumerated Constants in the Oracle Database Advanced Queuing
Operational Interface

Parameter Options

visibility IMMEDIATE, ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING, READY, PROCESSED, EXPIRED

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

quosflags NTFN_QOS_RELIABLE, NTFN_QOS_PAYLOAD,
NTFN_QOS_PURGE_ON_NTFN

Chapter 2
Enumerated Constants for AQ Operational Interface

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 9

Table 2-4 (Cont.) Enumerated Constants in the Oracle Database Advanced Queuing
Operational Interface

Parameter Options

ntfn_grouping_class NFTN_GROUPING_CLASS_TIME

ntfn_grouping_type NTFN_GROUPING_TYPE_SUMMARY, NTFN_GROUPING_TYPE_LAST

ntfn_grouping_repeat_co
unt

NTFN_GROUPING_FOREVER

AQ Background Processes
These topics describe the background processes of Oracle Database Advanced Queuing.

• Queue Monitor Processes

• Job Queue Processes

• AQ Background Architecture

Queue Monitor Processes
Oracle recommends leaving the AQ_TM_PROCESSES parameter unspecified and let the system
autotune.

Many Oracle Database Advanced Queuing tasks are executed in the background. These
include converting messages with DELAY specified into the READY state, expiring messages,
moving messages to exception queues, spilling and recovering of buffered messages, and
similar operations.

It is no longer necessary to set AQ_TM_PROCESSES when Oracle Database AQ is used. If a value
is specified, that value is taken into account when starting the Qxx processes. However, the
number of Qxx processes can be different from what was specified by AQ_TM_PROCESSES.

No separate API is needed to disable or enable the background processes. This is controlled
by setting AQ_TM_PROCESSES to zero or nonzero. Oracle recommends, however, that you leave
the AQ_TM_PROCESSES parameter unspecified and let the system autotune.

Note

If you want to disable the Queue Monitor Coordinator, then you must set
AQ_TM_PROCESSES = 0 in your pfile or spfile. Oracle strongly recommends that you
do NOT set AQ_TM_PROCESSES = 0.

Job Queue Processes
Propagation and PL/SQL notifications are handled by job queue (Jnnn) processes.

The parameter JOB_QUEUE_PROCESSES no longer needs to be specified. The database
scheduler automatically starts the job queue processes that are needed for the propagation
and notification jobs.

Chapter 2
AQ Background Processes

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 9

AQ Background Architecture
Oracle Database Advanced Queuing introduces a new AQ background architecture with a 3-
tier design.

• Tier1 (AQPC): Asingle background process called the Advanced Queuing Process
Coordinator is created at instance startup. It will be responsible for creating and managing
various primary processes. The coordinator statistics can be viewed using
GV$AQ_BACKGROUND_COORDINATOR.

• Tier2 (QM**): There will be many primary processes named Queue Monitors. Each will be
responsible for handling a distinct type of job. Jobs could be of type notification(Emon
pool), queue monitors (handling TxEventQ time manager etc) , cross process etc.

Note

The old processes like QMNC and EMNC will be subsumed within one of new
primary processes.

A job can be defined as a type of work which needs own scheduling mechanism across
multiple server processes (Q***) to perform its task . The primary process statistics and
their jobs can be viewed using GV$AQ_JOB_COORDINATOR.

• Tier3(Q***): There will be a single pool of server processes for all above mentioned primary
processes. Each process will be associated to a single primary process at a time. But can
be rescheduled to another once original primary relinquishes its need to use it. These
servers will perform jobs for respective primary processes providing performance and
scalability. The server process statistics and its current primary association can be viewed
using GV$AQ_SERVER_POOL.

Chapter 2
AQ Background Processes

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 9

3
Oracle Transactional Event Queues and
Advanced Queuing: Programmatic Interfaces

These topics describe the various language options and elements you must work with and
issues to consider in preparing your Oracle Database Advanced Queuing (AQ) application
environment.

Note

Java package oracle.AQ was deprecated in 10g Release 1 (10.1). Oracle
recommends that you migrate existing Java AQ applications to Oracle JMS (or other
Java APIs) and use Oracle JMS (or other Java APIs) to design your future Java AQ
applications.

Topics:

• Programmatic Interfaces for Accessing Oracle Database Advanced Queuing

• Using PL/SQL to Access Oracle Database Advanced Queuing

• Using OCI to Access Oracle Database Advanced Queuing

• Using OCCI to Access Oracle Database Advanced Queuing

• Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced
Queuing

• Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database
Advanced Queuing

• Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Database
Advanced Queuing

The table lists Oracle Database Advanced Queuing programmatic interfaces, functions
supported in each interface, and syntax references.

Table 3-1 Oracle Database Advanced Queuing Programmatic Interfaces

Language Precompiler or Interface Program Functions
Supported

Syntax References

PL/SQL DBMS_AQADM and DBMS_AQ Packages Administrative and
operational

Oracle Database PL/SQL
Packages and Types Reference

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 17

Table 3-1 (Cont.) Oracle Database Advanced Queuing Programmatic Interfaces

Language Precompiler or Interface Program Functions
Supported

Syntax References

C, Python,
Javascript,
Node.js

Oracle Call Interface (OCI) Operational only • Oracle Call Interface
Programmer's Guide

• https://cx-
oracle.readthedocs.io/en/
latest/user_guide/aq.html

• https://oracle.github.io/node-
oracledb/doc/api.html#aq

Java (JMS) oracle.JMS package using JDBC API Administrative and
operational

Oracle Database Advanced
Queuing Java API Reference

AQ XML servlet Internet Data Access Presentation (IDAP) Operational only Oracle XML DB Developer's Guide

Using PL/SQL to Access Oracle Database Advanced Queuing
The PL/SQL packages DBMS_AQADM and DBMS_AQ support access to Oracle Database Advanced
Queuing administrative and operational functions using the native Oracle Database Advanced
Queuing interface.

These functions include:

• Create queue, transactional event queue, queue table, nonpersistent queue,
multiconsumer queue/topic, RAW message, or message with structured data

• Get queue table, queue, or multiconsumer queue/topic

• Alter queue table or queue/topic

• Drop queue/topic

• Start or stop queue/topic

• Grant and revoke privileges

• Add, remove, or alter subscriber

• Add, remove, or alter an Oracle Database Advanced Queuing Internet agent

• Grant or revoke privileges of database users to Oracle Database Advanced Queuing
Internet agents

• Enable, disable, or alter propagation schedule

• Enqueue messages to single consumer queue (point-to-point model)

• Publish messages to multiconsumer queue/topic (publish/subscribe model)

• Subscribe for messages in multiconsumer queue

• Browse messages in a queue

• Receive messages from queue/topic

• Register to receive messages asynchronously

• Listen for messages on multiple queues/topics

• Post messages to anonymous subscriptions

• Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server

Chapter 3
Using PL/SQL to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 17

https://cx-oracle.readthedocs.io/en/latest/user_guide/aq.html
https://cx-oracle.readthedocs.io/en/latest/user_guide/aq.html
https://cx-oracle.readthedocs.io/en/latest/user_guide/aq.html
https://oracle.github.io/node-oracledb/doc/api.html#aq
https://oracle.github.io/node-oracledb/doc/api.html#aq

• Add or remove aliases to Oracle Database Advanced Queuing objects in a LDAP server

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in Table 3–2 through
Table 3–9.

See Also

Oracle Database PL/SQL Packages and Types Reference for detailed documentation
of DBMS_AQADM and DBMS_AQ, including syntax, parameters, parameter types, return
values, and examples

Using OCI and the Thin JDBC Driver to Access Oracle Database
Advanced Queuing

An Oracle Call Interface (OCI) provides an interface to Oracle Database Advanced Queuing
functions using the native Oracle Database Advanced Queuing interface.

The OCI interface is used to access AQ in C, Python, and Node.js. See Table 3-1 for links to
Python and Node.js documentation.

An OCI client can perform the following actions:

• Enqueue messages

• Dequeue messages

• Listen for messages on sets of queues

• Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in a queue
using OCISubscriptionRegister. Transactional event queues (TxEventQ) do not support OCI
clients.

Oracle Type Translator

For queues with user-defined payload types, the Oracle type translator must be used to
generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible for freeing
the memory of the Oracle Database Advanced Queuing descriptors and the message payload.

See Also

"OCI and Advanced Queuing" and "Publish-Subscribe Notification" in Oracle Call
Interface Programmer's Guide for syntax details

Python and Node.js programming interfaces for Advanced Queuing

The OCI thin driver client is used to develop the Python and Node.js implementations for
operations on AQ. These calls are documented in a separate manual as shown in the links in
Table 3-1 .

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 17

Comparing Oracle Database Advanced Queuing Programmatic Interfaces
These topics list and compare the Oracle Database Advanced Queuing Administrative
Interfaces and the Oracle Database Advanced Queuing Operational Interfaces.

Available functions for the Oracle Database Advanced Queuing programmatic interfaces are
listed by use case in Table 3-2 through Table 3-9. Use cases are described in Oracle Database
Advanced Queuing Administrative Interface through Oracle Database Advanced Queuing
Operations Using PL/SQL and Oracle Java Message Service Basic Operations through Oracle
Java Message Service Shared Interfaces.

Oracle Transactional Event Queues and Advanced Queuing Administrative Interfaces
The table lists the equivalent Oracle Transactional Event Queues(TxEventQ) and Advanced
Queuing(AQ) administrative functions for the PL/SQL and Java (JMS) programmatic
interfaces.

Table 3-2 Comparison of Oracle Transactional Event Queues and Advanced Queuing Programmatic
Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a transactional
event queue

DBMS_AQADM.CREATE_TRA
NSACTIONAL_EVENT_QUEU
E

Drop a transactional event
queue

DBMS_AQADM.DROP_TRANS
ACTIONAL_EVENT_QUEUE

Alter a transactional event
queue

DBMS_AQADM.ALTER_TRAN
SACTIONAL_EVENT_QUEUE

Create a connection factory N/A
AQjmsFactory.getQueue
ConnectionFactory

AQjmsFactory.getTopic
ConnectionFactory

Register a
ConnectionFactory in an
LDAP server

N/A
AQjmsFactory.register
ConnectionFactory

Create a queue table
DBMS_AQADM.CREATE_QUEUE
_TABLE

AQjmsSession.createQueueTable

Get a queue table Use
schema.queue_table_nam
e

AQjmsSession.getQueueTable

Alter a queue table
DBMS_AQADM.ALTER_QUEUE_
TABLE

AQQueueTable.alter

Drop a queue table
DBMS_AQADM.DROP_QUEUE_T
ABLE

AQQueueTable.drop

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 17

Table 3-2 (Cont.) Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a queue
DBMS_AQADM.CREATE_QUEUE AQjmsSession.createQueue

Get a queue Use schema.queue_name AQjmsSession.getQueue

Create a multiconsumer
queue/topic in a queue
table with multiple
consumers enabled

DBMS_AQADM.CREATE_QUEUE AQjmsSession.createTopic

Get a multiconsumer
queue/topic

Use schema.queue_name AQjmsSession.getTopic

Alter a queue/topic
DBMS_AQADM.ALTER_QUEUE AQjmsDestination.alter

Start a queue/topic
DBMS_AQADM.START_QUEUE AQjmsDestination.start

Stop a queue/topic
DBMS_AQADM.STOP_QUEUE AQjmsDestination.stop

Drop a queue/topic
DBMS_AQADM.DROP_QUEUE AQjmsDestination.drop

Grant system privileges
DBMS_AQADM.GRANT_SYSTEM
_
PRIVILEGE

AQjmsSession.grantSystem
Privilege

Revoke system privileges
DBMS_AQADM.REVOKE_SYSTE
M_
PRIVILEGE

AQjmsSession.revokeSystem
Privilege

Grant a queue/topic
privilege

DBMS_AQADM.GRANT_QUEUE_
PRIVILEGE

AQjmsDestination.grantQueue
Privilege

AQjmsDestination.grantTopic
Privilege

Revoke a queue/topic
privilege

DBMS_AQADM.REVOKE_QUEUE
_
PRIVILEGE

AQjmsDestination.revokeQueue
Privilege

AQjmsDestination.revokeTopic
Privilege

Verify a queue type
DBMS_AQADM.VERIFY_QUEUE
_TYPES

Not supported

Add a subscriber
DBMS_AQADM.ADD_SUBSCRIB
ER

See Table 3-6

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 17

Table 3-2 (Cont.) Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Alter a subscriber
DBMS_AQADM.ALTER_SUBSCR
IBER

See Table 3-6

Remove a subscriber
DBMS_AQADM.REMOVE_SUBSC
RIBER

See Table 3-6

Schedule propagation
DBMS_AQADM.SCHEDULE_PRO
PAGATION

AQjmsDestination.schedule
Propagation

Enable a propagation
schedule

DBMS_AQADM.ENABLE_PROPA
GATION_
SCHEDULE

AQjmsDestination.enable
PropagationSchedule

Alter a propagation
schedule

DBMS_AQADM.ALTER_PROPAG
ATION_
SCHEDULE

AQjmsDestination.alter
PropagationSchedule

Disable a propagation
schedule

DBMS_AQADM.DISABLE_PROP
AGATION_
SCHEDULE

AQjmsDestination.disable
PropagationSchedule

Unschedule a propagation
DBMS_AQADM.UNSCHEDULE_
PROPAGATION

AQjmsDestination.unschedule
Propagation

Create an Oracle Database
Advanced Queuing Internet
Agent

DBMS_AQADM.CREATE_AQ_AG
ENT

Not supported

Alter an Oracle Database
Advanced Queuing Internet
Agent

DBMS_AQADM.ALTER_AQ_AGE
NT

Not supported

Drop an Oracle Database
Advanced Queuing Internet
Agent

DBMS_AQADM.DROP_AQ_AGEN
T

Not supported

Grant database user
privileges to an Oracle
Database Advanced
Queuing Internet Agent

DBMS_AQADM.ENABLE_AQ_AG
ENT

Not supported

Revoke database user
privileges from an Oracle
Database Advanced
Queuing Internet Agent

DBMS_AQADM.DISABLE_AQ_A
GENT

Not supported

Add alias for queue, agent,
ConnectionFactory in a
LDAP server

DBMS_AQADM.ADD_ALIAS_TO
_LDAP

Not supported

Delete alias for queue,
agent, ConnectionFactory
in a LDAP server

DBMS_AQADM.DEL_ALIAS_FR
OM_LDAP

Not supported

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 17

Oracle Database Advanced Queuing Operational Interfaces
These tables list equivalent Oracle Database Advanced Queuing operational functions for the
programmatic interfaces PL/SQL, OCI, Oracle Database Advanced Queuing XML Servlet, and
JMS, for various use cases.

Table 3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Create a
connection

N/A
OCIServer
Attach

Open an HTTP connection after
authenticating with the Web
server

AQjmsQueueConnectionFactory
.createQueueConnection

AQjmsTopicConnectionFactory
.createTopicConnection

Create a
session

N/A
OCISession
Begin

An HTTP servlet session is
automatically started with the
first SOAP request

QueueConnection.createQueue
Session

TopicConnection.createTopic
Session

Create a RAW
message

Use SQL RAW
type for
message

Use OCIRaw for
Message

Supply the hex representation
of the message payload in the
XML message. For example,
<raw>023f4523</raw>

Not supported

Create a
message with
structured data

Use SQL
Oracle object
type for
message

Use SQL Oracle
object type for
message

For Oracle object type queues
that are not JMS queues (that
is, they are not type
AQ$_JMS_*), the XML specified
in <message payload> must
map to the SQL type of the
payload for the queue table.

For JMS queues, the XML
specified in the
<message_payload> must be
one of the following:
<jms_text_message>,
<jms_map_message>,
<jms_bytes_message>,
<jms_object_message>

Session.createTextMessage
Session.createObjectMessage
Session.createMapMessage
Session.createBytesMessage
Session.createStreamMessage
AQjmsSession.createAdtMessage

Create a
message
producer

N/A N/A N/A
QueueSession.createSender
TopicSession.createPublisher

Table 3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a message
to a single-consumer
queue

DBMS_AQ.enqueue OCIAQEnq <AQXmlSend> QueueSender.send

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 17

Table 3-4 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use
Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a message
to a queue and
specify visibility
options

DBMS_AQ.enqueue

Specify visibility in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_VISIBILIT
Y in
OCIAQEnqOptions

OCIAQEnqOptions

<AQXmlSend>

Specify <visibility>
in

<producer_options>

Not supported

Enqueue a message
to a single-consumer
queue and specify
message properties
priority and expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_PRIORITY,
OCI_ATTR_EXPIRATIO
N in

OCIAQMsgProperties

<AQXmlSend>

Specify <priority>,
<expiration> in

<message_header>

Specify priority and
TimeToLive during

QueueSender.send

or

.setTimeToLive

and

MessageProducer.
setPriority

followed by

QueueSender.send

Enqueue a message
to a single-consumer
queue and specify
message properties
correlationID, delay,
and exception queue

DBMS_AQ.enqueue

Specify correlation,
delay, exception_queue
in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_CORRELATI
ON, OCI_ATTR_DELAY,
OCI_ATTR_EXCEPTION
_QUEUE in

OCIAQMsgProperties

<AQXmlSend>

Specify
<correlation_id>,
<delay>,
<exception_queue> in

<message_header>

Message.setJMS
CorrelationI

Delay and exception
queue specified as
provider specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

QueueSender.send

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 17

Table 3-4 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use
Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a message
to a single-consumer
queue and specify
user-defined
message properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlSend>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and so
on in

<user_properties>

Message.setInt
Property

Message.setString
Property

Message.setBoolean
Property

and so forth, followed
by

QueueSender.send

Enqueue a message
to a single-consumer
queue and specify
message
transformation

DBMS_AQ.enqueue

Specify transformation
in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_TRANSFORM
ATION in

OCIAQEnqOptions

<AQXmlSend>

Specify
<transformation> in

<producer_options>

AQjmsQueueSender.
setTransformation

followed by

QueueSender.send

Table 3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message to
a multiconsumer
queue/topic using
default subscription
list

DBMS_AQ.enqueue

Set recipient_list
to NULL in

MESSAGE_PROPERTIES

OCIAQEnq

Set
OCI_ATTR_RECIPIENT
_LIST to NULL in

OCIAQMsgProperties

<AQXmlPublish> TopicPublisher.
publish

Publish a message to
a multiconsumer
queue/topic using
specific recipient list

See footnote-1

DBMS_AQ.enqueue

Specify recipient list in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_RECIPIENT
_LIST in

OCIAQMsgProperties

<AQXmlPublish>

Specify
<recipient_list> in

<message_header>

AQjmsTopic
Publisher.publish

Specify recipients as
an array of
AQjmsAgent

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 17

Table 3-5 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model
Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message to
a multiconsumer
queue/topic and
specify message
properties priority and
expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_PRIORITY,
OCI_ATTR_EXPIRATIO
N in

OCIAQMsgProperties

<AQXmlPublish>

Specify <priority>,
<expiration> in

<message_header>

Specify priority and
TimeToLive during

TopicPublisher.
publish

or

MessageProducer.
setTimeToLive

and

MessageProducer.
setPriority

followed by

TopicPublisher.
publish

Publish a message to
a multiconsumer
queue/topic and
specify send options
correlationID, delay,
and exception queue

DBMS_AQ.enqueue

Specify correlation,
delay,
exception_queue in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_CORRELATI
ON, OCI_ATTR_DELAY,
OCI_ATTR_EXCEPTION
_QUEUE in

OCIAQMsgProperties

<AQXmlPublish>

Specify
<correlation_id>,
<delay>,
<exception_queue> in

<message_header>

Message.setJMS
CorrelationID

Delay and exception
queue specified as
provider-specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

TopicPublisher.
publish

Publish a message to
a topic and specify
user-defined message
properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlPublish>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and so
on in

<user_properties>

Message.setInt
Property

Message.setString
Property

Message.setBoolean
Property

and so forth, followed
by

TopicPublisher.
publish

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 17

Table 3-5 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model
Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message to
a topic and specify
message
transformation

DBMS_AQ.enqueue

Specify transformation
in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_TRANSFORM
ATION in

OCIAQEnqOptions

<AQXmlPublish>

Specify
<transformation> in

<producer_options>

AQjmsTopic
Publisher.set
Transformation

followed by

TopicPublisher.
publish

Table 3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe Model Use
Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Add a subscriber See administrative
interfaces

Not supported Not supported
TopicSession.
createDurable
Subscriber

AQjmsSession.
createDurable
Subscriber

Alter a subscriber See administrative
interfaces

Not supported Not supported
TopicSession.
createDurable
Subscriber

AQjmsSession.
createDurable
Subscriber

using the new selector

Remove a subscriber See administrative
interfaces

Not supported Not supported
AQjmsSession.
unsubscribe

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 17

Table 3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Browse Messages in a Queue Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Browse
messages in a
queue/topic

DBMS_AQ.
dequeue

Set dequeue_mode
to BROWSE in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MOD
E to BROWSE in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<dequeue_mode>
BROWSE in

<consumer_options>

QueueSession.createBrowser

QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser

oracle.jms.TopicBrowser.
getEnumeration

Browse
messages in a
queue/topic and
lock messages
while browsing

DBMS_AQ.dequeue

Set dequeue_mode
to LOCKED in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MOD
E to LOCKED in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<dequeue_mode>
LOCKED in

<consumer_options>

AQjmsSession.createBrowser

set locked to TRUE.

QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser

oracle.jms.TopicBrowser.
getEnumeration

Table 3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Start a
connection for
receiving
messages

N/A N/A N/A
Connection.start

Create a
message
consumer

N/A N/A N/A
QueueSession.
createQueueReceiver

TopicSession.create
DurableSubscriber

AQjmsSession.create
TopicReceiver

Dequeue a
message from a
queue/topic and
specify visibility

DBMS_AQ.dequeue

Specify visibility in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_VISIBILIT
Y in

OCIAQDeqOptions

<AQXmlReceive>

Specify <visibility>
in

<consumer_options>

Not supported

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 17

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Dequeue a
message from a
queue/topic and
specify
transformation

DBMS_AQ.dequeue

Specify transformation
in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_TRANSFORM
ATION in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<transformation> in

<consumer_options>

AQjmsQueueReceiver.
setTransformation

AQjmsTopicSubscriber.
setTransformation

AQjmsTopicReceiver.
setTransformation

Dequeue a
message from a
queue/topic and
specify navigation
mode

DBMS_AQ.dequeue

Specify navigation in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_NAVIGATIO
N in

OCIAQDeqOptions

<AQXmlReceive>

Specify <navigation>
in

<consumer_options>

AQjmsQueueReceiver.
setNavigationMode

AQjmsTopicSubscriber.
setNavigationMode

AQjmsTopicReceiver.
setNavigationMode

Dequeue a
message from a
single-consumer
queue

DBMS_AQ.dequeue

Set dequeue_mode to
REMOVE in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MODE
to REMOVE in

OCIAQDeqOptions

<AQXmlReceive> QueueReceiver.receive

or

QueueReceiver.receive
NoWait

or

AQjmsQueueReceiver.
receiveNoData

Dequeue a
message from a
multiconsumer
queue/topic using
subscription
name

DBMS_AQ.dequeue

Set dequeue_mode to
REMOVE and set
consumer_name to
subscription name in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MODE
to REMOVE and set
OCI_ATTR_CONSUMER_
NAME to subscription
name in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<consumer_name> in

<consumer_options>

Create a durable
TopicSubscriber on the topic
using the subscription name,
then

TopicSubscriber.
receive

or

TopicSubscriber.
receiveNoWait

or

AQjmsTopicSubscriber.
receiveNoData

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 17

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Dequeue a
message from a
multiconsumer
queue/topic using
recipient name

DBMS_AQ.dequeue

Set dequeue_mode to
REMOVE and set
consumer_name to
recipient name in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MODE
to REMOVE and set
OCI_ATTR_CONSUMER_
NAME to recipient name
in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<consumer_name> in

<consumer_options>

Create a TopicReceiver on
the topic using the recipient
name, then

AQjmsSession.create
TopicReceiver

AQjmsTopicReceiver.
receive

or

AQjmsTopicReceiver.
receiveNoWait

or

AQjmsTopicReceiver.
receiveNoData

Table 3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces: Operational
Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Receive messages
asynchronously from a
single-consumer queue

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify queue_name
as subscription name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name in
<destination> and
notification mechanism
in

<notify_url>

Create a
QueueReceiver on the
queue, then

QueueReceiver.set
MessageListener

Receive messages
asynchronously from a
multiconsumer queue/
topic

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify
queue:OCI_ATTR_CON
SUMER_NAME as
subscription name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name in
<destination>,
consumer in
<consumer_name>
and notification
mechanism in
<notify_url>

Create a
TopicSubscriber or
TopicReceiver on the
topic, then

TopicSubscriber.
setMessageListener

Listen for messages on
multiple queues/topics

- - - -

Listen for messages on
one (many) single-
consumer queues

DBMS_AQ.LISTEN

Use agent_name as
NULL for all agents in
agent_list

OCIAQListen

Use agent_name as
NULL for all agents in
agent_list

Not supported Create multiple
QueueReceivers on a
QueueSession, then

QueueSession.set
MessageListener

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 17

Table 3-9 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Listen for messages on
one (many)
multiconsumer queues/
Topics

DBMS_AQ.LISTEN

Specify agent_name
for all agents in
agent_list

OCIAQListen

Specify agent_name
for all agents in
agent_list

Not supported Create multiple
TopicSubscribers or
TopicReceivers on a
TopicSession, then

TopicSession.set
MessageListener

Using OCCI to Access Oracle Database Advanced Queuing
C++ applications can use OCCI, which has a set of Oracle Database Advanced Queuing
interfaces that enable messaging clients to access Oracle Database Advanced Queuing.

OCCI AQ supports all the operational functions required to send/receive and publish/subscribe
messages in a message-enabled database. Synchronous and asynchronous message
consumption is available, based on a message selection rule. Transactional event queues
(TxEventQ) do not support OCCI clients.

See Also

"Oracle Database Advanced Queuing" in Oracle C++ Call Interface Programmer's
Guide

Using Oracle Java Message Service (Oracle JMS) to Access
Oracle Database Advanced Queuing

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems, Oracle,
IBM, and other vendors. JMS is a set of interfaces and associated semantics that define how a
JMS client accesses the facilities of an enterprise messaging product. Oracle Java Message
Service (Oracle JMS) provides a Java API for Oracle Database Advanced Queuing based on
the JMS standard.

Oracle Java Message Service (Oracle JMS) supports the standard JMS interfaces and has
extensions to support administrative operations and other features that are not a part of the
standard.

Standard Java Message Service(JMS) features include:

• Point-to-point model of communication using queues

• Publish/subscribe model of communication using topics

• ObjectMessage, StreamMessage, TextMessage, BytesMessage, and MapMessage message
types

• Asynchronous and synchronous delivery of messages

• Message selection based on message header fields or properties

Chapter 3
Using OCCI to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 17

Oracle JMS extensions include:

• Administrative API to create queue tables, queues and topics

• Point-to-multipoint communication using recipient lists for topics

• Message propagation between destinations, which allows the application to define remote
subscribers

• Support for transactional sessions, enabling JMS and SQL operations in one transaction

• Message retention after messages have been dequeued

• Message delay, allowing messages to be made visible after a certain delay

• Exception handling, allowing messages to be moved to exception queues if they cannot be
processed successfully

• Support for AdtMessage

These are stored in the database as Oracle objects, so the payload of the message can be
queried after it is enqueued. Subscriptions can be defined on the contents of these
messages as opposed to just the message properties.

• Topic browsing

This allows durable subscribers to browse through the messages in a publish/subscribe
(topic) destination. It optionally allows these subscribers to purge the browsed messages,
so they are no longer retained by Oracle Database Advanced Queuing for that subscriber.

See Also

– Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

– Oracle Database Advanced Queuing Java API Reference

Accessing Standard and Oracle JMS Applications

Standard JMS interfaces are in the javax.jms package. Oracle JMS interfaces are in the
oracle.jms package. You must have EXECUTE privilege on the DBMS_AQIN and DBMS_AQJMS
packages to use the Oracle JMS interfaces. You can also acquire these rights through the
AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE. You also need the appropriate system and queue
or topic privileges to send or receive messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the database, its
applications can run outside the database using the JDBC OCI driver or JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver

To use JMS with clients running outside the database, you must include the appropriate JDBC
driver, Java Naming and Directory Interface (JNDI) jar files, and Oracle Database Advanced
Queuing jar files in your CLASSPATH.

Note that the Oracle Database does not support JDK 1.2, JDK 1.3, JDK 1.4, JDK5.n and all
classes12*.* files. You need to use the ojdbc6.jar and ojbc7.jar files with JDK 6.n and JDK
7.n, respectively. The following jar and zip files should be in the CLASSPATH based on the
release of JDK you are using.

For JDK 1.5.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/ojdbc6.jar

Chapter 3
Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 17

For JDK 1.6.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/ojdbc7.jar

The following files are used for either JDK version:

ORACLE_HOME/lib/jta.jar
ORACLE_HOME/xdk/lib/xmlparserv2.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar

Using Oracle Server Driver in JServer

If your application is running inside the JServer, then you should be able to access the Oracle
JMS classes that have been automatically loaded when the JServer was installed. If these
classes are not available, then you must load jmscommon.jar followed by aqapi.jar using
the $ORACLE_HOME/rdbms/admin/initjms SQL script.

Using Oracle Database Advanced Queuing XML Servlet to
Access Oracle Database Advanced Queuing

You can use Oracle Database Advanced Queuing XML servlet to access Oracle Database
Advanced Queuing over HTTP using Simple Object Access Protocol (SOAP) and an Oracle
Database Advanced Queuing XML message format called Internet Data Access Presentation
(IDAP).

Using the Oracle Database Advanced Queuing servlet, a client can perform the following
actions:

• Send messages to single-consumer queues

• Publish messages to multiconsumer queues/topics

• Receive messages from queues

• Register to receive message notifications

Chapter 3
Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 17

4
Managing Oracle Transactional Event Queues
and Advanced Queuing

These topics discuss how to manage Oracle Transactional Event Queues and Advanced
Queuing.

• Oracle Database Advanced Queuing Compatibility Parameters

• Queue Security and Access Control

• Queue Table Export/Import

• Oracle Enterprise Manager Support

• Using Oracle Database Advanced Queuing with XA

• Restrictions on Queue Management

• Managing Propagation

Oracle Database Advanced Queuing Compatibility Parameters
The queues in which buffered messages are stored must be created with compatibility set to
8.1 or higher.

The compatible parameter of init.ora and the compatible parameter of the queue table
should be set to 8.1 or higher to use the following features:

• Queue-level access control

• Support for Oracle Real Application Clusters environments

• Rule-based subscribers for publish/subscribe

• Asynchronous notification

• Sender identification

• Separate storage of history management information

• Secure queues

Mixed case (upper and lower case together) queue names, queue table names, and subscriber
names are supported if database compatibility is 10.0, but the names must be enclosed in
double quote marks. So abc.efg means the schema is ABC and the name is EFG, but
"abc"."efg" means the schema is abc and the name is efg.

Queue Security and Access Control
These topics discuss Oracle Database Advanced Queuing queue security and access control.

• Oracle Database Advanced Queuing Security

• Queue Security

• Queue Privileges and Access Control

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 13

• OCI Applications and Queue Access

• Security Required for Propagation

Oracle Database Advanced Queuing Security
Configuration information can be managed through procedures in the DBMS_AQADM package.

Initially, only SYS and SYSTEM have execution privilege for the procedures in DBMS_AQADM and
DBMS_AQ. Users who have been granted EXECUTE rights to these two packages are able to
create, manage, and use queues in their own schemas. The MANAGE_ANY AQ system privilege
is used to create and manage queues in other schemas.

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBMS_AQJMS and
DBMS_AQIN.

Topics:

• Administrator Role

• User Role

• Access to Oracle Database Advanced Queuing Object Types

See Also

"Granting Oracle Database Advanced Queuing System Privileges" for more
information on AQ system privileges

Administrator Role
The AQ_ADMINISTRATOR_ROLE has all the required privileges to administer queues.

The privileges granted to the role let the grantee:

• Perform any queue administrative operation, including create queues and queue tables on
any schema in the database

• Perform enqueue and dequeue operations on any queues in the database

• Access statistics views used for monitoring the queue workload

• Create transformations using DBMS_TRANSFORM

• Run all procedures in DBMS_AQELM

• Run all procedures in DBMS_AQJMS

Chapter 4
Queue Security and Access Control

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 13

Note

• A user does not need AQ_ADMINISTRATOR_ROLE to be able to create queues or do
any other AQ DDL in his schema. User only needs execute privilege on
DBMS_AQADM package for the same.

• AQ_ADMINISTRATOR_ROLE still will not be able to create AQ objects in SYS or SYSTEM
schema. So the above description that it can create queue tables/queue on any
schema excludes SYS and SYSTEM schema.

• AQ_ADMINISTRATOR_ROLE still will not be able to enqueue/dequeue on queues in
SYS or SYSTEM schema.

User Role
You should avoid granting AQ_USER_ROLE, because this role does not provide sufficient
privileges for enqueuing or dequeuing.

Your database administrator has the option of granting the system privileges ENQUEUE_ANY and
DEQUEUE_ANY, exercising DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE and
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE directly to a database user, if you want the user to
have this level of control.

You as the application developer give rights to a queue by granting and revoking privileges at
the object level by exercising DBMS_AQADM.GRANT_QUEUE_PRIVILEGE and
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE.

As a database user, you do not need any explicit object-level or system-level privileges to
enqueue or dequeue to queues in your own schema other than the EXECUTE right on DBMS_AQ.

Note

• A user only needs EXECUTE privilege on DBMS_AQ package to be able to enqueue or
dequeue in his schema, if client is OCI or PL/SQL.

If the client is JDBC or JMS, then added to this you need execute privilege on
DBMS_AQIN package as well.

• A user does not need AQ_USER_ROLE for enqueue or dequeue queues in his
schema.

Access to Oracle Database Advanced Queuing Object Types
All internal Oracle Database Advanced Queuing objects are accessible to PUBLIC.

Queue Security
Oracle Database Advanced Queuing administrators of Oracle Database can create queues.
When you create queues, the default value of the compatible parameter in
DBMS_AQADM.CREATE_QUEUE_TABLE is that of the compatible parameter.

To enqueue or dequeue, users need EXECUTE rights on DBMS_AQ and either enqueue or
dequeue privileges on target queues, or ENQUEUE_ANY/DEQUEUE_ANY system privileges.

Chapter 4
Queue Security and Access Control

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 13

Queue Privileges and Access Control
You can grant or revoke privileges at the object level on queues. You can also grant or revoke
various system-level privileges.

Table 4-1 lists all common Oracle Database Advanced Queuing operations and the privileges
needed to perform these operations.

Table 4-1 Operations and Required Privileges

Operation(s) Privileges Required

CREATE/DROP/MONITOR own
queues

Must be granted EXECUTE rights on DBMS_AQADM. No other privileges
needed.

CREATE/DROP/MONITOR any
queues

Must be granted EXECUTE rights on DBMS_AQADM and be granted
AQ_ADMINISTRATOR_ROLE by another user who has been granted
this role (SYS and SYSTEM are the first granters of
AQ_ADMINISTRATOR_ROLE)

ENQUEUE/ DEQUEUE to own
queues

Must be granted EXECUTE rights on DBMS_AQ. No other privileges
needed.

ENQUEUE/ DEQUEUE to another's
queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
privileges by the owner using
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE.

ENQUEUE/ DEQUEUE to any
queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system privileges by an
Oracle Database Advanced Queuing administrator using
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE.

OCI Applications and Queue Access
For an Oracle Call Interface (OCI) application to access a queue, the session user must be
granted either the object privilege of the queue he intends to access or the ENQUEUE ANY QUEUE
or DEQUEUE ANY QUEUE system privileges.

The EXECUTE right of DBMS_AQ is not checked against the session user's rights.

Security Required for Propagation
Oracle Database Advanced Queuing propagates messages through database links.

The propagation driver dequeues from the source queue as owner of the source queue; hence,
no explicit access rights need be granted on the source queue. At the destination, the login
user in the database link should either be granted ENQUEUE ANY QUEUE privilege or be granted
the right to enqueue to the destination queue. However, if the login user in the database link
also owns the queue tables at the destination, then no explicit Oracle Database Advanced
Queuing privileges must be granted.

See Also

"Propagation from Object Queues"

Chapter 4
Queue Security and Access Control

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 13

Security Required for AQ Buffered Messages on Oracle RAC

Internally, buffered queues on Oracle RAC may use dblinks between instances. Definer's
rights packages that enqueue or dequeue into buffered queues on Oracle RAC must grant
INHERIT REMOTE PRIVILEGES to users of the package.

Queue Table Export/Import
When a queue table is exported, the queue table data and anonymous blocks of PL/SQL code
are written to the export dump file. When a queue table is imported, the import utility executes
these PL/SQL anonymous blocks to write the metadata to the data dictionary.

Oracle AQ does not export registrations with a user export. All applications that make use of
client registrations should take this into account as the client may not be present in the
imported database.

Note

You cannot export or import buffered messages.

If there exists a queue table with the same name in the same schema in the database
as in the export dump, then ensure that the database queue table is empty before
importing a queue table with queues. Failing to do so has a possibility of ruining the
metadata for the imported queue.

Topics:

• Exporting Queue Table Data

• Importing Queue Table Data

• Data Pump Export and Import

Exporting Queue Table Data
The export of queues entails the export of the underlying queue tables and related dictionary
tables. Export of queues can also be accomplished at queue-table granularity.

Exporting Queue Tables with Multiple Recipients

For AQ queues, a queue table that supports multiple recipients is associated with the following
tables:

• Dequeue index-organized table (IOT)

• Time-management index-organized table

• Subscriber table

• A history IOT

Transactional event queues are associated with the following objects:

• A queue table

• A dequeue table

Chapter 4
Queue Table Export/Import

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 13

• A time management table

• An optional exception queue map table

• Indexes for the above tables

• Sequences

• Rules sets and evaluation contexts

These tables are exported automatically during full database mode, user mode and table mode
exports. See Export Modes .

Because the metadata tables contain ROWIDs of some rows in the queue table, the import
process generates a note about the ROWIDs being made obsolete when importing the
metadata tables. This message can be ignored, because the queuing system automatically
corrects the obsolete ROWIDs as a part of the import operation. However, if another problem is
encountered while doing the import (such as running out of rollback segment space), then you
should correct the problem and repeat the import.

Export Modes

Exporting operates in full database mode, user mode, and table mode. Incremental exports on
queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and primary and
secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are exported
automatically. However, doing a user-level export from one schema to another using the
FROMUSER TOUSER clause is not supported.

In table mode, queue tables, all related tables, and primary object grants are exported
automatically. For example, when exporting an AQ multiconsumer queue table, the following
tables are automatically exported:

• AQ$_queue_table_I (the dequeue IOT)

• AQ$_queue_table_T (the time-management IOT)

• AQ$_queue_table_S (the subscriber table)

• AQ$_queue_table_H (the history IOT)

For transactional event queues, the following tables are automatically exported:

• queue_table

• AQ$_queue_name_L (dequeue table)

• AQ$_queue_name_T (time-management table)

• AQ$_queue_name (exception map table)

• AQ$_queue_name_V (evaluation context)

• queue_name_R (rule set)

Chapter 4
Queue Table Export/Import

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 13

Importing Queue Table Data
Similar to exporting queues, importing queues entails importing the underlying queue tables
and related dictionary data. After the queue table data is imported, the import utility executes
the PL/SQL anonymous blocks in the dump file to write the metadata to the data dictionary.

Importing Queue Tables with Multiple Recipients

An AQ queue table that supports multiple recipients is associated with the following tables:

• A dequeue IOT

• A time-management IOT

• A subscriber table

• A history IOT

Transactional event queues are associated with the following objects:

• A queue table

• A dequeue log table

• A time management table

• An optional exception queue map table

• Indexes for the above tables

• Sequences

• Rules sets and evaluation contexts

These objects must be imported along with the queue table itself.

Import IGNORE Parameter

You must not import queue data into a queue table that already contains data. The IGNORE
parameter of the import utility must always be set to NO when importing queue tables. If the
IGNORE parameter is set to YES, and the queue table that already exists is compatible with the
table definition in the dump file, then the rows are loaded from the dump file into the existing
table. At the same time, the old queue table definition is lost and re-created. Queue table
definition prior to the import is lost and duplicate rows appear in the queue table.

Data Pump Export and Import
The Data Pump replace and skip modes are supported for queue tables.

In the replace mode an existing queue table is dropped and replaced by the new queue table
from the export dump file. In the skip mode, a queue table that already exists is not imported.

The truncate and append modes are not supported for queue tables. The behavior in this case
is the same as the replace mode.

See Also

Oracle Database Utilities for more information on Data Pump Export and Data Pump
Import

Chapter 4
Queue Table Export/Import

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 13

Oracle Enterprise Manager Support for AQ Queues
Oracle Enterprise Manager supports most of the administrative functions of Oracle Database
Advanced Queuing. Oracle Database Advanced Queuing functions are found under the
Distributed node in the navigation tree of the Enterprise Manager console.

Functions available through Oracle Enterprise Manager include:

• Using queues as part of the schema manager to view properties

• Creating, starting, stopping, and dropping queues

• Scheduling and unscheduling propagation

• Adding and removing subscribers

• Viewing propagation schedules for all queues in the database

• Viewing errors for all queues in the database

• Viewing the message queue

• Granting and revoking privileges

• Creating, modifying, or removing transformations

Using Oracle Database Advanced Queuing with XA
You must specify "Objects=T" in the xa_open string if you want to use the Oracle Database
Advanced Queuing OCI interface. This forces XA to initialize the client-side cache in Objects
mode. You are not required to do this if you plan to use Oracle Database Advanced Queuing
through PL/SQL wrappers from OCI or Pro*C.

The large object (LOB) memory management concepts from the Pro* documentation are not
relevant for Oracle Database Advanced Queuing raw messages because Oracle Database
Advanced Queuing provides a simple RAW buffer abstraction (although they are stored as
LOBs).

When using the Oracle Database Advanced Queuing navigation option, you must reset the
dequeue position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA cancels the
cursor fetch state after an xa_end. If you do not reset, then you get an error message stating
that the navigation is used out of sequence (ORA-25237).

See Also

• "Working with Transaction Monitors with Oracle XA" in Oracle Database
Development Guide for more information on XA

• "Large Objects (LOBs)" in Pro*C/C++ Programmer's Guide

Restrictions on Queue Management
These topics discuss restrictions on queue management.

• Subscribers

Chapter 4
Oracle Enterprise Manager Support for AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 13

• DML Not Supported on Queue Tables or Associated IOTs

• Propagation from Object Queues with REF Payload Attributes

• Collection Types in Message Payloads

• Synonyms on Queue Tables and Queues

• Synonyms on Object Types

• Tablespace Point-in-Time Recovery

• Virtual Private Database

Note

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc.efg means the schema is ABC and the
name is EFG, but "abc"."efg" means the schema is abc and the name is efg.

Subscribers
You cannot have more than 1,000 local subscribers for each queue.

Also, only 32 remote subscribers are allowed for each remote destination database.

DML Not Supported on Queue Tables or Associated IOTs
Oracle Database Advanced Queuing does not support data manipulation language (DML)
operations on queue tables or associated index-organized tables (IOTs), if any.

The only supported means of modifying queue tables is through the supplied APIs. Queue
tables and IOTs can become inconsistent and therefore effectively ruined, if data manipulation
language (DML) operations are performed on them.

Propagation from Object Queues with REF Payload Attributes
Oracle Database Advanced Queuing does not support propagation from object queues that
have REF attributes in the payload.

Collection Types in Message Payloads
You cannot construct a message payload using a VARRAY that is not itself contained within an
object.

You also cannot currently use a NESTED Table even as an embedded object within a message
payload. However, you can create an object type that contains one or more VARRAYs, and
create a queue table that is founded on this object type, as shown in Example 4-1.

Example 4-1 Creating Objects Containing VARRAYs

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (col1 number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'QT',
 queue_payload_type => 'embedded_varray');

Chapter 4
Restrictions on Queue Management

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 13

Synonyms on Queue Tables and Queues
No Oracle Database Advanced Queuing PL/SQL calls resolve synonyms on queues and
queue tables.

Although you can create synonyms, you should not apply them to the Oracle Database
Advanced Queuing interface.

Synonyms on Object Types
If you have created synonyms on object types, you cannot use them in
DBMS_AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

Tablespace Point-in-Time Recovery
Oracle Database Advanced Queuing currently does not support tablespace point-in-time
recovery.

Creating a queue table in a tablespace disables that particular tablespace for point-in-time
recovery. Oracle Database Advanced Queuing does support regular point-in-time recovery.

Virtual Private Database
You can use Oracle Database Advanced Queuing with Virtual Private Database by specifying a
security policy with Oracle Database Advanced Queuing queue tables.

While dequeuing, use the dequeue condition (deq_cond) or the correlation identifier for the
policy to be applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue
condition or correlation ID, then the dequeue results in an error.

Note

When a dequeue condition or correlation identifier is used, the order of the messages
dequeued is indeterminate, and the sort order of the queue is not honored.

Managing Propagation
These topics discuss managing Oracle Database Advanced Queuing propagation.

• EXECUTE Privileges Required for Propagation

• Propagation from Object Queues

• Optimizing Propagation

• Handling Failures in Propagation

Note

For propagation to work correctly, the queue aq$_prop_notify_X should never be
stopped or dropped and the table aq$_prop_table_X should never be dropped.

Chapter 4
Managing Propagation

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 13

EXECUTE Privileges Required for Propagation
Propagation jobs are owned by SYS, but the propagation occurs in the security context of the
queue table owner.

Previously propagation jobs were owned by the user scheduling propagation, and propagation
occurred in the security context of the user setting up the propagation schedule. The queue
table owner must be granted EXECUTE privileges on the DBMS_AQADM package. Otherwise, the
Oracle Database snapshot processes do not propagate and generate trace files with the error
identifier SYS.DBMS_AQADM not defined. Private database links owned by the queue table owner
can be used for propagation. The user name specified in the connection string must have
EXECUTE access on the DBMS_AQ and DBMS_AQADM packages on the remote database.

Propagation from Object Queues
Propagation from object queues with BFILE objects is supported.

To be able to propagate object queues with BFILE objects, the source queue owner must have
read privileges on the directory object corresponding to the directory in which the BFILE is
stored. The database link user must have write privileges on the directory object corresponding
to the directory of the BFILE at the destination database.

AQ propagation does not support non-final types. Propagation of BFILE objects from object
queues without specifying a database link is not supported.

See Also

"CREATE DIRECTORY" in Oracle Database SQL Language Reference for more
information on directory objects

Optimizing Propagation
AQ propagation jobs are run by the Oracle Scheduler. Propagation may be scheduled in these
ways.

• A dedicated schedule in which the propagation runs forever or for a specified duration.
This mode provides the lowest propagation latencies.

• A periodic schedule in which the propagation runs periodically for a specified interval. This
may be used when propagation can be run in a batched mode.

• An event based system in which propagation is started when there are messages to be
propagated. This mode makes more efficient use of available resources, while still
providing a fast response time.

The administrator may choose a schedule that best meets the application performance
requirements.

Oracle Scheduler will start the required number of job queue processes for the propagation
schedules. Since the scheduler optimizes for throughput, if the system is heavily loaded, it may
not run some propagation jobs. The resource manager may be used to have better control
over the scheduling decisions. In particular, associating propagation jobs with different
resource groups can allow for fairness in scheduling which may be important in heavy load
situations.

Chapter 4
Managing Propagation

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 13

In setting the number of JOB_QUEUE_PROCESSES, DBAs should be aware that this number
is determined by the number of queues from which the messages must be propagated and the
number of destinations (rather than queues) to which messages must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job queue
processes and minimizes the time it takes for a message to show up at a destination after it
has been enqueued into the source queue, thereby providing near-OLTP action. The algorithm
can handle an unlimited number of schedules and various types of failures. While propagation
tries to make the optimal use of the available job queue processes, the number of job queue
processes to be started also depends on the existence of jobs unrelated to propagation, such
as replication jobs. Hence, it is important to use the following guidelines to get the best results
from the scheduling algorithm.

The scheduling algorithm uses the job queue processes as follows (for this discussion, an
active schedule is one that has a valid current window):

• If the number of active schedules is fewer than half the number of job queue processes,
then the number of job queue processes acquired corresponds to the number of active
schedules.

• If the number of active schedules is more than half the number of job queue processes,
after acquiring half the number of job queue processes, then multiple active schedules are
assigned to an acquired job queue process.

• If the system is overloaded (all schedules are busy propagating), depending on availability,
then additional job queue processes are acquired up to one fewer than the total number of
job queue processes.

• If none of the active schedules handled by a process has messages to be propagated,
then that job queue process is released.

• The algorithm performs automatic load balancing by transferring schedules from a heavily
loaded process to a lightly load process such that no process is excessively loaded.

Handling Failures in Propagation
The scheduling algorithm has robust support for handling failures. These are the common
failures that prevent message propagation.

• Database link failed

• Remote database is not available

• Remote queue does not exist

• Remote queue was not started

• Security violation while trying to enqueue messages into remote queue

Under all these circumstances the appropriate error messages are reported in the
DBA_QUEUE_SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is attempted
again after a retry period that is a function of the number of failures. After the retries have
exceeded a system defined maximum, the schedule is disabled.

If the problem causing the error is fixed and the schedule is enabled, then the error fields that
indicate the last error date, time, and message continue to show the error information. These
fields are reset only when messages are successfully propagated in that schedule.

Chapter 4
Managing Propagation

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 13

See Also

Troubleshooting Oracle Database Advanced Queuing

Chapter 4
Managing Propagation

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 13

5
Kafka APIs for Oracle Transactional Event
Queues

Oracle Transactional Event Queue (TxEventQ) makes it easy to implement event-based
applications. It is also highly integrated with Apache Kafka, an open-source stream-processing
software platform developed by LinkedIn and donated to the Apache Software Foundation,
written in Scala and Java. Apart from enabling applications that use Kafka APIs to
transparently operate on Oracle TxEventQ, Oracle TxEventQ also supports bi-directional
information flow between TxEventQ and Kafka, so that changes are available in TxEventQ or
Kafka as soon as possible in near-real-time.

Apache Kafka Connect is a framework included in Apache Kafka that integrates Kafka with
other systems. Oracle TxEventQ will provide standard JMS package and related JDBC,
Transaction packages to establish the connection and complete the transactional data flow.
Oracle TxEventQ configures standard Kafka JMS connectors to establish interoperability and
complete the data flow between the two messaging systems.

This chapter includes the following topics:

• Apache Kafka Overview

• Kafka Java Client for Transactional Event Queues

• Configuring Kafka Java Client for Transactional Event Queues

• Overview of Kafka Producer Implementation for TxEventQ

• Overview of Kafka Consumer implementation for TxEventQ

• Overview of Kafka Admin Implementation for TxEventQ

• Kafka REST APIs for TxEventQ

• Kafka Connectors for TxEventQ

• Monitoring Message Transfer

Apache Kafka Overview
Apache Kafka is a community distributed event streaming platform that is horizontally-scalable
and fault-tolerant.

Kafka is deployed on a cluster of one or more servers. Each Kafka cluster stores streams of
records in categories called topics. Each record consists of a key, a value, and a timestamp.
The Kafka APIs allow an application to connect to a Kafka cluster and use the Kafka
messaging platform.

Kafka Java Client for Transactional Event Queues
Oracle Database 21c introduced Kafka application compatibility with the Oracle Database.
Oracle Database 23ai provides more refined compatibility for a Kafka application with the
Oracle Database. This provides easy migration for Kafka Java applications to Transactional

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 24

Event Queues (TxEventQ). The Kafka Java APIs can now connect to an Oracle database
server and use TxEventQ as a messaging platform.

Figure 5-1 Kafka Application Integration with Transactional Event Queue

This figure shows the Kafka API library, which contains Oracle specific implementation of
Kafka's Java APIs which depends on the kafka-clients-2.8.0.jar file. This implementation
internally invokes AQ-JMS APIs which in turn use the JDBC driver to communicate with the
Oracle Database.

Developers can now migrate an existing Java application that uses Kafka to the Oracle
database using okafka.jar. This client side library allows Kafka applications to connect to the
Oracle Database instead of a Kafka cluster and use TxEventQ's messaging platform
transparently.

Configuring Kafka Java Client for Transactional Event Queues

Prerequisites

The following are the prerequisites for configuring and running the Kafka Java client for
TxEventQ in an Oracle Database.

1. Create a database user.

2. Grant the following privileges to the user.

Chapter 5
Configuring Kafka Java Client for Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 24

Note

It is preferred in general to assign or grant a specific quota on a tablespace to a
database user instead of granting unlimited quota in default tablespace. One can
create a table space and use the following command to grant quota on a specific
tablespace to a database user.

ALTER USER user QUOTA UNLIMITED /* or size-clause */ on tablespace_name

• GRANT EXECUTE on DBMS_AQ to user.

• GRANT EXECUTE on DBMS_AQADM to user.

• GRANT SELECT on GV_$SESSION to user;

• GRANT SELECT on V_$SESSION to user;

• GRANT SELECT on GV_$INSTANCE to user;

• GRANT SELECT on GV_$LISTENER_NETWORK to user;

• GRANT SELECT on GV_$PDBS to user;

• GRANT SELECT on USER_QUEUE_PARTITION_ASSIGNMENT_TABLE to user;

• exec DBMS_AQADM.GRANT_PRIV_FOR_RM_PLAN('user');

3. Set the correct database configuration parameter to use TxEventQ.

SET STREAMS_POOL_SIZE=400M

Note

Set the size appropriately based on your workload. STREAMS_POOL_SIZE cannot be
set for Autonomous Database Shared. It is automatically configured.

4. Set LOCAL_LISTENER database parameter

SET LOCAL_LISTENER= (ADDRESS=(PROTOCOL=TCP)(HOST=<HOST_NAME.DOMAIN_NAME/ IP>)
(PORT=<PORT NUMBER>))

Note

LOCAL_LISTENER is not required to be set for:

• Autonomous Database, and

• Oracle database with only one database instance (that is, for non culster
deployments).

Connection Configuration

OKafka uses JDBC(thin driver) connection to connect to Oracle Database instance using any
one of two security protocols.

• PLAINTEXT

• SSL

Chapter 5
Configuring Kafka Java Client for Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 24

PLAINTEXT: In this protocol a JDBC connection is setup by providing username and
password in plain text in ojdbc.prperties file. To use PLAINTEXT protocol user must provide
following properties through application.

 security.protocol = "PLAINTEXT"
 bootstrap.servers = "host:port"
 oracle.service.name = "name of the service running on the instance"
 oracle.net.tns_admin = "location of ojdbc.properties file"

ojdbc.properties file must have the following properties.

 user(in lowercase)=DatabaseUserName
 password(in lowercase)=Password

SSL: With this protocol JDBC driver uses Oracle Wallet to connect to Oracle database. This
protocol is typically used to o connect to Oracle Database 23ai instance in Oracle Autonomous
cloud. To use this protocol Okafka application must specify following properties.

 security.protocol = "SSL"
 oracle.net.tns_admin = "location containing Oracle Wallet, tnsname.ora and
ojdbc.properties file"
 tns.alias = "alias of connection string in tnsnames.ora"

Directory location provided in oracle.net.tns_admin property has:

• Oracle Wallet

• tnsnames.ora file

• ojdbc.properties file (optional)

This depends on how the Oracle Wallet is configured.

See Also

JDBC Thin Connections with a Wallet (mTLS) for more information about how to
establish secured JDBC connections

Kafka Client Interfaces
Kafka applications mainly use Producer, Consumer, and Admin APIs to communicate with a
Kafka cluster. This version of Kafka client for TxEventQ supports only a subset of Apache
Kafka 2.8.0's Producer, Consumer and Admin APIs and properties. With the okafka.jar client
library, Kafka applications will be able to use the Oracle TxEventQ platform. The okafka.jar
library requires JRE 9 or above.

We first illustrate the use of the Kafka Client APIs by way of simple examples, and later
describe more details on the same.

• Kafka API Examples

• Overview of Kafka Producer Implementation for TxEventQ

• Overview of Kafka Consumer implementation for TxEventQ

• Overview of Kafka Admin Implementation for TxEventQ

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 24

Kafka API Examples

Example: Creating an Oracle Kafka Topic

import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ExecutionException;

import org.apache.kafka.clients.admin.Admin;
import org.apache.kafka.clients.admin.CreateTopicsResult;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.common.KafkaFuture;

import org.oracle.okafka.clients.admin.AdminClient;

public class SimpleAdminOKafka {

 public static void main(String[] args) {
 Properties props = new Properties();
 //IP or Host name where Oracle Database 23ai is running and Database Listener's
Port
 props.put("bootstrap.servers", "localhost:1521");

 //name of the service running on the database instance
 props.put("oracle.service.name", "freepdb1");
 props.put("security.protocol","PLAINTEXT");

 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 try (Admin admin = AdminClient.create(props)) {
 //Create Topic named TEQ with 10 Partitions.
 CreateTopicsResult result = admin.createTopics(
 Arrays.asList(new NewTopic("TEQ", 10, (short)0)));
 try {
 KafkaFuture<Void> ftr = result.all();
 ftr.get();
 } catch (InterruptedException | ExecutionException e) {

 throw new IllegalStateException(e);
 }
 System.out.println("Closing OKafka admin now");
 }
 catch(Exception e)
 {
 System.out.println("Exception while creating topic " + e);
 e.printStackTrace();
 }
 }
}

Example: Creating a Simple OKafka Consumer

import java.util.Properties;
import java.time.Duration;

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 24

import java.time.Instant;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.oracle.okafka.clients.consumer.KafkaConsumer;

public class SimpleConsumerOKafka {

 // Dummy implementation of ConsumerRebalanceListener interface
 // It only maintains the list of assigned partitions in assignedPartitions list
 static class ConsumerRebalance implements ConsumerRebalanceListener {

 public List<TopicPartition> assignedPartitions = new ArrayList<>();

 @Override
 public synchronized void onPartitionsAssigned(Collection<TopicPartition>
partitions) {
 System.out.println("Newly Assigned Partitions:");
 for (TopicPartition tp :partitions) {
 System.out.println(tp);
 assignedPartitions.add(tp);
 }
 }

 @Override
 public synchronized void onPartitionsRevoked(Collection<TopicPartition>
partitions) {
 System.out.println("Revoked previously assigned partitions. ");
 for (TopicPartition tp :assignedPartitions) {
 System.out.println(tp);
 }
 assignedPartitions.clear();
 }
 }

 public static void main(String[] args) {
 //System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "TRACE");
 Properties props = new Properties();
 //IP or Host name where Oracle Database 23ai is running and Database Listener's
Port
 props.put("bootstrap.servers", "localhost:1521");

 //name of the service running on the database instance
 props.put("oracle.service.name", "freepdb1");
 props.put("security.protocol","PLAINTEXT");

 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 //Consumer Group Name
 props.put("group.id" , "CG1");
 props.put("enable.auto.commit","false");

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 24

 // Maximum number of records fetched in single poll call
 props.put("max.poll.records", 2000);

 props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

 Consumer<String , String> consumer = new KafkaConsumer<String,
String>(props);
 ConsumerRebalanceListener rebalanceListener = new ConsumerRebalance();

 //Subscribe to a single topic named 'TEQ'.
 consumer.subscribe(Arrays.asList("TEQ"), rebalanceListener);

 int expectedMsgCnt = 40000;
 int msgCnt = 0;
 Instant startTime = Instant.now();
 try {
 while(true) {
 try {
 //Consumes records from the assigned partitions of 'TEQ' topic
 ConsumerRecords <String, String> records =
consumer.poll(Duration.ofMillis(10000));
 //Print consumed records
 for (ConsumerRecord<String, String> record : records)
 {
 System.out.printf("partition = %d, offset = %d, key = %s, value
=%s\n ", record.partition(), record.offset(), record.key(), record.value());
 for(Header h: record.headers())
 {
 System.out.println("Header: " +h.toString());
 }
 }
 //Commit all the consumed records
 if(records != null && records.count() > 0) {
 msgCnt += records.count();
 System.out.println("Committing records " + records.count());
 try {
 consumer.commitSync();
 }catch(Exception e)
 {
 System.out.println("Exception in commit " + e.getMessage());
 continue;
 }
 if(msgCnt >= expectedMsgCnt)
 {
 System.out.println("Received " + msgCnt + " Expected " +
expectedMsgCnt +". Exiting Now.");
 break;
 }
 }
 else {
 System.out.println("No Record Fetched. Retrying in 1 second");
 Thread.sleep(1000);
 }

 }catch(Exception e)
 {
 System.out.println("Inner Exception " + e.getMessage());
 throw e;

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 24

 }
 }
 }catch(Exception e)
 {
 System.out.println("Exception from OKafka consumer " + e);
 e.printStackTrace();
 }finally {
 long runDuration = Duration.between(startTime, Instant.now()).toMillis();
 System.out.println("Closing OKafka Consumer. Received "+ msgCnt +" records.
Run Duration " + runDuration);
 consumer.close();
 }
 }
}

Example: Creating a Simple OKafka Producer

import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.header.internals.RecordHeader;

import org.oracle.okafka.clients.producer.KafkaProducer;

import java.time.Duration;
import java.time.Instant;
import java.util.Properties;
import java.util.concurrent.Future;

public class SimpleProducerOKafka {
 public static void main(String[] args) {
 try {
 Properties props = new Properties();
 //IP or Host name where Oracle Database 23ai is running and Database
Listener's Port
 props.put("bootstrap.servers", "localhost:1521");

 //name of the service running on the database instance
 props.put("oracle.service.name", "freepdb1");
 props.put("security.protocol","PLAINTEXT");

 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

 String baseMsg = "This is a test message ";
 // Creates OKafka Producer
 Producer<String, String> producer = new KafkaProducer<String, String>(props);

 Future<RecordMetadata> lastFuture = null;
 int msgCnt = 40000;
 Instant startTime = Instant.now();

 //Headers, common for all records

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 24

 RecordHeader rH1 = new RecordHeader("CLIENT_ID", "FIRST_CLIENT".getBytes());
 RecordHeader rH2 = new RecordHeader("REPLY_TO",
"REPLY_TOPIC_NAME".getBytes());

 //Produce 40000 messages into topic named "TEQ".
 for(int i=0;i<msgCnt;i++) {
 ProducerRecord<String, String> producerRecord = new
ProducerRecord<String, String>("TEQ", ""+i, baseMsg + i);
 producerRecord.headers().add(rH1).add(rH2);
 lastFuture =producer.send(producerRecord);
 }
 //Waits until the last message is acknowledged
 lastFuture.get();
 long runTime = Duration.between(startTime, Instant.now()).toMillis();
 System.out.println("Produced "+ msgCnt +" messages. Run Duration " +
runTime);
 //Closes the OKafka producer
 producer.close();
 }
 catch(Exception e)
 {
 System.out.println("Exception in Main " + e);
 e.printStackTrace();
 }
 }
}

Example: Deleting an Oracle Kafka Topic

import java.util.Collections;
import java.util.Properties;

import org.apache.kafka.clients.admin.Admin;

import org.oracle.okafka.clients.admin.AdminClient;

public class SimpleAdminDeleteTopic {

 public static void main(String[] args) {

 Properties props = new Properties();
 //IP or Host name where Oracle Database 23ai is running and Database Listener's
Port
 props.put("bootstrap.servers", "localhost:1521");

 //name of the service running on the database instance
 props.put("oracle.service.name", "freepdb1");
 props.put("security.protocol","PLAINTEXT");

 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 try (Admin admin = AdminClient.create(props)) {
 //Throws Exception if failed to delete the topic. Returns null on successful
deletion.
 org.apache.kafka.clients.admin.DeleteTopicsResult delResult =
 admin.deleteTopics(Collections.singletonList("TEQ"));
 Thread.sleep(1000);
 System.out.println("Closing admin now");

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 24

 }
 catch(Exception e)
 {
 System.out.println("Exception while creating topic " + e);
 e.printStackTrace();
 }
 }

}

Example: Transactional OKafka Producer

import org.oracle.okafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.KafkaException;
import org.apache.kafka.common.errors.DisconnectException;
import org.apache.kafka.common.header.internals.RecordHeader;

import java.sql.Connection;
import java.util.Properties;

public class TransactionalProducerOKafka {
 public static void main(String[] args) {
 Producer<String, String> producer = null;
 try {
 Properties props = new Properties();

 // Option 1: Connect to Oracle Database with database username and password
 props.put("security.protocol","PLAINTEXT");
 //IP or Host name where Oracle Database 23ai is running and Database
Listener's Port
 props.put("bootstrap.servers", "localhost:1521");
 props.put("oracle.service.name", "freepdb1"); //name of the service running
on the database instance
 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 /*
 //Option 2: Connect to Oracle Autonomous Database using Oracle Wallet
 //This option to be used when connecting to Oracle autonomous database
instance on OracleCloud
 props.put("security.protocol","SSL");
 // location for Oracle Wallet, tnsnames.ora file and ojdbc.properties file
 props.put("oracle.net.tns_admin",".");
 props.put("tns.alias","Oracle23ai_high");
 */

 props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

 //Property to create a Transactional Producer
 props.put("oracle.transactional.producer", "true");

 producer = new KafkaProducer<String, String>(props);

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 24

 int msgCnt = 100;
 String jsonPayload =
"{\"name\":\"Programmer"+msgCnt+"\",\"status\":\"classy\",\"catagory\":\"general\",\"regi
on\":\"north\",\"title\":\"programmer\"}";
 System.out.println(jsonPayload);
 producer.initTransactions();

 Connection conn = ((KafkaProducer<String,
String>)producer).getDBConnection();
 String topicName = "TXEQ";
 // Produce 100 records in a transaction and commit.
 try {
 producer.beginTransaction();
 boolean fail = false;
 for(int i=0;i<msgCnt;i++) {
 //Optionally set RecordHeaders
 RecordHeader rH1 = new RecordHeader("CLIENT_ID",
"FIRST_CLIENT".getBytes());
 RecordHeader rH2 = new RecordHeader("REPLY_TO", "TXEQ_2".getBytes());

 ProducerRecord<String, String> producerRecord =
 new ProducerRecord<String, String>(topicName, i+"",
jsonPayload);
 producerRecord.headers().add(rH1).add(rH2);
 try {
 processRecord(conn, producerRecord);
 } catch(Exception e) {
 //Retry processRecord or abort the Okafka transaction and close
the producer
 fail = true;
 break;
 }
 producer.send(producerRecord);
 }

 if(fail) // Failed to process the records. Abort Okafka transaction
 producer.abortTransaction();
 else // Successfully process all the records. Commit OKafka transaction
 producer.commitTransaction();

 System.out.println("Produced 100 messages.");
 }catch(DisconnectException dcE) {
 producer.close();
 }catch (KafkaException e) {
 producer.abortTransaction();
 }
 }
 catch(Exception e)
 {
 System.out.println("Exception in Main " + e);
 e.printStackTrace();
 }
 finally {
 try {
 if(producer != null)
 producer.close();
 }catch(Exception e)
 {
 System.out.println("Exception while closing producer " + e);
 e.printStackTrace();

 }

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 24

 System.out.println("Producer Closed");
 }
 }

 private static void processRecord(Connection conn, ProducerRecord<String, String>
record) throws Exception
 {
 //Application specific logic
 }

}

Example: Transactional OKafka Consumer

import java.util.Properties;
import java.sql.Connection;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.oracle.okafka.clients.consumer.KafkaConsumer;

public class TransactionalConsumerOKafka {

 // Dummy implementation of ConsumerRebalanceListener interface
 // It only maintains the list of assigned partitions in assignedPartitions list
 static class ConsumerRebalance implements ConsumerRebalanceListener {

 public List<TopicPartition> assignedPartitions = new ArrayList();

 @Override
 public synchronized void onPartitionsAssigned(Collection<TopicPartition>
partitions) {
 System.out.println("Newly Assigned Partitions:");
 for (TopicPartition tp :partitions) {
 System.out.println(tp);
 assignedPartitions.add(tp);
 }
 }

 @Override
 public synchronized void onPartitionsRevoked(Collection<TopicPartition>
partitions) {
 System.out.println("Revoked previously assigned partitions. ");
 for (TopicPartition tp :assignedPartitions) {
 System.out.println(tp);
 }
 assignedPartitions.clear();
 }
 }

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 24

 public static void main(String[] args) {
 Properties props = new Properties();

 // Option 1: Connect to Oracle Database with database username and password
 props.put("security.protocol","PLAINTEXT");
 //IP or Host name where Oracle Database 23ai is running and Database Listener's
Port
 props.put("bootstrap.servers", "localhost:1521");
 props.put("oracle.service.name", "freepdb1"); //name of the service running on
the database instance
 // location for ojdbc.properties file where user and password properties are
saved
 props.put("oracle.net.tns_admin",".");

 /*
 //Option 2: Connect to Oracle Autonomous Database using Oracle Wallet
 //This option to be used when connecting to Oracle autonomous database instance
on OracleCloud
 props.put("security.protocol","SSL");
 // location for Oracle Wallet, tnsnames.ora file and ojdbc.properties file
 props.put("oracle.net.tns_admin",".");
 props.put("tns.alias","Oracle23ai_high");
 */

 //Consumer Group Name
 props.put("group.id" , "CG1");
 props.put("enable.auto.commit","false");

 // Maximum number of records fetched in single poll call
 props.put("max.poll.records", 10);

 props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

 Consumer<String , String> consumer = new KafkaConsumer<String,
String>(props);
 ConsumerRebalanceListener rebalanceListener = new ConsumerRebalance();

 consumer.subscribe(Arrays.asList("TXEQ"), rebalanceListener);

 int expectedMsgCnt = 100;
 int msgCnt = 0;
 Connection conn = null;
 boolean fail = false;
 try {
 while(true) {
 try {
 //Consumes records from the assigned partitions of 'TXEQ' topic
 ConsumerRecords <String, String> records =
consumer.poll(Duration.ofMillis(10000));

 if (records.count() > 0)
 {
 conn = ((KafkaConsumer<String,
String>)consumer).getDBConnection();
 fail = false;
 for (ConsumerRecord<String, String> record : records)
 {
 System.out.printf("partition = %d, offset = %d, key = %s,
value =%s\n ", record.partition(), record.offset(), record.key(), record.value());

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 24

 for(Header h: record.headers())
 {
 System.out.println("Header: " +h.toString());
 }
 try {
 processRecord(conn, record);
 } catch(Exception e) {
 fail = true;
 break;
 }
 }
 if(fail){
 conn.rollback();
 }
 else {
 msgCnt += records.count();
 consumer.commitSync();
 }

 if(msgCnt >= (expectedMsgCnt)) {
 System.out.println("Received " + msgCnt + " Expected " +
expectedMsgCnt +". Exiting Now.");
 break;
 }
 }
 else {
 System.out.println("No Record Fetched. Retrying in 1 second");
 Thread.sleep(1000);
 }
 }catch(Exception e)
 {
 System.out.println("Exception while consuming messages: " +
e.getMessage());
 throw e;
 }
 }
 }catch(Exception e)
 {
 System.out.println("Exception from OKafka consumer " + e);
 e.printStackTrace();
 }finally {
 System.out.println("Closing OKafka Consumer. Received "+ msgCnt +"
records.");
 consumer.close();
 }
 }

 private static void processRecord(Connection conn, ConsumerRecord<String, String>
record)
 {
 //Application specific logic to process the message
 }
}

Example: OKafka consume-transform-produce

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.time.Duration;
import java.util.ArrayList;

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 24

import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.Future;

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.oracle.okafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.KafkaException;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.DisconnectException;
import org.apache.kafka.common.header.Header;
import org.oracle.okafka.clients.consumer.KafkaConsumer;

public class TransactionalConsumerProducer {

 static int msgNo =0;
 static PreparedStatement instCStmt = null;
 static PreparedStatement instPStmt = null;

 public static void main(String[] args) {
 Properties commonProps = new Properties();
 Properties cProps = new Properties();
 Properties pProps =new Properties();

 // Option 1: Connect to Oracle Database with database username and password
 commonProps.put("security.protocol","PLAINTEXT");
 //IP or Host name where Oracle Database 23ai is running and Database Listener's
Port
 commonProps.put("bootstrap.servers", "localhost:1521");
 commonProps.put("oracle.service.name", "freepdb1"); //name of the service
running on the database instance
 // directory location where ojdbc.properties file is stored which contains user
and password properties
 commonProps.put("oracle.net.tns_admin",".");

 /*
 //Option 2: Connect to Oracle Autonomous Database using Oracle Wallet
 //This option to be used when connecting to Oracle autonomous database instance
on OracleCloud
 commonProps.put("security.protocol","SSL");
 // location for Oracle Wallet, tnsnames.ora file and ojdbc.properties file
 commonProps.put("oracle.net.tns_admin",".");
 commonProps.put("tns.alias","Oracle23ai_high");
 */

 cProps.putAll(commonProps);
 pProps.putAll(commonProps);

 //Consumer Group Name
 cProps.put("group.id" , "CG1");
 cProps.put("enable.auto.commit","false");

 // Maximum number of records fetched in single poll call
 cProps.put("max.poll.records", 10);
 cProps.put("key.deserializer",

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 24

"org.apache.kafka.common.serialization.StringDeserializer");
 cProps.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

 pProps.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 pProps.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 pProps.put("oracle.transactional.producer", "true");

 Consumer<String , String> consumer = new KafkaConsumer<String, String>(cProps);
 ConsumerRebalanceListener rebalanceListener = new ConsumerRebalance();
 consumer.subscribe(Arrays.asList("TXEQ"), rebalanceListener);

 int expectedMsgCnt = 100;
 int msgCnt = 0;
 Connection conn = null;

 Producer<String, String> producer = null;
 try {
 conn = ((KafkaConsumer<String, String>)consumer).getDBConnection();
 producer = new KafkaProducer<String,String>(pProps, conn);
 producer.initTransactions();
 while(true) {
 try {
 //Consumes records from the assigned partitions of 'TXEQ' topic
 ConsumerRecords <String, String> records =
consumer.poll(Duration.ofMillis(10000));
 if(records != null && records.count() > 0) {
 msgCnt += records.count();

 producer.beginTransaction();
 boolean fail =false;
 for (ConsumerRecord<String, String> record : records) {
 ProducerRecord<String,String> pr = null;
 try {
 String outRecord = processConsumerRecord(conn, record);
 pr = new ProducerRecord<String,String>("TXEQ_2",
record.key(), outRecord);
 processProducerRecord(conn, pr);
 }catch(Exception e)
 {
 // Stop processing of this batch
 fail =true;
 break;
 }
 producer.send(pr);
 }
 if(fail) {
 //Abort consumed and produced records along with any DML
operations done using connection object.
 //Next consumer.poll will fetch the same records again.
 producer.abortTransaction();
 }
 else {
 //Commit consumed and produced records along with any DML
operations done using connection object
 producer.commitTransaction();
 }
 }
 else {
 System.out.println("No Record Fetched. Retrying in 1 second");

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 24

 Thread.sleep(1000);
 }

 if(msgCnt >= expectedMsgCnt)
 {
 System.out.println("Received " + msgCnt + " Expected " +
expectedMsgCnt +". Exiting Now.");
 break;
 }

 }catch(DisconnectException dcE) {
 System.out.println("Disconnect Exception while committing or
aborting records "+ dcE);
 throw dcE;
 }
 catch(KafkaException e)
 {
 System.out.println("Re-triable Exception while committing records "+
e);
 producer.abortTransaction();
 }
 catch(Exception e)
 {
 System.out.println("Exception while processing records " +
e.getMessage());
 throw e;
 }
 }
 }catch(Exception e)
 {
 System.out.println("Exception from OKafka consumer " + e);
 e.printStackTrace();
 }finally {

 System.out.println("Closing OKafka Consumer. Received "+ msgCnt);
 producer.close();
 consumer.close();
 }
 }

 static String processConsumerRecord(Connection conn, ConsumerRecord <String, String>
record) throws Exception
 {
 //Application specific logic to process the record
 System.out.println("Received: " + record.partition() +"," + record.offset() +":"
+ record.value());
 return record.value();
 }
 static void processProducerRecord(Connection conn, ProducerRecord <String, String>
records) throws Exception
 {
 //Application specific logic to process the record
 }

 static void processRecords(Producer<String,String> porducer, Consumer<String,String>
consumer, ConsumerRecords <String, String> records) throws Exception
 {
 Connection conn = ((KafkaProducer<String,String>)porducer).getDBConnection();
 String jsonPayload = null;
 ProducerRecord<String,String> pr = null;
 Future<RecordMetadata> lastFuture = null;
 for (ConsumerRecord<String, String> record : records)

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 24

 {
 msgNo++;
 System.out.println("Processing " + msgNo + " record.value() " +
record.value());
 System.out.printf("partition = %d, offset = %d, key = %s, value =%s\n ",
record.partition(), record.offset(), record.key(), record.value());
 for(Header h: record.headers())
 {
 System.out.println("Header: " +h.toString());
 }

 jsonPayload =
"{\"name\":\"Programmer"+msgNo+"\",\"status\":\"classy\",\"catagory\":\"general\",\"regio
n\":\"north\",\"title\":\"programmer\"}";
 pr = new ProducerRecord<String,String>("KTOPIC1", record.key(), jsonPayload);
 lastFuture = porducer.send(pr);
 RecordMetadata metadata = lastFuture.get();
 }
 }

 // Dummy implementation of ConsumerRebalanceListener interface
 // It only maintains the list of assigned partitions in assignedPartitions list
 static class ConsumerRebalance implements ConsumerRebalanceListener {

 public List<TopicPartition> assignedPartitions = new ArrayList<TopicPartition>();

 @Override
 public synchronized void onPartitionsAssigned(Collection<TopicPartition>
partitions) {
 System.out.println("Newly Assigned Partitions:");
 for (TopicPartition tp :partitions) {
 System.out.println(tp);
 assignedPartitions.add(tp);
 }
 }

 @Override
 public synchronized void onPartitionsRevoked(Collection<TopicPartition>
partitions) {
 System.out.println("Revoked previously assigned partitions. ");
 for (TopicPartition tp :assignedPartitions) {
 System.out.println(tp);
 }
 assignedPartitions.clear();
 }
 }
}

Note

• Topics created using the KafkaAdmin interface can be accessed only by
KafkaProducer or KafkaConsumer interfaces.

• KafkaProducer can send records to a regular JMS transactional event queue
topic/queue.However, KafkaConsumer can only consume records from the topics
which are created using the KafkaAdmin interface or using
DBMS_AQADM.CREATE_DATABASE_KAFKA_TOPIC procedue.

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 24

Kafka REST APIs for TxEventQ

The TxEventQ REST APIs allow common operations to produce and consume from topics and
partitions, and are implemented using Oracle REST Data Services (ORDS) in the Oracle
Database. Common operations include creating and deleting topics, producing and consuming
messages, and operational APIs for getting consumer lag on a topic, seeking to an offset,
among many others.

The following three APIs for Kafka allow TxEventQ to co-exist with Kafka deployments, and
provide the advantages of transactional outbox, JMS messaging and pub/sub in the database
and high throughput streaming of events to the event queue in the Oracle Database.

See Also

Oracle Transactional Event Queues REST Endpoints for the Oracle REST Data
Services API documentation

Overview of Kafka Producer Implementation for TxEventQ

Producer APIs allow a Kafka application to publish messages into Oracle Transactional Event
Queues (TxEventQ). A Kafka application needs to provide Oracle specific properties:
bootstrap.servers, oracle.servicename, and oracle.net.tns_admin. More details about
these properties are mentioned in the configuration section. These properties are used to set
up the database connection and produce the message into TxEventQ. In the current release,
Oracle's implementation of KafkaProducer supports only a subset of the Producer APIs.

Internally, an Oracle Kafka Producer object encapsulates an AQ JMS producer object which is
used to publish messages into Oracle TxEventQ. Similar to Apache Kafka Producer, each
Producer send() call will append a Kafka Record into a batch based on its topic and partition.
Based on Apache Kafka's internal algorithm, a background thread will publish the entire batch
to an Oracle TxEventQ.

The following KafkaProducer APIs are supported in Oracle Database 23ai.

• Constructor:

KafkaProducer: Creates an OKafka producer and internal support objects. Application can
use any of the four available constructors to create OKafka producer. Each of the
constructor has an overloaded version which takes an Oracle Connection object as
argument. When application passes pre-created connection object, OKafka producer will
use it to send records to Oracle Transaction Event Queue. Application must set
oracle.transactional.producer property to true to be able to use external database
connection with OKafka producer.

• Methods:

– send(ProducerRecord) , send(ProducerRecord, Callback):

The send method asynchronously publishes a message into TxEventQ. This method
returns immediately once a Kafka Record has been stored in the buffer of records
waiting to be sent. If the buffer is full, then the send call blocks for a maximum time of
max.block.ms. Records will be published into the topic using AQ JMS.

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 24

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.2/orrst/api-oracle-transactional-event-queues.html

The method returns a Future<RecordMetadata>, which contains the partition, offset,
and publish timestamp of the record. Both the send(ProducerRecord) and
send(ProducerRecord, Callback) versions are supported.

– getDBConnection: This method returns the database connection used by this
KafkaProducer.OKafka producer property oracle.transactional.producer must be
set to true to fetch the database connection using this method.

– close: Closes the producer and frees the memory. It will also close the internal
connection to the Oracle Database.

• Classes

– ProducerRecord: A class that represents a message in the Kafka platform. The Kafka
API library translates a ProducerRecord into a JMS BytesMessage for the TxEventQ
platform.

– RecordMetadata: This contains metadata of the record like topic, partition, offset,
timestamp etc. of the Record in the Kafka platform. This is assigned values relevant for
TxEventQs. A message id of TxEventQ is converted into an offset of RecordMetadata.

– Callback Interface: A callback function which is executed once a Record is
successfully published into a Kafka topic.

– Partitioner Interface: Defines methods which map a Key of the message to a partition
number of the topic. A partition number is analogous to a stream id of TxEventQs.

• Properties

– key.serializer and value.serializer: Converts Key and payload into byte array
respectively.

– acks: For Kafka APIs, the only value relevant for the acks property is all. Any other
field set by the user is ignored.

– linger.ms: Time in miliseconds for which the sender thread waits before publishing the
records in TxEventQ.

– batch.size: Total size of records to be batched in bytes for which the sender thread
waits before publishing records in TxEventQ.

– buffer.memory: Total memory in bytes the accumulator can hold.

– max.block.ms: If buffer.memory size is full in the accumulator, then wait for
max.block.ms amount of time before the send() method can receive an out of memory
error.

– retries: This property enables a producer to resend a record in case of transient
errors. This value limits the number of retries per batch.

– retry.backoff.ms : The amount of time to wait before attempting to retry a failed
request to a given topic partition. This avoids repeatedly sending requests in a tight
loop under some failure scenarios.

– bootstrap.servers: IP address and port of a machine where an instance of the
database is running.

– enable.idempotence: True of False.The idempotent producer strengthens OKafka's
delivery semantics from at least once to exactly once delivery. In particular producer
retries will no longer introduce duplicates.

– oracle.transactional.producer: True or False. This property creates a transactional
OKafka producer. The transactional producer allows an application to send messages
to multiple partitions and topics atomically. It also allows application to perform any dml
operation within the same transaction.

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 24

Transactional producer can use getDBConnection() method to fetch the database
connection which is being used to send the records to the Oracle's Transactional Event
Queue broker. Application can use this connection to perform and DML operation.

commitTransaction() method will atomically commit the DML operation(s) and send
operation(s) performed within the current transaction. Similarly, abortTransaction()
will atomically roll-back the DML operation(s) and abort the produced record(s) sent
within the current transaction.

The transactional producer is not thread safe. Application should manage the
concurrent access of the transactional producer. Transactional producer does not get
benefit of batching. Each message is sent to Oracle Transactional Event Queue broker
in a separate request.

Overview of Kafka Consumer implementation for TxEventQ

The Consumer API allows applications to read streams of data from a Transactional Event
Queue (TxEventQ). Kafka consumer for TxEventQ uses AQ JMS APIs and a JDBC driver to
consume messages in batches from Oracle TxEventQ. For Oracle Kafka, consuming
messages from a topic is achieved by dequeuing messages from a Transactional Event
Queue.

Similar to Apache Kafka, in TxEventQ's implementation, a consumer group (subscriber) may
contains many consumer instances (unique database sessions that are consuming for the
subscriber). Each consumer group has a unique group-id (subscriber name). Each consumer
instance internally maintains a single connection/session to an Oracle Database instance
provided by the bootstrap.servers property. Oracle Database 23ai introduces Kafka API
support for Consumer Group Rebalancing. Partitions of a topic will be distributed among the
active consumers of a consumer group such that no two consumers from the same consumer
group are assigned the same partition of the topic simultaneously. Whenever new consumers
join a consumer group or an existing consumer leaves the group, the partitions will be
redistributed among the active consumers.

For the 23ai release of Kafka APIs, a consumer can subscribe to only one topic.

The following KafkaConsumer APIs are supported in Oracle Database 23ai.

• Constructor: KafkaConsumer: Creates a consumer that allows the application to consume
messages from a key based TxEventQ. Internal client side TxEventQ objects created are
not visible to a client application. All variations of the KafkaConsumer constructor are
supported in Oracle Database 23ai.

• Methods:

– Subscribe: This method takes a list of topics to subscribe to. In Oracle Database 23ai,
only the first topic of the list will be subscribed to. An exception is thrown if the size of
the list is greater than 1. This method creates a durable subscriber on TxEventQ
server side with Group-Id as subscriber name. An application can also implement the
ConsumerRebalanceListener interface and pass an object of the implemented class to
the subscribe method. This allows a consumer to execute callbacks when a partition is
revoked or assigned.

– Poll: The poll method returns a batch of messages from assigned partitions from
TxEventQ. It attempts to dequeue a message from the key based TxEventQ for the
subscriber. TxEventQ uses the array dequeue API of AQ JMS to receive a batch of
messages from the queue. The size of the batch depends on the parameter
max.poll.records set by the Kafka client application. Poll takes time in milliseconds
as an argument. The AQ JMS API for array dequeue can pass this timeout as a

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 24

dequeue option to the TxEventQ server and make the dequeue call, which will wait for
messages till the timeout if the full array batch is not complete.

When poll is invoked for the first time by a consumer, it triggers consumer rebalancing
for all the alive consumers of the consumer group. At the end of the consumer
rebalancing, all alive consumers are assigned topic partitions, and subsequent poll
requests will fetch messages from the assigned partitions only.

An application can participate and influence rebalancing using the
ConsumerRebalanceListener interface and partition.assignment.strategy
configuration.

The partition.assignment.strategy configuration allows an application to select a
strategy for assigning partitions to consumer streams. OKafka supports all values for
this configuration parameter which are documented in the Apache Kafka 2.8.0
documentation.

The default value for this configuration is
org.oracle.okafka.clients.consumer.TXEQAssignor which is aware of Oracle RAC
and implements a strategy that is best for achieving higher throughput from Oracle
TxEventQ.

This strategy prioritizes fair distribution of partitions and local consumption of
messages while distributing partitions among alive sessions.

ConsumerRebalanceListener allows an application to invoke callbacks when partitions
are revoked or assigned to a consumer.

The database view USER_QUEUE_PARTITION_ASSIGNMENT_TABLE allows a developer to
view the current distribution of partitions among the alive consumers.

– commitSync: Commits all consumed messages. Commit to an offset is not supported in
Oracle Database 23ai. This call directly calls commit on the database which commits
all consumed messages from TxEventQ.

– commitAsync: This call is translated into commitSync. A callback function passed as an
argument gets executed once the commit is successful.

– Unsubscribe: Unsubscribes the topic that a consumer has subscribed to. A consumer
can no longer consume messages from unsubscribed topics. This call does not
remove a subscriber group from the TxEventQ metadata. Other consumer applications
can still continue to consume for the same consumer group.

– getDBConnection: Get the Oracle database connection used to consume records from
Oracle Transactional Event Queue.

– close: Closes the consumer and unsubscribes the topic it has subscribed to.

• Class: ConsumerRecord: A class that represents a consumed record in the Kafka platform.
Kafka APIs receive AQ JMS messages from TxEventQ and convert each of them into a
ConsumerRecord and deliver it to the application.

• Properties:

– auto.offset.reset: When there is no initial offset found for this consumer group, then
the value of this property controls whether to consume the messages from the
beginning of the topic partition or to only consume new messages. Values for this
property and its usage are as follows:

* earliest: Consume from the beginning of the topic partition.

* latest: Consume from the end of the topic partition (default).

* none: Throw an exception if no offset present for the consumer group.

Chapter 5
Kafka Client Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 24

– key.deserializer and value.deserializer: For Oracle Kafka messaging platform,
key and value are stored as byte arrays in a JMS Message in Oracle's TxEventQ. On
consuming, these byte arrays are deserialized into a key and a value using
key.deserializer and value.deserializer respectively. These properties allow an
application to convert Key and Value, which are stored in byte array format, into
application specified data types.

– group.id: This is a consumer group name for which messages are consumed from the
Kafka topic. This property is used as a durable subscriber name for key based
TxEventQs.

– max.poll.records: Maximum number of records to fetch in a single array dequeue call
from an Oracle TxEventQ server.

– enable.auto.commit: Enables auto commit of consumed messages for every specified
interval.

– auto.commit.interval.ms: Interval in milliseconds for auto commit of messages.

– bootstrap.servers: IP address and port of a machine where a database instance is
running.

Overview of Kafka Admin Implementation for TxEventQ

The Kafka admininistrative API allows applications to perform administrative tasks like creating
a topic, deleting a topic, adding a partition to a topic and so on. Oracle Database 23ai release
supports only the following administrative APIs.

• Methods

– create(props) and create(config): Creates an object of KafkaAdmin class that uses
passed parameters. The method creates a database session which is used for further
operations. An application has to provide connection configuration parameters as
explained in the Connection Configuration section.

– createTopics(): Allows an application to create a Kafka Topic. This creates a
TxEventQ in the user's schema.

– close(): Closes a database session and Admin client.

– deleteTopic: Deletes a Kafka Topic. This returns null when a topic is deleted
successfully. Otherwise, the method throws an exception. The method does not return
until the topic is successfully deleted or any error is encountered.

• Classes: NewTopic: Class used for creating a new topic. This class contains parameters
with which a transactional event queue is created.

