Oracle® Al Database
Object-Relational Developer's Guide

26ali
(G44198-01
October 2025

ORACLE"

Oracle Al Database Object-Relational Developer's Guide, 26ai
G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Sylaja Kannan

Contributing Authors: Preethy P G, Tulika Das

Contributors: Janis Greenberg, Sundeep Abraham, Shashaanka Agrawal, Geeta Arora, Eric Belden, Chandrasekharan
lyer, Geoff Lee, Anand Manikutty, Valarie Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz, Qin Yu

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience [
Conventions i

Changes in This Release

New Features in Oracle Al Database 26ai i

1 Introduction to Oracle Objects

1.1 About Oracle Objects 1
1.2 Advantages of Objects 1
1.3 Key Features of the Object-Relational Model 2
1.3.1 Database Features of Oracle Objects 2
1.3.1.1 About Object Types 3

1.3.1.2 About Object Instances 5

1.3.1.3 About Object Methods 6

1.3.1.4 How Objects are Stored in Tables 6

1.3.1.5 Object Identifiers Used to Identify Row Objects 8

1.3.1.6 References to Row Objects 8

1.3.1.7 Dereferencing REFs 10

1.3.1.8 Obtaining a REF to a Row Object 11

1.3.1.9 REF Variables Compared 12
1.3.1.10 Oracle Collections Data Types 12
1.3.1.11 Object Views Used to Access Relational Data 13
1.3.1.12 Use of Type Inheritance 13
1.3.1.13 Type Evolution Used to Change an Existing Object Type 14

1.3.2 Language Binding Features of Oracle Objects 14

2 Basic Components of Oracle Objects

2.1 SQL Object Types and References
2.1.1 Null Objects and Attributes
2.1.2 Character Length Semantics

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page i of x

2.1.3 Defining Object Tables with Single Constraints 3
2.1.4 Defining Object Tables with Multiple Constraints 4
2.1.5 Defining Indexes for Object Tables 4
2.1.6 Defining Triggers for Object Tables 5
2.1.7 Rules for REF Columns and Attributes 5
2.1.8 Name Resolution 6
2.1.8.1 When Table Aliases Are Required 6
2.1.9 Restriction on Using User-Defined Types with a Remote Database 8
2.2 Object Methods 8
2.2.1 About Object Methods 8
2.2.2 Member Methods 9
2.2.2.1 Declaring SELF Parameters in Member Methods 9
2.2.2.2 Member Methods for Comparing Objects 10
2.2.3 Declaring and Invoking Static Methods 13
2.2.4 Constructor Methods 14
2.2.41 System-Defined Constructors 14
2.2.4.2 Defining User-Defined Constructors 14
2.2.4.3 Literal Invocation of a Constructor Method 14
2.2.5 External Implemented Methods 15
2.3 Inheritance in SQL Object Types 15
2.3.1 About Inheritance in SQL Object Types 15
2.3.2 Supertypes and Subtypes 16
2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance 17
2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function 18
2.3.3.2 Creating a NOT FINAL Object Type 18
2.3.4 Changing a FINAL TYPE to NOT FINAL 18
2.3.5 Subtype Creation 19
2.3.5.1 Creating a Parent or Supertype Object 19
2.3.5.2 Creating a Subtype Object 19
2.3.5.3 Generalized Invocation 20
2.3.5.4 Using Generalized Invocation 20
2.3.5.5 Using Generalized Expression 21
2.3.5.6 Creating Multiple Subtypes 21
2.3.5.7 Creating a Subtype Under Another Subtype 22
2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects 22
2.3.6 NOT INSTANTIABLE Types and Methods 23
2.3.7 Creating a Non-INSTANTIABLE Object Type 23
2.3.8 Changing an Object Type to INSTANTIABLE 23
2.3.9 Overloaded and Overridden Methods 24
2.3.9.1 Overloading Methods 24
2.3.9.2 Overriding and Hiding Methods 25
2.3.9.3 Restrictions on Overriding Methods 25

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page ii of x

2.3.10 Dynamic Method Dispatch 26

2.3.11 Type Substitution in a Type Hierarchy 26
2.3.12 Column and Row Substitutability 27
2.3.12.1 About Column and Row Substitutability 27
2.3.12.2 Using OBJECT_VALUE and OBJECT _ID with Substitutable Rows 28
2.3.12.3 Subtypes with Attributes of a Supertype 29
2.3.12.4 Substitution of REF Columns and Attributes 29
2.3.12.5 Substitution of Collection Elements 29
2.3.13 Newly Created Subtypes Stored in Substitutable Columns 30
2.3.14 Dropping Subtypes After Creating Substitutable Columns 30
2.3.15 Turning Off Substitutability in a New Table 31
2.3.16 Constraining Substitutability 32
2.3.17 Modifying Substitutability on a Table 32
2.3.18 Restrictions on Modifying Substitutability 33
2.3.19 Assignments Across Types 34
2.3.19.1 Typical Object to Object Assignment 34
2.3.19.2 Widening Assignment 34
2.3.19.3 Narrowing Assignment 35
2.3.19.4 Collection Assignments 36

2.4 Functions and Operators Useful with Objects 36
2.41 CAST 37
2.42 CURSOR 37
2.4.3 DEREF 37
2.4.4 1S OF type 38
245 REF 39
2.46 SYS_TYPEID 40
2.4.7 TABLE() 40
2.4.8 TREAT 41
2.4.8.1 Using TREAT for Narrowing Assignments 41
2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods 42
2.49 VALUE 42

3 Using PL/SQL With Object Types

3.1 Declaring and Initializing Objects in PL/SQL
3.1.1 Defining Object Types
3.1.2 Declaring Objects in a PL/SQL Block
3.1.3 How PL/SQL Treats Uninitialized Objects

3.2 Object Manipulation in PL/SQL
3.2.1 Accessing Object Attributes With Dot Notation
3.2.2 Calling Object Constructors and Methods
3.2.3 Accessing Object Methods

A W W WWN PR

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page iii of x

3.2.4 Updating and Deleting Objects

3.2.5 Manipulating Object Manipulation with Ref Modifiers
3.3 Use of Overloading in PL/SQL with Inheritance

3.3.1 Resolving PL/SQL Functions with Inheritance

3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically
3.4 Using Dynamic SQL With Objects

3.4.1 Using Dynamic SQL with Object Types and Collections

© 00 00 N OO O O ;O

3.4.2 Calling Package Procedures with Object Types and Collections

4 Object Support in Oracle Programming Environments

4.1 SQL and Object Types
4.2 SQL Developer
4.3 PL/SQL
4.4 Oracle Call Interface (OCI)
4.4.1 About Oracle Call Interface (OCI)
4.4.2 Associative Access in OCI Programs
4.4.3 Navigational Access in OCI Programs
4.4.4 Object Cache
4.4.5 Building an OCI Program That Manipulates Objects
4.4.6 Defining User-Defined Constructors in C
45 Pro*C/C++
4.5.1 About Pro*C/C++
452 Associative Access in Pro*C/C++
4.5.3 Navigational Access in Pro*C/C++
4.5.4 Conversion Between Oracle Types and C Types
45,5 Oracle Type Translator (OTT)
4.6 Oracle C++ Call Interface (OCCI)
4.6.1 About Oracle C++ Call Interface (OCCI)
4.6.2 OCCI Associative Relational and Object Interfaces
4.6.3 The OCCI Navigational Interface
4.7 Java Tools for Accessing Oracle Objects
4.7.1 JDBC Access to Oracle Object Data

© © © 00 0 0 0 N N O O O 0o A B W WNDNMNDNDNDNEPRE

4.7.2 Data Mapping Strategies 10
4.7.3 Java Object Storage 10
4.7.3.1 Creating SQLJ Object Types 11
4.7.3.2 Additional Notes About Mapping 12
4.7.3.3 SQLJ Type Evolution 12
4.7.3.4 Constraints 13
4.7.3.5 Querying SQLJ Objects 13
4.7.3.6 Inserting Java Objects 13
4.7.3.7 Updating SQLJ Objects 13

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page iv of x

4.7.4 Defining User-Defined Constructors in Java 14
4.7.5 JDeveloper 14
4.7.5.1 Application Development Framework (ADF) 14
4.7.5.2 TopLink 15
4.8 XML 15
4.9 Utilities Providing Support for Objects 15
4.9.1 Import/Export of Object Types 15
49.1.1 Types 15
4.9.1.2 Object View Hierarchies 16
4.9.2 SQL*Loader 16
Support for Collection Data Types

5.1 Collection Data Types 1
5.1.1 Creating a Collection Type 2
5.1.2 Creating an Instance of a VARRAY or Nested Table 2
5.1.3 Using the Constructor Method to Insert Values into a Nested Table 3
5.1.4 Invoking Constructors Literally to Specify Defaults 3
5.1.5 About Varrays 4
5.1.6 Creating and Populating a VARRAY 4
5.1.7 Nested Tables 5
5.1.7.1 Creating Nested Tables 5
5.1.7.2 Storing Elements of Nested Tables 6
5.1.7.3 Specifying a Tablespace When Storing a Nested Table 7
5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements 7
5.1.9 Increasing VARRAY Limit Size 8
5.1.10 Creating a Varray Containing LOB References 8
5.2 Multilevel Collection Types 9
5.2.1 Nested Table Storage Tables for Multilevel Collection Types 9
5.2.1.1 Creating Multilevel Nested Table Storage 10

5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE
Keyword 11
5.2.1.3 Specifying Physical Attributes for Nested Table Storage 11
5.2.2 Varray Storage for Multilevel Collections 12
5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type 12
5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs 12
5.2.5 Constructors for Multilevel Collections 13
5.3 Operations on Collection Data Types 14
5.3.1 Collection Querying 14
5.3.1.1 Nesting Results of Collection Queries 14
5.3.1.2 Unnesting Results of Collection Queries 15
5.3.1.3 Unnesting Queries Containing Table Expression Subqueries 16

Object-Relational Developer's Guide

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page v of x

5.3.1.4 Using a Table Expression in a CURSOR Expression 16

5.3.1.5 Unnesting Queries with Multilevel Collections 17

5.3.2 DML Operations on Collections 17
5.3.2.1 Performing Piecewise Operations on Nested Tables 18

5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables 19

5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables 19

5.3.2.4 Updating Collections as Atomic Data Items 20

5.3.3 Using BULK COLLECT to Return Entire Result Sets 21
5.3.4 Conditions that Compare Nested Tables 21
5.3.4.1 Comparing Equal and Not Equal Conditions 21

5.3.4.2 Comparing the IN Condition 22

5.3.4.3 Comparing Subset of Multiset Conditions 22

5.3.4.4 Determing Members of a Nested Table 22

5.3.4.5 Determining Empty Conditions 23

5.3.4.6 Determining Set Conditions 23

5.3.5 Multiset Operations for Nested Tables 23
5.3.5.1 CARDINALITY 24

5.3.5.2 COLLECT 24

5.3.5.3 MULTISET EXCEPT 24

5.3.5.4 MULTISET INTERSECT 25

5.3.5.5 MULTISET UNION 25

5.3.5.6 POWERMULTISET 26

5.3.5.7 POWERMULTISET_BY_CARDINALITY 26

5.3.5.8 SET 27

5.4 Partitioning Tables That Contain Oracle Objects 27

6 Applying an Object Model to Relational Data

6.1 Why Use Object Views 1
6.2 Defining Object Views 2
6.3 Object Views Used in Applications 3
6.4 Objects Nested in Object Views 4
6.5 Identifying Null Objects in Object Views 5
6.6 Nested Tables and Varrays Used in Object Views 5
6.6.1 Single-Level Collections in Object Views 5
6.6.2 Multilevel Collections in Object Views 7

6.7 Object Identifiers for Object Views 8
6.8 References Created to View Objects 9
6.9 Creating References to Objects with REF 9
6.10 Inverse Relationships Modelled with Object Views 10
6.11 Object View Manipulations 10
6.11.1 Nested Table Columns Updated in Views 11

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vi of x

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation 11
6.12 Applying the Object Model to Remote Tables 12
6.13 Defining Complex Relationships in Object Views 13

6.13.1 Tables and Types to Demonstrate Circular View References 14

6.13.2 Creating Object Views with Circular References 15

6.13.2.1 Method 1: Re-create First View After Creating Second View 16
6.13.2.2 Method 2: Create First View Using FORCE Keyword 16

6.14 Object View Hierarchies 18
6.14.1 Creating an Object View Hierarchy 19
6.14.1.1 The Flat Model 20
6.14.1.2 The Horizontal Model 21
6.14.1.3 The Vertical Model 23

6.14.2 About Querying a View in a Hierarchy 24
6.14.3 Privileges for Operations on View Hierarchies 25

7 Managing Oracle Objects

7.1 Privileges on Object Types and Their Methods 1

7.1.1 System Privileges for Object Types 1

7.1.2 Schema Obiject Privileges 1

7.1.3 Types Used in New Types or Tables 2

7.1.4 Example: Privileges on Object Types 2

7.1.5 Access Privileges on Objects, Types, and Tables 4
7.2 Type Dependencies 5

7.2.1 Creating Incomplete Types 6

7.2.2 Completing Incomplete Types 7

7.2.3 Recompiling a Type Manually 7

7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies 7

7.2.5 Creating or Replacing Type with Force 8

7.2.6 Type Dependencies of Substitutable Tables and Columns 8

7.2.7 The DROP TYPE FORCE Option 9
7.3 Synonyms for Object Types 10

7.3.1 Creating a Type Synonym 10

7.3.2 Using a Type Synonym 11

7.3.2.1 Describing Schema Objects That Use Synonyms 11
7.3.2.2 Dependents of Type Synonyms 12
7.3.2.3 Restriction on Replacing a Type Synonym 12
7.3.2.4 Dropping Type Synonyms 12
7.3.2.5 Renaming Type Synonyms 13
7.3.2.6 Public Type Synonyms and Local Schema Objects 13
7.4 Performance Tuning 13

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page vii of x

8 Advanced Topics for Oracle Objects

8.1 Storage of Objects

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8

Leaf-Level Attributes
How Row Objects Are Split Across Columns
Hidden Columns for Tables with Column Objects

Hidden Columns for Substitutable Columns and Object Tables

Querying for Typeids of Objects Stored in Tables
Storage of REFs

Internal Layout of Nested Tables

Internal Layout of VARRAY's

8.2 Creating Indexes on Typeids or Attributes

8.2.1
8.2.2

Indexing a Type-Discriminant Column
Indexing Subtype Attributes of a Substitutable Column

8.3 Type Evolution

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9

About Type Evolution

Type Evolution and Dependent Schema Objects
Options for Updating Data

Effects of Structural Changes to Types

Altering a Type by Adding and Dropping Attributes
Altering a Type by Adding a Nested Table Attribute
About Validating Types That Have Been Altered
ALTER TYPE Statement for Type Evolution
ALTER TABLE Statement for Type Evolution

8.4 Storing XMLTypes and LOBs in an ANYDATA Column
8.5 System-Defined and User-Defined Constructors

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7

The Attribute-Value Constructor

Constructors and Type Evolution

Advantages of User-Defined Constructors

Defining and Implementing User-Defined Constructors
Overloaded and Hidden Constructors

Calling User-Defined Constructors

Constructors for SQLJ Object Types

8.6 Transient and Generic Types

8.7 User-Defined Aggregate Functions

8.8 How Locators Improve the Performance of Nested Tables

o Design Considerations for Oracle Objects

© 00 0 N N N O oot oD DM DNDNMDMNDNPRP PP

N NN R R R R B R R R R R
A WO O M mWM~NO OO U U 0 Wk O

9.1 General Storage Considerations for Objects

9.11

About Storing Objects as Columns or Rows

9.1.1.1 Column Object Storage in Relational Tables

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page viii of x

9.1.1.2 Row Object Storage in Object Tables
9.1.2 Storage Considerations for Object Identifiers (OIDs)
9.1.2.1 System-Generated Object Identifiers (OIDs)
9.1.2.2 Primary-Key Based Object Identifiers (OIDs)
9.1.2.3 System-Generated Versus Primary-Key Based OIDs
9.2 Performance of Object Comparisons
9.3 Design Considerations for REFs
9.3.1 Storage Size of REFs
9.3.2 Integrity Constraints for REF Columns
9.3.3 Performance and Storage Considerations for Scoped REFs
9.3.3.1 Indexing for Scoped REFs
9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option
9.4 Design Considerations for Collections
9.4.1 Viewing Object Data in Relational Form with Unnesting Queries
9.4.1.1 Creating Procedures and Functions to Unnest Queries
9.4.1.2 Querying the TABLE Function to Unnest Data
9.4.2 Storage Considerations for Varrays
9.4.2.1 About Propagating VARRAY Size Change
9.4.3 Performance of Varrays Versus Nested Tables
9.4.4 Design Considerations for Nested Tables
9.4.4.1 Nested Table Storage
9.4.4.2 Nested Table Indexes
9.4.4.3 Nested Table Locators
9.4.4.4 Set Membership Query Optimization
9.4.5 Design Considerations for Multilevel Collections
9.4.5.1 Creating an Object Table with a Multilevel Collection
9.4.5.2 Creating an Object Table Using REFs
9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table
9.5 Design Considerations for Methods
9.5.1 Choice of Language for Method Functions
9.5.2 Static Methods
9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures
9.5.4 Function-Based Indexes on the Return Values of Type Methods
9.6 Reusable Code Using Invoker Rights
9.7 Roles with Invoker's Rights Subprograms
9.8 Replication Support for Objects
9.8.1 Object Replication Using Oracle Golden Gate
9.8.2 Active Data Guard and Logical Standby Support for Objects
9.9 Materialized View Support for Objects
9.9.1 Object, Collection, or REF Type Columns
9.9.2 Object Tables
9.10 Constraints on Objects

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

© © 00 0 N o oo o 0o o b~ b~ B~ b

NN NN RNNMNNNNNRNDNDRRRRRERRRRRPB R RB B R
o U BN D BEDNONRRLROOOOONOOOD™MDNWDNDINDREPRIERRPLROOO

October 13, 2025
Page ix of x

9.11 Considerations Related to Type Evolution
9.11.1 Pushing a Type Change Out to Clients
9.11.2 About Changing Default Constructors
9.11.3 About Altering the FINAL Property of a Type
9.12 Parallel Queries with Oracle Objects
9.13 Design Consideration Tips and Techniques
9.13.1 Whether to Evolve a Type or Create a Subtype
9.13.2 How ANYDATA Differs from User-Defined Types
9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy
9.13.4 The SQLJ Object Type
9.13.4.1 The Intended Use of SQLJ Object Types
9.13.4.2 Actions Performed When Creating a SQLJ Object Type
9.13.4.3 Uses of SQLJ Object Types
9.13.4.4 Uses of Custom Object Types
9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC
9.13.5 Miscellaneous Design Tips
9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy
9.13.5.2 Circular Dependencies Among Types

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

26
26
27
27
27
28
28
29
29
30
30
30
30
31
31
32
32
32

October 13, 2025
Page x of x

ORACLE

Preface

Audience

This guide explains how to use the object-relational features of Oracle Al Database 26ai.
Information in this guide applies to versions of Oracle Al Database that run on all platforms,
and does not include system-specific information.

e Audience

e Conventions

This guide is intended for programmers developing new applications or converting existing
applications to run in the Oracle environment. The object-relational features are often used in
content management, data warehousing, data/information integration, and similar applications
that deal with complex structured data. The object views feature can be valuable when writing
new C++, C#, Java, or XML applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application programming and that
you are familiar with the use of Structured Query Language (SQL) to access information in
relational databases. You should be familiar with the information in Oracle Al Database SQL
Language Quick Reference, Oracle Al Database PL/SQL Language Reference, and Oracle Al
Database 2 Day Developer's Guide, and with object-oriented programming techniques.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Pageiofi

ORACLE’

Changes in This Release

The following are the changes in the Oracle Al Database Object-Relational Developer's Guide
for Oracle Al Database 26ai.

New Features in Oracle Al Database 26al

The following are the new features in the Oracle Al Database Object-Relational Developer's
Guide for Oracle Al Database 26ai.

Wide Tables

The maximum number of columns allowed in a database table or view has been increased to
4096. This feature allows you to build applications that can store attributes in a single table
with more than the previous 1000-column limit. Some applications such as Machine Learning
and streaming loT application workloads may require the use of de-normalized tables with
more than 1000 columns.

You now have the ability to store a larger number of attributes in a single row which for some
applications may simplify application design and implementation. See The Flat Model.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Pageiofi

Introduction to Oracle Objects

There are advantages and key features to the Oracle object-relational model.
Topics:

« About Oracle Objects

 Advantages of Objects

« Key Features of the Object-Relational Model

1.1 About Oracle Objects

Oracle object types are user-defined types that make it possible to model real-world entities,
such as customers and purchase orders, as objects in the database.

New object types can be created from any built-in database types and any previously created
object types, object references, and collection types. Object types can work with complex data,
such as images, audio, and video. Oracle Al Database stores metadata for user-defined types
in a schema that is available to SQL, PL/SQL, Java, and other languages.

Object types and related object-oriented features, such as varrays and nested tables, provide
higher-level ways to organize and access data in the database. Underneath the object layer,
data is still stored in columns and tables, but you can work with the data in terms of the real-
world entities that make the data meaningful. Instead of thinking in terms of columns and
tables when you query the database, you can simply select entities that you have created,
such as customers and purchase orders.

You can begin to use object-oriented features while continuing to work with most of your data
relationally, or you use to an object-oriented approach entirely.

Object types are also known as user-defined types or ADTs. Oracle Al Database PL/SQL
Packages and Types Reference generally refers to them as ADTSs.

1.2 Advantages of Objects

The object-type model, in general, is similar to the class mechanism found in C++ and Java.

Like classes, the reusability of objects makes it possible to develop database applications
faster and more efficiently. By natively supporting object types in the database, Oracle Al
Database enables application developers to directly access the data structures used by their
applications.

Objects offer other advantages over a purely relational approach, such as:

* Objects Can Encapsulate Operations Along with Data
* Objects Are Efficient

* Objects Can Represent Part-Whole Relationships

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE’

Chapter 1
Key Features of the Object-Relational Model

Objects Can Encapsulate Operations Along with Data

Database tables contain only data. Objects can include the ability to perform operations that
are likely to be performed on that data.

Thus, an object such as a purchase order might include a method to calculate the cost of all
the items purchased. Or a customer object might have methods to return the customer's
buying history and payment pattern. An application can simply call the methods to retrieve the
information.

Objects Are Efficient
Using object types allows for greater efficiency:

* Object types and their methods are stored with the data in the database, so they are
available for any application to use. Developers do not need to re-create similar structures
and methods in every application. This also ensures that developers are using consistent
standards.

* You can fetch and manipulate a set of related objects as a single unit. A single request to
fetch an object from the server can retrieve other objects that are connected to it. When
you reference a column of a SQL object type, you retrieve the whole object.

Objects Can Represent Part-Whole Relationships
Object types allow you to represent part-whole relationships.

In a relational table for stock items, for example, a piston and an engine may have the same
status. Using objects can reduce the need to represent pistons as parts of engines with
complicated schemas of multiple tables with primary key-foreign key relationships. An object
can have other objects as attributes, and the attribute objects can have their own object
attributes too. An entire parts-list hierarchy can be built up in this way from interlocking object

types.

1.3 Key Features of the Object-Relational Model

Oracle Al Database implements the object-type model as an extension of the relational model,
while continuing to support standard relational database functionality, such as queries, fast
commits, backup and recovery, scalable connectivity, row-level locking, read consistency, and
more.

SQL and various programmatic interfaces and languages, including PL/SQL, Java, Oracle Call
Interface, Pro*C/C++, and C# have been enhanced with extensions to support Oracle objects.
The result is an object-relational model that offers the intuitiveness and economy of an object
interface while preserving the high concurrency and throughput of a relational database.

Topics:

» Database Features of Oracle Objects

« Langquage Binding Features of Oracle Objects

1.3.1 Database Features of Oracle Objects

There are certain features and concepts of the object-relational model that are related to the
database.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE Chapter 1
Key Features of the Object-Relational Model

@® Note

Running Examples: Many examples in this guide can be run using the HR sample
schema. Comments at the beginning of most examples indicate if any previous
example code is required.

Refer to Oracle Al Database Sample Schemas for information on how these schemas
were created and how you can use them yourself.

Topics:

« About Object Types

e About Object Instances
e About Object Methods

* How Obijects are Stored in Tables

» Object Identifiers Used to Identify Row Objects

» References to Row Objects

e Oracle Collections Data Types

e Obiject Views Used to Access Relational Data

e Use of Type Inheritance

» Type Evolution Used to Change an Existing Object Type

1.3.1.1 About Object Types

An object type is a kind of data type.

You can use an object in the same ways that you use standard data types such as NUVBER or
VARCHAR2. For example, you can specify an object type as the data type of a column in a
relational table, and you can declare variables of an object type. The value is a variable or an
instance of that type. An object instance is also called an object.

Figure 1-1 shows an object type, per son_t yp, and two instances of the object type.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model

Figure 1-1 Obiject Type and Object Instances

Object Type person_typ

Attributes Methods

idno get_idno

first_name display_details

last_name

email

phone
Object Object
idno: 65 idno: 101
first_name: Verna first_name: John
last_name: Mills last_name: Smith
email: vmills@example.com email: jsmith@example.com
phone: 1-650-555-0125 phone: 1-650-555-0135

Object types serve as blueprints or templates that define both structure and behavior. Object
types are database schema objects, subject to the same kinds of administrative control as
other schema objects. Application code can retrieve and manipulate these objects. See
Managing Oracle Objects.

You use the CREATE TYPE SQL statement to define object types.

Example 1-1 shows how to create an object type named per son_t yp. In the example, an object
specification and object body are defined. For information on the CREATE TYPE SQL statement
and on the CREATE TYPE BODY SQL statement, see Oracle Al Database PL/SQL Packages and
Types Reference.

@ Note

Running Examples: Many examples on this subject can be run using the HR sample
schemas. Comments at the beginning of most examples indicate if any previous
example code is required.

Refer to Oracle Al Database PL/SQL Packages and Types Reference for information
on how these schemas were created and how you can use them yourself.

Example 1-1 Creating the person_typ Object Type
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,
enai | VARCHAR2(25) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF IN QUT NOCOPY person_typ));
/

CREATE TYPE BQODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE Chapter 1
Key Features of the Object-Relational Model

BEG N
RETURN i dno;

END,

MEMBER PROCEDURE di spl ay_details (SELF IN OUT NOCOPY person_typ) IS

BEG N
- use the PUT_LINE procedure of the DBMS_QUTPUT package to display details
DBMS_QUTPUT. PUT_LI NE(TO CHAR(idno) || * ' || first_name || ' ' || last_name);
DBMS_QUTPUT. PUT_LINE(email || " ' || phone);

END,

END;

/

Object types differ from the standard data types that are native to a relational database:

e Oracle Al Database does not supply predefined object types. You define the object types
you want by combining built-in types with user-defined ones as shown in Example 1-1.

e Object types are composed of attributes and methods as illustrated in Figure 1-2.

— Attributes hold the data about an object. Attributes have declared data types which
can, in turn, be other object types.

— Methods are procedures or functions that applications can use to perform operations
on the attributes of the object type. Methods are optional. They define the behavior of
objects of that type.

Figure 1-2 Obiject Attributes and Methods

Figure 1-2 shows the relationship of attributes and methods in the spec.

spec

|attribute declarations | public interface

| method specs |

body
method bodies

private implementation

1.3.1.2 About Object Instances

A variable of an object type is an instance of the type, or an object.

An object has the attributes and methods defined for its type. Because an object instance is a
concrete thing, you can assign values to its attributes and call its methods.

Defining an object type does not allocate any storage. After they are defined, object types can
be used in SQL statements in most of the same places you use types such as NUVBER or
VARCHAR2. Storage is allocated once you create an instance of the object type.

Example 1-2 shows how to create object instances of the person_t yp created in Example 1-1,
and define a relational table to keep track of these instances as contacts.

Example 1-2 Creating the contacts Table with an Object Type Column

- requires existing person_typ fr. Ex 1-1
CREATE TABLE contacts (
contact person_typ,

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model
contact _date DATE);
I NSERT | NTO contacts VALUES (

person_typ (65, 'Verna', 'MIls', 'vmills@xanple.com, '1-650-555-0125"),
to_date('24 Jun 2003', 'dd Mn YYYY'));

The cont act s table is a relational table with an object type as the data type of its contact
column. Objects that occupy columns of relational tables are called column objects.

@® See Also

How Objects are Stored in Tables

1.3.1.3 About Object Methods

Object methods are functions or procedures that you can declare in an object type definition to
implement behavior that you want objects of that type to perform.

The general kinds of methods that can be declared in a type definition are:

e Member Methods

Using member methods, you can provide access to the data of an object, and otherwise
define operations that an application performs on the data. To perform an operation, the
application calls the appropriate method on the appropriate object.

e Static Methods

Static methods compare object instances and perform operations that do not use the data
of any particular object, but, instead, are global to an object type.

e Constructor Methods

A default constructor method is implicitly defined for every object type, unless it is
overwritten with a user-defined constructor. A constructor method is called on a type to
construct or create an object instance of the type.

Example 1-3 show the get _i dno() method, created in Example 1-1, to display the Id number
of persons in the cont act s table:

Example 1-3 Using the get_idno Object Method

- requires Ex 1-1 and Ex 1-2
SELECT c. contact.get _idno() FROM contacts c;

@ See Also
Object Methods

1.3.1.4 How Objects are Stored in Tables

Objects can be stored in two types of tables:

* Object tables: store only objects

In an object table, each row represents an object, which is referred to as a row object.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model

* Relational tables: store objects with other table data

Objects that are stored as columns of a relational table, or are attributes of other objects,
are called column objects. Example 1-2 shows the cont act s table which stores an
instance of the per son_t yp object.

Objects that have meaning outside of the relational database in which they are contained, or
objects that are shared among more than one relational database object, should be made
referenceable as row objects. That is, such objects should be stored as a row object in an
object table instead of in a column of a relational table.

@ See Also

e About Storing Objects as Columns or Rows

« Creating and Using Object Tables

1.3.1.4.1 Creating and Using Object Tables

You create object tables using a CREATE TABLE statement.

Example 1-4 shows a CREATE TABLE statement that creates an object table for person_typ
objects.

Example 1-4 Creating the person_obj_table Object Table

- requires Ex. 1-1
CREATE TABLE person_obj _table OF person_typ;

You can view this table in two ways:

e As asingle-column table, in which each row is a per son_t yp object, allowing you to
perform object-oriented operations.

e As a multi-column table, in which each attribute of the object type per son_t yp such as
i dno, first_name, | ast _nane, and so on, occupies a column, allowing you to perform
relational operations.

1.3.1.4.2 Performing Operations on Object Tables

You can perform various operations on object tables such as inserting objects into the table or
selecting objects from the table.

Example 1-5 illustrates several operations on an object table.

Example 1-5 Operations on the person_obj_table Object Table

- requires Ex. 1-1 and 1-4
I NSERT | NTO person_obj _tabl e VALUES (
person_typ(101, 'John', 'Smith', 'jsmth@xanple.com, '1-650-555-0135"));

SELECT VALUE(p) FROM person_obj _table p
WHERE p.last_name = 'Smith';

DECLARE
person person_typ;

BEG N -- PL/SQ block for selecting a person and displaying details
SELECT VALUE(p) | NTO person FROM person_obj _table p WHERE p.idno = 101,
person. di splay_details();

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE’

Chapter 1
Key Features of the Object-Relational Model

END,
/

The | NSERT | NTO SQL statement in Example 1-5inserts a per son_t yp object into the
person_obj _tabl e, treating per son_obj _t abl e as a multi-column table.

The SELECT SQL statement selects from per son_obj _t abl e as a single-column table, using the
VALUE function to return rows as object instances.

The PL/SQL block selects a specific person and executes a member function of person_typ to
display details about the specified person.

@® See Also
e For information on the VALUE function, see "VALUE" .

« For more information about using PL/SQL with objects, see Using PL/SQL With
Object Types.

1.3.1.5 Object Identifiers Used to Identify Row Objects

Object identifiers (OIDs) uniquely identify row objects in object tables.

You cannot directly access object identifiers, but you can make references (REFs) to the object
identifiers and directly access the REFs, as discussed in "References to Row Objects".

There are two types of object identifiers.

* System-Generated Object Identifiers (default)

Oracle automatically creates system-generated object identifiers for row objects in object
tables unless you choose the primary-key based option.

* Primary-Key Based Object Identifiers

You have the option to create primary-key based OIDs when you create the table using the
CREATE TABLE statement.

@® Note

Column objects are identified by the primary key of the row, and, therefore, do not
need a specific object identifier.

@ See Also

e "Obiject Identifiers for Object Views"

« "Storage Considerations for Object Identifiers (OIDs)"

1.3.1.6 References to Row Objects

A REF is a logical pointer or reference to a row object that you can construct from an object
identifier (OID).

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model

You can use the REF to obtain, examine, or update the object. You can change a REF so that it
points to a different object of the same object type hierarchy or assign it a null value.

REFs are Oracle Al Database built-in data types. REFs and collections of REFs model
associations among objects, particularly many-to-one relationships, thus reducing the need for
foreign keys. REFs provide an easy mechanism for navigating between objects.

Example 1-6 illustrates a simple use of a REF.

Example 1-6 Using a REF to the emp_person_typ Object

CREATE TYPE enp_person_typ AS OBJECT (
name VARCHAR2(30),,
manager REF emp_person_typ);
/
CREATE TABLE enp_person_obj _table OF enp_person_typ;

I NSERT | NTO enp_person_obj _tabl e VALUES (
enmp_person_typ ('John Smith', NULL));

I NSERT | NTO enp_person_obj _table
SELECT enp_person_typ (' Bob Jones', REF(e))

FROM enp_person_obj table e

WHERE e. nane = 'John Smith';

This example first creates the enp_per son_t yp John Smith, with NULL value for a manager.
Then it adds the enp_per son_t yp Bob Jones as John Smith's supervisee.

The following query and its output show the effect:

COLUWN nane FORMAT A10
COLUWN manager FORVAT AS0
select * from enp_person_obj _table e;

John Smith
Bob Jones 0000220208424E801067C2EABBE040578CE70A0707424E8010
67C1EABBE040578CE70A0707

Example 1-10 shows how to dereference the object, so that Manager appears as a name rather
than an object identifier.

® Note

e "Rules for REF Columns and Attributes"

e "Design Considerations for REFs"

1.3.1.6.1 Using Scoped REFs

Scoped REF types require less storage space and allow more efficient access than unscoped
REF types.

You can constrain a column type, collection element, or object type attribute to reference a
specified object table. Use the SQL constraint subclause SCOPE | S when you declare the REF.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE’

Chapter 1
Key Features of the Object-Relational Model

Example 1-7 shows REF column cont act _ref scoped to person_obj _tabl e which is an object
table of type person_typ.

Example 1-7 Creating the contacts_ref Table Using a Scoped REF

- requires Ex. 1-1, 1-4, and 1-5

CREATE TABLE contacts_ref (
contact _ref REF person_typ SCOPE 1S person_obj _table,
contact _date DATE);

To insert a row in the table, you could issue the following:

I NSERT | NTO contacts_ref
SELECT REF(p), '26 Jun 2003
FROM person_obj _table p
VWHERE p.idno = 101;

A REF can be scoped to an object table of the declared type (per son_t yp in the example) or of
any subtype of the declared type. If a REF is scoped to an object table of a subtype, the REF
column is effectively constrained to hold only references to instances of the subtype (and its
subtypes, if any) in the table..

@® See Also
"Inheritance in SQL Object Types"

1.3.1.6.2 Checking for Dangling REFs

Dangling REFs are REFs where the object identified by the REF becomes unavailable. Objects
are unavailable if they have been deleted or some privilege necessary to them has been
deleted.

Use the SQL predicate | S DANGLI NGto test REFs for dangling REFs.

You can avoid dangling REFs by defining referential integrity constraints.

® See Also
Rules for REF Columns and Attributes

1.3.1.7 Dereferencing REFs

Accessing the object that the REF refers to is called dereferencing the REF.
There are various ways to dereference a REF, both with and without the DEREF command.
Topics:

» Dereferencing a REF with the DEREF Command

» Dereferencing a Dangling REF

* Dereferencing a REF Implicilty

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 1

Key Features of the Object-Relational Model

1.3.1.7.1 Dereferencing a REF with the DEREF Command

This example shows how to use the DEREF command to derefence a REF.

Example 1-8 Using DEREF to Dereference a REF

SELECT DEREF(e. manager) FROM enp_person_obj table e;
DEREF(E. MANAGER) (NAME, MANAGER)

EMP_PERSON_TYP(' John Snith', NULL)

This example shows that dereferencing a dangling REF returns a null object.

1.3.1.7.2 Dereferencing a Dangling REF
You can dereference a dangling REF with the DELETE command.
Dereferencing a dangling REF returns a null object.

Example 1-9 Dereferencing a Dangling Ref

DELETE from person_obj table WHERE i dno = 101;
/
SELECT DEREF(c.contact _ref), c.contact_date FROM contacts_ref c;

1.3.1.7.3 Dereferencing a REF Implicilty

Oracle Al Database provides implicit dereferencing of REFs.

For example, to access the manager's name for an employee, you can use a SELECT

statement.

Example 1-10 follows the pointer from the person's name and retrieves the manager's name

€. manager. nane.

Example 1-10 Implicitly Dereferencing a REF

- requires Ex. 1-6
SELECT e. nanme, e.manager.nanme FROM enp_person_obj table e
VWHERE e. nanme = 'Bob Jones';

Dereferencing the REF in this manner is allowed in SQL, but PL/SQL requires the DEREF

keyword as in Example 1-8.

1.3.1.8 Obtaining a REF to a Row Object

You obtain a REF to a row object by selecting the object from its object table and applying the

REF operator.

« Select the object from its object table and apply the REF operator.

Example 1-11 shows how to obtain a REF to the person with an i dno equal to 101.

The query returns exactly one row.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 11 of 16

ORACLE Chapter 1
Key Features of the Object-Relational Model

Example 1-11 Obtaining a REF to a Row Object

- requires Ex. 1-1, 1-4, and 1-5
DECLARE
person_ref REF person_typ;
person person_typ;
BEG N

SELECT REF(p) | NTO person_ref
FROM person_obj _table p
WHERE p.idno = 101;

sel ect deref(person_ref) into person from dual;
person. di spl ay_details();

END,
/

@® See Also
"Storage Size of REFs"

1.3.1.9 REF Variables Compared

Two REF variables can be compared if, and only if, the targets that they reference are both of
the same declared type, or one is a subtype of the other.

REF variables can only be compared for equality.

1.3.1.10 Oracle Collections Data Types

For modeling multi-valued attributes and many-to-many relationships, Oracle Al Database
supports these two collection data types:

* Varrays
* Nested Tables

You can use collection types anywhere other data types are used. You can have object
attributes of a collection type in addition to columns of a collection type. For example, a
purchase order object type might contain a nested table attribute that holds the collection of
line items for the purchase order.

