
Oracle® AI Database
Object-Relational Developer's Guide

26ai
G44198-01
October 2025

Oracle AI Database Object-Relational Developer's Guide, 26ai

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Sylaja Kannan

Contributing Authors: Preethy P G, Tulika Das

Contributors: Janis Greenberg, Sundeep Abraham, Shashaanka Agrawal, Geeta Arora, Eric Belden, Chandrasekharan
Iyer, Geoff Lee, Anand Manikutty, Valarie Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz, Qin Yu

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Conventions i

 Changes in This Release

New Features in Oracle AI Database 26ai i

1 Introduction to Oracle Objects

1.1 About Oracle Objects 1

1.2 Advantages of Objects 1

1.3 Key Features of the Object-Relational Model 2

1.3.1 Database Features of Oracle Objects 2

1.3.1.1 About Object Types 3

1.3.1.2 About Object Instances 5

1.3.1.3 About Object Methods 6

1.3.1.4 How Objects are Stored in Tables 6

1.3.1.5 Object Identifiers Used to Identify Row Objects 8

1.3.1.6 References to Row Objects 8

1.3.1.7 Dereferencing REFs 10

1.3.1.8 Obtaining a REF to a Row Object 11

1.3.1.9 REF Variables Compared 12

1.3.1.10 Oracle Collections Data Types 12

1.3.1.11 Object Views Used to Access Relational Data 13

1.3.1.12 Use of Type Inheritance 13

1.3.1.13 Type Evolution Used to Change an Existing Object Type 14

1.3.2 Language Binding Features of Oracle Objects 14

2 Basic Components of Oracle Objects

2.1 SQL Object Types and References 1

2.1.1 Null Objects and Attributes 2

2.1.2 Character Length Semantics 3

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of x

2.1.3 Defining Object Tables with Single Constraints 3

2.1.4 Defining Object Tables with Multiple Constraints 4

2.1.5 Defining Indexes for Object Tables 4

2.1.6 Defining Triggers for Object Tables 5

2.1.7 Rules for REF Columns and Attributes 5

2.1.8 Name Resolution 6

2.1.8.1 When Table Aliases Are Required 6

2.1.9 Restriction on Using User-Defined Types with a Remote Database 8

2.2 Object Methods 8

2.2.1 About Object Methods 8

2.2.2 Member Methods 9

2.2.2.1 Declaring SELF Parameters in Member Methods 9

2.2.2.2 Member Methods for Comparing Objects 10

2.2.3 Declaring and Invoking Static Methods 13

2.2.4 Constructor Methods 14

2.2.4.1 System-Defined Constructors 14

2.2.4.2 Defining User-Defined Constructors 14

2.2.4.3 Literal Invocation of a Constructor Method 14

2.2.5 External Implemented Methods 15

2.3 Inheritance in SQL Object Types 15

2.3.1 About Inheritance in SQL Object Types 15

2.3.2 Supertypes and Subtypes 16

2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance 17

2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function 18

2.3.3.2 Creating a NOT FINAL Object Type 18

2.3.4 Changing a FINAL TYPE to NOT FINAL 18

2.3.5 Subtype Creation 19

2.3.5.1 Creating a Parent or Supertype Object 19

2.3.5.2 Creating a Subtype Object 19

2.3.5.3 Generalized Invocation 20

2.3.5.4 Using Generalized Invocation 20

2.3.5.5 Using Generalized Expression 21

2.3.5.6 Creating Multiple Subtypes 21

2.3.5.7 Creating a Subtype Under Another Subtype 22

2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects 22

2.3.6 NOT INSTANTIABLE Types and Methods 23

2.3.7 Creating a Non-INSTANTIABLE Object Type 23

2.3.8 Changing an Object Type to INSTANTIABLE 23

2.3.9 Overloaded and Overridden Methods 24

2.3.9.1 Overloading Methods 24

2.3.9.2 Overriding and Hiding Methods 25

2.3.9.3 Restrictions on Overriding Methods 25

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ii of x

2.3.10 Dynamic Method Dispatch 26

2.3.11 Type Substitution in a Type Hierarchy 26

2.3.12 Column and Row Substitutability 27

2.3.12.1 About Column and Row Substitutability 27

2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows 28

2.3.12.3 Subtypes with Attributes of a Supertype 29

2.3.12.4 Substitution of REF Columns and Attributes 29

2.3.12.5 Substitution of Collection Elements 29

2.3.13 Newly Created Subtypes Stored in Substitutable Columns 30

2.3.14 Dropping Subtypes After Creating Substitutable Columns 30

2.3.15 Turning Off Substitutability in a New Table 31

2.3.16 Constraining Substitutability 32

2.3.17 Modifying Substitutability on a Table 32

2.3.18 Restrictions on Modifying Substitutability 33

2.3.19 Assignments Across Types 34

2.3.19.1 Typical Object to Object Assignment 34

2.3.19.2 Widening Assignment 34

2.3.19.3 Narrowing Assignment 35

2.3.19.4 Collection Assignments 36

2.4 Functions and Operators Useful with Objects 36

2.4.1 CAST 37

2.4.2 CURSOR 37

2.4.3 DEREF 37

2.4.4 IS OF type 38

2.4.5 REF 39

2.4.6 SYS_TYPEID 40

2.4.7 TABLE() 40

2.4.8 TREAT 41

2.4.8.1 Using TREAT for Narrowing Assignments 41

2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods 42

2.4.9 VALUE 42

3 Using PL/SQL With Object Types

3.1 Declaring and Initializing Objects in PL/SQL 1

3.1.1 Defining Object Types 1

3.1.2 Declaring Objects in a PL/SQL Block 2

3.1.3 How PL/SQL Treats Uninitialized Objects 3

3.2 Object Manipulation in PL/SQL 3

3.2.1 Accessing Object Attributes With Dot Notation 3

3.2.2 Calling Object Constructors and Methods 3

3.2.3 Accessing Object Methods 4

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iii of x

3.2.4 Updating and Deleting Objects 5

3.2.5 Manipulating Object Manipulation with Ref Modifiers 5

3.3 Use of Overloading in PL/SQL with Inheritance 6

3.3.1 Resolving PL/SQL Functions with Inheritance 6

3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically 7

3.4 Using Dynamic SQL With Objects 8

3.4.1 Using Dynamic SQL with Object Types and Collections 8

3.4.2 Calling Package Procedures with Object Types and Collections 9

4 Object Support in Oracle Programming Environments

4.1 SQL and Object Types 1

4.2 SQL Developer 2

4.3 PL/SQL 2

4.4 Oracle Call Interface (OCI) 2

4.4.1 About Oracle Call Interface (OCI) 2

4.4.2 Associative Access in OCI Programs 3

4.4.3 Navigational Access in OCI Programs 3

4.4.4 Object Cache 4

4.4.5 Building an OCI Program That Manipulates Objects 4

4.4.6 Defining User-Defined Constructors in C 5

4.5 Pro*C/C++ 6

4.5.1 About Pro*C/C++ 6

4.5.2 Associative Access in Pro*C/C++ 6

4.5.3 Navigational Access in Pro*C/C++ 7

4.5.4 Conversion Between Oracle Types and C Types 7

4.5.5 Oracle Type Translator (OTT) 8

4.6 Oracle C++ Call Interface (OCCI) 8

4.6.1 About Oracle C++ Call Interface (OCCI) 8

4.6.2 OCCI Associative Relational and Object Interfaces 8

4.6.3 The OCCI Navigational Interface 9

4.7 Java Tools for Accessing Oracle Objects 9

4.7.1 JDBC Access to Oracle Object Data 9

4.7.2 Data Mapping Strategies 10

4.7.3 Java Object Storage 10

4.7.3.1 Creating SQLJ Object Types 11

4.7.3.2 Additional Notes About Mapping 12

4.7.3.3 SQLJ Type Evolution 12

4.7.3.4 Constraints 13

4.7.3.5 Querying SQLJ Objects 13

4.7.3.6 Inserting Java Objects 13

4.7.3.7 Updating SQLJ Objects 13

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page iv of x

4.7.4 Defining User-Defined Constructors in Java 14

4.7.5 JDeveloper 14

4.7.5.1 Application Development Framework (ADF) 14

4.7.5.2 TopLink 15

4.8 XML 15

4.9 Utilities Providing Support for Objects 15

4.9.1 Import/Export of Object Types 15

4.9.1.1 Types 15

4.9.1.2 Object View Hierarchies 16

4.9.2 SQL*Loader 16

5 Support for Collection Data Types

5.1 Collection Data Types 1

5.1.1 Creating a Collection Type 2

5.1.2 Creating an Instance of a VARRAY or Nested Table 2

5.1.3 Using the Constructor Method to Insert Values into a Nested Table 3

5.1.4 Invoking Constructors Literally to Specify Defaults 3

5.1.5 About Varrays 4

5.1.6 Creating and Populating a VARRAY 4

5.1.7 Nested Tables 5

5.1.7.1 Creating Nested Tables 5

5.1.7.2 Storing Elements of Nested Tables 6

5.1.7.3 Specifying a Tablespace When Storing a Nested Table 7

5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements 7

5.1.9 Increasing VARRAY Limit Size 8

5.1.10 Creating a Varray Containing LOB References 8

5.2 Multilevel Collection Types 9

5.2.1 Nested Table Storage Tables for Multilevel Collection Types 9

5.2.1.1 Creating Multilevel Nested Table Storage 10

5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE
Keyword 11

5.2.1.3 Specifying Physical Attributes for Nested Table Storage 11

5.2.2 Varray Storage for Multilevel Collections 12

5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type 12

5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs 12

5.2.5 Constructors for Multilevel Collections 13

5.3 Operations on Collection Data Types 14

5.3.1 Collection Querying 14

5.3.1.1 Nesting Results of Collection Queries 14

5.3.1.2 Unnesting Results of Collection Queries 15

5.3.1.3 Unnesting Queries Containing Table Expression Subqueries 16

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of x

5.3.1.4 Using a Table Expression in a CURSOR Expression 16

5.3.1.5 Unnesting Queries with Multilevel Collections 17

5.3.2 DML Operations on Collections 17

5.3.2.1 Performing Piecewise Operations on Nested Tables 18

5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables 19

5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables 19

5.3.2.4 Updating Collections as Atomic Data Items 20

5.3.3 Using BULK COLLECT to Return Entire Result Sets 21

5.3.4 Conditions that Compare Nested Tables 21

5.3.4.1 Comparing Equal and Not Equal Conditions 21

5.3.4.2 Comparing the IN Condition 22

5.3.4.3 Comparing Subset of Multiset Conditions 22

5.3.4.4 Determing Members of a Nested Table 22

5.3.4.5 Determining Empty Conditions 23

5.3.4.6 Determining Set Conditions 23

5.3.5 Multiset Operations for Nested Tables 23

5.3.5.1 CARDINALITY 24

5.3.5.2 COLLECT 24

5.3.5.3 MULTISET EXCEPT 24

5.3.5.4 MULTISET INTERSECT 25

5.3.5.5 MULTISET UNION 25

5.3.5.6 POWERMULTISET 26

5.3.5.7 POWERMULTISET_BY_CARDINALITY 26

5.3.5.8 SET 27

5.4 Partitioning Tables That Contain Oracle Objects 27

6 Applying an Object Model to Relational Data

6.1 Why Use Object Views 1

6.2 Defining Object Views 2

6.3 Object Views Used in Applications 3

6.4 Objects Nested in Object Views 4

6.5 Identifying Null Objects in Object Views 5

6.6 Nested Tables and Varrays Used in Object Views 5

6.6.1 Single-Level Collections in Object Views 5

6.6.2 Multilevel Collections in Object Views 7

6.7 Object Identifiers for Object Views 8

6.8 References Created to View Objects 9

6.9 Creating References to Objects with REF 9

6.10 Inverse Relationships Modelled with Object Views 10

6.11 Object View Manipulations 10

6.11.1 Nested Table Columns Updated in Views 11

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of x

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation 11

6.12 Applying the Object Model to Remote Tables 12

6.13 Defining Complex Relationships in Object Views 13

6.13.1 Tables and Types to Demonstrate Circular View References 14

6.13.2 Creating Object Views with Circular References 15

6.13.2.1 Method 1: Re-create First View After Creating Second View 16

6.13.2.2 Method 2: Create First View Using FORCE Keyword 16

6.14 Object View Hierarchies 18

6.14.1 Creating an Object View Hierarchy 19

6.14.1.1 The Flat Model 20

6.14.1.2 The Horizontal Model 21

6.14.1.3 The Vertical Model 23

6.14.2 About Querying a View in a Hierarchy 24

6.14.3 Privileges for Operations on View Hierarchies 25

7 Managing Oracle Objects

7.1 Privileges on Object Types and Their Methods 1

7.1.1 System Privileges for Object Types 1

7.1.2 Schema Object Privileges 1

7.1.3 Types Used in New Types or Tables 2

7.1.4 Example: Privileges on Object Types 2

7.1.5 Access Privileges on Objects, Types, and Tables 4

7.2 Type Dependencies 5

7.2.1 Creating Incomplete Types 6

7.2.2 Completing Incomplete Types 7

7.2.3 Recompiling a Type Manually 7

7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies 7

7.2.5 Creating or Replacing Type with Force 8

7.2.6 Type Dependencies of Substitutable Tables and Columns 8

7.2.7 The DROP TYPE FORCE Option 9

7.3 Synonyms for Object Types 10

7.3.1 Creating a Type Synonym 10

7.3.2 Using a Type Synonym 11

7.3.2.1 Describing Schema Objects That Use Synonyms 11

7.3.2.2 Dependents of Type Synonyms 12

7.3.2.3 Restriction on Replacing a Type Synonym 12

7.3.2.4 Dropping Type Synonyms 12

7.3.2.5 Renaming Type Synonyms 13

7.3.2.6 Public Type Synonyms and Local Schema Objects 13

7.4 Performance Tuning 13

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of x

8 Advanced Topics for Oracle Objects

8.1 Storage of Objects 1

8.1.1 Leaf-Level Attributes 1

8.1.2 How Row Objects Are Split Across Columns 2

8.1.3 Hidden Columns for Tables with Column Objects 2

8.1.4 Hidden Columns for Substitutable Columns and Object Tables 2

8.1.5 Querying for Typeids of Objects Stored in Tables 4

8.1.6 Storage of REFs 4

8.1.7 Internal Layout of Nested Tables 4

8.1.8 Internal Layout of VARRAYs 5

8.2 Creating Indexes on Typeids or Attributes 5

8.2.1 Indexing a Type-Discriminant Column 5

8.2.2 Indexing Subtype Attributes of a Substitutable Column 6

8.3 Type Evolution 7

8.3.1 About Type Evolution 7

8.3.2 Type Evolution and Dependent Schema Objects 7

8.3.3 Options for Updating Data 8

8.3.4 Effects of Structural Changes to Types 8

8.3.5 Altering a Type by Adding and Dropping Attributes 9

8.3.6 Altering a Type by Adding a Nested Table Attribute 10

8.3.7 About Validating Types That Have Been Altered 11

8.3.8 ALTER TYPE Statement for Type Evolution 13

8.3.9 ALTER TABLE Statement for Type Evolution 15

8.4 Storing XMLTypes and LOBs in an ANYDATA Column 15

8.5 System-Defined and User-Defined Constructors 15

8.5.1 The Attribute-Value Constructor 16

8.5.2 Constructors and Type Evolution 16

8.5.3 Advantages of User-Defined Constructors 16

8.5.4 Defining and Implementing User-Defined Constructors 17

8.5.5 Overloaded and Hidden Constructors 18

8.5.6 Calling User-Defined Constructors 18

8.5.7 Constructors for SQLJ Object Types 20

8.6 Transient and Generic Types 20

8.7 User-Defined Aggregate Functions 23

8.8 How Locators Improve the Performance of Nested Tables 24

9 Design Considerations for Oracle Objects

9.1 General Storage Considerations for Objects 1

9.1.1 About Storing Objects as Columns or Rows 1

9.1.1.1 Column Object Storage in Relational Tables 2

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of x

9.1.1.2 Row Object Storage in Object Tables 4

9.1.2 Storage Considerations for Object Identifiers (OIDs) 4

9.1.2.1 System-Generated Object Identifiers (OIDs) 4

9.1.2.2 Primary-Key Based Object Identifiers (OIDs) 4

9.1.2.3 System-Generated Versus Primary-Key Based OIDs 5

9.2 Performance of Object Comparisons 5

9.3 Design Considerations for REFs 6

9.3.1 Storage Size of REFs 6

9.3.2 Integrity Constraints for REF Columns 6

9.3.3 Performance and Storage Considerations for Scoped REFs 6

9.3.3.1 Indexing for Scoped REFs 7

9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option 8

9.4 Design Considerations for Collections 8

9.4.1 Viewing Object Data in Relational Form with Unnesting Queries 9

9.4.1.1 Creating Procedures and Functions to Unnest Queries 9

9.4.1.2 Querying the TABLE Function to Unnest Data 10

9.4.2 Storage Considerations for Varrays 10

9.4.2.1 About Propagating VARRAY Size Change 10

9.4.3 Performance of Varrays Versus Nested Tables 11

9.4.4 Design Considerations for Nested Tables 11

9.4.4.1 Nested Table Storage 11

9.4.4.2 Nested Table Indexes 12

9.4.4.3 Nested Table Locators 12

9.4.4.4 Set Membership Query Optimization 13

9.4.5 Design Considerations for Multilevel Collections 14

9.4.5.1 Creating an Object Table with a Multilevel Collection 14

9.4.5.2 Creating an Object Table Using REFs 16

9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table 17

9.5 Design Considerations for Methods 18

9.5.1 Choice of Language for Method Functions 18

9.5.2 Static Methods 20

9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures 21

9.5.4 Function-Based Indexes on the Return Values of Type Methods 21

9.6 Reusable Code Using Invoker Rights 22

9.7 Roles with Invoker's Rights Subprograms 23

9.8 Replication Support for Objects 24

9.8.1 Object Replication Using Oracle Golden Gate 24

9.8.2 Active Data Guard and Logical Standby Support for Objects 24

9.9 Materialized View Support for Objects 24

9.9.1 Object, Collection, or REF Type Columns 25

9.9.2 Object Tables 25

9.10 Constraints on Objects 26

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page ix of x

9.11 Considerations Related to Type Evolution 26

9.11.1 Pushing a Type Change Out to Clients 26

9.11.2 About Changing Default Constructors 27

9.11.3 About Altering the FINAL Property of a Type 27

9.12 Parallel Queries with Oracle Objects 27

9.13 Design Consideration Tips and Techniques 28

9.13.1 Whether to Evolve a Type or Create a Subtype 28

9.13.2 How ANYDATA Differs from User-Defined Types 29

9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy 29

9.13.4 The SQLJ Object Type 30

9.13.4.1 The Intended Use of SQLJ Object Types 30

9.13.4.2 Actions Performed When Creating a SQLJ Object Type 30

9.13.4.3 Uses of SQLJ Object Types 30

9.13.4.4 Uses of Custom Object Types 31

9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC 31

9.13.5 Miscellaneous Design Tips 32

9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy 32

9.13.5.2 Circular Dependencies Among Types 32

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page x of x

Preface

This guide explains how to use the object-relational features of Oracle AI Database 26ai.
Information in this guide applies to versions of Oracle AI Database that run on all platforms,
and does not include system-specific information.

• Audience

• Conventions

Audience
This guide is intended for programmers developing new applications or converting existing
applications to run in the Oracle environment. The object-relational features are often used in
content management, data warehousing, data/information integration, and similar applications
that deal with complex structured data. The object views feature can be valuable when writing
new C++, C#, Java, or XML applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application programming and that
you are familiar with the use of Structured Query Language (SQL) to access information in
relational databases. You should be familiar with the information in Oracle AI Database SQL
Language Quick Reference, Oracle AI Database PL/SQL Language Reference, and Oracle AI
Database 2 Day Developer's Guide, and with object-oriented programming techniques.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of i

Changes in This Release

The following are the changes in the Oracle AI Database Object-Relational Developer's Guide
for Oracle AI Database 26ai.

New Features in Oracle AI Database 26ai
The following are the new features in the Oracle AI Database Object-Relational Developer's
Guide for Oracle AI Database 26ai.

Wide Tables

The maximum number of columns allowed in a database table or view has been increased to
4096. This feature allows you to build applications that can store attributes in a single table
with more than the previous 1000-column limit. Some applications such as Machine Learning
and streaming IoT application workloads may require the use of de-normalized tables with
more than 1000 columns.

You now have the ability to store a larger number of attributes in a single row which for some
applications may simplify application design and implementation. See The Flat Model.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page i of i

1
Introduction to Oracle Objects

There are advantages and key features to the Oracle object-relational model.

Topics:

• About Oracle Objects

• Advantages of Objects

• Key Features of the Object-Relational Model

1.1 About Oracle Objects
Oracle object types are user-defined types that make it possible to model real-world entities,
such as customers and purchase orders, as objects in the database.

New object types can be created from any built-in database types and any previously created
object types, object references, and collection types. Object types can work with complex data,
such as images, audio, and video. Oracle AI Database stores metadata for user-defined types
in a schema that is available to SQL, PL/SQL, Java, and other languages.

Object types and related object-oriented features, such as varrays and nested tables, provide
higher-level ways to organize and access data in the database. Underneath the object layer,
data is still stored in columns and tables, but you can work with the data in terms of the real-
world entities that make the data meaningful. Instead of thinking in terms of columns and
tables when you query the database, you can simply select entities that you have created,
such as customers and purchase orders.

You can begin to use object-oriented features while continuing to work with most of your data
relationally, or you use to an object-oriented approach entirely.

Object types are also known as user-defined types or ADTs. Oracle AI Database PL/SQL
Packages and Types Reference generally refers to them as ADTs.

1.2 Advantages of Objects
The object-type model, in general, is similar to the class mechanism found in C++ and Java.

Like classes, the reusability of objects makes it possible to develop database applications
faster and more efficiently. By natively supporting object types in the database, Oracle AI
Database enables application developers to directly access the data structures used by their
applications.

Objects offer other advantages over a purely relational approach, such as:

• Objects Can Encapsulate Operations Along with Data

• Objects Are Efficient

• Objects Can Represent Part-Whole Relationships

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 16

Objects Can Encapsulate Operations Along with Data

Database tables contain only data. Objects can include the ability to perform operations that
are likely to be performed on that data.

Thus, an object such as a purchase order might include a method to calculate the cost of all
the items purchased. Or a customer object might have methods to return the customer's
buying history and payment pattern. An application can simply call the methods to retrieve the
information.

Objects Are Efficient

Using object types allows for greater efficiency:

• Object types and their methods are stored with the data in the database, so they are
available for any application to use. Developers do not need to re-create similar structures
and methods in every application. This also ensures that developers are using consistent
standards.

• You can fetch and manipulate a set of related objects as a single unit. A single request to
fetch an object from the server can retrieve other objects that are connected to it. When
you reference a column of a SQL object type, you retrieve the whole object.

Objects Can Represent Part-Whole Relationships

Object types allow you to represent part-whole relationships.

In a relational table for stock items, for example, a piston and an engine may have the same
status. Using objects can reduce the need to represent pistons as parts of engines with
complicated schemas of multiple tables with primary key-foreign key relationships. An object
can have other objects as attributes, and the attribute objects can have their own object
attributes too. An entire parts-list hierarchy can be built up in this way from interlocking object
types.

1.3 Key Features of the Object-Relational Model
Oracle AI Database implements the object-type model as an extension of the relational model,
while continuing to support standard relational database functionality, such as queries, fast
commits, backup and recovery, scalable connectivity, row-level locking, read consistency, and
more.

SQL and various programmatic interfaces and languages, including PL/SQL, Java, Oracle Call
Interface, Pro*C/C++, and C# have been enhanced with extensions to support Oracle objects.
The result is an object-relational model that offers the intuitiveness and economy of an object
interface while preserving the high concurrency and throughput of a relational database.

Topics:

• Database Features of Oracle Objects

• Language Binding Features of Oracle Objects

1.3.1 Database Features of Oracle Objects
There are certain features and concepts of the object-relational model that are related to the
database.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 16

Note

Running Examples: Many examples in this guide can be run using the HR sample
schema. Comments at the beginning of most examples indicate if any previous
example code is required.

Refer to Oracle AI Database Sample Schemas for information on how these schemas
were created and how you can use them yourself.

Topics:

• About Object Types

• About Object Instances

• About Object Methods

• How Objects are Stored in Tables

• Object Identifiers Used to Identify Row Objects

• References to Row Objects

• Oracle Collections Data Types

• Object Views Used to Access Relational Data

• Use of Type Inheritance

• Type Evolution Used to Change an Existing Object Type

1.3.1.1 About Object Types
An object type is a kind of data type.

You can use an object in the same ways that you use standard data types such as NUMBER or
VARCHAR2. For example, you can specify an object type as the data type of a column in a
relational table, and you can declare variables of an object type. The value is a variable or an
instance of that type. An object instance is also called an object.

Figure 1-1 shows an object type, person_typ, and two instances of the object type.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 16

Figure 1-1 Object Type and Object Instances

idno

first_name

last_name

email

phone

Object Type person_typ

Attributes Methods

get_idno

display_details

idno:

first_name:

last_name:

email:

phone:

101

John

Smith

jsmith@example.com

1-650-555-0135

Object

idno:

first_name:

last_name:

email:

phone:

65

Verna�

Mills�

vmills@example.com

1-650-555-0125

Object

Object types serve as blueprints or templates that define both structure and behavior. Object
types are database schema objects, subject to the same kinds of administrative control as
other schema objects. Application code can retrieve and manipulate these objects. See
Managing Oracle Objects.

You use the CREATE TYPE SQL statement to define object types.

Example 1-1 shows how to create an object type named person_typ. In the example, an object
specification and object body are defined. For information on the CREATE TYPE SQL statement
and on the CREATE TYPE BODY SQL statement, see Oracle AI Database PL/SQL Packages and
Types Reference.

Note

Running Examples: Many examples on this subject can be run using the HR sample
schemas. Comments at the beginning of most examples indicate if any previous
example code is required.
Refer to Oracle AI Database PL/SQL Packages and Types Reference for information
on how these schemas were created and how you can use them yourself.

Example 1-1 Creating the person_typ Object Type

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 16

 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the PUT_LINE procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' ' || first_name || ' ' || last_name);
 DBMS_OUTPUT.PUT_LINE(email || ' ' || phone);
 END;
END;
/

Object types differ from the standard data types that are native to a relational database:

• Oracle AI Database does not supply predefined object types. You define the object types
you want by combining built-in types with user-defined ones as shown in Example 1-1.

• Object types are composed of attributes and methods as illustrated in Figure 1-2.

– Attributes hold the data about an object. Attributes have declared data types which
can, in turn, be other object types.

– Methods are procedures or functions that applications can use to perform operations
on the attributes of the object type. Methods are optional. They define the behavior of
objects of that type.

Figure 1-2 Object Attributes and Methods

Figure 1-2 shows the relationship of attributes and methods in the spec.

attribute declarations

spec

method specs

public interface

method bodies

body

private implementation

1.3.1.2 About Object Instances
A variable of an object type is an instance of the type, or an object.

An object has the attributes and methods defined for its type. Because an object instance is a
concrete thing, you can assign values to its attributes and call its methods.

Defining an object type does not allocate any storage. After they are defined, object types can
be used in SQL statements in most of the same places you use types such as NUMBER or
VARCHAR2. Storage is allocated once you create an instance of the object type.

Example 1-2 shows how to create object instances of the person_typ created in Example 1-1,
and define a relational table to keep track of these instances as contacts.

Example 1-2 Creating the contacts Table with an Object Type Column

-- requires existing person_typ fr. Ex 1-1
CREATE TABLE contacts (
 contact person_typ,

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 16

 contact_date DATE);

INSERT INTO contacts VALUES (
 person_typ (65, 'Verna', 'Mills', 'vmills@example.com', '1-650-555-0125'),
 to_date('24 Jun 2003', 'dd Mon YYYY'));

The contacts table is a relational table with an object type as the data type of its contact
column. Objects that occupy columns of relational tables are called column objects.

See Also

How Objects are Stored in Tables

1.3.1.3 About Object Methods
Object methods are functions or procedures that you can declare in an object type definition to
implement behavior that you want objects of that type to perform.

The general kinds of methods that can be declared in a type definition are:

• Member Methods

Using member methods, you can provide access to the data of an object, and otherwise
define operations that an application performs on the data. To perform an operation, the
application calls the appropriate method on the appropriate object.

• Static Methods

Static methods compare object instances and perform operations that do not use the data
of any particular object, but, instead, are global to an object type.

• Constructor Methods

A default constructor method is implicitly defined for every object type, unless it is
overwritten with a user-defined constructor. A constructor method is called on a type to
construct or create an object instance of the type.

Example 1-3 show the get_idno() method, created in Example 1-1, to display the Id number
of persons in the contacts table:

Example 1-3 Using the get_idno Object Method

-- requires Ex 1-1 and Ex 1-2
SELECT c.contact.get_idno() FROM contacts c;

See Also

Object Methods

1.3.1.4 How Objects are Stored in Tables
Objects can be stored in two types of tables:

• Object tables: store only objects

In an object table, each row represents an object, which is referred to as a row object.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 16

• Relational tables: store objects with other table data

Objects that are stored as columns of a relational table, or are attributes of other objects,
are called column objects. Example 1-2 shows the contacts table which stores an
instance of the person_typ object.

Objects that have meaning outside of the relational database in which they are contained, or
objects that are shared among more than one relational database object, should be made
referenceable as row objects. That is, such objects should be stored as a row object in an
object table instead of in a column of a relational table.

See Also

• About Storing Objects as Columns or Rows

• Creating and Using Object Tables

1.3.1.4.1 Creating and Using Object Tables
You create object tables using a CREATE TABLE statement.

Example 1-4 shows a CREATE TABLE statement that creates an object table for person_typ
objects.

Example 1-4 Creating the person_obj_table Object Table

-- requires Ex. 1-1
CREATE TABLE person_obj_table OF person_typ;

You can view this table in two ways:

• As a single-column table, in which each row is a person_typ object, allowing you to
perform object-oriented operations.

• As a multi-column table, in which each attribute of the object type person_typ such as
idno, first_name, last_name, and so on, occupies a column, allowing you to perform
relational operations.

1.3.1.4.2 Performing Operations on Object Tables
You can perform various operations on object tables such as inserting objects into the table or
selecting objects from the table.

Example 1-5 illustrates several operations on an object table.

Example 1-5 Operations on the person_obj_table Object Table

-- requires Ex. 1-1 and 1-4
INSERT INTO person_obj_table VALUES (
 person_typ(101, 'John', 'Smith', 'jsmith@example.com', '1-650-555-0135'));

SELECT VALUE(p) FROM person_obj_table p
 WHERE p.last_name = 'Smith';

DECLARE
 person person_typ;
BEGIN -- PL/SQL block for selecting a person and displaying details
 SELECT VALUE(p) INTO person FROM person_obj_table p WHERE p.idno = 101;
 person.display_details();

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 16

END;
/

The INSERT INTO SQL statement in Example 1-5inserts a person_typ object into the
person_obj_table, treating person_obj_table as a multi-column table.

The SELECT SQL statement selects from person_obj_table as a single-column table, using the
VALUE function to return rows as object instances.

The PL/SQL block selects a specific person and executes a member function of person_typ to
display details about the specified person.

See Also

• For information on the VALUE function, see "VALUE" .

• For more information about using PL/SQL with objects, see Using PL/SQL With
Object Types.

1.3.1.5 Object Identifiers Used to Identify Row Objects
Object identifiers (OIDs) uniquely identify row objects in object tables.

You cannot directly access object identifiers, but you can make references (REFs) to the object
identifiers and directly access the REFs, as discussed in "References to Row Objects".

There are two types of object identifiers.

• System-Generated Object Identifiers (default)

Oracle automatically creates system-generated object identifiers for row objects in object
tables unless you choose the primary-key based option.

• Primary-Key Based Object Identifiers

You have the option to create primary-key based OIDs when you create the table using the
CREATE TABLE statement.

Note

Column objects are identified by the primary key of the row, and, therefore, do not
need a specific object identifier.

See Also

• "Object Identifiers for Object Views"

• "Storage Considerations for Object Identifiers (OIDs)"

1.3.1.6 References to Row Objects
A REF is a logical pointer or reference to a row object that you can construct from an object
identifier (OID).

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 16

You can use the REF to obtain, examine, or update the object. You can change a REF so that it
points to a different object of the same object type hierarchy or assign it a null value.

REFs are Oracle AI Database built-in data types. REFs and collections of REFs model
associations among objects, particularly many-to-one relationships, thus reducing the need for
foreign keys. REFs provide an easy mechanism for navigating between objects.

Example 1-6 illustrates a simple use of a REF.

Example 1-6 Using a REF to the emp_person_typ Object

CREATE TYPE emp_person_typ AS OBJECT (
 name VARCHAR2(30),
 manager REF emp_person_typ);
/
CREATE TABLE emp_person_obj_table OF emp_person_typ;

INSERT INTO emp_person_obj_table VALUES (
 emp_person_typ ('John Smith', NULL));

INSERT INTO emp_person_obj_table
 SELECT emp_person_typ ('Bob Jones', REF(e))
 FROM emp_person_obj_table e
 WHERE e.name = 'John Smith';

This example first creates the emp_person_typ John Smith, with NULL value for a manager.
Then it adds the emp_person_typ Bob Jones as John Smith's supervisee.

The following query and its output show the effect:

COLUMN name FORMAT A10
COLUMN manager FORMAT A50
select * from emp_person_obj_table e;

NAME MANAGER
---------- --
John Smith
Bob Jones 0000220208424E801067C2EABBE040578CE70A0707424E8010
 67C1EABBE040578CE70A0707

Example 1-10 shows how to dereference the object, so that Manager appears as a name rather
than an object identifier.

Note

• "Rules for REF Columns and Attributes"

• "Design Considerations for REFs"

1.3.1.6.1 Using Scoped REFs
Scoped REF types require less storage space and allow more efficient access than unscoped
REF types.

You can constrain a column type, collection element, or object type attribute to reference a
specified object table. Use the SQL constraint subclause SCOPE IS when you declare the REF.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 16

Example 1-7 shows REF column contact_ref scoped to person_obj_table which is an object
table of type person_typ.

Example 1-7 Creating the contacts_ref Table Using a Scoped REF

-- requires Ex. 1-1, 1-4, and 1-5
CREATE TABLE contacts_ref (
 contact_ref REF person_typ SCOPE IS person_obj_table,
 contact_date DATE);

To insert a row in the table, you could issue the following:

INSERT INTO contacts_ref
 SELECT REF(p), '26 Jun 2003'
 FROM person_obj_table p
 WHERE p.idno = 101;

A REF can be scoped to an object table of the declared type (person_typ in the example) or of
any subtype of the declared type. If a REF is scoped to an object table of a subtype, the REF
column is effectively constrained to hold only references to instances of the subtype (and its
subtypes, if any) in the table..

See Also

"Inheritance in SQL Object Types"

1.3.1.6.2 Checking for Dangling REFs
Dangling REFs are REFs where the object identified by the REF becomes unavailable. Objects
are unavailable if they have been deleted or some privilege necessary to them has been
deleted.

Use the SQL predicate IS DANGLING to test REFs for dangling REFs.

You can avoid dangling REFs by defining referential integrity constraints.

See Also

Rules for REF Columns and Attributes

1.3.1.7 Dereferencing REFs
Accessing the object that the REF refers to is called dereferencing the REF.

There are various ways to dereference a REF, both with and without the DEREF command.

Topics:

• Dereferencing a REF with the DEREF Command

• Dereferencing a Dangling REF

• Dereferencing a REF Implicilty

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 16

1.3.1.7.1 Dereferencing a REF with the DEREF Command
This example shows how to use the DEREF command to derefence a REF.

Example 1-8 Using DEREF to Dereference a REF

SELECT DEREF(e.manager) FROM emp_person_obj_table e;
DEREF(E.MANAGER)(NAME, MANAGER)

EMP_PERSON_TYP('John Smith', NULL)

This example shows that dereferencing a dangling REF returns a null object.

1.3.1.7.2 Dereferencing a Dangling REF
You can dereference a dangling REF with the DELETE command.

Dereferencing a dangling REF returns a null object.

Example 1-9 Dereferencing a Dangling Ref

DELETE from person_obj_table WHERE idno = 101;
/
SELECT DEREF(c.contact_ref), c.contact_date FROM contacts_ref c;

1.3.1.7.3 Dereferencing a REF Implicilty
Oracle AI Database provides implicit dereferencing of REFs.

For example, to access the manager's name for an employee, you can use a SELECT
statement.

Example 1-10 follows the pointer from the person's name and retrieves the manager's name
e.manager.name.

Example 1-10 Implicitly Dereferencing a REF

-- requires Ex. 1-6
SELECT e.name, e.manager.name FROM emp_person_obj_table e
 WHERE e.name = 'Bob Jones';

Dereferencing the REF in this manner is allowed in SQL, but PL/SQL requires the DEREF
keyword as in Example 1-8.

1.3.1.8 Obtaining a REF to a Row Object
You obtain a REF to a row object by selecting the object from its object table and applying the
REF operator.

• Select the object from its object table and apply the REF operator.

Example 1-11 shows how to obtain a REF to the person with an idno equal to 101.

The query returns exactly one row.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 16

Example 1-11 Obtaining a REF to a Row Object

-- requires Ex. 1-1, 1-4, and 1-5
DECLARE
 person_ref REF person_typ;
 person person_typ;
BEGIN

 SELECT REF(p) INTO person_ref
 FROM person_obj_table p
 WHERE p.idno = 101;

 select deref(person_ref) into person from dual;
 person.display_details();

END;
/

See Also

"Storage Size of REFs"

1.3.1.9 REF Variables Compared
Two REF variables can be compared if, and only if, the targets that they reference are both of
the same declared type, or one is a subtype of the other.

REF variables can only be compared for equality.

1.3.1.10 Oracle Collections Data Types
For modeling multi-valued attributes and many-to-many relationships, Oracle AI Database
supports these two collection data types:

• Varrays

• Nested Tables

You can use collection types anywhere other data types are used. You can have object
attributes of a collection type in addition to columns of a collection type. For example, a
purchase order object type might contain a nested table attribute that holds the collection of
line items for the purchase order.

To define a collection type, use the CREATE TYPE . . . AS TABLE OF statement.

Example 1-12 shows CREATE TYPE statements that define a collection and an object type.

Example 1-12 Creating the people_typ Collection Data Type

-- requires Ex. 1-1
CREATE TYPE people_typ AS TABLE OF person_typ;
/

CREATE TYPE dept_persons_typ AS OBJECT (
 dept_no CHAR(5),
 dept_name CHAR(20),
 dept_mgr person_typ,
 dept_emps people_typ);
/

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 16

Note the following about this example:

• The collection type, people_typ, is specifically a nested table type.

• The dept_persons_typ object type has an attribute dept_emps of people_typ. Each row in
the dept_emps nested table is an object of type person_typ which was defined in
Example 1-1.

See Also

"Collection Data Types"

1.3.1.11 Object Views Used to Access Relational Data
An object view is a way to access relational data using object-relational features.

An object view lets you develop object-oriented applications without changing the underlying
relational schema.

You can access objects that belong to an object view in the same way that you access row
objects in an object table. Oracle AI Database also supports materialized view objects of user-
defined types from data stored in relational schemas and tables.

Object views let you exploit the polymorphism that a type hierarchy makes possible. A
polymorphic expression takes a value of the expression's declared type or any of that type's
subtypes. If you construct a hierarchy of object views that mirrors some or all of the structure of
a type hierarchy, you can query any view in the hierarchy to access data at just the level of
specialization you are interested in. If you query an object view that has subviews, you can get
back polymorphic data—rows for both the type of the view and for its subtypes.

See Also

Applying an Object Model to Relational Data

1.3.1.12 Use of Type Inheritance
Type inheritance enables you to create type hierarchies.

A type hierarchy is a set of successive levels of increasingly specialized subtypes that derive
from a common ancestor object type, which is called a supertype. Derived subtypes inherit the
features of the parent object type and can extend the parent type definition. The specialized
types can add new attributes or methods, or redefine methods inherited from the parent. The
resulting type hierarchy provides a higher level of abstraction for managing the complexity of
an application model. For example, specialized types of persons, such as a student type or a
part-time student type with additional attributes or methods, might be derived from a general
person object type.

Figure 1-3 illustrates two subtypes, Student_t and Employee_t, created under Person_t, and
the PartTimeStudent_t, a subtype under Student_t.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 16

Figure 1-3 A Type Hierarchy

Person_t

Employee_t

PartTimeStudent_t

Student_t

See Also

"Inheritance in SQL Object Types"

1.3.1.13 Type Evolution Used to Change an Existing Object Type
Type evolution enables you to modify, or evolve, an existing object type, even those already
used in tables.

Type evolution works through the ALTER TYPE statement, enabling you to propagate changes
through all instances of the object type.

The ALTER TYPE statement checks for dependencies of the type to be altered, using essentially
the same validations as a CREATE TYPE statement. If a type or any of its dependent types fails
the type validations, the ALTER TYPE statement rolls back.

Metadata for all tables and columns that use an altered type are updated for the new type
definition so that data can be stored in the new format. Existing data can be converted to the
new format either all at once or piecemeal, as it is updated. In either case, data is always
presented in the new type definition even if it is still stored in the format of the older one.

See Also

• "Type Evolution"

• "Considerations Related to Type Evolution"

1.3.2 Language Binding Features of Oracle Objects
Certain key features of the object-relational model are related to languages and application
programming interfaces (APIs).

Related languages and application programming interfaces (APIs):

SQL Object Extensions

To support object-related features, Oracle AI Database provides SQL extensions, including
DDL, to create, alter, or drop object types; to store object types in tables; and to create, alter, or
drop object views. There are DML and query extensions to support object types, references,
and collections.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 16

See Also

SQL and Object Types

PL/SQL Object Extensions

PL/SQL can operate on object types seamlessly. Thus, application developers can use PL/SQL
to implement logic and operations on user-defined types that execute in the database server.

See Also

Using PL/SQL With Object Types

Java Support for Oracle Objects

Oracle Java VM is tightly integrated with Oracle AI Database and supports access to Oracle
Objects through object extensions to Java Database Connectivity (JDBC). This provides
dynamic SQL, and SQLJ, which provides static SQL. Thus, application developers can use
Java to implement logic and operations on object types that execute in the database. You can
map SQL types to existing Java classes to provide persistent storage for Java objects.

See Also

Java Object Storage

External Procedures

You can implement database functions, procedures, or member methods of an object type in
PL/SQL, Java, C, or .NET as external procedures. External procedures are best suited for
tasks that are more quickly or easily done in a low-level language such as C. External
procedures are always run in a safe mode outside the address space of the database. Generic
external procedures can be written that declare one or more parameters to be of a system-
defined generic type. Thus, an external procedure can use the system-defined generic type to
work with data of any built-in or user-defined type.

Object Type Translator

Object Type Translator (OTT) provides client-side mappings to object type schemas by using
schema information from the Oracle data dictionary to generate header files containing Java
classes and C structures and indicators. You can use these generated header files in host-
language applications for transparent access to database objects.

Client-Side Cache

Oracle AI Database provides an object cache for efficient access to persistent objects stored in
the database. Copies of objects can be brought into the object cache. Once the data has been
cached in the client, the application can traverse through these at memory speed. Any
changes made to objects in the cache can be committed to the database by using the object
extensions to Oracle Call Interface programmatic interfaces.

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 16

Oracle Call Interface and Oracle C++ Call Interface

Oracle Call Interface (OCI) and Oracle C++ Call Interface provide a comprehensive application
programming interface for application and tool developers. Oracle Call Interface provides a
run-time environment with functions to connect to an Oracle AI Database, and control
transactions that access objects in the database. It allows application developers to access
and manipulate objects and their attributes in the client-side object cache either navigationally,
by traversing a graph of inter-connected objects, or associatively by specifying the nature of
the data through declarative SQL DML. Oracle Call Interface provides a number of functions to
access metadata about object types defined in the database at run-time.

See Also

• Oracle Call Interface (OCI)

• Oracle C++ Call Interface (OCCI)

Pro*C/C++ Object Extensions

The Oracle Pro*C/C++ precompiler provides an embedded SQL application programming
interface and offers a higher level of abstraction than Oracle Call Interface. Like Oracle Call
Interface, the Pro*C/C++ precompiler allows application developers to use the Oracle client-
side object cache and the Object Type Translator Utility. Pro*C/C++ supports the use of C bind
variables for Oracle object types. Pro*C/C++ also provides simplified syntax to allocate and
free objects of SQL types and access them using SQL DML or the navigational interface.

See Also

"Oracle Call Interface (OCI)"

.NET Object Extensions

Oracle Developer Tools for Visual Studio (ODT) and Oracle Data Provider for .NET (ODP.NET)
support .NET custom objects that map to Oracle object-relational data types, collections, and
REFs. ODT is a set of tools incorporated into a Visual Studio integrated development
environment, which allow managing these data types inside Oracle AI Database. Through the
ODT Custom Class Wizard, Oracle objects can be automatically mapped to .NET custom
types to ease data sharing between Oracle AI Database and .NET applications. Data access to
these .NET custom types occur through ODP.NET.

See Also

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Developer Tools for Visual Studio Help

Chapter 1
Key Features of the Object-Relational Model

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 16

2
Basic Components of Oracle Objects

The basic components of Oracle Objects are object types, subprograms, and the hierarchy of
object types.

Basic information about working with Oracle SQL objects includes what object types and
subprograms are, and how to create and work with a hierarchy of object types that are derived
from a shared root type and are connected by inheritance.

Note

Running Examples: In order to run examples in chapter 2, you may need to drop any
objects you created for Chapter 1.

Topics:

• SQL Object Types and References

• Object Methods

• Inheritance in SQL Object Types

• Functions and Operators Useful with Objects

2.1 SQL Object Types and References
This section describes SQL object types and references.

Topics

• Null Objects and Attributes

• Character Length Semantics

• Defining Object Tables with Single Constraints

• Defining Indexes for Object Tables

• Defining Triggers for Object Tables

• Rules for REF Columns and Attributes

• Name Resolution

• Restriction on Using User-Defined Types with a Remote Database

You create Oracle SQL object types with the CREATE TYPE statement. A typical example of
object type creation is shown in Example 2-1.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 43

See Also

Oracle AI Database PL/SQL Packages and Types Reference for information on the
CREATE TYPE and CREATE TYPE BODY SQL statements

2.1.1 Null Objects and Attributes
An object whose value is NULL is called atomically null.

An atomically null object is different from an object that has null values for all its attributes.

In an object with null values, a table column, object attribute, collection, or collection element
might be NULL if it has been initialized to NULL or has not been initialized at all. Usually, a NULL
value is replaced by an actual value later on. When all the attributes are null, you can still
change these attributes and call the object's subprograms or methods. With an atomically null
object, you can do neither of these things.

creates the contacts table and defines the person_typ object type and two instances of this
type.

Example 2-1 Inserting NULLs for Objects in a Table

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the PUT_LINE procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' - ' || name || ' - ' || phone);
 END;
END;
/
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

INSERT INTO contacts VALUES (
 person_typ (NULL, NULL, NULL), '24 Jun 2003');

INSERT INTO contacts VALUES (
 NULL, '24 Jun 2003');

Two instances of person_typ are inserted into the table and give two different results. In both
cases, Oracle AI Database allocates space in the contacts table for a new row and sets its
DATE column to the value given. But in the first case, Oracle AI Database allocates space for an
object in the contact column and sets each of the object's attributes to NULL. In the second
case, Oracle AI Database sets the person_typ field itself to NULL and does not allocate space
for an object.

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 43

In some cases, you can omit checks for null values. A table row or row object cannot be null. A
nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null collection is
different from an empty one, one that has no elements.

See How PL/SQL Treats Uninitialized Objects.

2.1.2 Character Length Semantics
Lengths for character types CHAR and VARCHAR2 may be specified as a number of characters,
instead of bytes, in object attributes and collections even if some of the characters consist of
multiple bytes.

To specify character-denominated lengths for CHAR and VARCHAR2 attributes, you add the
qualifier char to the length specification.

Like CHAR and VARCHAR2, NCHAR and NVARCHAR2 may also be used as attribute types in objects
and collections. NCHAR and NVARCHAR2 are always implicitly measured in terms of characters, so
no char qualifier is used.

For example, the following statement creates an object with both a character-length VARCHAR2
attribute and an NCHAR attribute:

Example 2-2 Creating the employee_typ Object Using a char Qualifier

CREATE OR REPLACE TYPE employee_typ AS OBJECT (
 name VARCHAR2(30 char),
 language NCHAR(10),
 phone VARCHAR2(20));
/

For CHAR and VARCHAR2 attributes whose length is specified without a char qualifier, the
NLS_LENGTH_SEMANTICS initialization parameter setting (CHAR or BYTE) indicates the default unit
of measure.

Oracle AI Database Globalization Support Guide for information on character length semantics

2.1.3 Defining Object Tables with Single Constraints
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object, with the
exception of REFs that are not scoped.

places a single constraint, an implicit PRIMARY KEY constraint, on the office_id column of the
object table office_tab.

Example 2-3 Creating the office_tab Object Table with a Constraint

-- requires Ex. 2-1
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40));
/

CREATE OR REPLACE TYPE office_typ AS OBJECT (
 office_id VARCHAR(10),
 office_loc location_typ,
 occupant person_typ);/

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 43

CREATE TABLE office_tab OF office_typ (
 office_id PRIMARY KEY);

The object type location_typ defined in is the type of the dept_loc column in the
department_mgrs table in Example 2-4.