Kafka REST APIs for TxEventQ
The TxEventQ REST APIs allow common operations to produce and consume from topics and
partitions, and are implemented using Oracle REST Data Services (ORDS) in the Oracle
Database. Common operations include creating and deleting topics, producing and consuming
messages, and operational APIs for getting consumer lag on a topic, seeking to an offset,
among many others.

The following three APIs for Kafka allow TxEventQ to co-exist with Kafka deployments, and
provide the advantages of transactional outbox, JMS messaging and pub/sub in the database
and high throughput streaming of events to the event queue in the Oracle Database.

Chapter 5
Kafka REST APIs for TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 24

See Also

Oracle Transactional Event Queues REST Endpoints for the Oracle REST Data
Services API documentation

Kafka Connectors for TxEventQ
The Kafka Sink and Source Connector requires a minimum Oracle Database version of 21c in
order to create a Transactional Event Queue. To use the application, Kafka with a minimum
version number of 3.1.0 will need to be downloaded and installed on a server.

See Also

https://github.com/oracle/okafka/tree/master/connectors for more information.

Monitoring Message Transfer
The Sink/Source connector messages transfer can be monitored from Oracle TxEventQ.

See Also

Monitoring Transactional Event Queues to startup TxEventQ Monitor System to check
enqueue/dequeue rate, TxEventQ depth, and more DB/System Level statistics.

Chapter 5
Kafka Connectors for TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 24

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.2/orrst/api-oracle-transactional-event-queues.html
https://github.com/oracle/okafka/tree/master/connectors
https://github.com/oracle/oracle-db-appdev-monitoring#monitoring-transactional-event-queues

6
Java Message Service for Transactional Event
Queues and Advanced Queuing

This chapter contains the following topics:

• Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced
Queuing

• Oracle Java Message Service Basic Operations

• Oracle Java Message Service Point-to-Point

• Oracle Java Message Service Publish/Subscribe

• Oracle Java Message Service Shared Interfaces

• Oracle Java Message Service Types Examples

Java Messaging Service Interface for Oracle Transactional Event
Queues and Advanced Queuing

The following topics describe the Oracle Java Message Service (JMS) interface to Oracle
Database Advanced Queuing (AQ).

• General Features of JMS and Oracle JMS

• Structured Payload/Message Types in JMS

• Buffered Messaging in JMS

• JMS Point-to-Point Model Features

• JMS Publish/Subscribe Model Features

• JMS Message Producer Features

• JMS Message Consumer Features

• JMS Propagation

• Message Transformation with JMS AQ

• JMS Streaming

• Java EE Compliance

General Features of JMS and Oracle JMS
This section contains these topics:

• JMS Connection and Session

• JMS Destination

• System-Level Access Control in JMS

• Destination-Level Access Control in JMS

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 133

• Retention and Message History in JMS

• Supporting Oracle Real Application Clusters in JMS

• Supporting Statistics Views in JMS

JMS Connection and Session
This section contains these topics:

• ConnectionFactory Objects

• Using AQjmsFactory to Obtain ConnectionFactory Objects

• Using JNDI to Look Up ConnectionFactory Objects

• JMS Connection

• JMS Session

ConnectionFactory Objects
A ConnectionFactory encapsulates a set of connection configuration parameters that has
been defined by an administrator. A client uses it to create a connection with a JMS provider. In
this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of ConnectionFactory objects are:

• ConnectionFactory

• QueueConnectionFactory

• TopicConnectionFactory

Using AQjmsFactory to Obtain ConnectionFactory Objects
You can use the AQjmsFactory class to obtain a handle to a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and publish/subscribe
operations, use AQjmsFactory.getConnectionFactory(). To obtain a
QueueConnectionFactory, use AQjmsFactory.getQueueConnectionFactory(). To obtain a
TopicConnectionFactory, use AQjmsFactory.getTopicConnectionFactory().

The ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory can be
created using hostname, port number, and SID driver or by using JDBC URL and properties.

Using JNDI to Look Up ConnectionFactory Objects
A JMS administrator can register ConnectionFactory objects in a Lightweight Directory Access
Protocol (LDAP) server. The following setup is required to enable Java Naming and Directory
Interface (JNDI) lookup in JMS:

1. Register Database

When the Oracle Database server is installed, the database must be registered with the
LDAP server. This can be accomplished using the Database Configuration Assistant
(DBCA). Figure 6-1 shows the structure of Oracle Database Advanced Queuing entries in
the LDAP server. ConnectionFactory information is stored under
<cn=OracleDBConnections>, while topics and queues are stored under
<cn=OracleDBQueues>.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 133

Figure 6-1 Structure of Oracle Database Advanced Queuing Entries in LDAP
Server

<cn=acme, cn=com>

<cn=OracleContext>

<cn=db1>

(administrative context)

(root of oracle RDBMS schema)

(database)

<cn=OracleDBConnections> <cn=OracleDBQueue> <cn= . . .>

(Other db objects)(Queues / Topics)(Connection Factories)

2. Set Parameter GLOBAL_TOPIC_ENABLED.

The GLOBAL_TOPIC_ENABLED system parameter for the database must be set to TRUE. This
ensures that all queues and topics created in Oracle Database Advanced Queuing are
automatically registered with the LDAP server. This parameter can be set by using ALTER
SYSTEM SET GLOBAL_TOPIC_ENABLED = TRUE.

3. Register ConnectionFactory Objects

After the database has been set up to use an LDAP server, the JMS administrator can
register ConnectionFactory, QueueConnectionFactory, and TopicConnectionFactory
objects in LDAP by using AQjmsFactory.registerConnectionFactory().

The registration can be accomplished in one of the following ways:

• Connect directly to the LDAP server

The user must have the GLOBAL_AQ_USER_ROLE to register connection factories in
LDAP.

To connect directly to LDAP, the parameters for the registerConnectionFactory
method include the LDAP context, the name of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory, hostname, database SID, port
number, JDBC driver (thin or oci8) and factory type (queue or topic).

• Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database update the
LDAP entry. The user that logs on to the database must have the
AQ_ADMINISTRATOR_ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
registerConnectionFactory method include a JDBC connection (to a user having
AQ_ADMINISTRATOR_ROLE), the name of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory, hostname, database SID, port
number, JDBC driver (thin or oci8) and factory type (queue or topic).

JMS Connection
A JMS Connection is an active connection between a client and its JMS provider. A JMS
Connection performs several critical services:

• Encapsulates either an open connection or a pool of connections with a JMS provider

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 133

• Typically represents an open TCP/IP socket (or a set of open sockets) between a client
and a provider's service daemon

• Provides a structure for authenticating clients at the time of its creation

• Creates Sessions

• Provides connection metadata

• Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking createConnection(),
createQueueConnection(), or createTopicConnection() and passing the parameters
username and password on the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object respectively.

Some of the methods that are supported on the Connection object are

• start()

This method starts or restart delivery of incoming messages.

• stop()

This method temporarily stops delivery of incoming messages. When a Connection object
is stopped, delivery to all of its message consumers is inhibited. Also, synchronous
receive's block and messages are not delivered to message listener.

• close()

This method closes the JMS session and releases all associated resources.

• createSession(true, 0)

This method creates a JMS Session using a JMS Connection instance.

• createQueueSession(true, 0)

This method creates a QueueSession.

• createTopicSession(true, 0)

This method creates a TopicSession.

• setExceptionListener(ExceptionListener)

This method sets an exception listener for the Connection. This allows a client to be
notified of a problem asynchronously. If a Connection only consumes messages, then it
has no other way to learn it has failed.

• getExceptionListener()

This method gets the ExceptionListener for this Connection.

A JMS client typically creates a Connection, a Session and several MessageProducer and
MessageConsumer objects. In the current version only one open Session for each Connection is
allowed, except in the following cases:

• If the JDBC oci8 driver is used to create the JMS connection

• If the user provides an OracleOCIConnectionPool instance during JMS connection
creation

When a Connection is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connection in stopped mode until setup is complete. At
that point the Connection start() method is called and messages begin arriving at the
Connection consumers. This setup convention minimizes any client confusion that can result
from asynchronous message delivery while the client is still in the process of setup.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 133

It is possible to start a Connection and to perform setup subsequently. Clients that do this must
be prepared to handle asynchronous message delivery while they are still in the process of
setting up. A MessageProducer can send messages while a Connection is stopped.

JMS Session
A JMS Session is a single threaded context for producing and consuming messages. Although
it can allocate provider resources outside the Java Virtual Machine (JVM), it is considered a
lightweight JMS object.

A Session serves several purposes:

• Constitutes a factory for MessageProducer and MessageConsumer objects

• Provides a way to get a handle to destination objects (queues/topics)

• Supplies provider-optimized message factories

• Supports a single series of transactions that combines work spanning session
MessageProducer and MessageConsumer objects, organizing these into units

• Defines a serial order for the messages it consumes and the messages it produces

• Serializes execution of MessageListener objects registered with it

In Oracle Database 20c, you can create as many JMS Sessions as resources allow using a
single JMS Connection, when using either JDBC thin or JDBC thick (OCI) drivers.

Because a provider can allocate some resources on behalf of a Session outside the JVM,
clients should close them when they are not needed. Relying on garbage collection to
eventually reclaim these resources may not be timely enough. The same is true for
MessageProducer and MessageConsumer objects created by a Session.

Methods on the Session object include:

• commit()

This method commits all messages performed in the transaction and releases locks
currently held.

• rollback()

This method rolls back any messages accomplished in the transaction and release locks
currently held.

• close()

This method closes the Session.

• getDBConnection()

This method gets a handle to the underlying JDBC connection. This handle can be used to
perform other SQL DML operations as part of the same Session. The method is specific to
Oracle JMS.

• acknowledge()

This method acknowledges message receipt in a nontransactional session.

• recover()

This method restarts message delivery in a nontransactional session. In effect, the series
of delivered messages in the session is reset to the point after the last acknowledged
message.

The following are some Oracle JMS extensions:

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 133

• createQueueTable()

This method creates a queue table.

• getQueueTable()

This method gets a handle to an existing queue table.

• createQueue()

This method creates a queue.

• getQueue()

This method gets a handle to an existing queue.

• createTopic()

This method creates a topic.

• getTopic()

This method gets a handle to an existing topic.

The Session object must be cast to AQjmsSession to use any of the extensions.

Note

The JMS specification expects providers to return null messages when receives are
accomplished on a JMS Connection instance that has not been started.

After you create a javax.jms.Connection instance, you must call the start() method
on it before you can receive messages. If you add a line like t_conn.start(); any
time after the connection has been created, but before the actual receive, then you
can receive your messages.

JMS Destination
A Destination is an object a client uses to specify the destination where it sends messages,
and the source from which it receives messages. A Destination object can be a Queue or a
Topic. In Oracle Database Advanced Queuing, these map to a schema.queue at a specific
database. Queue maps to a single-consumer queue, and Topic maps to a multiconsumer
queue.

Using a JMS Session to Obtain Destination Objects
Destination objects are created from a Session object using the following domain-specific
Session methods:

• AQjmsSession.getQueue(queue_owner, queue_name)

This method gets a handle to a JMS queue.

• AQjmsSession.getTopic(topic_owner, topic_name)

This method gets a handle to a JMS topic.

Using JNDI to Look Up Destination Objects
The database can be configured to register schema objects with an LDAP server. If a database
has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 133

set to TRUE, then all JMS queues and topics are automatically registered with the LDAP
server when they are created. The administrator can also create aliases to the queues and
topics registered in LDAP. Queues and topics that are registered in LDAP can be looked up
through JNDI using the name or alias of the queue or topic.

See Also

"Adding an Alias to the LDAP Server"

JMS Destination Methods
Methods on the Destination object include:

• alter()

This method alters a Queue or a Topic.

• schedulePropagation()

This method schedules propagation from a source to a destination.

• unschedulePropagation()

This method unschedules a previously scheduled propagation.

• enablePropagationSchedule()

This method enables a propagation schedule.

• disablePropagationSchedule()

This method disables a propagation schedule.

• start()

This method starts a Queue or a Topic. The queue can be started for enqueue or dequeue.
The topic can be started for publish or subscribe.

• stop()

This method stops a Queue or a Topic. The queue is stopped for enqueue or dequeue. The
topic is stopped for publish or subscribe.

• drop()

This method drops a Queue or a Topic.

System-Level Access Control in JMS
Oracle8i or higher supports system-level access control for all queuing operations. This feature
allows an application designer or DBA to create users as queue administrators. A queue
administrator can invoke administrative and operational JMS interfaces on any queue in the
database. This simplifies administrative work, because all administrative scripts for the queues
in a database can be managed under one schema.

When messages arrive at the destination queues, sessions based on the source queue
schema name are used for enqueuing the newly arrived messages into the destination queues.
This means that you must grant enqueue privileges for the destination queues to schemas of
the source queues.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 133

To propagate to a remote destination queue, the login user (specified in the database link in
the address field of the agent structure) should either be granted the ENQUEUE_ANY privilege, or
be granted the rights to enqueue to the destination queue. However, you are not required to
grant any explicit privileges if the login user in the database link also owns the queue tables at
the destination.

See Also

"Oracle Enterprise Manager Support"

Destination-Level Access Control in JMS
Oracle8i or higher supports access control for enqueue and dequeue operations at the queue
or topic level. This feature allows the application designer to protect queues and topics created
in one schema from applications running in other schemas. You can grant only minimal access
privileges to the applications that run outside the schema of the queue or topic. The supported
access privileges on a queue or topic are ENQUEUE, DEQUEUE and ALL.

See Also

"Oracle Enterprise Manager Support"

Retention and Message History in JMS
Messages are often related to each other. For example, if a message is produced as a result of
the consumption of another message, then the two are related. As the application designer,
you may want to keep track of such relationships. Oracle Database Advanced Queuing allows
users to retain messages in the queue table, which can then be queried in SQL for analysis.

Along with retention and message identifiers, Oracle Database Advanced Queuing lets you
automatically create message journals, also called tracking journals or event journals. Taken
together, retention, message identifiers and SQL queries make it possible to build powerful
message warehouses.

Supporting Oracle Real Application Clusters in JMS
A transactional event queue (TxEventQ) is a single logical queue that is divided into multiple,
independent, physical queues through system-maintained partitioning. TxEventQs are the
preferred JMS queues for queues used across Oracle RAC instances, for queues with high
enqueue or dequeue rates, or for queues with many subscribers. See "Transactional Event
Queues and Oracle Real Application Clusters (Oracle RAC)" for more information.

For AQ queues, Oracle Real Application Clusters (Oracle RAC) can be used to improve Oracle
Database Advanced Queuing performance by allowing different queues to be managed by
different instances. You do this by specifying different instance affinities (preferences) for the
queue tables that store the queues. This allows queue operations (enqueue/dequeue) or topic
operations (publish/subscribe) on different queues or topics to occur in parallel.

The Oracle Database Advanced Queuing queue monitor process continuously monitors the
instance affinities of the queue tables. The queue monitor assigns ownership of a queue table
to the specified primary instance if it is available, failing which it assigns it to the specified
secondary instance.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 133

If the owner instance of a queue table terminates, then the queue monitor changes ownership
to a suitable instance such as the secondary instance.

Oracle Database Advanced Queuing propagation can make use of Oracle Real Application
Clusters, although it is transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the respective
queue tables. Thus, a job_queue_process associated with the owner instance of a queue table
is handling the propagation from queues stored in that queue table, thereby minimizing
pinging.

See Also

• "Transactional Event Queues"

• "Scheduling a Queue Propagation"

• Oracle Real Application Clusters Administration and Deployment Guide

Supporting Statistics Views in JMS
Each instance keeps its own Oracle Database Advanced Queuing statistics information in its
own System Global Area (SGA), and does not have knowledge of the statistics gathered by
other instances. Then, when a GV$AQ view is queried by an instance, all other instances funnel
their statistics information to the instance issuing the query.

The GV$AQ view can be queried at any time to see the number of messages in waiting, ready or
expired state. The view also displays the average number of seconds messages have been
waiting to be processed.

See Also

"V$AQ: Number of Messages in Different States in Database"

Structured Payload/Message Types in JMS
JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and providers
to identify and route messages. All messages support the same set of header fields.

Properties are optional header fields. In addition to standard properties defined by JMS, there
can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads, and a
type that can store JMS messages of any or all JMS-specified message types.

This section contains these topics:

• JMS Message Headers

• JMS Message Properties

• JMS Message Bodies

• Using Message Properties with Different Message Types

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 133

• Buffered Messaging with Oracle JMS

JMS Message Headers
A JMS message header contains the following fields:

• JMSDestination

This field contains the destination to which the message is sent. In Oracle Database
Advanced Queuing this corresponds to the destination queue/topic. It is a Destination
type set by JMS after the Send method has completed.

• JMSDeliveryMode

This field determines whether the message is logged or not. JMS supports PERSISTENT
delivery (where messages are logged to stable storage) and NONPERSISTENT delivery
(messages not logged). It is a INTEGER set by JMS after the Send method has completed.
JMS permits an administrator to configure JMS to override the client-specified value for
JMSDeliveryMode.

• JMSMessageID

This field uniquely identifies a message in a provider. All message IDs must begin with the
string ID:. It is a String type set by JMS after the Send method has completed.

• JMSTimeStamp

This field contains the time the message was handed over to the provider to be sent. This
maps to Oracle Database Advanced Queuing message enqueue time. It is a Long type set
by JMS after the Send method has completed.

• JMSCorrelationID

This field can be used by a client to link one message with another. It is a String type set
by the JMS client.

• JMSReplyTo

This field contains a Destination type supplied by a client when a message is sent.
Clients can use oracle.jms.AQjmsAgent; javax.jms.Queue; or javax.jms.Topic.

• JMSType

This field contains a message type identifier supplied by a client at send time. It is a String
type. For portability Oracle recommends that the JMSType be symbolic values.

• JMSExpiration

This field is the sum of the enqueue time and the TimeToLive in non-Java EE compliance
mode. In compliant mode, the JMSExpiration header value in a dequeued message is the
sum of JMSTimeStamp when the message was enqueued (Greenwich Mean Time, in
milliseconds) and the TimeToLive (in milliseconds). It is a Long type set by JMS after the
Send method has completed. JMS permits an administrator to configure JMS to override
the client-specified value for JMSExpiration.

• JMSPriority

This field contains the priority of the message. It is a INTEGER set by JMS after the Send
method has completed. In Java EE-compliance mode, the permitted values for priority are
0–9, with 9 the highest priority and 4 the default, in conformance with the Sun Microsystem
JMS 1.1 standard. Noncompliant mode is the default. JMS permits an administrator to
configure JMS to override the client-specified value for JMSPriority.

• JMSRedelivered

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 133

This field is a Boolean set by the JMS provider.

See Also

"Java EE Compliance"

JMS Message Properties
JMS properties are set either explicitly by the client or automatically by the JMS provider (these
are generally read-only). Some JMS properties are set using the parameters specified in Send
and Receive operations.

Properties add optional header fields to a message. Properties allow a client, using a
messageSelector, to have a JMS provider select messages on its behalf using application-
specific criteria. Property names are strings and values can be: Boolean, byte, short, int,
long, float, double, and string.

JMS-defined properties, which all begin with "JMSX", include the following:

• JMSXUserID

This field is the identity of the user sending the message. It is a String type set by JMS
after the Send method has completed.

• JMSXAppID

This field is the identity of the application sending the message. It is a String type set by
JMS after the Send method has completed.

• JMSXDeliveryCount

This field is the number of message delivery attempts. It is an Integer set by JMS after the
Send method has completed.

• JMSXGroupid

This field is the identity of the message group that this message belongs to. It is a String
type set by the JMS client.

• JMSXGroupSeq

This field is the sequence number of a message within a group. It is an Integer set by the
JMS client.

• JMSXRcvTimeStamp

This field is the time the message was delivered to the consumer (dequeue time). It is a
String type set by JMS after the Receive method has completed.

• JMSXState

This field is the message state, set by the provider. The message state can be WAITING,
READY, EXPIRED, or RETAINED.

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the following:

• JMS_OracleExcpQ

This field is the queue name to send the message to if it cannot be delivered to the original
destination. It is a String type set by the JMS client. Only destinations of type EXCEPTION
can be specified in the JMS_OracleExcpQ property.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 133

• JMS_OracleDelay

This field is the time in seconds to delay the delivery of the message. It is an Integer set
by the JMS client. This can affect the order of message delivery.

• JMS_OracleOriginalMessageId

This field is set to the message identifier of the message in the source if the message is
propagated from one destination to another. It is a String type set by the JMS provider. If
the message is not propagated, then this property has the same value as JMSMessageId.

A client can add additional header fields to a message by defining properties. These properties
can then be used in a messageSelector to select specific messages.

JMS Message Bodies
JMS provides five forms of message body:

• StreamMessage

• BytesMessage

• MapMessage

• TextMessage

• ObjectMessage

• AdtMessage

StreamMessage
A StreamMessage object is used to send a stream of Java primitives. It is filled and read
sequentially. It inherits from Message and adds a StreamMessage body. Its methods are based
largely on those found in java.io.DataInputStream and java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type. They can also
be read or written generically as objects. To use StreamMessage objects, create the queue
table with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE payload types.

StreamMessage objects support the conversions shown in Table 6-1. A value written as the row
type can be read as the column type.

Table 6-1 StreamMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 133

BytesMessage
A BytesMessage object is used to send a message containing a stream of uninterpreted bytes.
It inherits Message and adds a BytesMessage body. The receiver of the message interprets the
bytes. Its methods are based largely on those found in java.io.DataInputStream and
java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible, one of the
other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can also be
written generically as objects. To use BytesMessage objects, create the queue table with
SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

MapMessage
A MapMessage object is used to send a set of name-value pairs where the names are String
types, and the values are Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined. It inherits from Message and adds a
MapMessage body. The primitive types can be read or written explicitly using methods for each
type. They can also be read or written generically as objects.

To use MapMessage objects, create the queue table with the SYS.AQ$_JMS_MAP_MESSAGE or
AQ$_JMS_MESSAGE payload types. MapMessage objects support the conversions shown in
Table 6-2. An "X" in the table means that a value written as the row type can be read as the
column type.

Table 6-2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

TextMessage
A TextMessage object is used to send a message containing a java.lang.StringBuffer. It
inherits from Message and adds a TextMessage body. The text information can be read or
written using methods getText() and setText(...). To use TextMessage objects, create the
queue table with the SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 133

ObjectMessage
An ObjectMessage object is used to send a message that contains a serializable Java object. It
inherits from Message and adds a body containing a single Java reference. Only serializable
Java objects can be used. If a collection of Java objects must be sent, then one of the
collection classes provided in JDK 1.4 can be used. The objects can be read or written using
the methods getObject() and setObject(...).To use ObjectMessage objects, create the queue
table with the SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

AdtMessage
An AdtMessage object is used to send a message that contains a Java object that maps to an
Oracle object type. These objects inherit from Message and add a body containing a Java
object that implements the CustomDatum or ORAData interface.

To use AdtMessage objects, create the queue table with payload type as the Oracle object type.
The AdtMessage payload can be read and written using the getAdtPayload and setAdtPayload
methods.

You can also use an AdtMessage object to send messages to queues of type SYS.XMLType. You
must use the oracle.xdb.XMLType class to create the message.

For AdtMessage objects, the client can get:

• JMSXDeliveryCount

• JMSXRecvTimeStamp

• JMSXState

• JMS_OracleExcpQ

• JMS_OracleDelay

See Also

Oracle Database Java Developer's Guide for information about the CustomDatum and
ORAData interfaces

Using Message Properties with Different Message Types
The following message properties can be set by the client using the setProperty call. For
StreamMessage, BytesMessage, ObjectMessage, TextMessage, and MapMessage objects, the
client can set:

• JMSXAppID

• JMSXGroupID

• JMSXGroupSeq

• JMS_OracleExcpQ

• JMS_OracleDelay

For AdtMessage objects, the client can set:

• JMS_OracleExcpQ

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 133

• JMS_OracleDelay

The following message properties can be obtained by the client using the getProperty call.
For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and MapMessage objects, the
client can get:

• JMSXuserID

• JMSXAppID

• JMSXDeliveryCount

• JMSXGroupID

• JMSXGroupSeq

• JMSXRecvTimeStamp

• JMSXState

• JMS_OracleExcpQ

• JMS_OracleDelay

• JMS_OracleOriginalMessageID

Buffered Messaging with Oracle JMS
Users can send a nonpersistent JMS message by specifying the deliveryMode to be
NON_PERSISTENT when sending a message. JMS nonpersistent messages are not required to
be logged to stable storage, so they can be lost after a JMS system failure. JMS nonpersistent
messages are similar to the buffered messages available in Oracle Database Advanced
Queuing, but there are also important differences between the two.

Note

Do not confuse Oracle JMS nonpersistent messages with Oracle Database Advanced
Queuing nonpersistent queues, which are deprecated in Oracle Database 10g
Release 2 (10.2).

See Also

• "Buffered Messaging"

• Nonpersistent Queues

Transaction Commits and Client Acknowledgments

The JMS deliveryMode is orthogonal to the transaction attribute of a message. JMS
nonpersistent messages can be sent and received by either a transacted session or a
nontransacted session. If a JMS nonpersistent message is sent and received by a transacted
session, then the effect of the JMS operation is only visible after the transacted session
commits. If it is received by a nontransacted session with CLIENT_ACKNOWLEDGE
acknowledgment mode, then the effect of receiving this message is only visible after the client
acknowledges the message. Without the acknowledgment, the message is not removed and
will be redelivered if the client calls Session.recover.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 133

Oracle Database Advanced Queuing buffered messages, however, do not support these
transaction or acknowledgment concepts. Both sending and receiving a buffered message
must be in the IMMEDIATE visibility mode. The effects of the sending and receiving operations
are therefore visible to the user immediately, no matter whether the session is committed or the
messages are acknowledged.

Different APIs

Messages sent with the regular JMS send and publish methods are treated by Oracle
Database Advanced Queuing as persistent messages. The regular JMS receive methods
receive only AQ persistent messages. To send and receive buffered messages, you must use
the Oracle extension APIs bufferSend, bufferPublish, and bufferReceive.

See Also

Oracle Database Advanced Queuing Java API Reference for more information on
bufferSend, bufferPublish, and bufferReceive

Payload Limits

The Oracle Database Advanced Queuing implementation of buffered messages does not
support LOB attributes. This places limits on the payloads for the five types of standard JMS
messages:

• JMS TextMessage payloads cannot exceed 4000 bytes.

This limit might be even lower with some database character sets, because during the
Oracle JMS character set conversion, Oracle JMS sometimes must make a conservative
choice of using CLOB instead of VARCHAR to store the text payload in the database.

• JMS BytesMessage payloads cannot exceed 2000 bytes.

• JMS ObjectMessage, StreamMessage, and MapMessage data serialized by JAVA cannot
exceed 2000 bytes.

• For all other Oracle JMS ADT messages, the corresponding Oracle database ADT cannot
contain LOB attributes.

Different Constants

The Oracle Database Advanced Queuing and Oracle JMS APIs use different numerical values
to designate buffered and persistent messages, as shown in Table 6-3.

Table 6-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants

API Persistent Message Buffered Message

Oracle Database Advanced
Queuing

PERSISTENT := 1 BUFFERED :=2

Oracle JMS PERSISTENT := 2 NON_PERSISTENT := 1

Buffered Messaging in JMS
Buffered messaging fully supports JMS messaging standards. Oracle JMS extends those
standards in several ways.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 133

See Also

"Buffered Messaging"

Enqueuing JMS Buffered Messages

Oracle JMS allows applications to send buffered messages by setting JMSDeliveryMode for
individual messages, so persistent and buffered messages can be enqueued to the same JMS
queue/topic.

Oracle JMS buffered messages can be ordered by enqueue time, priority, or both. The ordering
does not extend across message types. So a persistent message sent later, for example, can
be delivered before an buffered message sent earlier. Expiration is also supported for buffered
messages in Oracle JMS.

See Also

"JMS Message Headers"

Dequeuing JMS Buffered Messages

JMS does not require subscribers to declare interest in just persistent messages or just
buffered messages, so JMS subscribers can be interested in both message types.

Oracle JMS supports fast and efficient dequeue of messages by JMSMessageID, selectors on
message headers, and selectors on message properties. The Oracle JMS dequeue call checks
for both persistent and buffered messages.

Note

Oracle JMS persistent messages have unique message identifiers. Oracle JMS
buffered message identifiers are unique only within a queue/topic.

If concurrent dequeue processes are dequeuing from the same queue as the same subscriber,
then they will skip messages that are locked by the other process.

See Also

• "MessageSelector"

• "Receiving Messages "

Transactions Support

If buffered messages are enqueued in a transacted session, then JMS requires transaction
support for them. Oracle JMS guarantees that transacted sessions involving buffered
messages meet the following standards:

• Atomicity

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 133

Both persistent and buffered messages within an Oracle JMS transaction are committed or
rolled back atomically. Even if buffered messages were written to disk, as in the case of
messages involving LOBs, rollback nevertheless removes them.

• Consistency

If persistent and buffered messaging operations interleave in a transaction, then all Oracle
JMS users share a consistent view of the affected queues/topics. All persistent and
buffered messages enqueued by a transaction become visible at commit time. If a process
ends in the middle of a transaction, then both persistent and buffered messages are
undone. Oracle JMS users see either all persistent and buffered messages in a transaction
or none of them.

• Isolation

An buffered enqueue operation in a transaction is visible only to the owner transaction
before the transaction is committed. It is visible to all consumers after the transaction is
committed.

Messages locked by dequeue transaction may be browsed.

Acknowledging Message Receipt

Three values are defined for the ack_mode parameter for acknowledging message receipt in
nontransacted sessions:

• DUPS_OK_ACKNOWLEDGE

In this mode, duplicate messages are allowed.

• AUTO_ACKNOWLEDGE

In this mode, the session automatically acknowledges messages.

• CLIENT_ACKNOWLEDGE

In this mode, the client explicitly acknowledges messages by calling the message producer
acknowledge method. Acknowledging a message acknowledges all previously consumed
messages.

See Also

"Creating a Session"

Buffered Messaging Quality of Service

JMS requires providers to support at-most-once delivery of unpropagated buffered messages.
If recovery of buffered messages is disabled, then Oracle JMS meets this standard.

Duplicate delivery of messages is possible with the current implementation of message
propagation. But this does not violate the JMS standard, because message propagation is an
extension offered by Oracle JMS.

See Also

"Propagating Buffered Messages" for the causes of duplicate delivery of buffered
messages

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 133

JMS Types Support for Buffered Messages

Oracle JMS maps the JMS-defined types to Oracle user-defined types and creates queues of
these user-defined types for storing JMS messages. Some of these types have LOB attributes,
which Oracle JMS writes to disk whether the message is persistent or buffered.

The user-defined type SYS.AQ$_JMS_TEXT_MESSAGE for JMS type JMSTextMessage, for example,
stores text strings smaller than 4k in a VARCHAR2 column. But it has a CLOB attribute for storing
text strings larger than 4k.

Because JMS messages are often larger than 4k, Oracle JMS offers a new ADT that allows
larger messages to be stored in memory. The disk representation of the ADT remains
unchanged, but several VARCHAR2/RAW attributes allow for JMS messages of sizes up to 100k to
be stored in memory. Messages larger than 100k can still be published as buffered messages,
but they are written to disk.

See Also

"Enqueuing Buffered Messages"

JMS Point-to-Point Model Features
In the point-to-point model, clients exchange messages from one point to another. Message
producers and consumers send and receive messages using single-consumer queues. An
administrator creates the single-consumer queues with the createQueue method in
AQjmsSession. Before they can be used, the queues must be enabled for enqueue/dequeue
using the start call in AQjmsDestination. Clients obtain a handle to a previously created
queue using the getQueue method on AQjmsSession.

In a single-consumer queue, a message can be consumed exactly once by a single consumer.
If there are multiple processes or operating system threads concurrently dequeuing from the
same queue, then each process dequeues the first unlocked message at the head of the
queue. A locked message cannot be dequeued by a process other than the one that has
created the lock.

After processing, the message is removed if the retention time of the queue is 0, or it is
retained for a specified retention time. As long as the message is retained, it can be either
queried using SQL on the queue table view or dequeued by specifying the message identifier
of the processed message in a QueueBrowser.

QueueSender

A client uses a QueueSender to send messages to a queue. It is created by passing a queue to
the createSender method in a client Session. A client also has the option of creating a
QueueSender without supplying a queue. In that case a queue must be specified on every send
operation.

A client can specify a default delivery mode, priority and TimeToLive for all messages sent by
the QueueSender. Alternatively, the client can define these options for each message.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 133

QueueReceiver

A client uses a QueueReceiver to receive messages from a queue. It is created using the
createQueueReceiver method in a client Session. It can be created with or without a
messageSelector.

QueueBrowser

A client uses a QueueBrowser to view messages on a queue without removing them. The
browser method returns a java.util.Enumeration that is used to scan messages in the queue.
The first call to nextElement gets a snapshot of the queue. A QueueBrowser can be created
with or without a messageSelector.

A QueueBrowser can also optionally lock messages as it is scanning them. This is similar to a
"SELECT... for UPDATE" command on the message. This prevents other consumers from
removing the message while they are being scanned.

MessageSelector

A messageSelector allows the client to restrict messages delivered to the consumer to those
that match the messageSelector expression. A messageSelector for queues containing
payloads of type TextMessage, StreamMessage, BytesMessage, ObjectMessage, or MapMessage
can contain any expression that has one or more of the following:

• JMS message identifier prefixed with "ID:"

JMSMessageID ='ID:23452345'

• JMS message header fields or properties

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

JMSCorrelationID LIKE 'RE%'

• User-defined message properties

color IN ('RED', BLUE', 'GREEN') AND price < 30000

The messageSelector for queues containing payloads of type AdtMessage can contain any
expression that has one or more of the following:

• Message identifier without the "ID:" prefix

msgid = '23434556566767676'

• Priority, correlation identifier, or both

priority < 3 AND corrid = 'Fiction'

• Message payload

tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000

JMS Publish/Subscribe Model Features
This section contains these topics:

• JMS Publish/Subscribe Overview

• DurableSubscriber

• RemoteSubscriber

• TopicPublisher

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 133

• Recipient Lists

• TopicReceiver

• TopicBrowser

• Setting Up JMS Publish/Subscribe Operations

JMS Publish/Subscribe Overview
JMS enables flexible and dynamic communication between applications functioning as
publishers and applications playing the role of subscribers. The applications are not coupled
together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage
message recipients explicitly. This allows new subscriber applications to be added dynamically
without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content without regard
to which publisher applications are sending messages. This allows new publisher applications
to be added dynamically without changing any subscriber application logic.

Subscriber applications specify interest by defining a rule-based subscription on message
properties or the message content of a topic. The system automatically routes messages by
computing recipients for published messages using the rule-based subscriptions.

In the publish/subscribe model, messages are published to and received from topics. A topic is
created using the CreateTopic() method in an AQjmsSession. A client can obtain a handle to a
previously-created topic using the getTopic() method in AQjmsSession.

DurableSubscriber
A client creates a DurableSubscriber with the createDurableSubscriber() method in a client
Session. It can be created with or without a messageSelector.

A messageSelector allows the client to restrict messages delivered to the subscriber to those
that match the selector. The syntax for the selector is described in detail in
createDurableSubscriber in Oracle Database Advanced Queuing Java API Reference.

When subscribers use the same name, durable subscriber action depends on the Java EE
compliance mode set for an Oracle Java Message Service (Oracle JMS) client at runtime.

In noncompliant mode, two durable TopicSubscriber objects with the same name can be
active against two different topics. In compliant mode, durable subscribers with the same name
are not allowed. If two subscribers use the same name and are created against the same topic,
but the selector used for each subscriber is different, then the underlying Oracle Database
Advanced Queuing subscription is altered using the internal DBMS_AQJMS.ALTER_SUBSCRIBER()
call.

If two subscribers use the same name and are created against two different topics, and if the
client that uses the same subscription name also originally created the subscription name, then
the existing subscription is dropped and the new subscription is created.

If two subscribers use the same name and are created against two different topics, and if a
different client (a client that did not originate the subscription name) uses an existing
subscription name, then the subscription is not dropped and an error is thrown. Because it is
not known if the subscription was created by JMS or PL/SQL, the subscription on the other
topic should not be dropped.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 133

See Also

• "MessageSelector"

• "Java EE Compliance"

RemoteSubscriber
Remote subscribers are defined using the createRemoteSubscriber call. The remote
subscriber can be a specific consumer at the remote topic or all subscribers at the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent consists of a
name and address. The name refers to the consumer_name at the remote topic. The address
refers to the remote topic:

schema.topic_name[@dblink]

To publish messages to a particular consumer at the remote topic, the subscription_name of
the recipient at the remote topic must be specified in the name field of AQjmsAgent. The remote
topic must be specified in the address field of AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of AQjmsAgent must
be set to null. The remote topic must be specified in the address field of AQjmsAgent.

TopicPublisher
Messages are published using TopicPublisher, which is created by passing a Topic to a
createPublisher method. A client also has the option of creating a TopicPublisher without
supplying a Topic. In this case, a Topic must be specified on every publish operation. A client
can specify a default delivery mode, priority and TimeToLive for all messages sent by the
TopicPublisher. It can also specify these options for each message.

Recipient Lists
In the JMS publish/subscribe model, clients can specify explicit recipient lists instead of having
messages sent to all the subscribers of the topic. These recipients may or may not be existing
subscribers of the topic. The recipient list overrides the subscription list on the topic for this
message. Recipient lists functionality is an Oracle extension to JMS.

TopicReceiver
If the recipient name is explicitly specified in the recipient list, but that recipient is not a
subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver. If the subscriber name is not specified, then clients must use durable
subscribers at the remote site to receive messages. TopicReceiver is an Oracle extension to
JMS.

A TopicReceiver can be created with a messageSelector. This allows the client to restrict
messages delivered to the recipient to those that match the selector.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 133

See Also

"MessageSelector"

TopicBrowser
A client uses a TopicBrowser to view messages on a topic without removing them. The
browser method returns a java.util.Enumeration that is used to scan topic messages. Only
durable subscribers are allowed to create a TopicBrowser. The first call to nextElement gets a
snapshot of the topic.

A TopicBrowser can optionally lock messages as it is scanning them. This is similar to a
SELECT... for UPDATE command on the message. This prevents other consumers from
removing the message while it is being scanned.

A TopicBrowser can be created with a messageSelector. This allows the client to restrict
messages delivered to the browser to those that match the selector.

TopicBrowser supports a purge feature. This allows a client using a TopicBrowser to discard
all messages that have been seen during the current browse operation on the topic. A purge is
equivalent to a destructive receive of all of the seen messages (as if performed using a
TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a call to
the nextElement() operation on the java.lang.Enumeration for the TopicBrowser. Messages
that have not yet been seen by the client are not discarded during a purge. A purge operation
can be performed multiple times on the same TopicBrowser.

The effect of a purge becomes stable when the JMS Session used to create the TopicBrowser
is committed. If the operations on the session are rolled back, then the effects of the purge
operation are also undone.

See Also

• "Creating a TopicBrowser for Standard JMS Messages"

• "Creating a TopicBrowser for Standard JMS Messages_ Locking Messages"

• "MessageSelector"

• "Browsing Messages Using a TopicBrowser"

Setting Up JMS Publish/Subscribe Operations
Follow these steps to use the publish/subscribe model of communication in JMS:

1. Set up one or more topics to hold messages. These topics represent an area or subject of
interest. For example, a topic can represent billed orders.

2. Enable enqueue/dequeue on the topic using the start call in AQjmsDestination.

3. Create a set of durable subscribers. Each subscriber can specify a messageSelector that
selects the messages that the subscriber wishes to receive. A null messageSelector
indicates that the subscriber wishes to receive all messages published on the topic.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 133

Subscribers can be local or remote. Local subscribers are durable subscribers defined on
the same topic on which the message is published. Remote subscribers are other topics,
or recipients on other topics that are defined as subscribers to a particular queue. In order
to use remote subscribers, you must set up propagation between the source and
destination topics. Remote subscribers and propagation are Oracle extensions to JMS.

See Also

"Managing Propagations"

4. Create TopicPublisher objects using the createPublisher() method in the publisher
Session. Messages are published using the publish call. Messages can be published to
all subscribers to the topic or to a specified subset of recipients on the topic.

5. Subscribers receive messages on the topic by using the receive method.

6. Subscribers can also receive messages asynchronously by using message listeners.

See Also

"Listening to One or More Queues"

JMS Message Producer Features
• Priority and Ordering of Messages

• Specifying a Message Delay

• Specifying a Message Expiration

• Message Grouping

Priority and Ordering of Messages
Message ordering dictates the order in which messages are received from a queue or topic.
The ordering method is specified when the queue table for the queue or topic is created.
Currently, Oracle Database Advanced Queuing supports ordering on message priority and
enqueue time, producing four possible ways of ordering:

• First-In, First-Out (FIFO)

If enqueue time was chosen as the ordering criteria, then messages are received in the
order of the enqueue time. The enqueue time is assigned to the message by Oracle
Database Advanced Queuing at message publish/send time. This is also the default
ordering.

• Priority Ordering

If priority ordering was chosen, then each message is assigned a priority. Priority can be
specified as a message property at publish/send time by the MessageProducer. The
messages are received in the order of the priorities assigned.

• FIFO Priority

If FIFO priority ordering was chosen, then the topic/queue acts like a priority queue. If two
messages are assigned the same priority, then they are received in the order of their
enqueue time.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 133

• Enqueue Time Followed by Priority

Messages with the same enqueue time are received according to their priorities. If the
ordering criteria of two message is the same, then the order they are received is
indeterminate. However, Oracle Database Advanced Queuing does ensure that messages
produced in one session with a particular ordering criteria are received in the order they
were sent.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and buffered
messages enqueued/published in the same session is not currently supported.

Specifying a Message Delay
Messages can be sent/published to a queue/topic with delay. The delay represents a time
interval after which the message becomes available to the message consumer. A message
specified with a delay is in a waiting state until the delay expires. Receiving by message
identifier overrides the delay specification.

Delay is an Oracle Database Advanced Queuing extension to JMS message properties. It
requires the Oracle Database Advanced Queuing background process queue monitor to be
started.

Specifying a Message Expiration
Producers of messages can specify expiration limits, or TimeToLive for messages. This
defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send/publish time or using the set TimeToLive method of a
MessageProducer, with the former overriding the latter. The Oracle Database Advanced
Queuing background process queue monitor must be running to implement TimeToLive.

Message Grouping
Messages belonging to a queue/topic can be grouped to form a set that can be consumed by
only one consumer at a time. This requires the queue/topic be created in a queue table that is
enabled for transactional message grouping. All messages belonging to a group must be
created in the same transaction, and all messages created in one transaction belong to the
same group.

Message grouping is an Oracle Database Advanced Queuing extension to the JMS
specification.

You can use this feature to divide a complex message into a linked series of simple messages.
For example, an invoice directed to an invoices queue could be divided into a header
message, followed by several messages representing details, followed by the trailer message.

Message grouping is also very useful if the message payload contains complex large objects
such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are determined solely
by the message properties specified for the first message (head) of the group. Properties
specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be enabled for
transactional grouping.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 133

See Also

"Dequeue Features" for a discussion of restrictions you must keep in mind if message
grouping is to be preserved while dequeuing messages from a queue enabled for
transactional grouping

JMS Message Consumer Features
This section contains these topics:

• Receiving Messages

• Message Navigation in Receive

• Browsing Messages

• Remove No Data

• Retry with Delay Interval

• Asynchronously Receiving Messages Using MessageListener

• Exception Queues

Receiving Messages
A JMS application can receive messages by creating a message consumer. Messages can be
received synchronously using the receive call or asynchronously using a message listener.

There are three modes of receive:

• Block until a message arrives for a consumer

• Block for a maximum of the specified time

• Nonblocking

Message Navigation in Receive
If a consumer does not specify a navigation mode, then its first receive in a session retrieves
the first message in the queue or topic, its second receive gets the next message, and so on.
If a high priority message arrives for the consumer, then the consumer does not receive the
message until it has cleared the messages that were already there before it.

To provide the consumer better control in navigating the queue for its messages, Oracle
Database Advanced Queuing offers several navigation modes as JMS extensions. These
modes can be set at the TopicSubscriber, QueueReceiver or the TopicReceiver.

Two modes are available for ungrouped messages:

• FIRST_MESSAGE

This mode resets the position to the beginning of the queue. It is useful for priority ordered
queues, because it allows the consumer to remove the message on the top of the queue.

• NEXT_MESSAGE

This mode gets whatever message follows the established position of the consumer. For
example, a NEXT_MESSAGE applied when the position is at the fourth message will get the
fifth message in the queue. This is the default action.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 133

Three modes are available for grouped messages:

• FIRST_MESSAGE

This mode resets the position to the beginning of the queue.

• NEXT_MESSAGE

This mode sets the position to the next message in the same transaction.

• NEXT_TRANSACTION

This mode sets the position to the first message in the next transaction.

Note

Transactional event queues do not support the three preceding modes.

The transaction grouping property can be negated if messages are received in the following
ways:

• Receive by specifying a correlation identifier in the selector

• Receive by specifying a message identifier in the selector

• Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or
NEXT_TRANSACTION option, and you have specified a blocking receive(), then the navigating
position is automatically changed to the beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses FIRST_MESSAGE for the
first receive call, and NEXT_MESSAGE for subsequent receive() calls.

Browsing Messages
Aside from the usual receive, which allows the dequeuing client to delete the message from
the queue, JMS provides an interface that allows the JMS client to browse its messages in the
queue. A QueueBrowser can be created using the createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. That does not
necessarily mean that the message will remain available to the JMS session after it is
browsed, because a receive call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you can view
the message in the locked mode. To do this, you must create a QueueBrowser with the locked
mode using the Oracle Database Advanced Queuing extension to the JMS interface. The lock
on the message is released when the session performs a commit or a rollback.

To remove a message viewed by a QueueBrowser, the session must create a QueueReceiver
and use the JMSmesssageID as the selector.

Remove No Data
The consumer can remove a message from a queue or topic without retrieving it using the
receiveNoData call. This is useful when the application has already examined the message,
perhaps using a QueueBrowser. This mode allows the JMS client to avoid the overhead of
retrieving a payload from the database, which can be substantial for a large message.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 133

Retry with Delay Interval
If a transaction receiving a message from a queue/topic fails, then it is regarded as an
unsuccessful attempt to remove the message. Oracle Database Advanced Queuing records
the number of failed attempts to remove the message in the message history.

An application can specify the maximum number of retries supported on messages at the
queue/topic level. If the number of failed attempts to remove a message exceeds this
maximum, then the message is moved to an exception queue.

Oracle Database Advanced Queuing allows users to specify a retry_delay along with
max_retries. This means that a message that has undergone a failed attempt at retrieving
remains visible in the queue for dequeue after retry_delay interval. Until then it is in the
WAITING state. The Oracle Database Advanced Queuing background process time manager
enforces the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be set when
the queue/topic is created or by using the alter method on the queue/topic. The default value
for MAX_RETRIES is 5.

Note

Transactional event queues do not support retry delay.

Asynchronously Receiving Messages Using MessageListener
The JMS client can receive messages asynchronously by setting the MessageListener using
the setMessageListener method.

When a message arrives for the consumer, the onMessage method of the message listener is
invoked with the message. The message listener can commit or terminate the receipt of the
message. The message listener does not receive messages if the JMS Connection has been
stopped. The receive call must not be used to receive messages once the message listener
has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session by
setting the MessageListener at the session. No other mode for receiving messages must be
used in the session once the message listener has been set.

Exception Queues
An exception queue is a repository for all expired or unserviceable messages. Applications
cannot directly enqueue into exception queues. However, an application that intends to handle
these expired or unserviceable messages can receive/remove them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-point
interface. The exception queue for messages intended for a topic must be created in a queue
table with multiple consumers enabled. Like any other queue, the exception queue must be
enabled for receiving messages using the start method in the AQOracleQueue class. You get
an exception if you try to enable it for enqueue.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 133

Transactional event queues (TxEventQ) support exception queues through the
DBMS_AQADM.CREATE_EQ_EXCEPTION_QUEUE API.

 PROCEDURE CREATE_EQ_EXCEPTION_QUEUE(
 queue_name IN VARCHAR2,
 exception_queue_name IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL
);

The exception queue is an Oracle-specific message property called "JMS_OracleExcpQ" that
can be set with the message before sending/publishing it. If an exception queue is not
specified, then the default exception queue is used. For AQ queues, the default exception
queue is automatically created when the queue table is created and is named
AQ$_queue_table_name_E. By default, no exception queue is created for TxEventQs.

Messages are moved to the exception queue under the following conditions:

• The message was not dequeued within the specified timeToLive.

For messages intended for more than one subscriber, the message is moved to the
exception queue if one or more of the intended recipients is not able to dequeue the
message within the specified timeToLive.

• The message was received successfully, but the application terminated the transaction that
performed the receive because of an error while processing the message. The message
is returned to the queue/topic and is available for any applications that are waiting to
receive messages.

A receive is considered rolled back or undone if the application terminates the entire
transaction, or if it rolls back to a savepoint that was taken before the receive.

Because this was a failed attempt to receive the message, its retry count is updated. If the
retry count of the message exceeds the maximum value specified for the queue/topic
where it resides, then it is moved to the exception queue.

If a message has multiple subscribers, then the message is moved to the exception queue
only when all the recipients of the message have exceeded the retry limit.

Note

If a dequeue transaction failed because the server process died (including ALTER
SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not
incremented.

JMS Propagation
This section contains these topics:

• RemoteSubscriber

• Scheduling Propagation

• Enhanced Propagation Scheduling Capabilities

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 133

• Exception Handling During Propagation

Note

TxEventQ queues do not support RemoteSubscriber, Scheduling Propagation,
Enhanced Propagation Scheduling Capabilities, and Exception Handling During
Propagation.

RemoteSubscriber
Oracle Database Advanced Queuing allows a subscriber at another database to subscribe to a
topic. If a message published to the topic meets the criterion of the remote subscriber, then it is
automatically propagated to the queue/topic at the remote database specified for the remote
subscriber. Propagation is performed using database links and Oracle Net Services. This
enables applications to communicate with each other without having to be connected to the
same database.

There are two ways to implement remote subscribers:

• The createRemoteSubscriber method can be used to create a remote subscriber to/on the
topic. The remote subscriber is specified as an instance of the class AQjmsAgent.

• The AQjmsAgent has a name and an address. The address consists of a queue/topic and
the database link to the database of the subscriber.

There are two kinds of remote subscribers:

• The remote subscriber is a topic.

This occurs when no name is specified for the remote subscriber in the AQjmsAgent object
and the address is a topic. The message satisfying the subscriber's subscription is
propagated to the remote topic. The propagated message is now available to all the
subscriptions of the remote topic that it satisfies.

• A specific remote recipient is specified for the message.

The remote subscription can be for a particular consumer at the remote database. If the
name of the remote recipient is specified (in the AQjmsAgent object), then the message
satisfying the subscription is propagated to the remote database for that recipient only. The
recipient at the remote database uses the TopicReceiver interface to retrieve its
messages. The remote subscription can also be for a point-to-point queue.

Scheduling Propagation
Propagation must be scheduled using the schedule_propagation method for every topic from
which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated from the
source topic. This time frame can depend on several factors such as network traffic, the load at
the source database, the load at the destination database, and so on. The schedule therefore
must be tailored for the specific source and destination. When a schedule is created, a job is
automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for managing the
schedules. The duration or propagation window parameter of a schedule specifies the time
frame during which propagation must take place. If the duration is unspecified, then the time
frame is an infinite single window. If a window must be repeated periodically, then a finite

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 133

duration is specified along with a next_time function that defines the periodic interval between
successive windows.

The propagation schedules defined for a queue can be changed or dropped at any time during
the life of the queue. In addition there are calls for temporarily disabling a schedule (instead of
dropping the schedule) and enabling a disabled schedule. A schedule is active when
messages are being propagated in that schedule. All the administrative calls can be made
irrespective of whether the schedule is active or not. If a schedule is active, then it takes a few
seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job queue
processes must be started. The database links to the destination database must also be valid.
The source and destination topics of the propagation must be of the same message type. The
remote topic must be enabled for enqueue. The user of the database link must also have
enqueue privileges to the remote topic.

See Also

"Scheduling a Propagation"

Enhanced Propagation Scheduling Capabilities
Catalog views defined for propagation provide the following information about active
schedules:

• Name of the background process handling the schedule

• SID (session and serial number) for the session handling the propagation

• Instance handling a schedule (if using Oracle RAC)

• Previous successful execution of a schedule

• Next planned execution of a schedule

The following propagation statistics are maintained for each schedule, providing useful
information to queue administrators for tuning:

• The total number of messages propagated in a schedule

• Total number of bytes propagated in a schedule

• Maximum number of messages propagated in a window

• Maximum number of bytes propagated in a window

• Average number of messages propagated in a window

• Average size of propagated messages

• Average time to propagated a message

Propagation has built-in support for handling failures and reporting errors. For example, if the
database link specified is invalid, or if the remote database is unavailable, or if the remote
topic/queue is not enabled for enqueuing, then the appropriate error message is reported.
Propagation uses an exponential backoff scheme for retrying propagation from a schedule that
encountered a failure. If a schedule continuously encounters failures, then the first retry
happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so
forth. If the retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts are made after
which the schedule is automatically disabled.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 133

Note

Once a retry attempt slips to the next propagation window, it will always do so; the
exponential backoff scheme no longer governs retry scheduling. If the date function
specified in the next_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results
in a short interval between windows, then the number of unsuccessful retry attempts
can quickly reach 16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is written
into the alert log. It is possible to check at any time if there were failures encountered by a
schedule and if so how many successive failures were encountered, the error message
indicating the cause for the failure and the time at which the last failure was encountered. By
examining this information, an administrator can fix the failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.

Propagation has built-in support for Oracle Real Application Clusters and is transparent to the
user and the administrator. The job that handles propagation is submitted to the same instance
as the owner of the queue table where the source topic resides. If at any time there is a failure
at an instance and the queue table that stores the topic is migrated to a different instance, then
the propagation job is also automatically migrated to the new instance. This minimizes the
pinging between instances and thus offers better performance. Propagation has been
designed to handle any number of concurrent schedules.

The number of job_queue_processes is limited to a maximum of 1000 and some of these can
be used to handle jobs unrelated to propagation. Hence, propagation has built in support for
multitasking and load balancing. The propagation algorithms are designed such that multiple
schedules can be handled by a single snapshot (job_queue) process. The propagation load on
a job_queue processes can be skewed based on the arrival rate of messages in the different
source topics. If one process is overburdened with several active schedules while another is
less loaded with many passive schedules, then propagation automatically redistributes the
schedules among the processes such that they are loaded uniformly.

Exception Handling During Propagation
When a system error such as a network failure occurs, Oracle Database Advanced Queuing
continues to attempt to propagate messages using an exponential back-off algorithm. In some
situations that indicate application errors in queue-to-dblink propagations, Oracle Database
Advanced Queuing marks messages as UNDELIVERABLE and logs a message in alert.log.
Examples of such errors are when the remote queue does not exist or when there is a type
mismatch between the source queue and the remote queue. The trace files in the
background_dump_dest directory can provide additional information about the error.

When a new job queue process starts, it clears the mismatched type errors so the types can
be reverified. If you have capped the number of job queue processes and propagation remains
busy, then you might not want to wait for the job queue process to terminate and restart.
Queue types can be reverified at any time using DBMS_AQADM.VERIFY_QUEUE_TYPES.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 133

Note

When a type mismatch is detected in queue-to-queue propagation, propagation stops
and throws an error. In such situations you must query the DBA_SCHEDULES view to
determine the last error that occurred during propagation to a particular destination.
The message is not marked as UNDELIVERABLE.

Message Transformation with JMS AQ
A transformation can be defined to map messages of one format to another. Transformations
are useful when applications that use different formats to represent the same information must
be integrated. Transformations can be SQL expressions and PL/SQL functions. Message
transformation is an Oracle Database Advanced Queuing extension to the standard JMS
interface.

The transformations can be created using the DBMS_TRANSFORM.create_transformation
procedure. Transformation can be specified for the following operations:

• Sending a message to a queue or topic

• Receiving a message from a queue or topic

• Creating a TopicSubscriber

• Creating a RemoteSubscriber. This enables propagation of messages between topics of
different formats.

Note

TxEventQ does not support message transformation.

JMS Streaming
AQ JMS supports streaming with enqueue and dequeue for TxEventQ through
AQjmsBytesMessage and AQjmsStreamMessage for applications to send and receive large
message data or payload.

JMS streaming reduces the memory requirement when dealing with large messages, by
dividing the message payload into small chunks rather than sending or receiving a large
contiguous array of bytes. As JMS standard does not have any streaming mechanism, AQ
JMS will provide proprietary interfaces to expose AQ streaming enqueue and dequeue
features. This allows users to easily use an existing java input output stream to send and
receive message data or payload.

In order to allow the existing applications to work without any changes on upgrading database
to RDBMS 12.2, the streaming APIs will be disabled by default.

The client application can enable JMS Streaming by using the system property
oracle.jms.useJmsStreaming set to true.

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 133

Note

JMS Streaming is supported only for thin drivers.

JMS Streaming with Enqueue
AQ JMS provides the new API setInputStream(java.io.InputStream) in AQjmsBytesMessage
and AQjmsStreamMessage, to set an input stream for message data.

 /**
 * @param inputStream - InputStream to read the message payload
 * @throws JMSException - if the JMS provided fails to read the payload due to
 * some internal error
 */
 public void setInputStream(InputStream inputStream) throws JMSException

The following code snippet creates a message of type AQjmsBytesMessage and sets a
FileInputStream for the message data.

 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
 Destination destination = session.createQueue("queueName");
 MessageProducer producer = session.createProducer(destination);

 AQjmsBytesMessage bytesMessage = (AQjmsBytesMessage)session.createBytesMessage();
 InputStream input = new FileInputStream("somefile.data");
 bytesMessage.setInputStream(input);
 producer.send(bytesMessage);

Note

• The methods in BytesMessage and StreamMessage are based on the methods
found in java.io.DataInputStream and java.io.DataOutputStream, and hence,
meaningful conversion of various read*() and write*() methods is not possible
with streaming. The following scenarios will result in an exception:

– bytesMessage.setInputStream(input);

bytesMessage.writeInt(99);

– bytesMessage.writeInt(99);

bytesMessage.setInputStream(input);

• As with normal enqueue operation, the enqueue with streaming is going to be a
synchronous one and we will return the control to the client only after the enqueue
is complete.

• Streaming will be used with enqueue only when these APIs are explicitly used by
the client. AQ JMS will not use streaming with enqueue with the normal enqueue,
irrespective of the size of the message data.

JMS Streaming with Dequeue
The dequeue operation with streaming is achieved in two steps. The server decides whether to
stream the message body or not based on the size of the message body. The default threshold

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 133

limit is 10 MB. So when the message body is greater than 10MB and streaming is enabled by
the client using the system property oracle.jms.useJmsStreaming, server will use streaming
with dequeue.

• This is the normal dequeue process where a client calls the receive() method.

Destination destination = session.createQueue ("queueName");
AQjmsConsumer consumer = (AQjmsConsumer)
session.createConsumer(destination);
Message message = consumer.receive(10000);

• When the client receives the message without the payload, client can figure out whether
the streaming is used for dequeue by calling isLargeBody() on the received message.

 /**
 * This method can be used by the client applications to check whether the message
 * contains large messaege body and hence requires streaming with dequeue.
 *
 * @return true when the message body is large and server decides to stream
 * the payload with dequeue
 */
 public boolean isLargeBody()

A value of true returned by isLargeBody() indicates streaming with dequeue. When the
dequeue uses streaming, AQ JMS will populate the length of the message body properly
for AQjmsStreamMessage along with AQjmsBytesMessage. So the client application can call
the getBodyLength() on the message to determine the size of the payload.

 public long getBodyLength()

Once client has the understanding about the streaming with dequeue, the message data can
be fetched by using one of the following APIs on the received message.

The client application can use on the following APIs available in AQjmsBytesMessage and
AQjmsStreamMessage to receive the message data.

 /**
 * Writes the message body to the OutputStream specified.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream) throws JMSException

 /**
 * Writes the message body to the OutputStream specified, with chunkSize bytes
 * written at a time.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param chunkSize - the number of bytes to be written at a time, default value
 * 8192 (ie. 8KB)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, int chunkSize)throws
JMSException

 /**
 * Writes the message body to the OutputStream specified. This method waits until

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 133

 * the message body is written completely to the OutputStream or the timeout expires.
 *
 * A timeout of zero never expires, and a timeout of negative value is ignored.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param timeout - the timeout value (in milliseconds)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, long timeout) throws
JMSException

 /**
 * Writes the message body to the OutputStream specified, chunkSize bytes at a time.
 * This method waits until the message body is written completely to the OutputStream
 * or the timeout expires.
 *
 * A timeout of zero never expires, and a timeout of negative value is ignored.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param chunkSize - the number of bytes to be written at a time,
 * default value 8192 (ie. 8KB)
 * @param timeout - the timeout value (in milliseconds)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, int chunkSize, long timeout)
throws JMSException

The following code snippet checks whether streaming is used with dequeue and the payload
received will be written to a FileOutputStream.

 if (message instanceof BytesMessage && (AQjmsBytesMessage)message.isLargeBody()){
 // optional : check the size of the payload and take appropriate action before
 // receiving the payload.
 (AQjmsBytesMessage) message.getBody(new FileOutputStream(new File("…")));
 } else {
 // normal dequeue
 }

In general, when both the steps are complete, the message is considered as consumed
completely. The AQ server keeps a lock on the message after Step 1 which will be released
only after Step 2.

Considering the possible issues with partially consumed messages by the message
consumers, we have restricted the Streaming APIs for the session with acknowledgement
modes CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

So all the messages including partially consumed messages are considered fully consumed
when:

• message.acknowledge() is called with CLIENT_ACKNOWLEDGE session.

• Session's commit() is called in a transacted session.

As in normal case, session rollback(), rolls back the messages received in that session.

The JMS Streaming is available with the following restrictions:

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 133

• Streaming is disabled by default, and can be enabled by the client application using the
system property oracle.jms.useJmsStreaming

• Dequeue uses streaming when the size of the message data is more than the threshold
value. The default threshold value is 10 MB.

• Streaming support is available with AQjmsBytesMessage and AQjmsStreamMessage

• Streaming support is available only for TxEventQ queues

• Streaming support is available only with thin drivers

• Streaming support is not available when the message producer uses the message delivery
mode as NON_PERSISTENT

• Streaming is not supported with message listener. So when a MessageConsumer has a
message listener set and if the message data crosses threshold limit, internally we will use
the normal dequeue.

• Streaming support is available with Sessions using acknowledgement modes
CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

Java EE Compliance
Oracle JMS conforms to the Oracle Sun Microsystems JMS 1.1 standard. You can define the
Java EE compliance mode for an Oracle Java Message Service (Oracle JMS) client at runtime.
For compliance, set the Java property oracle.jms.j2eeCompliant to TRUE as a command line
option. For noncompliance, do nothing. FALSE is the default value.

Features in Oracle Database Advanced Queuing that support Java EE compliance (and are
also available in the noncompliant mode) include:

• Nontransactional sessions

• Durable subscribers

• Temporary queues and topics

• Nonpersistent delivery mode

• Multiple JMS messages types on a single JMS queue or topic (using Oracle Database
Advanced Queuing queues of the AQ$_JMS_MESSAGE type)

• The noLocal option for durable subscribers

• TxEventQ has native JMS support and conform to Java EE compliance

See Also

• Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

• "JMS Message Headers" for information on how the Java property
oracle.jms.j2eeCompliant affects JMSPriority and JMSExpiration

• "DurableSubscriber" for information on how the Java property
oracle.jms.j2eeCompliant affects durable subscribers

Chapter 6
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 133

Oracle Java Message Service Basic Operations
The following topics describe the basic operational Java Message Service (JMS)
administrative interface to Oracle Database Advanced Queuing (AQ).

• EXECUTE Privilege on DBMS_AQIN

• Registering a ConnectionFactory

• Unregistering a Queue/Topic ConnectionFactory

• Getting a QueueConnectionFactory or TopicConnectionFactory

• Getting a Queue or Topic in LDAP

• Creating an AQ Queue Table

• Creating a Queue

• Getting an AQ Queue Table

• Granting and Revoking Privileges

• Managing Destinations

• Propagation Schedules

EXECUTE Privilege on DBMS_AQIN
Users should never directly call methods in the DBMS_AQIN package, but they do need the
EXECUTE privilege on DBMS_AQIN. Use the following syntax to accomplish this:

GRANT EXECUTE ON DBMS_AQIN to user;

Registering a ConnectionFactory
You can register a ConnectionFactory four ways:

• Registering Through the Database Using JDBC Connection Parameters

• Registering Through the Database Using a JDBC URL

• Registering Through LDAP Using JDBC Connection Parameters

• Registering Through LDAP Using a JDBC URL

Registering Through the Database Using JDBC Connection Parameters
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through the
database to a Lightweight Directory Access Protocol (LDAP) server with JDBC connection
parameters. This method is static and has the following parameters:

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 133

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection factory using Java
Naming and Directory Interface (JNDI).

Example 6-1 Registering Through the Database Using JDBC Connection Parameters

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "queue_conn1", "sun-123", "db1", 1521, "thin", "queue");

Registering Through the Database Using a JDBC URL
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,
 java.lang.String jdbc_url,
 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through the
database with a JDBC URL to LDAP. It is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

jdbc_url URL to connect to

info Properties information

portno Port number

type Connection factory type (QUEUE or TOPIC)

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection factory using JNDI.

Example 6-2 Registering Through the Database Using a JDBC URL

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 133

db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "topic_conn1", url, null, "topic");

Registering Through LDAP Using JDBC Connection Parameters
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through LDAP
with JDBC connection parameters to LDAP. It is static and has the following parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory() must contain all the information to
establish a valid connection to the LDAP server. Furthermore, the connection must have write
access to the connection factory entries in the LDAP server (which requires the LDAP user to
be either the database itself or be granted GLOBAL_AQ_USER_ROLE). After registration, look up
the connection factory using JNDI.

Example 6-3 Registering Through LDAP Using JDBC Connection Parameters

Hashtable env = new Hashtable(5, 0.75f);
/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory(env,
 "queue_conn1",
 "sun-123",
 "db1",
 1521,

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 133

 "thin",
 "queue");

Registering Through LDAP Using a JDBC URL
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String jdbc_url,
 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through LDAP
with JDBC connection parameters to LDAP. It is static and has the following parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

jdbc_url URL to connect to

info Properties information

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory() must contain all the information to
establish a valid connection to the LDAP server. Furthermore, the connection must have write
access to the connection factory entries in the LDAP server (which requires the LDAP user to
be either the database itself or be granted GLOBAL_AQ_USER_ROLE). After registration, look up
the connection factory using JNDI.

Example 6-4 Registering Through LDAP Using a JDBC URL

String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.registerConnectionFactory(env, "topic_conn1", url, null, "topic");

Unregistering a Queue/Topic ConnectionFactory
You can unregister a queue/topic ConnectionFactory in LDAP two ways:

• Unregistering Through the Database

• Unregistering Through LDAP

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 133

Unregistering Through the Database
public static int unregisterConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name)
 throws JMSException

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in LDAP. It is
static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

The database connection passed to unregisterConnectionFactory() must be granted
AQ_ADMINISTRATOR_ROLE.

Example 6-5 Unregistering Through the Database

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory(db_conn, "topic_conn1");

Unregistering Through LDAP
public static int unregisterConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name)
 throws JMSException

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in LDAP. It is
static and has the following parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

The hash table passed to unregisterConnectionFactory() must contain all the information to
establish a valid connection to the LDAP server. Furthermore, the connection must have write
access to the connection factory entries in the LDAP server (which requires the LDAP user to
be either the database itself or be granted GLOBAL_AQ_USER_ROLE).

Example 6-6 Unregistering Through LDAP

Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 133

env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.unregisterConnectionFactory(env, "queue_conn1");

Getting a QueueConnectionFactory or TopicConnectionFactory
This section contains these topics:

• Getting a QueueConnectionFactory with JDBC URL

• Getting a QueueConnectionFactory with JDBC Connection Parameters

• Getting a TopicConnectionFactory with JDBC URL

• Getting a TopicConnectionFactory with JDBC Connection Parameters

• Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Getting a QueueConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC URL. It is static and has the following
parameters:

Parameter Description

jdbc_url URL to connect to

info Properties information

Example 6-7 Getting a QueueConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 QueueConnectionFactory qc_fact;

 info.put("internal_logon", "sysdba");
 qc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);

Getting a QueueConnectionFactory with JDBC Connection Parameters
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC connection parameters. It is static
and has the following parameters:

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 133

Parameter Description

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Example 6-8 Getting a QueueConnectionFactory with JDBC Connection Parameters

 String host = "dlsun";
 String ora_sid = "rdbms10i"
 String driver = "thin";
 int port = 5521;
 QueueConnectionFactory qc_fact;

 qc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora_sid, port, driver);

Getting a TopicConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a TopicConnectionFactory with a JDBC URL. It is static and has the
following parameters:

Parameter Description

jdbc_url URL to connect to

info Properties information

Example 6-9 Getting a TopicConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 TopicConnectionFactory tc_fact;

 info.put("internal_logon", "sysdba");
 tc_fact = AQjmsFactory.getTopicConnectionFactory(url, info);

Getting a TopicConnectionFactory with JDBC Connection Parameters
public static javax.jms.TopicConnectionFactory getTopicConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a TopicConnectionFactory with JDBC connection parameters. It is static
and has the following parameters:

Parameter Description

hostname Name of the host running Oracle Database Advanced Queuing

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 44 of 133

Parameter Description

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Example 6-10 Getting a TopicConnectionFactory with JDBC Connection Parameters

String host = "dlsun";
String ora_sid = "rdbms10i"
String driver = "thin";
int port = 5521;
TopicConnectionFactory tc_fact;

tc_fact = AQjmsFactory.getTopicConnectionFactory(host, ora_sid, port, driver);

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP
This method gets a QueueConnectionFactory or TopicConnectionFactory from LDAP.

Example 6-11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
queueConnectionFactory qc_fact;

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBConnections,cn=db1,cn=Oraclecontext,cn=acme,cn=com");
qc_fact = (queueConnectionFactory)ctx.lookup("cn=queue_conn1");

Getting a Queue or Topic in LDAP
This method gets a queue or topic from LDAP.

Example 6-12 Getting a Queue or Topic in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
topic topic_1;

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 45 of 133

 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx = (DirContext)ctx.lookup("cn=OracleDBQueues,cn=db1,cn=Oraclecontext,cn=acme,cn=com");
topic_1 = (topic)ctx.lookup("cn=topic_1");

Creating an AQ Queue Table
public oracle.AQ.AQQueueTable createQueueTable(
 java.lang.String owner,
 java.lang.String name,
 oracle.AQ.AQQueueTableProperty property)
 throws JMSException

This method creates a queue table. It has the following parameters:

Parameter Description

owner Queue table owner (schema)

name Queue table name

property Queue table properties

If the queue table is used to hold queues, then the queue table must not be multiconsumer
enabled (default). If the queue table is used to hold topics, then the queue table must be
multiconsumer enabled.

CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Database Advanced
Queuing object type load. However, only CLOB and BLOB can be propagated using Oracle
Database Advanced Queuing propagation in Oracle8i and after.

Note

Currently TxEventQ queues can be created and dropped only through the DBMS_AQADM
PL/SQL APIs.

Example 6-13 Creating a Queue Table

QueueSession q_sess = null;
AQQueueTable q_table = null;
AQQueueTableProperty qt_prop = null;

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
q_table = ((AQjmsSession)q_sess).createQueueTable(
 "boluser", "bol_ship_queue_table", qt_prop);

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 46 of 133

Creating a Queue
This section contains these topics:

• Creating a Point-to-Point Queue

• Creating a Publish/Subscribe Topic

• Creating a TxEventQ Queue for Point-to-Point Queue and Publish/Subscribe Topic

Creating a Point-to-Point Queue
public javax.jms.Queue createQueue(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String queue_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method creates a queue in a specified queue table. It has the following parameters:

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must be
single-consumer.

queue_name Name of the queue to be created

dest_property Queue properties

This method is specific to Oracle JMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the Oracle JMS concrete class
oracle.jms.AQjmsSession.

Example 6-14 Creating a Point-to-Point Queue

QueueSession q_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Queue queue;

queue = ((AQjmsSession)q_sess).createQueue(q_table, "jms_q1", dest_prop);

Creating a Publish/Subscribe Topic
public javax.jms.Topic createTopic(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String topic_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method creates a topic in the publish/subscribe model. It has the following parameters:

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must be
multiconsumer.

queue_name Name of the queue to be created

dest_property Queue properties

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 47 of 133

This method is specific to Oracle JMS. You cannot use standard Java javax.jms.Session
objects with it. Instead, you must cast the standard type to the Oracle JMS concrete class
oracle.jms.AQjmsSession.

In Example 6-16, if an order cannot be filled because of insufficient inventory, then the
transaction processing the order is terminated. The bookedorders topic is set up with
max_retries = 4 and retry_delay = 12 hours.Thus, if an order is not filled up in two days, then
it is moved to an exception queue.

Example 6-15 Creating a Publish/Subscribe Topic

TopicSession t_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Topic topic;

topic = ((AQjmsSessa)t_sess).createTopic(q_table, "jms_t1", dest_prop);

Example 6-16 Specifying Max Retries and Max Delays in Messages

public BolOrder process_booked_order(TopicSession jms_session)
 {
 Topic topic;
 TopicSubscriber tsubs;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder booked_order = null;
 String country;
 int i = 0;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS",
 "WS_bookedorders_topic");

 /* Create local subscriber - to track messages for Western Region */
 tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",
 "Region = 'Western' ",
 false);

 /* wait for a message to show up in the topic */
 obj_message = (ObjectMessage)tsubs.receive(10);

 booked_order = (BolOrder)obj_message.getObject();

 customer = booked_order.getCustomer();
 country = customer.getCountry();

 if (country == "US")
 {
 jms_session.commit();
 }
 else
 {
 jms_session.rollback();
 booked_order = null;
 }
 }catch (JMSException ex)
 { System.out.println("Exception " + ex) ;}

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 48 of 133

 return booked_order;
 }

Creating a TxEventQ Queue for Point-to-Point Queue and Publish/Subscribe Topic
AQ JMS has defined a new APIs to create and drop TxEventQ queues. There is no alter queue
API in JMS. The signatures are as follows:

 /**
 * Create a TxEventQ queue. It also internally creates the related queue
 * objects (table, indexes) based on this name.
 *
 * @param queueName name of the queue to be created, format is schema.queueName
 * (where the schema. is optional
 * @param isMultipleConsumer flag to indicate whether the queue is a
 * multi-consumer or single-consumer queue
 * @return javax.jms.Destination
 * @throws JMSException if the queue could not be created
 */
 public synchronized javax.jms.Destination createJMSTransactionalEventQueue(String
queueName,
 boolean isMultipleConsumer) throws JMSException {
 return createJMSTransactionalEventQueue(queueName, isMultipleConsumer, null, 0,
null);
 }

 /**
 * Create a TxEventQ queue. It also internally creates the related queue
 * objects (table, indexes) based on this name.
 *
 * @param queueName name of the queue to be created, format is schema.queueName
 * (where the schema. is optional
 * @param isMultipleConsumer flag to indicate whether the queue is a
 * multi-consumer or single-consumer queue
 * @param storageClause additional storage clause
 * @param maxRetries retry count before skip the message while dequeue
 * @param comment comment for the queue
 * @return javax.jms.Destination
 * @throws JMSException if the queue could not be created
*/
public Destination createJMSTransactionalEventQueue(java.lang.String queueName,
 boolean isMultipleConsumer,
 java.lang.String storageClause,
 int maxRetries,
 java.lang.String comment)
 throws JMSException

Getting an AQ Queue Table
public oracle.AQ.AQQueueTable getQueueTable(java.lang.String owner,
 java.lang.String name)
 throws JMSException

This method gets a queue table for an AQ queue. It has the following parameters:

Parameter Description

owner Queue table owner (schema)

name Queue table name

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 49 of 133

If the caller that opened the connection is not the owner of the queue table, then the caller
must have Oracle Database Advanced Queuing enqueue/dequeue privileges on queues/topics
in the queue table. Otherwise the queue table is not returned.

Example 6-17 Getting a Queue Table

QueueSession q_sess;
AQQueueTable q_table;

q_table = ((AQjmsSession)q_sess).getQueueTable(
 "boluser", "bol_ship_queue_table");

Granting and Revoking Privileges
This section contains these topics:

• Granting Oracle Database Advanced Queuing System Privileges

• Revoking Oracle Database Advanced Queuing System Privileges

• Granting Publish/Subscribe Topic Privileges

• Revoking Publish/Subscribe Topic Privileges

• Granting Point-to-Point Queue Privileges

• Revoking Point-to-Point Queue Privileges

Granting Oracle Database Advanced Queuing System Privileges
public void grantSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee,
 boolean admin_option)
 throws JMSException

This method grants Oracle Database Advanced Queuing system privileges to a user or role.

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

admin_option If this is set to true, then the grantee is allowed to use this procedure to grant
the system privilege to other users or roles

Initially only SYS and SYSTEM can use this procedure successfully. Users granted the
ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in the database. Users
granted the DEQUEUE_ANY privilege are allowed to dequeue messages from any queues in the
database. Users granted the MANAGE_ANY privilege are allowed to run DBMS_AQADM calls on any
schemas in the database.

Example 6-18 Granting Oracle Database Advanced Queuing System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "scott", false);

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 50 of 133

Revoking Oracle Database Advanced Queuing System Privileges
public void revokeSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes Oracle Database Advanced Queuing system privileges from a user or
role. It has the following parameters:

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in
the database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages from
any queues in the database. Users granted the MANAGE_ANY privilege are allowed to run
DBMS_AQADM calls on any schemas in the database.

Example 6-19 Revoking Oracle Database Advanced Queuing System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess).revokeSystemPrivilege("ENQUEUE_ANY", "scott");

Granting Publish/Subscribe Topic Privileges
public void grantTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a topic privilege in the publish/subscribe model. Initially only the queue
table owner can use this procedure to grant privileges on the topic. It has the following
parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to grant
the system privilege to other users or roles

Example 6-20 Granting Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).grantTopicPrivilege(
 t_sess, "ENQUEUE", "scott", false);

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 51 of 133

Revoking Publish/Subscribe Topic Privileges
public void revokeTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes a topic privilege in the publish/subscribe model. It has the following
parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

Example 6-21 Revoking Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).revokeTopicPrivilege(t_sess, "ENQUEUE", "scott");

Granting Point-to-Point Queue Privileges
public void grantQueuePrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a queue privilege in the point-to-point model. Initially only the queue table
owner can use this procedure to grant privileges on the queue. It has the following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

grant_option If this is set to true, then the grantee is allowed to use this procedure to grant
the system privilege to other users or roles

Example 6-22 Granting Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).grantQueuePrivilege(
 q_sess, "ENQUEUE", "scott", false);

Revoking Point-to-Point Queue Privileges
public void revokeQueuePrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 52 of 133

This method revokes queue privileges in the point-to-point model. Initially only the queue table
owner can use this procedure to grant privileges on the queue. It has the following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

To revoke a privilege, the revoker must be the original grantor of the privilege. Privileges
propagated through the GRANT option are revoked if the grantor privilege is also revoked.

Example 6-23 Revoking Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).revokeQueuePrivilege(q_sess, "ENQUEUE", "scott");

Managing Destinations
This section contains these topics:

• Starting a Destination

• Stopping a Destination

• Altering a Destination

• Dropping a Destination

Note

Currently TEQs can be managed only through the DBMS_AQADM PL/SQL APIs.

Starting a Destination
public void start(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue)
 throws JMSException

This method starts a destination. It has the following parameters:

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is enabled

dequeue If set to TRUE, then dequeue is enabled

Example 6-24 Starting a Destination

TopicSession t_sess;
QueueSession q_sess;
Topic topic;

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 53 of 133

Queue queue;

(AQjmsDestination)topic.start(t_sess, true, true);
(AQjmsDestination)queue.start(q_sess, true, true);

Stopping a Destination
public void stop(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue,
 boolean wait)
 throws JMSException

This method stops a destination. It has the following parameters:

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is disabled

dequeue If set to TRUE, then dequeue is disabled

wait If set to true, then pending transactions on the queue/topic are allowed to
complete before the destination is stopped

Example 6-25 Stopping a Destination

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).stop(t_sess, true, false);

Altering a Destination
public void alter(javax.jms.Session session,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method alters a destination. It has the following properties:

Parameter Description

session JMS session

dest_property New properties of the queue or topic

Example 6-26 Altering a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;
AQjmsDestionationProperty dest_prop1, dest_prop2;

((AQjmsDestination)queue).alter(dest_prop1);
((AQjmsDestination)topic).alter(dest_prop2);

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 54 of 133

Dropping a Destination
public void drop(javax.jms.Session session)
 throws JMSException

This method drops a destination. It has the following parameter:

Parameter Description

session JMS session

Example 6-27 Dropping a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue).drop(q_sess);
((AQjmsDestionation)topic).drop(t_sess);

Propagation Schedules
This section contains these topics:

• Scheduling a Propagation

• Enabling a Propagation Schedule

• Altering a Propagation Schedule

• Disabling a Propagation Schedule

• Unscheduling a Propagation

Note

TxEventQs are currently managed only through the DBMS_AQADM PL/SQL APIs and do
not support propagation.

Scheduling a Propagation
public void schedulePropagation(javax.jms.Session session,
 java.lang.String destination,
 java.util.Date start_time,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method schedules a propagation. It has the following parameters:

Parameter Description

session JMS session

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 55 of 133

Parameter Description

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

start_time Time propagation starts

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference between
the time a message was enqueued and the time it was propagated.

If a message has multiple recipients at the same destination in either the same or different
queues, then it is propagated to all of them at the same time.

Example 6-28 Scheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).schedulePropagation(
 t_sess, null, null, null, null, new Double(0));

Enabling a Propagation Schedule
public void enablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method enables a propagation schedule. It has the following parameters:

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Example 6-29 Enabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).enablePropagationSchedule(t_sess, "dbs1");

Altering a Propagation Schedule
public void alterPropagationSchedule(javax.jms.Session session,
 java.lang.String destination,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method alters a propagation schedule. It has the following parameters:

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 56 of 133

Parameter Description

session JMS session

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference between
the time a message was enqueued and the time it was propagated.

Example 6-30 Altering a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).alterPropagationSchedule(
 t_sess, null, 30, null, new Double(30));

Disabling a Propagation Schedule
public void disablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method disables a propagation schedule. It has the following parameters:

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Example 6-31 Disabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).disablePropagationSchedule(t_sess, "dbs1");

Unscheduling a Propagation
public void unschedulePropagation(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method unschedules a previously scheduled propagation. It has the following parameters:

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Chapter 6
Oracle Java Message Service Basic Operations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 57 of 133

Example 6-32 Unscheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).unschedulePropagation(t_sess, "dbs1");

Oracle Java Message Service Point-to-Point
The following topics describe the components of the Oracle Database Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to point-to-point
operations. Components that are shared by point-to-point and publish/subscribe are described
in Oracle Java Message Service Shared Interfaces.

• Creating a Connection with User Name/Password

• Creating a Connection with Default ConnectionFactory Parameters

• Creating a QueueConnection with User Name/Password

• Creating a QueueConnection with an Open JDBC Connection

• Creating a QueueConnection with Default ConnectionFactory Parameters

• Creating a QueueConnection with an Open OracleOCIConnectionPool

• Creating a Session

• Creating a QueueSession

• Creating a QueueSender

• Sending Messages Using a QueueSender with Default Send Options

• Sending Messages Using a QueueSender by Specifying Send Options

• Creating a QueueBrowser for Standard JMS Type Messages

• Creating a QueueBrowser for Standard JMS Type Messages_ Locking Messages

• Creating a QueueBrowser for Oracle Object Type Messages

• Creating a QueueBrowser for Oracle Object Type Messages_ Locking Messages

• Creating a QueueReceiver for Standard JMS Type Messages

• Creating a QueueReceiver for Oracle Object Type Messages

Creating a Connection with User Name/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with the specified user name and password. This method is new and supports JMS
version 1.1 specifications. It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 58 of 133

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with default ConnectionFactory parameters. This method is new and supports JMS
version 1.1 specifications. If the ConnectionFactory properties do not contain a default user
name and password, then it throws a JMSException.

Creating a QueueConnection with User Name/Password
public javax.jms.QueueConnection createQueueConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a queue connection with the specified user name and password. It has
the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Example 6-33 Creating a QueueConnection with User Name/Password

QueueConnectionFactory qc_fact = AQjmsFactory.getQueueConnectionFactory(
 "sun123", "oratest", 5521, "thin");
QueueConnection qc_conn = qc_fact.createQueueConnection("jmsuser", "jmsuser");

Creating a QueueConnection with an Open JDBC Connection
public static javax.jms.QueueConnection createQueueConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a queue connection with an open JDBC connection. It is static and has
the following parameter:

Parameter Description

jdbc_connection Valid open connection to the database

The method in Example 6-34 can be used if the user wants to use an existing JDBC
connection (say from a connection pool) for JMS operations. In this case JMS does not open a
new connection, but instead uses the supplied JDBC connection to create the JMS
QueueConnection object.

The method in Example 6-35 is the only way to create a JMS QueueConnection when using
JMS from a Java stored procedures inside the database (JDBC Server driver)

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 59 of 133

Example 6-34 Creating a QueueConnection with an Open JDBC Connection

Connection db_conn; /* previously opened JDBC connection */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(
 db_conn);

Example 6-35 Creating a QueueConnection from a Java Procedure Inside Database

OracleDriver ora = new OracleDriver();
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(ora.defaultConnection());

Creating a QueueConnection with Default ConnectionFactory Parameters
public javax.jms.QueueConnection createQueueConnection()
 throws JMSException

This method creates a queue connection with default ConnectionFactory parameters. If the
queue connection factory properties do not contain a default user name and password, then it
throws a JMSException.

Creating a QueueConnection with an Open OracleOCIConnectionPool
public static javax.jms.QueueConnection createQueueConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

This method creates a queue connection with an open OracleOCIConnectionPool. It is static
and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

The method in Example 6-36 can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does not open an
new OracleOCIConnectionPool instance, but instead uses the supplied
OracleOCIConnectionPool instance to create the JMS QueueConnection object.

Example 6-36 Creating a QueueConnection with an Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(cpool);

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session, which supports both point-to-point and publish/subscribe
operations. This method is new and supports JMS version 1.1 specifications. Transactional
and nontransactional sessions are supported. It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 60 of 133

Parameter Description

ack_mode Indicates whether the consumer or the client will acknowledge any messages
it receives. It is ignored if the session is transactional. Legal values are
Session.AUTO_ACKNOWLEDGE, Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Creating a QueueSession
public javax.jms.QueueSession createQueueSession(
 boolean transacted, int ack_mode)
 throws JMSException

This method creates a QueueSession. Transactional and nontransactional sessions are
supported. It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any messages
it receives. It is ignored if the session is transactional. Legal values are
Session.AUTO_ACKNOWLEDGE, Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Example 6-37 Creating a Transactional QueueSession

QueueConnection qc_conn;
QueueSession q_sess = qc_conn.createQueueSession(true, 0);

Creating a QueueSender
public javax.jms.QueueSender createSender(javax.jms.Queue queue)
 throws JMSException

This method creates a QueueSender. If a sender is created without a default queue, then the
destination queue must be specified on every send operation. It has the following parameter:

Parameter Description

queue Name of destination queue

Sending Messages Using a QueueSender with Default Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message)
 throws JMSException

This method sends a message using a QueueSender with default send options. This operation
uses default values for message priority (1) and timeToLive (infinite). It has the following
parameters:

Parameter Description

queue Queue to send this message to

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 61 of 133

Parameter Description

message Message to send

If the QueueSender has been created with a default queue, then the queue parameter may not
necessarily be supplied in the send() call. If a queue is specified in the send() operation, then
this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue parameter must
be specified in every send() call.

Example 6-38 Creating a Sender to Send Messages to Any Queue

/* Create a sender to send messages to any queue */
QueueSession jms_sess;
QueueSender sender1;
TextMessage message;
sender1 = jms_sess.createSender(null);
sender1.send(queue, message);

Example 6-39 Creating a Sender to Send Messages to a Specific Queue

/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage message;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(queue, message);

Sending Messages Using a QueueSender by Specifying Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method sends messages using a QueueSender by specifying send options. It has the
following parameters:

Parameter Description

queue Queue to send this message to

message Message to send

deliveryMode Delivery mode to use

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

If the QueueSender has been created with a default queue, then the queue parameter may not
necessarily be supplied in the send() call. If a queue is specified in the send() operation, then
this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue parameter must
be specified in every send() call.

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 62 of 133

Example 6-40 Sending Messages Using a QueueSender by Specifying Send Options 1

/* Create a sender to send messages to any queue */
/* Send a message to new_orders_que with priority 2 and timetoLive 100000
 milliseconds */
QueueSession jms_sess;
QueueSender sender1;
TextMessage mesg;
Queue new_orders_que
sender1 = jms_sess.createSender(null);
sender1.send(new_orders_que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example 6-41 Sending Messages Using a QueueSender by Specifying Send Options 2

/* Create a sender to send messages to a specific queue */
/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage mesg;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(mesg, DeliveryMode.PERSISTENT, 1, 400000);

Creating a QueueBrowser for Standard JMS Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueBrowser for queues with text, stream, objects, bytes or
MapMessage message bodies. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector expression
are delivered

Use methods in java.util.Enumeration to go through list of messages.

See Also

"MessageSelector"

Example 6-42 Creating a QueueBrowser Without a Selector

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue);

Example 6-43 Creating a QueueBrowser With a Specified Selector

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 63 of 133

Queue queue;
/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'");

Creating a QueueBrowser for Standard JMS Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a QueueBrowser for queues with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies, locking messages while
browsing. Locked messages cannot be removed by other consumers until the browsing
session ends the transaction. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector expression
are delivered

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Example 6-44 Creating a QueueBrowser Without a Selector, Locking Messages

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue, null, true);

Example 6-45 Creating a QueueBrowser With a Specified Selector, Locking Messages

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
/* create a Browser to look at messages with
correlationID = RUSH in lock mode */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'", true);

Creating a QueueBrowser for Oracle Object Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages. It has the
following parameters:

Parameter Description

queue Queue to access

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 64 of 133

Parameter Description

messageSelector Only messages with properties matching the messageSelector expression
are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that maps to
the Oracle ADT

The CustomDatumFactory for a particular java class that maps to the SQL object payload can
be obtained using the getFactory static method.