To define a collection type, use the CREATE TYPE. . . AS TABLE OF statement.
Example 1-12 shows CREATE TYPE statements that define a collection and an object type.
Example 1-12 Creating the people_typ Collection Data Type

- requires Ex. 1-1
CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/

CREATE TYPE dept _persons_typ AS OBJECT (
dept _no CHAR(5),
dept _name CHAR(20),
dept _mgr person_typ,
dept _enps peopl e_typ);
/

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE Chapter 1
Key Features of the Object-Relational Model

Note the following about this example:

e The collection type, peopl e_t yp, is specifically a nested table type.

e The dept _persons_typ object type has an attribute dept _enps of peopl e_t yp. Each row in
the dept _enps nested table is an object of type per son_t yp which was defined in
Example 1-1.

@® See Also

"Collection Data Types"

1.3.1.11 Object Views Used to Access Relational Data

An object view is a way to access relational data using object-relational features.

An object view lets you develop object-oriented applications without changing the underlying
relational schema.

You can access objects that belong to an object view in the same way that you access row
objects in an object table. Oracle Al Database also supports materialized view objects of user-
defined types from data stored in relational schemas and tables.

Object views let you exploit the polymorphism that a type hierarchy makes possible. A
polymorphic expression takes a value of the expression's declared type or any of that type's
subtypes. If you construct a hierarchy of object views that mirrors some or all of the structure of
a type hierarchy, you can query any view in the hierarchy to access data at just the level of
specialization you are interested in. If you query an object view that has subviews, you can get
back polymorphic data—rows for both the type of the view and for its subtypes.

@ See Also

Applying an Object Model to Relational Data

1.3.1.12 Use of Type Inheritance

Type inheritance enables you to create type hierarchies.

A type hierarchy is a set of successive levels of increasingly specialized subtypes that derive
from a common ancestor object type, which is called a supertype. Derived subtypes inherit the
features of the parent object type and can extend the parent type definition. The specialized
types can add new attributes or methods, or redefine methods inherited from the parent. The
resulting type hierarchy provides a higher level of abstraction for managing the complexity of
an application model. For example, specialized types of persons, such as a student type or a
part-time student type with additional attributes or methods, might be derived from a general
person object type.

Figure 1-3 illustrates two subtypes, St udent _t and Enpl oyee_t, created under Person_t, and
the Part Ti meSt udent _t, a subtype under St udent _t .

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model

Figure 1-3 A Type Hierarchy

Person t
Student_t Employee_t

PartTimeStudent _t

@ See Also

"Inheritance in SQL Object Types"

1.3.1.13 Type Evolution Used to Change an Existing Object Type

Type evolution enables you to modify, or evolve, an existing object type, even those already
used in tables.

Type evolution works through the ALTER TYPE statement, enabling you to propagate changes
through all instances of the object type.

The ALTER TYPE statement checks for dependencies of the type to be altered, using essentially
the same validations as a CREATE TYPE statement. If a type or any of its dependent types fails
the type validations, the ALTER TYPE statement rolls back.

Metadata for all tables and columns that use an altered type are updated for the new type
definition so that data can be stored in the new format. Existing data can be converted to the
new format either all at once or piecemeal, as it is updated. In either case, data is always
presented in the new type definition even if it is still stored in the format of the older one.

@ See Also

. Type Evolution"
e "Considerations Related to Type Evolution"

1.3.2 Language Binding Features of Oracle Objects

Certain key features of the object-relational model are related to languages and application
programming interfaces (APIs).

Related languages and application programming interfaces (APIS):

SQL Object Extensions

To support object-related features, Oracle Al Database provides SQL extensions, including
DDL, to create, alter, or drop object types; to store object types in tables; and to create, alter, or
drop object views. There are DML and query extensions to support object types, references,
and collections.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE Chapter 1
Key Features of the Object-Relational Model

@ See Also
SQL and Object Types

PL/SQL Object Extensions

PL/SQL can operate on object types seamlessly. Thus, application developers can use PL/SQL
to implement logic and operations on user-defined types that execute in the database server.

@ See Also
Using PL/SQL With Object Types

Java Support for Oracle Objects

Oracle Java VM is tightly integrated with Oracle Al Database and supports access to Oracle
Objects through object extensions to Java Database Connectivity (JDBC). This provides
dynamic SQL, and SQLJ, which provides static SQL. Thus, application developers can use
Java to implement logic and operations on object types that execute in the database. You can
map SQL types to existing Java classes to provide persistent storage for Java objects.

@ See Also

Java Object Storage

External Procedures

You can implement database functions, procedures, or member methods of an object type in
PL/SQL, Java, C, or .NET as external procedures. External procedures are best suited for
tasks that are more quickly or easily done in a low-level language such as C. External
procedures are always run in a safe mode outside the address space of the database. Generic
external procedures can be written that declare one or more parameters to be of a system-
defined generic type. Thus, an external procedure can use the system-defined generic type to
work with data of any built-in or user-defined type.

Object Type Translator

Object Type Translator (OTT) provides client-side mappings to object type schemas by using
schema information from the Oracle data dictionary to generate header files containing Java
classes and C structures and indicators. You can use these generated header files in host-
language applications for transparent access to database objects.

Client-Side Cache

Oracle Al Database provides an object cache for efficient access to persistent objects stored in
the database. Copies of objects can be brought into the object cache. Once the data has been
cached in the client, the application can traverse through these at memory speed. Any
changes made to objects in the cache can be committed to the database by using the object
extensions to Oracle Call Interface programmatic interfaces.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 16

ORACLE

Chapter 1
Key Features of the Object-Relational Model

Oracle Call Interface and Oracle C++ Call Interface

Oracle Call Interface (OCI) and Oracle C++ Call Interface provide a comprehensive application
programming interface for application and tool developers. Oracle Call Interface provides a
run-time environment with functions to connect to an Oracle Al Database, and control
transactions that access objects in the database. It allows application developers to access
and manipulate objects and their attributes in the client-side object cache either navigationally,
by traversing a graph of inter-connected objects, or associatively by specifying the nature of
the data through declarative SQL DML. Oracle Call Interface provides a number of functions to
access metadata about object types defined in the database at run-time.

@ See Also
» Oracle Call Interface (OCI)
* Oracle C++ Call Interface (OCCI)

Pro*C/C++ Object Extensions

The Oracle Pro*C/C++ precompiler provides an embedded SQL application programming
interface and offers a higher level of abstraction than Oracle Call Interface. Like Oracle Call
Interface, the Pro*C/C++ precompiler allows application developers to use the Oracle client-
side object cache and the Object Type Translator Utility. Pro*C/C++ supports the use of C bind
variables for Oracle object types. Pro*C/C++ also provides simplified syntax to allocate and
free objects of SQL types and access them using SQL DML or the navigational interface.

@ See Also
"Oracle Call Interface (OCI)"

.NET Object Extensions

Oracle Developer Tools for Visual Studio (ODT) and Oracle Data Provider for .NET (ODP.NET)
support .NET custom objects that map to Oracle object-relational data types, collections, and
REFs. ODT is a set of tools incorporated into a Visual Studio integrated development
environment, which allow managing these data types inside Oracle Al Database. Through the
ODT Custom Class Wizard, Oracle objects can be automatically mapped to .NET custom
types to ease data sharing between Oracle Al Database and .NET applications. Data access to
these .NET custom types occur through ODP.NET.

@® See Also
e Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

e Oracle Developer Tools for Visual Studio Help

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 16

Basic Components of Oracle Objects

The basic components of Oracle Objects are object types, subprograms, and the hierarchy of
object types.

Basic information about working with Oracle SQL objects includes what object types and
subprograms are, and how to create and work with a hierarchy of object types that are derived
from a shared root type and are connected by inheritance.

@® Note

Running Examples: In order to run examples in chapter 2, you may need to drop any
objects you created for Chapter 1.

Topics:

SQL Object Types and References

Object Methods
Inheritance in SOL Object Types

Functions and Operators Useful with Objects

2.1 SQL Object Types and References

This section describes SQL object types and references.

Topics

Null Objects and Attributes

Character Length Semantics

Defining Object Tables with Single Constraints

Defining Indexes for Object Tables

Defining Triggers for Object Tables

Rules for REF Columns and Attributes

Name Resolution

Restriction on Using User-Defined Types with a Remote Database

You create Oracle SQL object types with the CREATE TYPE statement. A typical example of
object type creation is shown in Example 2-1.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 43

ORACLE Chapter 2
SQL Object Types and References

@ See Also

Oracle Al Database PL/SQL Packages and Types Reference for information on the
CREATE TYPE and CREATE TYPE BODY SQL statements

2.1.1 Null Objects and Attributes

An object whose value is NULL is called atomically null.

An atomically null object is different from an object that has null values for all its attributes.

In an object with null values, a table column, object attribute, collection, or collection element
might be NULL if it has been initialized to NULL or has not been initialized at all. Usually, a NULL
value is replaced by an actual value later on. When all the attributes are null, you can still
change these attributes and call the object's subprograms or methods. With an atomically null
object, you can do neither of these things.

creates the cont act s table and defines the per son_t yp object type and two instances of this
type.

Example 2-1 Inserting NULLs for Objects in a Table

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF IN QUT NOCOPY person_typ));
/

CREATE OR REPLACE TYPE BQODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
MEMBER PROCEDURE di spl ay_details (SELF IN OUT NOCOPY person_typ) IS
BEG N
- use the PUT_LINE procedure of the DBMS_QUTPUT package to display details
DBVS_QUTPUT. PUT_LI NE(TO CHAR(idno) || ' - ' || nane || ' - ' || phone);
END;
END;
/
CREATE TABLE contacts (
cont act person_typ,
contact date DATE);

I NSERT | NTO contacts VALUES (
person_typ (NULL, NULL, NULL), '24 Jun 2003);

I NSERT | NTO contacts VALUES (
NULL, '24 Jun 2003');

Two instances of person_t yp are inserted into the table and give two different results. In both
cases, Oracle Al Database allocates space in the cont act s table for a new row and sets its
DATE column to the value given. But in the first case, Oracle Al Database allocates space for an
object in the cont act column and sets each of the object's attributes to NULL. In the second
case, Oracle Al Database sets the person_t yp field itself to NULL and does not allocate space
for an object.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 43

ORACLE

Chapter 2
SQL Object Types and References

In some cases, you can omit checks for null values. A table row or row object cannot be null. A
nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null collection is
different from an empty one, one that has no elements.

See How PL/SQL Treats Uninitialized Objects.

2.1.2 Character Length Semantics

Lengths for character types CHAR and VARCHAR2 may be specified as a number of characters,
instead of bytes, in object attributes and collections even if some of the characters consist of
multiple bytes.

To specify character-denominated lengths for CHAR and VARCHAR? attributes, you add the
qualifier char to the length specification.

Like CHAR and VARCHAR2, NCHAR and NVARCHAR?2 may also be used as attribute types in objects
and collections. NCHAR and NVARCHAR? are always implicitly measured in terms of characters, so
no char qualifier is used.

For example, the following statement creates an object with both a character-length VARCHAR2
attribute and an NCHAR attribute:

Example 2-2 Creating the employee_typ Object Using a char Qualifier
CREATE OR REPLACE TYPE enpl oyee_typ AS OBJECT (

narme VARCHAR2 (30 char),
| anguage NCHAR(10) ,
phone VARCHAR2(20));

/

For CHAR and VARCHARZ attributes whose length is specified without a char qualifier, the
NLS_LENGTH_SEMANTI CS initialization parameter setting (CHAR or BYTE) indicates the default unit
of measure.

Oracle Al Database Globalization Support Guide for information on character length semantics

2.1.3 Defining Object Tables with Single Constraints

You can define constraints on an object table just as you can on other tables.

You can define constraints on the |leaf-level scalar attributes of a column object, with the
exception of REFs that are not scoped.

places a single constraint, an implicit PRI MARY KEY constraint, on the of fi ce_i d column of the
object table of fi ce_t ab.

Example 2-3 Creating the office_tab Object Table with a Constraint

- requires Ex. 2-1
CREATE OR REPLACE TYPE | ocation_typ AS OBJECT (
bui I ding_no NUMBER,
city VARCHAR2(40));
/

CREATE OR REPLACE TYPE office _typ AS OBJECT (
office_id VARCHAR(10) ,
office_loc location_typ,
occupant person_typ);/

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 43

ORACLE Chapter 2
SQL Object Types and References

CREATE TABLE office_tab OF office_typ (
office id PRIMARY KEY);

The object type | ocati on_t yp defined in is the type of the dept _| oc column in the
depart ment _ngr s table in Example 2-4.

2.1.4 Defining Object Tables with Multiple Constraints

You can define object tables with multiple constraints.
You can define object tables with multiple constraints.
Example 2-4 Creating the department_mgrs Table with Multiple Constraints

Example 2-4 defines constraints on scalar attributes of the | ocati on_t yp objects in the table.

- requires Ex. 2-1 and 2-3
CREATE TABLE departnent_ngrs (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept _mgr person_typ,
dept | oc | ocation_typ,
CONSTRAINT dept_loc_consl
UNIQUE (dept_loc.building_no, dept_loc.city),
CONSTRAINT dept_loc_cons2
CHECK (dept_loc.city IS NOT NULL));

I NSERT | NTO departnent _ngrs VALUES
(101, 'Physical Sciences',
person_typ(65,'Vrinda MIls', '1-1-650-555-0125"),
| ocation_typ(300, 'Palo Alto'));

See "Constraints on Objects"

2.1.5 Defining Indexes for Object Tables

You can define indexes on an object table or on the storage table for a nested table column or
attribute just as you can on other tables.

Define indexes on leaf-level scalar attributes of column objects. You can only define indexes on
REF attributes or columns if the REF is scoped.

Example 2-5 Creating an Index on an Object Type in a Table

- requires Ex. 2-1, 2-3,

CREATE TABLE departnent _| oc (
dept _no NUMBER PRI MARY KEY,
dept _name CHAR(20),
dept_addr location_typ);

CREATE INDEX i _dept_addr1
ON departnent_| oc (dept_addr.city);

I NSERT | NTO depart ment _| oc VALUES
(101, 'Physical Sciences',
| ocation_typ(300, 'Palo Alto'));
I NSERT | NTO depart ment _| oc VALUES
(104, 'Life Sciences',
| ocation_typ(400, 'Menlo Park'));
I NSERT | NTO depart ment _| oc VALUES

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 43

ORACLE Chapter 2
SQL Object Types and References

(103, 'Biological Sciences',
| ocation_typ(500, 'Redwood Shores'));

This example, , indexes ci ty, which is a leaf-level scalar attribute of the column object
dept _addr.

Wherever Oracle Al Database expects a column name in an index definition, you can also
specify a scalar attribute of a column object.

For an example of an index on a nested table, see Storing Elements of Nested Tables.

2.1.6 Defining Triggers for Object Tables

You can define triggers on an object table just as you can on other tables.

You cannot define a trigger on the storage table for a nested table column or attribute. You
cannot modify LOB values in a trigger body. Otherwise, there are no special restrictions on
using object types with triggers.

Example 2-6 defines a trigger on the of fi ce_t ab table defined in "Defining Object Tables with
Single Constraints".

Example 2-6 Creating a Trigger on Objects in a Table

- requires Ex. 2-1 and 2-3
CREATE TABLE novenent (

i dno NUMBER,
ol d_office | ocation_typ,
new of fice | ocation_typ);

CREATE TRIGGER triggerl
BEFORE UPDATE
OF office_loc
ON office_tab
FOR EACH ROW
WHEN (new. office_loc.city = 'Redwood Shores')
BEG N
I F :new of fice_|loc.building_no = 600 THEN
I NSERT | NTO novenent (idno, ol d_office, new office)
VALUES (:old.occupant.idno, :old.office_loc, :newoffice_loc);
END | F;
END; /
I NSERT | NTO of fice_tab VALUES
(' BE32', location_typ(300, 'Palo Alto'), person_typ(280, 'John Chan',
' 415-555-0101"));

UPDATE of fice_tab set office_loc =location_typ(600, 'Redwood Shores')
where office id = 'BE32';

select * fromoffice_tab;
select * from novenent;

See"INSTEAD OF Triggers to Control Mutating and Validation"

2.1.7 Rules for REF Columns and Attributes

Rules for REF columns and attributes can be enforced by the use of constraints.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 43

ORACLE

Chapter 2
SQL Object Types and References

In Oracle Al Database, a REF column or attribute can be unconstrained or constrained using a
SCOPE clause or a referential constraint clause. When a REF column is unconstrained, it may
store object references to row objects contained in any object table of the corresponding object

type.

Oracle Al Database does not ensure that the object references stored in such columns point to
valid and existing row objects. Therefore, REF columns may contain object references that do
not point to any existing row object. Such REF values are referred to as dangling references.

A SCOPE constraint can be applied to a specific object table. All the REF values stored in a
column with a SCOPE constraint point at row objects of the table specified in the SCOPE clause.
The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTI AL constraint similar to the specification for
foreign keys. The rules for referential constraints apply to such columns. That is, the object
reference stored in these columns must point to a valid and existing row object in the specified
object table.

PRI MARY KEY constraints cannot be specified for REF columns. However, you can specify NOT
NULL constraints for such columns.

@ See Also

» "References to Row Objects"

e "Substitution of REF Columns and Attributes"

2.1.8 Name Resolution

There are several ways to resolve names in Oracle Al Database.
Oracle SQL lets you omit qualifying table names in some relational operations.

For example, if dept _addr is a column in the depart ment | oc table and ol d_officeisa
column in the novenent table, you can use the following:

SELECT * FROM depart nent _| oc WHERE EXI STS
(SELECT * FROM novenent WHERE dept _addr = ol d_office);

Oracle Al Database determines which table each column belongs to.

Using dot notation, you can qualify the column names with table names or table aliases to
make things more maintainable. For example:

Example 2-7 Using the Dot Notation for Name Resolution
- requires Ex. 2-1, 2-3, 2-5, and 2-6

SELECT * FROM department _| oc WHERE EXI STS
(SELECT * FROM novenent WHERE department_loc.dept_addr = movement.old_office);

SELECT * FROM department | oc d WHERE EXI STS
(SELECT * FROM novenent m WHERE d.dept_addr = m.old_office);

In some cases, object-relational features require you to specify the table aliases.

2.1.8.1 When Table Aliases Are Required

Table aliases can be required to avoid problems resolving references.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 43

ORACLE

Chapter 2
SQL Object Types and References

Oracle Al Database requires you to use a table alias to qualify any dot-notational reference to
subprograms or attributes of objects, to avoid inner capture and similar problems resolving
references.

Inner capture is a situation caused by using unqualified names. For example, if you add an
assi gnment column to dept s and forget to change the query, Oracle Al Database automatically
recompiles the query so that the inner SELECT uses the assi gnment column from the dept s
table.

Use of a table alias is optional when referencing top-level attributes of an object table directly,
without using the dot notation. For example, the following statements define two tables that
contain the per son_t yp object type. person_obj _t abl e is an object table for objects of type
person_typ, and cont act s is a relational table that contains a column of the object
person_typ.

The following queries show some correct and incorrect ways to reference attribute i dno:

@® Note

These statements are not related to other examples in this chapter.

#1 SELECT idno FROM person_obj table; --Correct

#2 SELECT contact.idno FROM contacts; --111egal

#3 SELECT contacts. contact.idno FROM contacts; --111egal
#4 SELECT p.contact.idno FROM contacts p; --Correct

e In#1,idno is the name of a column of per son_obj _t abl e. It references this top-level
attribute directly, without using the dot notation, so no table alias is required.

e In#2,idno is the name of an attribute of the per son_t yp object in the column named
cont act . This reference uses the dot notation and so requires a table alias, as shown in
#4.

e #3 uses the table name itself to qualify the reference. This is incorrect; a table alias is
required.

You must qualify a reference to an object attribute or subprogram with a table alias rather than
a table name even if the table name is itself qualified by a schema name.

For example, the following expression incorrectly refers to the HR schema, depart nent _| oc
table, dept _addr column, and ci ty attribute of that column. The expression is incorrect
because depart ment | oc is a table name, not an alias.

HR. departnent | oc. dept _addr.city
The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and should not be
the same as schema names that could legally appear in the query.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 43

ORACLE’

Chapter 2
Object Methods

@® Note

Oracle recommends that you define table aliases in all UPDATE, DELETE, and SELECT
statements and subqueries and use them to qualify column references whether or not
the columns contain object types.

2.1.9 Restriction on Using User-Defined Types with a Remote Database

Objects or user-defined types (specifically, types declared with a SQL CREATE TYPE statement,
as opposed to types declared within a PL/SQL package) are currently useful only within a
single database.

Oracle Al Database restricts use of a database link as follows:

* You cannot connect to a remote database to select, insert, or update a user-defined type
or an object REF on a remote table.

You can use the CREATE TYPE statement with the optional keyword O D to create a user-
specified object identifier (OID) that allows an object type to be used in multiple databases.
See the discussion on assigning an OID to an object type in the Oracle Al Database Data
Cartridge Developer's Guide.

* You cannot use database links within PL/SQL code to declare a local variable of a remote
user-defined type.

* You cannot convey a user-defined type argument or return value in a PL/SQL remote
procedure call.

2.2 Object Methods

Object methods implement behavior that objects of that type perform.
Topics:

* About Object Methods

¢ Member Methods

» Declaring and Invoking Static Methods

e Constructor Methods

 External Implemented Methods

2.2.1 About Object Methods

Object methods, also known as subprograms, are functions or procedures that you can declare
in an object type definition to implement behavior that you want objects of that type to perform.
An application calls the subprograms to invoke the behavior.

Subprograms can be written in PL/SQL or virtually any other programming language. Methods
written in PL/SQL or Java are stored in the database. Methods written in other languages, such
as C, are stored externally.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 43

ORACLE Chapter 2
Object Methods

@® Note

SQL requires parentheses for all subprogram calls, even those that do not have
arguments. This is not true for PL/SQL.

@ See Also

See "Calling Object Constructors and Methods" for more information on invoking
methods in PL/SQL.

2.2.2 Member Methods

Member methods provide an application with access to the data of an object instance.

You define a member method in the object type for each operation that you want an object of
that type to be able to perform. Non-comparison member methods are declared as either
MEMBER FUNCTI ON or MEMBER PROCEDURE. Comparison methods use MAP MEMBER FUNCTI ON or
ORDER MEMBER FUNCTI ON as described in "Member Methods for Comparing Objects".

As an example of a member method, you might declare a function get _sun{() that sums the
total cost of a purchase order's line items. The following line of code calls this function for
purchase order po and returns the amount into sum | i ne_i t ens.

sumline_itenms: = po.get_sun();abo

Dot notation specifies the current object and the method it calls. Parentheses are required
even if there are no parameters.

Topics:

e Declaring SELF Parameters in Member Methods

* Member Methods for Comparing Objects

2.2.2.1 Declaring SELF Parameters in Member Methods

Member methods have a built-in parameter named SELF that denotes the object instance
currently invoking the method.

SELF can be explicitly declared, but that is not necessary. It is simpler to write member methods
that reference the attributes and methods of SELF implicitly without the SELF qualifier. In
Example 2-8, the code and comments demonstrate method invocations that use an implicit
SELF parameter rather than qualify the attributes hgt, | en, and wt h.

Example 2-8 Creating a Member Method

- Ex. 2-8 Creating a Menber Method
CREATE OR REPLACE TYPE solid_typ AS CBJECT (

| en | NTEGER,
wt h | NTEGER,
hgt | NTEGER,

MEMBER FUNCTI ON surface RETURN | NTEGER,
MEMBER FUNCTI ON vol ume RETURN | NTECER,
MEMBER PROCEDURE di splay (SELF IN QUT NOCOPY solid_typ));

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 43

ORACLE Chapter 2
Object Methods

CREATE OR REPLACE TYPE BODY solid_typ AS
MEMBER FUNCTI ON vol ume RETURN | NTEGER | S
BEG N
RETURN len * wth * hgt;
-- RETURN SELF.len * SELF.wth * SELF.hgt; -- equivalent to previous line
END,
MEMBER FUNCTI ON surface RETURN | NTEGER | S
BEG N -- not necessary to include SELF in following line
RETURN 2 * (len * wth + len * hgt + wth * hgt);

END;
MEMBER PROCEDURE di splay (SELF IN QUT NOCCPY solid_typ) IS
BEG N
DBMS_QUTPUT. PUT_LI NE(' Length: * || len || " - " || "Wdth: ' || wh
[l - || "Height: " || hgt);
DBMS_QUTPUT. PUT_LI NE(' Vol une: ' || volume || ' - ' || 'Surface area: '
|| surface);
END;
END;

/

CREATE TABLE solids of solid_typ;

I NSERT | NTO solids VALUES(10, 10, 10);

I NSERT | NTO sol i ds VALUES(3, 4, 5);

SELECT * FROM sol i ds;

SELECT s.volume(), s.surface() FROM solids s WHERE s.len = 10;

DECLARE
solid solid_typ;

BEG N -- PL/SQL block for selecting a solid and displaying details
SELECT VALUE(s) INTO solid FROM solids s WHERE s.len = 10;
solid.display();

END,;

/

SELF is always the first parameter passed to the method.

* In member functions, if SELF is not declared, its parameter mode defaults to | N.

e In member procedures, if SELF is not declared, its parameter mode defaults to | NOUT. The
default behavior does not include the NOCOPY compiler hint.

@® See Also
"About Using SELF IN OUT NOCOPY with Member Procedures".

2.2.2.2 Member Methods for Comparing Objects

To compare and order variables of an object type, you must specify a basis for comparing
them.

The values of a scalar data type such as CHAR or REAL have a predefined order, which allows
them to be compared. But an object type, such as a per son_t yp, which can have multiple
attributes of various data types, has no predefined axis of comparison. You have the option to
define a map method or an order method for comparing objects, but not both.

A map method maps object return values to scalar values and can order multiple values by
their position on the scalar axis. An order method directly compares values for two particular
objects.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 43

ORACLE

Chapter 2
Object Methods

2.2.2.2.1 About Map Methods

Map methods return values that can be used for comparing and sorting.

Return values can be any Oracle built-in data types (except LOBs and BFI LEs) and ANSI SQL
types such as CHARACTER or REAL. See the specific sections in Oracle Al Database SQL
Language Quick Reference.

Generally, map methods perform calculations on the attributes of the object to produce the
return value.

Map methods are called automatically to evaluate such comparisons as obj _1 > obj _2 and
comparisons implied by the DI STI NCT, GROUP BY, UNI ON, and ORDER BY clauses which require
sorting by rows.

Where obj _1 and obj _2 are two object variables that can be compared using a map method
map(), the comparison:

obj 1 > obj_2

is equivalent to:

obj _1.map() > obj _2. map()

Comparisons are similar for other relational operators.

Creating a Map Method defines a map method ar ea() that provides a basis for comparing
rectangle objects by their area:

2.2.2.2.2 Creating a Map Method

You create maps using the CREATE TYPE statement.

Example 2-9 Creating a Map Method

CREATE OR REPLACE TYPE rectangle_typ AS OBJECT (
| en NUVBER,
wi d NUMBER,
MAP MEMBER FUNCTI ON area RETURN NUMBER) ;

/

CREATE OR REPLACE TYPE BODY rectangl e_typ AS
MAP MEMBER FUNCTI ON area RETURN NUMBER | S
BEG N

RETURN len * wid;
END area;
END;
/

2.2.2.2.3 Invoking a Map Method

Map methods are invoked in the same manner as other member methods.
Example 2-10 Invoking a Map Method
DECLARE

po rectangle_typ;

BEG N
po :=NEW rectangle_typ(10,5);

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 43

ORACLE

Chapter 2
Object Methods

DBMS_QUTPUT. PUT_LI NE(' AREA:' || po.area()); -- prints AREA: 50
END,
/

A subtype can declare a map method only if its root supertype declares one.

See "Comparing Equal and Not Equal Conditions " for the use of map methods when
comparing collections that contain object types.

2.2.2.2.4 Order Methods

Order methods make direct one-to-one object comparisons.

Unlike map methods, order methods cannot determine the order of a number of objects. They
simply tell you that the current object is less than, equal to, or greater than the object that it is
being compared to, based on the criterion used.

An order method is a function for an object (SELF), with one declared parameter that is an
object of the same type. The method must return either a negative number, zero, or a positive
number. This value signifies that the object (the implicit undeclared SELF parameter) is less
than, equal to, or greater than the declared parameter object.

As with map methods, an order method, if one is defined, is called automatically whenever two
objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a map
method.

Example 2-11 shows an order method that compares locations by building number:

Example 2-11 Creating and Invoking an Order Method

DROP TYPE | ocation_typ FORCE;
- above necessary if you have previously created object
CREATE OR REPLACE TYPE location_typ AS OBJECT (
bui I ding_no NUMBER,
city VARCHAR2(40) ,
ORDER MEMBER FUNCTION match (I location_typ) RETURN | NTEGER);/
CREATE OR REPLACE TYPE BODY location_typ AS
ORDER MEMBER FUNCTI ON mat ch (I location_typ) RETURN I NTEGER | S

BEG N
I F building_no < |.building_no THEN
RETURN - 1; -- any negative nunber will do
ELSIF building_no > |.building_no THEN
RETURN 1; -- any positive nunber will do
ELSE
RETURN 0;
END I F;
END;
END; /

- invoking match nethod
DECLARE
| oc | ocation_typ;
secloc location_typ;
a nunber;

BEG N
I oc :=NEW I ocation_typ(300, 'San Francisco');
secl oc : =NEW | ocation_typ(200, 'Redwood Shores');
a := loc.mtch(secloc);

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 43

ORACLE

Chapter 2
Object Methods

DBMS_OUTPUT. PUT_LINE(' order (1 is greater, -1 is lesser):' ||a); -- prints order:1
END;
/

Only a type that is not derived from another type can declare an order method; a subtype
cannot define one.

2.2.2.2.5 Guidelines for Comparison Methods

You can declare a map method or an order method but not both.

For map and order type methods, you can compare objects using SQL statements and
PL/SQL procedural statements. However, if you do not declare one of these methods, you can
only compare objects in SQL statements, and only for equality or inequality. Two objects of the
same type are considered equal only if the values of their corresponding attributes are equal.

When sorting or merging a large number of objects, use a map method, which maps all the
objects into scalars, then sorts the scalars. An order method is less efficient because it must be
called repeatedly (it can compare only two objects at a time).

@ See Also

"Performance of Object Comparisons"

2.2.2.2.6 Comparison Methods in Type Hierarchies

In a type hierarchy, if the root type (supertype) does not specify a map or an order method,
neither can the subtypes.

e Map Method in a Type Hierarchy

If the root type specifies a map method, any of its subtypes can override it. If the root type
does not specify a map method, no subtype can specify one either.

e Order Method in a Type Hierarchy

Only the root type can define an order method. If the root type does not define one, its
subtypes cannot add one.

2.2.3 Declaring and Invoking Static Methods

Static methods are invoked on the object type, not its instances. You use a static method for
operations that are global to the type and do not need to reference the data of a particular
object instance. A static method has no SELF parameter.

Static methods are declared using STATI C FUNCTI ON or STATI C PROCEDURE.

You invoke a static method by using dot notation to qualify the method call with the name of the
object type, for example:

t ype_name. net hod()

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 43

ORACLE Chapter 2
Object Methods

@ See Also

For information on design considerations, see "Static Methods".

2.2.4 Constructor Methods

A constructor method is a function that returns a new instance of the user-defined type and
sets up the values of its attributes.

Constructor methods are either system-defined or user-defined.

To invoke a constructor, the keyword NEWcan be used, but is not required.

@ See Also

See Example 2-10 and "Calling Object Constructors and Methods"

2.2.4.1 System-Defined Constructors

By default, the system implicitly defines a constructor function for all object types that have
attributes.

A system-defined constructor is sometimes known as the attribute value constructor. For the
person_t yp object type defined in Example 2-1 the name of the constructor method is the
name of the object type, as shown in the following invocation:

person_typ (1, 'John Smith', '1-650-555-0135"),

2.2.4.2 Defining User-Defined Constructors

You can define constructor functions of your own to create and initialize user-defined types.

Default system-defined constructors (or attribute value constructors) are convenient to use
because they already exist, but user-defined constructors have some important advantages
with respect to type evolution.

@ See Also

» "Advantages of User-Defined Constructors”

* Forinformation on user-defined constructors for collections, see "Using the
Constructor Method to Insert Values into a Nested Table".

2.2.4.3 Literal Invocation of a Constructor Method

A literal invocation of a constructor method is a call to the constructor method in which
arguments are either literals (as opposed to bind variables), or further literal invocations of
constructor methods. For example:

CREATE TABLE peopl e_tab OF person_typ;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 43

ORACLE’

I NSERT | NTO peopl e_tab VALUES (

person_typ(101, 'John Smith', '1-650-555-0135"));

2.2.5 External Implemented Methods

You can use PL/SQL to invoke external subprograms that have been written in other
languages.

Chapter 2
Inheritance in SQL Object Types

Using external methods provides access to the strengths and capabilities of those languages.

@ See Also

Object Support in Oracle Programming Environments

2.3 Inheritance in SQL Object Types

SQL object inheritance is based on a family tree of object types that forms a type hierarchy.
The type hierarchy consists of a parent object type, called a supertype, and one or more levels
of child object types, called subtypes, which are derived from the parent.

Topics:

About Inheritance in SQL Object Types

Supertypes and Subtypes
FINAL and NOT FINAL Types and Methods for Inheritance

Subtype Creation
NOT INSTANTIABLE Types and Methods

Overloaded and Overridden Methods

Dynamic Method Dispatch

Type Substitution in a Type Hierarchy

Column and Row Substitutability

Newly Created Subtypes Stored in Substitutable Columns

Dropping Subtypes After Creating Substitutable Columns

Turning Off Substitutability in a New Table

Constraining Substitutability

Modifying Substitutability on a Table

Restrictions on Modifying Substitutability

Assignments Across Types

2.3.1 About Inheritance in SQL Object Types

Inheritance is the mechanism that connects subtypes in a hierarchy to their supertypes.

Subtypes automatically inherit the attributes and methods of their parent type. Also, the
inheritance link remains active. Subtypes automatically acquire any changes made to these

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

attributes or methods in the parent: any attributes or methods updated in a supertype are
updated in subtypes as well.

® Note

Oracle only supports single inheritance. Therefore, a subtype can derive directly from
only one supertype, not more than one.

With object types in a type hierarchy, you can model an entity such as a customer, and also
define different specializing subtypes of customers under the original type. You can then
perform operations on a hierarchy and have each type implement and execute the operation in
a special way.

2.3.2 Supertypes and Subtypes

A subtype can be derived from a supertype either directly or indirectly through intervening
levels of other subtypes.

A supertype can have multiple sibling subtypes, but a subtype can have at most one direct
parent supertype (single inheritance).

Figure 2-1 Supertypes and Subtypes in Type Hierarchy

A
Supertype of all
1 |
B D
Subtype of A; _
supertype of C Subtype of A;

T

Cc
Subtype of B

To derive a subtype from a supertype, define a specialized variant of the supertype that adds
new attributes and methods to the set inherited from the parent or redefine (override) the
inherited methods. For example, from a per son_t yp object type you might derive the
specialized types st udent _typ and enpl oyee_t yp. Each of these subtypes is still a
person_typ, but a special kind of person. What distinguishes a subtype from its parent
supertype is some change made to the attributes or methods that the subtype received from its
parent.

Unless a subtype redefines an inherited method, it always contains the same core set of
attributes and methods that are in the parent type, plus any attributes and methods that it adds.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

If a per son_t yp object type has the three attributes i dno, nane, and phone and the method
get _i dno(), then any object type that is derived from per son_t yp will have these same three
attributes and a method get _i dno() . If the definition of per son_t yp changes, so do the
definitions of any subtypes.

Subtypes are created using the keyword UNDER as follows:
CREATE TYPE st udent _t yp UNDER person_typ
You can specialize the attributes or methods of a subtype in these ways:

* Add new attributes that its parent supertype does not have.

For example, you might specialize st udent _typ as a special kind of per son_t yp by adding
an attribute for maj or . A subtype cannot drop or change the type of an attribute it inherited
from its parent; it can only add new attributes.

e Add entirely new methods that the parent does not have.

e Change the implementation of some of the methods that a subtype inherits so that the
subtype's version executes different code from the parent's.

For example, a ellipse object might define a method cal cul at e() . Two subtypes of
el l'ipse_typ,circle_typandsphere_typ, might each implement this method in a
different way.

The inheritance relationship between a supertype and its subtypes is the source of much of the
power of objects and much of their complexity.

Being able to change a method in a supertype and have the change take effect in all the
subtypes downstream just by recompiling is very powerful. But this same capability means that
you have to consider whether or not you want to allow a type to be specialized or a method to
be redefined. Similarly, for a table or column to be able to contain any type in a hierarchy is
also powerful, but you must decide whether or not to allow this in a particular case. Also, you
may need to constrain DML statements and queries so that they pick out just the range of
types that you want from the type hierarchy.

® See Also
* See Example 2-15 for a complete example

e "Overloaded and Overridden Methods"

2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance

Object types can be inheritable and methods can be overridden if they are so defined.

For an object type or method to be inheritable, the definition must specify that it is inheritable.
For both types and methods, the keywords FI NAL or NOT FI NAL are used are used to determine
inheritability.

* Object type: For an object type to be inheritable, thus allowing subtypes to be derived
from it, the object definition must specify this.

NOT FI NAL means subtypes can be derived. FI NAL, (default) means that no subtypes can
be derived from it.

 Method: The definition must indicate whether or not it can be overridden.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 17 of 43

ORACLE’

2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function

Chapter 2

Inheritance in SQL Object Types

NOT FI NAL (default) means the method can be overridden. FI NAL means that subtypes

cannot override it by providing their own implementation.

@ See Also

 Example 2-13

 Example 2-12
e« Changing a FINAL TYPE to NOT FINAL

You can create a NOT FI NAL object type with a FI NAL member function as in Example 2-12.

Example 2-12 Creating an Object Type as NOT FINAL with a FINAL Member Function

DROP TYPE person_typ FORCE;
- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (

idno NUMBER,

nanme VARCHAR2(30) ,

phone VARCHAR2(20) ,

FINAL MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT FINAL;

/

2.3.3.2 Creating a NOT FINAL Object Type

You can create an object type as NOT FI NAL.

Example 2-13 declares person_typ to be a NOT FI NAL type and therefore subtypes of
person_t yp can be defined.

Example 2-13 Creating the person_typ Object Type as NOT FINAL

DROP TYPE person_typ FORCE;
- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30) ,

phone VARCHAR2(20))
NOT FI NAL;

/

2.3.4 Changing a FINAL TYPE to NOT FINAL

You can change inheritance by changing a final type to a not final type and vice versa with an

ALTER TYPE statement.

For example, the following statement changes per son_t yp to a final type:

ALTER TYPE person_typ FI NAL;

You can only alter a type from NOT FI NAL to FI NAL if the target type has no subtypes.

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025

Page 18 of 43

ORACLE’

Chapter 2
Inheritance in SQL Object Types

2.3.5 Subtype Creation

You create a subtype using a CREATE TYPE statement that specifies the immediate parent of the
subtype with the UNDER keyword.