2.1.4 Defining Object Tables with Multiple Constraints
You can define object tables with multiple constraints.

You can define object tables with multiple constraints.

Example 2-4 Creating the department_mgrs Table with Multiple Constraints

Example 2-4 defines constraints on scalar attributes of the location_typ objects in the table.

-- requires Ex. 2-1 and 2-3
CREATE TABLE department_mgrs (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person_typ,
 dept_loc location_typ,
 CONSTRAINT dept_loc_cons1
 UNIQUE (dept_loc.building_no, dept_loc.city),
 CONSTRAINT dept_loc_cons2
 CHECK (dept_loc.city IS NOT NULL));

INSERT INTO department_mgrs VALUES
 (101, 'Physical Sciences',
 person_typ(65,'Vrinda Mills', '1-1-650-555-0125'),
 location_typ(300, 'Palo Alto'));

See "Constraints on Objects"

2.1.5 Defining Indexes for Object Tables
You can define indexes on an object table or on the storage table for a nested table column or
attribute just as you can on other tables.

Define indexes on leaf-level scalar attributes of column objects. You can only define indexes on
REF attributes or columns if the REF is scoped.

Example 2-5 Creating an Index on an Object Type in a Table

-- requires Ex. 2-1, 2-3,
CREATE TABLE department_loc (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_addr location_typ);

CREATE INDEX i_dept_addr1
 ON department_loc (dept_addr.city);

INSERT INTO department_loc VALUES
 (101, 'Physical Sciences',
 location_typ(300, 'Palo Alto'));
INSERT INTO department_loc VALUES
 (104, 'Life Sciences',
 location_typ(400, 'Menlo Park'));
INSERT INTO department_loc VALUES

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 43

 (103, 'Biological Sciences',
 location_typ(500, 'Redwood Shores'));

This example, , indexes city, which is a leaf-level scalar attribute of the column object
dept_addr.

Wherever Oracle AI Database expects a column name in an index definition, you can also
specify a scalar attribute of a column object.

For an example of an index on a nested table, see Storing Elements of Nested Tables.

2.1.6 Defining Triggers for Object Tables
You can define triggers on an object table just as you can on other tables.

You cannot define a trigger on the storage table for a nested table column or attribute. You
cannot modify LOB values in a trigger body. Otherwise, there are no special restrictions on
using object types with triggers.

Example 2-6 defines a trigger on the office_tab table defined in "Defining Object Tables with
Single Constraints".

Example 2-6 Creating a Trigger on Objects in a Table

-- requires Ex. 2-1 and 2-3
CREATE TABLE movement (
 idno NUMBER,
 old_office location_typ,
 new_office location_typ);

CREATE TRIGGER trigger1
 BEFORE UPDATE
 OF office_loc
 ON office_tab
 FOR EACH ROW
 WHEN (new.office_loc.city = 'Redwood Shores')
 BEGIN
 IF :new.office_loc.building_no = 600 THEN
 INSERT INTO movement (idno, old_office, new_office)
 VALUES (:old.occupant.idno, :old.office_loc, :new.office_loc);
 END IF;
 END;/
INSERT INTO office_tab VALUES
 ('BE32', location_typ(300, 'Palo Alto'),person_typ(280, 'John Chan',
 '415-555-0101'));

UPDATE office_tab set office_loc =location_typ(600, 'Redwood Shores')
 where office_id = 'BE32';

select * from office_tab;

select * from movement;

See"INSTEAD OF Triggers to Control Mutating and Validation"

2.1.7 Rules for REF Columns and Attributes
Rules for REF columns and attributes can be enforced by the use of constraints.

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 43

In Oracle AI Database, a REF column or attribute can be unconstrained or constrained using a
SCOPE clause or a referential constraint clause. When a REF column is unconstrained, it may
store object references to row objects contained in any object table of the corresponding object
type.

Oracle AI Database does not ensure that the object references stored in such columns point to
valid and existing row objects. Therefore, REF columns may contain object references that do
not point to any existing row object. Such REF values are referred to as dangling references.

A SCOPE constraint can be applied to a specific object table. All the REF values stored in a
column with a SCOPE constraint point at row objects of the table specified in the SCOPE clause.
The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTIAL constraint similar to the specification for
foreign keys. The rules for referential constraints apply to such columns. That is, the object
reference stored in these columns must point to a valid and existing row object in the specified
object table.

PRIMARY KEY constraints cannot be specified for REF columns. However, you can specify NOT
NULL constraints for such columns.

See Also

• "References to Row Objects"

• "Substitution of REF Columns and Attributes"

2.1.8 Name Resolution
There are several ways to resolve names in Oracle AI Database.

Oracle SQL lets you omit qualifying table names in some relational operations.

For example, if dept_addr is a column in the department_loc table and old_office is a
column in the movement table, you can use the following:

SELECT * FROM department_loc WHERE EXISTS
 (SELECT * FROM movement WHERE dept_addr = old_office);

Oracle AI Database determines which table each column belongs to.

Using dot notation, you can qualify the column names with table names or table aliases to
make things more maintainable. For example:

Example 2-7 Using the Dot Notation for Name Resolution

-- requires Ex. 2-1, 2-3, 2-5, and 2-6
SELECT * FROM department_loc WHERE EXISTS
 (SELECT * FROM movement WHERE department_loc.dept_addr = movement.old_office);

SELECT * FROM department_loc d WHERE EXISTS
 (SELECT * FROM movement m WHERE d.dept_addr = m.old_office);

In some cases, object-relational features require you to specify the table aliases.

2.1.8.1 When Table Aliases Are Required
Table aliases can be required to avoid problems resolving references.

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 43

Oracle AI Database requires you to use a table alias to qualify any dot-notational reference to
subprograms or attributes of objects, to avoid inner capture and similar problems resolving
references.

Inner capture is a situation caused by using unqualified names. For example, if you add an
assignment column to depts and forget to change the query, Oracle AI Database automatically
recompiles the query so that the inner SELECT uses the assignment column from the depts
table.

Use of a table alias is optional when referencing top-level attributes of an object table directly,
without using the dot notation. For example, the following statements define two tables that
contain the person_typ object type. person_obj_table is an object table for objects of type
person_typ, and contacts is a relational table that contains a column of the object
person_typ.

The following queries show some correct and incorrect ways to reference attribute idno:

Note

These statements are not related to other examples in this chapter.

#1 SELECT idno FROM person_obj_table; --Correct
#2 SELECT contact.idno FROM contacts; --Illegal
#3 SELECT contacts.contact.idno FROM contacts; --Illegal
#4 SELECT p.contact.idno FROM contacts p; --Correct

• In #1, idno is the name of a column of person_obj_table. It references this top-level
attribute directly, without using the dot notation, so no table alias is required.

• In #2, idno is the name of an attribute of the person_typ object in the column named
contact. This reference uses the dot notation and so requires a table alias, as shown in
#4.

• #3 uses the table name itself to qualify the reference. This is incorrect; a table alias is
required.

You must qualify a reference to an object attribute or subprogram with a table alias rather than
a table name even if the table name is itself qualified by a schema name.

For example, the following expression incorrectly refers to the HR schema, department_loc
table, dept_addr column, and city attribute of that column. The expression is incorrect
because department_loc is a table name, not an alias.

HR.department_loc.dept_addr.city

The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and should not be
the same as schema names that could legally appear in the query.

Chapter 2
SQL Object Types and References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 43

Note

Oracle recommends that you define table aliases in all UPDATE, DELETE, and SELECT
statements and subqueries and use them to qualify column references whether or not
the columns contain object types.

2.1.9 Restriction on Using User-Defined Types with a Remote Database
Objects or user-defined types (specifically, types declared with a SQL CREATE TYPE statement,
as opposed to types declared within a PL/SQL package) are currently useful only within a
single database.

Oracle AI Database restricts use of a database link as follows:

• You cannot connect to a remote database to select, insert, or update a user-defined type
or an object REF on a remote table.

You can use the CREATE TYPE statement with the optional keyword OID to create a user-
specified object identifier (OID) that allows an object type to be used in multiple databases.
See the discussion on assigning an OID to an object type in the Oracle AI Database Data
Cartridge Developer's Guide.

• You cannot use database links within PL/SQL code to declare a local variable of a remote
user-defined type.

• You cannot convey a user-defined type argument or return value in a PL/SQL remote
procedure call.

2.2 Object Methods
Object methods implement behavior that objects of that type perform.

Topics:

• About Object Methods

• Member Methods

• Declaring and Invoking Static Methods

• Constructor Methods

• External Implemented Methods

2.2.1 About Object Methods
Object methods, also known as subprograms, are functions or procedures that you can declare
in an object type definition to implement behavior that you want objects of that type to perform.
An application calls the subprograms to invoke the behavior.

Subprograms can be written in PL/SQL or virtually any other programming language. Methods
written in PL/SQL or Java are stored in the database. Methods written in other languages, such
as C, are stored externally.

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 43

Note

SQL requires parentheses for all subprogram calls, even those that do not have
arguments. This is not true for PL/SQL.

See Also

See "Calling Object Constructors and Methods" for more information on invoking
methods in PL/SQL.

2.2.2 Member Methods
Member methods provide an application with access to the data of an object instance.

You define a member method in the object type for each operation that you want an object of
that type to be able to perform. Non-comparison member methods are declared as either
MEMBER FUNCTION or MEMBER PROCEDURE. Comparison methods use MAP MEMBER FUNCTION or
ORDER MEMBER FUNCTION as described in "Member Methods for Comparing Objects".

As an example of a member method, you might declare a function get_sum() that sums the
total cost of a purchase order's line items. The following line of code calls this function for
purchase order po and returns the amount into sum_line_items.

sum_line_items:= po.get_sum();abo

Dot notation specifies the current object and the method it calls. Parentheses are required
even if there are no parameters.

Topics:

• Declaring SELF Parameters in Member Methods

• Member Methods for Comparing Objects

2.2.2.1 Declaring SELF Parameters in Member Methods
Member methods have a built-in parameter named SELF that denotes the object instance
currently invoking the method.

SELF can be explicitly declared, but that is not necessary. It is simpler to write member methods
that reference the attributes and methods of SELF implicitly without the SELF qualifier. In
Example 2-8, the code and comments demonstrate method invocations that use an implicit
SELF parameter rather than qualify the attributes hgt, len, and wth.

Example 2-8 Creating a Member Method

-- Ex. 2-8 Creating a Member Method
CREATE OR REPLACE TYPE solid_typ AS OBJECT (
 len INTEGER,
 wth INTEGER,
 hgt INTEGER,
 MEMBER FUNCTION surface RETURN INTEGER,
 MEMBER FUNCTION volume RETURN INTEGER,
 MEMBER PROCEDURE display (SELF IN OUT NOCOPY solid_typ));
/

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 43

CREATE OR REPLACE TYPE BODY solid_typ AS
 MEMBER FUNCTION volume RETURN INTEGER IS
 BEGIN
 RETURN len * wth * hgt;
 -- RETURN SELF.len * SELF.wth * SELF.hgt; -- equivalent to previous line
 END;
 MEMBER FUNCTION surface RETURN INTEGER IS
 BEGIN -- not necessary to include SELF in following line
 RETURN 2 * (len * wth + len * hgt + wth * hgt);
 END;
 MEMBER PROCEDURE display (SELF IN OUT NOCOPY solid_typ) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Length: ' || len || ' - ' || 'Width: ' || wth
 || ' - ' || 'Height: ' || hgt);
 DBMS_OUTPUT.PUT_LINE('Volume: ' || volume || ' - ' || 'Surface area: '
 || surface);
 END;
END;
/

CREATE TABLE solids of solid_typ;
INSERT INTO solids VALUES(10, 10, 10);
INSERT INTO solids VALUES(3, 4, 5);
SELECT * FROM solids;
SELECT s.volume(), s.surface() FROM solids s WHERE s.len = 10;
DECLARE
 solid solid_typ;
BEGIN -- PL/SQL block for selecting a solid and displaying details
 SELECT VALUE(s) INTO solid FROM solids s WHERE s.len = 10;
 solid.display();
END;
/

SELF is always the first parameter passed to the method.

• In member functions, if SELF is not declared, its parameter mode defaults to IN.

• In member procedures, if SELF is not declared, its parameter mode defaults to IN OUT. The
default behavior does not include the NOCOPY compiler hint.

See Also

"About Using SELF IN OUT NOCOPY with Member Procedures".

2.2.2.2 Member Methods for Comparing Objects
To compare and order variables of an object type, you must specify a basis for comparing
them.

The values of a scalar data type such as CHAR or REAL have a predefined order, which allows
them to be compared. But an object type, such as a person_typ, which can have multiple
attributes of various data types, has no predefined axis of comparison. You have the option to
define a map method or an order method for comparing objects, but not both.

A map method maps object return values to scalar values and can order multiple values by
their position on the scalar axis. An order method directly compares values for two particular
objects.

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 43

2.2.2.2.1 About Map Methods
Map methods return values that can be used for comparing and sorting.

Return values can be any Oracle built-in data types (except LOBs and BFILEs) and ANSI SQL
types such as CHARACTER or REAL. See the specific sections in Oracle AI Database SQL
Language Quick Reference.

Generally, map methods perform calculations on the attributes of the object to produce the
return value.

Map methods are called automatically to evaluate such comparisons as obj_1 > obj_2 and
comparisons implied by the DISTINCT, GROUP BY, UNION, and ORDER BY clauses which require
sorting by rows.

Where obj_1 and obj_2 are two object variables that can be compared using a map method
map(), the comparison:

obj_1 > obj_2

is equivalent to:

obj_1.map() > obj_2.map()

Comparisons are similar for other relational operators.

Creating a Map Method defines a map method area() that provides a basis for comparing
rectangle objects by their area:

2.2.2.2.2 Creating a Map Method
You create maps using the CREATE TYPE statement.

Example 2-9 Creating a Map Method

CREATE OR REPLACE TYPE rectangle_typ AS OBJECT (
 len NUMBER,
 wid NUMBER,
 MAP MEMBER FUNCTION area RETURN NUMBER);
/

CREATE OR REPLACE TYPE BODY rectangle_typ AS
 MAP MEMBER FUNCTION area RETURN NUMBER IS
 BEGIN
 RETURN len * wid;
 END area;
END;
/

2.2.2.2.3 Invoking a Map Method
Map methods are invoked in the same manner as other member methods.

Example 2-10 Invoking a Map Method

DECLARE
 po rectangle_typ;

BEGIN
 po :=NEW rectangle_typ(10,5);

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 43

DBMS_OUTPUT.PUT_LINE('AREA:' || po.area()); -- prints AREA:50
 END;
/

A subtype can declare a map method only if its root supertype declares one.

See "Comparing Equal and Not Equal Conditions " for the use of map methods when
comparing collections that contain object types.

2.2.2.2.4 Order Methods
Order methods make direct one-to-one object comparisons.

Unlike map methods, order methods cannot determine the order of a number of objects. They
simply tell you that the current object is less than, equal to, or greater than the object that it is
being compared to, based on the criterion used.

An order method is a function for an object (SELF), with one declared parameter that is an
object of the same type. The method must return either a negative number, zero, or a positive
number. This value signifies that the object (the implicit undeclared SELF parameter) is less
than, equal to, or greater than the declared parameter object.

As with map methods, an order method, if one is defined, is called automatically whenever two
objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a map
method.

Example 2-11 shows an order method that compares locations by building number:

Example 2-11 Creating and Invoking an Order Method

DROP TYPE location_typ FORCE;
-- above necessary if you have previously created object
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40),
 ORDER MEMBER FUNCTION match (l location_typ) RETURN INTEGER);/
CREATE OR REPLACE TYPE BODY location_typ AS
 ORDER MEMBER FUNCTION match (l location_typ) RETURN INTEGER IS
 BEGIN
 IF building_no < l.building_no THEN
 RETURN -1; -- any negative number will do
 ELSIF building_no > l.building_no THEN
 RETURN 1; -- any positive number will do
 ELSE
 RETURN 0;
 END IF;
 END;
END;/

-- invoking match method
DECLARE
loc location_typ;
secloc location_typ;
a number;

BEGIN
 loc :=NEW location_typ(300, 'San Francisco');
 secloc :=NEW location_typ(200, 'Redwood Shores');
 a := loc.match(secloc);

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 43

DBMS_OUTPUT.PUT_LINE('order (1 is greater, -1 is lesser):' ||a); -- prints order:1
 END;
/

Only a type that is not derived from another type can declare an order method; a subtype
cannot define one.

2.2.2.2.5 Guidelines for Comparison Methods
You can declare a map method or an order method but not both.

For map and order type methods, you can compare objects using SQL statements and
PL/SQL procedural statements. However, if you do not declare one of these methods, you can
only compare objects in SQL statements, and only for equality or inequality. Two objects of the
same type are considered equal only if the values of their corresponding attributes are equal.

When sorting or merging a large number of objects, use a map method, which maps all the
objects into scalars, then sorts the scalars. An order method is less efficient because it must be
called repeatedly (it can compare only two objects at a time).

See Also

"Performance of Object Comparisons"

2.2.2.2.6 Comparison Methods in Type Hierarchies
In a type hierarchy, if the root type (supertype) does not specify a map or an order method,
neither can the subtypes.

• Map Method in a Type Hierarchy

If the root type specifies a map method, any of its subtypes can override it. If the root type
does not specify a map method, no subtype can specify one either.

• Order Method in a Type Hierarchy

Only the root type can define an order method. If the root type does not define one, its
subtypes cannot add one.

2.2.3 Declaring and Invoking Static Methods
Static methods are invoked on the object type, not its instances. You use a static method for
operations that are global to the type and do not need to reference the data of a particular
object instance. A static method has no SELF parameter.

Static methods are declared using STATIC FUNCTION or STATIC PROCEDURE.

You invoke a static method by using dot notation to qualify the method call with the name of the
object type, for example:

type_name.method()

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 43

See Also

For information on design considerations, see "Static Methods".

2.2.4 Constructor Methods
A constructor method is a function that returns a new instance of the user-defined type and
sets up the values of its attributes.

Constructor methods are either system-defined or user-defined.

To invoke a constructor, the keyword NEW can be used, but is not required.

See Also

See Example 2-10 and "Calling Object Constructors and Methods"

2.2.4.1 System-Defined Constructors
By default, the system implicitly defines a constructor function for all object types that have
attributes.

A system-defined constructor is sometimes known as the attribute value constructor. For the
person_typ object type defined in Example 2-1 the name of the constructor method is the
name of the object type, as shown in the following invocation:

person_typ (1, 'John Smith', '1-650-555-0135'),

2.2.4.2 Defining User-Defined Constructors
You can define constructor functions of your own to create and initialize user-defined types.

Default system-defined constructors (or attribute value constructors) are convenient to use
because they already exist, but user-defined constructors have some important advantages
with respect to type evolution.

See Also

• "Advantages of User-Defined Constructors"

• For information on user-defined constructors for collections, see "Using the
Constructor Method to Insert Values into a Nested Table".

2.2.4.3 Literal Invocation of a Constructor Method
A literal invocation of a constructor method is a call to the constructor method in which
arguments are either literals (as opposed to bind variables), or further literal invocations of
constructor methods. For example:

CREATE TABLE people_tab OF person_typ;

Chapter 2
Object Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 43

INSERT INTO people_tab VALUES (
 person_typ(101, 'John Smith', '1-650-555-0135'));

2.2.5 External Implemented Methods
You can use PL/SQL to invoke external subprograms that have been written in other
languages.

Using external methods provides access to the strengths and capabilities of those languages.

See Also

Object Support in Oracle Programming Environments

2.3 Inheritance in SQL Object Types
SQL object inheritance is based on a family tree of object types that forms a type hierarchy.
The type hierarchy consists of a parent object type, called a supertype, and one or more levels
of child object types, called subtypes, which are derived from the parent.

Topics:

• About Inheritance in SQL Object Types

• Supertypes and Subtypes

• FINAL and NOT FINAL Types and Methods for Inheritance

• Subtype Creation

• NOT INSTANTIABLE Types and Methods

• Overloaded and Overridden Methods

• Dynamic Method Dispatch

• Type Substitution in a Type Hierarchy

• Column and Row Substitutability

• Newly Created Subtypes Stored in Substitutable Columns

• Dropping Subtypes After Creating Substitutable Columns

• Turning Off Substitutability in a New Table

• Constraining Substitutability

• Modifying Substitutability on a Table

• Restrictions on Modifying Substitutability

• Assignments Across Types

2.3.1 About Inheritance in SQL Object Types
Inheritance is the mechanism that connects subtypes in a hierarchy to their supertypes.

Subtypes automatically inherit the attributes and methods of their parent type. Also, the
inheritance link remains active. Subtypes automatically acquire any changes made to these

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 43

attributes or methods in the parent: any attributes or methods updated in a supertype are
updated in subtypes as well.

Note

Oracle only supports single inheritance. Therefore, a subtype can derive directly from
only one supertype, not more than one.

With object types in a type hierarchy, you can model an entity such as a customer, and also
define different specializing subtypes of customers under the original type. You can then
perform operations on a hierarchy and have each type implement and execute the operation in
a special way.

2.3.2 Supertypes and Subtypes
A subtype can be derived from a supertype either directly or indirectly through intervening
levels of other subtypes.

A supertype can have multiple sibling subtypes, but a subtype can have at most one direct
parent supertype (single inheritance).

Figure 2-1 Supertypes and Subtypes in Type Hierarchy

A

Supertype of all

B

Subtype of A;

supertype of C

D

Subtype of A;

C

Subtype of B

To derive a subtype from a supertype, define a specialized variant of the supertype that adds
new attributes and methods to the set inherited from the parent or redefine (override) the
inherited methods. For example, from a person_typ object type you might derive the
specialized types student_typ and employee_typ. Each of these subtypes is still a
person_typ, but a special kind of person. What distinguishes a subtype from its parent
supertype is some change made to the attributes or methods that the subtype received from its
parent.

Unless a subtype redefines an inherited method, it always contains the same core set of
attributes and methods that are in the parent type, plus any attributes and methods that it adds.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 43

If a person_typ object type has the three attributes idno, name, and phone and the method
get_idno(), then any object type that is derived from person_typ will have these same three
attributes and a method get_idno(). If the definition of person_typ changes, so do the
definitions of any subtypes.

Subtypes are created using the keyword UNDER as follows:

CREATE TYPE student_typ UNDER person_typ

You can specialize the attributes or methods of a subtype in these ways:

• Add new attributes that its parent supertype does not have.

For example, you might specialize student_typ as a special kind of person_typ by adding
an attribute for major. A subtype cannot drop or change the type of an attribute it inherited
from its parent; it can only add new attributes.

• Add entirely new methods that the parent does not have.

• Change the implementation of some of the methods that a subtype inherits so that the
subtype's version executes different code from the parent's.

For example, a ellipse object might define a method calculate(). Two subtypes of
ellipse_typ, circle_typ and sphere_typ, might each implement this method in a
different way.

The inheritance relationship between a supertype and its subtypes is the source of much of the
power of objects and much of their complexity.

Being able to change a method in a supertype and have the change take effect in all the
subtypes downstream just by recompiling is very powerful. But this same capability means that
you have to consider whether or not you want to allow a type to be specialized or a method to
be redefined. Similarly, for a table or column to be able to contain any type in a hierarchy is
also powerful, but you must decide whether or not to allow this in a particular case. Also, you
may need to constrain DML statements and queries so that they pick out just the range of
types that you want from the type hierarchy.

See Also

• See Example 2-15 for a complete example

• "Overloaded and Overridden Methods"

2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance
Object types can be inheritable and methods can be overridden if they are so defined.

For an object type or method to be inheritable, the definition must specify that it is inheritable.
For both types and methods, the keywords FINAL or NOT FINAL are used are used to determine
inheritability.

• Object type: For an object type to be inheritable, thus allowing subtypes to be derived
from it, the object definition must specify this.

NOT FINAL means subtypes can be derived. FINAL, (default) means that no subtypes can
be derived from it.

• Method: The definition must indicate whether or not it can be overridden.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 43

NOT FINAL (default) means the method can be overridden. FINAL means that subtypes
cannot override it by providing their own implementation.

See Also

• Example 2-13

• Example 2-12

• Changing a FINAL TYPE to NOT FINAL

2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function
You can create a NOT FINAL object type with a FINAL member function as in Example 2-12.

Example 2-12 Creating an Object Type as NOT FINAL with a FINAL Member Function

DROP TYPE person_typ FORCE;
-- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 FINAL MAP MEMBER FUNCTION get_idno RETURN NUMBER)
NOT FINAL;
/

2.3.3.2 Creating a NOT FINAL Object Type
You can create an object type as NOT FINAL.

Example 2-13 declares person_typ to be a NOT FINAL type and therefore subtypes of
person_typ can be defined.

Example 2-13 Creating the person_typ Object Type as NOT FINAL

DROP TYPE person_typ FORCE;
-- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
NOT FINAL;
/

2.3.4 Changing a FINAL TYPE to NOT FINAL
You can change inheritance by changing a final type to a not final type and vice versa with an
ALTER TYPE statement.

For example, the following statement changes person_typ to a final type:

ALTER TYPE person_typ FINAL;

You can only alter a type from NOT FINAL to FINAL if the target type has no subtypes.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 43

2.3.5 Subtype Creation
You create a subtype using a CREATE TYPE statement that specifies the immediate parent of the
subtype with the UNDER keyword.

Topics:

• Creating a Parent or Supertype Object

• Creating a Subtype Object

• Generalized Invocation

• Creating Multiple Subtypes

• Creating Tables that Contains Supertype and Subtype Objects

2.3.5.1 Creating a Parent or Supertype Object
You can create a parent or supertype object using the CREATE TYPE statement.

Example 2-14 provides a parent or supertype person_typ object to demonstrate subtype
definitions in Example 2-15, Example 2-18, and Example 2-19.

Note the show() in Example 2-14. In the subtype examples that follow, the show() function of
the parent type is overridden to specifications for each subtype using the OVERRIDING keyword.

Example 2-14 Creating the Parent or Supertype person_typ Object

DROP TYPE person_typ FORCE;
-- if created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER FUNCTION show RETURN VARCHAR2)
 NOT FINAL;
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
-- function that can be overriden by subtypes
 MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN 'Id: ' || TO_CHAR(idno) || ', Name: ' || name;
 END;

END;
/

2.3.5.2 Creating a Subtype Object
A subtype inherits the attributes and methods of the supertype.

These are inherited:

• All the attributes declared in or inherited by the supertype.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 43

• Any methods declared in or inherited by supertype.

Example 2-15 defines the student_typ object as a subtype of person_typ, which inherits all
the attributes declared in or inherited by person_typ and any methods inherited by or declared
in person_typ.

Example 2-15 Creating a student_typ Subtype Using the UNDER Clause

-- requires Ex. 2-14
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2)
 NOT FINAL;
/

CREATE TYPE BODY student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (self AS person_typ).show || ' -- Major: ' || major ;
 END;

END;
/

The statement that defines student_typ specializes person_typ by adding two new attributes,
dept_id and major and overrides the show method. New attributes declared in a subtype must
have names that are different from the names of any attributes or methods declared in any of
its supertypes, higher up in its type hierarchy.

2.3.5.3 Generalized Invocation
Generalized invocation provides a mechanism to invoke a method of a supertype or a parent
type, rather than the specific subtype member method.

Example 2-15 demonstrates this using the following syntax:

 (SELF AS person_typ).show

The student_typ show method first calls the person_typ show method to do the common
actions and then does its own specific action, which is to append '--Major:' to the value
returned by the person_typ show method. This way, overriding subtype methods can call
corresponding overriding parent type methods to do the common actions before doing their
own specific actions.

Methods are invoked just like normal member methods, except that the type name after AS
should be the type name of the parent type of the type that the expression evaluates to.

2.3.5.4 Using Generalized Invocation
In Example 2-16, there is an implicit SELF argument just like the implicit self argument of a
normal member method invocation. In this case, it invokes the person_typ show method rather
than the specific student_typ show method.

Example 2-16 Using Generalized Invocation

-- Requires Ex. 2-14 and 2-15
DECLARE
 myvar student_typ := student_typ(100, 'Sam', '6505556666', 100, 'Math');
 name VARCHAR2(100);

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 43

BEGIN
 name := (myvar AS person_typ).show; --Generalized invocation
END;
/

2.3.5.5 Using Generalized Expression
Generalized expression, like member method invocation, is also supported when a method is
invoked with an explicit self argument.

Example 2-17 Using Generalized Expression

-- Requires Ex. 2-14 and 2-15
DECLARE
 myvar2 student_typ := student_typ(101, 'Sam', '6505556666', 100, 'Math');
 name2 VARCHAR2(100);
BEGIN
 name2 := person_typ.show((myvar2 AS person_typ)); -- Generalized expression
END;
/

Double parentheses are used in this example because ((myvar2 AS person_typ)) is both an
expression that must be resolved and the parameter of the show function.

NOTE: Constructor methods cannot be invoked using this syntax. Also, the type name that
appears after AS in this syntax should be one of the parent types of the type of the expression
for which method is being invoked.

This syntax can only be used to invoke corresponding overriding member methods of the
parent types.

2.3.5.6 Creating Multiple Subtypes
A type can have multiple child subtypes, and these subtypes can also have subtypes.

Example 2-18 creates another subtype employee_typ under person_typ in addition to the
already existing subtype, student_typ, created in Example 2-15.

Example 2-18 Creating an employee_typ Subtype Using the UNDER Clause

-- requires Ex. 2-14

DROP TYPE employee_typ FORCE;
-- if previously created
CREATE OR REPLACE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE OR REPLACE TYPE BODY employee_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show|| ' -- Employee Id: '
 || TO_CHAR(emp_id) || ', Manager: ' || mgr ;
 END;

END;
/

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 43

2.3.5.7 Creating a Subtype Under Another Subtype
A subtype can be defined under another subtype.

The new subtype inherits all the attributes and methods that its parent type has, both declared
and inherited. Example 2-19 defines a new subtype part_time_student_typ under
student_typ created in Example 2-15. The new subtype inherits all the attributes and methods
of student_typ and adds another attribute, number_hours.

Example 2-19 Creating a part_time_student_typ Subtype Using the UNDER Clause

CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER,
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE TYPE BODY part_time_student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show|| ' -- Major: ' || major ||
 ', Hours: ' || TO_CHAR(number_hours);
 END;

END;
/

2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects
You can create tables that contain supertype and subtype instances.

You can then populate the tables as shown with the person_obj_table in Example 2-20.

Example 2-20 Inserting Values into Substitutable Rows of an Object Table

CREATE TABLE person_obj_table OF person_typ;

INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));

INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'));

INSERT INTO person_obj_table
 VALUES (employee_typ(55, 'Jane Smith', '1-650-555-0144',
 100, 'Jennifer Nelson'));

INSERT INTO person_obj_table
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135', 14,
 'PHYSICS', 20));

You can call the show() function for the supertype and subtypes in the table with the following:

SELECT p.show() FROM person_obj_table p;

The output is similar to:

Id: 12, Name: Bob Jones
Id: 51, Name: Joe Lane -- Major: HISTORY

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 43

Id: 55, Name: Jane Smith -- Employee Id: 100, Manager: Jennifer Nelson
Id: 52, Name: Kim Patel -- Major: PHYSICS, Hours: 20

Note that data that the show() method displayed depends on whether the object is a supertype
or subtype, and if the show() method of the subtype is overridden. For example, Bob Jones is
a person_typ, that is, a supertype. Only Bob's name and Id are displayed. For Joe Lane, a
student_typ, Joe's name and Id are provided by the show() function of the supertype, and
Joe's major is provided by the overridden show() function of the subtype.

2.3.6 NOT INSTANTIABLE Types and Methods
Types and methods can be declared NOT INSTANTIABLE when they are created.

NOT INSTANTIABLE types and methods:

• NOT INSTANTIABLE Types

If a type is not instantiable, you cannot instantiate instances of that type. There are no
constructors (default or user-defined) for it. You might use this with types intended to serve
solely as supertypes from which specialized subtypes are instantiated.

• NOT INSTANTIABLE Methods

A non-instantiable method serves as a placeholder. It is declared but not implemented in
the type. You might define a non-instantiable method when you expect every subtype to
override the method in a different way. In this case, there is no point in defining the method
in the supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an ALTER TYPE
statement.

A type that contains a non-instantiable method must itself be declared not instantiable, as
shown in Example 2-21.

2.3.7 Creating a Non-INSTANTIABLE Object Type
If a subtype does not provide an implementation for every inherited non-instantiable method,
the subtype itself, like the supertype, must be declared not instantiable.

A non-instantiable subtype can be defined under an instantiable supertype.

Example 2-21 Creating an Object Type that is NOT INSTANTIABLE

DROP TYPE person_typ FORCE;
-- if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 NOT INSTANTIABLE MEMBER FUNCTION get_idno RETURN NUMBER)
 NOT INSTANTIABLE NOT FINAL;/

2.3.8 Changing an Object Type to INSTANTIABLE
The ALTER TYPE statement can make a non-instantiable type instantiable.

In Example 2-22 an ALTER TYPE statement makes person_typ instantiable.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 43

Example 2-22 Altering an Object Type to INSTANTIABLE

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT INSTANTIABLE NOT FINAL;/
ALTER TYPE person_typ INSTANTIABLE;

Changing to a Not Instantiable Type

You can alter an instantiable type to a non-instantiable type only if the type has no columns,
views, tables, or instances that reference that type, either directly, or indirectly, through another
type or subtype.

You cannot declare a non-instantiable type to be FINAL. This would actually be pointless.

2.3.9 Overloaded and Overridden Methods
A subtype can redefine methods it inherits, and it can also add new methods, including
methods with the same name.

Topics:

• Overloading Methods

• Overriding and Hiding Methods

• Restrictions on Overriding Methods

See the examples in "Subtype Creation " and Example 8-7.

2.3.9.1 Overloading Methods
Adding new methods that have the same names as inherited methods to the subtype is called
overloading.

Methods that have the same name but different signatures are called overloads when they
exist in the same user-defined type.

A method signature consists of the method's name and the number, types, and the order of the
method's formal parameters, including the implicit self parameter.

Overloading is useful when you want to provide a variety of ways of doing something. For
example, an ellipse object might overload a calculate() method with another calculate()
method to enable calculation of a different shape.

The compiler uses the method signatures to determine which method to call when a type has
several overloaded methods.

In the following pseudocode, subtype circle_typ creates an overload of calculate():

CREATE TYPE ellipse_typ AS OBJECT (...,
MEMBER PROCEDURE calculate(x NUMBER, x NUMBER),
) NOT FINAL;
CREATE TYPE circle_typ UNDER ellipse_typ (...,
MEMBER PROCEDURE calculate(x NUMBER),
...);

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 43

The circle_typ contains two versions of calculate(). One is the inherited version with two
NUMBER parameters and the other is the newly created method with one NUMBER parameter.

2.3.9.2 Overriding and Hiding Methods
Redefining an inherited method to customize its behavior in a subtype is called overriding, in
the case of member methods, or hiding, in the case of static methods.

Unlike overloading, you do not create a new method, just redefine an existing one, using the
keyword OVERRIDING.

Overriding and hiding redefine an inherited method to make it do something different in the
subtype. For example, a subtype circle_typ derived from a ellipse_typ supertype might
override a member method calculate() to customize it specifically for calculating the area of
a circle. For examples of overriding methods, see "Subtype Creation ".

Overriding and hiding are similar in that, in either case, the version of the method redefined in
the subtype eclipses the original version of the same name and signature so that the new
version is executed rather than the original one whenever a subtype instance invokes the
method. If the subtype itself has subtypes, these inherit the redefined method instead of the
original version.

With overriding, the system relies on type information contained in the member method's
implicit self argument to dynamically choose the correct version of the method to execute. With
hiding, the correct version is identified at compile time, and dynamic dispatch is not necessary.
See "Dynamic Method Dispatch".

To override or hide a method, you must preserve its signature. Overloads of a method all have
the same name, so the compiler uses the signature of the subtype's method to identify the
particular version in the supertype that is superseded.

You signal the override with the OVERRIDING keyword in the CREATE TYPE BODY statement. This
is not required when a subtype hides a static method.

In the following pseudocode, the subtype signals that it is overriding method calculate():

CREATE TYPE ellipse_typ AS OBJECT (...,
MEMBER PROCEDURE calculate(),
FINAL MEMBER FUNCTION function_mytype(x NUMBER)...
) NOT FINAL;
CREATE TYPE circle_typ UNDER ellipse_typ (...,
OVERRIDING MEMBER PROCEDURE calculate(),
...);

For a diagram of this hierarchy, see Figure 2-2.

2.3.9.3 Restrictions on Overriding Methods
There are certain restrictions on overriding methods:

• Only methods that are not declared to be final in the supertype can be overridden.

• Order methods may appear only in the root type of a type hierarchy: they may not be
redefined (overridden) in subtypes.

• A static method in a subtype may not redefine a member method in the supertype.

• A member method in a subtype may not redefine a static method in the supertype.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 43

• If a method being overridden provides default values for any parameters, then the
overriding method must provide the same default values for the same parameters.

2.3.10 Dynamic Method Dispatch
Dynamic method dispatch refers to the way that method calls are dispatched to the nearest
implementation at run time, working up the type hierarchy from the current or specified type.

Dynamic method dispatch is only available when overriding member methods and does not
apply to static methods.

With method overriding, a type hierarchy can define multiple implementations of the same
method. In the following hierarchy of types ellipse_typ, circle_typ, and sphere_typ, each
type might define a calculate() method differently.

Figure 2-2 Hierarchy of Types

ellipse_typ

circle_typ

sphere_typ

Base type

Subtype of

ellipse_type

Subtype of

circle_type

When one of these methods is invoked, the type of the object instance that invokes it
determines which implementation of the method to use. The call is then dispatched to that
implementation for execution. This process of selecting a method implementation is called
virtual or dynamic method dispatch because it is done at run time, not at compile time.

The method call works up the type hierarchy: never down. If the call invokes a member method
of an object instance, the type of that instance is the current type, and the implementation
defined or inherited by that type is used. If the call invokes a static method of a type, the
implementation defined or inherited by that specified type is used.

See Also

For information on how subprograms calls are resolved, see Oracle AI Database
PL/SQL Language Reference

2.3.11 Type Substitution in a Type Hierarchy
When you work with types in a type hierarchy, sometimes you need to work at the most
general level, for example, to select or update all persons. But at other times, you need to
select or update only a specific subtype such as a student, or only persons who are not
students.

The (polymorphic) ability to select all persons and get back not only objects whose declared
type is person_typ but also objects whose declared subtype is student_typ or employee_typ

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 43

is called substitutability. A supertype is substitutable if one of its subtypes can substitute or
stand in for it in a variable or column whose declared type is the supertype.

In general, types are substitutable. Object attributes, collection elements and REFs are
substitutable. An attribute defined as a REF, type, or collection of type person_typ can hold a
REF to an instance of, or instances of an instance of person_typ, or an instance of any subtype
of person_typ.

This seems expected, given that a subtype is, after all, just a specialized kind of one of its
supertypes. Formally, though, a subtype is a type in its own right: it is not the same type as its
supertype. A column that holds all persons, including all persons who are students and all
persons who are employees, actually holds data of multiple types.

In principle, object attributes, collection elements and REFs are always substitutable: there is no
syntax at the level of the type definition to constrain their substitutability to some subtype. You
can, however, turn off or constrain substitutability at the storage level, for specific tables and
columns.

See Also

• "Turning Off Substitutability in a New Table"

• "Constraining Substitutability"

2.3.12 Column and Row Substitutability
Object type columns and object-type rows in object tables are substitutable, and so are views:
a column or row of a specific type can contain instances of that type and any of its subtypes.

Topics:

• About Column and Row Substitutability

• Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows

• Subtypes with Attributes of a Supertype

• Substitution of REF Columns and Attributes

• Substitution of Collection Elements

2.3.12.1 About Column and Row Substitutability
You can substitute object type columns and object type rows in object tables.

Consider the person_typ type hierarchy such as the one introduced in Example 2-14. You can
create an object table of person_typ that contains rows of all types. To do this, you insert an
instance of a given type into an object table using the constructor for that type in the VALUES
clause of the INSERT statement as shown in Example 2-20.

Similarly, Example 2-23 shows that a substitutable column of type person_typ can contain
instances of all three types, in a relational table or view. The example recreates person,
student, and part-time student objects from that type hierarchy and inserts them into the
person_typ column contact.

Example 2-23 Inserting Values into Substitutable Columns of a Table

DROP TYPE person_typ FORCE;
-- if previously created

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 43

DROP TYPE student_typ FORCE; -- if previously created

DROP TYPE part_time_student_typ FORCE; -- if previously created
DROP TABLE contacts; if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
 NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

INSERT INTO contacts
 VALUES (person_typ (12, 'Bob Jones', '650-555-0130'), '24 Jun 2003');

INSERT INTO contacts
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0178', 12, 'HISTORY'),
 '24 Jun 2003');

INSERT INTO contacts
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0190', 14,
 'PHYSICS', 20), '24 Jun 2003');

A newly created subtype can be stored in any substitutable tables and columns of its
supertype, including tables and columns that existed before the subtype was created.

In general, you can access attributes using dot notation. To access attributes of a subtype of a
row or column's declared type, you can use the TREAT function. For example:

SELECT TREAT(contact AS student_typ).major FROM contacts;

See "TREAT".

2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
You can access and identify the object identifier (OID) and value of a substitutable row.

Use the OBJECT_VALUE and OBJECT_ID pseudocolumns to allow access and identify the value
and object identifier of a substitutable row in an object table as shown in Example 2-24.

See Also

For further information on these pseudocolumns, see Oracle AI Database PL/SQL
Packages and Types Reference.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 43

Example 2-24 Using OBJECT_VALUE and OBJECT_ID

DROP TABLE person_obj_table; -- required if previously created
CREATE TABLE person_obj_table OF person_typ;

INSERT INTO person_obj_table
 VALUES (person_typ(20, 'Bob Jones', '650-555-0130'));

SELECT p.object_id, p.object_value FROM person_obj_table p;

2.3.12.3 Subtypes with Attributes of a Supertype
A subtype can have an attribute whose type is the type of a supertype. For example:

Example 2-25 Creating a Subtype with a Supertype Attribute

-- requires Ex 2-22
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30),
 advisor person_typ);
/

However, columns of such types are not substitutable. Similarly, a subtype can have a
collection attribute whose element type is one of its supertypes, but, again, columns of such
types are not substitutable. For example, if student_typ had a nested table or varray of
person_typ, the student_typ column would not be substitutable.

You can, however, define substitutable columns of subtypes that have REF attributes that
reference supertypes. For example, the composite_category_typ subtype shown in
Example 2-26 contains the subcategory_ref_list nested table. This table contains
subcategory_ref_list_typ which are REFs to category_typ. The subtype was created as
follows:

Example 2-26 Defining Columns of Subtypes that have REF Attributes

-- not to be executed
CREATE TYPE subcategory_ref_list_typ
 AS TABLE OF REF category_typ;
/

CREATE TYPE composite_category_typ
 UNDER category_typ
 (
 subcategory_ref_list subcategory_ref_list_typ
...

See "Turning Off Substitutability in a New Table".

2.3.12.4 Substitution of REF Columns and Attributes
REF columns and attributes are substitutable in both views and tables. For example, in either a
view or a table, a column declared to be REF person_typ can hold references to instances of
person_typ or any of its subtypes.

2.3.12.5 Substitution of Collection Elements
Collection elements are substitutable in both views and tables. For example, a nested table of
person_typ can contain object instances of person_typ or any of its subtypes.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 43

2.3.13 Newly Created Subtypes Stored in Substitutable Columns
If you create a subtype, any table that already has substitutable columns of the supertype can
store the new subtype as well.

This means that your options for creating subtypes are affected by the existence of such
tables. If such a table exists, you can only create subtypes that are substitutable, that is,
subtypes that do not violate table limits or constraints.

The following example creates a person_typ and then shows several attempts to create a
subtype student_typ under person_typ.

Example 2-27 Creating a Subtype After Creating Substitutable Columns

DROP TYPE person_typ FORCE;
DROP TABLE person_obj_table;
DROP TYPE student_typ;
-- perform above drops if objects/tables created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;/

CREATE TABLE person_obj_table (p person_typ);

The following statement fails because student_typ has a supertype attribute, and table
person_obj_table has a substitutable column p of the supertype.

CREATE TYPE student_typ UNDER person_typ (-- incorrect CREATE subtype
 advisor person_typ);
/

The next attempt succeeds. This version of the student_typ subtype is substitutable. Oracle
AI Database automatically enables table person_obj_table to store instances of this new type.

CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30));/
INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0178', 12, 'HISTORY'));

2.3.14 Dropping Subtypes After Creating Substitutable Columns
When you drop a subtype with the VALIDATE option, it checks that no instances of the subtype
are stored in any substitutable column of the supertype. If there are no such instances, the
DROP operation completes.

The following statement fails because an instance of student_typ is stored in substitutable
column p of table person_obj_table:

DROP TYPE student_typ VALIDATE -- incorrect: an instance still exists ;

To drop the type, first delete any of its instances in substitutable columns of the supertype:

-- Delete from table and drop student_typ subtype example, not sample schema

DELETE FROM person_obj_table WHERE p IS OF (student_typ);

DROP TYPE student_typ VALIDATE;

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 43

See Also

Oracle AI Database PL/SQL Language Reference for further information on DROP and
VALIDATE

2.3.15 Turning Off Substitutability in a New Table
You can turn off all substitutability on a column or attribute, including embedded attributes and
nested collections, while creating a table.

Use the clause NOT SUBSTITUTABLE AT ALL LEVELS when you create a table.

This turns off all column or attribute substitutability, including embedded attributes and
collections nested to any level.

In the following example, the clause confines the column office of a relational table to storing
only office_typ instances and disallows any subtype instances:

Example 2-28 Turning off Substitutability When Creating a Table

DROP TYPE location_typ FORCE; -- required if previously created
DROP TYPE office_typ FORCE; -- required if previously created
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40));
/

CREATE TYPE people_typ AS TABLE OF person_typ;
/
CREATE TYPE office_typ AS OBJECT (
 office_id VARCHAR(10),
 location location_typ,
 occupant person_typ)
 NOT FINAL;/

CREATE TABLE dept_office (
 dept_no NUMBER,
 office office_typ)
 COLUMN office NOT SUBSTITUTABLE AT ALL LEVELS;

With object tables, the clause can be applied to the table as a whole, such as:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
 NOT SUBSTITUTABLE AT ALL LEVELS;

The clause can also turn off substitutability in a particular column, that is, for a particular
attribute of the object type of the table:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
 COLUMN occupant NOT SUBSTITUTABLE AT ALL LEVELS;

You can specify that the element type of a collection is not substitutable using syntax such as
the following:

DROP TABLE people_tab;
-- required if previously created

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 43

CREATE TABLE people_tab (
 people_column people_typ)
 NESTED TABLE people_column
 NOT SUBSTITUTABLE AT ALL LEVELS STORE AS people_column_nt;

There is no mechanism to turn off substitutability for REF columns.

You can use either NOT SUBSTITUTABLE AT ALL LEVELS or IS OF type to constrain an object
column, but you cannot use both.

2.3.16 Constraining Substitutability
You can impose a constraint that limits the range of subtypes permitted in an object column or
attribute to a particular subtype in the declared type's hierarchy.

Do this with theIS OF type constraint.

The following statement creates a table of office_typ in which occupants are constrained to
just those persons who are employees:

Example 2-29 Constraining Substitutability When Creating a Table

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ
 COLUMN occupant IS OF (ONLY employee_typ);

Although the type office_typ allows authors to be of type person_typ, the column declaration
imposes a constraint to store only instances of employee_typ.

You can only use the IS OF type operator to constrain row and column objects to a single
subtype (not several), and you must use the ONLY keyword, as in the preceding example.

You can use either IS OF type or NOT SUBSTITUTABLE AT ALL LEVELS to constrain an object
column, but you cannot use both.

2.3.17 Modifying Substitutability on a Table
In an existing table, you can change an object column from SUBSTITUTABLE to NOT
SUBSTITUTABLE (or from NOT SUBSTITUTABLE to SUBSTITUTABLE) by using an ALTER TABLE
statement.

Specify the clause [NOT] SUBSTITUTABLE AT ALL LEVELS for the particular column in the ALTER
TABLE statement.

You can modify substitutability only for a specific column, not for an object table as a whole.

The following statement makes the column office substitutable:

Example 2-30 Modifying Substitutability in a Table

-- Requires Ex. 2-28
ALTER TABLE dept_office
 MODIFY COLUMN office SUBSTITUTABLE AT ALL LEVELS;

The following statement makes the column not substitutable. Notice that it also uses the FORCE
keyword. This keyword causes any hidden columns containing typeid information or data for
subtype attributes to be dropped:

-- Alter table substitutability with FORCE

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 43

ALTER TABLE dept_office
 MODIFY COLUMN office NOT SUBSTITUTABLE AT ALL LEVELS FORCE;

--DROP TABLE dept_office;

If you do not use the FORCE keyword to make a column not substitutable, the column and all
attributes of the type must be FINAL or the ALTER TABLE statement will fail.

A VARRAY column can be modified from SUBSTITUTABLE to NOT SUBSTITUTABLE only if the
element type of the varray is final itself and has no embedded types (in its attributes or in their
attributes, and so on) that are not final.

See Also

See "Hidden Columns for Substitutable Columns and Object Tables" for more
information about hidden columns for typeids and subtype attributes.