Note

CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java class that is
generated by Jpublisher for this Oracle object type is called Employee. The Employee class
implements the CustomDatum interface. The CustomDatumFactory for this class can be obtained
by using the Employee.getFactory() method.

Note

TEQs do not support Object Type messages

See Also

"MessageSelector"

Example 6-46 Creating a QueueBrowser for ADTMessages

/* Create a browser for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 "corrid='EXPRESS'",
 Employee.getFactory());

Creating a QueueBrowser for Oracle Object Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 65 of 133

This method creates a QueueBrowser for queues of Oracle object type messages, locking
messages while browsing. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector expression
are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that maps to
the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Note

CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

Note

TxEventQ queues do not support Object Type messages

Example 6-47 Creating a QueueBrowser for AdtMessages, Locking Messages

/* Create a browser for a Queue with AdtMessage messagess of type EMPLOYEE* in lock mode/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 null,
 Employee.getFactory(),
 true);

Creating a QueueReceiver for Standard JMS Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueReceiver for queues of standard JMS type messages. It has the
following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector expression
are delivered

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 66 of 133

See Also

"MessageSelector"

Example 6-48 Creating a QueueReceiver Without a Selector

/* Create a receiver without a selector */
QueueSession jms_session
QueueReceiver receiver;
Queue queue;
receiver = jms_session.createReceiver(queue);

Example 6-49 Creating a QueueReceiver With a Specified Selector

/* Create a receiver for queues with a specified selector */
QueueSession jms_session;
QueueReceiver receiver;
Queue queue;
/* create Receiver to receive messages with correlationID starting with EXP */
browser = jms_session.createReceiver(queue, "JMSCorrelationID LIKE 'EXP%'");

Creating a QueueReceiver for Oracle Object Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a QueueReceiver for queues of Oracle object type messages. It has the
following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector expression
are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that maps to
the Oracle ADT

The CustomDatumFactory for a particular java class that maps to the SQL object type payload
can be obtained using the getFactory static method.

Note

CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java class that is
generated by Jpublisher for this Oracle object type is called Employee. The Employee class
implements the CustomDatum interface. The ORADataFactory for this class can be obtained by
using the Employee.getFactory() method.

Chapter 6
Oracle Java Message Service Point-to-Point

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 67 of 133

Note

TxEventQ queues do not support Object Type messages

See Also

"MessageSelector"

Example 6-50 Creating a QueueReceiver for AdtMessage Messages

/* Create a receiver for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueReceiver receiver;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createReceiver(
 test_queue,
 "JMSCorrelationID = 'MANAGER',
 Employee.getFactory());

Oracle Java Message Service Publish/Subscribe
The following topics describe the components of the Oracle Database Advanced Queuing (AQ)
Java Message Service (JMS) operational interface that are specific to publish/subscribe
operations. Components that are shared by point-to-point and publish/subscribe are described
in Oracle Java Message Service Shared Interfaces.

• Creating a Connection with User Name/Password

• Creating a Connection with Default ConnectionFactory Parameters

• Creating a TopicConnection with User Name/Password

• Creating a TopicConnection with Open JDBC Connection

• Creating a TopicConnection with an Open OracleOCIConnectionPool

• Creating a Session

• Creating a TopicSession

• Creating a TopicPublisher

• Publishing Messages with Minimal Specification

• Publishing Messages Specifying Topic

• Publishing Messages Specifying Delivery Mode_ Priority_ and TimeToLive

• Publishing Messages Specifying a Recipient List

• Creating a DurableSubscriber for a JMS Topic Without Selector

• Creating a DurableSubscriber for a JMS Topic with Selector

• Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector

• Creating a DurableSubscriber for an Oracle Object Type Topic with Selector

• Specifying Transformations for Topic Subscribers

• Creating a Remote Subscriber for JMS Messages

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 68 of 133

• Creating a Remote Subscriber for Oracle Object Type Messages

• Specifying Transformations for Remote Subscribers

• Unsubscribing a Durable Subscription for a Local Subscriber

• Unsubscribing a Durable Subscription for a Remote Subscriber

• Creating a TopicReceiver for a Topic of Standard JMS Type Messages

• Creating a TopicReceiver for a Topic of Oracle Object Type Messages

• Creating a TopicBrowser for Standard JMS Messages

• Creating a TopicBrowser for Standard JMS Messages_ Locking Messages

• Creating a TopicBrowser for Oracle Object Type Messages

• Creating a TopicBrowser for Oracle Object Type Messages_ Locking Messages

• Browsing Messages Using a TopicBrowser

Creating a Connection with User Name/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with the specified user name and password. This method is new and supports JMS
version 1.1 specifications. It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with default ConnectionFactory parameters. This method is new and supports JMS
version 1.1 specifications. If the ConnectionFactory properties do not contain a default user
name and password, then it throws a JMSException.

Creating a TopicConnection with User Name/Password
public javax.jms.TopicConnection createTopicConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a TopicConnection with the specified user name and password. It has the
following parameters:

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 69 of 133

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Example 6-51 Creating a TopicConnection with User Name/Password

TopicConnectionFactory tc_fact = AQjmsFactory.getTopicConnectionFactory("sun123",
"oratest", 5521, "thin");
/* Create a TopicConnection using a username/password */
TopicConnection tc_conn = tc_fact.createTopicConnection("jmsuser", "jmsuser");

Creating a TopicConnection with Open JDBC Connection
public static javax.jms.TopicConnection createTopicConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a TopicConnection with open JDBC connection. It has the following
parameter:

Parameter Description

jdbc_connection Valid open connection to database

Example 6-52 Creating a TopicConnection with Open JDBC Connection

Connection db_conn; /*previously opened JDBC connection */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory createTopicConnection(db_conn);

Example 6-53 Creating a TopicConnection with New JDBC Connection

OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(ora.defaultConnection());

Creating a TopicConnection with an Open OracleOCIConnectionPool
public static javax.jms.TopicConnection createTopicConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

This method creates a TopicConnection with an open OracleOCIConnectionPool. It is static
and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

Example 6-54 Creating a TopicConnection with Open OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(cpool);

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 70 of 133

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session supporting both point-to-point and publish/subscribe
operations. It is new and supports JMS version 1.1 specifications. It has the following
parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any messages
it receives. It is ignored if the session is transactional. Legal values are
Session.AUTO_ACKNOWLEDGE, Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Creating a TopicSession
public javax.jms.TopicSession createTopicSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a TopicSession. It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any messages
it receives. It is ignored if the session is transactional. Legal values are
Session.AUTO_ACKNOWLEDGE, Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Example 6-55 Creating a TopicSession

TopicConnection tc_conn;
TopicSession t_sess = tc_conn.createTopicSession(true,0);

Creating a TopicPublisher
public javax.jms.TopicPublisher createPublisher(javax.jms.Topic topic)
 throws JMSException

This method creates a TopicPublisher. It has the following parameter:

Parameter Description

topic Topic to publish to, or null if this is an unidentified producer

Publishing Messages with Minimal Specification
public void publish(javax.jms.Message message)
 throws JMSException

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 71 of 133

This method publishes a message with minimal specification. It has the following parameter:

Parameter Description

message Message to send

The TopicPublisher uses the default values for message priority (1) and timeToLive
(infinite).

Example 6-56 Publishing Without Specifying Topic

/* Publish without specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get shipped orders topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* publish without specifying the topic */
publisher1.publish(text_message);

Example 6-57 Publishing Specifying Correlation and Delay

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Set correlation and delay */
/* Set correlation */
jms_sess.setJMSCorrelationID("FOO");

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 72 of 133

/* Set delay of 30 seconds */
jms_sess.setLongProperty("JMS_OracleDelay", 30);
/* Publish */
publisher1.publish(text_message);

Publishing Messages Specifying Topic
public void publish(javax.jms.Topic topic, javax.jms.Message message)
 throws JMSException

This method publishes a message specifying the topic. It has the following parameters:

Parameter Description

topic Topic to publish to

message Message to send

If the TopicPublisher has been created with a default topic, then the topic parameter may not
be specified in the publish() call. If a topic is specified, then that value overrides the default in
the TopicPublisher. If the TopicPublisher has been created without a default topic, then the
topic must be specified with the publish() call.

Example 6-58 Publishing Specifying Topic

/* Publish specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 'MYHOSTNAME', 'MYSID', myport, 'oci8');
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* create TopicPublisher */
publisher1 = jms_sess.createPublisher(null);
/* get topic object */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 'WS', 'Shipped_Orders_Topic');
/* create text message */
TextMessage jms_sess.createTextMessage();
/* publish specifying the topic */
publisher1.publish(shipped_orders, text_message);

Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive
public void publish(javax.jms.Topic topic,
 javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method publishes a message specifying delivery mode, priority and TimeToLive. It has the
following parameters:

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 73 of 133

Parameter Description

topic Topic to which to publish the message (overrides the default topic of the
MessageProducer)

message Message to publish

recipient_list List of recipients to which the message is published. Recipients are of type
AQjmsAgent.

deliveryMode PERSISTENT or NON_PERSISTENT (only PERSISTENT is supported in this
release)

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

Example 6-59 Publishing Specifying Priority and TimeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Publish message with priority 1 and time to live 200 seconds */
publisher1.publish(text_message, DeliveryMode.PERSISTENT, 1, 200000);

Publishing Messages Specifying a Recipient List
public void publish(javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list)
 throws JMSException

This method publishes a message specifying a recipient list overriding topic subscribers. It has
the following parameters:

Parameter Description

message Message to publish

recipient_list List of recipients to which the message is published. Recipients are of type
AQjmsAgent.

Example 6-60 Publishing Specifying a Recipient List Overriding Topic Subscribers

/* Publish specifying priority and timeToLive */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 74 of 133

int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* create two receivers */
recipList = new AQjmsAgent[2];
recipList[0] = new AQjmsAgent(
 "ES", "ES.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
recipList[1] = new AQjmsAgent(
 "WS", "WS.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
/* publish message specifying a recipient list */
publisher1.publish(text_message, recipList);

Creating a DurableSubscriber for a JMS Topic Without Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method creates a DurableSubscriber for a JMS topic without selector. It has the following
parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

Exclusive Access to Topics

CreateDurableSubscriber() and Unsubscribe() both require exclusive access to their target
topics. If there are pending JMS send(), publish(), or receive() operations on the same
topic when these calls are applied, then exception ORA - 4020 is raised. There are two
solutions to the problem:

• Limit calls to createDurableSubscriber() and Unsubscribe() to the setup or cleanup
phase when there are no other JMS operations pending on the topic. That makes sure that
the required resources are not held by other JMS operational calls.

• Call TopicSession.commit before calling createDurableSubscriber() or Unsubscribe().

Example 6-61 Creating a Durable Subscriber for a JMS Topic Without Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 75 of 133

 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
/* create a durable subscriber on the shipped_orders topic*/
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders,
 'WesternShipping');

Creating a DurableSubscriber for a JMS Topic with Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal)
 throws JMSException

This method creates a durable subscriber for a JMS topic with selector. It has the following
parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its own
connection

A client can change an existing durable subscription by creating a durable TopicSubscriber
with the same name and a different messageSelector. An unsubscribe call is needed to end
the subscription to the topic.

See Also

• "Exclusive Access to Topics"

• "MessageSelector"

Example 6-62 Creating a Durable Subscriber for a JMS Topic With Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 76 of 133

tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "JMSPriority > 2 and Region like 'Western%'", false);

Creating a DurableSubscriber for an Oracle Object Type Topic Without
Selector

public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic without selector. It
has the following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support object type messages.

See Also

"Exclusive Access to Topics"

Example 6-63 Creating a Durable Subscriber for an Oracle Object Type Topic Without
Selector

/* Subscribe to an ADT queue */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 77 of 133

int my[port = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying the correct CustomDatumFactory */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping', AQjmsAgent.getFactory());

Creating a DurableSubscriber for an Oracle Object Type Topic with Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic with selector. It has
the following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its own
connection

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support object yype messages.

See Also

"Exclusive Access to Topics"

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 78 of 133

Example 6-64 Creating a Durable Subscriber for an Oracle Object Type Topic With
Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, "WesternShipping",
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 ADTMessage.getFactory());

Specifying Transformations for Topic Subscribers
A transformation can be supplied when sending/publishing a message to a queue/topic. The
transformation is applied before putting the message into the queue/topic.

The application can specify a transformation using the setTransformation interface in the
AQjmsQueueSender and AQjmsTopicPublisher interfaces.

A transformation can also be specified when creating topic subscribers using the
CreateDurableSubscriber() call. The transformation is applied to the retrieved message
before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber() call already exists, then its transformation is set to the specified
transformation.

Example 6-65 Sending Messages to a Destination Using a Transformation

Suppose that the orders that are processed by the order entry application should be published
to WS_bookedorders_topic. The transformation OE2WS (defined in the previous section) is
supplied so that the messages are inserted into the topic in the correct format.

public void ship_bookedorders(
 TopicSession jms_session,
 AQjmsADTMessage adt_message)
{
 TopicPublisher publisher;
 Topic topic;

 try
 {
 /* get a handle to the WS_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS", "WS_bookedorders_topic");
 publisher = jms_session.createPublisher(topic);

 /* set the transformation in the publisher */
 ((AQjmsTopicPublisher)publisher).setTransformation("OE2WS");
 publisher.publish(topic, adt_message);

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 79 of 133

 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

Example 6-66 Specifying Transformations for Topic Subscribers

The Western Shipping application subscribes to the OE_bookedorders_topic with the
transformation OE2WS. This transformation is applied to the messages and the returned
message is of Oracle object type WS.WS_orders.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the Oracle
object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
{
 TopicSubscriber subscriber;
 Topic topic;
 AQjmsAdtMessage msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* create a subscriber with the transformation OE2WS */
 subs = ((AQjmsSession)jms_session).createDurableSubscriber(
 topic, 'WShip', null, false, WSOrder.getFactory(), "OE2WS");
 msg = subscriber.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
 return (AQjmsAdtMessage)msg;
}

Creating a Remote Subscriber for JMS Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector)
 throws JMSException

This method creates a remote subscriber for topics of JMS messages. It has the following
parameters:

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 80 of 133

Oracle Database Advanced Queuing allows topics to have remote subscribers, for example,
subscribers at other topics in the same or different database. In order to use remote
subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at the
remote topic. A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the remote topic.
The address refers to the remote topic. Its syntax is schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the subscription_name of
the recipient at the remote topic must be specified in the name field of AQjmsAgent, and the
remote topic must be specified in the address field. To publish messages to all subscribers of
the remote topic, the name field of AQjmsAgent must be set to null.

Note

TxEventQ queues do not support remote subscribers.

See Also

"MessageSelector"

Example 6-67 Creating a Remote Subscriber for Topics of JMS Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber (selector is null)*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null);

Creating a Remote Subscriber for Oracle Object Type Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a remote subscriber for topics of Oracle object type messages. It has the
following parameters:

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 81 of 133

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support remote subscribers or object type messages.

Oracle Database Advanced Queuing allows topics to have remote subscribers, for example,
subscribers at other topics in the same or different database. In order to use remote
subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers at the
remote topic. A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the remote topic.
The address refers to the remote topic. Its syntax is schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the subscription_name of
the recipient at the remote topic must be specified in the name field of AQjmsAgent, and the
remote topic must be specified in the address field. To publish messages to all subscribers of
the remote topic, the name field of AQjmsAgent must be set to null.

Note

AQ does not support the use of multiple dblink to the same destination. As a
workaround, use a single database link for each destination.

See Also

"MessageSelector"

Example 6-68 Creating a Remote Subscriber for Topics of Oracle Object Type
Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 82 of 133

int my[port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get the Shipped order topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a remote agent */
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber with null selector*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null, message.getFactory);

Specifying Transformations for Remote Subscribers
Oracle Database Advanced Queuing allows a remote subscriber, that is a subscriber at
another database, to subscribe to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber() call. This enables propagation of messages between topics of
different formats. When a message published at a topic meets the criterion of a remote
subscriber, Oracle Database Advanced Queuing automatically propagates the message to the
queue/topic at the remote database specified for the remote subscriber. If a transformation is
also specified, then Oracle Database Advanced Queuing applies the transformation to the
message before propagating it to the queue/topic at the remote database.

Note

TxEventQ queues do not support remote subscribers.

Example 6-69 Specifying Transformations for Remote Subscribers

A remote subscriber is created at the OE.OE_bookedorders_topic so that messages are
automatically propagated to the WS.WS_bookedorders_topic. The transformation OE2WS is
specified when creating the remote subscriber so that the messages reaching the
WS_bookedorders_topic have the correct format.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the Oracle
object WS.WS_order

public void create_remote_sub(TopicSession jms_session)
{
 AQjmsAgent subscriber;
 Topic topic;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");
 subscriber = new AQjmsAgent("WShip", "WS.WS_bookedorders_topic");

 ((AQjmsSession)jms_session).createRemoteSubscriber(
 topic, subscriber, null, WSOrder.getFactory(),"OE2WS");

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 83 of 133

 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

Unsubscribing a Durable Subscription for a Local Subscriber
public void unsubscribe(javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method unsubscribes a durable subscription for a local subscriber. It has the following
parameters:

Parameter Description

topic Non-temporary topic to unsubscribe

subs_name Name used to identify this subscription

See Also

"Exclusive Access to Topics"

Example 6-70 Unsubscribing a Durable Subscription for a Local Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* unsusbcribe "WesternShipping" from shipped_orders */
jms_sess.unsubscribe(shipped_orders, "WesternShipping");

Unsubscribing a Durable Subscription for a Remote Subscriber
public void unsubscribe(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber)
 throws JMSException

This method unsubscribes a durable subscription for a remote subscriber. It has the following
parameters:

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 84 of 133

Parameter Description

topic Non-temporary topic to unsubscribe

remote_subscriber AQjmsAgent that refers to the remote subscriber. The address field of the
AQjmsAgent cannot be null.

Note

TEQ queues do not support remote subscribers.

See Also

"Exclusive Access to Topics"

Example 6-71 Unsubscribing a Durable Subscription for a Remote Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WS", "WS.Shipped_Orders_Topic", null);
/* unsubscribe the remote agent from shipped_orders */
((AQjmsSession)jms_sess).unsubscribe(shipped_orders, remoteAgent);

Creating a TopicReceiver for a Topic of Standard JMS Type Messages
public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicReceiver for a topic of standard JMS type messages. It has the
following parameters:

Parameter Description

topic Topic to access

receiver_name Name of message receiver

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 85 of 133

Parameter Description

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

Oracle Database Advanced Queuing allows messages to be sent to specified recipients.
These receivers may or may not be subscribers of the topic. If the receiver is not a subscriber
to the topic, then it receives only those messages that are explicitly addressed to it. This
method must be used order to create a TopicReceiver object for consumers that are not
durable subscribers.

See Also

"MessageSelector"

Example 6-72 Creating a TopicReceiver for Standard JMS Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = ull;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicReceiver for a Topic of Oracle Object Type Messages
public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicReceiver for a topic of Oracle object type messages with selector.
It has the following parameters:

Parameter Description

topic Topic to access

receiver_name Name of message receiver

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 86 of 133

Parameter Description

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support object type messages.

Oracle Database Advanced Queuing allows messages to be sent to all subscribers of a topic
or to specified recipients. These receivers may or may not be subscribers of the topic. If the
receiver is not a subscriber to the topic, then it receives only those messages that are explicitly
addressed to it. This method must be used order to create a TopicReceiver object for
consumers that are not durable subscribers.

See Also

"MessageSelector"

Example 6-73 Creating a TopicReceiver for Oracle Object Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicBrowser for Standard JMS Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicBrowser for topics with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies. It has the following
parameters:

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 87 of 133

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

See Also

"MessageSelector"

Example 6-74 Creating a TopicBrowser Without a Selector

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(topic, "SUBS1");

Example 6-75 Creating a TopicBrowser With a Specified Selector

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
/* create a Browser to look at messages with correlationID = RUSH */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

Creating a TopicBrowser for Standard JMS Messages, Locking Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a TopicBrowser for topics with text, stream, objects, bytes or map
messages, locking messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 88 of 133

Example 6-76 Creating a TopicBrowser Without a Selector, Locking Messages While
Browsing

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", true);

Example 6-77 Creating a TopicBrowser With a Specified Selector, Locking Messages

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
/* create a Browser to look at messages with correlationID = RUSH in
lock mode */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'", true);

Creating a TopicBrowser for Oracle Object Type Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages. It has the
following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support object type messages.

The CustomDatumFactory for a particular Java class that maps to the SQL object type payload
can be obtained using the getFactory static method. Assume the topic test_topic has
payload of type SCOTT.EMPLOYEE and the Java class that is generated by Jpublisher for this
Oracle object type is called Employee. The Employee class implements the CustomDatum
interface. The CustomDatumFactory for this class can be obtained by using the
Employee.getFactory() method.

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 89 of 133

See Also

"MessageSelector"

Example 6-78 Creating a TopicBrowser for AdtMessage Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE*/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory());

Creating a TopicBrowser for Oracle Object Type Messages, Locking
Messages

public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages, locking
messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector expression
are delivered. A value of null or an empty string indicates that there is no
messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that maps to
the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to a
SELECT for UPDATE)

Note

• CustomDatum support will be deprecated in a future release. Use ORADataFactory
payload factories instead.

• TxEventQ queues do not support object type messages.

See Also

"MessageSelector"

Chapter 6
Oracle Java Message Service Publish/Subscribe

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 90 of 133

Example 6-79 Creating a TopicBrowser for AdtMessage Messages, Locking Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE* in
lock mode/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory(), true);

Browsing Messages Using a TopicBrowser
public void purgeSeen()
 throws JMSException

This method browses messages using a TopicBrowser. Use methods in
java.util.Enumeration to go through the list of messages. Use the method purgeSeen in
TopicBrowser to purge messages that have been seen during the current browse.

Example 6-80 Creating a TopicBrowser with a Specified Selector

/* Create a browser for topics with a specified selector */
public void browse_rush_orders(TopicSession jms_session)
TopicBrowser browser;
Topic topic;
ObjectMessage obj_message
BolOrder new_order;
Enumeration messages;
/* get a handle to the new_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE", "OE_bookedorders_topic");
/* create a Browser to look at RUSH orders */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");
/* Browse through the messages */
for (messages = browser.elements() ; message.hasMoreElements() ;)
{obj_message = (ObjectMessage)message.nextElement();}
/* Purge messages seen during this browse */
browser.purgeSeen()

Oracle Java Message Service Shared Interfaces
The following topics describe the Java Message Service (JMS) operational interface (shared
interfaces) to Oracle Database Advanced Queuing (AQ).

• Oracle Database Advanced Queuing JMS Operational Interface: Shared Interfaces

• Specifying JMS Message Properties

• Setting Default TimeToLive for All Messages Sent by a MessageProducer

• Setting Default Priority for All Messages Sent by a MessageProducer

• Creating an AQjms Agent

• Receiving a Message Synchronously

• Specifying the Navigation Mode for Receiving Messages

• Receiving a Message Asynchronously

• Getting Message ID

• Getting JMS Message Properties

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 91 of 133

• Closing and Shutting Down

• Troubleshooting

Oracle Database Advanced Queuing JMS Operational Interface: Shared
Interfaces

The following topics discuss Oracle Database Advanced Queuing shared interfaces for JMS
operations.

• Starting a JMS Connection

• Getting a JMS Connection

• Committing All Operations in a Session

• Rolling Back All Operations in a Session

• Getting the JDBC Connection from a Session

• Getting the OracleOCIConnectionPool from a JMS Connection

• Creating a BytesMessage

• Creating a MapMessage

• Creating a StreamMessage

• Creating an ObjectMessage

• Creating a TextMessage

• Creating a JMS Message

• Creating an AdtMessage

• Setting a JMS Correlation Identifier

Starting a JMS Connection
public void start()
 throws JMSException

AQjmsConnection.start() starts a JMS connection for receiving messages.

Getting a JMS Connection
public oracle.jms.AQjmsConnection getJmsConnection()
 throws JMSException

AQjmsSession.getJmsConnection() gets a JMS connection from a session.

Committing All Operations in a Session
public void commit()
 throws JMSException

AQjmsSession.commit() commits all JMS and SQL operations performed in a session.

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 92 of 133

Rolling Back All Operations in a Session
public void rollback()
 throws JMSException

AQjmsSession.rollback() terminates all JMS and SQL operations performed in a session.

Getting the JDBC Connection from a Session
public java.sql.Connection getDBConnection()
 throws JMSException

AQjmsSession.getDBConnection() gets the underlying JDBC connection from a JMS session.
The JDBC connection can be used to perform SQL operations as part of the same transaction
in which the JMS operations are accomplished.

Example 6-81 Getting Underlying JDBC Connection from JMS Session

java.sql.Connection db_conn;
QueueSession jms_sess;
db_conn = ((AQjmsSession)jms_sess).getDBConnection();

Getting the OracleOCIConnectionPool from a JMS Connection
public oracle.jdbc.pool.OracleOCIConnectionPool getOCIConnectionPool()

AQjmsConnection.getOCIConnectionPool() gets the underlying OracleOCIConnectionPool
from a JMS connection. The settings of the OracleOCIConnectionPool instance can be tuned
by the user depending on the connection usage, for example, the number of sessions the user
wants to create using the given connection. The user should not, however, close the
OracleOCIConnectionPool instance being used by the JMS connection.

Example 6-82 Getting Underlying OracleOCIConnectionPool from JMS Connection

oracle.jdbc.pool.OracleOCIConnectionPool cpool;
QueueConnection jms_conn;
cpool = ((AQjmsConnection)jms_conn).getOCIConnectionPool();

Creating a BytesMessage
public javax.jms.BytesMessage createBytesMessage()
 throws JMSException

AQjmsSession.createBytesMessage() creates a bytes message. It can be used only if the
queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a MapMessage
public javax.jms.MapMessage createMapMessage()
 throws JMSException

AQjmsSession.createMapMessage() creates a map message. It can be used only if the queue
table that contains the destination queue/topic was created with the SYS.AQ$_JMS_MAP_MESSAGE
or AQ$_JMS_MESSAGE payload types.

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 93 of 133

Creating a StreamMessage
public javax.jms.StreamMessage createStreamMessage()
 throws JMSException

AQjmsSession.createStreamMessage() creates a stream message. It can be used only if the
queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating an ObjectMessage
public javax.jms.ObjectMessage createObjectMessage(java.io.Serializable object)
 throws JMSException

AQjmsSession.createObjectMessage() creates an object message. It can be used only if the
queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a TextMessage
public javax.jms.TextMessage createTextMessage()
 throws JMSException

AQjmsSession.createTextMessage() creates a text message. It can be used only if the queue
table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a JMS Message
public javax.jms.Message createMessage()
 throws JMSException

AQjmsSession.createMessage() creates a JMS message. You can use the AQ$_JMS_MESSAGE
construct message to construct messages of different types. The message type must be one of
the following:

• DBMS_AQ.JMS_TEXT_MESSAGE

• DBMS_AQ.JMS_OBJECT_MESSAGE

• DBMS_AQ.JMS_MAP_MESSAGE

• DBMS_AQ.JMS_BYTES_MESSAGE

• DBMS_AQ.JMS_STREAM_MESSAGE

You can also use this ADT to create a header-only JMS message.

Creating an AdtMessage
public oracle.jms.AdtMessage createAdtMessage()
 throws JMSException

AQjmsSession.createAdtMessage() creates an AdtMessage. It can be used only if the queue
table that contains the queue/topic was created with an Oracle ADT payload type. An
AdtMessage must be populated with an object that implements the CustomDatum interface. This
object must be the Java mapping of the SQL ADT defined as the payload for the queue/topic.
Java classes corresponding to SQL ADT types can be generated using the Jpublisher tool.

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 94 of 133

Setting a JMS Correlation Identifier
public void setJMSCorrelationID(java.lang.String correlationID)
 throws JMSException

AQjmsMessage.setJMSCorrelationID() specifies the message correlation identifier.

Specifying JMS Message Properties
Property names starting with JMS are provider-specific. User-defined properties cannot start
with JMS.

The following provider properties can be set by clients using text, stream, object, bytes or map
messages:

• JMSXAppID (string)

• JMSXGroupID (string)

• JMSXGroupSeq (int)

• JMS_OracleExcpQ (string)

This message property specifies the exception queue.

• JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

The following properties can be set on AdtMessage

• JMS_OracleExcpQ (String)

This message property specifies the exception queue as "schema.queue_name"

• JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

This section contains these topics:

• Setting a Boolean Message Property

• Setting a String Message Property

• Setting an Integer Message Property

• Setting a Double Message Property

• Setting a Float Message Property

• Setting a Byte Message Property

• Setting a Long Message Property

• Setting a Short Message Property

• Getting an Object Message Property

Setting a Boolean Message Property
public void setBooleanProperty(java.lang.String name,
 boolean value)
 throws JMSException

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 95 of 133

AQjmsMessage.setBooleanProperty() specifies a message property as Boolean. It has the
following parameters:

Parameter Description

name Name of the Boolean property

value Boolean property value to set in the message

Setting a String Message Property
public void setStringProperty(java.lang.String name,
 java.lang.String value)
 throws JMSException

AQjmsMessage.setStringProperty() specifies a message property as string. It has the
following parameters:

Parameter Description

name Name of the string property

value String property value to set in the message

Setting an Integer Message Property
public void setIntProperty(java.lang.String name,
 int value)
 throws JMSException

AQjmsMessage.setIntProperty() specifies a message property as integer. It has the following
parameters:

Parameter Description

name Name of the integer property

value Integer property value to set in the message

Setting a Double Message Property
public void setDoubleProperty(java.lang.String name,
 double value)
 throws JMSException

AQjmsMessage.setDoubleProperty() specifies a message property as double. It has the
following parameters:

Parameter Description

name Name of the double property

value Double property value to set in the message

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 96 of 133

Setting a Float Message Property
public void setFloatProperty(java.lang.String name,
 float value)
 throws JMSException

AQjmsMessage.setFloatProperty() specifies a message property as float. It has the following
parameters:

Parameter Description

name Name of the float property

value Float property value to set in the message

Setting a Byte Message Property
public void setByteProperty(java.lang.String name,
 byte value)
 throws JMSException

AQjmsMessage.setByteProperty() specifies a message property as byte. It has the following
parameters:

Parameter Description

name Name of the byte property

value Byte property value to set in the message

Setting a Long Message Property
public void setLongProperty(java.lang.String name,
 long value)
 throws JMSException

AQjmsMessage.setLongProperty() specifies a message property as long. It has the following
parameters:

Parameter Description

name Name of the long property

value Long property value to set in the message

Setting a Short Message Property
public void setShortProperty(java.lang.String name,
 short value)
 throws JMSException

AQjmsMessage.setShortProperty() specifies a message property as short. It has the following
parameters:

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 97 of 133

Parameter Description

name Name of the short property

value Short property value to set in the message

Setting an Object Message Property
public void setObjectProperty(java.lang.String name,
 java.lang.Object value)
 throws JMSException

AQjmsMessage.setObjectProperty() specifies a message property as object. Only objectified
primitive values are supported: Boolean, byte, short, integer, long, float, double and string. It
has the following parameters:

Parameter Description

name Name of the Java object property

value Java object property value to set in the message

Setting Default TimeToLive for All Messages Sent by a MessageProducer
public void setTimeToLive(long timeToLive)
 throws JMSException

This method sets the default TimeToLive for all messages sent by a MessageProducer. It is
calculated after message delay has taken effect. This method has the following parameter:

Parameter Description

timeToLive Message time to live in milliseconds (zero is unlimited)

Example 6-83 Setting Default TimeToLive for All Messages Sent by a
MessageProducer

/* Set default timeToLive value to 100000 milliseconds for all messages sent by the
QueueSender*/
QueueSender sender;
sender.setTimeToLive(100000);

Setting Default Priority for All Messages Sent by a MessageProducer
public void setPriority(int priority)
 throws JMSException

This method sets the default Priority for all messages sent by a MessageProducer. It has the
following parameter:

Parameter Description

priority Message priority for this message producer. The default is 4.

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 98 of 133

Priority values can be any integer. A smaller number indicates higher priority. If a priority value
is explicitly specified during a send() operation, then it overrides the default value set by this
method.

Example 6-84 Setting Default Priority Value for All Messages Sent by QueueSender

/* Set default priority value to 2 for all messages sent by the QueueSender*/
QueueSender sender;
sender.setPriority(2);

Example 6-85 Setting Default Priority Value for All Messages Sent by TopicPublisher

/* Set default priority value to 2 for all messages sent by the TopicPublisher*/
TopicPublisher publisher;
publisher.setPriority(1);

Creating an AQjms Agent
public void createAQAgent(java.lang.String agent_name,
 boolean enable_http,
 throws JMSException

This method creates an AQjmsAgent. It has the following parameters:

Parameter Description

agent_name Name of the AQ agent

enable_http If set to true, then this agent is allowed to access AQ through HTTP

Receiving a Message Synchronously
You can receive a message synchronously by specifying Timeout or without waiting. You can
also receive a message using a transformation:

• Using a Message Consumer by Specifying Timeout

• Using a Message Consumer Without Waiting

• Receiving Messages from a Destination Using a Transformation

Using a Message Consumer by Specifying Timeout
public javax.jms.Message receive(long timeout)
 throws JMSException

This method receives a message using a message consumer by specifying timeout.

Parameter Description

timeout Timeout value in milliseconds

Example 6-86 Using a Message Consumer by Specifying Timeout

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 99 of 133

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 " priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
/* receive, blocking for 30 seconds if there were no messages */
Message = subscriber.receive(30000);

Example 6-87 JMS: Blocking Until a Message Arrives

public BolOrder get_new_order1(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* wait for a message to show up in the queue */
 obj_message = (ObjectMessage)qrec.receive();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();
 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }
 return new_order;
 }

Using a Message Consumer Without Waiting
public javax.jms.Message receiveNoWait()
 throws JMSException

This method receives a message using a message consumer without waiting.

Example 6-88 JMS: Nonblocking Messages

public BolOrder poll_new_order3(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 100 of 133

 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* check for a message to show in the queue */
 obj_message = (ObjectMessage)qrec.receiveNoWait();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();

 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }
 return new_order;
 }

Receiving Messages from a Destination Using a Transformation
A transformation can be applied when receiving a message from a queue or topic. The
transformation is applied to the message before returning it to JMS application.

The transformation can be specified using the setTransformation() interface of the
AQjmsQueueReceiver, AQjmsTopicSubscriber or AQjmsTopicReceiver.

Example 6-89 JMS: Receiving Messages from a Destination Using a Transformation

Assume that the Western Shipping application retrieves messages from the
OE_bookedorders_topic. It specifies the transformation OE2WS to retrieve the message as the
Oracle object type WS_order. Assume that the WSOrder Java class has been generated by
Jpublisher to map to the Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
 AQjmsTopicReceiver receiver;
 Topic topic;
 Message msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* Create a receiver for WShip */
 receiver = ((AQjmsSession)jms_session).createTopicReceiver(
 topic, "WShip, null, WSOrder.getFactory());

 /* set the transformation in the publisher */
 receiver.setTransformation("OE2WS");
 msg = receiver.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :", ex);

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 101 of 133

 }
 return (AQjmsAdtMessage)msg;
}

Specifying the Navigation Mode for Receiving Messages
public void setNavigationMode(int mode)
 throws JMSException

This method specifies the navigation mode for receiving messages. It has the following
parameter:

Parameter Description

mode New value of the navigation mode

Example 6-90 Specifying Navigation Mode for Receiving Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 AQjmsAgent.getFactory());
subscriber1.setNavigationMode(AQjmsConstants.NAVIGATION_FIRST_MESSAGE);

/* get message for the subscriber, returning immediately if there was nomessage */
Message = subscriber.receive();

Receiving a Message Asynchronously
You can receive a message asynchronously two ways:

• Specifying a Message Listener at the Message Consumer

• Specifying a Message Listener at the Session

Specifying a Message Listener at the Message Consumer
public void setMessageListener(javax.jms.MessageListener myListener)
 throws JMSException

This method specifies a message listener at the message consumer. It has the following
parameter:

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 102 of 133

Parameter Description

myListener Sets the consumer message listener

Example 6-91 Specifying Message Listener at Message Consumer

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
MessageListener mLis = null;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
mLis = new myListener(jms_sess, "foo");

/* get message for the subscriber, returning immediately if there was nomessage */
subscriber.setMessageListener(mLis);
The definition of the myListener class
import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import java.util.*;
public class myListener implements MessageListener
{
 TopicSession mySess;
 String myName;
 /* constructor */
 myListener(TopicSession t_sess, String t_name)
 {
 mySess = t_sess;
 myName = t_name;
 }
 public onMessage(Message m)
 {
 System.out.println("Retrieved message with correlation: " ||
m.getJMSCorrelationID());
 try{
 /* commit the dequeue */
 mySession.commit();
 } catch (java.sql.SQLException e)
 {System.out.println("SQL Exception on commit"); }
 }
}

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 103 of 133

Specifying a Message Listener at the Session
public void setMessageListener(javax.jms.MessageListener listener)
 throws JMSException

This method specifies a message listener at the session.

Parameter Description

listener Message listener to associate with this session

Getting Message ID
This section contains these topics:

• Getting the Correlation Identifier

• Getting the Message Identifier

Getting the Correlation Identifier
public java.lang.String getJMSCorrelationID()
 throws JMSException

AQjmsMessage.getJMSCorrelationID() gets the correlation identifier of a message.

Getting the Message Identifier
public byte[] getJMSCorrelationIDAsBytes()
 throws JMSException

AQjmsMessage.getJMSMessageID() gets the message identifier of a message as bytes or a
string.

Getting JMS Message Properties
This section contains these topics:

• Getting a Boolean Message Property

• Getting a String Message Property

• Getting an Integer Message Property

• Getting a Double Message Property

• Getting a Float Message Property

• Getting a Byte Message Property

• Getting a Long Message Property

• Getting a Short Message Property

• Getting an Object Message Property

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 104 of 133

Getting a Boolean Message Property
public boolean getBooleanProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getBooleanProperty() gets a message property as Boolean. It has the
following parameter:

Parameter Description

name Name of the Boolean property

Getting a String Message Property
public java.lang.String getStringProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getStringProperty() gets a message property as string. It has the following
parameter:

Parameter Description

name Name of the string property

Getting an Integer Message Property
public int getIntProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getIntProperty() gets a message property as integer. It has the following
parameter:

Parameter Description

name Name of the integer property

Getting a Double Message Property
public double getDoubleProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getDoubleProperty() gets a message property as double. It has the following
parameter:

Parameter Description

name Name of the double property

Getting a Float Message Property
public float getFloatProperty(java.lang.String name)
 throws JMSException

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 105 of 133

AQjmsMessage.getFloatProperty() gets a message property as float. It has the following
parameter:

Parameter Description

name Name of the float property

Getting a Byte Message Property
public byte getByteProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getByteProperty() gets a message property as byte. It has the following
parameter:

Parameter Description

name Name of the byte property

Getting a Long Message Property
public long getLongProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getLongProperty() gets a message property as long. It has the following
parameter:

Parameter Description

name Name of the long property

Getting a Short Message Property
public short getShortProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getShortProperty() gets a message property as short. It has the following
parameter:

Parameter Description

name Name of the short property

Getting an Object Message Property
public java.lang.Object getObjectProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getObjectProperty() gets a message property as object. It has the following
parameter:

Parameter Description

name Name of the object property

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 106 of 133

Example 6-92 Getting Message Property as an Object

TextMessage message;
message.getObjectProperty("empid", new Integer(1000);

Closing and Shutting Down
This section contains these topics:

• Closing a MessageProducer

• Closing a Message Consumer

• Stopping a JMS Connection

• Closing a JMS Session

• Closing a JMS Connection

Closing a MessageProducer
public void close()
 throws JMSException

AQjmsProducer.close() closes a MessageProducer.

Closing a Message Consumer
public void close()
 throws JMSException

AQjmsConsumer.close() closes a message consumer.

Stopping a JMS Connection
public void stop()
 throws JMSException

AQjmsConnection.stop() stops a JMS connection.

Closing a JMS Session
public void close()
 throws JMSException

AQjmsSession.close() closes a JMS session.

Closing a JMS Connection
public void close()
 throws JMSException

AQjmsConnection.close() closes a JMS connection and releases all resources allocated on
behalf of the connection. Because the JMS provider typically allocates significant resources
outside the JVM on behalf of a connection, clients should close them when they are not
needed. Relying on garbage collection to eventually reclaim these resources may not be timely
enough.

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 107 of 133

Troubleshooting
This section contains these topics:

• Getting a JMS Error Code

• Getting a JMS Error Number

• Getting an Exception Linked to a JMS Exception

• Printing the Stack Trace for a JMS Exception

• Setting an Exception Listener

• Getting an Exception Listener

Getting a JMS Error Code
public java.lang.String getErrorCode()

AQjmsException.getErrorCode() gets the error code for a JMS exception.

Getting a JMS Error Number
public int getErrorNumber()

AQjmsException.getErrorNumber() gets the error number for a JMS exception.

Note

This method will be deprecated in a future release. Use getErrorCode() instead.

Getting an Exception Linked to a JMS Exception
public java.lang.String getLinkString()

AQjmsException.getLinkString() gets the exception linked to a JMS exception. In general,
this contains the SQL exception raised by the database.

Printing the Stack Trace for a JMS Exception
public void printStackTrace(java.io.PrintStream s)

AQjmsException.printStackTrace() prints the stack trace for a JMS exception.

Setting an Exception Listener
public void setExceptionListener(javax.jms.ExceptionListener listener)
 throws JMSException

AQjmsConnection.setExceptionListener() specifies an exception listener for a connection. It
has the following parameter:

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 108 of 133

Parameter Description

listener Exception listener

If an exception listener has been registered, then it is informed of any serious problem
detected for a connection. This is accomplished by calling the listener onException() method,
passing it a JMS exception describing the problem. This allows a JMS client to be notified of a
problem asynchronously. Some connections only consume messages, so they have no other
way to learn the connection has failed.

Example 6-93 Specifying Exception Listener for Connection

//register an exception listener
Connection jms_connection;
jms_connection.setExceptionListener(
 new ExceptionListener() {
 public void onException (JMSException jmsException) {
 System.out.println("JMS-EXCEPTION: " + jmsException.toString());
 }
 };
);

Getting an Exception Listener
public javax.jms.ExceptionListener getExceptionListener()
 throws JMSException

AQjmsConnection.getExceptionListener() gets the exception listener for the connection.

Example 6-94 demonstrates how to use ExceptionListener with MessageListener. Ensure
that the following conditions are met:

• The user jmsuser with password jmsuser is created in the database, with appropriate
privileges.

• The queue demoQueue is created and started.

This example demonstrates how to make the MessageListener asynchronously receive the
messages, where the exception listener recreates the JMS objects in case there is a
connection restart.

Example 6-94 Using ExceptionListener with MessageListener

import java.util.Enumeration;
import java.util.Properties;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.QueueBrowser;
import javax.jms.Session;
import javax.jms.TextMessage;

import oracle.jms.AQjmsConnectionFactory;
import oracle.jms.AQjmsFactory;
import oracle.jms.AQjmsSession;

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 109 of 133

public class JMSDemo {

 static String queueName = "demoQueue";

 static String queueOwner = "jmsuser";

 static String queueOwnerPassword = "jmsuser";

 static Connection connection = null;

 static int numberOfMessages = 25000;

 static int messageCount = 0;

 static String jdbcURL = "";

 public static void main(String args[]) {
 try {
 jdbcURL = System.getProperty("JDBC_URL");

 if (jdbcURL == null)
 System.out
 .println("The system property JDBC_URL has not been set, " +
 "usage:java -DJDBC_URL=xxx filename ");
 else {
 JMSDemo demo = new JMSDemo();
 demo.performJmsOperations();
 }
 } catch (Exception exception) {
 System.out.println("Exception : " + exception);
 exception.printStackTrace();
 } finally {
 try {
 if (connection != null)
 connection.close();
 } catch (Exception exc) {
 exc.printStackTrace();
 }
 }
 System.out.println("\nEnd of Demo aqjmsdemo11.");
 }

 public void performJmsOperations() {
 try {
 connection = getConnection(jdbcURL);
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Queue queue = session.createQueue(queueName);

 // remove the messages from the Queue
 drainQueue(queueName, queueOwner, jdbcURL, true);

 // set the exception listener on the Connection
 connection.setExceptionListener(new DemoExceptionListener());

 MessageProducer producer = session.createProducer(queue);
 TextMessage textMessage = null;

 System.out.println("Sending " + numberOfMessages + " messages to queue "
 + queueName);
 for (int i = 0; i < numberOfMessages; i++) {
 textMessage = session.createTextMessage();

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 110 of 133

 textMessage.setText("Sample message text");
 producer.send(textMessage);
 }

 MessageConsumer consumer = session.createConsumer(queue);
 System.out.println("Setting the message listener ...");
 consumer.setMessageListener(new DemoMessageListener());
 connection.start();

 // Introduce a long wait to allow the listener to receive all the messages
 while (messageCount < numberOfMessages) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException interruptedException) {
 }
 }
 } catch (JMSException jmsException) {
 jmsException.printStackTrace();
 }
 }

 // Sample message listener
 static class DemoMessageListener implements javax.jms.MessageListener {

 public void onMessage(Message message) {
 try {
 System.out.println("Message listener received message with JMSMessageID "
 + message.getJMSMessageID());
 messageCount++;
 } catch (JMSException jmsException) {
 System.out.println("JMSException " + jmsException.getMessage());
 }
 }
 }

 // sample exception listener
 static class DemoExceptionListener implements javax.jms.ExceptionListener {

 public void onException(JMSException jmsException) {
 try {
 // As a first step close the connection
 if (connection != null)
 connection.close();
 } catch (JMSException exception) {}

 try {
 System.out.println("Re-create the necessary JMS objects ...");
 connection = getConnection(jdbcURL);
 connection.start();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Queue queue = session.createQueue(queueName);
 MessageConsumer consumer = session.createConsumer(queue);
 consumer.setMessageListener(new DemoMessageListener());
 } catch (JMSException newJmsException) {
 newJmsException.printStackTrace();
 }
 }
 }

 // Utility method to get a connection
 static Connection getConnection(String jdbcUrl) throws JMSException {

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 111 of 133

 Properties prop = new Properties();
 prop.put("user", queueOwner);
 prop.put("password", queueOwnerPassword);

 AQjmsConnectionFactory fact = (AQjmsConnectionFactory) AQjmsFactory
 .getConnectionFactory(jdbcUrl, prop);
 Connection conn = fact.createConnection();
 return conn;
 }

 // Utility method to remove the messages from the queue
 static void drainQueue(String queueName, String queueOwner, String jdbcUrl,
 boolean debugInfo) {
 Connection connection = null;
 Session session = null;
 long timeout = 10000;
 int count = 0;
 Message message = null;
 try {
 connection = getConnection(jdbcUrl);
 connection.start();
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue = ((AQjmsSession) session).getQueue(queueOwner, queueName);

 MessageConsumer messageConsumer = session.createConsumer(queue);
 QueueBrowser browser = session.createBrowser(queue);
 Enumeration enumeration = browser.getEnumeration();

 if (enumeration.hasMoreElements()) {
 while ((message = messageConsumer.receive(timeout)) != null) {
 if (debugInfo) {
 count++;
 }
 }
 }
 messageConsumer.close();
 if (debugInfo) {
 System.out.println("Removed " + count + " messages from the queue : "
 + queueName);
 }
 } catch (JMSException jmsException) {
 jmsException.printStackTrace();
 } finally {
 try {
 if (session != null)
 session.close();

 if (connection != null)
 connection.close();
 } catch (Exception exception) {

 }
 }
 }

}

Example 6-95 Getting the Exception Listener for the Connection

//Get the exception listener
Connection jms_connection;
ExceptionListener el = jms_connection.getExceptionListener();

Chapter 6
Oracle Java Message Service Shared Interfaces

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 112 of 133

Oracle Java Message Service Types Examples
The following examples illustrate how to use Oracle JMS Types to dequeue and enqueue
Oracle Database Advanced Queuing (AQ) messages.

• How to Setup the Oracle Database Advanced Queuing JMS Type Examples

• JMS BytesMessage Examples

• JMS StreamMessage Examples

• JMS MapMessage Examples

• More Oracle Database Advanced Queuing JMS Examples

How to Set Up the Oracle Database Advanced Queuing JMS Type
Examples

To run Example 6-98 through Example 6-103 follow these steps:

1. Copy and save Example 6-96 as setup.sql.

2. Run setup.sql as follows:

sqlplus /NOLOG @setup.sql

3. Log in to SQL*Plus as jmsuser/jmsuser.

4. Run the corresponding pair of SQL scripts for each type of message.

For JMS BytesMessage, for example, run Example 6-98 and Example 6-99.

5. Ensure that your database parameter java_pool-size is large enough. For example, you
can use java_pool_size=20M.

Example 6-96 Setting Up Environment for Running JMS Types Examples

connect sys;
enter password: password

Rem
Rem Create the JMS user: jmsuser
Rem

DROP USER jmsuser CASCADE;
CREATE USER jmsuser IDENTIFIED BY jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

set echo offset verify offconnect sysDROP USER jmsuser CASCADE;ACCEPT password CHAR
PROMPT 'Enter the password for JMSUSER: ' HIDECREATE USER jmsuser IDENTIFIED BY
&password;GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;GRANT EXECUTE ON
DBMS_AQADM TO jmsuser;GRANT EXECUTE ON DBMS_AQ TO jmsuser;GRANT EXECUTE ON DBMS_LOB TO
jmsuser;GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;connect jmsuser/&password

Rem
Rem Creating five AQ queue tables and five queues for five payloads:
Rem SYS.AQ$_JMS_TEXT_MESSAGE
Rem SYS.AQ$_JMS_BYTES_MESSAGE

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 113 of 133

Rem SYS.AQ$_JMS_STREAM_MESSAG
Rem SYS.AQ$_JMS_MAP_MESSAGE
Rem SYS.AQ$_JMS_MESSAGE
Rem

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_text',
 Queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_bytes',
 Queue_payload_type => 'SYS.AQ$_JMS_BYTES_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_stream',
 Queue_payload_type => 'SYS.AQ$_JMS_STREAM_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_map',
 Queue_payload_type => 'SYS.AQ$_JMS_MAP_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_general',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_text_que',
 Queue_table => 'jmsuser.jms_qtt_text');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_bytes_que',
 Queue_table => 'jmsuser.jms_qtt_bytes');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_stream_que',
 Queue_table => 'jmsuser.jms_qtt_stream');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_map_que',
 Queue_table => 'jmsuser.jms_qtt_map');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_general_que',
 Queue_table => 'jmsuser.jms_qtt_general');

Rem
Rem Starting the queues and enable both enqueue and dequeue
Rem
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_text_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_bytes_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_stream_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_map_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_general_que');

Rem The supporting utility used in the example to help display results in SQLPLUS
enviroment

Rem
Rem Display a RAW data in SQLPLUS
Rem
create or replace procedure display_raw(rdata raw)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 pos := 1;
 length := UTL_RAW.LENGTH(rdata);

 WHILE pos <= length LOOP
 IF pos+20 > length+1 THEN
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, length-pos+1));
 ELSE
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, 20));
 END IF;
 pos := pos+20;
 END LOOP;

END display_raw;
/

show errors;

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 114 of 133

Rem
Rem Display a BLOB data in SQLPLUS
Rem
create or replace procedure display_blob(bdata blob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(bdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_raw(DBMS_LOB.SUBSTR(bdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_blob;
/

show errors;

Rem
Rem Display a VARCHAR data in SQLPLUS
Rem
create or replace procedure display_varchar(vdata varchar)
IS
 pos pls_integer;
 text_len pls_integer;
BEGIN
 text_len := length(vdata);
 pos := 1;

 WHILE pos <= text_len LOOP
 IF pos+20 > text_len+1 THEN
 dbms_output.put_line(SUBSTR(vdata, pos, text_len-pos+1));
 ELSE
 dbms_output.put_line(SUBSTR(vdata, pos, 20));
 END IF;
 pos := pos+20;
 END LOOP;

END display_varchar;
/

show errors;

Rem
Rem Display a CLOB data in SQLPLUS
Rem
create or replace procedure display_clob(cdata clob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(cdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_varchar(DBMS_LOB.SUBSTR(cdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_clob;
/

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 115 of 133

show errors;

Rem
Rem Display a SYS.AQ$_JMS_EXCEPTION data in SQLPLUS
Rem
Rem When application receives an ORA-24197 error, It means the JAVA stored
Rem procedures has thrown some exceptions that could not be catergorized. The
Rem user can use GET_EXCEPTION procedure of SYS.AQ$_JMS_BYTES_MESSAGE,
Rem SYS.AQ$_JMS_STREAM_MESSAG or SYS.AQ$_JMS_MAP_MESSAGE
Rem to retrieve a SYS.AQ$_JMS_EXCEPTION object which contains more detailed
Rem information on this JAVA exception including the exception name, JAVA error
Rem message and stack trace.
Rem
Rem This utility function is to help display the SYS.AQ$_JMS_EXCEPTION object in
Rem SQLPLUS
Rem
create or replace procedure display_exp(exp SYS.AQ$_JMS_EXCEPTION)
IS
 pos1 pls_integer;
 pos2 pls_integer;
 text_data varchar(2000);
BEGIN
 dbms_output.put_line('exception:'||exp.exp_name);
 dbms_output.put_line('err_msg:'||exp.err_msg);
 dbms_output.put_line('stack:'||length(exp.stack));
 pos1 := 1;
 LOOP
 pos2 := INSTR(exp.stack, chr(10), pos1);
 IF pos2 = 0 THEN
 pos2 := length(exp.stack)+1;
 END IF;

 dbms_output.put_line(SUBSTR(exp.stack, pos1, pos2-pos1));

 IF pos2 > length(exp.stack) THEN
 EXIT;
 END IF;

 pos1 := pos2+1;
 END LOOP;

END display_exp;
/

show errors;

EXIT;

Example 6-97 Setting Up the Examples

Example 6-96 performs the necessary setup for the JMS types examples. Copy and save it as
setup.sql.

JMS BytesMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
BytesMessage.

Example 6-98 shows how to use JMS type member functions with DBMS_AQ functions to
populate and enqueue a JMS BytesMessage represented as sys.aq$_jms_bytes_message type

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 116 of 133

in the database. This message later can be dequeued by a JAVA Oracle Java Message
Service (Oracle JMS) client.

Example 6-99 illustrates how to use JMS type member functions with DBMS_AQ functions to
dequeue and retrieve data from a JMS BytesMessage represented as
sys.aq$_jms_bytes_message type in the database. This message might be enqueued by an
Oracle JMS client.

Example 6-98 Populating and Enqueuing a BytesMessage

set echo offset verify offconnect sysDROP USER jmsuser CASCADE;ACCEPT password CHAR
PROMPT 'Enter the password for JMSUSER: ' HIDECREATE USER jmsuser IDENTIFIED BY
&password;GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;GRANT EXECUTE ON
DBMS_AQADM TO jmsuser;GRANT EXECUTE ON DBMS_AQ TO jmsuser;GRANT EXECUTE ON DBMS_LOB TO
jmsuser;GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty BytesMessage object
 message := sys.aq$_jms_bytes_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_bytes_message

 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_bytes_message.
 -- The maximum number of sys.aq$_jms_bytes_message type of messges to be operated at
 -- the same time within a session is 20. Calling clean_body function with parameter
-1
 -- might result a ORA-24199 error if the messages currently operated is already 20.
 -- The user is responsible to call clean or clean_all function to clean up message
store.
 id := message.clear_body(-1);

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 117 of 133

 -- Write data into the BytesMessage paylaod. These functions are analogy of JMS JAVA
api's.
 -- See the document for detail.

 -- Write a byte to the BytesMessage payload
 message.write_byte(id, 10);

 -- Write a RAW data as byte array to the BytesMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to BytesMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0, 16);

 -- Write a char to the BytesMessage payload
 message.write_char(id, 'A');

 -- Write a double to the BytesMessage payload
 message.write_double(id, 9999.99);

 -- Write a float to the BytesMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the BytesMessage payload
 message.write_int(id, 12345);

 -- Write a long to the BytesMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the BytesMessage payload
 message.write_short(id, 123);

 -- Write a String to the BytesMessage payload,
 -- the String is encoded in UTF8 in the message payload
 message.write_utf(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_bytes_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 118 of 133

commit;

Example 6-99 Dequeuing and Retrieving JMS BytesMessage Data

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on size 20000

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 blob_len pls_integer;
 message sys.aq$_jms_bytes_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_bytes_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 119 of 133

 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

-- Shows how to retrieve the message payload of aq$_jms_bytes_message

-- Prepare call, send the content in the PL/SQL aq$_jms_bytes_message object to
 -- Java stored procedure(Jserv) in the form of a byte array.
 -- Passing -1 reserves a new slot in msg store of sys.aq$_jms_bytes_message.
 -- Max number of sys.aq$_jms_bytes_message type of messges to be operated at
 -- the same time in a session is 20. Call clean_body fn. with parameter -1
 -- might result in ORA-24199 error if messages operated on are already 20.
 -- You must call clean or clean_all function to clean up message store.
 id := message.prepare(-1);

-- Read data from BytesMessage paylaod. These fns. are analogy of JMS Java
-- API's. See the JMS Types chapter for detail.
 dbms_output.put_line('Payload:');

 -- read a byte from the BytesMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- read a byte array into a blob object from the BytesMessage payload
 dbms_output.put_line('read_bytes:');
 blob_len := message.read_bytes(id, blob_data, 272);
 display_blob(blob_data);

 -- read a char from the BytesMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- read a double from the BytesMessage payload
 dbms_output.put_line('read_double:'|| message.read_double(id));

 -- read a float from the BytesMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- read a int from the BytesMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- read a long from the BytesMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- read a short from the BytesMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- read a String from the BytesMessage payload.
 -- the String is in UTF8 encoding in the message payload
 dbms_output.put_line('read_utf:');
 message.read_utf(id, clob_data);
 display_clob(clob_data);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_bytes_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_bytes_message.get_exception());

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 120 of 133

END;
/

commit;

JMS StreamMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
StreamMessage.

Example 6-100 shows how to use JMS type member functions with DBMS_AQ functions to
populate and enqueue a JMS StreamMessage represented as sys.aq$_jms_stream_message
type in the database. This message later can be dequeued by an Oracle JMS client.

Example 6-101 shows how to use JMS type member functions with DBMS_AQ functions to
dequeue and retrieve data from a JMS StreamMessage represented as
sys.aq$_jms_stream_message type in the database. This message might be enqueued by an
Oracle JMS client.

Example 6-100 Populating and Enqueuing a JMS StreamMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_stream_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty StreamMessage object
 message := sys.aq$_jms_stream_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 121 of 133

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_stream_message

 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be operated at
 -- the same time within a session is 20. Calling clean_body function with parameter
-1
 -- might result a ORA-24199 error if the messages currently operated is already 20.
 -- The user is responsible to call clean or clean_all function to clean up message
store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS JAVA
api's.
 -- See the document for detail.

 -- Write a byte to the StreamMessage payload
 message.write_byte(id, 10);

 -- Write a RAW data as byte array to the StreamMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to the StreamMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0, 16);

 -- Write a char to the StreamMessage payload
 message.write_char(id, 'A');

 -- Write a double to the StreamMessage payload
 message.write_double(id, 9999.99);

 -- Write a float to the StreamMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the StreamMessage payload
 message.write_int(id, 12345);

 -- Write a long to the StreamMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the StreamMessage payload
 message.write_short(id, 123);

 -- Write a String to the StreamMessage payload
 message.write_string(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 122 of 133

 sys.aq$_jms_stream_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_stream_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

Example 6-101 Dequeuing and Retrieving Data From a JMS StreamMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_stream_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_stream_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 123 of 133

 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_stream_message

 -- The prepare call send the content in the PL/SQL aq$_jms_stream_message object to
 -- JAVA stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be operated at
 -- the same time within a session is 20. Calling clean_body function with parameter
-1
 -- might result a ORA-24199 error if the messages currently operated is already 20.
 -- The user is responsible to call clean or clean_all function to clean up message
store.
 id := message.prepare(-1);

 -- Assume the users know the types of data in the StreamMessage payload.
 -- The user can use the specific read function corresponding with the data type.
 -- These functions are analogy of JMS JAVA api's. See the document for detail.
 dbms_output.put_line('Retrieve payload by Type:');

 -- Read a byte from the StreamMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- Read a byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');
 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read another byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');
 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read a char from the StreamMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- Read a double from the StreamMessage payload
 dbms_output.put_line('read_double:'|| message.read_double(id));

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 124 of 133

 -- Read a float from the StreamMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- Read a int from the StreamMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- Read a long from the StreamMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- Read a short from the StreamMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- Read a String into a clob data from the StreamMessage payload
 dbms_output.put_line('read_string:');
 message.read_string(id, clob_data);
 display_clob(clob_data);

 -- Assume the users do not know the types of data in the StreamMessage payload.
 -- The user can use read_object method to read the data into a sys.aq$_jms_value
object
 -- These functions are analogy of JMS JAVA api's. See the document for detail.

 -- Reset the stream pointer to the begining of the message so that we can read
throught
 -- the message payload again.
 message.reset(id);

 LOOP
 message.read_object(id, gdata);
 IF gdata IS NULL THEN
 EXIT;
 END IF;

 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE THEN
 dbms_output.put_line('read_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT THEN
 dbms_output.put_line('read_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER THEN
 dbms_output.put_line('read_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG THEN
 dbms_output.put_line('read_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT THEN
 dbms_output.put_line('read_object/float:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE THEN
 dbms_output.put_line('read_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN THEN
 dbms_output.put_line('read_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER THEN
 dbms_output.put_line('read_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING THEN
 dbms_output.put_line('read_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES THEN
 dbms_output.put_line('read_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;

 END LOOP;

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 125 of 133

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_stream_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

JMS MapMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS MapMessage.

Example 6-102 shows how to use JMS type member functions with DBMS_AQ functions to
populate and enqueue a JMS MapMessage represented as sys.aq$_jms_map_message type in
the database. This message later can be dequeued by an Oracle JMS client.

Example 6-103 illustrates how to use JMS type member functions with DBMS_AQ functions to
dequeue and retrieve data from a JMS MapMessage represented as sys.aq$_jms_map_message
type in the database. This message can be enqueued by an Oracle JMS client.

Example 6-102 Populating and Enqueuing a JMS MapMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_map_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty map message object

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 126 of 133

 message := sys.aq$_jms_map_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_map_message

 -- Passing -1 reserve a new slot within the message store of sys.aq$_jms_map_message.
 -- The maximum number of sys.aq$_jms_map_message type of messges to be operated at
 -- the same time within a session is 20. Calling clean_body function with parameter
-1
 -- might result a ORA-24199 error if the messages currently operated is already 20.
 -- The user is responsible to call clean or clean_all function to clean up message
store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS JAVA
api's.
 -- See the document for detail.

 -- Set a byte entry in map message payload
 message.set_byte(id, 'BYTE', 10);

 -- Set a byte array entry using RAW data in map message payload
 message.set_bytes(id, 'BYTES', UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Set a byte array entry using only a portion of the RAW data in map message payload
 -- Note the offset follows JAVA convention, starting from 0
 message.set_bytes(id, 'BYTES_PART', UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')),
0, 16);

 -- Set a char entry in map message payload
 message.set_char(id, 'CHAR', 'A');

 -- Set a double entry in map message payload
 message.set_double(id, 'DOUBLE', 9999.99);

 -- Set a float entry in map message payload
 message.set_float(id, 'FLOAT', 99.99);

 -- Set a int entry in map message payload
 message.set_int(id, 'INT', 12345);

 -- Set a long entry in map message payload
 message.set_long(id, 'LONG', 1234567);

 -- Set a short entry in map message payload
 message.set_short(id, 'SHORT', 123);

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 127 of 133

 -- Set a String entry in map message payload
 message.set_string(id, 'STRING', 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_map_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_map_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;
/

commit;

Example 6-103 Dequeuing and Retrieving Data From a JMS MapMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_map_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 name_arr sys.aq$_jms_namearray;
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 128 of 133

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_map_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_map_message

 -- 'Prepare' sends the content in the PL/SQL aq$_jms_map_message object to
 -- Java stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of
 -- sys.aq$_jms_map_message. The maximum number of sys.aq$_jms_map_message
 -- type of messges to be operated at the same time within a session is 20.
 -- Calling clean_body function with parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
 -- already 20. The user is responsible to call clean or clean_all function
 -- to clean up message store.
 id := message.prepare(-1);

 -- Assume the users know the names and types in the map message payload.
 -- The user can use names to get the corresponsing values.
 -- These functions are analogous to JMS Java API's. See JMS Types chapter
 -- for detail.
 dbms_output.put_line('Retrieve payload by Name:');

 -- Get a byte entry from the map message payload
 dbms_output.put_line('get_byte:' || message.get_byte(id, 'BYTE'));

 -- Get a byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES', blob_data);
 display_blob(blob_data);

 -- Get another byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES_PART', blob_data);
 display_blob(blob_data);

 -- Get a char entry from the map message payload

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 129 of 133

 dbms_output.put_line('get_char:'|| message.get_char(id, 'CHAR'));

 -- get a double entry from the map message payload
 dbms_output.put_line('get_double:'|| message.get_double(id, 'DOUBLE'));

 -- Get a float entry from the map message payload
 dbms_output.put_line('get_float:'|| message.get_float(id, 'FLOAT'));

 -- Get a int entry from the map message payload
 dbms_output.put_line('get_int:'|| message.get_int(id, 'INT'));

 -- Get a long entry from the map message payload
 dbms_output.put_line('get_long:'|| message.get_long(id, 'LONG'));

 -- Get a short entry from the map message payload
 dbms_output.put_line('get_short:'|| message.get_short(id, 'SHORT'));

 -- Get a String entry from the map message payload
 dbms_output.put_line('get_string:');
 message.get_string(id, 'STRING', clob_data);
 display_clob(clob_data);

 -- Assume users do not know names and types in map message payload.
 -- User can first retrieve the name array containing all names in the
 -- payload and iterate through the name list and get the corresponding
 -- value. These functions are analogous to JMS Java API's.
 -- See JMS Type chapter for detail.
 dbms_output.put_line('Retrieve payload by iteration:');

 -- Get the name array from the map message payload
 name_arr := message.get_names(id);

 -- Iterate through the name array to retrieve the value for each of the name.
 FOR i IN name_arr.FIRST..name_arr.LAST LOOP

 -- Test if a name exist in the map message payload
 -- (It is not necessary in this case, just a demostration on how to use it)
 IF message.item_exists(id, name_arr(i)) THEN
 dbms_output.put_line('item exists:'||name_arr(i));

 -- Because we do not know the type of entry, we must use sys.aq$_jms_value
 -- type object for the data returned
 message.get_object(id, name_arr(i), gdata);
 IF gdata IS NOT NULL THEN
 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE
 THEN dbms_output.put_line('get_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT
 THEN dbms_output.put_line('get_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER
 THEN dbms_output.put_line('get_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG
 THEN dbms_output.put_line('get_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT
 THEN dbms_output.put_line('get_object/float:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE
 THEN dbms_output.put_line('get_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN
 THEN dbms_output.put_line('get_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER
 THEN dbms_output.put_line('get_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 130 of 133

 THEN dbms_output.put_line('get_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES
 THEN
 dbms_output.put_line('get_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;
 END IF;
 ELSE
 dbms_output.put_line('item not exists:'||name_arr(i));
 END IF;

 END LOOP;

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 message.clean(id);
 -- sys.aq$_jms_map_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

More Oracle Database Advanced Queuing JMS Examples
The sample program in Example 6-104 enqueues a large TextMessage (along with JMS user
properties) in an Oracle Database Advanced Queuing queue created through the Oracle JMS
administrative interfaces to hold JMS TEXT messages. Both the TextMessage and
BytesMessage enqueued in this example can be dequeued using Oracle JMS clients.

The sample program in Example 6-105 enqueues a large BytesMessage.

Example 6-104 Enqueuing a Large TextMessage

DECLARE

 text varchar2(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_text_message;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_text_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqpet2');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 131 of 133

 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);
 message.set_byte_property('password', 127);

 FOR i IN 1..500 LOOP
 text := CONCAT (text, '1234567890');
 END LOOP;

 message.set_text(text);

 dbms_aq.enqueue(queue_name => 'jmsuser.jms_text_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;

Example 6-105 Enqueuing a Large BytesMessage

DECLARE

 text VARCHAR2(32767);
 bytes RAW(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;
 body BLOB;
 position INT;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_bytes_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqper4');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq_raw');
 message.set_groupid('st');
 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);

-- prepare a huge payload into a blob

 FOR i IN 1..1000 LOOP
 text := CONCAT (text, '0123456789ABCDEF');
 END LOOP;

 bytes := HEXTORAW(text);

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 132 of 133

 dbms_lob.createtemporary(lob_loc => body, cache => TRUE);
 dbms_lob.open (body, DBMS_LOB.LOB_READWRITE);
 position := 1 ;
 FOR i IN 1..10 LOOP
 dbms_lob.write (lob_loc => body,
 amount => FLOOR((LENGTH(bytes)+1)/2),
 offset => position,
 buffer => bytes);
 position := position + FLOOR((LENGTH(bytes)+1)/2) ;
 END LOOP;

-- end of the preparation

 message.set_bytes(body);
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 dbms_lob.freetemporary(lob_loc => body);
END;

Chapter 6
Oracle Java Message Service Types Examples

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 133 of 133

7
Oracle Database Advanced Queuing
Operations Using PL/SQL

These topics describes the Oracle Database Advanced Queuing (AQ) PL/SQL operational
interface.

• Using Secure Queues

• Enqueuing Messages

• Enqueuing an Array of Messages

• Listening to One or More Queues

• Dequeuing Messages

• Dequeuing an Array of Messages

• Registering for Notification

• Posting for Subscriber Notification

• Adding an Agent to the LDAP Server

• Removing an Agent from the LDAP Server

See Also

• Oracle Database Advanced Queuing: Programmatic Interfaces for a list of
available functions in each programmatic interface

• "DBMS_AQ" in Oracle Database PL/SQL Packages and Types Reference for
more information on the PL/SQL interface

• Oracle Database Advanced Queuing Java API Reference for more information on
the Java interface

• "More OCI Relational Functions" in Oracle Call Interface Programmer's Guide

• "OCI Programming Advanced Topics" in Oracle Call Interface Programmer's Guide
for more information on the Oracle Call Interface (OCI)

Using Secure Queues
For secure queues, you must specify the sender_id in the messages_properties parameter.

See "MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages and Types
Reference for more information about sender_id.

When you use secure queues, the following are required:

• You must have created a valid Oracle Database Advanced Queuing agent using
DBMS_AQADM.CREATE_AQ_AGENT.

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 25

• You must map sender_id to a database user with enqueue privileges on the secure queue.
Use DBMS_AQADM.ENABLE_DB_ACCESS to do this.

See Also

– "Creating an Oracle Database Advanced Queuing Agent"

– "Enabling Database Access"

Enqueuing Messages
This procedure adds a message to the specified queue.

DBMS_AQ.ENQUEUE(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "type_name",
 msgid OUT RAW);

It is not possible to update the message payload after a message has been enqueued. If you
want to change the message payload, then you must dequeue the message and enqueue a
new message.

To store a payload of type RAW, Oracle Database Advanced Queuing creates a queue table
with LOB column as the payload repository. The maximum size of the payload is determined by
which programmatic interface you use to access Oracle Database Advanced Queuing. For PL/
SQL, Java and precompilers the limit is 32K; for the OCI the limit is 4G.

If a message is enqueued to a multiconsumer queue with no recipient and the queue has no
subscribers (or rule-based subscribers that match this message), then Oracle error ORA
24033 is raised. This is a warning that the message will be discarded because there are no
recipients or subscribers to whom it can be delivered.

If several messages are enqueued in the same second, then they all have the same enq_time.
In this case the order in which messages are dequeued depends on step_no, a variable that is
monotonically increasing for each message that has the same enq_time. There is no situation
when both enq_time and step_no are the same for two messages enqueued in the same
session.

Enqueue Options

The enqueue_options parameter specifies the options available for the enqueue operation. It
has the following attributes:

• visibility

The visibility attribute specifies the transactional behavior of the enqueue request.
ON_COMMIT (the default) makes the enqueue is part of the current transaction. IMMEDIATE
makes the enqueue operation an autonomous transaction which commits at the end of the
operation.

Do not use the IMMEDIATE option when you want to use LOB locators. LOB locators are
valid only for the duration of the transaction. Your locator will not be valid, because the
immediate option automatically commits the transaction.

You must set the visibility attribute to IMMEDIATE to use buffered messaging.

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 25

• relative_msgid

The relative_msgid attribute specifies the message identifier of the message referenced
in the sequence deviation operation. This parameter is ignored unless
sequence_deviation is specified with the BEFORE attribute.

• sequence_deviation

The sequence_deviation attribute specifies when the message should be dequeued,
relative to other messages already in the queue. BEFORE puts the message ahead of the
message specified by relative_msgid. TOP puts the message ahead of any other
messages.

Specifying sequence_deviation for a message introduces some restrictions for the delay
and priority values that can be specified for this message. The delay of this message must
be less than or equal to the delay of the message before which this message is to be
enqueued. The priority of this message must be greater than or equal to the priority of the
message before which this message is to be enqueued.

Note

The sequence_deviation attribute has no effect in releases prior to Oracle
Database Advanced Queuing 10g Release 1 (10.1) if message_grouping is set to
TRANSACTIONAL.

The sequence deviation feature is deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2).

• transformation

The transformation attribute specifies a transformation that will be applied before
enqueuing the message. The return type of the transformation function must match the
type of the queue.

• delivery_mode

If the delivery_mode attribute is the default PERSISTENT, then the message is enqueued as
a persistent message. If it is set to BUFFERED, then the message is enqueued as an
buffered message. Null values are not allowed.

Message Properties

The message_properties parameter contains the information that Oracle Database Advanced
Queuing uses to manage individual messages. It has the following attributes:

• priority

The priority attribute specifies the priority of the message. It can be any number,
including negative numbers. A smaller number indicates higher priority.

• delay

The delay attribute specifies the number of seconds during which a message is in the
WAITING state. After this number of seconds, the message is in the READY state and
available for dequeuing. If you specify NO_DELAY, then the message is available for
immediate dequeuing. Dequeuing by msgid overrides the delay specification.

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 25

Note

Delay is not supported with buffered messaging.

• expiration

The expiration attribute specifies the number of seconds during which the message is
available for dequeuing, starting from when the message reaches the READY state. If the
message is not dequeued before it expires, then it is moved to the exception queue in the
EXPIRED state. If you specify NEVER, then the message does not expire.

Note

Message delay and expiration are enforced by the queue monitor (QMN)
background processes. You must start the QMN processes for the database if you
intend to use the delay and expiration features of Oracle Database Advanced
Queuing.

• correlation

The correlation attribute is an identifier supplied by the producer of the message at
enqueue time.

• attempts

The attemps attribute specifies the number of attempts that have been made to dequeue
the message. This parameter cannot be set at enqueue time.

• recipient_list

The recipient_list parameter is valid only for queues that allow multiple consumers. The
default recipients are the queue subscribers.

• exception_queue

The exception_queue attribute specifies the name of the queue into which the message is
moved if it cannot be processed successfully. If the exception queue specified does not
exist at the time of the move, then the message is moved to the default exception queue
associated with the queue table, and a warning is logged in the alert log.

• delivery_mode

Any value for delivery_mode specified in message properties at enqueue time is ignored.
The value specified in enqueue options is used to set the delivery mode of the message. If
the delivery mode in enqueue options is left unspecified, then it defaults to persistent.

• enqueue_time

The enqueue_time attribute specifies the time the message was enqueued. This value is
always in Universal Coordinated Time (UTC), and is determined by the system and cannot
be set by the user at enqueue time.

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 25

Note

Because information about seasonal changes in the system clock (switching
between standard time and daylight-saving time, for example) is stored with each
queue table, seasonal changes are automatically reflected in enqueue_time. If the
system clock is changed for some other reason, then you must restart the
database for Oracle Database Advanced Queuing to pick up the changed time.

• state

The state attribute specifies the state of the message at the time of the dequeue. This
parameter cannot be set at enqueue time.

• sender_id

The sender_id attribute is an identifier of type aq$_agent specified at enqueue time by the
message producer.

• original_msgid

The original_msgid attribute is used by Oracle Database AQ for propagating messages.

• transaction_group

The transaction_group attribute specifies the transaction group for the message. This
attribute is set only by DBMS_AQ.DEQUEUE_ARRAY. This attribute cannot be used to set the
transaction group of a message through DBMS_AQ.ENQUEUE or DBMS_AQ.ENQUEUE_ARRAY.

• user_property

The user_property attribute is optional. It is used to store additional information about the
payload.

The examples in the following topics use the same users, message types, queue tables, and
queues as do the examples in Oracle Database Advanced Queuing Administrative Interface. If
you have not already created these structures in your test environment, then you must run the
following examples:

• Example 12-1

• Example 12-2

• Example 12-3

• Example 12-5

• Example 12-7

• Example 12-8

• Example 12-23

• Example 12-25

• Example 12-26

• Example 12-27

• Example 12-28

• Example 12-36

For Example 12-1, you must connect as a user with administrative privileges. For the other
examples in the preceding list, you can connect as user test_adm. After you have created the
queues, you must start them as shown in "Starting a Queue". Except as noted otherwise, you
can connect as ordinary queue user 'test' to run all examples.

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 25

Enqueuing a LOB Type Message

Example 7-3 creates procedure blobenqueue() using the test.lob_type message payload
object type created in Example 12-1. On enqueue, the LOB attribute is set to EMPTY_BLOB. After
the enqueue completes, but before the transaction is committed, the LOB attribute is selected
from the user_data column of the test.lob_qtab queue table. The LOB data is written to the
queue using the LOB interfaces (which are available through both OCI and PL/SQL). The actual
enqueue operation is shown in

On dequeue, the message payload will contain the LOB locator. You can use this LOB locator
after the dequeue, but before the transaction is committed, to read the LOB data. This is
shown in Example 7-14.

Enqueuing Multiple Messages to a Single-Consumer Queue

Example 7-5 enqueues six messages to test.obj_queue. These messages are dequeued in
Example 7-17.

Enqueuing Multiple Messages to a Multiconsumer Queue

Example 7-6 requires that you connect as user 'test_adm' to add subscribers RED and GREEN to
queue test.multiconsumer_queue. The subscribers are required for Example 7-7.

Example 7-7 enqueues multiple messages from sender 001. MESSAGE 1 is intended for all
queue subscribers. MESSAGE 2 is intended for RED and BLUE. These messages are
dequeued in Example 7-17.

Enqueuing Grouped Messages

Example 7-8 enqueues three groups of messages, with three messages in each group. These
messages are dequeued in Example 7-16.

Enqueuing a Message with Delay and Expiration

In Example 7-9, an application wants a message to be dequeued no earlier than a week from
now, but no later than three weeks from now. Because expiration is calculated from the earliest
dequeue time, this requires setting the expiration time for two weeks.

Example 7-1 Enqueuing a Message, Specifying Queue Name and Payload

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'TEST MESSAGE', 'First message to obj_queue');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 25

Example 7-2 Enqueuing a Message, Specifying Priority

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.order_typ;
BEGIN
 message := test.order_typ(002, 'PRIORITY MESSAGE', 'priority 30');
 message_properties.priority := 30;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 7-3 Creating an Enqueue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobenqueue(msgno IN NUMBER) AS
 enq_userdata test.lob_typ;
 enq_msgid RAW(16);
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 lob_loc BLOB;
 buffer RAW(4096);
BEGIN
 buffer := HEXTORAW(RPAD('FF', 4096, 'FF'));
 enq_userdata := test.lob_typ(msgno, 'Large Lob data', EMPTY_BLOB(), msgno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.lob_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => enq_userdata,
 msgid => enq_msgid);
 SELECT t.user_data.data INTO lob_loc
 FROM lob_qtab t
 WHERE t.msgid = enq_msgid;
 DBMS_LOB.WRITE(lob_loc, 2000, 1, buffer);
 COMMIT;
END;
/

Example 7-4 Enqueuing a LOB Type Message

BEGIN
 FOR i IN 1..5 LOOP
 blobenqueue(i);
 END LOOP;
END;
/

Example 7-5 Enqueuing Multiple Messages

SET SERVEROUTPUT ON
DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 25

 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'ORANGE', 'ORANGE enqueued first.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'ORANGE', 'ORANGE also enqueued second.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'YELLOW', 'YELLOW enqueued third.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'VIOLET', 'VIOLET enqueued fourth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PURPLE', 'PURPLE enqueued fifth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PINK', 'PINK enqueued sixth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 7-6 Adding Subscribers RED and GREEN

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('RED', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);

 subscriber := sys.aq$_agent('GREEN', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 25

END;
/

Example 7-7 Enqueuing Multiple Messages to a Multiconsumer Queue

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 recipients DBMS_AQ.aq$_recipient_list_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'MESSAGE 1','For queue subscribers');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

 message := test.message_typ(001, 'MESSAGE 2', 'For two recipients');
 recipients(1) := sys.aq$_agent('RED', NULL, NULL);
 recipients(2) := sys.aq$_agent('BLUE', NULL, NULL);
 message_properties.recipient_list := recipients;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 7-8 Enqueuing Grouped Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 FOR groupno in 1..3 LOOP
 FOR msgno in 1..3 LOOP
 message := test.message_typ(
 001,
 'GROUP ' || groupno,
 'Message ' || msgno || ' in group ' || groupno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.group_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 END LOOP;
 COMMIT;
 END LOOP;
END;
/

Chapter 7
Enqueuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 25

Example 7-9 Enqueuing a Message, Specifying Delay and Expiration

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'DELAYED', 'Message is delayed one week.');
 message_properties.delay := 7*24*60*60;
 message_properties.expiration := 2*7*24*60*60;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 7-10 Enqueuing a Message, Specifying a Transformation

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'NORMAL MESSAGE', 'enqueued to obj_queue');
 enqueue_options.transformation := 'message_order_transform';
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Enqueuing an Array of Messages
Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a corresponding array
of message properties.

DBMS_AQ.ENQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN PLS_INTEGER,
 message_properties_array IN message_properties_array_t,
 payload_array IN VARRAY,
 msid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

The output is an array of message identifiers of the enqueued messages. The function returns
the number of messages successfully enqueued.

Array enqueuing is not supported for buffered messages, but you can still use
DBMS_AQ.ENQUEUE_ARRAY() to enqueue buffered messages by setting array_size to 1.

Chapter 7
Enqueuing an Array of Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 25

The message_properties_array parameter is an array of message properties. Each element
in the payload array must have a corresponding element in this record. All messages in an
array have the same delivery mode.

The payload structure can be a VARRAY or nested table. The message IDs are returned into
an array of RAW(16) entries of type DBMS_AQ.msgid_array_t.

As with array operations in the relational world, it is not possible to provide a single optimum
array size that will be correct in all circumstances. Application developers must experiment with
different array sizes to determine the optimal value for their particular applications.

See Also

• "Enqueue Options"

• "Message Properties"

Example 7-11 Enqueuing an Array of Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t;
 msg_prop DBMS_AQ.message_properties_t;
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 payload_array := msg_table(
 message_typ(001, 'MESSAGE 1', 'array enqueued to obj_queue'),
 message_typ(001, 'MESSAGE 2', 'array enqueued to obj_queue'));
 msg_prop_array := DBMS_AQ.message_properties_array_t(msg_prop, msg_prop);

 retval := DBMS_AQ.ENQUEUE_ARRAY(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 COMMIT;
END;/

Listening to One or More Queues
This procedure specifies which queue or queues to monitor.

DBMS_AQ.LISTEN(
 agent_list IN aq$_agent_list_t,
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 listen_delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT,
 agent OUT sys.aq$_agent
 message_delivery_mode OUT PLS_INTEGER);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

This call takes a list of agents as an argument. Each agent is identified by a unique
combination of name, address, and protocol.

Chapter 7
Listening to One or More Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 25

You specify the queue to be monitored in the address field of each agent listed. Agents must
have dequeue privileges on each monitored queue. You must specify the name of the agent
when monitoring multiconsumer queues; but you must not specify an agent name for single-
consumer queues. Only local queues are supported as addresses. Protocol is reserved for
future use.

Note

Listening to multiconsumer queues is not supported in the Java API.

The listen_delivery_mode parameter specifies what types of message interest the agent. If it
is the default PERSISTENT, then the agent is informed about persistent messages only. If it is set
to BUFFERED, then the agent is informed about buffered messages only. If it is set to
PERSISTENT_OR_BUFFERED, then the agent is informed about both types.

This is a blocking call that returns the agent and message type when there is a message ready
for consumption for an agent in the list. If there are messages for more than one agent, then
only the first agent listed is returned. If there are no messages found when the wait time
expires, then an error is raised.

A successful return from the listen call is only an indication that there is a message for one of
the listed agents in one of the specified queues. The interested agent must still dequeue the
relevant message.

Note

You cannot call LISTEN on nonpersistent queues.

Even though both test.obj_queue and test.priority_queue contain messages (enqueued in
Example 7-1 and Example 7-2 respectively) Example 7-12 returns only:

Message in Queue: "TEST"."OBJ_QUEUE"

If the order of agents in test_agent_list is reversed, so test.priority_queue appears
before test.obj_queue, then the example returns:

Message in Queue: "TEST"."PRIORITY_QUEUE"

See Also

"AQ Agent Type"

Example 7-12 Listening to a Single-Consumer Queue with Zero Timeout

SET SERVEROUTPUT ON
DECLARE
 agent sys.aq$_agent;
 test_agent_list DBMS_AQ.aq$_agent_list_t;
BEGIN
 test_agent_list(1) := sys.aq$_agent(NULL, 'test.obj_queue', NULL);
 test_agent_list(2) := sys.aq$_agent(NULL, 'test.priority_queue', NULL);
 DBMS_AQ.LISTEN(

Chapter 7
Listening to One or More Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 25

 agent_list => test_agent_list,
 wait => 0,
 agent => agent);
 DBMS_OUTPUT.PUT_LINE('Message in Queue: ' || agent.address);
END;
/

Dequeuing Messages
This procedure dequeues a message from the specified queue.

DBMS_AQ.DEQUEUE(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT "type_name",
 msgid OUT RAW);

You can choose to dequeue only persistent messages, only buffered messages, or both. See
delivery_mode in the following list of dequeue options.

See Also

"Message Properties"

Dequeue Options

The dequeue_options parameter specifies the options available for the dequeue operation. It
has the following attributes:

• consumer_name

A consumer can dequeue a message from a queue by supplying the name that was used
in the AQ$_AGENT type of the DBMS_AQADM.ADD_SUBSCRIBER procedure or the recipient list of
the message properties. If a value is specified, then only those messages matching
consumer_name are accessed. If a queue is not set up for multiple consumers, then this
field must be set to NULL (the default).

• dequeue_mode

The dequeue_mode attribute specifies the locking behavior associated with the dequeue. If
BROWSE is specified, then the message is dequeued without acquiring any lock. If LOCKED is
specified, then the message is dequeued with a write lock that lasts for the duration of the
transaction. If REMOVE is specified, then the message is dequeued and deleted (the default).
The message can be retained in the queue table based on the retention properties. If
REMOVE_NO_DATA is specified, then the message is marked as updated or deleted.

• navigation

The navigation attribute specifies the position of the dequeued message. If
FIRST_MESSAGE is specified, then the first available message matching the search criteria is
dequeued. If NEXT_MESSAGE is specified, then the next available message matching the
search criteria is dequeued (the default). If the previous message belongs to a message
group, then the next available message matching the search criteria in the message group
is dequeued.

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 25

If NEXT_TRANSACTION is specified, then any messages in the current transaction group are
skipped and the first message of the next transaction group is dequeued. This setting can
only be used if message grouping is enabled for the queue.

• visibility

The visibility attribute specifies when the new message is dequeued. If ON_COMMIT is
specified, then the dequeue is part of the current transaction (the default). If IMMEDIATE is
specified, then the dequeue operation is an autonomous transaction that commits at the
end of the operation. The visibility attribute is ignored in BROWSE dequeue mode.

Visibility must always be IMMEDIATE when dequeuing messages with delivery mode
DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED.

• wait

The wait attribute specifies the wait time if there is currently no message available
matching the search criteria. If a number is specified, then the operation waits that number
of seconds. If FOREVER is specified, then the operation waits forever (the default). If NO_WAIT
is specified, then the operation does not wait.

• msgid

The msgid attribute specifies the message identifier of the dequeued message. Only
messages in the READY state are dequeued unless msgid is specified.

• correlation

The correlation attribute specifies the correlation identifier of the dequeued message. The
correlation identifier cannot be changed between successive dequeue calls without
specifying the FIRST_MESSAGE navigation option.

Correlation identifiers are application-defined identifiers that are not interpreted by Oracle
Database Advanced Queuing. You can use special pattern matching characters, such as
the percent sign and the underscore. If more than one message satisfies the pattern, then
the order of dequeuing is indeterminate, and the sort order of the queue is not honored.

Note

Although dequeue options correlation and deq_condition are both supported
for buffered messages, it is not possible to create indexes to optimize these
queries.

• deq_condition

The deq_condition attribute is a Boolean expression similar to the WHERE clause of a
SQL query. This Boolean expression can include conditions on message properties, user
data properties (object payloads only), and PL/SQL or SQL functions.

To specify dequeue conditions on a message payload (object payload), use attributes of
the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier
to indicate the specific column of the queue table that stores the payload.

The deq_condition attribute cannot exceed 4000 characters. If more than one message
satisfies the dequeue condition, then the order of dequeuing is indeterminate, and the sort
order of the queue is not honored.

• transformation

The transformation attribute specifies a transformation that will be applied after the
message is dequeued but before returning the message to the caller.

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 25

• delivery_mode

The delivery_mode attribute specifies what types of messages to dequeue. If it is set to
DBMS_AQ.PERSISTENT, then only persistent messages are dequeued. If it is set to
DBMS_AQ.BUFFERED, then only buffered messages are dequeued.