Topics:

* Creating a Parent or Supertype Object

e Creating a Subtype Object

e Generalized Invocation

e Creating Multiple Subtypes

e Creating Tables that Contains Supertype and Subtype Objects

2.3.5.1 Creating a Parent or Supertype Object

You can create a parent or supertype object using the CREATE TYPE statement.

Example 2-14 provides a parent or supertype per son_t yp object to demonstrate subtype
definitions in Example 2-15, Example 2-18, and Example 2-19.

Note the show() in Example 2-14. In the subtype examples that follow, the show() function of
the parent type is overridden to specifications for each subtype using the OVERRI DI NG keyword.

Example 2-14 Creating the Parent or Supertype person_typ Object

DROP TYPE person_typ FORCE;

- if created

CREATE OR REPLACE TYPE person_typ AS OBJECT (
i dno NUMBER,

nanme VARCHAR2(30),

phone VARCHAR2(20) ,

VAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,
MEMBER FUNCTI ON show RETURN VARCHAR?2)
NOT FI NAL,;

/

CREATE OR REPLACE TYPE BQDY person_typ AS
VAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
- function that can be overriden by subtypes
MEMBER FUNCTI ON show RETURN VARCHAR2 | S
BEG N
RETURN 'I1d: ' || TOCHAR(idno) || ', Name: ' || name;
END;

END,
/

2.3.5.2 Creating a Subtype Object

A subtype inherits the attributes and methods of the supertype.
These are inherited:

e All the attributes declared in or inherited by the supertype.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 19 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

* Any methods declared in or inherited by supertype.

Example 2-15 defines the st udent _t yp object as a subtype of per son_t yp, which inherits all
the attributes declared in or inherited by per son_t yp and any methods inherited by or declared
in person_typ.

Example 2-15 Creating a student_typ Subtype Using the UNDER Clause

- requires Ex. 2-14
CREATE TYPE student _typ UNDER person_typ (
dept _id NUMBER
maj or VARCHAR2(30),
OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2)
NOT FI NAL;
/

CREATE TYPE BODY student _typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR2 | S
BEG N
RETURN (self AS person_typ).show || ' -- Major: ' || mgjor ;
END;

END;
/

The statement that defines st udent _t yp specializes per son_t yp by adding two new attributes,
dept _i d and maj or and overrides the show method. New attributes declared in a subtype must
have names that are different from the names of any attributes or methods declared in any of
its supertypes, higher up in its type hierarchy.

2.3.5.3 Generalized Invocation

Generalized invocation provides a mechanism to invoke a method of a supertype or a parent
type, rather than the specific subtype member method.

Example 2-15 demonstrates this using the following syntax:

(SELF AS person_typ).show

The st udent _t yp showmethod first calls the per son_t yp show method to do the common
actions and then does its own specific action, which is to append ' - - Maj or: ' to the value
returned by the per son_t yp show method. This way, overriding subtype methods can call
corresponding overriding parent type methods to do the common actions before doing their
own specific actions.

Methods are invoked just like normal member methods, except that the type name after AS
should be the type name of the parent type of the type that the expression evaluates to.

2.3.5.4 Using Generalized Invocation

In Example 2-16, there is an implicit SELF argument just like the implicit self argument of a
normal member method invocation. In this case, it invokes the person_t yp show method rather
than the specific st udent _t yp show method.

Example 2-16 Using Generalized Invocation

- Requires Ex. 2-14 and 2-15

DECLARE

nyvar student _typ := student_typ(100, 'Sani, '6505556666', 100, 'Math');
name VARCHAR2(100);

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

BEG N

name := (myvar AS person_typ).show; --Generalized invocation
END;
/

2.3.5.5 Using Generalized Expression

Generalized expression, like member method invocation, is also supported when a method is
invoked with an explicit self argument.

Example 2-17 Using Generalized Expression

- Requires Ex. 2-14 and 2-15
DECLARE
myvar 2 student _typ := student_typ(101, 'Sam, '6505556666', 100, 'Math');
name2 VARCHAR2(100);
BEG N
name2 := person_typ.show((myvar2 AS person_typ)); -- Generalized expression
END;
/

Double parentheses are used in this example because ((nyvar 2 AS person_typ)) is both an
expression that must be resolved and the parameter of the show function.

NOTE: Constructor methods cannot be invoked using this syntax. Also, the type name that
appears after AS in this syntax should be one of the parent types of the type of the expression
for which method is being invoked.

This syntax can only be used to invoke corresponding overriding member methods of the
parent types.

2.3.5.6 Creating Multiple Subtypes

A type can have multiple child subtypes, and these subtypes can also have subtypes.

Example 2-18 creates another subtype enpl oyee_typ under person_t yp in addition to the
already existing subtype, st udent _typ, created in Example 2-15.

Example 2-18 Creating an employee_typ Subtype Using the UNDER Clause
- requires Ex. 2-14

DROP TYPE enpl oyee_typ FORCE;
- if previously created
CREATE OR REPLACE TYPE enpl oyee_typ UNDER person_typ (
enmp_i d NUMBER,
mgr VARCHAR2(30) ,
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR?) ;
/

CREATE OR REPLACE TYPE BODY enpl oyee_typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHARZ2 | S

BEG N
RETURN (SELF AS person_typ).show | ' -- Enployee Id: '
|| TOCHAR(emp_id) || ', Manager: ' || mor ;
END;
END;

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

2.3.5.7 Creating a Subtype Under Another Subtype

A subtype can be defined under another subtype.

The new subtype inherits all the attributes and methods that its parent type has, both declared
and inherited. Example 2-19 defines a new subtype part _tine_student typ under

student _typ created in Example 2-15. The new subtype inherits all the attributes and methods
of st udent _typ and adds another attribute, nunber _hours.

Example 2-19 Creating a part_time_student_typ Subtype Using the UNDER Clause

CREATE TYPE part _time_student _typ UNDER student _typ (
number_hours NUMBER,
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR?) ;

/

CREATE TYPE BODY part_tinme_student _typ AS
OVERRI DI NG MEMBER FUNCTI ON show RETURN VARCHAR2 | S

BEG N
RETURN (SELF AS person_typ).show | ' -- Mjor: ' || mgjor ||
", Hours: ' || TO_CHAR(nunber_hours);
END,
END,;

/

2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects

You can create tables that contain supertype and subtype instances.
You can then populate the tables as shown with the per son_obj _t abl e in Example 2-20.
Example 2-20 Inserting Values into Substitutable Rows of an Object Table

CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _tabl e
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));

I NSERT | NTO person_obj _tabl e
VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140", 12, "H STORY"));

I NSERT | NTO person_obj _tabl e
VALUES (enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144",
100, 'Jennifer Nelson'));

I NSERT | NTO person_obj _tabl e

VALUES (part_time_student _typ(52, 'KimPatel', '1-650-555-0135", 14,
"PHYSICS', 20));

You can call the show() function for the supertype and subtypes in the table with the following:

SELECT p.show() FROM person_obj _table p;

The output is similar to:

Id: 12, Name: Bob Jones
Id: 51, Nanme: Joe Lane -- Major: H STORY

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 22 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

Id: 55, Nane: Jane Smith -- Enployee Id: 100, Manager: Jennifer Nel son
Id: 52, Name: Kim Patel -- Major: PHYSICS, Hours: 20

Note that data that the show() method displayed depends on whether the object is a supertype
or subtype, and if the show() method of the subtype is overridden. For example, Bob Jones is
a person_typ, thatis, a supertype. Only Bob's name and | d are displayed. For Joe Lane, a
student _typ, Joe's nane and | d are provided by the show() function of the supertype, and
Joe's maj or is provided by the overridden show() function of the subtype.

2.3.6 NOT INSTANTIABLE Types and Methods

Types and methods can be declared NOT | NSTANTI ABLE when they are created.
NOT | NSTANTI ABLE types and methods:
e NOT | NSTANTI ABLE Types

If a type is not instantiable, you cannot instantiate instances of that type. There are no
constructors (default or user-defined) for it. You might use this with types intended to serve
solely as supertypes from which specialized subtypes are instantiated.

e NOT | NSTANTI ABLE Methods

A non-instantiable method serves as a placeholder. It is declared but not implemented in
the type. You might define a non-instantiable method when you expect every subtype to
override the method in a different way. In this case, there is no point in defining the method
in the supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an ALTER TYPE
statement.

A type that contains a non-instantiable method must itself be declared not instantiable, as
shown in Example 2-21.

2.3.7 Creating a Non-INSTANTIABLE Object Type

If a subtype does not provide an implementation for every inherited non-instantiable method,
the subtype itself, like the supertype, must be declared not instantiable.

A non-instantiable subtype can be defined under an instantiable supertype.
Example 2-21 Creating an Object Type that is NOT INSTANTIABLE
DROP TYPE person_typ FORCE;

- if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30),
phone VARCHAR2(20) ,

NOT | NSTANTI ABLE MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT | NSTANTI ABLE NOT FI NAL; /

2.3.8 Changing an Object Type to INSTANTIABLE

The ALTER TYPE statement can make a non-instantiable type instantiable.

In Example 2-22 an ALTER TYPE statement makes per son_t yp instantiable.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 23 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

Example 2-22 Altering an Object Type to INSTANTIABLE

CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,
nane VARCHAR2(30) ,
phone VARCHAR2(20))

NOT | NSTANTI ABLE NOT FI NAL;/
ALTER TYPE person_typ | NSTANTI ABLE;

Changing to a Not Instantiable Type

You can alter an instantiable type to a non-instantiable type only if the type has no columns,
views, tables, or instances that reference that type, either directly, or indirectly, through another
type or subtype.

You cannot declare a non-instantiable type to be FI NAL. This would actually be pointless.

2.3.9 Overloaded and Overridden Methods

A subtype can redefine methods it inherits, and it can also add new methods, including
methods with the same name.

Topics:

e Overloading Methods

e Qverriding and Hiding Methods

* Restrictions on Overriding Methods

See the examples in "Subtype Creation " and Example 8-7.

2.3.9.1 Overloading Methods

Adding new methods that have the same names as inherited methods to the subtype is called
overloading.

Methods that have the same name but different signatures are called overloads when they
exist in the same user-defined type.

A method signature consists of the method's name and the number, types, and the order of the
method's formal parameters, including the implicit sel f parameter.

Overloading is useful when you want to provide a variety of ways of doing something. For
example, an ellipse object might overload a cal cul at e() method with another cal cul at e()
method to enable calculation of a different shape.

The compiler uses the method signatures to determine which method to call when a type has
several overloaded methods.

In the following pseudocode, subtype ci rcl e_t yp creates an overload of cal cul ate() :

CREATE TYPE el lipse_typ AS OBJECT (...,

MEMBER PROCEDURE cal cul at e(x NUMBER, x NUMBER),
) NOT FI NAL;

CREATE TYPE circle_typ UNDER el lipse_typ (...,
MEMBER PROCEDURE cal cul at e(x NUMBER),

)5

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 24 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

The ci rcl e_typ contains two versions of cal cul at e() . One is the inherited version with two
NUMBER parameters and the other is the newly created method with one NUMBER parameter.

2.3.9.2 Overriding and Hiding Methods

Redefining an inherited method to customize its behavior in a subtype is called overriding, in
the case of member methods, or hiding, in the case of static methods.

Unlike overloading, you do not create a new method, just redefine an existing one, using the
keyword OVERRI DI NG.

Overriding and hiding redefine an inherited method to make it do something different in the
subtype. For example, a subtype ci rcl e_typ derived from a el | i pse_t yp supertype might
override a member method cal cul at e() to customize it specifically for calculating the area of
a circle. For examples of overriding methods, see "Subtype Creation ".

Overriding and hiding are similar in that, in either case, the version of the method redefined in
the subtype eclipses the original version of the same name and signature so that the new
version is executed rather than the original one whenever a subtype instance invokes the
method. If the subtype itself has subtypes, these inherit the redefined method instead of the
original version.

With overriding, the system relies on type information contained in the member method's
implicit self argument to dynamically choose the correct version of the method to execute. With
hiding, the correct version is identified at compile time, and dynamic dispatch is not necessary.
See "Dynamic Method Dispatch".

To override or hide a method, you must preserve its signature. Overloads of a method all have
the same name, so the compiler uses the signature of the subtype's method to identify the
particular version in the supertype that is superseded.

You signal the override with the OVERRI DI NG keyword in the CREATE TYPE BODY statement. This
is not required when a subtype hides a static method.

In the following pseudocode, the subtype signals that it is overriding method cal cul ate():

CREATE TYPE el | ipse_typ AS OBJECT (...,

MEMBER PROCEDURE cal cul ate(),

FI NAL MEMBER FUNCTI ON function_nytype(x NUMBER)...
) NOT FI NAL;

CREATE TYPE circle_typ UNDER el lipse_typ (...,
OVERRI DI NG MEMBER PROCEDURE cal cul at e(),

)

For a diagram of this hierarchy, see Figure 2-2.

2.3.9.3 Restrictions on Overriding Methods

There are certain restrictions on overriding methods:

* Only methods that are not declared to be final in the supertype can be overridden.

* Order methods may appear only in the root type of a type hierarchy: they may not be
redefined (overridden) in subtypes.

« A static method in a subtype may not redefine a member method in the supertype.

A member method in a subtype may not redefine a static method in the supertype.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 25 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

* If a method being overridden provides default values for any parameters, then the
overriding method must provide the same default values for the same parameters.

2.3.10 Dynamic Method Dispatch

Dynamic method dispatch refers to the way that method calls are dispatched to the nearest
implementation at run time, working up the type hierarchy from the current or specified type.

Dynamic method dispatch is only available when overriding member methods and does not
apply to static methods.

With method overriding, a type hierarchy can define multiple implementations of the same
method. In the following hierarchy of types el | i pse_typ, circl e_typ, and sphere_t yp, each
type might define a cal cul at e() method differently.

Figure 2-2 Hierarchy of Types

ellipse_typ | Base type

?

] Subtype of
circle_typ ellipse_type
sphere_typ Syoupe of

circle_type

When one of these methods is invoked, the type of the object instance that invokes it
determines which implementation of the method to use. The call is then dispatched to that
implementation for execution. This process of selecting a method implementation is called
virtual or dynamic method dispatch because it is done at run time, not at compile time.

The method call works up the type hierarchy: never down. If the call invokes a member method
of an object instance, the type of that instance is the current type, and the implementation
defined or inherited by that type is used. If the call invokes a static method of a type, the
implementation defined or inherited by that specified type is used.

@ See Also

For information on how subprograms calls are resolved, see Oracle Al Database
PL/SQL Language Reference

2.3.11 Type Substitution in a Type Hierarchy

When you work with types in a type hierarchy, sometimes you need to work at the most
general level, for example, to select or update all persons. But at other times, you need to
select or update only a specific subtype such as a student, or only persons who are not
students.

The (polymorphic) ability to select all persons and get back not only objects whose declared
type is per son_t yp but also objects whose declared subtype is st udent _typ or enpl oyee typ

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 26 of 43

ORACLE’

Chapter 2
Inheritance in SQL Object Types

is called substitutability. A supertype is substitutable if one of its subtypes can substitute or
stand in for it in a variable or column whose declared type is the supertype.

In general, types are substitutable. Object attributes, collection elements and REFs are
substitutable. An attribute defined as a REF, type, or collection of type per son_t yp can hold a
REF to an instance of, or instances of an instance of per son_t yp, or an instance of any subtype
of person_typ.

This seems expected, given that a subtype is, after all, just a specialized kind of one of its
supertypes. Formally, though, a subtype is a type in its own right: it is not the same type as its
supertype. A column that holds all persons, including all persons who are students and all
persons who are employees, actually holds data of multiple types.

In principle, object attributes, collection elements and REFs are always substitutable: there is no
syntax at the level of the type definition to constrain their substitutability to some subtype. You
can, however, turn off or constrain substitutability at the storage level, for specific tables and
columns.

@ See Also
e "Turning Off Substitutability in a New Table"

e "Constraining Substitutability"

2.3.12 Column and Row Substitutability

Object type columns and object-type rows in object tables are substitutable, and so are views:
a column or row of a specific type can contain instances of that type and any of its subtypes.

Topics:
e About Column and Row Substitutability
e Using OBJECT VALUE and OBJECT ID with Substitutable Rows

* Subtypes with Attributes of a Supertype

* Substitution of REF Columns and Attributes

» Substitution of Collection Elements

2.3.12.1 About Column and Row Substitutability

You can substitute object type columns and object type rows in object tables.

Consider the per son_t yp type hierarchy such as the one introduced in Example 2-14. You can
create an object table of per son_t yp that contains rows of all types. To do this, you insert an
instance of a given type into an object table using the constructor for that type in the VALUES
clause of the | NSERT statement as shown in Example 2-20.

Similarly, Example 2-23 shows that a substitutable column of type per son_t yp can contain
instances of all three types, in a relational table or view. The example recreates person,
student, and part-time student objects from that type hierarchy and inserts them into the
person_typ column cont act .

Example 2-23 Inserting Values into Substitutable Columns of a Table

DROP TYPE person_typ FORCE;
- if previously created

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 27 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

DROP TYPE student _typ FORCE, -- if previously created

DROP TYPE part _tine_student_typ FORCE, -- if previously created
DROP TABLE contacts; if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

name VARCHAR2(30),
phone VARCHAR2(20))
NOT FI NAL; /

CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _time_student typ UNDER student _typ (
nurmber _hours NUMBER) ;
/
CREATE TABLE contacts (
contact person_typ,
contact _date DATE) ;

INSERT INTO contacts
VALUES (person_typ (12, 'Bob Jones', '650-555-0130"), '24 Jun 2003');

INSERT INTO contacts
VALUES (student _typ(51, 'Joe Lane', '1-650-555-0178"', 12, 'H STORY'),
'24 Jun 2003');

INSERT INTO contacts
VALUES (part_time_student _typ(52, 'KimPatel', '1-650-555-0190', 14,
"PHYSICS', 20), '24 Jun 2003');

A newly created subtype can be stored in any substitutable tables and columns of its
supertype, including tables and columns that existed before the subtype was created.

In general, you can access attributes using dot notation. To access attributes of a subtype of a
row or column's declared type, you can use the TREAT function. For example:

SELECT TREAT(contact AS student_typ).major FROM contacts;

See "TREAT".

2.3.12.2 Using OBJECT _VALUE and OBJECT _ID with Substitutable Rows

You can access and identify the object identifier (OID) and value of a substitutable row.

Use the OBJECT_VALUE and OBJECT | D pseudocolumns to allow access and identify the value
and object identifier of a substitutable row in an object table as shown in Example 2-24.

@ See Also

For further information on these pseudocolumns, see Oracle Al Database PL/SQL
Packages and Types Reference.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 28 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

Example 2-24 Using OBJECT_VALUE and OBJECT_ID

DROP TABLE person_obj _table; -- required if previously created
CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _tabl e
VALUES (person_typ(20, 'Bob Jones', '650-555-0130"));

SELECT p.object_id, p.object_value FROM person_obj _table p;

2.3.12.3 Subtypes with Attributes of a Supertype

A subtype can have an attribute whose type is the type of a supertype. For example:
Example 2-25 Creating a Subtype with a Supertype Attribute

- requires Ex 2-22
CREATE TYPE student _typ UNDER person_typ (
dept_id NUMBER,
maj or VARCHAR2(30),
advi sor person_typ);
/

However, columns of such types are not substitutable. Similarly, a subtype can have a
collection attribute whose element type is one of its supertypes, but, again, columns of such
types are not substitutable. For example, if st udent _t yp had a nested table or varray of
person_typ, the student _typ column would not be substitutable.

You can, however, define substitutable columns of subtypes that have REF attributes that
reference supertypes. For example, the conposi t e_cat egory_t yp subtype shown in
Example 2-26 contains the subcat egory_ref _|i st nested table. This table contains

subcat egory_ref |ist_typ which are REFs to cat egory_typ. The subtype was created as
follows:

Example 2-26 Defining Columns of Subtypes that have REF Attributes

- not to be executed
CREATE TYPE subcategory_ref _list_typ
AS TABLE OF REF category_typ;
/

CREATE TYPE conposite_category_typ
UNDER cat egory_typ

(

subcat egory_ref list subcategory ref _list_typ

See "Turning Off Substitutability in a New Table".

2.3.12.4 Substitution of REF Columns and Attributes

REF columns and attributes are substitutable in both views and tables. For example, in either a
view or a table, a column declared to be REF person_t yp can hold references to instances of
person_typ or any of its subtypes.

2.3.12.5 Substitution of Collection Elements

Collection elements are substitutable in both views and tables. For example, a nested table of
person_t yp can contain object instances of per son_t yp or any of its subtypes.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 29 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

2.3.13 Newly Created Subtypes Stored in Substitutable Columns

If you create a subtype, any table that already has substitutable columns of the supertype can
store the new subtype as well.

This means that your options for creating subtypes are affected by the existence of such
tables. If such a table exists, you can only create subtypes that are substitutable, that is,
subtypes that do not violate table limits or constraints.

The following example creates a per son_t yp and then shows several attempts to create a
subtype st udent _typ under person_typ.

Example 2-27 Creating a Subtype After Creating Substitutable Columns

DROP TYPE person_typ FORCE;

DROP TABLE person_obj _tabl e;

DROP TYPE student _typ;

- perform above drops if objects/tables created
CREATE OR REPLACE TYPE person_typ AS OBJECT (

i dno NUMBER,

narme VARCHAR2(30),,
phone VARCHAR2(20))
NOT FI NAL; /

CREATE TABLE person_obj _table (p person_typ);

The following statement fails because st udent _typ has a supertype attribute, and table
person_obj _tabl e has a substitutable column p of the supertype.

CREATE TYPE student _typ UNDER person_typ (-- incorrect CREATE subtype
advi sor person_typ);
/

The next attempt succeeds. This version of the st udent _t yp subtype is substitutable. Oracle
Al Database automatically enables table per son_obj _t abl e to store instances of this new type.
CREATE TYPE student _typ UNDER person_typ (
dept _id NUMBER,
maj or VARCHAR2(30));/
I NSERT | NTO person_obj _tabl e
VALUES (student typ(51, 'Joe Lane', '1-650-555-0178', 12, 'H STORY'));

2.3.14 Dropping Subtypes After Creating Substitutable Columns

When you drop a subtype with the VALI DATE option, it checks that no instances of the subtype
are stored in any substitutable column of the supertype. If there are no such instances, the
DROP operation completes.

The following statement fails because an instance of st udent _t yp is stored in substitutable
column p of table person_obj tabl e:

DROP TYPE student _typ VALIDATE -- incorrect: an instance still exists ;

To drop the type, first delete any of its instances in substitutable columns of the supertype:
- Delete fromtable and drop student _typ subtype exanple, not sanple schena

DELETE FROM person_obj table WHERE p IS OF (student_typ);

DROP TYPE student _typ VALI DATE;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 30 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

@ See Also

Oracle Al Database PL/SQL Language Reference for further information on DROP and
VALI DATE

2.3.15 Turning Off Substitutability in a New Table

You can turn off all substitutability on a column or attribute, including embedded attributes and
nested collections, while creating a table.

Use the clause NOT SUBSTI TUTABLE AT ALL LEVELS when you create a table.

This turns off all column or attribute substitutability, including embedded attributes and
collections nested to any level.

In the following example, the clause confines the column of f i ce of a relational table to storing
only of fi ce_t yp instances and disallows any subtype instances:

Example 2-28 Turning off Substitutability When Creating a Table

DROP TYPE | ocation_typ FORCE, -- required if previously created
DROP TYPE office_typ FORCE, -- required if previously created
CREATE OR REPLACE TYPE | ocation_typ AS OBJECT (

bui I ding_no NUMBER,

city VARCHAR2(40));
/

CREATE TYPE peopl e_typ AS TABLE OF person_typ;
/
CREATE TYPE office_typ AS OBJECT (

office_id VARCHAR(10) ,

| ocation | ocation_typ,
occupant person_typ)
NOT FI NAL; /

CREATE TABLE dept_office (
dept _no NUMBER,
office office_typ)

COLUW of fice NOT SUBSTI TUTABLE AT ALL LEVELS;

With object tables, the clause can be applied to the table as a whole, such as:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
NOT SUBSTITUTABLE AT ALL LEVELS;

The clause can also turn off substitutability in a particular column, that is, for a particular
attribute of the object type of the table:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
COLUMN occupant NOT SUBSTITUTABLE AT ALL LEVELS;

You can specify that the element type of a collection is not substitutable using syntax such as
the following:

DROP TABLE peopl e_t ab;
- required if previously created

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 31 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

CREATE TABLE people_tab (
peopl e_col um people_typ)
NESTED TABLE peopl e_col um
NOT SUBSTITUTABLE AT ALL LEVELS STORE AS peopl e_col um_nt;

There is no mechanism to turn off substitutability for REF columns.

You can use either NOT SUBSTI TUTABLE AT ALL LEVELS or | S OF type to constrain an object
column, but you cannot use both.

2.3.16 Constraining Substitutability

You can impose a constraint that limits the range of subtypes permitted in an object column or
attribute to a particular subtype in the declared type's hierarchy.

Do this with thel S OF t ype constraint.

The following statement creates a table of of fi ce_t yp in which occupants are constrained to
just those persons who are employees:

Example 2-29 Constraining Substitutability When Creating a Table

DROP TABLE of fice_tab;

- if previously created

CREATE TABLE office_tab OF office_typ
COLUWN occupant 1S OF (ONLY enpl oyee_typ);

Although the type of fi ce_t yp allows authors to be of type person_t yp, the column declaration
imposes a constraint to store only instances of enpl oyee_t yp.

You can only use the | S OF t ype operator to constrain row and column objects to a single
subtype (not several), and you must use the ONLY keyword, as in the preceding example.

You can use either | S OF t ype or NOT SUBSTI TUTABLE AT ALL LEVELS to constrain an object
column, but you cannot use both.

2.3.17 Modifying Substitutability on a Table

In an existing table, you can change an object column from SUBSTI TUTABLE to NOT
SUBSTI TUTABLE (or from NOT SUBSTI TUTABLE to SUBSTI TUTABLE) by using an ALTER TABLE
statement.

Specify the clause [NOT] SUBSTI TUTABLE AT ALL LEVELS for the particular column in the ALTER
TABLE statement.

You can modify substitutability only for a specific column, not for an object table as a whole.
The following statement makes the column of fi ce substitutable:
Example 2-30 Modifying Substitutability in a Table

- Requires Ex. 2-28
ALTER TABLE dept _office
MODI FY COLUWN of fice SUBSTITUTABLE AT ALL LEVELS;

The following statement makes the column not substitutable. Notice that it also uses the FORCE
keyword. This keyword causes any hidden columns containing typeid information or data for
subtype attributes to be dropped:

- Alter table substitutability with FORCE

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 32 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

ALTER TABLE dept _office
MODI FY COLUWN of fice NOT SUBSTI TUTABLE AT ALL LEVELS FORCE;

--DROP TABLE dept _office;

If you do not use the FORCE keyword to make a column not substitutable, the column and all
attributes of the type must be FI NAL or the ALTER TABLE statement will fail.

A VARRAY column can be modified from SUBSTI TUTABLE to NOT SUBSTI TUTABLE only if the
element type of the varray is final itself and has no embedded types (in its attributes or in their
attributes, and so on) that are not final.

@® See Also

See "Hidden Columns for Substitutable Columns and Object Tables" for more
information about hidden columns for typeids and subtype attributes.

2.3.18 Restrictions on Modifying Substitutability

You can change the substitutability of only one column at a time with an ALTER TABLE
statement.

To change substitutability for multiple columns, issue multiple statements.

In an object table, you can only modify substitutability for a column if substitutability was not
explicitly set at the table level, when the table was created.

For example, the following attempt to modify substitutability for column address succeeds
because substitutability has not been explicitly turned on or off at the table level in the CREATE
TABLE statement:

DROP TABLE of fice_tab;
- if previously created
CREATE TABLE office_tab OF office_typ;

ALTER TABLE office_tab
MODI FY COLUWN occupant NOT SUBSTI TUTABLE AT ALL LEVELS FORCE;

However, in the following example, substitutability is explicitly set at the table level, so the
attempt to modify the setting for column address fails:

DROP TABLE of fice_tab;

- if previously created

CREATE TABLE of fice_tab OF office_typ
NOT SUBSTI TUTABLE AT ALL LEVELS;

/* Following SQL statenment generates an error: */
ALTER TABLE office_tab
MODI FY COLUWN occupant SUBSTI TUTABLE AT ALL LEVELS FORCE -- incorrect ALTER

A column whose substitutability is already constrained by an | S OF t ype operator cannot have
its substitutability modified with a [NOT] SUBSTI TUTABLE AT ALL LEVELS clause.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 33 of 43

ORACLE Chapter 2
Inheritance in SQL Object Types

@ See Also

For information about | S OF t ype, see "Constraining Substitutability".

2.3.19 Assignments Across Types

The assignment rules described in this section apply to | NSERT/ UPDATE statements, the
RETURNI NG clause, function parameters, and PL/SQL variables.

Topics:

¢ Typical Object to Object Assignment

* Widening Assignment

¢ Narrowing Assignment

e Collection Assignments

2.3.19.1 Typical Object to Object Assignment

Substitutability is the ability of a subtype to stand in for one of its supertypes.

Substituting a supertype for a subtype, that is substitution in the other direction, raises an error
at compile time.

Assigning a source of type source_t yp to a target of type t ar get _t yp must be of one of the
following two patterns:

» Case 1:source_typ andtarget_typ are the same type
e Case 2:source_typ is a subtype of t arget _t yp (widening)

Case 2 illustrates widening.

2.3.19.2 Widening Assignment

Widening is an assignment in which the declared type of the source is more specific than the
declared type of the target.

An example of widening is assigning an employee instance to a variable of a person type.

An employee is a more narrowly defined, specialized kind of person, so you can put an
employee in a slot meant for a person if you do not mind ignoring whatever extra specialization
makes that person an employee. All employees are persons, so a widening assignment always
works.

To illustrate widening, suppose that you have the following table:

TABLE T(pers_col person_typ, enp_col enployee_typ,
stu_col student_typ)

The following assignments show widening. The assignments are valid unless perscol has
been defined to be not substitutable.

UPDATE T set pers_col = enp_col;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 34 of 43

ORACLE

Chapter 2
Inheritance in SQL Object Types

The following is a PL/SQL example, which first requires you to create a per son_t yp and an
enpl oyee_typ:

Example 2-31 PL/SQL Assignment

DROP TYPE person_typ FORCE;
- if previously created
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30),

phone VARCHAR2(20))

NOT FI NAL,;
/

DROP TYPE enpl oyee_typ FORCE; -- if previously created
CREATE TYPE enpl oyee_typ UNDER person_typ (

enp_i d NUMBER,

ngr VARCHAR2(30));
/
- PL/SQL assignment exanpl e
DECLARE

varl person_typ;

var2 enpl oyee_typ;

BEG N
var2 : = enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144", 100, 'Jennifer Nelson');
varl := var2;

END;

/

2.3.19.3 Narrowing Assignment

A narrowing assignment is the reverse of widening.

A narrowing assignment involves regarding a more general, less specialized type of thing,
such as a person, as a more narrowly defined type of thing, such as an employee. Not all
persons are employees, so a particular assignment like this works only if the person in
guestion actually happens to be an employee. Thus, in the end, narrowing assignments only
work in cases such as Case 1, described in "Typical Object to Object Assignment".

To do a narrowing assignment, you must use the TREAT function to test that the source instance
of the more general declared type is in fact an instance of the more specialized target type and
can therefore be operated on as such. The TREAT function does a runtime check to confirm this
and returns NULL if the source value, the person in question, is not of the target type or one of
its subtypes.

For example, the following UPDATE statement sets values of per son_t yp in column per scol into
column enpcol of enpl oyee_t yp. For each value in perscol , the assignment succeeds if that
person is also an employee. If the person is not an employee, TREAT returns NULL, and the
assignment returns NULL.

UPDATE T set enp_col = TREAT(pers_col AS enployee typ);

The following statement attempts to do a narrowing assignment without explicitly changing the
declared type of the source value. The statement will return an error:

UPDATE T set enp_col = pers_col;

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 35 of 43

ORACLE’

Chapter 2
Functions and Operators Useful with Objects

@ See Also

"Using TREAT for Narrowing Assignments"

2.3.19.4 Collection Assignments

In assignments of expressions of a collection type, the source and target must be of the same
declared type.

Neither widening nor narrowing is permitted in expression assignments of collection types.
However, a subtype value can be assigned to a supertype collection. For example, after
creating a new st udent _t yp, suppose we have the following collection types:

Example 2-32 Create Collection person_set

- Requires 2-21
DROP student _typ;
- if previously created
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE person_set AS TABLE OF person_typ;
/

CREATE TYPE student _set AS TABLE OF student_typ;
/

Expressions of these different collection types cannot be assigned to each other, but a
collection element of st udent _t yp can be assigned to a collection of per son_set type:

DECLARE

varl person_set;

var2 student_set;

el enl person_typ;

elem2 student _typ;
BEG N

varl : = var2; /* I LLEGAL - collections not of same type */

varl := person_set (elenml, elem2); /* LEGAL : Elenent is of subtype */
END;
/

2.4 Functions and Operators Useful with Objects

Several functions and operators are particularly useful for working with objects and references
to objects.

Examples are given throughout this book.

@® Note

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL statement.
For information about SQL functions, see Oracle Al Database SQL Language
Reference.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 36 of 43

ORACLE Chapter 2
Functions and Operators Useful with Objects

Topics:

¢ CAST

¢ CURSOR

* DEREF

* 1S OF type

* REF

e SYS TYPEID
e TABLE()

* TREAT

* VALUE

2.4.1 CAST

CAST converts one built-in data type or collection-typed value into another built-in data type or
collection-typed value. For example:

Example 2-33 Using the CAST Function

CREATE TYPE person_|ist_typ AS TABLE OF person_typ;/

SELECT CAST(COLLECT(contact) AS person_list_typ)
FROM cont act s;

@ See Also

For more information about the SQL CAST function, Oracle Al Database SQL
Language Reference.

2.4.2 CURSOR

A CURSOR expression returns a nested cursor.

The cursor form of expression is equivalent to the PL/SQL REF CURSOR and can be passed as a
REF CURSCOR argument to a function.

@ See Also

For more information about the SQL CURSCR expression, see Oracle Al Database SQL
Language Reference.

2.4.3 DEREF

The DEREF function in a SQL statement returns the object instance corresponding to a REF.

The object instance returned by DEREF may be of the declared type of the REF or any of its
subtypes.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 37 of 43

ORACLE Chapter 2
Functions and Operators Useful with Objects
For example, the following statement returns per son_t yp objects from the table cont act _ref.
Example 2-34 Using the DEREF Function
- Using the DEREF Function exanple, not sanple schema

SELECT DEREF(c.contact_ref), c.contact_date
FROM contacts_ref c;

@ See Also

» Dereferencing REFs

e For more information about the SQL DEREF function, see Oracle Al Database SQL
Language Reference.

2.4.4 1S OF type

The | S OF t ype predicate tests object instances for the level of specialization of their type.

For example, the following query retrieves all student instances (including any subtypes of
students) stored in the per son_obj _t abl e table.

Example 2-35 Using the IS OF type Operator to Query Value of a Subtype

- Using the IS OF type Operator to query Value of a subtype

SELECT VALUE(p)
FROM person_obj _table p
WHERE VALUE(p) IS OF (student_typ);

For any object that is not of a specified subtype, or a subtype of a specified subtype, | S OF
returns FALSE. Subtypes of a specified subtype are just more specialized versions of the
specified subtype. If you want to exclude such subtypes, you can use the ONLY keyword. This
keyword causes | S OF to return FALSE for all types except the specified types.

In the following example, the statement tests objects in object table per son_obj _t abl e, which
contains persons, employees, and students, and returns REFs just to objects of the two
specified person subtypes enpl oyee_typ, student _typ, and their subtypes, if any:

- Using the IS OF type Qperator to query for multiple subtypes

SELECT REF(p)
FROM person_obj table p
VHERE VALUE(p) IS OF (enpl oyee_typ, student _typ);

Here is a similar example in PL/SQL. The code does something if the person is an employee
or student:

- Using the IS OF type Operator with PL/SQL

DECLARE
var person_typ;
BEG N
var := enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144"', 100, 'Jennifer Nelson');
IF var 1S OF (enpl oyee_typ, student_typ) THEN
DBMS_QUTPUT. PUT_LINE(' Var is an enployee_typ or student_typ object.");
ELSE
DBMS_QUTPUT. PUT_LI NE(' Var is not an enployee_typ or student_typ object.");

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 38 of 43

ORACLE

2.4.5 REF

Chapter 2
Functions and Operators Useful with Objects

END I F;
END,
/

The following statement returns only students whose most specific or specialized type is
student _typ. If the table or view contains any objects of a subtype of st udent _typ, such as
part _tinme_student _typ, these are excluded. The example uses the TREAT function to convert
objects that are students to st udent _t yp from the declared type of the view, person_t yp:

- Using the I'S OF type Operator to query for specific subtype only

SELECT TREAT(VALUE(p) AS student_typ)
FROM person_obj _table p
WHERE VALUE(p) 1S OF(ONLY student _typ);

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing with the | S OF t ype predicate.

For example, if cont act _ref is declared to be REF per son_t yp, you can get just the rows for
students as follows:

- Using the IS OF type Operator with DEREF

SELECT *
FROM cont acts_ref
VHERE DEREF(contact ref) IS OF (student _typ);

@ See Also

For more information about the SQL | S OF t ype condition, see Oracle Al Database
SQL Language Reference.

The REF function in a SQL statement takes as an argument a correlation name (or table alias)
for an object table or view and returns a reference (a REF) to an object instance from that table
or view.

The REF function may return references to objects of the declared type of the table, view, or
any of its subtypes. For example, the following statement returns the references to all persons,
including references to students and employees, whose i dno attribute is 12:

Example 2-36 Using the REF Function

- Using the REF Function exanple, not sanple schema

SELECT REF(p)
FROM person_obj table p
WHERE p.idno = 12;

@ See Also

For more information about the SQL REF function, see Oracle Al Database SQL
Language Reference.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 39 of 43

ORACLE

Chapter 2
Functions and Operators Useful with Objects

2.4.6 SYS_TYPEID

The SYS_TYPEI D function can be used in a query to return the typeid (a hidden type) of the
most specific type of the object instance passed as an argument.

The most specific type of an object instance is the type that the instance belongs to, that is, the
farthest removed instance from the root type. For example, if Tim is a part-time student, they
are also a student and a person, but their most specific type is part-time student.

The function returns the typeids from the hidden type-discriminant column that is associated
with every substitutable column. The function returns a null typeid for a final, root type.

The syntax of the function is:
SYS_TYPEI D(obj ect _type_val ue)

Function SYS_TYPEI D may be used only with arguments of an object type. Its primary purpose
is to make it possible to build an index on a hidden type-discriminant column.

All types that belong to a type hierarchy are assigned a non-null typeid that is unique within the
type hierarchy. Types that do not belong to a type hierarchy have a null typeid.

Every type except a final root type belongs to a type hierarchy. A final root type has no types
related to it by inheritance:

e It cannot have subtypes derived from it because it is final.

e ltis not itself derived from some other type because it is a root type, so it does not have
any supertypes.