2.3.18 Restrictions on Modifying Substitutability
You can change the substitutability of only one column at a time with an ALTER TABLE
statement.

To change substitutability for multiple columns, issue multiple statements.

In an object table, you can only modify substitutability for a column if substitutability was not
explicitly set at the table level, when the table was created.

For example, the following attempt to modify substitutability for column address succeeds
because substitutability has not been explicitly turned on or off at the table level in the CREATE
TABLE statement:

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ;

ALTER TABLE office_tab
 MODIFY COLUMN occupant NOT SUBSTITUTABLE AT ALL LEVELS FORCE;

However, in the following example, substitutability is explicitly set at the table level, so the
attempt to modify the setting for column address fails:

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ
 NOT SUBSTITUTABLE AT ALL LEVELS;

/* Following SQL statement generates an error: */
ALTER TABLE office_tab
 MODIFY COLUMN occupant SUBSTITUTABLE AT ALL LEVELS FORCE -- incorrect ALTER;

A column whose substitutability is already constrained by an IS OF type operator cannot have
its substitutability modified with a [NOT] SUBSTITUTABLE AT ALL LEVELS clause.

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 33 of 43

See Also

For information about IS OF type, see "Constraining Substitutability".

2.3.19 Assignments Across Types
The assignment rules described in this section apply to INSERT/UPDATE statements, the
RETURNING clause, function parameters, and PL/SQL variables.

Topics:

• Typical Object to Object Assignment

• Widening Assignment

• Narrowing Assignment

• Collection Assignments

2.3.19.1 Typical Object to Object Assignment
Substitutability is the ability of a subtype to stand in for one of its supertypes.

Substituting a supertype for a subtype, that is substitution in the other direction, raises an error
at compile time.

Assigning a source of type source_typ to a target of type target_typ must be of one of the
following two patterns:

• Case 1: source_typ and target_typ are the same type

• Case 2: source_typ is a subtype of target_typ (widening)

Case 2 illustrates widening.

2.3.19.2 Widening Assignment
Widening is an assignment in which the declared type of the source is more specific than the
declared type of the target.

An example of widening is assigning an employee instance to a variable of a person type.

An employee is a more narrowly defined, specialized kind of person, so you can put an
employee in a slot meant for a person if you do not mind ignoring whatever extra specialization
makes that person an employee. All employees are persons, so a widening assignment always
works.

To illustrate widening, suppose that you have the following table:

TABLE T(pers_col person_typ, emp_col employee_typ,
stu_col student_typ)

The following assignments show widening. The assignments are valid unless perscol has
been defined to be not substitutable.

UPDATE T set pers_col = emp_col;

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 34 of 43

The following is a PL/SQL example, which first requires you to create a person_typ and an
employee_typ:

Example 2-31 PL/SQL Assignment

DROP TYPE person_typ FORCE;
-- if previously created
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/
DROP TYPE employee_typ FORCE; -- if previously created
CREATE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30));
/
-- PL/SQL assignment example
DECLARE
 var1 person_typ;
 var2 employee_typ;
BEGIN
 var2 := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer Nelson');
 var1 := var2;
END;
/

2.3.19.3 Narrowing Assignment
A narrowing assignment is the reverse of widening.

A narrowing assignment involves regarding a more general, less specialized type of thing,
such as a person, as a more narrowly defined type of thing, such as an employee. Not all
persons are employees, so a particular assignment like this works only if the person in
question actually happens to be an employee. Thus, in the end, narrowing assignments only
work in cases such as Case 1, described in "Typical Object to Object Assignment".

To do a narrowing assignment, you must use the TREAT function to test that the source instance
of the more general declared type is in fact an instance of the more specialized target type and
can therefore be operated on as such. The TREAT function does a runtime check to confirm this
and returns NULL if the source value, the person in question, is not of the target type or one of
its subtypes.

For example, the following UPDATE statement sets values of person_typ in column perscol into
column empcol of employee_typ. For each value in perscol, the assignment succeeds if that
person is also an employee. If the person is not an employee, TREAT returns NULL, and the
assignment returns NULL.

UPDATE T set emp_col = TREAT(pers_col AS employee_typ);

The following statement attempts to do a narrowing assignment without explicitly changing the
declared type of the source value. The statement will return an error:

UPDATE T set emp_col = pers_col;

Chapter 2
Inheritance in SQL Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 35 of 43

See Also

"Using TREAT for Narrowing Assignments"

2.3.19.4 Collection Assignments
In assignments of expressions of a collection type, the source and target must be of the same
declared type.

Neither widening nor narrowing is permitted in expression assignments of collection types.
However, a subtype value can be assigned to a supertype collection. For example, after
creating a new student_typ, suppose we have the following collection types:

Example 2-32 Create Collection person_set

-- Requires 2-21
DROP student_typ;
-- if previously created
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
 NOT FINAL;
/
CREATE TYPE person_set AS TABLE OF person_typ;
/

CREATE TYPE student_set AS TABLE OF student_typ;
/

Expressions of these different collection types cannot be assigned to each other, but a
collection element of student_typ can be assigned to a collection of person_set type:

DECLARE
 var1 person_set;
 var2 student_set;
 elem1 person_typ;
 elem2 student_typ;
BEGIN
-- var1 := var2; /* ILLEGAL - collections not of same type */
 var1 := person_set (elem1, elem2); /* LEGAL : Element is of subtype */
END;
/

2.4 Functions and Operators Useful with Objects
Several functions and operators are particularly useful for working with objects and references
to objects.

Examples are given throughout this book.

Note

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL statement.
For information about SQL functions, see Oracle AI Database SQL Language
Reference.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 36 of 43

Topics:

• CAST

• CURSOR

• DEREF

• IS OF type

• REF

• SYS_TYPEID

• TABLE()

• TREAT

• VALUE

2.4.1 CAST
CAST converts one built-in data type or collection-typed value into another built-in data type or
collection-typed value. For example:

Example 2-33 Using the CAST Function

CREATE TYPE person_list_typ AS TABLE OF person_typ;/

SELECT CAST(COLLECT(contact) AS person_list_typ)
 FROM contacts;

See Also

For more information about the SQL CAST function, Oracle AI Database SQL
Language Reference.

2.4.2 CURSOR
A CURSOR expression returns a nested cursor.

The cursor form of expression is equivalent to the PL/SQL REF CURSOR and can be passed as a
REF CURSOR argument to a function.

See Also

For more information about the SQL CURSOR expression, see Oracle AI Database SQL
Language Reference.

2.4.3 DEREF
The DEREF function in a SQL statement returns the object instance corresponding to a REF.

The object instance returned by DEREF may be of the declared type of the REF or any of its
subtypes.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 37 of 43

For example, the following statement returns person_typ objects from the table contact_ref.

Example 2-34 Using the DEREF Function

-- Using the DEREF Function example, not sample schema

SELECT DEREF(c.contact_ref), c.contact_date
 FROM contacts_ref c;

See Also

• Dereferencing REFs

• For more information about the SQL DEREF function, see Oracle AI Database SQL
Language Reference.

2.4.4 IS OF type
The IS OF type predicate tests object instances for the level of specialization of their type.

For example, the following query retrieves all student instances (including any subtypes of
students) stored in the person_obj_table table.

Example 2-35 Using the IS OF type Operator to Query Value of a Subtype

-- Using the IS OF type Operator to query Value of a subtype

SELECT VALUE(p)
 FROM person_obj_table p
WHERE VALUE(p) IS OF (student_typ);

For any object that is not of a specified subtype, or a subtype of a specified subtype, IS OF
returns FALSE. Subtypes of a specified subtype are just more specialized versions of the
specified subtype. If you want to exclude such subtypes, you can use the ONLY keyword. This
keyword causes IS OF to return FALSE for all types except the specified types.

In the following example, the statement tests objects in object table person_obj_table, which
contains persons, employees, and students, and returns REFs just to objects of the two
specified person subtypes employee_typ, student_typ, and their subtypes, if any:

-- Using the IS OF type Operator to query for multiple subtypes

SELECT REF(p)
 FROM person_obj_table p
WHERE VALUE(p) IS OF (employee_typ, student_typ);

Here is a similar example in PL/SQL. The code does something if the person is an employee
or student:

-- Using the IS OF type Operator with PL/SQL

DECLARE
 var person_typ;
BEGIN
 var := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer Nelson');
 IF var IS OF (employee_typ, student_typ) THEN
 DBMS_OUTPUT.PUT_LINE('Var is an employee_typ or student_typ object.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Var is not an employee_typ or student_typ object.');

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 38 of 43

 END IF;
END;
/

The following statement returns only students whose most specific or specialized type is
student_typ. If the table or view contains any objects of a subtype of student_typ, such as
part_time_student_typ, these are excluded. The example uses the TREAT function to convert
objects that are students to student_typ from the declared type of the view, person_typ:

-- Using the IS OF type Operator to query for specific subtype only

SELECT TREAT(VALUE(p) AS student_typ)
 FROM person_obj_table p
WHERE VALUE(p) IS OF(ONLY student_typ);

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing with the IS OF type predicate.

For example, if contact_ref is declared to be REF person_typ, you can get just the rows for
students as follows:

-- Using the IS OF type Operator with DEREF

SELECT *
 FROM contacts_ref
WHERE DEREF(contact_ref) IS OF (student_typ);

See Also

For more information about the SQL IS OF type condition, see Oracle AI Database
SQL Language Reference.

2.4.5 REF
The REF function in a SQL statement takes as an argument a correlation name (or table alias)
for an object table or view and returns a reference (a REF) to an object instance from that table
or view.

The REF function may return references to objects of the declared type of the table, view, or
any of its subtypes. For example, the following statement returns the references to all persons,
including references to students and employees, whose idno attribute is 12:

Example 2-36 Using the REF Function

-- Using the REF Function example, not sample schema

SELECT REF(p)
 FROM person_obj_table p
 WHERE p.idno = 12;

See Also

For more information about the SQL REF function, see Oracle AI Database SQL
Language Reference.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 39 of 43

2.4.6 SYS_TYPEID
The SYS_TYPEID function can be used in a query to return the typeid (a hidden type) of the
most specific type of the object instance passed as an argument.

The most specific type of an object instance is the type that the instance belongs to, that is, the
farthest removed instance from the root type. For example, if Tim is a part-time student, they
are also a student and a person, but their most specific type is part-time student.

The function returns the typeids from the hidden type-discriminant column that is associated
with every substitutable column. The function returns a null typeid for a final, root type.

The syntax of the function is:

SYS_TYPEID(object_type_value)

Function SYS_TYPEID may be used only with arguments of an object type. Its primary purpose
is to make it possible to build an index on a hidden type-discriminant column.

All types that belong to a type hierarchy are assigned a non-null typeid that is unique within the
type hierarchy. Types that do not belong to a type hierarchy have a null typeid.

Every type except a final root type belongs to a type hierarchy. A final root type has no types
related to it by inheritance:

• It cannot have subtypes derived from it because it is final.

• It is not itself derived from some other type because it is a root type, so it does not have
any supertypes.

For an example of SYS_TYPEID, consider the substitutable object table person_obj_table, of
person_typ. person_typ is the root type of a hierarchy that has student_typ as a subtype and
part_time_student_typ as a subtype of student_typ. See Example 2-20.

The following query uses SYS_TYPEID. It gets the name attribute and typeid of the object
instances in the person_obj_table table. Each of the instances is of a different type:

Example 2-37 Using the SYS_TYPEID Function

-- Using the SYS_TYPEID Function example, not sample schema

SELECT name, SYS_TYPEID(VALUE(p)) typeid FROM person_obj_table p;

See Also

• For information about the type-discriminant and other hidden columns, see
"Hidden Columns for Substitutable Columns and Object Tables" .

• For more information about the SQL SYS TYPEID function, see Oracle AI Database
SQL Language Reference.

2.4.7 TABLE()
Table functions are functions that produce a collection of rows, a nested table or a varray, that
can be queried like a physical database table or assigned to a PL/SQL collection variable.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 40 of 43

You can use a table function like the name of a database table, in the FROM clause of a query,
or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection parameter can be
either a collection type, such as a VARRAY or a PL/SQL table, or a REF CURSOR.

Use PIPELINED to instruct Oracle AI Database to return the results of a table function
iteratively. A table function returns a nested table or varray type. You query table functions by
using the TABLE keyword before the function name in the FROM clause of the query.

See Also

For information on TABLE() functions, see

• Oracle AI Database Data Cartridge Developer's Guide

• Oracle AI Database PL/SQL Language Reference

2.4.8 TREAT
The TREAT function does a runtime check to confirm that an expression can be operated on as
if it were of a different specified type in the hierarchy, normally a subtype of the declared type
of the expression.

In other words, the TREAT function attempts to treat a supertype instance as a subtype
instance, for example, to treat a person as a student. If the person is a student, then the
person is returned as a student, with the additional attributes and methods that a student may
have. If the person is not a student, TREAT returns NULL in SQL.

The two main uses of TREAT are:

• In narrowing assignments, to modify the type of an expression so that the expression can
be assigned to a variable of a more specialized type in the hierarchy: that is, to set a
supertype value into a subtype.

• To access attributes or methods of a subtype of the declared type of a row or column.

A substitutable object table or column of type T has a hidden column for every attribute of
every subtype of T. These hidden columns contain subtype attribute data, but you cannot
list them with a DESCRIBE statement. TREAT enables you to access these columns.

2.4.8.1 Using TREAT for Narrowing Assignments
The TREAT function is used for narrowing assignments, that is, assignments that set a
supertype value into a subtype. For a comparison to widening assignments, see "Assignments
Across Types".

In Example 2-38, TREAT returns all (and only) student_typ instances from person_obj_table
of type person_typ, a supertype of student_typ. The statement uses TREAT to modify the type
of p from person_typ to student_typ.

Example 2-38 Using the TREAT Function to Return a Specific Subtype in a Query

-- Using the TREAT Function to Return a Specific Subtype in a Query example,

-- not sample schema

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 41 of 43

SELECT TREAT(VALUE(p) AS student_typ)
 FROM person_obj_table p;

For each p, the TREAT modification succeeds only if the most specific or specialized type of the
value of p is student_typ or one of its subtypes. If p is a person who is not a student, or if p is
NULL, TREAT returns NULL in SQL or, in PL/SQL, raises an exception.

You can also use TREAT to modify the declared type of a REF expression. For example:

-- Using the TREAT Function to modify declared type of a REF example,

-- not sample schema

SELECT TREAT(REF(p) AS REF student_typ)
 FROM person_obj_table p;

The previous example returns REFs to all student_typ instances. In SQL it returns NULL REFs
for all person instances that are not students, and in PL/SQL it raises an exception.

2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods
Perhaps the most important use of TREAT is to access attributes or methods of a subtype of a
row or column's declared type. The following query retrieves the major attribute of all persons,
students and part-time students, who have this attribute. NULL is returned for persons who are
not students:

Example 2-39 Using the TREAT Function to Access Attributes of a Specific Subtype

SELECT name, TREAT(VALUE(p) AS student_typ).major major
 FROM person_obj_table p;

The following query will not work because major is an attribute of student_typ but not of
person_typ, the declared type of table persons:

SELECT name, VALUE(p).major major FROM person_obj_table p -- incorrect;

The following is a PL/SQL example:

DECLARE
 var person_typ;
BEGIN
 var := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer Nelson');
 DBMS_OUTPUT.PUT_LINE(TREAT(var AS employee_typ).mgr);
END;
/

See Also

For more information about the SQL TREAT function, see Oracle AI Database SQL
Language Reference.

2.4.9 VALUE
In a SQL statement, the VALUE function takes as its argument a correlation variable (table alias)
for an object table or object view and returns object instances corresponding to rows of the
table or view.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 42 of 43

The VALUE function may return instances of the declared type of the row or any of its subtypes.

Example 2-40 first creates a part_time_student_typ, and then shows a SELECT query
returning all persons, including students and employees, from table person_obj_table of
person_typ.

Example 2-40 Using the VALUE Function

-- Requires Ex. 2-31 and 2-32
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
SELECT VALUE(p) FROM person_obj_table p;

To retrieve only part time students, that is, instances whose most specific type is
part_time_student_typ, use the ONLY keyword to confine the selection:

SELECT VALUE(p) FROM person_obj_table p
 WHERE VALUE(p) IS OF (ONLY part_time_student_typ);

In the following example, VALUE is used to update a object instance in an object table:

UPDATE person_obj_table p
 SET VALUE(p) = person_typ(12, 'Bob Jones', '1-650-555-0130')
 WHERE p.idno = 12;

See Also

• Example 5-22

• For more information about the SQL VALUE function, see Oracle AI Database SQL
Language Reference.

Chapter 2
Functions and Operators Useful with Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 43 of 43

3
Using PL/SQL With Object Types

You can use object types with PL/SQL

Topics:

• Declaring and Initializing Objects in PL/SQL

• Object Manipulation in PL/SQL

• Use of Overloading in PL/SQL with Inheritance

• Using Dynamic SQL With Objects

3.1 Declaring and Initializing Objects in PL/SQL
Using object types in a PL/SQL block, subprogram, or package is a two-step process.

1. You must define object types using the SQL statement CREATE TYPE, in SQL*Plus or other
similar programs.

After an object type is defined and installed in the schema, you can use it in any PL/SQL
block, subprogram, or package.

2. In PL/SQL, you then declare a variable whose data type is the user-defined type or ADT
that you just defined.

Objects or ADTs follow the usual scope and instantiation rules.

See Also

"About Object Types "

3.1.1 Defining Object Types
You can define object types using CREATE TYPE.

Example 3-1 provides two object types, and a table of object types. Subsequent examples
show how to declare variables of those object types in PL/SQL and perform other operations
with these objects.

Example 3-1 Working With Object Types

CREATE TYPE address_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 postal_code VARCHAR2(6));
/
CREATE TYPE employee_typ AS OBJECT (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 10

 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 address address_typ,
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_address (SELF IN OUT NOCOPY employee_typ));
/
CREATE TYPE BODY employee_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN employee_id;
 END;
 MEMBER PROCEDURE display_address (SELF IN OUT NOCOPY employee_typ) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(first_name || ' ' || last_name);
 DBMS_OUTPUT.PUT_LINE(address.street);
 DBMS_OUTPUT.PUT_LINE(address.city || ', ' || address.state || ' ' ||
 address.postal_code);
 END;
END;
/
CREATE TABLE employee_tab OF employee_typ;

3.1.2 Declaring Objects in a PL/SQL Block
You can use objects or ADTs wherever built-in types such as CHAR or NUMBER can be used.

• Declare objects in the same way you declare built-in types.

Example 3-2 declares object emp of type employee_typ. Then, the constructor for object type
employee_typ initializes the object.

Example 3-2 Declaring Objects in a PL/SQL Block

-- Requires Ex. 3-1
DECLARE
 emp employee_typ; -- emp is atomically null
BEGIN
-- call the constructor for employee_typ
 emp := employee_typ(315, 'Francis', 'Logan', 'FLOGAN',
 '415.555.0100', '01-MAY-04', 'SA_MAN', 11000, .15, 101, 110,
 address_typ('376 Mission', 'San Francisco', 'CA', '94222'));
 DBMS_OUTPUT.PUT_LINE(emp.first_name || ' ' || emp.last_name); -- display details
 emp.display_address(); -- call object method to display details
END;
/

The formal parameter of a PL/SQL subprogram can have data types of user-defined types.
Therefore, you can pass objects to stored subprograms and from one subprogram to another.

In the next code line, the object type employee_typ specifies the data type of a formal
parameter:

PROCEDURE open_acct (new_acct IN OUT employee_typ) IS ...

In this code line, object type employee_typ specifies the return type of a function:

Chapter 3
Declaring and Initializing Objects in PL/SQL

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 10

FUNCTION get_acct (acct_id IN NUMBER) RETURN employee_typ IS ...

3.1.3 How PL/SQL Treats Uninitialized Objects
User-defined types, just like collections, are atomically null, until you initialize the object by
calling the constructor for its object type. That is, the object itself is null, not just its attributes.

Comparing a null object with any other object always yields NULL. Also, if you assign an
atomically null object to another object, the other object becomes atomically null (and must be
reinitialized). Likewise, if you assign the non-value NULL to an object, the object becomes
atomically null.

In an expression, attributes of an uninitialized object evaluate to NULL. When applied to an
uninitialized object or its attributes, the IS NULL comparison operator yields TRUE.

See Example 2-1 for an illustration of null objects and objects with null attributes.

3.2 Object Manipulation in PL/SQL
This section describes how to manipulate object attributes and methods in PL/SQL.

This section includes the following topics:

• Accessing Object Attributes With Dot Notation

• Calling Object Constructors and Methods

• Updating and Deleting Objects

• Manipulating Object Manipulation with Ref Modifiers

3.2.1 Accessing Object Attributes With Dot Notation
You refer to an attribute by name. To access or change the value of an attribute, you use dot
notation.

Attribute names can be chained, which lets you access the attributes of a nested object type.
Example 3-3 uses dot notation and generates the same output as Example 3-2.

Example 3-3 Accessing Object Attributes

-- Requires Ex. 3-1
DECLARE
 emp employee_typ;
BEGIN
 emp := employee_typ(315, 'Francis', 'Logan', 'FLOGAN',
 '415.555.0100', '01-MAY-04', 'SA_MAN', 11000, .15, 101, 110,
 address_typ('376 Mission', 'San Francisco', 'CA', '94222'));
 DBMS_OUTPUT.PUT_LINE(emp.first_name || ' ' || emp.last_name);
 DBMS_OUTPUT.PUT_LINE(emp.address.street);
 DBMS_OUTPUT.PUT_LINE(emp.address.city || ', ' ||emp. address.state || ' ' ||
 emp.address.postal_code);
END;
/

3.2.2 Calling Object Constructors and Methods
Calls to a constructor are allowed wherever function calls are allowed.

Chapter 3
Object Manipulation in PL/SQL

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10

A constructor, like all functions, is called as part of an expression, as shown in Example 3-3
and Example 3-4.

When you pass parameters to a constructor, the call assigns initial values to the attributes of
the object being instantiated. When you call the default constructor to fill in all attribute values,
you must supply a parameter for every attribute; unlike constants and variables, attributes
cannot have default values. You can call a constructor using named notation instead of
positional notation.

Example 3-4 Inserting Rows in an Object Table

-- Requires Ex. 3-1
DECLARE
 emp employee_typ;
BEGIN
 INSERT INTO employee_tab VALUES (employee_typ(310, 'Evers', 'Boston', 'EBOSTON',
 '617.555.0100', '01-AUG-04', 'SA_REP', 9000, .15, 101, 110,
 address_typ('123 Main', 'San Francisco', 'CA', '94111')));
 INSERT INTO employee_tab VALUES (employee_typ(320, 'Martha', 'Dunn', 'MDUNN',
 '650.555.0150', '30-SEP-04', 'AC_MGR', 12500, 0, 101, 110,
 address_typ('123 Broadway', 'Redwood City', 'CA', '94065')));
END;
/
SELECT VALUE(e) from employee_tab e;

3.2.3 Accessing Object Methods
Like packaged subprograms, methods are called using dot notation.

In Example 3-5, the display_address method is called to display attributes of an object. Note
the use of the VALUE function which returns the value of an object. VALUE takes as its argument
a correlation variable. In this context, a correlation variable is a row variable or table alias
associated with a row in an object table.

Example 3-5 Accessing Object Methods

-- Requires Ex. 3-1 and Ex. 3-4
DECLARE
 emp employee_typ;
BEGIN
 SELECT VALUE(e) INTO emp FROM employee_tab e WHERE e.employee_id = 310;
 emp.display_address();
END;
/

In SQL statements, calls to a parameterless method require an empty parameter list. In
procedural statements, an empty parameter list is optional unless you chain calls, in which
case it is required for all but the last call. Also, if you chain two function calls, the first function
must return an object that can be passed to the second function.

If a PL/SQL function is used in place of an ADT constructor during a DML operation, the
function may execute multiple times as part of the DML execution. For the function to execute
only once per occurrence, it must be a deterministic function.

For static methods, calls use the notation type_name.method_name rather than specifying an
instance of the type.

When you call a method using an instance of a subtype, the actual method that is executed
depends on declarations in the type hierarchy. If the subtype overrides the method that it
inherits from its supertype, the call uses the subtype implementation. Otherwise, the call uses
the supertype implementation. This capability is known as dynamic method dispatch.

Chapter 3
Object Manipulation in PL/SQL

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 10

See Also

"Dynamic Method Dispatch"

3.2.4 Updating and Deleting Objects
From inside a PL/SQL block you can modify and delete rows in an object table.

Example 3-6 Updating and Deleting Rows in an Object Table

-- Requires Ex. 3-1 and 3-4
DECLARE
 emp employee_typ;
BEGIN
 INSERT INTO employee_tab VALUES (employee_typ(370, 'Robert', 'Myers', 'RMYERS',
 '415.555.0150', '07-NOV-04', 'SA_REP', 8800, .12, 101, 110,
 address_typ('540 Fillmore', 'San Francisco', 'CA', '94011')));
 UPDATE employee_tab e SET e.address.street = '1040 California'
 WHERE e.employee_id = 370;
 DELETE FROM employee_tab e WHERE e.employee_id = 310;
END;
/
SELECT VALUE(e) from employee_tab e;

3.2.5 Manipulating Object Manipulation with Ref Modifiers
You can retrieve REFs using the function REF, which takes as its argument a correlation variable
or alias.

You can declare REFs as variables, parameters, fields, or attributes. You can use REFs as input
or output variables in SQL data manipulation statements.

Example 3-7 Updating Rows in an Object Table With a REF Modifier

-- Requires Ex. 3-1, 3-4, and 3-6
DECLARE
 emp employee_typ;
 emp_ref REF employee_typ;
BEGIN
 SELECT REF(e) INTO emp_ref FROM employee_tab e WHERE e.employee_id = 370;
 UPDATE employee_tab e
 SET e.address = address_typ('8701 College', 'Oakland', 'CA', '94321')
 WHERE REF(e) = emp_ref;
END;
/

You cannot navigate through REFs in PL/SQL. For example, the assignment in Example 3-8
using a REF is not allowed. Instead, use the function DEREF or make calls to the package
UTL_REF to access the object.

Example 3-8 Trying to Use DEREF in a SELECT INTO Statement, Incorrect

-- Requires Ex. 3-1, 3-4, and 3-6
DECLARE
 emp employee_typ;
 emp_ref REF employee_typ;
 emp_name VARCHAR2(50);
BEGIN

Chapter 3
Object Manipulation in PL/SQL

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 10

 SELECT REF(e) INTO emp_ref FROM employee_tab e WHERE e.employee_id = 370;
 -- the following assignment raises an error, not allowed in PL/SQL emp :=
DEREF(emp_ref); -- cannot use DEREF in procedural statements
 emp_name := emp.first_name || ' ' || emp.last_name;
 DBMS_OUTPUT.PUT_LINE(emp_name);
END;
/

This assignment raises an error as described below:

not allowed in PL/SQL
-- emp_name := emp_ref.first_name || ' ' || emp_ref.last_name;
-- emp := DEREF(emp_ref); not allowed, cannot use DEREF in procedural statements

See Also

• For information on the REF function, see Oracle AI Database SQL Language
Reference.

• For detailed information on the DEREF function, see Oracle AI Database SQL
Language Reference.

3.3 Use of Overloading in PL/SQL with Inheritance
Overloading allows you to substitute a subtype value for a formal parameter that is a
supertype. This capability is known as substitutability.

The following rules are about overloading and substitutability.

Rules of Substitution

If more than one instance of an overloaded procedure matches the procedure call, the
following substitution rules determine which procedure, if any, is called:

• If the signatures of the overloaded procedures only differ in that some parameters are
object types from the same supertype-subtype hierarchy, the closest match is used. The
closest match is one where all the parameters are at least as close as any other
overloaded instance, as determined by the depth of inheritance between the subtype and
supertype, and at least one parameter is closer.

• If instances of two overloaded methods match, and some argument types are closer in one
overloaded procedure while others are closer in the second procedure, a semantic error
occurs.

• If some parameters differ in their position within the object type hierarchy, and other
parameters are of different data types so that an implicit conversion would be necessary,
then a semantic error occurs.

3.3.1 Resolving PL/SQL Functions with Inheritance
Resolving PL/SQL functions with inheritance follows the rules of substitution.

Example 3-9 creates a type hierarchy that has three levels starting with super_t. There is a
package with two overloaded instances of a function that are the same except for the position
of the argument type in the type hierarchy. The invocation declares a variable of type final_t,
and then calls the overloaded function.

Chapter 3
Use of Overloading in PL/SQL with Inheritance

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 10

The instance of the function that executes is the one that accepts a sub_t parameter, because
sub_t is closer to final_t than super_t in the hierarchy. This follows the rules of substitution.

Note that because determining which instance to call happens at compile time, the fact that the
argument passed in was also a final_t is ignored. If the declaration was v super_t :=
final_t(1,2,3), the overloaded function with the argument super_t would be called.

Example 3-9 Resolving PL/SQL Functions With Inheritance

CREATE OR REPLACE TYPE super_t AS OBJECT
 (n NUMBER) NOT final;
/
CREATE OR REPLACE TYPE sub_t UNDER super_t
 (n2 NUMBER) NOT final;
/
CREATE OR REPLACE TYPE final_t UNDER sub_t
 (n3 NUMBER);
/
CREATE OR REPLACE PACKAGE p IS
 FUNCTION func (arg super_t) RETURN NUMBER;
 FUNCTION func (arg sub_t) RETURN NUMBER;
END;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION func (arg super_t) RETURN NUMBER IS BEGIN RETURN 1; END;
 FUNCTION func (arg sub_t) RETURN NUMBER IS BEGIN RETURN 2; END;
END;
/

DECLARE
 v final_t := final_t(1,2,3);
BEGIN
 DBMS_OUTPUT.PUT_LINE(p.func(v)); -- prints 2
END;
/

See Also

See Use of Overloading in PL/SQL with Inheritance

3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically
Dynamically resolving PL/SQL functions with inheritance follows the rules of substitution.

See Use of Overloading in PL/SQL with Inheritance

In Example 3-10, determining which instance to call happens at run time because the functions
are overriding member functions of the type hierarchy. This is dynamic method dispatch,
described in "Dynamic Method Dispatch".

Though v is an instance of super_t, because the value of final_t is assigned to v, the sub_t
instance of the function is called, following the rules of substitution.

Example 3-10 Resolving PL/SQL Functions With Inheritance Dynamically

-- Perform the following drop commands if you created these objects in Ex. 3-9
-- DROP PACKAGE p;
-- DROP TYPE final_t;
-- DROP TYPE _sub_t;

Chapter 3
Use of Overloading in PL/SQL with Inheritance

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 10

-- DROP TYPE super_t FORCE;
CREATE OR REPLACE TYPE super_t AS OBJECT
 (n NUMBER, MEMBER FUNCTION func RETURN NUMBER) NOT final;
/
CREATE OR REPLACE TYPE BODY super_t AS
 MEMBER FUNCTION func RETURN NUMBER IS BEGIN RETURN 1; END; END;
/
CREATE TYPE sub_t UNDER super_t
 (n2 NUMBER,
 OVERRIDING MEMBER FUNCTION func RETURN NUMBER) NOT final;
/
CREATE OR REPLACE TYPE BODY sub_t AS
 OVERRIDING MEMBER FUNCTION func RETURN NUMBER IS BEGIN RETURN 2; END; END;
/
CREATE OR REPLACE TYPE final_t UNDER sub_t
 (n3 NUMBER);
/

DECLARE
 v super_t := final_t(1,2,3);
BEGIN
 DBMS_OUTPUT.PUT_LINE('answer:'|| v.func); -- prints 2
END;
/

3.4 Using Dynamic SQL With Objects
Dynamic SQL is a feature of PL/SQL that enables you to enter SQL information, such as a
table name, the full text of a SQL statement, or variable information at run-time.

Topics:

• Using Dynamic SQL with Object Types and Collections

• Calling Package Procedures wtih Object Types and Collections

See Also

Oracle AI Database PL/SQL Language Reference

3.4.1 Using Dynamic SQL with Object Types and Collections
You can use dynamic SQL with object types and collections.

Example 3-11 illustrates the use of objects and collections with dynamic SQL. First, the
example defines the object type person_typ and the VARRAY type hobbies_var, then it defines
the package, teams, that uses these types.

You need AUTHID CURRENT_USER to execute dynamic package methods; otherwise, these
methods raise an insufficient privileges error when you run Example 3-12, which is an
anonymous block that calls the procedures in package TEAMS.

Example 3-11 A Package that Uses Dynamic SQL for Object Types and Collections

CREATE OR REPLACE TYPE person_typ AS OBJECT (name VARCHAR2(25), age NUMBER);
/
CREATE TYPE hobbies_var AS VARRAY(10) OF VARCHAR2(25);

Chapter 3
Using Dynamic SQL With Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 10

/
CREATE OR REPLACE PACKAGE teams

 AUTHID CURRENT_USER AS
 PROCEDURE create_table (tab_name VARCHAR2);
 PROCEDURE insert_row (tab_name VARCHAR2, p person_typ, h hobbies_var);
 PROCEDURE print_table (tab_name VARCHAR2);
END;
/
CREATE OR REPLACE PACKAGE BODY teams AS
 PROCEDURE create_table (tab_name VARCHAR2) IS
 BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tab_name ||
 ' (pers person_typ, hobbs hobbies_var)';
 END;
 PROCEDURE insert_row (
 tab_name VARCHAR2,
 p person_typ,
 h hobbies_var) IS
 BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO ' || tab_name ||
 ' VALUES (:1, :2)' USING p, h;
 END;
 PROCEDURE print_table (tab_name VARCHAR2) IS
 TYPE refcurtyp IS REF CURSOR;
 v_cur refcurtyp;
 p person_typ;
 h hobbies_var;
 BEGIN
 OPEN v_cur FOR 'SELECT pers, hobbs FROM ' || tab_name;
 LOOP
 FETCH v_cur INTO p, h;
 EXIT WHEN v_cur%NOTFOUND;
 -- print attributes of 'p' and elements of 'h'
 DBMS_OUTPUT.PUT_LINE('Name: ' || p.name || ' - Age: ' || p.age);
 FOR i IN h.FIRST..h.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE('Hobby(' || i || '): ' || h(i));
 END LOOP;
 END LOOP;
 CLOSE v_cur;
 END;
END;
/

3.4.2 Calling Package Procedures with Object Types and Collections
You can call package procedures with object types and collections.

From an anonymous block,Example 3-12, you might call the procedures in package TEAMS as
shown in Example 3-11

Example 3-12 Calling Procedures from the TEAMS Package

DECLARE
 team_name VARCHAR2(15);
BEGIN
 team_name := 'Notables';
 TEAMS.create_table(team_name);
 TEAMS.insert_row(team_name, person_typ('John', 31),
 hobbies_var('skiing', 'coin collecting', 'tennis'));
 TEAMS.insert_row(team_name, person_typ('Mary', 28),

Chapter 3
Using Dynamic SQL With Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 10

 hobbies_var('golf', 'quilting', 'rock climbing', 'fencing'));
 TEAMS.print_table(team_name);
END;
/

Chapter 3
Using Dynamic SQL With Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 10

4
Object Support in Oracle Programming
Environments

In an Oracle AI Database, you can create object types with SQL data definition language
(DDL) commands, and you can manipulate objects with SQL data manipulation language
(DML) commands. From there, you can use many Oracle application programming
environments and tools that have built-in support for Oracle Objects.

Topics:

• SQL and Object Types

• SQL Developer

• PL/SQL

• Oracle Call Interface (OCI)

• Pro*C/C++

• Oracle C++ Call Interface (OCCI)

• Java Tools for Accessing Oracle Objects

• XML

• Utilities Providing Support for Objects

4.1 SQL and Object Types
Oracle SQL data definition language (DDL) provides operations to support object types.

These operations include:

• Defining object types, nested tables, and arrays

• Specifying privileges

• Specifying table columns of object types

• Creating object tables

Oracle SQL DML provides the following support for object types:

• Querying and updating objects and collections

• Manipulating REFs

See Also

For a complete description of Oracle SQL syntax, see Oracle AI Database SQL
Language Reference

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 16

4.2 SQL Developer
SQL Developer provides a visual development environment for database developers and
DBAs to create and manipulate database schema objects including Oracle Objects

SQL Developer enables you to run reports, monitor performance and perform many other
database-related tasks using a rich graphical user interface.

See Also

Oracle SQL Developer User's Guide

4.3 PL/SQL
Object types and subtypes can be used in PL/SQL procedures and functions in most places
where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object types.

You can implement the methods associated with object types in PL/SQL. These methods
(functions and procedures) reside on the server as part of a user's schema.

See Also

For a complete description of PL/SQL, see the Oracle AI Database PL/SQL Language
Reference

4.4 Oracle Call Interface (OCI)
OCI is a set of C library functions that applications can use to manipulate data and schemas in
an Oracle AI Database.

• About Oracle Call Interface (OCI)

• Associative Access in OCI Programs

• Navigational Access in OCI Programs

4.4.1 About Oracle Call Interface (OCI)
OCI supports both traditional 3GL and object-oriented techniques for database access, as
explained in the following sections.

An important component of OCI is a set of calls to manage a workspace called the object
cache. The object cache is a memory block on the client side that allows programs to store
entire objects and to navigate among them without additional round trips to the server.

The object cache is completely under the control and management of the application programs
using it. The Oracle server has no access to it. The application programs using it must
maintain data coherency with the server and protect the workspace against simultaneous
conflicting access.

Chapter 4
SQL Developer

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 16

OCI provides functions to

• Access objects on the server using SQL.

• Access, manipulate and manage objects in the object cache by traversing pointers or REFs.

• Convert Oracle dates, strings and numbers to C data types.

• Manage the size of the object cache's memory.

OCI improves concurrency by allowing individual objects to be locked. It improves performance
by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C data types corresponding
to a Oracle object types.

See Also

Oracle Call Interface Developer's Guide for more information about using objects with
OCI

4.4.2 Associative Access in OCI Programs
OCI programs support associative access to objects with an API that can manipulate object
data.

Traditionally, 3GL programs manipulate data stored in a relational database by executing SQL
statements and PL/SQL procedures. Data is usually manipulated on the server without
incurring the cost of transporting the data to the client(s). OCI supports this associative access
to objects by providing an API for executing SQL statements that manipulate object data.
Specifically, OCI enables you to:

• Execute SQL statements that manipulate object data and object type schema information

• Pass object instances, object references (REFs), and collections as input variables in SQL
statements

• Return object instances, REFs, and collections as output of SQL statement fetches

• Describe the properties of SQL statements that return object instances, REFs, and
collections

• Describe and execute PL/SQL procedures or functions with object parameters or results

• Synchronize object and relational functionality through enhanced commit and rollback
functions

See "Associative Access in Pro*C/C++".

4.4.3 Navigational Access in OCI Programs
OCI programs provide navigational access by means of an API.

In the object-oriented programming paradigm, applications model their real-world entities as a
set of inter-related objects that form graphs of objects. The relationships between objects are
implemented as references. An application processes objects by starting at some initial set of
objects, using the references in these initial objects to traverse the remaining objects, and
performing computations on each object. OCI provides an API for this style of access to
objects, known as navigational access. Specifically, OCI enables you to:

Chapter 4
Oracle Call Interface (OCI)

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 16

• Cache objects in memory on the client machine

• Dereference an object reference and pin the corresponding object in the object cache. The
pinned object is transparently mapped in the host language representation.

• Notify the cache when the pinned object is no longer needed

• Fetch a graph of related objects from the database into the client cache in one call

• Lock objects

• Create, update, and delete objects in the cache

• Flush changes made to objects in the client cache to the database

See "Navigational Access in Pro*C/C++".

4.4.4 Object Cache
To support high-performance navigational access of objects, OCI runtime provides an object
cache for caching objects in memory.

The object cache supports references (REFs) to database objects in the object cache, the
database objects can be identified (that is, pinned) through their references. Applications do
not need to allocate or free memory when database objects are loaded into the cache,
because the object cache provides transparent and efficient memory management for
database objects.

Also, when database objects are loaded into the cache, they are transparently mapped into the
host language representation. For example, in the C programming language, the database
object is mapped to its corresponding C structure. The object cache maintains the association
between the object copy in the cache and the corresponding database object. Upon
transaction commit, changes made to the object copy in the cache are propagated
automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When an
application dereferences a REF and the corresponding object is not yet cached in the object
cache, the object cache automatically sends a request to the server to fetch the object from the
database and load it into the object cache. Subsequent dereferences of the same REF are
faster because they become local cache access and do not incur network round-trips.

To notify the object cache that an application is accessing an object in the cache, the
application pins the object; when it is finished with the object, it unpins it. The object cache
maintains a pin count for each object in the cache. The count is incremented upon a pin call
and decremented upon an unpin call. When the pin count goes to zero, it means the object is
no longer needed by the application.

The object cache uses a least-recently used (LRU) algorithm to manage the size of the cache.
When the cache reaches the maximum size, the LRU algorithm frees candidate objects with a
pin count of zero.

4.4.5 Building an OCI Program That Manipulates Objects
You can build an OCI program to manipulate objects by representing types in the C host
language format.

When you build an OCI program that manipulates objects, you must complete the following
general steps

1. Define the object types that correspond to the application objects.

Chapter 4
Oracle Call Interface (OCI)

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 16

2. Execute the SQL DDL statements to populate the database with the necessary object
types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you must
represent these types in the C host language format. You can do this by representing the
object types as C structs. You can use a tool provided by Oracle called the Object Type
Translator (OTT) to generate the C mapping of the object types. The OTT puts the
equivalent C structs in header (*.h) files. You include these *.h files in the *.c files
containing the C functions that implement the application.

4. Construct the application executable by compiling and linking the application's *.c files with
the OCI library.

See Also

Oracle Call Interface Developer's Guide for tips and techniques for using OCI
program effectively with objects

4.4.6 Defining User-Defined Constructors in C
When defining a user-defined constructor in C, you must specify SELF (and you may optionally
specify SELF TDO) in the PARAMETERS clause.

On entering the C function, the attributes of the C structure that the object maps to are all
initialized to NULL. The value returned by the function is mapped to an instance of the user-
defined type.

Example 4-1 shows how to define a user-defined constructor in C.

Example 4-1 Defining a User-Defined Constructor in C

CREATE LIBRARY person_lib TRUSTED AS STATIC
/

CREATE TYPE person AS OBJECT
 (name VARCHAR2(30),
 CONSTRUCTOR FUNCTION person(SELF IN OUT NOCOPY person, name VARCHAR2)
 RETURN SELF AS RESULT);
/

CREATE TYPE BODY person IS
 CONSTRUCTOR FUNCTION person(SELF IN OUT NOCOPY person, name VARCHAR2)
 RETURN SELF AS RESULT
 IS EXTERNAL NAME "cons_person_typ" LIBRARY person_lib WITH CONTEXT
 PARAMETERS(context, SELF, name OCIString, name INDICATOR sb4);
END;/

The SELF parameter is mapped like an IN parameter, so in the case of a NOT FINAL type, it is
mapped to (dvoid *), not (dvoid **). The return value's TDO must match the TDO of SELF and
is therefore implicit. The return value can never be null, so the return indicator is implicit as
well.

Chapter 4
Oracle Call Interface (OCI)

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 16

4.5 Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use user-defined data types in C
and C++ programs.

Topics:

• About Pro*C/C++

• Associative Access in Pro*C/C++

• Navigational Access in Pro*C/C++

• Conversion Between Oracle Types and C Types

• Oracle Type Translator (OTT)

4.5.1 About Pro*C/C++
Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C data types to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and automatic type
conversion from database types to C data types.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two ways to
access objects in the server:

• SQL statements and PL/SQL functions or procedures embedded in Pro*C programs.

• An interface to the object cache (described under "Oracle Call Interface (OCI)"), where
objects can be accessed by traversing pointers, then modified and updated on the server.

See Also

For a complete description of the Pro*C/C++ precompiler, see Pro*C/C++
Programmer's Guide

4.5.2 Associative Access in Pro*C/C++

Pro*C/C++ offers the following capabilities for associative access to objects:

• Support for transient copies of objects allocated in the object cache

• Support for transient copies of objects referenced as input host variables in embedded
SQL INSERT, UPDATE, and DELETE statements, or in the WHERE clause of a SELECT statement

• Support for transient copies of objects referenced as output host variables in embedded
SQL SELECT and FETCH statements

• Support for ANSI dynamic SQL statements that reference object types through the
DESCRIBE statement, to get the object's type and schema information

Chapter 4
Pro*C/C++

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 16

See Also

For background information on associative access, see "Associative Access in OCI
Programs".

4.5.3 Navigational Access in Pro*C/C++
Pro*C/C++ offers the following capabilities to support a more object-oriented interface to
objects:

• Support for dereferencing, pinning, and optionally locking an object in the object cache
using an embedded SQL OBJECT DEREF statement

• Allowing a Pro*C/C++ user to inform the object cache when an object has been updated or
deleted, or when it is no longer needed, using embedded SQL OBJECT UPDATE, OBJECT
DELETE, and OBJECT RELEASE statements

• Support for creating new referenceable objects in the object cache using an embedded
SQL OBJECT CREATE statement

• Support for flushing changes made in the object cache to the server with an embedded
SQL OBJECT FLUSH statement

See Also

For background information on navigational access, see "Navigational Access in OCI
Programs".

4.5.4 Conversion Between Oracle Types and C Types
Pro*C/C++ provides ease-of-use enhancements to simplify use of OCI types in C and C++
applications.

The C representation for objects that is generated by the Oracle Type Translator (OTT) uses
OCI types which are opaque and insulate you from changes to their internal formats, but are
cumbersome to use in a C or C++ application. These representations include OCIString and
OCINumber for scalar attributes and OCITable, OCIArray, and OCIRef types for collection types
and object references.

With Pro*C/C++ enhancements:

• Object attributes can be retrieved and implicitly converted to C types with the embedded
SQL OBJECT GET statement.

• Object attributes can be set and converted from C types with the embedded SQL OBJECT
SET statement.

• Collections can be mapped to a host array with the embedded SQL COLLECTION GET
statement. Furthermore, if the collection is comprised of scalar types, then the OCI types
can be implicitly converted to a compatible C type.

• Host arrays can be used to update the elements of a collection with the embedded SQL
COLLECTION SET statement. As with the COLLECTION GET statement, if the collection is
comprised of scalar types, C types are implicitly converted to OCI types.

Chapter 4
Pro*C/C++

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 16

4.5.5 Oracle Type Translator (OTT)
The Oracle Type Translator (OTT) is a program that automatically generates C language
structure declarations corresponding to object types.

OTT makes it easier to use the Pro*C precompiler and the OCI server access package.

See Also

For complete information about OTT, see Oracle Call Interface Developer's Guide and
Pro*C/C++ Developer's Guide.

4.6 Oracle C++ Call Interface (OCCI)
The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the object-oriented
features, native classes, and methods of the C++ programing language to access the Oracle
AI Database.

Topics:

• About Oracle C++ Call Interface (OCCI)

• OCCI Associative Relational and Object Interfaces

• The OCCI Navigational Interface

4.6.1 About Oracle C++ Call Interface (OCCI)
The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is easy to
use. OCCI itself is built on top of OCI and provides the power and performance of OCI using
an object-oriented paradigm.

OCI is a C API to Oracle AI Database. It supports the entire Oracle feature set and provides
efficient access to both relational and object data, but it can be challenging to use—particularly
if you want to work with complex, object data types. Object types are not natively supported in
C, and simulating them in C is not easy. OCCI addresses this by providing a simpler, object-
oriented interface to the functionality of OCI. It does this by defining a set of wrappers for OCI.
By working with these higher-level abstractions, developers can avail themselves of the
underlying power of OCI to manipulate objects in the server through an object-oriented
interface that is significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of functionalities,
namely:

• Associative relational access

• Associative object access

• Navigational access

4.6.2 OCCI Associative Relational and Object Interfaces
The associative relational API and object classes provide SQL access to the database.

Chapter 4
Oracle C++ Call Interface (OCCI)

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 16

Through these interfaces, SQL is executed on the server to create, manipulate, and fetch
object or relational data. Applications can access any data type on the server, including the
following:

• Large objects

• Objects/Structured types

• Arrays

• References

4.6.3 The OCCI Navigational Interface
The navigational interface is a C++ interface that lets you seamlessly access and modify
object-relational data in the form of C++ objects without using SQL.

The C++ objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through
references from that object to other objects. Server objects are materialized as C++ class
instances in the application cache.

An application can use OCCI object navigational calls to perform the following functions on the
server's objects:

• Create, access, lock, delete, and flush objects

• Get references to the objects and navigate through them

See Also

Oracle C++ Call Interface Programmer's Guide for a complete account of how to
build applications with the Oracle C++ API

4.7 Java Tools for Accessing Oracle Objects
Oracle provides various ways to integrate Oracle object features with Java.

These interfaces enable you both to access SQL data from Java and to provide persistent
database storage for Java objects.

Topics:

• JDBC Access to Oracle Object Data

• Data Mapping Strategies

• Java Object Storage

• Defining User-Defined Constructors in Java

• JDeveloper

4.7.1 JDBC Access to Oracle Object Data
JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 16

Oracle provides tight integration between objects and JDBC. You can map SQL types to Java
classes with considerable flexibility.

Oracle JDBC:

• Allows access to objects and collection types (defined in the database) in Java programs
through dynamic SQL.

• Translates types defined in the database into Java classes through default or customizable
mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as user-
defined (object) types. JDBC materializes Oracle objects as instances of particular Java
classes. Using JDBC to access Oracle objects involves creating the Java classes for the
Oracle objects and populating these classes. You can either:

• Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the classes for
the attributes and populates them for you.

• Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the customized
Java classes that you specify, which imposes a set of constraints on the Java classes. To
satisfy these constraints, you can choose to define your classes according to either the
SQLData interface or the ORAData interface.

See Also

Oracle AI Database JDBC Developer's Guide for complete information about
JDBC

4.7.2 Data Mapping Strategies
Oracle SQLJ supports either strongly typed or weakly typed Java representations of object
types, reference types (REFs), and collection types (varrays and nested tables) to be used in
iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a particular object
type, REF type, or collection type and must implement the interface oracle.sql.ORAData. The
Oracle JVM Web services Call-Out Utility can automatically generate such custom Java
classes.

Weakly typed representations use the class oracle.sql.STRUCT (for objects), oracle.sql.REF
(for references), or oracle.sql.ARRAY (for collections).

4.7.3 Java Object Storage
Oracle JVM Web services Call-Out Utility enables you to construct Java classes that map to
existing SQL types. You can then access the SQL types from a Java application using JDBC.

You can also go in the other direction. That is, you can create SQL types that map to existing
Java classes. This capability enables you to provide persistent storage for Java objects. Such
SQL types are called SQL types of Language Java, or SQLJ object types. They can be used
as the type of an object, an attribute, a column, or a row in an object table. You can
navigationally access objects of such types—Java objects—through either object references or
foreign keys, and you can query and manipulate such objects from SQL.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 16

You create SQLJ types with a CREATE TYPE statement as you do other user-defined SQL types.
For SQLJ types, two special elements are added to the CREATE TYPE statement:

• An EXTERNAL NAME phrase, used to identify the Java counterpart for each SQLJ attribute
and method and the Java class corresponding to the SQLJ type itself

• A USING clause, to specify how the SQLJ type is to be represented to the server. The USING
clause specifies the interface used to retrieve a SQLJ type and the kind of storage.

For example:

Example 4-2 Mapping SQL Types to Java Classes

-- Mapping SQL Types to Java Classes example, not sample schema
CREATE TYPE full_address AS OBJECT (a NUMBER);
/

CREATE OR REPLACE TYPE person_t AS OBJECT
 EXTERNAL NAME 'Person' LANGUAGE JAVA
 USING SQLData (
 ss_no NUMBER (9) EXTERNAL NAME 'socialSecurityNo',
 name varchar(100) EXTERNAL NAME 'name',
 address full_address EXTERNAL NAME 'addrs',
 birth_date date EXTERNAL NAME 'birthDate',
 MEMBER FUNCTION age RETURN NUMBER EXTERNAL NAME 'age () return int',
 MEMBER FUNCTION addressf RETURN full_address
 EXTERNAL NAME 'get_address () return long_address',
 STATIC function createf RETURN person_t EXTERNAL NAME 'create ()
 return Person',
 STATIC function createf (name VARCHAR2, addrs full_address, bDate DATE)
 RETURN person_t EXTERNAL NAME 'create (java.lang.String, Long_address,
 oracle.sql.date) return Person',
 ORDER member FUNCTION compare (in_person person_t) RETURN NUMBER
 EXTERNAL NAME 'isSame (Person) return int')
/

SQLJ types use the corresponding Java class as the body of the type; you do not specify a
type body in SQL to contain implementations of the type's methods as you do with ordinary
object types.

See Also

Oracle AI Database Java Developer’s Guide

4.7.3.1 Creating SQLJ Object Types
You can create SQLJ object types using SQL statements

The SQL statements to create SQLJ types and specify their mappings to Java are placed in a
file called a deployment descriptor. Related SQL constraints and privileges are also specified
in this file. The types are created when the file is executed.

Below is an overview of the process of creating SQL versions of Java types/classes:

1. Design the Java types.

2. Generate the Java classes.

3. Create the SQLJ object type statements.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 16

4. Construct the JAR file. This is a single file that contains all the classes needed.

5. Using the loadjava utility, install the Java classes defined in the JAR file.

6. Execute the statements to create the SQLJ object types.

4.7.3.2 Additional Notes About Mapping
The following are additional notes to consider when mapping of Java classes to SQL types:

• You can map a SQLJ static function to a user-defined constructor in the Java class. The
return value of this function is of the user-defined type in which the function is locally
defined.

• Java static variables are mapped to SQLJ static methods that return the value of the
corresponding static variable identified by EXTERNAL NAME. The EXTERNAL NAME clause for an
attribute is optional with a SQLData or ORAData representation.

• Every attribute in a SQLJ type of a SQL representation must map to a Java field, but not
every Java field must be mapped to a corresponding SQLJ attribute: you can omit Java
fields from the mapping.

• You can omit classes: you can map a SQLJ type to a non-root class in a Java class
hierarchy without also mapping SQLJ types to the root class and intervening superclasses.
Doing this enables you to hide the superclasses while still including attributes and methods
inherited from them.

However, you must preserve the structural correspondence between nodes in a class
hierarchy and their counterparts in a SQLJ type hierarchy. In other words, for two Java
classes j_A and j_B that are related through inheritance and are mapped to two SQL types
s_A and s_B, respectively, there must be exactly one corresponding node on the
inheritance path from s_A to s_B for each node on the inheritance path from j_A to j_B.

• You can map a Java class to multiple SQLJ types as long as you do not violate the
restriction in the preceding paragraph. In other words, no two SQLJ types mapped to the
same Java class can have a common supertype ancestor.

• If all Java classes are not mapped to SQLJ types, it is possible that an attribute of a SQLJ
object type might be set to an object of an unmapped Java class. Specifically, to a class
occurring above or below the class to which the attribute is mapped in an inheritance
hierarchy. If the object's class is a superclass of the attribute's type/class, an error is
raised. If it is a subclass of the attribute's type/class, the object is mapped to the most
specific type in its hierarchy for which a SQL mapping exists

4.7.3.3 SQLJ Type Evolution
You can evole SQLJ types using the ALTER TYPE statement.

The ALTER TYPE statement enables you to evolve a type by, for example, adding or dropping
attributes or methods.

When a SQLJ type is evolved, an additional validation is performed to check the mapping
between the class and the type. If the class and the evolved type match, the type is marked
valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A type that is
pending validation can still be manipulated with ALTER TYPE and GRANT statements, for
example.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 16

If a type that has a SQL representation is marked as pending evaluation, you can still access
tables of that type using any DML or SELECT statement that does not require a method
invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that has a
serializable representation and has been marked as pending validation. Data of a serializable
type can be accessed only navigationally, through method invocations. These are not possible
with a type that is pending validation. However, you can still re-evolve the type until it passes
validation.

See "Type Evolution".

4.7.3.4 Constraints
For SQLJ types having a SQL representation, the same constraints can be defined as for
ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level. The
following constraints are supported for SQLJ types having a SQL representation:

• Unique constraints

• Primary Key

• Check constraints

• NOT NULL constraints on attributes

• Referential constraints

The IS OF TYPE constraint on column substitutability is supported, too, for SQLJ types having a
SQL representation. See "Constraining Substitutability".

4.7.3.5 Querying SQLJ Objects
SQLJ types can be queried just like ordinary SQL object types.

• Query SQLJ types just like ordinary object types.

Methods called in a SELECT statement must not attempt to change attribute values.

4.7.3.6 Inserting Java Objects
You can insert Java objects into tables.

Inserting a row in a table containing a column of a SQLJ type requires a call to the type's
constructor function to create a Java object of that type.

• Use an implicit, system-generated constructor, or define a static function that maps to a
user-defined constructor in the Java class.

4.7.3.7 Updating SQLJ Objects
You can update SQLJ objects several ways.

SQLJ objects can be updated by:

• Using an UPDATE statement to modify the value of one or more attributes

• Invoking a method that updates the attributes and returns SELF—that is, returns the object
itself with the changes made.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 16

For example, suppose that raise() is a member function that increments the salary field/
attribute by a specified amount and returns SELF. The following statement gives every
employee in the object table employee_objtab a raise of 1000:

UPDATE employee_objtab SET c=c.raise(1000);

A column of a SQLJ type can be set to NULL or to another column using the same syntax as for
ordinary object types. For example, the following statement assigns column d to column c:

UPDATE employee_reltab SET c=d;

4.7.4 Defining User-Defined Constructors in Java
When you implement a user-defined constructor in Java, the supply the string supplied as the
implementing routine must correspond to a static function. For the return type of the function,
specify the Java type mapped to the SQL type.

When you implement a user-defined constructor in Java, the string supplied as the
implementing routine must correspond to a static function. For the return type of the function,
specify the Java type mapped to the SQL type.

Example 4-3 is an example of a type declaration that involves a user-defined constructor
implemented in Java.

Example 4-3 Defining a User-Defined Constructor in Java

-- Defining a User-Defined Constructor in Java example, not sample schema
CREATE TYPE person1_typ AS OBJECT
 EXTERNAL NAME 'pkg1.J_Person' LANGUAGE JAVA
 USING SQLData(
 name VARCHAR2(30),
 age NUMBER,
 CONSTRUCTOR FUNCTION person1_typ(SELF IN OUT NOCOPY person1_typ, name VARCHAR2,
 age NUMBER) RETURN SELF AS RESULT
 AS LANGUAGE JAVA
 NAME 'pkg1.J_Person.J_Person(java.lang.String, int) return J_Person')
/

4.7.5 JDeveloper
Oracle JDeveloper is a full-featured, cross-platform, integrated development environment for
creating multitier Java applications that is well integrated with Oracle Application Server and
Database.

Oracle JDeveloper enables you to develop, debug, and deploy Java client applications,
dynamic HTML applications, web and application server components, JavaBean components,
and database stored procedures based on industry-standard models.

JDeveloper is also the integrated development environment for ADF and TopLink.

4.7.5.1 Application Development Framework (ADF)
ADF is a framework for building scalable enterprise Java EE applications. Developers can use
ADF to build applications where the application data is persisted to Oracle Object tables as
well as other schema objects.

Chapter 4
Java Tools for Accessing Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 16

4.7.5.2 TopLink
TopLink is a framework for mapping Java objects to a variety of persistence technologies,
including databases, and provides facilities to build applications leveraging Oracle Objects.

4.8 XML
XMLType views wrap existing relational and object-relational data in XML formats. These views
are similar to object views. Each row of an XMLType view corresponds to an XMLType instance.
The object identifier for uniquely identifying each row in the view can be created using an
expression such as extract() on the XMLType value.

See Also

Oracle XML DB Developer's Guide for information and examples on using XML with
Oracle objects

4.9 Utilities Providing Support for Objects
This section describes several Oracle utilities that provide support for Oracle objects.

This section contains these topics:

• Import/Export of Object Types

• SQL*Loader

4.9.1 Import/Export of Object Types
Export and Import utilities move data into and out of Oracle AI Database instances. They also
back up or archive data and aid migration to different releases of the Oracle RDBMS.

Export and Import support object types. Export writes object type definitions and all of the
associated data to the dump file. Import then re-creates these items from the dump file.

When you import object tables, by default, OIDs are preserved.

See Also

Oracle AI Database Utilities for instructions on how to use the Import and Export
utilities

4.9.1.1 Types
The definition statements for derived types are exported. On an Import, a subtype may be
created before the supertype definition has been imported. In this case, the subtype is created
with compilation errors, which may be ignored. The type is revalidated after its supertype is
created.

Chapter 4
XML

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 16

4.9.1.2 Object View Hierarchies
View definitions for all views belonging to a view hierarchy are exported.

4.9.2 SQL*Loader
The SQL*Loader utility moves data from external files into tables in Oracle AI Database.

The files SQL*Loader moves may contain data consisting of basic scalar data types, such as
INTEGER, CHAR, or DATE, as well as complex user-defined data types such as row and column
objects (including objects that have object, collection, or REF attributes), collections, and LOBs.
Currently, SQL*Loader supports single-level collections only: you cannot yet use SQL*Loader
to load multilevel collections, that is, collections whose elements are, or contain, other
collections. SQL*Loader uses control files, which contain SQL*Loader data definition language
(DDL) statements, to describe the format, content, and location of the datafiles.

SQL*Loader provides two approaches to loading data:

• Conventional path loading, which uses the SQL INSERT statement and a bind array buffer
to load data into database tables

• Direct path loading, which uses the Direct Path Load API to write data blocks directly to
the database on behalf of the SQL*Loader client.

Direct path loading does not use a SQL interface and thus avoids the overhead of
processing the associated SQL statements. Consequently, direct path loading generally
provides much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection data types.

See Also

Oracle AI Database Utilities for instructions on how to use SQL*Loader

Chapter 4
Utilities Providing Support for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 16

5
Support for Collection Data Types

There are different ways create and manage these collection types: varrays and nested tables.

See Also

Oracle AI Database PL/SQL Language Reference for a complete introduction to
collections

Topics:

• Collection Data Types

• Multilevel Collection Types

• Operations on Collection Data Types

• Partitioning Tables That Contain Oracle Objects

5.1 Collection Data Types
Oracle supports the varray and nested table collection data types.

• A varray is an ordered collection of elements.

• A nested table can have any number of elements and is unordered.

If you need to store only a fixed number of items, or loop through the elements in order, or
often need to retrieve and manipulate the entire collection as a value, then use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of elements, or
perform mass insert, update, or delete operations, then use a nested table.

Topics:

• Creating a Collection Type

• Creating a Collection Type

• Creating an Instance of a VARRAY or Nested Table

• Using the Constructor Method to Insert Values into a Nested Table

• About Varrays

• Nested Tables

• Increasing the Size and Precision of VARRAY and Nested Table Elements

• Increasing VARRAY Limit Size

• Creating a Varray Containing LOB References

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 28

See Also

For more information on using nested tables, see "Design Considerations for
Collections".

5.1.1 Creating a Collection Type
You use CREATE TYPE and CREATE TYPE BODY to create a nested table type.

Example 5-1 demonstrates creating a person_typ object and a people_typ as a nested table
type of person_typ objects, as well as the people_tab table. These objects and tables are
used in other examples.

Example 5-1 CREATE TYPE person_typ for Subsequent Examples

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the put_line procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.put_line(TO_CHAR(idno) || ' - ' || name || ' - ' || phone);
 END;
END;
/

CREATE TYPE people_typ AS TABLE OF person_typ; -- nested table type
/

CREATE TABLE people_tab (
 group_no NUMBER,
 people_column people_typ) -- an instance of nested table
 NESTED TABLE people_column STORE AS people_column_nt; -- storage table for NT

5.1.2 Creating an Instance of a VARRAY or Nested Table
You create an instance of a collection type by calling the constructor method of the type, in the
same way that you create an instance of any other object type.

The following example demonstrates how you can create an instance of a nested table by
using the nested table constructor, and then how you can insert the nested table instance into
the people_tab table. The name of a constructor method is simply the name of the type.
Specify the elements of the collection as a comma-delimited list of arguments to the method.

declare
 people_coll people_typ;
 empty_people_coll people_typ;

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 28

begin
 -- Create an instance of collection PEOPLE_TYP.
 people_coll := people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
person_typ(2, 'Jane Doe', '1-650-505-1234'));
 -- Create a collection of PEOPLE_TYP with no elements.
 empty_people_coll := people_typ();
 -- INSERT the collection into the PEOPLE_TAB table
 INSERT INTO people_tab VALUES (10, people_coll);
 INSERT INTO people_tab vaLUES (20, empty_people_coll);
 COMMIT;
end;
/

Calling a constructor method with an empty list creates an empty collection of that type. Note
that an empty collection is an actual collection that happens to be empty; it is not the same as
a null collection.

See Design Considerations for Nested Tables for more information on using nested tables.

5.1.3 Using the Constructor Method to Insert Values into a Nested Table
You can use a constructor method in a SQL statement to insert values into a nested table.

Example 5-2 uses the table and types created in Example 5-1. The following example
demonstrates how to use the constructor method in a SQL statement to insert values into the
people_column column. This example uses a literal invocation of the constructor method.

Example 5-2 Using the Constructor Method to Insert Values into a Nested Table

INSERT INTO people_tab VALUES (
 100,
 people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
 person_typ(2, 'Diane Smith', NULL)));

You can also insert values into an empty nested-table instance as shown in the following
example.

-- Insert values into an empty nested-table instance
INSERT INTO people_tab VALUES (10, people_tab());

5.1.4 Invoking Constructors Literally to Specify Defaults
When you declare a table column to be of an object type or collection type, you can include a
DEFAULT clause.

This provides a value to use in cases where you do not explicitly specify a value for the
column.

The DEFAULT clause must contain a literal invocation of the constructor method for that object
or collection.

Example 5-3 shows how to use literal invocations of constructor methods to specify defaults for
the person_typ object and the people_typ nested table:

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 28

Example 5-3 Using Literal Invocations of Constructor Methods to Specify Defaults

-- requires Ex. 5-1
CREATE TABLE department_persons (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person_typ DEFAULT person_typ(10,'John Doe',NULL),
 dept_emps people_typ DEFAULT people_typ()) -- instance of nested table type
 NESTED TABLE dept_emps STORE AS dept_emps_tab;

INSERT INTO department_persons VALUES
 (101, 'Physical Sciences', person_typ(65,'Vrinda Mills', '1-650-555-0125'),
 people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
 person_typ(2, 'Diane Smith', NULL)));
INSERT INTO department_persons VALUES
 (104, 'Life Sciences', person_typ(70,'James Hall', '1-415-555-0101'),
 people_typ()); -- an empty people_typ table

Note that people_typ() is a literal invocation of the constructor method for an empty
people_typ nested table.

The department_persons table can be queried in two ways as shown in Example 5-16 and
Example 5-17.

5.1.5 About Varrays
A varray is an ordered set of data elements. All elements of a given varray are of the same
data type or a subtype of the declared one. Each element has an index, which is a number
corresponding to the position of the element in the array. The index number is used to access a
specific element.

When you define a varray, you specify the maximum number of elements it can contain,
although you can change this number later. The number of elements in an array is the size of
the array.

The following statement creates an array type email_list_arr that has no more than ten
elements, each of data type VARCHAR2(80).

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/

5.1.6 Creating and Populating a VARRAY
Creating an array type, as with a SQL object type, does not allocate space.

It defines a data type, which you can use as:

• The data type of a column of a relational table.

• An object type attribute.

• The type of a PL/SQL variable, parameter, or function return value.

Example 5-4 creates a VARRAY type that is an array of an object type. The phone_varray_typ
VARRAY type is used as a data type for a column in the dept_phone_list table. The INSERT
statements show how to insert values into phone_varray_typ by invoking the constructors for
the varray phone_varray_typ and the object phone_typ.

You can create a VARRAY type of XMLType or LOB type for procedural purposes, such as in
PL/SQL or view queries. However, database storage for varrays of these types is not

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 28

supported. Thus you cannot create an object table or an object type column of a varray type of
XMLType or LOB type.

Example 5-4 Creating and Populating a VARRAY Data Type

CREATE TYPE phone_typ AS OBJECT (
 country_code VARCHAR2(2),
 area_code VARCHAR2(3),
 ph_number VARCHAR2(7));
/
CREATE TYPE phone_varray_typ AS VARRAY(5) OF phone_typ;
/
CREATE TABLE dept_phone_list (
 dept_no NUMBER(5),
 phone_list phone_varray_typ);

INSERT INTO dept_phone_list VALUES (
 100,
 phone_varray_typ(phone_typ ('01', '650', '5550123'),
 phone_typ ('01', '650', '5550148'),
 phone_typ ('01', '650', '5550192')));

A varray is normally stored inline, that is, in the same tablespace as the other data in its row. If
it is sufficiently large, Oracle stores it as a BLOB.

See Also

• "Storage Considerations for Varrays"

• See Oracle AI Database SQL Language Reference for information and examples
on the STORE AS LOB clause of the CREATE TABLE statement.

5.1.7 Nested Tables
A nested table is an unordered set of data elements, all of the same data type. No maximum is
specified in the definition of the table, and the order of the elements is not preserved. You
select, insert, delete, and update in a nested table just as you do with ordinary tables using the
TABLE expression.

A nested table can be viewed as a single column. If the column in a nested table is an object
type, the table can also be viewed as a multi-column table, with a column for each attribute of
the object type.

Topics:

• Creating Nested Tables

• Storing Elements of Nested Tables

• Specifying a Tablespace When Storing a Nested Table

5.1.7.1 Creating Nested Tables
To create nested table types, use the CREATE TYPE ... AS TABLE OF statement. For example:

CREATE TYPE people_typ AS TABLE OF person_typ;

A table type definition does not allocate space. It defines a type, which you can use as:

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 28

• The data type of a column of a relational table.

• An object type attribute.

• A PL/SQL variable, parameter, or function return type.

5.1.7.2 Storing Elements of Nested Tables
Elements of a nested table are actually stored in a separate storage table.

Oracle stores nested table data in a single storage table associated with the object table for
both nested table types that are columns in a relational table or attributes in an object table.
The storage table contains a column that identifies the parent table row or object that each
element of the nested table belongs to. See Figure 9-2.

The NESTED TABLE..STORE AS clause specifies storage names for nested tables. Storage
names are used to create an index on a nested table.

Example 5-5 demonstrates creating and populating a nested table, and specifying the nested
table storage using the person_typ object and the people_typ nested table as defined in
Example 5-1.

Example 5-5 Creating and Populating Simple Nested Tables

-- Requires 5-1
CREATE TABLE students (
 graduation DATE,
 math_majors people_typ, -- nested tables (empty)
 chem_majors people_typ,
 physics_majors people_typ)
 NESTED TABLE math_majors STORE AS math_majors_nt -- storage tables
 NESTED TABLE chem_majors STORE AS chem_majors_nt
 NESTED TABLE physics_majors STORE AS physics_majors_nt;

CREATE INDEX math_idno_idx ON math_majors_nt(idno);
CREATE INDEX chem_idno_idx ON chem_majors_nt(idno);
CREATE INDEX physics_idno_idx ON physics_majors_nt(idno);

INSERT INTO students (graduation) VALUES ('01-JUN-03');
UPDATE students
 SET math_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(45, 'Chris Woods', '415-555-0124')),
 chem_majors =
 people_typ (person_typ(51, 'Joe Lane', '650-555-0140'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(52, 'Kim Patel', '650-555-0135')),
 physics_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),
 person_typ(45, 'Chris Woods', '415-555-0124'))
WHERE graduation = '01-JUN-03';

SELECT m.idno math_id, c.idno chem_id, p.idno physics_id FROM students s,
 TABLE(s.math_majors) m, TABLE(s.chem_majors) c, TABLE(s.physics_majors) p;

A convenient way to access the elements of a nested table individually is to use a nested
cursor or the TABLE function. See "Collection Querying".

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 28

5.1.7.3 Specifying a Tablespace When Storing a Nested Table
A nested table can be stored in a different tablespace than its parent table.

In Example 5-6, the nested table is stored in the system tablespace:

Example 5-6 Specifying a Different Tablespace for Storing a Nested Table

-- Requires Ex. 5-1, must remove code in Ex. 5-2 if created
CREATE TABLE people_tab (
 people_column people_typ)
 NESTED TABLE people_column STORE AS people_column_nt (TABLESPACE system);

If the TABLESPACE clause is not specified, then the storage table of the nested table is created
in the tablespace where the parent table is created. For multilevel nested tables, Oracle
creates the child table in the same tablespace as its immediately preceding parent table.

You can issue an ALTER TABLE.. MOVE statement to move a table to a different tablespace. If
you do this on a table with nested table columns, only the parent table moves; no action is
taken on the storage tables of the nested table. To move a storage table for a nested table to a
different tablespace, issue ALTER TABLE.. MOVE on the storage table. For example:

ALTER TABLE people_tab MOVE TABLESPACE system; -- moving table
ALTER TABLE people_column_nt MOVE TABLESPACE example; -- moving storage table

Now the people_tab table is in the system tablespace and the nested table storage is stored in
the example tablespace.

5.1.8 Increasing the Size and Precision of VARRAY and Nested Table
Elements

You can increase the size of the variable character or RAW type, or increase the precision of the
numeric type when the element type of a VARRAY type or nested table type is a variable
character, or a RAW or numeric type.

A new type version is generated for the VARRAY type or nested table type.

You make these changes using an ALTER TYPE..MODIFY statement, which has this option:

CASCADE: Propagates the change to its type and table dependents

See Also

"ALTER TYPE Statement for Type Evolution" for further description of CASCADE

Example 5-7 increases the sizes of a VARRAY and a nested table element type.

Example 5-7 Increasing the Size of an Element Type in a VARRAY and Nested Table

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/
ALTER TYPE email_list_arr MODIFY ELEMENT TYPE VARCHAR2(100) CASCADE;

CREATE TYPE email_list_tab AS TABLE OF VARCHAR2(30);
/
ALTER TYPE email_list_tab MODIFY ELEMENT TYPE VARCHAR2(40) CASCADE;

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 28

5.1.9 Increasing VARRAY Limit Size
The ALTER TYPE ... MODIFY LIMIT syntax allows you to increase the number of elements of a
VARRAY type.

If you increase the number of elements of a VARRAY type, a new type version is generated for
the VARRAY type, and becomes part of the type change history.

The ALTER TYPE ... MODIFY LIMIT statement has these options:

• INVALIDATE: Invalidates all dependent objects

• CASCADE: Propagates the change to its type and table dependents

Example 5-8 Increasing the VARRAY Limit Size

-- if you have already creating following types, drop them.
DROP TYPE email_list_tab FORCE;
DROP TYPE email_list_arr FORCE;
CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/
CREATE TYPE email_list_typ AS OBJECT (
 section_no NUMBER,
 emails email_list_arr);
/

CREATE TYPE email_varray_typ AS VARRAY(5) OF email_list_typ;
/

ALTER TYPE email_varray_typ MODIFY LIMIT 100 INVALIDATE;

When a VARRAY type is altered, changes are propagated to the dependent tables.

See Also

"About Propagating VARRAY Size Change".

5.1.10 Creating a Varray Containing LOB References
To create a varray of LOB references, first define a VARRAY type of type REF.

Note: The following example refers to email_list_typ which was defined in Example 5-8. This
example creates a table dept_email_list and defines a column email_addrs of the array type
in it.

Example 5-9 Creating a VARRAY Containing LOB References

-- Requires Ex. 5-8
CREATE TYPE ref_email_varray_typ AS VARRAY(5) OF REF email_list_typ;
/

CREATE TABLE dept_email_list (
 dept_no NUMBER,
 email_addrs ref_email_varray_typ)
 VARRAY email_addrs STORE AS LOB dept_emails_lob3;

Chapter 5
Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 28

5.2 Multilevel Collection Types
Multilevel collection types are collection types whose elements are themselves directly or
indirectly another collection type.

Possible multilevel collection types are:

• Nested table of nested table type

• Nested table of varray type

• Varray of nested table type

• Varray of varray type

• Nested table or varray of a user-defined type that has an attribute that is a nested table or
varray type

Like single-level collection types, multilevel collection types:

• Can be used as columns in a relational table or with object attributes in an object table.

• Require that both the source and the target be of the same declared data type for
assignment.

Topics:

• Nested Table Storage Tables for Multilevel Collection Types

• Varray Storage for Multilevel Collections

• Constructors for Multilevel Collections

5.2.1 Nested Table Storage Tables for Multilevel Collection Types
To use a multilevel nested table collection of nested tables, you must specify a nested-table
storage clause.

A nested table type column or object table attribute requires a storage table to store rows for all
its nested tables as described in "Storing Elements of Nested Tables".

With a multilevel nested table collection of nested tables, you must specify a nested-table
storage clause (STORE AS) for both the inner set and the outer set of nested tables. You must
have as many nested table storage clauses as you have levels of nested tables in a collection.

Every nested table storage table contains a column, referenceable by NESTED_TABLE_ID, that
keys rows in the storage table to the associated row in the parent table. A parent table that is
itself a nested table has two system-supplied ID columns:

• A system-supplied ID column that is referenceable by NESTED_TABLE_ID, which keys its
rows back to rows in its parent table.

• A system-supplied ID column that is hidden and referenced by the NESTED_TABLE_ID
column in its nested table children.

If you do not specify a primary key with a NESTED_TABLE_ID column, then the database
automatically creates a b-tree index on the NESTED_TABLE_ID column for better performance.

Chapter 5
Multilevel Collection Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 28

See Also

• "Nested Table Storage"

• "Unnesting Queries with Multilevel Collections"

• See Example 5-12 for an example where the nested table has a primary key in
which the first column is NESTED_TABLE_ID.

Topics:

• Creating Multilevel Nested Table Storage

• Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword

• Specifying Physical Attributes for Nested Table Storage

5.2.1.1 Creating Multilevel Nested Table Storage
You can create a nested table of nested tables.

Example 5-10 creates the multilevel collection type nt_country_typ, a nested table of nested
tables. The example models a system of corporate regions in which each region has a nested
table collection of the countries, and each country has a nested table collection of its locations.
This example requires the regions, countries, and locations tables of the Oracle HR sample
schema.

In Example 5-10, the SQL statements create the table region_tab, which contains the column
countries, whose type is a multilevel collection, nt_country_typ. This multilevel collection is a
nested table of an object type that has the nested table attribute locations. Separate nested
table clauses are provided for the outer countries nested table and for the inner locations
nested table.

In Example 5-10 you can refer to the inner nested table locations by name because this
nested table is a named attribute of an object. However, if the inner nested table is not an
attribute of an object, it has no name. The keyword COLUMN_VALUE is provided for this case. See
Example 5-11

Example 5-10 Multilevel Nested Table Storage

-- Requires the HR sample schema
CREATE TYPE location_typ AS OBJECT (
 location_id NUMBER(4),
 street_address VARCHAR2(40),
 postal_code VARCHAR2(12),
 city VARCHAR2(30),
 state_province VARCHAR2(25));
/

CREATE TYPE nt_location_typ AS TABLE OF location_typ; -- nested table type
/

CREATE TYPE country_typ AS OBJECT (
 country_id CHAR(2),
 country_name VARCHAR2(40),
 locations nt_location_typ); -- inner nested table
/

CREATE TYPE nt_country_typ AS TABLE OF country_typ; -- multilevel collection type
/

Chapter 5
Multilevel Collection Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 28

CREATE TABLE region_tab (
 region_id NUMBER,
 region_name VARCHAR2(25),
 countries nt_country_typ) -- outer nested table
 NESTED TABLE countries STORE AS nt_countries_tab
 (NESTED TABLE locations STORE AS nt_locations_tab);

See Also

Oracle AI Database Sample Schemas for information on using sample schemas

5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE
Keyword

You can use the keyword COLUMN_VALUE place of a name for an inner nested table.

In Example 5-11 an inner nested table is unnamed and represented by the keyword
COLUMN_VALUE.

Example 5-11 Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword

CREATE TYPE inner_table AS TABLE OF NUMBER;
/
CREATE TYPE outer_table AS TABLE OF inner_table;
/
CREATE TABLE tab1 (
 col1 NUMBER, -- inner nested table, unnamed
 col2 outer_table)
NESTED TABLE col2 STORE AS col2_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cv_ntab);

5.2.1.3 Specifying Physical Attributes for Nested Table Storage
You can physical attributes for nested table storage.

Example 5-12 shows how to specify physical attributes for the storage tables in the nested
table clause.

Specifying a primary key with NESTED_TABLE_ID as the first column and index-organizing the
table causes Oracle AI Database to physically cluster all the nested table rows that belong to
the same parent row, for more efficient access. In Example 5-12 the nested table has a primary
key in which the first column is NESTED_TABLE_ID. This column contains the ID of the row in the
parent table with which a storage table row is associated.

Example 5-12 Specifying Physical Attributes for Nested Table Storage

-- Requires Ex. 5-10
-- drop the following if you have previously created it
DROP TABLE region_tab FORCE;

CREATE TABLE region_tab (
 region_id NUMBER,
 region_name VARCHAR2(25),
 countries nt_country_typ)
 NESTED TABLE countries STORE AS nt_countries_tab (

Chapter 5
Multilevel Collection Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 28

 (PRIMARY KEY (NESTED_TABLE_ID, country_id))
 NESTED TABLE locations STORE AS nt_locations_tab);

5.2.2 Varray Storage for Multilevel Collections
Multilevel varrays are stored in one of two ways, depending on whether the varray is a varray
of varrays or a varray of nested tables.

• In a varray of varrays, the entire varray is stored inline in the row unless it is larger than
approximately 4000 bytes or LOB storage is explicitly specified.

• In a varray of nested tables, the entire varray is stored in a LOB, with only the LOB locator
stored in the row. There is no storage table associated with nested table elements of a
varray.

You can explicitly specify LOB storage for varrays.

See Also

• Storage Considerations for Varrays

• Oracle AI Database SecureFiles and Large Objects Developer's Guide for a
general understanding of LOBs

5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type
You can explicitly specify LOB storage for VARRAYs of VARRAY type.

Example 5-13 shows explicit LOB storage specified for a VARRAYof VARRAY type..

Example 5-13 Specifying LOB Storage for a VARRAY of VARRAY Type

-- Requires Ex. 5-8, drop following if created

DROP TYPE email_varray_typ FORCE;
CREATE TYPE email_list_typ2 AS OBJECT (
 section_no NUMBER,
 emails email_list_arr);
/

CREATE TYPE email_varray_typ AS VARRAY(5) OF email_list_typ2;
/

CREATE TABLE dept_email_list2 (
 dept_no NUMBER,
 email_addrs email_varray_typ)
 VARRAY email_addrs STORE AS LOB dept_emails_lob2;

5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs
You can explicitly specify LOB storage for a nested table of varray elements.

Example 5-14 shows the COLUMN_VALUE keyword used with varrays. See Example 5-11 for
discussion of this keyword and its use with nested tables.

Chapter 5
Multilevel Collection Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 28

Example 5-14 Specifying LOB Storage for a Nested Table of VARRAYs

-- drop the following types if you have created them
DROP TYPE email_list_typ FORCE;
DROP TABLE dept_email_list FORCE;
DROP TYPE email_list_arr FORCE;

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/

CREATE TYPE email_list_typ AS TABLE OF email_list_arr;
/

CREATE TABLE dept_email_list (
 dept_no NUMBER,
 email_addrs email_list_typ)
 NESTED TABLE email_addrs STORE AS email_addrs_nt
 (
VARRAY COLUMN_VALUE STORE AS LOB
 dept_emails_lob);

5.2.5 Constructors for Multilevel Collections
Multilevel collection types are created by calling the constructor of the respective type, just like
single-level collections and other object types.

The constructor for a multilevel collection type is a system-defined function that has the same
name as the type and returns a new instance of it. Constructor parameters have the names
and types of the attributes of the object type.

Example 5-15 shows the constructor call for the multilevel collection type nt_country_typ. The
nt_country_typ constructor calls the country_typ constructor, which calls the
nt_location_typ, which calls the location_typ constructor.

Note

nt_country_typ is a multilevel collection because it is a nested table that contains
another nested table as an attribute.

Example 5-15 Using Constructors for Multilevel Collections

-- Requires 5-10 and HR sample schema
INSERT INTO region_tab
VALUES(1, 'Europe', nt_country_typ(
 country_typ('IT', 'Italy', nt_location_typ (
 location_typ(1000, '1297 Via Cola di Rie','00989','Roma', ''),
 location_typ(1100, '93091 Calle della Testa','10934','Venice',''))
),
 country_typ('CH', 'Switzerland', nt_location_typ (
 location_typ(2900, '20 Rue des Corps-Saints', '1730', 'Geneva', 'Geneve'),
 location_typ(3000, 'Murtenstrasse 921', '3095', 'Bern', 'BE'))
),
 country_typ('UK', 'United Kingdom', nt_location_typ (
 location_typ(2400, '8204 Arthur St', '', 'London', 'London'),
 location_typ(2500, 'Magdalen Centre, The Oxford Science Park', 'OX9 9ZB',
 'Oxford', 'Oxford'),
 location_typ(2600, '9702 Chester Road', '09629850293', 'Stretford',
 'Manchester'))

Chapter 5
Multilevel Collection Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 28

)
)
);

5.3 Operations on Collection Data Types
Operations on collection data types includes querying and comparing.

Topics:

• Collection Querying

• DML Operations on Collections

• Using BULK COLLECT to Return Entire Result Sets

• Conditions that Compare Nested Tables

• Multiset Operations for Nested Tables

5.3.1 Collection Querying
There are two general ways to query a table that contains a collection type as a column or
attribute.

• Nest the collections in the result rows that contain them.

• Distribute or unnest collections so that each collection element appears on a row by itself.

Topics:

• Nesting Results of Collection Queries

• Unnesting Results of Collection Queries

• Unnesting Queries Containing Table Expression Subqueries

• Using a Table Expression in a CURSOR Expression

• Unnesting Queries with Multilevel Collections

5.3.1.1 Nesting Results of Collection Queries
Querying a collection column in the SELECT list nests the elements of the collection in the result
row that the collection is associated with.

The queries in Example 5-16 use the department_persons table shown in Example 5-3.

The column dept_emps is a nested table collection of person_typ type. The dept_emps
collection column appears in the SELECT list like an ordinary scalar column

Example 5-16 Nesting Results of Collection Queries

-- Requires Ex. 5-1 and Ex. 5-3
SELECT d.dept_emps
 FROM department_persons d;

These queries retrieve this nested collection of employees.

DEPT_EMPS(IDNO, NAME, PHONE)

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 28

PEOPLE_TYP(PERSON_TYP(1, 'John Smith', '1-650-555-0135'),
PERSON_TYP(2, 'Diane Smith', '1-650-555-0135'))

The results are also nested if an object type column in the SELECT list contains a collection
attribute, even if that collection is not explicitly listed in the SELECT list itself. For example, the
query SELECT * FROM department_persons produces a nested result.

5.3.1.2 Unnesting Results of Collection Queries
You can unnest the results of collection queries.

Unnesting collection query results is useful because not all tools or applications can deal with
results in a nested format. To view Oracle collection data using tools that require a
conventional format, you must unnest, or flatten, the collection attribute of a row into one or
more relational rows. You can do this using a TABLE expression with the collection. TABLE
expressions enable you to query a collection in the FROM clause like a table. In effect, you join
the nested table with the row that contains the nested table.

TABLE expressions can be used to query any collection value expression, including transient
values such as variables and parameters.

See Also

Oracle AI Database SQL Language Reference for further information on the TABLE
expression and unnesting collections

The query in Example 5-17, like that of Example 5-16, retrieves the collection of employees,
but here the collection is unnested.

Example 5-17 Unnesting Results of Collection Queries

-- Requires Ex. 5-1 and 5-3
SELECT e.*
 FROM department_persons d, TABLE(d.dept_emps) e;

Output:

IDNO NAME PHONE
---------- ------------------------------ ---------------
1 John Smith 1-650-555-0135
2 Diane Smith 1-650-555-0135

Example 5-17 shows that a TABLE expression can have its own table alias. A table alias for the
TABLE expression appears in the SELECT list to select columns returned by the TABLE
expression.

The TABLE expression uses another table alias to specify the table that contains the collection
column that the TABLE expression references. The expression TABLE(d.dept_emps) specifies
the department_persons table as containing the dept_emps collection column. To reference a
table column, a TABLE expression can use the table alias of any table appearing to the left of it
in a FROM clause. This is called left correlation.

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 28

In Example 5-17, the department_persons table is listed in the FROM clause solely to provide a
table alias for the TABLE expression to use. No columns from the department_persons table
other than the column referenced by the TABLE expression appear in the result.

The following example produces rows only for departments that have employees.

SELECT d.dept_no, e.*
 FROM department_persons d, TABLE(d.dept_emps) e;

To get rows for departments with or without employees, you can use outer-join syntax:

SELECT d.dept_no, e.*
 FROM department_persons d, TABLE(d.dept_emps) (+) e;

The (+) indicates that the dependent join between department_persons and e.dept_emps
should be NULL-augmented. That is, there will be rows of department_persons in the output for
which e.dept_emps is NULL or empty, with NULL values for columns corresponding to
e.dept_emps.

5.3.1.3 Unnesting Queries Containing Table Expression Subqueries
A TABLE expression can contain a subquery of a collection.

This is an alternative to the examples in "Unnesting Results of Collection Queries" which show
a TABLE expression that contains the name of a collection.

Example 5-18 returns the collection of employees whose department number is 101.

Example 5-18 Using a Table Expression Containing a Subquery of a Collection

-- Requires Ex. 5-1 and 5-3
SELECT *
 FROM TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101);

Subqueries in a TABLE expression have these restrictions:

• The subquery must return a collection type.

• The SELECT list of the subquery must contain exactly one item.

• The subquery must return only a single collection; it cannot return collections for multiple
rows. For example, the subquery SELECT dept_emps FROM department_persons succeeds
in a TABLE expression only if table department_persons contains just a single row. If the
table contains more than one row, the subquery produces an error.

5.3.1.4 Using a Table Expression in a CURSOR Expression
You can use a TABLE expression in a CURSOR expression.

Example 5-19 shows a TABLE expression used in the FROM clause of a SELECT embedded in a
CURSOR expression.

Example 5-19 Using a Table Expression in a CURSOR Expression

-- Requires Ex. 5-1 and 5-3
SELECT d.dept_no, CURSOR(SELECT * FROM TABLE(d.dept_emps))
 FROM department_persons d
 WHERE d.dept_no = 101;

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 28

5.3.1.5 Unnesting Queries with Multilevel Collections
Unnesting queries can be also used with multilevel collections, both varrays and nested tables.

Example 5-20 shows an unnesting query on a multilevel nested table collection of nested
tables. From the table region_tab where each region has a nested table of countries and
each country has a nested table of locations, the query returns the names of all regions,
countries, and locations.

Example 5-20 Unnesting Queries with Multilevel Collections Using the TABLE Function

-- Requires Ex. 5-10 and 5-15
SELECT r.region_name, c.country_name, l.location_id
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

-- the following query is optimized to run against the locations table
SELECT l.location_id, l.city
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

The output should be as follows:

REGION_NAME COUNTRY_NAME LOCATION_ID
------------------------- -- -----------
Europe Italy 1000
Europe Italy 1100
Europe Switzerland 2900
Europe Switzerland 3000
Europe United Kingdom 2400
Europe United Kingdom 2500
Europe United Kingdom 2600

7 rows selected.

LOCATION_ID CITY
----------- ------------------------------
 1000 Roma
 1100 Venice
 2900 Geneva
 3000 Bern
 2400 London
 2500 Oxford
 2600 Stretford

7 rows selected.

Because no columns of the base table region_tab appear in the second SELECT list, the query
is optimized to run directly against the locations storage table.

Outer-join syntax can also be used with queries of multilevel collections.

See Also

"Viewing Object Data in Relational Form with Unnesting Queries"

5.3.2 DML Operations on Collections
Oracle supports the following DML operations on collections:

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 28

• Inserts and updates that provide a new value for the entire collection

• Individual or piecewise updates of nested tables and multilevel nested tables, including
inserting, deleting, and updating elements

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY columns can
be inserted into or updated as an atomic unit. This section contains these topics:

• Performing Piecewise Operations on Nested Tables

• Updating a Nested Table

• Performing Piecewise Operations on Multilevel Nested Tables

• Performing Piecewise INSERT to Inner Nested Table

• Performing Atomical Changes on VARRAYs and Nested Tables

• Updating Collections as Atomic Data Items

5.3.2.1 Performing Piecewise Operations on Nested Tables
For piecewise operations on nested table columns, use the TABLE expression.

The TABLE expression uses a subquery to extract the nested table, so that the INSERT, UPDATE,
or DELETE statement applies to the nested table rather than the top-level table.

CAST operators are also helpful. With them, you can do set operations on nested tables using
SQL notation, without actually storing the nested tables in the database.

The DML statements in Example 5-21 demonstrate piecewise operations on nested table
columns.

See Also

• Oracle AI Database SQL Language Reference

• CAST

Example 5-21 Piecewise Operations on Collections

-- Requires Ex. 5-1 and 5-3
INSERT INTO TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101)
 VALUES (5, 'Kevin Taylor', '1-408-555-0199');

UPDATE TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101) e
 SET VALUE(e) = person_typ(5, 'Kevin Taylor', '1-408-555-0199')
 WHERE e.idno = 5;

DELETE FROM TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101) e
 WHERE e.idno = 5;

5.3.2.1.1 Updating a Nested Table
You can use VALUE to return object instance rows for updating.

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 28

Example 5-22 shows VALUE used to return object instance rows for updating:

Example 5-22 Using VALUE to Update a Nested Table

-- Requires Ex. 5-1, 5-3
UPDATE TABLE(SELECT d.dept_emps FROM department_persons d
 WHERE d.dept_no = 101) p
 SET VALUE(p) = person_typ(2, 'Diane Smith', '1-650-555-0148')
 WHERE p.idno = 2;

5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables
Piecewise DML is possible only on multilevel nested tables, not on multilevel varrays.

You can perform DML operations atomically on both VARRAYs and nested tables multilevel
collections as described in "Updating Collections as Atomic Data Items".

Example 5-23 shows a piecewise insert operation on the countries nested table of nested
tables. The example inserts a new country, complete with its own nested table of
location_typ:

Example 5-23 Piecewise INSERT on a Multilevel Collection

-- Requires Ex. 5-10 and 5-15
INSERT INTO TABLE(SELECT countries FROM region_tab r WHERE r.region_id = 2)
 VALUES ('CA', 'Canada', nt_location_typ(
 location_typ(1800, '147 Spadina Ave', 'M5V 2L7', 'Toronto', 'Ontario')));

5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table
You can use piecewise insert into an inner nested table to make an individual addition.

Example 5-24 performs a piecewise insert into an inner nested table to add a location for a
country. Like the preceding example, this example uses a TABLE expression containing a
subquery that selects the inner nested table to specify the target for the insert.

Example 5-24 Piecewise INSERT into an Inner Nested Table

-- Requires Ex. 5-10 and 5-15
INSERT INTO TABLE(SELECT c.locations
 FROM TABLE(SELECT r.countries FROM region_tab r WHERE r.region_id = 2) c
 WHERE c.country_id = 'US')
 VALUES (1700, '2004 Lakeview Rd', '98199', 'Seattle', 'Washington');

SELECT r.region_name, c.country_name, l.location_id
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables
You can make atomical changes to nested tables and VARRAYs.

Note: While nested tables can also be changed in a piecewise fashions, varrays cannot.

Example 5-25 shows how you can manipulate SQL varray object types with PL/SQL
statements. In this example, varrays are transferred between PL/SQL variables and SQL
tables. You can insert table rows containing collections, update a row to replace its collection,
and select collections into PL/SQL variables.

However, you cannot update or delete individual varray elements directly with SQL; you have
to select the varray from the table, change it in PL/SQL, then update the table to include the

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 28

new varray. You can also do this with nested tables, but nested tables have the option of doing
piecewise updates and deletes.

Example 5-25 Using INSERT, UPDATE, DELETE, and SELECT Statements With Varrays

CREATE TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (region VARCHAR2(25), dept_names dnames_var);
BEGIN
 INSERT INTO depts VALUES('Europe', dnames_var('Shipping','Sales','Finance'));
 INSERT INTO depts VALUES('Americas', dnames_var('Sales','Finance','Shipping'));
 INSERT INTO depts
 VALUES('Asia', dnames_var('Finance','Payroll','Shipping','Sales'));
 COMMIT;
END;
/
DECLARE
 new_dnames dnames_var := dnames_var('Benefits', 'Advertising', 'Contracting',
 'Executive', 'Marketing');
 some_dnames dnames_var;
BEGIN
 UPDATE depts SET dept_names = new_dnames WHERE region = 'Europe';
 COMMIT;
 SELECT dept_names INTO some_dnames FROM depts WHERE region = 'Europe';
 FOR i IN some_dnames.FIRST .. some_dnames.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE('dept_names = ' || some_dnames(i));
 END LOOP;
END;
/

5.3.2.4 Updating Collections as Atomic Data Items
Multilevel collections (both VARRAY and nested tables) can also be updated atomically with an
UPDATE statement. For example, suppose v_country is a variable declared to be of the
countries nested table type nt_country_typ.

Example 5-26 updates region_tab by setting the countries collection as a unit to the value of
v_country.

The section "Constructors for Multilevel Collections" shows how to insert an entire multilevel
collection with an INSERT statement.

Example 5-26 Using UPDATE to Insert an Entire Multilevel Collection

-- Requires Ex. 5-10 and 5-15
INSERT INTO region_tab (region_id, region_name) VALUES(2, 'Americas');

DECLARE
 v_country nt_country_typ;
BEGIN
 v_country := nt_country_typ(country_typ(
 'US', 'United States of America', nt_location_typ (
 location_typ(1500,'2011 Interiors Blvd','99236','San Francisco','California'),
 location_typ(1600,'2007 Zagora St','50090','South Brunswick','New Jersey'))));
 UPDATE region_tab r
 SET r.countries = v_country WHERE r.region_id = 2;
END;
/
-- Invocation:
SELECT r.region_name, c.country_name, l.location_id

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 28

 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l
 WHERE r.region_id = 2;

5.3.3 Using BULK COLLECT to Return Entire Result Sets
The PL/SQL BULK COLLECT clause is an alternative to using DML statements, which can be
time consuming to process. You can return an entire result set in one operation.

In Example 5-27, BULK COLLECT is used with a multilevel collection that includes an object type.