If it is the default DBMS_AQ.PERSISTENT_OR_BUFFERED, then both persistent and buffered
messages are dequeued. The delivery_mode attribute in the message properties of the
dequeued message indicates whether the dequeued message was buffered or persistent.

The dequeue order is determined by the values specified at the time the queue table is created
unless overridden by the message identifier and correlation identifier in dequeue options.

The database consistent read mechanism is applicable for queue operations. For example, a
BROWSE call may not see a message that is enqueued after the beginning of the browsing
transaction.

In a commit-time queue, messages are not visible to BROWSE or DEQUEUE calls until a
deterministic order can be established among them based on an approximate CSCN.

If the navigation attribute of the dequeue_conditions parameter is NEXT_MESSAGE (the
default), then subsequent dequeues retrieve messages from the queue based on the snapshot
obtained in the first dequeue. A message enqueued after the first dequeue command,
therefore, will be processed only after processing all remaining messages in the queue. This is
not a problem if all the messages have already been enqueued or if the queue does not have
priority-based ordering. But if an application must process the highest-priority message in the
queue, then it must use the FIRST_MESSAGE navigation option.

Note

It can also be more efficient to use the FIRST_MESSAGE navigation option when there
are messages being concurrently enqueued. If the FIRST_MESSAGE option is not
specified, then Oracle Database Advanced Queuing continually generates the
snapshot as of the first dequeue command, leading to poor performance. If the
FIRST_MESSAGE option is specified, then Oracle Database Advanced Queuing uses a
new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for message
grouping form a group. If only one message is enqueued in the transaction, then this effectively
forms a group of one message. There is no upper limit to the number of messages that can be
grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or REMOVE
mode locks only a single message. By contrast, a dequeue operation that seeks to dequeue a
message that is part of a group locks the entire group. This is useful when all the messages in
a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an error
indicating that all messages in the group have been processed. The application can then use
NEXT_TRANSACTION to start dequeuing messages from the next available group. In the event
that no groups are available, the dequeue times out after the period specified in the wait
attribute of dequeue_options.

Typically, you expect the consumer of messages to access messages using the dequeue
interface. You can view processed messages or messages still to be processed by browsing by
message ID or by using SELECT commands.

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 25

Example 7-13 returns the message enqueued in Example 7-1. It returns:

From Sender No.1
Subject: TEST MESSAGE
Text: First message to obj_queue

See Also

• "Dequeue Modes"

Dequeuing LOB Type Messages

Example 7-14 creates procedure blobdequeue() to dequeue the LOB type messages
enqueued in Example 7-4. The actual dequeue is shown in Example 7-15. It returns:

Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000

Dequeuing Grouped Messages

You can dequeue the grouped messages enqueued in Example 7-8 by running Example 7-16.
It returns:

GROUP 1: Message 1 in group 1
GROUP 1: Message 2 in group 1
GROUP 1: Message 3 in group 1
Finished GROUP 1
GROUP 2: Message 1 in group 2
GROUP 2: Message 2 in group 2
GROUP 2: Message 3 in group 2
Finished GROUP 2
GROUP 3: Message 1 in group 3
GROUP 3: Message 2 in group 3
GROUP 3: Message 3 in group 3
Finished GROUP 3
No more messages

Dequeuing from a Multiconsumer Queue

You can dequeue the messages enqueued for RED in Example 7-7 by running Example 7-17. If
you change RED to GREEN and then to BLUE, you can use it to dequeue their messages as well.
The output of the example will be different in each case.

RED is a subscriber to the multiconsumer queue and is also a specified recipient of MESSAGE
2, so it gets both messages:

Message: MESSAGE 1 .. For queue subscribers
Message: MESSAGE 2 .. For two recipients
No more messages for RED

GREEN is only a subscriber, so it gets only those messages in the queue for which no recipients
have been specified (in this case, MESSAGE 1):

Message: MESSAGE 1 .. For queue subscribers
No more messages for GREEN

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 25

BLUE, while not a subscriber to the queue, is nevertheless specified to receive MESSAGE 2.

Message: MESSAGE 2 .. For two recipients
No more messages for BLUE

Example 7-18 browses messages enqueued in Example 7-5 until it finds PINK, which it
removes. The example returns:

Browsed Message Text: ORANGE enqueued first.
Browsed Message Text: ORANGE also enqueued second.
Browsed Message Text: YELLOW enqueued third.
Browsed Message Text: VIOLET enqueued fourth.
Browsed Message Text: PURPLE enqueued fifth.
Browsed Message Text: PINK enqueued sixth.
Removed Message Text: PINK enqueued sixth.

Dequeue Modes

Example 7-19 previews in locked mode the messages enqueued in Example 7-5 until it finds
PURPLE, which it removes. The example returns:

Locked Message Text: ORANGE enqueued first.
Locked Message Text: ORANGE also enqueued second.
Locked Message Text: YELLOW enqueued third.
Locked Message Text: VIOLET enqueued fourth.
Locked Message Text: PURPLE enqueued fifth.
Removed Message Text: PURPLE enqueued fifth.

Example 7-13 Dequeuing Object Type Messages

SET SERVEROUTPUT ON
DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message test.message_typ;
BEGIN
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('From Sender No.'|| message.sender_id);
 DBMS_OUTPUT.PUT_LINE('Subject: '||message.subject);
 DBMS_OUTPUT.PUT_LINE('Text: '||message.text);
 COMMIT;
END;
/

Example 7-14 Creating a Dequeue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobdequeue(msgno IN NUMBER) AS
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 msgid RAW(16);
 payload test.lob_typ;
 lob_loc BLOB;
 amount BINARY_INTEGER;
 buffer RAW(4096);
BEGIN
 DBMS_AQ.DEQUEUE(

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 25

 queue_name => 'test.lob_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => msgid);
 lob_loc := payload.data;
 amount := 2000;
 DBMS_LOB.READ(lob_loc, amount, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('Amount of data read: '|| amount);
 COMMIT;
END;
/

Example 7-15 Dequeuing LOB Type Messages

BEGIN
 FOR i IN 1..5 LOOP
 blobdequeue(i);
 END LOOP;
END;
/

Example 7-16 Dequeuing Grouped Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 end_of_group exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
 PRAGMA EXCEPTION_INIT (end_of_group, -25235);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.group_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE(message.subject || ': ' || message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 EXCEPTION
 WHEN end_of_group THEN
 DBMS_OUTPUT.PUT_LINE ('Finished ' || message.subject);
 COMMIT;
 dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages');
END;
/

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 25

Example 7-17 Dequeuing Messages for RED from a Multiconsumer Queue

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.consumer_name := 'RED';
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.multiconsumer_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Message: '|| message.subject ||' .. '|| message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages for RED');
 COMMIT;
END;
/

Example 7-18 Dequeue in Browse Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;
 LOOP
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE ('Browsed Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PINK';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;

Chapter 7
Dequeuing Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 25

END;
/

Example 7-19 Dequeue in Locked Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.LOCKED;
 LOOP
 DBMS_AQ.dequeue(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Locked Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PURPLE';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;
END;
/

Dequeuing an Array of Messages
Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a corresponding array of
message properties.

DBMS_AQ.DEQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN PLS_INTEGER,
 message_properties_array OUT message_properties_array_t,
 payload_array OUT VARRAY,
 msgid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

The output is an array of payloads, message IDs, and message properties of the dequeued
messages. The function returns the number of messages successfully dequeued.

Array dequeuing is not supported for buffered messages, but you can still use
DBMS_AQ.DEQUEUE_ARRAY() to dequeue buffered messages by setting array_size to 1.

The payload structure can be a VARRAY or nested table. The message identifiers are returned
into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t. The message properties are
returned into an array of type DBMS_AQ.message_properties_array_t.

Chapter 7
Dequeuing an Array of Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 25

As with array operations in the relational world, it is not possible to provide a single optimum
array size that will be correct in all circumstances. Application developers must experiment with
different array sizes to determine the optimal value for their particular applications.

All dequeue options available with DBMS_AQ.DEQUEUE are also available with
DBMS_AQ.DEQUEUE_ARRAY. You can choose to dequeue only persistent messages, only buffered
messages, or both. In addition, the navigation attribute of dequeue_options offers two options
specific to DBMS_AQ.DEQUEUE_ARRAY.

When dequeuing messages, you might want to dequeue all the messages for a transaction
group with a single call. You might also want to dequeue messages that span multiple
transaction groups. You can specify either of these methods by using one of the following
navigation methods:

• NEXT_MESSAGE_ONE_GROUP

• FIRST_MESSAGE_ONE_GROUP

• NEXT_MESSAGE_MULTI_GROUP

• FIRST_MESSAGE_MULTI_GROUP

Navigation method NEXT_MESSAGE_ONE_GROUP dequeues messages that match the search
criteria from the next available transaction group into an array. Navigation method
FIRST_MESSAGE_ONE_GROUP resets the position to the beginning of the queue and dequeues all
the messages in a single transaction group that are available and match the search criteria.

The number of messages dequeued is determined by an array size limit. If the number of
messages in the transaction group exceeds array_size, then multiple calls to DEQUEUE_ARRAY
must be made to dequeue all the messages for the transaction group.

Navigation methods NEXT_MESSAGE_MULTI_GROUP and FIRST_MESSAGE_MULTI_GROUP work like
their ONE_GROUP counterparts, but they are not limited to a single transaction group. Each
message that is dequeued into the array has an associated set of message properties.
Message property transaction_group determines which messages belong to the same
transaction group.

Example 7-20 dequeues the messages enqueued in Example 7-11. It returns:

Number of messages dequeued: 2

See Also

"Dequeuing Messages"

Example 7-20 Dequeuing an Array of Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t :=
 DBMS_AQ.message_properties_array_t();
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 retval := DBMS_AQ.DEQUEUE_ARRAY(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,

Chapter 7
Dequeuing an Array of Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 25

 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 DBMS_OUTPUT.PUT_LINE('Number of messages dequeued: ' || retval);
END;/

Registering for Notification
This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP URL for
message notification.

DBMS_AQ.REGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Note

Starting from 12c Release 2 (12.2.), the maximum length of user-generated queue
names is 122 bytes. See "Creating a Queue".

The reg_list parameter is a list of SYS.AQ$_REG_INFO objects. You can specify notification
quality of service with the qosflags attribute of SYS.AQ$_REG_INFO.

The reg_count parameter specifies the number of entries in the reg_list. Each subscription
requires its own reg_list entry. Interest in several subscriptions can be registered at one time.

When PL/SQL notification is received, the Oracle Database Advanced Queuing message
properties descriptor that the callback is invoked with specifies the delivery_mode of the
message notified as DBMS_AQ.PERSISTENT or DBMS_AQ.BUFFERED.

If you register for e-mail notifications, then you must set the host name and port name for the
SMTP server that will be used by the database to send e-mail notifications. If required, you
should set the send-from e-mail address, which is set by the database as the sent from field.
You need a Java-enabled database to use this feature.

If you register for HTTP notifications, then you might want to set the host name and port
number for the proxy server and a list of no-proxy domains that will be used by the database to
post HTTP notifications.

An internal queue called SYS.AQ_SRVNTFN_TABLE_Q stores the notifications to be processed by
the job queue processes. If notification fails, then Oracle Database Advanced Queuing retries
the failed notification up to MAX_RETRIES attempts.

Note

You can change the MAX_RETRIES and RETRY_DELAY properties of
SYS.AQ_SRVNTFN_TABLE_Q. The new settings are applied across all notifications.

Chapter 7
Registering for Notification

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 25

See Also

• "AQ Registration Information Type" for more information on SYS.AQ$_REG_INFO
objects

• "AQ Notification Descriptor Type" for more information on the message properties
descriptor

Example 7-21 Registering for Notifications

DECLARE
 reginfo sys.aq$_reg_info;
 reg_list sys.aq$_reg_info_list;
BEGIN
 reginfo := sys.aq$_reg_info(
 'test.obj_queue',
 DBMS_AQ.NAMESPACE_ANONYMOUS,
 'http://www.company.com:8080',
 HEXTORAW('FF'));
 reg_list := sys.aq$_reg_info_list(reginfo);
 DBMS_AQ.REGISTER(
 reg_list => reg_list,
 reg_count => 1);
 COMMIT;
END;
/

Unregistering for Notification
This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or HTTP URL
for message notification.

DBMS_AQ.UNREGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Posting for Subscriber Notification
This procedure posts to a list of anonymous subscriptions, allowing all clients who are
registered for the subscriptions to get notifications of persistent messages.

DBMS_AQ.POST(
 post_list IN SYS.AQ$_POST_INFO_LIST,
 post_count IN NUMBER);

This feature is not supported with buffered messages.

The count parameter specifies the number of entries in the post_list. Each posted
subscription must have its own entry in the post_list. Several subscriptions can be posted to
at one time.

The post_list parameter specifies the list of anonymous subscriptions to which you want to
post. It has three attributes:

• name

The name attribute specifies the name of the anonymous subscription to which you want to
post.

Chapter 7
Unregistering for Notification

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 25

• namespace

The namespace attribute specifies the namespace of the subscription. To receive
notifications from other applications through DBMS_AQ.POST the namespace must be
DBMS_AQ.NAMESPACE_ANONYMOUS.

• payload

The payload attribute specifies the payload to be posted to the anonymous subscription. It
is possible for no payload to be associated with this call.

This call provides a best-effort guarantee. A notification goes to registered clients at most once.
This call is primarily used for lightweight notification. If an application needs more rigid
guarantees, then it can enqueue to a queue.

Example 7-22 Posting Object-Type Messages

DECLARE
 postinfo sys.aq$_post_info;
 post_list sys.aq$_post_info_list;
BEGIN
 postinfo := sys.aq$_post_info('test.obj_queue',0,HEXTORAW('FF'));
 post_list := sys.aq$_post_info_list(postinfo);
 DBMS_AQ.POST(
 post_list => post_list,
 post_count => 1);
 COMMIT;
END;
/

Adding an Agent to the LDAP Server
This procedure creates an entry for an Oracle Database Advanced Queuing agent in the LDAP
server.

DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

The agent parameter specifies the Oracle Database Advanced Queuing Agent that is to be
registered in Lightweight Directory Access Protocol (LDAP) server.

The certificate parameter specifies the location (LDAP distinguished name) of the
OrganizationalPerson entry in LDAP whose digital certificate (attribute usercertificate) is
to be used for this agent. For example, "cn=OE, cn=ACME, cn=com" is a distinguished name for
a OrganizationalPerson OE whose certificate will be used with the specified agent. If the agent
does not have a digital certificate, then this parameter is defaulted to null.

See Also

"AQ Agent Type"

Chapter 7
Adding an Agent to the LDAP Server

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 25

Removing an Agent from the LDAP Server
This procedure removes the entry for an Oracle Database Advanced Queuing agent from the
LDAP server.

DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

Chapter 7
Removing an Agent from the LDAP Server

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 25

8
Oracle Transactional Event Queues and
Advanced Queuing Performance and
Scalability

These topics discuss performance and scalability issues relating to Transactional Event
Queues (TxEventQ) and Advanced Queuing (AQ).

• Transactional Event Queues

• AQ Queues

• Performance Views

• Migrating from AQ to TxEventQ

• Monitoring TxEventQ with Prometheus/Grafana

• Monitoring Data Flow and UI Framework Setup

• Key Metrics Measured

Transactional Event Queues
A transactional event queue (TxEventQ) increases enqueue-dequeue throughput, especially
across Oracle Real Application Clusters (Oracle RAC) instances, because messages from
different enqueue sessions are allowed to be dequeued in parallel. Each event stream of the
queue is ordered based on enqueue time within a session and ordering across event streams
is best-effort. TxEventQs automatically manage table partitions so that enqueuers and
dequeuers do not contend among themselves. In addition, TxEventQs use an in-memory
message cache to optimize performance and reduce the disk and CPU overhead of enqueues
and dequeues.

The advantages and tradeoffs of TxEventQs include the following:

• TxEventQs provide scalability of a single queue on Oracle RAC, especially in the case
where each subscriber has multiple dequeuers on each instance.

• Oracle Real Application Clusters (Oracle RAC)s trades off increased memory usage to
obtain performance.

This section contains the following topics:

• Transactional Event Queues and the Message Cache

• Transactional Event Queues and Enqueuing / Dequeuing Messages

• Transactional Event Queues and Native JMS Support

• Transactional Event Queues and Partitioning

• Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)

• Transactional Event Queues and Message Retention

• Transactional Event Queues and Seekable Subscribers

• Transactional Event Queues Restrictions

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 28

• Transactional Event Queues Tuning

Transactional Event Queues and the Message Cache
TxEventQs introduce a special purpose message cache which lets you trade off SGA usage for
increased throughput, reduced latency, and increased concurrency. When combined with
partitioning, the message cache reduces the need for some queries, DML operations, and
indexes. The message cache is most effective when all dequeuers keep up with enqueuers
and when the message cache is big enough to store messages (including payloads) for each
TxEventQ's enqueuers and dequeuers. The message cache uses the Streams pool. If
TxEventQs share the Streams pool on the same instance as Streams replication functionality,
you can use DBMS_AQADM procedures such as SET_MIN_STREAMS_POOL and
SET_MAX_STREAMS_POOL to fine tune the allocation of Streams Pool memory.

See Also

Oracle Database PL/SQL Packages and Types Reference for information

Transactional Event Queues and Enqueuing / Dequeuing Messages
To improve throughput and reduce overhead and latency, enqueues and dequeues are
optimized to use the message cache, the rules engine, and background processing when
possible. For example,

• TxEventQs take advantage of new rules engine improvements

• a message that has its payload in the message cache does not have to be re-read from
disk during a dequeue

• dequeue by correlation id or other JMS properties can often be evaluated without
accessing the disk

• partition operations on TxEventQs implements efficient bulk processing.

Transactional Event Queues and Native JMS Support
TxEventQs have native support for:

• Non-Durable Subscribers

• JMS payloads

• Priorities

TxEventQs support both persistent and nonpersistent messages. Nonpersistent messages are
stored in memory inside the message cache and are not stored on disk. As a result,
nonpersistent messages are lost upon instance crash or shutdown.

TxEventQs natively support two kinds of subscribers to meet the JMS requirements:

• Non-durable subscribers: These subscribers receive messages on their chosen topic, only
if the messages are published while the subscriber is active. This subscription is not
sharable among different sessions.

• Durable subscribers: These subscribers receive all the messages published on a topic,
including those that are published while the subscriber is inactive. Multiple database
sessions can share the same subscription.

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 28

TxEventQs do not use ADTs to store the JMS payload. The JMS message is stored in scalar
columns of the database. JMS message types such as TEXT, BYTES, MAP, STREAM and OBJECT
store the JMS payload in scalar TEXT/RAW or CLOB/BLOB columns in the queue table depending
on payload size and type. The JMS message properties are stored in a CLOB (SecureFile)
column in the queue table with attribute access functions defined for the user defined
properties. The payload and user properties are pickled into RAW, VARCHAR2 or Secure File
columns instead of being stored as an ADT. JMS Header properties and JMS provider
information are stored in their own scalar columns.

TxEventQs support integer priority values ranging between 0 (lowest priority) and 9 (highest
priority), with the default being priority 4, as defined by the JMS standard.

Transactional Event Queues and Partitioning
TxEventQs automatically manage the underlying partitioned tables used for the queue table.
Such partition management may occur in the foreground or the background. Each event
stream provides session-level ordering of enqueued messages. Each enqueuing session is
assigned an event stream. Each event stream is composed of a series of event stream
partitions. Each event stream partition maps to a single partition. Messages are automatically
assigned to a table partition upon enqueue.

New partitions are automatically created as needed, as when the queue table needs to grow
when dequeuers do not keep up with enqueuers. Partitions are truncated and reused when all
messages in the partition are dequeued and no longer needed. The message cache
automatically loads messages from partitions into memory as required by dequeuers. Global
indexes should not be created on the partitioned table underlying a TxEventQ. Local indexes
are not typically recommended on the partitioned table either. If such indexes are desired and
result in performance degradation, then AQ queues should be considered.

Transactional Event Queues and Oracle Real Application Clusters (Oracle
RAC)

TxEventQs automatically provides enqueue session ordering while avoiding cross-instance
communication when possible. Sometimes cross instance communication is required. For
example, if a TxEventQ has a single enqueuing session on one Oracle RAC instance and a
single dequeuing session on another instance, then TxEventQs will forward messages
between the Oracle RAC instances. The forwarding of messages is non-atomic to the
enqueuing transaction to improve performance. Dequeuers may get an ORA-25228 if they are
connected to an instance that has no messages in its event streams.

In most cases, consider having multiple dequeuers for each subscriber or single consumer
queue on each Oracle RAC instance to improve throughput and reduce cross-instance
overhead. An exception to this guideline is when you are using dequeue selectors that specify
a single message. If you want to dequeue a message from a TxEventQ by its message
identifier in an Oracle RAC database, then you have to connect to the instance that is assigned
dequeue ownership for the event stream containing the message. Otherwise, the message will
not be available for dequeue to the dequeue session. If all dequeues are performed at a single
instance, then messages will be automatically forwarded to this instance. Hence, for a single-
consumer TxEventQ that extensively dequeues by message ID, consider having all dequeue
sessions for the TxEventQ connect to a single instance. Similarly, for a multiconsumer
TxEventQ that extensively dequeues by message ID, consider having all dequeue sessions for
each subscriber connect to a single instance. Services can be used to simplify connecting
dequeue sessions to a particular instance.

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 28

Transactional Event Queues and Message Retention
Starting from Oracle Database Release 21c, message retention is supported by TxEventQ .
AQ queue already has this feature.

Message retention is the time for which a message is retained in the TxEventQ after being
enqueued or dequeued as desired. The default is 0, which means that the message will be
removed as soon as possible after it is dequeued by all of its subscribers. This helps users to
retain the messages in the queue even after they are processed.

Applications can specify retention time while creating a TxEventQ. Applications can change the
retention time and its type as needed after creation of the TxEventQ.

TxEventQ supports only dequeue time based retention. A event stream partition stores a set of
messages. The event stream partition will be removed from the queue when the highest
dequeue time for any message-subscriber pair in that event stream partition plus retention time
is over. This scheme will ensure consumption of messages before retention comes in play. This
is also the only retention policy available in AQ queues.

Transactional Event Queues and Seekable Subscribers
A seek operation for a subscriber can be for all event streams (queue level seek) or a set of
specific event streams of choice (event stream level seek).

All the dequeue calls after a seek operation would dequeue messages from the seek point
onwards. All the messages below seek point will never be dequeued or browsed by the
subscriber unless the subscriber seeks back again.

Seek Granularity

A subscriber can perform seek in all event streams or a set of event streams of choice in the
queue. The choice of the message to seek to can be explicitly specified in the seek operation
or can be deduced from the inputs of seek operation.

Following are the different types of seek option inputs.

• Seek to end – With this seek option, the subscriber is not interested in existing messages.
The subscriber will be able to dequeue only newly enqueued messages after the seek
operation. This is the default behavior when a new subscriber is created.

• Seek to start - With this seek option, the subscriber is interested in existing messages
including "retained". The subscriber will also be able to dequeue newly enqueued
messages after the seek operation.

• Seek to a specific time - With this seek option, the subscriber is interested in existing
messages including "retained" with enqueue time higher than input time. Seek stops if start
or end is reached.

• Seek to a specific message – With this seek option, the subscriber is interested in existing
messages including "retained" from the input message onwards. The input in this case is a
specific message id so this seek always a event stream level seek. A separate unique
message id per event stream is specified in the input for all the event streams on which
seek needs to be performed.

Message Ordering

A seek action can break message ordering as it results in out of order dequeues. If the new
seek point is a message which is not the first message of an enqueue transaction or an

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 28

enqueue session and messages from new seek point onwards are dequeued, then the
application can get only some messages of the enqueue session or enqueue transaction as
remaining messages were enqueued before the new seek point.

It is application's responsibility to either choose correct seek point or be tolerant to such
behavior.

Transactional Event Queues Restrictions
The following Oracle Database features are not currently supported for TxEventQs:

• Transaction grouping

• Anonymous posting for subscriber notification and OCI callback notification are not
supported. PL/SQL callback notification is supported.

• Messaging Gateway

• Oracle extensions for JMS such as JMS propagation and remote subscribers

• Multiple queues per queue table. TxEventQs are created via the
CREATE_TRANSACTIONAL_EVENT_QUEUE interface.

• Ordering other than message priority followed by enqueue time (as specified in the JMS
standard)

• The JDBC thick (OCI) driver.

• Propagation between TxEventQ and AQ queues

• Message transformations

Transactional Event Queues Tuning
TxEventQs perform best under the following conditions:

• Dequeuers for each subscriber are located on each instance

• Subscribers keep up with the enqueuers. Consider having multiple dequeuers for each
subscriber on each Oracle RAC instance

The message cache is most effective when dequeuers keep up with enqueuers and where the
cache is big enough to store messages (including payloads) for each TxEventQ's enqueuers
and dequeuers. When using TxEventQs, Oracle requires that you do one of the following:

• Setting parameter STREAMS_POOL_SIZE

This parameter controls the size of shared memory available to the Oracle Database for
the TxEventQ message cache. If unspecified, up to 10% of the shared pool size may be
allocated for the Streams pool.

Oracle's Automatic Shared Memory Management feature manages the size of the Streams
pool when the SGA_TARGET initialization parameter is set to a nonzero value. If the
STREAMS_POOL_SIZE initialization parameter also is set to a nonzero value, then Automatic
Shared Memory Management uses this value as a minimum for the Streams pool.

If the STREAMS_POOL_SIZE initialization parameter is set to a nonzero value, and the
SGA_TARGET parameter is set to 0 (zero), then the Streams pool size is the value specified
by the STREAMS_POOL_SIZE parameter, in bytes.

If both the STREAMS_POOL_SIZE and the SGA_TARGET initialization parameters are set to 0
(zero), then, by default, the first use of the Streams pool in a database transfers an amount
of memory equal to 10% of the shared pool from the buffer cache to the Streams pool.

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 28

See Also

– DBMS_AQADM.set_min_streams_pool() and
DBMS_AQADM.set_max_streams_pool() in Oracle Database PL/SQL
Packages and Types Reference for a finer grained control over STREAMS_POOL
sharing with Streams processing.

• Turning on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA for the
Streams pool, based on Streams pool usage as well as usage of other components that
use the SGA. Examples of such other components are buffer cache and library cache. If
STREAMS_POOL_SIZE is specified, it is used as the lower bound.

• Manually tuning TxEventQ queues

TxEventQs can be tuned by allocating STREAMS_POOL memory for the message cache. The
view GV$AQ_MESSAGE_CACHE_ADVICE provides advice on how much STREAMS_POOL should be
allocated for TxEventQs based on a snapshot of the current messaging load. During
periods of high load, select the columns INST_ID, SIZE_FOR_ESTIMATE, and
ESTD_SIZE_TYPE. ESTD_SIZE_TYPE is one of three values: MINIMUM, PREFERRED, or MAXIMUM.
Find the maximum value of SIZE_FOR_ESTIMATE across Oracle RAC instances for each of
the ESTD_SIZE_TYPE values. It is highly recommended that STREAMS_POOL be set at least to
the MINIMUM recommendation to provide any message cache performance gains. There is
little additional performance gains to setting STREAMS_POOL greater than the MAXIMUM
recommendation value. Setting STREAMS_POOL to the PREFERRED recommendation tries to
provide a reasonable space-performance tradeoff. If the MAXIMUM size recommendation is
much greater than the PREFERRED recommendation, then check that the TxEventQ has no
orphaned subscribers, or whether more dequeuers should be added to the instance, so
that dequeuers can keep up with the enqueue load. STREAMS_POOL tuning should be done
over multiple periods of high load and whenever messaging load characteristics change.

User Event Streaming
An application can decide the way messages are event streamed in the TxEventQ. In such
cases, the application explicitly specifies to enqueue a message in a specific event stream.

For example, assume the application has four types of messages with different keys named
red, green, blue, and pink. Each enqueue session can enqueue any of those messages in a
transaction. Event Stream A is set to store the red and blue messages. Event Stream B is set
to store the green and pink messages. Also, each event stream is set to have only one active
dequeue session for a single-consumer queue or JMS Queue. Similarly, each event stream is
set to have only one dequeue session per subscriber for a multi-consumer queue or JMS
Topic. That dequeue session will stick to that event stream for the dequeuer session’s lifetime.

In the following examples, enqueue transactions are performing enqueues in parallel.

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 28

Applications can add new event streams at run time. Applications can also add new types of
messages at run time by adding new keys. For example, two new types are introduced with
keys orange and purple, and a third Event Stream C is added. Event Stream B is set to store
the orange messages. Event Stream C is set to store the purple messages.

In an Oracle RAC database, an event stream is always owned by an instance. Initially, the
event stream is owned by the instance where the first message is enqueued in that event
stream. The owner instance of the event stream may change when database instances are
shut down.

With user event streaming, a user can attempt to enqueue messages in an event stream which
is not owned by the instance in which the session is running. In such cases, a cross instance
enqueue is triggered. To support cross instance enqueues, the enqueue requests received at
other instances are forwarded to the OWNER INSTANCE of the event stream over the cluster
interconnect for the Oracle RAC database. The REMOTE_LISTENER parameter in listener.ora
must also be set to enable forwarding of cross instance enqueue requests to the correct
instance. Internally, TxEventQ queues on an Oracle RAC database may use database links
between instances. Definer's rights PL/SQL packages that perform cross instance enqueues in
TxEventQ queues on an Oracle RAC database must grant INHERIT REMOTE PRIVILEGES to
users of the package.

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 28

Example 8-1 Setting REMOTE_LISTENER Parameter for Cross Instance Enqueues

In order to enable cross instance enqueue for TxEventQ, the REMOTE_LISTENER parameter
must be set for each instance to have listener addresses for every other instance available in
Oracle RAC.

For example, consider an Oracle RAC cluster with 4 nodes. In such setup, REMOTE_LISTSENER
at each node should have listener addresses of all four nodes of the Oracle RAC as follows.

REMOTE_LISTENER = (DESCRIPTION= (ADDRESS_LIST=
 (ADDRESS= (PROTOCOL=TCP) (PORT=<node1 PORT>) (HOST=<node1 IP>))
 (ADDRESS= (PROTOCOL=TCP) (PORT=<node2 PORT>) (HOST=<node2 IP>))
 (ADDRESS= (PROTOCOL=TCP) (PORT=<node3 PORT>) (HOST=<node3 IP>))
 (ADDRESS= (PROTOCOL=TCP) (PORT=<node4 PORT>) (HOST=<node4 IP>))
))

Alternatively, if TNS aliases are set with listener addresses of Oracle RAC nodes in
tnsnames.ora as follows,

nd1=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(PORT=<node1 PORT>)(HOST=<node1 IP>)))
nd2=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(PORT=<node2 PORT>)(HOST=<node2 IP>)))
nd3=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(PORT=<node3 PORT>)(HOST=<node3 IP>)))
nd4=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(PORT=<node4 PORT>)(HOST=<node4 IP>)))

then, REMOTE_LISTENER can be set as:

REMOTE_LISTENER='nd1,nd2,nd3,nd4'

Once REMOTE_LISTENER is set correctly at each node, then a message with any key can be
enqueued at any instance using the AQJMS client library and the JDBC thin driver in
TxEventQ. In the example below, key "RED" can be enqueued at any Oracle RAC instance. It
will be published in the correct event stream which stores all "RED" messages. Please note that
it is advisable that a message publisher connects to the owner instance of the event stream to
achieve high performance.

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(...);
t_conn = tc_fact.createTopicConnection();
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);

/* Create TextMessage */
TextMessage text_message = jms_sess.createTextMessage();

/* Set key as correlation */
text_message.setJMSCorrelationID("RED");

/* Publish */
publisher1.publish(text_message);

Chapter 8
Transactional Event Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 28

Limitations of User Event Streaming

User event streaming has the following limitations:

• Cross instance enqueues are not enabled for PL/SQL enqueue calls.

• Cross instance enqueues are not enabled for array enqueues.

Cross instance enqueues can be done through Java and OCI clients.

See Also

DBMS_AQADM in Oracle AI Database PL/SQL Packages and Types Reference for
more information.

AQ Queues
This section includes the following topics:

• Persistent Messaging Performance Overview for Queues

• Persistent Messaging Basic Tuning Tips

• Propagation Tuning Tips

• Buffered Messaging Tuning

Persistent Messaging Basic Tuning Tips
Oracle Database Advanced Queuing table layout is similar to a layout with ordinary database
tables and indexes.

See Also

Oracle Database Performance Tuning Guide for tuning recommendations

Memory Requirements
Streams pool size should be at least 20 MB for optimal multi-consumer dequeue performance
in a non-Oracle RAC database.

Persistent queuing dequeue operations use the streams pool to optimize performance,
especially under concurrency situations. This is, however, not a requirement and the code
automatically switches to a less optimal code path.

TxEventQs introduces a message cache for optimal performance of high throughput
messaging systems. Ideally the Streams pool size should be large enough to cache the
expected backlog of messages in TxEventQs.

Using Storage Parameters
Storage parameters can be specified when creating a queue table using the storage_clause
parameter.

Chapter 8
AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 28

Storage parameters are inherited by other IOTs and tables created with the queue table. The
tablespace of the queue table should have sufficient space to accommodate data from all the
objects associated with the queue table. With retention specified, the history table and, also the
queue table can grow to be quite big.

Oracle recommends you use automatic segment-space management (ASSM). Otherwise
initrans, freelists and freelist groups must be tuned for AQ performance under high
concurrency.

Increasing PCTFREE will reduce the number of messages in a queue table/IOT block. This will
reduce block level contention when there is concurrency.

Storage parameters specified at queue table creation are shared by the queue table, IOTs and
indexes. These may be individually altered by an online redefinition using DBMS_REDEFINITION.

I/O Configuration
Because Oracle Database Advanced Queuing is very I/O intensive, you will usually need to
tune I/O to remove any bottlenecks.

See Also

"I/O Configuration and Design" in Oracle Database Performance Tuning Guide

Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table
Some environments must process messages in a constant flow, requiring that enqueue and
dequeue processes run concurrently. If the message delivery system has only one queue table
and one queue, then all processes must work on the same segment area at the same time.
This precludes reasonable performance levels when delivering a high number of messages.

The best number for concurrent processes depends on available system resources. For
example, on a four-CPU system, it is reasonable to start with two concurrent enqueue and two
concurrent dequeue processes. If the system cannot deliver the wanted number of messages,
then use several subscribers for load balancing rather than increasing the number of
processes.

Tune the enqueue and dequeue rates on the queue so that in the common case the queue
size remains small and bounded. A queue that grows and shrinks considerably will have
indexes and IOTs that are out of balance, which will affect performance.

With multi-consumer queues, using several subscribers for load balancing rather than
increasing the number of processes will reduce contention. Multiple queue tables may be used
garnering horizontal scalability.

For information about tuning TxEventQs refer to Transactional Event Queues Tuning.

Running Enqueue and Dequeue Processes Serially in a Single Queue Table
When enqueue and dequeue processes are running serially, contention on the same data
segment is lower than in the case of concurrent processes. The total time taken to deliver
messages by the system, however, is longer than when they run concurrently.

Increasing the number of processes helps both enqueuing and dequeuing. The message
throughput rate may be higher for enqueuers than for dequeuers when the number of

Chapter 8
AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 28

processes is increased, especially with single consumer queues. Dequeue processes on multi-
consumer queues scale much better.

Creating Indexes on a Queue Table
Creating an index on a queue table is useful if you meet these conditions.

• Dequeue using correlation ID

An index created on the column corr_id of the underlying queue table
AQ$_QueueTableName expedites dequeues.

• Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the underlying
queue table. An index on QueueTableName expedites performance on this SELECT
statement.

Other Tips for Queues
These are some other persistent messaging basic tuning tips.

• Ensure that statistics are being gathered so that the optimal query plans for retrieving
messages are being chosen. By default, queue tables are locked out from automatic
gathering of statistics. The recommended use is to gather statistics with a representative
queue message load and lock them.

• The queue table indexes and IOTs are automatically coalesced by AQ background
processes. However, they must continue to be monitored and coalesced if needed. With
automatic space segment management (ASSM), an online shrink operation may be used
for the same purpose. A well balanced index reduces queue monitor CPU consumption,
and ensures optimal enqueue-dequeue performance.

• Ensure that there are enough queue monitor processes running to perform the background
tasks. The queue monitor must also be running for other crucial background activity.
Multiple qmn processes share the load; make sure that there are enough of them. These
are auto-tuned, but can be forced to a minimum number, if needed.

• It is recommended that dequeue with a wait time is only used with dedicated server
processes. In a shared server environment, the shared server process is dedicated to the
dequeue operation for the duration of the call, including the wait time. The presence of
many such processes can cause severe performance and scalability problems and can
result in deadlocking the shared server processes.

• Long running dequeue transactions worsen dequeue contention on the queue, and must
be avoided.

• Batching multiple dequeue operations on multi-consumer queues into a single transaction
gives best throughput.

• Use NEXT as navigation mode, if not using message priorities. This offers the same
semantics but improved performance.

• Use the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed by a REMOVE.

Propagation Tuning Tips
Propagation can be considered a special kind of dequeue operation with an additional INSERT
at the remote (or local) queue table. Propagation from a single schedule is not parallelized
across multiple job queue processes. Rather, they are load balanced.Propagation can be
considered a special kind of dequeue operation with an additional INSERT at the remote (or

Chapter 8
AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 28

local) queue table. Propagation from a single schedule is not parallelized across multiple job
queue processes. Rather, they are load balanced.

For better scalability, configure the number of propagation schedules according to the available
system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables vary to some
extent because Oracle Database Advanced Queuing determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly determined by
the user application.

Optimized propagation happens in batches. If the remote queue is in a different database, then
Oracle Database Advanced Queuing uses a sequencing algorithm to avoid the need for a two-
phase commit. When a message must be sent to multiple queues in the same destination, it is
sent multiple times. If the message must be sent to multiple consumers in the same queue at
the destination, then it is sent only once.

Buffered Messaging Tuning
Buffered messaging operations in a Oracle Real Application Clusters environment will be
fastest on the OWNER_INSTANCE of the queue.

Persistent Messaging Performance Overview for Queues
When persistent messages are enqueued, they are stored in database tables. The
performance characteristics of queue operations on persistent messages are similar to
underlying database operations.

The code path of an enqueue operation is comparable to SELECT and INSERT into a
multicolumn queue table with three index-organized tables. The code path of a dequeue
operation is comparable to a SELECT operation on the multi-column table and a DELETE
operation on the dequeue index-organized table. In many scenarios, for example when Oracle
RAC is not used and there is adequate streams pool memory, the dequeue operation is
optimized and is comparable to a SELECT operation on a multi-column table.

Note

Performance is not affected by the number of queues in a table.

Queues and Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) can be used to ensure highly available access
to queue data.

The entry and exit points of a queue, commonly called its tail and head respectively, can be
extreme hot spots. Because Oracle RAC may not scale well in the presence of hot spots, limit
usual access to a queue from one instance only. If an instance failure occurs, then messages
managed by the failed instance can be processed immediately by one of the remaining
instances. If AQ queues are experiencing hot spots, then consider using TxEventQs instead.

You can associate Oracle RAC instance affinities with 8.1-compatible queue tables. If you are
using q1 and q2 in different instances, then you can use ALTER_QUEUE_TABLE or
CREATE_QUEUE_TABLE on the queue table and set primary_instance to the appropriate
instance_id.

Chapter 8
AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 28

See Also

• Creating a Queue Table

• Altering a Queue Table

• Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)

Oracle Database Advanced Queuing in a Shared Server Environment
Queue operation scalability is similar to the underlying database operation scalability.

If a dequeue operation with wait option is applied, then it does not return until it is successful or
the wait period has expired. In a shared server environment, the shared server process is
dedicated to the dequeue operation for the duration of the call, including the wait time. The
presence of many such processes can cause severe performance and scalability problems
and can result in deadlocking the shared server processes. For this reason, Oracle
recommends that dequeue requests with wait option be applied using dedicated server
processes. This restriction is not enforced.

See Also

"DEQUEUE_OPTIONS_T Type" in Oracle Database PL/SQL Packages and Types
Reference for more information on the wait option

Performance Views
Oracle provides these views to monitor system performance and troubleshooting.

• V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues

• V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

• V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

• V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

• V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

• V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the
Instance

• V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the
Instance

• V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

• V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance

• V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

• V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for
Persistent Queues

• V$AQ: Number of Messages in Different States in Database

• V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

Chapter 8
Performance Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 28

• V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_SERVER_POOL: Performance Statistics for all Servers

• V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

• V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

• V$AQ_MESSAGE_CACHE: Performance Statistics

These views are integrated with the Automatic Workload Repository (AWR). Users can
generate a report based on two AWR snapshots to compute enqueue rate, dequeue rate, and
other statistics per queue/subscriber.

Migrating from AQ to TxEventQ
• Flowchart: Migration from AQ to TxEventQ

• Example Walkthrough

• Steps to Migrate from AQ to TxEventQ

• Overview of How Migration Functions

• Limitations and Workarounds

Transactional Event Queues (TxEventQ) is the next generation messaging system by Oracle
that offers many benefits and features over Advanced Queuing (AQ), like scalability,
performance, key-based sharding, and Kafka compatibility with a Java client. The online
migration tool offers user-friendly interfaces designed to streamline the process of migrating
from AQ to TxEventQ. Its intuitive user experience simplifies even the most intricate scenarios,
sparing users the need to delve into the complexities of AQ objects. The tool incorporates built-
in compatibility diagnostics between AQ and TxEventQ. This diagnosis involves the validation
of AQ metadata and data, enabling interactive solutions to any encountered issues.
Furthermore, the tool supplies straightforward procedures to address fallback and recovery
scenarios in the event of any potential failures.

Upgrading AQ to TxEventQ is not a standard procedure like typical upgrades due to
substantial feature disparities, significant data representation changes, and other factors.
Manually migrating entails system downtime and a deep understanding of the internal
mechanisms of both AQ and TxEventQ. The intricacies of handling internal data from various
versions of AQ or TxEventQ, alongside existing messages, can present significant challenges.
Moreover, rewriting applications to integrate TxEventQ can be expensive. To address these
complexities, Oracle Database 23ai introduces the PL/SQL package DBMS_AQMIGTOOL,
designed to automate the various steps involved in migration. This package offers multiple
migration modes, including AUTOMATIC, INTERACTIVE, OFFLINE, and ONLY_DEFINITION,
providing flexibility to align with specific requirements.

The migration tool interface provides the following functionalities:

• Inspect AQ definition and data, and report unsupported features.

• Approve or prevent migration based on detected unsupported features.

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 28

• Initiate migration with modes: AUTOMATIC, INTERACTIVE, OFFLINE, ONLY_DEFINITION.

• Offer migration commit or AQ fallback via the user-initiated procedure in the migration
interface.

• Keep track of messages that are not currently in the PROCESSED state in both the AQ and
TxEventQ.

• Migration history record of any queue.

• Provide an option to purge AQ messages if they don't want to consume old messages.

• The migration procedures support rolling upgrades. The migration procedures also support
Oracle GoldenGate replicas(OGG) replication.

Flowchart: Migration from AQ to TxEventQ

Figure 8-1 Flowchart: Migration from AQ to TxEventQ

Example Walkthrough

Let's go through a few hypothetical scenarios to enhance our understanding of how to use
DBMS_AQMIGTOOL procedures.

Scenario 1

Consider a scenario involving a user named aquser with an AQ named JSON_QUEUE. This AQ
stores customer events in JSON payload format. If the user wishes to determine whether any
features used by AQ are unsupported in TxEventQ, then they can run the
DBMS_AQMIGTOOL.CHECK_MIGRATION_TO_TXEVENTQ procedure.

SQL> DECLARE
 2 migration_report sys.TxEventQ_MigReport_Array := sys.TxEventQ_MigReport_Array();
 3 BEGIN
 4 DBMS_AQMIGTOOL.CHECK_MIGRATION_TO_TXEVENTQ('aquser', 'JSON_QUEUE',
migration_report);
 5 dbms_output.put_line('Migration report unsupported events count: ' ||
migration_report.COUNT);
 6
 7 END;

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 28

 8 /
Migration report unsupported events count: 0

PL/SQL procedure successfully completed.

After examining JSON_QUEUE, it is evident that no unsupported features are present.
Consequently, the user can proceed with migration by initiating the
DBMS_AQMIGTOOL.INIT_MIGRATION procedure.

SQL> EXECUTE DBMS_AQMIGTOOL.INIT_MIGRATION(cqschema => 'aquser', cqname => 'JSON_QUEUE');

PL/SQL procedure successfully completed.

SQL> SELECT name || ' -> ' || sharded AS "QueueName -> Sharded" FROM user_queues where
queue_type = 'NORMAL_QUEUE';

QueueName -> Sharded
--
JSON_QUEUE -> FALSE
JSON_QUEUE_M -> TRUE

The migration process begins by creating an interim TxEventQ JSON_QUEUE_M (with the default
suffix M) with the same configuration as AQ. Upon executing this procedure, the user can carry
out data manipulation operations such as enqueue and dequeue.

Note

No adjustments are required in the enqueue and dequeue calls; the workload can
proceed unchanged.

Users can verify successful evaluation by querying in the USER_TXEVENTQ_MIGRATION_STATUS
view.

SQL> SELECT event FROM USER_TXEVENTQ_MIGRATION_STATUS WHERE source_queue_name =
'JSON_QUEUE' AND event = 'Init_Migration';

EVENT
--
Init_Migration

Pre-requisite requirement for DBMS_AQMIGTOOL.COMMIT_MIGRATION is to have empty AQ (all
messages are either in the PROCESSED or EXPIRED state). The user can utilize the
DBMS_AQMIGTOOL.CHECK_MIGRATED_MESSAGES procedure to monitor messages within the AQ
and interim TxEventQ.

SQL> DECLARE
 2 migrated_q_msg_cnt number := 0;
 3 aq_msg_cnt number := 0;
 4 BEGIN
 5 DBMS_AQMIGTOOL.CHECK_MIGRATED_MESSAGES(
 6 cqschema => 'aquser',
 7 cqname => 'JSON_QUEUE',
 8 txeventq_migrated_message => migrated_q_msg_cnt,
 9 cq_pending_messages => aq_msg_cnt);
 10 dbms_output.put_line('AQ ready state message count: ' || aq_msg_cnt);
 11 dbms_output.put_line('Migrated TxEventQ message count: ' ||
migrated_q_msg_cnt);
 12 END;

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 28

 13 /
AQ ready state message count: 1000
Migrated TxEventQ message count: 3500

PL/SQL procedure successfully completed.

Once the READY state message count in AQ reaches zero, the user has the option to complete
the migration by executing the DBMS_AQMIGTOOL.COMMIT_MIGRATION procedure.

SQL> EXECUTE DBMS_AQMIGTOOL.COMMIT_MIGRATION(cqschema => 'aquser', cqname =>
'JSON_QUEUE');

PL/SQL procedure successfully completed.

SQL> SELECT name || ' -> ' || sharded AS "QueueName -> Sharded" FROM user_queues where
queue_type = 'NORMAL_QUEUE';

QueueName -> Sharded
--
JSON_QUEUE -> TRUE

Following the successful migration, the JSON_QUEUE has been transformed from an AQ to a
TxEventQ. The user can seamlessly proceed with their everyday operations as usual on
JSON_QUEUE.

Users can verify successful evaluation by querying in the USER_TXEVENTQ_MIGRATION_STATUS
view.

SQL> SELECT event FROM USER_TXEVENTQ_MIGRATION_STATUS WHERE source_queue_name =
'JSON_QUEUE' AND event = 'Commit_Migration';

EVENT
--
Commit_Migration

Scenario 2

Let's consider the same example outlined in Scenario 1, continuing until the successful
execution of DBMS_AQMIGTOOL.INIT_MIGRATION.

In certain situations, after executing a workload, it's possible that unsupported features may be
detected. For example, if a user configured a transformation in enqueue operation. In such
cases, the user can use the DBMS_AQMIGTOOL.CHECK_STATUS procedure to determine if the
migration process can be successfully finalized or needs an application change to clear the
error.

SQL> DECLARE
 2 mig_STATUS VARCHAR2(128);
 3 mig_comments VARCHAR2(1024);
 4 BEGIN
 5 DBMS_AQMIGTOOL.CHECK_STATUS(
 6 cqschema => 'aquser',
 7 cqname => 'JSON_QUEUE',
 8 status => mig_STATUS,
 9 migration_comment => mig_comments);
 10 dbms_output.put_line('Migration Status: ' || mig_STATUS);
 11 dbms_output.put_line('Migration comments: ' || mig_comments);
 12 END;
 13 /
Migration Status: Compatibility Error: Transformation in Enq Unsupported Feature
Migration comments: Unsupported parameter in Enqueue

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 28

PL/SQL procedure successfully completed.

Additionally, the user has the option to examine the list of captured unsupported features by
querying the USER_TXEVENTQ_MIGRATION_STATUS view.

SQL> SELECT event FROM USER_TXEVENTQ_MIGRATION_STATUS WHERE source_queue_name =
'JSON_QUEUE' AND event_status = 2;

EVENT
--
Transformation in Enq

If the user later decides to cancel the migration process without any message loss, they can
use the DBMS_AQMIGTOOL.RESTORE option in the DBMS_AQMIGTOOL.CANCEL_MIGRATION procedure,
which is set by default.

SQL> SELECT count(*) FROM JSON_QUEUE_TABLE WHERE q_name = 'JSON_QUEUE';

 COUNT(*)

 1000

1 row selected.

SQL> EXECUTE DBMS_AQMIGTOOL.CANCEL_MIGRATION(cqschema => 'aquser', cqname =>
'JSON_QUEUE', cancelmode => DBMS_AQMIGTOOL.RESTORE);

PL/SQL procedure successfully completed.

SQL> SELECT name || ' -> ' || sharded AS "QueueName -> Sharded" FROM user_queues WHERE
queue_type = 'NORMAL_QUEUE';

QueueName -> Sharded
--
JSON_QUEUE -> FALSE

SQL> SELECT count(*) FROM JSON_QUEUE_TABLE WHERE q_name = 'JSON_QUEUE';

 COUNT(*)

 4500

1 row selected.

As evident, the message counts within the queue table following the execution of
DBMS_AQMIGTOOL.CANCEL_MIGRATION reflects the initial count (1000 messages) and the
messages restored from TxEventQ (3500 messages).

Steps to migrate from AQ to TxEventQ

To migrate from AQ to TxEventQ, perform the following steps:

1. Identify if source AQ is compatible with migration.

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 28

Start by determining whether the source AQ is suitable for migration to TxEventQ. The
procedure below enables the identification of any features utilized by AQ that are not
supported in TxEventQ.

DBMS_AQMIGTOOL.CHECK_MIGRATION_TO_TXEVENTQ(cqschema, cqname, migration_report,
checkmode)

The DBMS_AQMIGTOOL.CURRENT option for the checkmode parameter only examines current
queue metadata and existing messages. However, future queue operations won't be
examined. Furthermore, like transformations, particular features don't rely on persistent
queue data, which cannot be identified without runtime enqueue/dequeue operations. To
comprehensively identify all unsupported features, it's advisable to use the
DBMS_AQMIGTOOL.ENABLE_EVALUATION option in the checkmode parameter and subsequently
run your user application.

The migration_report will generate no data if the output is compatible. Once it is
confirmed that there is no incompatibility, the user can proceed with
DBMS_AQMIGTOOL.INIT_MIGRATION. Users should not initiate migration APIs if any of the
features listed under Limitations is used in their application. Most of these are not very
commonly used.

2. Start migration and create an interim TxEventQ.

To begin the migration process, start by creating an interim TxEventQ using this method:

DBMS_AQMIGTOOL.INIT_MIGRATION(cqschema, cqname, txeventqschema, txeventqname,
mig_mode, ordering, suffix)

Through the execution of DBMS_AQMIGTOOL.INIT_MIGRATION, compatibility checks are
conducted using both AQ definitions and data. If any unsupported features are detected,
an exception will be raised. In such instances, users have the opportunity to modify their
applications, address the identified incompatibilities (refer to the Limitations and
Workarounds section for guidance), and subsequently reattempt the execution of
INIT_MIGRATION.

If found compatible, this procedure initiates the migration process and creates an interim
TxEventQ with the same configuration of the AQ, encompassing queue properties, payload
types, and subscriber data. It is important to note that following the execution of this
procedure, all the administrative operations on the AQ are restricted.

3. Finalize migration either by committing or canceling migration.

Concluding the migration process involves two options: committing or canceling the
migration.

• In cases where all messages from AQ have been consumed (indicating that all
messages are in a PROCESSED state) and no incompatibilities found, the user can
execute the following to complete the migration:

DBMS_AQMIGTOOL.COMMIT_MIGRATION(cqschema, cqname, ignore_warning)

This procedure drops the AQ and renames the interim TxEventQ to the AQ's name.
Additionally, the TxEventQ is enabled for all administrative operations, completing the
migration process.

• Suppose a user gets any compatibility error after DBMS_AQMIGTOOL.INIT_MIGRATION,
that operation will be blocked, and the user will be asked to review compatibility
issues. Unsupported features will be recorded in the
USER_TXEVENTQ_MIGRATION_STATUS view. Users facing such issues have the option to
suitably modify their application to address the incompatibility or invoke the procedure
to restore the AQ.

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 28

DBMS_AQMIGTOOL.CANCEL_MIGRATION(cqschema, cqname, cancelmode)

Utilizing DBMS_AQMIGTOOL.CANCEL_MIGRATION, users can restore TxEventQ messages
and their states back to AQ based on the specified cancelmode. This process ensures
no data loss. It's important to note that executing CANCEL_MIGRATION may lead to
extended downtime due to the movement of messages and their states from TxEventQ
back to AQ.

In summary, this final migration stage offers flexibility, allowing users to choose between
commitment and restoration based on their specific needs and circumstances.

Overview of how Migration Functions

The DBMS_AQMIGTOOL package helps with the seamless migration from AQ to TxEventQ.

• To start the migration process, DBMS_AQMIGTOOL.INIT_MIGRATION sets up an interim
TxEventQ copying the AQ's configuration, including payload type, rules, subscribers,
privileges, PLSQL notifications, and more. It restricts AQ from administrative changes to
maintain TxEventQ configuration integrity until the migration is completed or canceled.

• During migration, the new workload gradually transitions to interim TxEventQ. New
enqueue requests go to interim TxEventQ; dequeue requests check AQ first, then interim
TxEventQ, progressively emptying AQ. The message ordering is maintained as per
INIT_MIGRATION's ordering configuration.

• To complete migration, DBMS_AQMIGTOOL.COMMIT_MIGRATION drops AQ and renames interim
TxEventQ to AQ's name, ensuring application compatibility.

• To cancel migration, DBMS_AQMIGTOOL.CANCEL_MIGRATION in RESTORE mode moves
messages and their states from interim TxEventQ to AQ to prevent data loss, then drops
interim TxEventQ.

• For capturing unsupported features, DBMS_AQMIGTOOL.CHECK_MIGRATION_TO_TXEVENTQ
examines AQ's metadata and messages to capture unsupported features. The
DBMS_AQMIGTOOL.ENABLE_EVALUATION option captures runtime-specific unsupported
features.

Limitations and Workarounds

Before starting the migration process, it is recommended that the user review the list of the
following unsupported features.

Table 8-1 Unsupported Features and Workarounds

Name Feature Type Description Workaround

retry delay

See Also:
MESSAGE_PROPERTI
ES_T.

Queue-level Specifies the delay in
seconds before a
message is available for
dequeue after an
application rollback

Set retry_delay to
zero using
DBMS_AQADM.ALTER_QU
EUE.

transformation Message-level Allows message
transformation before
enqueueing or after the
subscriber dequeue the
message

Move the transformation
to the application layer.

listen

See Also: Listen
Procedures.

others Listens on one or more
queues for a list of
agents/subscribers

Implement single queue
listening with dequeue
browse.

Chapter 8
Migrating from AQ to TxEventQ

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 28

Table 8-1 (Cont.) Unsupported Features and Workarounds

Name Feature Type Description Workaround

invalid priority value
(valid range - 0 to 9)

Message-level TxEventQ only allows
priority values between 0
to 9. The default priority
value for AQ is 1, and for
TxEventQ is 4. Also, AQ
interprets the lower
value as the higher
priority, But TxEventQ
interprets the opposite,
that is, the higher value
is interpreted as the
higher priority.

Ensure the application
adheres to a valid range
(0 - 9). Also, keep in
mind the difference in
interpretation of the
priority value of AQ and
TxEventQ.

If propagation is already scheduled on AQ before migration, it will result in an incompatibility
error. To address this, users can unschedule the propagation using
DBMS_AQADM.UNSCHEDULE_PROPAGATION. After migration, the propagation can be scheduled on
TxEventQ using DBMS_AQADM.SCHEDULE_PROPAGATION.

Table 8-2 Unsupported Features without Workarounds

Name Feature Type

message grouping (transactional grouping)

See Also:

• CREATE_QUEUE_TABLE Procedure
• MESSAGE_PROPERTIES_T Type

Queue-level

sequence deviation and relative msgid

See Also: ENQUEUE_OPTIONS_T Type

Message-level

recipient list

See Also: MESSAGE_PROPERTIES_T Type

Message-level

See Also

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_AQMIGTOOL

Monitoring TxEventQ with Prometheus/Grafana
Some of the advantages of having a real-time monitoring framework for a high throughput
messaging system are as follows.

• Know overall messaging system health at a glance and be able to adjust resources up or
down with how heavy or light the messaging work load is.

• Monitor high level key performance indicators: enqueue rates, dequeue rates, queue
depth, etc.

Chapter 8
Monitoring TxEventQ with Prometheus/Grafana

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 28

• Find the messaging bottlenecks due to the database load or the system load, by
monitoring CPU load, memory utilization, and the database wait class from messaging
activity.

• Check the health condition of each queue to quickly identify under-performing ones easily.

• Access messaging metrics from anywhere, enabling developers to monitor any overheads
from applications and debug message related issues.

• Respond quickly by setting alerts when something goes wrong with the feature in Grafana.

See Also

Monitoring Transactional Event Queues for more information.

Monitoring Data Flow and UI Framework Setup
The TxEventQ monitor system consists of three independent open-source components. A
Docker container is used to help manage all environments, services, and dependencies on the
machine where the monitoring framework is installed.

• Oracle DB Exporter: A Prometheus exporter for Oracle Database, which connects to the
database, queries metrics, and formats metrics into Prometheus-like metrics.

• Prometheus: A monitor system and time-series database, which manages metrics
collecting from Oracle DB Exporter in time-series-fashion.

• Grafana: An analytics and interactive visualization platform, which specifies Prometheus as
data source.

TxEventQ Monitor System consists of three services including Prometheus Oracle DB
Exporter, Prometheus, and Grafana. The system is designed to run with Docker, which lets
user use the system as a lightweight, portable, self-sufficient container, which can run virtually
anywhere. Exporter is the connector to Oracle DB and formats the query results to
Prometheus-like metrics. Prometheus is a time-series database and periodically controls
Exporter to query and collect/store metrics. Grafana uses Prometheus as a data source to
show the metrics and visually. Grafana is a user-interface with charting and computation built-
in. The whole services is configured, managed and handled by Docker-compose.

Chapter 8
Monitoring Data Flow and UI Framework Setup

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 28

https://github.com/oracle/oracle-db-appdev-monitoring#monitoring-transactional-event-queues

Figure 8-2 Monitoring Transaction Event Queue

To monitor the TxEventQ dashboards using Grafana, perform the following steps.

1. Login to the Grafana dashboard using admin user name and password. The Welcome
Page is displayed.

Figure 8-3 Welcome Page

Chapter 8
Monitoring Data Flow and UI Framework Setup

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 28

2. Click TxEventQ Monitor on the Welcome Page. Once Grafana is setup, the metrics are
presented in four selections, and the top level selections are for an instance, queue,
subscriber and disk group. The four selections are as follows:

• Summary across all TxEventQs

• Database metrics summary

• System metrics summary

• Subscriber summary for each TxEventQ

3. Click on each summary to view information about the summary.

The following figures shows the dashboards of TxEventQ Summary, DB Summary, Database
Wait Class Latency, and System Summary respectively.

The TxEventQ Summary dashboard shows overall aggregated TxEventQ stats including
status, number of queues, number of subscribers, enqueue/dequeue rate and number of
messages

The Database Summary dashboard shows overall DB performance and stats.

Chapter 8
Monitoring Data Flow and UI Framework Setup

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 28

Figure 8-4 Database Summary

The screen tiles are as follows.

• Oracle DB Status – Up or Down

• Active User Sessions – number of user sessions active

• Active Background sessions – number of background sessions active

• Inactive user sessions – Number of inactive user sessions

• Number of processes – Number of database processes

• ASM Disk Usage – Percent of disk free for each disk volume

• DB Activity – SQL activity for the number of execute counts, parse count total, user
commits, user rollbacks.

The database wait class latencies are shown in the DB Wait Class Latency dashboard. Wait
class latency is the wait class events latency in milliseconds in the database and can be used
to guide overhead analysis through a more detailed AWR report analysis.

Figure 8-5 Database Wait Class Latency

The System Summary dashboard shows system level metrics and also the queue level
metrics. It reflects the overall performance and status of the system running Oracle DB based
on CPU utilization and memory used.

Chapter 8
Monitoring Data Flow and UI Framework Setup

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 28

Figure 8-6 System Summary

System Level Statistics

• Number of CPUs – Total number of CPUs on the system

• OS CPU Load - The percentage of CPU capability currently used by all System and User
processes

• CPU Usage: % of CPU busy (for all processes) and % of CPU busy for user processes

• Total Physical Memory: Total memory on the system, one instance in case of an Oracle
RAC database

• Total Free Physical Memory: Total amount of free memory on the instance

• System Physical Memory free: % of free physical memory

TxEventQ Queue Level Stats

It displays the statistics of one specific queue, which the user can select from the drop-down
menu including rate, total messages, queue depth, estimated time to consume and time since
last dequeue.

• Enqueue/Dequeue Messages: Number of messages enqueued; number of messages
dequeued

• Enqueue/Dequeue rate: Number of messages per second that are enqueued and
dequeued

• TxEventQ Depth – Remaining messages in the queue

• TxEventQ Name - Name of the queue

• Subscriber Name – Name of the subscriber

• Time to drain if no enq – Estimate of time to drain the queue if there are no new enqueues

• Time since last dequeue – Time elapsed since the last dequeue on the queue

Key Metrics Measured
This section provides a little more detail on the metrics seen in the previous section and how to
get these from the Grafana screen. The drop-down menu options are at the level of a:
database instance, queue, and a subscriber. AQ/TxEventQ Summary metrics and Database
metrics are for the database instance the user selects in the drop-down menu.

• AQ/TxEventQ Summary Metrics

Chapter 8
Key Metrics Measured

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 28

– TxEventQ Status: if TxEventQs are running or not

– Total Number of TxEventQs: the number of TxEventQs running

– Total TxEventQ Subscribers: the total number of subscribers for all TxEventQs

– Overall Enq/Deq Rates: aggregate enq/deq rates for all TxEventQs

– Overall Enqueued Messages: total enqueued messages for the entire queue system

– Overall Dequeued Messages: total dequeued messages for the entire queue system

• Database Summary Metrics

– Oracle DB Status: if Oracle DB is running or not.

– Active User Sessions: the number of active user sessions

– Active Background Sessions: the number of active background sessions

– Inactive User Sessions: the number of inactive user sessions

– Number of Processes: the number of Oracle processes running

– ASM Disk Usage: Oracle Automatic Storage Management disk group memory usage
(e.g. +DATA, +RECO)

– DB Activity: the number of specific DB operations that occurred including execute
count, user commits, parse count total, user rollbacks.

– DB Wait Class Latency: average latency for DB wait class in ms including
administrative, application, commit, concurrency, configuration, idle, network, other,
system I/O, user I/O

• System Summary Metrics

– Number of CPUs: the number of CPU of the system running Oracle DB

– OS CPU Load: current number of processes that are either running or in the ready
state, waiting to be selected by the operating-system scheduler to run. On many
platforms, this statistic reflects the average load over the past minute

– CPU Usage (Busy + User): the CPU usage in percentage in real time including CPU in
busy state or CPU in executing user code.

– Total Physical Memory: total physical memory of the system.

– Total Free Physical Memory: total free physical memory of the system.

– System Free Physical Memory: the percentage of free memory in the system.

• Queue Level Metrics

– Enq/Deq Messages: total messages enqueued/dequeued to/from the TxEventQ

– Enq/Deq Rate: enqueue/dequeue rate for the TxEventQ

– TxEventQ Depth: total messages remaining in the queue.

– TxEventQ Name: the name of TxEventQ

– Subscriber Name: the name of TxEventQ subscriber

– Time to Drain if No Enq: total amount of time to consume all messages if there are no
more messages enqueued on the TxEventQ

– Time since Last Deq: time difference between current time and the time since the last
dequeue operation on the TxEventQ

Chapter 8
Key Metrics Measured

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 28

See Also

Monitoring Transactional Event Queues for more information.

Chapter 8
Key Metrics Measured

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 28

https://github.com/oracle/oracle-db-appdev-monitoring#monitoring-transactional-event-queues

9
Oracle Transactional Event Queue and
Advanced Queuing Views

These topics describe the Transactional Event Queue (TxEventQ) and AQ Advanced Queuing
(AQ) administrative interface views.

Note

All views not detailed in the following sections are described in the Oracle Database
Reference.

Oracle TxEventQ Views

• V$EQ_CACHED_PARTITIONS

• V$EQ_CROSS_INSTANCE_JOBS

• V$EQ_DEQUEUE_SESSIONS

• V$EQ_INACTIVE_PARTITIONS

• V$EQ_MESSAGE_CACHE

• V$EQ_MESSAGE_CACHE_ADVICE

• V$EQ_MESSAGE_CACHE_STAT

• V$EQ_NONDUR_SUBSCRIBER

• V$EQ_NONDUR_SUBSCRIBER_LWM

• V$EQ_PARTITION_STATS

• V$EQ_REMOTE_DEQUEUE_AFFINITY

• V$EQ_SUBSCRIBER_LOAD

• V$EQ_SUBSCRIBER_STAT

• V$EQ_UNCACHED_PARTITIONS

Oracle AQ Views

• V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues

• V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

• V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

• V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

• DBA_QUEUE_TABLES: All Queue Tables in Database

• USER_QUEUE_TABLES: Queue Tables in User Schema

• ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User

• DBA_QUEUES: All Queues in Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 23

• USER_QUEUES: Queues In User Schema

• ALL_QUEUES: Queues for Which User Has Any Privilege

• DBA_QUEUE_SCHEDULES: All Propagation Schedules

• USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema

• QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

• AQ$<Queue_Table_Name>: Messages in Queue Table

• AQ$<Queue_Table_Name_S>: Queue Subscribers

• AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules

• DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

• USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

• ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges

• DBA_TRANSFORMATIONS: All Transformations

• DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions

• USER_TRANSFORMATIONS: User Transformations

• USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

• DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations

• USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

• AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for
Internet Access

• V$AQ: Number of Messages in Different States in Database

• V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

• V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance

• V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

• V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

• V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the
Instance

• V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the
Instance

• V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending
(Source) Side

• V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving
(Destination) Side

• V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

• V$METRICGROUP: Information About the Metric Group

• V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

• V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

• V$AQ_SERVER_POOL: Performance Statistics for all Servers

• V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description

• V$AQ_IPC_ACTIVE_MSGS

Chapter 9

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 23

• V$AQ_IPC_MSG_STATS

• V$AQ_IPC_PENDING_MSGS

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

• V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

• V$AQ_MESSAGE_CACHE: Performance Statistics

DBA_QUEUE_TABLES: All Queue Tables in Database
This view contains information about the owner instance for a queue table.

A queue table can contain multiple queues. In this case, each queue in a queue table has the
same owner instance as the queue table. The DBA_QUEUE_TABLES columns are the same as
those in ALL_QUEUE_TABLES.

See Also

Oracle Database Reference for more information about DBA_QUEUE_TABLES.

USER_QUEUE_TABLES: Queue Tables in User Schema
This view is the same as DBA_QUEUE_TABLES with the exception that it only shows queue tables
in the user's schema.

USER_QUEUE_TABLES does not contain a column for OWNER.

See Also

Oracle Database Reference for more information about USER_QUEUE_TABLES.

ALL_QUEUE_TABLES: Queue Tables Accessible to the Current
User

This view describes queue tables accessible to the current user.

See Also

Oracle Database Reference for more information about ALL_QUEUE_TABLES.

Chapter 9
DBA_QUEUE_TABLES: All Queue Tables in Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 23

DBA_QUEUES: All Queues in Database
The DBA_QUEUES view specifies operational characteristics for every queue in a database.

Its columns are the same as those ALL_QUEUES. Oracle Database 12c Release 1 (12.1)
introduces a new column SHARDED with data type VARCHAR2(5). The value for this column is
TRUE for sharded queue, otherwise FALSE.

See Also

Oracle Database Reference for more information about DBA_QUEUES.

USER_QUEUES: Queues In User Schema
The USER_QUEUES view is the same as DBA_QUEUES with the exception that it only shows queues
in the user's schema.

Oracle Database 12c Release 1 (12.1) introduces a new column SHARDED with data type
VARCHAR2(5). The value for this column is TRUE for sharded queue, otherwise FALSE.

See Also

Oracle Database Reference for more information about USER_QUEUES.

ALL_QUEUES: Queues for Which User Has Any Privilege
The ALL_QUEUES view describes all queues on which the current user has enqueue or dequeue
privileges.

If the user has any Advanced Queuing system privileges, like MANAGE ANY QUEUE, ENQUEUE ANY
QUEUE or DEQUEUE ANY QUEUE, this view describes all queues in the database. Oracle Database
12c Release 1 (12.1) introduces a new column SHARDED with data type VARCHAR2(5). The value
for this column is TRUE for sharded queue, otherwise FALSE.

See Also

Oracle Database Reference for more information about ALL_QUEUES.

Chapter 9
DBA_QUEUES: All Queues in Database

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 23

DBA_QUEUE_SCHEDULES: All Propagation Schedules
The DBA_QUEUE_SCHEDULES view describes all the current schedules in the database for
propagating messages.

See Also

Oracle Database Reference for more information about DBA_QUEUE_SCHEDULES.

USER_QUEUE_SCHEDULES: Propagation Schedules in User
Schema

The USER_QUEUE_SCHEDULES view is the same as DBA_QUEUE_SCHEDULES with the exception that
it only shows queue schedules in the user's schema.

See Also

Oracle Database Reference for more information about USER_QUEUE_SCHEDULES.

QUEUE_PRIVILEGES: Queues for Which User Has Queue
Privilege

The QUEUE_PRIVILEGES view describes queues for which the user is the grantor, grantee, or
owner.

It also shows queues for which an enabled role on the queue is granted to PUBLIC.

See Also

Oracle Database Reference for more information about QUEUE_PRIVILEGES.

AQ$<Queue_Table_Name>: Messages in Queue Table
The AQ$<Queue_Table_Name> view describes the queue table in which message data is stored.

This view is automatically created with each queue table and should be used for querying the
queue data. The dequeue history data (time, user identification and transaction identification) is
only valid for single-consumer queues.

In a queue table that is created with the compatible parameter set to '8.1' or higher, messages
that were not dequeued by the consumer are shown as "UNDELIVERABLE". You can dequeue
these messages by msgid. If the Oracle Database Advanced Queuing queue process monitor

Chapter 9
DBA_QUEUE_SCHEDULES: All Propagation Schedules

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 23

is running, then the messages are eventually moved to an exception queue. You can dequeue
these messages from the exception queue with an ordinary dequeue.

A multiconsumer queue table created without the compatible parameter, or with the
compatible parameter set to '8.0', does not display the state of a message on a consumer
basis, but only displays the global state of the message.

Note

Queues created in a queue table with compatible set to 8.0 (referred to in this guide
as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or
newer and that you migrate existing 8.0-style queues at your earliest convenience.

When a message is dequeued using the REMOVE mode, DEQ_TIME, DEQ_USER_ID, and
DEQ_TXN_ID are updated for the consumer that dequeued the message.

You can use MSGID and ORIGINAL_MSGID to chain propagated messages. When a message
with message identifier m1 is propagated to a remote queue, m1 is stored in the
ORIGINAL_MSGID column of the remote queue.

Beginning with Oracle Database 10g, AQ$Queue_Table_Name includes buffered messages. For
buffered messages, the value of MSG_STATE is one of the following:

• IN MEMORY

Buffered messages enqueued by a user

• DEFERRED

Buffered messages enqueued by a capture process

• SPILLED

User-enqueued buffered messages that have been spilled to disk

• DEFERRED SPILLED

Capture-enqueued buffered messages that have been spilled to disk

• BUFFERED EXPIRED

Expired buffered messages

For JMS Sharded Queues, the columns RETRY_COUNT, EXCEPTION_QUEUE_OWNER,
EXCEPTION_QUEUE, PROPAGATED_MSGID, SENDER_NAME, SENDER_ADDRESS, SENDER_PROTOCOL,
ORIGINAL_MSGID, ORIGINAL_QUEUE_NAME, ORIGINAL_QUEUE_OWNER, EXPIRATION_REASON are
always NULL.

For JMS Sharded Queues, this view shows messages only for durable subscribers because
non durable subscribers are session specific. The view returns data from the in-memory
Sharded Queue message cache if available, otherwise from the values on disk. A user is
required to be one of the following in order to query from AQ$<queue_name> view for Sharded
Queues:

• user is the owner

• user has "dequeue" privilege on queue

• user has "dequeue any queue" privilege

The view has the following difference for Sharded Queues for 12c and future releases:

Chapter 9
AQ$<Queue_Table_Name>: Messages in Queue Table

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 23

• MSG_PRIORITY is defined as NUMBER(38)

• MSG_STATE in a queue table does not have BUFFERED_EXPIRED hence the max length of
UNDELIVERABLE is taken as length got MSG_STATE.

• EXPIRATION is defined as TIMESTAMP(6) WITH TIME ZONE in a queue table.

• USER_DATA column is defined using a decode on USERDATA_RAW and USERDATA_BLOB with
UTL_RAW.CAST_TO_VARCHAR2.

• CONSUMER_NAME is defined as VARCHAR2(128)

Table 9-1 AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release 1
(12.1)

Description

QUEUE VARCHAR2(30) - Queue name

SHARD_ID NUMBER - N/A for 11g

SUBSHARD_ID NUMBER - N/A for 11g

MSG_ID RAW(16) NOT NULL Unique identifier of the message

CORR_ID VARCHAR2(128) - User-provided correlation
identifier

MSG_PRIORITY NUMBER - NUMBER(38) Message priority

MSG_STATE VARCHAR2(16) - Message state. 12c Release 1
(12.1) queue table doesnt have
BUFFERED_EXPIRED. Hence for
12c Release 1 (12.1) the max
length of UNDELIVERABLE is
taken as length got MSG_STATE

DELAY DATE - Time in date format at which the
message in waiting state would
become ready. Equals
ENQUEUE_TIME + user specified
DELAY

DELAY_TIMESTAMP TIMESTAMP - Time as a timestamp format at
which the message in waiting
state would become ready.
Equals ENQUEUE_TIMESTAMP +
user specified DELAY

EXPIRATION NUMBER - TIMESTAMP(6) WITH
TIME ZONE

Number of seconds in which the
message expires after being
READY

RETENTION_TIMESTAMP TIMESTAMP(6) - N/A for 11g

ENQ_TIME DATE - Enqueue time

ENQ_TIMESTAMP TIMESTAMP - Enqueue time

ENQ_USER_ID NUMBER - Enqueue user ID

ENQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Enqueue user name

ENQ_TXN_ID VARCHAR2(30) - Enqueue transaction ID

DEQ_TIME DATE - Dequeue time

DEQ_TIMESTAMP TIMESTAMP - Dequeue time

Chapter 9
AQ$<Queue_Table_Name>: Messages in Queue Table

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 23

Table 9-1 (Cont.) AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release 1
(12.1)

Description

DEQ_USER_ID NUMBER - Dequeue user ID

DEQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Dequeue user name

DEQ_TXN_ID VARCHAR2(30) - Dequeue transaction ID

RETRY_COUNT NUMBER - NULL Number of retries

EXCEPTION_QUEUE_OWNE
R

VARCHAR2(30) - NULL Exception queue schema

EXCEPTION_QUEUE VARCHAR2(30) - NULL Exception queue name

USER_DATA - - User data. USER_DATA column is
defined using a decode on
USERDATA_RAW and
USERDATA_BLOB with
UTL_RAW.CAST_TO_VARCHAR2
for 12c Release 1 (12.1).

SENDER_NAME VARCHAR2(30) - NULL Name of the agent enqueuing the
message (valid only for 8.1-
compatible queue tables)

SENDER_ADDRESS VARCHAR2(1024) - NULL Queue name and database name
of the source (last propagating)
queue (valid only for 8.1-
compatible queue tables). The
database name is not specified if
the source queue is in the local
database.

SENDER_PROTOCOL NUMBER - NULL Protocol for sender address
(reserved for future use and valid
only for 8.1-compatible queue
tables)

ORIGINAL_MSGID RAW(16) - NULL Message ID of the message in
the source queue (valid only for
8.1-compatible queue tables)

CONSUMER_NAME VARCHAR2(30) - VARCHAR2(128) Name of the agent receiving the
message (valid only for 8.1-
compatible multiconsumer queue
tables)

ADDRESS VARCHAR2(1024) - Queue name and database link
name of the agent receiving the
message.The database link name
is not specified if the address is in
the local database. The address
is NULL if the receiving agent is
local to the queue (valid only for
8.1-compatible multiconsumer
queue tables)

PROTOCOL NUMBER - Protocol for address of receiving
agent (valid only for 8.1-
compatible queue tables)

Chapter 9
AQ$<Queue_Table_Name>: Messages in Queue Table

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 23

Table 9-1 (Cont.) AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release 1
(12.1)

Description

PROPAGATED_MSGID RAW(16) - NULL Message ID of the message in
the queue of the receiving agent
(valid only for 8.1-compatible
queue tables)

ORIGINAL_QUEUE_NAME VARCHAR2(30) - NULL Name of the queue the message
came from

ORIGINAL_QUEUE_OWNER VARCHAR2(30) - NULL Owner of the queue the message
came from

EXPIRATION_REASON VARCHAR2(19) - NULL Reason the message came into
exception queue. Possible values
are TIME_EXPIRATION (message
expired after the specified expired
time), MAX_RETRY_EXCEEDED
(maximum retry count exceeded),
and PROPAGATION_FAILURE
(message became undeliverable
during propagation).

Note

A message is moved to an exception queue if RETRY_COUNT is greater than
MAX_RETRIES. If a dequeue transaction fails because the server process dies (including
ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is
not incremented.

AQ$<Queue_Table_Name_S>: Queue Subscribers
The AQ$<Queue_Table_Name_S> view provides information about subscribers for all the queues
in any given queue table.

It shows subscribers created by users with DBMS_AQADM.ADD_SUBSCRIBER and subscribers
created for the apply process to apply user-created events. It also displays the transformation
for the subscriber, if it was created with one. It is generated when the queue table is created.

This view provides functionality that is equivalent to the DBMS_AQADM.QUEUE_SUBSCRIBERS()
procedure. For these queues, Oracle recommends that the view be used instead of this
procedure to view queue subscribers. This view is created only for 8.1-compatible queue
tables.

Table 9-2 AQ$<Queue_Table_Name_S> View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

Chapter 9
AQ$<Queue_Table_Name_S>: Queue Subscribers

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 23

Table 9-2 (Cont.) AQ$<Queue_Table_Name_S> View

Column Datatype NULL Description

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

AQ$<Queue_Table_Name_R>: Queue Subscribers and Their
Rules

The AQ$<Queue_Table_Name_R> view displays only the subscribers based on rules for all
queues in a given queue table, including the text of the rule defined by each subscriber.

It also displays the transformation for the subscriber, if one was specified. It is generated when
the queue table is created.

This view is created only for 8.1-compatible queue tables.

Table 9-3 AQ$<Queue_Table_Name_R> View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2(65) - Set of rules

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

AQ$Queue_Name_R: Queue Subscribers and Their Rules for
Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 9-4 AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL

QUEUE VARCHAR2(30) NOT NULL

NAME VARCHAR2(30) -

ADDRESS VARCHAR2(1024) -

PROTOCOL NUMBER -

Chapter 9
AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 23

Table 9-4 (Cont.) AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL

RULE CLOB -

RULE_SET VARCHAR2(65) -

TRANSFORMATION VARCHAR2(65) -

AQ$Queue_Name_S: Queue Subscribers and Their Rules for
Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 9-5 AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL

QUEUE VARCHAR2(30) NOT NULL

NAME VARCHAR2(30) -

ADDRESS VARCHAR2(1024) -

PROTOCOL NUMBER -

TRANSFORMATION VARCHAR2(65) -

QUEUE_TO_QUEUE VARCHAR2(5) -

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in
Database

The DBA_QUEUE_SUBSCRIBERS view returns a list of all subscribers on all queues in the
database.

Its columns are the same as those in ALL_QUEUE_SUBSCRIBERS.

See Also

Oracle Database Reference for more information about DBA_QUEUE_SUBSCRIBERS.

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User
Schema

The USER_QUEUE_SUBSCRIBERS view returns a list of subscribers on queues in the schema of
the current user.

Its columns are the same as those in ALL_QUEUE_SUBSCRIBERS except that it does not contain
the OWNER column.

Chapter 9
AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 23

See Also

Oracle Database Reference for more information about USER_QUEUE_SUBSCRIBERS.

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where
User Has Queue Privileges

The ALL_QUEUE_SUBSCRIBERS view returns a list of subscribers to queues that the current user
has privileges to dequeue from.

See Also

Oracle Database Reference for more information about ALL_QUEUE_SUBSCRIBERS.

DBA_TRANSFORMATIONS: All Transformations
The DBA_TRANSFORMATIONS view displays all the transformations in the database.

These transformations can be specified with Advanced Queue operations like enqueue,
dequeue and subscribe to automatically integrate transformations in messaging. This view is
accessible only to users having DBA privileges.

See Also

Oracle Database Reference for more information about DBA_TRANSFORMATIONS.

DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation
Functions

The DBA_ATTRIBUTE_TRANSFORMATIONS view displays the transformation functions for all the
transformations in the database.

See Also

Oracle Database Reference for more information about
DBA_ATTRIBUTE_TRANSFORMATIONS.

USER_TRANSFORMATIONS: User Transformations
The USER_TRANSFORMATIONS view displays all the transformations owned by the user.

To view the transformation definition, query USER_ATTRIBUTE_TRANSFORMATIONS.

Chapter 9
ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 23

See Also

Oracle Database Reference for more information about USER_TRANSFORMATIONS.

USER_ATTRIBUTE_TRANSFORMATIONS: User
Transformation Functions

The USER_ATTRIBUTE_TRANSFORMATIONS view displays the transformation functions for all the
transformations of the user.

See Also

Oracle Database Reference for more information about
USER_ATTRIBUTE_TRANSFORMATIONS.

DBA_SUBSCR_REGISTRATIONS: All Subscription
Registrations

The DBA_SUBSCR_REGISTRATIONS view lists all the subscription registrations in the database.

See Also

Oracle Database Reference for more information about DBA_SUBSCR_REGISTRATIONS.

USER_SUBSCR_REGISTRATIONS: User Subscription
Registrations

The USER_SUBSCR_REGISTRATIONS view lists the subscription registrations in the database for
the current user.

Its columns are the same as those in DBA_SUBSCR_REGISTRATIONS.

See Also

Oracle Database Reference for more information about USER_SUBSCR_REGISTRATIONS.

Chapter 9
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 23

AQ$INTERNET_USERS: Oracle Database Advanced Queuing
Agents Registered for Internet Access

The AQ$INTERNET_USERS view provides information about the agents registered for Internet
access to Oracle Database Advanced Queuing. It also provides the list of database users that
each Internet agent maps to.

Table 9-6 AQ$INTERNET_USERS View

Column Datatype NULL Description

AGENT_NAME VARCHAR2(30) - Name of the Oracle Database Advanced Queuing Internet
agent

DB_USERNAME VARCHAR2(30) - Name of database user that this Internet agent maps to

HTTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Database Advanced Queuing through HTTP (YES or NO)

FTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Database Advanced Queuing through FTP (always NO in
current release)

V$AQ: Number of Messages in Different States in Database
The V$AQ view provides information about the number of messages in different states for the
whole database.

In a Oracle Real Application Clusters environment, each instance keeps its own Oracle
Database Advanced Queuing statistics information in its own System Global Area (SGA), and
does not have knowledge of the statistics gathered by other instances. When a GV$AQ view is
queried by an instance, all other instances funnel their Oracle Database Advanced Queuing
statistics information to the instance issuing the query.

See Also

Oracle Database Reference for more information about V$AQ.

V$BUFFERED_QUEUES: All Buffered Queues in the Instance
The V$BUFFERED_QUEUES view displays information about all buffered queues in the instance.
There is one row per queue.

See Also

Oracle Database Reference for more information about V$BUFFERED_QUEUES.

Chapter 9
AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for Internet Access

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 23

V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered
Queues in the Instance

The V$BUFFERED_SUBSCRIBERS view displays information about the subscribers for all buffered
queues in the instance. There is one row per subscriber per queue.

See Also

Oracle Database Reference for more information about V$BUFFERED_SUBSCRIBERS.

V$BUFFERED_PUBLISHERS: All Buffered Publishers in the
Instance

The V$BUFFERED_PUBLISHERS view displays information about all buffered publishers in the
instance.

There is one row per queue per sender. The values are reset to zero when the database (or
instance in an Oracle RAC environment) restarts.

See Also

Oracle Database Reference for more information about V$BUFFERED_PUBLISHERS.

V$PERSISTENT_QUEUES: All Active Persistent Queues in the
Instance

The V$PERSISTENT_QUEUES view displays information about all active persistent queues in the
database since the queues' first activity time.

There is one row per queue. The rows are deleted when the database (or instance in an
Oracle RAC environment) restarts.

See Also

Oracle Database Reference for more information about V$PERSISTENT_QUEUES.

Chapter 9
V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 23

V$PERSISTENT_QMN_CACHE: Performance Statistics on
Background Tasks for Persistent Queues

The V$PERSISTENT_QMN_CACHE view displays detailed statistics about all background activities
relating to all queue tables in the database.

There is one row per queue table. The values are reset when the database (or instance in an
Oracle RAC environment) restarts.

See Also

Oracle Database Reference for more information about V$PERSISTENT_QMN_CACHE.

V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the
Persistent Queues in the Instance

The V$PERSISTENT_SUBSCRIBERS view displays information about all active subscribers of the
persistent queues in the database.

There is one row per instance per queue per subscriber. The rows are deleted when the
database (or instance in an Oracle RAC environment) restarts.

See Also

Oracle Database Reference for more information about V$PERSISTENT_SUBSCRIBERS.

V$PERSISTENT_PUBLISHERS: All Active Publishers of the
Persistent Queues in the Instance

The V$PERSISTENT_PUBLISHERS view displays information about all active publishers of the
persistent queues in the database.

There is one row per instance per queue per publisher. The rows are deleted when the
database (or instance in an Oracle RAC environment) restarts.

See Also

Oracle Database Reference for more information about
V$PERSISTENT_PUBLISHERS.

Chapter 9
V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for Persistent Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 23

V$PROPAGATION_SENDER: Buffer Queue Propagation
Schedules on the Sending (Source) Side

The V$PROPAGATION_SENDER view displays information about buffer queue propagation
schedules on the sending (source) side.

The values are reset to zero when the database (or instance in a Oracle Real Application
Clusters (Oracle RAC) environment) restarts, when propagation migrates to another instance,
or when an unscheduled propagation is attempted.

See Also

Oracle Database Reference for more information about V$PROPAGATION_SENDER .

V$PROPAGATION_RECEIVER: Buffer Queue Propagation
Schedules on the Receiving (Destination) Side

The V$PROPAGATION_RECEIVER view displays information about buffer queue propagation
schedules on the receiving (destination) side.

The values are reset to zero when the database (or instance in a Oracle Real Application
Clusters (Oracle RAC) environment) restarts, when propagation migrates to another instance,
or when an unscheduled propagation is attempted.

See Also

Oracle Database Reference for more information about V$PROPAGATION_RECEIVER.

V$SUBSCR_REGISTRATION_STATS: Diagnosability of
Notifications

The V$SUBSCR_REGISTRATION_STATS view provides information for diagnosability of
notifications.

See Also

Oracle Database Reference for more information about
V$SUBSCR_REGISTRATION_STATS.

Chapter 9
V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 23

V$METRICGROUP: Information About the Metric Group
This V$METRICGROUP view displays information about the metric group for each of the four major
Streams components: capture, propagation, apply, and queue.

See Also

Oracle Database Reference for more information about V$METRICGROUP.

V$AQ_MESSAGE_CACHE_STAT: Memory Management for
Sharded Queues

The V$AQ_MESSAGE_CACHE_STAT view displays statistics about memory management for
sharded queues in streams_pool within the System Global Area (SGA). Sharded queue uses
streams_pool in units of subshards. Thus columns of this view shows statistics at subshard
level irrespective of the queue. This view shows statistics across all sharded queues.

See Also

Oracle Database Reference for more information about V$AQ_MESSAGE_CACHE_STAT.

Note

Some of the above mentioned columns will be used by sharded queue memory
advisor during analysis.

V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue
Subscriber Statistics

The V$AQ_SHARDED_SUBSCRIBER_STAT view displays statistical information about the
subscribers of sharded queues. This statistics is used by the memory advisor.

See Also

Oracle Database Reference for more information about
V$AQ_SHARDED_SUBSCRIBER_STAT.

Chapter 9
V$METRICGROUP: Information About the Metric Group

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 23

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics
The V$AQ_MESSAGE_CACHE_ADVICE view shows simulated metrics for a range of potential
message cache sizes. This view assists in cache sizing by providing information in form of
metrics as described below.

See Also

Oracle Database Reference for more information about V$AQ_MESSAGE_CACHE_ADVICE.

V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity
Instance List

The V$AQ_REMOTE_DEQUEUE_AFFINITY view lists the dequeue affinity instance of the subscribers
not dequeuing locally from the shard's owner instance. Cross instance message forwarding is
used for these subscribers.

See Also

Oracle Database Reference for more information about
V$AQ_REMOTE_DEQUEUE_AFFINITY.