For an example of SYS_TYPEI D, consider the substitutable object table per son_obj t abl e, of
person_typ. person_typ is the root type of a hierarchy that has st udent _t yp as a subtype and
part _tine_student typ as a subtype of student typ. See Example 2-20.

The following query uses SYS_TYPEI D. It gets the nane attribute and t ypei d of the object
instances in the per son_obj _t abl e table. Each of the instances is of a different type:

Example 2-37 Using the SYS_TYPEID Function

- Using the SYS_TYPEID Function exanple, not sanple schema

SELECT nane, SYS TYPEI D(VALUE(p)) typeid FROM person_obj _table p;

@ See Also

* For information about the type-discriminant and other hidden columns, see
"Hidden Columns for Substitutable Columns and Object Tables" .

e For more information about the SQL SYS TYPEI D function, see Oracle Al Database
SQL Language Reference.

2.4.7 TABLE()

Table functions are functions that produce a collection of rows, a nested table or a varray, that
can be queried like a physical database table or assigned to a PL/SQL collection variable.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 40 of 43

ORACLE

Chapter 2
Functions and Operators Useful with Objects

You can use a table function like the name of a database table, in the FROMclause of a query,
or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection parameter can be
either a collection type, such as a VARRAY or a PL/SQL table, or a REF CURSCOR.

Use PI PELI NED to instruct Oracle Al Database to return the results of a table function
iteratively. A table function returns a nested table or varray type. You query table functions by
using the TABLE keyword before the function name in the FROMclause of the query.

® See Also
For information on TABLE() functions, see

e Oracle Al Database Data Cartridge Developer's Guide

e Oracle Al Database PL/SQL Language Reference

2.4.8 TREAT

The TREAT function does a runtime check to confirm that an expression can be operated on as
if it were of a different specified type in the hierarchy, normally a subtype of the declared type
of the expression.

In other words, the TREAT function attempts to treat a supertype instance as a subtype
instance, for example, to treat a person as a student. If the person is a student, then the
person is returned as a student, with the additional attributes and methods that a student may
have. If the person is not a student, TREAT returns NULL in SQL.

The two main uses of TREAT are:

* In narrowing assignments, to modify the type of an expression so that the expression can
be assigned to a variable of a more specialized type in the hierarchy: that is, to set a
supertype value into a subtype.

* To access attributes or methods of a subtype of the declared type of a row or column.

A substitutable object table or column of type T has a hidden column for every attribute of
every subtype of T. These hidden columns contain subtype attribute data, but you cannot
list them with a DESCRI BE statement. TREAT enables you to access these columns.

2.4.8.1 Using TREAT for Narrowing Assignments

The TREAT function is used for narrowing assignments, that is, assignments that set a
supertype value into a subtype. For a comparison to widening assignments, see "Assignments

Across Types".

In Example 2-38, TREAT returns all (and only) st udent _t yp instances from person_obj _tabl e
of type person_typ, a supertype of st udent _typ. The statement uses TREAT to modify the type
of p from person_typ to student _typ.

Example 2-38 Using the TREAT Function to Return a Specific Subtype in a Query

- Using the TREAT Function to Return a Specific Subtype in a Query exanple,

- not sanple schema

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 41 of 43

ORACLE Chapter 2
Functions and Operators Useful with Objects

SELECT TREAT(VALUE(p) AS student typ)
FROM person_obj _table p;

For each p, the TREAT modification succeeds only if the most specific or specialized type of the
value of p is st udent _t yp or one of its subtypes. If p is a person who is not a student, or if p is
NULL, TREAT returns NULL in SQL or, in PL/SQL, raises an exception.

You can also use TREAT to modify the declared type of a REF expression. For example:

- Using the TREAT Function to nodify declared type of a REF exanpl e,
- not sanple schema

SELECT TREAT(REF(p) AS REF student _typ)
FROM person_obj _table p;

The previous example returns REFs to all st udent _t yp instances. In SQL it returns NULL REFs
for all person instances that are not students, and in PL/SQL it raises an exception.

2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods

Perhaps the most important use of TREAT is to access attributes or methods of a subtype of a

row or column's declared type. The following query retrieves the ngj or attribute of all persons,
students and part-time students, who have this attribute. NULL is returned for persons who are
not students:

Example 2-39 Using the TREAT Function to Access Attributes of a Specific Subtype

SELECT name, TREAT(VALUE(p) AS student _typ).najor nmjor
FROM person_obj _table p;

The following query will not work because mgj or is an attribute of st udent _t yp but not of
person_typ, the declared type of table per sons:

SELECT name, VALUE(p).major maj or FROM person_obj _table p -- incorrect;

The following is a PL/SQL example:

DECLARE
var person_typ;

BEG N
var := enpl oyee_typ(55, 'Jane Smith', '1-650-555-0144"', 100, 'Jennifer Nelson');
DBMS_OUTPUT. PUT_LI NE(TREAT(var AS enpl oyee_typ). ngr);

END,;

/

@ See Also

For more information about the SQL TREAT function, see Oracle Al Database SQL
Language Reference.

2.4.9 VALUE

In a SQL statement, the VALUE function takes as its argument a correlation variable (table alias)
for an object table or object view and returns object instances corresponding to rows of the
table or view.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 42 of 43

ORACLE

Chapter 2
Functions and Operators Useful with Objects

The VALUE function may return instances of the declared type of the row or any of its subtypes.

Example 2-40 first creates a part _ti ne_st udent _typ, and then shows a SELECT query
returning all persons, including students and employees, from table per son_obj _tabl e of
person_typ.

Example 2-40 Using the VALUE Function

- Requires Ex. 2-31 and 2-32

CREATE TYPE part _time_student _typ UNDER student _typ (
number _hour s NUMBER) ;

/

SELECT VALUE(p) FROM person_obj _table p;

To retrieve only part time students, that is, instances whose most specific type is
part _tine_student typ, use the ONLY keyword to confine the selection:

SELECT VALUE(p) FROM person_obj _table p
VWHERE VALUE(p) IS OF (ONLY part_tine_student_typ);

In the following example, VALUE is used to update a object instance in an object table:

UPDATE person_obj table p
SET VALUE(p) person_typ(12, 'Bob Jones', '1-650-555-0130")
VWHERE p.idno = 12;

@ See Also

 Example 5-22

e For more information about the SQL VALUE function, see Oracle Al Database SQL
Language Reference.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 43 of 43

Using PL/SQL With Object Types

You can use object types with PL/SQL

Topics:

» Declaring and Initializing Objects in PL/SQL
* Object Manipulation in PL/SQL

e Use of Overloading in PL/SQL with Inheritance
e Using Dynamic SQL With Objects

3.1 Declaring and Initializing Objects in PL/SQL

Using object types in a PL/SQL block, subprogram, or package is a two-step process.

1. You must define object types using the SQL statement CREATE TYPE, in SQL*Plus or other
similar programs.

After an object type is defined and installed in the schema, you can use it in any PL/SQL
block, subprogram, or package.

2. In PL/SQL, you then declare a variable whose data type is the user-defined type or ADT
that you just defined.

Objects or ADTs follow the usual scope and instantiation rules.

@ See Also
"About Object Types "

3.1.1 Defining Object Types

You can define object types using CREATE TYPE.

Example 3-1 provides two object types, and a table of object types. Subsequent examples
show how to declare variables of those object types in PL/SQL and perform other operations
with these objects.

Example 3-1 Working With Object Types
CREATE TYPE address_typ AS OBJECT (

street VARCHAR2(30) ,
city VARCHAR2(20) ,
state CHAR(2),

postal _code VARCHAR2(6));
/
CREATE TYPE enpl oyee_typ AS OBJECT (

enpl oyee_id NUMBER(6) ,
first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(25) ,

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 3
Declaring and Initializing Objects in PL/SQL

enai | VARCHAR2(25) ,
phone_nunber VARCHAR2(20) ,
hire_date DATE,

job_id VARCHAR2(10) ,
sal ary NUMBER(8, 2) ,
conmi ssi on_pct NUMBER(2, 2) ,
manager _i d NUMBER(6) ,
departnent _id NUMBER(4) ,
addr ess address_typ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER,

MEMBER PROCEDURE di spl ay_address (SELF I N OUT NOCOPY enpl oyee typ));
/
CREATE TYPE BODY enpl oyee_typ AS

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S

BEG N

RETURN enpl oyee_i d;

END,

MEMBER PROCEDURE di spl ay_address (SELF IN OUT NOCOPY enpl oyee_typ) IS

BEG N

DBMS_QUTPUT. PUT_LINE(first_nane || ' ' || last_nane);
DBVS_QUTPUT. PUT_LI NE(addr ess. street);
DBMS_QUTPUT. PUT_LI NE(address.city || ', ' || address.state || " ' |]
addr ess. postal _code);
END,
END,;

/
CREATE TABLE enpl oyee_tab OF enpl oyee_typ;

3.1.2 Declaring Objects in a PL/SQL Block

You can use objects or ADTs wherever built-in types such as CHAR or NUMBER can be used.

» Declare objects in the same way you declare built-in types.

Example 3-2 declares object enp of type enpl oyee_t yp. Then, the constructor for object type
enpl oyee_t yp initializes the object.

Example 3-2 Declaring Objects in a PLISQL Block

- Requires Ex. 3-1

DECLARE
enp enpl oyee_typ; -- enp is atomically null

BEG N

- call the constructor for enployee_typ
enp := enployee_typ(315, 'Francis', 'Logan', 'FLOGAN,

' 415.555. 0100', '01-MAY-04', 'SA MAN, 11000, .15, 101, 110,
address_typ(' 376 Mssion', 'San Francisco', 'CA, '94222"));

DBMS_QUTPUT. PUT_LI NE(enp.first_nane || " ' || enp.last_nane); -- display details
enp. di splay_address(); ~-- call object method to display details
END,;

/

The formal parameter of a PL/SQL subprogram can have data types of user-defined types.
Therefore, you can pass objects to stored subprograms and from one subprogram to another.

In the next code line, the object type enpl oyee_t yp specifies the data type of a formal
parameter:

PROCEDURE open_acct (new_acct |IN OUT enpl oyee_typ) IS ...

In this code line, object type enpl oyee_t yp specifies the return type of a function:

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 2 of 10

ORACLE’

Chapter 3

Object Manipulation in PL/SQL

FUNCTI ON get _acct (acct_id I N NUMBER) RETURN enpl oyee_typ IS ...

3.1.3 How PL/SQL Treats Uninitialized Objects

User-defined types, just like collections, are atomically null, until you initialize the object by
calling the constructor for its object type. That is, the object itself is null, not just its attributes.

Comparing a null object with any other object always yields NULL. Also, if you assign an
atomically null object to another object, the other object becomes atomically null (and must be
reinitialized). Likewise, if you assign the non-value NULL to an object, the object becomes

atomically null.

In an expression, attributes of an uninitialized object evaluate to NULL. When applied to an

uninitialized object or its attributes, the | S NULL comparison operator yields TRUE.

See Example 2-1 for an illustration of null objects and objects with null attributes.

3.2 Object Manipulation in PL/SQL

This section describes how to manipulate object attributes and methods in PL/SQL.

This section includes the following topics:

e Accessing Object Attributes With Dot Notation

e Calling Object Constructors and Methods

» Updating and Deleting Objects

¢ Manipulating Object Manipulation with Ref Modifiers

3.2.1 Accessing Object Attributes With Dot Notation

You refer to an attribute by name. To access or change the value of an attribute, you use dot

notation.

Attribute names can be chained, which lets you access the attributes of a nested object type.

Example 3-3 uses dot notation and generates the same output as Example 3-2.

Example 3-3 Accessing Object Attributes

- Requires Ex. 3-1
DECLARE
enp enpl oyee_typ;
BEG N
enp : = employee_typ(315, 'Francis', 'Logan', 'FLOGAN ,
' 415.555. 0100', 'O01-MAY-04', 'SA MAN, 11000, .15, 101, 110,
address_typ(' 376 Mssion', 'San Francisco', 'CA, '94222"));
DBMS_QUTPUT. PUT_LI NE(enp. first_name || ' ' || enp.last_nane);
DBMS_QUTPUT. PUT_LI NE(enp. addr ess. street);

DBMS_QUTPUT. PUT_LI NE(enp. address.city || ', ' ||enp. address.state || ' '

enp. addr ess. post al _code);
END;
/

3.2.2 Calling Object Constructors and Methods

Calls to a constructor are allowed wherever function calls are allowed.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 3 of 10

ORACLE

Chapter 3
Object Manipulation in PL/SQL

A constructor, like all functions, is called as part of an expression, as shown in Example 3-3
and Example 3-4.

When you pass parameters to a constructor, the call assigns initial values to the attributes of
the object being instantiated. When you call the default constructor to fill in all attribute values,
you must supply a parameter for every attribute; unlike constants and variables, attributes
cannot have default values. You can call a constructor using named notation instead of
positional notation.

Example 3-4 Inserting Rows in an Object Table

- Requires Ex. 3-1
DECLARE
emp employee_typ;
BEG N
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(310, 'Evers', 'Boston', 'EBCSTON,
'617.555.0100', '01-AUG 04', 'SA REFP', 9000, .15, 101, 110,
address_typ(' 123 Main', 'San Francisco', 'CA'", '94111')));
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(320, 'Martha', 'Dunn', 'NMDUNN,
' 650. 555. 0150', '30-SEP-04', 'AC MR, 12500, 0, 101, 110,
address_typ(' 123 Broadway', 'Redwood Gity', 'CA', '94065')));
END;
/
SELECT VALUE(e) from enpl oyee_tab e;

3.2.3 Accessing Object Methods

Like packaged subprograms, methods are called using dot notation.

In Example 3-5, the di spl ay_addr ess method is called to display attributes of an object. Note
the use of the VALUE function which returns the value of an object. VALUE takes as its argument
a correlation variable. In this context, a correlation variable is a row variable or table alias
associated with a row in an object table.

Example 3-5 Accessing Object Methods

- Requires Ex. 3-1 and Ex. 3-4
DECLARE

enmp enpl oyee_typ;

BEG N
SELECT VALUE(e) I NTO enp FROM enpl oyee tab e WHERE e. enpl oyee_id = 310;
emp.display_address();

END;

/

In SQL statements, calls to a parameterless method require an empty parameter list. In
procedural statements, an empty parameter list is optional unless you chain calls, in which
case it is required for all but the last call. Also, if you chain two function calls, the first function
must return an object that can be passed to the second function.

If a PL/SQL function is used in place of an ADT constructor during a DML operation, the
function may execute multiple times as part of the DML execution. For the function to execute
only once per occurrence, it must be a deterministic function.

For static methods, calls use the notation t ype_nane. met hod_nane rather than specifying an
instance of the type.

When you call a method using an instance of a subtype, the actual method that is executed
depends on declarations in the type hierarchy. If the subtype overrides the method that it
inherits from its supertype, the call uses the subtype implementation. Otherwise, the call uses
the supertype implementation. This capability is known as dynamic method dispatch.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 3
Object Manipulation in PL/SQL

@® See Also
"Dynamic Method Dispatch”

3.2.4 Updating and Deleting Objects

From inside a PL/SQL block you can modify and delete rows in an object table.
Example 3-6 Updating and Deleting Rows in an Object Table

- Requires Ex. 3-1 and 3-4
DECLARE
enmp enpl oyee_typ;
BEG N
I NSERT | NTO enpl oyee_tab VALUES (enpl oyee_typ(370, 'Robert', 'Mers', 'RWERS,
'415.555.0150', '07-NOv-04', 'SA REF', 8800, .12, 101, 110,
address_typ('540 Fillnore', 'San Francisco', 'CA", '94011')));
UPDATE enpl oyee_tab e SET e. address.street = '1040 California'
VWHERE e. enpl oyee_id = 370;
DELETE FROM enpl oyee_tab e WHERE e. enpl oyee_id = 310;
END;
/
SELECT VALUE(e) from enpl oyee_tab e;

3.2.5 Manipulating Object Manipulation with Ref Modifiers

You can retrieve REFs using the function REF, which takes as its argument a correlation variable
or alias.

You can declare REFs as variables, parameters, fields, or attributes. You can use REFs as input
or output variables in SQL data manipulation statements.

Example 3-7 Updating Rows in an Object Table With a REF Modifier

- Requires Ex. 3-1, 3-4, and 3-6

DECLARE
enp enpl oyee_typ;
enp_ref REF enpl oyee_typ;
BEG N

SELECT REF(e) |INTO enp_ref FROM enpl oyee_tab e WHERE e. enpl oyee_id = 370;
UPDATE enpl oyee_tab e
SET e.address = address_typ(' 8701 Col | ege', 'GCekland', 'CA', '94321")
WHERE REF(e) = enp_ref;
END;
/

You cannot navigate through REFs in PL/SQL. For example, the assignment in Example 3-8
using a REF is not allowed. Instead, use the function DEREF or make calls to the package
UTL_REF to access the object.

Example 3-8 Trying to Use DEREF in a SELECT INTO Statement, Incorrect

- Requires Ex. 3-1, 3-4, and 3-6

DECLARE
enp enpl oyee_typ;
enp_r ef REF enpl oyee_typ;
enp_nane VARCHAR2(50) ;
BEG N

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 3
Use of Overloading in PL/SQL with Inheritance

SELECT REF(e) INTO enp_ref FROM enpl oyee_tab e WHERE e. enpl oyee_id = 370;
- the follow ng assignment raises an error, not allowed in PL/SQL enp :=

DEREF(enp_ref); -- cannot use DEREF in procedural statements
enp_nane := enp.first_name || ' ' || enp.last_nane;
DBMS_QUTPUT. PUT_LI NE(enp_nane) ;

END;

/

This assignment raises an error as described below:

not allowed in PL/SQL
- enp_nane := enp_ref.first_name || ' ' || enp_ref.last_nane;
- enp := DEREF(enp_ref); not allowed, cannot use DEREF in procedural statenents

® See Also
e For information on the REF function, see Oracle Al Database SQL Language
Reference.

e For detailed information on the DEREF function, see Oracle Al Database SQL
Language Reference.

3.3 Use of Overloading in PL/SQL with Inheritance

Overloading allows you to substitute a subtype value for a formal parameter that is a
supertype. This capability is known as substitutability.

The following rules are about overloading and substitutability.

Rules of Substitution

If more than one instance of an overloaded procedure matches the procedure call, the
following substitution rules determine which procedure, if any, is called:

e If the signatures of the overloaded procedures only differ in that some parameters are
object types from the same supertype-subtype hierarchy, the closest match is used. The
closest match is one where all the parameters are at least as close as any other
overloaded instance, as determined by the depth of inheritance between the subtype and
supertype, and at least one parameter is closer.

« If instances of two overloaded methods match, and some argument types are closer in one
overloaded procedure while others are closer in the second procedure, a semantic error
occurs.

« If some parameters differ in their position within the object type hierarchy, and other
parameters are of different data types so that an implicit conversion would be necessary,
then a semantic error occurs.

3.3.1 Resolving PL/SQL Functions with Inheritance

Resolving PL/SQL functions with inheritance follows the rules of substitution.

Example 3-9 creates a type hierarchy that has three levels starting with super _t. There is a
package with two overloaded instances of a function that are the same except for the position
of the argument type in the type hierarchy. The invocation declares a variable of type final _t,
and then calls the overloaded function.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 3
Use of Overloading in PL/SQL with Inheritance

The instance of the function that executes is the one that accepts a sub_t parameter, because
sub_t is closerto final _t than super _t in the hierarchy. This follows the rules of substitution.

Note that because determining which instance to call happens at compile time, the fact that the
argument passed in was also a fi nal _t is ignored. If the declaration was v super _t : =
final _t(1,2,3),the overloaded function with the argument super _t would be called.

Example 3-9 Resolving PL/SQL Functions With Inheritance

CREATE OR REPLACE TYPE super_t AS OBJECT
(n NUMBER) NOT final;
/
CREATE OR REPLACE TYPE sub_t UNDER super _t
(n2 NUMBER) NOT final;
/
CREATE OR REPLACE TYPE final_t UNDER sub_t
(n3 NUMBER) ;
/
CREATE OR REPLACE PACKAGE p IS
FUNCTI ON func (arg super_t) RETURN NUMBER
FUNCTI ON func (arg sub_t) RETURN NUMBER
END;
/
CREATE OR REPLACE PACKAGE BODY p IS
FUNCTI ON func (arg super_t) RETURN NUMBER IS BEG N RETURN 1; END;
FUNCTI ON func (arg sub_t) RETURN NUMBER IS BEG N RETURN 2; END;

END;
/
DECLARE

v final_t := final_t(1,2,3);
BEG N

DBMS_QUTPUT. PUT_LI NE(p. func(v)); -- prints 2
END;
/

@® See Also

See Use of Overloading in PL/SQL with Inheritance

3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically

Dynamically resolving PL/SQL functions with inheritance follows the rules of substitution.

See Use of Overloading in PL/SQL with Inheritance

In Example 3-10, determining which instance to call happens at run time because the functions
are overriding member functions of the type hierarchy. This is dynamic method dispatch,
described in "Dynamic Method Dispatch".

Though v is an instance of super _t , because the value of fi nal _t is assigned to v, the sub_t
instance of the function is called, following the rules of substitution.

Example 3-10 Resolving PL/SQL Functions With Inheritance Dynamically

-- Performthe following drop commands if you created these objects in Ex. 3-9
-- DROP PACKAGE p;

-- DROP TYPE final _t;

- DROP TYPE _sub t;

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE’

3.4 Using

Chapter 3
Using Dynamic SQL With Objects

- DROP TYPE super _t FORCE;
CREATE OR REPLACE TYPE super_t AS OBJECT
(n NUMBER, MEMBER FUNCTI ON func RETURN NUMBER) NOT fi nal ;
/
CREATE OR REPLACE TYPE BODY super_t AS
MEMBER FUNCTI ON func RETURN NUMBER IS BEG N RETURN 1; END; END;
/
CREATE TYPE sub_t UNDER super _t
(n2 NUMBER,
OVERRI DI NG MEMBER FUNCTI ON func RETURN NUMBER) NOT fi nal ;
/
CREATE OR REPLACE TYPE BODY sub_t AS
OVERRI DI NG MEMBER FUNCTI ON func RETURN NUMBER IS BEG N RETURN 2; END; END;
/
CREATE OR REPLACE TYPE final _t UNDER sub_t
(n3 NUMBER);
/

DECLARE
v super_t :=final_t(1,2,3);
BEG N
DBMS_OUTPUT. PUT_LI NE(' answer:'|| v.func); -- prints 2
END;
/

Dynamic SQL With Objects

Dynamic SQL is a feature of PL/SQL that enables you to enter SQL information, such as a
table name, the full text of a SQL statement, or variable information at run-time.

Topics:

¢ Using Dynamic SQL with Object Types and Collections

e Calling Package Procedures wtih Object Types and Collections

® See Also
Oracle Al Database PL/SQL Language Reference

3.4.1 Using Dynamic SQL with Object Types and Collections

You can use dynamic SQL with object types and collections.

Example 3-11 illustrates the use of objects and collections with dynamic SQL. First, the
example defines the object type per son_t yp and the VARRAY type hobbi es_var, then it defines
the package, t eans, that uses these types.

You need AUTHI D CURRENT _USER to execute dynamic package methods; otherwise, these
methods raise an insufficient privileges error when you run Example 3-12, which is an
anonymous block that calls the procedures in package TEAMS.

Example 3-11 A Package that Uses Dynamic SQL for Object Types and Collections

CREATE OR REPLACE TYPE person_typ AS OBJECT (nane VARCHAR2(25), age NUMBER);
/
CREATE TYPE hobbi es_var AS VARRAY(10) OF VARCHAR2(25);

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE Chapter 3
Using Dynamic SQL With Objects

/
CREATE OR REPLACE PACKAGE tears

AUTHID CURRENT_USER AS
PROCEDURE create_table (tab_name VARCHAR?2);
PROCEDURE i nsert _row (tab_name VARCHAR2, p person_typ, h hobbies_var);
PROCEDURE print_table (tab_nane VARCHAR2);
END;
/
CREATE OR REPLACE PACKAGE BCDY teans AS
PROCEDURE create_table (tab_name VARCHAR2) |S

BEG N
EXECUTE | MVEDI ATE ' CREATE TABLE ' || tab_nane ||
(pers person_typ, hobbs hobbies var)';
END,;

PROCEDURE i nsert _row (
tab_nane VARCHARZ,

p person_typ,
h hobbies_var) IS

BEG N
EXECUTE | MVEDI ATE ' INSERT INTO ' || tab_nane ||
VALUES (:1, :2)' USING p, h;
END;

PROCEDURE print_table (tab_nane VARCHAR2) IS
TYPE refcurtyp IS REF CURSOR
v_cur refcurtyp;

p person_typ;

h hobbi es_var;

BEG N
OPEN v_cur FOR ' SELECT pers, hobbs FROM' || tab_name;
LOooP

FETCH v_cur INTO p, h;
EXIT WHEN v_cur %NOTFOUND;
-- print attributes of 'p' and el ements of 'h'
DBMS_OUTPUT. PUT_LI NE(' Name: ' || p.nane || ' - Age: ' || p.age);
FOR i IN h.FIRST..h. LAST
LooP
DBMS_OUTPUT. PUT_LI NE(' Hobby(" || i || "): " || h(i));
END LOOP;
END LOOP;
CLCSE v_cur;
END,;
END;
/

3.4.2 Calling Package Procedures with Object Types and Collections

You can call package procedures with object types and collections.

From an anonymous block,Example 3-12, you might call the procedures in package TEAMS as
shown in Example 3-11

Example 3-12 Calling Procedures from the TEAMS Package

DECLARE

t eam name VARCHAR2(15);
BEG N

team name : = 'Notables';

TEAMS. creat e_t abl e(t eam nane) ;

TEAMS. i nsert _row(team nane, person_typ('John', 31),
hobbi es_var (' skiing', 'coin collecting', 'tennis'));

TEAMS. i nsert _row(team nane, person_typ(' Mary', 28),

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 3
Using Dynamic SQL With Objects

hobbi es_var('golf', 'quilting', 'rock clinbing', 'fencing'));
TEAMS. print _tabl e(team nane);
END;
/

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 10

Object Support in Oracle Programming
Environments

In an Oracle Al Database, you can create object types with SQL data definition language
(DDL) commands, and you can manipulate objects with SQL data manipulation language
(DML) commands. From there, you can use many Oracle application programming
environments and tools that have built-in support for Oracle Objects.

Topics:
¢ SOL and Object Types

e SQL Developer

e PL/SQL
e Oracle Call Interface (OCI)

e Pro*C/C++
¢ Oracle C++ Call Interface (OCCI)

« Java Tools for Accessing Oracle Objects

« XML

e Utilities Providing Support for Objects

4.1 SQL and Object Types

Oracle SQL data definition language (DDL) provides operations to support object types.

These operations include:

- Defining object types, nested tables, and arrays
e Specifying privileges

e Specifying table columns of object types

e Creating object tables

Oracle SQL DML provides the following support for object types:

* Querying and updating objects and collections

e Manipulating REFs

@ See Also

For a complete description of Oracle SQL syntax, see Oracle Al Database SQL
Language Reference

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE Chapter 4
SQL Developer

4.2 SQL Developer

SQL Developer provides a visual development environment for database developers and
DBAs to create and manipulate database schema objects including Oracle Objects

SQL Developer enables you to run reports, monitor performance and perform many other
database-related tasks using a rich graphical user interface.

® See Also
Oracle SQL Developer User's Guide

4.3 PL/SQL

Object types and subtypes can be used in PL/SQL procedures and functions in most places
where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object types.

You can implement the methods associated with object types in PL/SQL. These methods
(functions and procedures) reside on the server as part of a user's schema.

@ See Also

For a complete description of PL/SQL, see the Oracle Al Database PL/SQL Language
Reference

4.4 Oracle Call Interface (OCI)

OCl is a set of C library functions that applications can use to manipulate data and schemas in
an Oracle Al Database.

« About Oracle Call Interface (OCI)

¢ Associative Access in OCI Programs

¢ Navigational Access in OCI Programs

4.4.1 About Oracle Call Interface (OCI)

OCI supports both traditional 3GL and object-oriented techniques for database access, as
explained in the following sections.

An important component of OCl is a set of calls to manage a workspace called the object
cache. The object cache is a memory block on the client side that allows programs to store
entire objects and to navigate among them without additional round trips to the server.

The object cache is completely under the control and management of the application programs
using it. The Oracle server has no access to it. The application programs using it must
maintain data coherency with the server and protect the workspace against simultaneous
conflicting access.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE

Chapter 4
Oracle Call Interface (OCI)

OCI provides functions to

e Access objects on the server using SQL.

e Access, manipulate and manage objects in the object cache by traversing pointers or REFs.
* Convert Oracle dates, strings and numbers to C data types.

* Manage the size of the object cache's memory.

OCI improves concurrency by allowing individual objects to be locked. It improves performance
by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C data types corresponding
to a Oracle object types.

@ See Also

Oracle Call Interface Developer's Guide for more information about using objects with
OcClI

4.4.2 Associative Access in OCI Programs

OCI programs support associative access to objects with an API that can manipulate object
data.

Traditionally, 3GL programs manipulate data stored in a relational database by executing SQL
statements and PL/SQL procedures. Data is usually manipulated on the server without
incurring the cost of transporting the data to the client(s). OCI supports this associative access
to objects by providing an API for executing SQL statements that manipulate object data.
Specifically, OCI enables you to:

e Execute SQL statements that manipulate object data and object type schema information

e Pass object instances, object references (REFs), and collections as input variables in SQL
statements

* Return object instances, REFs, and collections as output of SQL statement fetches

» Describe the properties of SQL statements that return object instances, REFs, and
collections

« Describe and execute PL/SQL procedures or functions with object parameters or results

e Synchronize object and relational functionality through enhanced commit and rollback
functions

See "Associative Access in Pro*C/C++".

4.4.3 Navigational Access in OCI Programs

OCI programs provide navigational access by means of an API.

In the object-oriented programming paradigm, applications model their real-world entities as a
set of inter-related objects that form graphs of objects. The relationships between objects are
implemented as references. An application processes objects by starting at some initial set of
objects, using the references in these initial objects to traverse the remaining objects, and
performing computations on each object. OCI provides an API for this style of access to
objects, known as navigational access. Specifically, OCI enables you to:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE

Chapter 4
Oracle Call Interface (OCI)

e Cache objects in memory on the client machine

« Dereference an object reference and pin the corresponding object in the object cache. The
pinned object is transparently mapped in the host language representation.

* Notify the cache when the pinned object is no longer needed

« Fetch a graph of related objects from the database into the client cache in one call
e Lock objects

« Create, update, and delete objects in the cache

* Flush changes made to objects in the client cache to the database

See "Navigational Access in Pro*C/C++".

4.4.4 Object Cache

To support high-performance navigational access of objects, OCI runtime provides an object
cache for caching objects in memory.

The object cache supports references (REFs) to database objects in the object cache, the
database objects can be identified (that is, pinned) through their references. Applications do
not need to allocate or free memory when database objects are loaded into the cache,
because the object cache provides transparent and efficient memory management for
database objects.

Also, when database objects are loaded into the cache, they are transparently mapped into the
host language representation. For example, in the C programming language, the database
object is mapped to its corresponding C structure. The object cache maintains the association
between the object copy in the cache and the corresponding database object. Upon
transaction commit, changes made to the object copy in the cache are propagated
automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When an
application dereferences a REF and the corresponding object is not yet cached in the object
cache, the object cache automatically sends a request to the server to fetch the object from the
database and load it into the object cache. Subsequent dereferences of the same REF are
faster because they become local cache access and do not incur network round-trips.

To notify the object cache that an application is accessing an object in the cache, the
application pins the object; when it is finished with the object, it unpins it. The object cache
maintains a pin count for each object in the cache. The count is incremented upon a pin call
and decremented upon an unpin call. When the pin count goes to zero, it means the object is
no longer needed by the application.

The object cache uses a least-recently used (LRU) algorithm to manage the size of the cache.
When the cache reaches the maximum size, the LRU algorithm frees candidate objects with a
pin count of zero.

4.4.5 Building an OCI Program That Manipulates Objects

You can build an OCI program to manipulate objects by representing types in the C host
language format.

When you build an OCI program that manipulates objects, you must complete the following
general steps

1. Define the object types that correspond to the application objects.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE

Chapter 4
Oracle Call Interface (OCI)

2. Execute the SQL DDL statements to populate the database with the necessary object
types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you must
represent these types in the C host language format. You can do this by representing the
object types as C structs. You can use a tool provided by Oracle called the Object Type
Translator (OTT) to generate the C mapping of the object types. The OTT puts the
equivalent C structs in header (*.h) files. You include these *.h files in the *.c files
containing the C functions that implement the application.

4. Construct the application executable by compiling and linking the application's *.c files with
the OCI library.

@ See Also

Oracle Call Interface Developer's Guide for tips and techniques for using OCI
program effectively with objects

4.4.6 Defining User-Defined Constructors in C

When defining a user-defined constructor in C, you must specify SELF (and you may optionally
specify SELF TDO) in the PARAMETERS clause.

On entering the C function, the attributes of the C structure that the object maps to are all
initialized to NULL. The value returned by the function is mapped to an instance of the user-
defined type.

Example 4-1 shows how to define a user-defined constructor in C.

Example 4-1 Defining a User-Defined Constructor in C

CREATE LI BRARY person_|lib TRUSTED AS STATIC
/

CREATE TYPE person AS OBJECT
(nanme VARCHAR2(30),
CONSTRUCTOR FUNCTI ON person(SELF I N QUT NOCOPY person, nanme VARCHAR?2)
RETURN SELF AS RESULT);
/

CREATE TYPE BQODY person IS
CONSTRUCTOR FUNCTI ON person(SELF | N OUT NOCOPY person, nane VARCHAR2)
RETURN SELF AS RESULT
|'S EXTERNAL NAME "cons_person_typ" LIBRARY person_lib WTH CONTEXT
PARAVETERS(cont ext, SELF, name OCI String, name | NDI CATOR sb4);
END; /

The SELF parameter is mapped like an | N parameter, so in the case of a NOT FI NAL type, it is
mapped to (dvoid *), not (dvoi d **). The return value's TDO must match the TDO of SELF and
is therefore implicit. The return value can never be null, so the return indicator is implicit as
well.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE’

Chapter 4
Pro*C/C++

4.5 Pro*C/C++

The Oracle Pro*C/C++ precompiler allows programmers to use user-defined data types in C
and C++ programs.

Topics:

About Pro*C/C++

Associative Access in Pro*C/C++

Navigational Access in Pro*C/C++

Conversion Between Oracle Types and C Types

Oracle Type Translator (OTT)

4.5.1 About Pro*C/C++

Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C data types to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and automatic type
conversion from database types to C data types.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two ways to
access objects in the server:

SQL statements and PL/SQL functions or procedures embedded in Pro*C programs.

An interface to the object cache (described under "Oracle Call Interface (OCI)"), where
objects can be accessed by traversing pointers, then modified and updated on the server.

@ See Also

For a complete description of the Pro*C/C++ precompiler, see Pro*C/C++
Programmer's Guide

4.5.2 Associative Access in Pro*C/C++

Pro*C/C++ offers the following capabilities for associative access to objects:

Support for transient copies of objects allocated in the object cache

Support for transient copies of objects referenced as input host variables in embedded
SQL | NSERT, UPDATE, and DELETE statements, or in the WHERE clause of a SELECT statement

Support for transient copies of objects referenced as output host variables in embedded
SQL SELECT and FETCH statements

Support for ANSI dynamic SQL statements that reference object types through the
DESCRI BE statement, to get the object's type and schema information

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE

Chapter 4
Pro*C/C++

@ See Also

For background information on associative access, see "Associative Access in OCI
Programs".

4.5.3 Navigational Access in Pro*C/C++

Pro*C/C++ offers the following capabilities to support a more object-oriented interface to
objects:

Support for dereferencing, pinning, and optionally locking an object in the object cache
using an embedded SQL OBJECT DEREF statement

Allowing a Pro*C/C++ user to inform the object cache when an object has been updated or
deleted, or when it is no longer needed, using embedded SQL OBJECT UPDATE, OBJECT
DELETE, and OBJECT RELEASE statements

Support for creating new referenceable objects in the object cache using an embedded
SQL OBJECT CREATE statement

Support for flushing changes made in the object cache to the server with an embedded
SQL OBJECT FLUSH statement

@ See Also

For background information on navigational access, see "Navigational Access in OCI
Programs".

4.5.4 Conversion Between Oracle Types and C Types

Pro*C/C++ provides ease-of-use enhancements to simplify use of OCI types in C and C++
applications.

The C representation for objects that is generated by the Oracle Type Translator (OTT) uses
OCI types which are opaque and insulate you from changes to their internal formats, but are
cumbersome to use in a C or C++ application. These representations include OCl Stri ng and
OCl Nunber for scalar attributes and OCl Tabl e, OCl Array, and OCl Ref types for collection types
and object references.

With Pro*C/C++ enhancements:

Object attributes can be retrieved and implicitly converted to C types with the embedded
SQL OBJECT CET statement.

Object attributes can be set and converted from C types with the embedded SQL OBJECT
SET statement.

Collections can be mapped to a host array with the embedded SQL COLLECTI ON GET
statement. Furthermore, if the collection is comprised of scalar types, then the OCI types
can be implicitly converted to a compatible C type.

Host arrays can be used to update the elements of a collection with the embedded SQL
COLLECTI ON SET statement. As with the COLLECTI ON GET statement, if the collection is
comprised of scalar types, C types are implicitly converted to OCI types.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE Chapter 4
Oracle C++ Call Interface (OCCI)

4.5.5 Oracle Type Translator (OTT)

The Oracle Type Translator (OTT) is a program that automatically generates C language
structure declarations corresponding to object types.

OTT makes it easier to use the Pro*C precompiler and the OCI server access package.

@ See Also

For complete information about OTT, see Oracle Call Interface Developer's Guide and
Pro*C/C++ Developer's Guide.

4.6 Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the object-oriented
features, native classes, and methods of the C++ programing language to access the Oracle
Al Database.

Topics:

About Oracle C++ Call Interface (OCCI)

¢ OCCI Associative Relational and Object Interfaces

¢ The OCCI Navigational Interface

4.6.1 About Oracle C++ Call Interface (OCCI)

The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is easy to
use. OCCI itself is built on top of OCI and provides the power and performance of OCI using
an object-oriented paradigm.

OCl is a C API to Oracle Al Database. It supports the entire Oracle feature set and provides
efficient access to both relational and object data, but it can be challenging to use—particularly
if you want to work with complex, object data types. Object types are not natively supported in
C, and simulating them in C is not easy. OCCI addresses this by providing a simpler, object-
oriented interface to the functionality of OCI. It does this by defining a set of wrappers for OCI.
By working with these higher-level abstractions, developers can avail themselves of the
underlying power of OCI to manipulate objects in the server through an object-oriented
interface that is significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of functionalities,
namely:

¢ Associative relational access
* Associative object access

* Navigational access

4.6.2 OCCI Associative Relational and Object Interfaces

The associative relational API and object classes provide SQL access to the database.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE’

Chapter 4
Java Tools for Accessing Oracle Objects

Through these interfaces, SQL is executed on the server to create, manipulate, and fetch
object or relational data. Applications can access any data type on the server, including the
following:

e Large objects
e Objects/Structured types
e Arrays

» References

4.6.3 The OCCI Navigational Interface

The navigational interface is a C++ interface that lets you seamlessly access and modify
object-relational data in the form of C++ objects without using SQL.