Example 5-27 Using BULK COLLECT with Collections

-- unrelated to other examples in this chapter
CREATE TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (region VARCHAR2(25), dept_names dnames_var);
BEGIN
 INSERT INTO depts VALUES('Europe', dnames_var('Shipping','Sales','Finance'));
 INSERT INTO depts VALUES('Americas', dnames_var('Sales','Finance','Shipping'));
 INSERT INTO depts
 VALUES('Asia', dnames_var('Finance','Payroll','Shipping','Sales'));
 COMMIT;
END;
/
DECLARE
 TYPE dnames_tab IS TABLE OF dnames_var;
 v_depts dnames_tab;
BEGIN
 SELECT dept_names BULK COLLECT INTO v_depts FROM depts;
 DBMS_OUTPUT.PUT_LINE(v_depts.COUNT); -- prints 3
END;
/

5.3.4 Conditions that Compare Nested Tables
Using certain conditions, you can compare nested tables, including multilevel nested tables.
There is no mechanism for comparing varrays.

The SQL examples in this section use the nested tables created in Example 5-5, and contain
the objects created in Example 5-1.

Topics:

• Comparing Equal and Not Equal Conditions

• Comparing the IN Condition

• Comparing Subset of Multiset Conditions

• Determing Members of a Nested Table

• Determining Empty Conditions

• Determining Set Conditions

5.3.4.1 Comparing Equal and Not Equal Conditions
The equal (=) and not equal (<>) conditions determine whether the input nested tables are
identical or not, returning the result as a Boolean value.

Two nested tables are equal if they have the same named type, have the same cardinality, and
their elements are equal. Elements are equal depending on whether they are equal by the

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 28

elements own equality definitions, except for object types which require a map method.
Equality is determined in the existing order of the elements, because nested tables are
unordered.

In Example 5-28, the nested tables contain person_typ objects, which have an associated
map method. See Example 5-1. Since the two nested tables in the WHERE clause are not equal,
no rows are selected.

Example 5-28 Using an Equality Comparison with Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT p.name
 FROM students, TABLE(physics_majors) p
WHERE math_majors = physics_majors;

5.3.4.2 Comparing the IN Condition
The IN condition checks whether or not a nested table is in a list of nested tables, returning the
result as a Boolean value. NULL is returned if the nested table is a null nested table.

Example 5-29 Using an IN Comparison with Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IN (math_majors, chem_majors);

5.3.4.3 Comparing Subset of Multiset Conditions
The SUBMULTISET [OF] condition checks whether or not a nested table is a subset of another
nested table, returning the result as a Boolean value. The OF keyword is optional and does not
change the functionality of SUBMULTISET.

This condition is implemented only for nested tables.

See Also

"Multiset Operations for Nested Tables"

Example 5-30 Testing the SUBMULTISET OF Condition on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors SUBMULTISET OF math_majors;

5.3.4.4 Determing Members of a Nested Table
The MEMBER [OF] or NOT MEMBER [OF] condition tests whether or not an element is a member of
a nested table, returning the result as a Boolean value. The OF keyword is optional and has no
effect on the output.

In Example 5-31, the person_typ is an element of the same type as the elements of the nested
table math_majors.

Example 5-32 presents an alternative approach to the MEMBER OF condition, which performs
more efficiently for large collections.

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 28

Example 5-31 Using MEMBER OF on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT graduation
 FROM students
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130') MEMBER OF math_majors;

Example 5-32 Alternative to Using MEMBER OF on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT graduation
 FROM students
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130') in (select value(p)
 from TABLE(math_majors) p);

5.3.4.5 Determining Empty Conditions
The IS [NOT] EMPTY condition checks whether a given nested table is empty or not empty,
regardless of whether any of the elements are NULL. If a NULL is given for the nested table,
the result is NULL. The result is returned as a Boolean value.

Example 5-33 Using IS NOT on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS NOT EMPTY;

5.3.4.6 Determining Set Conditions
The IS [NOT] A SET condition checks whether or not a given nested table is composed of
unique elements, returning a Boolean value.

Example 5-34 Using IS A SET on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS A SET;

5.3.5 Multiset Operations for Nested Tables
You can use multiset operators for nested tables. Multiset operations are not available for
varrays.

The SQL examples in this section use the nested tables created in Example 5-5 and the
objects created in Example 5-1.

See Also

• Functions and Operators Useful with Objects for a description of additional
operations

• Oracle AI Database SQL Language Reference for more information about using
operators with nested tables

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 28

5.3.5.1 CARDINALITY
The CARDINALITY function returns the number of elements in a nested table. The return type is
NUMBER. If the nested table is a null collection, NULL is returned.

Example 5-35 Determining the CARDINALITY of a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT CARDINALITY(math_majors)
 FROM students;

For more information about the CARDINALITY function, see Oracle AI Database SQL Language
Reference.

5.3.5.2 COLLECT
The COLLECT function is an aggregate function which creates a multiset from a set of elements.
The function takes a column of the element type as input and creates a multiset from rows
selected. To get the results of this function, you must use it within a CAST function to specify the
output type of COLLECT.

See Also

• See "CAST" for an example of the COLLECT function.

• For more information about the COLLECT function, see Oracle AI Database SQL
Language Reference.

5.3.5.3 MULTISET EXCEPT
The MULTISET EXCEPT operator inputs two nested tables and returns a nested table whose
elements are in the first nested table but not the second. The input nested tables and the
output nested table will all be of the same nested table type.

The ALL or DISTINCT options can be used with the operator. The default is ALL.

• With the ALL option, for ntab1 MULTISET EXCEPT ALL ntab2, all elements in ntab1 other than
those in ntab2 are part of the result. If a particular element occurs m times in ntab1 and n
times in ntab2, the result shows (m - n) occurrences of the element if m is greater than n,
otherwise, 0 occurrences of the element.

• With the DISTINCT option, any element that is present in ntab1 and is also present in ntab2
is eliminated, irrespective of the number of occurrences.

Example 5-36 Using the MULTISET EXCEPT Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET EXCEPT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 28

See Also

For more information about the MULTISET EXCEPT operator, see Oracle AI Database
SQL Language Reference.

5.3.5.4 MULTISET INTERSECT
The MULTISET INTERSECT operator returns a nested table whose values are common to the two
input nested tables. The input nested tables and the output nested table are all type name
equivalent.

There are two options associated with the operator: ALL or DISTINCT. The default is ALL. With
the ALL option, if a particular value occurs m times in ntab1 and n times in ntab2, the result
contains the element MIN(m, n) times. With the DISTINCT option, the duplicates from the result
are eliminated, including duplicates of NULL values if they exist.

Example 5-37 Using the MULTISET INTERSECT Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET INTERSECT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

See Also

For more information about the MULTISET INTERSECT operator, see Oracle AI Database
SQL Language Reference.

5.3.5.5 MULTISET UNION
The MULTISET UNION operator returns a nested table whose values are those of the two input
nested tables. The input nested tables and the output nested table are all type name
equivalent.

There are two options associated with the operator: ALL or DISTINCT. The default is ALL. With
the ALL option, all elements in ntab1 and ntab2 are part of the result, including all copies of
NULLs. If a particular element occurs m times in ntab1 and n times in ntab2, the result contains
the element (m + n) times. With the DISTINCT option, the duplicates from the result are
eliminated, including duplicates of NULL values if they exist.

Example 5-38 Using the MULTISET UNION Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET UNION DISTINCT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
 PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120'),
 PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'))

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET UNION ALL physics_majors

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 28

 FROM students
WHERE graduation = '01-JUN-03';

Output:

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
 PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120'),
 PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'),
 PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
 PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'))

See Also

For more information about the MULTISET UNION operator, see Oracle AI Database
SQL Language Reference.

5.3.5.6 POWERMULTISET
The POWERMULTISET function generates all non-empty submultisets from a given multiset. The
input to the POWERMULTISET function can be any expression which evaluates to a multiset. The
limit on the cardinality of the multiset argument is 32.

Example 5-39 Using the POWERMULTISET Operation on Multiset

-- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POWERMULTISET(people_typ (
 person_typ(12, 'Bob Jones', '1-650-555-0130'),
 person_typ(31, 'Sarah Chen', '1-415-555-0120'),
 person_typ(45, 'Chris Woods', '1-415-555-0124'))));

See Also

For more information about the POWERMULTISET function, see Oracle AI Database SQL
Language Reference.

5.3.5.7 POWERMULTISET_BY_CARDINALITY
The POWERMULTISET_BY_CARDINALITY function returns all non-empty submultisets of a nested
table of the specified cardinality. The output is rows of nested tables.

POWERMULTISET_BY_CARDINALITY(x, l) is equivalent to TABLE(POWERMULTISET(x)) p where
CARDINALITY(value(p)) = l, where x is a multiset and l is the specified cardinality.

The first input parameter to the POWERMULTISET_BY_CARDINALITY can be any expression which
evaluates to a nested table. The length parameter must be a positive integer, otherwise an
error is returned. The limit on the cardinality of the nested table argument is 32.

Example 5-40 Using the POWERMULTISET_BY_CARDINALITY Function

-- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POWERMULTISET_BY_CARDINALITY(people_typ (
 person_typ(12, 'Bob Jones', '1-650-555-0130'),

Chapter 5
Operations on Collection Data Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 28

 person_typ(31, 'Sarah Chen', '1-415-555-0120'),
 person_typ(45, 'Chris Woods', '1-415-555-0124')),2));

See Also

For more information about the POWERMULTISET_BY_CARDINALITY function, see Oracle
AI Database SQL Language Reference.

5.3.5.8 SET
The SET function converts a nested table into a set by eliminating duplicates, and returns a
nested table whose elements are distinct from one another. The nested table returned is of the
same named type as the input nested table.

Example 5-41 Using the SET Function on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT SET(physics_majors)
 FROM students
WHERE graduation = '01-JUN-03';

See Also

For more information about the SET function, see Oracle AI Database SQL Language
Reference.

5.4 Partitioning Tables That Contain Oracle Objects
Partitioning addresses the key problem of supporting very large tables and indexes by allowing
you to decompose them into smaller and more manageable pieces called partitions.

Oracle extends partitioning capabilities by letting you partition tables that contain objects, REFs,
varrays, and nested tables. Varrays stored in LOBs are equipartitioned in a way similar to LOBs.
Nested table storage tables will be equipartitioned with the base table. .

See Also

For further information on equipartitioning

• Oracle AI Database SecureFiles and Large Objects Developer's Guide

• Oracle AI Database VLDB and Partitioning Guide

• Oracle XML DB Developer’s Guide

Example 5-42 partitions the purchase order table along zip codes (ToZip), which is an attribute
of the ShipToAddr embedded column object. The LineItemList_nt nested table illustrates
storage for the partitioned nested table.

Chapter 5
Partitioning Tables That Contain Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 28

Example 5-42 Partitioning a Nested Table That Contains Objects

CREATE TYPE StockItem_objtyp AS OBJECT (
 StockNo NUMBER,
 Price NUMBER,
 TaxRate NUMBER);
/

CREATE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER);
/

CREATE TYPE Address_objtyp AS OBJECT (
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20))
/

CREATE TYPE LineItemList_nt as table of LineItem_objtyp;
/

CREATE TYPE PurchaseOrder_ntyp AS OBJECT (
 PONo NUMBER,
 OrderDate DATE,
 ShipDate DATE,
 OrderForm BLOB,
 LineItemList LineItemList_nt,
 ShipToAddr Address_objtyp,

 MAP MEMBER FUNCTION
 ret_value RETURN NUMBER,
 MEMBER FUNCTION
 total_value RETURN NUMBER);
/

CREATE TABLE PurchaseOrders_ntab of PurchaseOrder_ntyp
LOB (OrderForm) store as (nocache logging)
NESTED TABLE LineItemList STORE AS LineItemList_ntab
PARTITION BY RANGE (ShipToAddr.zip)
 (PARTITION PurOrderZone1_part VALUES LESS THAN ('59999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone1_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone2_part VALUES LESS THAN ('79999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone2_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone3_part VALUES LESS THAN ('99999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone3_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)))
/

Chapter 5
Partitioning Tables That Contain Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 28

6
Applying an Object Model to Relational Data

You can write object-oriented applications without changing the underlying structure of your
relational data.

Topics:

• Why Use Object Views

• Defining Object Views

• Object Views Used in Applications

• Objects Nested in Object Views

• Identifying Null Objects in Object Views

• Nested Tables and Varrays Used in Object Views

• Object Identifiers for Object Views

• References Created to View Objects

• Inverse Relationships Modelled with Object Views

• Object View Manipulations

• Applying the Object Model to Remote Tables

• Defining Complex Relationships in Object Views

• Object View Hierarchies

6.1 Why Use Object Views
Just as a view is a virtual table, an object view is a virtual object table. Each row in the view is
an object: you can call its methods, access its attributes using the dot notation, and create a
REF that points to it.

You can run object-oriented applications without converting existing tables to a different
physical structure. To do this, you can use object views to prototype or transition to object-
oriented applications because the data in the view can be taken from relational tables and
accessed as if the table were defined as an object table.

Object views can be used like relational views to present only the data that you want users to
see. For example, you might create an object view that presents selected data from an
employee table but omits sensitive data about salaries.

Using object views can lead to better performance. Relational data that makes up a row of an
object view traverses the network as a unit, potentially saving many round trips.

You can fetch relational data into the client-side object cache and map it into C structures or
C++ or Java classes, so 3GL applications can manipulate it just like native classes. You can
also use object-oriented features like complex object retrieval with relational data.

• You can query the data in new ways by synthesizing objects from relational data. You can
view data from multiple tables by using object dereferencing instead of writing complex
joins with multiple tables.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 26

• You can pin the object data from object views and use the data in the client side object
cache. When you retrieve these synthesized objects in the object cache by means of
specialized object-retrieval mechanisms, you reduce network traffic.

• You gain great flexibility when you create an object model within a view, enabling you to
continue developing the model. If you need to alter an object type, you can simply replace
the invalidated views with a new definition.

• You do not place any restrictions on the characteristics of the underlying storage
mechanisms by using objects in views. By the same token, you are not limited by the
restrictions of current technology. For example, you can synthesize objects from relational
tables which are parallelized and partitioned.

• You can create different complex data models from the same underlying data.

See Also

– Oracle AI Database SQL Language Reference for a complete description of
SQL syntax and usage

– Oracle AI Database PL/SQL Language Reference for a complete discussion
of PL/SQL capabilities

– Oracle AI Database Java Developer's Guide for a complete discussion of Java

– Oracle Call Interface Programmer's Guide for a complete discussion of those
facilities

6.2 Defining Object Views
Object views allow you to present only data that you want users to see.

The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an existing column
in a relational table.

2. Write a query that specifies how to extract the data from the relational table. Specify the
columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as an object
identifier, enabling you to create pointers (REFs) to the objects in the view. You can often
use an existing primary key.

See Also

"Object Identifiers Used to Identify Row Objects"

To update an object view where the attributes of the object type do not correspond exactly to
columns in existing tables, you may need to do the following:

Write an INSTEAD OF trigger procedure for Oracle to execute whenever an application program
tries to update data in the object view. See "Object View Manipulations".

After these steps, you can use an object view just like an object table.

Chapter 6
Defining Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 26

Example 6-1 contains SQL statements to define an object view, where each row in the view is
an object of type employee_t:

Example 6-1 Creating an Object View

CREATE TABLE emp_table (
 empnum NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9,2),
 job VARCHAR2 (20));

CREATE TYPE employee_t AS OBJECT (
 empno NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9,2),
 job VARCHAR2 (20));
/

CREATE VIEW emp_view1 OF employee_t
 WITH OBJECT IDENTIFIER (empno) AS
 SELECT e.empnum, e.ename, e.salary, e.job
 FROM emp_table e
 WHERE job = 'Developer';

insert into emp_table values(1,'John',1000.00,'Architect');
insert into emp_table values(2,'Robert',900.00,'Developer');
insert into emp_table values(3,'James',2000.00,'Director');

select * from emp_view1;

 EMPNO ENAME SALARY JOB
---------- -------------------- ---------- --------------------
 2 Robert 900 Developer

To access the data from the empnum column of the relational table, access the empno attribute of
the object type.

6.3 Object Views Used in Applications
Data in the rows of an object view may come from more than one table, but the object view still
traverses the network in one operation. The instance appears in the client side object cache as
a C or C++ structure or as a PL/SQL object variable. You can manipulate it like any other
native structure.

You can refer to object views in SQL statements in the same way you refer to an object table.
For example, object views can appear in a SELECT list, in an UPDATE-SET clause, or in a WHERE
clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use for
objects from object tables. For example, you can use OCIObjectPin() for pinning a REF and
OCIObjectFlush() for flushing an object to the server. When you update or flush an object to
the database in an object view, the database updates the object view.

Chapter 6
Object Views Used in Applications

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 26

See Also

See Oracle Call Interface Programmer's Guide for more information about OCI calls.

6.4 Objects Nested in Object Views
An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an object type,
then you must provide column objects for this attribute as part of the process of creating the
object view. If column objects of the attribute type already exist in a relational table, you can
simply select them; otherwise, you must synthesize the object instances from underlying
relational data just as you synthesize the principal object instances of the view. You synthesize,
or create, these objects by calling the respective constructor methods of the object type to
create the object instances, and you can populate their attributes with data from relational
columns specified in the constructor.

For example, consider the department table dept in Example 6-2. You might want to create an
object view where the addresses are objects inside the department objects. That would allow
you to define reusable methods for address objects, and use them for all kinds of addresses.

First, create the types for the address and department objects, then create the view containing
the department number, name and address. The address objects are constructed from
columns of the relational table.

Example 6-2 Creating a View with Nested Object Types

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10));

CREATE TYPE address_t AS OBJECT (
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10));
/
CREATE TYPE dept_t AS OBJECT (
 deptno NUMBER,
 deptname VARCHAR2(20),
 address address_t);
/

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS
 deptaddr
 FROM dept d;

insert into dept values(1,'Sales','500 Oracle pkwy','Redwood S','CA','94065');
insert into dept values(2,'ST','400 Oracle Pkwy','Redwood S','CA','94065');
insert into dept values(3,'Apps','300 Oracle pkwy','Redwood S','CA','94065');

select * from dept_view;

Chapter 6
Objects Nested in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 26

 DEPTNO DEPTNAME
---------- --------------------
ADDRESS(STREET, CITY, STATE, ZIP)
--
 1 Sales
ADDRESS_T('500 Oracle pkwy', 'Redwood S', 'CA', '94065')

 2 ST
ADDRESS_T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065')

 3 Apps
ADDRESS_T('300 Oracle pkwy', 'Redwood S', 'CA', '94065')

6.5 Identifying Null Objects in Object Views
You can identify null objects in object views.

Because the constructor for an object never returns a null, none of the address objects in the
preceding view, Example 6-2can ever be null, even if the city, street, and similar columns in the
relational table are all null. The relational table has no column that specifies whether or not the
department address is null.

• Use the DECODE function, or a similar function, to return either a null or the constructed
object.

In Example 6-3 the null deptstreet column can be used to indicate that the whole address is
null.

The null deptstreet column can be used to indicate that the whole address is null.

Example 6-3 Identifying Null Objects in an Object View

-- Requires Ex. 6-2
CREATE OR REPLACE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 DECODE(d.deptstreet, NULL, NULL,
 address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS deptaddr
 FROM dept d;

This technique makes it impossible to directly update the department address through the
view, because it does not correspond directly to a column in the relational table. Instead, define
an INSTEAD OF trigger over the view to handle updates to this column.

6.6 Nested Tables and Varrays Used in Object Views
Collections, both nested tables and VARRAYs, can be columns in views. You can select these
collections from underlying collection columns or you can synthesize them using subqueries.
The CAST-MULTISET operator provides a way of synthesizing such collections.

This section contains the following topics:

• Single-Level Collections in Object Views

• Multilevel Collections in Object Views

6.6.1 Single-Level Collections in Object Views
You can create an object view with a single level connection.

Chapter 6
Identifying Null Objects in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 26

Using Example 6-1 and Example 6-2 as starting points, each employee in an emp relational
table has the structure in Example 6-4. Using this relational table, you can construct a
dept_view with the department number, name, address and a collection of employees
belonging to the department.

First, define a nested table type for the employee type employee_t. Next, define a department
type with a department number, name, address, and a nested table of employees. Finally,
define the object view dept_view.

The SELECT subquery inside the CAST-MULTISET block selects the list of employees that belong
to the current department. The MULTISET keyword indicates that this is a list as opposed to a
singleton value. The CAST operator casts the result set into the appropriate type, in this case to
the employee_list_t nested table type.

A query on this view could provide the list of departments, with each department row
containing the department number, name, the address object and a collection of employees
belonging to the department.

Example 6-4 Creating a View with a Single-Level Collection

-- Requires Ex. 6-1 and Ex. 6-2
CREATE TABLE emp (
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 job VARCHAR2 (20),
 deptno NUMBER REFERENCES dept(deptno));

CREATE TYPE employee_list_t AS TABLE OF employee_t; -- nested table
/
CREATE TYPE dept_t AS OBJECT (
 deptno NUMBER,
 deptname VARCHAR2(20),
 address address_t,
 emp_list employee_list_t);
/
CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary, e.job
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 AS emp_list
 FROM dept d;

insert into dept values(100,'ST','400 Oracle Pkwy','Redwood S','CA',94065);
insert into dept values(200,'Sales','500 Oracle Pkwy','Redwood S','CA',94065);
insert into emp values(1,'John',900,'Developer1',100);

insert into emp values(2,'Robert',1000,'Developer2',100);
insert into emp values(3,'Mary', 1000,'Apps1',200);
insert into emp values(4,'Maria',1500,'Developer3',200);
select * from dept_view where deptno = 100;

 DEPTNO DEPTNAME
---------- --------------------
ADDRESS(STREET, CITY, STATE, ZIP)
--
EMP_LIST(EMPNO, ENAME, SALARY, JOB)
--

Chapter 6
Nested Tables and Varrays Used in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 26

 100 ST
ADDRESS_T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065')
EMPLOYEE_LIST_T(EMPLOYEE_T(1, 'John', 900, 'Developer1'), EMPLOYEE_T(2, 'Robert'
, 1000, 'Developer2'))

select emp_list from dept_view where deptno = 100;

EMP_LIST(EMPNO, ENAME, SALARY, JOB)
--
EMPLOYEE_LIST_T(EMPLOYEE_T(1, 'John', 900, 'Developer1'), EMPLOYEE_T(2, 'Robert'
, 1000, 'Developer2'))

6.6.2 Multilevel Collections in Object Views
You can create to view and query objects.

Multilevel collections and single-level collections are created and used in object views in the
same way. The only difference is that, for a multilevel collection, you must create an additional
level of collections.

Example 6-5 builds an object view containing a multilevel collection. The view is based on flat
relational tables that contain no collections. As a preliminary to building the object view, the
example creates the object and collection types it uses. An object type (for example, emp_t) is
defined to correspond to each relational table, with attributes whose types correspond to the
types of the respective table columns. In addition, the employee type has a nested table
(attribute) of projects, and the department type has a nested table (attribute) of employees.
The latter nested table is a multilevel collection. The CAST-MULTISET operator is used in the
CREATE VIEW statement to build the collections.

Example 6-5 Creating a View with Multilevel Collections

CREATE TABLE depts
 (deptno NUMBER,
 deptname VARCHAR2(20));

CREATE TABLE emps
 (ename VARCHAR2(20),
 salary NUMBER,
 deptname VARCHAR2(20));

CREATE TABLE projects
 (projname VARCHAR2(20),
 mgr VARCHAR2(20));

CREATE TYPE project_t AS OBJECT
 (projname VARCHAR2(20),
 mgr VARCHAR2(20));
/
CREATE TYPE nt_project_t AS TABLE OF project_t;
/
CREATE TYPE emp_t AS OBJECT
(ename VARCHAR2(20),
 salary NUMBER,
 deptname VARCHAR2(20),
 projects nt_project_t);
/
CREATE TYPE nt_emp_t AS TABLE OF emp_t;
/
CREATE TYPE depts_t AS OBJECT
 (deptno NUMBER,

Chapter 6
Nested Tables and Varrays Used in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 26

 deptname VARCHAR2(20),
 emps nt_emp_t);
/
CREATE VIEW v_depts OF depts_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 CAST(MULTISET(SELECT e.ename, e.salary, e.deptname,
 CAST(MULTISET(SELECT p.projname, p.mgr
 FROM projects p
 WHERE p.mgr = e.ename)
 AS nt_project_t)
 FROM emps e
 WHERE e.deptname = d.deptname)
 AS nt_emp_t)
 FROM depts d;

6.7 Object Identifiers for Object Views
You can construct pointers (REFs) to the row objects in an object view. Because the view data
is not stored persistently, you must specify a set of distinct values to be used as object
identifiers. Object identifiers allow you to reference the objects in object views and pin them in
the object cache.

If the view is based on an object table or an object view, then there is already an object
identifier associated with each row and you can reuse them. To do this, either omit the WITH
OBJECT IDENTIFIER clause or specify WITH OBJECT IDENTIFIER DEFAULT.

However, if the row object is synthesized from relational data, you must choose some other set
of values.

You can specify object identifiers based on the primary key. This turns the set of unique keys
that identify the row object into an identifier for the object. These values must be unique within
the rows selected out of the view, because duplicates would lead to problems during navigation
through object references.

• Object views created with the WITH OBJECT IDENTIFIER Clause

An object view created with the WITH OBJECT IDENTIFIER clause has an object identifier
derived from the primary key.

For example, note the definition of the object type dept_t and the object view dept_view
described in "Single-Level Collections in Object Views".

Because the underlying relational table has deptno as the primary key, each department
row has a unique department number. In the view, the deptno column becomes the deptno
attribute of the object type. Once you know that deptno is unique within the view objects,
you can specify it as the object identifier.

• Object views created with the WITH OBJECT IDENTIFIER DEFAULT Clause

If the WITH OBJECT IDENTIFIER DEFAULT clause is specified, the object identifier is either
system-generated or primary-key based, depending on the underlying table or view
definition.

See Also

• "Object Identifiers Used to Identify Row Objects" for a description of primary-key
based and system-generated object identifiers

• See "Storage Considerations for Object Identifiers (OIDs)".

Chapter 6
Object Identifiers for Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 26

6.8 References Created to View Objects
In this connected group of examples, Example 6-2 and Example 6-4, each object selected out
of the dept_view view has a unique object identifier derived from the department number
value. In the relational case, the foreign key deptno in the emp employee table matches the
deptno primary key value in the dept department table. The primary key value creates the
object identifier in the dept_view, allowing the foreign key value in the emp_view to create a
reference to the primary key value in dept_view.

To synthesize a primary key object reference, use the MAKE_REF operator. This takes the view
or table name that the reference points to, and a list of foreign key values, to create the object
identifier portion of the reference that matches a specific object in the referenced view.

Example 6-6 creates an emp_view view which has the employee's number, name, salary and a
reference to the employee's department, by first creating the employee type emp_t and then
the view based on that type.

Example 6-6 Creating a Reference to Objects in a View

-- Requires Ex. 6-2 and Ex. 6-4
-- if you have previously created emp_t, you must drop it
CREATE TYPE emp_t AS OBJECT (
 empno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 deptref REF dept_t);
/
CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(empno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

The deptref column in the view holds the department reference. The following simple query
retrieves all employees whose departments are located in the city of Redwood S:

SELECT e.empno, e.salary, e.deptref.deptno
 FROM emp_view e
 WHERE e.deptref.address.city = 'Redwood S';

 EMPNO SALARY DEPTREF.DEPTNO
---------- ---------- --------------
 2 1000 100
 1 900 100
 4 1500 200
 3 1000 200

Note that you can also create emp_view using the REF modifier instead of MAKE_REF as shown
in Example 6-7 to get the reference to the dept_view objects:

6.9 Creating References to Objects with REF
You can create views using a REF modifier to get references to objects.

Example 6-7 Query References to Objects with REF

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(empno)
 AS SELECT e.empno, e.empname, e.salary, REF(d)

Chapter 6
References Created to View Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 26

 FROM emp e, dept_view d
 WHERE e.deptno = d.deptno;

In Example 6-7, the dept_view joins the emp table on the deptno key.

The advantage of using the MAKE_REF operator, as in Example 6-6, instead of the REF modifier
is that with the former, you can create circular references. For example, you can create an
employee view that has a reference to the employee's department, while the department view
has a list of references to the employees who work in that department.

As with synthesized objects, you can also select persistently stored references as view
columns and use them seamlessly in queries. However, the object references to view objects
cannot be stored persistently.

See Also

"Object Cache"

6.10 Inverse Relationships Modelled with Object Views
You can use views with objects to model inverse relationships.

One-to-One Relationships

One-to-one relationships can be modeled with inverse object references. For example,
suppose that each employee has a particular desktop computer, and that the computer
belongs to that employee only.

A relational model would capture this using foreign keys either from the computer table to the
employee table, or in the reverse direction. Using views, you can model the objects so there is
an object reference from the employee to the computer object and also a reference from the
computer object to the employee.

One-to-Many and Many-to-One Relationships

One-to-many relationships (or many-to-many relationships) can be modeled either by using
object references or by embedding the objects.

One-to-many relationship can be modeled by having a collection of objects or object
references. The many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, the foreign key is
in the employee table. The relationship between departments and employees can be modeled
using collections in views. The department view can have a collection of employees, and the
employee view can have a reference to the department (or inline the department values). This
gives both the forward relation (from employee to department) and the inverse relation
(department to list of employees). The department view can also have a collection of
references to employee objects instead of embedding the employee objects.

6.11 Object View Manipulations
You can update, insert, and delete data in an object view using the same SQL DML you use for
object tables. Oracle updates the base tables of the object view if there is no ambiguity.

Views are not always directly updatable.

Chapter 6
Inverse Relationships Modelled with Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 26

A view is not directly updatable if the view query contains joins, set operators, aggregate
functions, or GROUP BY or DISTINCT clauses. Also, individual columns of a view are not directly
updatable if they are based on pseudocolumns or expressions in the view query.

If a view is not directly updatable, you can still update it indirectly using INSTEAD OF triggers. To
do so, you define an INSTEAD OF trigger for each kind of DML statement you want to execute on
the view. In the INSTEAD OF trigger, code the operations that must take place on the underlying
tables of the view to accomplish the desired change in the view. Then, when you issue a DML
statement for which you have defined an INSTEAD OF trigger, Oracle transparently runs the
associated trigger.

Note

In an object view hierarchy, UPDATE and DELETE statements operate polymorphically
just as SELECT statements do: the set of rows picked out by an UPDATE or DELETE
statement on a view implicitly includes qualifying rows in any subviews of the specified
view as well.

For example, the following statement, which deletes all persons from Person_v, also deletes all
students from Student_v and all employees from the Employee_v view.

DELETE FROM Person_v;

To exclude subviews and restrict the affected rows to just those in the view specified, use the
ONLY keyword. For example, the following statement updates only persons and not employees
or students.

UPDATE ONLY(Person_v) SET address = ...

See Also

• "INSTEAD OF Triggers to Control Mutating and Validation" for an example of an
INSTEAD OF trigger

• "Object View Hierarchies" for a discussion of object view hierarchy and examples
defining Student_v and Employee_v views

6.11.1 Nested Table Columns Updated in Views
You can modify a nested table by inserting new elements and updating or deleting existing
elements. Nested table columns that are virtual or synthesized, as in a view, are not usually
updatable. To overcome this, Oracle allows INSTEAD OF triggers to be created on these
columns.

The INSTEAD OF trigger defined on a nested table column (of a view) is fired when the column is
modified. Note that if the entire collection is replaced (by an update of the parent row), the
INSTEAD OF trigger on the nested table column is not fired.

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation
You can update complex views with INSTEAD OF triggers.

Chapter 6
Object View Manipulations

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 26

INSTEAD OF triggers provide a way to update complex views that otherwise could not be
updated. They can also be used to enforce constraints, check privileges, and validate DML
statements. Using these triggers, you can control mutation that might be caused by inserting,
updating, and deleting in the objects created though an object view.

For instance, to enforce the condition that the number of employees in a department cannot
exceed 10, you can write an INSTEAD OF trigger for the employee view. The trigger is not
needed to execute the DML statement because the view can be updated, but you need it to
enforce the constraint.

Example 6-8 shows how to implement the trigger by means of SQL statements.

Example 6-8 Creating INSTEAD OF Triggers on a View

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE TRIGGER emp_instr INSTEAD OF INSERT on emp_view
FOR EACH ROW
DECLARE
 dept_var dept_t;
 emp_count integer;
BEGIN
 -- Enforce the constraint
 -- First get the department number from the reference
 UTL_REF.SELECT_OBJECT(:NEW.deptref, dept_var);

 SELECT COUNT(*) INTO emp_count
 FROM emp
 WHERE deptno = dept_var.deptno;
 IF emp_count < 9 THEN
 -- Do the insert
 INSERT INTO emp (empno, empname, salary, deptno)
 VALUES (:NEW.empno, :NEW.ename, :NEW.salary, dept_var.deptno);
 END IF;
END;
/

See Also

"Defining Triggers for Object Tables"

6.12 Applying the Object Model to Remote Tables
Although you cannot directly access remote tables as object tables, object views let you
access remote tables as if they were object tables.

Consider a company with two branches; one in Washington D.C. and another in Chicago. Each
site has an employee table. The headquarters in Washington has a department table with a list
of all the departments. To get a total view of the entire organization, you can create views over
the individual remote tables and then a overall view of the organization.

To this requires the following:

• Update the entry in listener.ora, such as: (ADDRESS=(PROTOCOL=tcp)
(HOST=stadv07.us.example.com)(PORT=1640))

• Add entries to tnsnames.ora, such as: chicago=(DESCRIPTION=
(ADDRESS=(PROTOCOL=ipc)(KEY=linux))
(CONNECT_DATA=(SERVICE_NAME=linux.regress.rdbms.dev.us.example.com)))

Chapter 6
Applying the Object Model to Remote Tables

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 26

• Provide CREATE DATABASE LINK code as shown in Example 6-9

Example 6-9 begins by creating an object view for each employee table and then creates the
global view.

Example 6-9 Creating an Object View to Access Remote Tables

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
-- Example requires DB links, such as these, modify for your use and uncomment
-- CREATE DATABASE LINK chicago CONNECT TO hr IDENTIFIED BY hr USING 'inst1';
-- CREATE DATABASE LINK washington CONNECT TO hr IDENTIFIED BY hr USING 'inst1';
CREATE VIEW emp_washington_view (eno, ename, salary, job)
 AS SELECT e.empno, e.empname, e.salary, e.job
 FROM emp@washington e;

CREATE VIEW emp_chicago_view (eno, ename, salary, job)
 AS SELECT e.empno, e.empname, e.salary, e.job
 FROM emp@chicago e;

CREATE VIEW orgnzn_view OF dept_t WITH OBJECT IDENTIFIER (deptno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary, e.job
 FROM emp_washington_view e)
 AS employee_list_t) AS emp_list
 FROM dept d
 WHERE d.deptcity = 'Washington'
 UNION ALL
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary, e.job
 FROM emp_chicago_view e)
 AS employee_list_t) AS emp_list
 FROM dept d
 WHERE d.deptcity = 'Chicago';

This view has a list of all employees for each department. The UNION ALL clause is used
because employees cannot work in more than one department.

6.13 Defining Complex Relationships in Object Views
You can define circular references in object views using the MAKE_REF operator: view_A can
refer to view_B which in turn can refer to view_A. This allows an object view to synthesize a
complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object currently
includes a list of employees. To conserve space, you may want to put references to the
employee objects inside the department object, instead of materializing all the employees
within the department object. You can construct (pin) the references to employee objects, and
later follow the references using the dot notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references between the
department view and the employee view.

You can create circular references between object views in two different ways:

Chapter 6
Defining Complex Relationships in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 26

Note

Both ways to create circular references require the setup described in "Tables and
Types to Demonstrate Circular View References".

• First View After Second View

1. Create view A without any reference to view B.

2. Create view B, which includes a reference to view A.

3. Replace view A with a new definition that includes the reference to view B.

See the example in "Method 1: Re-create First View After Creating Second View"

• First View Using the FORCE Keyword

1. Create view A with a reference to view B using the FORCE keyword.

2. Create view B with a reference to view A. When view A is used, it is validated and re-
compiled.

See the example in "Method 2: Create First View Using FORCE Keyword"

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view creation. You
need to query the USER_ERRORS catalog view to see if there were any errors during the view
creation. Use this method only if you are sure that there are no errors in the view creation
statement.

Also, if errors prevent the views from being recompiled upon use, you must recompile them
manually using the ALTER VIEW COMPILE command.

Perform the setup described next before attempting to use either method of creating circular
view references.

6.13.1 Tables and Types to Demonstrate Circular View References
First, you need set up some relational tables and associated object types. Although the tables
contain some objects, they are not object tables. To access the data objects, you will create
object views later.

The emp table stores the employee information:

Example 6-10 Creating emp table to demonstrate circular references

CREATE TABLE emp
(empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 deptno NUMBER);

-- first create a dummy, that is, incomplete, department type, so emp_t type
-- created later will succeed

CREATE TYPE dept_t;
/

-- Create the employee type with a reference to the department, dept_t:
CREATE TYPE emp_t AS OBJECT
(eno NUMBER,
 ename VARCHAR2(20),

Chapter 6
Defining Complex Relationships in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 26

 salary NUMBER,
 deptref REF dept_t);
/

-- Represent the list of references to employees as a nested table:
CREATE TYPE employee_list_ref_t AS TABLE OF REF emp_t;
/

-- Create the department table as a relational table
CREATE TABLE dept
(deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10));

-- Create object types that map to columns from the relational tables:
CREATE TYPE address_t AS OBJECT
(street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10));
/

-- Fill in the definition for dept_t, the incomplete type you previously created:
CREATE OR REPLACE TYPE dept_t AS OBJECT
(dno NUMBER,
 dname VARCHAR2(20),
 deptaddr address_t,
 empreflist employee_list_ref_t);
/

As Example 6-10 indicates, you must create the emp table, then create a dummy department
type, dept_t which will enable the emp_t type to succeed once you create it. After that, create
emp_t with a reference to dept_t. Create a list of references to employees as a nested table,
employee_list_ref_t and create the department table, dept. Then create an object type,
address_t that has columns mapping to the relational tables, and finally fill in the definition for
the incomplete dept_t.

The following is example data you could use:

insert into emp values(1,'John','900',100);
insert into emp values(2,'james','1000',100);
insert into emp values(3,'jack',2000,200);

6.13.2 Creating Object Views with Circular References
You can create object views with circular references.

If you have established the underlying relational table definitions, as described in Defining
Complex Relationships in Object Views, you can create the object views on top of them.

Topics:

• Method 1: Re-create First View After Creating Second View

• Method 2: Create First View Using FORCE Keyword

Chapter 6
Defining Complex Relationships in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 26

6.13.2.1 Method 1: Re-create First View After Creating Second View
You can recreate the first view after creating the second view.

First create the employee view with a null in the deptref column. Later, you can turn that
column into a reference.

Next, create the department view, which includes references to the employee objects. This
creates a list of references to employee objects, instead of including the entire employee
object.

Next, re-create the employee view with the reference to the department view.

Example 6-11 Creating an Object View with a Circular Reference, Method 1

-- Requires Ex. 6-10
CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary, NULL
 FROM emp e;

-- create department view, including references to the employee objects
CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

This creates the views.

6.13.2.2 Method 2: Create First View Using FORCE Keyword
You can force creation of a first view even if the other view does not yet exist.

If you are sure that the view creation statement has no syntax errors, you can use the FORCE
keyword to force the creation of the first view without the other view being present.

First, create an employee view that includes a reference to the department view, which does
not exist at this point. This view cannot be queried until the department view is created
properly.

Next, create a department view that includes references to the employee objects. You do not
have to use the FORCE keyword here, because emp_view already exists. This allows you to
query the department view, getting the employee object by dereferencing the employee
reference from the nested table empreflist.

Chapter 6
Defining Complex Relationships in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 26

Note

If you previously ran Example 6-11, remove the views you created before running
Example 6-12.

Example 6-12 Creating view with FORCE Method 2

-- Requires Ex. 6-10
-- create employee view
CREATE OR REPLACE FORCE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

-- create a department view that includes references to the employee objects
CREATE OR REPLACE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

-- Querying with DEREF method
SELECT DEREF(e.COLUMN_VALUE)
 FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e;

COLUMN_VALUE is a special name that represents the scalar value in a scalar nested table. In
this case, COLUMN_VALUE denotes the reference to the employee objects in the nested table
empreflist.

You can also access the employee number only, for all those employees whose name begins
with John.

Example 6-13 Querying with COLUMN_VALUE

-- Requires Ex. 6-10 and 6-12
SELECT e.COLUMN_VALUE.eno
 FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e
 WHERE e.COLUMN_VALUE.ename like 'John%';

To get a tabular output, unnest the list of references by joining the department table with the
items in its nested table:

Example 6-14 Querying with COLUMN_VALUE, Unnesting References

-- Requires Ex. 6-10 and 6-12
SELECT d.dno, e.COLUMN_VALUE.eno, e.COLUMN_VALUE.ename
 FROM dept_view d, TABLE(d.empreflist) e
 WHERE e.COLUMN_VALUE.ename like 'John%'
 AND d.dno = 100;

Finally, you can rewrite the preceding query to use the emp_view instead of the dept_view to
show how to navigate from one view to the other:

Chapter 6
Defining Complex Relationships in Object Views

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 26

Example 6-15 Querying with COLUMN_VALUE, Querying emp_view

-- Requires Ex. 6-10 and 6-12
SELECT e.deptref.dno, DEREF(f.COLUMN_VALUE)
 FROM emp_view e, TABLE(e.deptref.empreflist) f
 WHERE e.deptref.dno = 100
 AND f.COLUMN_VALUE.ename like 'John%';

6.14 Object View Hierarchies
An object view hierarchy is a set of object views each of which is based on a different type in a
type hierarchy. Subviews in a view hierarchy are created under a superview, analogously to the
way subtypes in a type hierarchy are created under a supertype.

Each object view in a view hierarchy is populated with objects of a single type, but queries on a
given view implicitly address its subviews as well. Thus an object view hierarchy gives you a
simple way to frame queries that can return a polymorphic set of objects of a given level of
specialization or greater.

For example, suppose you have the following type hierarchy, with person_typ as the root:

Figure 6-1 Object Type Hierarchy

Person_typ

Student_typ Employee_typ

ParTimeStudent_typ

If you have created an object view hierarchy based on this type hierarchy, with an object view
built on each type, you can query the object view that corresponds to the level of specialization
you are interested in. For instance, you can query the view of student_typ to get a result set
that contains only students, including part-time students.

You can base the root view of an object view hierarchy on any type in a type hierarchy: you do
not need to start the object view hierarchy at the root type. Nor do you need to extend an
object view hierarchy to every leaf of a type hierarchy or cover every branch. However, you
cannot skip intervening subtypes in the line of descent. Any subview must be based on a direct
subtype of the type of its direct superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple sibling
subviews. However, a subview based on a given type can participate in only one object view
hierarchy: two different object view hierarchies cannot each have a subview based on the
same subtype.

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 26

A subview inherits the object identifier (OID) from its superview. An OID cannot be explicitly
specified in any subview.

A root view can explicitly specify an object identifier using the WITH OBJECT ID clause. If the
OID is system-generated or the clause is not specified in the root view, then subviews can be
created only if the root view is based on a table or view that also uses a system-generated
OID.

The query underlying a view determines whether or not the view is updatable. For a view to be
updatable, its query must contain no joins, set operators, aggregate functions, GROUP BY clause,
DISTINCT clause, pseudocolumns, or expressions. The same applies to subviews.

If a view is not updatable, you can define INSTEAD OF triggers to perform appropriate DML
actions. Note that INSTEAD OF triggers are not inherited by subviews.

All views in a view hierarchy must be in the same schema.

Note

You can create views of types that are non-instantiable. A non-instantiable type cannot
have instances, so ordinarily there would be no point in creating an object view of such
a type. However, a non-instantiable type can have subtypes that are instantiable. The
ability to create object views of non-instantiable types enables you to base an object
view hierarchy on a type hierarchy that contains a non-instantiable type.

6.14.1 Creating an Object View Hierarchy
You build an object view hierarchy by creating subviews under a root view. You do this by using
the UNDER keyword in the CREATE VIEW statement, as show in Example 6-17.

The same object view hierarchy can be based on different underlying storage models. In other
words, a variety of layouts or designs of underlying tables can produce the same object view
hierarchy. The design of the underlying storage model affects the performance and updatability
of the object view hierarchy.

Three possible storage models are described. In the first, a flat model, all views in the object
view hierarchy are based on the same table. In the second, a horizontal model, each view has
a one-to-one correspondence with a different table. And in the third, a vertical model, the views
are constructed using joins.

To execute any of these storage models, first create types shown in Example 6-16.

Example 6-16 Creating Types for Storage Model Examples

CREATE TYPE person_typ AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;/

CREATE TYPE student_typ UNDER person_typ
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;/

CREATE TYPE employee_typ UNDER person_typ
(empid NUMBER,
 mgr VARCHAR2(30));/

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 26

Topics:

• The Flat Model

• The Horizontal Model

• The Vertical Model

6.14.1.1 The Flat Model
In the flat model, all the views in the hierarchy are based on the same table.

In the following example, the single table AllPersons contains columns for all the attributes of
person_typ, student_typ, and employee_typ.

Figure 6-2 Flat Storage Model for Object View Hierarchy

TYPEID

1, 2, or 3

Person attributes (columns) Student attributes

Person attributes

Table AllPersons

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes

The typeid column identifies the type of each row. These possible values are the types
created in Example 6-16, 1 = person_typ, 2 = student_typ, and 3 = employee_typ:

Example 6-17 creates the table AllPersons and then the views that make up the object view
hierarchy:

Example 6-17 Creating an Object View Hierarchy

-- Requires Ex. 6-16
CREATE TABLE AllPersons
(typeid NUMBER(1),
 ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 deptid NUMBER,
 major VARCHAR2(30),
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE VIEW Person_v OF person_typ
 WITH OBJECT OID(ssn) AS
 SELECT ssn, name, address

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 26

 FROM AllPersons
 WHERE typeid = 1;

CREATE VIEW Student_v OF student_typ UNDER Person_v
 AS
 SELECT ssn, name, address, deptid, major
 FROM AllPersons
 WHERE typeid = 2;

CREATE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT ssn, name, address, empid, mgr
 FROM AllPersons
 WHERE typeid = 3;

The flat model has the advantage of simplicity and poses no obstacles to supporting indexes
and constraints. Its drawbacks are:

• The number of LOB columns per table is limited by the maximum number of columns per
table (that is, 1000 if the MAX_COLUMNS initialization parameter is set to STANDARD, or 4096
columns if MAX_COLUMNS = EXTENDED). So the flat model imposes a 1000-column limit or
4096-column limit on the total number of columns that the object view hierarchy can
contain.

For more information about the MAX_COLUMNS initialization parameter, see Oracle AI
Database Reference.

• Each row of the table will have NULLs for all the attributes not belonging to its type. Such
non-trailing NULLs can adversely affect performance.

6.14.1.2 The Horizontal Model
On the horizontal model, each view or subview is based on a different table.

In the example, the tables are relational, but they could just as well be object tables for which
column substitutability is turned off.

Figure 6-3 Horizontal Storage Model for Object View Hierarchy

Table only_person

Person attributes

Table only_students

Person attributes

Table only_employees

Person attributes

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes

Student attributes

Person attributes

Example 6-18 creates tables and then views based on these tables.

Example 6-18 -- Creating Table Horizontal Model

-- Requires Ex. 6-16 and Ex. 6-17
CREATE TABLE only_persons

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 26

(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100));

CREATE TABLE only_students
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 deptid NUMBER,
 major VARCHAR2(30));

CREATE TABLE only_employees
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE OR REPLACE VIEW Person_v OF person_typ
 WITH OBJECT OID(ssn) AS
 SELECT *
 FROM only_persons;

CREATE OR REPLACE VIEW Student_v OF student_typ UNDER Person_v
 AS
 SELECT *
 FROM only_students;

CREATE OR REPlACE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT *
 FROM only_employees;

The horizontal model is very efficient at processing queries of the form:

Example 6-19 -- Querying views horizontal model

-- Requires Ex. 6-16 and Ex. 6-17
-- add the following data
insert into only_persons values(1234,'John','abc');
insert into only_students values(1111,'James','abc',100,'CS');
insert into only_employees values(2222,'jack','abc',400,'Juliet');

SELECT VALUE(p) FROM Person_v p
 WHERE VALUE(p) IS OF (ONLY student_typ);

OUTPUT:
VALUE(P)(SSN, NAME, ADDRESS)
--
STUDENT_TYP(1111, 'James', 'abc', 100, 'CS')

Such queries only need to access a single physical table to get all the objects of the specific
type. The drawbacks of this model are that queries such as SELECT * FROM view require
performing a UNION over all the underlying tables and projecting the rows over just the columns
in the specified view. Also, indexes on attributes (and unique constraints) must span multiple
tables, and support for this does not currently exist.

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 26

See Also

"About Querying a View in a Hierarchy".

6.14.1.3 The Vertical Model
In the vertical model, there is a physical table corresponding to each view in the hierarchy.

However, the physical tables store only those attributes that are unique to their corresponding
subtypes.

Figure 6-4 Vertical Storage Model for Object View Hierarchy

Table all_personattrs

snn

Table all_studentattrs

snn

Table all_employeeattrs

Person attributes

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes:

empid, mgr

Student attributes:

deptid, major

typeid

1, 2, or 3

Person attributes:

ssn, name, address

Example 6-20 creates tables and then corresponding views.