V$AQ_BACKGROUND_COORDINATOR: Performance Statistics
for AQ's Primary Background Coordinator Process (AQPC)

The V$AQ_BACKGROUND_COORDINATOR view is applicable for Oracle Database 12c Release 1
(12.1) onwards.

This view lists performance statistics for the Oracle Database Advanced Queuing primary
background coordinator process (AQPC).

See Also

Oracle Database Reference for more information about
V$AQ_BACKGROUND_COORDINATOR.

Chapter 9
V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 23

V$AQ_JOB_COORDINATOR: Performance Statistics per
Coordinator

The V$AQ_JOB_COORDINATOR view is applicable for Oracle Database 12c Release 1 (12.1)
onwards.

This view lists performance statistics per coordinator, for every AQ coordinator controlled by
the AQ's primary coordinator.

See Also:

Oracle Database Reference for more information about V$AQ_JOB_COORDINATOR.

V$AQ_SERVER_POOL: Performance Statistics for all Servers
The V$AQ_SERVER_POOL view is applicable for Oracle Database 12c Release 1 (12.1) onwards.
This view lists performance statistics for all the servers in the pool.

See Also:

Oracle Database Reference for more information about V$AQ_SERVER_POOL.

V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs
Description

The V$AQ_CROSS_INSTANCE_JOBS view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view describes each of the cross process jobs.

Each job serves for forwarding messages for a shard from source instance to destination
instance for a set of subscribers.

See Also:

Oracle Database Reference for more information about V$AQ_CROSS_INSTANCE_JOBS.

Chapter 9
V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 23

V$AQ_IPC_ACTIVE_MSGS
V$AQ_IPC_ACTIVE_MSGS displays information about long and priority messages being processed
by secondary processes and the short message being processed by the primary process.

See Also

Oracle Database Reference for more information about V$AQ_IPC_ACTIVE_MSGS.

V$AQ_IPC_MSG_STATS
V$AQ_IPC_MSG_STATS displays cumulative statistics for each message class, for example.,
cumulative calls, average pending/processing time, and last failure.

See Also

Oracle Database Reference for more information about V$AQ_IPC_MSG_STATS.

V$AQ_IPC_PENDING_MSGS
V$AQ_IPC_PENDING_MSGS displays information about pending messages, present in the
local primary context.

See Also

Oracle Database Reference for more information about V$AQ_IPC_PENDING_MSGS.

V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations
The V$AQ_NONDUR_REGISTRATIONS view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view provides information about non-durable subscriptions.

See Also:

Oracle Database Reference for more information about V$AQ_NONDUR_REGISTRATIONS.

Chapter 9
V$AQ_IPC_ACTIVE_MSGS

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 23

V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client
Connections

The V$AQ_NOTIFICATION_CLIENTS view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view displays performance statistics for secure OCI client connections.

See Also:

Oracle Database Reference for more information about V$AQ_NOTIFICATION_CLIENTS.

V$AQ_SUBSCRIBER_LOAD: Durable Subscribers
The V$AQ_SUBSCRIBER_LOAD view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view describes the load of all subscribers of sharded queues in terms of latency
at every instance in an Oracle RAC environment.

Latency denotes the predicted amount of time (in seconds) required from the current time to
drain all the messages for that subscriber at each respective instance. The latency calculation
considers past enqueue/dequeue rates and future enqueue/dequeue rates based on history.

See Also:

Oracle Database Reference for more information about V$AQ_SUBSCRIBER_LOAD.

V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers
The V$AQ_NONDUR_SUBSCRIBER view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. V$AQ_NONDUR_SUBSCRIBER provides information about non-durable subscribers on
sharded queues.

See Also:

Oracle Database Reference for more information about V$AQ_NONDUR_SUBSCRIBER.

Chapter 9
V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 23

V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable
Subscriber

The V$AQ_NONDUR_SUBSCRIBER_LWM view is applicable for Oracle Database 12c Release 1
(12.1) onwards. The LWM of a non durable subscriber is a combination of shard, priority and
LWM (sub-shard).

See Also:

Oracle Database Reference for more information about
V$AQ_NONDUR_SUBSCRIBER_LWM.

V$AQ_MESSAGE_CACHE: Performance Statistics
The V$AQ_MESSAGE_CACHE view provides performance statistics of the message cache for
sharded queues at the subshard level in the instance.

See Also:

Oracle Database Reference for more information about V$AQ_MESSAGE_CACHE.

Chapter 9
V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 23

10
Troubleshooting Oracle Database Advanced
Queuing

These topics describe how to troubleshoot Oracle Database Advanced Queuing (AQ).

• Debugging Oracle Database Advanced Queuing Propagation Problems

• Oracle Database Advanced Queuing Error Messages

Debugging Oracle Database Advanced Queuing Propagation
Problems

These tips should help with debugging propagation problems. This discussion assumes that
you have created queue tables and queues in source and target databases and defined a
database link for the destination database.

The notation assumes that you supply the actual name of the entity (without the brackets).

See Also

"Optimizing Propagation"

To begin debugging, do the following:

1. Check that the propagation schedule has been created and that a job queue process has
been assigned.

Look for the entry in the DBA_QUEUE_SCHEDULES view and make sure that the status of the
schedule is enabled. SCHEDULE_DISABLED must be set to 'N'. Check that it has a nonzero
entry for JOBNO in table AQ$_SCHEDULES, and that there is an entry in table JOB$ with that
JOBNO.

To check if propagation is occurring, monitor the DBA_QUEUE_SCHEDULES view for the
number of messages propagated (TOTAL_NUMBER).

If propagation is not occurring, check the view for any errors. Also check the
NEXT_RUN_DATE and NEXT_RUN_TIME in DBA_QUEUE_SCHEDULES to see if propagation is
scheduled for a later time, perhaps due to errors or the way it is set up.

2. Check if the database link to the destination database has been set up properly. Make sure
that the queue owner can use the database link. You can do this with:

select count(*) from table_name@dblink_name;

3. Make sure that at least two job queue processes are running.

4. Check for messages in the source queue with:

select count (*) from AQ$<source_queue_table>
 where q_name = 'source_queue_name';

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 3

5. Check for messages in the destination queue with:

select count (*) from AQ$<destination_queue_table>
 where q_name = 'destination_queue_name';

6. Check to see who is using job queue processes.

Check which jobs are being run by querying dba_jobs_running. It is possible that other
jobs are starving the propagation jobs.

7. Check to see that the queue table sys.aq$_prop_table_instno exists in
DBA_QUEUE_TABLES. The queue sys.aq$_prop_notify_queue_instno must also exist in
DBA_QUEUES and must be enabled for enqueue and dequeue.

In case of Oracle Real Application Clusters (Oracle RAC), this queue table and queue pair
must exist for each Oracle RAC node in the system. They are used for communication
between job queue processes and are automatically created.

8. Check that the consumer attempting to dequeue a message from the destination queue is
a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq_txn_id, deq_time, deq_user_id,
 propagated_msgid from aq$<destination_queue_table>
 where queue = 'queue_name';

For 8.0-style queues, you can obtain the same information from the history column of the
queue table:

select h.consumer, h.transaction_id, h.deq_time, h.deq_user,
 h.propagated_msgid from aq$<destination_queue_table> t, table(t.history) h
 where t.q_name = 'queue_name';

Note

Queues created in a queue table with compatible set to 8.0 (referrred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing
10g Release 2 (10.2). Oracle recommends that any new queues you create be
8.1-style or newer and that you migrate existing 8.0-style queues at your earliest
convenience.

9. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information is logged to job queue trace files as propagation takes place. You
can check the trace file for errors and for statements indicating that messages have been
sent.

Oracle Database Advanced Queuing Error Messages
The Oracle Database Advanced Queuing Error Messages are listed here.

ORA-1555

You might get this error when using the NEXT_MESSAGE navigation option for dequeue.
NEXT_MESSAGE uses the snapshot created during the first dequeue call. After that, undo
information may not be retained.

The workaround is to use the FIRST_MESSAGE option to dequeue the message. This reexecutes
the cursor and gets a new snapshot. FIRST_MESSAGE does not perform as well as

Chapter 10
Oracle Database Advanced Queuing Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 3

NEXT_MESSAGE, so Oracle recommends that you dequeue messages in batches: FIRST_MESSAGE
for one, NEXT_MESSAGE for the next 1000 messages, then FIRST_MESSAGE again, and so on.

ORA-24033

This error is raised if a message is enqueued to a multiconsumer queue with no recipient and
the queue has no subscribers (or rule-based subscribers that match this message). This is a
warning that the message will be discarded because there are no recipients or subscribers to
whom it can be delivered.

ORA-25237

When using the Oracle Database Advanced Queuing navigation option, you must reset the
dequeue position by using the FIRST_MESSAGE option if you want to continue dequeuing
between services (such as xa_start and xa_end boundaries). This is because XA cancels the
cursor fetch state after an xa_end. If you do not reset, then you get an error message stating
that the navigation is used out of sequence.

ORA-25307

Flow control has been enabled for the message sender. This means that the fastest subscriber
of the sender's message is not able to keep pace with the rate at which messages are
enqueued. The buffered messaging application must handle this error and attempt again to
enqueue messages after waiting for some time.

Chapter 10
Oracle Database Advanced Queuing Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 3

11
Internet Access to Oracle Database Advanced
Queuing

You can access Oracle Database Advanced Queuing (AQ) over the Internet by using SOAP
with AQ queues. IDAP is the SOAP specification for Oracle Database Advanced Queuing
operations.

IDAP defines XML message structure for the body of the Simple Object Access Protocol
(SOAP) request. An Internet Data Access Presentation (IDAP)-structured message is
transmitted over the Internet using HTTP.

Users can register for notifications using the IDAP interface.

Topics:

• Overview of Oracle Database Advanced Queuing Operations Over the Internet

• Deploying the Oracle Database Advanced Queuing XML Servlet

• Internet Data Access Presentation (IDAP)

• Request and Response IDAP Documents

• Notification of Messages by E-Mail

Overview of Oracle Database Advanced Queuing Operations
Over the Internet

The section discusses these topics.

• Oracle Database Advanced Queuing Internet Operations Architecture

• Internet Message Payloads

• Configuring the Web Server to Authenticate Users Sending POST Requests

• Client Requests Using HTTP

• Oracle Database Advanced Queuing Servlet Responses Using HTTP

• Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS

Oracle Database Advanced Queuing Internet Operations Architecture
The figure shows the architecture for performing Oracle Database Advanced Queuing
operations over HTTP.

The major components are:

• Oracle Database Advanced Queuing client program

• Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet

• Oracle Database server

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 15

A Web browser or any other HTTP client can serve as an Oracle Database Advanced Queuing
client program, sending XML messages conforming to IDAP to the Oracle Database Advanced
Queuing servlet, which interprets the incoming XML messages. The Oracle Database
Advanced Queuing servlet connects to the Oracle Database server and performs operations
on user queues.

Figure 11-1 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

AQ

Queue

Web

Server

AQ Client

Oracle �

Database�

Server

AQ Servlet

XML Message

over HTTP

Internet Message Payloads
Oracle Database Advanced Queuing supports messages of three types: RAW, Oracle object,
and JMS. All these message types can be accessed using SOAP and Web services.

If the queue holds messages in RAW, Oracle object, or Java Message Service (JMS) format,
then XML payloads are transformed to the appropriate internal format during enqueue and
stored in the queue. During dequeue, when messages are obtained from queues containing
messages in any of the preceding formats, they are converted to XML before being sent to the
client.

The message payload type depends on the queue type on which the operation is being
performed:

RAW Queues

The contents of RAW queues are raw bytes. You must supply the hex representation of the
message payload in the XML message. For example, <raw>023f4523</raw>.

Oracle Object Type Queues

For Oracle object type queues that are not JMS queues (that is, they are not type AQ$_JMS_*),
the type of the payload depends on the type specified while creating the queue table that holds
the queue. The content of the XML elements must map to the attributes of the object type of
the queue table.

JMS Type Queues/Topics

For queues with JMS types (that is, those with payloads of type AQ$_JMS_*), there are four
XML elements, depending on the JMS type. IDAP supports queues or topics with the following
JMS types:

• TextMessage

• MapMessage

• BytesMessage

Chapter 11
Overview of Oracle Database Advanced Queuing Operations Over the Internet

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 15

• ObjectMessage

JMS queues with payload type StreamMessage are not supported through IDAP.

Configuring the Web Server to Authenticate Users Sending POST Requests
After the servlet is installed, the Web server must be configured to authenticate all users that
send POST requests to the Oracle Database Advanced Queuing servlet. The Oracle Database
Advanced Queuing servlet allows only authenticated users to access the servlet. If the user is
not authenticated, then an error is returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the common
techniques are basic authentication (user name/password) over SSL and client certificates.
Consult your Web server documentation to see how you can restrict access to servlets.

In the context of the Oracle Database Advanced Queuing servlet, the user name that is used to
connect to the Web server is known as the Oracle Database Advanced Queuing HTTP agent
or Oracle Database Advanced Queuing Internet user.

Client Requests Using HTTP
An Oracle Database Advanced Queuing client begins a request to the Oracle Database
Advanced Queuing servlet using HTTP by opening a connection to the server. The client logs
in to the server using HTTP basic authentication (with or without SSL) or SSL certificate-based
client authentication. The client constructs an XML message representing the send, publish,
receive or register request.

The client sends an HTTP POST to the servlet at the remote server.

See Also

"Request and Response IDAP Documents"

User Sessions and Transactions

After a client is authenticated and connects to the Oracle Database Advanced Queuing servlet,
an HTTP session is created on behalf of the user. The first request in the session also implicitly
starts a new database transaction. This transaction remains open until it is explicitly committed
or terminated. The responses from the servlet includes the session ID in the HTTP headers as
cookies.

If the client wishes to continue work in the same transaction, then it must include this HTTP
header containing the session ID cookie in subsequent requests. This is automatically
accomplished by most Web browsers. However, if the client is using a Java or C client to post
requests, then this must be accomplished programmatically.

An explicit commit or rollback must be applied to end the transaction. The commit or rollback
requests can also be included as part of other Oracle Database Advanced Queuing operations.

Oracle Database Advanced Queuing Servlet Responses Using HTTP
The server accepts the client HTTP(S) connection and authenticates the user (Oracle
Database Advanced Queuing agent) specified by the client. The server receives the POST
request and invokes the Oracle Database Advanced Queuing servlet.

Chapter 11
Overview of Oracle Database Advanced Queuing Operations Over the Internet

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 15

If this is the first request from this client, then a new HTTP session is created. The XML
message is parsed and its contents are validated. If a session ID is passed by the client in the
HTTP headers, then this operation is performed in the context of that session.

The servlet determines which object (queue/topic) the agent is trying to perform operations on.
The servlet looks through the list of database users that map to this Oracle Database
Advanced Queuing agent. If any one of these users has privileges to access the queue/topic
specified in the request, then the Oracle Database Advanced Queuing servlet superuser
creates a session on behalf of this user.

If no transaction is active in the HTTP session, then a new database transaction is started.
Subsequent requests in the session are part of the same transaction until an explicit COMMIT or
ROLLBACK request is made. The effects of the transaction are visible only after it is committed. If
the transaction remains inactive for 120 seconds, then it is automatically terminated.

The requested operation is performed. The response is formatted as an XML message and
sent back the client. The response also includes the session ID in the HTTP headers as a
cookie.

See Also

"User Sessions and Transactions"

Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS
You can propagate over HTTP and HTTPS (HTTP over SSL) instead of Oracle Net Services.
HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The background process
doing propagation pushes messages to an Oracle Database Advanced Queuing servlet that
enqueues them into the destination database, as shown in the figure.

Figure 11-2 HTTP Oracle Database Advanced Queuing Propagation

Source

Database

Oracle�
Server

Oracle

Server

AQ Queue

Web

Server

Job queue

process

Destination

Database

AQ QueueAQ

Servlet

You can set up any application to use Oracle Database Advanced Queuing HTTP propagation
without any change to the existing code. An application using Oracle Database Advanced
Queuing HTTP propagation can easily switch back to Net Services propagation just by re-
creating the database link with a Net Services connection string, without any other changes.

Deploying the Oracle Database Advanced Queuing XML Servlet
The AQ servlet can be deployed with any Web server, for example, Tomcat. Follow these steps
to deploy the AQ XML servlet using Tomcat:

Chapter 11
Deploying the Oracle Database Advanced Queuing XML Servlet

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 15

1. For JDK1.8.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/lib/ojdbc8.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orai18n.jar
ORACLE_HOME/jlib/orai18n-collation.jar
ORACLE_HOME/jlib/orai18n-mapping.jar
ORACLE_HOME/jlib/orai18n-utility.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar

2. Copy the following jar files into the tomcat/lib directory:

ORACLE_HOME/jdbc/lib/ojdbc8.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar

3. Create or update tomcat-users.xml file appropriately for Web applications users
accessing queues. For example:

User Password

john welcome

4. Set up queues in database and create AQ agents so that Tomcat users created in step 3
get authenticated before it can access AQ queues. DBA needs to make use of
DBMS_AQADM.CREATE_AQ_AGENT and DBMS_AQADM.ENABLE_DB_ACCESS procedures. For
example, if we assume JOHN is the user created in Tomcat and AQXMLUSER is the AQ agent
created on the database, then in order to access AQ servlet using HTTP, run the following
queries:

EXECUTE dbms_aqadm.create_aq_agent(agent_name=>'JOHN', enable_http =>true);
EXECUTE dbms_aqadm.enable_db_access('JOHN', 'AQXMLUSER');

Here AQXMLUSER is the AQ user that is created in the database.

DBA can check internet AQ users agents details using the following query :

SELECT agent_name, db_username, http_enabled FROM aq$internet_users ;

5. Deploy the AQ XML servlet, which extends oracle.AQ.xml.AQxmlServlet class.

6. Start or stop the Tomcat instance as follows:

a. Start the Tomcat instance using sh tomcat/bin/startup.sh

Chapter 11
Deploying the Oracle Database Advanced Queuing XML Servlet

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 15

b. Shutdown the Tomcat instance using sh tomcat/bin/shutdown.sh

c. For logs in Tomcat check tomcat/logs/catalina.out file

Internet Data Access Presentation (IDAP)
Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml to specify the
body of the SOAP request.

XML provides the presentation for IDAP request and response messages as follows:

• All request and response tags are scoped in the SOAP namespace.

• Oracle Database Advanced Queuing operations are scoped in the IDAP namespace.

• The sender includes namespaces in IDAP elements and attributes in the SOAP body.

• The receiver processes SOAP messages that have correct namespaces and returns an
invalid request error for requests with incorrect namespaces.

• The SOAP namespace has the value http://schemas.xmlsoap.org/soap/envelope/

• The IDAP namespace has the value http://ns.oracle.com/AQ/schemas/access

SOAP Message Structure
These topics shows how SOAP structures a message request or response.

• SOAP Envelope

• SOAP Header

• SOAP Body

SOAP Envelope
This is the root or top element in an XML tree. Its tag is SOAP:Envelope. SOAP defines a global
attribute SOAP:encodingStyle that indicates serialization rules used instead of those described
by the SOAP specification.

This attribute can appear on any element and is scoped to that element and all child elements
not themselves containing such an attribute. Omitting this attribute means that type
specification has been followed unless overridden by a parent element.

The SOAP envelope also contains namespace declarations and additional attributes, provided
they are namespace-qualified. Additional namespace-qualified subelements can follow the
body.

SOAP Header
This is the first element under the root. Its tag is SOAP:Header. A SOAP header passes
necessary information, such as the transaction identifier.

The header is encoded as a child of the SOAP:Envelope XML element. Headers are identified
by the name element and are namespace-qualified. A header entry is encoded as an
embedded element.

Chapter 11
Internet Data Access Presentation (IDAP)

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 15

SOAP Body
This is the Oracle Database Advanced Queuing XML document. Its tag is SOAP:Body, and it
contains a first subelement whose name is the method name.

This method request element contains elements for each input and output parameter. The
element names are the parameter names. The body also contains SOAP:Fault, indicating
information about an error. The Oracle Database Advanced Queuing XML document has the
namespace http://ns.oracle.com/AQ/schemas/access

SOAP Method Invocation
A method invocation is performed by creating the request header and body and processing the
returned response header and body. The request and response headers can consist of
standard transport protocol-specific and extended headers.

HTTP Headers
The POST method within the HTTP request header performs the SOAP method invocation. The
request should include the header SOAPMethodName, whose value indicates the method to be
invoked on the target. The value is of the form URI#method name.

For example:

SOAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace qualification of
the method name element in the SOAP:Body part of the payload. The method name must not
include the "#" character.

Method Invocation Body
SOAP method invocation consists of a method request and optionally a method response. The
SOAP method request and method response are an HTTP request and response, respectively,
whose contents are XML documents consisting of the root and mandatory body elements.

These XML documents are referred to as SOAP payloads in the rest of the sections.

A SOAP payload is defined as follows:

• The SOAP root element is the top element in the XML tree.

• The SOAP payload headers contain additional information that must travel with the
request.

• The method request is represented as an XML element with additional elements for
parameters. It is the first child of the SOAP:Body element. This request can be one of the
Oracle Database Advanced Queuing XML client requests described in the next section.

• The response is the return value or an error or exception that is passed back to the client.

At the receiving site, a request can have one of the following outcomes:

• The HTTP infrastructure on the receiving site can receive and process the request. In this
case, the HTTP infrastructure passes the headers and body to the SOAP infrastructure.

• The HTTP infrastructure on the receiving site cannot receive and process the request. In
this case, the result is an HTTP response containing an HTTP error in the status field and
no XML body.

Chapter 11
Internet Data Access Presentation (IDAP)

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 15

• The SOAP infrastructure on the receiving site can decode the input parameters, dispatch
to an appropriate server indicated by the server address, and invoke an application-level
function corresponding semantically to the method indicated in the method request. In this
case, the result of the method request consists of a response or error.

• The SOAP infrastructure on the receiving site cannot decode the input parameters,
dispatch to an appropriate server indicated by the server address, and invoke an
application-level function corresponding semantically to the interface or method indicated
in the method request. In this case, the result of the method is an error that prevented the
dispatching infrastructure on the receiving side from successful completion.

In the last two cases, additional message headers can be present in the results of the request
for extensibility.

Results from a Method Request
The results of the request are to be provided in the form of a request response. The HTTP
response must be of Content-Type text/xml.

A SOAP result indicates success and an error indicates failure. The method response never
contains both a result and an error.

Request and Response IDAP Documents
The body of a SOAP message is an IDAP message. This XML document has the namespace
http://ns.oracle.com/AQ/schemas/access.

The body represents:

• Client requests for enqueue, dequeue, and registration

• Server responses to client requests for enqueue, dequeue, and registration

• Notifications from the server to the client

Note

Oracle Database Advanced Queuing Internet access is supported only for 8.1 or
higher style queues.

Transactional Event Queues (TxEventQ) do not support internet access through
SOAP.

This section contains these topics:

• IDAP Client Requests for Enqueue

• IDAP Client Requests for Dequeue

• IDAP Client Requests for Registration

• IDAP Client Requests to Commit a Transaction

• IDAP Client Requests to Roll Back a Transaction

• IDAP Server Response to an Enqueue Request

• IDAP Server Response to a Dequeue Request

• IDAP Server Response to a Register Request

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 15

• IDAP Commit Response

• IDAP Rollback Response

• IDAP Notification

• IDAP Response in Case of Error

IDAP Client Requests for Enqueue
Client send and publish requests use AQXmlSend to enqueue to a single-consumer queue and
AQXmlPublish to enqueue to multiconsumer queues/topics.

AQXmlSend and AQXmlPublish contain the following elements:

• producer_options

• message_set

• message_header

• message_payload

• AQXmlCommit

producer_options

This is a required element. It contains the following child elements:

• destination

This element is required. It specifies the queue/topic to which messages are to be sent. It
has an optional lookup_type attribute, which determines how the destination value is
interpreted. If lookup_type is DATABASE, which is the default, then the destination is
interpreted as schema.queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

• visibility

This element is optional. It determines when an enqueue becomes visible. The default is
ON_COMMIT, which makes the enqueue visible when the current transaction commits. If
IMMEDIATE is specified, then the effects of the enqueue are visible immediately after the
request is completed. The enqueue is not part of the current transaction. The operation
constitutes a transaction on its own.

• transformation

This element is optional. It specifies the PL/SQL transformation to be invoked before the
message is enqueued.

message_set

This is a required element and contains one or more messages. Each message consists of a
message_header and a message_payload.

message_header

This element is optional. It contains the following child elements:

• sender_id

If a message_header element is included, then it must contain a sender_id element, which
specifies an application-specific identifier. The sender_id element can contain agent_name,

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 15

address, protocol, and agent_alias elements. The agent_alias element resolves to a
name, address, and protocol using LDAP.

• message_id

This element is optional. It is a unique identifier of the message, supplied during dequeue.

• correlation

This element is optional. It is the correlation identifier of the message.

• delay

This element is optional. It specifies the duration in seconds after which a message is
available for processing.

• expiration

This element is optional. It specifies the duration in seconds that a message is available for
dequeuing. This parameter is an offset from the delay. By default messages never expire.
If a message is not dequeued before it expires, then it is moved to an exception queue in
the EXPIRED state.

• priority

This element is optional. It specifies the priority of the message. The priority can be any
number, including negative numbers. A smaller number indicates higher priority.

• recipient_list

This element is optional. It is a list of recipients which overrides the default subscriber list.
Each recipient is represented in recipient_list by a recipient element, which can
contain agent_name, address, protocol, and agent_alias elements. The agent_alias
element resolves to a name, address, and protocol using LDAP.

• message_state

This element is optional. It specifies the state of the message. It is filled in automatically
during dequeue. If message_state is 0, then the message is ready to be processed. If it is
1, then the message delay has not yet been reached. If it is 2, then the message has been
processed and is retained. If it is 3, then the message has been moved to an exception
queue.

• exception_queue

This element is optional. It specifies the name of the queue to which the message is
moved if the number of unsuccessful dequeue attempts has exceeded max_retries or the
message has expired. All messages in the exception queue are in the EXPIRED state.

If the exception queue specified does not exist at the time of the move, then the message
is moved to the default exception queue associated with the queue table, and a warning is
logged in the alert log. If the default exception queue is used, then the parameter returns a
NULL value at dequeue time.

message_payload

This is a required element. It can contain different elements based on the payload type of the
destination queue/topic. The different payload types are described in "IDAP Client Requests for
Dequeue".

AQXmlCommit

This is an optional empty element. If it is included, then the transaction is committed at the end
of the request.

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 15

See Also

"Internet Message Payloads" for an explanation of IDAP message payloads

IDAP Client Requests for Dequeue
Client requests for dequeue use AQXmlReceive, which contains these elements.

• consumer_options

• AQXmlCommit

consumer_options

This is a required element. It contains the following child elements:

• destination

This element is required. It specifies the queue/topic from which messages are to be
received. The destination element has an optional lookup_type attribute, which
determines how the destination value is interpreted. If lookup_type is DATABASE, which is
the default, then the destination is interpreted as schema.queue_name. If lookup_type is
LDAP, then the LDAP server is used to resolve the destination.

• consumer_name

This element is optional. It specifies the name of the consumer. Only those messages
matching the consumer name are accessed. If a queue is not set up for multiple
consumers, then this field should not be specified.

• wait_time

This element is optional. It specifies the number of seconds to wait if there is no message
currently available which matches the search criteria.

• selector

This element is optional. It specifies criteria used to select the message. It can contain
child elements correlation, message_id, or condition.

A dequeue condition element is a Boolean expression using syntax similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message
properties, user object payload data properties, and PL/SQL or SQL functions. Message
properties include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload, use attributes of the object type in
clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the
specific column of the queue table that stores the payload.

A dequeue condition element cannot exceed 4000 characters.

Note

When a dequeue condition or correlation identifier is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

• visibility

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 15

This element is optional. It determines when a dequeue becomes visible. The default is
ON_COMMIT, which makes the dequeue visible when the current transaction commits. If
IMMEDIATE is specified, then the effects of the dequeue are visible immediately after the
request is completed. The dequeue is not part of the current transaction. The operation
constitutes a transaction on its own.

• dequeue_mode

This element is optional. It specifies the locking action associated with the dequeue. The
possible values are REMOVE, BROWSE, and LOCKED.

REMOVE is the default and causes the message to be read and deleted. The message can
be retained in the queue table based on the retention properties. BROWSE reads the
message without acquiring any lock on it. This is equivalent to a select statement. LOCKED
reads the message and obtains a write lock on it. The lock lasts for the duration of the
transaction. This is equivalent to a select for update statement.

• navigation_mode

This element is optional. It specifies the position of the message that is retrieved. First, the
position is determined. Second, the search criterion is applied. Finally, the message is
retrieved. Possible values are FIRST_MESSAGE, NEXT_MESSAGE, and NEXT_TRANSACTION.

FIRST_MESSAGE retrieves the first message which is available and which matches the
search criteria. This resets the position to the beginning of the queue. NEXT_MESSAGE is the
default and retrieves the next message which is available and which matches the search
criteria. If the previous message belongs to a message group, then Oracle Database
Advanced Queuing retrieves the next available message which matches the search criteria
and which belongs to the message group.NEXT_TRANSACTION skips the remainder of the
current transaction group and retrieves the first message of the next transaction group.
This option can only be used if message grouping is enabled for the current queue.

• transformation

This element is optional. It specifies the PL/SQL transformation to be invoked after the
message is dequeued.

AQXmlCommit

This is an optional empty element. If it is included, then the transaction is committed at the end
of the request.

IDAP Client Requests for Registration
Client requests for registration use AQXmlRegister, which must contain a register_options
element. The register_options element contains these child elements.

• destination

This element is required. It specifies the queue/topic on which notifications are registered.
The destination element has an optional lookup_type attribute, which determines how
the destination value is interpreted. If lookup_type is DATABASE, which is the default, then
the destination is interpreted as schema.queue_name. If lookup_type is LDAP, then the
LDAP server is used to resolve the destination.

• consumer_name

This element is optional. It specifies the consumer name for multiconsumer queues or
topics. This parameter must not be specified for single-consumer queues.

• notify_url

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 15

This element is required. It specifies where notification is sent when a message is
enqueued. The form can be http://url, mailto://email address or plsql://pl/sql
procedure.

IDAP Client Requests to Commit a Transaction
A request to commit all actions performed by the user in a session uses AQXmlCommit.

A commit request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>
 </Body>
</Envelope>

IDAP Client Requests to Roll Back a Transaction
A request to roll back all actions performed by the user in a session uses AQXmlRollback.
Actions performed with IMMEDIATE visibility are not rolled back.

An IDAP client rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>
 </Body>
</Envelope>

IDAP Server Response to an Enqueue Request
The response to an enqueue request to a single-consumer queue uses AQXmlSendResponse.

It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and error_message. The
status_code element takes value 0 for success or -1 for failure. The error_code element
contains an Oracle error code. The error_message element contains a description of the
error.

• send_result

This element contains child elements destination and message_id. The destination
element specifies where the message was sent. The message_id element uniquely
identifies every message sent.

The response to an enqueue request to a multiconsumer queue or topic uses
AQXmlPublishResponse. It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and error_message. The
status_code element takes value 0 for success or -1 for failure. The error_code element
contains an Oracle error code. The error_message element contains a description of the
error.

• publish_result

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 15

This element contains child elements destination and message_id. The destination
element specifies where the message was sent. The message_id element uniquely
identifies every message sent.

IDAP Server Response to a Dequeue Request
The response to a dequeue request uses AQXmlReceiveResponse.

It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and error_message. The
status_code element takes value 0 for success or -1 for failure. The error_code element
contains an Oracle error code. The error_message element contains a description of the
error.

• receive_result

This element contains child elements destination and message_set. The destination
element specifies where the message was sent. The message_set element specifies the
set of messages dequeued.

IDAP Server Response to a Register Request
The response to a register request uses AQXmlRegisterResponse.

It contains the status_response element described in "IDAP Server Response to a Dequeue
Request".

IDAP Commit Response
The response to a commit request uses AQXmlCommitResponse.

It contains the status_response element described in "IDAP Server Response to a Dequeue
Request". The response to a commit request has the following format:

<?xml version = '1.0'?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
 <status_response>
 <status_code>0</status_code>
 </status_response>
 </AQXmlCommitResponse>
 </Body>
</Envelope>

IDAP Rollback Response
The response to a rollback request uses AQXmlRollbackResponse.

It contains the status_response element described in "IDAP Server Response to a Dequeue
Request".

Chapter 11
Request and Response IDAP Documents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 15

IDAP Notification
When an event for which a client has registered occurs, a notification is sent to the client at the
URL specified in the REGISTER request using AQXmlNotification.

It contains the following elements:

• notification_options

This element has child elements destination and consumer_name. The destination
element specifies the destination queue/topic on which the event occurred. The
consumer_name element specifies the consumer name for which the even occurred. It
applies only to multiconsumer queues/topics.

• message_set

This element specifies the set of message properties.

IDAP Response in Case of Error
In case of an error in any of the preceding requests, a FAULT is generated.

The FAULT element contains the following elements:

• faultcode

This element specifies the error code for the fault.

• faultstring

This element indicates a client error or a server error. A client error means that the request
is not valid. A server error indicates that the Oracle Database Advanced Queuing servlet
has not been set up correctly.

• detail

This element contains the status_response element, which is described in "IDAP Server
Response to a Dequeue Request".

Notification of Messages by E-Mail
These are the steps for setting up your database for e-mail notifications.

1. Set the SMTP mail host by invoking DBMS_AQELM.SET_MAILHOST as an Oracle Database
Advanced Queuing administrator.

2. Set the SMTP mail port by invoking DBMS_AQELM.SET_MAILPORT as an Oracle Database
Advanced Queuing administrator. If not explicit, set defaults to 25.

3. Set the SendFrom address by invoking DBMS_AQELM.SET_SENDFROM.

4. After setup, you can register for e-mail notifications using the Oracle Call Interface (OCI) or
PL/SQL API.

Chapter 11
Notification of Messages by E-Mail

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 15

12
Oracle Database Advanced Queuing
Administrative Interface

These topics describe the Oracle Database Advanced Queuing (AQ) administrative interface.

• Managing AQ Queue Tables

• Managing AQ Queues

• Managing Sharded Queues

• Managing Transformations

• Granting and Revoking Privileges

• Managing Subscribers

• Managing Propagations

• Managing Oracle Database Advanced Queuing Agents

• Adding an Alias to the LDAP Server

• Deleting an Alias from the LDAP Server

See Also

• Oracle Transactional Event Queues and Advanced Queuing: Programmatic
Interfaces for a list of available functions in each programmatic interface

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_AQADM Package

Managing AQ Queue Tables
These topics describe how to manage AQ queue tables.

• Creating a Queue Table

• Altering a Queue Table

• Dropping a Queue Table

• Purging a Queue Table

• Migrating a Queue Table

Creating an AQ Queue Table
DBMS_AQADM.CREATE_QUEUE_TABLE creates an AQ queue table for messages of a predefined
type.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 32

 queue_payload_type IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE
 replication_mode IN BINARY_INTEGER DEFAULT NONE);

It has the following required and optional parameters:

Parameter Description

queue_table This required parameter specifies the queue table
name.

Mixed case (upper and lower case together) queue
table names are supported if database
compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc.efg
means the schema is ABC and the name is EFG, but
"abc"."efg" means the schema is abc and the
name is efg.

Starting from 12c Release 2 (12.2.), the maximum
length of AQ queue table names is 122 bytes. If
you attempt to create a queue table with a longer
name, error ORA-24019 results.

queue_payload_type This required parameter specifies the payload type
as RAW or an object type. See "Payload Type" for
more information.

storage_clause This optional parameter specifies a tablespace for
the queue table. See "Storage Clause" for more
information.

sort_list This optional parameter specifies one or two
columns to be used as sort keys in ascending
order. It has the format
sort_column1,sort_column2. See "Sort Key"
for more information.

multiple_consumers This optional parameter specifies the queue table
as single-consumer or multiconsumer. The default
FALSE means queues created in the table can have
only one consumer for each message. TRUE means
queues created in the table can have multiple
consumers for each message.

message_grouping This optional parameter specifies whether
messages are grouped or not. The default NONE
means each message is treated individually.
TRANSACTIONAL means all messages enqueued in
one transaction are considered part of the same
group and can be dequeued as a group of related
messages.

comment This optional parameter is a user-specified
description of the queue table. This user comment
is added to the queue catalog.

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 32

Parameter Description

auto_commit TRUE causes the current transaction, if any, to
commit before the CREATE_QUEUE_TABLE
operation is carried out. The
CREATE_QUEUE_TABLE operation becomes
persistent when the call returns. This is the default.
FALSE means the operation is part of the current
transaction and becomes persistent only when the
caller enters a commit.

Note: This parameter has been deprecated.

primary_instance This optional parameter specifies the primary
owner of the queue table. Queue monitor
scheduling and propagation for the queues in the
queue table are done in this instance. The default
value 0 means queue monitor scheduling and
propagation is done in any available instance.

You can specify and modify this parameter only if
compatible is 8.1 or higher.

secondary_instance This optional parameter specifies the owner of the
queue table if the primary instance is not available.
The default value 0 means that the queue table will
fail over to any available instance.

You can specify and modify this parameter only if
primary_instance is also specified and
compatible is 8.1 or higher.

compatible This optional parameter specifies the lowest
database version with which the queue table is
compatible. The possible values are 8.0, 8.1, and
10.0. If the database is in 10.1-compatible mode,
then the default value is 10.0. If the database is in
8.1-compatible or 9.2-compatible mode, then the
default value is 8.1. If the database is in 8.0-
compatible mode, then the default value is 8.0.
The 8.0 value is deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

For more information on compatibility, see "Oracle
Database Advanced Queuing Compatibility
Parameters".

secure This optional parameter must be set to TRUE if you
want to use the queue table for secure queues.
Secure queues are queues for which AQ agents
must be associated explicitly with one or more
database users who can perform queue
operations, such as enqueue and dequeue. The
owner of a secure queue can perform all queue
operations on the queue, but other users cannot
unless they are configured as secure queue users

replication_mode Reserved for future use.
DBMS_AQADM.REPLICATION_MODE if queue is
being created in the Replication Mode or else
DBMS_AQADM.NONE. Default is DBMS_AQADM.NONE.

Payload Type

To specify the payload type as an object type, you must define the object type.

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 32

Note

If you have created synonyms on object types, then you cannot use them in
DBMS_AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

CLOB, BLOB, and BFILE objects are valid in an Oracle Database Advanced Queuing
message. You can propagate these object types using Oracle Database Advanced Queuing
propagation with Oracle software since Oracle8i release 8.1.x. To enqueue an object type that
has a LOB, you must first set the LOB_attribute to EMPTY_BLOB() and perform the enqueue.
You can then select the LOB locator that was generated from the queue table's view and use
the standard LOB operations.

Note

Payloads containing LOBs require users to grant explicit Select, Insert and Update
privileges on the queue table for doing enqueues and dequeues.

Storage Clause

The storage_clause argument can take any text that can be used in a standard CREATE TABLE
storage_clause argument.

Once you pick the tablespace, any index-organized table (IOT) or index created for that queue
table goes to the specified tablespace. You do not currently have a choice to split them
between different tablespaces.

Note

The qmon processes in the 11g Release 2 (11.2) perform auto-coalesce of the the
dequeue IOT, history IOT, and the time manager IOT. It is not required to manually
coalesce AQ IOTs. However, it can be performed as a workaround if a performance
degradation is observed.

If you choose to create the queue table in a locally managed tablespace or with freelist
groups > 1, then Queue Monitor Coordinator will skip the cleanup of those blocks. This
can cause a decline in performance over time.

Coalesce the dequeue IOT by running

ALTER TABLE AQ$_queue_table_I COALESCE;

You can run this command while there are concurrent dequeuers and enqueuers of
the queue, but these concurrent users might see a slight decline in performance while
the command is running.

Sort Key

The sort_list parameter determines the order in which messages are dequeued. You cannot
change the message sort order after you have created the queue table. Your choices are:

• ENQ_TIME

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 32

• ENQ_TIME,PRIORITY

• PRIORITY

• PRIORITY,ENQ_TIME

• PRIORITY,COMMIT_TIME

• COMMIT_TIME

If COMMIT_TIME is specified, then any queue that uses the queue table is a commit-time queue,
and Oracle Database Advanced Queuing computes an approximate CSCN for each enqueued
message when its transaction commits.

If you specify COMMIT_TIME as the sort key, then you must also specify the following:

• multiple_consumers = TRUE

• message_grouping = TRANSACTIONAL

• compatible = 8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when browsing the
messages in a queue must yield consistent results.

Other Tables and Views

The following objects are created at table creation time:

• AQ$_queue_table_name, a read-only view which is used by Oracle Database Advanced
Queuing applications for querying queue data

• AQ$_queue_table_name_E, the default exception queue associated with the queue table

• AQ$_queue_table_name_I, an index or an index-organized table (IOT) in the case of
multiple consumer queues for dequeue operations

• AQ$_queue_table_name_T, an index for the queue monitor operations

• AQ$_queue_table_name_L, dequeue log table, used for storing message identifiers of
committed dequeue operations on the queue

The following objects are created only for 8.1-compatible multiconsumer queue tables:

• AQ$_queue_table_name_S, a table for storing information about subscribers

• AQ$_queue_table_name_H, an index organized table (IOT) for storing dequeue history data

Note

Oracle Database Advanced Queuing does not support the use of triggers on these
internal AQ queue tables.

If you do not specify a schema, then you default to the user's schema.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, then a corresponding
Lightweight Directory Access Protocol (LDAP) entry is also created.

If the queue type is ANYDATA, then a buffered queue and two additional objects are created.
The buffered queue stores logical change records created by a capture process. The logical
change records are staged in a memory buffer associated with the queue; they are not
ordinarily written to disk.

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 32

If they have been staged in the buffer for a period of time without being dequeued, or if there is
not enough space in memory to hold all of the captured events, then they are spilled to:

• AQ$_queue_table_name_P, a table for storing the captured events that spill from memory

• AQ$_queue_table_name_D, a table for storing information about the propagations and apply
processes that are eligible for processing each event

See Also

• "Dequeue Modes"

• Oracle Database SecureFiles and Large Objects Developer's Guide

Examples

The following examples assume you are in a SQL*Plus testing environment. In Example 12-1,
you create users in preparation for the other examples in this chapter. For this example, you
must connect as a user with administrative privileges. For most of the other examples in this
chapter, you can connect as user test_adm. A few examples must be run as test with EXECUTE
privileges on DBMS_AQADM.

Example 12-1 Setting Up AQ Administrative Users

CREATE USER test_adm IDENTIFIED BY test_adm DEFAULT TABLESPACE example;
GRANT DBA, CREATE ANY TYPE TO test_adm;
GRANT EXECUTE ON DBMS_AQADM TO test_adm;
GRANT aq_administrator_role TO test_adm;
BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'MANAGE_ANY',
 grantee => 'test_adm',
 admin_option => FALSE);
END;
/
CREATE USER test IDENTIFIED BY test;
GRANT EXECUTE ON dbms_aq TO test;

Example 12-2 Setting Up AQ Administrative Example Types

CREATE TYPE test.message_typ AS object(
 sender_id NUMBER,
 subject VARCHAR2(30),
 text VARCHAR2(1000));
/
CREATE TYPE test.msg_table AS TABLE OF test.message_typ;
/
CREATE TYPE test.order_typ AS object(
 custno NUMBER,
 item VARCHAR2(30),
 description VARCHAR2(1000));
/
CREATE TYPE test.lob_typ AS object(
 id NUMBER,
 subject VARCHAR2(100),
 data BLOB,
 trailer NUMBER);
/

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 32

Example 12-3 Creating a Queue Table for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 queue_payload_type => 'test.message_typ');
END;
/

Example 12-4 Creating a Queue Table for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 queue_payload_type => 'RAW');
END;
/

Example 12-5 Creating a Queue Table for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.lob_qtab',
 queue_payload_type => 'test.lob_typ');
END;
/

Example 12-6 Creating a Queue Table for Messages of XMLType

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.xml_qtab',
 queue_payload_type => 'SYS.XMLType',
 multiple_consumers => TRUE,
 compatible => '8.1',
 comment => 'Overseas Shipping multiconsumer orders queue table');
END;
/

Example 12-7 Creating a Queue Table for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.group_qtab',
 queue_payload_type => 'test.message_typ',
 message_grouping => DBMS_AQADM.TRANSACTIONAL);
END;
/

Example 12-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.priority_qtab',
 queue_payload_type => 'test.order_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 32

END;
/

Example 12-9 Creating a Queue Table with Commit-Time Ordering

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.commit_time_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'COMMIT_TIME',
 multiple_consumers => TRUE,
 message_grouping => DBMS_AQADM.TRANSACTIONAL,
 compatible => '10.0');
END;
/

Example 12-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 queue_payload_type => 'test.message_typ',
 multiple_consumers => TRUE,
 compatible => '8.1');
END;
/

Example 12-11 Creating a Queue Table in a Specified Tablespace

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.example_qtab',
 queue_payload_type => 'test.message_typ',
 storage_clause => 'tablespace example');
END;
/

Example 12-12 Creating a Queue Table with Freelists or Freelist Groups

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.freelist_qtab',
 queue_payload_type => 'RAW',
 storage_clause => 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
 compatible => '8.1');
END;
/

Altering an AQ Queue Table
DBMS_AQADM.ALTER_QUEUE_TABLE alters the existing properties of an AQ queue table.

DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL
 replication_mode IN BINARY_INTEGER DEFAULT NULL);

Parameter Description

queue_table This required parameter specifies the queue table name.

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 32

Parameter Description

comment This optional parameter is a user-specified description of the queue table.
This user comment is added to the queue catalog.

primary_instance This optional parameter specifies the primary owner of the queue table.
Queue monitor scheduling and propagation for the queues in the queue
table are done in this instance.

You can specify and modify this parameter only if compatible is 8.1 or
higher.

secondary_instance This optional parameter specifies the owner of the queue table if the
primary instance is not available.

You can specify and modify this parameter only if primary_instance is
also specified and compatible is 8.1 or higher.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if Queue is
being altered to be in the Replication Mode or else DBMS_AQADM.NONE.
Default value is NULL.

Note

In general, DDL statements are not supported on queue tables and may even render
them inoperable. For example, issuing an ALTER TABLE ... SHRINK statement against a
queue table results in an internal error, and all subsequent attempts to use the queue
table will also result in errors. Oracle recommends that you not use DDL statements
on queue tables.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is modified, then a corresponding LDAP
entry is also altered.

Example 12-13 Altering a Queue Table by Changing the Primary and Secondary
Instances

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 primary_instance => 3,
 secondary_instance => 2);
END;
/

Example 12-14 Altering a Queue Table by Changing the Comment

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 comment => 'revised usage for queue table');
END;
/

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 32

Dropping an AQ Queue Table
DBMS_AQADM.DROP_QUEUE_TABLE drops an existing AQ queue table.

DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,

You must stop and drop all the queues in a queue table before the queue table can be
dropped. You must do this explicitly if force is set to FALSE. If force is set to TRUE, then all
queues in the queue table and their associated propagation schedules are dropped
automatically.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is dropped, then a corresponding LDAP
entry is also dropped.

Example 12-15 Dropping a Queue Table

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.obj_qtab');
END;
/

Example 12-16 Dropping a Queue Table with force Option

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 force => TRUE);
END;
/

Purging an AQ Queue Table
DBMS_AQADM.PURGE_QUEUE_TABLE purges messages from an AQ queue table.

DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

It has the following parameters:

Parameter Description

queue_table This required parameter specifies the queue table name.

purge_condition The purge condition must be in the format of a SQL WHERE clause, and it is
case-sensitive. The condition is based on the columns of
aq$queue_table_name view. Each column name in the purge condition
must be prefixed with "qtview."

All purge conditions supported for persistent messages are also supported
for buffered messages.

To purge all queues in a queue table, set purge_condition to either
NULL (a bare null word, no quotes) or '' (two single quotes).

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 32

Parameter Description

purge_options Type aq$_purge_options_t contains a block parameter. If block is
TRUE, then an exclusive lock on all the queues in the queue table is held
while purging the queue table. This will cause concurrent enqueuers and
dequeuers to block while the queue table is purged. The purge call always
succeeds if block is TRUE. The default for block is FALSE. This will not
block enqueuers and dequeuers, but it can cause the purge to fail with an
error during high concurrency times.

Type aq$_purge_options_t also contains a delivery_mode parameter.
If it is the default PERSISTENT, then only persistent messages are purged.
If it is set to BUFFERED, then only buffered messages are purged. If it is set
to PERSISTENT_OR_BUFFERED, then both types are purged.

A trace file is generated in the udump destination when you run this procedure. It details what
the procedure is doing. The procedure commits after it has processed all the messages.

See Also

"DBMS_AQADM" in Oracle Database PL/SQL Packages and Types Reference for
more information on DBMS_AQADM.PURGE_QUEUE_TABLE

Note

Some purge conditions, such as consumer_name in Example 12-20 and sender_name
in Example 12-21, are supported only in 8.1-compatible queue tables. For more
information, see Table 9-1.

Example 12-17 Purging All Messages in a Queue Table

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := FALSE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => NULL,
 purge_options => po);
END;
/

Example 12-18 Purging All Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 32

Example 12-19 Purging All PROCESSED Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''
 and qtview.msg_state = ''PROCESSED''',
 purge_options => po);
END;
/

Example 12-20 Purging All Messages in a Named Queue and for a Named Consumer

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.queue = ''TEST.MULTICONSUMER_81_QUEUE''
 and qtview.consumer_name = ''PAYROLL_APP''',
 purge_options => po);
END;
/

Example 12-21 Purging All Messages from a Named Sender

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.sender_name = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Migrating an AQ Queue Table
DBMS_AQADM.MIGRATE_QUEUE_TABLE migrates an AQ queue table from 8.0, 8.1, or 10.0 to 8.0,
8.1, or 10.0. Only the owner of the queue table can migrate it.

DBMS_AQADM.MIGRATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

Note

This procedure requires that the EXECUTE privilege on DBMS_AQADM be granted to the
queue table owner, who is probably an ordinary queue user. If you do not want
ordinary queue users to be able to create and drop queues and queue tables, add and
delete subscribers, and so forth, then you must revoke the EXECUTE privilege as soon
as the migration is done.

Chapter 12
Managing AQ Queue Tables

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 32

Note

Queues created in a queue table with compatible set to 8.0 (referred to in this guide
as 8.0-style queues) are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or
newer and that you migrate existing 8.0-style queues at your earliest convenience.

If a schema was created by an import of an export dump from a lower release or has Oracle
Database Advanced Queuing queues upgraded from a lower release, then attempts to drop it
with DROP USER CASCADE will fail with ORA-24005. To drop such schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ$_queue_table_name_NR from the schema.

3. Turn off event 10851.

4. Drop the schema.

Example 12-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible

BEGIN
 DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table => 'test.xml_qtab',
 compatible => '10.0');
END;
/

Managing AQ Queues
These topics describe how to manage AQ queues.

Note

Starting and stopping a TxEventQ queue use the same APIs as AQ queues.

• Creating a Queue

• Altering a Queue

• Starting a Queue

• Stopping a Queue

• Dropping a Queue

Creating an AQ Queue
DBMS_AQADM.CREATE_QUEUE creates an AQ queue.

DBMS_AQADM.CREATE_QUEUE(
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,

Chapter 12
Managing AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 32

 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,

It has the following parameters:

Parameter Description

queue_name This required parameter specifies the name of the new queue.

Mixed case (upper and lower case together) queue names are
supported if database compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc.efg means the schema is ABC
and the name is EFG, but "abc"."efg" means the schema is abc and
the name is efg.

Starting from 12c Release 2 (12.2.), the maximum length of user-
generated queue names is 122 bytes. If you attempt to create a queue
with a longer name, error ORA-24019 results. Queue names generated
by Oracle Database Advanced Queuing, such as those listed in "Other
Tables and Views", cannot be longer than 128 characters.

queue_table This required parameter specifies the queue table in which the queue is
created.

queue_type This parameter specifies what type of queue to create. The default
NORMAL_QUEUE produces a normal queue. EXCEPTION_QUEUE produces
an exception queue.

max_retries This parameter limits the number of times a dequeue with the REMOVE
mode can be attempted on a message. The maximum value of
max_retries is 2**31 -1.

retry_delay This parameter specifies the number of seconds after which this
message is scheduled for processing again after an application rollback.
The default is 0, which means the message can be retried as soon as
possible. This parameter has no effect if max_retries is set to 0.

This parameter is supported for single-consumer queues and 8.1-style
or higher multiconsumer queues but not for 8.0-style multiconsumer
queues, which are deprecated in Oracle Database Advanced Queuing
10g Release 2 (10.2).

retention_time This parameter specifies the number of seconds a message is retained
in the queue table after being dequeued from the queue. When
retention_time expires, messages are removed by the time manager
process. INFINITE means the message is retained forever. The default
is 0, no retention.

dependency_tracking This parameter is reserved for future use. FALSE is the default. TRUE is
not permitted in this release.

comment This optional parameter is a user-specified description of the queue.
This user comment is added to the queue catalog.

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created with
both enqueue and dequeue disabled. To view retained messages, you can either dequeue by
message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE when a queue is created, then a
corresponding LDAP entry is also created.

The following examples (Example 12-23 through Example 12-30) use data structures created
in Example 12-1 through Example 12-12.

Example 12-23 Creating a Queue for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(

Chapter 12
Managing AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 32

 queue_name => 'test.obj_queue',
 queue_table => 'test.obj_qtab');
END;
/

Example 12-24 Creating a Queue for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.raw_queue',
 queue_table => 'test.raw_qtab');
END;
/

Example 12-25 Creating a Queue for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.lob_queue',
 queue_table => 'test.lob_qtab');
END;
/

Example 12-26 Creating a Queue for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.group_queue',
 queue_table => 'test.group_qtab');
END;
/

Example 12-27 Creating a Queue for Prioritized Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.priority_queue',
 queue_table => 'test.priority_qtab');
END;
/

Example 12-28 Creating a Queue for Prioritized Messages and Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.multiconsumer_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Example 12-29 Creating a Queue to Demonstrate Propagation

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.another_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Example 12-30 Creating an 8.1-Style Queue for Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(

Chapter 12
Managing AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 32

 queue_name => 'test.multiconsumer_81_queue',
 queue_table => 'test.multiconsumer_81_qtab');
END;
/

Altering an AQ Queue
DBMS_AQADM.ALTER_QUEUE alters existing properties of an AQ queue.

DBMS_AQADM.ALTER_QUEUE(
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Only max_retries, comment, retry_delay, and retention_time can be altered. To view
retained messages, you can either dequeue by message ID or use SQL. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue is modified, then a corresponding LDAP entry is
also altered.

The following example changes retention time, saving messages for 1 day after dequeuing:

Example 12-31 Altering a Queue by Changing Retention Time

BEGIN
 DBMS_AQADM.ALTER_QUEUE(
 queue_name => 'test.another_queue',
 retention_time => 86400);
END;
/

Starting an AQ Queue
DBMS_AQADM.START_QUEUE enables the specified AQ queue for enqueuing or dequeuing.

DBMS_AQADM.START_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

After creating a queue, the administrator must use START_QUEUE to enable the queue. The
default is to enable it for both enqueue and dequeue. Only dequeue operations are allowed on
an exception queue. This operation takes effect when the call completes and does not have
any transactional characteristics.

Example 12-32 Starting a Queue with Both Enqueue and Dequeue Enabled

BEGIN
 DBMS_AQADM.START_QUEUE (
 queue_name => 'test.obj_queue');
END;
/

Example 12-33 Starting a Queue for Dequeue Only

BEGIN
 DBMS_AQADM.START_QUEUE(
 queue_name => 'test.raw_queue',
 dequeue => TRUE,
 enqueue => FALSE);

Chapter 12
Managing AQ Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 32

END;
/

Stopping an AQ Queue
DBMS_AQADM.STOP_QUEUE disables enqueuing, dequeuing, or both on the specified AQ queue.

DBMS_AQADM.STOP_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

By default, this call disables both enqueue and dequeue. A queue cannot be stopped if there
are outstanding transactions against the queue. This operation takes effect when the call
completes and does not have any transactional characteristics.

Example 12-34 Stopping a Queue

BEGIN
 DBMS_AQADM.STOP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Dropping an AQ Queue
This procedure drops an existing AQ queue. DROP_QUEUE is not allowed unless STOP_QUEUE has
been called to disable the queue for both enqueuing and dequeuing. All the queue data is
deleted as part of the drop operation.

DBMS_AQADM.DROP_QUEUE(
 queue_name IN VARCHAR2,

If GLOBAL_TOPIC_ENABLED = TRUE when a queue is dropped, then a corresponding LDAP entry
is also dropped.

Example 12-35 Dropping a Standard Queue

BEGIN
 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Managing Transformations
Transformations change the format of a message, so that a message created by one
application can be understood by another application. You can use transformations on both
persistent and buffered messages. These topics describe how to manage queue tables.

• Creating a Transformation

• Modifying a Transformation

• Dropping a Transformation

Chapter 12
Managing Transformations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 32

Note

TxEventQ queues do not support transformations.

Creating a Transformation
DBMS_TRANSFORM.CREATE_TRANSFORMATION creates a message format transformation.

DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 from_schema VARCHAR2(30),
 from_type VARCHAR2(30),
 to_schema VARCHAR2(30),
 to_type VARCHAR2(30),
 transformation VARCHAR2(4000));

The transformation must be a SQL function with input type from_type, returning an object of
type to_type. It can also be a SQL expression of type to_type, referring to from_type. All
references to from_type must be of the form source.user_data.

You must be granted EXECUTE privilege on dbms_transform to use this feature. This privilege is
included in the AQ_ADMINISTRATOR_ROLE.

You must also have EXECUTE privilege on the user-defined types that are the source and
destination types of the transformation, and have EXECUTE privileges on any PL/SQL function
being used in the transformation function. The transformation cannot write the database state
(that is, perform DML operations) or commit or rollback the current transaction.

Example 12-36 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'test',
 name => 'message_order_transform',
 from_schema => 'test',
 from_type => 'message_typ',
 to_schema => 'test',
 to_type => 'order_typ',
 transformation => 'test.order_typ(
 source.user_data.sender_id,
 source.user_data.subject,
 source.user_data.text)');
END;
/

See Also

"Oracle Database Advanced Queuing Security" for more information on administrator
and user roles

Chapter 12
Managing Transformations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 32

Modifying a Transformation
DBMS_TRANSFORM.MODIFY_TRANSFORMATION changes the transformation function and specifies
transformations for each attribute of the target type.

DBMS_TRANSFORM.MODIFY_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 attribute_number INTEGER,
 transformation VARCHAR2(4000));

If the attribute number 0 is specified, then the transformation expression singularly defines the
transformation from the source to target types.

All references to from_type must be of the form source.user_data. All references to the
attributes of the source type must be prefixed by source.user_data.

You must be granted EXECUTE privileges on dbms_transform to use this feature. You must also
have EXECUTE privileges on the user-defined types that are the source and destination types of
the transformation, and have EXECUTE privileges on any PL/SQL function being used in the
transformation function.

Dropping a Transformation
DBMS_TRANSFORM.DROP_TRANSFORMATION drops a transformation.

DBMS_TRANSFORM.DROP_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30));

You must be granted EXECUTE privileges on dbms_transform to use this feature. You must also
have EXECUTE privileges on the user-defined types that are the source and destination types of
the transformation, and have EXECUTE privileges on any PL/SQL function being used in the
transformation function.

Granting and Revoking Privileges
These topics describe how to grant and revoke privileges.

• Granting Oracle Database Advanced Queuing System Privileges

• Revoking Oracle Database Advanced Queuing System Privileges

• Granting Queue Privileges

• Revoking Queue Privileges

Granting Oracle Database Advanced Queuing System Privileges
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE grants Oracle Database Advanced Queuing system
privileges to users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY, MANAGE_ANY.
Initially, only SYS and SYSTEM can use this procedure successfully.

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

Chapter 12
Granting and Revoking Privileges

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 32

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in
the database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages from
any queues in the database. Users granted the MANAGE_ANY privilege are allowed to run
DBMS_AQADM calls on any schemas in the database.

Note

Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY, and
DEQUEUE_ANY privileges will not allow access to SYS owned queues by users other than
SYS.

Example 12-37 Granting AQ System Privileges

BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'ENQUEUE_ANY',
 grantee => 'test',
 admin_option => FALSE);
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test',
 admin_option => FALSE);
END;
/

Revoking Oracle Database Advanced Queuing System Privileges
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE revokes Oracle Database Advanced Queuing system
privileges from users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY.

DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

The ADMIN option for a system privilege cannot be selectively revoked.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in
the database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages from
any queues in the database. Users granted the MANAGE_ANY privilege are allowed to run
DBMS_AQADM calls on any schemas in the database.

Note

Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY, and
DEQUEUE_ANY privileges will not allow access to SYS owned queues by users other than
SYS.

Example 12-38 Revoking AQ System Privileges

BEGIN
 DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test');

Chapter 12
Granting and Revoking Privileges

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 32

END;
/

Granting Queue Privileges
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE grants privileges on a queue to users and roles. The
privileges are ENQUEUE, DEQUEUE, or ALL. Initially, only the queue table owner can use this
procedure to grant privileges on the queues.

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

Note

This procedure requires that EXECUTE privileges on DBMS_AQADM be granted to the
queue table owner, who is probably an ordinary queue user. If you do not want
ordinary queue users to be able to create and drop queues and queue tables, add and
delete subscribers, and so forth, then you must revoke the EXECUTE privilege as soon
as the initial GRANT_QUEUE_PRIVILEGE is done.

Example 12-39 Granting Queue Privilege

BEGIN
 DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege => 'ALL',
 queue_name => 'test.multiconsumer_81_queue',
 grantee => 'test_adm',
 grant_option => TRUE);
END;
/

Revoking Queue Privileges
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE revokes privileges on a queue from users and roles.
The privileges are ENQUEUE or DEQUEUE.

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

To revoke a privilege, the revoker must be the original grantor of the privilege. The privileges
propagated through the GRANT option are revoked if the grantor's privileges are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the grantee with
only the enqueue right as in Example 12-40.

Example 12-40 Revoking Dequeue Privilege

BEGIN
 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
 privilege => 'DEQUEUE',
 queue_name => 'test.multiconsumer_81_queue',

Chapter 12
Granting and Revoking Privileges

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 32

 grantee => 'test_adm');
END;

Managing Subscribers
These topics describe how to manage subscribers.

• Adding a Subscriber

• Altering a Subscriber

• Removing a Subscriber

Adding a Subscriber
DBMS_AQADM.ADD_SUBSCRIBER adds a default subscriber to a queue.

DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT FALSE,
 delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT);

An application can enqueue messages to a specific list of recipients or to the default list of
subscribers. This operation succeeds only on queues that allow multiple consumers, and the
total number of subscribers must be 1024 or less. This operation takes effect immediately and
the containing transaction is committed. Enqueue requests that are executed after the
completion of this call reflect the new action. Any string within the rule must be quoted (with
single quotation marks) as follows:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

User data properties or attributes apply only to object payloads and must be prefixed with
tab.userdata in all cases.

If GLOBAL_TOPIC_ENABLED is set to true when a subscriber is created, then a corresponding
LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or propagation. The
transformation must be created using the DBMS_TRANSFORM package.

For queues that contain payloads with XMLType attributes, you can specify rules that contain
operators such as XMLType.existsNode() and XMLType.extract().

If parameter queue_to_queue is set to TRUE, then the added subscriber is a queue-to-queue
subscriber. When queue-to-queue propagation is set up between a source queue and a
destination queue, queue-to-queue subscribers receive messages through that propagation
schedule.

If the delivery_mode parameter is the default PERSISTENT, then the subscriber receives only
persistent messages. If it is set to BUFFERED, then the subscriber receives only buffered
messages. If it is set to PERSISTENT_OR_BUFFERED, then the subscriber receives both types. You
cannot alter this parameter with ALTER_SUBSCRIBER.

The agent name should be NULL if the destination queue is a single consumer queue.

Chapter 12
Managing Subscribers

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 32

Note

ADD_SUBSCRIBER is an administrative operation on a queue. Although Oracle Database
AQ does not prevent applications from issuing administrative and operational calls
concurrently, they are executed serially. ADD_SUBSCRIBER blocks until pending calls that
are enqueuing or dequeuing messages complete. It will not wait for the pending
transactions to complete.

See Also

• Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_TRANSFORM package

• "Scheduling a Queue Propagation"

Example 12-41 Adding a Subscriber at a Designated Queue at a Database Link

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Example 12-42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Example 12-43 Adding a Subscriber with a Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority < 2');
END;
/

Example 12-44 Adding a Subscriber and Specifying a Transformation

DECLARE
 subscriber sys.aq$_agent;
BEGIN

Chapter 12
Managing Subscribers

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 32

 subscriber := sys.aq$_agent('subscriber3', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 transformation => 'test.message_order_transform');
END;
/

Example 12-45 Propagating from a Multiple-Consumer Queue to a Single Consumer
Queue

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT(NULL, 'test2.single_consumer__queue@london',
null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;

Altering a Subscriber
DBMS_AQADM.ALTER_SUBSCRIBER alters existing properties of a subscriber to a specified queue.

DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2
 transformation IN VARCHAR2);

The rule, the transformation, or both can be altered. If you alter only one of these attributes,
then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a corresponding
LDAP entry is created.

Example 12-46 Altering a Subscriber Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ALTER_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority = 1');
END;
/

Removing a Subscriber
DBMS_AQADM.REMOVE_SUBSCRIBER removes a default subscriber from a queue.

DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

This operation takes effect immediately and the containing transaction is committed. All
references to the subscriber in existing messages are removed as part of the operation. If

Chapter 12
Managing Subscribers

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 32

GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is dropped, then a corresponding LDAP
entry is also dropped.

It is not an error to run the REMOVE_SUBSCRIBER procedure even when there are pending
messages that are available for dequeue by the consumer. These messages are automatically
made unavailable for dequeue when the REMOVE_SUBSCRIBER procedure finishes.

Note

REMOVE_SUBSCRIBER is an administrative operation on a queue. Although Oracle
Database AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. REMOVE_SUBSCRIBER blocks
until pending calls that are enqueuing or dequeuing messages complete. It will not
wait for the pending transactions to complete.

Example 12-47 Removing a Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent ('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Managing Propagations
The propagation schedules defined for a queue can be changed or dropped at any time during
the life of the queue.

You can also temporarily disable a schedule instead of dropping it. All administrative calls can
be made irrespective of whether the schedule is active or not. If a schedule is active, then it
takes a few seconds for the calls to be processed.

These topics describe how to manage propagations.

• Scheduling a Queue Propagation

• Verifying Propagation Queue Type

• Altering a Propagation Schedule

• Enabling a Propagation Schedule

• Disabling a Propagation Schedule

• Unscheduling a Queue Propagation

Scheduling a Queue Propagation
DBMS_AQADM.SCHEDULE_PROPAGATION schedules propagation of messages.

DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,

Chapter 12
Managing Propagations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 32

 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

The destination can be identified by a database link in the destination parameter, a queue
name in the destination_queue parameter, or both. Specifying only a database link results in
queue-to-dblink propagation. If you propagate messages to several queues in another
database, then all propagations have the same frequency.

If a private database link in the schema of the queue table owner has the same name as a
public database link, AQ always uses the private database link.

Specifying the destination queue name results in queue-to-queue propagation. If you
propagate messages to several queues in another database, queue-to-queue propagation
enables you to configure each schedule independently of the others. You can enable or disable
individual propagations.

Note

If you want queue-to-queue propagation to a queue in another database, then you
must specify parameters destination and destination_queue.

Queue-to-queue propagation mode supports transparent failover when propagating to a
destination Oracle Real Application Clusters (Oracle RAC) system. With queue-to-queue
propagation, it is not required to repoint a database link if the owner instance of the queue fails
on Oracle RAC.

Messages can also be propagated to other queues in the same database by specifying a NULL
destination. If a message has multiple recipients at the same destination in either the same or
different queues, then the message is propagated to all of them at the same time.

The source queue must be in a queue table meant for multiple consumers. If you specify a
single-consumer queue, than error ORA-24039 results. Oracle Database Advanced Queuing
does not support the use of synonyms to refer to queues or database links.

If you specify a propagation next_time and duration, propagation will run periodically for the
specified duration.If you specify a latency of zero with no next_time or duration, the resulting
propagation will run forever, propagating messages as they appear in the queue, and idling
otherwise. If a non-zero latency is specified, with no next_time or duration (default), the
propagation schedule will be event-based. It will be scheduled to run when there are messages
in the queue to be propagated. When there are no more messages for a system-defined period
of time, the job will stop running until there are new messages to be propagated.The time at
which the job runs depends on other factors, such as the number of ready jobs and the number
of job queue processes.

Propagation uses a linear backoff scheme for retrying propagation from a schedule that
encountered a failure. If a schedule continuously encounters failures, then the first retry
happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so
forth. If the retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts are made after
which the schedule is automatically disabled.

Chapter 12
Managing Propagations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 32

Note

Once a retry attempt slips to the next propagation window, it will always do so; the
exponential backoff scheme no longer governs retry scheduling. If the date function
specified in the next_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION results in
a short interval between windows, then the number of unsuccessful retry attempts can
quickly reach 16, disabling the schedule.

If you specify a value for destination that does not exist, then this procedure still runs without
throwing an error. You can query runtime propagation errors in the LAST_ERROR_MSG column of
the USER_QUEUE_SCHEDULES view.

See Also

• "Managing Job Queues" in Oracle Database Administrator's Guide for more
information on job queues and Jnnn background processes

• Internet Access to Oracle Database Advanced Queuing

• "USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema"

Example 12-48 Scheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 12-49 Scheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Example 12-50 Scheduling Queue-to-Queue Propagation

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world'
 destination_queue => 'target_queue');
END;
/

Verifying Propagation Queue Type
DBMS_AQADM.VERIFY_QUEUE_TYPES verifies that the source and destination queues have
identical types. The result of the verification is stored in the dictionary table
SYS.AQ$_MESSAGE_TYPES, overwriting all previous output of this command.

DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name IN VARCHAR2,

Chapter 12
Managing Propagations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 32

 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

If the source and destination queues do not have identical types and a transformation was
specified, then the transformation must map the source queue type to the destination queue
type.

Note

• SYS.AQ$_MESSAGE_TYPES can have multiple entries for the same source queue,
destination queue, and database link, but with different transformations.

• VERIFY_QUEUE_TYPES check happens once per AQ propagation schedule and not
for every propagated message send

• In case the payload of the queue is modified then the existing propagation
schedule between source and destination queue needs to be dropped and
recreated.

Example 12-51 involves two queues of the same type. It returns:

VQT: new style queue
Compatible: 1

If the same example is run with test.raw_queue (a queue of type RAW) in place of
test.another_queue, then it returns:

VQT: new style queue
Compatible: 0

Example 12-51 Verifying a Queue Type

SET SERVEROUTPUT ON
DECLARE
rc BINARY_INTEGER;
BEGIN
 DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name => 'test.multiconsumer_queue',
 dest_queue_name => 'test.another_queue',
 rc => rc);
 DBMS_OUTPUT.PUT_LINE('Compatible: '||rc);
END;
/

Altering a Propagation Schedule
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE alters parameters for a propagation schedule. The
destination_queue parameter for queue-to-queue propagation cannot be altered.

DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Chapter 12
Managing Propagations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 32

Example 12-52 Altering a Propagation Schedule to Queues in the Same Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Example 12-53 Altering a Propagation Schedule to Queues in Another Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Enabling a Propagation Schedule
DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE enables a previously disabled propagation
schedule.

DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Example 12-54 Enabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 12-55 Enabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Disabling a Propagation Schedule
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE disables a previously enabled propagation
schedule.

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Chapter 12
Managing Propagations

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 32

Example 12-56 Disabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 12-57 Disabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Unscheduling a Queue Propagation
DBMS_AQADM.UNSCHEDULE_PROPAGATION unschedules a previously scheduled propagation of
messages from a queue to a destination. The destination is identified by a specific database
link in the destination parameter or by name in the destination_queue parameter.

DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Example 12-58 Unscheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 12-59 Unscheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Managing Oracle Database Advanced Queuing Agents
These topics describe how to manage Oracle Database Advanced Queuing Agents.

• Creating an Oracle Database Advanced Queuing Agent

• Altering an Oracle Database Advanced Queuing Agent

• Dropping an Oracle Database Advanced Queuing Agent

• Enabling Database Access

• Disabling Database Access

Chapter 12
Managing Oracle Database Advanced Queuing Agents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 32

Creating an Oracle Database Advanced Queuing Agent
DBMS_AQADM.CREATE_AQ_AGENT registers an agent for Oracle Database Advanced Queuing
Internet access using HTTP protocols.

DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Database Advanced Queuing Internet
agents. When an agent is created, altered, or dropped, an LDAP entry is created for the agent
if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Altering an Oracle Database Advanced Queuing Agent
DBMS_AQADM.ALTER_AQ_AGENT alters an agent registered for Oracle Database Advanced
Queuing Internet access.

DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

When an Oracle Database Advanced Queuing agent is created, altered, or dropped, an LDAP
entry is created for the agent if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Dropping an Oracle Database Advanced Queuing Agent
DBMS_AQADM.DROP_AQ_AGENT drops an agent that was previously registered for Oracle
Database Advanced Queuing Internet access.

DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2);

When an Oracle Database Advanced Queuing agent is created, altered, or dropped, an LDAP
entry is created for the agent if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Chapter 12
Managing Oracle Database Advanced Queuing Agents

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 32

Enabling Database Access
DBMS_AQADM.ENABLE_DB_ACCESS grants an Oracle Database Advanced Queuing Internet agent
the privileges of a specific database user. The agent should have been previously created
using the CREATE_AQ_AGENT procedure.

DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Database Advanced Queuing Internet
agents and the names of the database users whose privileges are granted to them.

Disabling Database Access
DBMS_AQADM.DISABLE_DB_ACCESS revokes the privileges of a specific database user from an
Oracle Database Advanced Queuing Internet agent. The agent should have been previously
granted those privileges using the ENABLE_DB_ACCESS procedure.

DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Adding an Alias to the LDAP Server
DBMS_AQADM.ADD_ALIAS_TO_LDAP adds an alias to the LDAP server.

DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

This call takes the name of an alias and the distinguished name of an Oracle Database
Advanced Queuing object in LDAP, and creates the alias that points to the Oracle Database
Advanced Queuing object. The alias is placed immediately under the distinguished name of
the database server. The object to which the alias points can be a queue, an agent, or a
ConnectionFactory.

Deleting an Alias from the LDAP Server
DBMS_AQADM.DEL_ALIAS_FROM_LDAP removes an alias from the LDAP server.

DBMS_AQADM.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

This call takes the name of an alias as the argument, and removes the alias entry in the LDAP
server. It is assumed that the alias is placed immediately under the database server in the
LDAP directory.

Chapter 12
Adding an Alias to the LDAP Server

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 32

A
Nonpersistent Queues

Oracle Database Advanced Queuing can deliver nonpersistent messages asynchronously to
subscribers. These messages can be event-driven and do not persist beyond the failure of the
system (or instance). The messages are stored in a system-created queue table. Oracle
Database Advanced Queuing supports persistent and nonpersistent messages with a common
API.

Nonpersistent queues, which can be either single-consumer or multiconsumer, provide a
mechanism for notification to all currently connected users. Subscribers can be added to
multiconsumer nonpersistent queues, and nonpersistent queues can be destinations for
propagation.

You use the enqueue interface to enqueue messages into a nonpersistent queue in the usual
way. You can enqueue RAW and Oracle object type messages into a nonpersistent queue.
OCI notifications are used to deliver such messages to users that are currently registered for
notification.

The following topics describe nonpersistent queues, which are deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2). Oracle recommends that you use buffered
messaging instead.

See Also

"Buffered Messaging"

Topics:

• Creating Nonpersistent Queues

• Managing Nonpersistent Queues

• Compatibility of Nonpersistent Queues

• Nonpersistent Queue Notification

• Restrictions on Nonpersistent Queues

Creating Nonpersistent Queues
DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

This procedure creates a nonpersistent queue.

Only local recipients are supported for nonpersistent queues. The queue can be either single-
consumer or multiconsumer. All queue names must be unique within a schema. The queues
are created in an 8.1-compatible system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in
the same schema as that specified by the queue name. If the queue name does not specify a
schema name, then the queue is created in the login user's schema.

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-1 of A-3

Note

Names of nonpersistent queues must not be longer than 24 characters. If you attempt
to create a nonpersistent queue with a longer name, error ORA-24019 results.

Managing Nonpersistent Queues
Once a queue is created with CREATE_NP_QUEUE, it can be enabled by calling START_QUEUE. By
default, the queue is created with both enqueue and dequeue disabled.

You can enqueue RAW and Oracle object type messages into a nonpersistent queue. You
cannot dequeue from a nonpersistent queue. The only way to retrieve a message from a
nonpersistent queue is by using the Oracle Call Interface (OCI) notification mechanism. You
cannot invoke the listen call on a nonpersistent queue.

A nonpersistent queue can be dropped only by its owner.

Compatibility of Nonpersistent Queues
For 8.1-style or higher queues, the compatible parameter of init.ora and the compatible
parameter of the queue table should be set to 8.1 or higher to use nonpersistent queues.

Nonpersistent Queue Notification
For nonpersistent queues, the message is delivered as part of the notification. Table A-1 shows
the actions performed for nonpersistent queues for different notification mechanisms when
RAW presentation is specified. Table A-2 shows the actions performed when XML presentation
is specified.

Table A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives the
RAW data in the payload.

Not supported PL/SQL callback receives the
RAW data in the payload.

Oracle object type Not supported Not supported Not supported

Table A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives the
XML data in the payload.

XML data is formatted as a SOAP
message and e-mailed to the
registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Oracle object type OCI callback receives the
XML data in the payload.

XML data is formatted as a SOAP
message and e-mailed to the
registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Appendix A
Managing Nonpersistent Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-2 of A-3

Restrictions on Nonpersistent Queues
You can create nonpersistent queues of RAW and Oracle object type.You are limited to sending
messages only to subscribers and explicitly specified recipients who are local. Propagation is
not supported from nonpersistent queues. When retrieving messages, you cannot use the
dequeue call, but must instead employ the asynchronous notification mechanism, registering
for the notification by mean of OCISubscriptionRegister.

The visibility attribute of enqueue_options must be set to IMMEDIATE for nonpersistent
messages.

See Also

"Enqueue Options"

Appendix A
Restrictions on Nonpersistent Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix A-3 of A-3

B
Oracle JMS and Oracle AQ XML Servlet Error
Messages

A list of error messages is provided to aid you in troubleshooting problems.

• Oracle JMS Error Messages

• Oracle AQ XML Servlet Error Messages

Oracle JMS Error Messages
JMS-101 Invalid delivery mode (string)
Cause: The delivery mode is not supported

Action: The valid delivery mode is AQjmsConstants.PERSISTENT

JMS-102 Feature not supported (string)
Cause: This feature is not supported in the current release

Action: Self-explanatory

JMS-104 Message Payload must be specified
Cause: The message payload was null

Action: Specify a non-null payload for the message

JMS-105 Agent must be specified
Cause: AQjmsAgent object was null

Action: Specify a valid AQjmsAgent representing the remote subscriber

JMS-106 Cannot have more than one open Session on a JMSConnection
Cause: There is already one open JMS session on the connection. Cannot have more than
one open session on a connection

Action: Close the open session and then open a new one

JMS-107 Operation not allowed on (string)
Cause: The specified operation is not allowed on this object

Action: Self-explanatory

JMS-108 Messages of type (string) not allowed with Destinations containing payload of
type (string)
Cause: There was a mismatch between the message type being used and the payload type
specified for the destination

Action: Use the message type that maps to the payload specified for the queue table that
contains this destination

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-1 of B-18

JMS-109 Class not found: (string)
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class

JMS-110 Property (string) not writeable
Cause: An attempt was made to update a read-only message header field or property

Action: Self-explanatory

JMS-111 Connection must be specified
Cause: The connection object was null

Action: Specify a non-null JDBC connection

JMS-112 Connection is invalid
Cause: The JDBC connection is invalid

Action: Specify a non-null oracle JDBC connection

JMS-113 Connection is in stopped state
Cause: An attempt was made to receive messages on a connection that is in stopped state

Action: Start the connection

JMS-114 Connection is closed
Cause: An attempt was made to use a Connection that has been closed

Action: Create a new connection

JMS-115 Consumer is closed
Cause: An attempt was mode to use a Consumer that has been closed

Action: Create a new Message Consumer

JMS-116 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-117 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it

JMS-119 Invalid Property value
Cause: The property value specified is invalid

Action: Use the appropriate type of value for the property being set

JMS-120 Dequeue failed
Cause: An error occurred while receiving the message

Action: See message inside the JMSException and linked SQLException for more information

JMS-121 DestinationProperty must be specified
Cause: A null AQjmsDestinationProperty was specified while creating a queue/topic

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-2 of B-18

Action: Specify a non-null AQjmsDestinationProperty for the destination

JMS-122 Internal error (string)
Cause: Internal error occurred

Action: Call Support

JMS-123 Interval must be at least (integer) seconds
Cause: An invalid interval was specified

Action: The interval must be greater than 30 seconds

JMS-124 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQConstants.DEQUEUE_BROWSE,
AQConstants.DEQUEUE_REMOVE, AQConstants.DEQUEUE_LOCKED,
AQConstants.DEQUEUE_REMOVE_NODATA

JMS-125 Invalid Queue specified
Cause: An invalid Queue object was specified

Action: Specify a valid Queue handle

JMS-126 Invalid Topic specified
Cause: An invalid Topic object was specified

Action: Specify a valid Topic handle

JMS-127 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

JMS-128 Invalid Navigation mode
Cause: An invalid navigation mode was specified

Action: The valid navigation modes are AQjmsConstants.NAVIGATION_FIRST_MESSAGE,
AQjmsConstants.NAVIGATION_NEXT_MESSAGE,
AQjmsConstants.NAVIGATION_NEXT_TRANSACTION

JMS-129 Invalid Payload type
Cause: There was a mismatch between the message type being used and the payload type
specified for the destination

Action: Use the message type that maps to the payload specified for the queue table that
contains this destination. For ADT messages, use the appropriate CustomDatum factory to
create the message consumer

JMS-130 JMS queue cannot be multi-consumer enabled
Cause: An attempt was made to get a AQ multi-consumer queue as a JMS queue

Action: JMS queues cannot be multi-consumer enabled

JMS-131 Session is closed
Cause: An attempt was made to use a session that has been closed

Action: Open a new session

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-3 of B-18

JMS-132 Maximum number of properties (integer) exceeded
Cause: Maximum number of user defined properties for the message has been exceeded

Action: Self-explanatory

JMS-133 Message must be specified
Cause: Message specified was null

Action: Specify a non-null message

JMS-134 Name must be specified
Cause: Queue or Queue table Name specified was null

Action: Specify a non-null name

JMS-135 Driver (string) not supported
Cause: The specified driver is not supported

Action: Valid drivers are oci8 and thin. To use the kprb driver get the kprb connection using
getDefaultConnection() and use the static createTopicConnection and
createQueueConnection methods

JMS-136 Payload factory can only be specified for destinations with ADT payloads
Cause: A CustomDatumFactory was specified for consumers on destinations not containing
ADT payloads

Action: This field must be set to null for destinations containing payloads of type
SYS.AQ$_JMS_TEXT_MESSAGE, SYS.AQ$_JMS_BYTES_MESSAGE,
SYS.AQ$_JMS_MAP_MESSAGE, SYS.AQ$_JMS_OBJECT_MESSAGE,
SYS.AQ$_JMS_STREAM_MESSAGE

JMS-137 Payload factory must be specified for destinations with ADT payloads
Cause: CustomDatumFactory was not specified for destinations containing ADT payloads

Action: For destinations containing ADT messages, a CustomDatumFactory for a java class
that maps to the SQL ADT type of the destination must be specified

JMS-138 Producer is closed
Cause: An attempt was made to use a producer that has been closed

Action: Create a new Message Producer

JMS-139 Property name must be specified
Cause: Property name was null

Action: Specify a non-null property name

JMS-140 Invalid System property
Cause: Invalid system property name specified.

Action: Specify one of the valid JMS system properties

JMS-142 JMS topic must be created in multi-consumer enabled queue tables
Cause: An attempt was made to create a JMS topic in a single-consumer queue table

Action: JMS topics can only be created in queue tables that are multi-consumer enabled

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-4 of B-18

JMS-143 Queue must be specified
Cause: Null queue was specified

Action: Specify a non-null queue

JMS-144 JMS queue cannot be created in multiconsumer enabled queue tables
Cause: An attempt was made to create a JMS queue in a multi-consumer queue table

Action: JMS queues can only be created in queue tables that are not multi-consumer enabled

JMS-145 Invalid recipient list
Cause: The recipient list specified was empty

Action: Specify a recipient list with at least one recipient

JMS-146 Registration failed
Cause: An error occurred while registering the type in the type map

Action: Self-explanatory

JMS-147 Invalid ReplyTo destination type
Cause: The ReplyTo destination object type is invalid

Action: The ReplyTo destination must be of type AQjmsAgent

JMS-148 Property name size exceeded
Cause: The property name is greater than the maximum size

Action: Specify a property name that is less than 100 characters

JMS-149 Subscriber must be specified
Cause: Subscriber specified was null

Action: Specify a non-null subscriber

JMS-150 Property not supported
Cause: An attempt was made to use a property that is not supported

Action: Self-explanatory

JMS-151 Topics cannot be of type EXCEPTION
Cause: Topics cannot be of type AQjmsConstants.EXCEPTION

Action: Specify topics to be of type AQjmsConstants.NORMAL

JMS-153 Invalid System property type
Cause: The type of the value specified does not match the type defined for the system
property being set

Action: Use the correct type for the setting the system property

JMS-154 Invalid value for sequence deviation
Cause: The sequence deviation is invalid

Action: Valid values are AQEnqueueOption.DEVIATION_BEFORE,
AQEnqueueOption.DEVIATION_TOP

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-5 of B-18

JMS-155 AQ Exception (string)
Cause: An error occurred in the AQ java layer

Action: See the message inside the JMSException and the linked exception for more
information

JMS-156 Invalid Class (string)
Cause: Class specified is invalid

Action: Make sure your CLASSPATH has the specified class

JMS-157 IO Exception (string)
Cause: IO exception

Action: See message is JMSException for details

JMS-158 SQL Exception (string)
Cause: SQL Exception

Action: See message inside linked SQLException for details

JMS-159 Invalid selector (string)
Cause: The selector specified is either invalid or too long

Action: Check the syntax of the selector

JMS-160 EOF Exception (string)
Cause: EOF exception occurred while reading the byte stream

Action: Self-explanatory

JMS-161 MessageFormat Exception: (string)
Cause: An error occurred while converting the stream data to specified type

Action: Check the type of data expected on the stream and use the appropriate read method

JMS-162 Message not Readable
Cause: Message is in write-only mode

Action: Call the reset method to make the message readable

JMS-163 Message not Writeable
Cause: Message is in read-only mode

Action: Use the clearBody method to make the message writeable

JMS-164 No such element
Cause: Element with specified name was not found in the map message

Action: Self-explanatory

JMS-165 Maximum size of property value exceeded
Cause: The property value exceeded the maximum length allowed

Action: Values for JMS defined properties can be a maximum of length of 100, Values for User
defined properties can have a maximum length of 2000

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-6 of B-18

JMS-166 Topic must be specified
Cause: Topic specified was null

Action: Specify a non-null topic

JMS-167 Payload factory or Sql_data_class must be specified
Cause: Payload factory or Sql_data_class not specified for queues containing object payloads

Action: Specify a CustomDatumFactory or the SQLData class of the java object that maps to
the ADT type defined for the queue.

JMS-168 Cannot specify both payload factory and sql_data_class
Cause: Both CustomDatumFactory and SQLData class were specified during dequeue

Action: Specify either the CustomDatumFactory or the SQLData class of the java object that
maps to the ADT type defined for the queue.

JMS-169 Sql_data_class cannot be null
Cause: SQLData class specified is null

Action: Specify the SQLData class that maps to the ADT type defined for the queue

JMS-171 Message is not defined to contain (string)
Cause: Invalid payload type in message

Action: Check if the queue is defined to contain RAW or OBJECT payloads and use the
appropriate payload type in the message

JMS-172 More than one queue table matches query (string)
Cause: More than one queue table matches the query

Action: Specify both owner and queue table name

JMS-173 Queue Table (string) not found
Cause: The specified queue table was not found

Action: Specify a valid queue table

JMS-174 Class must be specified for queues with object payloads\n. Use
dequeue(deq_option,payload_fact) or dequeue(deq_option, sql_data_cl)
Cause: This dequeue method cannot be used to dequeue from queues with OBJECT
payloads

Action: Use the either dequeue(deq_option, payload_fact) or dequeue(deq_option,
sql_data_cl)

JMS-175 DequeueOption must be specified
Cause: DequeueOption specified is null

Action: Specify a non-null dequeue option

JMS-176 EnqueueOption must be specified
Cause: EnqueueOption specified is null

Action: Specify a non-null enqueue option

JMS-177 Invalid payload type: Use dequeue(deq_option) for raw payload queues
Cause: This method cannot be used to dequeue from queues with RAW payload

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-7 of B-18

Action: Use the dequeue(deq_option) method

JMS-178 Invalid Queue name - (string)
Cause: The queue name specified is null or invalid

Action: Specify a queue name that is not null. The queue name must not be qualified with the
schema name. The schema name must be specified as the value of the owner parameter

JMS-179 Invalid Queue Table name - (string)
Cause: The queue table name specified is null or invalid

Action: Specify a queue table name that is not null. The queue table name must not be
qualified with the schema name. The schema name must be specified as the value of the
owner parameter

JMS-180 Invalid Queue Type
Cause: Queue type is invalid

Action: Valid types are AQConstants.NORMAL or AQConstants.EXCEPTION

JMS-181 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER,
AQDequeueOption.WAIT_NONE or any value greater than 0

JMS-182 More than one queue matches query
Cause: More than one queue matches query

Action: Specify both the owner and name of the queue

JMS-183 No AQ driver registered
Cause: No AQDriver registered

Action: Make sure that the AQ java driver is registered. Use
Class.forName("oracle.AQ.AQOracleDriver")

JMS-184 Queue object is invalid
Cause: The queue object is invalid

Action: The underlying JDBC connection may have been closed. Get the queue handle again

JMS-185 QueueProperty must be specified
Cause: AQQueueProperty specified is null

Action: Specify a non-null AQQueueProperty

JMS-186 QueueTableProperty must be specified
Cause: QueueTableProperty specified is null

Action: Specify a non-null AQQueueTableProperty

JMS-187 Queue Table must be specified
Cause: Queue Table specified is null

Action: Specify a non-null queue table

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-8 of B-18

JMS-188 QueueTable object is invalid
Cause: The queue table object is invalid

Action: The underlying JDBC connection may have been closed. Get the queue table handle
again

JMS-189 Byte array too small
Cause: The byte array given is too small to hold the data requested

Action: Specify a byte array that is large enough to hold the data requested or reduce the
length requested

JMS-190 Queue (string) not found
Cause: The specified queue was not found

Action: Specify a valid queue

JMS-191 sql_data_cl must be a class that implements SQLData interface
Cause: The class specified does not support the java.sql.SQLData interface

Action: Self-explanatory

JMS-192 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values areAQConstants.VISIBILITY_ONCOMMIT,
AQConstants.VISIBILITY_IMMEDIATE

JMS-193 JMS queues cannot contain payload of type RAW
Cause: An attempt was made to create a JMS queue with RAW payload

Action: JMS queues/topics cannot contain RAW payload

JMS-194 Session object is invalid
Cause: Session object is invalid

Action: The underlying JDBC connection may have been closed. Create a new session

JMS-195 Invalid object type: object must implement CustomDatum or SQLData
interface
Cause: Invalid object type specified

Action: Object must implement CustomDatum or SQLData interface

JMS-196 Cannot have more than one open QueueBrowser for the same destination on a
JMS Session
Cause: There is already an open QueueBrowser for this queue on this session

Action: There cannot be more than one queue browser for the same queue in a particular
session. Close the existing QueueBrowser and then open a new one

JMS-197 Agent address must be specified for remote subscriber
Cause: Address field is null for remote subscriber

Action: The address field must contain the fully qualified name of the remote topic

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-9 of B-18

JMS-198 Invalid operation: Privileged message listener set for the Session
Cause: The client tried to use a message consumer to receive messages when the session
message listener was set.