The C++ objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through
references from that object to other objects. Server objects are materialized as C++ class
instances in the application cache.

An application can use OCCI object navigational calls to perform the following functions on the
server's objects:

« Create, access, lock, delete, and flush objects

* Get references to the objects and navigate through them

@ See Also

Oracle C++ Call Interface Programmer's Guide for a complete account of how to
build applications with the Oracle C++ API

4.7 Java Tools for Accessing Oracle Objects

Oracle provides various ways to integrate Oracle object features with Java.

These interfaces enable you both to access SQL data from Java and to provide persistent
database storage for Java objects.

Topics:

 JDBC Access to Oracle Object Data

- Data Mapping Strategies

e Java Object Storage

» Defining User-Defined Constructors in Java

e JDeveloper

4.7.1 JDBC Access to Oracle Object Data

JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE

Chapter 4
Java Tools for Accessing Oracle Objects

Oracle provides tight integration between objects and JDBC. You can map SQL types to Java
classes with considerable flexibility.

Oracle JDBC:

* Allows access to objects and collection types (defined in the database) in Java programs
through dynamic SQL.

* Translates types defined in the database into Java classes through default or customizable
mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as user-
defined (object) types. JDBC materializes Oracle objects as instances of particular Java
classes. Using JDBC to access Oracle objects involves creating the Java classes for the
Oracle objects and populating these classes. You can either:

* Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the classes for
the attributes and populates them for you.

e Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the customized
Java classes that you specify, which imposes a set of constraints on the Java classes. To
satisfy these constraints, you can choose to define your classes according to either the
SQLDat a interface or the ORADat a interface.

@ See Also

Oracle Al Database JDBC Developer's Guide for complete information about
JDBC

4.7.2 Data Mapping Strategies

Oracle SQLJ supports either strongly typed or weakly typed Java representations of object
types, reference types (REFs), and collection types (varrays and nested tables) to be used in
iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a particular object
type, REF type, or collection type and must implement the interface or acl e.sql .ORADat a. The
Oracle JVM Web services Call-Out Utility can automatically generate such custom Java
classes.

Weakly typed representations use the class or acl e.sgl .STRUCT (for objects), or acl e.sql .REF
(for references), or or acl e.sql .ARRAY (for collections).

4.7.3 Java Object Storage

Oracle JVM Web services Call-Out Utility enables you to construct Java classes that map to
existing SQL types. You can then access the SQL types from a Java application using JDBC.

You can also go in the other direction. That is, you can create SQL types that map to existing
Java classes. This capability enables you to provide persistent storage for Java objects. Such
SQL types are called SQL types of Language Java, or SQLJ object types. They can be used
as the type of an object, an attribute, a column, or a row in an object table. You can
navigationally access objects of such types—Java objects—through either object references or
foreign keys, and you can query and manipulate such objects from SQL.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 4
Java Tools for Accessing Oracle Objects

You create SQLJ types with a CREATE TYPE statement as you do other user-defined SQL types.
For SQLJ types, two special elements are added to the CREATE TYPE statement:

e An EXTERNAL NAME phrase, used to identify the Java counterpart for each SQLJ attribute
and method and the Java class corresponding to the SQLJ type itself

e A USI NGclause, to specify how the SQLJ type is to be represented to the server. The USI NG
clause specifies the interface used to retrieve a SQLJ type and the kind of storage.

For example:
Example 4-2 Mapping SQL Types to Java Classes

- Mapping SQ Types to Java O asses exanple, not sanple schema
CREATE TYPE ful | _address AS OBJECT (a NUMBER);
/

CREATE OR REPLACE TYPE person_t AS OBJECT
EXTERNAL NAME ' Person' LANGUAGE JAVA
USI NG SQLDat a (

ss_no NUMBER (9) EXTERNAL NAME ' soci al SecurityNo',

name varchar (100) EXTERNAL NAME ' nane',

address full address EXTERNAL NAME 'addrs',

birth _date date EXTERNAL NAME 'birthDate',

MEMBER FUNCTI ON age RETURN NUMBER EXTERNAL NAME ‘age () return int',

MEMBER FUNCTI ON addressf RETURN ful | _address
EXTERNAL NAME ' get _address () return |ong_address',

STATI C function createf RETURN person_t EXTERNAL NAME 'create ()

return Person',

STATIC function createf (name VARCHAR2, addrs full _address, bDate DATE)
RETURN person_t EXTERNAL NAME 'create (java.lang.String, Long_address,
oracle.sql.date) return Person',

ORDER nenber FUNCTI ON conpare (in_person person_t) RETURN NUVBER
EXTERNAL NAME 'isSane (Person) return int')

/

SQLJ types use the corresponding Java class as the body of the type; you do not specify a
type body in SQL to contain implementations of the type's methods as you do with ordinary
object types.

@® See Also

Oracle Al Database Java Developer’s Guide

4.7.3.1 Creating SQLJ Object Types

You can create SQLJ object types using SQL statements

The SQL statements to create SQLJ types and specify their mappings to Java are placed in a
file called a deployment descriptor. Related SQL constraints and privileges are also specified
in this file. The types are created when the file is executed.

Below is an overview of the process of creating SQL versions of Java types/classes:

1. Design the Java types.
2. Generate the Java classes.

3. Create the SQLJ object type statements.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE

4.
5.
6.

Chapter 4
Java Tools for Accessing Oracle Objects

Construct the JAR file. This is a single file that contains all the classes needed.
Using the | oadj ava utility, install the Java classes defined in the JAR file.

Execute the statements to create the SQLJ object types.

4.7.3.2 Additional Notes About Mapping

The following are additional notes to consider when mapping of Java classes to SQL types:

You can map a SQLJ static function to a user-defined constructor in the Java class. The
return value of this function is of the user-defined type in which the function is locally
defined.

Java static variables are mapped to SQLJ static methods that return the value of the
corresponding static variable identified by EXTERNAL NAME. The EXTERNAL NAME clause for an
attribute is optional with a SQLDat a or ORADat a representation.

Every attribute in a SQLJ type of a SQL representation must map to a Java field, but not
every Java field must be mapped to a corresponding SQLJ attribute: you can omit Java
fields from the mapping.

You can omit classes: you can map a SQLJ type to a non-root class in a Java class
hierarchy without also mapping SQLJ types to the root class and intervening superclasses.
Doing this enables you to hide the superclasses while still including attributes and methods
inherited from them.

However, you must preserve the structural correspondence between nodes in a class
hierarchy and their counterparts in a SQLJ type hierarchy. In other words, for two Java
classesj Aand| _Bthat are related through inheritance and are mapped to two SQL types
s_Aand s_B, respectively, there must be exactly one corresponding node on the
inheritance path from s_Ato s_B for each node on the inheritance path from | Atoj B.

You can map a Java class to multiple SQLJ types as long as you do not violate the
restriction in the preceding paragraph. In other words, no two SQLJ types mapped to the
same Java class can have a common supertype ancestor.

If all Java classes are not mapped to SQLJ types, it is possible that an attribute of a SQLJ
object type might be set to an object of an unmapped Java class. Specifically, to a class
occurring above or below the class to which the attribute is mapped in an inheritance
hierarchy. If the object's class is a superclass of the attribute's type/class, an error is
raised. If it is a subclass of the attribute's type/class, the object is mapped to the most
specific type in its hierarchy for which a SQL mapping exists

4.7.3.3 SQLJ Type Evolution

You can evole SQLJ types using the ALTER TYPE statement.

The ALTER TYPE statement enables you to evolve a type by, for example, adding or dropping
attributes or methods.

When a SQLJ type is evolved, an additional validation is performed to check the mapping
between the class and the type. If the class and the evolved type match, the type is marked
valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A type that is
pending validation can still be manipulated with ALTER TYPE and GRANT statements, for
example.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE Chapter 4
Java Tools for Accessing Oracle Objects

If a type that has a SQL representation is marked as pending evaluation, you can still access
tables of that type using any DML or SELECT statement that does not require a method
invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that has a
serializable representation and has been marked as pending validation. Data of a serializable
type can be accessed only navigationally, through method invocations. These are not possible
with a type that is pending validation. However, you can still re-evolve the type until it passes
validation.

See "Type Evolution".

4.7.3.4 Constraints

For SQLJ types having a SQL representation, the same constraints can be defined as for
ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level. The
following constraints are supported for SQLJ types having a SQL representation:

* Unique constraints

* Primary Key

* Check constraints

e NOT NULL constraints on attributes
» Referential constraints

The | S OF TYPE constraint on column substitutability is supported, too, for SQLJ types having a
SQL representation. See "Constraining Substitutability".

4.7.3.5 Querying SQLJ Objects

SQLJ types can be queried just like ordinary SQL object types.

e Query SQLJ types just like ordinary object types.

Methods called in a SELECT statement must not attempt to change attribute values.

4.7.3.6 Inserting Java Objects

You can insert Java objects into tables.

Inserting a row in a table containing a column of a SQLJ type requires a call to the type's
constructor function to create a Java object of that type.

* Use an implicit, system-generated constructor, or define a static function that maps to a
user-defined constructor in the Java class.

4.7.3.7 Updating SQLJ Objects

You can update SQLJ objects several ways.
SQLJ objects can be updated by:

e Using an UPDATE statement to modify the value of one or more attributes

* Invoking a method that updates the attributes and returns SELF—that is, returns the object
itself with the changes made.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE

Chapter 4
Java Tools for Accessing Oracle Objects

For example, suppose that rai se() is a member function that increments the sal ary field/
attribute by a specified amount and returns SELF. The following statement gives every
employee in the object table enpl oyee_obj t ab a raise of 1000:

UPDATE enpl oyee_objtab SET c=c.rai se(1000);

A column of a SQLJ type can be set to NULL or to another column using the same syntax as for
ordinary object types. For example, the following statement assigns column d to column c:

UPDATE enpl oyee reltab SET c=d;

4.7.4 Defining User-Defined Constructors in Java

When you implement a user-defined constructor in Java, the supply the string supplied as the
implementing routine must correspond to a static function. For the return type of the function,
specify the Java type mapped to the SQL type.

When you implement a user-defined constructor in Java, the string supplied as the
implementing routine must correspond to a static function. For the return type of the function,
specify the Java type mapped to the SQL type.

Example 4-3 is an example of a type declaration that involves a user-defined constructor
implemented in Java.

Example 4-3 Defining a User-Defined Constructor in Java

- Defining a User-Defined Constructor in Java exanple, not sanple schema
CREATE TYPE personl_typ AS OBJECT
EXTERNAL NAME ' pkgl.J_Person’ LANGUAGE JAVA
USI NG SQLDat a(
name VARCHAR2(30),
age NUMBER,
CONSTRUCTOR FUNCTI ON personl_typ(SELF I N OUT NOCOPY personl_typ, nane VARCHARZ,
age NUMBER) RETURN SELF AS RESULT
AS LANGUAGE JAVA
NAME ' pkgl.J_Person.J_Person(java.lang. String, int) return J_Person')

4.7.5 JDeveloper

Oracle JDeveloper is a full-featured, cross-platform, integrated development environment for
creating multitier Java applications that is well integrated with Oracle Application Server and
Database.

Oracle JDeveloper enables you to develop, debug, and deploy Java client applications,
dynamic HTML applications, web and application server components, JavaBean components,
and database stored procedures based on industry-standard models.

JDeveloper is also the integrated development environment for ADF and TopLink.

4.7.5.1 Application Development Framework (ADF)

ADF is a framework for building scalable enterprise Java EE applications. Developers can use
ADF to build applications where the application data is persisted to Oracle Object tables as
well as other schema objects.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE Chapter 4
XML

4.7.5.2 TopLink

TopLink is a framework for mapping Java objects to a variety of persistence technologies,
including databases, and provides facilities to build applications leveraging Oracle Objects.

4.8 XML

XM.Type views wrap existing relational and object-relational data in XML formats. These views
are similar to object views. Each row of an XMLType view corresponds to an XM_Type instance.
The object identifier for uniquely identifying each row in the view can be created using an
expression such as extract () on the XM_Type value.

@ See Also

Oracle XML DB Developer's Guide for information and examples on using XML with
Oracle objects

4.9 Utilities Providing Support for Objects

This section describes several Oracle utilities that provide support for Oracle objects.
This section contains these topics:

« Import/Export of Object Types
e SQL*Loader

4.9.1 Import/Export of Object Types

Export and Import utilities move data into and out of Oracle Al Database instances. They also
back up or archive data and aid migration to different releases of the Oracle RDBMS.

Export and Import support object types. Export writes object type definitions and all of the
associated data to the dump file. Import then re-creates these items from the dump file.

When you import object tables, by default, O Ds are preserved.

@ See Also

Oracle Al Database Ultilities for instructions on how to use the Import and Export
utilities

4.9.1.1 Types

The definition statements for derived types are exported. On an Import, a subtype may be
created before the supertype definition has been imported. In this case, the subtype is created
with compilation errors, which may be ignored. The type is revalidated after its supertype is
created.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 16

ORACLE Chapter 4
Utilities Providing Support for Objects

4.9.1.2 Object View Hierarchies

View definitions for all views belonging to a view hierarchy are exported.

4.9.2 SQL*Loader

The SQL*Loader utility moves data from external files into tables in Oracle Al Database.

The files SQL*Loader moves may contain data consisting of basic scalar data types, such as

| NTEGER, CHAR, or DATE, as well as complex user-defined data types such as row and column
objects (including objects that have object, collection, or REF attributes), collections, and LOBs.
Currently, SQL*Loader supports single-level collections only: you cannot yet use SQL*Loader
to load multilevel collections, that is, collections whose elements are, or contain, other
collections. SQL*Loader uses control files, which contain SQL*Loader data definition language
(DDL) statements, to describe the format, content, and location of the datafiles.

SQL*Loader provides two approaches to loading data:

e Conventional path loading, which uses the SQL | NSERT statement and a bind array buffer
to load data into database tables

» Direct path loading, which uses the Direct Path Load API to write data blocks directly to
the database on behalf of the SQL*Loader client.

Direct path loading does not use a SQL interface and thus avoids the overhead of
processing the associated SQL statements. Consequently, direct path loading generally
provides much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection data types.

@ See Also

Oracle Al Database Ultilities for instructions on how to use SQL*Loader

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 16

Support for Collection Data Types

There are different ways create and manage these collection types: varrays and nested tables.

@ See Also

Oracle Al Database PL/SQL Language Reference for a complete introduction to
collections

Topics:

Collection Data Types

Multilevel Collection Types

Operations on Collection Data Types

Partitioning Tables That Contain Oracle Objects

5.1 Collection Data Types

Oracle supports the varray and nested table collection data types.

A varray is an ordered collection of elements.

A nested table can have any number of elements and is unordered.

If you need to store only a fixed number of items, or loop through the elements in order, or
often need to retrieve and manipulate the entire collection as a value, then use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of elements, or
perform mass insert, update, or delete operations, then use a nested table.

Topics:

Creating a Collection Type

Creating a Collection Type

Creating an Instance of a VARRAY or Nested Table

Using the Constructor Method to Insert Values into a Nested Table

About Varrays
Nested Tables

Increasing the Size and Precision of VARRAY and Nested Table Elements
Increasing VARRAY Limit Size

Creating a Varray Containing LOB References

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 1 of 28

ORACLE Chapter 5
Collection Data Types

@ See Also

For more information on using nested tables, see "Design Considerations for
Collections".

5.1.1 Creating a Collection Type

You use CREATE TYPE and CREATE TYPE BQDY to create a nested table type.

Example 5-1 demonstrates creating a per son_t yp object and a peopl e_t yp as a nested table
type of person_t yp objects, as well as the peopl e_t ab table. These objects and tables are
used in other examples.

Example 5-1 CREATE TYPE person_typ for Subsequent Examples
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
namne VARCHAR2(30) ,
phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get i dno RETURN NUMBER,
MEMBER PROCEDURE di spl ay_details (SELF IN OUT NOCOPY person_typ));
/

CREATE TYPE BQODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
MEMBER PROCEDURE di spl ay_details (SELF IN OUT NOCOPY person_typ) IS
BEG N
- use the put_line procedure of the DBMS_QUTPUT package to display details
DBMS_QUTPUT. put _| i ne(TO CHAR(idno) || * - " || name || ' - ' || phone);
END;
END;
/

CREATE TYPE people_typ AS TABLE OF person_typ; -- nested table type
/

CREATE TABLE people_tab (
group_no NUMBER,
peopl e_col um people_typ) -- an instance of nested table
NESTED TABLE peopl e_col um STORE AS peopl e_colum_nt; -- storage table for NT

5.1.2 Creating an Instance of a VARRAY or Nested Table

You create an instance of a collection type by calling the constructor method of the type, in the
same way that you create an instance of any other object type.

The following example demonstrates how you can create an instance of a nested table by
using the nested table constructor, and then how you can insert the nested table instance into
the peopl e_t ab table. The name of a constructor method is simply the name of the type.
Specify the elements of the collection as a comma-delimited list of arguments to the method.

decl are
peopl e_col | people_typ;
empty_peopl e_col | people_typ;

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 28

ORACLE Chapter 5
Collection Data Types

begi n
-- Create an instance of collection PEOPLE_TYP.
peopl e_col | := people_typ(person_typ(1l, 'John Snmith', '1-650-555-0135"),
person_typ(2, 'Jane Doe', '1-650-505-1234"));
-- Create a collection of PECPLE_TYP with no el enents.
empty_peopl e _coll := people_typ();
-- INSERT the collection into the PECPLE TAB tabl e
I NSERT | NTO peopl e_tab VALUES (10, people_coll);
I NSERT | NTO peopl e_tab vaLUES (20, enpty_people _coll);
COWM T,
end;
/

Calling a constructor method with an empty list creates an empty collection of that type. Note
that an empty collection is an actual collection that happens to be empty; it is not the same as
a null collection.

See Design Considerations for Nested Tables for more information on using nested tables.

5.1.3 Using the Constructor Method to Insert Values into a Nested Table

You can use a constructor method in a SQL statement to insert values into a nested table.

Example 5-2 uses the table and types created in Example 5-1. The following example
demonstrates how to use the constructor method in a SQL statement to insert values into the
peopl e_col um column. This example uses a literal invocation of the constructor method.

Example 5-2 Using the Constructor Method to Insert Values into a Nested Table

| NSERT | NTO peopl e_tab VALUES (
100,
people_typ(person_typ(1l, 'John Snith', '1-650-555-0135"),
person_typ(2, 'Diane Snmith', NULL)));

You can also insert values into an empty nested-table instance as shown in the following
example.

-- Insert values into an enpty nested-table instance
I NSERT | NTO peopl e_tab VALUES (10, people_tab());

5.1.4 Invoking Constructors Literally to Specify Defaults

When you declare a table column to be of an object type or collection type, you can include a
DEFAULT clause.

This provides a value to use in cases where you do not explicitly specify a value for the
column.

The DEFAULT clause must contain a literal invocation of the constructor method for that object
or collection.

Example 5-3 shows how to use literal invocations of constructor methods to specify defaults for
the person_t yp object and the peopl e_t yp nested table:

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 28

ORACLE

Chapter 5
Collection Data Types

Example 5-3 Using Literal Invocations of Constructor Methods to Specify Defaults

- requires Ex. 5-1
CREATE TABLE depart nment _persons (
dept _no NUVMBER PRI MARY KEY,
dept _name CHAR(20),
dept _mgr person_typ DEFAULT person_typ(10, "John Doe" ,NULL),
dept _enps people_typ DEFAULT people_typ()) -- instance of nested table type
NESTED TABLE dept _enps STORE AS dept _enps_t ab;

I NSERT | NTO depart ment _persons VALUES
(101, 'Physical Sciences', person_typ(65,'Vrinda MIIls', '1-650-555-0125"),
peopl e_typ(person_typ(1l, 'John Snmith', '1-650-555-0135"),
person_typ(2, 'Diane Smith', NULL)));
I NSERT | NTO depart ment _persons VALUES
(104, 'Life Sciences', person_typ(70,'Janmes Hall', '1-415-555-0101"),
people_typ()); -- an enpty people_typ table

Note that peopl e_typ() is a literal invocation of the constructor method for an empty
peopl e_t yp nested table.

The depart ment _per sons table can be queried in two ways as shown in Example 5-16 and
Example 5-17.

5.1.5 About Varrays

A varray is an ordered set of data elements. All elements of a given varray are of the same
data type or a subtype of the declared one. Each element has an index, which is a number
corresponding to the position of the element in the array. The index number is used to access a
specific element.

When you define a varray, you specify the maximum number of elements it can contain,
although you can change this number later. The number of elements in an array is the size of
the array.

The following statement creates an array type emai | _|i st_arr that has no more than ten
elements, each of data type VARCHAR2(80) .

CREATE TYPE emmil _list_arr AS VARRAY(10) OF VARCHAR2(80);
/

5.1.6 Creating and Populating a VARRAY

Creating an array type, as with a SQL object type, does not allocate space.
It defines a data type, which you can use as:

e The data type of a column of a relational table.
e An object type attribute.
e The type of a PL/SQL variable, parameter, or function return value.

Example 5-4 creates a VARRAY type that is an array of an object type. The phone_varray typ
VARRAY type is used as a data type for a column in the dept _phone_l i st table. The | NSERT
statements show how to insert values into phone_varray_typ by invoking the constructors for
the varray phone_varray_t yp and the object phone_t yp.

You can create a VARRAY type of XM_Type or LOB type for procedural purposes, such as in
PL/SQL or view queries. However, database storage for varrays of these types is not

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 28

ORACLE

Chapter 5
Collection Data Types

supported. Thus you cannot create an object table or an object type column of a varray type of
XM.Type or LOB type.

Example 5-4 Creating and Populating a VARRAY Data Type

CREATE TYPE phone_typ AS OBJECT (
country_code VARCHAR2(2),
area_code VARCHAR2(3) ,
ph_nunber VARCHAR2(7)) ;
/
CREATE TYPE phone_varray_typ AS VARRAY(5) OF phone_typ;
/
CREATE TABLE dept _phone_list (
dept _no NUMBER(5),
phone_| i st phone_varray_typ);

INSERT INTO dept _phone_list VALUES (
100,
phone_varray_typ(phone_typ (' 01', '650', '5550123"),
phone_typ (' 01", '650', '5550148'),
phone_typ (' 01', '650', '5550192'))):;
A varray is normally stored inline, that is, in the same tablespace as the other data in its row. If
it is sufficiently large, Oracle stores it as a BLOB.

@ See Also

e "Storage Considerations for Varrays"

» See Oracle Al Database SQL Language Reference for information and examples
on the STORE AS LOB clause of the CREATE TABLE statement.

5.1.7 Nested Tables

A nested table is an unordered set of data elements, all of the same data type. No maximum is
specified in the definition of the table, and the order of the elements is not preserved. You
select, insert, delete, and update in a nested table just as you do with ordinary tables using the
TABLE expression.

A nested table can be viewed as a single column. If the column in a nested table is an object
type, the table can also be viewed as a multi-column table, with a column for each attribute of
the object type.

Topics:

e Creating Nested Tables

e Storing Elements of Nested Tables

* Specifying a Tablespace When Storing a Nested Table

5.1.7.1 Creating Nested Tables

To create nested table types, use the CREATE TYPE ... AS TABLE OF statement. For example:

CREATE TYPE people_typ AS TABLE OF person_typ;

A table type definition does not allocate space. It defines a type, which you can use as:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 28

ORACLE Chapter 5
Collection Data Types

* The data type of a column of a relational table.
e An object type attribute.

e A PL/SQL variable, parameter, or function return type.

5.1.7.2 Storing Elements of Nested Tables

Elements of a nested table are actually stored in a separate storage table.

Oracle stores nested table data in a single storage table associated with the object table for
both nested table types that are columns in a relational table or attributes in an object table.
The storage table contains a column that identifies the parent table row or object that each
element of the nested table belongs to. See Figure 9-2.

The NESTED TABLE. . STORE AS clause specifies storage names for nested tables. Storage
names are used to create an index on a nested table.

Example 5-5 demonstrates creating and populating a nested table, and specifying the nested
table storage using the person_t yp object and the peopl e_t yp nested table as defined in

Example 5-1.
Example 5-5 Creating and Populating Simple Nested Tables

- Requires 5-1
CREATE TABLE students (
graduation DATE
mat h_maj ors peopl e_typ, -- nested tables (enpty)
chem maj ors peopl e_typ
physi cs_maj ors peopl e_typ)
NESTED TABLE nath_maj ors STORE AS math_nmajors_nt -- storage tables
NESTED TABLE chem maj ors STORE AS chem ngj ors_nt
NESTED TABLE physi cs_maj ors STORE AS physics_majors_nt;

CREATE | NDEX mat h_i dno_i dx ON mat h_maj ors_nt (i dno);
CREATE | NDEX chem.i dno_i dx ON chem maj ors_nt (i dno);
CREATE | NDEX physics_idno_i dx ON physics_ngjors_nt(idno);

I NSERT | NTO students (graduation) VALUES ('01-JUN-03');
UPDATE st udents
SET nmath_mgjors =
peopl e_typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(45, 'Chris Wods', '415-555-0124")),
chem mgjors =
peopl e_typ (person_typ(51, 'Joe Lane', '650-555-0140'"),
person_typ(31, 'Sarah Chen', '415-555-0120"),
person_typ(52, 'KimPatel', '650-555-0135")),
physi cs_najors =
peopl e_typ (person_typ(12, 'Bob Jones', '650-555-0130"),
person_typ(45, 'Chris Wods', '415-555-0124"))
WHERE graduation = '01-JUN-03';

SELECT midno math_id, c.idno chem.id, p.idno physics_id FROM students s,
TABLE(s. math_majors) m TABLE(s.chem mgjors) ¢, TABLE(s.physics_majors) p;

A convenient way to access the elements of a nested table individually is to use a nested
cursor or the TABLE function. See "Collection Querying".

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 28

ORACLE Chapter 5
Collection Data Types

5.1.7.3 Specifying a Tablespace When Storing a Nested Table

A nested table can be stored in a different tablespace than its parent table.
In Example 5-6, the nested table is stored in the syst emtablespace:
Example 5-6 Specifying a Different Tablespace for Storing a Nested Table

- Requires Ex. 5-1, nust renove code in Ex. 5-2 if created
CREATE TABLE peopl e_tab (
peopl e_col um people_typ)
NESTED TABLE peopl e_col um STORE AS peopl e_col utmm_nt (TABLESPACE system);

If the TABLESPACE clause is not specified, then the storage table of the nested table is created
in the tablespace where the parent table is created. For multilevel nested tables, Oracle
creates the child table in the same tablespace as its immediately preceding parent table.

You can issue an ALTER TABLE. . MOVE statement to move a table to a different tablespace. If
you do this on a table with nested table columns, only the parent table moves; no action is
taken on the storage tables of the nested table. To move a storage table for a nested table to a
different tablespace, issue ALTER TABLE. . MOVE on the storage table. For example:

ALTER TABLE peopl e_tab MOVE TABLESPACE system -- noving table
ALTER TABLE peopl e_col utm_nt MOVE TABLESPACE exanple; -- noving storage table

Now the peopl e_t ab table is in the syst emtablespace and the nested table storage is stored in
the exanpl e tablespace.

5.1.8 Increasing the Size and Precision of VARRAY and Nested Table
Elements

You can increase the size of the variable character or RAWtype, or increase the precision of the
numeric type when the element type of a VARRAY type or nested table type is a variable
character, or a RAWor numeric type.

A new type version is generated for the VARRAY type or nested table type.
You make these changes using an ALTER TYPE. . MODI FY statement, which has this option:

CASCADE: Propagates the change to its type and table dependents

® See Also
"ALTER TYPE Statement for Type Evolution" for further description of CASCADE

Example 5-7 increases the sizes of a VARRAY and a nested table element type.

Example 5-7 Increasing the Size of an Element Type in a VARRAY and Nested Table

CREATE TYPE emil list_arr AS VARRAY(10) OF VARCHARY(80):
/
ALTER TYPE emmil list_arr MODIFY ELEMENT TYPE VARCHAR2(100) CASCADE;

CREATE TYPE emai |l _|ist_tab AS TABLE OF VARCHAR2(30);
/
ALTER TYPE emai |l _list_tab MODIFY ELEMENT TYPE VARCHAR2(40) CASCADE;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 28

ORACLE Chapter 5
Collection Data Types

5.1.9 Increasing VARRAY Limit Size

The ALTERTYPE ... MODI FY LI M T syntax allows you to increase the number of elements of a
VARRAY type.

If you increase the number of elements of a VARRAY type, a new type version is generated for
the VARRAY type, and becomes part of the type change history.

The ALTERTYPE ... MODI FY LI M T statement has these options:

e | NVALI DATE: Invalidates all dependent objects
e CASCADE: Propagates the change to its type and table dependents
Example 5-8 Increasing the VARRAY Limit Size

- if you have already creating follow ng types, drop them
DROP TYPE email |ist _tab FORCE;
DROP TYPE email |ist_arr FORCE;
CREATE TYPE enmil _list_arr AS VARRAY(10) OF VARCHAR2(80);
/
CREATE TYPE enmil _list_typ AS OBJECT (
section_no NUMBER,
emails email _list_arr);
/

CREATE TYPE email _varray_typ AS VARRAY(5) OF email _list_typ;
/

ALTER TYPE emui | _varray_typ MODIFY LIMIT 100 INVALIDATE;

When a VARRAY type is altered, changes are propagated to the dependent tables.

@® See Also
"About Propagating VARRAY Size Change".

5.1.10 Creating a Varray Containing LOB References

To create a varray of LOB references, first define a VARRAY type of type REF.

Note: The following example refers to enai | _|i st _t yp which was defined in Example 5-8. This
example creates a table dept _emai | _|i st and defines a column erai | _addr s of the array type
in it.

Example 5-9 Creating a VARRAY Containing LOB References

- Requires Ex. 5-8
CREATE TYPE ref_email _varray_typ AS VARRAY(5) OF REF email_list_typ;
/

CREATE TABLE dept _email _list (
dept _no NUMBER,
emai | _addrs ref_email _varray_typ)
VARRAY enai | _addrs STORE AS LOB dept_enail s_| ob3;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 28

ORACLE Chapter 5
Multilevel Collection Types

5.2 Multilevel Collection Types

Multilevel collection types are collection types whose elements are themselves directly or
indirectly another collection type.

Possible multilevel collection types are:

* Nested table of nested table type
* Nested table of varray type

* Varray of nested table type

e Varray of varray type

* Nested table or varray of a user-defined type that has an attribute that is a nested table or
varray type

Like single-level collection types, multilevel collection types:
* Can be used as columns in a relational table or with object attributes in an object table.

* Require that both the source and the target be of the same declared data type for
assignment.

Topics:

* Nested Table Storage Tables for Multilevel Collection Types

e Varray Storage for Multilevel Collections

e Constructors for Multilevel Collections

5.2.1 Nested Table Storage Tables for Multilevel Collection Types

To use a multilevel nested table collection of nested tables, you must specify a nested-table
storage clause.

A nested table type column or object table attribute requires a storage table to store rows for all
its nested tables as described in "Storing Elements of Nested Tables".

With a multilevel nested table collection of nested tables, you must specify a nested-table
storage clause (STORE AS) for both the inner set and the outer set of nested tables. You must
have as many nested table storage clauses as you have levels of nested tables in a collection.

Every nested table storage table contains a column, referenceable by NESTED TABLE | D, that
keys rows in the storage table to the associated row in the parent table. A parent table that is
itself a nested table has two system-supplied ID columns:

* A system-supplied ID column that is referenceable by NESTED TABLE | D, which keys its
rows back to rows in its parent table.

e A system-supplied ID column that is hidden and referenced by the NESTED TABLE | D
column in its nested table children.

If you do not specify a primary key with a NESTED _TABLE | D column, then the database
automatically creates a b-tree index on the NESTED TABLE | D column for better performance.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 28

ORACLE Chapter 5
Multilevel Collection Types

@ See Also

* "Nested Table Storage"

e "Unnesting Queries with Multilevel Collections"

* See Example 5-12 for an example where the nested table has a primary key in
which the first column is NESTED TABLE | D.

Topics:
e Creating Multilevel Nested Table Storage
e Creating Multilevel Nested Table Storage Using the COLUMN_ VALUE Keyword

« Specifying Physical Attributes for Nested Table Storage

5.2.1.1 Creating Multilevel Nested Table Storage

You can create a nested table of nested tables.

Example 5-10 creates the multilevel collection type nt _country_typ, a nested table of nested

tables. The example models a system of corporate regions in which each region has a nested

table collection of the countries, and each country has a nested table collection of its locations.
This example requires the r egi ons, countri es, and | ocat i ons tables of the Oracle HR sample
schema.

In Example 5-10, the SQL statements create the table r egi on_t ab, which contains the column
count ri es, whose type is a multilevel collection, nt _country_typ. This multilevel collection is a
nested table of an object type that has the nested table attribute | ocat i ons. Separate nested
table clauses are provided for the outer count ri es nested table and for the inner | ocati ons
nested table.

In Example 5-10 you can refer to the inner nested table | ocat i ons by name because this
nested table is a named attribute of an object. However, if the inner nested table is not an
attribute of an object, it has no name. The keyword COLUWN_VALUE is provided for this case. See

Example 5-11
Example 5-10 Multilevel Nested Table Storage

- Requires the HR sanple schema
CREATE TYPE | ocation_typ AS OBJECT (

location_id NUMBER(4) ,
street _address VARCHAR2(40),
postal _code VARCHAR2(12) ,
city VARCHAR2(30) ,
state_province VARCHAR2(25));

/

CREATE TYPE nt _location_typ AS TABLE OF location_typ; -- nested table type
/

CREATE TYPE country_typ AS OBJECT (

country_id CHAR(2),

country _nane VARCHAR2(40),

locations nt_location_typ); -- inner nested table
/

CREATE TYPE nt_country_typ AS TABLE OF country_typ; -- multilevel collection type
/

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 28

ORACLE Chapter 5
Multilevel Collection Types

CREATE TABLE region_tab (

region_id NUMBER,
region_nane VARCHAR2(25),
countries nt_country typ) -- outer nested table

NESTED TABLE countries STORE AS nt_countries_tab
(NESTED TABLE | ocations STORE AS nt | ocations_tab);

@ See Also

Oracle Al Database Sample Schemas for information on using sample schemas

5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE
Keyword

You can use the keyword COLUWN_VALUE place of a name for an inner nested table.

In Example 5-11 an inner nested table is unnamed and represented by the keyword
COLUMN_VALUE.

Example 5-11 Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword

CREATE TYPE inner_table AS TABLE OF NUMBER;
/
CREATE TYPE outer_table AS TABLE OF inner_table;
/
CREATE TABLE tabl (
coll NUMBER, ~-- inner nested table, unnaned
col 2 outer_table)
NESTED TABLE col 2 STORE AS col 2_ntab
(NESTED TABLE COLUMN_VALUE STORE AS cv_ntab);

5.2.1.3 Specifying Physical Attributes for Nested Table Storage

You can physical attributes for nested table storage.

Example 5-12 shows how to specify physical attributes for the storage tables in the nested
table clause.

Specifying a primary key with NESTED TABLE | D as the first column and index-organizing the
table causes Oracle Al Database to physically cluster all the nested table rows that belong to
the same parent row, for more efficient access. In Example 5-12 the nested table has a primary
key in which the first column is NESTED_TABLE_| D. This column contains the ID of the row in the
parent table with which a storage table row is associated.

Example 5-12 Specifying Physical Attributes for Nested Table Storage

- Requires Ex. 5-10
- drop the following if you have previously created it
DROP TABLE regi on_t ab FORCE;

CREATE TABLE region_tab (
region_id NUMBER,
regi on_nane VARCHAR2(25),
countries nt_country_typ)
NESTED TABLE countries STORE AS nt_countries_tab (

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 28

ORACLE’

Chapter 5
Multilevel Collection Types

(PRI MARY KEY (NESTED_TABLE_ID, country_id))
NESTED TABLE | ocations STORE AS nt | ocations_tab);

5.2.2 Varray Storage for Multilevel Collections

Multilevel varrays are stored in one of two ways, depending on whether the varray is a varray
of varrays or a varray of nested tables.

e In avarray of varrays, the entire varray is stored inline in the row unless it is larger than
approximately 4000 bytes or LOB storage is explicitly specified.

« In avarray of nested tables, the entire varray is stored in a LOB, with only the LOB locator
stored in the row. There is no storage table associated with nested table elements of a
varray.

You can explicitly specify LOB storage for varrays.

@ See Also

» Storage Considerations for Varrays

e Oracle Al Database SecureFiles and Large Objects Developer's Guide for a
general understanding of LOBs

5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type

You can explicitly specify LOB storage for VARRAYs of VARRAY type.
Example 5-13 shows explicit LOB storage specified for a VARRAYof VARRAY type..
Example 5-13 Specifying LOB Storage for a VARRAY of VARRAY Type

- Requires Ex. 5-8, drop following if created

DROP TYPE enail _varray_typ FORCE;
CREATE TYPE enmil _list_typ2 AS OBJECT (
section_no NUMBER,
emils email _list_arr);
/

CREATE TYPE enmil _varray_typ AS VARRAY(5) OF emmil _list_typ2;
/

CREATE TABLE dept _email _list2 (
dept _no NUMBER,
emai | _addrs email _varray_typ)
VARRAY enai | _addrs STORE AS LOB dept_enail s_| ob2;

5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs

You can explicitly specify LOB storage for a nested table of varray elements.

Example 5-14 shows the COLUMN_VALUE keyword used with varrays. See Example 5-11 for
discussion of this keyword and its use with nested tables.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 28

ORACLE

Chapter 5
Multilevel Collection Types

Example 5-14 Specifying LOB Storage for a Nested Table of VARRAYs

- drop the followi ng types if you have created them
DROP TYPE email _|ist_typ FORCE;

DROP TABLE dept _enmai | _| i st FORCE;

DROP TYPE email |ist_arr FORCE;

CREATE TYPE email _list_arr AS VARRAY(10) OF VARCHAR2(80);
/

CREATE TYPE email _|ist_typ AS TABLE OF email _list_arr;
/

CREATE TABLE dept _email _list (
dept _no NUMBER,
emai | _addrs email _|ist_typ)
NESTED TABLE ermi| _addrs STORE AS emmi| _addrs_nt

(
VARRAY COLUMN_VALUE STORE AS LOB
dept _enai |l s_| ob);

5.2.5 Constructors for Multilevel Collections

Multilevel collection types are created by calling the constructor of the respective type, just like
single-level collections and other object types.

The constructor for a multilevel collection type is a system-defined function that has the same
name as the type and returns a new instance of it. Constructor parameters have the names
and types of the attributes of the object type.

Example 5-15 shows the constructor call for the multilevel collection type nt _country_typ. The
nt _country_typ constructor calls the count ry_typ constructor, which calls the
nt | ocation_typ, which calls the | ocati on_t yp constructor.