Example 6-20 Creating table, views vertical model

CREATE TABLE all_personattrs
(typeid NUMBER,
 ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100));

CREATE TABLE all_studentattrs
(ssn NUMBER,
 deptid NUMBER,
 major VARCHAR2(30));

CREATE TABLE all_employeeattrs
(ssn NUMBER,
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE OR REPLACE VIEW Person_v OF person_typ
WITH OBJECT OID(ssn) AS
 SELECT ssn, name, address
 FROM all_personattrs

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 26

 WHERE typeid = 1;

CREATE OR REPLACE VIEW Student_v OF student_typ UNDER Person_v
 AS
 SELECT x.ssn, x.name, x.address, y.deptid, y.major
 FROM all_personattrs x, all_studentattrs y
 WHERE x.typeid = 2 AND x.ssn = y.ssn;

CREATE OR REPLACE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT x.ssn, x.name, x.address, y.empid, y.mgr
 FROM all_personattrs x, all_employeeattrs y
 WHERE x.typeid = 3 AND x.ssn = y.ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM root_view, and it
is possible to index individual attributes and impose unique constraints on them. However, to
re-create an instance of a type, a join over object identifiers (OIDs) must be performed for each
level that the type is removed from the root in the hierarchy.

6.14.2 About Querying a View in a Hierarchy
You can query any view or subview in an object view hierarchy.

The query returns rows for the declared type of the view that you query and for any of the
subtypes of that type.

So, for instance, in an object view hierarchy based on the person_typ type hierarchy, you can
query the view of person_typ to get a result set that contains all persons, including students
and employees; or you can query the view of student_typ to get a result set that contains only
students, including part-time students.

In the SELECT list of a query, you can include either functions such as REF() and VALUE() that
return an object instance, or you can specify object attributes of the declared type of the view,
such as the name and ssn attributes of person_typ.

If you specify functions, to return object instances, the query returns a polymorphic result set:
that is, it returns instances of both the declared type of the view and any subtypes of that type.

For example, the following query returns instances of persons, employees, and students of all
types, as well as REFs to those instances.

Example 6-21 Query with REF and Value

-- Requires Ex. 6-20
insert into all_personattrs values(1,1111,'John','abc');
insert into all_personattrs values(2,2222,'Jack','def');
insert into all_personattrs values(3,3333,'James','ghi');
insert into all_studentattrs values(2222,100,'CS');
insert into all_employeeattrs values(3333,444,'Julia');
SELECT REF(p), VALUE(p) FROM Person_v p;

OUTPUT:
REF(P)
--
VALUE(P)(SSN, NAME, ADDRESS)
--
00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C20C0C00000000000000000000000000000000000000
PERSON_TYP(1111, 'John', 'abc')

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 26

090600812A00078401FE0000000B03C2222200000000000000000000000000000000000000
EMPLOYEE_TYP(3333, 'James', 'ghi', 444, 'Julia')

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000

REF(P)
--
VALUE(P)(SSN, NAME, ADDRESS)
--
090600812A00078401FE0000000B03C2171700000000000000000000000000000000000000
STUDENT_TYP(2222, 'Jack', 'def', 100, 'CS')

If you specify individual attributes of the declared type of the view in the SELECT list or do a
SELECT *, again the query returns rows for the declared type of the view and any subtypes of
that type, but these rows are projected over columns for the attributes of the declared type of
the view, and only those columns are used. In other words, the subtypes are represented only
with respect to the attributes they inherit from and share with the declared type of the view.

For example, the following query returns rows for all persons and rows for employees and
students of all types, but the result uses only the columns for the attributes of person_typ—
namely, name, ssn, and address. It does not show rows for attributes added in the subtypes,
such as the deptid attribute of student_typ.

SELECT * FROM Person_v;

To exclude subviews from the result, use the ONLY keyword. The ONLY keyword confines the
selection to the declared type of the view that you are querying:

SELECT VALUE(p) FROM ONLY(Person_v) p;

6.14.3 Privileges for Operations on View Hierarchies
Generally, a query on a view with subviews requires only the SELECT privilege on the view
being referenced and does not require any explicit privileges on subviews.

For example, the following query requires only SELECT privileges on Person_v but not on any of
its subviews.

SELECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by the root
type requires the SELECT privilege on all subviews as well. Such subtype attributes may hold
sensitive information that should reasonably require additional privileges to access.

The following query, for example, requires SELECT privileges on Person_v and also on
Student_v, Employee_v (and on any other subview of Person_v) because the query selects
object instances and thus gets all the attributes of the subtypes.

SELECT VALUE(p) FROM Person_v p;

To simplify the process of granting SELECT privileges on an entire view hierarchy, you can use
the HIERARCHY option. Specifying the HIERARCHY option when granting a user SELECT privileges
on a view implicitly grants SELECT privileges on all current and future subviews of the view as
well. For example:

GRANT SELECT ON Person_v TO user WITH HIERARCHY OPTION;

A query that excludes rows belonging to subviews also requires SELECT privileges on all
subviews. The reason is that information about which rows belong exclusively to the most

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 26

specific type of an instance may be sensitive, so the system requires SELECT privileges on
subviews for queries (such as the following one) that exclude all rows from subviews.

SELECT * FROM ONLY(Person_v);

Chapter 6
Object View Hierarchies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 26

7
Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the database,
and how to perform DML and DDL operations on them. It contains the following major sections:

• Privileges on Object Types and Their Methods

• Type Dependencies

• Synonyms for Object Types

• Performance Tuning

7.1 Privileges on Object Types and Their Methods
Privileges for object types exist at the system level and the schema object level.

Topics:

• System Privileges for Object Types

• Schema Object Privileges

• Types Used in New Types or Tables

• Example: Privileges on Object Types

• Access Privileges on Objects, Types, and Tables

7.1.1 System Privileges for Object Types
Oracle AI Database defines the following system privileges for object types:

• CREATE TYPE enables you to create object types in your own schema

• CREATE ANY TYPE enables you to create object types in any schema

• ALTER ANY TYPE enables you to alter object types in any schema

• DROP ANY TYPE enables you to drop named types in any schema

• EXECUTE ANY TYPE enables you to use and reference named types in any schema

• UNDER ANY TYPE enables you to create subtypes under any non-final object types

• UNDER ANY VIEW enables you to create subviews under any object view

The following roles are helpful:

• The RESOURCE role includes the CREATE TYPE system privilege.

• The DBA role includes all of these privileges.

7.1.2 Schema Object Privileges
Two schema object privileges apply to object types:

• EXECUTE enables you to use the type to:

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 13

– Define a table.

– Define a column in a relational table.

– Declare a variable or parameter of the named type.

EXECUTE lets you invoke the methods of a type, including the constructor.

Method execution and the associated permissions are the same as for stored PL/SQL
procedures.

• UNDER enables you to create a subtype or subview under the type or view on which the
privilege is granted.

Only a grantor with the UNDER privilege WITH GRANT OPTION on the direct supertype or
superview can grant the UNDER privilege on a subtype or subview.

The phrase WITH HIERARCHY OPTION grants a specified object privilege on all subtypes of the
object. This option is meaningful only with the SELECT object privilege granted on an object
view in an object view hierarchy. In this case, the privilege applies to all subviews of the view
on which the privilege is granted.

7.1.3 Types Used in New Types or Tables
In addition to the permissions detailed in the previous sections, you need specific privileges to:

• Create types or tables that use types created by other users.

• Grant use of your new types or tables to other users.

You must have either the EXECUTE ANY TYPE system privilege or the EXECUTE object privilege for
any type used to define a new type or table. You must have been granted these privileges
explicitly, and not through a role.

To grant access to your new type or table to other users, you must have either the required
EXECUTE object privileges with the GRANT option or the EXECUTE ANY TYPE system privilege with
the option WITH ADMIN OPTION. You must have been granted these privileges explicitly, not
through a role.

7.1.4 Example: Privileges on Object Types
This section presents several related examples, creating users or schemas and then granting
privileges on them.

Example 7-1 creates three users or schemas, USER1, USER2, and USER3, and grants them the
CREATE SESSION and RESOURCE roles. Some of the subsequent examples in this chapter use
these schemas.

This example requires you to create and use several passwords. If you plan to run the
example, make these changes to your SQL code first.

Note

For simplicity, this example does not perform the password management techniques
that a deployed system normally uses. In a production environment, follow the Oracle
AI Database password management guidelines, and disable any sample accounts.

Chapter 7
Privileges on Object Types and Their Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 13

See Also

See Oracle AI Database Security Guide for password management guidelines and
other security recommendations.

Example 7-1 Creating User Schemas

-- Requires passwords
CONNECT SYSTEM
-- Enter password
CREATE USER user1 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user1;
GRANT RESOURCE TO user1;
GRANT CREATE SYNONYM TO user1;
GRANT CREATE PUBLIC SYNONYM TO user1;
GRANT DROP PUBLIC SYNONYM TO user1;
CREATE USER user2 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user2;
GRANT RESOURCE TO user2;
CREATE USER user3 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user3;
GRANT RESOURCE TO user3;

Example 7-2 requires the input of a password, USER1 performs the CREATE and GRANT Data
Definition Language (DDL) statements in the USER1 schema:

Example 7-2 Granting Privileges on Object Types

CREATE TYPE type1 AS OBJECT (attr1 NUMBER);
/
CREATE TYPE type2 AS OBJECT (attr2 NUMBER);
/
GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

In Example 7-3, USER2 performs the CREATE DDL statement in the USER2 schema:

Example 7-3 Performing DDL Statements in USER2 Schema

-- Requires Ex. 7-1, 7-2 and password input
CONNECT user2
-- Enter password
CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (attr3 user1.type2);
/
CREATE TABLE tab2 (col1 user1.type2);

In Example 7-4, the first two statements succeed because USER2 was granted the EXECUTE
privilege with the GRANT option on USER1's TYPE2 in the last line of Example 7-2 and
Example 7-3 created type3 as an object using attr3 user1.type2.

However, the last grant Example 7-4 fails because USER2 has not been granted the EXECUTE
privilege with the GRANT option on USER1.TYPE1.

Chapter 7
Privileges on Object Types and Their Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 13

Example 7-4 Performing Grants to USER3

-- Requires Ex. 7-1, 7-2, and 7-3
GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

-- Privileges on Object Types
GRANT SELECT ON tab1 TO user3 -- incorrect statement;

In Example 7-5, USER3 has the necessary privileges to perform the following actions:

Example 7-5 Creating Tables and Types

-- Requires Ex. 7-1, 7-2, 7-3, and 7-4
CONNECT user3
-- Enter password
CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
/
CREATE TABLE tab3 OF type4;

7.1.5 Access Privileges on Objects, Types, and Tables
Object types only make use of the EXECUTE privilege.

However, object tables use all the same privileges as relational tables:

• READ or SELECT lets you access an object and its attributes from the table.

• UPDATE lets you modify attributes of objects in the table.

• INSERT lets you add new objects to the table.

• DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object types.

Selecting columns of an object table does not require privileges on the type of the object table.
Selecting the entire row object, however, does.

Consider the schema and queries created below in Example 7-6:

Example 7-6 SELECT Privileges on Type Access

-- Requires Ex. 7-1, 7-2, 7-3, 7-4, and 7-5
CREATE TYPE emp_type AS OBJECT (
 eno NUMBER,
 ename VARCHAR2(36));
/
CREATE TABLE emp OF emp_type; // an object table
GRANT SELECT on emp TO user1;
SELECT VALUE(e) FROM emp e;
SELECT eno, ename FROM emp;

For both queries, Oracle AI Database checks the user's SELECT privilege for the object table
emp. For the first query, the user needs to obtain the emp_type type information to interpret the
data. When the query accesses the emp_type type, the database checks the user's EXECUTE
privilege.

The second query, however, does not involve named types, so the database does not check
type privileges.

Additionally, USER3 can perform queries such as these:

Chapter 7
Privileges on Object Types and Their Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 13

SELECT t.col1.attr2 from user2.tab2 t;
SELECT t.attr4.attr3.attr2 FROM tab3 t;

Note that in both queries, USER3 does not have explicit privileges on the underlying type.
However, the statement succeeds because the type and table owners have the necessary
privileges with the GRANT option.

Oracle AI Database checks privileges on the following requests and returns an error if the
requestor does not have the privilege for the action:

• Pinning an object in the object cache using its REF value causes the database to check the
READ or SELECT privilege on the object table containing the object and the EXECUTE privilege
on the object type.

• Modifying an existing object or flushing an object from the object cache causes the
database to check the UPDATE privilege on the destination object table. Flushing a new
object causes the database to check the INSERT privilege on the destination object table.

• Deleting an object causes the database to check the DELETE privilege on the destination
table.

• Invoking a method causes the database to check the EXECUTE privilege on the
corresponding object type.

Oracle AI Database does not provide column level privileges for object tables.

See Also

Oracle Call Interface Developer's Guide for tips and techniques for using OCI program
effectively with objects

7.2 Type Dependencies
Type dependencies fall into two broad categories:

• Situations where types depend upon each other for their definitions, where one type might
be part of the definition of another type.

• Situations where creating or dropping types is complicated by dependencies that the type
has such, as tables or types.

This section covers the following topics:

• Creating Incomplete Types

• Completing Incomplete Types

• Recompiling a Type Manually

• Using CREATE OR REPLACE TYPE with Type and Table Dependencies

• Type Dependencies of Substitutable Tables and Columns

• The DROP TYPE FORCE Option

• Creating a Type Synonym

• Using a Type Synonym

Chapter 7
Type Dependencies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 13

7.2.1 Creating Incomplete Types
Types that depend on each other for their definitions, either directly or through intermediate
types, are called mutually dependent. For example, you might want to define object types
employee and department in such a way that one attribute of employee is the department the
employee belongs to and one attribute of department is the employee who manages the
department.

If you visualize a diagram with arrows showing the relationships among a set of mutually
dependent types, the connections form a loop. To define such a circular dependency, you must
use REFs for at least one segment of the circle.

For example, you can define the types shown in Example 7-7.

Example 7-7 Creating Dependent Object Types

-- Requires Ex. 7-1 and password
CONNECT user1
-- Enter password
ALTER SESSION SET PLSQL_WARNINGS = 'enable:all';

CREATE TYPE department; // a placeholder
/

CREATE TYPE employee AS OBJECT (
 name VARCHAR2(30),
 dept REF department,
 supv REF employee);
/

CREATE TYPE emp_list AS TABLE OF employee;
/

CREATE TYPE department AS OBJECT (
 name VARCHAR2(30),
 mgr REF employee,
 staff emp_list);
/

This is a legal set of mutually dependent types and a legal sequence of SQL DDL statements.
Oracle AI Database compiles it without errors.

Notice that the code in Example 7-7 creates the type department twice. The first statement is
an optional, incomplete declaration of department that serves as a placeholder for the REF
attribute of employee to point to. The declaration is incomplete in that it omits the AS OBJECT
phrase and lists no attributes or methods. These are specified later in the full declaration that
completes the type. In the meantime, department is created as an incomplete object type. This
enables the compilation of employee to proceed without errors.

If you do not create incomplete types as placeholders, types that refer to the missing types still
compile, but the compilation proceeds with errors. For example, if department did not exist at
all, Oracle AI Database would create it as an incomplete type and compile employee with
errors. Then employee would be recompiled the next time that some operation accesses it.
This time, if all the types it depends on have been created and its dependencies are satisfied, it
compiles without errors.

Incomplete types also enable you to create types that contain REF attributes to a subtype that
has not yet been created. To create such a supertype, first create an incomplete type of the
subtype to be referenced. Create the complete subtype after you create the supertype.

Chapter 7
Type Dependencies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 13

7.2.2 Completing Incomplete Types
When you have created all the types referenced by an incomplete type, complete the
declaration of the incomplete type, because there is no longer any need for it to remain
incomplete.

Completing the type recompiles it and enables the system to release various locks. You
complete the type with a CREATE TYPE statement.

• Execute a CREATE TYPE statement that specifies the attributes and methods of the type, as
shown at the end of Example 7-7.

Also, you must complete any incomplete types that the database creates for you. If, as
discussed in the preceding section, you did not explicitly create department as an incomplete
type, then the database did. In this case, you still need to complete it.

You must complete an incomplete object type as an object type: you cannot complete an object
type as a collection type (a nested table type or an array type). The only alternative is to drop
the type.

7.2.3 Recompiling a Type Manually
If a type was created with compilation errors, and you attempt an operation on it, such as
creating tables or inserting rows, you may receive an error. You need to recompile the type
before attempting the operation. You recompile with an ALTER TYPE statement.

• Execute an ALTER TYPE typename COMPILE statement. After you have successfully compiled
the type, attempt the operation again.

7.2.4 Using CREATE OR REPLACE TYPE with Type and Table
Dependencies

The CREATE OR REPLACE TYPE statement throws an error if the type being replaced has table or
type dependencies. This applies to objects, varrays, and nested table types. This also applies
to type dependencies involving either inheritance or type composition (embedding one type
into another). The latter might be a situation where one type is attribute of another.

Using the FORCE option with a CREATE OR REPLACE TYPE statement enables you to replace a type
if it has type dependencies, but not table dependencies. Table dependencies still cause errors.

• Use the FORCE option with a CREATE OR REPLACE TYPE statement to replace a type if it has
type dependencies.

Example 7-8 shows a CREATE OR REPLACE statement (second statement) that fails due to a type
dependency.

Example 7-8 CREATE OR REPLACE Type and Table Failure

SQL> CREATE type t1 AS OBJECT (a number) not final;
 2 /
Type created.

SQL> CREATE TYPE t2 UNDER t1 (b varchar(10));
 2 /
Type created.

Chapter 7
Type Dependencies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 13

SQL> CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar(20));
 2 /
CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar(20));
*
ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table dependents

7.2.5 Creating or Replacing Type with Force
A CREATE OR REPLACE FORCE statement fails if the type has a table dependency because a type
with a table dependency cannot be replaced.

Example 7-9 shows code in which a CREATE OR REPLACE FORCE statement succeeds in replacing
a type that has a type dependency and then creates a table using the parent type. However,
the final CREATE OR REPLACE FORCE statement fails because the type now has a table
dependency and even with the FORCE option, a type with a table dependency cannot be
replaced.

See Also

Oracle AI Database PL/SQL Language Reference for details of the CREATE OR REPLACE
TYPE SQL statement

Example 7-9 CREATE OR REPLACE with FORCE

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (c varchar(20));
 2 /
Type created.

SQL> CREATE TABLE tb1 (c1 t1);
Table created.

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
 2 /
CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
*
ERROR at line 1:
ORA-22866: cannot replace a type with table dependents

7.2.6 Type Dependencies of Substitutable Tables and Columns
A substitutable table or column of a specific type is dependent not only on that type but on all
subtypes of the type as well.

This is because a hidden column is added to the table for each attribute added in a subtype of
the type. The hidden columns are added even if the substitutable table or column contains no
data of that subtype.

In Example 7-10, a persons table of type person_typ is dependent not only on person_typ but
also on the person_typ subtypes student_typ and part_time_student_typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the DROP TYPE
statement returns an error and aborts. Consequently, trying to drop a part_time_student_typ
raises an error because of the dependent persons table.

Chapter 7
Type Dependencies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 13

If dependent tables or columns exist but contain no data of the type being dropped, you can
use the VALIDATE keyword to drop the type. The VALIDATE keyword causes Oracle AI Database
to check for actual stored instances of the specified type and to drop the type if none are
found. This also removes hidden columns associated with attributes unique to the type.

In Example 7-10, the first DROP TYPE statement fails because part_time_student_typ has a
dependent table (persons). But if persons contains no instances of part_time_student_typ
(nor does any other dependent table or column), the VALIDATE keyword causes the second
DROP TYPE statement to succeed.

Example 7-10 DROP TYPE with and without VALIDATE

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (number_hours NUMBER);
/
CREATE TABLE persons OF person_typ;
-- Following generates an error due to presence of Persons table
DROP TYPE part_time_student_typ -- incorrect statement;
-- Following succeeds if there are no stored instances of part_time_student_typ
DROP TYPE part_time_student_typ VALIDATE;

Note

Oracle recommends that you always use the VALIDATE option while dropping
subtypes.

See Also

Type Substitution in a Type Hierarchy for further explanation of substitutability

7.2.7 The DROP TYPE FORCE Option
The DROP TYPE statement has a FORCE option that causes the type to be dropped even though it
may have dependent types or tables.

Use the FORCE option with great care, because any dependent types or tables that do exist are
marked invalid and become inaccessible when the type is dropped. Data in a table that is
marked invalid for this reason can never be accessed again. The only action that can be
performed on such a table is to drop it.

Chapter 7
Type Dependencies

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 13

See Also

See "Type Evolution" for information about how to alter a type.

7.3 Synonyms for Object Types
Just as you can create synonyms for tables, views, and various other schema objects, you can
also define synonyms for object types.

Synonyms for types have the same advantages as synonyms for other kinds of schema
objects: they provide a location-independent way to reference the underlying schema object.
An application that uses public type synonyms can be deployed unaltered, in any schema of a
database, without requiring a qualified type name with the schema name.

See Also

Oracle AI Database Administrator's Guide for more information on synonyms in
general

Topics:

• Creating a Type Synonym

• Using a Type Synonym

7.3.1 Creating a Type Synonym
You create a type synonym with a CREATE SYNONYM statement.

The user must have been granted CREATE SYNONYM and CREATE PUBLIC SYNONYM privileges.

For example, these statements create a type typ1 and then create a synonym for it:

Example 7-11 CREATE TYPE / SYNONYM for user1

-- Example requires Ex.7-1 which created user1 and granted it the CREATE SYNONYM
-- and CREATE PUBLIC SYNONYM privileges
-- connect as user1 if not already connected.

CREATE TYPE typ1 AS OBJECT (x number);
/
CREATE SYNONYM syn1 FOR typ1;

Synonyms can be created for collection types, too. The following example creates a synonym
for a nested table type:

CREATE TYPE typ2 AS TABLE OF NUMBER;
/
CREATE SYNONYM syn2 FOR typ2;

You create a public synonym by using the PUBLIC keyword:

CREATE TYPE shape AS OBJECT (name VARCHAR2(10));
/
CREATE PUBLIC SYNONYM pub_shape FOR shape;

Chapter 7
Synonyms for Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 13

With the REPLACE option you can make the synonym point to a different underlying type. For
example, the following statement causes syn1 to point to type typ2 instead of the type it
formerly pointed to:

CREATE OR REPLACE SYNONYM syn1 FOR typ2;

7.3.2 Using a Type Synonym
You can use a type synonym anywhere that you can refer to a type. For instance, you can use
a type synonym in a DDL statement to name the type of a table column or type attribute.

Example 7-12 uses synonym syn1 to specify the type of an attribute in type typ3:

Example 7-12 Using a Type Synonym in a Create Statement

-- Requires Ex 7-1 and connection as user1
-- drop syn1 and typ1 if created for Ex. 7-12
CREATE TYPE typ1 AS OBJECT (x number);
/
CREATE SYNONYM syn1 FOR typ1;

CREATE TYPE typ3 AS OBJECT (a syn1);
/

In the next statement, the type synonym syn1 calls the constructor of the object type typ1, for
which syn1 is a synonym. The statement returns an object instance of typ1:

SELECT syn1(0) FROM dual;

In the following, syn2 is a synonym for a nested table type. The synonym replaces the actual
type name in a CAST expression.

SELECT CAST(MULTISET(SELECT eno FROM USER3.EMP) AS syn2) FROM dual;

This code returns the following output:

SQL> -- Type synonym used to call a constructor / nested table
SELECT syn1(0) FROM dual;
SELECT CAST(MULTISET(SELECT eno FROM USER3.EMP) AS syn2) FROM
dual;
SQL> SYN1(0)(X)
--
TYP1(0)
SQL>
CAST(MULTISET(SELECTENOFROMUSER3.EMP)ASSYN2)
--
TYP2()

Type synonyms can be used in the following kinds of statements:

• DML statements: SELECT, INSERT, UPDATE, DELETE, FLASHBACK TABLE, EXPLAIN PLAN, and
LOCK TABLE

• DDL statements: AUDIT, NOAUDIT, GRANT, REVOKE, and COMMENT

7.3.2.1 Describing Schema Objects That Use Synonyms
If a type or table has been created using type synonyms, the DESCRIBE command shows the
synonyms that the types represent.

Chapter 7
Synonyms for Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 13

You can query the catalog view USER_SYNONYMS to find out the underlying type of a type
synonym.

• Use the DESCRIBE command to show the synonyms instead of the types they represent.

Similarly, catalog views, which show type names, such as USER_TYPE_ATTRS, show the type
synonym names in their place.

See Also

Chapter 2 of Oracle AI Database Reference for a complete list of the data dictionary
catalog views

7.3.2.2 Dependents of Type Synonyms
A type that directly or indirectly references a synonym in its type declaration is a dependent of
that synonym. Thus, in the following line from Example 7-12, type typ3 is a dependent type of
synonym syn1.

CREATE TYPE typ3 AS OBJECT (a syn1);
/

Other kinds of schema objects that reference synonyms in their DDL statements also become
dependents of those synonyms. An object that depends on a type synonym depends on both
the synonym and the underlying type of the synonym.

The dependency relationships of a synonym affect your ability to drop or rename the synonym.
Dependent schema objects are also affected by some operations on synonyms. The following
sections describe these various ramifications.

7.3.2.3 Restriction on Replacing a Type Synonym
You can replace a synonym only if it has no dependent tables or valid user-defined types.
Replacing a synonym is equivalent to dropping it and then re-creating a new synonym with the
same name.

7.3.2.4 Dropping Type Synonyms
You drop a synonym with the DROP SYNONYM statement as shown in Example 7-13.

Example 7-13 Dropping Type Synonyms

CREATE SYNONYM syn4 FOR typ1;

DROP SYNONYM syn4;

You cannot drop a type synonym if it has table or valid object types as dependents unless you
use the FORCE option. The FORCE option causes any columns that directly or indirectly depend
on the synonym to be marked unused, just as if the actual types of the columns were dropped.
(A column indirectly depends on a synonym if, for instance, the synonym is used to specify the
type of an attribute of the declared type of the column.)

Any dependent schema objects of a dropped synonym are invalidated. They can be
revalidated by creating a local object or a new public synonym with the same name as the
dropped synonym.

Chapter 7
Synonyms for Object Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 13

Dropping the underlying base type of a type synonym has the same effect on dependent
objects as dropping the synonym.

7.3.2.5 Renaming Type Synonyms
You can rename a type synonym with the RENAME statement. Renaming a synonym is
equivalent to dropping it and then re-creating it with a new name. You cannot rename a type
synonym if it has dependent tables or valid object types. The following example fails because
synonym syn1 has a dependent object type:

RENAME syn1 TO syn3 -- invalid statement;

7.3.2.6 Public Type Synonyms and Local Schema Objects
You cannot create a local schema object that has the same name as a public synonym if the
public synonym has a dependent table or valid object type in the local schema that will hold the
new schema object. Nor can you create a local schema object that has the same name as a
private synonym in the same schema.

For instance, in the following example, table shape_tab is a dependent table of public synonym
pub_shape because the table has a column that uses the synonym in its type definition.
Consequently, the attempt to create a table that has the same name as public synonym
pub_shape, in the same schema as the dependent table, fails:

-- Following uses public synonym pub_shape
CREATE TABLE shape_tab (c1 pub_shape);
-- Following is not allowed
CREATE TABLE pub_shape (c1 NUMBER) -- invalid statement;

7.4 Performance Tuning
When tuning objects, the following items need to be addressed:

• How objects and object views consume CPU and memory resources during runtime

• How to monitor memory and CPU resources during runtime

• How to manage large numbers of objects

Some of the key performance factors are the following:

• DBMS_STATS package to collect statistics

• tkprof to profile execution of SQL commands

• EXPLAIN PLAN to generate the query plans

See Also

Oracle AI Database SQL Tuning Guide for details on measuring and tuning the
performance of your application

Chapter 7
Performance Tuning

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 13

8
Advanced Topics for Oracle Objects

Advanced topics section are of interest once you start applying object-relational techniques to
large-scale applications or complex schemas.

Topics:

• Storage of Objects

• Creating Indexes on Typeids or Attributes

• Type Evolution

• System-Defined and User-Defined Constructors

• Transient and Generic Types

• User-Defined Aggregate Functions

• How Locators Improve the Performance of Nested Tables

8.1 Storage of Objects
Oracle AI Database automatically maps the complex structure of object types into simple table
structure for storage.

Topics:

• Leaf-Level Attributes

• How Row Objects Are Split Across Columns

• Hidden Columns for Tables with Column Objects

• Hidden Columns for Substitutable Columns and Object Tables

• Storage of REFs

• Internal Layout of Nested Tables

• Internal Layout of VARRAYs

8.1.1 Leaf-Level Attributes
An object type is like a tree structure, where the branches represent the attributes. Attributes
that are objects sprout subbranches with their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type; such as NUMBER, VARCHAR2, or
REF, or a collection type, such as VARRAY or nested table. Each of these leaf-level attributes of
the original object type is stored in a table column.

Leaf-level attributes that are not collection types are called the leaf-level scalar attributes of the
object type.

The following topics relate to the discussion of object tables and relational tables in "How
Objects are Stored in Tables ".

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 24

8.1.2 How Row Objects Are Split Across Columns
In an object table, Oracle AI Database stores the data for every leaf-level scalar or REF
attribute in a separate column.

Note

Each VARRAY is also stored in a column, unless it is too large. Oracle AI Database
stores leaf-level attributes of nested table types in separate tables associated with the
object table. You must declare these tables as part of the object table declaration.

When you retrieve or change attributes of row objects in an object table, the database
performs the corresponding operations on the columns of the table. Accessing the value of the
row object itself invokes the default constructor for the type, using the columns of the object
table as arguments and produces a copy of the object.

The database stores the system-generated object identifier in a hidden column. The database
uses the object identifier to construct REFs to the object.

See Also

• Internal Layout of VARRAYs

• Internal Layout of Nested Tables

8.1.3 Hidden Columns for Tables with Column Objects
When a table (relational table) is defined with a column of an object type, the database adds
hidden columns to the table for the leaf-level attributes of the object type.

Each object-type column also has a corresponding hidden column to store the NULL
information for the column objects (that is, the atomic nulls of the top-level and the nested
objects).

8.1.4 Hidden Columns for Substitutable Columns and Object Tables
A substitutable column or object table has a hidden column not only for each attribute of the
object type of the column but also for each attribute added in any subtype of the object type.

Hidden columns store the values of those attributes for any subtype instances inserted in the
substitutable column.

Besides the type-discriminant column and the null-image column, the following are associated
with a substitutable column of person_typ, created by Example 8-1

• A hidden column for each of the attributes of person_typ: idno, name, and phone

• Hidden columns for attributes of the subtypes of person_typ

Thus, the following might be associated with a substitutable column of person_typ: the
attributes dept_id and major (for student_typ) and number_hours (for
part_time_student_typ).

Chapter 8
Storage of Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 24

When you create a subtype, the database automatically adds hidden columns for new
attributes in the subtype to tables containing a substitutable column of any of the ancestor
types of the new subtype. These retrofit the tables to store data of the new type. If, for some
reason, the columns cannot be added, creation of the subtype is rolled back.

When you drop a subtype using DROP TYPE with the VALIDATE option, the database
automatically drops hidden columns for attributes unique to the subtype that do not contain
data. Errors are raised if these columns contain data.

Example 8-1 creates types needed for related examples.

Example 8-1 Creating Types and Inserting in Tables

-- drop any of these objects created for Ex.7-10
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER)
 NOT FINAL;
/
CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
END;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
CREATE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30));
/
CREATE TABLE person_obj_table OF person_typ; // an object table
INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));
INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'));
INSERT INTO person_obj_table
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135', 14,
 'PHYSICS', 20));

Substitutable columns are associated with hidden type-discriminant columns. The hidden
columns contains an identifier, called a typeid, that identifies the most specific type of each
object in the substitutable columns. Typically, a typeid (RAW) is one byte, though it can be as big
as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function SYS_TYPEID.

Example 8-2 retrieves typeids of object instances stored in the substitutable object table
created in Example 8-1.

Chapter 8
Storage of Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 24

8.1.5 Querying for Typeids of Objects Stored in Tables
You can retrieve typeids of object instances stored in a substitutable object table. See
Example 8-2.

Example 8-2 Querying for Typeids of Objects Stored in the Table

-- Requires Ex. 8-1
SELECT name, SYS_TYPEID(VALUE(p)) typeid
 FROM person_obj_table p;

Output:

NAME TYPEID
------------------------------ ---------------------------
Bob Jones 01
Joe Lane 02
Kim Patel 03

The catalog views USER_TYPES, DBA_TYPES, and ALL_TYPES contain a TYPEID column (not
hidden) that gives the typeid value for each type. You can join on this column to get the type
names corresponding to the typeids in a type-discriminant column.

See Also

"SYS_TYPEID" for more information about SYS_TYPEID, typeids, and type-discriminant
columns.

8.1.6 Storage of REFs
When the database constructs a REF to a row object, the constructed REF is made up of the
object identifier (OID), some metadata of the object table, and, optionally, the ROWID.

The size of a REF in a column of REF type depends on the storage requirements associated
with the column, as follows:

• If the column is declared as a REF WITH ROWID, the database stores the ROWID in the REF
column. The ROWID hint is ignored for object references in constrained REF columns.

• If a column is declared as a REF with a SCOPE clause, the column decreases due to the
omission of the object table metadata and the ROWID. A scoped REF is 16 bytes long.

8.1.7 Internal Layout of Nested Tables
The rows of a nested table are stored in a separate storage table. Each nested table column
has a single associated storage table. The storage table holds all the elements for all of the
nested tables in that column. The storage table has a hidden NESTED_TABLE_ID column with a
system-generated value that lets Oracle AI Database map the nested table elements back to
the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table index-
organized. Include the ORGANIZATION INDEX clause inside the STORE AS clause.

Chapter 8
Storage of Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 24

A nested table type can contain objects or scalars:

• If the elements are objects, the storage table is like an object table: the top-level attributes
of the object type become the columns of the storage table. However, you cannot construct
REFs to objects in a nested table because a nested table row has no object identifier
column.

• If the elements are scalars, the storage table contains a single column called
COLUMN_VALUE that contains the scalar values.

See Also

See "Nested Table Storage".

8.1.8 Internal Layout of VARRAYs
All the elements of a VARRAY are stored in a single column. Depending upon the size of the
array, it may be stored inline or in a BLOB.

See Also

See Storage Considerations for Varrays for details.

8.2 Creating Indexes on Typeids or Attributes
You can use indexes on typeids and attributes.

Topics:

• Indexing a Type-Discriminant Column

• Indexing Subtype Attributes of a Substitutable Column

8.2.1 Indexing a Type-Discriminant Column
Using the SYS_TYPEID function, you can build an index on the hidden type-discriminant column
of substitutable columns. The type-discriminant column contains typeids that identify the most
specific type of every object instance stored in the substitutable column.

The system uses this information to evaluate queries that filter by type using the IS OF
predicate, but you can access the typeids for your own purposes using the SYS_TYPEID
function.

Generally, a type-discriminant column contains only a small number of distinct typeids: at most,
there can be only as many as there are types in the related type hierarchy. The low cardinality
of this column makes it a good candidate for a bitmap index.

For example, the following statement creates a bitmap index on the type-discriminant column
underlying the substitutable contact column of table contacts. The function SYS_TYPEID
references the type-discriminant column:

Chapter 8
Creating Indexes on Typeids or Attributes

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 24

Example 8-3 Create bitmap index on type-discriminant column

-- Requires Ex. 8-1
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);
INSERT INTO contacts VALUES (
 person_typ (65,'Vrinda Mills', '1-650-555-0125'),'24 Jun 2003');
INSERT INTO contacts VALUES (
 person_typ (12, 'Bob Jones', '650-555-0130'),'24 Jun 2003');
INSERT INTO contacts VALUES (
 student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'),'24 Jun 2003');
INSERT INTO contacts VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135',
14, 'PHYSICS', 20),'24 Jun 2003');
CREATE BITMAP INDEX typeid_idx ON contacts (SYS_TYPEID(contact));

8.2.2 Indexing Subtype Attributes of a Substitutable Column
You can build an index on attributes for any types that can be stored in a substitutable column.

You can reference attributes of subtypes in the CREATE INDEX statement by filtering out types
other than the desired subtype (and its subtypes) using the TREAT function; you then use dot
notation to specify the desired attribute.

For example, the following statement creates an index on the major attribute of all students in
the contacts table. The declared type of the contact column is person_typ, of which
student_typ is a subtype, so the column may contain instances of person_typ, student_typ,
and subtypes of either one:

Example 8-4 Create index on attribute of all students

-- Requires Ex.8-1- and 8-3
CREATE INDEX major1_idx ON contacts
 (TREAT(contact AS student_typ).major);

The student_typ type first defined the major attribute: the person_typ supertype does not
have it. Consequently, all the values in the hidden column for the major attribute are values for
persons of type student_typ or parttimestudent_typ (a student_typ subtype). This means
that the values of the hidden column are identical to the values returned by the TREAT
expression, major values for all students, including student subtypes: both the hidden column
and the TREAT expression list majors for students and nulls for non-students. The system
exploits this fact and creates index major1_idx as an ordinary B-tree index on the hidden
column.

Values in a hidden column are only identical to the values returned by the TREAT expression
just described if the type named as the target of the TREAT function (student_typ) is the type
that first defined the major attribute. If the target of the TREAT function is a subtype that merely
inherited the attribute, as in the following example, the TREAT expression returns non-null major
values for the subtype (part-time students) but not for its supertype (other students).

CREATE INDEX major2_idx ON contacts
 (TREAT(contact AS part_time_student_typ).major);

Here, the values stored in the hidden column for major may be different from the results of the
TREAT expression. Consequently, an ordinary B-tree index cannot be created on the underlying
column. Therefore, the database treats the TREAT expression like any other function-based
expression and tries to create the index as a function-based index on the result.

Chapter 8
Creating Indexes on Typeids or Attributes

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 24

The following example, like the previous one, creates a function-based index on the major
attribute of part-time students, but in this case, the hidden column for major is associated with
a substitutable object table person_obj_table:

CREATE INDEX major3_idx ON person_obj_table p
 (TREAT(VALUE(p) AS part_time_student_typ).major);

8.3 Type Evolution
Type evolution is the process of changing a object type.

Topics:

• About Type Evolution

• Type Evolution and Dependent Schema Objects

• Options for Updating Data

• Effects of Structural Changes to Types

• Altering a Type by Adding and Dropping Attributes

• Altering a Type by Adding a Nested Table Attribute

• About Validating Types That Have Been Altered

• ALTER TYPE Statement for Type Evolution

• ALTER TABLE Statement for Type Evolution

8.3.1 About Type Evolution
You can make the following changes to evolve an object type:

• Add and drop attributes

• Add and drop methods

• Modify a numeric attribute to increase its length, precision, or scale

• Modify a varying length character attribute to increase its length

• Change the FINAL and INSTANTIABLE properties of a type

• Modify limit and size of VARRAYs

• Modify length, precision, and scale of collection elements

Changes to a type affect things that reference the type. For example, if you add a new attribute
to a type, data in a column of that type must be presented so as to include the new attribute.

8.3.2 Type Evolution and Dependent Schema Objects
Dependent schema objects of a type are objects that directly or indirectly reference the type
and are affected by a change to it.

A type can have these kinds of dependent schema objects: tables; types or subtypes; program
units (PL/SQL blocks) such as procedures, functions, packages, and triggers; indextypes;
views (including object views); function-based indexes; and operators.

How a dependent schema object is affected by a change to a type depends on the object and
on the nature of the change.

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 24

• Dependent program units, views, operators, and indextypes are marked invalid when the
type is modified. The next time one of these invalid schema objects is referenced, it is
revalidated using the new type definition. If the object recompiles successfully, it becomes
valid and can be used again.

• Dependent function-based indexes may be dropped or disabled, depending on the type
change, and must be rebuilt.

• Dependent tables have one or more internal columns added for each attribute added to the
type, depending on the attribute type. New attributes are added with NULL values. For each
dropped attribute, the columns associated with that attribute are dropped. For each
modified attribute, the length, precision, or scale of its associated column is changed
accordingly.

These changes mainly involve updating the metadata of the tables and can be performed
quickly. However, the data in those tables must be updated to the format of the new type
version as well, as discussed in "Options for Updating Data".

8.3.3 Options for Updating Data
Depending on the amount of data, updating can be time-consuming, so the ALTER TYPE
command has options to let you choose whether to convert all dependent table data
immediately or to leave it in the old format to be converted piecemeal as it is updated in the
course of business.

The CASCADE option for ALTER TYPE propagates a type change to dependent types and tables.
CASCADE itself has the following options that let you choose whether or not to convert table data
to the new type format as part of the propagation:

• INCLUDING TABLE DATA: converts the data (default)

• NOT INCLUDING TABLE DATA : does not convert data

By default, the CASCADE option converts the data. In either case, table data is always returned
in the format of the latest type version. If the table data is stored in the format of an earlier type
version, the database converts the data to the format of the latest version before returning it,
even though the format in which the data is actually stored is not changed until the data is
rewritten.

You can retrieve the definition of the latest type from the system view USER_SOURCE. You can
view definitions of all versions of a type in the USER_TYPE_VERSIONS view.

See Also

• "ALTER TYPE Statement for Type Evolution".

• See Oracle AI Database PL/SQL Language Reference for details about type
specification and body compilation

8.3.4 Effects of Structural Changes to Types
Structural changes to a type affect dependent data and require the data to be converted. This
is not true for changes that are confined to method definitions or behavior (implementation) of
the type.

These possible changes to a type are structural:

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 24

• Add or drop an attribute

• Modify the length, precision, or scale of an attribute

• Change the finality of a type from FINAL to NOT FINAL or the reverse

These changes result in new versions of the altered type and all its dependent types and
require the system to add, drop, or modify internal columns of dependent tables as part of the
process of converting to the new version.

When you make any of these kinds of changes to a type that has dependent types or tables,
the effects of propagating the change are not confined only to metadata but also affect data
storage arrangements and require data conversion.

Besides converting data, you may also need to make other changes. For example, if a new
attribute is added to a type, and the type body invokes the constructor of the type, then each
constructor in the type body must be modified to specify a value for the new attribute. Similarly,
if a new method is added, then the type body must be replaced to add the implementation of
the new method. The type body can be modified by using the CREATE OR REPLACE TYPE BODY
statement.

8.3.5 Altering a Type by Adding and Dropping Attributes
You can make a simple change to a type by adding one attribute and dropping another.

Example 8-5makes such a change to person_type. The CASCADE keyword propagates the type
change to dependent types and tables, but the phrase NOT INCLUDING TABLE DATA prevents
conversion of the related data.

Example 8-5 Altering an Object Type by Adding and Dropping an Attribute

-- Drop person_typ and person_obj_table if they exist
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20));
/
CREATE TABLE person_obj_table OF person_typ;

INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));

SELECT value(p) FROM person_obj_table p;

VALUE(P)(IDNO, NAME, PHONE)
--
PERSON_TYP(12, 'Bob Jones', '650-555-0130')

You can add the email attribute and drop the phone attribute as follows:

ALTER TYPE person_typ
 ADD ATTRIBUTE (email VARCHAR2(80)),
 DROP ATTRIBUTE phone CASCADE NOT INCLUDING TABLE DATA;

Then you can disconnect and reconnect to accommodate the type change:

connect oe/oe;
connect hr/<password>;
ALTER SESSION SET PLSQL_WARNINGS = 'enable:all';
-- The data of table person_obj_table has not been converted yet, but
-- when the data is retrieved, Oracle returns the data based on

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 24

-- the latest type version. The new attribute is initialized to NULL.
SELECT value(p) FROM person_obj_table p;

VALUE(P)(IDNO, NAME, EMAIL)

PERSON_TYP(12, 'Bob Jones', NULL)

During SELECT statements, even though column data may be converted to the latest type
version, the converted data is not written back to the column. If you retrieve a particular user-
defined type column in a table often, consider converting that data to the latest type version to
eliminate redundant data conversions. Converting is especially beneficial if the column
contains VARRAY attributes which typically take more time to convert than objects or nested
table columns.

You can convert a column of data by issuing an UPDATE statement to set the column to itself, as
indicated in the following code snippet, which is unrelated to previous code.

UPDATE dept_tab SET emp_array_col = emp_array_col;

You can convert all columns in a table by using ALTER TABLE with the UPGRADE INCLUDING DATA.
For example:

ALTER TYPE person_typ ADD ATTRIBUTE (photo BLOB)
 CASCADE NOT INCLUDING TABLE DATA;
ALTER TABLE person_obj_table UPGRADE INCLUDING DATA;

The ALTER TABLE line converts only the table listed. The CASCADE option prevents conversion of
other tables or dependents.

8.3.6 Altering a Type by Adding a Nested Table Attribute
You can add a nested table attribute to an object type that is included in a nested table.

The following steps are required to make this complex change to a type.

The steps require this initial schema which is then altered by the code in Step 1.

Initial Schema

-- Drop existing person_typ, department_type, people_typ objects or tables
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20));
/
-- creating a nested table type
CREATE TYPE people_typ AS TABLE OF person_typ;/
CREATE TYPE department_typ AS OBJECT (
 manager person_typ,
 employee people_typ); // a nested table/
CREATE TABLE department OF department_typ
 NESTED TABLE employee STORE AS employee_store_nt;

The code example in Step 1 starts by creating a new object tasks_typ and a nested table type
to hold it, tasks_nttab.

The following steps, both in the code example in Step 1, and in other programs, are necessary
to add the nested table tasks as an attribute to the object type person_typ, which is already
included in the nested table people_typ.

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 24

1. .

Altering an Object Type by Adding a Nested Table Attribute

-- Requires Ex. 8-6
CREATE TYPE tasks_typ AS OBJECT (
 priority VARCHAR2(2),
 description VARCHAR2(30));
/

CREATE TYPE tasks_nttab AS TABLE OF tasks_typ;
/

-- Propagate the change to employee_store_nt
-- Specify a storage name for the new nested table
ALTER TABLE employee_store_nt
 UPGRADE NESTED TABLE tasks STORE AS tasks_nt;

2. Use CREATE OR REPLACE TYPE BODY for person_typ to update the corresponding type body
to make it current with the new type definition, if necessary.

3. Upgrade the dependent tables to the latest type version and convert the data in the tables.
This validates the table and allow for data access again.

ALTER TABLE department UPGRADE INCLUDING DATA;

4. Alter dependent PL/SQL program units as needed to take account of changes to the type.

5. Use Oracle Type Translator (OTT) to generate new header files for applications, depending
on whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in all its
subtypes because these inherit the new attribute. Inherited attributes always precede
declared (locally defined) attributes, so adding a new attribute to a supertype causes the
ordinal position of all declared attributes of any subtype to be incremented by one
recursively.

You must update the mappings of the altered type to include the new attributes. Use
Oracle Type Translator (OTT) to do this. If you use another tool, you must be sure that the
type headers are properly synchronized with the type definition in the server; otherwise,
unpredictable behavior may result.

6. Modify application code as needed and rebuild the application.

8.3.7 About Validating Types That Have Been Altered
When the system executes an ALTER TYPE statement, it first validates the requested type
change syntactically and semantically to make sure it is legal.

The system performs the same validations as for a CREATE TYPE statement plus some
additional ones. If the new specification of the target type or any of its dependent types fails the
type validations, the ALTER TYPE statement aborts. No new type version is created, and all
dependent objects remain unchanged.

If dependent tables exist, further checking ensures that restrictions relating to the tables and
indexes are observed. For example, it ensures that an attribute being dropped is not used as a
partitioning key. Again, if the ALTER TYPE statement fails the check of table-related restrictions,
then the type change is aborted, and no new version of the type is created.

When a single ALTER TYPE statement adds multiple attributes, it is done in the order specified.
Multiple type changes can be specified in the same ALTER TYPE statement, but no attribute
name or method signature can be specified more than once in the statement. For example,
adding and modifying the same attribute in a single statement is not allowed.

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 24

The following sections contain other notes on type changes including:

• Dropping an Attribute

• Modifying the Length, Precision, or Scale of an Attribute Type

• Dropping a Method

• Modifying the INSTANTIABLE Property

Dropping an Attribute

• Dropping all attributes from a root type is not allowed. Instead, you must drop the type.
Because a subtype inherits all the attributes from its supertype, dropping all the attributes
from a subtype does not reduce its attribute count to zero; therefore, dropping all attributes
declared locally in a subtype is allowed.

• Only an attribute declared locally in the target type can be dropped. You cannot drop an
inherited attribute from a subtype. Instead, drop the attribute from the type where it is
locally declared.

• Dropping an attribute which is part of a table partitioning or sub-partitioning key in a table is
not allowed.

• When an attribute is dropped, the column corresponding to the dropped attribute is
dropped.

• When an attribute is dropped, any indexes, statistics, constraints, and referential integrity
constraints that reference it are removed.

Modifying the Length, Precision, or Scale of an Attribute Type

• You are not allowed to expand the length of an attribute referenced in a function-based
index, clustered key or domain index on a dependent table.

• You are not allowed to decrease the length, precision, or scale of an attribute.

Dropping a Method

• You can only drop a method from the type in which the method is defined (or redefined):
You cannot drop an inherited method from a subtype, and you cannot drop an redefined
method from a supertype.

• If a method is not redefined, dropping it using the CASCADE option removes the method from
the target type and all subtypes. However, if a method is redefined in a subtype, the
CASCADE will fail and roll back. For the CASCADE to succeed, you must first drop each
redefined method from the subtype that defines it and then drop the method from the
supertype.

You can consult the USER_DEPENDENCIES table to find all the schema objects, including
types, that depend on a given type. You can also run the DBMS_UTILITY.GET_DEPENDENCY
utility to find the dependencies of a type.