Action: Use the session's message listener to consume messages. The consumer's methods
for receiving messages must not be used.

JMS-199 Registration for notification failed
Cause: Listener Registration failed

Action: See error message in linked Exception for details

JMS-200 Destination must be specified
Cause: Destination is null

Action: Specify a non-null destination

JMS-201 All Recipients in recipient_list must be specified
Cause: One or more elements in the recipient list are null

Action: All AQjmsAgents in the recipient list must be specified

JMS-202 Unregister for asynchronous receipt of messages failed
Cause: An error occurred while removing the registration of the consumer with the database
for asynchronous receipt

Action: Check error message in linked exception for details

JMS-203 Payload Factory must be specified
Cause: Null Payload Factory was specified

Action: Specify a non null payload factory

JMS-204 An error occurred in the AQ JNI layer
Cause: JNI Error

Action: Check error message in linked exception for details

JMS-205 Naming Exception
Cause: Naming exception

Action: Check error message in linked exception for details

JMS-207 JMS Exception (string)
Cause: An error occurred in the JMS layer

Action: See the message inside the linked JMSException for more information

JMS-208 XML SQL Exception
Cause: An error occurred in the XML SQL layer

Action: See the message inside the linked AQxmlException for more information

JMS-209 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more information

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-10 of B-18

JMS-210 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more information

JMS-220 Connection no longer available
Cause: Connection to the database no longer available.

Action: Comment: This may happen if the database/network/machine is not accessible. This
may be a transient failure.

JMS-221 Free physical database connection unavailable in connection pool
Cause: A free physical database connection was not available in the OCI connection pool in
order to perform the specified operation.

Action: Try performing the operation later

JMS-222: Invalid Payload factory type
Cause: Payload factory should be of CustomDatumFactory or ORADataFactory type.

Action: Use one of CustomDatumFactory/ORADataFactory types.

JMS-223: Payload factory must be null for destinations with Sys.AnyData payload - use
typemap instead
Cause: A CustomDatumFactory/ORADataFactory was specifed for consumers on destinations
containing SYS.ANYDATA payloads

Action: This field must be set to null for destinations containing payloads of type
SYS.AnyData. The ORADataFactory(s) must be registered in the session's typemap

JMS-224: Typemap is invalid - must be populated with SQLType/OraDataFactory
mappings to receive messages from Sys.AnyData destinations
Cause: The typemap of the session is null or empty. For destinations of tpye Sys.AnyData, the
typemap must contain OraDataFactory objects for all possible types that may be stored in the
queue/topic

Action: Use the AQjmsSession.getTypeMap() method get the typemap. Then use the put()
method to register SQLType names and their corresponding OraDataFactory objects

JMS-225: Invalid JDBC driver - OCI driver must be used for this operation
Cause: Operations on Sys.AnyData queues/topics are not supported using this JDBC driver

Action: Use the JDBC OCI driver to receive messages from Sys.AnyData queues/topics

JMS-226: Header-only Message does not have a body
Cause: Header-only message does not have a body; the body cannot be cleared, changed, or
queried.

Action: Do not access or modify the body of a read-only message.

JMS-227: Illegal attempt to commit on a non transacted JMS Session
Cause: Illegal attempt to invoke the commit method on a non transacted JMS Session

Action: Remove invocation of the commit method on the current JMS Session

JMS-228: Illegal attempt to rollback on a non transacted JMS Session
Cause: Illegal attempt to invoke the rollback method on a non transacted JMS Session

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-11 of B-18

Action: Remove invocation of the rollback method on the current JMS Session

JMS-229: (string) must be specified
Cause: The specified parameter was null

Action: Specify a non-null value for the parameter

JMS-230: Illegal operation on durable subscription with active TopicSubscriber
Cause: Try to unsubscribe, change or create durable subscription while it has an active
TopicSubscriber.

Action: Close the active TopicSubscriber and try again.

JMS-231: Consumers on temporary destination must belong to the same
Cause: The specified parameter was null

Action: Specify a non-null value for the parameter

JMS-232: An invalid user/password was specified for the JMS connection
Cause: Invalid user/password specified for connection

Action: Specify valid user/password for connection

JMS-233: The required subscriber information is not available
Cause: Try to retrieve subscriber information from a subscriber which was obtained with
getDurableSubscriber method and had no corresponding information in the in-memory map.

Action: Do not retrieve subscriber information from such a subscriber

JMS-234: This operation is not allowed in the current messaging domain
Cause: Perform an operation that is not allowed in the current messaging domain

Action: Do not perform the operation in the current messaging domain

JMS-235: Can not link the durable subscriber name with a topic in unsubscribe method.
Cause: OJMS is unable to link the supplied durable subscriber name with a topic. This causes
unsubscribe method to fail.

Action: Use other unsubscribe methods which the user can provide topic name.

JMS-236: OJMS encountered invalid OCI handles.
Cause: OJMS encountered invalid OCI handles when using JDBC OCI driver .

Action: Make sure the underlying JDBC connection is not closed while OJMS is still operating.

JMS-237: Can not start thread for message listener.
Cause: OJMS is unable to start a new thread for message listener.

Action: Check the thread proxy code if the thread was started by a user provided thread proxy.

JMS-238: Illegal attempt to recover on a transacted JMS Session
Cause: Illegal attempt to invoke the recover method on a transacted JMS Session

Action: Use rollback method instead of recover method on transacted JMS session.

JMS-239: Illegal attempt to call (string) method on a XASession.
Cause: Illegal attempt to invoke the commit or rollback method on a XASession

Appendix B
Oracle JMS Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-12 of B-18

Action: Use JTA to commit or rollback a distributed transaction

JMS-240: Illegal attempt to call setClientID after other actions.
Cause: Illegal attempt to call Connection.setClientID method after other actions has been
taken on this Connection

Action: set client ID before any other action on the Connection

JMS-241: Illegal attempt to delete temporary destination when there are consumers
using it.
Cause: Illegal attempt to delete temporary destination while there are existing consumers still
using it.

Action: close the consumers before deleting the temporary destination

JMS-242: Illegal attempt to enqueue message with both immediate visibility and three
phase enqueue process.
Cause: Illegal attempt to enqueue message with both immediate visibility and three phase
enqueue process.

Action: turn on the system property oracle.jms.useTemplobsForEnqueue

JMS-243: Topic (string) not found}
Cause: The specified topic was not found

Action: Specify a valid topic

Oracle AQ XML Servlet Error Messages
JMS-400 Destination name must be specified
Cause: A null Destination name was specified

Action: Specify a non-null destination name

JMS-402 Class not found: {0}
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class specified in the error message

JMS-403 IO Exception {0}
Cause: IO exception

Action: See the message inside the linked AQxmlException for more information

JMS-404 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more information

JMS-405 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more information

JMS-406 JMS Exception {0}
Cause: An error occurred in the JMS layer

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-13 of B-18

Action: See the message inside the linked JMSException for more information

JMS-407 Operation not allowed on {0}
Cause: The specified operation is not allowed on this object

Action: Check that the user performing the operation has the required privileges

JMS-408 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it

JMS-409 No such element
Cause: Element with specified name was not found in the map message

Action: Specify a valid element name

JMS-410 XML SQL Exception
Cause: An error occurred in the JDBC SQL layer

Action: See the message inside the linked SQLException for more information

JMS-411 Payload body cannot be null
Cause: An invalid body string or document was specified

Action: Specify a non-null body string or document for the payload

JMS-412 Byte conversion failed
Cause: An invalid username/password was specified

Action: Specify a non-null username and password

JMS-413 Autocommit not allowed for operation
Cause: The autocommit flag cannot be set for this operation

Action: Do not set the autocommit flag

JMS-414 Destination owner must be specified
Cause: A null Destination owner was specified

Action: Specify a non-null destination name

JMS-415 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values are AQxmlConstants.VISIBILITY_ONCOMMIT,
AQxmlConstants.VISIBILITY_IMMEDIATE

JMS-416 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQxmlConstants.DEQUEUE_BROWSE,
AQxmlConstants.DEQUEUE_REMOVE, AQxmlConstants.DEQUEUE_LOCKED,
AQxmlConstants.DEQUEUE_REMOVE_NODATA

JMS-417 Invalid Navigation mode
Cause: An invalid navigation mode was specified

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-14 of B-18

Action: The valid navigation modes are:

• AQxmlConstants.NAVIGATION_FIRST_MESSAGE

• AQxmlConstants.NAVIGATION_NEXT_MESSAGE

• AQxmlConstants.NAVIGATION_NEXT_TRANSACTION

JMS-418 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER,
AQDequeueOption.WAIT_NONE, or any value greater than 0

JMS-419 Invalid ConnectionPoolDataSource
Cause: A null or invalid ConnectionPoolDataSource was specified

Action: Specify a valid OracleConnectionPoolDataSource object with the correct URL and
user/password

JMS-420 Invalid value for cache_size
Cause: An invalid cache_size was specified

Action: Cache size must be greater than 0

JMS-421 Invalid value for cache_scheme
Cause: An invalid cache scheme was specified

Action: The valid cache schemes are:

• OracleConnectionCacheImpl.DYNAMIC_SCHEME

• OracleConnectionCacheImpl.FIXED_WAIT_SCHEME

JMS-422 Invalid tag - {0}
Cause: An invalid tag was encountered in the XML document

Action: Verify that the XML document conforms to the AQ schema

JMS-423 Invalid value
Cause: An invalid value was specified

Action: Verify that the value specified in the XML document conforms to those specified in the
AQ schema

JMS-424 Invalid message header
Cause: The message header specified is null or invalid

Action: Specify a valid message header

JMS-425 Property name must be specified
Cause: Property name was null

Action: Specify a non-null property name

JMS-426 Property does not exist
Cause: Invalid property name specified. The property does not exist

Action: The property does not exist

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-15 of B-18

JMS-427 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-428 Valid message must be specified
Cause: Message was null

Action: Specify a non-null message

JMS-429 Register Option must be specified
Cause: Register option is null

Action: Specify a non-null Register Option

JMS-430 Database Link must be specified
Cause: DB Link is null

Action: Specify a non-null Register Option

JMS-431 Sequence Number must be specified
Cause: Register option is null

Action: Specify a non-null Register Option

JMS-432 Status must be specified
Cause: Status option is null

Action: Specify a non-null Register Option

JMS-433 User not authenticated
Cause: User is not authenticated

Action: Check that the user was authenticated by the webserver before connecting to the
Servlet

JMS-434 Invalid data source
Cause: Data source is null or invalid

Action: Specify a valid data source for connecting to the database

JMS-435 Invalid schema location
Cause: Schema location is null or invalid

Action: Specify a valid URL for the schema

JMS-436 AQ Exception
Cause: An error occurred in the AQ java layer

Action: See the message inside the AQxmlException and the linked exception for more
information

JMS-437 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-16 of B-18

JMS-438 AQ agent {0} not mapped to a valid database user
Cause: The AQ agent specified does not map to a database user which has privileges to
perform the requested operation

Action: Use dbms_aqadm.enable_db_access to map the agent to a database user with the
required queue privileges

JMS-439 Invalid schema document
Cause: The schema document specified is not valid

Action: Specify a valid URL for the schema document

JMS-440 Invalid operations - agent {0} maps to more than one database user
Cause: The AQ agent mapped to more than one database user in the same session

Action: Map the AQ agent to only one database user. Check the aq$internet_users view for
database users that map to this agent.

JMS-441: {0} cannot be null
Cause: The specified parameter was null

Action: Specify a non-null value

JMS-442: Name and Address for Agent cannot be null
Cause: Both the name and address parameters were specified as null

Action: Specify a non-null value for the name or address

JMS-443: IMMEDIATE visibility mode not supported for this queue/topic
Cause: IMMEDIATE visibility mode not supported for JMS type queue/topic

Action: Use ON_COMMIT or the default visibility mode for JMS type queue/topic

JMS-444: This feature is not supported yet
Cause: The requested feature is not yet supported

Action: wait for future releases that support the feature.

JMS-445: Destination alias must be specified
Cause: A null Destination alias was specified

Action: Specify a non-null destination alias

JMS-446: Agent alias must be specified
Cause: A null Agent alias was specified

Action: Specify a non-null agent alias

JMS-447: error in accessing LDAP server
Cause: error in accessing the LDAP server

Action: check the LDAP server is up and the environment parameters provided to the servlet
are correct

JMS-448: Invalid Content-Type
Cause: Invalid Content-Type

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-17 of B-18

Action: Content-Type must be "text/xml" or "application/x-www-form-urlencoded" with
parameter name "aqxmldoc"

Appendix B
Oracle AQ XML Servlet Error Messages

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix B-18 of B-18

C
Oracle Messaging Gateway

Note

Oracle Messaging Gateway is deprecated in 23ai and will be desupported in a future
release.

• Introduction to Oracle Messaging Gateway

• Getting Started with Oracle Messaging Gateway

• Working with Oracle Messaging Gateway

• Oracle Messaging Gateway Message Conversion

• Monitoring Oracle Messaging Gateway

• Oracle Messaging Gateway Views

Introduction to Oracle Messaging Gateway
The Messaging Gateway administration package DBMS_MGWADM provides an interface for
creating Messaging Gateway agents, managing agents, creating messaging system links,
registering non-Oracle queues, and setting up propagation jobs.

Topics:

• Oracle Messaging Gateway Overview

• Oracle Messaging Gateway Features

• Oracle Messaging Gateway Architecture

• Propagation Processing Overview

• Oracle Database AQ Buffered Messages and Messaging Gateway

Oracle Messaging Gateway Overview
Messaging Gateway enables communication between applications based on non-Oracle
messaging systems and Oracle Database Advanced Queuing.

Oracle Database Advanced Queuing provides propagation between two Oracle Database
Advanced Queuing queues to enable e-business (HTTP through IDAP). Messaging Gateway
extends this to applications based on non-Oracle messaging systems.

Because Messaging Gateway is integrated with Oracle Database Advanced Queuing and
Oracle Database, it offers reliable message delivery. Messaging Gateway guarantees that
messages are delivered once and only once between Oracle Database Advanced Queuing
and non-Oracle messaging systems that support persistence. The PL/SQL interface provides
an easy-to-learn administrative API, especially for developers already proficient in using Oracle
Database Advanced Queuing.

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-1 of C-82

This release of Messaging Gateway supports the integration of Oracle Database Advanced
Queuing with applications based on WebSphere MQ 9.0 and TIB/Rendezvous 8.2.

Oracle Messaging Gateway Features
Messaging Gateway provides the following features:

• Extends Oracle Database Advanced Queuing message propagation

Messaging Gateway propagates messages between Oracle Database Advanced Queuing
and non-Oracle messaging systems. Messages sent by Oracle Database Advanced
Queuing applications can be received by non-Oracle messaging system applications.
Conversely, messages published by non-Oracle messaging system applications can be
consumed by Oracle Database Advanced Queuing applications.

• Support for Java Message Service (JMS) messaging systems

Messaging Gateway propagates messages between Oracle Java Message Service
(Oracle JMS) and WebSphere MQ Java Message Service (WebSphere MQ JMS).

• Native message format support

Messaging Gateway supports the native message formats of messaging systems. Oracle
Database Advanced Queuing messages can have RAW or any Oracle object type payload.
WebSphere MQ messages can be text or byte messages. TIB/Rendezvous messages can
be any TIB/Rendezvous wire format datatype except the nested datatype MSG and those
with unsigned integers.

• Message conversion

Messaging Gateway facilitates message conversion between Oracle Database Advanced
Queuing messages and non-Oracle messaging system messages. Messages are
converted through either automatic routines provided by Messaging Gateway or
customized message transformation functions that you provide.

Note

– Messaging Gateway does not support message propagation between JMS
and non-JMS messaging systems.

– Oracle Database AQ Sharded Queues are not supported by MGW in 12c
Release 2 (12.2)

• Integration with Oracle Database

Messaging Gateway is managed through a PL/SQL interface similar to that of Oracle
Database Advanced Queuing. Configuration information is stored in Oracle Database
tables. Message propagation is carried out by an external process of the Oracle Database
server.

• Guaranteed message delivery

If the messaging systems at the propagation source and propagation destination both
support transactions, then Messaging Gateway guarantees that persistent messages are
propagated exactly once. If messages are not persistent or transactions are not supported
by the messaging systems at the propagation source or propagation destination, then at-
most-once propagation is guaranteed.

• Security support

Appendix C
Introduction to Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-2 of C-82

Messaging Gateway supports client authentication of Oracle Database and non-Oracle
messaging systems.

Messaging Gateway also allows Secure Socket Layer (SSL) support for IBM WebSphere
MQ and WebSphere MQ JMS connections made by the Messaging Gateway agent.

• Multiple agent support

Messaging Gateway supports multiple agents for a given database. Users can partition
propagation jobs based on functionality, organizations, or workload and assign them to
different Messaging Gateway agents. This allows Messaging Gateway to scale in an
Oracle RAC environment and enables propagation job grouping and isolation.

See Also

• "Propagation Processing Overview"

• Oracle Messaging Gateway Message Conversion

• "Converting Oracle Messaging Gateway Non-JMS Messages"

Oracle Messaging Gateway Architecture
Messaging Gateway has two main components:

• Administration Package DBMS_MGWADM

• Messaging Gateway Agent

Figure C-1 shows how these components work together with Oracle Database and non-Oracle
messaging systems.

Figure C-1 Messaging Gateway Architecture

Propagation Engine

MQ�
Base�
Java

Driver

MQ�
JMS

Driver

TIB /

Rendezvous�

Driver

MQSeries MQSeries TIB /�
Rendezvous

AQ Messaging

System Link

Messaging

System Link

Messaging

System Link

Messaging Gateway Agent

table

table

Oracle Database

Messaging

Gateway Administration

PL/SQL Interface

JDBC

Appendix C
Introduction to Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-3 of C-82

Administration Package DBMS_MGWADM
The Messaging Gateway administration package DBMS_MGWADM provides an interface for
creating named Messaging Gateway agents, managing agents, creating messaging system
links, registering non-Oracle queues, and setting up propagation jobs.

Users call the procedures in the package to make configuration changes regardless of whether
the Messaging Gateway agent is running. If the Messaging Gateway agent is running, then the
procedures in the package send notifications for configuration changes to the agent. The agent
dynamically alters its configuration for most configuration changes, although some changes
require that the agent be shut down and restarted before they take effect. All the procedures in
the package are serialized to guarantee that the Messaging Gateway agent receives and
processes notifications in the same order as they are made.

See Also

Oracle Database PL/SQL Packages and Types Reference for more information on
DBMS_MGWADM

Oracle Messaging Gateway Agent
The Messaging Gateway agent runs as an external process of the Oracle Database server and
processes propagation jobs. It is started and shut down by calling the STARTUP and SHUTDOWN
procedures in DBMS_MGWADM package.

The Messaging Gateway agent contains a multithreaded propagation engine and a set of
drivers for messaging systems. The propagation engine fairly schedules propagation jobs and
processes propagation jobs concurrently. The polling thread in the agent periodically polls the
source queues of enabled propagation jobs and wakes up worker threads to process
propagation jobs if messages are available. The drivers for non-Oracle messaging systems run
as clients of the messaging systems for all messaging operations.

Oracle Database
As an Oracle Database feature, Messaging Gateway provides a mechanism of message
propagation between Oracle Database Advanced Queuing and non-Oracle messaging
systems. Oracle Database Advanced Queuing is involved in every propagation job as either
propagation source or propagation destination.

Messaging Gateway is managed through the PL/SQL administration package DBMS_MGWADM. All
configuration information and execution state information of Messaging Gateway are stored in
Oracle Database and can be accessed through database views.

The Messaging Gateway agent runs as an external procedure of the Oracle Database server.
Therefore, it runs only when its associated database server is running.

Non-Oracle Messaging Systems
The Messaging Gateway agent connects to non-Oracle messaging systems through
messaging system links. Messaging system links are communication channels between the
Messaging Gateway agent and non-Oracle messaging systems. Users can use the
administration package DBMS_MGWADM to configure multiple links to the same or different non-
Oracle messaging systems.

Appendix C
Introduction to Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-4 of C-82

Queues in non-Oracle messaging systems, such as WebSphere MQ queues, TIB/Rendezvous
subjects, and WebSphere MQ JMS destinations (queues and topics) can all serve as
propagation sources and destinations for Messaging Gateway. They are referred to as foreign
queues. All foreign queues involved in message propagation as source queues, destination
queues, or exception queues must be registered through the administration package. The
registration of a foreign queue does not create the physical queue in a non-Oracle messaging
system, but merely records information about the queue, such as the messaging system link to
access it, its native name, and its domain (queue or topic). The physical queue must be
created through the administration interface of the non-Oracle messaging system.

See Also

"Registering a Non-Oracle Queue"

Propagation Processing Overview
Propagation jobs must be defined in order for messages to be propagated from one messaging
system to another. A propagation job defines the source queue, destination queue, and various
other attributes that affect the processing of the propagation job.

If the propagation source is a queue (point-to-point), then the Messaging Gateway agent
moves all messages in the queue to the destination. If the propagation source is a topic
(publish/subscribe), then the Messaging Gateway agent creates a subscription on the
propagation source topic. The agent moves all messages that are published to the topic after
the subscription is created.

A propagation job is processed when it is enabled. Disabling a propagation job stops
propagation processing but does not stop message subscription.

When the Messaging Gateway agent processes a propagation job, it dequeues messages
from the source queue and enqueues the messages to the destination queue. As each
message is propagated, it is converted from its native format in the source messaging system
to its native format in the destination messaging system. Messaging Gateway provides
automatic message conversions between simple and commonly used message formats. You
can customize message conversions by providing your own message transformation functions.

When the Messaging Gateway agent fails to convert a message from the source format to the
destination format, the agent moves the message from the source queue to an exception
queue, if the exception queue exists, and continues to process the propagation job.

If the Messaging Gateway agent runs into failures when processing a propagation job, it retries
up to sixteen times in an exponential backoff scheme (from two seconds up to thirty minutes)
before it stops retrying.

To guarantee reliable message delivery, Messaging Gateway requires logging queues in
messaging systems that support transactions and persistent messages. The Messaging
Gateway agent uses the logging queues to store the processing states of propagation jobs so
that it can restore propagation processing from failures.

See Also

"Configuring Oracle Messaging Gateway Propagation Jobs"

Appendix C
Introduction to Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-5 of C-82

Oracle Database AQ Buffered Messages and Messaging Gateway
Messaging Gateway does not support propagation of buffered messages. In outbound
propagation, the Messaging Gateway agent dequeues only persistent messages from AQ
queues. In inbound propagation, the Messaging Gateway agent always enqueues persistent
messages into AQ queues.

Getting Started with Oracle Messaging Gateway
The following topics describe Oracle Messaging Gateway (MGW) prerequisites and how to
load, set up, and unload Messaging Gateway. They also describe how to set up and modify the
mgw.ora initialization file.

• Oracle Messaging Gateway Prerequisites

• Loading and Setting Up Oracle Messaging Gateway

• Setting Up Non-Oracle Messaging Systems

• Verifying the Oracle Messaging Gateway Setup

• Unloading Oracle Messaging Gateway

• Understanding the mgw.ora Initialization File

Oracle Messaging Gateway Prerequisites
Messaging Gateway uses one Oracle Scheduler job for each Messaging Gateway agent. If the
value of the JOB_QUEUE_PROCESSES database initialization parameter is zero, then no Oracle
Scheduler jobs will run. If the value is non-zero, it effectively becomes the maximum number of
Scheduler jobs and job queue jobs that can run concurrently.

Verify that a non-zero value is set, and that it is large enough to accommodate a Scheduler job
for each Messaging Gateway agent to be started.

Loading and Setting Up Oracle Messaging Gateway
Perform the following procedures before running Messaging Gateway:

• Loading Database Objects into the Database

• Modifying listener.ora for the External Procedure

• Modifying tnsnames.ora for the External Procedure

• Setting Up an mgw.ora Initialization File

• Creating an Oracle Messaging Gateway Administrator User

• Creating an Oracle Messaging Gateway Agent User

• Configuring Oracle Messaging Gateway Connection Information

• Configuring Oracle Messaging Gateway in an Oracle RAC Environment

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-6 of C-82

Note

These setup instructions are specific to 32-bit and 64-bit versions of the Windows
and 64-bit versions of the Unix-based operating systems. The tasks apply to both
Windows and Unix-based operating systems, except where "Windows Operating
System Only" or "Linux Operating System Only" is indicated. For other operating
systems, see operating-system specific documentation.

Loading Database Objects into the Database
Using SQL*Plus, run ORACLE_HOME/mgw/admin/catmgw.sql as user SYS as SYSDBA. This script
loads the database objects necessary for Messaging Gateway, including roles, tables, views,
object types, and PL/SQL packages. It creates public synonyms for Messaging Gateway
PL/SQL packages. It creates two roles, MGW_ADMINISTRATOR_ROLE and MGW_AGENT_ROLE, with
certain privileges granted. All objects are owned by SYS.

Note

In a CDB environment, run ORACLE_HOME/mgw/admin/catmgw.sql as PDB root.

Modifying listener.ora for the External Procedure
This procedure is for Unix-based operating systems only. Static service information for the
listener is not necessary on the Windows operating system.

You must modify listener.ora so that the Messaging Gateway PL/SQL packages can call the
external procedure.

1. Verify that the default Inter-process Communication (IPC) protocol address for the external
procedures is set.

LISTENER = (ADDRESS_LIST=
(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC))

2. Add static service information for the listener in step 1. This involves setting a SID_DESC for
the listener. Within the SID_DESC, the parameters described in Table C-1 are important to
Messaging Gateway and must be specified according to your own situation.

Example C-1 Adding Static Service Information for a Listener

Add a SID_DESC
SID_LIST_LISTENER= (SID_LIST=
(SID_DESC =
 (SID_NAME= mgwextproc)
 (ENVS=
 "LD_LIBRARY_PATH=JRE_HOME/lib/amd64:JRE_HOME/lib/amd64/server:ORACLE_HOME/lib")
 (ORACLE_HOME=ORACLE_HOME)
 (PROGRAM = extproc))

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-7 of C-82

Table C-1 SID_DESC Parameters

Parameter Description

SID_NAME The SID that is specified in the net service name in tnsnames.ora. In the following
example, the SID_NAME is mgwextproc.

ENVS Set up the LD_LIBRARY_PATH environment needed for the external procedure to run.
The LD_LIBRARY_PATH must contain the following paths:

JRE_HOME/lib/PLATFORM_TYPE
JRE_HOME/lib/PLATFORM_TYPE/server
ORACLE_HOME/lib

It should also contain any additional libraries required by third-party messaging
systems. See "Setting Up Non-Oracle Messaging Systems".

The ENVS value is LD_LIBRARY_PATH_64 for Oracle Solaris on SPARC (64-Bit) and
Oracle Solaris on x86-64 (64-Bit), LIBPATH for IBM AIX on POWER Systems, and
LD_LIBRARY_PATH for the remaining platforms.

ORACLE_HOME Your Oracle home directory. Using $ORACLE_HOME does not work.

PROGRAM The name of the external procedure agent, which is extproc

Note

JRE_HOME represents the root directory of a JRE installation, just as ORACLE_HOME
represents the root directory of an Oracle installation. Oracle recommends that you
use the JRE installed with Oracle Database.

Example C-1 adds SID_NAME mgwextproc to a listener.ora file for Linux x86.

Modifying tnsnames.ora for the External Procedure
For the external procedure, configure a net service name MGW_AGENT in tnsnames.ora whose
connect descriptor matches the information configured in listener.ora, as shown in
Example C-2. The net service name must be MGW_AGENT (this value is fixed). The KEY value
must match the KEY value specified for the IPC protocol in listener.ora. The SID value must
match the value specified for SID_NAME of the SID_DESC entry in listener.ora.

Note

If the names.default_domain parameter for sqlnet.ora has been used to set a default
domain, then that domain must be appended to the MGW_AGENT net service name in
tnsnames.ora. For example, if sqlnet.ora contains the entry
names.default_domain=acme.com, then the net service name in tnsnames.ora must
be MGW_AGENT.acme.com.

Example C-2 Configuring MGW_AGENT

MGW_AGENT =
(DESCRIPTION=

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-8 of C-82

 (ADDRESS_LIST= (ADDRESS= (PROTOCOL=IPC)(KEY=EXTPROC)))
 (CONNECT_DATA= (SID=mgwextproc)))

Setting Up an mgw.ora Initialization File
The Messaging Gateway default initialization file ORACLE_HOME/mgw/admin/mgw.ora is a text
file. The Messaging Gateway external procedure uses it to get initialization parameters to start
the Messaging Gateway agent. Copy ORACLE_HOME/mgw/admin/sample_mgw.ora to mgw.ora
and modify it according to your situation.

The following procedure sets environment variables and other parameters required for all
applications of Messaging Gateway:

1. Windows Operating System Only: Set the MGW_PRE_PATH variable. Its value is the path to
the jvm.dll library:

set MGW_PRE_PATH = JRE_HOME\bin\client

This variable is prepended to the path inherited by the Messaging Gateway agent process.

2. Set CLASSPATH to include at least the following:

• JRE runtime classes:

JRE_HOME/lib/rt.jar

• Oracle JDBC classes:

ORACLE_HOME/jdbc/lib/ojdbc6.jar

• Oracle internationalization classes:

ORACLE_HOME/jlib/orai18n.jar

• SQLJ runtime:

ORACLE_HOME/sqlj/lib/runtime12.jar

• Java Message Service (JMS) interface

ORACLE_HOME/rdbms/jlib/jmscommon.jar

• Oracle JMS implementation classes

ORACLE_HOME/rdbms/jlib/aqapi.jar

• Java transaction API

ORACLE_HOME/jlib/jta.jar

• Any additional classes needed for Messaging Gateway to access non-Oracle
messaging systems

Note

Replace ORACLE_HOME with the appropriate, spelled-out value.
Using $ORACLE_HOME, for example, does not work.

Users of the Windows operating system must set CLASSPATH using the
Windows operating system path syntax.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-9 of C-82

See Also

"Setting Up Non-Oracle Messaging Systems"

Creating an Oracle Messaging Gateway Administrator User
To perform Messaging Gateway administration work, a database user must be created with
MGW_ADMINISTRATOR_ROLE privileges, as shown in Example C-3.

Example C-3 Creating a Messaging Gateway Administrator User

CREATE USER admin_user IDENTIFIED BY admin_password;
GRANT CREATE SESSION to admin_user;
GRANT MGW_ADMINISTRATOR_ROLE to admin_user;

Creating an Oracle Messaging Gateway Agent User
To establish the Messaging Gateway agent connection back to the database, a database user
with MGW_AGENT_ROLE privileges must be created, as shown in Example C-4.

Example C-4 Creating a Messaging Gateway Agent User

CREATE USER agent_user IDENTIFIED BY agent_password;
GRANT CREATE SESSION to agent_user;
GRANT MGW_AGENT_ROLE to agent_user;

Configuring Oracle Messaging Gateway Connection Information
After the Messaging Gateway agent user is created, the administration user uses
DBMS_MGWADM.ALTER_AGENT to configure Messaging Gateway with the user name, password,
and database connect string used by the Messaging Gateway agent to connect back to the
database, as shown in Example C-5. Use the Messaging Gateway user name and password
that you created in "Creating an Oracle Messaging Gateway Agent User". The database
connect string parameter can be set to either a net service name in tnsnames.ora (with IPC
protocol for better performance) or NULL. If NULL, then the oracle_sid parameter must be set in
mgw.ora.

For this release, always specify a not NULL value for the database connect string parameter
when calling DBMS_MGWADM.ALTER_AGENT.

Example C-5 Configuring Messaging Gateway Connection Information

set echo off
set verify off
connect admin_user

ACCEPT password CHAR PROMPT 'Enter the password for AGENT_USER: ' HIDE

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'default_agent',
 username => 'agent_user',
 password => '&password',
 database => 'agent_database');

Configuring Oracle Messaging Gateway in an Oracle RAC Environment
This section contains these topics:

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-10 of C-82

• Configuring Connection Information for the MGW Agent Connections

• Setting the Oracle RAC Instance for the Messaging Gateway Agent

Configuring Connection Information for the MGW Agent Connections
You must make all database connections made by the Messaging Gateway agent to the
instance on which the Messaging Gateway agent process is running. This ensures correct
failover behavior in an Oracle RAC environment. You can configure connections this way by
having the instances use slightly different tnsnames.ora files. Each file contains an entry with
the same net service name, but the connect data refers to only the instance associated with
that tnsnames.ora file. The common net service name would then be used for the database
parameter when DBMS_MGWADM.ALTER_AGENT is used to configure the Messaging Gateway
agent database connection information.

For example, in a two-instance Oracle RAC environment with instances OraDB1 and OraDB2,
where the net service name AGENT_DB is to be used, the tnsnames.ora for instance OraDB1
would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost1.mycorp.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB1)
)
)

The tnsnames.ora for OraDB2 would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost2.mycorp.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB2)
)
)

You would then configure Messaging Gateway agent user connection information by running
the following command:

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'default_agent',
 username => 'agent_user',
 password => 'agent_password',
 database => 'agent_db');

Setting the Oracle RAC Instance for the Messaging Gateway Agent
Messaging Gateway provides service affinity for the Messaging Gateway agent external
process by leveraging the database service support of the Oracle Scheduler. By default, a
Messaging Gateway agent will use the default database service that is mapped to all
instances. If you want a Messaging Gateway agent to start on a select group of database
instances, you must create a database service for those instances and then assign the
database service to the Messaging Gateway agent using the SERVICE parameter of the
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT procedures. The
DBMS_MGWADM.STARTUP procedure submits an Oracle Scheduler job that starts the Messaging

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-11 of C-82

Gateway agent external process when the Scheduler job is executed. The Scheduler job will
use the database service configured for the Messaging Gateway agent.

The database service specified by the SERVICE parameter is only used for the service affinity of
the Oracle Scheduler job and thus the service affinity for the Messaging Gateway external
process. It is not used for the database connections made by the Messaging Gateway agent
user. Those JDBC client connections are based on the values specified for the DATABASE and
CONNTYPE parameters.

See Also

"Running the Oracle Messaging Gateway Agent on Oracle RAC"

Setting Up Non-Oracle Messaging Systems
This section contains these topics:

• Setting Up for TIB/Rendezvous

• Setting Up for WebSphere MQ Base Java or JMS

Setting Up for TIB/Rendezvous
Running as a TIB/Rendezvous Java client application, the Messaging Gateway agent requires
TIB/Rendezvous software to be installed on the computer where the Messaging Gateway
agent runs. In this section TIBRV_HOME refers to the installed TIB/Rendezvous software
location.

Modifying listener.ora

On the Linux operating system, LD_LIBRARY_PATH in the entry for Messaging Gateway must
include TIBRV_HOME/lib for the agent to access TIB/Rendezvous shared library files.

See Also

"Modifying listener.ora for the External Procedure"

On the Windows operating system, you are not required to modify listener.ora. But the
system environment variable PATH must include TIBRV_HOME\bin.

Modifying mgw.ora

MGW_PRE_PATH must include the directory that contains the TIB/Rendezvous license ticket file
(tibrv.tkt), which usually is located in TIBRV_HOME/bin.

CLASSPATH must include the TIB/Rendezvous jar file TIBRV_HOME/lib/tibrvj.jar. If you use
your own customized TIB/Rendezvous advisory message callback, then the location of the
callback class must also be included.

You can set the following Java properties to change the default setting:

• oracle.mgw.tibrv.encoding

• oracle.mgw.tibrv.intraProcAdvSubjects

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-12 of C-82

• oracle.mgw.tibrv.advMsgCallback

See Also

"Understanding the mgw.ora Initialization File"

Example C-6 Setting Java Properties

setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1
setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>
setJavaProp oracle.mgw.tibrv.advMsgCallback=MyadvCallback

Setting Up for WebSphere MQ Base Java or JMS
The WebSphere MQ client and WebSphere MQ classes for Java and JMS must be installed on
the computer where the Messaging Gateway agent runs. In this section MQ_HOME refers to the
location of the installed client. On the Linux operating system, this location is always /opt/mqm.
On the Windows operating system, the installed location can vary.

Modifying listener.ora

No extra modification of listener.ora is necessary for Messaging Gateway to access
WebSphere MQ.

Modifying mgw.ora

When using WebSphere MQ Base Java (non-JMS) interface, set CLASSPATH to include at least
the following (in addition to those in "Setting Up an mgw.ora Initialization File"):

• MQ_HOME/java/lib/com.ibm.mq.jar

• MQ_HOME/java/lib/connector.jar

When using WebSphere MQ JMS interface, set CLASSPATH to include at least the following (in
addition to those in "Setting Up an mgw.ora Initialization File"):

• MQ_HOME/java/lib/com.ibm.mqjms.jar

• MQ_HOME/java/lib/com.ibm.mq.jar

• MQ_HOME/java/lib/connector.jar

Verifying the Oracle Messaging Gateway Setup
The following procedure verifies the setup and includes a simple startup and shutdown of the
Messaging Gateway agent:

1. Start the database listeners.

Start the listener for the external procedure and other listeners for the regular database
connection.

2. Test the database connect string for the Messaging Gateway agent user.

Run sqlplus agent_user/agent_password@agent_database.

If it is successful, then the Messaging Gateway agent can connect to the database.

3. Linux Operating System Only: Test the net service entry used to call the external
procedure.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-13 of C-82

Run sqlplus agent_user/agent_password@MGW_AGENT.

This should fail with "ORA-28547: connection to server failed, probable Oracle Net admin
error". Any other error indicates that the tnsnames.ora, listener.ora, or both are not
correct.

4. Connect as admin_user and call DBMS_MGWADM.STARTUP to start the Messaging Gateway
agent.

5. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to RUNNING and AGENT_PING
to change to REACHABLE.

6. Connect as admin_user and call DBMS_MGWADM.SHUTDOWN to shut down the Messaging
Gateway agent.

7. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to NOT_STARTED.

Unloading Oracle Messaging Gateway
Use this procedure to unload Messaging Gateway:

1. Shut down Messaging Gateway.

2. Remove any user-created queues whose payload is a Messaging Gateway canonical type
(for example, SYS.MGW_BASIC_MSG_T).

3. Using SQL*Plus, run ORACLE_HOME/mgw/admin/catnomgw.sql as user SYS as SYSDBA.

This drops the database objects used by Messaging Gateway, including roles, tables,
views, packages, object types, and synonyms.

4. Remove entries for Messaging Gateway created in listener.ora and tnsnames.ora.

Understanding the mgw.ora Initialization File
Messaging Gateway reads initialization information from a text file when the Messaging
Gateway agent starts. The initialization file contains lines for setting initialization parameters,
environment variables, and Java properties. Each entity must be specified on one line. Leading
whitespace is trimmed in all cases.

A Messaging Gateway administrator can specify the initialization file to be used for a
Messaging Gateway agent via DBMS_MGWADM.CREATE_AGENT and DBMS_MGWADM.ALTER_AGENT. If
an initialization file is not specified then a default initialization file will be used.

The default initialization file for the default agent is ORACLE_HOME/mgw/admin/mgw.ora.

The default initialization file for a named agent is ORACLE_HOME/mgw/admin/mgw_AGENTNAME.ora
where AGENTNAME is the name in uppercase of the Messaging Gateway agent. For example, if
the agent name is my_agent then the name of the agent's default initialization file is
ORACLE_HOME/mgw/admin/mgw_MY_AGENT.ora. If the default initialization file for a named agent is
not found then ORACLE_HOME/mgw/admin/mgw.ora will be used.

mgw.ora Initialization Parameters
The initialization parameters are typically specified by lines having a "name=value<NL>" format
where name represents the parameter name, value represents its value and <NL> represents a
new line.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-14 of C-82

log_directory

Usage:

Specifies the directory where the Messaging Gateway log/trace file is created.

Format:

log_directory = value

Default:

ORACLE_HOME/mgw/log

Example:

log_directory = /private/mgwlog

log_level

Usage:

Specifies the level of logging detail recorded by the Messaging Gateway agent. The logging
level can be dynamically changed by calling DBMS_MGWADM.SET_LOG_LEVEL while the Messaging
Gateway agent is running. Oracle recommends that log level 0 (the default value) be used at
all times.

Format:

log_level = value

Values:

0 for basic logging; equivalent to DBMS_MGWADM.BASIC_LOGGING

1 for light tracing; equivalent to DBMS_MGWADM.TRACE_LITE_LOGGING

2 for high tracing; equivalent to DBMS_MGWADM.TRACE_HIGH_LOGGING

3 for debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_LOGGING

4 for high debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_HIGH_LOGGING

Example:

log_level = 0

mgw.ora Environment Variables
Because the Messaging Gateway process environment is not under the direct control of the
user, certain environment variables should be set using the initialization file. The environment
variables currently used by the Messaging Gateway agent are CLASSPATH, MGW_PRE_PATH, and
ORACLE_SID.

Environment variables such as CLASSPATH and MGW_PRE_PATH are set so the Messaging
Gateway agent can find the required shared objects, Java classes, and so on. Environment
variables are specified by lines having a "set env_var=value<NL>" or "setenv
env_var=value<NL>" format where env_var represents the name of the environment variable
to set, value represents the value of the environment variable, and <NL> represents a new line.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-15 of C-82

CLASSPATH

Usage:

Used by the Java Virtual Machine to find Java classes needed by the Messaging Gateway
agent for propagation between Oracle Database Advanced Queuing and non-Oracle
messaging systems.

Format:

set CLASSPATH=value

Example:

set CLASSPATH=ORACLE_HOME/jdbc/lib/ojdbc6.jar:JRE_HOME/lib/rt.jar:
ORACLE_HOME/sqlj/lib/runtime12.jar:ORACLE_HOME/jlib/orai18n.jar:ORACLE_HOME/rdbms/
jlib/jmscommon.jar:ORACLE_HOME/rdbms/jlib/aqapi.jar:ORACLE_HOME/jlib/jta.jar:
/opt/mqm/java/lib/com.ibm.mq.jar:/opt/mqm/java/lib/com.ibm.mqjms.jar:/opt/mqm/java
/lib/connector.jar

MGW_PRE_PATH

Usage:

Appended to the front of the path inherited by the Messaging Gateway process. For the
Windows operating system, this variable must be set to indicate where the library jvm.dll is
found.

Format:

set MGW_PRE_PATH=value

Example:

set MGW_PRE_PATH=JRE_HOME\bin\client

ORACLE_SID

Usage:

Can be used when a service name is not specified when configuring Messaging Gateway.

Format:

set ORACLE_SID=value

Example:

set ORACLE_SID=my_sid

mgw.ora Java Properties
You must specify Java system properties for the Messaging Gateway JVM when working with
TIB/Rendezvous subjects. You can use the setJavaProp parameter of the Messaging Gateway
initialization file for this. Java properties are specified by lines having a "setJavaProp
prop_name=value<NL>" format, where prop_name represents the name of the Java property to
set, value represents the value of the Java property, and <NL> represents a new line character.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-16 of C-82

oracle.mgw.batch_size

Usage:

This Java property represents the maximum number of messages propagated in one
transaction. It serves as a default value if the Messaging Gateway job option, MsgBatchSize, is
not specified. If altered from the default, then consideration should be given to the expected
message size and the Messaging Gateway agent memory (see max_memory parameter of
DBMS_MGWADM.ALTER_AGENT). The minimum value of this Java property is 1, the maximum is
100, and the default is 30.

See Also

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types Reference

Syntax:

setJavaProp oracle.mgw.batch_size=value

Example:

setJavaProp oracle.mgw.batch_size=10

oracle.mgw.polling_interval

Usage:

This parameter specifies the time (in milliseconds) that must elapse between polls for available
messages of a propagation source queue. The default polling interval used by Messaging
Gateway is 5000 milliseconds (5 seconds). The minimum value of this Java property is 100
millisecond, and the maximum value is 60 seconds.

Syntax:

setJavaProp oracle.mgw.polling_interval=value

Example:

setJavaProp oracle.mgw.polling_interval=1000

oracle.mgw.tibrv.encoding

Usage:

This parameter specifies the character encoding to be used by the TIB/Rendezvous
messaging system links. Only one character set for all configured TIB/Rendezvous links is
allowed due to TIB/Rendezvous restrictions. The default is ISO 8859-1 or the character set
specified by the Java system property file.encoding.

Syntax:

setJavaProp oracle.mgw.tibrv.encoding=value

Example:

setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-17 of C-82

oracle.mgw.tibrv.intraProcAdvSubjects

Usage

Used for all TIB/Rendezvous messaging system links, this parameter specifies the names of
system advisory subjects that present on the intraprocess transport.

Syntax

setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=
advisorySubjectName[:advisorySubjectName]

Example:

setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>

oracle.mgw.tibrv.advMsgCallback

Usage:

Used for all TIB/Rendezvous messaging system links, this parameter specifies the name of the
Java class that implements the TibrvMsgCallback interface to handle system advisory
messages. If it is not specified, then the default system advisory message handler provided by
Messaging Gateway is used, which writes system advisory messages into Messaging Gateway
log files. If it is specified, then the directory where the class file is stored must be included in
the CLASSPATH in mgw.ora.

Syntax:

setJavaProp oracle.mgw.tibrv.advMsgCallback=className

Example:

setJavaProp oracle.mgw.tibrv.advMsgCallback=MyAdvCallback

oracle.net.tns_admin

Usage:

This parameter specifies the directory of the tnsnames.ora file. It must be set if the Messaging
Gateway agent is configured to use the JDBC Thin driver and the database specifier of the
agent connection information is a TNSNames alias. This does not need to be set if the JDBC
OCI driver is used or the database specifier is something other than a TNSNames alias.

Syntax:

setJavaProp oracle.net.tns_admin=value

Example:

setJavaProp oracle.net.tns_admin=/myoraclehome/network/admin

mgw.ora Comment Lines
Comment lines are designated with a # character as the first character of the line.

Appendix C
Getting Started with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-18 of C-82

Working with Oracle Messaging Gateway
After Oracle Messaging Gateway (MGW) is loaded and set up, it is ready to be configured and
run. You can use DBMS_MGWADM.ALTER_AGENT to set the user name, password, database
specifier, and connection type the Messaging Gateway agent will use for creating database
connections.

Topics:

• Configuring the Oracle Messaging Gateway Agent

• Starting and Shutting Down the Oracle Messaging Gateway Agent

• Configuring Messaging System Links

• Configuring Non-Oracle Messaging System Queues

• Configuring Oracle Messaging Gateway Propagation Jobs

• Propagation Jobs_ Subscribers_ and Schedules

• Configuration Properties

Note

All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE.

See Also

"DBMS_MGWADM" and "DBMS_MGWMSG" in Oracle Database PL/SQL Packages
and Types Reference

Configuring the Oracle Messaging Gateway Agent
Messages are propagated between Oracle Database Advanced Queuing and non-Oracle
messaging systems by the Messaging Gateway agent. The Messaging Gateway agent runs as
an external process of the Oracle Database server.

Messaging Gateway supports multiple agents for a given database. A default agent is
automatically created that has the name of DEFAULT_AGENT. Additional named agents can be
created to provide propagation job isolation and grouping, and scaling in an Oracle RAC
environment. The default agent is usually sufficient for single instance, non-Oracle RAC,
environments.

This section contains these topics:

• Creating a Messaging Gateway Agent

• Removing a Messaging Gateway Agent

• Setting Database Connection

• Setting the Resource Limits

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-19 of C-82

Creating a Messaging Gateway Agent
You can use DBMS_MGWADM.CREATE_AGENT to create additional Messaging Gateway agents. The
Messaging Gateway default agent, DEFAULT_AGENT, is automatically created when Messaging
Gateway is installed and will always exist.

Agents can be configured with an agent user, connection information, database service, and
resource limits when the agent is created, or at a later time using DBMS_MGWADM.ALTER_AGENT. A
Messaging Gateway agent must be configured with a database user that has been granted the
role MGW_AGENT_ROLE before the agent can be started.

Example C-7 creates the agent named myagent and specifies the database connection
information for the agent user. Default values are used for all other parameters.

Example C-7 Creating a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.CREATE_AGENT(
 agent_name => 'myagent',
 username => 'mgwagent',
 password => 'mgwagent_password',
 database => 'mydatabase');

Removing a Messaging Gateway Agent
A Messaging Gateway agent can be removed by calling DBMS_MGWADM.REMOVE_AGENT. Before an
agent can be removed, all Messaging Gateway links associated with the agent must be
removed and the agent shut down. The default agent, DEFAULT_AGENT, cannot be removed.
Example C-8 removes the agent named myagent.

Example C-8 Removing a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.REMOVE_AGENT(agent_name => 'myagent');

Setting Database Connection
The Messaging Gateway agent runs as a process external to the database. To access Oracle
Database Advanced Queuing and the Messaging Gateway packages, the Messaging Gateway
agent needs to establish connections to the database. You can use DBMS_MGWADM.ALTER_AGENT
to set the user name, password and the database connect string that the Messaging Gateway
agent will use for creating database connections. The user must be granted the role
MGW_AGENT_ROLE before the Messaging Gateway agent can be started.

Example C-9 shows the Messaging Gateway default agent being configured for user mgwagent
with password mgwagent_password using net service name mydatabase.

Example C-9 Setting Database Connection Information

SQL> exec DBMS_MGWADM.ALTER_AGENT (
 agent_name => 'default_agent',
 username => 'mgwagent',
 password => 'mgwagent_password',
 database => 'mydatabase');

Setting the Resource Limits
You can use DBMS_MGWADM.ALTER_AGENT to set resource limits for the Messaging Gateway
agent. For example, you can set the heap size of the Messaging Gateway agent process and
the number of propagation threads used by the agent process. The default values are 64 MB

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-20 of C-82

of memory heap and one propagation thread. For named agents, these values can also be
specified when the agent is created by DBMS_MGWADM.CREATE_AGENT.

Example C-10 sets the heap size to 96 MB and two propagation threads for the agent
myagent.

The memory heap size and the number of propagation threads cannot be altered when the
Messaging Gateway agent is running.

Example C-10 Setting the Resource Limits

SQL> exec DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'myagent',
 max_memory => 96,
 max_threads => 2);

Starting and Shutting Down the Oracle Messaging Gateway Agent
This section contains these topics:

• Starting the Oracle Messaging Gateway Agent

• Shutting Down the Oracle Messaging Gateway Agent

• Oracle Messaging Gateway Agent Scheduler Job

• Running the Oracle Messaging Gateway Agent on Oracle RAC

Starting the Oracle Messaging Gateway Agent
After the Messaging Gateway agent is configured, you can start the agent with
DBMS_MGWADM.STARTUP. Example C-11 shows how to start the default agent and agent myagent.

You can use the MGW_GATEWAY view to check the status of the Messaging Gateway agent, as
described in Monitoring Oracle Messaging Gateway.

Example C-11 Starting the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.STARTUP;
SQL> exec DBMS_MGWADM.STARTUP ('myagent');

Shutting Down the Oracle Messaging Gateway Agent
You can use DBMS_MGWADM.SHUTDOWN to shut down the Messaging Gateway agent.
Example C-12 shows how to shut down the Messaging Gateway default agent and agent
myagent.

You can use the MGW_GATEWAY view to check if the Messaging Gateway agent has shut down
successfully, as described in Monitoring Oracle Messaging Gateway.

Example C-12 Shutting Down the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.SHUTDOWN;
SQL> exec DBMS_MGWADM.SHUTDOWN ('myagent');

Oracle Messaging Gateway Agent Scheduler Job
Messaging Gateway uses a Scheduler job to start the Messaging Gateway agent. This job is
created when procedure DBMS_MGWADM.STARTUP is called. When the job is run, it calls an
external procedure that creates the Messaging Gateway agent in an external process. The job
is removed after:

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-21 of C-82

• The agent shuts down because DBMS_MGWADM.SHUTDOWN was called

• The agent terminates because a non-restartable error occurs

Messaging Gateway uses DBMS_SCHEDULER to create a repeatable Scheduler job with a repeat
interval of one minute. The job is owned by SYS. A repeatable job enables the Messaging
Gateway agent to restart automatically when a given job instance ends because of a database
shutdown, database malfunction, or a restartable error. Only one instance of a Messaging
Gateway agent job runs at a given time.

Each agent uses a Scheduler job class to specify the service affinity for the agent's Scheduler
job. The job class will be configured with the database service specified by
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. A database administrator is
responsible for setting up the database service. If no database service is specified, the default
database service that maps to every instance is used.

The name of the Scheduler job class used by the Messaging Gateway default agent is
SYS.MGW_JOBCLS_DEFAULT_AGENT. The Scheduler job used by the default agent is
SYS.MGW_JOB_DEFAULT_AGENT.

The name of the Scheduler job class used by a Messaging Gateway named agent is
SYS.MGW_JOBCLS_<agent_name>. The Scheduler job used by a named agent is
SYS.MGW_JOB_<agent_name>.

If the agent job encounters an error, then the error is classified as either a restartable error or
non-restartable error. A restartable error indicates a problem that might go away if the agent
job were to be restarted. A non-restartable error indicates a problem that is likely to persist and
be encountered again if the agent job restarts. ORA-01089 (immediate shutdown in progress)
and ORA-28576 (lost RPC connection to external procedure) are examples of restartable
errors. ORA-06520 (error loading external library) is an example of a non-restartable error.

Messaging Gateway uses a database shutdown trigger. If the Messaging Gateway agent is
running on the instance being shut down, then the trigger notifies the agent of the shutdown,
and upon receipt of the notification, the agent will terminate the current run. The job scheduler
will automatically schedule the job to run again at a future time.

If a Messaging Gateway agent job instance ends because of a database malfunction or a
restartable error detected by the agent job, then the job will not be removed and the job
scheduler will automatically schedule the job to run again at a future time.

The MGW_GATEWAY view shows the agent status, database service, and the database instance
on which the Messaging Gateway agent is current running. The Oracle Scheduler views
provide information about Scheduler jobs, job classes, and job run details.

See Also

• "DBMS_SCHEDULER" in Oracle Database PL/SQL Packages and Types
Reference

• Monitoring Oracle Messaging Gateway

Running the Oracle Messaging Gateway Agent on Oracle RAC
While the Messaging Gateway job startup and shutdown principles are the same for Oracle
Real Application Clusters (Oracle RAC) and non-Oracle RAC environments, there are some
things to keep in mind for an Oracle RAC environment.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-22 of C-82

A single process of each configured Messaging Gateway agent can be running, even in an
Oracle RAC environment. For example, if the default agent and two named agents have been
configured with an agent user, then one instance of all three agents could be running at the
same time. The database service associated with each agent determines the service affinity of
the agent's Scheduler job, and thus, the database instance on which the agent process can
run.

When a database instance is shut down in an Oracle RAC environment, the Messaging
Gateway shutdown trigger will notify the agent to shut down only if the Messaging Gateway
agent is running on the instance being shut down. The job scheduler will automatically
schedule the job to be run again at a future time, either on another instance, or if the job can
only run on the instance being shut down, when that instance is restarted.

Oracle recommends that all database connections made by the Messaging Gateway agent be
made to the instance on which the Messaging Gateway agent process is running. This ensures
correct failover behavior in an Oracle RAC environment.

If a Messaging Gateway agent has been associated with a database service, the agent's
Scheduler job will not run unless that service is current enabled on a running instance. When
you shut down a database Oracle stops all services to that database and you may need to
manually restart the services when you start the database.

See Also

• "Configuring Oracle Messaging Gateway in an Oracle RAC Environment"

• "DBMS_MGWADM" and "DBMS_SCHEDULER" in Oracle Database PL/SQL Packages and
Types Reference

Configuring Messaging System Links
Running as a client of non-Oracle messaging systems, the Messaging Gateway agent
communicates with non-Oracle messaging systems through messaging system links. A
messaging system link is a set of connections between the Messaging Gateway agent and a
non-Oracle messaging system.

To configure a messaging system link of a non-Oracle messaging system, users must provide
information for the agent to make connections to the non-Oracle messaging system. Users can
specify the maximum number of messaging connections.

An agent name will be associated with each messaging system link. This is done when the link
is created and cannot be changed. The agent associated with the link is then responsible for
processing all propagation jobs that use a registered queue associated with that link. The
Messaging Gateway default agent will be used if an agent name is not specified when the
messaging system link is created.

When configuring a messaging system link for a non-Oracle messaging system that supports
transactions and persistent messages, the native name of log queues for inbound and
outbound propagation must be specified in order to guarantee exactly-once message delivery.
The log queues should be used only by the Messaging Gateway agent. No other programs
should enqueue or dequeue messages of the log queues. The inbound log queue and
outbound log queue can refer to the same physical queue, but better performance can be
achieved if they refer to different physical queues.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-23 of C-82

One and only one Messaging Gateway agent should access a propagation log queue. This
insures that a given log queue contains log records for only those propagation jobs processed
by that agent and that the agent is free to discard any other log records it might encounter.

When configuring a messaging system link, users can also specify an options argument. An
options argument is a set of {name, value} pairs of type SYS.MGW_PROPERTY.

This section contains these topics:

• Creating a WebSphere MQ Base Java Link

• Creating a WebSphere MQ JMS Link

• Creating a WebSphere MQ Link to Use SSL

• Creating a TIB/Rendezvous Link

• Altering a Messaging System Link

• Removing a Messaging System Link

• Views for Messaging System Links

Creating a WebSphere MQ Base Java Link
A WebSphere MQ Base Java link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK
with the following information provided:

• Interface type: DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE

• WebSphere MQ connection information:

– Host name and port number of the WebSphere MQ server

– Queue manager name

– Channel name

– User name and password

• Maximum number of messaging connections allowed

• Log queue names for inbound and outbound propagation

• Optional information such as:

– Send, receive, and security exits

– Character sets

Example C-13 configures a WebSphere MQ Base Java link mqlink. The link is configured to
use the WebSphere MQ queue manager my.queue.manager on host myhost.mydomain and port
1414, using WebSphere MQ channel mychannel.

This example also sets the option to register a WebSphere MQ SendExit class. The class
mySendExit must be in the CLASSPATH set in mgw.ora. The Messaging Gateway default agent
(DEFAULT_AGENT) is responsible for the link and all propagation jobs using the link.

See Also

• "Understanding the mgw.ora Initialization File" for information on setting the
CLASSPATH of the Messaging Gateway agent

• "WebSphere MQ System Properties"

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-24 of C-82

Example C-13 Configuring a WebSphere MQ Base Java Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();

 v_prop.interface_type := dbms_mgwadm.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- Specify a WebSphere MQ send exit class 'mySendExit' to be associated with
 -- the queue.
 -- Note that this is used as an example of how to use the options parameter,
 -- but is not an option that is usually set.
 v_options := sys.mgw_properties(sys.mgw_property('MQ_SendExit',
 'mySendExit'));
 dbms_mgwadm.create_msgsystem_link(
 linkname => 'mqlink', agent_name=>'default_agent', properties => v_prop,
 options => v_options);
END;

Creating a WebSphere MQ JMS Link
A WebSphere MQ JMS link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK with
the following information provided:

• Interface type

Java Message Service (JMS) distinguishes between queue and topic connections. The
Sun Microsystem JMS 1.1 standard supports domain unification that allows both JMS
queues and topics to be accessed by a single JMS connection:

– A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_CONNECTION
can be used to access both JMS queues and topics. This is the recommended
interface for a WebSphere MQ JMS link.

– A WebSphere MQ JMS link created with interface type
DBMS_MGWADM.JMS_QUEUE_CONNECTION can be used to access only JMS queues.

– A WebSphere MQ JMS link created with interface type
DBMS_MGWADM.JMS_TOPIC_CONNECTION can be used to access only JMS topics.

• WebSphere MQ connection information:

– Host name and port number of the WebSphere MQ server

– Queue manager name

– Channel name

– User name and password

• Maximum number of messaging connections allowed

A messaging connection is mapped to a JMS session.

• Log destination (JMS queue or JMS topic) for inbound and outbound propagation

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-25 of C-82

The log destination type must be valid for the link type. JMS unified links and JMS queue
links must use JMS queues for log destinations, and JMS topic links must use topics:

– For a WebSphere MQ JMS unified or queue link, the log queue name must be the
name of a physical WebSphere MQ JMS queue created using WebSphere MQ
administration tools.

– For a WebSphere MQ JMS topic link, the log topic name must be the name of a
WebSphere MQ JMS topic. The physical WebSphere MQ queue used by that topic
must be created using WebSphere MQ administration tools. By default, the physical
queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE. A link option can be used to specify
a different physical queue.

• Optional information such as:

– Send, receive, and security exits

– Character sets

– WebSphere MQ publish/subscribe configuration used for JMS topics

Example C-14 configures a Messaging Gateway link to a WebSphere MQ queue manager
using a JMS topic interface. The link is named mqjmslink and is configured to use the
WebSphere MQ queue manager my.queue.manager on host myhost.mydomain and port 1414,
using WebSphere MQ channel mychannel.

This example also uses the options parameter to specify a nondefault durable subscriber
queue to be used with the log topic. The Messaging Gateway agent myagent is responsible for
the link and all propagation jobs using the link.

See Also

• "Registering a WebSphere MQ JMS Queue or Topic" for more information on JMS
queues and topics

• "WebSphere MQ System Properties"

Example C-14 Configuring a WebSphere MQ JMS Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.max_connections := 1;

 v_prop.interface_type := DBMS_MGWADM.JMS_TOPIC_CONNECTION;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';

 v_prop.outbound_log_queue := 'mylogtopic'

 -- Specify a WebSphere MQ durable subscriber queue to be used with the
 -- log topic.
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_JMSDurSubQueue', 'myDSQueue'));

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-26 of C-82

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname => 'mqjmslink',
 agent_name => 'myagent',
 properties => v_prop,
 options => v_options);
END;

Creating a WebSphere MQ Link to Use SSL
Messaging Gateway allows SSL support for IBM WebSphere MQ and WebSphere MQ JMS
connections. This section describes how to configure Messaging Gateway to use SSL for a
WebSphere MQ Base Java link and the same information applies to a WebSphere MQ JMS
link. There are no differences in terms of the Messaging Gateway configuration.

The following are needed in order to use SSL for WebSphere MQ connections:

• A WebSphere MQ channel configured to use SSL.

• A truststore and optionally a keystore file that are in a location accessible to the Messaging
Gateway agent process. In an Oracle RAC environment, these files must be accessible to
all instances on which the Messaging Gateway agent process might run, using the same
path specification.

• Use DBMS_MGWADM.CREATE_MSGSYSTEM_LINK to create a WebSphere MQ link with the
desired SSL related link options. At minimum, the MQ_SSLCIPHERSUITE property should be
set to specify the SSL ciphersuite used by the channel.

• Use DBMS_MGWADM.SET_OPTION to set certain JSSE Java properties for the Messaging
Gateway agent assigned to the link.

JSEE related properties:

• java.net.ssl.keyStore

This property is used to specify the location of the keystore. A keystore is a database of
key material used for various purposes, including authentication and data integrity.

• java.net.ssl.keyStorePassword

This property is used to specify the password of the keystore. This password is used to
check the integrity of the data in the keystore before accessing it.

• java.net.ssl.trustStore

This property is used to specify the location of the truststore. A truststore is a keystore that
is used when making decisions about which clients and servers are trusted.

• java.net.ssl.trustStorePassword

This property is used to specify the password of the truststore. This password is used to
check the integrity of the data in the truststore before accessing it.

The java.net.ssl.keyStore and java.net.ssl.keyStorePassword properties are only needed if
the WebSphere MQ channel is configured to use SSL client authentication.

Example C-15 configures a WebSphere MQ Base Java link mqssllink to use SSL connections
using the SSL_RSA_WITH_RC4_128_MD5 ciphersuite. It assumes the channel has been configured
for SSL client authentication so the Messaging Gateway agent associated with the link,
DEFAULT_AGENT, is configured with Java properties for both a keystore and a truststore.

This configuration should be done when the Messaging Gateway agent is shut down since the
Java properties set by DBMS_MGWADM.SET_OPTION are set only when the agent first starts. If the

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-27 of C-82

agent is running when the configuration is done it will need to be shutdown and restarted
before the SSL connections will be used.

Note

"WebSphere MQ System Properties"

Example C-15 Configuring a WebSphere MQ Base Java Link for SSL

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
 v_agent varchar2(30) := 'default_agent';
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.interface_type := DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mysslchannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- specify the SSL ciphersuite
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_SSLCIPHERSUITE','SSL_RSA_WITH_RC4_128_MD5'));

 -- create the MQSeries link
 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'mqssllink',
 agent_name => v_agent,
 properties => v_prop,
 options => v_options);

 -- set Java properties for the agent that specify the JSSE security
 -- properties for the keystore and truststore; the paths will be
 -- saved as cleartext and the passwords encrypted

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStore',
 option_value => '/tmp/mq_ssl/key.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStorePassword',
 option_value => 'welcome',
 encrypted => true);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.trustStore',
 option_value => '/tmp/mq_ssl/trust.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-28 of C-82

 option_name => 'javax.net.ssl.trustStorePassword',
 option_value => 'welcome',
 encrypted => true);
END;

Creating a TIB/Rendezvous Link
A TIB/Rendezvous link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK with three
parameters (service, network and daemon) for the agent to create a corresponding transport of
TibrvRvdTransport type.

A TIB/Rendezvous message system link does not need propagation log queues. Logging
information is stored in memory. Therefore, Messaging Gateway can only guarantee at-most-
once message delivery.

Example C-16 configures a TIB/Rendezvous link named rvlink that connects to the rvd
daemon on the local computer. An agent name is not specified for the link so the Messaging
Gateway default agent (DEFAULT_AGENT) is responsible for the link and all propagation jobs
using the link.

See Also

"TIB/Rendezvous System Properties"

Example C-16 Configuring a TIB/Rendezvous Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_tibrv_properties;
BEGIN
 v_prop := sys.mgw_tibrv_properties.construct();

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'rvlink', properties => v_prop);
END;

Altering a Messaging System Link
Using DBMS_MGWADM.ALTER_MSGSYSTEM_LINK, you can alter some link information after the link
is created. You can alter link information with the Messaging Gateway agent running or shut
down. Example C-17 alters the link mqlink to change the max_connections property.

See Also

"Configuration Properties" for restrictions on changes when the Messaging Gateway
agent is running

Example C-17 Altering a WebSphere MQ Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 -- use alter_construct() for initialization
 v_prop := sys.mgw_mqseries_properties.alter_construct();

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-29 of C-82

 v_prop.max_connections := 2;

 DBMS_MGWADM.ALTER_MSGSYSTEM_LINK(
 linkname => 'mqlink', properties => v_prop);
END;

Removing a Messaging System Link
You can remove a Messaging Gateway link to a non-Oracle messaging system with
DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK, but only if all registered queues associated with this
link have already been unregistered. The link can be removed with the Messaging Gateway
agent running or shut down. Example C-18 removes the link mqlink.

Example C-18 Removing a Messaging Gateway Link

BEGIN
 dbms_mgwadm.remove_msgsystem_link(linkname =>'mqlink');
END;

Views for Messaging System Links
You can use the MGW_LINKS view to check links that have been created. It lists the name and
link type, as shown in Example C-19.

You can use the MGW_MQSERIES_LINKS and MGW_TIBRV_LINKS views to check messaging system
type-specific configuration information, as shown in Example C-20.

Example C-19 Listing All Messaging Gateway Links

SQL> select link_name, link_type from MGW_LINKS;

LINK_NAME LINK_TYPE

MQLINK MQSERIES
RVLINK TIBRV

Example C-20 Checking Messaging System Link Configuration Information

SQL> select link_name, queue_manager, channel, hostname from mgw_mqseries_links;

LINK_NAME QUEUE_MANAGER CHANNEL HOSTNAME
--
MQLINK my.queue.manager mychannel myhost.mydomain

SQL> select link_name, service, network, daemon from mgw_tibrv_links;

LINK_NAME SERVICE NETWORK DAEMON

RVLINK

Configuring Non-Oracle Messaging System Queues
All non-Oracle messaging system queues involved in propagation as a source queue,
destination queue, or exception queue must be registered through the Messaging Gateway
administration interface. You do not need to register Oracle Database Advanced Queuing
queues involved in propagation.

This section contains these topics:

• Registering a Non-Oracle Queue

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-30 of C-82

• Unregistering a Non-Oracle Queue

• View for Registered Non-Oracle Queues

Registering a Non-Oracle Queue
You can register a non-Oracle queue using DBMS_MGWADM.REGISTER_FOREIGN_QUEUE.
Registering a non-Oracle queue provides information for the Messaging Gateway agent to
access the queue. However, it does not create the physical queue in the non-Oracle
messaging system. The physical queue must be created using the non-Oracle messaging
system administration interfaces before the Messaging Gateway agent accesses the queue.

The following information is used to register a non-Oracle queue:

• Name of the messaging system link used to access the queue

• Native name of the queue (its name in the non-Oracle messaging system)

• Domain of the queue

– DBMS_MGWADM.DOMAIN_QUEUE for a point-to-point queue

– DBMS_MGWADM.DOMAIN_TOPIC for a publish/subscribe queue

• Options specific to the non-Oracle messaging system

These options are a set of {name, value} pairs, both of which are strings.

See Also

"Optional Foreign Queue Configuration Properties"

Example C-21 shows how to register the WebSphere MQ Base Java queue my_mq_queue as a
Messaging Gateway queue destq.

Example C-21 Registering a WebSphere MQ Base Java Queue

BEGIN
 DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(
 name => 'destq',
 linkname => 'mqlink',
 provider_queue => 'my_mq_queue',
 domain => dbms_mgwadm.DOMAIN_QUEUE);
END;

Registering a WebSphere MQ Base Java Queue
The domain must be DBMS_MGWADM.DOMAIN_QUEUE or NULL, because only point-to-point queues
are supported for WebSphere MQ.

Registering a WebSphere MQ JMS Queue or Topic
When registering a WebSphere MQ JMS queue, the domain must be
DBMS_MGWADM.DOMAIN_QUEUE, and the linkname parameter must refer to a WebSphere MQ JMS
unified link or queue link.

When registering a WebSphere MQ JMS topic, the domain must be
DBMS_MGWADM.DOMAIN_TOPIC, and the linkname parameter must refer to a WebSphere MQ JMS
unified link or topic link. The provider_queue for a WebSphere MQ JMS topic used as a

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-31 of C-82

propagation source may include wildcards. See WebSphere MQ documentation for wildcard
syntax.

Registering a TIB/Rendezvous Subject
When registering a TIB/Rendezvous subject with Messaging Gateway, the provider_queue
parameter specifies a TIB/Rendezvous subject name. The domain of a registered TIB/
Rendezvous queue must be DBMS_MGWADM.DOMAIN_TOPIC or NULL.

A registered TIB/Rendezvous queue with provider_queue set to a wildcard subject name can
be used as a propagation source queue for inbound propagation. It is not recommended to use
queues with wildcard subject names as propagation destination queues or exception queues.
As documented in TIB/Rendezvous, sending messages to wildcard subjects can trigger
unexpected behavior. However, neither Messaging Gateway nor TIB/Rendezvous prevents you
from doing so.

Unregistering a Non-Oracle Queue
A non-Oracle queue can be unregistered with DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE, but
only if there are no propagation jobs referencing it.

Example C-22 unregisters the queue destq of the link mqlink.

Example C-22 Unregistering a Non-Oracle Queue

BEGIN
 DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE(name =>'destq', linkname=>'mqlink');
END;

View for Registered Non-Oracle Queues
You can use the MGW_FOREIGN_QUEUES view to check which non-Oracle queues are registered
and what link each uses, as shown in Example C-23.

Example C-23 Checking Which Queues Are Registered

SELECT name, link_name, provider_queue FROM MGW_FOREIGN_QUEUES;

NAME LINK_NAME PROVIDER_QUEUE

DESTQ MQLINK my_mq_queue

Configuring Oracle Messaging Gateway Propagation Jobs
Propagating messages between an Oracle Database AQ queue and a non-Oracle messaging
system queue requires a propagation job. Each propagation job will have a unique propagation
type, source, and destination triplet.

You can create a propagation job to propagate messages between JMS destinations. You can
also create a propagation job to propagate messages between non-JMS queues. Messaging
Gateway does not support message propagation between a JMS destination and a non-JMS
queue.

This section contains these topics:

• Propagation Job Overview

• Creating an Oracle Messaging Gateway Propagation Job

• Enabling and Disabling a Propagation Job

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-32 of C-82

• Resetting a Propagation Job

• Altering a Propagation Job

• Removing a Propagation Job

Propagation Job Overview
A propagation job specifies what messages are propagated and how the messages are
propagated.

Messaging Gateway allows bidirectional message propagation. An outbound propagation
moves messages from Oracle Database Advanced Queuing to non-Oracle messaging
systems. An inbound propagation moves messages from non-Oracle messaging systems to
Oracle Database Advanced Queuing.

If the propagation source is a queue (point-to-point), then the Messaging Gateway agent
moves all messages from the source queue to the destination queue. If the propagation source
is a topic (publish/subscribe), then the Messaging Gateway agent creates a subscriber of the
propagation source queue in the messaging system. The agent only moves messages that are
published to the source queue after the subscriber is created.

When propagating a message, the Messaging Gateway agent converts the message from the
format in the source messaging system to the format in the destination messaging system.
Users can customize the message conversion by providing a message transformation. If
message conversion fails, then the message will be moved to an exception queue, if one has
been provided, so that the agent can continue to propagate messages for the subscriber.

A Messaging Gateway exception queue is different from an Oracle Database Advanced
Queuing exception queue. Messaging Gateway moves a message to a Messaging Gateway
exception queue when message conversion fails. Oracle Database Advanced Queuing moves
a message to an Oracle Database Advanced Queuing exception queue after MAX_RETRIES
dequeue attempts on the message.

Messages moved to an Oracle Database Advanced Queuing exception queue may result in
irrecoverable failures on the associated Messaging Gateway propagation job. To avoid the
problem, the MAX_RETRIES parameter of any Oracle Database Advanced Queuing queue that is
used as the propagation source of a Messaging Gateway propagation job should be set to a
value much larger than 16.

If the messaging system of the propagation source queue supports message selection, then a
message selection rule can be specified for a propagation subscriber. Only messages that
satisfy the message selector will be propagated.

Users can also specify propagation job options to control how messages are propagated, such
as options for JMS message delivery mode and TIB/Rendezvous queue policies.

The MGW_JOBS view can be used to check the configuration and status of Messaging Gateway
propagation jobs.

See Also

Monitoring Oracle Messaging Gateway

Creating an Oracle Messaging Gateway Propagation Job
Messaging Gateway propagation jobs are created by DBMS_MGWADM.CREATE_JOB.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-33 of C-82

If the propagation source for non-JMS propagation is an Oracle Database AQ queue, then the
queue can be either a single consumer queue or multiple consumer queue. If it is a multiple
consumer queue, Messaging Gateway creates a corresponding Oracle Database AQ
subscriber MGW_job_name for the propagation job job_name when DBMS_MGWADM.CREATE_JOB is
called.

If the propagation source is a JMS topic, such as an Oracle Java Message Service (Oracle
JMS) topic or a WebSphere MQ JMS topic, then a JMS subscriber MGW_job_name is created on
the topic in the source messaging system by the Messaging Gateway agent. If the agent is not
running, then the subscriber will not be created until the agent is restarted.

If the propagation source is a queue, then only one propagation job can be created using that
queue as the propagation source. If the propagation source is a topic, then multiple
propagation jobs can be set up using that topic as the propagation source with each
propagation job having its own corresponding subscriber on the topic in the messaging system.

Example C-24 creates Messaging Gateway propagation job job_aq2mq.

Note

If a WebSphere MQ JMS topic is involved in a propagation job and the interface type
of the link is DBMS_MGWADM.JMS_TOPIC_CONNECTION, then a durable subscriber
MGL_subscriber_id is created on the log topic. The durable subscriber is removed
when the Messaging Gateway propagation job is successfully removed.

Example C-24 Creating a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => 'job_aq2mq',
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => 'mquser.srcq',
 destination => 'deqq@mqlink');
END;

Enabling and Disabling a Propagation Job
A propagation job can be initially enabled or disabled when it is created by
DBMS_MGWADM.CREATE_JOB. By default, a job is enabled when it is created. You can use
DBMS_MGWADM.ENABLE_JOB to enable a propagation job and DBMS_MGWADM.DISABLE_JOB to disable
a job. No propagation processing will occur when the job is disabled.

Example C-25 enables the propagation for propagation job job_aq2mq.

Example C-26 disables the propagation for propagation job job_aq2mq.

Example C-25 Enabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.ENABLE_JOB(job_name => 'job_aq2mq');
END;

Example C-26 Disabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.DISABLE_JOB(job_name => 'job_aq2mq');
END;

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-34 of C-82

Resetting a Propagation Job
When a problem occurs with a propagation job, the Messaging Gateway agent retries the
failed operation up to 16 times in an exponential backoff scheme before the propagation job
stops. You can use DBMS_MGWADM.RESET_JOB to reset the failure count to zero to allow the agent
to retry the failed operation immediately.

Example C-27 resets the failure count for propagation job job_aq2mq.

Example C-27 Resetting a Propagation Job

BEGIN
 DBMS_MGWADM.RESET_JOB (job_name => 'job_aq2mq');
END;

Altering a Propagation Job
After a propagation job is created you can alter the selection rule, transformation, exception
queue, job options, and poll interval of the job using DBMS_MGWADM.ALTER_JOB. The job can be
altered with the Messaging Gateway running or shut down.

Example C-28 adds an exception queue for a propagation job.

Example C-29 changes the polling interval for a propagation job. The polling interval
determines how soon the agent can discover the available messages in the propagation
source queue. The default polling interval is 5 seconds or the value set for
oracle.mgw.polling_interval in the Messaging Gateway initialization file.

Example C-28 Altering Propagation Job by Adding an Exception Queue

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => 'job_aq2mq', exception_queue =>
'mgwuser.my_ex_queue');
END;

Example C-29 Altering Propagation Job by Changing the Polling Interval

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => 'job_aq2mq', poll_interval => 2);
END;

Removing a Propagation Job
You can remove a Messaging Gateway propagation job by calling DBMS_MGWADM.REMOVE_JOB.

Before removing the propagation job from the Messaging Gateway configuration, Messaging
Gateway does the following cleanup:

• Removes from the messaging system the associated subscriber that may have been
created by Messaging Gateway

• Removes propagation log records from log queues for the job being removed

Messaging Gateway may fail to do the cleanup because:

• The Messaging Gateway agent is not running

• Non-Oracle messaging system is not running

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-35 of C-82

• The Messaging Gateway agent cannot interact with the source or destination messaging
system

If the Messaging Gateway cleanup fails for any reason, then the propagation job being
removed is placed in a DELETE_PENDING state. The Messaging Gateway agent tries to clean up
propagation jobs in a DELETE_PENDING state when:

• DBMS_MGWADM.REMOVE_JOB is called and the Messaging Gateway agent is running.

• The Messaging Gateway agent is starting and finds a propagation job in a DELETE_PENDING
state.

DBMS_MGWADM.REMOVE_JOB has a force parameter that allows you to force the propagation job to
be removed from the Messaging Gateway configuration without placing it in DELETE_PENDING
state. This is useful in case of cleanup failures or if you want to remove a propagation job when
the Messaging Gateway agent is not running.

Forcing a propagation job to be removed may result in obsolete log records being left in the log
queues, and subscriptions in the messaging systems that may cause unnecessary message
accumulation. Oracle recommends that the force option not be used for
DBMS_MGWADM.REMOVE_JOB if possible.

Example C-30 removes a propagation job in a non-forced manner.

Example C-30 Removing a Propagation Job

BEGIN
 DBMS_MGWADM.REMOVE_JOB (job_name => 'job_aq2mq');
END;

Propagation Jobs, Subscribers, and Schedules
Subprograms are provided as part of the DBMS_MGWADM package that simplify the creation and
management of propagation jobs. Those subprograms allow a user to configure a propagation
job rather than a disjoint subscriber and schedule as was done in prior releases. Oracle
recommends that you use the propagation job procedures but still supports the subscriber and
schedule procedures for backward compatibility.

Table C-2 lists the Messaging Gateway propagation job procedures and shows which
subscriber and/or schedule procedures it replaces. All procedures are from the DBMS_MGWADM
package.

Table C-2 Messaging Gateway Propagation Job Subprograms

Job Procedure Replaces Subscriber, Schedule Procedure

CREATE_JOB ADD_SUBSCRIBER, SCHEDULE_PROPAGATION

ALTER_JOB ALTER_SUBSCRIBER, ALTER_PROPAGATION_SCHEDULE

REMOVE_JOB REMOVE_SUBSCRIBER, UNSCHEDULE_PROPAGATION

ENABLE_JOB ENABLE_PROPAGATION_SCHEDULE

DISABLE_JOB DISABLE_PROPAGATION_SCHEDULE

RESET_JOB RESET_SUBSCRIBER

This section contains the following topics:

• Propagation Job_ Subscriber_ Schedule Interface Interoperability

• Propagation Job_ Subscriber_ Schedule Views

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-36 of C-82

• Single Consumer Queue as Propagation Source

Propagation Job, Subscriber, Schedule Interface Interoperability
The user can create two types of propagation jobs, a new style job or an old style job. A new
style job is created by DBMS_MGWADM.CREATE_JOB. An old style job is created by calling
DBMS_MGWADM.ADD_SUBSCRIBER and DBMS_MGWADM.SCHEDULE_PROPAGATION using the same
{propagation_type, source, destination} triplet. A subscriber that does not have a matching
schedule, or a schedule that does not have a matching subscriber, is not considered to be a
propagation job.

For new style job, the job name will serve as both the subscriber ID and the schedule ID. For
an old style job, the subscriber ID is used as the job name.

Both the propagation job subprograms and the subscriber/schedule subprograms can be used
for old style propagation jobs. Oracle recommends that you use the job subprograms to create
and manage propagation jobs. The job subprograms cannot be used for an unmatched
subscriber or schedule since those do not constitute a propagation job.

Only the new job subprograms can be used for new style propagation jobs. An error will occur
if a user tries to call a subscriber or scheduler procedure on a new style job.

Other than DBMS_MGWADM.REMOVE_JOB, calling the job subprograms for an old style job is
straightforward and the results are effectively the same as calling the corresponding
subscriber/schedule subprograms. There may be certain restrictions in the future but there are
none at this time.

The DBMS_MGWADM.REMOVE_JOB procedure can be used to remove both new style and old style
jobs. A forced and non-forced remove is supported. If the Messaging Gateway agent is not
running when a non-forced remove is done, the job will be flagged as delete pending and
neither the underlying subscriber nor schedule will be removed at that time. The job
(subscriber /schedule pair) will be removed once the agent is restarted and performs its
cleanup work or a forced DBMS_MGWADM.REMOVE_JOB is performed. In order to insure that the
subscriber/schedule pair is removed at the same time, an error will occur if you first call
DBMS_MGWADM.REMOVE_JOB and subsequently attempt to call DBMS_MGWADM.REMOVE_SUBSCRIBER or
DBMS_MGWADM.UNSCHEDULE_PROPAGATION for an old style job.

Once DBMS_MGWADM.REMOVE_JOB as been called for a job and it has been flagged as delete
pending, all job procedures, other than DBMS_MGWADM.REMOVE_JOB, will fail for both new style and
old style jobs. In addition, all subscriber and schedule subprograms will fail if the propagation
job happens to be an old style job.DBMS_MGWADM.REMOVE_SUBSCRIBER and
DBMS_MGWADM.UNSCHEDULE_PROPAGATION can be used for an old style job as long as
DBMS_MGWADM.REMOVE_JOB has not been called for that job. If
DBMS_MGWADM.UNSCHEDULE_PROPAGATION is called for an old style job, the schedule is
immediately removed and it ceases to be a propagation job and
DBMS_MGWADM.REMOVE_SUSCRIBER must be used to remove the subscriber. If
DBMS_MGWADM.REMOVE_SUBSCRIBER is called for an old style job, the user can subsequently call
DBMS_MGWADM.REMOVE_JOB as long as the subscriber exists.

Propagation Job, Subscriber, Schedule Views
The MGW_JOBS view shows information for the current propagation jobs, both new style jobs and
old style jobs, and includes all the pertinent information shown by the MGW_SUBSCRIBERS and
MGW_SCHEDULES views. The MGW_SUBSCRIBERS and MGW_SCHEDULES views are still useful for
finding an unmatched subscriber or schedule since they don't constitute a propagation job and
will not show up in the MGW_JOBS view.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-37 of C-82

Single Consumer Queue as Propagation Source
Messaging Gateway allows an Oracle Database AQ multiple consumer queue or a single
consumer queue to be a propagation source for an outbound new style job created by
DBMS_MGWADM.CREATE_JOB. A multiple consumer queue must be used for the propagation source
for an outbound old style job. An error will occur if an administrator attempts to call
DBMS_MGWADM.ADD_SUBSCRIBER and the source is a single consumer queue.

An Oracle Database AQ dequeue condition is not supported for native (non-JMS) outbound
propagation when the propagation source is a single consumer queue.

Configuration Properties
This section summarizes basic and optional properties related to Messaging Gateway links,
foreign queues, and propagation jobs.

This section contains these topics:

• WebSphere MQ System Properties

• TIB/Rendezvous System Properties

• Optional Link Configuration Properties

• Optional Foreign Queue Configuration Properties

• Optional Job Configuration Properties

WebSphere MQ System Properties
Table C-3 summarizes the basic configuration properties for a WebSphere MQ messaging link.
The table indicates which properties of SYS.MGW_MQSERIES_PROPERTIES are optional (NULL
allowed), which can be altered, and if alterable, which values can be dynamically changed.

See Also

"SYS.MGW_MQSERIES_PROPERTIES Type" in Oracle Database PL/SQL Packages
and Types Reference

Table C-3 WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

queue_manager no no no

hostname yes (1) no no

port yes (1) no no

channel yes (1), (6) yes no

interface_type yes (2) no no

max_connections yes (3) yes yes

username yes yes yes

password yes yes yes

inbound_log_queue yes (4) yes(4) yes

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-38 of C-82

Table C-3 (Cont.) WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

outbound_log_queue yes (5) yes(5) yes

Notes on Table C-3

• If hostname is NULL, then the port and channel must be NULL. If the hostname is not NULL,
then the port must be not NULL. If the hostname is NULL, then a WebSphere MQ bindings
connection is used; otherwise a client connection is used.

• If interface_type is NULL, then a default value of
DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE is used.

• If max_connections is NULL, then a default value of 1 is used.

• Attribute inbound_log_queue can be NULL if the link is not used for inbound propagation.
The log queue can be altered only when no inbound propagation job references the link.

• Attribute outbound_log_queue can be NULL if the link is not used for outbound propagation.
The log queue can be altered only when no outbound propagation job references the link.

• The channel attribute must be NULL if a client channel definition table (CCDT) is used. The
MQ_ccdtURL link option can be used to specify a CCDT.

Table C-4 summarizes the optional configuration properties supported when a WebSphere MQ
Base Java interface is used to access the WebSphere MQ messaging system. Table C-5
summarizes the optional configuration properties supported when a WebSphere MQ JMS
interface is used. Each table lists the property name, where that property applies, whether the
property can be altered, and if alterable, whether the value can be dynamically changed. Only
the properties listed in the tables are supported, and any extra properties are ignored.

Table C-4 Optional Configuration Properties for WebSphere MQ Base Java

Property Name Used For Alter Value? Dynamic?

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

MQ_ReceiveExit link yes no

MQ_SecurityExit link yes no

MQ_SendExit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

MQ_openOptions foreign queue no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-39 of C-82

Table C-5 Optional Configuration Properties for WebSphere MQ JMS

Property Name Used For Alter Value? Dynamic?

MQ_BrokerControlQueue link yes no

MQ_BrokerPubQueue link yes no

MQ_BrokerQueueManager link yes no

MQ_BrokerVersion link yes no

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

MQ_JmsDurSubQueue link no no

MQ_PubAckInterval link yes no

MQ_ReceiveExit link yes no

MQ_ReceiveExitInit link yes no

MQ_SecurityExit link yes no

MQ_SecurityExitInit link yes no

MQ_SendExit link yes no

MQ_SendExitInit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLCrl link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

MQ_CharacterSet foreign queue no no

MQ_JmsDurSubQueue foreign queue no no

MQ_JmsTargetClient foreign queue no no

JMS_DeliveryMode job yes yes

JMS_NoLocal job no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

TIB/Rendezvous System Properties
Table C-6 summarizes the basic configuration properties for a TIB/Rendezvous messaging
link. It indicates which properties of SYS.MGW_TIBRV_PROPERTIES are optional (NULL allowed),
which can be altered, and if alterable, which values can be dynamically changed.