@® Note

nt _country_typ is a multilevel collection because it is a nested table that contains
another nested table as an attribute.

Example 5-15 Using Constructors for Multilevel Collections

- Requires 5-10 and HR sanpl e schena
I NSERT | NTO regi on_tab
VALUES(1, 'Europe', nt_country_typ(
country _typ('IT, 'lItaly', nt_location_typ (
location_typ(1000, '1297 Via Cola di Rie','00989','Roma', ''),
location_typ(1100, '93091 Calle della Testa','10934',"' Venice','"))
),
country_typ("CH, '"Switzerland', nt_location_typ (
| ocation_typ(2900, '20 Rue des Corps-Saints', '1730', 'Geneva', 'Ceneve'),
| ocation_typ(3000, 'Mirtenstrasse 921', '3095', 'Bern', 'BE))
),
country typ('UK', 'United Kingdonm, nt_location_typ (
| ocation_typ(2400, '8204 Arthur St', '', 'London', 'London'),
| ocation_typ(2500, 'Magdal en Centre, The Oxford Science Park', 'OX9 9ZB',
"xford', 'Oxford'),
| ocation_typ(2600, '9702 Chester Road', '09629850293', 'Stretford',
" Manchester'))

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 28

ORACLE’

Chapter 5
Operations on Collection Data Types

)
)

5.3 Operations on Collection Data Types

Operations on collection data types includes querying and comparing.
Topics:

e Collection Querying

e DML Operations on Collections
 Using BULK COLLECT to Return Entire Result Sets

* Conditions that Compare Nested Tables

¢ Multiset Operations for Nested Tables

5.3.1 Collection Querying

There are two general ways to query a table that contains a collection type as a column or
attribute.

* Nest the collections in the result rows that contain them.
» Distribute or unnest collections so that each collection element appears on a row by itself.
Topics:

* Nesting Results of Collection Queries

e Unnesting Results of Collection Queries

e Unnesting Queries Containing Table Expression Subgueries

* Using a Table Expression in a CURSOR Expression

* Unnesting Queries with Multilevel Collections

5.3.1.1 Nesting Results of Collection Queries

Querying a collection column in the SELECT list nests the elements of the collection in the result
row that the collection is associated with.

The queries in Example 5-16 use the depart ment _per sons table shown in Example 5-3.

The column dept _enps is a nested table collection of person_t yp type. The dept _enps
collection column appears in the SELECT list like an ordinary scalar column

Example 5-16 Nesting Results of Collection Queries

- Requires Ex. 5-1 and Ex. 5-3
SELECT d. dept _enps
FROM depart nent _persons d;

These queries retrieve this nested collection of employees.

DEPT_EMPS(| DNO, NAME, PHONE)

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 28

ORACLE Chapter 5
Operations on Collection Data Types

PECPLE_TYP(PERSON_TYP(1, 'John Smith', ' 1-650-555-0135'),
PERSON TYP(2, 'Diane Smith', '1-650-555-0135'))

The results are also nested if an object type column in the SELECT list contains a collection
attribute, even if that collection is not explicitly listed in the SELECT list itself. For example, the
query SELECT * FROMdepart ment _per sons produces a nested result.

5.3.1.2 Unnesting Results of Collection Queries

You can unnest the results of collection queries.

Unnesting collection query results is useful because not all tools or applications can deal with
results in a nested format. To view Oracle collection data using tools that require a
conventional format, you must unnest, or flatten, the collection attribute of a row into one or
more relational rows. You can do this using a TABLE expression with the collection. TABLE
expressions enable you to query a collection in the FROMclause like a table. In effect, you join
the nested table with the row that contains the nested table.

TABLE expressions can be used to query any collection value expression, including transient
values such as variables and parameters.

@ See Also

Oracle Al Database SQL Language Reference for further information on the TABLE
expression and unnesting collections

The query in Example 5-17, like that of Example 5-16, retrieves the collection of employees,
but here the collection is unnested.

Example 5-17 Unnesting Results of Collection Queries

- Requires Ex. 5-1 and 5-3
SELECT e.*
FROM depart nent _persons d, TABLE(d.dept_enps) e;

Output:

| DNO NANVE PHONE

1 John Snith 1- 650- 555- 0135
2 Di ane Snith 1- 650-555- 0135

Example 5-17 shows that a TABLE expression can have its own table alias. A table alias for the
TABLE expression appears in the SELECT list to select columns returned by the TABLE
expression.

The TABLE expression uses another table alias to specify the table that contains the collection
column that the TABLE expression references. The expression TABLE(d. dept _enps) specifies

the depar t ment _per sons table as containing the dept _enps collection column. To reference a

table column, a TABLE expression can use the table alias of any table appearing to the left of it
in a FROMclause. This is called left correlation.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 28

ORACLE

Chapter 5
Operations on Collection Data Types

In Example 5-17, the depart ment _per sons table is listed in the FROMclause solely to provide a
table alias for the TABLE expression to use. No columns from the depar t ment _per sons table
other than the column referenced by the TABLE expression appear in the result.

The following example produces rows only for departments that have employees.

SELECT d. dept_no, e.*
FROM depart nent _persons d, TABLE(d.dept_enps) e;

To get rows for departments with or without employees, you can use outer-join syntax:

SELECT d. dept_no, e.*
FROM depart nent _persons d, TABLE(d.dept_enps) (+) e;

The (+) indicates that the dependent join between depart ment _per sons and e. dept _enps
should be NULL-augmented. That is, there will be rows of depart ment _per sons in the output for
which e. dept _enps is NULL or empty, with NULL values for columns corresponding to

e. dept _enps.

5.3.1.3 Unnesting Queries Containing Table Expression Subqueries

A TABLE expression can contain a subquery of a collection.

This is an alternative to the examples in "Unnesting Results of Collection Queries" which show
a TABLE expression that contains the name of a collection.

Example 5-18 returns the collection of employees whose department number is 101.

Example 5-18 Using a Table Expression Containing a Subquery of a Collection

- Requires Ex. 5-1 and 5-3
SELECT *
FROM TABLE(SELECT d. dept _enps
FROM depart nent _persons d
WHERE d. dept_no = 101);

Subqueries in a TABLE expression have these restrictions:

e The subquery must return a collection type.
e The SELECT list of the subquery must contain exactly one item.

e The subquery must return only a single collection; it cannot return collections for multiple
rows. For example, the subquery SELECT dept _enps FROMdepart ment _per sons succeeds
in a TABLE expression only if table depart nent _per sons contains just a single row. If the
table contains more than one row, the subquery produces an error.

5.3.1.4 Using a Table Expression in a CURSOR Expression

You can use a TABLE expression in a CURSCR expression.

Example 5-19 shows a TABLE expression used in the FROMclause of a SELECT embedded in a
CURSCR expression.

Example 5-19 Using a Table Expression in a CURSOR Expression

- Requires Ex. 5-1 and 5-3

SELECT d. dept _no, CURSOR(SELECT * FROM TABLE(d. dept _enps))
FROM depart nent _persons d
VHERE d. dept _no = 101;

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 28

ORACLE Chapter 5
Operations on Collection Data Types

5.3.1.5 Unnesting Queries with Multilevel Collections

Unnesting queries can be also used with multilevel collections, both varrays and nested tables.

Example 5-20 shows an unnesting query on a multilevel nested table collection of nested
tables. From the table r egi on_t ab where each region has a nested table of countri es and
each country has a nested table of | ocat i ons, the query returns the names of all r egi ons,
countries, and | ocations.

Example 5-20 Unnesting Queries with Multilevel Collections Using the TABLE Function

- Requires Ex. 5-10 and 5-15
SELECT r.region_name, c.country_name, |.location_id
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) I;

- the following query is optimzed to run against the |ocations table
SELECT | .location_id, |.city
FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) |;

The output should be as follows:

REG ON_NAME COUNTRY_NAMVE LOCATI ON_I D
Eur ope Italy 1000
Eur ope Italy 1100
Eur ope Swi t zerl and 2900
Eur ope Swi t zerl and 3000
Eur ope United Ki ngdom 2400
Eur ope Uni ted Ki ngdom 2500
Eur ope United Kingdom 2600

7 rows sel ected.

LOCCATIONID A TY

1000 Roma
1100 Venice
2900 Ceneva
3000 Bern
2400 London
2500 Oxford
2600 Stretford

7 rows sel ected.

Because no columns of the base table r egi on_t ab appear in the second SELECT list, the query
is optimized to run directly against the | ocat i ons storage table.

Outer-join syntax can also be used with queries of multilevel collections.

@® See Also

"Viewing Object Data in Relational Form with Unnesting Queries"

5.3.2 DML Operations on Collections

Oracle supports the following DML operations on collections:

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 17 of 28

ORACLE Chapter 5
Operations on Collection Data Types

* Inserts and updates that provide a new value for the entire collection

* Individual or piecewise updates of nested tables and multilevel nested tables, including
inserting, deleting, and updating elements

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY columns can
be inserted into or updated as an atomic unit. This section contains these topics:

* Performing Piecewise Operations on Nested Tables

 Updating a Nested Table

» Performing Piecewise Operations on Multilevel Nested Tables

 Performing Piecewise INSERT to Inner Nested Table

* Performing Atomical Changes on VARRAYs and Nested Tables

* Updating Collections as Atomic Data ltems

5.3.2.1 Performing Piecewise Operations on Nested Tables

For piecewise operations on nested table columns, use the TABLE expression.

The TABLE expression uses a subquery to extract the nested table, so that the | NSERT, UPDATE,
or DELETE statement applies to the nested table rather than the top-level table.

CAST operators are also helpful. With them, you can do set operations on nested tables using
SQL notation, without actually storing the nested tables in the database.

The DML statements in Example 5-21 demonstrate piecewise operations on nested table
columns.

® See Also
e Oracle Al Database SQL Language Reference
e« CAST

Example 5-21 Piecewise Operations on Collections

- Requires Ex. 5-1 and 5-3
| NSERT | NTO TABLE(SELECT d. dept _enps
FROM depart nent _persons d
VWHERE d. dept _no = 101)
VALUES (5, 'Kevin Taylor', '1-408-555-0199');

UPDATE TABLE(SELECT d. dept _enps

FROM depart nent _persons d

WHERE d. dept_no = 101) e

person_typ(5, 'Kevin Taylor', '1-408-555-0199")
5;

SET VALUE(e) =
VWHERE e.idno =
DELETE FROM TABLE(SELECT d. dept _enps
FROM depart nent _persons d
WHERE d. dept_no = 101) e
VWHERE e.idno = 5;

5.3.2.1.1 Updating a Nested Table

You can use VALUE to return object instance rows for updating.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 18 of 28

ORACLE

Chapter 5
Operations on Collection Data Types

Example 5-22 shows VALUE used to return object instance rows for updating:
Example 5-22 Using VALUE to Update a Nested Table

- Requires Ex. 5-1, 5-3
UPDATE TABLE(SELECT d. dept _enps FROM depart nent _persons d
WHERE d.dept_no = 101) p
SET VALUE(p) = person_typ(2, 'Diane Smith', '1-650-555-0148")
VHERE p.idno = 2;

5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables

Piecewise DML is possible only on multilevel nested tables, not on multilevel varrays.

You can perform DML operations atomically on both VARRAYs and nested tables multilevel
collections as described in "Updating Collections as Atomic Data Items".

Example 5-23 shows a piecewise insert operation on the countri es nested table of nested
tables. The example inserts a new country, complete with its own nested table of
| ocation_typ:

Example 5-23 Piecewise INSERT on a Multilevel Collection

- Requires Ex. 5-10 and 5-15
I NSERT | NTO TABLE(SELECT countries FROMregion_tab r WHERE r.region_id = 2)
VALUES ('CA', 'Canada', nt_location_typ(
| ocation_typ(1800, '147 Spadina Ave', 'MV 2L7', 'Toronto', 'Ontario')));

5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table

You can use piecewise insert into an inner nested table to make an individual addition.

Example 5-24 performs a piecewise insert into an inner nested table to add a location for a
country. Like the preceding example, this example uses a TABLE expression containing a
subquery that selects the inner nested table to specify the target for the insert.

Example 5-24 Piecewise INSERT into an Inner Nested Table

- Requires Ex. 5-10 and 5-15

I NSERT | NTO TABLE(SELECT c. | ocations
FROM TABLE(SELECT r.countries FROMregion_tab r WHERE r.region_id = 2) ¢
WHERE c. country_id = 'US)
VALUES (1700, '2004 Lakeview Rd', '98199', 'Seattle', 'Wshington');

SELECT r.region_nanme, c.country_name, |.location_id
FROM region_tab r, TABLE(r.countries) c, TABLE(c.|ocations) |;

5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables

You can make atomical changes to nested tables and VARRAYs.
Note: While nested tables can also be changed in a piecewise fashions, varrays cannot.

Example 5-25 shows how you can manipulate SQL varray object types with PL/SQL
statements. In this example, varrays are transferred between PL/SQL variables and SQL
tables. You can insert table rows containing collections, update a row to replace its collection,
and select collections into PL/SQL variables.

However, you cannot update or delete individual varray elements directly with SQL; you have
to select the varray from the table, change it in PL/SQL, then update the table to include the

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 19 of 28

ORACLE

Chapter 5
Operations on Collection Data Types

new varray. You can also do this with nested tables, but nested tables have the option of doing
piecewise updates and deletes.

Example 5-25 Using INSERT, UPDATE, DELETE, and SELECT Statements With Varrays

CREATE TYPE dnanes_var |'S VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (regi on VARCHAR2(25), dept_names dnanes_var);
BEG N
INSERT | NTO depts VALUES(' Europe', dnanmes_var (' Shipping','Sales','Finance'));
INSERT | NTO depts VALUES(' Anericas', dnames_var (' Sal es','Finance',' Shipping'));
INSERT | NTO dept s
VALUES(' Asia', dnames_var (' Finance',' Payroll',' Shipping' ,'Sales'));
COWM T;
END;
/
DECLARE
new_dnames dnames_var := dnames_var (' Benefits', 'Advertising', 'Contracting',
" Executive', 'Marketing');
some_dnanes dnames_var;
BEG N
UPDATE depts SET dept_names = new_dnames WHERE region = ' Europe';
COWM T;
SELECT dept _nanes | NTO sone_dnanes FROM depts WHERE region = ' Europe';
FOR i I N some_dnames. FIRST .. sone_dnanes. LAST
LooP
DBMS_QUTPUT. PUT_LI NE(' dept _nanmes = ' || sone_dnanes(i));
END LOOP;
END;
/

5.3.2.4 Updating Collections as Atomic Data Items

Multilevel collections (both VARRAY and nested tables) can also be updated atomically with an
UPDATE statement. For example, suppose v_country is a variable declared to be of the
countries nested table type nt _country_typ.

Example 5-26 updates r egi on_t ab by setting the count ri es collection as a unit to the value of
v_country.

The section "Constructors for Multilevel Collections" shows how to insert an entire multilevel
collection with an | NSERT statement.

Example 5-26 Using UPDATE to Insert an Entire Multilevel Collection

- Requires Ex. 5-10 and 5-15
I NSERT INTO region_tab (region_id, region_name) VALUES(2, 'Anericas');

DECLARE
v_country nt_country_typ;
BEG N
v_country := nt_country_typ(country_typ(

"US', "United States of America', nt_location_typ (
|l ocation_typ(1500,'2011 Interiors Blvd' ,'99236',' San Francisco',' California'),
| ocation_typ(1600,"' 2007 Zagora St','50090',' South Brunswick',' New Jersey'))));
UPDATE region_tab r
SET r.countries = v_country WHERE r.region_id = 2;
END;
/
- Invocation:
SELECT r.region_name, c.country_name, |.location_id

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 28

ORACLE Chapter 5
Operations on Collection Data Types

FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) I
WHERE r.region_id = 2;

5.3.3 Using BULK COLLECT to Return Entire Result Sets

The PL/SQL BULK COLLECT clause is an alternative to using DML statements, which can be
time consuming to process. You can return an entire result set in one operation.

In Example 5-27, BULK COLLECT is used with a multilevel collection that includes an object type.
Example 5-27 Using BULK COLLECT with Collections

- unrelated to other exanples in this chapter

CREATE TYPE dnanes_var |'S VARRAY(7) OF VARCHAR2(30);

/

CREATE TABLE depts (region VARCHAR2(25), dept_nanes dnanes_var);

BEG N
I NSERT | NTO depts VALUES(' Europe', dnames_var (' Shipping','Sales','Finance'));
I NSERT | NTO depts VALUES(' Anmericas', dnames_var (' Sales','Finance',' Shipping'));
I NSERT | NTO dept s

VALUES(' Asi a', dnames_var (' Finance','Payroll',' Shipping','Sales'));

COW T;

END;

/

DECLARE
TYPE dnanes_tab | S TABLE OF dnanes_var;
v_depts dnanes_t ab;

BEG N
SELECT dept _nanmes BULK COLLECT INTO v_depts FROM depts;
DBMS_QUTPUT. PUT_LI NE(v_depts. COUNT); -- prints 3

END;

/

5.3.4 Conditions that Compare Nested Tables

Using certain conditions, you can compare nested tables, including multilevel nested tables.
There is no mechanism for comparing varrays.

The SQL examples in this section use the nested tables created in Example 5-5, and contain
the objects created in Example 5-1.

Topics:

e Comparing Equal and Not Equal Conditions

e Comparing the IN Condition

e Comparing Subset of Multiset Conditions

 Determing Members of a Nested Table

* Determining Empty Conditions

 Determining Set Conditions

5.3.4.1 Comparing Equal and Not Equal Conditions

The equal (=) and not equal (<>) conditions determine whether the input nested tables are
identical or not, returning the result as a Boolean value.

Two nested tables are equal if they have the same named type, have the same cardinality, and
their elements are equal. Elements are equal depending on whether they are equal by the

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 28

ORACLE

Chapter 5
Operations on Collection Data Types

elements own equality definitions, except for object types which require a map method.
Equality is determined in the existing order of the elements, because nested tables are
unordered.

In Example 5-28, the nested tables contain per son_t yp objects, which have an associated
map method. See Example 5-1. Since the two nested tables in the WHERE clause are not equal,
no rows are selected.

Example 5-28 Using an Equality Comparison with Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT p. name

FROM st udents, TABLE(physics_mgjors) p
WHERE mat h_maj ors = physics_mgj ors;

5.3.4.2 Comparing the IN Condition

The I N condition checks whether or not a nested table is in a list of nested tables, returning the
result as a Boolean value. NULL is returned if the nested table is a null nested table.

Example 5-29 Using an IN Comparison with Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane
FROM st udents, TABLE(physics_mgjors) p
VHERE physics_majors IN (math_najors, chemmajors);

5.3.4.3 Comparing Subset of Multiset Conditions

The SUBMULTI SET [OF] condition checks whether or not a nested table is a subset of another
nested table, returning the result as a Boolean value. The OF keyword is optional and does not
change the functionality of SUBMULTI SET.

This condition is implemented only for nested tables.

@ See Also

"Multiset Operations for Nested Tables"

Example 5-30 Testing the SUBMULTISET OF Condition on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane
FROM st udents, TABLE(physics_mgjors) p
WHERE physi cs_maj ors SUBMULTI SET OF mat h_maj ors;

5.3.4.4 Determing Members of a Nested Table

The MEMBER [OF] or NOT MEMBER [OF] condition tests whether or not an element is a member of
a nested table, returning the result as a Boolean value. The OF keyword is optional and has no
effect on the output.

In Example 5-31, the person_t yp is an element of the same type as the elements of the nested
table mat h_mgj ors.

Example 5-32 presents an alternative approach to the MEMBER OF condition, which performs
more efficiently for large collections.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 22 of 28

ORACLE Chapter 5
Operations on Collection Data Types

Example 5-31 Using MEMBER OF on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT graduati on
FROM st udent s
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130") MEMBER OF mat h_maj ors;

Example 5-32 Alternative to Using MEMBER OF on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT graduati on
FROM st udent s
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130") in (select value(p)
from TABLE(math_majors) p);

5.3.4.5 Determining Empty Conditions

The | S[NOT] EMPTY condition checks whether a given nested table is empty or not empty,
regardless of whether any of the elements are NULL. If a NULL is given for the nested table,
the result is NULL. The result is returned as a Boolean value.

Example 5-33 Using IS NOT on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.nane

FROM st udents, TABLE(physics_ngjors) p
VHERE physics_ngjors |'S NOT EMPTY;

5.3.4.6 Determining Set Conditions

The | S[NOT] A SET condition checks whether or not a given nested table is composed of
unigue elements, returning a Boolean value.

Example 5-34 Using IS A SET on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name

FROM st udents, TABLE(physics_mgjors) p
WHERE physics_majors IS A SET;

5.3.5 Multiset Operations for Nested Tables

You can use multiset operators for nested tables. Multiset operations are not available for
varrays.

The SQL examples in this section use the nested tables created in Example 5-5 and the
objects created in Example 5-1.

® See Also
» Functions and Operators Useful with Objects for a description of additional
operations

e Oracle Al Database SQL Language Reference for more information about using
operators with nested tables

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 23 of 28

ORACLE Chapter 5
Operations on Collection Data Types

5.3.5.1 CARDINALITY

The CARDI NALI TY function returns the number of elements in a nested table. The return type is
NUMBER. If the nested table is a null collection, NULL is returned.

Example 5-35 Determining the CARDINALITY of a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT CARDI NALI TY(mat h_mmmj or s)
FROM st udent s;

For more information about the CARDI NALI TY function, see Oracle Al Database SQL Language
Reference.

5.3.5.2 COLLECT

The COLLECT function is an aggregate function which creates a multiset from a set of elements.
The function takes a column of the element type as input and creates a multiset from rows
selected. To get the results of this function, you must use it within a CAST function to specify the
output type of COLLECT.

® See Also
e See "CAST" for an example of the COLLECT function.

* For more information about the COLLECT function, see Oracle Al Database SQL
Language Reference.

5.3.5.3 MULTISET EXCEPT

The MULTI SET EXCEPT operator inputs two nested tables and returns a nested table whose
elements are in the first nested table but not the second. The input nested tables and the
output nested table will all be of the same nested table type.

The ALL or DI STI NCT options can be used with the operator. The default is ALL.

e With the ALL option, for nt abl MULTI SET EXCEPT ALL nt ab2, all elements in nt abl other than
those in nt ab2 are part of the result. If a particular element occurs mtimes in nt abl and n
times in nt ab2, the result shows (m- n) occurrences of the element if mis greater than n,
otherwise, 0 occurrences of the element.

* With the DI STI NCT option, any element that is present in nt abl and is also present in nt ab2
is eliminated, irrespective of the number of occurrences.

Example 5-36 Using the MULTISET EXCEPT Operation on Nested Tables

- Requires Ex. 5-1 and 5-5

SELECT math_maj ors MJULTI SET EXCEPT physics_mgjors
FROM st udent s

VWHERE graduation = '01-JUN-03';

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 24 of 28

ORACLE Chapter 5
Operations on Collection Data Types

@ See Also

For more information about the MULTI SET EXCEPT operator, see Oracle Al Database
SQL Language Reference.

5.3.5.4 MULTISET INTERSECT

The MULTI SET | NTERSECT operator returns a nested table whose values are common to the two
input nested tables. The input nested tables and the output nested table are all type name
equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default is ALL. With
the ALL option, if a particular value occurs mtimes in nt abl and n times in nt ab2, the result
contains the element M N(m n) times. With the DI STI NCT option, the duplicates from the result
are eliminated, including duplicates of NULL values if they exist.

Example 5-37 Using the MULTISET INTERSECT Operation on Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT mat h_maj ors MJULTI SET | NTERSECT physi cs_maj ors
FROM st udent s
WHERE graduation = '01-JUN-03';

@ See Also

For more information about the MULTI SET | NTERSECT operator, see Oracle Al Database
SOQL Language Reference.

5.3.5.5 MULTISET UNION

The MULTI SET UNI ON operator returns a nested table whose values are those of the two input
nested tables. The input nested tables and the output nested table are all type name
equivalent.

There are two options associated with the operator: ALL or DI STI NCT. The default is ALL. With
the ALL option, all elements in nt abl and nt ab2 are part of the result, including all copies of
NULLs. If a particular element occurs mtimes in nt abl and n times in nt ab2, the result contains
the element (m+ n) times. With the DI STI NCT option, the duplicates from the result are
eliminated, including duplicates of NULL values if they exist.

Example 5-38 Using the MULTISET UNION Operation on Nested Tables

- Requires Ex. 5-1 and 5-5
SELECT math_maj ors MULTI SET UNI ON DI STI NCT physics_ngjors
FROM st udent s
WHERE graduation = '01-JUN-03';

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130"),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120"),
PERSON_TYP(45, 'Chris Wods', '1-408-555-0128"))

- Requires Ex. 5-1 and 5-5
SELECT math_maj ors MULTI SET UNI ON ALL physics_maj ors

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 25 of 28

ORACLE Chapter 5
Operations on Collection Data Types

FROM st udent s
WHERE graduation = '01-JUN-03';

Output:

PECPLE_TYP(PERSON_TYP(12, ' Bob Jones', ' 1-650-555-0130'),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120'),
PERSON_TYP(45, 'Chris Wods', ' 1-408-555-0128'),
PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
PERSON_TYP(45, 'Chris Wods', ' 1-408-555-0128'))

@ See Also

For more information about the MULTI SET UNI ON operator, see Oracle Al Database
SQL Language Reference.

5.3.5.6 POWERMULTISET

The POAERMULTI SET function generates all non-empty submultisets from a given multiset. The
input to the PONERMULTI SET function can be any expression which evaluates to a multiset. The
limit on the cardinality of the multiset argument is 32.

Example 5-39 Using the POWERMULTISET Operation on Multiset

- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POAERMULTI SET(people_typ (
person_typ(12, 'Bob Jones', '1-650-555-0130"),
person_typ(31, 'Sarah Chen', '1-415-555-0120"),
person_typ(45, 'Chris Wods', '1-415-555-0124'))));

@ See Also

For more information about the POAERMULTI SET function, see Oracle Al Database SQL
Language Reference.

5.3.5.7 POWERMULTISET_BY_CARDINALITY

The POAERMULTI SET_BY_CARDI NALI TY function returns all non-empty submultisets of a nested
table of the specified cardinality. The output is rows of nested tables.

POVERMULTI SET_BY_CARDI NALI TY(x, 1) is equivalent to TABLE(POAERMULTI SET(x)) p where
CARDI NALI TY(val ue(p)) =1, where x is a multiset and | is the specified cardinality.

The first input parameter to the PONERMULTI SET_BY_CARDI NALI TY can be any expression which
evaluates to a nested table. The length parameter must be a positive integer, otherwise an
error is returned. The limit on the cardinality of the nested table argument is 32.

Example 5-40 Using the POWERMULTISET_BY_CARDINALITY Function

- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POAERMULTI SET_BY_CARDI NALI TY(people_typ (
person_typ(12, 'Bob Jones', '1-650-555-0130"),

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 26 of 28

ORACLE Chapter 5
Partitioning Tables That Contain Oracle Objects

person_typ(31, 'Sarah Chen', '1-415-555-0120"),
person_typ(45, 'Chris Wods', '1-415-555-0124")),2));

@ See Also

For more information about the POAERMULTI SET_BY_CARDI NALI TY function, see Oracle
Al Database SQL Language Reference.

5.3.5.8 SET

The SET function converts a nested table into a set by eliminating duplicates, and returns a
nested table whose elements are distinct from one another. The nested table returned is of the
same named type as the input nested table.

Example 5-41 Using the SET Function on a Nested Table

- Requires Ex. 5-1 and 5-5
SELECT SET(physics_ngj ors)
FROM st udent s
WHERE graduation = '01-JUN-03';

@ See Also

For more information about the SET function, see Oracle Al Database SQL Language
Reference.

5.4 Partitioning Tables That Contain Oracle Objects

Partitioning addresses the key problem of supporting very large tables and indexes by allowing
you to decompose them into smaller and more manageable pieces called partitions.

Oracle extends partitioning capabilities by letting you partition tables that contain objects, REFs,
varrays, and nested tables. Varrays stored in LOBs are equipartitioned in a way similar to LOBs.
Nested table storage tables will be equipartitioned with the base table. .

® See Also
For further information on equipartitioning
* Oracle Al Database SecureFiles and Large Objects Developer's Guide
* Oracle Al Database VLDB and Partitioning Guide
* Oracle XML DB Developer’s Guide

Example 5-42 partitions the purchase order table along zip codes (ToZi p), which is an attribute
of the Shi pToAddr embedded column object. The Li nel t enLi st _nt nested table illustrates
storage for the partitioned nested table.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 27 of 28

ORACLE Chapter 5
Partitioning Tables That Contain Oracle Objects

Example 5-42 Partitioning a Nested Table That Contains Objects

CREATE TYPE Stockltemobjtyp AS OBJECT (
St ockNo NUMBER,
Pri ce NUMBER,
TaxRat e NUMBER) ;

/

CREATE TYPE Lineltemobjtyp AS OBJECT (
Li nel t emNo NUMBER,
Stock_ref REF Stockltem objtyp,
Quantity NUMBER,
Di scount NUMBER) ;

/

CREATE TYPE Address_objtyp AS OBJECT (
Street VARCHAR2(200),
Gty VARCHAR2(200),
State CHAR(2),
Zi p VARCHAR2(20))
/

CREATE TYPE Lineltenlist_nt as table of Lineltemobjtyp;
/

CREATE TYPE Pur chaseOrder _ntyp AS OBJECT (

PONo NUMBER,

Or der Dat e DATE,

Shi pDat e DATE,

Order Form BLOB,

Li nel tenli st Li nel tenList_nt,
Shi pToAddr Addr ess_obj typ,

MAP MEMBER FUNCTI ON
ret val ue RETURN NUMBER,
MEMBER FUNCTI ON
total _val ue RETURN NUMBER);
/

CREATE TABLE PurchaseOrders_ntab of PurchaseOrder_ntyp
LOB (OrderForm) store as (nocache | ogging)
NESTED TABLE Lineltenilist STORE AS LineltenList ntab
PARTI TI ON BY RANGE (Shi pToAddr. zi p)
(PARTI TI ON Pur Or der Zonel_part VALUES LESS THAN (' 59999')
LOB (OrderForm) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE Lineltenlist store as LineitenmZonel_part (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der Zone2_part VALUES LESS THAN (' 79999')
LOB (OrderForm) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE Lineltenlist store as LineitenZone2_part (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)),
PARTI TI ON Pur Or der Zone3_part VALUES LESS THAN (' 99999')
LOB (OrderForm) store as (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100))
NESTED TABLE Lineltenlist store as LineitenmZone3_part (
storage (INITIAL 10 M NEXTENTS 10 MAXEXTENTS 100)))

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 28 of 28

Applying an Object Model to Relational Data

You can write object-oriented applications without changing the underlying structure of your
relational data.

Topics:

« Why Use Object Views

* Defining Object Views

* Object Views Used in Applications

* Objects Nested in Object Views

« Identifying Null Objects in Object Views

« Nested Tables and Varrays Used in Object Views

* Object Identifiers for Object Views

 References Created to View Objects

¢ Inverse Relationships Modelled with Object Views

¢ Object View Manipulations

* Applying the Object Model to Remote Tables

* Defining Complex Relationships in Object Views

e Object View Hierarchies

6.1 Why Use Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the view is
an object: you can call its methods, access its attributes using the dot notation, and create a
REF that points to it.

You can run object-oriented applications without converting existing tables to a different
physical structure. To do this, you can use object views to prototype or transition to object-
oriented applications because the data in the view can be taken from relational tables and
accessed as if the table were defined as an object table.

Object views can be used like relational views to present only the data that you want users to
see. For example, you might create an object view that presents selected data from an
employee table but omits sensitive data about salaries.

Using object views can lead to better performance. Relational data that makes up a row of an
object view traverses the network as a unit, potentially saving many round trips.

You can fetch relational data into the client-side object cache and map it into C structures or
C++ or Java classes, so 3GL applications can manipulate it just like native classes. You can
also use object-oriented features like complex object retrieval with relational data.

* You can query the data in new ways by synthesizing objects from relational data. You can
view data from multiple tables by using object dereferencing instead of writing complex
joins with multiple tables.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 26

ORACLE

Chapter 6
Defining Object Views

You can pin the object data from object views and use the data in the client side object
cache. When you retrieve these synthesized objects in the object cache by means of
specialized object-retrieval mechanisms, you reduce network traffic.

You gain great flexibility when you create an object model within a view, enabling you to
continue developing the model. If you need to alter an object type, you can simply replace
the invalidated views with a new definition.

You do not place any restrictions on the characteristics of the underlying storage
mechanisms by using objects in views. By the same token, you are not limited by the
restrictions of current technology. For example, you can synthesize objects from relational
tables which are parallelized and partitioned.

You can create different complex data models from the same underlying data.

@ See Also

— Oracle Al Database SQL Language Reference for a complete description of
SQL syntax and usage

— Oracle Al Database PL/SQL Language Reference for a complete discussion
of PL/SQL capabilities

— Oracle Al Database Java Developer's Guide for a complete discussion of Java

— Oracle Call Interface Programmer's Guide for a complete discussion of those
facilities

6.2 Defining Object Views

Object views allow you to present only data that you want users to see.

The procedure for defining an object view is:

1.

Define an object type, where each attribute of the type corresponds to an existing column
in a relational table.

Write a query that specifies how to extract the data from the relational table. Specify the
columns in the same order as the attributes in the object type.

Specify a unique value, based on attributes of the underlying data, to serve as an object
identifier, enabling you to create pointers (REFS) to the objects in the view. You can often
use an existing primary key.

@ See Also
"Obiject Identifiers Used to Identify Row Objects"

To update an object view where the attributes of the object type do not correspond exactly to
columns in existing tables, you may need to do the following:

Write an | NSTEAD OF trigger procedure for Oracle to execute whenever an application program
tries to update data in the object view. See "Object View Manipulations".

After these steps, you can use an object view just like an object table.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 26

ORACLE

Chapter 6
Object Views Used in Applications

Example 6-1 contains SQL statements to define an object view, where each row in the view is
an object of type enpl oyee _t:

Example 6-1 Creating an Object View

CREATE TABLE enp_table (
empnum NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));

CREATE TYPE enpl oyee_t AS OBJECT (
enpno NUMBER (5),
ename VARCHAR2 (20),
salary NUMBER (9, 2),
job VARCHAR2 (20));
/

CREATE VI EW enp_vi ewl OF enpl oyee_t
WITH OBJECT IDENTIFIER (enpno) AS
SELECT e. enpnum e.enane, e.salary, e.job
FROM enmp_tabl e e
WHERE j ob = ' Devel oper';

insert into enp_table values(1,'John', 1000.00," Architect');
insert into enp_table values(2,' Robert', 900.00," Devel oper');
insert into enp_table values(3,'James', 2000.00, Director');

select * fromenp_viewl;

EMPNO ENAME SALARY JOB

2 Robert 900 Devel oper

To access the data from the enpnumcolumn of the relational table, access the enpno attribute of
the object type.

6.3 Object Views Used in Applications

Data in the rows of an object view may come from more than one table, but the object view still
traverses the network in one operation. The instance appears in the client side object cache as
a C or C++ structure or as a PL/SQL object variable. You can manipulate it like any other
native structure.

You can refer to object views in SQL statements in the same way you refer to an object table.
For example, object views can appear in a SELECT list, in an UPDATE- SET clause, or in a WHERE
clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use for
objects from object tables. For example, you can use OCl Cbj ect Pi n() for pinning a REF and
OCl bj ect Fl ush() for flushing an object to the server. When you update or flush an object to
the database in an object view, the database updates the object view.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE

Chapter 6
Objects Nested in Object Views

@ See Also

See Oracle Call Interface Programmer’s Guide for more information about OCI calls.

6.4 Objects Nested in Object Views

An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an object type,
then you must provide column objects for this attribute as part of the process of creating the
object view. If column objects of the attribute type already exist in a relational table, you can
simply select them; otherwise, you must synthesize the object instances from underlying
relational data just as you synthesize the principal object instances of the view. You synthesize,
or create, these objects by calling the respective constructor methods of the object type to
create the object instances, and you can populate their attributes with data from relational
columns specified in the constructor.

For example, consider the department table dept in Example 6-2. You might want to create an
object view where the addresses are objects inside the department objects. That would allow
you to define reusable methods for address objects, and use them for all kinds of addresses.

First, create the types for the address and department objects, then create the view containing
the department number, name and address. The addr ess objects are constructed from
columns of the relational table.

Example 6-2 Creating a View with Nested Object Types

CREATE TABLE dept (
dept no NUMBER PRI MARY KEY,
dept nanme VARCHAR2(20) ,
deptstreet VARCHAR2(20),
deptcity VARCHAR2(10) ,
deptstate CHAR(2),
deptzip VARCHAR2(10)) ;

CREATE TYPE address_t AS OBJECT (
street VARCHAR2(20),
city VARCHAR2(10) ,
state CHAR(2),
zip VARCHAR2('10)) ;

/

CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptnane VARCHAR2(20),
addr ess address_t);

/

CREATE VI EW dept _view OF dept _t WTH OBJECT | DENTI FI ER (dept no) AS
SELECT d. deptno, d.dept nane,
address_t(d. deptstreet,d.deptcity,d.deptstate, d. deptzip) AS
dept addr
FROM dept d;

insert into dept values(l,'Sales','500 Oracle pkwy',' Redwood S',' CA',' 94065');
insert into dept values(2,'ST','400 Oracle Pkwy',' Redwood S',' CA','94065');
insert into dept values(3,' Apps','300 Oracle pkwy', ' Redwood S',' CA','94065'");

sel ect * from dept_view,

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 26

ORACLE’

Chapter 6
Identifying Null Objects in Object Views

DEPTNO DEPTNAME

1 Sales
ADDRESS T('500 Oracle pkwy', 'Redwood S', 'CA', '94065')

2 ST
ADDRESS T(' 400 Oracle Pkwy', 'Redwood S, 'CA', '94065')

3 Apps
ADDRESS T(' 300 Oracle pkwy', 'Redwood S', 'CA', '94065')

6.5 Identifying Null Objects in Object Views

You can identify null objects in object views.

Because the constructor for an object never returns a null, none of the address objects in the
preceding view, Example 6-2can ever be null, even if the city, street, and similar columns in the
relational table are all null. The relational table has no column that specifies whether or not the
department address is null.

« Use the DECODE function, or a similar function, to return either a null or the constructed
object.

In Example 6-3 the null dept st reet column can be used to indicate that the whole address is
null.

The null dept st reet column can be used to indicate that the whole address is null.

Example 6-3 Identifying Null Objects in an Object View

- Requires Ex. 6-2
CREATE OR REPLACE VI EW dept _vi ew AS
SELECT d. deptno, d. dept nane,
DECODE(d. dept street, NULL, NULL,
address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS deptaddr
FROM dept d;

This technique makes it impossible to directly update the department address through the
view, because it does not correspond directly to a column in the relational table. Instead, define
an | NSTEAD OF trigger over the view to handle updates to this column.

6.6 Nested Tables and Varrays Used in Object Views

Collections, both nested tables and VARRAYs, can be columns in views. You can select these
collections from underlying collection columns or you can synthesize them using subqueries.
The CAST- MULTI SET operator provides a way of synthesizing such collections.