• You can use the INVALIDATE option to drop a method that has been redefined, but the
redefined versions in the subtypes must still be dropped manually. The subtypes will
remain in an invalid state until they are explicitly altered to drop the redefined versions.
Until then, an attempt to recompile the subtypes for revalidation will produce the error
Method does not override.

Unlike CASCADE, INVALIDATE bypasses all the type and table checks and simply invalidates
all schema objects dependent on the type. The objects are revalidated the next time they
are accessed. This option is faster than using CASCADE, but you must be certain that no
problems occur when revalidating dependent types and tables. Table data cannot be

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 24

accessed while a table is invalid; if a table cannot be validated, its data remains
inaccessible.

Modifying the INSTANTIABLE Property

• Altering an object type from INSTANTIABLE to NOT INSTANTIABLE is allowed only if the type
has no table dependents.

• Altering an object type from NOT INSTANTIABLE to INSTANTIABLE is allowed anytime. This
change does not affect tables.

Modifying the FINAL Property

• Altering an object type from NOT FINAL to FINAL is only allowed if the target type has no
subtypes.

• When you alter an object type from FINAL to NOT FINAL or vice versa, you must use
CASCADE to convert data in dependent columns and tables immediately. You may not use
the CASCADE option NOT INCLUDING TABLE DATA to defer converting data.

– From NOT FINAL to FINAL, you must use CASCADE INCLUDING TABLE DATA.

– From FINAL to NOT FINAL, you may use either CASCADE INCLUDING TABLE DATA or
CASCADE CONVERT TO SUBSTITUTABLE.

When you alter a type from FINAL to NOT FINAL, select the CASCADE option based on
whether or not you want to insert new subtypes of the altered types into existing
columns and tables.

By default, altering a type from FINAL to NOT FINAL enables you to create new substitutable
tables and columns of that type, but it does not automatically make existing columns (or
object tables) of that type substitutable. In fact, just the opposite happens: existing columns
and tables of the type are marked NOT SUBSTITUTABLE AT ALL LEVELS. If any embedded
attribute of these columns is substitutable, an error is generated. New subtypes of the
altered type cannot be inserted into these preexisting columns and tables.

To alter an object type to NOT FINAL in a way that makes existing columns and tables of the
type substitutable (assuming that they are not marked NOT SUBSTITUTABLE), use the
CASCADE option CONVERT TO SUBSTITUTABLE.

The following example shows the use of CASCADE with the option CONVERT TO
SUBSTITUTABLE:

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER)
 FINAL;/
ALTER TYPE shape NOT FINAL CASCADE CONVERT TO SUBSTITUTABLE;

This CASCADE option marks each existing column as SUBSTITUTABLE AT ALL LEVELS and
causes a new, hidden column to be added for the TypeId of instances stored in the column.
The column can then store subtype instances of the altered type.

8.3.8 ALTER TYPE Statement for Type Evolution
Table 8-1 lists some of the important options in the ALTER TYPE and ALTER TYPE...CASCADE
statements for altering the attribute or method definition of a type.

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 24

Table 8-1 ALTER TYPE Options for Type Evolution

Option Description

CASCADE Propagates the type change to dependent types and tables. The
statement aborts if an error is found in dependent types or tables unless
the FORCE option is specified.

If CASCADE is specified without other options, then the INCLUDING TABLE
DATA option for CASCADE is implied, and the database converts all table
data to the latest type version.

INCLUDING TABLE DATA
(Option of CASCADE)

Converts data stored in all user-defined columns to the most recent
version of the column type.

For each new attribute added to the column type, a new attribute is added
to the data and is initialized to NULL. For each attribute dropped from the
referenced type, the corresponding attribute data is removed from the
table. All tablespaces containing the table data must be in read-write
mode; otherwise, the statement will not succeed.

NOT INCLUDING TABLE
DATA (Option of CASCADE)

Leaves column data as is, does not change type version. If an attribute is
dropped from a type referenced by a table, the corresponding column of
the dropped attribute is not removed from the table. However, the
metadata of the column is marked unused. If the dropped attribute is
stored out-of-line (for example, VARRAY, LOB, or nested table attribute),
the out-of-line data is not removed. (Unused columns can be removed
afterward by using an ALTER TABLE DROP UNUSED COLUMNS
statement.)

This option is useful when you have many large tables and may run out of
rollback segments if you convert them all in one transaction. This option
enables you to convert the data of each dependent table later in a
separate transaction (using an ALTER TABLE UPGRADE INCLUDING
DATA statement).

Specifying this option speeds up the table upgrade because the table
data remains in the format of the old type version. However, selecting
data from this table requires converting the images stored in the column
to the latest type version. This is likely to affect performance during
subsequent SELECT statements.

Because this option only requires updating the table metadata, it does not
require that all tablespaces be on-line in read/write mode for the
statement to succeed.

FORCE (Option of CASCADE) Forces the system to ignore errors from dependent tables and indexes.
Errors are logged in a specified exception table so that they can be
queried afterward. Use this option with caution because dependent tables
can become inaccessible if some table errors occur.

CONVERT TO
SUBSTITUTABLE (Option of
CASCADE)

For use when altering a type from FINAL to NOT FINAL: Converts data
stored in all user-defined columns to the most recent version of the
column type and then marks these existing columns and object tables of
the type SUBSTITUTABLE AT ALL LEVELS so that they can store any
newly created subtypes of the type.

If the type is altered to NOT FINAL without specifying this option, existing
columns and tables of the type are marked NOT SUBSTITUTABLE AT
ALL LEVELS, and new subtypes of the type cannot be stored in them.
You can only store these subtypes in columns and tables created after
the type was altered.

Chapter 8
Type Evolution

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 24

See Also

Oracle AI Database SQL Language Reference for further information about ALTER
TYPE options

8.3.9 ALTER TABLE Statement for Type Evolution
You can use ALTER TABLE to convert table data to the latest version of referenced types. For an
example, see "Altering a Type by Adding a Nested Table Attribute".

See Also

• Table 8-1 for a discussion of the INCLUDING DATA option.

• Oracle AI Database SQL Language Reference for information about ALTER TABLE
options

8.4 Storing XMLTypes and LOBs in an ANYDATA Column
Beginning with Oracle Database 12c, you can use ALTER TABLE to store ADTs with XMLTYPEs
and LOB attributes in ANYDATA columns. You can also do the same for standalone XMLTYPEs.

• Use the modify_opaque_type clause, which instructs the database to store these types
unpacked. Otherwise, they cannot be stored in an ANYDATA column.

See Also

Oracle AI Database SQL Language Reference for information about ALTER TABLE used
with the modify_opaque_type clause

8.5 System-Defined and User-Defined Constructors
There are various aspects to system-defined constructors, also known as attribute-value
constructors, and user-defined constructors.

Topics:

• The Attribute-Value Constructor

• Constructors and Type Evolution

• Advantages of User-Defined Constructors

• Defining and Implementing User-Defined Constructors

• Overloaded and Hidden Constructors

• Calling User-Defined Constructors

• Constructors for SQLJ Object Types

Chapter 8
Storing XMLTypes and LOBs in an ANYDATA Column

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 24

8.5.1 The Attribute-Value Constructor
The system-defined constructor, also known as the attribute-value constructor, requires you to
pass the constructor a value for each attribute of the type. The constructor then sets the
attributes of the new object instance to those values, as shown in Example 8-6.

The keyword NEW preceding a call to a constructor is optional but recommended.

Example 8-6 Setting the attribute-value with the Constructor

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER);
/
CREATE TABLE building_blocks of shape;

-- attribute-value constructor: Sets instance attributes to the specified values
INSERT INTO building_blocks
 VALUES (
 NEW shape('my_shape', 4));

8.5.2 Constructors and Type Evolution
The attribute-value constructor saves you the trouble of defining your own constructors for a
type. However, you must supply a value for every attribute declared in the type or the
constructor call fails to compile.

This requirement can create a problem if you evolve the type later on, especially because the
attribute-value constructor is implicit and not visible in the code, unlike a user-defined
constructor. When you change the attributes of a type, the attribute-value constructor of the
type changes, too. If you add an attribute, the updated attribute-value constructor expects a
value for the new attribute; otherwise, any attribute-value constructor calls in your existing code
fail.

See Also

"Type Evolution"

8.5.3 Advantages of User-Defined Constructors
User-defined constructors do not need to explicitly set a value for every attribute of a type,
unlike attribute-value constructors.

A user-defined constructor can have any number of arguments, of any type, and these do not
need to map directly to type attributes. When you define a constructor, you can initialize the
attributes to any appropriate values. For any attributes which you do not supply values, the
system initialized to NULL.

If you evolve a type—for example, by adding an attribute—calls to user-defined constructors
for the type do not need to be changed. User-defined constructors are not automatically
modified when the type evolves, so their signatures remain the same. You may, however, need
to change the definition of the constructor if you do not want the new attribute to be initialized
to NULL.

Chapter 8
System-Defined and User-Defined Constructors

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 24

8.5.4 Defining and Implementing User-Defined Constructors
You define user-defined constructors in the type body, like an ordinary method. You introduce
the declaration and the definition with the phrase CONSTRUCTOR FUNCTION and end with the
clause RETURN SELF AS RESULT.

A constructor for a type must have the same name as the type. Example 8-7 defines two
constructor functions for the shape type. As the example shows, you can overload user-defined
constructors by defining multiple versions with different signatures.

Example 8-7 Defining and Implementing User-Defined Constructors

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER,
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2)
 RETURN SELF AS RESULT,
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2,
 area NUMBER) RETURN SELF AS RESULT
) NOT FINAL;
/

CREATE TYPE BODY shape AS
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2)
 RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := 0;
 RETURN;
 END;
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2,
 area NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := area;
 RETURN;
 END;
END;
/

A user-defined constructor has an implicit first parameter SELF. Specifying this parameter in the
declaration of a user-defined constructor is optional. If you do specify it, you must declare its
mode to be IN OUT.

The required clause RETURN SELF AS RESULT ensures that the most specific type of the
instance being returned is the same as the most specific type of the SELF argument. In the
case of constructors, this is the type for which the constructor is defined. For example, if the
most specific type of the SELF argument on a call to the shape constructor is shape, then this
clause ensures that the shape constructor returns an instance of shape (not an instance of a
subtype of shape).

When a constructor function is called, the system initializes the attributes of the SELF argument
to NULL. Names of attributes subsequently initialized in the function body may be qualified with
SELF, such as SELF.name in Example 8-7, to distinguish them from the names of the arguments
of the constructor function, if these are the same. If the argument names are different, this
qualification is not necessary.

Chapter 8
System-Defined and User-Defined Constructors

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 24

The function body must include an explicit return; as shown. The return keyword must not be
followed by a return expression. The system automatically returns the newly constructed SELF
instance.

A user-defined constructor may be implemented in PL/SQL, C, or Java.

8.5.5 Overloaded and Hidden Constructors
You can overload user-defined constructors, like other type methods.

User-defined constructors are not inherited, so a user-defined constructor defined in a
supertype cannot be hidden in a subtype. However, a user-defined constructor does hide, and
thus supersede, the attribute-value constructor for its type if the signature of the user-defined
constructor exactly matches the signature of the attribute-value constructor.

For the signatures to match, the names and types of the parameters (after the implicit SELF
parameter) of the user-defined constructor must be the same as the names and types of the
attributes of the type. The mode of the parameters (after the implicit SELF parameter) of the
user-defined constructor must be IN.

If an attribute-value constructor is not hidden by a user-defined constructor that has the same
name and signature, the attribute-value constructor can still be called.

Note that, if you evolve a type—for example, by adding an attribute—the signature of the
attribute-value constructor of the type changes accordingly. This can cause a formerly hidden
attribute-value constructor to become usable again.

8.5.6 Calling User-Defined Constructors
You call a user-defined constructor like any other function and you can use it anywhere you
can use an ordinary function.

The SELF argument is passed in implicitly and may not be passed in explicitly. In other words,
usages like the following are not allowed:

NEW constructor(instance, argument_list)

A user-defined constructor cannot occur in the DEFAULT clause of a CREATE or ALTER TABLE
statement, but an attribute-value constructor can. The arguments to the attribute-value
constructor must not contain references to PL/SQL functions or to other columns, including the
pseudocolumns LEVEL, PRIOR, and ROWNUM, or to date constants that are not fully specified. The
same is true for check constraint expressions: an attribute-value constructor can be used as
part of check constraint expressions while creating or altering a table, but a user-defined
constructor cannot.

Parentheses are required in SQL even for constructor calls that have no arguments. In PL/
SQL, parentheses are optional when invoking a zero-argument constructor. They do, however,
make it more obvious that the constructor call is a function call. The following PL/SQL example
omits parentheses in the constructor call to create a new shape:

shape s := NEW my_schema.shape;

The NEW keyword and the schema name are optional.

Example 8-8 creates a subtype under the type created in Example 8-7 and shows examples
for calling the user-defined constructors.

Chapter 8
System-Defined and User-Defined Constructors

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 24

Example 8-8 Calling User-Defined Constructors

-- Requires Ex. 8-8
CREATE TYPE rectangle UNDER shape (
 len NUMBER,
 wth NUMBER,
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, len NUMBER, wth NUMBER) RETURN SELF as RESULT,
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, side NUMBER) RETURN SELF as RESULT);
/
SHOW ERRORS
CREATE TYPE BODY rectangle IS
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, len NUMBER, wth NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := len*wth;
 SELF.len := len;
 SELF.wth := wth;
 RETURN ;
 END;
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, side NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := side * side;
 SELF.len := side;
 SELF.wth := side;
 RETURN ;
 END;
END;
/

CREATE TABLE shape_table OF shape;
INSERT INTO shape_table VALUES(shape('shape1'));
INSERT INTO shape_table VALUES(shape('shape2', 20));
INSERT INTO shape_table VALUES(rectangle('rectangle', 2, 5));
INSERT INTO shape_table VALUES(rectangle('quadrangle', 12, 3));
INSERT INTO shape_table VALUES(rectangle('square', 12));

The following query selects the rows in the shape_table:

SELECT VALUE(s) FROM shape_table s;

VALUE(S)(NAME, AREA)

SHAPE('shape1', 0)
SHAPE('shape2', 20)
RECTANGLE('rectangle', 10, 2, 5)
RECTANGLE('quadrangle', 36, 12, 3)
RECTANGLE('square', 144, 12, 12)

The following PL/SQL code calls the constructor:

s shape := NEW shape('void');

Chapter 8
System-Defined and User-Defined Constructors

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 24

8.5.7 Constructors for SQLJ Object Types
A SQLJ object type is a SQL object type mapped to a Java class. A SQLJ object type has an
attribute-value constructor. It can also have user-defined constructors that are mapped to
constructors in the referenced Java class.

Example 8-9 Creating a SQLJ Object

CREATE TYPE address AS OBJECT
 EXTERNAL NAME 'university.address' LANGUAGE JAVA
 USING SQLData(
 street VARCHAR2(100) EXTERNAL NAME 'street',
 city VARCHAR2(50) EXTERNAL NAME 'city',
 state VARCHAR2(50) EXTERNAL NAME 'state',
 zipcode NUMBER EXTERNAL NAME 'zipcode',
 CONSTRUCTOR FUNCTION address (SELF IN OUT NOCOPY address, street VARCHAR2,
 city VARCHAR2, state VARCHAR2, zipcode NUMBER)
 RETURN SELF AS RESULT AS LANGUAGE JAVA
 NAME 'university.address (java.lang.String, java.lang.String,
 java.lang.String, int) return address');
/

A SQLJ type of a serialized representation can have only a user-defined constructor. The
internal representation of an object of SQLJ type is opaque to SQL, so an attribute-value
constructor is not possible for a SQLJ type.

8.6 Transient and Generic Types
Oracle AI Database has three generic (that is, generically programmed) SQL data types that
enable you to dynamically encapsulate and access type descriptions, data instances, and sets
of data instances of any other SQL type, including object and collection types. You can also
use these three types to create anonymous types, including anonymous collection types.

The three SQL types are implemented as opaque types. In other words, the internal structure
of these types is not known to the database; their data can be queried only by implementing
functions (typically 3GL routines) for the purpose. Oracle AI Database provides both an OCI
and a PL/SQL API for implementing such functions.

Of the three types, ANYTYPE is transient, and ANYDATA and ANYDATASET are not transient, but
rather persistent. Transient types cannot be persistently stored because their structures are
opaque to the database. You cannot create columns of transient types or make them attributes
of persistent types.

Beginning with Oracle Database release 12c, release 12.2, transient types can be created on
Active Data Guard instance if:

1. Real Time Apply is running on Active Data Guard, and

2. Logical Standby is not lagging far behind the Primary (typically, order of seconds).

The three generic SQL types are described in Table 8-2.

Chapter 8
Transient and Generic Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 24

Table 8-2 Generic SQL Types

Type Description

SYS.ANYTYPE A type description type. A SYS.ANYTYPE can contain a type description of
any SQL type, named or unnamed, including object types and collection
types.

An ANYTYPE can contain a type description of a persistent type, but an
ANYTYPE itself is transient: in other words, the value in an ANYTYPE itself is
not automatically stored in the database. To create a persistent type, use a
CREATE TYPE statement from SQL.

SYS.ANYDATA A self-describing data instance type. A SYS.ANYDATA contains an instance
of a given type, with data, plus a description of the type. In this sense, a
SYS.ANYDATA is self-describing. An ANYDATA can be persistently stored in
the database.

The following cannot be stored in an ANYDATA column:

• Another opaque type except XMLTYPE
• LOB types (BLOB/CLOB/NCLOB)
• VARRAY types with maximum size greater than 4K
• Transient types

SYS.ANYDATASET A self-describing data set type. A SYS.ANYDATASET type contains a
description of a given type plus a set of data instances of that type. An
ANYDATASET can be persistently stored in the database.

The following cannot be stored in an ANYDATASET column:

• Another opaque type such as ANYDATA or XMLTYPE
• LOB types (BLOB/CLOB/NCLOB)
• VARRAY types with maximum size greater than 4K
• ADTs that contain any of the above types
• Transient types

Each of these three types can be used with any built-in type native to the database as well as
with object types and collection types, both named and unnamed. The types provide a generic
way to work dynamically with type descriptions, lone instances, and sets of instances of other
types. Using the APIs, you can create a transient ANYTYPE description of any kind of type.
Similarly, you can create or convert (cast) a data value of any SQL type to an ANYDATA and can
convert an ANYDATA (back) to a SQL type. And similarly again with sets of values and
ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic types to
encapsulate descriptions and data of standard types and pass the encapsulated information
into parameters of the generic types. In the body of the procedure, you can detail how to
handle the encapsulated data and type descriptions of whatever type.

You can also store encapsulated data of a variety of underlying types in one table column of
type ANYDATA or ANYDATASET. For example, you can use ANYDATA with Advanced Queuing to
model queues of heterogeneous types of data. You can query the data of the underlying data
types like any other data.

Example 8-10 defines and executes a PL/SQL procedure that uses methods built into
SYS.ANYDATA to access information about data stored in a SYS.ANYDATA table column.

Example 8-10 Using SYS.ANYDATA

CREATE OR REPLACE TYPE dogowner AS OBJECT (
 ownerno NUMBER, ownername VARCHAR2(10));
/

Chapter 8
Transient and Generic Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 24

CREATE OR REPLACE TYPE dog AS OBJECT (
 breed VARCHAR2(10), dogname VARCHAR2(10));
/
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);
INSERT INTO mytab VALUES (1, SYS.ANYDATA.ConvertNumber (5));
INSERT INTO mytab VALUES (2, SYS.ANYDATA.ConvertObject (
 dogowner (5555, 'John')));
commit;

CREATE OR REPLACE procedure P IS
 CURSOR cur IS SELECT id, data FROM mytab;

 v_id mytab.id%TYPE;
 v_data mytab.data%TYPE;
 v_type SYS.ANYTYPE;
 v_typecode PLS_INTEGER;
 v_typename VARCHAR2(60);
 v_dummy PLS_INTEGER;
 v_n NUMBER;
 v_dogowner dogowner;
 non_null_anytype_for_NUMBER exception;
 unknown_typename exception;

BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO v_id, v_data;
 EXIT WHEN cur%NOTFOUND;
 v_typecode := v_data.GetType (v_type /* OUT */);
 CASE v_typecode
 WHEN Dbms_Types.Typecode_NUMBER THEN
 IF v_type IS NOT NULL
 THEN RAISE non_null_anytype_for_NUMBER; END IF;
 v_dummy := v_data.GetNUMBER (v_n /* OUT */);
 Dbms_Output.Put_Line (
 To_Char(v_id) || ': NUMBER = ' || To_Char(v_n));
 WHEN Dbms_Types.Typecode_Object THEN
 v_typename := v_data.GetTypeName();
 IF v_typename NOT IN ('HR.DOGOWNER')
 THEN RAISE unknown_typename; END IF;
 v_dummy := v_data.GetObject (v_dogowner /* OUT */);
 Dbms_Output.Put_Line (
 To_Char(v_id) || ': user-defined type = ' || v_typename ||
 '(' || v_dogowner.ownerno || ', ' || v_dogowner.ownername || ')');
 END CASE;
 END LOOP;
 CLOSE cur;

EXCEPTION
 WHEN non_null_anytype_for_NUMBER THEN
 RAISE_Application_Error (-20000,
 'Paradox: the return AnyType instance FROM GetType ' ||
 'should be NULL for all but user-defined types');
 WHEN unknown_typename THEN
 RAISE_Application_Error (-20000,
 'Unknown user-defined type ' || v_typename ||
 ' - program written to handle only HR.DOGOWNER');
END;
/

SELECT t.data.gettypename() FROM mytab t;

Chapter 8
Transient and Generic Types

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 24

SET SERVEROUTPUT ON;
EXEC P;

The query and the procedure P in the preceding code sample produce output like the following:

T.DATA.GETTYPENAME()

SYS.NUMBER
HR.DOGOWNER
1: NUMBER = 5
2: user-defined type = HR.DOGOWNER(5555, John)

Corresponding to the three generic SQL types are three OCI types that model them. Each has
a set of functions for creating and accessing the respective type:

• OCIType: corresponds to SYS.ANYTYPE

• OCIAnyData: corresponds to SYS.ANYDATA

• OCIAnyDataSet: corresponds to SYS.ANYDATASET

See Also

– Oracle Call Interface Developer's Guide for the OCIType, OCIAnyData, and
OCIAnyDataSet APIs and details on how to use them

– Oracle AI Database PL/SQL Packages and Types Reference for information
about the interfaces to the ANYTYPE, ANYDATA, and ANYDATASET types and the
DBMS_TYPES package, which defines constants for built-in and user-defined
types, for use with ANYTYPE, ANYDATA, and ANYDATASET

8.7 User-Defined Aggregate Functions
Oracle AI Database provides a number of pre-defined aggregate functions such as MAX, MIN,
SUM for performing operations on a set of records.

These pre-defined aggregate functions can be used only with scalar data. However, you can
create your own custom implementations of these functions, or define entirely new aggregate
functions, to use with complex data—for example, with multimedia data stored using object
types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like the Oracle AI
Database built-in aggregates. Once such functions are registered with the server, the database
simply invokes the aggregation routines that you supplied instead of the native ones.

User-defined aggregates can be used with scalar data as well. For example, it may be
worthwhile to implement special aggregate functions for working with complex statistical data
associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You implement them
using ODCIAggregate interface routines.

Chapter 8
User-Defined Aggregate Functions

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 24

See Also

Oracle AI Database Data Cartridge Developer's Guide for information on using the
ODCIAggregate interface routines to implement user-defined aggregate functions

8.8 How Locators Improve the Performance of Nested Tables
You can use nested table locators to improve performance when retrieving data.

Collection types do not map directly to a native type or structure in languages such as C++ and
Java. An application using those languages must access the contents of a collection through
Oracle AI Database interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by fetching the
containing object), the database returns the entire collection value to the client process. For
performance reasons, a client may wish to delay or avoid retrieving the entire contents of the
collection. Oracle AI Database handles this case for you by using a locator instead of the
actual nested table value. When you really access the contents of the collection, they are
automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve the value
or copy semantics of the nested table by containing the database snapshot as of its time of
retrieval. The snapshot helps the database retrieve the correct instantiation of the nested table
value at a later time when the collection elements are fetched using the locator. The locator is
scoped to a session and cannot be used across sessions. Because database snapshots are
used, it is possible to get a snapshot too old error if there is a high update rate on the nested
table. Unlike a LOB locator, the nested table locator is truly a locator and cannot be used to
modify the collection instance.

See Also

"Nested Table Locators" for more specific information

Chapter 8
How Locators Improve the Performance of Nested Tables

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 24

9
Design Considerations for Oracle Objects

There are implementation and performance characteristics of the Oracle object-relational
model that you should understand.

Then you can map a logical data model into an Oracle physical implementation, and develop
applications that use object-oriented features.

Topics:

• General Storage Considerations for Objects

• Performance of Object Comparisons

• Design Considerations for REFs

• Design Considerations for Collections

• Design Considerations for Methods

• Reusable Code Using Invoker Rights

• Roles with Invoker's Rights Subprograms

• Replication Support for Objects

• Materialized View Support for Objects

• Constraints on Objects

• Considerations Related to Type Evolution

• Parallel Queries with Oracle Objects

• Design Consideration Tips and Techniques

9.1 General Storage Considerations for Objects
There are general storage considerations for various object types.

Topics:

• About Storing Objects as Columns or Rows

• Storage Considerations for Object Identifiers (OIDs)

9.1.1 About Storing Objects as Columns or Rows
You can store objects in relational tables as column objects or in object tables as row objects.
Those objects that have meaning outside of the relational database they reside in, should be
made referenceable as row objects in an object table. Otherwise, they should be stored as
column objects in a relational table.

See "How Objects are Stored in Tables " for an introduction to table storage.

This section describes the following topics:

• Column Object Storage in Relational Tables

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 32

• Row Object Storage in Object Tables

9.1.1.1 Column Object Storage in Relational Tables
Column object storage is similar to storage of an equivalent set of scalar columns that
collectively make up the object.

The difference is the additional overhead of maintaining the atomic null values of any
noncollection columns objects and their embedded object attributes. These values, called null
indicators (or sometimes, null images), specify for every column object, whether or not the
column object is null and whether or not each of its embedded object attributes is null.

Note that null indicators do not specify whether the scalar attributes of a column object are null.
Oracle uses a different method to determine whether scalar attributes are null.

Consider a table that holds the identification number, name, address, and phone numbers of
people within an organization. You can create three different object types to hold the name,
address, and phone numbers and an object employee_objtyp that contains the name and
address objects. Because each person may have more than one phone number, you need to
create a nested table type based on the phone number object type

First, enter the SQL statements in to create the four object types and a table for phone number
objects.

Example 9-1 Creating Object Types for Columns in a Relational Table

CREATE TYPE name_objtyp AS OBJECT (
 first VARCHAR2(15),
 middle VARCHAR2(15),
 last VARCHAR2(15));
/
CREATE TYPE address_objtyp AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state VARCHAR2(2),
 zipcode VARCHAR2(20));
NOT FINAL;
/
CREATE TYPE phone_objtyp AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));
/

CREATE TYPE employee_objtyp AS OBJECT (
 name name_objtyp,
 address address_objtyp);
/

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp;
/

See Also

Design Considerations for Nested Tables for more information about nested tables

Next, create a table to hold the information about the people in the organization with the SQL
statement in Example 9-2. This statement also creates an id for people in the organization.

Chapter 9
General Storage Considerations for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 32

Example 9-2 Creating a Table with Column Objects

CREATE TABLE people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 employee employee_objtyp
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab;

Figure 9-1 Representation of the people_reltab Relational Table

employee phones ntab

id

middle last address

first

location num

nested table_id

street city state zipcode

type_id

The people_reltab table has two column objects: employee and phones_ntab. The
phones_ntab column object is a nested table, a collection type of column object.

The storage for each object in the people_reltab table is that of the attributes of the object
plus overhead for the null indicator.

The null indicators for an object and its embedded object attributes occupy one bit each. Thus,
an object with n embedded object attributes (including objects at all levels of nesting) has a
storage overhead of CEIL(n/8) bytes. There is one null indicator column for each noncollection
column object, name_obj and address_obj. The null indicator column length is one byte, as
one bit represents the object itself, which translates to CEIL(1/8) or 1.

Since the null indicator is one byte in size, the overhead of null information for each row of the
people_reltab table is two bytes, one for each object column.

Every noncollection object has a null indicator column, whether or not the object is FINAL. The
columns in these examples are FINAL.

See Also

Oracle AI Database SQL Language Reference for more information about CEIL

Chapter 9
General Storage Considerations for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 32

9.1.1.2 Row Object Storage in Object Tables
Row objects are stored in object tables. An object table is a special kind of table that holds
objects and provides a relational view of the attributes of those objects. An object table is
logically and physically similar to a relational table whose column types correspond to the top
level attributes of the object type stored in the object table. The key difference is that an object
table can optionally contain an additional object identifier (OID) column and index.

9.1.2 Storage Considerations for Object Identifiers (OIDs)
There are two types of object identifiers for row objects in object tables which can be stored
and referenced.

An object identifier (OID) allows the corresponding row object to be referred to and from other
objects or from relational tables. A built-in data type called a REF represents such references.
REFs use object identifiers (OIDs) to point to row objects.

You can use either system-generated OIDs or primary-key based OIDs.

See Also

"References to Row Objects"

9.1.2.1 System-Generated Object Identifiers (OIDs)
System-generated OIDs are the default for row objects in an object table.

Oracle assigns to each row object a unique system-generated OID, 16 bytes in length, that is
automatically indexed for efficient OID-based lookups. The OID column is the equivalent of
having an extra 16-byte primary key column. In a distributed environment, the system-
generated unique identifier lets Oracle identify objects unambiguously.

The object identifier column is a hidden column that Oracle uses to construct references to the
row objects. Oracle provides no access to the internal structure of object identifiers. This
structure can change at any time. Applications are only concerned with using object references
for fetching and navigating objects.

9.1.2.2 Primary-Key Based Object Identifiers (OIDs)
Oracle allows the option of specifying the primary key value of a row object as its object
identifier, if there is a primary key column.

Instead of using the system-generated OIDs, you use a CREATE TABLE statement with this
clause, OBJECT IDENTIFIER IS PRIMARY KEY. This specifies that the system use the primary key
column(s) as the OIDs of the objects in the table. That way, you can use existing columns as
the OIDs of the objects or use application generated OIDs that are smaller than the 16-byte
globally unique OIDs generated by Oracle.

Chapter 9
General Storage Considerations for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 4 of 32

See Also

Oracle AI Database SQL Language Reference for further information on OBJECT
IDENTIFER syntax

You can enforce referential integrity on columns that store references to these row objects in a
way similar to foreign keys in relational tables.

Note

Each primary-key based OID is locally (but not necessarily globally) unique. If you
require a globally unique identifier, you must ensure that the primary key is globally
unique or use system-generated OIDs.

9.1.2.3 System-Generated Versus Primary-Key Based OIDs
Primary-key based identifiers make it faster and easier to load data into an object table. By
contrast, system-generated object identifiers need to be remapped using some user-specified
keys, especially when references to them are also stored.

If you use system-generated OIDs for an object table, Oracle maintains an index on the
column that stores these OIDs. A system-generated OID requires extra storage space for this
index and an extra 16 bytes of storage for each row object.

However, if each primary key value requires more than 16 bytes of storage and you have a
large number of REFs, using the primary key might require more space than system-generated
OIDs because each REF is the size of the primary key.

9.2 Performance of Object Comparisons
You can compare objects by invoking either a map or order method.

A map method converts objects into scalar values while preserving the ordering of the objects.
Using a map method is preferable because it allows the system to efficiently order objects.

Note

For any one object type, you can implement either a map or an order method, but not
both. Neither are required.

The way objects are mapped has significant performance implications when sorting the objects
using ORDER BY or GROUP BY processes. An object may need to be compared to other objects
many times, and it is much more efficient if the objects can be mapped to scalar values first
(the map method). If the comparison semantics are extremely complex, or if the objects cannot
be mapped to scalar values for comparison, you can define an order method that, given two
objects, returns the ordering determined by the object implementor. Order methods are not as
efficient as map methods, so performance may suffer if you use order methods.

Chapter 9
Performance of Object Comparisons

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 5 of 32

Consider an object type address consisting of four character attributes: street, city, state,
and zipcode. Here, the most efficient comparison method is a map method because each
object can be converted easily into scalar values. For example, you might define a map
method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In this case,
the comparison semantics may be too complex to use a map method; if so, you can use an
order method to perform comparisons. For example, you could create an order method that
compares images according to brightness or the number of pixels in each image.

If an object type does not have either a map or order method, only equality comparisons are
allowed on objects of that type. In this case, Oracle performs the comparison by doing a field-
by-field comparison of the corresponding object attributes, in the order they are defined. If the
comparison fails at any point, a FALSE value is returned. If the comparison matches at every
point, a TRUE value is returned. However, if an object has a LOB or ANYDATA attributes, then
Oracle does not compare the object on a field-by-field basis. Such objects must have a map or
order method to perform comparisons.

9.3 Design Considerations for REFs
You need to take various issues into onsideration when working with REFs.

Topics:

• Storage Size of REFs

• Integrity Constraints for REF Columns

• Performance and Storage Considerations for Scoped REFs

• Performance Improvement for Object Access Using the WITH ROWID Option

9.3.1 Storage Size of REFs
A REF contains the following three logical components:

• OID of the object referenced. A system-generated OID is 16 bytes long. The size of a
primary-key based OID depends on the size of the primary key column(s).

• OID of the table or view containing the object referenced, which is 16 bytes long.

• Rowid hint, which is 10 bytes long.

9.3.2 Integrity Constraints for REF Columns
Referential integrity constraints on REF columns ensure that there is a row object for the REF.

Referential integrity constraints on REFs create the same relationship as specifying a primary
key/foreign key relationship on relational data. In general, you should use referential integrity
constraints wherever possible because they are the only way to ensure that the row object for
the REF exists. However, you cannot specify referential integrity constraints on REFs that are in
nested tables.

9.3.3 Performance and Storage Considerations for Scoped REFs
A scoped REF is constrained to contain only references to a specified object table. You can
specify a scoped REF when you declare a column type, collection element, or object type
attribute to be a REF.

Chapter 9
Design Considerations for REFs

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 6 of 32

In general, you should use scoped REFs instead of unscoped REFs because scoped REFs are
stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to store (more if it
uses rowids), a scoped REF is stored as just the OID of its target object and can take less than
16 bytes, depending on whether the referenced OID is system-generated or primary-key
based. A system-generated OID requires 16 bytes; a primary key based (PK-based) OID
requires enough space to store the primary key value, which may be less than 16 bytes.
However, a REF to a PK-based OID, which must be dynamically constructed upon selection,
may take more space in memory than a REF to a system-generated OID.

Besides requiring less storage space, scoped REFs often enable the optimizer to optimize
queries that dereference a scoped REF into more efficient joins. This optimization is not
possible for unscoped REFs because the optimizer cannot determine the containing table(s) for
unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the referenced row
object exists; they only ensure that the referenced object table exists. Therefore, if you specify
a scoped REF to a row object and then delete the row object, the scoped REF becomes a
dangling REF because the referenced object no longer exists.

Note

Referential integrity constraints are scoped implicitly.

Unscoped REFs are useful if the application design requires that the objects referenced be
scattered in multiple tables. Because rowid hints are ignored for scoped REFs, you should use
unscoped REFs if the performance gain of the rowid hint, as explained in the "Performance
Improvement for Object Access Using the WITH ROWID Option", outweighs the benefits of the
storage saving and query optimization of using scoped REFs.

9.3.3.1 Indexing for Scoped REFs
You can build indexes on scoped REF columns using the CREATE INDEX command. This allows
you to use the index to efficiently evaluate queries that dereference the scoped REFs. Such
queries are turned into joins implicitly. For certain types of queries, Oracle can use an index on
the scoped REF column to evaluate the join efficiently.

For example, suppose the object type address_objtyp is used to create an object table named
address_objtab:

CREATE TABLE address_objtab OF address_objtyp ;

A people_reltab2 table can be created that has the same definition as the people_reltab
table shown in Example 9-2, except that a REF is used for the address. Next, an index can be
created on the address_ref column.

Example 9-3 Creating an Index on Scoped REF Columns

CREATE TABLE people_reltab2 (
 id NUMBER(4) CONSTRAINT pk_people_reltab2 PRIMARY KEY,
 name_obj name_objtyp,
 address_ref REF address_objtyp SCOPE IS address_objtab,
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

CREATE INDEX address_ref_idx ON people_reltab2 (address_ref) ;

Chapter 9
Design Considerations for REFs

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 7 of 32

The following query dereferences the address_ref:

SELECT id FROM people_reltab2 p
 WHERE p.address_ref.state = 'CA' ;

When this query is executed, the address_ref_idx index is used to efficiently evaluate it. Here,
address_ref is a scoped REF column that stores references to addresses stored in the
address_objtab object table. Oracle implicitly transforms the preceding query into a query with
a join:

SELECT p.id FROM people_reltab2 p, address_objtab a
 WHERE p.address_ref = REF(a) AND a.state = 'CA' ;

The Oracle query optimizer might create a plan to perform a nested-loops join with
address_objtab as the outer table and look up matching addresses using the index on the
address_ref scoped REF column.

9.3.4 Performance Improvement for Object Access Using the WITH ROWID
Option

If the WITH ROWID option is specified for a REF column, Oracle maintains the rowid of the object
referenced in the REF. Then, Oracle can find the object referenced directly using the rowid
contained in the REF, without the need to fetch the rowid from the OID index. Therefore, you
use the WITH ROWID option to specify a rowid hint. Maintaining the rowid requires more storage
space because the rowid adds 10 bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal (navigational
access) in applications. The actual performance gain may vary from application to application
depending on the following factors:

• How large the OID indexes are.

• Whether the OID indexes are cached in the buffer cache.

• How many REF traversals an application does.

The WITH ROWID option is only a hint because, when you use this option, Oracle checks the OID
of the row object with the OID in the REF. If the two OIDs do not match, Oracle uses the OID
index instead. The rowid hint is not supported for scoped REFs, for REFs with referential integrity
constraints. .

9.4 Design Considerations for Collections
There are certain considerations to think about when you work with collections.

Topics:

• Viewing Object Data in Relational Form with Unnesting Queries

• Storage Considerations for Varrays

• Performance of Varrays Versus Nested Tables

• Design Considerations for Nested Tables

• Design Considerations for Multilevel Collections

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 8 of 32

9.4.1 Viewing Object Data in Relational Form with Unnesting Queries
An unnesting query on a collection allows the data to be viewed in a flat (relational) form.

You can execute unnesting queries on single-level and multilevel collections of either nested
tables or varrays.

Nested tables can be unnested for queries using the TABLE syntax, as in the following example:

Example 9-4 Unnesting a Nested Table with the TABLE Function

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) n ;

Here, phones_ntab specifies the attributes of the phones_ntab nested table. To retrieve even
parent rows that have no child rows (no phone numbers, in this case), use the outer join
syntax, with the +. For example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table other than the
nested table column, the query is optimized to execute only against the nested table's storage
table.

The unnesting query syntax is the same for varrays as for nested tables. For instance,
suppose the phones_ntab nested table is instead a varray named phones_var. The following
example shows how to use the TABLE syntax to query the varray:

SELECT p.name_obj, v.num
FROM people_reltab p, TABLE(p.phones_var) v;

9.4.1.1 Creating Procedures and Functions to Unnest Queries
You can create procedures and functions that you can then execute to perform unnesting
queries. For example, you can create a function called home_phones() that returns only the
phone numbers where location is home. To create the home_phones() function, you enter code
like the following:

Example 9-5 Creating the home_phones Function

CREATE OR REPLACE FUNCTION home_phones(allphones IN phone_ntabtyp)
 RETURN phone_ntabtyp IS
 homephones phone_ntabtyp := phone_ntabtyp();
 indx1 number;
 indx2 number := 0;
BEGIN
 FOR indx1 IN 1..allphones.count LOOP
 IF
 allphones(indx1).location = 'home'
 THEN
 homephones.extend; -- extend the local collection
 indx2 := indx2 + 1;
 homephones(indx2) := allphones(indx1);
 END IF;
 END LOOP;

 RETURN homephones;

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 9 of 32

END;
/

9.4.1.2 Querying the TABLE Function to Unnest Data
You can query for a list of people and their home phone numbers, based on the home_phones()
function you just created.

Example 9-6 Querying for Phone Numbers

See Example 9-5

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(
 CAST(home_phones(p.phones_ntab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people who do not
have a home phone number listed, enter the following:

SELECT p.name_obj, n.num
 FROM people_reltab p,
 TABLE(CAST(home_phones(p.phones_ntab) AS phone_ntabtyp))(+) n ;

See Also

Oracle AI Database SQL Language Reference and Oracle AI Database Data
Cartridge Developer's Guide for more information about the TABLE function

9.4.2 Storage Considerations for Varrays
The size of a stored varray depends only on the current count of the number of elements in the
varray and not on the maximum number of elements that it can hold.

Because the storage of varrays incurs some overhead, such as null information, the size of the
varray stored may be slightly greater than the size of the elements multiplied by the count.

Varrays are stored in columns either as raw values or LOBs. Oracle decides how to store the
varray when the varray is defined, based on the maximum possible size of the varray
computed using the LIMIT of the declared varray. If the size exceeds approximately 4000
bytes, then the varray is stored in LOBs. Otherwise, the varray is stored in the column itself as a
raw value. In addition, Oracle supports inline LOBs which means that elements that fit in the
first 4000 bytes of a large varray, with some bytes reserved for the LOB locator, are stored in
the column of the row. See also Oracle AI Database SecureFiles and Large Objects
Developer's Guide.

9.4.2.1 About Propagating VARRAY Size Change
When changing the size of a VARRAY type, a new type version is generated for the dependent
types.

It is important to be aware of this when a VARRAY column is not explicitly stored as a LOB and
its maximum size is originally smaller than 4000 bytes. If the size is larger than or equal to
4000 bytes after the increase, the VARRAY column has to be stored as a LOB. This requires an
extra operation to upgrade the metadata of the VARRAY column in order to set up the necessary
LOB metadata information including the LOB segment and LOB index.

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 10 of 32

The CASCADE option in the ALTER TYPE statement propagates the VARRAY size change to its
dependent types and tables. A new version is generated for each valid dependent type and
dependent tables metadata are updated accordingly based on the different case scenarios
described previously. If the VARRAY column is in a cluster table, an ALTER TYPE statement with
the CASCADE option fails because a cluster table does not support a LOB.

The CASCADE option in the ALTER TYPE statement also provides the [NOT] INCLUDING TABLE DATA
option. The NOT INCLUDING TABLE DATA option only updates the metadata of the table, but does
not convert the data image. In order to convert the VARRAY image to the latest version format,
you can either specify INCLUDING TABLE DATA explicitly in ALTER TYPE CASCADE statement or
issue ALTER TABLE UPGRADE statement.

9.4.3 Performance of Varrays Versus Nested Tables
If an entire collection is manipulated as a single unit in the application, varrays perform much
better than nested tables. The varray is stored packed and requires no joins to retrieve the
data, unlike nested tables.

Varray Querying

The unnesting syntax can be used to access varray columns similar to the way it is used to
access nested tables. See "Viewing Object Data in Relational Form with Unnesting Queries"
for more information.

Varray Updates

Piece-wise updates of a varray value are not supported. Thus, when a varray is updated, the
entire old collection is replaced by the new collection.

9.4.4 Design Considerations for Nested Tables
Topics:

There are several design considerations for using nested tables.

• Nested Table Storage

• Nested Table Indexes

• Nested Table Locators

• Set Membership Query Optimazation

9.4.4.1 Nested Table Storage
Oracle stores the rows of a nested table in a separate storage table. A system generated
NESTED_TABLE_ID, which is 16 bytes in length, correlates the parent row with the rows in its
corresponding storage table.

Figure 9-2 shows how the storage table works. The storage table contains each value for each
nested table in a nested table column. Each value occupies one row in the storage table. The
storage table uses the NESTED_TABLE_ID to track the nested table for each value. So, in
Figure 9-2, all of the values that belong to nested table A are identified, all of the values that
belong to nested table B are identified, and so on.

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 32

Figure 9-2 Nested Table Storage

B21

B22

C33

A11

E51

B25

E52

A12

E54

B23

C32

A13

D41

B24

E53

B

B

C

A

E

B

E

A

E

B

C

A

D

B

E

ValuesNESTED_TABLE_ID

Storage Table

A

B

C

D

E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .

. . .

. . .

. . .

. . .

DATA3
. . .

. . .

. . .

. . .

. . .

DATA2
. . .

. . .

. . .

. . .

DATA1

. . .

9.4.4.2 Nested Table Indexes
When creating nested tables stored in heap tables, Oracle AI Database automatically creates
an index on the NESTED_TABLE_ID column of the storage table and an index on the
corresponding ID column of the parent table.

Creating an index on the NESTED_TABLE_ID column enables the database to access the child
rows of the nested table more efficiently, because the database must perform a join between
the parent table and the nested table using the NESTED_TABLE_ID column.

9.4.4.3 Nested Table Locators
For large child sets, the parent row and a locator to the child set can be returned so that the
child rows can be accessed on demand; the child sets also can be filtered. Using nested table
locators enables you to avoid unnecessarily transporting child rows for every parent.

You can perform either one of the following actions to access the child rows using the nested
table locator:

• Call the OCI collection functions. This action occurs implicitly when you access the
elements of the collection in the client-side code, such as OCIColl* functions. The entire
collection is retrieved implicitly on the first access.

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 12 of 32

See Also

Oracle Call Interface Programmer's Guide for more information about OCI
collection functions.

• Use SQL to retrieve the rows corresponding to the nested table.

In a multilevel collection, you can use a locator with a specified collection at any level of
nesting.

The following topics specify ways that a collection can be retrieved as a locator:

• At Table Creation Time

• As a HINT During Retrieval

9.4.4.3.1 At Table Creation Time
When the collection type is being used as a column type and the NESTED TABLE storage clause
is used, you can use the RETURN AS LOCATOR clause to specify that a particular collection is to
be retrieved as a locator.

For instance, suppose that inner_table is a collection type consisting of three levels of nested
tables. In the following example, the RETURN AS LOCATOR clause specifies that the third level of
nested tables is always to be retrieved as a locator.

Example 9-7 Using the RETURN AS LOCATOR Clause

CREATE TYPE inner_table AS TABLE OF NUMBER;/
CREATE TYPE middle_table AS TABLE OF inner_table;/
CREATE TYPE outer_table AS TABLE OF middle_table;/
CREATE TABLE tab1 (
 col1 NUMBER,
 col2 outer_table)
 NESTED TABLE col2 STORE AS col2_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cval1_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cval2_ntab RETURN AS LOCATOR));

9.4.4.3.2 As a HINT During Retrieval
A query can retrieve a collection as a locator by means of the hint NESTED_TABLE_GET_REFS.
Here is an example of retrieving the column col2 from the table tab1 as a locator:

SELECT /*+ NESTED_TABLE_GET_REFS +*/ col2
 FROM tab1
 WHERE col1 = 2;

Unlike with the RETURN AS LOCATOR clause, however, you cannot specify a particular inner
collection to return as a locator when using the hint.

9.4.4.4 Set Membership Query Optimization
Set membership queries are useful when you want to search for a specific item in a nested
table.

The following query tests the membership in a child-set; specifically, whether the location home
is in the nested table phones_ntab, which is in the parent table people_reltab:

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 13 of 32

SELECT * FROM people_reltab p
 WHERE 'home' IN (SELECT location FROM TABLE(p.phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently by
transforming it internally into a semijoin. However, this optimization only happens if the
ALWAYS_SEMI_JOIN initialization parameter is set. If you want to perform semijoins, the valid
values for this parameter are MERGE and HASH; these parameter values indicate which join
method to use.

Note

In the preceding example, home and location are child set elements. If the child set
elements are object types, they must have a map or order method to perform a set
membership query.

9.4.5 Design Considerations for Multilevel Collections
You can nest collection types to create true multilevel collections.

Support for Collection Data Types describes how to nest collection types such as a nested
table of nested tables, a nested table of varrays, a varray of nested tables, or a varray or
nested table of an object type that has an attribute of a collection type. These create true
multilevel collections.

You can also nest collections indirectly using REFs. For example, you can create a nested table
of an object type that has an attribute that references an object that has a nested table or
varray attribute. If you do not actually need to access all elements of a multilevel collection,
then nesting a collection with REFs may provide better performance because only the REFs
need to be loaded, not the elements themselves.

True multilevel collections (specifically multilevel nested tables) perform better for queries that
access individual elements of the collection. Using nested table locators can improve the
performance of programmatic access if you do not need to access all elements.

A series of examples demonstrate this type of design.

Topics:

• Creating an Object Table with a Multilevel Collection

• Creating an Object Table Using REFs

• IInserting Values into Object Tables

9.4.5.1 Creating an Object Table with a Multilevel Collection
You can create an object table with a multilevel collection.

To create an example of a collection that uses REFs to nest another collection, you create a
new object type called person_objtyp using the object types provided: name_objtyp,
address_objtyp, and phone_ntabtyp. Remember that the phone_ntabtyp object type is a
nested table because each person may have more than one phone number.