See Also

"SYS.MGW_TIBRV_PROPERTIES Type" in Oracle Database PL/SQL Packages and
Types Reference

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-40 of C-82

Table C-6 TIB/Rendezvous Link Properties

Attribute NULL allowed? Alter value? Dynamic?

service yes(1) no no

daemon yes(1) no no

network yes(1) no no

cm_name yes(2) no no

cm_ledger yes(2) no no

Notes on Table C-6:

• System default values will be used if service, daemon, or network are NULL.

• The cm_name and cm_ledger attributes are reserved for future use when TIB/Rendezvous
certified messages are supported. At present, a NULL must be specified for these
parameters when a TIB/Rendezvous link is configured.

Table C-7 summarizes the optional configuration properties supported when a TIB/Rendezvous
messaging system is used. The table lists the property name, where that property applies,
whether the property can be altered, and if alterable, whether the value can be dynamically
changed. Only the properties listed in the table are supported, and any extra properties will be
ignored.

Table C-7 Optional Properties for TIB/Rendezvous

Property Name Used For Alter Value? Dynamic?

AQ_MsgProperties job yes yes

MsgBatchSize job yes yes

PreserveMessageID job yes yes

RV_discardAmount job yes no

RV_limitPolicy job yes no

RV_maxEvents job yes no

Optional Link Configuration Properties
This section describes optional link properties you can specify using the options parameter of
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK and DBMS_MGWADM.ALTER_MSGSYSTEM_LINK. Each listing
also indicates which messaging system might use that property.

MQ_BrokerControlQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker control
queue and corresponds to WebSphere MQ JMS administration tool property BROKERCONQ. The
WebSphere MQ default is SYSTEM.BROKER.CONTROL.QUEUE.

MQ_BrokerPubQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker publish
queue and corresponds to WebSphere MQ JMS administration tool property BROKERPUBQ. The
WebSphere MQ default is SYSTEM.BROKER.DEFAULT.STREAM.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-41 of C-82

MQ_BrokerQueueManager
This property is used by WebSphere MQ JMS. It specifies the name of the broker queue
manager and corresponds to WebSphere MQ administration tool property BROKERQMGR. If it is
not set, then no default is used.

MQ_BrokerVersion
This property is used by WebSphere MQ JMS. It specifies the broker version number and
corresponds to WebSphere MQ JMS administration tool property BROKERVER. The WebSphere
MQ default is 0.

MQ_ccdtUrl
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
URL string of a client channel definition table (CCDT) to be used. If not set, a CCDT is not
used. If a CCDT is used, then the SYS.MGW_MQSERIES_PROPERTIES.channel link property must
be NULL.

MQ_ccsid
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
character set identifier to be used to translate information in the WebSphere MQ message
header. This should be the integer value of the character set (for example, 819) rather than a
descriptive string. If it is not set, then the WebSphere MQ default character set 819 is used.

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It applies to WebSphere MQ JMS topic links
only. The SYS.MGW_MQSERIES_PROPERITES attributes, inbound_log_queue and
outbound_log_queue, specify the names of WebSphere MQ JMS topics used for propagation
logging. This property specifies the name of the WebSphere MQ queue from which durable
subscription messages are retrieved by the log topic subscribers. The WebSphere MQ default
queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_PubAckInterval
This property is used by WebSphere MQ JMS. It specifies the interval, in number of
messages, between publish requests that require acknowledgment from the broker and
corresponds to WebSphere MQ JMS administration tool property PUBACKINT. The WebSphere
MQ default is 25.

MQ_ReceiveExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
fully qualified Java classname of a class implementing the MQReceiveExit interface. This class
must be in the CLASSPATH of the Messaging Gateway agent. There is no default.

MQ_ReceiveExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS
to the constructor of the class specified by MQ_ReceiveExit and corresponds to WebSphere
MQ JMS administration tool property RECEXITINIT. There is no default.

MQ_SecurityExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
fully qualified Java classname of a class implementing the MQSecurityExit interface. This
class must be in the CLASSPATH of the Messaging Gateway agent. There is no default.

MQ_SecurityExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS
to the constructor of the class specified by MQ_SecurityExit and corresponds to WebSphere
MQ JMS administration tool property SECEXITINIT. There is no default.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-42 of C-82

MQ_SendExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
fully qualified Java classname of a class implementing the MQSendExit interface. This class
must be in the CLASSPATH of the Messaging Gateway agent. There is no default.

MQ_SendExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS
to the constructor of the class specified by MQ_SendExit. It corresponds to WebSphere MQ
JMS administration tool property SENDEXITINIT. There is no default.

MQ_SSLCipherSuite
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
CipherSuite to be used; for example, SSL_RSA_WITH_RC4_128_MD5. This corresponds to the
WebSphere MQ SSLCIPHERSUITE administration property.

MQ_SSLCrl
This property is used by WebSphere MQ JMS. It specifies a space-delimited list of LDAP
servers that can be used for certificate revocation list (CRL) checking. If not set, no CRL
checking is done. This corresponds to the WebSphere MQ SSLCRL administration property.
This option is not supported for WebSphere MQ Base Java, and instead, a client channel
definition table (CCDT) must be used if CRL checking is needed.

MQ_SSLFipsRequired
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It indicates
whether the CipherSuite being used is supported by the IBM Java JSSE FIPS provider
(IBMSJSSEFIPS). The value should be TRUE or FALSE. The default value is FALSE. This
corresponds to the WebSphere MQ SSLFIPSREQUIRED administration property.

MQ_SSLPeerName
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies a
distinguished name (DN) pattern that the queue manager certificate must match in order for a
connection to be established. If not set, no DN check is performed. This corresponds to the
WebSphere MQ SSLPEERNAME administration property.

MQ_SSLResetCount
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the
total number of bytes sent and received before the secret key is renegotiated. If not set, the
key is not renegotiated. This corresponds to the WebSphere MQ SSLRESETCOUNT
administration property.

Optional Foreign Queue Configuration Properties
This section describes optional foreign queue properties that you can specify using the
options parameter of DBMS_MGWADM.REGISTER_FOREIGN_QUEUE. Each listing also indicates which
messaging system might use that property.

MQ_CharacterSet
This property is used by WebSphere MQ JMS. It is used only for outbound propagation to a
JMS queue or topic. It specifies the character set to be used to encode text strings sent to the
destination. It should be the integer value of the character set (for example, 1208) rather than
a descriptive string. The default value used by Messaging Gateway is 1208 (UTF8).

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It is a string representing the name of the
WebSphere MQ queue from which durable subscription messages are retrieved by

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-43 of C-82

subscribers on this topic. It applies only to WebSphere MQ JMS topics. The WebSphere MQ
default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_JmsTargetClient
This property is used by WebSphere MQ JMS. It is used only for outbound propagation to a
JMS queue or topic. Supported values are TRUE and FALSE. TRUE indicates that WebSphere
MQ should store the message as a JMS message. FALSE indicates that WebSphere MQ
should store the message in non-JMS format so that non-JMS applications can access it.
Default is TRUE.

MQ_openOptions
This property is used by WebSphere MQ Base Java. It specifies the value used for the
openOptions argument of the WebSphere MQ Base Java MQQueueManager.accessQueue
method. No value is required. But if one is given, then the Messaging Gateway agent adds
MQOO_OUTPUT to the specified value for an enqueue (put) operation. MQOO_INPUT_SHARED is
added for a dequeue (get) operation. The default is MQOO_OUTPUT for an enqueue/put
operation; MQOO_INPUT_SHARED for a dequeue/get operation.

Optional Job Configuration Properties
This section describes optional propagation job properties that you can specify using the
options parameter of DBMS_MGWADM.CREATE_JOB and DBMS_MGWADM.ALTER_JOB.

AQ_MsgProperties
This property is used by TIB/Rendezvous. It specifies how Oracle Database AQ message
properties will be used during message propagation. Supported values are TRUE and FALSE.
The default value is FALSE.
For an outbound propagation job, if the value is TRUE (case insensitive), then the Messaging
Gateway agent will add a field for most Oracle Database AQ message properties to the
message propagated to the TIB/Rendezvous subject.
For an inbound propagation job, if the value is TRUE (case insensitive), then the Messaging
Gateway agent will search the source message for a field with a reserved name, and if it
exists, use its value to set the corresponding Oracle Database AQ message property. A
default value will be used if the field does not exist or does not have an expected datatype.

JMS_DeliveryMode
This property is used by WebSphere MQ JMS and Oracle JMS. You can use this property
when the propagation destination is a JMS messaging system. It sets the delivery mode of
messages enqueued to the propagation destination queue by a JMS MessageProducer. The
default is PRESERVE_MSG. Supported values and their associated delivery modes are:

• PERSISTENT (DeliveryMode.PERSISTENT)

• NON_PERSISTENT (DeliveryMode.NON_PERSISTENT)

• PRESERVE_MSG (delivery mode of the source JMS message is used)

JMS_NoLocal
This property is used by WebSphere MQ JMS and Oracle JMS. You can use it when the
propagation source is a JMS messaging system. It sets the noLocal parameter of a JMS
TopicSubscriber. TRUE indicates that messages that have been published to this topic
through the same Messaging Gateway link will not be propagated. The default value FALSE
indicates that such messages will be propagated from the topic.

MsgBatchSize
This property can be used by any supported messaging system. It specifies the maximum
number of messages, if available, to be propagated in one transaction. The default is 30.

Appendix C
Working with Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-44 of C-82

PreserveMessageID
This property is used by WebSphere MQ Base Java, WebSphere MQ JMS, TIB/Rendezvous,
and Oracle JMS. It specifies whether Messaging Gateway should preserve the original
message identifier when the message is propagated to the destination messaging system.
The exact details depend on the capabilities of the messaging systems involved. Supported
values are TRUE and FALSE. The default value is FALSE.

RV_discardAmount
This property is used by TIB/Rendezvous. It specifies the discard amount of a queue. It is
meaningful only for an inbound propagation job. The default is 0.

RV_limitPolicy
This property is used by TIB/Rendezvous. It specifies the limit policy for resolving overflow of
a queue limit. It is meaningful only for an inbound propagation job. The default is
DISCARD_NONE. Supported values and their associated limit policies are: DISCARD_NONE,
DISCARD_FIRST, DISCARD_LAST and DISCARD_NEW.

• DISCARD_NONE (TibrvQueue.DISCARD_NONE)

• DISCARD_FIRST (TibrvQueue.DISCARD_FIRST)

• DISCARD_LAST (TibrvQueue.DISCARD_LAST)

• DISCARD_NEW (TibrvQueue.DISCARD_NEW)

RV_maxEvents
This property is used by TIB/Rendezvous. It specifies the maximum event limit of a queue. It is
meaningful only for an inbound propagation job. The default is 0.

Oracle Messaging Gateway Message Conversion
The following topics discuss how Oracle Messaging Gateway (MGW) converts message
formats from one messaging system to another. A conversion is generally necessary when
moving messages between Oracle Database Advanced Queuing and another system,
because different messaging systems have different message formats. Java Message Service
(JMS) messages are a special case. A JMS message can be propagated only to a JMS
destination, making conversion a simple process.

• Converting Oracle Messaging Gateway Non-JMS Messages

• Message Conversion for WebSphere MQ

• Message Conversion for TIB/Rendezvous

• JMS Messages

Converting Oracle Messaging Gateway Non-JMS Messages
MGW converts the native message format of the source messaging system to the native
message format of the destination messaging system during propagation. MGW uses
canonical types and a model centering on Oracle Database Advanced Queuing for the
conversion.

Overview of the Non-JMS Message Conversion Process
When a message is propagated by MGW, the message is converted from the native format of
the source queue to the native format of the destination queue.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-45 of C-82

A native message usually contains a message header and a message body. The header
contains the fixed header fields that all messages in that messaging system have, such as
message properties in Oracle Database Advanced Queuing and the fixed header in
WebSphere MQ. The body contains message contents, such as the Oracle Database
Advanced Queuing payload, the WebSphere MQ message body, or the entire TIB/Rendezvous
message. MGW converts both message header and message body components.

Figure C-2 shows how non-JMS messages are converted in two stages. A message is first
converted from the native format of the source queue to the MGW internal message format,
and then it is converted from the internal message format to the native format of the destination
queue.

Figure C-2 Non-JMS Message Conversion

AQ Property

AQ Payload

Advanced Queuing

Message

AQ Property

Canonical Type

Messaging Gateway

Message

Message

Non-Oracle

Message

Outbound

Propagation

Inbound

Propagation

The MGW agent uses an internal message format consisting of a header that is similar to the
Oracle Database Advanced Queuing message properties and a body that is a representation
of an MGW canonical type.

Oracle Messaging Gateway Canonical Types
MGW defines canonical types to support message conversion between Oracle Database
Advanced Queuing and non-Oracle messaging systems. A canonical type is a message type
representation in the form of a PL/SQL Oracle type in Oracle Database. The canonical types
are RAW, SYS.MGW_BASIC_MSG_T, and SYS.MGW_TIBRV_MSG_T.

WebSphere MQ propagation supports the canonical types SYS.MGW_BASIC_MSG_T and RAW. TIB/
Rendezvous propagation supports the canonical types SYS.MGW_TIBRV_MSG_T and RAW.

See Also

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types Reference for
Syntax and attribute information for SYS.MGW_BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-46 of C-82

Message Header Conversion
MGW provides default mappings between Oracle Database Advanced Queuing message
properties and non-Oracle message header fields that have a counterpart in Oracle Database
Advanced Queuing message properties with the same semantics. Where MGW does not
provide a mapping, the message header fields are set to a default value, usually the default
value defined by the messaging system.

Handling Arbitrary Payload Types Using Message Transformations
When converting to or from Oracle Database Advanced Queuing messages, the MGW agent
uses only its canonical types. Arbitrary payload types are supported, however, with the
assistance of user-defined Oracle Database Advanced Queuing message transformations to
convert between an Oracle Database Advanced Queuing queue payload and an MGW
canonical type.

For MGW to propagate messages from an Oracle Database Advanced Queuing queue with an
arbitrary ADT payload (outbound propagation), you must provide a mapping to an MGW
canonical ADT. The transformation is invoked when the MGW agent dequeues messages from
the Oracle Database Advanced Queuing queue. Similarly, for MGW to propagate messages to
an Oracle Database Advanced Queuing queue with an arbitrary ADT payload (inbound
propagation), you must provide a mapping from an MGW canonical ADT. The transformation is
invoked when the MGW agent enqueues messages to the Oracle Database Advanced
Queuing queue.

Figure C-3 Oracle Database Advanced Queuing Message Conversion

Advanced Queuing

Message

Messaging Gateway

Message

Outbound

Propagation

Inbound

Propagation

AQ Property

AQ Payload

Transformation

Function

Transformation

Function

AQ Property

Canonical Type

The transformation is always executed in the context of the MGW agent, which means that the
MGW agent user (the user specified using DBMS_MGWADM.CREATE_AGENT or
DBMS_MGWADM.ALTER_AGENT) must have EXECUTE privileges on the transformation function and
the Oracle Database Advanced Queuing payload type. This can be accomplished by granting
the EXECUTE privilege to PUBLIC or by granting the EXECUTE privilege directly to the MGW agent
user.

To configure a MGW propagation job with a transformation:

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-47 of C-82

1. Create the transformation function.

2. Grant EXECUTE to the MGW agent user or to PUBLIC on the function and the object types it
references.

3. Call DBMS_TRANSFORM.CREATE_TRANSFORMATION to register the transformation.

4. Call DBMS_MGWADM.CREATE_JOB to create a MGW propagation job using the transformation,
or DBMS_MGWADM.ALTER_JOB to alter an existing job.

Example C-31 Transformation Function Signature

FUNCTION trans_sampleadt_to_mgw_basic(in_msg IN mgwuser.sampleADT)
RETURN SYS.MGW_BASIC_MSG_T;

You can create a transformation using DBMS_TRANSFORM.CREATE_TRANSFORMATION, as shown in
Example C-32.

Example C-32 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'mgwuser',
 name => 'sample_adt_to_mgw_basic',
 from_schema => 'mgwuser',
 from_type => 'sampleadt',
 to_schema => 'sys',
 to_type => 'MGW_BASIC_MSG_T',
 transformation => 'mgwuser.trans_sampleadt_to_mgw_basic(user_data)');
END;

Example C-33 Registering a Transformation

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => 'job_aq2mq',
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => 'mgwuser.srcq',
 destination => 'destq.mqlink',
 transformation => 'mgwuser.sample_adt_to_mgw_basic',
 exception_queue => 'mgwuser.excq');
END;

The value passed in the transformation parameter for these APIs must be the registered
transformation name and not the function name. For example,
trans_sampleadt_to_mgw_basic is a stored procedure representing a transformation function
with the signature shown in Example C-31.

Note

All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE, except for the commands to create transformations.

Once created, this transformation can be registered with MGW when creating a propagation
job. Example C-33 creates job job_aq2mq, for whom messages are propagated from Oracle
Database Advanced Queuing queue mgwuser.srcq to non-Oracle messaging system queue
destq@mqlink using transformation mgwuser.sample_adt_to_mgw_basic.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-48 of C-82

An error that occurs while attempting a user-defined transformation is usually considered a
message conversion exception, and the message is moved to the exception queue if it exists.

See Also

"DBMS_MGWADM", "DBMS_MGWMSG", and "DBMS_TRANSFORM" in Oracle
Database PL/SQL Packages and Types Reference

Handling Logical Change Records
MGW provides facilities to propagate Logical Change Records (LCRs). Routines are provided
to help in creating transformations to handle the propagation of both row LCRs and DDL LCRs
stored in queues with payload type ANYDATA. An LCR is propagated as an XML string stored in
the appropriate message type.

Note

For LCR propagation, you must load the XDB package.

Because Oracle Streams uses ANYDATA queues to store LCRs, an ANYDATA queue is the source
for outbound propagation. The transformation must first convert the ANYDATA object containing
an LCR into an XMLType object using the MGW routine DBMS_MGWMSG.LCR_TO_XML. If the
ANYDATA object does not contain an LCR, then this routine raises an error. The XML document
string of the LCR is then extracted from the XMLType and placed in the appropriate MGW
canonical type (SYS.MGW_BASIC_MSG_T or SYS.MGW_TIBRV_MSG_T).

Example C-34 illustrates a simplified transformation used for LCR outbound propagation. The
transformation converts an ANYDATA payload containing an LCR to a SYS.MGW_TIBRV_MSG_T
object. The string representing the LCR as an XML document is put in a field named
ORACLE_LCR.

For LCR inbound propagation, an MGW canonical type (SYS.MGW_BASIC_MSG_T or
SYS.MGW_TIBRV_MSG_T) is the transformation source type. A string in the format of an XML
document representing an LCR must be contained in the canonical type. The transformation
function must extract the string from the message, create an XMLType object from it, and
convert it to an ANYDATA object containing an LCR with the MGW routine
DBMS_MGWMSG.XML_TO_LCR. If the original XML document does not represent an LCR, then this
routine raises an error.

Example C-35 illustrates a simplified transformation used for LCR inbound propagation. The
transformation converts a SYS.MGW_TIBRV_MSG_T object with a field containing an XML string
representing an LCR to an ANYDATA object. The string representing the LCR as an XML
document is taken from a field named ORACLE_LCR.

See Also

• "DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types Reference

• ORACLE_HOME/mgw/samples/lcr for complete examples of LCR transformations

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-49 of C-82

Example C-34 Outbound LCR Transformation

create or replace function any2tibrv(adata in anydata)
return SYS.MGW_TIBRV_MSG_T is
 v_xml XMLType;
 v_text varchar2(2000);
 v_tibrv sys.mgw_tibrv_msg_t;
BEGIN
 v_xml := dbms_mgwmsg.lcr_to_xml(adata);
 -- assume the lcr is smaller than 2000 characters long.
 v_text := v_xml.getStringVal();
 v_tibrv := SYS.MGW_TIBRV_MSG_T.CONSTRUCT;
 v_tibrv.add_string('ORACLE_LCR', 0, v_text);
 return v_tibrv;
END any2tibrv;

Example C-35 Inbound LCR Transformation

create or replace function tibrv2any(tdata in sys.mgw_tibrv_msg_t)
return anydata is
 v_field sys.mgw_tibrv_field_t;
 v_xml XMLType;
 v_text varchar2(2000);
 v_any anydata;
BEGIN
 v_field := tdata.get_field_by_name('ORACLE_LCR');
 -- type checking
 v_text := v_field.text_value;
 -- assume it is not null
 v_xml := XMLType.createXML(v_text);
 v_any := dbms_mgwmsg.xml_to_lcr(v_xml);
 return v_any;
END tibrv2any;

Message Conversion for WebSphere MQ
MGW converts between the MGW canonical types and the WebSphere MQ native message
format. WebSphere MQ native messages consist of a fixed message header and a message
body. The message body is treated as either a TEXT value or RAW (bytes) value. The canonical
types supported for WebSphere MQ propagation are SYS.MGW_BASIC_MSG_T and RAW.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-50 of C-82

Figure C-4 Message Conversion for WebSphere MQ Using MGW_BASIC_MSG_T

Messaging Gateway

Message

MQSeries

Message

Outbound

Propagation

Inbound

Propagation

AQ Property

Canonical Header

Canonical Body

Header

Body

Figure C-4 illustrates the message conversion performed by the MGW WebSphere MQ driver
when using the canonical type SYS.MGW_BASIC_MSG_T. For outbound propagation, the driver
maps the Oracle Database Advanced Queuing message properties and canonical message to
a WebSphere MQ message having a fixed header and a message body. For inbound
propagation, the driver maps a native message to a set of Oracle Database Advanced
Queuing message properties and a canonical message. When the canonical type is RAW, the
mappings are the same, except no canonical headers exist.

WebSphere MQ Message Header Mappings
When the MGW canonical type used in an outbound propagation job is RAW, no WebSphere
MQ header information is set from the RAW message body. Similarly, for inbound propagation
no WebSphere MQ header information is preserved in the RAW message body. MGW canonical
type SYS.MGW_BASIC_MSG_T, however, has a header that can be used to specify WebSphere
MQ header fields for outbound propagation, and preserve WebSphere MQ header fields for
inbound propagation.

This section describes the message properties supported for the WebSphere MQ messaging
system when using SYS.MGW_BASIC_MSG_T as the canonical type. Table C-8 defines the MGW
{name, value} pairs used to describe the WebSphere MQ header properties. The first column
refers to valid string values for the SYS.MGW_NAME_VALUE_T.NAME field in the
SYS.MGW_BASIC_MSG_T header. The second column refers to the SYS.MGW_NAME_VALUE_T.TYPE
value corresponding to the name. (Refer to "Notes on Table C-8" for explanations of the
numbers in parentheses.)

For inbound propagation, the WebSphere MQ driver generates {name,value} pairs based on
the source message header and stores them in the header part of the canonical message of
the SYS.MGW_BASIC_MSG_T type. For outbound propagation, the WebSphere MQ driver sets the
message header and enqueue options from {name,value} pairs for these properties stored in
the header part of the SYS.MGW_BASIC_MSG_T canonical message.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-51 of C-82

Table C-8 MGW Names for WebSphere MQ Header Values

MGW Name MGW Type WebSphere MQ Property
Name

Used For

MGW_MQ_accountingToken RAW_VALUE (size 32) accountingToken
Outbound (1), Inbound

MGW_MQ_applicationIdData TEXT_VALUE (size 32) applicationIdData
Outbound (1), Inbound

MGW_MQ_applicationOriginData TEXT_VALUE (size 4) applicationOriginData
Outbound (1), Inbound

MGW_MQ_backoutCount INTEGER_VALUE backoutCount
Inbound

MGW_MQ_characterSet INTEGER_VALUE characterSet
Outbound, Inbound

MGW_MQ_correlationId RAW_VALUE (size 24) correlationId
Outbound (1), Inbound

MGW_MQ_encoding INTEGER_VALUE encoding
Outbound, Inbound

MGW_MQ_expiry INTEGER_VALUE expiry
Outbound, Inbound

MGW_MQ_feedback INTEGER_VALUE feedback
Outbound, Inbound

MGW_MQ_format TEXT_VALUE (size 8) format
Outbound (1), Inbound

MGW_MQ_groupId RAW_VALUE (size 24) groupId
Outbound (1), Inbound

MGW_MQ_messageFlags INTEGER_VALUE messageFlags
Outbound, Inbound

MGW_MQ_messageId RAW_VALUE (size 24) messageId
Outbound, Inbound

MGW_MQ_messageSequenceNumber INTEGER_VALUE messageSequenceNumber
Outbound, Inbound

MGW_MQ_messageType INTEGER_VALUE messageType
Outbound, Inbound

MGW_MQ_offset INTEGER_VALUE offset
Outbound, Inbound

MGW_MQ_originalLength INTEGER_VALUE originalLength
Outbound, Inbound

MGW_MQ_persistence INTEGER_VALUE persistence
Inbound

MGW_MQ_priority INTEGER_VALUE priority
Outbound, Inbound

MGW_MQ_putApplicationName TEXT_VALUE (size 28) putApplicationName
Outbound (1), Inbound

MGW_MQ_putApplicationType INTEGER_VALUE putApplicationType
Outbound (1), Inbound

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-52 of C-82

Table C-8 (Cont.) MGW Names for WebSphere MQ Header Values

MGW Name MGW Type WebSphere MQ Property
Name

Used For

MGW_MQ_putDateTime DATE_VALUE putDateTime
Inbound

MGW_MQ_putMessageOptions INTEGER_VALUE putMessageOptions
Outbound (1) (2)

MGW_MQ_replyToQueueManagerName TEXT_VALUE (size 48) replyToQueueManagerName
Outbound, Inbound

MGW_MQ_replyToQueueName TEXT_VALUE (size 48) replyToQueueName
Outbound, Inbound

MGW_MQ_report INTEGER_VALUE report
Outbound (1), Inbound

MGW_MQ_userId TEXT_VALUE (size 12) userId
Outbound, Inbound

See Also

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types Reference

Notes on Table C-8

1. This use is subject to WebSphere MQ restrictions. For example, if
MGW_MQ_accountingToken is set for an outgoing message, then WebSphere MQ overrides
its value unless MGW_MQ_putMessageOptions is set to the WebSphere MQ constant
MQPMD_SET_ALL_CONTEXT.

2. MGW_MQ_putMessageOptions is used as the putMessageOptions argument to the
WebSphere MQ Base Java Queue.put() method. It is not part of the WebSphere MQ
header information and is therefore not an actual message property.

The value for the openOptions argument of the WebSphere MQ Base Java
MQQueueManager.accessQueue method is specified when the WebSphere MQ queue is
registered using the DBMS_MGWADM.REGISTER_FOREIGN_QUEUE call. Dependencies can exist
between the two. For instance, for MGW_MQ_putMessageOptions to include
MQPMD_SET_ALL_CONTEXT, the MQ_openMessageOptions queue option must include
MQOO_SET_CONTEXT.

The MGW agent adds the value MQPMO_SYNCPOINT to any value that you can specify.

MGW sets default values for two WebSphere MQ message header fields: messageType
defaults to MQMT_DATAGRAM and putMessageOptions defaults to MQPMO_SYNCPOINT.

MGW provides two default mappings between Oracle Database Advanced Queuing message
properties and WebSphere MQ header fields.

One maps the Oracle Database Advanced Queuing message property expiration,
representing the time-to-live of the message at the time the message becomes available in the
queue, to the WebSphere MQ header field expiry, representing the time-to-live of the
message. For outbound propagation, the value used for expiry is determined by subtracting
the time the message was available in the queue from the expiration, converted to tenths of a

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-53 of C-82

second. Oracle Database Advanced Queuing value NEVER is mapped to MQEI_UNLIMITED. For
inbound propagation, the value of expiration is simply expiry converted to seconds.
WebSphere MQ value MQEI_UNLIMITED is mapped to NEVER.

The other default maps Oracle Database Advanced Queuing message property priority with
the WebSphere MQ header field priority. It is described in Table C-9.

Table C-9 Default Priority Mappings for Propagation

Propagation Type Message System Priority Values

Outbound Oracle Database
Advanced Queuing

0 1 2 3 4 5 6 7 8 9

Outbound WebSphere MQ 9 8 7 6 5 4 3 2 1 0

Inbound Oracle Database
Advanced Queuing

9 8 7 6 5 4 3 2 1 0

Inbound WebSphere MQ 0 1 2 3 4 5 6 7 8 9

Note

For outbound propagation, Oracle Database Advanced Queuing priority values less
than 0 are mapped to WebSphere MQ priority 9, and Oracle Database Advanced
Queuing priority values greater than 9 are mapped to WebSphere MQ priority 0.

WebSphere MQ Outbound Propagation
If no message transformation is provided for outbound propagation, then the Oracle Database
Advanced Queuing source queue payload type must be either SYS.MGW_BASIC_MSG_T or RAW. If
a message transformation is specified, then the target ADT of the transformation must be
SYS.MGW_BASIC_MSG_T, but the source ADT can be any ADT supported by Oracle Database
Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload is RAW, then the resulting
WebSphere MQ message has the message body set to the value of the RAW bytes and, by
default, the format field set to the value "MGW_Byte".

If the Oracle Database Advanced Queuing queue payload or transformation target ADT is
SYS.MGW_BASIC_MSG_T, then the message is mapped to a WebSphere MQ native message as
follows:

• The WebSphere MQ fixed header fields are based on the internal Oracle Database
Advanced Queuing message properties and the SYS.MGW_BASIC_MSG_T.header attribute of
the canonical message, as described in "WebSphere MQ Message Header Mappings".

• If the canonical message has a TEXT body, then the WebSphere MQ format header field is
set to MQFMT_STRING unless overridden by the header property MGW_MQ_format. The
message body is treated as text.

• If the canonical message has a RAW body, then the WebSphere MQ format header field is
set to "MGW_Byte" unless overridden by the header property MGW_MQ_format. The message
body is treated as raw bytes.

• If the canonical message has both a TEXT and RAW body, then message conversion fails.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-54 of C-82

• If the canonical message has neither a TEXT nor RAW body, then no message body is set,
and the WebSphere MQ format header field is MQFMT_NONE.

• If the canonical message has a TEXT body with both small and large values set
(SYS.MGW_BASIC_MSG_T.TEXT_BODY.small_value and
SYS.MGW_BASIC_MSG_T.TEXT_BODY.large_value not empty), then message conversion
fails.

• If the canonical message has a RAW body with both small and large values set
(SYS.MGW_BASIC_MSG_T.RAW_BODY.small_value and
SYS.MGW_BASIC_MSG_T.RAW_BODY.large_value not empty), then message conversion fails.

If the job option PreserveMessageID is specified with a value of TRUE, then the correlationId
field of the WebSphere message header will be set to the AQ source message identifier. The
correlationId value will be a 24-byte value of the form "AQMSGID:"+AQ_msgid where
AQ_msgid represents the 16-byte Database AQ message identifier.

WebSphere MQ Inbound Propagation
If no message transformation is provided for inbound propagation, then the Oracle Database
Advanced Queuing destination queue payload type must be either SYS.MGW_BASIC_MSG_T or
RAW. If a message transformation is specified, then the source ADT of the transformation must
be SYS.MGW_BASIC_MSG_T, but the destination ADT can be any ADT supported by Oracle
Database Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload is RAW and the incoming WebSphere
MQ message has a format of MQFMT_STRING, then message conversion fails. Otherwise the
message body is considered as raw bytes and enqueued directly to the destination queue. If
the number of bytes is greater than 32KB, then message conversion fails. The actual limit is
32512 bytes rather than 32767 bytes.

If the Oracle Database Advanced Queuing queue payload or transformation source ADT is
SYS.MGW_BASIC_MSG_T, then the WebSphere MQ message is mapped to a
SYS.MGW_BASIC_MSG_T message as follows:

• Specific WebSphere MQ header fields are mapped to Oracle Database Advanced Queuing
message properties as previously described.

• The SYS.MGW_BASIC_MSG_T.header attribute of the canonical message is set to {name,
value} pairs based on the WebSphere MQ header fields, as described in Table C-8. These
values preserve the original content of the WebSphere MQ message header.

• If the WebSphere MQ format header field is MQFMT_STRING, then the WebSphere MQ
message body is treated as text, and its value is mapped to
SYS.MGW_BASIC_MSG_T.text_body. For any other format value, the message body is
treated as raw bytes, and its value is mapped to SYS.MGW_BASIC_MSG_T.raw_body.

See Also

"WebSphere MQ Message Header Mappings"

Message Conversion for TIB/Rendezvous
MGW regards a TIB/Rendezvous message as a set of fields and supplementary information.
Figure C-5 shows how messages are converted between MGW and TIB/Rendezvous.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-55 of C-82

Figure C-5 Message Conversion for TIB/Rendezvous

Message

AQ Property

Messaging Gateway

Message

Fields

Supplementary�
Information

TIB / Rendezvous

Canonical�
Body

Outbound�
Propagation

Inbound�
Propagation

When a message conversion failure occurs, messages are moved to an exception queue (if
one has been provided), so that MGW can continue propagation of the remaining messages in
the source queue. In inbound propagation from TIB/Rendezvous, an exception queue is a
registered subject.

All TIB/Rendezvous wire format datatypes for TIB/Rendezvous fields are supported, except for
the datatypes with unsigned integers and the nested message type. User-defined custom
datatypes are not supported in this release. If a message contains data of the unsupported
datatypes, then a message conversion failure occurs when the message is processed. A
message conversion failure results in moving the failed message from the source queue to the
exception queue, if an exception queue is provided.

Table C-10 shows the datatype mapping used when MGW converts between a native TIB/
Rendezvous message and the canonical ADT. For each supported TIB/Rendezvous wire
format type, it shows the Oracle type used to store the data and the DBMS_MGWMSG constant that
represents that type.

Table C-10 TIB/Rendezvous Datatype Mapping

TIB/Rendezvous Wire
Format

Oracle Type ADT Field Type

Bool NUMBER TIBRVMSG_BOOL

F32 NUMBER TIBRVMSG_F32

F64 NUMBER TIBRVMSG_F64

I8 NUMBER TIBRVMSG_I8

I16 NUMBER TIBRVMSG_I16

I32 NUMBER TIBRVMSG_I32

I64 NUMBER TIBRVMSG_I64

U8 not supported not supported

U16 not supported not supported

U32 not supported not supported

U64 not supported not supported

IPADDR32 VARCHAR2 TIBRVMSG_IPADDR32

IPPORT16 NUMBER TIBRVMSG_IPPORT16

DATETIME DATE TIBRVMSG_DATETIME

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-56 of C-82

Table C-10 (Cont.) TIB/Rendezvous Datatype Mapping

TIB/Rendezvous Wire
Format

Oracle Type ADT Field Type

F32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F32ARRAY

F64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F64ARRAY

I8ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I8ARRAY

I16ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I16ARRAY

I32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I32ARRAY

I64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I64ARRAY

U8ARRAY not supported not supported

U16ARRAY not supported not supported

U32ARRAY not supported not supported

U64ARRAY not supported not supported

MSG not supported not supported

OPAQUE RAW or BLOB TIBRVMSG_OPAQUE

STRING VARCHAR2 or CLOB TIBRVMSG_STRING

XML RAW or BLOB TIBRVMSG_XML

For propagation between Oracle Database Advanced Queuing and TIB/Rendezvous, MGW
provides direct support for the Oracle Database Advanced Queuing payload types RAW and
SYS.MGW_TIBRV_MSG_T. To support any other Oracle Database Advanced Queuing payload
type, you must supply a transformation.

AQ Message Property Mapping for TIB/Rendezvous
This section describes the mapping between Oracle Database AQ message properties and
TIB/Rendezvous fields. This mapping is used to preserve Database AQ message properties
during outbound propagation, and set Database AQ message properties during inbound
propagation.

Table C-11 describes the Database AQ message properties supported using TIB/Rendezvous
fields. The first column indicates the DBMS_AQ.MESSAGE_PROPERTIES_T field for the Database
AQ message property. The second and third columns indicate the name and datatype used for
the TIB/Rendezvous field. The last column indicates if the message property is supported for
inbound and outbound propagation.

Table C-11 TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing Message
Properties

Oracle Database
Advanced Queuing
Message Property

MGW Name TIB/Rendezvous Wire
Format Datatype

Used For

priority MGW_AQ_priority TibrvMsg.I32 Outbound, Inbound

expiration MGW_AQ_expiration TibrvMsg.I32 Outbound, Inbound

delay MGW_AQ_delay TibrvMsg.I32 Outbound, Inbound

correlation MGW_AQ_correlation TibrvMsg.STRING Outbound, Inbound

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-57 of C-82

Table C-11 (Cont.) TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing Message
Properties

Oracle Database
Advanced Queuing
Message Property

MGW Name TIB/Rendezvous Wire
Format Datatype

Used For

exception_queue MGW_AQ_exception_queue TibrvMsg.STRING Outbound, Inbound

enqueue_time MGW_AQ_enqueue_time TibrvMsg.DATETIME Outbound

original_msgid MGW_AQ_original_msgid TibrvMsg.OPAQUE Outbound

msgid (1) MGW_AQ_messageID TibrvMsg.OPAQUE Outbound

Notes on Table C-11:

1. The msgid Database AQ property represents the Database AQ message identifier, rather
than a particular field of the DBMS_AQ.MESSAGE_PROPERTIES_T record.

TIB/Rendezvous Outbound Propagation
If no propagation transformation is provided for outbound propagation, then the Oracle
Database Advanced Queuing source queue payload type must be either SYS.MGW_TIBRV_MSG_T
or RAW. If a propagation transformation is specified, then the target ADT of the transformation
must be SYS.MGW_TIBRV_MSG_T, but the source ADT can be any ADT supported by Oracle
Database Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload or transformation target ADT is
SYS.MGW_TIBRV_MSG_T, then:

• Every field in the source message is converted to a TIB/Rendezvous message field of the
resulting TIB/Rendezvous message.

• If the reply_subject attribute is not NULL, then the reply subject supplementary information
is set.

• The send_subject field is ignored.

If the Oracle Database Advanced Queuing queue payload is RAW, then:

• The resulting message contains a field named MGW_RAW_MSG with value TibrvMsg.OPAQUE.
The field ID is set to 0.

If the job option AQ_MsgProperties is specified with a value of TRUE, then the MGW agent
generates fields to preserve the Database AQ message properties in the TIB/Rendezvous
message according to Table C-11.

If the PreserveMessageID job option is specified with a value of TRUE, then the Database AQ
message identifier (msgid) is preserved in the TIB/Rendezvous message according to
Table C-11.

TIB/Rendezvous Inbound Propagation
If no propagation transformation is provided for inbound propagation, then the Oracle
Database Advanced Queuing destination queue payload type must be either RAW or
SYS.MGW_TIBRV_MSG_T. If a propagation transformation is specified, then the target ADT of the
transformation can be any ADT supported by Oracle Database Advanced Queuing, but the
source ADT of the transformation must be SYS.MGW_TIBRV_MSG_T.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-58 of C-82

If the Oracle Database Advanced Queuing queue payload or transformation source ADT is
SYS.MGW_TIBRV_MSG_T, then:

• Every field in the source TIB/Rendezvous message is converted to a field of the resulting
message of the SYS.MGW_TIBRV_MSG_T type.

• The MGW agent extracts the send subject name from the source TIB/Rendezvous
message and sets the send_subject attribute in SYS.MGW_TIBRV_MSG_T. The send subject
name is usually the same as the subject name of the registered propagation source queue,
but it might be different when wildcards are used.

• The MGW agent extracts the reply subject name from the source TIB/Rendezvous
message, if it exists, and sets the reply_subject attribute in SYS.MGW_TIBRV_MSG_T.

• If the source TIB/Rendezvous message contains more than three large text fields (greater
than 4000 bytes of text) or more than three large bytes fields (greater than 2000 bytes),
then message conversion fails.

If the Oracle Database Advanced Queuing queue payload is RAW, then:

• The Oracle Database Advanced Queuing message payload is the field data if the source
TIB/Rendezvous message has a field named MGW_RAW_MSG of type TibrvMsg.OPAQUE or
TibrvMsg.XML. The field name and ID are ignored. If no such field exists or has an
unexpected type, then a message conversion failure occurs.

• A message conversion failure occurs if the RAW data size is greater than 32KB. This is due
to a restriction on the data size allowed for a bind variable. Also, the actual limit is 32512
rather than 32767.

If the job option AQ_MsgProperties is specified with a value of TRUE, then the MGW agent
searches for fields in the original TIB/Rendezvous messages with reserved field names.
Table C-11 shows the field name strings and the corresponding values used in the TIB/
Rendezvous message.

If such fields exist, then the MGW agent uses the field value to set the corresponding Oracle
Database Advanced Queuing message properties, instead of using the default values. If there
is more than one such field with the same name, then only the first one is used. Such fields are
removed from the resulting payload only if the Oracle Database Advanced Queuing queue
payload is RAW. If a field with the reserved name does not have the expected datatype, then it
causes a message conversion failure.

See Also

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types Reference for
the value datatypes

JMS Messages
MGW propagates only JMS messages between Oracle JMS and non-Oracle JMS systems,
without changing the message content. Figure C-6 shows JMS message propagation.

MGW supports only the standard JMS message types. It does not support:

• JMS provider extensions, because any such extensions would not be recognized by the
destination JMS system. An attempt to propagate any such non-JMS message results in
an error.

• User transformations for JMS propagation.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-59 of C-82

• Propagation of Logical Change Records (LCRs).

Figure C-6 JMS Message Propagation

Message

Properties

Header

Oracle JMS

Body

Outbound�
Propagation

Inbound�
Propagation

Message

Properties

Header

Messaging Gateway

Body

Message

Properties

Header

Third-Party JMS

Body

For the purposes of this discussion, a JMS message is a Java object of a class that
implements one of the five JMS message interfaces. Table C-12 shows the JMS message
interfaces and the corresponding Oracle JMS ADTs. The table also shows the interface,
javax.jms.Message, which can be any one of the five specific types, and the corresponding
generic Oracle JMS type SYS.AQ$_JMS_MESSAGE.

Table C-12 Oracle JMS Message Conversion

JMS Message ADT

javax.jms.TextMessage SYS.AQ$_JMS_TEXT_MESSAGE

javax.jms.BytesMessage SYS.AQ$_JMS_BYTES_MESSAGE

javax.jms.MapMessage SYS.AQ$_JMS_MAP_MESSAGE

javax.jms.StreamMessage SYS.AQ$_JMS_STREAM_MESSAGE

javax.jms.ObjectMessage SYS.AQ$_JMS_OBJECT_MESSAGE

javax.jms.Message SYS.AQ$_JMS_MESSAGE

When a propagation job is activated, the MGW agent checks the Oracle Database Advanced
Queuing payload type for the propagation source or destination. If the type is one of those
listed in Table C-12 or ANYDATA, then message propagation is attempted. Otherwise an
exception is logged and propagation is not attempted.

The MGW agent may add a JMS String property named OracleMGW_OriginalMessageID to
the JMS message sent to the destination queue in order to preserve the original message
identifier of the source message. This property is added if the PreserveMessageID job option is
specified with a value of TRUE. It will also be added for any message moved to an exception
queue upon a message conversion failure.

JMS Outbound Propagation
When dequeuing a message from an Oracle Database Advanced Queuing queue, Oracle JMS
converts instances of the ADTs shown in Table C-12 into JMS messages. In addition it can
convert instances of ANYDATA into JMS messages, depending on the content.

A queue with payload type ANYDATA can hold messages that do not map to a JMS message.
MGW fails to dequeue such a message. An error is logged and propagation of messages from
that queue does not continue until the message is removed.

Appendix C
Oracle Messaging Gateway Message Conversion

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-60 of C-82

JMS Inbound Propagation
Every message successfully dequeued using WebSphere MQ JMS is a JMS message. No
message conversion is necessary prior to enqueuing using Oracle JMS. However, if the
payload ADT of the propagation destination does not accept the type of the inbound message,
then an exception is logged and an attempt is made to place the message in an exception
queue. An example of such type mismatches is a JMS TextMessage and a queue payload type
SYS.AQ$_JMS_BYTES_MESSAGE.

Monitoring Oracle Messaging Gateway
The following topics discuss means of monitoring the Oracle Messaging Gateway (MGW)
agent, abnormal situations you may experience, several sources of information about
Messaging Gateway errors and exceptions, and suggested remedies.

• Oracle Messaging Gateway Log Files

• Monitoring the Oracle Messaging Gateway Agent Status

• Monitoring Oracle Messaging Gateway Propagation

• Oracle Messaging Gateway Agent Error Messages

Oracle Messaging Gateway Log Files
Messaging Gateway agent status, history, and errors are recorded in Messaging Gateway log
files. A different log file is created each time the Messaging Gateway agent is started. You
should monitor the log file because any errors, configuration information read at startup time,
or dynamic configuration information is written to the log.

The format of the log file name for the default agent is:

oramgw-hostname-timestamp-processid.log

The format of the log file name for a named agent is:

oramgw-AGENTNAME-hostname-timestamp-processid.log

By default the Messaging Gateway log file is in ORACLE_HOME/mgw/log. This location can
overridden by the parameter log_directory in the Messaging Gateway initialization file used
by the agent, usually mgw.ora.

This section contains these topics:

• Sample Oracle Messaging Gateway Log File

• Interpreting Exception Messages in an Oracle Messaging Gateway Log File

Sample Oracle Messaging Gateway Log File
The following sample log file shows the Messaging Gateway agent starting. The sample log file
shows that a messaging link, a registered foreign queue, a propagation job, and a schedule
associated with the job have been added. The log file shows that the propagation job has been
activated. The last line indicates that the Messaging Gateway is up and running and ready to
propagate messages.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-61 of C-82

Example C-36 Sample Messaging Gateway Log File

>>2007-01-16 15:04:49 MGW C-Bootstrap 0 LOG process-id=11080
Bootstrap program starting
>>2007-01-16 15:04:50 MGW C-Bootstrap 0 LOG process-id=11080
JVM created -- heapsize = 64
>>2007-01-16 15:04:53 MGW Engine 0 200 main
MGW Agent version: 11.1.0.0
>>2007-01-16 15:04:53 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci:@INST1
>>2007-01-16 15:05:00 MGW Engine 0 200 main
MGW Component version: 11.1.0.3.0
>>2007-01-16 15:05:01 MGW Engine 0 200 main
MGW agent name: DEFAULT_AGENT, MGW job instance id: 273006EC6ED255F1E040578C6D021A8C,
MGW database instance: 1
>>2007-01-16 15:05:09 MGW Engine 0 1 main
Agent is initializing.
>>2007-01-16 15:05:09 MGW Engine 0 23 main
The number of worker threads is set to 1.
>>2007-01-16 15:05:09 MGW Engine 0 22 main
The default polling interval is set to 5000ms.
>>2007-01-16 15:05:09 MGW MQD 0 LOG main
Creating MQSeries messaging link:
link : MQLINK
link type : Base Java interface
queue manager : my.queue.manager
channel : channel1
host : my.machine
port : 1414
user :
ccdt url :
ssl cipherSuite :
connections : 1
inbound logQ : logq1
outbound logQ : logq2
>>2007-01-16 15:05:09 MGW Engine 0 4 main
Link MQLINK has been added.
>>2007-01-16 15:05:09 MGW Engine 0 7 main
Queue DESTQ@MQLINK has been registered; provider queue: MGWUSER.MYQUEUE.
>>2007-01-16 15:05:09 MGW Engine 0 9 main
Propagation Schedule JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been
added.
>>2007-01-16 15:05:09 MGW AQN 0 LOG main
Creating AQ messaging link:
link : oracleMgwAq
link type : native
database : INST1
user : MGWAGENT
connection type : JDBC OCI
connections : 1
inbound logQ : SYS.MGW_RECV_LOG
outbound logQ : SYS.MGW_SEND_LOG
>>2007-01-16 15:05:10 MGW Engine 0 19 main
MGW propagation job JOB_AQ2MQ has been activated.
>>2007-01-16 15:05:10 MGW Engine 0 14 main
MGW propagation job JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been added.
>>2007-01-16 15:05:11 MGW Engine 0 2 main
Agent is up and running.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-62 of C-82

Interpreting Exception Messages in an Oracle Messaging Gateway Log File
Exception messages logged to the Messaging Gateway log file may include one or more linked
exceptions, identified by [Linked-exception] in the log file. These are often the most useful
means of determining the cause of a problem. For instance, a linked exception could be a
java.sql.SQLException, possibly including an Oracle error message, a PL/SQL stack trace, or
both.

The following example shows entries from a Messaging Gateway log file when an invalid value
(bad_service_name) was specified for the database parameter of DBMS_MGWADM.CREATE_AGENT
or DBMS_MGWADM.ALTER_AGENT. This resulted in the Messaging Gateway agent being unable to
establish database connections.

Example C-37 Sample Exception Message

>>2003-07-22 15:27:26 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci8:@BAD_SERVICE_NAME
>>2003-07-22 15:27:29 MGW Engine 0 EXCEPTION main
oracle.mgw.admin.MgwAdminException: [241] Failed to connect to database. SQL
error: 12154, connect string: jdbc:oracle:oci8:@BAD_SERVICE_NAME
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-12154: TNS:could not resolve the connect identifier
specified
[…Java stack trace here…]
>>2003-07-22 15:27:29 MGW Engine 0 25 main
Agent is shutting down.

Monitoring the Oracle Messaging Gateway Agent Status
This section contains these topics:

• MGW_GATEWAY View

• Oracle Messaging Gateway Irrecoverable Error Messages

• Other Oracle Messaging Gateway Error Conditions

MGW_GATEWAY View
The MGW_GATEWAY view monitors the progress of the Messaging Gateway agent. Among the
fields that can be used to monitor the agent are:

• AGENT_NAME

• AGENT_INSTANCE

• AGENT_PING

• AGENT_STATUS

• LAST_ERROR_MSG

• SERVICE

The AGENT_STATUS field shows the status of the agent. This column has the following possible
values:

NOT_STARTED
Indicates that the agent is neither running nor scheduled to be run.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-63 of C-82

START_SCHEDULED
Indicates that the agent job is waiting to be run by the job scheduler.

STARTING
Indicates that the agent is in the process of starting.

INITIALIZING
Indicates that the agent has started and is reading configuration data.

RUNNING
Indicates that the agent is ready to propagate any available messages or process dynamic
configuration changes.

SHUTTING_DOWN
Indicates that the agent is in the process of shutting down.

BROKEN
Indicates that, while attempting to start an agent process, Messaging Gateway has detected
another agent already running. This situation should never occur under normal usage.

Querying the AGENT_PING field pings the Messaging Gateway agent. Its value is either
REACHABLE or UNREACHABLE. An agent with status of RUNNING should almost always be
REACHABLE.

The columns LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME give valuable
information if an error in starting or running the Messaging Gateway agent occurs.
AGENT_INSTANCE indicates the Oracle Database instance on which the Messaging Gateway
instance was started.

See Also

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types Reference for
more information on the MGW_GATEWAY view

Oracle Messaging Gateway Irrecoverable Error Messages
A status of NOT_STARTED in the AGENT_STATUS field of the MGW_GATEWAY view indicates that the
Messaging Gateway agent is not running. If the AGENT_STATUS is NOT_STARTED and the
LAST_ERROR_MSG field is not NULL, then the Messaging Gateway agent has encountered an
irrecoverable error while starting or running. Check if a Messaging Gateway log file has been
generated and whether it indicates any errors. If a log file is not present, then the Messaging
Gateway agent process was probably not started.

This section describes the causes and solutions for some error messages that may appear in
the LAST_ERROR_MSG field of the MGW_GATEWAY view. Unless indicated otherwise, the Messaging
Gateway agent will not attempt to restart itself when one of these errors occurs.

ORA-01089: Immediate shutdown in progress - no operations are permitted

The Messaging Gateway agent has shut down because the SHUTDOWN IMMEDIATE command
was used to shut down a running Oracle Database instance on which the agent was running.
The agent will restart itself on the next available database instance on which it is set up to run.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-64 of C-82

ORA-06520: PL/SQL: Error loading external library

The Messaging Gateway agent process was unable to start because the shared library was
not loaded. This may be because the Java shared library was not in the library path. Verify that
the library path in listener.ora has been set correctly.

ORA-28575: Unable to open RPC connection to external procedure agent

The Messaging Gateway agent was unable to start. It will attempt to start again automatically.

Possible causes include:

• The listener is not running. If you have modified listener.ora, then you must stop and
restart the listener before the changes will take effect.

• Values in tnsnames.ora, listener.ora, or both are not correct.

In particular, tnsnames.ora must have a net service name entry of MGW_AGENT. This entry is
not needed for Messaging Gateway on Windows. The SID value specified for
CONNECT_DATA of the MGW_AGENT net service name in tnsnames.ora must match the
SID_NAME value of the SID_DESC entry in listener.ora. If the MGW_AGENT net service name
is set up for an Inter-process Communication (IPC) connection, then the KEY values for
ADDRESS in tnsnames.ora and listener.ora must match. If the names.default_domain
parameter for sqlnet.ora has been used to set a default domain, then that domain must
be appended to the MGW_AGENT net service name in tnsnames.ora.

ORA-28576: Lost RPC connection to external procedure agent

The Messaging Gateway agent process ended prematurely. This may be because the process
was stopped by an outside entity or because an internal error caused a malfunction. The agent
will attempt to start again automatically. Check the Messaging Gateway log file to determine if
further information is available. If the problem persists, then contact Oracle Support Services
for assistance.

ORA-32830: Result code -2 returned by Messaging Gateway agent

An error occurred when the Messaging Gateway agent tried to read its initialization file, usually
mgw.ora. Verify that the file is readable.

ORA-32830: Result code -3 returned by Messaging Gateway agent

An error occurred creating the Messaging Gateway log file. Verify that the log directory can be
written to. The default location is ORACLE_HOME/mgw/log.

ORA-32830: Result code -8 returned by Messaging Gateway agent

An error occurred starting the Java Virtual Machine (JVM). Verify that:

• You are using the correct Java version

• Your operating system version and patch level are sufficient for the JDK version

• You are using a reasonable value for the JVM heap size

The heap size is specified by the max_memory parameter of DBMS_MGWADM.ALTER_AGENT

• On Windows platforms, verify the MGW_PRE_PATH set in mgw.ora contains the path to the
correct JVM library (jvm.dll).

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-65 of C-82

ORA-32830: Result code -12 returned by Messaging Gateway agent

An error occurred writing to the Messaging Gateway log file. Check the free disk space or any
other issues that might result in file I/O problems.

ORA-32830: Result code -17 returned by Messaging Gateway agent

The JVM was successfully created but an error occurred trying to call the MGW Java agent
program. Verify that the CLASSPATH set in mgw.ora is correct.

ORA-32830: Result code -19 returned by Messaging Gateway agent

The Messaging Gateway agent was configured to use a particular initialization file but that file
does not exist. The INITFILE field of the MGW_GATEWAY view shows the full pathname of the file
specified by the administrator. Either create that initialization file, or use
DBMS_MGWADM.ALTER_AGENT to set INITFILE to another file or NULL to use the default initialization
file.

ORA-32830: Result code -100 returned by Messaging Gateway agent

The Messaging Gateway agent JVM encountered a runtime exception or error on startup
before it could write to the log file.

ORA-32830: Result code -101 returned by Messaging Gateway agent

An irrecoverable error caused the Messaging Gateway agent to shut down. Check the
Messaging Gateway log file for further information. Verify that the values specified in mgw.ora
are correct. Incorrect values can cause the Messaging Gateway agent to terminate due to
unusual error conditions.

ORA-32830: Result code -102 returned by Messaging Gateway agent

The Messaging Gateway agent shut down because the version of file ORACLE_HOME/mgw/jlib/
mgw.jar does not match the version of the Messaging Gateway PL/SQL packages. Verify that
all Messaging Gateway components are from the same release.

ORA-32830: Result code -103 returned by Messaging Gateway agent

The Messaging Gateway agent shut down because the database instance on which it was
running was shutting down. The agent should restart automatically, either on another instance
if set up to do so, or when the instance that shut down is restarted.

ORA-32830: Result code -104 returned by Messaging Gateway agent

See previous error.

ORA-32830: Result code -105 returned by Messaging Gateway agent

The Messaging Gateway agent detected that it was running when it should not be. This should
not happen. If it does, AGENT_STATUS will be BROKEN and the agent will shut down automatically.
If you encounter this error:

• Terminate any Messaging Gateway agent process that may still be running. The process is
usually named extprocmgwextproc.

• Run DBMS_MGWADM.CLEANUP_GATEWAY(DBMS_MGWADM.CLEAN_STARTUP_STATE).

• Start the Messaging Gateway agent using DBMS_MGWADM.STARTUP.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-66 of C-82

ORA-32830: Result code -106 returned by Messaging Gateway agent

See previous error.

See Also

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types Reference

Other Oracle Messaging Gateway Error Conditions
This section discusses possible causes for AGENT_STATUS remaining START_SCHEDULED in
MGW_GATEWAY view for an extended period.

Database Service Not Started

Messaging Gateway uses an Oracle Scheduler job to start the Messaging Gateway agent.
Oracle Scheduler allows you to specify a database service under which a job should be run
(service affinity). Messaging Gateway allows an administrator to configure the Messaging
Gateway agent with a database service that will be used to configure the Scheduler job class
associated with that agent.

When you shutdown a database Oracle stops all services to that database. You may need to
manually restart the services when you start the database. If a Scheduler job is associated with
a service then the job will not run until the service is started. If AGENT_STATUS for a Messaging
Gateway agent remains START_SCHEDULED for an extended period that might indicate that the
database service is disabled or no database instances associated with the service are running.
Use the MGW_GATEWAY view, Oracle Scheduler views, and service views to determine how the
agent was configured and the current state of the Scheduler job and database service.

Note

Oracle Messaging Gateway Agent Scheduler Job for information about Oracle
Scheduler objects used by Messaging Gateway.

Too Few Job Queue Processes

Messaging Gateway uses Oracle Scheduler to start the Messaging Gateway external process.
When AGENT_STATUS is START_SCHEDULED, the Messaging Gateway agent Scheduler job is
waiting to be run by the Scheduler. The Messaging Gateway job will not run until there is an
available job process. Messaging Gateway holds its Scheduler job process for the lifetime of
the Messaging Gateway agent session. If multiple Messaging Gateway agents have been
started, each agent uses its own Scheduler job and require its own job process.

If the value of the database initialization parameter JOB_QUEUE_PROCESSES is zero, then no
Oracle Scheduler jobs will run. If the value is non-zero, it effectively becomes the maximum
number of Scheduler jobs and job queue jobs than can concurrently run.

If Messaging Gateway status remains START_SCHEDULED for an extended period of time, then it
may indicate that the database has been started with a value for JOB_QUEUE_PROCESSES that is
zero or is too low and that all secondary job processes are busy. Verify that the value is non-
zero and that the database instance has been started with enough job queue processes so
that one is available for each Messaging Gateway agent.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-67 of C-82

Scheduler Job Broken or Disabled

The Messaging Gateway agent status will remain START_SCHEDULED if the Oracle Scheduler job
associated with a Messaging Gateway agent has become disabled or broken for some reason.
To determine if this is the case, use the DBA_SCHEDULER_JOBS view to look at STATE field for the
agent's Scheduler job. Normally the Scheduler job state will be SCHEDULED when the Messaging
Gateway agent's Scheduler job is waiting to be run, or RUNNING when the Messaging Gateway
agent is running. The agent's Scheduler job should not exist if the Messaging Gateway agent
status is NOT_STARTED.

Check other Scheduler views, such as DBA_SCHEDULER_JOB_RUN_DETAILS, for additional
information about the Messaging Gateway Scheduler jobs. Also check the MGW_GATEWAY view
and the Messaging Gateway log file for any error messages that may indicate a problem.

Note

Oracle Messaging Gateway Agent Scheduler Job for information about Oracle
Scheduler objects used by Messaging Gateway

Oracle Real Application Clusters (Oracle RAC) Environment

If Messaging Gateway is being used in an Oracle RAC environment and the agent has been
configured with a database service but no database instances are running that have the
service enabled, then the Messaging Gateway AGENT_STATUS will remain START_SCHEDULED
until the service is started on a running database instance.

Monitoring Oracle Messaging Gateway Propagation
Messaging Gateway propagation can be monitored using the MGW_JOBS view and the
Messaging Gateway log file. The view provides information on propagated messages and
errors that may have occurred during propagation attempts. The log file can be used to
determine the cause of the errors.

Besides showing configuration information, the MGW_JOBS view also has dynamic information
that can be used to monitor message propagation. Applicable fields include STATUS, ENABLED,
PROPAGATED_MSGS, EXCEPTIONQ_MSGS, FAILURES, LAST_ERROR_MSG, LAST_ERROR_DATE, and
LAST_ERROR_TIME.

The STATUS field indicates current status of the job. READY means that the job is ready for
propagation (but only if the ENABLED field is TRUE). RETRY means that a propagation failure
occurred but that propagation will be retried. FAILED means that the agent has stopped
propagation for the job due to an unrecoverable error or the maximum number of consecutive
propagation failures has been reached. DELETE_PENDING means job removal is pending due to
DBMS_MGWADM.REMOVE_JOB being called but certain cleanup tasks pertaining to the job are still
outstanding. SUBSCRIBER_DELETE_PENDING means that DBMS_MGWADM.REMOVE_SUBSCRIBER has
been called on an old style propagation job but certain cleanup tasks pertaining to the job are
still outstanding.

The ENABLED field indicates whether the propagation job is currently enabled. TRUE indicates
the job is enabled while FALSE indicates the job is disabled. No propagation will occur unless
the job is enabled.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-68 of C-82

The PROPAGATED_MSGS field of the MGW_JOBS view indicates how many messages have been
successfully propagated. This field is reset to zero when the Messaging Gateway agent is
started.

If a Messaging Gateway propagation job has been configured with an exception queue, then
the Messaging Gateway agent will move messages to that exception queue the first time the
Messaging Gateway agent encounters a propagation failure caused by a message conversion
failure. A message conversion failure is indicated by oracle.mgw.common.MessageException in
the Messaging Gateway log file. The EXCEPTIONQ_MSGS field indicates how many messages
have been moved to the exception queue. This field is reset to zero when the Messaging
Gateway agent is started.

If an error occurs during message propagation for a propagation job, a count is incremented in
the FAILURES field. This field indicates the number of failures encountered since the last
successful propagation of messages. Each time a failure occurs, an error message and the
time it occurred will be shown by LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME.
When the number of failures reaches sixteen, Messaging Gateway halts propagation attempts
for this propagation job. To resume propagation attempts you must call DBMS_MGWADM.RESET_JOB
for the propagation job.

If an error occurs, then examine the Messaging Gateway log file for further information.

See Also

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types Reference

Oracle Messaging Gateway Agent Error Messages
This section lists some of the most commonly occurring errors that are shown in the
LAST_ERROR_MSG column of the MGW_JOBS view and logged to the Messaging Gateway agent log
file. Also shown are some errors that require special action. When you notice that a failure has
occurred, look at the linked exceptions in the log file to determine the root cause of the
problem.

Two primary types of errors are logged to the Messaging Gateway agent log file:

• oracle.mgw.common.MessageException

This error type is logged when a message conversion failure occurs. The Messaging
Gateway agent probably cannot propagate the message causing the failure, and the
propagation job will eventually be stopped.

• oracle.mgw.common.GatewayException

This error type is logged when some failure other than message conversion occurs.
Depending on the cause, the problem may fix itself or require user action.

[221] Failed to access <messaging_system> queue: <queue>

An error occurred while trying to access either an Oracle Database Advanced Queuing queue
or a non-Oracle queue. Check the linked exception error code and message in the log file.

[241] Failed to connect to database. SQL error: <error>, connect string:
<connect_string>

This is probably caused by incorrect MGW agent connection information specified for
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. Either the Messaging Gateway

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-69 of C-82

agent user or password is incorrect or the database specifier (database parameter) is
incorrect. Verify that the connection information is correct for the connection type used by the
agent, JDBC OCI or JDBC Thin.

If the database parameter is NULL, then check the Messaging Gateway log file for the following
Oracle linked errors:

ORA-01034: ORACLE not available
ORA-27101: shared memory realm does not exist

These two errors together indicate that the Messaging Gateway agent is attempting to connect
to the database using a local IPC connection, but the ORACLE_SID value is not correct.

A local connection is used when the database parameter is set to NULL. If a local connection is
desired, the correct ORACLE_SID value must be set in the Messaging Gateway agent process.
This can be done by adding the following line to the MGW initialization file, usually mgw.ora:

set ORACLE_SID = sid_value

ORACLE_SID need not be set in the MGW initialization file if the database parameter is not NULL.

If setting ORACLE_SID in the MGW initialization file does not work, then the database parameter
must be set to a value that is not NULL.

If the JDBC Thin connection is used, then the database parameter must be not NULL. If the
JDBC Thin connection is used and the database parameter is a TNSNames alias, make sure
that the oracle.net.tns_names Java property is set in the MGW initialization file. The property
can be set by adding the following line to the MGW initialization file:

setJavaProp oracle.net.tns_admin=<directory containing tnsnames.ora>

Note

"oracle.net.tns_admin" for more information

[415] Missing messages from source queue of job <job_name>

Possible causes include:

• The agent partially processed persistent messages that were dequeued by someone other
than the Messaging Gateway agent.

• The propagation source queue was purged or re-created.

• A message was moved to the Oracle Database Advanced Queuing exception queue.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_MESSAGE,
 sarg => <job_name>);

The call takes effect only if the propagation job has encountered the missing message problem
and the agent is running. The agent treats the missing messages as nonpersistent messages
and continues processing the propagation job.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-70 of C-82

See Also

"Propagation Job Overview" for more information on Messaging Gateway exception
queues

[416] Missing log records in receiving log queue for job <job_name>

Possible causes include:

• Log records were dequeued from the log queues by someone other than the Messaging
Gateway agent.

• The log queues were purged or re-created.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_LOG_REC,
 sarg => <job_name>);

The call takes effect only if the propagation job has encountered the missing log records
problem and the agent is running.

Note

Calling procedure DBMS_MGWADM.CLEANUP_GATEWAY may result in duplicated messages
if the missing messages have already been propagated to the destination queue.
Users should check the source and destination queues for any messages that exist in
both places. If such messages exist, then they should be removed from either the
source or destination queue before calling this procedure.

[417] Missing log records in sending log queue for job <job_name>

See previous error.

[421] WARNING: Unable to get connections to recover job <job_name>

This message is a warning message indicating that the Messaging Gateway agent failed to get
a connection to recover the propagation job, because other propagation jobs are using them
all. The agent will keep trying to get a connection until it succeeds.

If this message is repeated many times for a WebSphere MQ link, then increase the maximum
number of connections used by the Messaging Gateway link associated with the propagation
job.

See Also

"Altering a Messaging System Link"

[434] Failed to access queue <queue>; provider queue <queue>

This message indicates that a messaging system native queue cannot be accessed. The
queue may have been registered by DBMS_MGWADM.REGISTER_FOREIGN_QUEUE, or it may be an

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-71 of C-82

Oracle Database Advanced Queuing queue. The linked exceptions should give more
information.

Possible causes include:

• The foreign queue was registered incorrectly, or the Messaging Gateway link was
configured incorrectly.

Verify configuration information. If possible, use the same configuration information to run a
sample application of the non-Oracle messaging system.

• The non-Oracle messaging system is not accessible.

Check that the non-Oracle messaging system is running and can be accessed using the
information supplied in the Messaging Gateway link.

• The Oracle Database Advanced Queuing queue does not exist. Perhaps the queue was
removed after the Messaging Gateway propagation job was created.

Check that the Oracle Database Advanced Queuing queue still exists.

[436] LOW MEMORY WARNING: total memory = < >, free_mem = < >

The Messaging Gateway agent JVM is running low on memory. Java garbage collection will be
invoked, but this may represent a JVM heap size that is too small. Use the max_memory
parameter of DBMS_MGWADM.ALTER_AGENT to increase the JVM heap size. If the Messaging
Gateway agent is running, then it must be restarted for this change to take effect.

[703] Failed to retrieve information for transformation <transformation_id>

The Messaging Gateway agent could not obtain all the information it needs about the
transformation. The transformation parameter of DBMS_MGWADM.CREATE_JOB must specify the
name of the registered transformation and not the name of the transformation function.

Possible causes include:

• The transformation does not exist. Verify that the transformation has been created. You
can see this from the following query performed as user SYS:

SELECT TRANSFORMATION_ID, OWNER FROM DBA_TRANSFORMATIONS;

• The wrong transformation is registered with Messaging Gateway. Verify that the
transformation registered is the one intended.

• The Messaging Gateway agent user does not have EXECUTE privilege on the object type
used for the from_type or the to_type of the transformation indicated in the exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to
the agent user. You must grant EXECUTE privilege on the object type directly to the agent
user or to PUBLIC.

The following example shows such a case for the from_type. It also shows the use of
linked exceptions for determining the precise cause of the error.

No EXECUTE Privilege on Object Type

Errors occurred during processing of job JOB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: "from_type" is null
[…Java stack trace here…]

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-72 of C-82

[720] AQ payload type <type> not supported; queue: <queue>

The payload type of the Oracle Database Advanced Queuing queue used by a Messaging
Gateway propagation job is not directly supported by Messaging Gateway. For non-JMS
propagation, Messaging Gateway directly supports the payload types RAW,
SYS.MGW_BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T.

Possible actions include:

• Configure the Messaging Gateway propagation job to use a transformation that converts
the queue payload type to a supported type.

• Remove the Messaging Gateway propagation job and create a new job that uses an
Oracle Database Advanced Queuing queue with a supported payload type.

For Java Message Service (JMS) propagation, the Messaging Gateway propagation job
must be removed and a new job created whose Oracle Database Advanced Queuing
payload type is supported by Oracle Java Message Service (Oracle JMS). Transformations
are not supported for JMS propagation.

[721] Transformation type <type> not supported; queue: <queue_name>, transform:
<transformation>

A Messaging Gateway propagation job was configured with a transformation that uses an
object type that is not one of the Messaging Gateway canonical types.

For an outbound job, the transformation from_type must be the Oracle Database Advanced
Queuing payload type, and the to_type must be a Messaging Gateway canonical type. For an
inbound job, the transformation from_type must be a Messaging Gateway canonical type and
the to_type must be the Oracle Database Advanced Queuing payload type.

[722] Message transformation failed; queue: <queue_name>, transform:
<transformation>

An error occurred while attempting execution of the transformation. ORA-25229 is typically
thrown by Oracle Database Advanced Queuing when the transformation function raises a
PL/SQL exception or some other Oracle error occurs when attempting to use the
transformation.

Possible causes include:

• The Messaging Gateway agent user does not have EXECUTE privilege on the transformation
function. This is illustrated in the following example.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to
the Messaging Gateway agent user. You must grant EXECUTE privilege on the
transformation function directly to the Messaging Gateway agent user or to PUBLIC.

No EXECUTE Privilege on Transformation Function

Errors occurred during processing of job JOB_MQ2AQ_2
oracle.mgw.common.GatewayException: [722] Message transformation failed queue:
MGWUSER.DESTQ_SIMPLEADT, transform: MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
oracle.mgw.common.MessageException: [722] Message transformation failed;
queue: MGWUSER.DESTQ_SIMPLEADT, transform:
MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-25229: error on transformation of message msgid:

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-73 of C-82

9749DB80C85B0BD4E03408002086745E
ORA-00604: error occurred at recursive SQL level 1
ORA-00904: invalid column name
[…Java stack trace here…]

• The transformation function does not exist, even though the registered transformation
does. If the transformation function does not exist, it must be re-created.

• The Messaging Gateway agent user does not have EXECUTE privilege on the payload
object type for the queue indicated in the exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to
the Messaging Gateway agent user. You must grant EXECUTE privilege on the object type
directly to the Messaging Gateway agent user or to PUBLIC.

• The transformation function raised the error. Verify that the transformation function can
handle all messages it receives.

[724] Message conversion not supported; to AQ payload type: <type>, from type: <type>

A Messaging Gateway propagation job is configured for inbound propagation where the
canonical message type generated by the non-Oracle messaging system link is not compatible
with the Oracle Database Advanced Queuing queue payload type. For example, propagation
from a TIB/Rendezvous messaging system to an Oracle Database Advanced Queuing queue
with a SYS.MGW_BASIC_MSG_T payload type, or propagation from WebSphere MQ to an Oracle
Database Advanced Queuing queue with a SYS.MGW_TIBRV_MSG_T payload type.

Possible actions include:

• Configure the Messaging Gateway propagation job with a transformation that maps the
canonical message type generated by the non-Oracle messaging link to the Oracle
Database Advanced Queuing payload type.

• Remove the Messaging Gateway propagation job and create a new job whose Oracle
Database Advanced Queuing queue payload type matches the canonical message type
generated by the non-Oracle link.

[725] Text message not supported for RAW payload

A Messaging Gateway propagation job is configured for inbound propagation to an Oracle
Database Advanced Queuing destination having a RAW payload type. A text message was
received from the source (non-Oracle) queue resulting in a message conversion failure.

If support for text data is required, remove the Messaging Gateway propagation job and create
a new job to an Oracle Database Advanced Queuing destination whose payload type supports
text data.

[726] Message size <size> too large for RAW payload; maximum size is <size>

A Messaging Gateway propagation job is configured for inbound propagation to an Oracle
Database Advanced Queuing destination having a RAW payload type. A message conversion
failure occurred when a message containing a large RAW value was received from the source
(non-Oracle) queue.

If large data support is required, remove the Messaging Gateway propagation job and create a
new job to an Oracle Database Advanced Queuing destination whose payload type supports
large data, usually in the form of an object type with a BLOB attribute.

Appendix C
Monitoring Oracle Messaging Gateway

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-74 of C-82

[728] Message contains too many large (BLOB) fields

The source message contains too many fields that must be stored in BLOB types.
SYS.MGW_TIBRV_MSG_T is limited to three BLOB fields. Reduce the number of large fields in the
message, perhaps by breaking them into smaller fields or combining them into fewer large
fields.

[729] Message contains too many large (CLOB) fields

The source message contains too many fields that contain a large text value that must be
stored in a CLOB. SYS.MGW_TIBRV_MSG_T is limited to three CLOB fields. Reduce the number of
large fields in the message, perhaps by breaking them into smaller fields or combining them
into fewer large fields.

[805] MQSeries Message error while enqueuing to queue: <queue>

WebSphere MQ returned an error when an attempt was made to put a message in a
WebSphere MQ queue. Check the linked exception error code and message in the log file.
Consult WebSphere MQ documentation.

Oracle Messaging Gateway Views
• MGW_GATEWAY: Configuration and Status Information

• MGW_AGENT_OPTIONS: Supplemental Options and Properties

• MGW_LINKS: Names and Types of Messaging System Links

• MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links

• MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

• MGW_FOREIGN_QUEUES: Foreign Queues

• MGW_JOBS: Messaging Gateway Propagation Jobs

• MGW_SUBSCRIBERS: Information for Subscribers

• MGW_SCHEDULES: Information About Schedules

MGW_GATEWAY: Configuration and Status Information
This view lists configuration and status information for Messaging Gateway.

Table C-13 MGW_GATEWAY View Properties

Name Type Description

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent. NULL
indicates that a local connection is used.

AGENT_INSTANCE NUMBER The database instance on which the Messaging Gateway agent is currently
running. This should be NULL if the agent is not running.

AGENT_JOB NUMBER [Deprecated] Job number of the queued job used to start the Messaging
Gateway agent process. The job number is set when Messaging Gateway is
started and cleared when it shuts down.

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-75 of C-82

Table C-13 (Cont.) MGW_GATEWAY View Properties

Name Type Description

AGENT_PING VARCHAR2 Gateway agent ping status. Values:

• NULL means no ping attempt was made.
• REACHABLE means ping attempt was successful.
• UNREACHABLE means ping attempt failed.
AGENT_PING attempts to contact the Messaging Gateway agent. There is a
short delay (up to 5 seconds) if the ping attempt fails. No ping is attempted if
the AGENT_STATUS is NOT_STARTED or START_SCHEDULED.

AGENT_START_TIME TIMESTAMP The time when the Messaging Gateway agent job currently running was
started. This should be NULL if the agent is not running.

AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:

• NOT_STARTED means the Messaging Gateway agent has not been
started

• START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started using
DBMS_MGWADM.STARTUP, but the queued job used to start the
Messaging Gateway agent has not yet run.

• STARTING means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using DBMS_MGWADM.STARTUP,
the queued job has run, and the Messaging Gateway agent is starting
up.

• INITIALIZING means the Messaging Gateway agent has started and is
initializing

• RUNNING means the Messaging Gateway agent is running
• SHUTTING_DOWN means the Messaging Gateway agent is shutting down
• BROKEN means an unexpected condition has been encountered that

prevents the Messaging Gateway agent from starting.
DBMS_MGWADM.CLEANUP_GATEWAY must be called before the agent can
be started.

AGENT_USER VARCHAR2 Database user name used by the Messaging Gateway agent to connect to
the database

COMMENTS VARCHAR2 Comments for the agent

CONNTYPE VARCHAR2 Connection type used by the agent:

• JDBC_OCI if the JDBC OCI driver is used
• JDBC_THIN if the JDBC Thin driver is used

INITFILE VARCHAR2 Name of the Messaging Gateway initialization file used by the agent. NULL
indicates that the default initialization file is used.

LAST_ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error information is
cleared when Messaging Gateway is started. It is set if the Messaging
Gateway agent fails to start or terminates due to an abnormal condition.

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER [Deprecated] Maximum number of messaging connections to Oracle
Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

MAX_THREADS NUMBER Maximum number of messaging threads created by the Messaging Gateway
agent

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-76 of C-82

Table C-13 (Cont.) MGW_GATEWAY View Properties

Name Type Description

SERVICE VARCHAR2 Name of the database service that is associated with an Oracle Scheduler
job class used by the agent

MGW_AGENT_OPTIONS: Supplemental Options and Properties
This view lists supplemental options and properties for a Messaging Gateway agent.

Table C-14 MGW_AGENT_OPTIONS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

ENCRYPTED VARCHAR2 Indicates whether the value is stored as encrypted:

• TRUE if the value is stored encrypted
• FALSE if the value is stored as cleartext

NAME VARCHAR2 Name of the option

TYPE VARCHAR2 Option type or usage: JAVA_SYSTEM_PROP if the option is used to set a
Java System property

VALUE VARCHAR2 Value for the option. This will be <<ENCRYPTED>> if the value is stored in
an encrypted form.

MGW_LINKS: Names and Types of Messaging System Links
This view lists the names and types of messaging system links currently defined.

Table C-15 MGW_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation jobs for
this link

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

LINK_TYPE VARCHAR2 Type of messaging system link. Values

• MQSERIES is for WebSphere MQ links.
• TIBRV is for TIB/Rendezvous links.

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
This view lists information for the WebSphere MQ messaging system links. The view includes
most of the messaging system properties specified when the link is created.

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-77 of C-82

Table C-16 MGW_MQSERIES_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

CHANNEL VARCHAR2 Connection channel

HOSTNAME VARCHAR2 Name of the WebSphere MQ host

INBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

INTERFACE_TYPE VARCHAR2 Messaging interface type. Values:

• BASE_JAVA is for WebSphere MQ Base Java interface
• JMS_CONNECTION is for WebSphere MQ JMS unified, domain-

independent connections
• JMS_QUEUE_CONNECTION is for WebSphere MQ JMS queue

connections
• JMS_TOPIC_CONNECTION is for WebSphere MQ JMS topic

connections

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

MAX_CONNECTIONS NUMBER Maximum number of messaging connections

OPTIONS SYS.MGW_PROPER
TIES

Link options

OUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue

PORT NUMBER Port number

QUEUE_MANAGER VARCHAR2 Name of the WebSphere MQ queue manager

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
This view lists information for TIB/Rendezvous messaging system links. The view includes
most of the messaging system properties specified when the link was created.

Table C-17 MGW_TIBRV_LINKS View Properties

Property Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation jobs
for this link

CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name

CM_NAME VARCHAR2 TIB/Rendezvous CM correspondent name

DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for RVD transport

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport

OPTIONS SYS.MGW_PROPERT
IES

Link options

SERVICE VARCHAR2 TIB/Rendezvous service parameter for rvd transport

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-78 of C-82

MGW_FOREIGN_QUEUES: Foreign Queues
This view lists information for foreign queues. The view includes most of the queue properties
specified when the queue is registered.

Table C-18 MGW_FOREIGN_QUEUES View Properties

Name Type Description

DOMAIN VARCHAR2 Queue domain type. Values:

• NULL means the queue domain type is automatically determined by the
messaging system

• QUEUE is for a queue (point-to-point) model
• TOPIC is for a topic (publish-subscribe) model

LINK_NAME VARCHAR2 Name of the messaging system link

NAME VARCHAR2 Name of the registered queue

OPTIONS SYS.MGW_PROPER
TIES

Optional queue properties

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name

QUEUE_COMMENT VARCHAR2 User comment for the foreign queue

MGW_JOBS: Messaging Gateway Propagation Jobs
This view lists information for Messaging Gateway propagation jobs. The view includes most of
the job properties specified when the propagation job was created, as well as other status and
statistical information.

Table C-19 MGW_JOBS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that processes this job

COMMENTS VARCHAR2 Comments for the propagation job

DESTINATION VARCHAR2 Destination queue to which messages are propagated

ENABLED VARCHAR2 Indicates whether the job is enabled or not:

• TRUE if the job is enabled
• FALSE if the job is disabled

EXCEPTION_QUEUE VARCHAR2 Exception queue used for propagation logging purposes

EXCEPTIONQ_MSGS NUMBER Option type or usage: JAVA_SYSTEM_PROP if the option is used to set a
Java System property

FAILURES NUMBER Number of messages moved to exception queue since the last time the
agent was started

JOB_NAME VARCHAR2 Name of the propagation job

LAST_ERROR_MSG VARCHAR2 Message for the last propagation error

LAST_ERROR_DATE DATE Date of the last propagation error

LAST_ERROR_TIME VARCHAR2 Time of the last propagation error

LINK_NAME VARCHAR2 Name of the Messaging Gateway link used by this job

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-79 of C-82

Table C-19 (Cont.) MGW_JOBS View

Column Type Description

OPTIONS SYS.MGW_PROPERT
IES

Job options

POLL_INTERVAL INTEGER Propagation poll interval (in seconds)

PROPAGATED_MSGS NUMBER Number of messages propagated since the last time the agent was started

PROP_STYLE VARCHAR2 Message propagation style:

• NATIVE for native message propagation
• JMS for JMS message propagation

PROPAGATION_TYPE VARCHAR2 Propagation type:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

RULE VARCHAR2 Subscription rule used for the propagation source

SOURCE VARCHAR2 Source queue from which messages are propagated

STATUS VARCHAR2 Job status:

• READY means the job is ready for propagation. The job must be
enabled and the Messaging Gateway agent running before messages
are actually propagated.

• RETRY means the agent encountered errors when attempting to
propagate messages for the job and will retry the operation

• FAILED means the job has failed and agent has stopped trying to
propagate messages. Usually this is due to an unrecoverable error or
the propagation failure limit being reached. The job must be reset
before the agent will attempt to propagate messages. The job is
automatically reset each time the agent is started and can be
manually reset by DBMS_MGWADM.RESET_JOB.

• DELETE_PENDING means that job removal is pending.
DBMS_MGWADM.REMOVE_JOB has been called but certain cleanup
tasks for this job are still outstanding.

• SUBSCRIBER_DELETE_PENDING means that removal is pending for
the subscriber associated with the job.
DBMS_MGWADM.REMOVE_SUBSCRIBER has been called but certain
cleanup tasks are still outstanding.

TRANSFORMATION VARCHAR2 Transformation used for message conversion

MGW_SUBSCRIBERS: Information for Subscribers
This view lists configuration and status information for Messaging Gateway subscribers. The
view includes most of the subscriber properties specified when the subscriber is added, as well
as other status and statistical information.

Table C-20 MGW_SUBSCRIBERS View Properties

Name Type Description

DESTINATION VARCHAR2 Destination queue to which messages are propagated

EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation exception queue since the
last time the agent was started

EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-80 of C-82

Table C-20 (Cont.) MGW_SUBSCRIBERS View Properties

Name Type Description

FAILURES NUMBER Number of propagation failures

LAST_ERROR_DATE DATE Date of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

LAST_ERROR_TIME VARCHAR2 Time of last propagation error

OPTIONS SYS.MGW_PROPER
TIES

Subscriber options

PROP_STYLE VARCHAR2 Message propagation style. Values:

• NATIVE is for native message propagation
• JMS is for JMS message propagation

PROPAGATED_MSGS NUMBER Number of messages propagated to the destination queue since the last
time the agent was started

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

QUEUE_NAME VARCHAR2 Subscriber source queue

RULE VARCHAR2 Subscription rule

STATUS VARCHAR2 Subscriber status. Values:

• ENABLED means the subscriber is enabled
• DELETE_PENDING means subscriber removal is pending, usually

because DBMS_MGWADM.REMOVE_SUBSCRIBER has been called but
certain cleanup tasks pertaining to this subscriber are still outstanding

SUBSCRIBER_ID VARCHAR2 Propagation subscriber identifier

TRANSFORMATION VARCHAR2 Transformation used for message conversion

MGW_SCHEDULES: Information About Schedules
This view lists configuration and status information for Messaging Gateway schedules. The
view includes most of the schedule properties specified when the schedule is created, as well
as other status information.

Table C-21 MGW_SCHEDULES View Properties

Name Type Description

DESTINATION VARCHAR2 Propagation destination

LATENCY NUMBER Propagation window latency (in seconds)

NEXT_TIME VARCHAR2 Reserved for future use

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

PROPAGATION_WINDOW NUMBER Reserved for future use

SCHEDULE_DISABLED VARCHAR2 Indicates whether the schedule is disabled. Y means the schedule is
disabled. N means the schedule is enabled.

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-81 of C-82

Table C-21 (Cont.) MGW_SCHEDULES View Properties

Name Type Description

SCHEDULE_ID VARCHAR2 Propagation schedule identifier

SOURCE VARCHAR2 Propagation source

START_DATE DATE Reserved for future use

START_TIME VARCHAR2 Reserved for future use

Appendix C
Oracle Messaging Gateway Views

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix C-82 of C-82

D
Advanced Queuing Sharded Queues

Table D-1 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces for Sharded
Queues: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a sharded queue DBMS_AQADM.CREATE_SHA
RDED_QUEUE

AQjmsDestination.createJMSShardedQueue

Drop a sharded queue DBMS_AQADM.DROP_SHARD
ED_QUEUE

AQjmsDestination.dropJMSShardedQueue

Alter a sharded queue DBMS_AQADM.ALTER_SHAR
DED_QUEUE

None. Use PL/SQL API.

Managing Sharded Queues
These topics describe how to manage sharded queues.

Note

Starting and stopping a sharded queue use the same APIs as non-sharded queues.

• Creating a Sharded Queue

• Dropping a Sharded Queue

• Altering a Sharded Queue

• Setting a Queue Parameter

• Unsetting a Queue Parameter

• Getting a Queue Parameter

• Creating an Exception Queue

Creating a Sharded Queue
The CREATE_SHARDED_QUEUE API creates a sharded queue.

PROCEDURE CREATE_SHARDED_QUEUE (
 queue_name IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 max_retries IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 queue_payload_type IN VARCHAR2 DEFAULT JMS_TYPE,
 queue_properties IN QUEUE_PROPS_T DEFAULT NULL,
 replication_mode IN BINARY_INTEGER DEFAULT NONE);

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-1 of D-5

It has the following parameters:

Parameter Description

queue_name This required parameter specifies the name of the new queue. Maximum
of 128 characters allowed.

storage_clause The storage parameter is included in the CREATE TABLE statement when
the queue table is created. The storage_clause argument can take any
text that can be used in a standard CREATE TABLE storage_clause
argument. The storage parameter can be made up of any combinations
of the following parameters: PCTFREE, PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, LOB, and a table storage clause.

If a tablespace is not specified here, then the queue table and all its
related objects are created in the default user tablespace. If a tablespace
is specified here, then the queue table and all its related objects are
created in the tablespace specified in the storage clause. See Oracle
Database SQL Language Reference for the usage of these parameters.

multiple_consumers FALSE means queues can only have one consumer for each message.
This is the default. TRUE means queues created in the table can have
multiple consumers for each message.

max_retries This optional parameter limits the number of times that a dequeue can
reattempted on a message after a failure. The maximum value of
max_retries is 2**31 -1. After the retry limit has been exceeded, the
message will be purged from the queue. RETRY_COUNT is incremented
when the application issues a rollback after executing the dequeue. If a
dequeue transaction fails because the server process dies (including
ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance,
then RETRY_COUNT is not incremented.

comment This optional parameter is a user-specified description of the queue table.
This user comment is added to the queue catalog.

queue_payload_type Payload can be RAW, DBMS_AQADM.JMS_TYPE, or an object type. Default
is DBMS_AQADM.JMS_TYPE.

queue_properties Properties such as Normal or Exception Queue, Retry delay, retention
time, sort list and cache hint.

See also Oracle AI Database PL/SQL Packages and Types Reference for
more information about queue_properties.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if queue is
being created in the Replication Mode or else DBMS_AQADM.NONE.
Default is DBMS_AQADM.NONE.

Dropping a Sharded Queue
This procedure drops an existing sharded queue from the database queuing system. You must
stop the queue before calling DROP_SHARDED_QUEUE. User must stop the queue explicitly if force
is set to FALSE before calling DROP_SHARDED_QUEUE. If force is set to TRUE then queue will be
stopped internally and then dropped.

Syntax

DBMS_AQADM.DROP_SHARDED_QUEUE(
 queue_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE)

Appendix D
Managing Sharded Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-2 of D-5

Parameters

Table D-2 CREATE_SHARDED_QUEUE Procedure Parameters

Parameter Description

queue_name This required parameter specifies the name of the sharded queue.

force The sharded queue is dropped even if the queue is not stopped.

Altering a Sharded Queue
This procedure provides user the ability to alter queue_properties of a sharded queue.

Syntax

PROCEDURE ALTER_SHARDED_QUEUE(
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 queue_properties IN QUEUE_PROPS_T DEFAULT NULL,
 replication_mode IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table D-3 ALTER_SHARDED_QUEUE Procedure Parameters

Parameter Description

queue_name This parameter specifies the name of the sharded queue. A
maximum of 128 characters are allowed.

max_retries The maximum number of retries allowed.

comment The parameter comment.

queue_properties Properties such as Normal or Exception Queue, Retry delay,
retention time, sort list and cache hint.