This section contains the following topics:

¢ Single-Level Collections in Object Views

« Multilevel Collections in Object Views

6.6.1 Single-Level Collections in Object Views

You can create an object view with a single level connection.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE

Chapter 6
Nested Tables and Varrays Used in Object Views

Using Example 6-1 and Example 6-2 as starting points, each employee in an enp relational
table has the structure in Example 6-4. Using this relational table, you can construct a

dept _vi ewwith the department number, name, address and a collection of employees
belonging to the department.

First, define a nested table type for the employee type enpl oyee_t. Next, define a department
type with a department number, name, address, and a nested table of employees. Finally,
define the object view dept _vi ew.

The SELECT subquery inside the CAST- MULTI SET block selects the list of employees that belong
to the current department. The MULTI SET keyword indicates that this is a list as opposed to a
singleton value. The CAST operator casts the result set into the appropriate type, in this case to
the enpl oyee_l i st _t nested table type.

A query on this view could provide the list of departments, with each department row
containing the department number, name, the address object and a collection of employees
belonging to the department.

Example 6-4 Creating a View with a Single-Level Collection

- Requires Ex. 6-1 and Ex. 6-2
CREATE TABLE enp (
enpno NUVMBER PRI MARY KEY,
empname VARCHAR2(20),
sal ary NUMBER,
job VARCHAR2 (20),
deptno NUMBER REFERENCES dept (dept no));

CREATE TYPE enpl oyee_list_t AS TABLE OF enployee_t; -- nested table
/
CREATE TYPE dept _t AS OBJECT (
dept no NUMBER,
deptnane VARCHAR2(20),
addr ess address_t,
enmp_list enmpl oyee_|ist_t);
/
CREATE VI EW dept _vi ew OF dept _t WTH OBJECT | DENTI Fl ER (deptno) AS
SELECT d. dept no, d. dept nane,
address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip) AS deptaddr,
CAST(MULTISET (
SELECT e. enpno, e.enpname, e.salary, e.job
FROM emp e
WHERE e. deptno = d. dept no)
AS enpl oyee_list_t)
AS enp_list
FROM dept d;

insert into dept values(100,'ST,'400 Oacle Pkwy',' Redwood S ,' CA', 94065);
insert into dept val ues(200,"' Sales','500 Oracle Pkwy','Redwood S ,' CA', 94065);
insert into enp val ues(1,'John', 900, ' Devel operl', 100);

insert into enp val ues(2,' Robert', 1000, "' Devel oper2', 100);
insert into enp val ues(3,' Mary', 1000, " Appsl', 200);
insert into enp val ues(4,' Maria', 1500, ' Devel oper3', 200);
select * fromdept_view where deptno = 100;

DEPTNO DEPTNAME

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE

Chapter 6
Nested Tables and Varrays Used in Object Views

100 ST
ADDRESS T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065")
EMPLOYEE_LI ST_T(EMPLOYEE T(1, 'John', 900, 'Devel operl'), EMPLOYEE T(2, ' Robert'
1000, 'Devel oper2'))

select enp_list fromdept_view where deptno = 100;

EMP_LI ST(EMPNO, ENAME, SALARY, JOB)

EMPLOYEE_LI ST_T(EMPLOYEE T(1, 'John', 900, 'Devel operl'), EMPLOYEE T(2, ' Robert'
1000, 'Devel oper2'))

6.6.2 Multilevel Collections in Object Views

You can create to view and query objects.

Multilevel collections and single-level collections are created and used in object views in the
same way. The only difference is that, for a multilevel collection, you must create an additional
level of collections.

Example 6-5 builds an object view containing a multilevel collection. The view is based on flat
relational tables that contain no collections. As a preliminary to building the object view, the
example creates the object and collection types it uses. An object type (for example, enp_t) is
defined to correspond to each relational table, with attributes whose types correspond to the
types of the respective table columns. In addition, the employee type has a nested table
(attribute) of projects, and the department type has a nested table (attribute) of employees.
The latter nested table is a multilevel collection. The CAST- MULTI SET operator is used in the
CREATE VI EWstatement to build the collections.

Example 6-5 Creating a View with Multilevel Collections

CREATE TABLE depts
(deptno NUMBER,
deptname VARCHAR2(20));

CREATE TABLE enps
(enane VARCHAR2(20),
sal ary NUMBER,
deptnane VARCHAR2(20));

CREATE TABLE projects
(projname VARCHAR2(20),
myr VARCHAR2(20)) ;

CREATE TYPE project _t AS OBJECT

(projname VARCHAR2(20),

myr VARCHAR2(20)) ;

/
CREATE TYPE nt_project _t AS TABLE OF project t;
/
CREATE TYPE enp_t AS OBJECT
(enane VARCHAR2(20) ,

sal ary NUMBER,

deptnane VARCHAR2(20),

projects nt_project_t);
/
CREATE TYPE nt_enp_t AS TABLE OF enp_t;
/
CREATE TYPE depts_t AS OBJECT

(deptno NUMBER,

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE

Chapter 6
Object Identifiers for Object Views

deptnane VARCHAR2(20),
enps nt_emp_t);
/
CREATE VIEWvVv_depts OF depts_t W TH OBJECT | DENTI FI ER (deptno) AS
SELECT d. dept no, d. dept nane,
CAST(MULTI SET(SELECT e. ename, e.salary, e.deptnane,
CAST(MULTI SET(SELECT p. proj name, p. ngr
FROM projects p
WHERE p. ngr = e. enane)
AS nt_project _t)
FROM enps e
VWHERE e. dept nane = d. dept nane)
AS nt_enp_t)
FROM dept s d;

6.7 Object Identifiers for Object Views

You can construct pointers (REFs) to the row objects in an object view. Because the view data
is not stored persistently, you must specify a set of distinct values to be used as object
identifiers. Object identifiers allow you to reference the objects in object views and pin them in
the object cache.

If the view is based on an object table or an object view, then there is already an object
identifier associated with each row and you can reuse them. To do this, either omit the W TH
OBJECT | DENTI FI ER clause or specify W TH OBJECT | DENTI FI ER DEFAULT.

However, if the row object is synthesized from relational data, you must choose some other set
of values.

You can specify object identifiers based on the primary key. This turns the set of unique keys
that identify the row object into an identifier for the object. These values must be unique within
the rows selected out of the view, because duplicates would lead to problems during navigation
through object references.

* Object views created with the W TH OBJECT | DENTI FI ER Clause

An object view created with the W TH OBJECT | DENTI FI ER clause has an object identifier
derived from the primary key.

For example, note the definition of the object type dept _t and the object view dept _vi ew
described in "Single-Level Collections in Object Views".

Because the underlying relational table has dept no as the primary key, each department
row has a unique department number. In the view, the dept no column becomes the dept no
attribute of the object type. Once you know that dept no is unique within the view objects,
you can specify it as the object identifier.

e Object views created with the W TH OBJECT | DENTI FI ER DEFAULT Clause

If the W TH OBJECT | DENTI FI ER DEFAULT clause is specified, the object identifier is either
system-generated or primary-key based, depending on the underlying table or view
definition.

@ See Also

* "Object Identifiers Used to Identify Row Objects" for a description of primary-key
based and system-generated object identifiers

» See "Storage Considerations for Object Identifiers (OIDs)".

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE Chapter 6
References Created to View Objects

6.8 References Created to View Objects

In this connected group of examples, Example 6-2 and Example 6-4, each object selected out
of the dept _vi ewview has a unique object identifier derived from the department number
value. In the relational case, the foreign key dept no in the enp employee table matches the
dept no primary key value in the dept department table. The primary key value creates the
object identifier in the dept _vi ew, allowing the foreign key value in the enp_vi ewto create a
reference to the primary key value in dept _vi ew.

To synthesize a primary key object reference, use the MAKE_REF operator. This takes the view
or table name that the reference points to, and a list of foreign key values, to create the object
identifier portion of the reference that matches a specific object in the referenced view.

Example 6-6 creates an enp_vi ew view which has the employee's number, name, salary and a
reference to the employee's department, by first creating the employee type enp_t and then
the view based on that type.

Example 6-6 Creating a Reference to Objects in a View

- Requires Ex. 6-2 and Ex. 6-4
- if you have previously created enp_t, you nust drop it
CREATE TYPE enp_t AS OBJECT (
enpno NUMBER,
ename VARCHAR2(20) ,
salary NUMBER,
deptref REF dept_t);
/
CREATE OR REPLACE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)
AS SELECT e. enpno, e.enpnane, e.salary,
MAKE_REF(dept_view, e.deptno)
FROM enp e;

The dept ref column in the view holds the department reference. The following simple query
retrieves all employees whose departments are located in the city of Redwood S:

SELECT e.enpno, e.salary, e.deptref.deptno
FROM enp_view e
WHERE e. deptref.address.city = ' Redwood S';

EMPNO SALARY DEPTREF. DEPTNO

2 1000 100
1 900 100
4 1500 200
3 1000 200

Note that you can also create enp_vi ew using the REF modifier instead of MAKE_REF as shown
in Example 6-7 to get the reference to the dept _vi ew objects:

6.9 Creating References to Objects with REF

You can create views using a REF modifier to get references to objects.

Example 6-7 Query References to Objects with REF

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE OR REPLACE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(enpno)
AS SELECT e. enpno, e.enpnane, e.salary, REF(d)

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE’

Chapter 6
Inverse Relationships Modelled with Object Views

FROM emp e, dept_view d
WHERE e. deptno = d. dept no;

In Example 6-7, the dept _vi ewjoins the enp table on the dept no key.

The advantage of using the MAKE_REF operator, as in Example 6-6, instead of the REF modifier
is that with the former, you can create circular references. For example, you can create an
employee view that has a reference to the employee's department, while the department view
has a list of references to the employees who work in that department.

As with synthesized objects, you can also select persistently stored references as view
columns and use them seamlessly in queries. However, the object references to view objects
cannot be stored persistently.

@ See Also

Object Cache"

6.10 Inverse Relationships Modelled with Object Views

You can use views with objects to model inverse relationships.

One-to-One Relationships

One-to-one relationships can be modeled with inverse object references. For example,
suppose that each employee has a particular desktop computer, and that the computer
belongs to that employee only.

A relational model would capture this using foreign keys either from the computer table to the
employee table, or in the reverse direction. Using views, you can model the objects so there is
an object reference from the employee to the computer object and also a reference from the
computer object to the employee.

One-to-Many and Many-to-One Relationships

One-to-many relationships (or many-to-many relationships) can be modeled either by using
object references or by embedding the objects.

One-to-many relationship can be modeled by having a collection of objects or object
references. The many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, the foreign key is
in the employee table. The relationship between departments and employees can be modeled
using collections in views. The department view can have a collection of employees, and the
employee view can have a reference to the department (or inline the department values). This
gives both the forward relation (from employee to department) and the inverse relation
(department to list of employees). The department view can also have a collection of
references to employee objects instead of embedding the employee objects.

6.11 Object View Manipulations

You can update, insert, and delete data in an object view using the same SQL DML you use for
object tables. Oracle updates the base tables of the object view if there is no ambiguity.

Views are not always directly updatable.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 26

ORACLE

Chapter 6
Object View Manipulations

A view is not directly updatable if the view query contains joins, set operators, aggregate
functions, or GROUP BY or DI STI NCT clauses. Also, individual columns of a view are not directly
updatable if they are based on pseudocolumns or expressions in the view query.

If a view is not directly updatable, you can still update it indirectly using | NSTEAD OF triggers. To
do so, you define an | NSTEAD CF trigger for each kind of DML statement you want to execute on
the view. In the | NSTEAD CF trigger, code the operations that must take place on the underlying
tables of the view to accomplish the desired change in the view. Then, when you issue a DML
statement for which you have defined an | NSTEAD OF trigger, Oracle transparently runs the
associated trigger.

@® Note

In an object view hierarchy, UPDATE and DELETE statements operate polymorphically
just as SELECT statements do: the set of rows picked out by an UPDATE or DELETE
statement on a view implicitly includes qualifying rows in any subviews of the specified
view as well.

For example, the following statement, which deletes all persons from Per son_v, also deletes all
students from St udent _v and all employees from the Enpl oyee_v view.

DELETE FROM Person_v;

To exclude subviews and restrict the affected rows to just those in the view specified, use the
ONLY keyword. For example, the following statement updates only persons and not employees
or students.

UPDATE ONLY(Person_v) SET address = ...

® See Also
* "INSTEAD OF Triggers to Control Mutating and Validation" for an example of an
| NSTEAD CF trigger

"Object View Hierarchies" for a discussion of object view hierarchy and examples
defining St udent v and Enpl oyee_v views

6.11.1 Nested Table Columns Updated in Views

You can modify a nested table by inserting new elements and updating or deleting existing
elements. Nested table columns that are virtual or synthesized, as in a view, are not usually
updatable. To overcome this, Oracle allows | NSTEAD OF triggers to be created on these
columns.

The | NSTEAD OF trigger defined on a nested table column (of a view) is fired when the column is
modified. Note that if the entire collection is replaced (by an update of the parent row), the
| NSTEAD CF trigger on the nested table column is not fired.

6.11.2 INSTEAD OF Triggers to Control Mutating and Validation

You can update complex views with | NSTEAD OF triggers.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE

Chapter 6
Applying the Object Model to Remote Tables

| NSTEAD COF triggers provide a way to update complex views that otherwise could not be
updated. They can also be used to enforce constraints, check privileges, and validate DML
statements. Using these triggers, you can control mutation that might be caused by inserting,
updating, and deleting in the objects created though an object view.

For instance, to enforce the condition that the number of employees in a department cannot
exceed 10, you can write an | NSTEAD CF trigger for the employee view. The trigger is not
needed to execute the DML statement because the view can be updated, but you need it to
enforce the constraint.

Example 6-8 shows how to implement the trigger by means of SQL statements.
Example 6-8 Creating INSTEAD OF Triggers on a View

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE TRI GGER enp_instr | NSTEAD OF | NSERT on enp_vi ew
FOR EACH ROW
DECLARE
dept _var dept _t;
enp_count integer;
BEG N
- Enforce the constraint
- First get the departnment nunber fromthe reference
UTL_REF. SELECT_OBJECT(: NEW deptref, dept _var);

SELECT COUNT(*) | NTO enp_count
FROM enp
VHERE deptno = dept _var. dept no;
| F enp_count < 9 THEN
- Do the insert
I NSERT I NTO enp (enpno, enpname, salary, deptno)
VALUES (: NEW enpno, :NEWenane, :NEWsal ary, dept_var.deptno);
END | F;
END;
/

@® See Also
"Defining Triggers for Object Tables"

6.12 Applying the Object Model to Remote Tables

Although you cannot directly access remote tables as object tables, object views let you
access remote tables as if they were object tables.

Consider a company with two branches; one in Washington D.C. and another in Chicago. Each
site has an employee table. The headquarters in Washington has a department table with a list
of all the departments. To get a total view of the entire organization, you can create views over
the individual remote tables and then a overall view of the organization.

To this requires the following:

* Update the entry in | i st ener. ora, such as: (ADDRESS=(PROTOCOL=t cp)
(HOST=st adv07. us. exanpl e. com (PORT=1640))

* Add entries to t nsnanes. or a, such as: chi cago=(DESCRI PTI ON=
(ADDRESS=(PROTOCOL=i pc) (KEY=l i nux))
(CONNECT_DATA=(SERVI CE_NAME=I i nux. regress. rdbns. dev. us. exanpl e. con))

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 26

ORACLE Chapter 6
Defining Complex Relationships in Object Views

e Provide CREATE DATABASE LI NK code as shown in Example 6-9

Example 6-9 begins by creating an object view for each employee table and then creates the
global view.

Example 6-9 Creating an Object View to Access Remote Tables

- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
- Exanple requires DB links, such as these, nodify for your use and uncoment
- CREATE DATABASE LI NK chi cago CONNECT TO hr | DENTI FIED BY hr USING 'instl';
- CREATE DATABASE LI NK washi ngton CONNECT TO hr | DENTIFIED BY hr USING "instl';
CREATE VI EW enp_washi ngt on_vi ew (eno, enane, salary, job)
AS SELECT e. enpno, e.enpnane, e.salary, e.job
FROM emp@washi ngt on e;

CREATE VI EW enp_chi cago_vi ew (eno, enanme, salary, job)
AS SELECT e. enpno, e.enpnane, e.salary, e.job
FROM emp@hi cago e;

CREATE VI EW orgnzn_vi ew OF dept _t WTH OBJECT | DENTI Fl ER (dept no)
AS SELECT d. deptno, d.deptnane,
address_t(d. deptstreet, d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e.eno, e.enanme, e.salary, e.job
FROM enp_washi ngt on_vi ew e)
AS enployee_list_t) AS enp_list
FROM dept d
WHERE d. deptcity = ' Washington’
UNI ON ALL
SELECT d. dept no, d. dept nane,
address_t(d.deptstreet, d.deptcity,d.deptstate, d.deptzip) AS deptaddr,
CAST(MULTI SET (
SELECT e.eno, e.enane, e.salary, e.job
FROM enp_chi cago_vi ew e)
AS enpl oyee_list_t) AS enp_list
FROM dept d
WHERE d. deptcity = ' Chicago';

This view has a list of all employees for each department. The UNI ON ALL clause is used
because employees cannot work in more than one department.

6.13 Defining Complex Relationships in Object Views

You can define circular references in object views using the MAKE_REF operator: vi ew_A can
refer to vi ew B which in turn can refer to vi ew_A. This allows an object view to synthesize a
complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object currently
includes a list of employees. To conserve space, you may want to put references to the
employee objects inside the department object, instead of materializing all the employees
within the department object. You can construct (pin) the references to employee objects, and
later follow the references using the dot notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references between the
department view and the employee view.

You can create circular references between object views in two different ways:

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE’

Chapter 6
Defining Complex Relationships in Object Views

@® Note

Both ways to create circular references require the setup described in "Tables and
Types to Demonstrate Circular View References".

* First View After Second View
1. Create view A without any reference to view B.
2. Create view B, which includes a reference to view A.
3. Replace view A with a new definition that includes the reference to view B.
See the example in "Method 1: Re-create First View After Creating Second View"
e First View Using the FORCE Keyword

1. Create view A with a reference to view B using the FORCE keyword.

2. Create view B with a reference to view A. When view A is used, it is validated and re-
compiled.

See the example in "Method 2: Create First View Using FORCE Keyword"

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view creation. You
need to query the USER_ERRCRS catalog view to see if there were any errors during the view
creation. Use this method only if you are sure that there are no errors in the view creation
statement.

Also, if errors prevent the views from being recompiled upon use, you must recompile them
manually using the ALTER VI EWCOVPI LE command.

Perform the setup described next before attempting to use either method of creating circular
view references.

6.13.1 Tables and Types to Demonstrate Circular View References

First, you need set up some relational tables and associated object types. Although the tables
contain some objects, they are not object tables. To access the data objects, you will create
object views later.

The enp table stores the employee information:

Example 6-10 Creating emp table to demonstrate circular references

CREATE TABLE enp

(empno NUMBER PRI MARY KEY,
empname VARCHAR2(20),
sal ary NUMBER,
deptno NUMBER);

- first create a dummy, that is, inconplete, department type, so enp_t type
- created later will succeed

CREATE TYPE dept _t;
/

- Create the enployee type with a reference to the departnent, dept t:
CREATE TYPE enp_t AS OBJECT
(eno NUMBER,

ename VARCHAR2(20),

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE’

Chapter 6
Defining Complex Relationships in Object Views

salary NUMBER
deptref REF dept_t);
/

- Represent the list of references to enployees as a nested table:
CREATE TYPE enpl oyee_list_ref _t AS TABLE OF REF enp_t;
/

- Create the departnment table as a relational table
CREATE TABLE dept

(deptno NUMBER PRI MARY KEY,
dept nane VARCHAR2(20) ,
dept street VARCHAR2(20) ,
deptcity VARCHAR2(10),
deptstate CHAR(2),
deptzip VARCHAR2(10));

- Create object types that map to colums fromthe relational tables:
CREATE TYPE address_t AS OBJECT

(street VARCHAR2(20) ,
city VARCHAR2(10) ,
state CHAR(2),
zip VARCHAR2(10)) ;
/
- Fill in the definition for dept _t, the inconplete type you previously created:
CREATE OR REPLACE TYPE dept _t AS OBJECT
(dno NUMBER,
dname VARCHAR2(20) ,
dept addr address_t,

enpreflist enpl oyee_list_ref_t);
/

As Example 6-10 indicates, you must create the enp table, then create a dummy department
type, dept _t which will enable the enp_t type to succeed once you create it. After that, create
enp_t with a reference to dept _t . Create a list of references to employees as a nested table,
enpl oyee_list_ref _t and create the department table, dept . Then create an object type,
addr ess_t that has columns mapping to the relational tables, and finally fill in the definition for
the incomplete dept _t.

The following is example data you could use:

insert into enp val ues(1,'John',' 900", 100);
insert into enp values(2,'james','1000', 100);
insert into enp val ues(3,"'jack', 2000, 200);

6.13.2 Creating Object Views with Circular References

You can create object views with circular references.

If you have established the underlying relational table definitions, as described in Defining
Complex Relationships in Object Views, you can create the object views on top of them.

Topics:
 Method 1: Re-create First View After Creating Second View
* Method 2: Create First View Using FORCE Keyword

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE Chapter 6
Defining Complex Relationships in Object Views

6.13.2.1 Method 1: Re-create First View After Creating Second View

You can recreate the first view after creating the second view.

First create the employee view with a null in the dept r ef column. Later, you can turn that
column into a reference.

Next, create the department view, which includes references to the employee objects. This
creates a list of references to employee objects, instead of including the entire employee
object.

Next, re-create the employee view with the reference to the department view.
Example 6-11 Creating an Object View with a Circular Reference, Method 1

- Requires Ex. 6-10
CREATE VI EWenp_view OF enp_t WTH OBJECT | DENTI Fl ER(eno)
AS SELECT e. empno, e.enpnane, e.salary, NULL
FROM enp e;

- create department view, including references to the enpl oyee objects
CREATE VI EW dept _vi ew OF dept _t WTH OBJECT | DENTI FI ER(dno)
AS SELECT d. deptno, d.deptnane,
address_t(d. deptstreet, d.deptcity, d. deptstate, d. dept zi p),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enpno)
FROM emp e
WHERE e. deptno = d. dept no)
AS enpl oyee_list_ref_t)
FROM dept d;

CREATE OR REPLACE VI EWenp_view OF enp_t W TH OBJECT | DENTI FI ER(eno)
AS SELECT e. enpno, e.enpnane, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

This creates the views.

6.13.2.2 Method 2: Create First View Using FORCE Keyword

You can force creation of a first view even if the other view does not yet exist.

If you are sure that the view creation statement has no syntax errors, you can use the FORCE
keyword to force the creation of the first view without the other view being present.

First, create an employee view that includes a reference to the department view, which does
not exist at this point. This view cannot be queried until the department view is created

properly.

Next, create a department view that includes references to the employee objects. You do not
have to use the FORCE keyword here, because enp_vi ew already exists. This allows you to
guery the department view, getting the employee object by dereferencing the employee
reference from the nested table enpreflist.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE Chapter 6
Defining Complex Relationships in Object Views

® Note
If you previously ran Example 6-11, remove the views you created before running
Example 6-12.

Example 6-12 Creating view with FORCE Method 2

- Requires Ex. 6-10
- create enployee view
CREATE OR REPLACE FORCE VI EWenp_view OF enp_t WTH OBJECT | DENTI FI ER(eno)
AS SELECT e.enpno, e.enpnane, e.salary,
MAKE_REF(dept _vi ew, e. deptno)
FROM enp e;

- create a department view that includes references to the enpl oyee objects
CREATE OR REPLACE VI EW dept _view OF dept _t W TH OBJECT | DENTI FI ER(dno)
AS SELECT d. deptno, d.deptnamne,
address_t(d.deptstreet,d.deptcity, d. deptstate, d. dept zi p),
CAST(MULTI SET (
SELECT MAKE_REF(enp_vi ew, e.enpno)
FROM emp e
WHERE e. deptno = d. dept no)
AS enpl oyee_list_ref_t)
FROM dept d;

-- Querying with DEREF nethod
SELECT DEREF(e. COLUWN_VALUE)
FROM TABLE(SELECT e. enpreflist FROM dept_view e WHERE e.dno = 100) e;

COLUWN_VALUE is a special name that represents the scalar value in a scalar nested table. In
this case, COLUWN_VALUE denotes the reference to the employee objects in the nested table
empreflist.

You can also access the employee number only, for all those employees whose name begins
with John.

Example 6-13 Querying with COLUMN_VALUE

- Requires Ex. 6-10 and 6-12
SELECT e. COLUWN_VALUE. eno

FROM TABLE(SELECT e. enpreflist FROM dept_view e WHERE e. dno = 100) e
WHERE e. COLUWN_VALUE. enane |ike 'John% ;

To get a tabular output, unnest the list of references by joining the department table with the
items in its nested table:

Example 6-14 Querying with COLUMN_VALUE, Unnesting References

- Requires Ex. 6-10 and 6-12
SELECT d. dno, e.COLUWN VALUE. eno, e. COLUWN VALUE. enane
FROM dept _vi ew d, TABLE(d.enpreflist) e
WHERE e. COLUWN VALUE. enane |i ke 'John%
AND d. dno = 100;

Finally, you can rewrite the preceding query to use the enp_vi ewinstead of the dept _vi ewto
show how to navigate from one view to the other:

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE Chapter 6
Object View Hierarchies

Example 6-15 Querying with COLUMN_VALUE, Querying emp_view

- Requires Ex. 6-10 and 6-12
SELECT e. deptref.dno, DEREF(f.COLUMN_VALUE)
FROM emp_view e, TABLE(e.deptref.enmpreflist) f
WHERE e. deptref.dno = 100
AND f. COLUMN _VALUE. enane |ike 'John%;

6.14 Object View Hierarchies

An object view hierarchy is a set of object views each of which is based on a different type in a
type hierarchy. Subviews in a view hierarchy are created under a superview, analogously to the
way subtypes in a type hierarchy are created under a supertype.

Each object view in a view hierarchy is populated with objects of a single type, but queries on a
given view implicitly address its subviews as well. Thus an object view hierarchy gives you a
simple way to frame queries that can return a polymorphic set of objects of a given level of
specialization or greater.

For example, suppose you have the following type hierarchy, with per son_t yp as the root:

Figure 6-1 Object Type Hierarchy

Person_typ

T

| |
Student_typ Employee_typ

T

ParTimeStudent_typ

If you have created an object view hierarchy based on this type hierarchy, with an object view
built on each type, you can query the object view that corresponds to the level of specialization
you are interested in. For instance, you can query the view of st udent _t yp to get a result set
that contains only students, including part-time students.

You can base the root view of an object view hierarchy on any type in a type hierarchy: you do
not need to start the object view hierarchy at the root type. Nor do you need to extend an
object view hierarchy to every leaf of a type hierarchy or cover every branch. However, you
cannot skip intervening subtypes in the line of descent. Any subview must be based on a direct
subtype of the type of its direct superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple sibling
subviews. However, a subview based on a given type can participate in only one object view
hierarchy: two different object view hierarchies cannot each have a subview based on the
same subtype.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE

Chapter 6
Object View Hierarchies

A subview inherits the object identifier (OID) from its superview. An OID cannot be explicitly
specified in any subview.

A root view can explicitly specify an object identifier using the W TH OBJECT | D clause. If the
OID is system-generated or the clause is not specified in the root view, then subviews can be
created only if the root view is based on a table or view that also uses a system-generated
OID.

The query underlying a view determines whether or not the view is updatable. For a view to be
updatable, its query must contain no joins, set operators, aggregate functions, GROUP BY clause,
DI STI NCT clause, pseudocolumns, or expressions. The same applies to subviews.

If a view is not updatable, you can define | NSTEAD CF triggers to perform appropriate DML
actions. Note that | NSTEAD OF triggers are not inherited by subviews.

All views in a view hierarchy must be in the same schema.

@® Note

You can create views of types that are non-instantiable. A non-instantiable type cannot
have instances, so ordinarily there would be no point in creating an object view of such
a type. However, a non-instantiable type can have subtypes that are instantiable. The
ability to create object views of non-instantiable types enables you to base an object
view hierarchy on a type hierarchy that contains a non-instantiable type.

6.14.1 Creating an Object View Hierarchy

You build an object view hierarchy by creating subviews under a root view. You do this by using
the UNDER keyword in the CREATE VI EWstatement, as show in Example 6-17.

The same object view hierarchy can be based on different underlying storage models. In other
words, a variety of layouts or designs of underlying tables can produce the same object view
hierarchy. The design of the underlying storage model affects the performance and updatability
of the object view hierarchy.

Three possible storage models are described. In the first, a flat model, all views in the object
view hierarchy are based on the same table. In the second, a horizontal model, each view has
a one-to-one correspondence with a different table. And in the third, a vertical model, the views
are constructed using joins.

To execute any of these storage models, first create types shown in Example 6-16.

Example 6-16 Creating Types for Storage Model Examples

CREATE TYPE person_typ AS OBJECT
(ssn NUMBER
name VARCHAR2(30),
address VARCHAR2(100)) NOT FI NAL;/

CREATE TYPE student _typ UNDER person_typ
(deptid NUMBER,
maj or VARCHAR2(30)) NOT FI NAL;/

CREATE TYPE enpl oyee_typ UNDER person_typ
(enpid NUMBER
ngr VARCHAR2(30)):/

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 19 of 26

ORACLE Chapter 6
Object View Hierarchies
Topics:
e The Flat Model

e The Horizontal Model
* The Vertical Model

6.14.1.1 The Flat Model

In the flat model, all the views in the hierarchy are based on the same table.

In the following example, the single table Al | Per sons contains columns for all the attributes of
person_typ, student typ, and enpl oyee_typ.

Figure 6-2 Flat Storage Model for Object View Hierarchy

Table AllPersons

TYPEID
1,2,0r3

Person attributes (columns) | Student attributes | Employee attributes

View Person_v l

Person attributes

View Student_v v

Person attributes Student attributes

View Employee_v

Person attributes Employee attributes | <4

The t ypei d column identifies the type of each row. These possible values are the types
created in Example 6-16, 1 = person_typ, 2 =student _typ, and 3 =enpl oyee_typ:

Example 6-17 creates the table Al | Per sons and then the views that make up the object view
hierarchy:

Example 6-17 Creating an Object View Hierarchy

- Requires Ex. 6-16
CREATE TABLE Al | Per sons
(typeid NUMBER(1),

ssn NUMBER,

name VARCHAR2(30),
address VARCHAR2(100),
deptid NUMBER,

maj or VARCHAR2(30),
enpi d NUMBER,

mgr VARCHAR2(30)) ;

CREATE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS
SELECT ssn, name, address

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE

Chapter 6
Object View Hierarchies

FROM Al | Per sons
WHERE typeid = 1;

CREATE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT ssn, nane, address, deptid, major
FROM Al | Per sons
WHERE typeid = 2;

CREATE VI EW Enpl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT ssn, nane, address, enpid, ngr
FROM Al | Per sons
WHERE typeid = 3;

The flat model has the advantage of simplicity and poses no obstacles to supporting indexes
and constraints. Its drawbacks are:

The number of LOB columns per table is limited by the maximum number of columns per
table (that is, 1000 if the MAX_COLUMN\S initialization parameter is set to STANDARD, or 4096
columns if MAX_COLUWNS = EXTENDED). So the flat model imposes a 1000-column limit or

4096-column limit on the total number of columns that the object view hierarchy can
contain.

For more information about the MAX_COLUM\S initialization parameter, see Oracle Al
Database Reference.

Each row of the table will have NULLSs for all the attributes not belonging to its type. Such
non-trailing NULLs can adversely affect performance.

6.14.1.2 The Horizontal Model

On the horizontal model, each view or subview is based on a different table.

In the example, the tables are relational, but they could just as well be object tables for which
column substitutability is turned off.

Figure 6-3 Horizontal Storage Model for Object View Hierarchy

Table only_person

View Person_v

Person attributes

P | Person attributes

Table only_students

View Student_v

Person attributes

Student attributes |[==———pp-| Person attributes Student attributes

Table only_employees

View Employee_v

Person attributes

Employee attributes || Person attributes Employee attributes

Example 6-18 creates tables and then views based on these tables.

Example 6-18 -- Creating Table Horizontal Model

- Requires Ex. 6-16 and Ex. 6-17
CREATE TABLE onl y_persons

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE

(ssn NUMBER,
nane VARCHAR2(30),
address VARCHAR2(100));

CREATE TABLE only_students
(ssn NUMBER,
name VARCHAR2(30),
address VARCHAR2(100),
depti d NUMBER,
maj or VARCHAR2(30));

CREATE TABLE onl y_enpl oyees
(ssn NUMBER
name VARCHAR2(30),
address VARCHAR2(100),
enpi d NUMBER,
mgr VARCHAR2(30)) ;

CREATE OR REPLACE VI EW Person_v OF person_typ
W TH OBJECT QO D(ssn) AS
SELECT *
FROM onl y_per sons;

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT *
FROM only_st udents;

CREATE OR REPI ACE VI EW Empl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT *
FROM onl y_enpl oyees;

The horizontal model is very efficient at processing queries of the form:

Example 6-19 -- Querying views horizontal model

- Requires Ex. 6-16 and Ex. 6-17

- add the followi ng data
insert into only_persons val ues(1234,"' John',"'abc');
insert into only_students val ues(1111,"'Janes',"'abc', 100,'CS);
insert into only_enpl oyees val ues(2222,"jack',"'abc', 400, Juliet');

SELECT VALUE(p) FROM Person_v p
WHERE VALUE(p) IS OF (ONLY student_typ);

QUTPUT:
VALUE(P) (SSN, NAME, ADDRESS)

STUDENT_TYP(1111, 'James', 'abc', 100, 'CS')

Chapter 6
Object View Hierarchies

Such queries only need to access a single physical table to get all the objects of the specific
type. The drawbacks of this model are that queries such as SELECT * FROM vi ew require
performing a UNI ON over all the underlying tables and projecting the rows over just the columns
in the specified view. Also, indexes on attributes (and unique constraints) must span multiple

tables, and support for this does not currently exist.

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 22 of 26

ORACLE

@® See Also

"About Querying a View in a Hierarchy".

6.14.1.3 The Vertical Model

In the vertical model, there is a physical table corresponding to each view in the hierarchy.

Chapter 6

Object View Hierarchies

However, the physical tables store only those attributes that are unique to their corresponding

subtypes.

Figure 6-4 Vertical Storage Model for Object View Hierarchy

Table all_personattrs View Person_v

typeid Person attributes:

1,2, 0r 3 | ssn, name, address Person attributes

A

Table all_studentattrs View Student_v
Student attributes: :
snn deptid, major Person attributes

Student attributes

A

Table all_employeeattrs View Employee_v
Employee attributes: :
snn empid, mgr Person attributes

Employee attributes

A

Example 6-20 creates tables and then corresponding views.

Example 6-20 Creating table, views vertical model

CREATE TABLE al | _personattrs
(typeid NUMBER,

ssn NUMBER,

name VARCHAR2(30),

address VARCHAR2(100));

CREATE TABLE al | _studentattrs
(ssn NUMBER,

deptid NUMBER,

mej or VARCHAR2(130));

CREATE TABLE al | _enpl oyeeattrs
(ssn NUMBER,

enpi d NUMBER,

mgr VARCHAR2(130)) ;

CREATE OR REPLACE VI EW Person_v OF person_typ
W TH OBJECT O D(ssn) AS

SELECT ssn, nane, address

FROM al | _personattrs

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025

Page 23 of 26

ORACLE

Chapter 6
Object View Hierarchies

WHERE typeid = 1;

CREATE OR REPLACE VI EW Student _v OF student _typ UNDER Person_v
AS
SELECT x.ssn, x.nane, Xx.address, y.deptid, y.nmgjor
FROM al | _personattrs x, all_studentattrs y
WHERE x.typeid = 2 AND X.ssn = y.ssn;

CREATE OR REPLACE VI EW Empl oyee_v OF enpl oyee_typ UNDER Person_v
AS
SELECT x.ssn, x.nane, x.address, y.enpid, y.ngr
FROM al | _personattrs x, all_enployeeattrs y
WHERE x.typeid = 3 AND X.ssn = y.ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM root _vi ew, and it
is possible to index individual attributes and impose unique constraints on them. However, to
re-create an instance of a type, a join over object identifiers (OIDs) must be performed for each
level that the type is removed from the root in the hierarchy.

6.14.2 About Querying a View in a Hierarchy

You can query any view or subview in an object view hierarchy.

The query returns rows for the declared type of the view that you query and for any of the
subtypes of that type.

So, for instance, in an object view hierarchy based on the per son_t yp type hierarchy, you can
query the view of person_t yp to get a result set that contains all persons, including students
and employees; or you can query the view of st udent _t yp to get a result set that contains only
students, including part-time students.

In the SELECT list of a query, you can include either functions such as REF() and VALUE() that
return an object instance, or you can specify object attributes of the declared type of the view,
such as the name and ssn attributes of per son_t yp.

If you specify functions, to return object instances, the query returns a polymorphic result set:
that is, it returns instances of both the declared type of the view and any subtypes of that type.

For example, the following query returns instances of persons, employees, and students of all
types, as well as REFs to those instances.

Example 6-21 Query with REF and Value

- Requires Ex. 6-20
insert into all_personattrs values(1,1111,"John'," abc');
insert into all_personattrs val ues(2,2222,"Jack', ' def")
insert into all_personattrs val ues(3,3333,'Janes', " ghi'
insert into all_studentattrs val ues(2222,100,'CS");
insert into all_enployeeattrs val ues(3333,444,"'Julia');
SELECT REF(p), VALUE(p) FROM Person_v p;

QUTPUT:
REF(P)

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C2000C00000000000000000000000000000000000000
PERSON_TYP(1111, 'John', "abc')

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE

Chapter 6
Object View Hierarchies

090600812A00078401FE0000000B03C2222200000000000000000000000000000000000000
EMPLOYEE_TYP(3333, 'Janes', 'ghi', 444, 'Julia')

00004A038A00465A6EGE779ECIF25FE040578CE70A447E0000001426010001000100290000000000

090600812A00078401FE0000000B03C2171700000000000000000000000000000000000000
STUDENT TYP(2222, 'Jack', 'def', 100, 'CS')

If you specify individual attributes of the declared type of the view in the SELECT list or do a
SELECT *, again the query returns rows for the declared type of the view and any subtypes of
that type, but these rows are projected over columns for the attributes of the declared type of
the view, and only those columns are used. In other words, the subtypes are represented only
with respect to the attributes they inherit from and share with the declared type of the view.

For example, the following query returns rows for all persons and rows for employees and
students of all types, but the result uses only the columns for the attributes of per son_typ—
namely, nane, ssn, and addr ess. It does not show rows for attributes added in the subtypes,
such as the dept i d attribute of st udent _t yp.