To create the person_objtyp object type and an object table called people_objtab of
person_objtyp object type, issue the following SQL statement:

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 32

Example 9-8 Creating an Object Table with a Multilevel Collection

CREATE TYPE person_objtyp AS OBJECT (
 id NUMBER(4),
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp);
/

CREATE TABLE people_objtab OF person_objtyp (id PRIMARY KEY)
 NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The people_objtab table has the same attributes as the people_reltab table. The difference
is that the people_objtab is an object table with row objects, while the people_reltab table is
a relational table with column objects, as seen in "Column Object Storage in Relational
Tables".

Figure 9-3 Object-Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type

NAME_OBJTYP

ID

PK

Number

NUMBER(4)

Object Type

ADDRESS_OBJTYP

Nested Table

PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text

VARCHAR(200)

STREET

Text

VARCHAR2(200)

Text

CHAR(2)

Text

VARCHAR2(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number

VARCHAR(14)

LOCATION

Text

VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text

VARCHAR2(15)

FIRST

Text

VARCHAR2(15)

Text

VARCHAR2(15)

You can reference the row objects in the people_objtab object table from other tables. For
example, suppose you want to create a projects_objtab table that contains:

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 32

• A project identification number for each project.

• The title of each project.

• The project lead for each project.

• A description of each project.

• Nested table collection of the team of people assigned to each project.

You can use REFs in the people_objtab for the project leads, and you can use a nested table
collection of REFs for the team. To begin, create a nested table object type called
personref_ntabtyp based on the person_objtyp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF person_objtyp;
/

You are now set up to create to create an object table as shown in Creating an Object Table
Using REFs.

9.4.5.2 Creating an Object Table Using REFs
You can create an object table using REFs

After creating the person object table, in Creating an Object Table with a Multilevel Collection,,
you are ready to create the project object table projects_objtab. First, create the object type
projects_objtyp, then create the object table projects_objtab based on the
projects_objtyp.

Example 9-9 Creating an Object Table Using REFs

CREATE TYPE projects_objtyp AS OBJECT (
 id NUMBER(4),
 title VARCHAR2(15),
 projlead_ref REF person_objtyp,
 description CLOB,
 team_ntab personref_ntabtyp);
/
CREATE TABLE projects_objtab OF projects_objtyp (id PRIMARY KEY)
 NESTED TABLE team_ntab STORE AS team_store_ntab ;

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 16 of 32

Figure 9-4 Object-Relational Representation of the projects_objtab Object Table

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)

TITLE

Text

VARCHAR2(15)

PROJLEAD_REF

Reference

PERSON_OBJTYP

DESCRIPTION

Text

CLOB

TEAM_NTAB

Nested Table Reference

PERSONREF_NTABTYP

ID

PK

Number

NUMBER(4)

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ

Object Type

NAME_OBJTYP

ADDRESS_OBJ

Object Type

ADDRESS_OBJTYP

PHONES_NTAB

Nested Table

PHONE_NTABTYP

ID

PK

Number

NUMBER(4)

Refers to a

row of the

object table

Refers to multiple rows

of the object table

After the people_objtab object table and the projects_objtab object table are in place, you
indirectly have a nested collection. That is, the projects_objtab table contains a nested table
collection of REFs that point to the people in the people_objtab table, and the people in the
people_objtab table have a nested table collection of phone numbers.

You are now set to insert value as shown Inserting Values into Object Tables.

9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table
After you have created an object table, you can then insert values into it.

You can insert values into the people_objtab table as in this example.

Example 9-10 Inserting Values into the people_objtab Object Table

INSERT INTO people_objtab VALUES (
 0001,
 name_objtyp('JOHN', 'JACOB', 'SCHMIDT'),
 address_objtyp('1252 Maple Road', 'Fairfax', 'VA', '22033'),
 phone_ntabtyp(
 phone_objtyp('home', '650.555.0141'),
 phone_objtyp('work', '510.555.0122'))) ;

INSERT INTO people_objtab VALUES (
 0002,
 name_objtyp('MARY', 'ELLEN', 'MILLER'),
 address_objtyp('33 Spruce Street', 'McKees Rocks', 'PA', '15136'),
 phone_ntabtyp(
 phone_objtyp('home', '415.555.0143'),
 phone_objtyp('work', '650.555.0192'))) ;

INSERT INTO people_objtab VALUES (
 0003,
 name_objtyp('SARAH', 'MARIE', 'SINGER'),

Chapter 9
Design Considerations for Collections

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 17 of 32

 address_objtyp('525 Pine Avenue', 'San Mateo', 'CA', '94403'),
 phone_ntabtyp(
 phone_objtyp('home', '510.555.0101'),
 phone_objtyp('work', '650.555.0178'),
 phone_objtyp('cell', '650.555.0143'))) ;

Example 9-11 Inserting Values into the projects_objtab Object Table

Then, you can insert into the projects_objtab relational table by selecting from the
people_objtab object table using a REF operator, as in .

INSERT INTO projects_objtab VALUES (
 1101,
 'Demo Product',
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 'Demo the product, show all the great features.',
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

INSERT INTO projects_objtab VALUES (
 1102,
 'Create PRODDB',
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 'Create a database of our products.',
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

Note

This example uses nested tables to store REFs, but you also can store REFs in varrays.
That is, you can have a varray of REFs.

9.5 Design Considerations for Methods
There are special considerations to think about when working with methods.

Topics:

• Choice of Language for Method Functions

• Static Methods

• About Using SELF IN OUT NOCOPY with Member Procedures

• Function-Based Indexes on the Return Values of Type Methods

9.5.1 Choice of Language for Method Functions
Method functions can be implemented in any of the languages supported by Oracle, such as
PL/SQL, Java, or C.

Consider the following factors when you choose the language for a particular application:

• Ease of use

Chapter 9
Design Considerations for Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 18 of 32

• SQL calls

• Speed of execution

• Same/different address space

In general, if the application performs intense computations, C is preferable, but if the
application performs a relatively large number of database calls, PL/SQL or Java is preferable.

A method implemented in C executes in a separate process from the server using external
procedures. In contrast, a method implemented in Java or PL/SQL executes in the same
process as the server.

Example: Implementing a Method

The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type ImageType has an ID
attribute, which is a NUMBER that uniquely identifies it, and an IMG attribute, which is a BLOB that
stores the raw image. The object type ImageType has the following methods:

• The method get_name fetches the name of the image by looking it up in the database. This
method is implemented in PL/SQL.

• The method rotate rotates the image. This method is implemented in C.

• The method clear returns a new image of the specified color. This method is implemented
in Java.

For implementing a method in C, a LIBRARY object must be defined to point to the library that
contains the external C routines. For implementing a method implemented in Java, this
example assumes that the Java class with the method has been compiled and uploaded into
Oracle.

The object type specification and its methods are shown in Example 9-12.

Note

Type methods can be mapped only to static Java methods.

See Also

• Oracle AI Database Java Developer's Guide for more information

• Object Support in Oracle Programming Environments for more information about
choosing a language

Example 9-12 Creating an Object Type with Methods Implemented in Different
Languages

CREATE LIBRARY myCfuncs TRUSTED AS STATIC
/

CREATE TYPE ImageType AS OBJECT (
 id NUMBER,
 img BLOB,
 MEMBER FUNCTION get_name return VARCHAR2,
 MEMBER FUNCTION rotate return BLOB,
 STATIC FUNCTION clear(color NUMBER) return BLOB);/

Chapter 9
Design Considerations for Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 19 of 32

CREATE TYPE BODY ImageType AS
 MEMBER FUNCTION get_name RETURN VARCHAR2
 IS
 imgname VARCHAR2(100);
 sqlstmt VARCHAR2(200);
 BEGIN
 sqlstmt := 'SELECT name INTO imgname FROM imgtab WHERE imgid = id';
 EXECUTE IMMEDIATE sqlstmt;
 RETURN imgname;
 END;

 MEMBER FUNCTION rotate RETURN BLOB
 AS LANGUAGE C
 NAME "Crotate"
 LIBRARY myCfuncs;

 STATIC FUNCTION clear(color NUMBER) RETURN BLOB
 AS LANGUAGE JAVA
 NAME 'myJavaClass.clear(oracle.sql.NUMBER) return oracle.sql.BLOB';

END;
/

9.5.2 Static Methods
Static methods differ from member methods in that the SELF value is not passed in as the first
parameter. Methods in which the value of SELF is not relevant should be implemented as static
methods. Static methods can be used for user-defined constructors.

Example 9-13 shows a constructor-like method that constructs an instance of the type based
on the explicit input parameters and inserts the instance into the specified table:.

Example 9-13 Creating an Object Type with a STATIC Method

CREATE TYPE atype AS OBJECT(
 a1 NUMBER,
 STATIC PROCEDURE newa (
 p1 NUMBER,
 tabname VARCHAR2,
 schname VARCHAR2));
/
CREATE TYPE BODY atype AS
 STATIC PROCEDURE newa (p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := 'INSERT INTO '||schname||'.'||tabname|| ' VALUES (atype(:1))';
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

CREATE TABLE atab OF atype;

BEGIN
 atype.newa(1, 'atab', 'HR');
END;
/

Chapter 9
Design Considerations for Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 20 of 32

9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures
In member procedures, if SELF is not declared, its parameter mode defaults to IN OUT.
However, the default behavior does not include the NOCOPY compiler hint. See "Member
Methods".

Because the value of the IN OUT actual parameter is copied into the corresponding formal
parameter, the copying slows down execution when the parameters hold large data structures
such as instances of large object types.

For performance reasons, you may want to include SELF IN OUT NOCOPY when passing a large
object type as a parameter. For example:

MEMBER PROCEDURE my_proc (SELF IN OUT NOCOPY my_LOB)

See Also

• Oracle AI Database PL/SQL Language Reference for information on performance
issues and restrictions on the use of NOCOPY

• Oracle AI Database SQL Language Reference for information about using NOCOPY
in the CREATE PROCEDURE statement

9.5.4 Function-Based Indexes on the Return Values of Type Methods
A function-based index is an index based on the return values of an expression or function.
The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of the function
for each object instance in the column or table being indexed and stores those values in the
index. There they can be referenced without having to evaluate the function again.

Function-based indexes are useful for improving the performance of queries that have a
function in the WHERE clause. For example, the following code contains a query of an object
table emps:

CREATE TYPE emp_t AS OBJECT(
 name VARCHAR2(36),
 salary NUMBER,
 MEMBER FUNCTION bonus RETURN NUMBER DETERMINISTIC);
/
CREATE TYPE BODY emp_t IS
 MEMBER FUNCTION bonus RETURN NUMBER DETERMINISTIC IS
 BEGIN
 RETURN self.salary * .1;
 END;
END;
/

CREATE TABLE emps OF emp_t ;

SELECT e.name
 FROM emps e
 WHERE e.bonus() > 2000;

Chapter 9
Design Considerations for Methods

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 21 of 32

To evaluate this query, Oracle must evaluate bonus() for each row object in the table. If there
is a function-based index on the return values of bonus(), then this work has already been
done, and Oracle can simply look up the results in the index. This enables Oracle to return a
result from the query more quickly.

Return values of a function can be usefully indexed only if those values are constant, that is,
only if the function always returns the same value for each object instance. For this reason, to
use a user-written function in a function-based index, the function must have been declared
with the DETERMINISTIC keyword, as in the preceding example. This keyword promises that the
function always returns the same value for each object instance's set of input argument values.

The following example creates a function-based index on the method bonus() in the table
emps:

Example 9-14 Creating a Function-Based Index on a Method

CREATE INDEX emps_bonus_idx ON emps x (x.bonus()) ;

9.6 Reusable Code Using Invoker Rights
To create generic object types that can be used in any schema, you must define the type to
use invoker rights, through the AUTHID CURRENT_USER option of CREATE OR REPLACE TYPE.

Note

For information on controlling invoker's rights privileges, see Oracle AI Database
Security Guide.

In general, use invoker rights when both of the following conditions are true:

• There are type methods that access and manipulate data.

• Users who did not define these type methods must use them.

For example, you can grant user OE execute privileges on type atype created by HR in Static
Methods, and then create table atab based on the type:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;
Enter password: password
CREATE TABLE atab OF HR.atype ;

Now, suppose user OE tries to use atype in the following statement:

BEGIN -- follwing call raises an error, insufficient privileges
 HR.atype.newa(1, 'atab', 'OE');
END;
/

This statement raises an error because the definer of the type (HR) does not have the privileges
required to perform the insert in the newa procedure. You can avoid this error by defining atype
using invoker rights. Here, you first drop the atab table in both schemas and re-create atype
using invoker rights:

DROP TABLE atab;
CONNECT hr;
Enter password: password

Chapter 9
Reusable Code Using Invoker Rights

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 32

DROP TABLE atab;
DROP TYPE atype FORCE;
COMMIT;

CREATE TYPE atype AUTHID CURRENT_USER AS OBJECT(
 a1 NUMBER,
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2));
/
CREATE TYPE BODY atype AS
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := 'INSERT INTO '||schname||'.'||tabname|| '
 VALUES (HR.atype(:1))';
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

Now, if user OE tries to use atype again, the statement executes successfully:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;
Enter password: password
CREATE TABLE atab OF HR.atype;

BEGIN
 HR.atype.newa(1, 'atab', 'OE');
END;
/
DROP TABLE atab;
CONNECT hr;
Enter password: password

DROP TYPE atype FORCE;

The statement is successful this time because the procedure is executed under the privileges
of the invoker (OE), not the definer (HR).

In a type hierarchy, a subtype has the same rights model as its immediate supertype. That is, it
implicitly inherits the rights model of the supertype and cannot explicitly specify one.
Furthermore, if the supertype was declared with definer rights, the subtype must reside in the
same schema as the supertype. These rules allow invoker-rights type hierarchies to span
schemas. However, type hierarchies that use a definer-rights model must reside within a single
schema. For example:

CREATE TYPE deftype1 AS OBJECT (...); --Definer-rights type
CREATE TYPE subtype1 UNDER deftype1 (...); --subtype in same schema as supertype
CREATE TYPE schema2.subtype2 UNDER deftype1 (...); --ERROR
CREATE TYPE invtype1 AUTHID CURRENT_USER AS OBJECT (...); --Invoker-rights type
CREATE TYPE schema2.subtype2 UNDER invtype1 (...); --LEGAL

9.7 Roles with Invoker's Rights Subprograms
The use of roles in a subprogram depends on whether it executes with definer's rights or
invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles are not used
for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was called
directly or indirectly by a definer's rights subprogram). Roles are used for privilege checking,

Chapter 9
Roles with Invoker's Rights Subprograms

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 23 of 32

and you can use native dynamic SQL to set roles for the session. However, you cannot use
roles to grant privileges on template objects because roles apply at run time, not at compile
time.

9.8 Replication Support for Objects
• Object Replication Using Oracle Golden Gate

• Active Data Guard and Logical Standby Support for Objects

9.8.1 Object Replication Using Oracle Golden Gate
Beginning with Oracle Database 12c Release 12.1, Oracle supports Oracle Golden Gate for all
object datatypes, except nested tables. Oracle supports object tables and columns of ADTs,
REFs, VARRAYS, and ANYDATA. Oracle also supports type evolution and object inheritance.
The only exception is nested table columns, object tables, and columns of ADTs with nested
table attributes.

See Also

For information about data types supported by Oracle Golden Gate, see Oracle
Golden Gate Administration Guide.

9.8.2 Active Data Guard and Logical Standby Support for Objects
Beginning with Oracle Database release 12c, release 12.1, Oracle supports Active Data Guard
and Logical Standby for Object Tables and column for all Object datatypes, including REFs,
varrays, ANYDATA and object inheritance. The only exception is that Active Data Guard and
Logical Standby is not supported for tables with top-level nested tables and ADTs with nested
table attributes.

See Also

Oracle Data Guard Concepts and Administration for information about data types
supported by SQL Apply (logical standby)

9.9 Materialized View Support for Objects
Materialized view support is available for relational tables that contain columns of an object,
collection, or REF type. Such materialized views are called object-relational materialized views.

All user-defined types required by an object-relational materialized view must exist at the
materialized view site as well as at the primary site. They must have the same object type IDs
and versions at both sites.

Chapter 9
Replication Support for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 32

9.9.1 Object, Collection, or REF Type Columns
To be updatable, a materialized view based on a table that contains an object column must
select the column as an object in the query that defines the view: if the query selects only
certain attributes of the column's object type, then the materialized view is read-only.

The view-definition query can also select columns of collection or REF type. REFs can be either
primary-key based or have a system-generated key, and they can be either scoped or
unscoped. Scoped REF columns can be rescoped to a different table at the site of the
materialized view—for example, to a local materialized view of the primary table instead of the
original, remote table.

9.9.2 Object Tables
A materialized view based on an object table is called an object materialized view. Such a
materialized view is itself an object table. An object materialized view is created by adding the
OF type keyword to the CREATE MATERIALIZED VIEW statement. For example:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
 SELECT * FROM HR.Customer_objtab@dbs1;

As with an ordinary object table, each row of an object materialized view is an object instance,
so the view-definition query that creates the materialized view must select entire objects from
the primary table: the query cannot select only a subset of the object type's attributes. For
example, the following materialized view is not allowed:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
 SELECT CustNo FROM HR.Customer_objtab@dbs1;

You can create an object-relational materialized view from an object table by omitting the OF
type keyword, but such a view is read-only: you cannot create an updatable object-relational
materialized view from an object table.

For example, the following CREATE MATERIALIZED VIEW statement creates a read-only object-
relational materialized view of an object table. Even though the view-definition query selects all
columns and attributes of the object type, it does not select them as attributes of an object, so
the view created is object-relational and read-only:

CREATE MATERIALIZED VIEW customer AS
 SELECT * FROM HR.Customer_objtab@dbs1;

For both object-relational and object materialized views that are based on an object table, if the
type of the primary object table is not FINAL, the FROM clause in the materialized view definition
query must include the ONLY keyword. For example:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
 SELECT CustNo FROM ONLY HR.Customer_objtab@dbs1;

Otherwise, the FROM clause must omit the ONLY keyword.

Chapter 9
Materialized View Support for Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 25 of 32

9.10 Constraints on Objects
Oracle does not support constraints and defaults in type specifications. However, you can
specify the constraints and defaults when creating the tables:

Example 9-15 Specifying Constraints on an Object Type When Creating a Table

CREATE TYPE customer_typ AS OBJECT(
 cust_id INTEGER);
/
CREATE TYPE department_typ AS OBJECT(
 deptno INTEGER);
/
CREATE TABLE customer_tab OF customer_typ (
 cust_id default 1 NOT NULL);

CREATE TABLE department_tab OF department_typ (
 deptno PRIMARY KEY);

CREATE TABLE customer_tab1 (
 cust customer_typ DEFAULT customer_typ(1)
 CHECK (cust.cust_id IS NOT NULL),
 some_other_column VARCHAR2(32));

9.11 Considerations Related to Type Evolution
The following sections contain design considerations relating to type evolution.

This section contains the following topics:

• Pushing a Type Change Out to Clients

• About Changing Default Constructors

• About Altering the FINAL Property of a Type

9.11.1 Pushing a Type Change Out to Clients
Once a type has evolved on the server side, all client applications using this type need to make
the necessary changes to structures associated with the type. You can do this with OTT/JPUB.

You also may need to make programmatic changes associated with the structural change.
After making these changes, you must recompile your application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest release of the
third-party application, you can have the clients call a release-oriented compatibility
initialization function.

This function could take as input a string that tells it which release the client application is
working with. If the release string mismatches with the latest version, an error is generated.
The client application must then change the release string as part of the changes required to
become compatible with the latest release.

Chapter 9
Constraints on Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 26 of 32

For example:

FUNCTION compatibility_init(
 rel IN VARCHAR2, errmsg OUT VARCHAR2)
RETURN NUMBER;

where:

• rel is a release string that is chosen by the product, such as, 'Release 10.1'

• errmsg is any error message that may need to be returned

• The function returns 0 on success and a nonzero value on error

9.11.2 About Changing Default Constructors
When a type is altered, its default, system-defined constructors need to be changed in order
(for example) to include newly added attributes in the parameter list. If you are using default
constructors, you need to modify their invocations in your program in order for the calls to
compile.

You can avoid having to modify constructor calls if you define your own constructor functions
instead of using the system-defined default ones. See "Advantages of User-Defined
Constructors".

9.11.3 About Altering the FINAL Property of a Type
When you alter a type T1 from FINAL to NOT FINAL, any attribute of type T1 in the client
program changes from being an inlined structure to a pointer to T1. This means that you need
to change the program to use dereferencing when this attribute is accessed.

Conversely, when you alter a type from NOT FINAL to FINAL, the attributes of that type change
from being pointers to inlined structures.

For example, say that you have the types T1(a int) and T2(b T1), where T1's property is
FINAL. The C/JAVA structure corresponding to T2 is T2(T1 b). But if you change T1's property
to NOT FINAL, then T2's structure becomes T2(T1 *b).

9.12 Parallel Queries with Oracle Objects
Oracle lets you perform parallel queries with objects and objects synthesized in views, when
you follow these rules:

• To make queries involving joins and sorts parallel (using the ORDER BY, GROUP BY, and SET
operations), a MAP function is required. In the absence of a MAP function, the query
automatically becomes serial.

• Parallel queries on nested tables are not supported. Even if there are parallel hints or
parallel attributes for the table, the query is serial.

• Parallel Insert Direct Load (PIDL) and Parallel Create Table As Select (PCTAS) are
supported on varray and ADT columns. The ADT columns must meet the following
characteristics:

– type is final

– ADT attributes, at any level within the main type is final

– lob/varray/xmltype attributes are stored as securefile

Chapter 9
Parallel Queries with Oracle Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 27 of 32

– all other attributes are simple scalars

Rest of the DML and DDL are always performed in serial.

• Parallel DML is not supported on views with INSTEAD-OF trigger. However, the individual
statements within the trigger may be parallelized.

9.13 Design Consideration Tips and Techniques
There are assorted tips on various aspects of working with Oracle object types.

Topics:

• Whether to Evolve a Type or Create a Subtype

• How ANYDATA Differs from User-Defined Types

• Polymorphic Views: An Alternative to an Object View Hierarchy

• The SQLJ Object Type

• Miscellaneous Design Tips

9.13.1 Whether to Evolve a Type or Create a Subtype
As an application goes through its life cycle, the question often arises whether to change an
existing object type or to create a specialized subtype to meet new requirements. The answer
depends on the nature of the new requirements and their context in the overall application
semantics. Here are two examples:

Changing a Widely Used Base Type

Suppose that we have an object type address with attributes Street, State, and ZIP:

CREATE TYPE address AS OBJECT (
 Street VARCHAR2(80),
 State VARCHAR2(20),
 ZIP VARCHAR2(10));
/

We later find that we need to extend the address type by adding a Country attribute to support
addresses internationally. Is it better to create a subtype of address or to evolve the address
type itself?

With a general base type that has been widely used throughout an application, it is better to
implement the change using type evolution.

Adding Specialization

Suppose that an existing type hierarchy of Graphic types (for example, curve, circle, square,
text) needs to accommodate an additional variation, namely, Bezier curve. To support a new
specialization of this sort that does not reflect a shortcoming of the base type, we should use
inheritance and create a new subtype BezierCurve under the Curve type.

To sum up, the semantics of the required change dictates whether we should use type
evolution or inheritance. For a change that is more general and affects the base type, use type
evolution. For a more specialized change, implement the change using inheritance.

Chapter 9
Design Consideration Tips and Techniques

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 28 of 32

9.13.2 How ANYDATA Differs from User-Defined Types
ANYDATA is an Oracle-supplied type that can hold instances of any Oracle data type, whether
built-in or user-defined. ANYDATA is a self-describing type and supports a reflection-like API that
you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide the
polymorphic ability to store any of a set of possible instances in a placeholder, the two models
give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part of a single
type hierarchy. A variable can potentially hold instances only of its defined type or of its
subtypes. You can access attributes of the supertype and call methods defined in the
supertype (and potentially overridden by the subtype). You can also test the specific type of an
instance using the IS OF and the TREAT operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access attributes
or call methods of the actual instance stored in an ANYDATA variable (unless you extract out the
instance). You use the ANYDATA methods to discover and extract the type of the instance.
ANYDATA is a very useful mechanism for parameter passing when the function/procedure does
not care about the specific type of the parameter(s).

Inheritance provides better modeling, strong typing, specialization, and so on. Use ANYDATA
when you simply want to be able to hold one of any number of possible instances that do not
necessarily have anything in common.

9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy
Applying an Object Model to Relational Data describes how to build up a view hierarchy from a
set of object views each of which contains objects of a single type. Such a view hierarchy
enables queries on a view within the hierarchy to see a polymorphic set of objects contained
by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an object view
based on a query that returns a polymorphic set of objects. This approach is especially useful
when you want to define a view over a set of tables or views that already exists.

For example, an object view of Person_t can be defined over a query that returns Person_t
instances, including Employee_t instances. The following statement creates a view based on
queries that select persons from a persons table and employees from an employees table.

CREATE VIEW Persons_view OF Person_t AS
SELECT Person_t(...) FROM persons
UNION ALL
SELECT TREAT(Employee_t(...) AS Person_t) FROM employees;

An INSTEAD OF trigger defined for this view can use the VALUE function to access the current
object and to take appropriate action based on the object's most specific type.

Polymorphic views and object view hierarchies have these important differences:

• Addressability: In a view hierarchy, each subview can be referenced independently in
queries and DML statements. Thus, every set of objects of a particular type has a logical
name. However, a polymorphic view is a single view, so you must use predicates to obtain
the set of objects of a particular type.

Chapter 9
Design Consideration Tips and Techniques

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 29 of 32

• Evolution: If a new subtype is added, a subview can be added to a view hierarchy without
changing existing view definitions. With a polymorphic view, the single view definition must
be modified by adding another UNION branch.

• DML Statements: In a view hierarchy, each subview can be either inherently updatable or
can have its own INSTEAD OF trigger. With a polymorphic view, only one INSTEAD OF trigger
can be defined for a given operation on the view.

9.13.4 The SQLJ Object Type
This section discusses the SQLJ object type.

Topics:

• The Intended Use of SQLJ Object Types

• Actions Performed When Creating a SQLJ Object Type

• Uses of SQLJ Object Types

• Uses of Custom Object Types

• Differences Between SQLJ and Custom Object Types Through JDBC

9.13.4.1 The Intended Use of SQLJ Object Types
According to the Information Technology - SQLJ - Part 2 document (SQLJ Standard), a SQLJ
object type is a database object type designed for Java. A SQLJ object type maps to a Java
class. Once the mapping is registered through the extended SQL CREATE TYPE command (a
DDL statement), the Java application can insert or select the Java objects directly into or from
the database through an Oracle JDBC driver. This enables the user to deploy the same class
in the client, through JDBC, and in the server, through SQL method dispatch.

9.13.4.2 Actions Performed When Creating a SQLJ Object Type
The extended SQL CREATE TYPE command:

• Populates the database catalog with the external names for attributes, functions, and the
Java class. Also, dependencies between the Java class and its corresponding SQLJ object
type are maintained.

• Validates the existence of the Java class and validates that it implements the interface
corresponding to the value of the USING clause.

• Validates the existence of the Java fields (as specified in the EXTERNAL NAME clause) and
whether these fields are compatible with corresponding SQL attributes.

• Generates an internal class to support constructors, external variable names, and external
functions that return self as a result.

9.13.4.3 Uses of SQLJ Object Types
The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class.

The mapping between a Java class and its corresponding SQL type is managed by the SQLJ
object type specification. That is, the SQLJ Object type specification cannot have a
corresponding type body specification.

Chapter 9
Design Consideration Tips and Techniques

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 30 of 32

Also, the inheritance rules among SQLJ object types specify the legal mapping between a
Java class hierarchy and its corresponding SQLJ object type hierarchy. These rules ensure
that the SQLJ Type hierarchy contains a valid mapping. That is, the supertype or subtype of a
SQLJ object type has to be another SQLJ object type.

9.13.4.4 Uses of Custom Object Types
The custom object type is the Java interface for accessing SQL object types. A SQL object
type may include methods that are implemented in languages such as PLSQL, Java, and C.
Methods implemented in Java in a given SQL object type can belong to different unrelated
classes. That is, the SQL object type does not map to a specific Java class.

In order for the client to access these objects, Oracle JVM Web Services Call-Out Utility can be
used to generate the corresponding Java class. Furthermore, the user has to augment the
generated classes with the code of the corresponding methods. Alternatively, the user can
create the class corresponding to the SQL object type.

At runtime, the JDBC user has to register the correspondence between a SQL Type name and
its corresponding Java class in a map.

See Also

Oracle AI Database Java Developer’s Guide

9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC
The following table summarizes the differences between SQLJ object types and custom object
types.

Table 9-1 Differences Between SQLJ and Custom Object Types

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the OracleTypes.JAVA_STRUCT typecode to
register a SQLJ object type as a SQL OUT
parameter. The OracleTypes.JAVA_STRUCT
typecode is also used in the _SQL_TYPECODE field
of a class implementing the ORAData or SQLData
interface.

Use the OracleTypes.STRUCT typecode to
register a custom object type as a SQL OUT
parameter. The OracleTypes.STRUCT typecode
is also used in the _SQL_TYPECODE field of a
class implementing the ORAData or SQLData
interface.

Creation Create a Java class implementing the SQLData or
ORAData and ORADataFactory interfaces first and
then load the Java class into the database. Next,
you issue the extended SQL CREATE TYPE
command for SQLJ object type.

Issue the extended SQL CREATE TYPE command
for a custom object type and then create the
SQLData or ORAData Java wrapper class using
Oracle JVM Web Services Call-Out Utility or do
this manually.

Method Support Supports external names, constructor calls, and
calls for member functions with side effects.

There is no default class for implementing type
methods as Java methods. Some methods may
also be implemented in SQL.

Type Mapping Type mapping is automatically done by the
extended SQL CREATE TYPE command. However,
the SQLJ object type must have a defining Java
class on the client.

Register the correspondence between SQL and
Java in a type map. Otherwise, the type is
materialized as oracle.sql.STRUCT.

Chapter 9
Design Consideration Tips and Techniques

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 31 of 32

Table 9-1 (Cont.) Differences Between SQLJ and Custom Object Types

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Inheritance There are rules for mapping SQL hierarchy to a
Java class hierarchy. See the Oracle AI Database
SQL Language Reference for a complete
description of these rules.

There are no mapping rules.

9.13.5 Miscellaneous Design Tips
You should know these miscellaneous tips for designing with Oracle objects.

9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy
If a column or table is of type T, Oracle adds a hidden column for each attribute of type T and, if
the column or table is substitutable, for each attribute of every subtype of T, to store attribute
data. A hidden typeid column is added as well, to keep track of the type of the object instance
in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a number of total
attributes approaching 1,000 puts you at risk of running up against this limit when using
substitutable columns of a type in the hierarchy. To avoid problems as a result of this, consider
one of the following options for dealing with a hierarchy that has a large number of total
attributes:

• Use views

• Use REFs

• Break up the hierarchy

9.13.5.2 Circular Dependencies Among Types
Avoid creating circular dependencies among types. In other words, do not create situations in
which a method of type T returns a type T1, which has a method that returns a type T.

Chapter 9
Design Consideration Tips and Techniques

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 32 of 32

	Contents
	Preface
	Audience
	Conventions

	Changes in This Release
	New Features in Oracle AI Database 26ai
	Wide Tables

	1 Introduction to Oracle Objects
	1.1 About Oracle Objects
	1.2 Advantages of Objects
	1.3 Key Features of the Object-Relational Model
	1.3.1 Database Features of Oracle Objects
	1.3.1.1 About Object Types
	1.3.1.2 About Object Instances
	1.3.1.3 About Object Methods
	1.3.1.4 How Objects are Stored in Tables
	1.3.1.4.1 Creating and Using Object Tables
	1.3.1.4.2 Performing Operations on Object Tables

	1.3.1.5 Object Identifiers Used to Identify Row Objects
	1.3.1.6 References to Row Objects
	1.3.1.6.1 Using Scoped REFs
	1.3.1.6.2 Checking for Dangling REFs

	1.3.1.7 Dereferencing REFs
	1.3.1.7.1 Dereferencing a REF with the DEREF Command
	1.3.1.7.2 Dereferencing a Dangling REF
	1.3.1.7.3 Dereferencing a REF Implicilty

	1.3.1.8 Obtaining a REF to a Row Object
	1.3.1.9 REF Variables Compared
	1.3.1.10 Oracle Collections Data Types
	1.3.1.11 Object Views Used to Access Relational Data
	1.3.1.12 Use of Type Inheritance
	1.3.1.13 Type Evolution Used to Change an Existing Object Type

	1.3.2 Language Binding Features of Oracle Objects

	2 Basic Components of Oracle Objects
	2.1 SQL Object Types and References
	2.1.1 Null Objects and Attributes
	2.1.2 Character Length Semantics
	2.1.3 Defining Object Tables with Single Constraints
	2.1.4 Defining Object Tables with Multiple Constraints
	2.1.5 Defining Indexes for Object Tables
	2.1.6 Defining Triggers for Object Tables
	2.1.7 Rules for REF Columns and Attributes
	2.1.8 Name Resolution
	2.1.8.1 When Table Aliases Are Required

	2.1.9 Restriction on Using User-Defined Types with a Remote Database

	2.2 Object Methods
	2.2.1 About Object Methods
	2.2.2 Member Methods
	2.2.2.1 Declaring SELF Parameters in Member Methods
	2.2.2.2 Member Methods for Comparing Objects
	2.2.2.2.1 About Map Methods
	2.2.2.2.2 Creating a Map Method
	2.2.2.2.3 Invoking a Map Method
	2.2.2.2.4 Order Methods
	2.2.2.2.5 Guidelines for Comparison Methods
	2.2.2.2.6 Comparison Methods in Type Hierarchies

	2.2.3 Declaring and Invoking Static Methods
	2.2.4 Constructor Methods
	2.2.4.1 System-Defined Constructors
	2.2.4.2 Defining User-Defined Constructors
	2.2.4.3 Literal Invocation of a Constructor Method

	2.2.5 External Implemented Methods

	2.3 Inheritance in SQL Object Types
	2.3.1 About Inheritance in SQL Object Types
	2.3.2 Supertypes and Subtypes
	2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance
	2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function
	2.3.3.2 Creating a NOT FINAL Object Type

	2.3.4 Changing a FINAL TYPE to NOT FINAL
	2.3.5 Subtype Creation
	2.3.5.1 Creating a Parent or Supertype Object
	2.3.5.2 Creating a Subtype Object
	2.3.5.3 Generalized Invocation
	2.3.5.4 Using Generalized Invocation
	2.3.5.5 Using Generalized Expression
	2.3.5.6 Creating Multiple Subtypes
	2.3.5.7 Creating a Subtype Under Another Subtype
	2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects

	2.3.6 NOT INSTANTIABLE Types and Methods
	2.3.7 Creating a Non-INSTANTIABLE Object Type
	2.3.8 Changing an Object Type to INSTANTIABLE
	2.3.9 Overloaded and Overridden Methods
	2.3.9.1 Overloading Methods
	2.3.9.2 Overriding and Hiding Methods
	2.3.9.3 Restrictions on Overriding Methods

	2.3.10 Dynamic Method Dispatch
	2.3.11 Type Substitution in a Type Hierarchy
	2.3.12 Column and Row Substitutability
	2.3.12.1 About Column and Row Substitutability
	2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
	2.3.12.3 Subtypes with Attributes of a Supertype
	2.3.12.4 Substitution of REF Columns and Attributes
	2.3.12.5 Substitution of Collection Elements

	2.3.13 Newly Created Subtypes Stored in Substitutable Columns
	2.3.14 Dropping Subtypes After Creating Substitutable Columns
	2.3.15 Turning Off Substitutability in a New Table
	2.3.16 Constraining Substitutability
	2.3.17 Modifying Substitutability on a Table
	2.3.18 Restrictions on Modifying Substitutability
	2.3.19 Assignments Across Types
	2.3.19.1 Typical Object to Object Assignment
	2.3.19.2 Widening Assignment
	2.3.19.3 Narrowing Assignment
	2.3.19.4 Collection Assignments

	2.4 Functions and Operators Useful with Objects
	2.4.1 CAST
	2.4.2 CURSOR
	2.4.3 DEREF
	2.4.4 IS OF type
	2.4.5 REF
	2.4.6 SYS_TYPEID
	2.4.7 TABLE()
	2.4.8 TREAT
	2.4.8.1 Using TREAT for Narrowing Assignments
	2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods

	2.4.9 VALUE

	3 Using PL/SQL With Object Types
	3.1 Declaring and Initializing Objects in PL/SQL
	3.1.1 Defining Object Types
	3.1.2 Declaring Objects in a PL/SQL Block
	3.1.3 How PL/SQL Treats Uninitialized Objects

	3.2 Object Manipulation in PL/SQL
	3.2.1 Accessing Object Attributes With Dot Notation
	3.2.2 Calling Object Constructors and Methods
	3.2.3 Accessing Object Methods
	3.2.4 Updating and Deleting Objects
	3.2.5 Manipulating Object Manipulation with Ref Modifiers

	3.3 Use of Overloading in PL/SQL with Inheritance
	3.3.1 Resolving PL/SQL Functions with Inheritance
	3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically

	3.4 Using Dynamic SQL With Objects
	3.4.1 Using Dynamic SQL with Object Types and Collections
	3.4.2 Calling Package Procedures with Object Types and Collections

	4 Object Support in Oracle Programming Environments
	4.1 SQL and Object Types
	4.2 SQL Developer
	4.3 PL/SQL
	4.4 Oracle Call Interface (OCI)
	4.4.1 About Oracle Call Interface (OCI)
	4.4.2 Associative Access in OCI Programs
	4.4.3 Navigational Access in OCI Programs
	4.4.4 Object Cache
	4.4.5 Building an OCI Program That Manipulates Objects
	4.4.6 Defining User-Defined Constructors in C

	4.5 Pro*C/C++
	4.5.1 About Pro*C/C++
	4.5.2 Associative Access in Pro*C/C++
	4.5.3 Navigational Access in Pro*C/C++
	4.5.4 Conversion Between Oracle Types and C Types
	4.5.5 Oracle Type Translator (OTT)

	4.6 Oracle C++ Call Interface (OCCI)
	4.6.1 About Oracle C++ Call Interface (OCCI)
	4.6.2 OCCI Associative Relational and Object Interfaces
	4.6.3 The OCCI Navigational Interface

	4.7 Java Tools for Accessing Oracle Objects
	4.7.1 JDBC Access to Oracle Object Data
	4.7.2 Data Mapping Strategies
	4.7.3 Java Object Storage
	4.7.3.1 Creating SQLJ Object Types
	4.7.3.2 Additional Notes About Mapping
	4.7.3.3 SQLJ Type Evolution
	4.7.3.4 Constraints
	4.7.3.5 Querying SQLJ Objects
	4.7.3.6 Inserting Java Objects
	4.7.3.7 Updating SQLJ Objects

	4.7.4 Defining User-Defined Constructors in Java
	4.7.5 JDeveloper
	4.7.5.1 Application Development Framework (ADF)
	4.7.5.2 TopLink

	4.8 XML
	4.9 Utilities Providing Support for Objects
	4.9.1 Import/Export of Object Types
	4.9.1.1 Types
	4.9.1.2 Object View Hierarchies

	4.9.2 SQL*Loader

	5 Support for Collection Data Types
	5.1 Collection Data Types
	5.1.1 Creating a Collection Type
	5.1.2 Creating an Instance of a VARRAY or Nested Table
	5.1.3 Using the Constructor Method to Insert Values into a Nested Table
	5.1.4 Invoking Constructors Literally to Specify Defaults
	5.1.5 About Varrays
	5.1.6 Creating and Populating a VARRAY
	5.1.7 Nested Tables
	5.1.7.1 Creating Nested Tables
	5.1.7.2 Storing Elements of Nested Tables
	5.1.7.3 Specifying a Tablespace When Storing a Nested Table

	5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements
	5.1.9 Increasing VARRAY Limit Size
	5.1.10 Creating a Varray Containing LOB References

	5.2 Multilevel Collection Types
	5.2.1 Nested Table Storage Tables for Multilevel Collection Types
	5.2.1.1 Creating Multilevel Nested Table Storage
	5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword
	5.2.1.3 Specifying Physical Attributes for Nested Table Storage

	5.2.2 Varray Storage for Multilevel Collections
	5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type
	5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs
	5.2.5 Constructors for Multilevel Collections

	5.3 Operations on Collection Data Types
	5.3.1 Collection Querying
	5.3.1.1 Nesting Results of Collection Queries
	5.3.1.2 Unnesting Results of Collection Queries
	5.3.1.3 Unnesting Queries Containing Table Expression Subqueries
	5.3.1.4 Using a Table Expression in a CURSOR Expression
	5.3.1.5 Unnesting Queries with Multilevel Collections

	5.3.2 DML Operations on Collections
	5.3.2.1 Performing Piecewise Operations on Nested Tables
	5.3.2.1.1 Updating a Nested Table

	5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables
	5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table

	5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables
	5.3.2.4 Updating Collections as Atomic Data Items

	5.3.3 Using BULK COLLECT to Return Entire Result Sets
	5.3.4 Conditions that Compare Nested Tables
	5.3.4.1 Comparing Equal and Not Equal Conditions
	5.3.4.2 Comparing the IN Condition
	5.3.4.3 Comparing Subset of Multiset Conditions
	5.3.4.4 Determing Members of a Nested Table
	5.3.4.5 Determining Empty Conditions
	5.3.4.6 Determining Set Conditions

	5.3.5 Multiset Operations for Nested Tables
	5.3.5.1 CARDINALITY
	5.3.5.2 COLLECT
	5.3.5.3 MULTISET EXCEPT
	5.3.5.4 MULTISET INTERSECT
	5.3.5.5 MULTISET UNION
	5.3.5.6 POWERMULTISET
	5.3.5.7 POWERMULTISET_BY_CARDINALITY
	5.3.5.8 SET

	5.4 Partitioning Tables That Contain Oracle Objects

	6 Applying an Object Model to Relational Data
	6.1 Why Use Object Views
	6.2 Defining Object Views
	6.3 Object Views Used in Applications
	6.4 Objects Nested in Object Views
	6.5 Identifying Null Objects in Object Views
	6.6 Nested Tables and Varrays Used in Object Views
	6.6.1 Single-Level Collections in Object Views
	6.6.2 Multilevel Collections in Object Views

	6.7 Object Identifiers for Object Views
	6.8 References Created to View Objects
	6.9 Creating References to Objects with REF
	6.10 Inverse Relationships Modelled with Object Views
	6.11 Object View Manipulations
	6.11.1 Nested Table Columns Updated in Views
	6.11.2 INSTEAD OF Triggers to Control Mutating and Validation

	6.12 Applying the Object Model to Remote Tables
	6.13 Defining Complex Relationships in Object Views
	6.13.1 Tables and Types to Demonstrate Circular View References
	6.13.2 Creating Object Views with Circular References
	6.13.2.1 Method 1: Re-create First View After Creating Second View
	6.13.2.2 Method 2: Create First View Using FORCE Keyword

	6.14 Object View Hierarchies
	6.14.1 Creating an Object View Hierarchy
	6.14.1.1 The Flat Model
	6.14.1.2 The Horizontal Model
	6.14.1.3 The Vertical Model

	6.14.2 About Querying a View in a Hierarchy
	6.14.3 Privileges for Operations on View Hierarchies

	7 Managing Oracle Objects
	7.1 Privileges on Object Types and Their Methods
	7.1.1 System Privileges for Object Types
	7.1.2 Schema Object Privileges
	7.1.3 Types Used in New Types or Tables
	7.1.4 Example: Privileges on Object Types
	7.1.5 Access Privileges on Objects, Types, and Tables

	7.2 Type Dependencies
	7.2.1 Creating Incomplete Types
	7.2.2 Completing Incomplete Types
	7.2.3 Recompiling a Type Manually
	7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies
	7.2.5 Creating or Replacing Type with Force
	7.2.6 Type Dependencies of Substitutable Tables and Columns
	7.2.7 The DROP TYPE FORCE Option

	7.3 Synonyms for Object Types
	7.3.1 Creating a Type Synonym
	7.3.2 Using a Type Synonym
	7.3.2.1 Describing Schema Objects That Use Synonyms
	7.3.2.2 Dependents of Type Synonyms
	7.3.2.3 Restriction on Replacing a Type Synonym
	7.3.2.4 Dropping Type Synonyms
	7.3.2.5 Renaming Type Synonyms
	7.3.2.6 Public Type Synonyms and Local Schema Objects

	7.4 Performance Tuning

	8 Advanced Topics for Oracle Objects
	8.1 Storage of Objects
	8.1.1 Leaf-Level Attributes
	8.1.2 How Row Objects Are Split Across Columns
	8.1.3 Hidden Columns for Tables with Column Objects
	8.1.4 Hidden Columns for Substitutable Columns and Object Tables
	8.1.5 Querying for Typeids of Objects Stored in Tables
	8.1.6 Storage of REFs
	8.1.7 Internal Layout of Nested Tables
	8.1.8 Internal Layout of VARRAYs

	8.2 Creating Indexes on Typeids or Attributes
	8.2.1 Indexing a Type-Discriminant Column
	8.2.2 Indexing Subtype Attributes of a Substitutable Column

	8.3 Type Evolution
	8.3.1 About Type Evolution
	8.3.2 Type Evolution and Dependent Schema Objects
	8.3.3 Options for Updating Data
	8.3.4 Effects of Structural Changes to Types
	8.3.5 Altering a Type by Adding and Dropping Attributes
	8.3.6 Altering a Type by Adding a Nested Table Attribute
	8.3.7 About Validating Types That Have Been Altered
	8.3.8 ALTER TYPE Statement for Type Evolution
	8.3.9 ALTER TABLE Statement for Type Evolution

	8.4 Storing XMLTypes and LOBs in an ANYDATA Column
	8.5 System-Defined and User-Defined Constructors
	8.5.1 The Attribute-Value Constructor
	8.5.2 Constructors and Type Evolution
	8.5.3 Advantages of User-Defined Constructors
	8.5.4 Defining and Implementing User-Defined Constructors
	8.5.5 Overloaded and Hidden Constructors
	8.5.6 Calling User-Defined Constructors
	8.5.7 Constructors for SQLJ Object Types

	8.6 Transient and Generic Types
	8.7 User-Defined Aggregate Functions
	8.8 How Locators Improve the Performance of Nested Tables

	9 Design Considerations for Oracle Objects
	9.1 General Storage Considerations for Objects
	9.1.1 About Storing Objects as Columns or Rows
	9.1.1.1 Column Object Storage in Relational Tables
	9.1.1.2 Row Object Storage in Object Tables

	9.1.2 Storage Considerations for Object Identifiers (OIDs)
	9.1.2.1 System-Generated Object Identifiers (OIDs)
	9.1.2.2 Primary-Key Based Object Identifiers (OIDs)
	9.1.2.3 System-Generated Versus Primary-Key Based OIDs

	9.2 Performance of Object Comparisons
	9.3 Design Considerations for REFs
	9.3.1 Storage Size of REFs
	9.3.2 Integrity Constraints for REF Columns
	9.3.3 Performance and Storage Considerations for Scoped REFs
	9.3.3.1 Indexing for Scoped REFs

	9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option

	9.4 Design Considerations for Collections
	9.4.1 Viewing Object Data in Relational Form with Unnesting Queries
	9.4.1.1 Creating Procedures and Functions to Unnest Queries
	9.4.1.2 Querying the TABLE Function to Unnest Data

	9.4.2 Storage Considerations for Varrays
	9.4.2.1 About Propagating VARRAY Size Change

	9.4.3 Performance of Varrays Versus Nested Tables
	9.4.4 Design Considerations for Nested Tables
	9.4.4.1 Nested Table Storage
	9.4.4.2 Nested Table Indexes
	9.4.4.3 Nested Table Locators
	9.4.4.3.1 At Table Creation Time
	9.4.4.3.2 As a HINT During Retrieval

	9.4.4.4 Set Membership Query Optimization

	9.4.5 Design Considerations for Multilevel Collections
	9.4.5.1 Creating an Object Table with a Multilevel Collection
	9.4.5.2 Creating an Object Table Using REFs
	9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table

	9.5 Design Considerations for Methods
	9.5.1 Choice of Language for Method Functions
	9.5.2 Static Methods
	9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures
	9.5.4 Function-Based Indexes on the Return Values of Type Methods

	9.6 Reusable Code Using Invoker Rights
	9.7 Roles with Invoker's Rights Subprograms
	9.8 Replication Support for Objects
	9.8.1 Object Replication Using Oracle Golden Gate
	9.8.2 Active Data Guard and Logical Standby Support for Objects

	9.9 Materialized View Support for Objects
	9.9.1 Object, Collection, or REF Type Columns
	9.9.2 Object Tables

	9.10 Constraints on Objects
	9.11 Considerations Related to Type Evolution
	9.11.1 Pushing a Type Change Out to Clients
	9.11.2 About Changing Default Constructors
	9.11.3 About Altering the FINAL Property of a Type

	9.12 Parallel Queries with Oracle Objects
	9.13 Design Consideration Tips and Techniques
	9.13.1 Whether to Evolve a Type or Create a Subtype
	9.13.2 How ANYDATA Differs from User-Defined Types
	9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy
	9.13.4 The SQLJ Object Type
	9.13.4.1 The Intended Use of SQLJ Object Types
	9.13.4.2 Actions Performed When Creating a SQLJ Object Type
	9.13.4.3 Uses of SQLJ Object Types
	9.13.4.4 Uses of Custom Object Types
	9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC

	9.13.5 Miscellaneous Design Tips
	9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy
	9.13.5.2 Circular Dependencies Among Types