See also Oracle AI Database PL/SQL Packages and Types
Reference for more information about queue_properties.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if
queue is being altered to be in the Replication Mode or else
DBMS_AQADM.NONE. Default is NULL.

Setting a Queue Parameter
This procedure allows user to set different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue overrides
database level parameter values.

Syntax

 PROCEDURE SET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2,
 param_value IN NUMBER);

Appendix D
Managing Sharded Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-3 of D-5

Parameters

Table D-4 SET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

param_value The value of the parameter.

Unsetting a Queue Parameter
This procedure allows user to unset different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue overrides
database level parameter values.

Syntax

 PROCEDURE UNSET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2);

Parameters

Table D-5 UNSET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

Getting a Queue Parameter
This procedure allows user to get different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue overrides
database level parameter values.

Syntax

 PROCEDURE GET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2,
 param_value OUT NUMBER);

Parameters

Table D-6 GET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

param_value The value of the parameter.

Appendix D
Managing Sharded Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-4 of D-5

Creating an Exception Queue
This procedure allows a user to create an exception queue for a sharded queue.

Syntax

 PROCEDURE CREATE_EXCEPTION_QUEUE(
 sharded_queue_name IN VARCHAR2,
 exception_queue_name IN VARCHAR2 DEFAULT NULL
);

Parameters

Table D-7 CREATE_EXCEPTION_QUEUE Procedure Parameters

Parameter Description

sharded_queue_name The name of the sharded queue.

exception_queue_name The name of the exception queue.

Appendix D
Managing Sharded Queues

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Appendix D-5 of D-5

Glossary

ADT
Abstract data type.

API
See application programming interface.

application programming interface
The calling conventions by which an application program accesses operating system and other
services.

approximate CSCN
An approximate system change number value, based on the current SCN of the database
when a transaction that has enqueued messages into a commit-time queue is committed.

asynchronous
A process in a multitasking system is asynchronous if its execution can proceed independently
in the background. Other processes can be started before the asynchronous process has
finished. The opposite of synchronous.

BFILE
An external binary file that exists outside the database tablespaces residing in the operating
system.

binary large object
A large object datatype whose content consists of binary data. This data is considered raw,
because its structure is not recognized by the database.

BLOB
See binary large object.

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-1 of Glossary-11

broadcast
A publish/subscribe mode in which the message producer does not know the identity of any
message consumer. This mode is similar to a radio or television station.

buffered queue
Buffered queues support queuing of messages with buffered attributes (buffered messages)
and materialize them in memory. If the memory devoted to a buffered message is required for
a newer message, or if a buffered message has exceeded a stipulated duration in memory,
then that buffered message is swapped to the underlying queue table. The memory for
buffered messages comes from a separate pool called the streams pool. Buffered messages
cannot be recovered if the database is bounced. Messages that have no buffered attributes set
are queued as persistent messages in the underlying persistent queue.

canonical
The usual or standard state or manner of something.

character large object
The large object datatype whose value is composed of character data corresponding to the
database character set. A character large object can be indexed and searched by the Oracle
Text search engine.

CLOB
See character large object.

ConnectionFactory
A ConnectionFactory encapsulates a set of connection configuration parameters that has been
defined by an administrator. A client uses it to create a connection with a Java Message
Service provider.

commit-time queue
A queue in which messages are ordered by their approximate CSCN values.

consumer
A user or application that can dequeue messages.

data manipulation language
Data manipulation language (DML) statements manipulate database data. For example,
querying, inserting, updating, and deleting rows of a table are all DML operations; locking a
table or view and examining the execution plan of an SQL statement are also DML operations.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-2 of Glossary-11

Database Configuration Assistant
An Oracle Database tool for creating and deleting databases and for managing database
templates.

DBCA
See Database Configuration Assistant.

dequeue
To retrieve a message from a queue

DML
See data manipulation language.

enqueue
To place a message in a queue. The JMS equivalent of enqueue is send.

exception queue
Messages are transferred to an exception queue if they cannot be retrieved and processed for
some reason.

IDAP
See Internet Data Access Presentation.

index-organized table
Unlike an ordinary table whose data is stored as an unordered collection, data for an index-
organized table is stored in a B-tree index structure sorted on a primary key. Besides storing
the primary key column values of an index-organized table row, each index entry in the B-tree
stores the nonkey column values as well.

Internet Data Access Presentation
The Simple Object Access Protocol (SOAP) specification for Oracle Database Advanced
Queuing operations. IDAP defines the XML message structure for the body of the SOAP
request. An IDAP-structured message is transmitted over the Internet using HTTP(S).

Inter-process Communication
Exchange of data between one process and another, either within the same computer or over
a network. It implies a protocol that guarantees a response to a request.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-3 of Glossary-11

IOT
See index-organized table.

IPC
See Inter-process Communication.

Java Database Connectivity
An industry-standard Java interface for connecting to a relational database from a Java
program, defined by Sun Microsystems.

Java Message Service
A messaging standard defined by Sun Microsystems, Oracle, IBM, and other vendors. JMS is
a set of interfaces and associated semantics that define how a JMS client accesses the
facilities of an enterprise messaging product.

Java Naming and Directory Interface
A programming interface from Sun for connecting Java programs to naming and directory
services.

Java Virtual Machine
The Java interpreter that converts the compiled Java bytecode into the machine language of
the platform and runs it. JVMs can run on a client, in a browser, in a middle tier, on an intranet,
on an application server such as Oracle Application Server 10g, or in a database server such
as Oracle Database 10g.

JDBC
See Java Database Connectivity.

JDBC driver
The vendor-specific layer of Java Database Connectivity that provides access to a particular
database. Oracle Database provides three JDBC drivers--Thin, OCI, and KPRB.

JMS
See Java Message Service.

JMS connection
An active connection of a client to its JMS provider, typically an open TCP/IP socket (or a set of
open sockets) between a client and a provider's service daemon.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-4 of Glossary-11

JMS message
JMS messages consist of a header, one or more optional properties, and a message payload.

JMS session
A single threaded context for producing and consuming messages.

JMS topic
Equivalent to a multiconsumer queue in the other Oracle Database Advanced Queuing
interfaces.

JNDI
See Java Naming and Directory Interface.

Jnnn
Job queue process

JServer
The Java Virtual Machine that runs within the memory space of Oracle Database.

JVM
See Java Virtual Machine

large object
The class of SQL datatype consisting of BFILE, BLOB, CLOB, and NCLOB objects.

LDAP
See Lightweight Directory Access Protocol

Lightweight Directory Access Protocol
A standard, extensible directory access protocol. It is a common language that LDAP clients
and servers use to communicate. The framework of design conventions supporting industry-
standard directory products, such as the Oracle Internet Directory.

LOB
See large object

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-5 of Glossary-11

local consumer
A local consumer dequeues the message from the same queue into which the producer
enqueued the message.

logical change record
An object with a specific format that describes a database change, captured from the redo log
by a capture process or user application. Capture processes enqueue messages containing
logical change records (LCRs) only into ANYDATA queues. For improved performance, these
LCRs are always stored in a buffered queue.

message
The smallest unit of information inserted into and retrieved from a queue. A message consists
of control information (metadata) and payload (data).

multicast
A publish/subscribe mode in which the message producer knows the identity of each
consumer. This mode is also known as point-to-multipoint.

national character large object
The large object datatype whose value is composed of character data corresponding to the
database national character set.

NCLOB
See national character large object.

nonpersistent
Nonpersistent queues store messages in memory. They are generally used to provide an
asynchronous mechanism to send notifications to all users that are currently connected.
Nonpersistent queues are deprecated in Oracle Database Advanced Queuing 10g Release 2
(10.2). Oracle recommends that you use buffered messaging instead.

nontransactional
Allowing enqueuing and dequeuing of only one message at a time.

object type
An object type encapsulates a data structure along with the functions and procedures needed
to manipulate the data. When you define an object type using the CREATE TYPE statement, you
create an abstract template that corresponds to a real-world object.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-6 of Glossary-11

OCI
See Oracle Call Interface.

Oracle JMS
See Oracle Java Message Service.

OLTP
See Online Transaction Processing.

Online Transaction Processing
Online transaction processing systems are optimized for fast and reliable transaction handling.
Compared to data warehouse systems, most OLTP interactions involve a relatively small
number of rows, but a larger group of tables.

Oracle Call Interface
An application programming interface that enables data and schema manipulation in Oracle
Database.

Oracle Java Message Service
Oracle Java Message Service (Oracle JMS) provides a Java API for Oracle Database
Advanced Queuing based on the Java Message Service (JMS) standard. Oracle JMS supports
the standard JMS interfaces and has extensions to support the Oracle Database Advanced
Queuing administrative operations and other Oracle Database Advanced Queuing features
that are not a part of the standard.

producer
A user or application that can enqueue messages.

propagation
Copying messages from one queue to another (local or remote) queue.

publish/subscribe
A type of messaging in which a producer enqueues a message to one or more multiconsumer
queues, and then the message is dequeued by several subscribers. The published message
can have a wide dissemination mode called broadcast or a more narrowly aimed mode called
multicast.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-7 of Glossary-11

QMNC
Queue monitor coordinator. It dynamically spawns secondary processes qXXX depending on
the system load. The secondary processes do various background tasks.

QMNn
Queue monitor process.

queue
The abstract storage unit used by a messaging system to store messages.

queue table
A database table where queues are stored. Each queue table contains a default exception
queue.

recipient
An agent authorized by the enqueuer or queue administrator to retrieve messages. The
enqueuer can explicitly specify the consumers who can retrieve the message as recipients of
the message. A queue administrator can specify a default list of recipients who can retrieve
messages from a queue. A recipient specified in the default list is known as a subscriber. If a
message is enqueued without specifying the recipients, then the message is sent to all the
subscribers. Specific messages in a queue can be directed toward specific recipients, who
may or may not be subscribers to the queue, thereby overriding the subscriber list.

If only the name of the recipient is specified, then the recipient must dequeue the message
from the queue in which the message was enqueued. If the name and an address of the
recipient are specified with a protocol value of 0, then the address should be the name of
another queue in the same database or another installation of Oracle Database. If the
recipient's name is NULL, then the message is propagated to the specified queue in the address
and can be dequeued by any subscriber of the queue specified in the address. If the protocol
field is nonzero, then the name and address are not interpreted by the system, and the
message can be dequeued by a special consumer.

remote consumer
A remote consumer dequeues from a queue that is different from the queue where the
message was enqueued.

result cache
A Result Cache can be defined as a cache of results of an evaluation for a set of argument
values. In case of rules engine a result cache refers to cache of results pertaining to Rule Set,
Rule and Independent Expression evaluations given certain input arguments

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-8 of Glossary-11

rules
Boolean expressions that define subscriber interest in subscribing to messages. The
expressions use syntax similar to the WHERE clause of a SQL query and can include conditions
on: message properties (currently priority and correlation identifier), user data properties
(object payloads only), and functions. If a rule associated with a subscriber evaluates to TRUE
for a message, then the message is sent to that subscriber even if the message does not have
a specified recipient.

rules engine
Oracle Database software that evaluates rules. Rules are database objects that enable a client
to perform an action when an event occurs and a condition is satisfied. Rules are similar to
conditions in WHERE clauses of SQL queries. Both user-created applications and Oracle
Database features, such as Oracle Database Advanced Queuing, can be clients of the rules
engine.

schema
A collection of database objects, including logical structures such as tables, views, sequences,
stored procedures, synonyms, indexes, clusters, and database links. A schema has the name
of the user who controls it.

send
The JMS equivalent of enqueue.

servlet
A Java program that runs as part of a network service and responds to requests from clients. It
is typically an HTTP server.

SGA
See System Global Area.

sharded queue
A single logical queue that is divided into multiple, independent, physical queues through
system-maintained partitioning.

Simple Object Access Protocol
A minimal set of conventions for invoking code using XML over HTTP defined by World Wide
Web Consortium.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-9 of Glossary-11

SOAP
See Simple Object Access Protocol.

subscriber
An agent authorized by a queue administrator to retrieve messages from a queue.

System Global Area
A group of shared memory structures that contain data and control information for one Oracle
Database instance. The SGA and Oracle Database processes constitute an Oracle Database
instance. Oracle Database automatically allocates memory for an SGA whenever you start an
instance and the operating system reclaims the memory when you shut down the instance.
Each instance has one and only one SGA.

synchronous
Two or more processes are synchronous if they depend upon the occurrences of specific
events such as common timing signals. The opposite of asynchronous.

transactional
Allowing simultaneous enqueuing or dequeuing of multiple messages as part of a group.

transformation
A mapping from one Oracle data type to another, represented by a SQL function that takes the
source data type as input and returns an object of the target data type. A transformation can be
specified during enqueue, to transform the message to the correct type before inserting it into
the queue. It can be specified during dequeue to receive the message in the wanted format. If
specified with a remote consumer, then the message is transformed before propagating it to
the destination queue.

user queue
A queue for normal message processing.

VARRAY
An ordered set of data elements. All elements of a given array are of the same datatype. Each
element has an index, which is a number corresponding to the element's position in the array.
The number of elements in an array is the size of the array. Oracle Database allows arrays to
be of variable size.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-10 of Glossary-11

wildcard
A special character or character sequence which matches any character in a string
comparison.

workflow
The set of relationships between all the activities in a project or business transaction, from start
to finish. Activities are related by different types of trigger relations. Activities can be triggered
by external events or by other activities.

Glossary

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Glossary-11 of Glossary-11

Index

A
access

object types, 3
access control

destination level in JMS, 8
queue-level, 2
system level, 2

in JMS, 7
adding subscribers, 22
administration

Messaging Gateway, C-4
administrative interfaces to Oracle TxEventQ and

AQ
comparison, 4

AdtMessage
about, 14
creating, 94

agent user
creating Messaging Gateway agent, C-10

agents
AQjms agent

creating, 99
Messaging Gateway

about, C-4
configuring agent, C-19
monitoring, C-63
running agent on Oracle RAC, C-22
shutting down agent, C-21
starting agent, C-21

alias
adding to LDAP server, 32
deleting from LDAP server, 32
parameters

alias, 32
obj_location, 32

ALL_QUEUE_SUBSCRIBERS, 12
ALL_QUEUE_TABLES

Queue Tables Queue Accessible to the
Current User, 3

ALL_QUEUES, 4
altering

AQ agents, 31
propagations, 28
queue tables, 8
queues, 16

altering (continued)
subscribers, 24
transformations, 19

ANYDATA datatype
queue table, 5

application development
about, 6
client/server communication, 7
Internet operations, 6
publish/subscribe, 11
third-party messaging, 6
workflows, 10

AQ agents
adding to LDAP server, 24
altering, 31
creating, 31
dropping, 31
parameters

agent_name, 31
certificate_location, 31
enable_anyp, 31
enable_http, 31

removing from LDAP server, 25
AQ background architecture, viii, 9
AQ Message Properties Type, 5
AQ servlet

deploying, 4
responses using HTTP, 3

AQ system privilege
granting, 19

in JMS, 50
revoking, 20

in JMS, 51
AQ_ADMINISTRATOR_ROLE

and LDAP, 3
and registerConnectionFactory, 39
definition, 2
needed for JMS, 15

AQ_MsgProperties, C-44
AQ_TM_PROCESSES parameter, 8
AQ_USER_ROLE

definition, 3
needed for JMS, 15

AQ$_AGENT, 2
AQ$_AGENT_LIST_T, 3
AQ$_POST_INFO_LIST, 3

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-1 of Index-20

AQ$_QUEUE_TABLE_NAME_D, 5
AQ$_QUEUE_TABLE_NAME_E, 1
AQ$_QUEUE_TABLE_NAME_H, 1
AQ$_QUEUE_TABLE_NAME_I, 1
AQ$_QUEUE_TABLE_NAME_P, 5
AQ$_QUEUE_TABLE_NAME_S, 1
AQ$_QUEUE_TABLE_NAME_T, 1
AQ$_RECIPIENT_LIST_T, 3
AQ$_REG_INFO_LIST, 3
AQ$_SUBSCRIBER_LIST_T, 3
AQ$INTERNET_USERS, 14
AQ$QUEUE_TABLE_NAME, 5
AQ$QUEUE_TABLE_NAME_R, 10
AQ$QUEUE_TABLE_NAME_S, 9
AQjms agent

creating, 99
architecture

application development, 6
Internet operations, 37, 1
Messaging Gateway, C-3

arrays
dequeuing

about, 23
buffered messages, 20
syntax, 20

enqueuing
about, 21
syntax, 10

asynchronous notifications
about, 18
buffered messages, 18
designated port, 18
purge following, 18
RAW payload delivery, 18
reliability, 18
timeout, 18

asynchronous receive in JMS, 28

B
batch dequeuing, 20
batch enqueuing, 10
BFILE objects

propagating, 11
Boolean message property (JMS)

getting, 105
setting, 95

broadcasting
definition, 12

buffered messages
about, 14
dequeuing, 14

options, 15
enqueuing, 14
exception handling, 14
flow control, 14

buffered messages (continued)
listen_delivery_mode, 12
MSG_STATE parameter, 6
notification, 18
ordering, 15
propagation, 14
queue-to-queue propagation, 17
restrictions, 14
tuning, 12
types supported, 15
views, 15
visibility, 15
with Messaging Gateway, C-6
with Oracle JMS, 15
with Oracle Real Application Clusters, 14

buffered queues, 5
byte message property (JMS)

getting, 106
setting, 97

BytesMessage
about, 13
creating, 93
example, 116

C
CLASSPATH

Messaging Gateway, C-15
closing

JMS Connection, 107
JMS Session, 107
message consumer, 107
MessageProducer, 107

commit
all operations in JMS Session, 92
transaction, 13

commit-time ordering
about, 21
example, 1
requirements, 5

compatibility
about, 1
and Oracle Real Application Clusters, 5
migrating queue tables, 12
nonpersistent queues, A-2
security, 3

concurrent processes
tuning for Oracle Database AQ, 10

Connection (JMS)
creating

with default ConnectionFactory
parameters, 59, 69

with user name/password, 58, 69
getting JDBC connection from JMS Session,

93

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-2 of Index-20

ConnectionFactory
getting

in LDAP, 45
objects, 2
registering

through database using JDBC connection
parameters, 38

through database using JDBC URL, 39
through LDAP using JDBC connection

parameters, 40
through LDAP using JDBC URL, 41

unregistering
in LDAP through LDAP, 42
in LDAP through the database, 42
through database, 42
through LDAP, 42

using JNDI to look up, 2
conversion

JMS messages, about, C-59
message headers, C-47
non-JMS messages, about, C-45
TIB/Rendezvous messages, C-55
WebSphere MQ messages, C-50

correlation identifier
about, 21, 23
and transaction grouping, 25
and Virtual Private Database, 10
as dequeue condition, 14
as message property, 4
as MessageSelector, 19
dequeuing by specifying, 23
getting in JMS, 104
setting in JMS, 95
with queue table indexes, 11

creating
AQ agents, 31
AQjms agent, 99
DurableSubscriber, 75–78
JMS AdtMessage, 94
JMS BytesMessage, 93
JMS Connection, 58, 59, 69
JMS MapMessage, 93
JMS Message, 94
JMS ObjectMessage, 94
JMS Session, 60, 71
JMS StreamMessage, 94
JMS TextMessage, 94
Messaging Gateway administration user,

C-10
Messaging Gateway agent user, C-10
Messaging Gateway propagation subscriber,

C-33
nonpersistent queues, A-1
point-to-point queue in JMS, 47
point-to-point TxEventQ queue in JMS, 49
propagations, 25

creating (continued)
publish/subscribe Topic in JMS, 47
queue tables, 1

in JMS, 46
QueueBrowser, 63, 64
QueueConnection, 59, 60
QueueReceiver, 66, 67
queues, 13

in JMS, 47
QueueSender, 61
QueueSession, 61
subscribers, 22
TIB/Rendezvous link, C-29
TopicConnection, 69, 70
TopicPublisher, 71
TopicSession, 71
transformations, 18
WebSphere MQ base Java link, C-24
WebSphere MQ JMS link, C-25

D
data pump, 7
data type

LONG VARCHAR, vii
database

disabling access, 32
enabling access, 32

database connection
configuring Messaging Gateway connection

information, C-10
Messaging Gateway, C-20

DBA_ATTRIBUTE_TRANSFORMATIONS, 12
DBA_QUEUE_SCHEDULES, 5
DBA_QUEUE_SUBSCRIBERS, 11
DBA_QUEUE_TABLES

All Queue Tables in Database, 3
DBA_QUEUES, 4
DBA_SUBSCR_REGISTRATIONS

All Subscription Registrations, 13
DBA_TRANSFORMATIONS, 12
DBMS_AQ procedures

BIND_AGENT, 24
DEQUEUE, 13
DEQUEUE_ARRAY, 20
ENQUEUE, 2
ENQUEUE_ARRAY, 10
LISTEN, 11
POST, 23
REGISTER, 22
UNBIND_AGENT, 25
UNREGISTER, 23

DBMS_AQ.BUFFERED, 12
DBMS_AQ.PERSISTENT, 12
DBMS_AQ.PERSISTENT_OR_BUFFERED, 12

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-3 of Index-20

DBMS_AQADM procedures
ADD_ALIAS_TO_LDAP, 32
ADD_SUBSCRIBER, 22
ALTER_AQ_AGENT, 31
ALTER_PROPAGATION_SCHEDULE, 28
ALTER_QUEUE, 16
ALTER_QUEUE_TABLE, 8
ALTER_SUBSCRIBER, 24
CREATE_AQ_AGENT, 31
CREATE_NP_QUEUE, A-1
CREATE_QUEUE, 13
CREATE_QUEUE_TABLE, 1
CREATE_TRANSFORMATION, 18
DEL_ALIAS_FROM_LDAP, 32
DISABLE_DB_ACCESS, 32
DISABLE_PROPAGATION_SCHEDULE, 29
DROP_AQ_AGENT, 31
DROP_QUEUE, 17
DROP_QUEUE_TABLE, 10
DROP_TRANSFORMATION, 19
ENABLE_DB_ACCESS, 32
ENABLE_PROPAGATION_SCHEDULE, 29
GRANT_QUEUE_PRIVILEGE, 21
GRANT_SYSTEM_PRIVILEGE, 19
MIGRATE_QUEUE_TABLE, 12
MODIFY_TRANSFORMATION, 19
PURGE_QUEUE_TABLE, 10
REMOVE_SUBSCRIBER, 24
REVOKE_QUEUE_PRIVILEGE, 21
REVOKE_SYSTEM_PRIVILEGE, 20
SCHEDULE_PROPAGATION, 25
START_QUEUE, 16
STOP_QUEUE, 17
UNSCHEDULE_PROPAGATION, 30
VERIFY_QUEUE_TYPES, 34, 27

DBMS_AQIN, 38
DBMS_MGWADM package

about, C-4
ADD_SUBSCRIBER, C-33, C-44
ALTER_AGENT, C-20
ALTER_MSGSYSTEM_LINK, C-29, C-41
ALTER_SUBSCRIBER, C-44
CREATE_MSGSYSTEM_LINK, C-24, C-25,

C-29, C-41
DB_CONNECT_INFO, C-10, C-20
DISABLE_PROPAGATION_SCHEDULE,

C-34
DOMAIN_QUEUE, C-31
DOMAIN_TOPIC, C-31
ENABLE_PROPAGATION_SCHEDULE, C-34
JMS_CONNECTION, C-25
JMS_QUEUE_CONNECTION, C-25
JMS_TOPIC_CONNECTION, C-25
MQSERIES_BASE_JAVA_INTERFACE, C-24
REGISTER_FOREIGN_QUEUE, C-31, C-43
REMOVE_MSGSYSTEM_LINK, C-30

DBMS_MGWADM package (continued)
RESET_SUBSCRIBER, C-35
SHUTDOWN, C-21
STARTUP, C-21
UNREGISTER_FOREIGN_QUEUE, C-32

DBMS_MGWMSG.LCR_TO_XML, C-49
delays

during dequeuing, 23
specifying in JMS, 25

dequeue condition
and Virtual Private Database, 10
with queue table indexes, 11

dequeuing
buffered messages, 14
by multiple consumers, 8
concurrent processes, 23
features, 23
IDAP client request, 11
IDAP server response to request, 14
message arrays, 23, 20
message states, 23
messages, 13
methods, 23
modes

about, 23
navigation of messages, 23
options, 13

buffered messages, 15
parameters

array_size, 20
dequeue_options, 13, 20

retries with delays, 23
transaction protection, 23
waiting for messages, 23

destination (JMS)
altering, 54
dropping, 55
starting, 53
stopping, 54

disabling
database access, 32
propagations, 29

double message property (JMS)
getting, 105
setting, 96

dropping
AQ agents, 31
propagations, 30
queue tables, 10
queues, 17
transformations, 19

DurableSubscriber
about, 21
creating

for JMS Topic, 75, 76
for Oracle object type Topic, 77, 78

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-4 of Index-20

DurableSubscriber (continued)
unsubscribing

for a local subscriber, 84
for a remote subscriber, 84

E
e-mail notification, 15
enabling

database access, 32
propagations, 29

enqueuing
buffered messages, 14
client request for, 9
correlation identifier, 21
features, 21
IDAP client request, 9
IDAP server response to request, 13
message array, 21, 10
message expiration, 21
message grouping, 21
message properties, 2
messages, 2
options, 2
parameters

array_size, 10
enqueue_options, 2
message_properties, 2
message_properties_array, 10
payload, 2
payload_array, 10

priority and ordering of messages, 21
sender identification, 21

enumerated constants
about, 6
delivery_mode, 7, 8
operational interface, 7

environment variables
CLASSPATH, C-15
Messaging Gateway, C-15
MGW_PRE_PATH, C-15
ORACLE_SID, C-15

error conditions
Messaging Gateway, C-67

error handling
error messages, 2
IDAP, 15
propagations, 29

error messages, 2
Messaging Gateway, C-64
Messaging Gateway agent, C-69

errors (JMS)
getting codes, 108
getting number, 108

event journals, 37

exception (JMS)
exception linked to a JMS exception, getting,

108
exception listener

getting, 109
setting, 108

printing stack trace, 108
exception handling

buffered messages, 14
exception queues, 23, 28
Messaging Gateway, C-63
propagations in JMS, 32

exception queues
about, 23
in JMS, 28

expiration
setting during enqueuing, 21
specifying in JMS, 25

exporting
queue tables

about, 5
data pump, 7
modes, 5
multiple recipients, 5

F
float message property (JMS)

getting, 105
setting, 97

flow control
about, 14

G
getting (JMS)

AQ queue table, 49
ConnectionFactory, 43
correlation identifier, 104
error codes, 108
error numbers, 108
exceptions, 108
JDBC connection, 93
JMS Connection, 92
message identifier, 104
OracleOCIConnectionPool, 93
Queue in LDAP, 45
QueueConnectionFactory, 43

in LDAP, 45
with JDBC connection parameters, 43
with JDBC URL, 43

Topic in LDAP, 45
TopicConnectionFactory, 43

with JDBC connection parameters, 44
with JDBC URL, 44

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-5 of Index-20

GLOBAL_AQ_USER_ROLE
and registerConnectionFactory, 3, 40

granting
AQ system privilege, 19

in JMS, 50
queue privilege, 21

in JMS, 52
Topic privilege in JMS, 51

grouping
messages, 21

GV$AQ, 9

H
HTTP

AQ operations over, 1
AQ servlet responses, 3
client requests, 3
headers, 7
propagation, 4
propagation using, 29
response, 8

I
I/O

configuring for Oracle Database AQ, 10
IDAP

client request
commit transaction, 13
dequeue, 11
enqueue, 9
registration, 12
roll back transaction, 13

error handling, 15
message, 8
notification, 15
request and response documents, 8
server response

commit transaction, 14
dequeue request, 14
enqueue request, 13
register request, 14
roll back transaction, 14

importing
queue tables

about, 7
data pump, 7
IGNORE parameter, 7
multiple recipients, 7

inboxes, 29
indexes

tuning for Oracle Database AQ, 11
INIT.ORA parameter, 8
initialization parameters

Messaging Gateway, C-14

integer message property (JMS)
getting, 105
setting, 96

interfaces to Oracle Database AQ
about, 41
AQ XML servlet, 17
comparison, 1, 4
JMS, 15
OCCI, 15
OCI, 3
OCI security, 4
operational, 7
PL/SQL, 2

interfaces to Oracle TxEventQ and AQ
administrative, 4

Internet Data Access Presentation
about, 6

Internet operations
and application development, 6
AQ servlet responses, 3
architecture, 37, 1
client requests, 3
deploying AQ servlet, 4
IDAP client request

commit transaction, 13
dequeue, 11
enqueue, 9
registration, 12
roll back transaction, 13

IDAP errors, 15
IDAP notification, 15
IDAP request and response documents, 8
IDAP server response

commit transaction, 14
dequeue request, 14
enqueue request, 13
register request, 14
roll back transaction, 14

Internet Data Access Presentation, 6
JMS types, 2
notification by e-mail, 15
object type queues, 2
payloads, 2
propagation, 4
RAW queues, 2
SOAP

body, 7
envelope, 6
message structure, 6
method invocation, 7

user authentication, 3

J
Java EE compliance, 37

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-6 of Index-20

Java properties
Messaging Gateway, C-16
oracle.mgw.batch_size, C-16
oracle.mgw.polling_interval, C-16
oracle.mgw.tibrv.advMsgCallback, C-16
oracle.mgw.tibrv.encoding, C-16
oracle.mgw.tibrv.intraProcAdvSubjects, C-16

JDBC connection
getting from JMS Session, 93
registering ConnectionFactory using JDBC

parameters through the database, 38
using to register ConnectionFactory through

LDAP, 40
JDBC OCI driver

needed for JMS, 15
JDBC thin driver

needed for JMS, 15
JDBC URL

registering ConnectionFactory using JDBC
URL through LDAP, 41

registering through the database, 39
JMS

about, 1
and Oracle Real Application Clusters, 8
AQ queue tables

creating, 46
asynchronous receive, 28
buffered messages, 15
Connection, 2
exception queues, 28
JDBC OCI driver needed, 15
JDBC thin driver needed, 15
message bodies, 12
message consumer features, 26
message headers, 10
message properties, 11
message types, 9
MessageProducer features, 24
point-to-point features, 19
propagation schedules, 55
publish/subscribe features, 20
queue tables

getting, 49
queues. creating, 47
recipient lists, 22
Session, 2
statistics views support, 9
structured payloads, 9
troubleshooting, 108

JMS Connection
about, 3
closing, 107
getting, 92
getting OracleOCIConnectionPool from, 93
starting, 92
stopping, 107

JMS correlation identifier
setting, 95

JMS Destination
about, 6
managing, 53
methods, 7
using JMS Session to obtain, 6
using JNDI to look up, 6

JMS examples
BytesMessage, 116
MapMessage, 126
setting up, 113
StreamMessage, 121
TextMessage, 131

JMS message property
Boolean, 95, 105
byte, 97, 106
double, 96, 105
float, 97, 105
integer, 96, 105
long, 97, 106
object, 98, 106
short, 97, 106
string, 96, 105

JMS messages
browsing, 27

with a TopicBrowser, 91
correlation identifier, 104
creating

AdtMessage, 94
BytesMessage, 93
JMS Message, 94
MapMessage, 93
ObjectMessage, 94
StreamMessage, 94
TextMessage, 94

delay, specifying, 25
expiration, specifying, 25
grouping, 25
message consumer, closing, 107
message identifier, 104
message listener

specifying at JMS Session, 104
specifying at message consumer, 102

message property
getting, 104
setting, 95

MessageProducer, closing, 107
navigating in receive, 26
navigation mode for receiving, specifying, 102
Priority

setting default, 98
priority and ordering, 24
propagation with Messaging Gateway

inbound, C-61
outbound, C-60

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-7 of Index-20

JMS messages (continued)
publishing

specifying a recipient list, 74
specifying delivery mode, priority, and

time to live, 73
specifying Topic, 73
with minimal specification, 71

QueueBrowser for, creating, 63, 64
QueueReceiver for, creating, 66, 67
receiving

about, 26
asynchronously, 102, 104
from a destination using a transformation,

101
synchronously, 99–101
with a message consumer, 99, 100

remote subscribers for, creating, 80
remove no data, 27
retry with delay, 28
sending using a QueueSender, 61, 62
TimeToLive

setting default, 98
TopicBrowser for, creating, 87, 88
TopicReceiver for, creating, 85, 86
transformation with JMS AQ, 33

JMS propagations
about, 29
altering, 56
disabling, 57
enabling, 56
exception handling, 32
RemoteSubscriber, 30
scheduling, 30, 55
unscheduling, 57

JMS publish/subscribe
setting up, 23

JMS Session
about, 5
closing, 107
committing all operations, 92
creating, 60, 71
getting JDBC connection from, 93
rolling back all operations, 93
specifying message listener, 104
using to obtain Destination object, 6

JMS Sharded Queue, vii
JMS type queues/topics, 2
JMS types

Internet operations, 2
JMS_DeliveryMode, C-44
JMS_NoLocal, C-44
JNDI

using to look up ConnectionFactory objects, 2
using to look up Destination object, 6

JOB_QUEUE_PROCESSES, 11

L
LDAP

and AQ_ADMINISTRATOR_ROLE, 3
queue/topic connection factory, 45
registering ConnectionFactory, 41
unregistering ConnectionFactory, 42

LDAP server
adding alias, 32
adding AQ agents, 24
deleting alias, 32
removing AQ agents, 25

links
altering, C-29
configuring Messaging Gateway links, C-23
MGW_LINKS view, C-30
MGW_MQSERIES_LINK view, C-30
MGW_TIBRV_LINKS view, C-30
removing, C-30
TIB/Rendezvous, creating, C-29
WebSphere MQ base Java, creating, C-24
WebSphere MQ JMS, creating, C-25

listener.ora
modifying for Messaging Gateway, C-7, C-8
modifying for TIB/Rendezvous, C-12
modifying for WebSphere MQ, C-13

listening
about, 23
application development, 12
parameters

agent_list, 11
listen_delivery_mode, 11
wait, 11

syntax, 11
LOBs

propagation, 29
log file

Messaging Gateway, C-61
log_directory, C-14
log_level, C-14
logical change records

Messaging Gateway, C-49
long message property (JMS)

getting, 106
setting, 97

LONG VARCHAR data type, vii

M
managing

nonpersistent queues, A-2
propagations, 10, 25
queue tables, 1
queues, 13, D-1
subscribers, 22
transformations, 17

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-8 of Index-20

MapMessage
about, 13
creating, 93
example, 126

message headers
conversion with Messaging Gateway, C-47
WebSphere MQ mappings, C-51

message identifier
about, 23
and transaction grouping, 25
getting in JMS, 104

message properties
TIB/Rendezvous, C-57
using with message types in JMS, 14

message types in JMS
about, 9
AdtMessage, 14
BytesMessage, 13
MapMessage, 13
ObjectMessage, 14
StreamMessage, 12
TextMessage, 13

MessageListener, 28
MessageProducer

closing, 107
features, 24, 33
setting default Priority, 98
setting default TimeToLive, 98

messages
array dequeuing, 23, 20
array enqueuing, 21, 10
bodies in JMS, 12
browsing in JMS, 27, 91
correlation identifier

about, 23
correlation identifiers, 21

in JMS, 104
creating in JMS, 93, 94
creating remote subscribers in JMS, 81
delay, specifying in JMS, 25
dequeuing

features, 23
methods, 23
modes, 23
syntax, 13
with concurrent processes, 23

enqueuing
features, 21
options, 2
syntax, 2

exception queues, 23
expiration

about, 21
specifying in JMS, 25

format transformations, 36

messages (continued)
grouping, 21

in JMS, 25
header conversion with Messaging Gateway,

C-47
headers in JMS, 10
history and retention in JMS, 8
identifier

about, 23
JMS message conversion, C-59
JMS message property

getting, 104
JMS message property, setting, 95
message consumer in JMS, closing, 107
message identifier in JMS, 104
MessageProducer in JMS, closing, 107
navigating in JMS, 26
navigation during dequeuing, 23
navigation in receive, 26
navigation mode, specifying in JMS, 102
non-JMS message conversion, C-45
nonrepudiation, 37
object type support, 2
ordering

buffered messages, 15
ordering during propagation, 29
payload restrictions, 9
persistence

for security, 2
metadata analysis, 2
scheduling, 2

priority and ordering, 21
in JMS, 24

priority during propagation, 29
Priority, setting in JMS, 98
propagation

errors, 29
features, 29
inboxes and outboxes, 29
LOBs, 29
remote consumers, 29
scheduling, 29
statistics, 29
using HTTP, 29
with Oracle RAC, 29

properties, 2
in JMS, 11

publishing in JMS, 71, 73, 74
QueueBrowser for, creating, 63, 64
QueueReceiver for, creating, 66, 67
receiving in JMS, 26
receiving synchronously in JMS, 99–101
recipients

about, 8
remote subscirbers, creating in JMS, 80
remove no data in JMS, 27

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-9 of Index-20

messages (continued)
retention and history, 37
retries during dequeuing, 23
retry with delay in JMS, 28
sender identification, 21
sending in JMS, 61, 62
states during dequeuing, 23
third-party propagation support, 29
TIB/Rendezvous conversion, C-55
TimeToLive, setting in JMS, 98
TopicBrowser for, creating, 87–90
TopicReceiver for, creating, 85, 86
tracking, 37
transaction protection, 23
transformations, 36

in JMS, 33
using types with properties in JMS, 14
waiting during dequeuing, 23
WebSphere MQ conversion, C-50
XML transformations, 36

MessageSelector
about, 19

Messaging Gateway
about, C-1
administration, C-4
administration user

creating, C-10
agent

about, C-4
configuring, C-19
error messages, C-69
shutting down, C-21
starting, C-21

agent user
creating, C-10

and JMS, C-2
and non-Oracle messaging systems, C-4
architecture, C-3
buffered messages, C-6
canonical types, C-46
database connection, C-20
database connection information, configuring,

C-10
environment variables, C-15
error conditions, C-67
error messages, C-64
exception handling, C-63
features, C-2
in an Oracle RAC environment, C-10
initialization file, C-9

about, C-14
initialization parameters, C-14
integration with Oracle Database, C-4
Java properties, C-16
links

altering, C-29

Messaging Gateway (continued)
loading, C-6
log file, C-61
logical change records, C-49
message conversion (JMS), C-59
message conversion (non-JMS), C-45
messaging system links

configuring, C-23
modifying listener.ora, C-7, C-8
monitoring agent status, C-63
non-Oracle messaging

configuration properties, C-38
optional link configuration properties,

C-41
non-Oracle messaging queues

configuring, C-30
non-Oracle queue

unregistering, C-32
optional foreign queue configuration

properties, C-43
optional subscriber configuration properties,

C-44
propagation, C-5
propagation disabling, C-34
propagation enabling, C-34
propagation resetting, C-35
propagation schedule

removing, C-35
propagation subscriber

creating, C-33
removing, C-35

propagation subscribers, C-33
propagations, C-32

monitoring, C-68
registering non-Oracle queue, C-31
removing a link, C-30
resource limits, C-20
running agent on Oracle RAC, C-22
setting up for TIB/Rendezvous, C-12
setting up for WebSphere MQ, C-13
setting up third-party messaging, C-12
setup

procedure, C-6
verifying, C-13

unloading, C-14
view for non-Oracle queues, C-32
views, C-63
views for links, C-30

Messaging Gateway user
and MGW_AGENT_ROLE, C-10

MGW_ADMINISTRATOR_ROLE
and Messaging Gateway administration user,

C-10
creating, C-7

MGW_AGENT_OPTIONS
Supplemental Options and Properties, C-77

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-10 of Index-20

MGW_AGENT_ROLE, C-20
and Messaging Gateway user, C-10
creating, C-7

MGW_BASIC_MSG_T, C-46
MGW_FOREIGN_QUEUES, C-32

Foreign Queues, C-79
MGW_GATEWAY, C-21, C-63

Configuration and Status Information, C-75
MGW_JOBS

Messaging Gateway Propagation Jobs, C-79
MGW_LINKS, C-30

Names and Types of Messaging System
Links, C-77

MGW_MQSERIES_LINK, C-30
MGW_MQSERIES_LINKS

WebSphere MQ Messaging System Links,
C-77

MGW_PRE_PATH, C-15
MGW_SCHEDULES

Information about Schedules, C-81
MGW_SUBSCRIBERS

Information for Subscribers, C-80
MGW_TIBRV_LINKS, C-30

TIB/Rendezvous Messaging System Links,
C-78

MGW_TIBRV_MSG_T, C-46
mgw.ora

about, C-14
comment lines, C-18
environment variables, C-15
Java properties, C-16
modifying for TIB/Rendezvous, C-12
modifying for WebSphere MQ, C-13
parameters, C-14
setting up, C-9

migrating
queue tables, 12

modifying
listener.ora for Messaging Gateway, C-7, C-8
transformations, 19

monitoring
Messaging Gateway, C-61

propagations, C-68
Messaging Gateway agent status, C-63

MQ_BrokerControlQueue, C-41
MQ_BrokerPubQueue, C-41
MQ_BrokerQueueManager, C-41
MQ_BrokerVersion, C-41
MQ_ccsid, C-41
MQ_CharacterSet, C-43
MQ_JmsDurSubQueue, C-41, C-43
MQ_JmsTargetClient, C-43
MQ_openOptions, C-43
MQ_PubAckInterval, C-41
MQ_ReceiveExit, C-41
MQ_ReceiveExitInit, C-41

MQ_SecurityExit, C-41
MQ_SecurityExitInit, C-41
MQ_SendExit, C-41
MQ_SendExitInit, C-41
MsgBatchSize, C-44
multicasting

definition, 12
multiconsumer dequeuing, 8

N
names

queue tables
length, 2
mixed case, 2

queues
length, 14
mixed case, 14

navigation
during dequeuing, 23
modes

FIRST_MESSAGE, 23
NEXT_MESSAGE, 23
NEXT_TRANSACTION, 23

specifying mode in JMS, 102
nonpersistent queues

compatibility, A-2
creating, A-1
managing, A-2
notifications, A-2
restrictions, A-3

nonrepudiation
about, 37

notifications
about, 18
buffered messages, 18
designated port, 18
e-mail, 15
IDAP, 15
nonpersistent queues, A-2
parameters

post_count, 23
post_list, 23
reg_count, 22
reg_list, 22

posting, 23
purge following, 18
RAW payload delivery, 18
registering, 22
reliability, 18
timeout, 18
unregistering, 23

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-11 of Index-20

O
object message property (JMS)

getting, 106
setting, 98

object types
access, 3
support for, 2
synonyms, 10

object_name, 1
ObjectMessage

about, 14
creating, 94

OCCI
interface to Oracle Database AQ, 15
Oracle type translator, 3

OCI
interface to Oracle Database AQ, 3
Oracle type translator, 3

operational interfaces to Oracle Database AQ, 7
options

dequeuing, 13
enqueuing, 2

Oracle AQ Views, 1
Oracle Enterprise Manager

and Oracle Database AQ, 37
support for, 8

Oracle Internet Directory
and Oracle Database AQ, 37
Oracle Database AQ integration, 2

Oracle JMS
about, 1
Java EE compliance, 37

Oracle object (ADT) type queues
Internet operations, 2

Oracle RAC
buffered messages, 14
configuring Messaging Gateway, C-10
performance with Oracle Database AQ, 12
queue service name, 17
running Messaging Gateway agent, C-22

Oracle Real Application Clusters
and JMS, 8
message propagation, 29
support for, 2

Oracle TxEventQ Views, 1
Oracle type translator, 3
ORACLE_SID

Messaging Gateway, C-15
oracle.mgw.batch_size, C-16
oracle.mgw.polling_interval, C-16
oracle.mgw.tibrv.advMsgCallback, C-16
oracle.mgw.tibrv.encoding, C-16
oracle.mgw.tibrv.intraProcAdvSubjects, C-16
OracleOCIConnectionPool

getting from JMS Connection, 93

ordering
commit-time, 21
during propagation, 29
messages in JMS, 24
specifying during enqueuing, 21

outboxes, 29

P
parameters

admin_option, 19
agent_list, 11
agent_name, 31, 32
alias, 32
AQ_TM_PROCESSES, 8
array_size, 10, 20
attempts, 4
attribute_number, 19
certificate, 24
certificate_location, 31
comment, 2, 14
compatibility, 1
compatible, 3
consumer_name, 13
correlation, 4, 14
db_username, 32
delay, 3
delivery_mode, 3, 4, 15, 22
deq_condition, 14
dequeue, 16, 17
dequeue_mode, 13
dequeue_options, 13, 20
dest_queue_name, 27
destination, 25, 27
destination_queue, 25
duration, 25
enable_anyp, 31
enable_http, 31
enqueue, 16, 17
enqueue_options, 2
enqueue_time, 4
exception_queue, 4
expiration, 4
from_schema, 18
from_type, 18
grant_option, 21
grantee, 19
latency, 25
listen_delivery_mode, 11, 12
log_directory, C-14
log_level, C-14
max_retries, 14
message_grouping, 2
message_properties, 2
message_properties_array, 10, 11
MSG_STATE, 6

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-12 of Index-20

parameters (continued)
msgid, 14
multiple_consumers, 2
name, 23
namespace, 24
navigation, 13
next_time, 25
obj_location, 32
original_msgid, 5
OWNER_INSTANCE, 14
payload, 2, 24
payload_array, 10
post_count, 23
post_list, 23
primary_instance, 3
priority, 3
purge_condition, 10
purge_options, 11
queue_name, 14
queue_payload_type, 2
queue_table, 2, 14
queue_to_queue, 22
queue_type, 14
recipient_list, 4
reg_count, 22
reg_list, 22
relative_msgid, 3
REMOTE_LISTENER, 14
retention_time, 14
retry_delay, 14
rule, 22
secondary_instance, 3
secure, 3
sender_id, 5
sequence_deviation, 3
sort_list, 2
src_queue_name, 27
start_time, 25
state, 5
storage_clause, 2
streams_pool_size, 14
to_schema, 18
to_type, 18
transaction_group, 5
transformation, 14, 18, 22
user_property, 5
visibility, 2, 14
wait, 11, 14

payloads
Internet operations, 2
restrictions, 9
structured, 2
transformations with Messaging Gateway,

C-47
XMLType, 2

performance
about, 2
buffered messages, 12
concurrent processes, 10
configuring I/O, 10
Oracle Database AQ and Oracle RAC, 12
persistent messaging, 12
propagation tuning, 11
queue table indexes, 11
serial processes, 10
shared servers, 13
storage parameters, 9

persistent messaging
compared to buffered, 14
performance, 12
tuning, 9

point-to-point messages
about, 19

port
designated for notification, 18

posting for notification, 23
PreserveMessageID, C-44
priority

during propagation, 29
specifying during enqueuing, 21

Priority (JMS)
about, 24
setting for all messages from a

MessageProducer, 98
privileges

AQ system privilege
granting, 19
granting in JMS, 50
revoking, 20
revoking in JMS, 51

DBMS_AQIN, 38
parameters

admin_option, 19
grant_option, 21
grantee, 19

queue privilege
granting, 21
granting in JMS, 52
revoking, 21
revoking in JMS, 52

required for propagation, 11
security, 4
Topic privileges

granting in JMS, 51
revoking in JMS, 52

programmatic interfaces
about, 41
AQ XML servlet, 17
comparison, 1, 4
JMS, 15
OCCI, 15

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-13 of Index-20

programmatic interfaces (continued)
OCI, 3
OCI security, 4
PL/SQL, 2

propagations
about, 29

in JMS, 29
altering, 28

in JMS, 56
BFILE objects, 11
buffered messages, 14
creating, 25
debugging, 1
disabling, 29

in JMS, 57
with Messaging Gateway, C-34

dropping, 30
enabling, 29

in JMS, 56
with Messaging Gateway, C-34

error handling, 29
in JMS, 32

features, 29
inboxes and outboxes, 29
JMS messages with Messaging Gateway

inbound, C-61
outbound, C-60

managing, 10, 25
messages with LOBs, 29
Messaging Gateway

configuring for, C-32
monitoring, C-68
resetting with, C-35
subscribers, about, C-33
subscribers, creating, C-33
subscribers, removing, C-35

optimizing, 11
parameters

destination, 25
destination_queue, 25
duration, 25
latency, 25
next_time, 25
start_time, 25

priority and ordering of messages, 29
privileges required, 11
queue-to-dblink

about, 30
scheduling, 32
with Oracle RAC, 35

queue-to-queue
about, 30
buffered messages, 17
scheduling, 32
with Oracle RAC, 35

propagations (continued)
remote consumers

about, 29
schedules

about, 29
altering, 33
creating syntax, 25
in JMS, 30, 55
removing with Messaging Gateway, C-35

scheduling
in JMS, 55

security, 4
statistics, 29
third-party support, 29
TIB/Rendezvous, C-58
tuning, 11
unscheduling, 30

in JMS, 57
using HTTP, 29, 4
using HTTP and HTTPS, 4
WebSphere MQ, C-54, C-55
with Messaging Gateway, C-5
with Oracle RAC, 29

publish/subscribe, 20
about, 11
setting up, 12, 23

publishing JMS messages
specifying a recipient list, 74
specifying delivery mode, priority, and time to

live, 73
specifying Topic, 73
with minimal specification, 71

purge
following notification, 18

purging
queue tables, 10

Q
Queue (JMS)

getting in LDAP, 45
queue monitor coordinator, 37
Queue Monitor Coordinator, 8
queue privilege

granting, 21
in JMS, 52

revoking, 21
in JMS, 52

queue tables
altering, 8
creating, 1

in JMS, 46
data pump, 7
dropping, 10
export

modes, 5

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-14 of Index-20

queue tables (continued)
exporting

about, 5
getting in JMS, 49
importing

about, 5, 7
IGNORE parameter, 7
multiple recipients, 7

managing, 1
migrating, 12
multiple recipients

exporting, 5
names

length, 2
mixed case, 1, 2

parameters
comment, 2
compatible, 3
message_grouping, 2
multiple_consumers, 2
primary_instance, 3
queue_payload type, 2
queue_table, 2
secondary_instance, 3
secure, 3
sort_list, 2
storage_clause, 2

payload types, 1
purging, 10
restrictions, 10
security, 3
sort key, 1
storage clause, 1
tuning indexes for performance, 11

QUEUE_PRIVILEGES, 5
queue/topic connection factory

getting in LDAP, 45
QueueBrowser

about, 19
creating for Oracle object type messages, 64
creating for standard JMS type messages, 63,

64
QueueConnection

creating with default ConnectionFactory
parameters, 60

creating with open JDBC connection, 59
creating with open OracleOCIConnectionPool,

60
creating with user name/password, 59

QueueConnectionFactory
getting

in LDAP, 45
getting with JDBC connection parameters, 43
getting with JDBC URL, 43

QueueConnectionFactory (continued)
registering

through database using JDBC connection
parameters, 38

through database using JDBC URL, 39
through LDAP using JDBC connection

parameters, 40
through LDAP using JDBC URL, 41

unregistering
through database, 42
through LDAP, 42

QueueReceiver
about, 19
creating for Oracle object type messages, 67
creating for standard JMS type messages, 66

queues
altering, 16
cleaning up, 37
creating, 13

in JMS, 47
dropping, 17
exception, 23

in JMS, 28
listening, 11
management restrictions, 8
managing, 13, D-1
monitor coordinator, 37
names

length, 14
mixed case, 1, 14

non-Oracle
configuring, C-30
registering, C-31

nonpersistent, A-1
compatibility, A-2
managing, A-2
notifications, A-2
restrictions, A-3

parameters
comment, 14
dequeue, 16, 17
enqueue, 16, 17
max_retries, 14
queue_name, 14
queue_table, 14
queue_type, 14
retention_time, 14
retry_delay, 14

point-to-point
creating in JMS, 47, 49

restrictions, 9, 10
secure, 1
security, 4
starting, 16
stopping, 17

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-15 of Index-20

queues (continued)
subscribers

about, 8
type, verifying, 27

QueueSender
about, 19
creating, 61
sending messages and specifying options, 62
sending messages with default options, 61

QueueSession
creating, 61

queuing
and Oracle Database, 2
definition, 1

R
RAW

payload delivery with notification, 18
using RAW queues for Internet operations, 2

recipients
about, 8
recipient lists in JMS, 22

recovery
restrictions, 10

REF payloads
restrictions, 9

registerConnectionFactory
and AQ_ADMINISTRATOR_ROLE, 39
and GLOBAL_AQ_USER_ROLE, 40
using JDBC connection parameters through

LDAP, 40
using JDBC connection parameters through

the database, 38
using JDBC URL through LDAP, 41

registering
for notification, 22
through the database, JDBC URL, 39

registration
client request for, 9
IDAP client request, 12
IDAP server response to request, 14

reliability
notifications, 18

remote consumers
propagation, 29

remote subscribers
restrictions, 9

RemoteSubscriber, 22, 30
resource limits

Messaging Gateway, C-20
restrictions

buffered messages, 14
message payloads, 9
nonpersistent queues, A-3
point-in-time recovery, 10

restrictions (continued)
queue management, 8
REF payloads, 9
remote subscribers, 9
subscribers, 9
synonyms, 10
virtual private database, 10

result cache, vii
retention

of messages, 37
in JMS, 8

retries
during dequeuing, 23
multiple sessions dequeuing, 27

revoking
AQ system privilege, 20

in JMS, 51
queue privilege, 21

in JMS, 52
roles

AQ_ADMINISTRATOR_ROLE, 15, 2, 39
AQ_USER_ROLE, 15, 3
GLOBAL_AQ_USER_ROLE, 3, 40
MGW_ADMINISTRATOR_ROLE, C-7, C-10
MGW_AGENT_ROLE, C-7, C-10

rollback
all operations in JMS Session, 93

RV_discardAmount, C-44
RV_limitPolicy, C-44
RV_maxEvents, C-44

S
scalability

about, 2
schedules

enabling and disabling propagation with
Messaging Gateway, C-34

scheduling
about propagation scheduling, 29
propagations using

SCHEDULE_PROPAGATION, 25
secure queues, 1
security, 2

at destination level in JMS, 8
at system level in JMS, 7
compatibility parameter, 3
message persistence, 2
OCI applications, 4
propagations, 4
queue privileges, 4
queue tables

secure parameter, 3
sender identification

during enqueuing, 21

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-16 of Index-20

serial processes
tuning for Oracle Database AQ, 10

Session (JMS)
creating, 60, 71

sharded queue, vii
shared servers

performance with Oracle Database AQ, 13
short message property (JMS)

getting, 106
setting, 97

SOAP
body, 7
envelope, 6
header, 6
message structure, 6
method invocation, 7

stack trace
printing in JMS, 108

starting
JMS Connection, 92
Messaging Gateway agent, C-21
queues, 16

statistics
propagation, 29

stopping
JMS Connection, 107
queues, 17

storage parameters
tuning Oracle Database AQ, 9

StreamMessage
about, 12
creating, 94
example, 121

string message property (JMS)
getting, 105
setting, 96

structured payloads, 2
about, 2
in JMS, 9

subscribers
about, 8
adding, 22
altering, 24
creating, 22
creating JMS remote subscriber for Oracle

object type messages, 81
creating remote subscriber for JMS

messages, 80
creating with Messaging Gateway, C-33
in Messaging Gateway propagations, C-33
managing, 22
names

mixed case, 1
ordering, 8
parameters

delivery_mode, 22

subscribers (continued)
parameters (continued)
queue_to_queue, 22
rule, 22
transformation, 22

removing, 24
restrictions, 9
specifying transformations for in JMS, 79, 83
unsubscribing DurableSubscribers, 84

synonyms
restrictions, 10

SYS.AQ$_DESCRIPTOR, 5
SYS.AQ$_POST_INFO, 6
SYS.AQ$_REG_INFO, 3
SYS.MGW_MQSERIES_PROPERTIES, C-38
SYS.MGW_TIBRV_PROPERTIES, C-40
system privilege

granting, 19
in JMS, 50

revoking, 20
in JMS, 51

T
TextMessage

about, 13
creating, 94
example, 131

third-party messaging
and application development, 6
and Messaging Gateway, C-4
configuration properties, C-38
optional foreign queue configuration

properties, C-43
optional link configuration properties, C-41
optional subscriber configuration properties,

C-44
queues

configuring, C-30
registering, C-31
unregistering, C-32

setting up, C-12
view for registered queues, C-32

TIB/Rendezvous
AQ_MsgProperties, C-44
links

creating, C-29
listener.ora, modifying, C-12
message conversion, C-55
message property mapping, C-57
Messaging Gateway. setting up for, C-12
mgw.ora, modifying, C-12
MsgBatchSize, C-44
PreserveMessageID, C-44
propagation

inbound, C-58

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-17 of Index-20

TIB/Rendezvous (continued)
propagation (continued)
outbound, C-58

RV_discardAmount, C-44
RV_limitPolicy, C-44
RV_maxEvents, C-44
Subject

registering, C-32
unregistering, C-32

system properties, C-40
time specification

during enqueuing, 21
timeout

notifications, 18
TimeToLive

setting for all messages from a
MessageProducer, 98

Topic
creating DurableSubscriber for, 75–78
creating in JMS, 47
getting in LDAP, 45
granting Topic privilege in JMS, 51
revoking Topic privilege in JMS, 52
specifying transformations for subscribers, 79

TopicBrowser, 23
browsing messages using, 91
creating for Topic of Oracle type messages,

89, 90
creating for Topic of standard JMS type

messages, 87, 88
TopicConnection

creating with open JDBC connection, 70
creating with open OracleOCIConnectionPool,

70
creating with user name/password, 69

TopicConnectionFactory
getting

in LDAP, 45
with JDBC connection parameters, 44
with JDBC URL, 44

registering
through database using JDBC connection

parameters, 38
through database using JDBC URL, 39
through LDAP using JDBC connection

parameters, 40
through LDAP using JDBC URL, 41

unregistering
through database, 42
through LDAP, 42

TopicPublisher
about, 22
creating, 71

TopicReceiver
about, 22

TopicReceiver (continued)
creating for Topic of Oracle object type

messages, 86
creating for Topic of standard JMS type

messages, 85
TopicSession

creating, 71
transaction

IDAP client request
commit, 13
roll back, 13

protection during dequeuing, 23
transformations

about, 36
altering, 19
creating, 18
dropping, 19
for remote subscribers, specifying in JMS, 83
for Topic subscribers, specifying in JMS, 79
managing, 17
Messaging Gateway, C-47
modifying, 19
parameters

attribute_number, 19
from_schema, 18
from_type, 18
to_schema, 18
to_type, 18
transformation, 18

XML, 36
troubleshooting

in JMS, 108
tuning

buffered messages, 12
persistent messaging, 9

type_name, 2
types

access, 3
AQ agent, 2
AQ agent list, 3
AQ notification descriptor, 5
AQ post information, 6
AQ post information list, 3
AQ recipient list, 3
AQ registration information, 3
AQ registration information list, 3
AQ subscriber list, 3
aq$_purge_options_t, 11
buffered messaging support, 15
Messaging Gateway, C-46
MGW_BASIC_MSG_T, C-46
MGW_TIBRV_MSG_T, C-46
support for, 2

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-18 of Index-20

U
unregistering

ConnectionFactory in LDAP, 42
notification, 23

unscheduling
propagations, 30

in JMS, 57
user authentication

Internet operations, 3
USER_ATTRIBUTE_TRANSFORMATIONS

User Transformation Functions, 13
USER_QUEUE_SCHEDULES, 5
USER_QUEUE_SUBSCRIBERS, 11
USER_QUEUE_TABLES, 3
USER_QUEUES, 4
USER_SUBSCR_REGISTRATIONS

User Subscription Registrations, 13
USER_TRANSFORMATIONS, 12
users

Messaging Gateway agent, C-10

V
V$AQ_BACKGROUND_COORDINATOR, 19
V$AQ_CROSS_INSTANCE_JOBS, 20
V$AQ_IPC_ACTIVE_MSGS, 21
V$AQ_IPC_MSG_STATS, 21
V$AQ_IPC_PENDING_MSGS, 21
V$AQ_JOB_COORDINATOR, 20
V$AQ_MESSAGE_CACHE_ADVICE, 19
V$AQ_MESSAGE_CACHE_STAT, 18
V$AQ_NONDUR_REGISTRATIONS, 21
V$AQ_NONDUR_SUBSCRIBER, 22
V$AQ_NONDUR_SUBSCRIBER_LWM, 23
V$AQ_NOTIFICATION_CLIENTS, 22
V$AQ_REMOTE_DEQUEUE_AFFINITY, 19
V$AQ_SERVER_POOL, 20
V$AQ_SHARDED_SUBSCRIBER_STAT, 18
V$AQ_SUBSCRIBER_LOAD, 22
V$BUFFERED_PUBLISHERS

All Buffered Publishers in the Instance, 15
V$BUFFERED_SUBSCRIBERS

Subscribers for All Buffered Queues in the
Instance, 15

V$METRICGROUP
Information about the Metric Group, 18

V$PERSISTENT_PUBLISHERS
All Active Publishers of the Persistent Queues

in the Database, 16
V$PERSISTENT_QMN_CACHE

Performance Statistics on Background Tasks
for Persistent Queues, 16

V$PERSISTENT_QUEUES
All Active Persistent Queues in the Database,

15

V$PERSISTENT_SUBSCRIBERS
All Active Subscribers of the Persistent

Queues in the Database, 16
V$PROPAGATION_RECEIVER

Buffer Queue Propagation Schedules on the
Receiving (Destination) Side, 17

V$PROPAGATION_SENDER
Buffer Queue Propagation Schedules on the

Sending (Source) Side, 17
V$SUBSCR_REGISTRATION_STATS

Diagnosability of Notifications, 17
verifying

Messaging Gateway setup, C-13
queue type, 27

views
all propagation schedules, 5
all queue subscribers in database, 11
all queues in database, 4
all transformation functions, 12
all transformations, 12
AQ agents registered for Internet access, 14
dequeue affinity instance list, 19
memory management for sharded queues, 18
messages in queue table, 5
Messaging Gateway, C-21
Messaging Gateway agent, C-63
Messaging Gateway links, C-30
propagation schedules in user schema, 5
queue subscribers, 9
queue subscribers and their rules, 10
queue subscribers for queues where user has

queue privileges, 12
queue subscribers in user schema, 11
queue tables in user schema, 3
queues for which user has any privilege, 4
queues for which user has queue privilege, 5
queues in user schema, 4
registered non-Oracle queues, C-32
sharded queue subscriber statistics, 18
simulated metrics, 19
user transformations, 12

virtual private database
restrictions, 10

visibility
about, 9, 11
buffered messages, 15
dequeue options, 14
enqueue options, 2
rollback opertations, 13

W
waiting

during dequeuing, 23
WebSphere MQ

base Java link, creating, C-24

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-19 of Index-20

WebSphere MQ (continued)
base Java queue

registering, C-31
unregistering, C-32

JMS link, creating, C-25
JMS Queue or Topic

registering, C-31
unregistering, C-32

JMS_DeliveryMode, C-44
JMS_NoLocal, C-44
listener .ora, modifying, C-13
message conversion, C-50
message header mappings, C-51
Messaging Gateway, setting up for, C-13
mgw.ora, modifying, C-13
MQ_BrokerControlQueue, C-41
MQ_BrokerPubQueue, C-41
MQ_BrokerQueueManager, C-41
MQ_BrokerVersion, C-41
MQ_ccsid, C-41
MQ_CharacterSet, C-43
MQ_JmsDurSubQueue, C-41, C-43
MQ_JmsTargetClient, C-43
MQ_openOptions, C-43

WebSphere MQ (continued)
MQ_PubAckInterval, C-41
MQ_ReceiveExit, C-41
MQ_ReceiveExitInit, C-41
MQ_SecurityExit, C-41
MQ_SecurityExitInit, C-41
MQ_SendExit, C-41
MQ_SendExitInit, C-41
MsgBatchSize, C-44
optional link configuration properties, C-41
PreserveMessageID, C-44
propagation

inbound, C-55
outbound, C-54

system properties, C-38

X
XA

using with Oracle Database AQ, 8
XML, 1

deploying AQ servlet, 4
message format transformations, 36

Index

Transactional Event Queues and Advanced Queuing User's Guide
G43539-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Index-20 of Index-20

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Advanced Queuing User's Guide
	Changes in Oracle AI Database Transactional Event Queues and Advanced Queuing Release 26ai
	New Features
	Deprecated Features

	Changes in Oracle Database Advanced Queuing Release 21c
	New Features
	Deprecated Features

	Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2
	New Features
	Desupported Features

	Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2.)
	New Features

	Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2)
	New Features

	Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1)
	New Features

	1 Introduction to Transactional Event Queues and Advanced Queuing
	What Is Queuing?
	Transactional Event Queues Leverage Oracle Database
	Transactional Event Queues and Advanced Queuing in Integrated Application Environments
	Transactional Event Queues and Advanced Queuing Client/Server Communication
	Multiconsumer Dequeuing of the Same Message
	Transactional Event Queues and Advanced Queuing Implementation of Workflows
	Transactional Event Queues and Advanced Queuing Implementation of Publish/Subscribe

	Buffered Messaging
	Asynchronous Notifications
	Views on Registration
	Event-Based Notification
	Notification Grouping by Time

	Enqueue Features
	Dequeue Features
	Propagation Features
	Message Format Transformation
	Other Oracle Database Advanced Queuing Features
	Polyglot Programming with Transactional Event Queues

	2 Basic Components of Oracle Transactional Event Queues and Advanced Queuing
	Object Name
	Type Name
	AQ Agent Type
	AQ Recipient List Type
	AQ Agent List Type
	AQ Subscriber List Type
	AQ Registration Information List Type
	AQ Post Information List Type
	AQ Registration Information Type
	AQ Notification Descriptor Type
	AQ Message Properties Type
	AQ Post Information Type
	AQ⁠$_NTFN_MSGID_ARRAY Type
	Enumerated Constants for AQ Administrative Interface
	Enumerated Constants for AQ Operational Interface
	AQ Background Processes
	Queue Monitor Processes
	Job Queue Processes
	AQ Background Architecture

	3 Oracle Transactional Event Queues and Advanced Queuing: Programmatic Interfaces
	Programmatic Interfaces for Accessing Oracle Database Advanced Queuing
	Using PL/SQL to Access Oracle Database Advanced Queuing
	Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing
	Python and Node.js programming interfaces for Advanced Queuing
	Comparing Oracle Database Advanced Queuing Programmatic Interfaces
	Oracle Transactional Event Queues and Advanced Queuing Administrative Interfaces
	Oracle Database Advanced Queuing Operational Interfaces

	Using OCCI to Access Oracle Database Advanced Queuing
	Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing
	Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database Advanced Queuing

	4 Managing Oracle Transactional Event Queues and Advanced Queuing
	Oracle Database Advanced Queuing Compatibility Parameters
	Queue Security and Access Control
	Oracle Database Advanced Queuing Security
	Administrator Role
	User Role
	Access to Oracle Database Advanced Queuing Object Types

	Queue Security
	Queue Privileges and Access Control
	OCI Applications and Queue Access
	Security Required for Propagation
	Security Required for AQ Buffered Messages on Oracle RAC

	Queue Table Export/Import
	Exporting Queue Table Data
	Importing Queue Table Data
	Data Pump Export and Import

	Oracle Enterprise Manager Support for AQ Queues
	Using Oracle Database Advanced Queuing with XA
	Restrictions on Queue Management
	Subscribers
	DML Not Supported on Queue Tables or Associated IOTs
	Propagation from Object Queues with REF Payload Attributes
	Collection Types in Message Payloads
	Synonyms on Queue Tables and Queues
	Synonyms on Object Types
	Tablespace Point-in-Time Recovery
	Virtual Private Database

	Managing Propagation
	EXECUTE Privileges Required for Propagation
	Propagation from Object Queues
	Optimizing Propagation
	Handling Failures in Propagation

	5 Kafka APIs for Oracle Transactional Event Queues
	Apache Kafka Overview
	Kafka Java Client for Transactional Event Queues
	Configuring Kafka Java Client for Transactional Event Queues
	Kafka Client Interfaces
	Kafka API Examples
	Kafka REST APIs for TxEventQ
	Overview of Kafka Producer Implementation for TxEventQ
	Overview of Kafka Consumer implementation for TxEventQ
	Overview of Kafka Admin Implementation for TxEventQ

	Kafka REST APIs for TxEventQ
	Kafka Connectors for TxEventQ
	Monitoring Message Transfer

	6 Java Message Service for Transactional Event Queues and Advanced Queuing
	Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing
	General Features of JMS and Oracle JMS
	JMS Connection and Session
	ConnectionFactory Objects
	Using AQjmsFactory to Obtain ConnectionFactory Objects
	Using JNDI to Look Up ConnectionFactory Objects
	JMS Connection
	JMS Session

	JMS Destination
	Using a JMS Session to Obtain Destination Objects
	Using JNDI to Look Up Destination Objects
	JMS Destination Methods

	System-Level Access Control in JMS
	Destination-Level Access Control in JMS
	Retention and Message History in JMS
	Supporting Oracle Real Application Clusters in JMS
	Supporting Statistics Views in JMS

	Structured Payload/Message Types in JMS
	JMS Message Headers
	JMS Message Properties
	JMS Message Bodies
	StreamMessage
	BytesMessage
	MapMessage
	TextMessage
	ObjectMessage
	AdtMessage

	Using Message Properties with Different Message Types
	Buffered Messaging with Oracle JMS

	Buffered Messaging in JMS
	JMS Point-to-Point Model Features
	JMS Publish/Subscribe Model Features
	JMS Publish/Subscribe Overview
	DurableSubscriber
	RemoteSubscriber
	TopicPublisher
	Recipient Lists
	TopicReceiver
	TopicBrowser
	Setting Up JMS Publish/Subscribe Operations

	JMS Message Producer Features
	Priority and Ordering of Messages
	Specifying a Message Delay
	Specifying a Message Expiration
	Message Grouping

	JMS Message Consumer Features
	Receiving Messages
	Message Navigation in Receive
	Browsing Messages
	Remove No Data
	Retry with Delay Interval
	Asynchronously Receiving Messages Using MessageListener
	Exception Queues

	JMS Propagation
	RemoteSubscriber
	Scheduling Propagation
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation

	Message Transformation with JMS AQ
	JMS Streaming
	JMS Streaming with Enqueue
	JMS Streaming with Dequeue

	Java EE Compliance

	Oracle Java Message Service Basic Operations
	EXECUTE Privilege on DBMS_AQIN
	Registering a ConnectionFactory
	Registering Through the Database Using JDBC Connection Parameters
	Registering Through the Database Using a JDBC URL
	Registering Through LDAP Using JDBC Connection Parameters
	Registering Through LDAP Using a JDBC URL

	Unregistering a Queue/Topic ConnectionFactory
	Unregistering Through the Database
	Unregistering Through LDAP

	Getting a QueueConnectionFactory or TopicConnectionFactory
	Getting a QueueConnectionFactory with JDBC URL
	Getting a QueueConnectionFactory with JDBC Connection Parameters
	Getting a TopicConnectionFactory with JDBC URL
	Getting a TopicConnectionFactory with JDBC Connection Parameters
	Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

	Getting a Queue or Topic in LDAP
	Creating an AQ Queue Table
	Creating a Queue
	Creating a Point-to-Point Queue
	Creating a Publish/Subscribe Topic
	Creating a TxEventQ Queue for Point-to-Point Queue and Publish/Subscribe Topic

	Getting an AQ Queue Table
	Granting and Revoking Privileges
	Granting Oracle Database Advanced Queuing System Privileges
	Revoking Oracle Database Advanced Queuing System Privileges
	Granting Publish/Subscribe Topic Privileges
	Revoking Publish/Subscribe Topic Privileges
	Granting Point-to-Point Queue Privileges
	Revoking Point-to-Point Queue Privileges

	Managing Destinations
	Starting a Destination
	Stopping a Destination
	Altering a Destination
	Dropping a Destination

	Propagation Schedules
	Scheduling a Propagation
	Enabling a Propagation Schedule
	Altering a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Propagation

	Oracle Java Message Service Point-to-Point
	Creating a Connection with User Name/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a QueueConnection with User Name/Password
	Creating a QueueConnection with an Open JDBC Connection
	Creating a QueueConnection with Default ConnectionFactory Parameters
	Creating a QueueConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a QueueSession
	Creating a QueueSender
	Sending Messages Using a QueueSender with Default Send Options
	Sending Messages Using a QueueSender by Specifying Send Options
	Creating a QueueBrowser for Standard JMS Type Messages
	Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages
	Creating a QueueBrowser for Oracle Object Type Messages
	Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages
	Creating a QueueReceiver for Standard JMS Type Messages
	Creating a QueueReceiver for Oracle Object Type Messages

	Oracle Java Message Service Publish/Subscribe
	Creating a Connection with User Name/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a TopicConnection with User Name/Password
	Creating a TopicConnection with Open JDBC Connection
	Creating a TopicConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a TopicSession
	Creating a TopicPublisher
	Publishing Messages with Minimal Specification
	Publishing Messages Specifying Topic
	Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive
	Publishing Messages Specifying a Recipient List
	Creating a DurableSubscriber for a JMS Topic Without Selector
	Creating a DurableSubscriber for a JMS Topic with Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic with Selector
	Specifying Transformations for Topic Subscribers
	Creating a Remote Subscriber for JMS Messages
	Creating a Remote Subscriber for Oracle Object Type Messages
	Specifying Transformations for Remote Subscribers
	Unsubscribing a Durable Subscription for a Local Subscriber
	Unsubscribing a Durable Subscription for a Remote Subscriber
	Creating a TopicReceiver for a Topic of Standard JMS Type Messages
	Creating a TopicReceiver for a Topic of Oracle Object Type Messages
	Creating a TopicBrowser for Standard JMS Messages
	Creating a TopicBrowser for Standard JMS Messages, Locking Messages
	Creating a TopicBrowser for Oracle Object Type Messages
	Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages
	Browsing Messages Using a TopicBrowser

	Oracle Java Message Service Shared Interfaces
	Oracle Database Advanced Queuing JMS Operational Interface: Shared Interfaces
	Starting a JMS Connection
	Getting a JMS Connection
	Committing All Operations in a Session
	Rolling Back All Operations in a Session
	Getting the JDBC Connection from a Session
	Getting the OracleOCIConnectionPool from a JMS Connection
	Creating a BytesMessage
	Creating a MapMessage
	Creating a StreamMessage
	Creating an ObjectMessage
	Creating a TextMessage
	Creating a JMS Message
	Creating an AdtMessage
	Setting a JMS Correlation Identifier

	Specifying JMS Message Properties
	Setting a Boolean Message Property
	Setting a String Message Property
	Setting an Integer Message Property
	Setting a Double Message Property
	Setting a Float Message Property
	Setting a Byte Message Property
	Setting a Long Message Property
	Setting a Short Message Property
	Setting an Object Message Property

	Setting Default TimeToLive for All Messages Sent by a MessageProducer
	Setting Default Priority for All Messages Sent by a MessageProducer
	Creating an AQjms Agent
	Receiving a Message Synchronously
	Using a Message Consumer by Specifying Timeout
	Using a Message Consumer Without Waiting
	Receiving Messages from a Destination Using a Transformation

	Specifying the Navigation Mode for Receiving Messages
	Receiving a Message Asynchronously
	Specifying a Message Listener at the Message Consumer
	Specifying a Message Listener at the Session

	Getting Message ID
	Getting the Correlation Identifier
	Getting the Message Identifier

	Getting JMS Message Properties
	Getting a Boolean Message Property
	Getting a String Message Property
	Getting an Integer Message Property
	Getting a Double Message Property
	Getting a Float Message Property
	Getting a Byte Message Property
	Getting a Long Message Property
	Getting a Short Message Property
	Getting an Object Message Property

	Closing and Shutting Down
	Closing a MessageProducer
	Closing a Message Consumer
	Stopping a JMS Connection
	Closing a JMS Session
	Closing a JMS Connection

	Troubleshooting
	Getting a JMS Error Code
	Getting a JMS Error Number
	Getting an Exception Linked to a JMS Exception
	Printing the Stack Trace for a JMS Exception
	Setting an Exception Listener
	Getting an Exception Listener

	Oracle Java Message Service Types Examples
	How to Set Up the Oracle Database Advanced Queuing JMS Type Examples
	JMS BytesMessage Examples
	JMS StreamMessage Examples
	JMS MapMessage Examples
	More Oracle Database Advanced Queuing JMS Examples

	7 Oracle Database Advanced Queuing Operations Using PL/SQL
	Using Secure Queues
	Enqueuing Messages
	Enqueuing an Array of Messages
	Listening to One or More Queues
	Dequeuing Messages
	Dequeuing an Array of Messages
	Registering for Notification
	Unregistering for Notification
	Posting for Subscriber Notification
	Adding an Agent to the LDAP Server
	Removing an Agent from the LDAP Server

	8 Oracle Transactional Event Queues and Advanced Queuing Performance and Scalability
	Transactional Event Queues
	Transactional Event Queues and the Message Cache
	Transactional Event Queues and Enqueuing / Dequeuing Messages
	Transactional Event Queues and Native JMS Support
	Transactional Event Queues and Partitioning
	Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)
	Transactional Event Queues and Message Retention
	Transactional Event Queues and Seekable Subscribers
	Transactional Event Queues Restrictions
	Transactional Event Queues Tuning
	User Event Streaming

	AQ Queues
	Persistent Messaging Basic Tuning Tips
	Memory Requirements
	Using Storage Parameters
	I/O Configuration
	Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table
	Running Enqueue and Dequeue Processes Serially in a Single Queue Table
	Creating Indexes on a Queue Table
	Other Tips for Queues

	Propagation Tuning Tips
	Buffered Messaging Tuning
	Persistent Messaging Performance Overview for Queues
	Queues and Oracle Real Application Clusters
	Oracle Database Advanced Queuing in a Shared Server Environment

	Performance Views
	Migrating from AQ to TxEventQ
	Monitoring TxEventQ with Prometheus/Grafana
	Monitoring Data Flow and UI Framework Setup
	Key Metrics Measured

	9 Oracle Transactional Event Queue and Advanced Queuing Views
	DBA_QUEUE_TABLES: All Queue Tables in Database
	USER_QUEUE_TABLES: Queue Tables in User Schema
	ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User
	DBA_QUEUES: All Queues in Database
	USER_QUEUES: Queues In User Schema
	ALL_QUEUES: Queues for Which User Has Any Privilege
	DBA_QUEUE_SCHEDULES: All Propagation Schedules
	USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema
	QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege
	AQ⁠$<Queue_Table_Name>: Messages in Queue Table
	AQ⁠$<Queue_Table_Name_S>: Queue Subscribers
	AQ⁠$<Queue_Table_Name_R>: Queue Subscribers and Their Rules
	AQ⁠$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue
	AQ⁠$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue
	DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database
	USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema
	ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges
	DBA_TRANSFORMATIONS: All Transformations
	DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
	USER_TRANSFORMATIONS: User Transformations
	USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
	DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
	USER_SUBSCR_REGISTRATIONS: User Subscription Registrations
	AQ⁠$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for Internet Access
	V⁠$AQ: Number of Messages in Different States in Database
	V⁠$BUFFERED_QUEUES: All Buffered Queues in the Instance
	V⁠$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance
	V⁠$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
	V⁠$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance
	V⁠$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for Persistent Queues
	V⁠$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the Instance
	V⁠$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance
	V⁠$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side
	V⁠$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving (Destination) Side
	V⁠$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
	V⁠$METRICGROUP: Information About the Metric Group
	V⁠$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues
	V⁠$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics
	V⁠$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics
	V⁠$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List
	V⁠$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Primary Background Coordinator Process (AQPC)
	V⁠$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator
	V⁠$AQ_SERVER_POOL: Performance Statistics for all Servers
	V⁠$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description
	V⁠$AQ_IPC_ACTIVE_MSGS
	V⁠$AQ_IPC_MSG_STATS
	V⁠$AQ_IPC_PENDING_MSGS
	V⁠$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations
	V⁠$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections
	V⁠$AQ_SUBSCRIBER_LOAD: Durable Subscribers
	V⁠$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers
	V⁠$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber
	V⁠$AQ_MESSAGE_CACHE: Performance Statistics

	10 Troubleshooting Oracle Database Advanced Queuing
	Debugging Oracle Database Advanced Queuing Propagation Problems
	Oracle Database Advanced Queuing Error Messages

	11 Internet Access to Oracle Database Advanced Queuing
	Overview of Oracle Database Advanced Queuing Operations Over the Internet
	Oracle Database Advanced Queuing Internet Operations Architecture
	Internet Message Payloads
	Configuring the Web Server to Authenticate Users Sending POST Requests
	Client Requests Using HTTP
	Oracle Database Advanced Queuing Servlet Responses Using HTTP
	Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS

	Deploying the Oracle Database Advanced Queuing XML Servlet
	Internet Data Access Presentation (IDAP)
	SOAP Message Structure
	SOAP Envelope
	SOAP Header
	SOAP Body

	SOAP Method Invocation
	HTTP Headers
	Method Invocation Body
	Results from a Method Request

	Request and Response IDAP Documents
	IDAP Client Requests for Enqueue
	IDAP Client Requests for Dequeue
	IDAP Client Requests for Registration
	IDAP Client Requests to Commit a Transaction
	IDAP Client Requests to Roll Back a Transaction
	IDAP Server Response to an Enqueue Request
	IDAP Server Response to a Dequeue Request
	IDAP Server Response to a Register Request
	IDAP Commit Response
	IDAP Rollback Response
	IDAP Notification
	IDAP Response in Case of Error

	Notification of Messages by E-Mail

	12 Oracle Database Advanced Queuing Administrative Interface
	Managing AQ Queue Tables
	Creating an AQ Queue Table
	Altering an AQ Queue Table
	Dropping an AQ Queue Table
	Purging an AQ Queue Table
	Migrating an AQ Queue Table

	Managing AQ Queues
	Creating an AQ Queue
	Altering an AQ Queue
	Starting an AQ Queue
	Stopping an AQ Queue
	Dropping an AQ Queue

	Managing Transformations
	Creating a Transformation
	Modifying a Transformation
	Dropping a Transformation

	Granting and Revoking Privileges
	Granting Oracle Database Advanced Queuing System Privileges
	Revoking Oracle Database Advanced Queuing System Privileges
	Granting Queue Privileges
	Revoking Queue Privileges

	Managing Subscribers
	Adding a Subscriber
	Altering a Subscriber
	Removing a Subscriber

	Managing Propagations
	Scheduling a Queue Propagation
	Verifying Propagation Queue Type
	Altering a Propagation Schedule
	Enabling a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Queue Propagation

	Managing Oracle Database Advanced Queuing Agents
	Creating an Oracle Database Advanced Queuing Agent
	Altering an Oracle Database Advanced Queuing Agent
	Dropping an Oracle Database Advanced Queuing Agent
	Enabling Database Access
	Disabling Database Access

	Adding an Alias to the LDAP Server
	Deleting an Alias from the LDAP Server

	A Nonpersistent Queues
	Creating Nonpersistent Queues
	Managing Nonpersistent Queues
	Compatibility of Nonpersistent Queues
	Nonpersistent Queue Notification
	Restrictions on Nonpersistent Queues

	B Oracle JMS and Oracle AQ XML Servlet Error Messages
	Oracle JMS Error Messages
	Oracle AQ XML Servlet Error Messages

	C Oracle Messaging Gateway
	Introduction to Oracle Messaging Gateway
	Oracle Messaging Gateway Overview
	Oracle Messaging Gateway Features
	Oracle Messaging Gateway Architecture
	Administration Package DBMS_MGWADM
	Oracle Messaging Gateway Agent
	Oracle Database
	Non-Oracle Messaging Systems

	Propagation Processing Overview
	Oracle Database AQ Buffered Messages and Messaging Gateway

	Getting Started with Oracle Messaging Gateway
	Oracle Messaging Gateway Prerequisites
	Loading and Setting Up Oracle Messaging Gateway
	Loading Database Objects into the Database
	Modifying listener.ora for the External Procedure
	Modifying tnsnames.ora for the External Procedure
	Setting Up an mgw.ora Initialization File
	Creating an Oracle Messaging Gateway Administrator User
	Creating an Oracle Messaging Gateway Agent User
	Configuring Oracle Messaging Gateway Connection Information
	Configuring Oracle Messaging Gateway in an Oracle RAC Environment
	Configuring Connection Information for the MGW Agent Connections
	Setting the Oracle RAC Instance for the Messaging Gateway Agent

	Setting Up Non-Oracle Messaging Systems
	Setting Up for TIB/Rendezvous
	Setting Up for WebSphere MQ Base Java or JMS

	Verifying the Oracle Messaging Gateway Setup
	Unloading Oracle Messaging Gateway
	Understanding the mgw.ora Initialization File
	mgw.ora Initialization Parameters
	mgw.ora Environment Variables
	mgw.ora Java Properties
	mgw.ora Comment Lines

	Working with Oracle Messaging Gateway
	Configuring the Oracle Messaging Gateway Agent
	Creating a Messaging Gateway Agent
	Removing a Messaging Gateway Agent
	Setting Database Connection
	Setting the Resource Limits

	Starting and Shutting Down the Oracle Messaging Gateway Agent
	Starting the Oracle Messaging Gateway Agent
	Shutting Down the Oracle Messaging Gateway Agent
	Oracle Messaging Gateway Agent Scheduler Job
	Running the Oracle Messaging Gateway Agent on Oracle RAC

	Configuring Messaging System Links
	Creating a WebSphere MQ Base Java Link
	Creating a WebSphere MQ JMS Link
	Creating a WebSphere MQ Link to Use SSL
	Creating a TIB/Rendezvous Link
	Altering a Messaging System Link
	Removing a Messaging System Link
	Views for Messaging System Links

	Configuring Non-Oracle Messaging System Queues
	Registering a Non-Oracle Queue
	Registering a WebSphere MQ Base Java Queue
	Registering a WebSphere MQ JMS Queue or Topic
	Registering a TIB/Rendezvous Subject

	Unregistering a Non-Oracle Queue
	View for Registered Non-Oracle Queues

	Configuring Oracle Messaging Gateway Propagation Jobs
	Propagation Job Overview
	Creating an Oracle Messaging Gateway Propagation Job
	Enabling and Disabling a Propagation Job
	Resetting a Propagation Job
	Altering a Propagation Job
	Removing a Propagation Job

	Propagation Jobs, Subscribers, and Schedules
	Propagation Job, Subscriber, Schedule Interface Interoperability
	Propagation Job, Subscriber, Schedule Views
	Single Consumer Queue as Propagation Source

	Configuration Properties
	WebSphere MQ System Properties
	TIB/Rendezvous System Properties
	Optional Link Configuration Properties
	Optional Foreign Queue Configuration Properties
	Optional Job Configuration Properties

	Oracle Messaging Gateway Message Conversion
	Converting Oracle Messaging Gateway Non-JMS Messages
	Overview of the Non-JMS Message Conversion Process
	Oracle Messaging Gateway Canonical Types
	Message Header Conversion
	Handling Arbitrary Payload Types Using Message Transformations
	Handling Logical Change Records

	Message Conversion for WebSphere MQ
	WebSphere MQ Message Header Mappings
	WebSphere MQ Outbound Propagation
	WebSphere MQ Inbound Propagation

	Message Conversion for TIB/Rendezvous
	AQ Message Property Mapping for TIB/Rendezvous
	TIB/Rendezvous Outbound Propagation
	TIB/Rendezvous Inbound Propagation

	JMS Messages
	JMS Outbound Propagation
	JMS Inbound Propagation

	Monitoring Oracle Messaging Gateway
	Oracle Messaging Gateway Log Files
	Sample Oracle Messaging Gateway Log File
	Interpreting Exception Messages in an Oracle Messaging Gateway Log File

	Monitoring the Oracle Messaging Gateway Agent Status
	MGW_GATEWAY View
	Oracle Messaging Gateway Irrecoverable Error Messages
	Other Oracle Messaging Gateway Error Conditions

	Monitoring Oracle Messaging Gateway Propagation
	Oracle Messaging Gateway Agent Error Messages

	Oracle Messaging Gateway Views
	MGW_GATEWAY: Configuration and Status Information
	MGW_AGENT_OPTIONS: Supplemental Options and Properties
	MGW_LINKS: Names and Types of Messaging System Links
	MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
	MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
	MGW_FOREIGN_QUEUES: Foreign Queues
	MGW_JOBS: Messaging Gateway Propagation Jobs
	MGW_SUBSCRIBERS: Information for Subscribers
	MGW_SCHEDULES: Information About Schedules

	D Advanced Queuing Sharded Queues
	Managing Sharded Queues
	Creating a Sharded Queue
	Dropping a Sharded Queue
	Altering a Sharded Queue
	Setting a Queue Parameter
	Unsetting a Queue Parameter
	Getting a Queue Parameter
	Creating an Exception Queue

	Glossary
	ADT
	API
	application programming interface
	approximate CSCN
	asynchronous
	BFILE
	binary large object
	BLOB
	broadcast
	buffered queue
	canonical
	character large object
	CLOB
	ConnectionFactory
	commit-time queue
	consumer
	data manipulation language
	Database Configuration Assistant
	DBCA
	dequeue
	DML
	enqueue
	exception queue
	IDAP
	index-organized table
	Internet Data Access Presentation
	Inter-process Communication
	IOT
	IPC
	Java Database Connectivity
	Java Message Service
	Java Naming and Directory Interface
	Java Virtual Machine
	JDBC
	JDBC driver
	JMS
	JMS connection
	JMS message
	JMS session
	JMS topic
	JNDI
	Jnnn
	JServer
	JVM
	large object
	LDAP
	Lightweight Directory Access Protocol
	LOB
	local consumer
	logical change record
	message
	multicast
	national character large object
	NCLOB
	nonpersistent
	nontransactional
	object type
	OCI
	Oracle JMS
	OLTP
	Online Transaction Processing
	Oracle Call Interface
	Oracle Java Message Service
	producer
	propagation
	publish/subscribe
	QMNC
	QMNn
	queue
	queue table
	recipient
	remote consumer
	result cache
	rules
	rules engine
	schema
	send
	servlet
	SGA
	sharded queue
	Simple Object Access Protocol
	SOAP
	subscriber
	System Global Area
	synchronous
	transactional
	transformation
	user queue
	VARRAY
	wildcard
	workflow

	Index