SELECT * FROM Person_v;

To exclude subviews from the result, use the ONLY keyword. The ONLY keyword confines the
selection to the declared type of the view that you are querying:

SELECT VALUE(p) FROM ONLY(Person_v) p;

6.14.3 Privileges for Operations on View Hierarchies

Generally, a query on a view with subviews requires only the SELECT privilege on the view
being referenced and does not require any explicit privileges on subviews.

For example, the following query requires only SELECT privileges on Per son_v but not on any of
its subviews.

SELECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by the root
type requires the SELECT privilege on all subviews as well. Such subtype attributes may hold
sensitive information that should reasonably require additional privileges to access.

The following query, for example, requires SELECT privileges on Per son_v and also on
St udent _v, Enpl oyee_v (and on any other subview of Per son_v) because the query selects
object instances and thus gets all the attributes of the subtypes.

SELECT VALUE(p) FROM Person_v p;
To simplify the process of granting SELECT privileges on an entire view hierarchy, you can use
the HI ERARCHY option. Specifying the H ERARCHY option when granting a user SELECT privileges

on a view implicitly grants SELECT privileges on all current and future subviews of the view as
well. For example:

GRANT SELECT ON Person_v TO user W TH H ERARCHY OPTI ON;

A query that excludes rows belonging to subviews also requires SELECT privileges on all
subviews. The reason is that information about which rows belong exclusively to the most

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE Chapter 6
Object View Hierarchies

specific type of an instance may be sensitive, so the system requires SELECT privileges on
subviews for queries (such as the following one) that exclude all rows from subviews.

SELECT * FROM ONLY(Person_v);

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 26 of 26

Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the database,
and how to perform DML and DDL operations on them. It contains the following major sections:

Privileges on Object Types and Their Methods

Type Dependencies

Synonyms for Object Types

Performance Tuning

7.1 Privileges on Object Types and Their Methods

Privileges for object types exist at the system level and the schema obiject level.

Topics:

System Privileges for Object Types

Schema Obiject Privileges

Types Used in New Types or Tables

Example: Privileges on Object Types

Access Privileges on Objects, Types, and Tables

7.1.1 System Privileges for Object Types

Oracle Al Database defines the following system privileges for object types:

CREATE TYPE enables you to create object types in your own schema

CREATE ANY TYPE enables you to create object types in any schema

ALTER ANY TYPE enables you to alter object types in any schema

DROP ANY TYPE enables you to drop named types in any schema

EXECUTE ANY TYPE enables you to use and reference named types in any schema
UNDER ANY TYPE enables you to create subtypes under any non-final object types

UNDER ANY VI EWenables you to create subviews under any object view

The following roles are helpful:

The RESQURCE role includes the CREATE TYPE system privilege.

The DBA role includes all of these privileges.

7.1.2 Schema Object Privileges

Two schema object privileges apply to object types:

EXECUTE enables you to use the type to:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE

Chapter 7
Privileges on Object Types and Their Methods

— Define a table.

— Define a column in a relational table.

— Declare a variable or parameter of the named type.

EXECUTE lets you invoke the methods of a type, including the constructor.

Method execution and the associated permissions are the same as for stored PL/SQL
procedures.

* UNDER enables you to create a subtype or subview under the type or view on which the
privilege is granted.

Only a grantor with the UNDER privilege W TH GRANT OPTI ON on the direct supertype or
superview can grant the UNDER privilege on a subtype or subview.

The phrase W TH HI ERARCHY OPTI ON grants a specified object privilege on all subtypes of the
object. This option is meaningful only with the SELECT object privilege granted on an object
view in an object view hierarchy. In this case, the privilege applies to all subviews of the view
on which the privilege is granted.

7.1.3 Types Used in New Types or Tables

In addition to the permissions detailed in the previous sections, you need specific privileges to:

* Create types or tables that use types created by other users.
e Grant use of your new types or tables to other users.

You must have either the EXECUTE ANY TYPE system privilege or the EXECUTE object privilege for
any type used to define a new type or table. You must have been granted these privileges
explicitly, and not through a role.

To grant access to your new type or table to other users, you must have either the required
EXECUTE object privileges with the GRANT option or the EXECUTE ANY TYPE system privilege with
the option W TH ADM N OPTI ON. You must have been granted these privileges explicitly, not
through a role.

7.1.4 Example: Privileges on Object Types

This section presents several related examples, creating users or schemas and then granting
privileges on them.

Example 7-1 creates three users or schemas, USER1, USER2, and USER3, and grants them the
CREATE SESSI ON and RESOURCE roles. Some of the subsequent examples in this chapter use
these schemas.

This example requires you to create and use several passwords. If you plan to run the
example, make these changes to your SQL code first.

@® Note

For simplicity, this example does not perform the password management techniques
that a deployed system normally uses. In a production environment, follow the Oracle
Al Database password management guidelines, and disable any sample accounts.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE Chapter 7
Privileges on Object Types and Their Methods

@ See Also

See Oracle Al Database Security Guide for password management guidelines and
other security recommendations.

Example 7-1 Creating User Schemas

-- Requires passwords
CONNECT SYSTEM
-- Enter password
CREATE USER user1 PROFILE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user1;
GRANT RESOQURCE TO user1;
GRANT CREATE SYNONYM TO user1;
GRANT CREATE PUBLI C SYNONYM TO user1;
GRANT DROP PUBLI C SYNONYM TO user1;
CREATE USER user2 PROFI LE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user 2;
GRANT RESQURCE TO user2;
CREATE USER user3 PROFILE defaul t
| DENTI FI ED BY password DEFAULT TABLESPACE exanpl e ACCOUNT UNLOCK;
GRANT CREATE SESSI ON TO user 3;
GRANT RESQURCE TO user 3;

Example 7-2 requires the input of a password, USERL performs the CREATE and GRANT Data
Definition Language (DDL) statements in the USERL schema:

Example 7-2 Granting Privileges on Object Types

CREATE TYPE typel AS OBJECT (attrl NUMBER);

/

CREATE TYPE type2 AS OBJECT (attr2 NUMBER);

/

GRANT EXECUTE ON typel TO user2;

GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

In Example 7-3, USER2 performs the CREATE DDL statement in the USER2 schema:

Example 7-3 Performing DDL Statements in USER2 Schema

-- Requires Ex. 7-1, 7-2 and password input
CONNECT user 2

-- Enter password

CREATE TABLE tabl OF userl.typel;

CREATE TYPE type3 AS OBJECT (attr3 userl.type2);
/

CREATE TABLE tab2 (col 1 userl.type2);

In Example 7-4, the first two statements succeed because USER2 was granted the EXECUTE
privilege with the GRANT option on USERL's TYPE2 in the last line of Example 7-2 and
Example 7-3 created t ype3 as an object using attr 3 user 1. t ype2.

However, the last grant Example 7-4 fails because USER2 has not been granted the EXECUTE
privilege with the GRANT option on USERL. TYPEL.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE

Chapter 7
Privileges on Object Types and Their Methods

Example 7-4 Performing Grants to USER3

- Requires Ex. 7-1, 7-2, and 7-3
GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

- Privileges on Object Types
GRANT SELECT ON tabl TO user3 -- incorrect statenent;

In Example 7-5, USER3 has the necessary privileges to perform the following actions:
Example 7-5 Creating Tables and Types

- Requires Ex. 7-1, 7-2, 7-3, and 7-4

CONNECT user3

- Enter password

CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
/

CREATE TABLE tab3 OF type4;

7.1.5 Access Privileges on Objects, Types, and Tables

Object types only make use of the EXECUTE privilege.
However, object tables use all the same privileges as relational tables:

* READ or SELECT lets you access an object and its attributes from the table.
« UPDATE lets you modify attributes of objects in the table.

e | NSERT lets you add new objects to the table.

e DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object types.

Selecting columns of an object table does not require privileges on the type of the object table.
Selecting the entire row object, however, does.

Consider the schema and queries created below in Example 7-6:
Example 7-6 SELECT Privileges on Type Access

- Requires Ex. 7-1, 7-2, 7-3, 7-4, and 7-5
CREATE TYPE enp_type AS OBJECT (
eno NUMBER,
ename VARCHAR2(36));
/
CREATE TABLE enp OF enp_type; // an object table
GRANT SELECT on enp TO userl;
SELECT VALUE(e) FROM enp e;
SELECT eno, ename FROM enp;

For both queries, Oracle Al Database checks the user's SELECT privilege for the object table
enp. For the first query, the user needs to obtain the enp_t ype type information to interpret the
data. When the query accesses the enp_t ype type, the database checks the user's EXECUTE
privilege.

The second query, however, does not involve named types, so the database does not check
type privileges.

Additionally, USER3 can perform queries such as these:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE Chapter 7
Type Dependencies

SELECT t.coll.attr2 fromuser2.tab2 t;
SELECT t.attr4.attr3.attr2 FROMtabh3 t;

Note that in both queries, USER3 does not have explicit privileges on the underlying type.
However, the statement succeeds because the type and table owners have the necessary
privileges with the GRANT option.

Oracle Al Database checks privileges on the following requests and returns an error if the
requestor does not have the privilege for the action:

* Pinning an object in the object cache using its REF value causes the database to check the
READ or SELECT privilege on the object table containing the object and the EXECUTE privilege
on the object type.

* Modifying an existing object or flushing an object from the object cache causes the
database to check the UPDATE privilege on the destination object table. Flushing a new
object causes the database to check the | NSERT privilege on the destination object table.

» Deleting an object causes the database to check the DELETE privilege on the destination
table.

* Invoking a method causes the database to check the EXECUTE privilege on the
corresponding object type.

Oracle Al Database does not provide column level privileges for object tables.

@® See Also

Oracle Call Interface Developer's Guide for tips and techniques for using OCI program
effectively with objects

7.2 Type Dependencies

Type dependencies fall into two broad categories:

e Situations where types depend upon each other for their definitions, where one type might
be part of the definition of another type.

e Situations where creating or dropping types is complicated by dependencies that the type
has such, as tables or types.

This section covers the following topics:

¢ Creating Incomplete Types

e« Completing Incomplete Types

e Recompiling a Type Manually
« Using CREATE OR REPLACE TYPE with Type and Table Dependencies

« Type Dependencies of Substitutable Tables and Columns
e The DROP TYPE FORCE Option

e Creating a Type Synonym

¢ Using a Type Synonym

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE Chapter 7
Type Dependencies

7.2.1 Creating Incomplete Types

Types that depend on each other for their definitions, either directly or through intermediate
types, are called mutually dependent. For example, you might want to define object types
enpl oyee and depart ment in such a way that one attribute of enpl oyee is the department the
employee belongs to and one attribute of depart ment is the employee who manages the
department.

If you visualize a diagram with arrows showing the relationships among a set of mutually
dependent types, the connections form a loop. To define such a circular dependency, you must
use REFs for at least one segment of the circle.

For example, you can define the types shown in Example 7-7.
Example 7-7 Creating Dependent Object Types

- Requires Ex. 7-1 and password

CONNECT user 1

- Enter password

ALTER SESSI ON SET PLSQ._WARNINGS = 'enable:all";

CREATE TYPE department; // a placeholder
/

CREATE TYPE enpl oyee AS OBJECT (
name VARCHAR2(30) ,
dept REF departnent,
supv REF enpl oyee);

/

CREATE TYPE enp_list AS TABLE OF enpl oyee;
/

CREATE TYPE department AS OBJECT (
name VARCHAR2(30) ,
mor REF enpl oyee,
staff emp_list);

/

This is a legal set of mutually dependent types and a legal sequence of SQL DDL statements.
Oracle Al Database compiles it without errors.

Notice that the code in Example 7-7 creates the type depart ment twice. The first statement is
an optional, incomplete declaration of depart nent that serves as a placeholder for the REF
attribute of enpl oyee to point to. The declaration is incomplete in that it omits the AS OBJECT
phrase and lists no attributes or methods. These are specified later in the full declaration that
completes the type. In the meantime, depart ment is created as an incomplete object type. This
enables the compilation of enpl oyee to proceed without errors.

If you do not create incomplete types as placeholders, types that refer to the missing types still
compile, but the compilation proceeds with errors. For example, if depart nent did not exist at
all, Oracle Al Database would create it as an incomplete type and compile enpl oyee with
errors. Then enpl oyee would be recompiled the next time that some operation accesses it.
This time, if all the types it depends on have been created and its dependencies are satisfied, it
compiles without errors.

Incomplete types also enable you to create types that contain REF attributes to a subtype that
has not yet been created. To create such a supertype, first create an incomplete type of the
subtype to be referenced. Create the complete subtype after you create the supertype.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 7
Type Dependencies

7.2.2 Completing Incomplete Types

When you have created all the types referenced by an incomplete type, complete the
declaration of the incomplete type, because there is no longer any need for it to remain
incomplete.

Completing the type recompiles it and enables the system to release various locks. You
complete the type with a CREATE TYPE statement.

« Execute a CREATE TYPE statement that specifies the attributes and methods of the type, as
shown at the end of Example 7-7.

Also, you must complete any incomplete types that the database creates for you. If, as
discussed in the preceding section, you did not explicitly create depart nent as an incomplete
type, then the database did. In this case, you still need to complete it.

You must complete an incomplete object type as an object type: you cannot complete an object
type as a collection type (a nested table type or an array type). The only alternative is to drop
the type.

7.2.3 Recompiling a Type Manually

If a type was created with compilation errors, and you attempt an operation on it, such as
creating tables or inserting rows, you may receive an error. You need to recompile the type
before attempting the operation. You recompile with an ALTER TYPE statement.

« Execute an ALTER TYPE t ypename COVPI LE statement. After you have successfully compiled
the type, attempt the operation again.

7.2.4 Using CREATE OR REPLACE TYPE with Type and Table
Dependencies

The CREATE OR REPLACE TYPE statement throws an error if the type being replaced has table or
type dependencies. This applies to objects, varrays, and nested table types. This also applies
to type dependencies involving either inheritance or type composition (embedding one type
into another). The latter might be a situation where one type is attribute of another.

Using the FORCE option with a CREATE OR REPLACE TYPE statement enables you to replace a type
if it has type dependencies, but not table dependencies. Table dependencies still cause errors.

e Use the FORCE option with a CREATE OR REPLACE TYPE statement to replace a type if it has
type dependencies.

Example 7-8 shows a CREATE OR REPLACE statement (second statement) that fails due to a type
dependency.

Example 7-8 CREATE OR REPLACE Type and Table Failure

SQ.> CREATE type t1 AS OBJECT (a nunber) not final;
2
Type created.

SQL> CREATE TYPE t2 UNDER t1 (b varchar(10));
2
Type creat ed.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 7
Type Dependencies

SQL> CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar (20));
2
CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar(20));
*
ERROR at |ine 1:
ORA-02303: cannot drop or replace a type with type or table dependents

7.2.5 Creating or Replacing Type with Force

A CREATE OR REPLACE FORCE statement fails if the type has a table dependency because a type
with a table dependency cannot be replaced.

Example 7-9 shows code in which a CREATE OR REPLACE FORCE statement succeeds in replacing
a type that has a type dependency and then creates a table using the parent type. However,
the final CREATE OR REPLACE FORCE statement fails because the type now has a table
dependency and even with the FORCE option, a type with a table dependency cannot be
replaced.

@ See Also

Oracle Al Database PL/SQL Language Reference for details of the CREATE OR REPLACE
TYPE SQL statement

Example 7-9 CREATE OR REPLACE with FORCE

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (c varchar(20));
2
Type created.

SQL> CREATE TABLE tbl (cl t1);
Tabl e created.

SQ.> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
2
CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d nunber);

ERROR at |ine 1:
ORA-22866: cannot replace a type with table dependents

7.2.6 Type Dependencies of Substitutable Tables and Columns

A substitutable table or column of a specific type is dependent not only on that type but on all
subtypes of the type as well.

This is because a hidden column is added to the table for each attribute added in a subtype of
the type. The hidden columns are added even if the substitutable table or column contains no
data of that subtype.

In Example 7-10, a per sons table of type person_t yp is dependent not only on person_t yp but
also on the person_t yp subtypes student typ and part _time_student typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the DROP TYPE
statement returns an error and aborts. Consequently, trying to drop a part _time_student typ
raises an error because of the dependent per sons table.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 7
Type Dependencies

If dependent tables or columns exist but contain no data of the type being dropped, you can
use the VALI DATE keyword to drop the type. The VALI DATE keyword causes Oracle Al Database
to check for actual stored instances of the specified type and to drop the type if none are
found. This also removes hidden columns associated with attributes unique to the type.

In Example 7-10, the first DROP TYPE statement fails because part _time_student typ hasa
dependent table (per sons). But if per sons contains no instances of part _tinme_student typ
(nor does any other dependent table or column), the VALI DATE keyword causes the second
DROP TYPE statement to succeed.

Example 7-10 DROP TYPE with and without VALIDATE
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

name VARCHAR2(30) ,
phone VARCHAR2(20))
NOT FI NAL;

/
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _time_student _typ UNDER student _typ (nunber_hours NUMBER);
/
CREATE TABLE persons OF person_typ;
- Following generates an error due to presence of Persons table
DROP TYPE part _time_student _typ -- incorrect statement;
- Following succeeds if there are no stored instances of part_tinme_student _typ
DROP TYPE part _time_student _typ VALIDATE;

@ Note

Oracle recommends that you always use the VALI DATE option while dropping
subtypes.

@® See Also

Type Substitution in a Type Hierarchy for further explanation of substitutability

7.2.7 The DROP TYPE FORCE Option

The DROP TYPE statement has a FORCE option that causes the type to be dropped even though it
may have dependent types or tables.

Use the FORCE option with great care, because any dependent types or tables that do exist are
marked invalid and become inaccessible when the type is dropped. Data in a table that is
marked invalid for this reason can never be accessed again. The only action that can be
performed on such a table is to drop it.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE’

Chapter 7
Synonyms for Object Types

® See Also
See "Type Evolution" for information about how to alter a type.

7.3 Synonyms for Object Types

Just as you can create synonyms for tables, views, and various other schema objects, you can
also define synonyms for object types.

Synonyms for types have the same advantages as synonyms for other kinds of schema
objects: they provide a location-independent way to reference the underlying schema object.
An application that uses public type synonyms can be deployed unaltered, in any schema of a
database, without requiring a qualified type name with the schema name.

@ See Also

Oracle Al Database Administrator's Guide for more information on synonyms in
general

Topics:

e Creating a Type Synonym

e Using a Type Synonym

7.3.1 Creating a Type Synonym

You create a type synonym with a CREATE SYNONYMstatement.

The user must have been granted CREATE SYNONYMand CREATE PUBLI C SYNONYM privileges.
For example, these statements create a type t ypl and then create a synonym for it:
Example 7-11 CREATE TYPE / SYNONYM for userl

- Exanple requires Ex.7-1 which created userl and granted it the CREATE SYNONYM
- and CREATE PUBLI C SYNONYM privi | eges
- connect as userl if not already connected.

CREATE TYPE typl AS OBJECT (x number);
/
CREATE SYNONYM synl FOR typl;

Synonyms can be created for collection types, too. The following example creates a synonym
for a nested table type:

CREATE TYPE typ2 AS TABLE OF NUMBER,
/
CREATE SYNONYM syn2 FOR typ2;

You create a public synonym by using the PUBLI C keyword:

CREATE TYPE shape AS OBJECT (name VARCHAR2(10));
/
CREATE PUBLIC SYNONYM pub_shape FOR shape;

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE

Chapter 7
Synonyms for Object Types

With the REPLACE option you can make the synonym point to a different underlying type. For
example, the following statement causes synl to point to type t yp2 instead of the type it
formerly pointed to:

CREATE OR REPLACE SYNONYM synl FOR typ2;

7.3.2 Using a Type Synonym

You can use a type synonym anywhere that you can refer to a type. For instance, you can use
a type synonym in a DDL statement to name the type of a table column or type attribute.

Example 7-12 uses synonym synl to specify the type of an attribute in type t yp3:
Example 7-12 Using a Type Synonym in a Create Statement

- Requires Ex 7-1 and connection as userl

- drop synl and typl if created for Ex. 7-12
CREATE TYPE typl AS OBJECT (x number);

/

CREATE SYNONYM synl FOR typl;

CREATE TYPE typ3 AS OBJECT (a synl);
/

In the next statement, the type synonym syn1 calls the constructor of the object type t yp1, for
which synl is a synonym. The statement returns an object instance of t yp1:

SELECT synl1(0) FROM dual ;

In the following, syn2 is a synonym for a nested table type. The synonym replaces the actual
type name in a CAST expression.

SELECT CAST(MULTI SET(SELECT eno FROM USER3. EMP) AS syn2) FROM dual ;

This code returns the following output:

SQ> -- Type synonymused to call a constructor / nested table
SELECT synl1(0) FROM dual ;

SELECT CAST(MJULTI SET(SELECT eno FROM USER3. EMP) AS syn2) FROM
dual ;

SQL> SYNL(0) (X)

SQL>

Type synonyms can be used in the following kinds of statements:

* DML statements: SELECT, | NSERT, UPDATE, DELETE, FLASHBACK TABLE, EXPLAI N PLAN, and
LOCK TABLE

« DDL statements: AUDI T, NOAUDI T, GRANT, REVCOKE, and COMVENT

7.3.2.1 Describing Schema Objects That Use Synonyms

If a type or table has been created using type synonyms, the DESCRI BE command shows the
synonyms that the types represent.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE

Chapter 7
Synonyms for Object Types

You can query the catalog view USER_SYNONYMS to find out the underlying type of a type
synonym.

e Use the DESCRI BE command to show the synonyms instead of the types they represent.

Similarly, catalog views, which show type names, such as USER _TYPE_ATTRS, show the type
synonym names in their place.

@ See Also

Chapter 2 of Oracle Al Database Reference for a complete list of the data dictionary
catalog views

7.3.2.2 Dependents of Type Synonyms

A type that directly or indirectly references a synonym in its type declaration is a dependent of
that synonym. Thus, in the following line from Example 7-12, type t yp3 is a dependent type of
synonym synl.

CREATE TYPE typ3 AS OBJECT (a synl);
/

Other kinds of schema objects that reference synonyms in their DDL statements also become
dependents of those synonyms. An object that depends on a type synonym depends on both
the synonym and the underlying type of the synonym.

The dependency relationships of a synonym affect your ability to drop or rename the synonym.
Dependent schema objects are also affected by some operations on synonyms. The following
sections describe these various ramifications.

7.3.2.3 Restriction on Replacing a Type Synonym

You can replace a synonym only if it has no dependent tables or valid user-defined types.
Replacing a synonym is equivalent to dropping it and then re-creating a new synonym with the
same name.

7.3.2.4 Dropping Type Synonyms

You drop a synonym with the DROP SYNONYM statement as shown in Example 7-13.
Example 7-13 Dropping Type Synonyms
CREATE SYNONYM syn4 FOR typl;

DROP SYNONYM syn4;

You cannot drop a type synonym if it has table or valid object types as dependents unless you
use the FORCE option. The FORCE option causes any columns that directly or indirectly depend
on the synonym to be marked unused, just as if the actual types of the columns were dropped.
(A column indirectly depends on a synonym if, for instance, the synonym is used to specify the
type of an attribute of the declared type of the column.)

Any dependent schema objects of a dropped synonym are invalidated. They can be
revalidated by creating a local object or a new public synonym with the same name as the
dropped synonym.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 7
Performance Tuning

Dropping the underlying base type of a type synonym has the same effect on dependent
objects as dropping the synonym.

7.3.2.5 Renaming Type Synonyms

You can rename a type synonym with the RENAME statement. Renaming a synonym is
equivalent to dropping it and then re-creating it with a new name. You cannot rename a type
synonym if it has dependent tables or valid object types. The following example fails because
synonym synl has a dependent object type:

RENAME synl TO syn3 -- invalid statenent;

7.3.2.6 Public Type Synonyms and Local Schema Objects

You cannot create a local schema object that has the same name as a public synonym if the
public synonym has a dependent table or valid object type in the local schema that will hold the
new schema object. Nor can you create a local schema object that has the same name as a
private synonym in the same schema.

For instance, in the following example, table shape_t ab is a dependent table of public synonym
pub_shape because the table has a column that uses the synonym in its type definition.
Consequently, the attempt to create a table that has the same name as public synonym
pub_shape, in the same schema as the dependent table, fails:

- Foll owi ng uses public synonym pub_shape

CREATE TABLE shape_tab (¢l pub_shape);

- Following is not allowed

CREATE TABLE pub_shape (¢1 NUMBER) -- invalid statenent;

7.4 Performance Tuning

When tuning objects, the following items need to be addressed:

e How objects and object views consume CPU and memory resources during runtime
e How to monitor memory and CPU resources during runtime

e How to manage large numbers of objects

Some of the key performance factors are the following:

« DBMS_STATS package to collect statistics

e tkprof to profile execution of SQL commands

e EXPLAI NPLANto generate the query plans

@ See Also

Oracle Al Database SQL Tuning Guide for details on measuring and tuning the
performance of your application

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 13

Advanced Topics for Oracle Objects

Advanced topics section are of interest once you start applying object-relational techniques to
large-scale applications or complex schemas.

Topics:

« Storage of Objects

e Creating Indexes on Typeids or Attributes

e Type Evolution
 System-Defined and User-Defined Constructors

¢ Transient and Generic Types

 User-Defined Aggregate Functions

« How Locators Improve the Performance of Nested Tables

8.1 Storage of Objects

Oracle Al Database automatically maps the complex structure of object types into simple table
structure for storage.

Topics:

« Leaf-Level Attributes

« How Row Objects Are Split Across Columns

e Hidden Columns for Tables with Column Objects

» Hidden Columns for Substitutable Columns and Object Tables
e Storage of REFs

* Internal Layout of Nested Tables
e Internal Layout of VARRAYS

8.1.1 Leaf-Level Attributes

An object type is like a tree structure, where the branches represent the attributes. Attributes
that are objects sprout subbranches with their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type; such as NUMBER, VARCHAR?, or
REF, or a collection type, such as VARRAY or nested table. Each of these leaf-level attributes of
the original object type is stored in a table column.

Leaf-level attributes that are not collection types are called the |leaf-level scalar attributes of the
object type.

The following topics relate to the discussion of object tables and relational tables in "How
Objects are Stored in Tables ".

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 24

ORACLE

Chapter 8
Storage of Objects

8.1.2 How Row Objects Are Split Across Columns

In an object table, Oracle Al Database stores the data for every leaf-level scalar or REF
attribute in a separate column.

@® Note

Each VARRAY is also stored in a column, unless it is too large. Oracle Al Database
stores leaf-level attributes of nested table types in separate tables associated with the
object table. You must declare these tables as part of the object table declaration.

When you retrieve or change attributes of row objects in an object table, the database
performs the corresponding operations on the columns of the table. Accessing the value of the
row object itself invokes the default constructor for the type, using the columns of the object
table as arguments and produces a copy of the object.

The database stores the system-generated object identifier in a hidden column. The database
uses the object identifier to construct REFs to the object.

@ See Also
e Internal Layout of VARRAYS

e Internal Layout of Nested Tables

8.1.3 Hidden Columns for Tables with Column Objects

When a table (relational table) is defined with a column of an object type, the database adds
hidden columns to the table for the leaf-level attributes of the object type.

Each object-type column also has a corresponding hidden column to store the NULL
information for the column objects (that is, the atomic nulls of the top-level and the nested
objects).

8.1.4 Hidden Columns for Substitutable Columns and Object Tables

A substitutable column or object table has a hidden column not only for each attribute of the
object type of the column but also for each attribute added in any subtype of the object type.

Hidden columns store the values of those attributes for any subtype instances inserted in the
substitutable column.

Besides the type-discriminant column and the null-image column, the following are associated
with a substitutable column of per son_t yp, created by Example 8-1

e A hidden column for each of the attributes of per son_t yp: i dno, name, and phone
e Hidden columns for attributes of the subtypes of person_typ

Thus, the following might be associated with a substitutable column of per son_t yp: the
attributes dept _i d and ngj or (for st udent _typ) and nunber _hours (for
part _tine_student typ).

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 24

ORACLE

Chapter 8
Storage of Objects

When you create a subtype, the database automatically adds hidden columns for new
attributes in the subtype to tables containing a substitutable column of any of the ancestor
types of the new subtype. These retrofit the tables to store data of the new type. If, for some
reason, the columns cannot be added, creation of the subtype is rolled back.

When you drop a subtype using DROP TYPE with the VALI DATE option, the database
automatically drops hidden columns for attributes unique to the subtype that do not contain
data. Errors are raised if these columns contain data.

Example 8-1 creates types needed for related examples.

Example 8-1 Creating Types and Inserting in Tables

- drop any of these objects created for Ex.7-10
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,

nane VARCHAR2(30) ,

phone VARCHAR2(20) ,

MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER)
NOT FI NAL;

/
CREATE TYPE BODY person_typ AS
MAP MEMBER FUNCTI ON get _i dno RETURN NUMBER | S
BEG N
RETURN i dno;
END;
END;
/
CREATE TYPE student _typ UNDER person_typ (
dept _i d NUMBER,
maj or VARCHAR2(30))
NOT FI NAL;
/
CREATE TYPE part _time_student _typ UNDER student _typ (
nurmber _hours NUMBER) ;
/
CREATE TYPE enpl oyee_typ UNDER person_typ (
enp_i d NUMBER,
mgr VARCHAR2(30)) ;
/
CREATE TABLE person_obj _table OF person_typ; // an object table
I NSERT | NTO person_obj _table
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));
I NSERT | NTO person_obj _tabl e
VALUES (student typ(51, 'Joe Lane', '1-650-555-0140', 12, 'H STORY'));
I NSERT | NTO person_obj _table
VALUES (part_time_student_typ(52, 'KimPatel', '1-650-555-0135", 14,
"PHYSICS', 20));

Substitutable columns are associated with hidden type-discriminant columns. The hidden
columns contains an identifier, called a typeid, that identifies the most specific type of each
object in the substitutable columns. Typically, a typeid (RAW is one byte, though it can be as big
as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function SYS_TYPEI D.

Example 8-2 retrieves typeids of object instances stored in the substitutable object table
created in Example 8-1.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 24

ORACLE Chapter 8
Storage of Objects

8.1.5 Querying for Typeids of Objects Stored in Tables
You can retrieve typeids of object instances stored in a substitutable object table. See
Example 8-2.
Example 8-2 Querying for Typeids of Objects Stored in the Table

- Requires Ex. 8-1
SELECT name, SYS_TYPEID(VALUE(p)) typeid
FROM person_obj _table p;

Output:

NAVE TYPEI D
Bob Jones 01

Joe Lane 02

Ki m Pat el 03

The catalog views USER_TYPES, DBA TYPES, and ALL_TYPES contain a TYPEI D column (not
hidden) that gives the typeid value for each type. You can join on this column to get the type
names corresponding to the typeids in a type-discriminant column.

@ See Also

"SYS_TYPEID" for more information about SYS_TYPEI D, typeids, and type-discriminant
columns.

8.1.6 Storage of REFs

When the database constructs a REF to a row object, the constructed REF is made up of the
object identifier (OID), some metadata of the object table, and, optionally, the RON D.

The size of a REF in a column of REF type depends on the storage requirements associated
with the column, as follows:

o If the column is declared as a REF W TH ROW D, the database stores the RON D in the REF
column. The RON D hint is ignored for object references in constrained REF columns.

« |facolumnis declared as a REF with a SCOPE clause, the column decreases due to the
omission of the object table metadata and the RON D. A scoped REF is 16 bytes long.

8.1.7 Internal Layout of Nested Tables

The rows of a nested table are stored in a separate storage table. Each nested table column
has a single associated storage table. The storage table holds all the elements for all of the
nested tables in that column. The storage table has a hidden NESTED TABLE_| D column with a
system-generated value that lets Oracle Al Database map the nested table elements back to
the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table index-
organized. Include the ORGANI ZATI ON | NDEX clause inside the STORE AS clause.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 24

ORACLE Chapter 8
Creating Indexes on Typeids or Attributes

A nested table type can contain objects or scalars:

e If the elements are objects, the storage table is like an object table: the top-level attributes
of the object type become the columns of the storage table. However, you cannot construct
REFs to objects in a nested table because a nested table row has no object identifier
column.

* If the elements are scalars, the storage table contains a single column called
COLUWN_VALUE that contains the scalar values.

@ See Also
See "Nested Table Storage".

8.1.8 Internal Layout of VARRAYs

All the elements of a VARRAY are stored in a single column. Depending upon the size of the
array, it may be stored inline or in a BLOB.

@ See Also

See Storage Considerations for Varrays for details.

8.2 Creating Indexes on Typeids or Attributes

You can use indexes on typeids and attributes.
Topics:

¢ Indexing a Type-Discriminant Column

¢ Indexing Subtype Attributes of a Substitutable Column

8.2.1 Indexing a Type-Discriminant Column

Using the SYS_TYPEI D function, you can build an index on the hidden type-discriminant column
of substitutable columns. The type-discriminant column contains typeids that identify the most
specific type of every object instance stored in the substitutable column.

The system uses this information to evaluate queries that filter by type using the | S OF
predicate, but you can access the typeids for your own purposes using the SYS TYPEI D
function.

Generally, a type-discriminant column contains only a small number of distinct typeids: at most,
there can be only as many as there are types in the related type hierarchy. The low cardinality
of this column makes it a good candidate for a bitmap index.

For example, the following statement creates a bitmap index on the type-discriminant column
underlying the substitutable cont act column of table cont act s. The function SYS_TYPEI D
references the type-discriminant column:

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 24

ORACLE

Chapter 8
Creating Indexes on Typeids or Attributes

Example 8-3 Create bitmap index on type-discriminant column

- Requires Ex. 8-1
CREATE TABLE contacts (
cont act person_typ,
contact date DATE);
I NSERT | NTO contacts VALUES (
person_typ (65,'Vrinda MIIls', '1-650-555-0125"),"'24 Jun 2003");
I NSERT | NTO contacts VALUES (
person_typ (12, 'Bob Jones', '650-555-0130"),"'24 Jun 2003');
I NSERT | NTO contacts VALUES (
student _typ(51, 'Joe Lane', '1-650-555-0140", 12, 'H STORY'),'24 Jun 2003');
I NSERT | NTO contacts VALUES (part_tinme_student_typ(52, 'KimPatel', '1-650-555-0135",
14, 'PHYSICS , 20),'24 Jun 2003');
CREATE BITMAP INDEX typeid_idx ON contacts (SYS_TYPEID(contact));

8.2.2 Indexing Subtype Attributes of a Substitutable Column

You can build an index on attributes for any types that can be stored in a substitutable column.

You can reference attributes of subtypes in the CREATE | NDEX statement by filtering out types
other than the desired subtype (and its subtypes) using the TREAT function; you then use dot
notation to specify the desired attribute.

For example, the following statement creates an index on the maj or attribute of all students in
the cont act s table. The declared type of the cont act column is per son_t yp, of which
student _typ is a subtype, so the column may contain instances of person_typ, student _typ,
and subtypes of either one:

Example 8-4 Create index on attribute of all students

- Requires Ex.8-1- and 8-3
CREATE INDEX major1_idx ON contacts
(TREAT(contact AS student_typ).major);

The st udent _t yp type first defined the maj or attribute: the per son_t yp supertype does not
have it. Consequently, all the values in the hidden column for the maj or attribute are values for
persons of type st udent _typ or partti mestudent _typ (a student_typ subtype). This means
that the values of the hidden column are identical to the values returned by the TREAT
expression, maj or values for all students, including student subtypes: both the hidden column
and the TREAT expression list majors for students and nulls for non-students. The system
exploits this fact and creates index mgj or 1_i dx as an ordinary B-tree index on the hidden
column.

Values in a hidden column are only identical to the values returned by the TREAT expression
just described if the type named as the target of the TREAT function (st udent _typ) is the type
that first defined the maj or attribute. If the target of the TREAT function is a subtype that merely
inherited the attribute, as in the following example, the TREAT expression returns non-null maj or
values for the subtype (part-time students) but not for its supertype (other students).

CREATE | NDEX maj or2_i dx ON contacts
(TREAT(contact AS part_time_student_typ). major);

Here, the values stored in the hidden column for maj or may be different from the results of the
TREAT expression. Consequently, an ordinary B-tree index cannot be created on the underlying
column. Therefore, the database treats the TREAT expression like any other function-based
expression and tries to create the index as a function-based index on the result.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 24

ORACLE’

Chapter 8
Type Evolution

The following example, like the previous one, creates a function-based index on the maj or
attribute of part-time students, but in this case, the hidden column for maj or is associated with
a substitutable object table per son_obj tabl e:

CREATE | NDEX maj or3_i dx ON person_obj _table p
(TREAT(VALUE(p) AS part_tinme_student_typ).ngjor);

8.3 Type Evolution

Type evolution is the process of changing a object type.
Topics:

e About Type Evolution

Type Evolution and Dependent Schema Obijects

e Options for Updating Data

« Effects of Structural Changes to Types

e Altering a Type by Adding and Dropping Attributes

« Altering a Type by Adding a Nested Table Attribute

« About Validating Types That Have Been Altered
e ALTER TYPE Statement for Type Evolution
e ALTER TABLE Statement for Type Evolution

8.3.1 About Type Evolution

You can make the following changes to evolve an object type:

e Add and drop attributes

e Add and drop methods

* Modify a numeric attribute to increase its length, precision, or scale
* Modify a varying length character attribute to increase its length

e Change the FI NAL and | NSTANTI ABLE properties of a type

* Modify limit and size of VARRAYs

* Modify length, precision, and scale of collection elements

Changes to a type affect things that reference the type. For example, if you add a new attribute
to a type, data in a column of that type must be presented so as to include the new attribute.

8.3.2 Type Evolution and Dependent Schema Objects

Dependent schema objects of a type are objects that directly or indirectly reference the type
and are affected by a change to it.

A type can have these kinds of dependent schema objects: tables; types or subtypes; program
units (PL/SQL blocks) such as procedures, functions, packages, and triggers; indextypes;
views (including object views); function-based indexes; and operators.

How a dependent schema object is affected by a change to a type depends on the object and
on the nature of the change.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 24

ORACLE

Chapter 8
Type Evolution

* Dependent program units, views, operators, and indextypes are marked invalid when the
type is modified. The next time one of these invalid schema objects is referenced, it is
revalidated using the new type definition. If the object recompiles successfully, it becomes
valid and can be used again.

« Dependent function-based indexes may be dropped or disabled, depending on the type
change, and must be rebuilt.

» Dependent tables have one or more internal columns added for each attribute added to the
type, depending on the attribute type. New attributes are added with NULL values. For each
dropped attribute, the columns associated with that attribute are dropped. For each
modified attribute, the length, precision, or scale of its associated column is changed
accordingly.

These changes mainly involve updating the metadata of the tables and can be performed
quickly. However, the data in those tables must be updated to the format of the new type
version as well, as discussed in "Options for Updating Data".

8.3.3 Options for Updating Data

Depending on the amount of data, updating can be time-consuming, so the ALTER TYPE
command has options to let you choose whether to convert all dependent table data
immediately or to leave it in the old format to be converted piecemeal as it is updated in the
course of business.

The CASCADE option for ALTER TYPE propagates a type change to dependent types and tables.
CASCADE itself has the following options that let you choose whether or not to convert table data
to the new type format as part of the propagation:

e | NCLUDI NG TABLE DATA: converts the data (default)
« NOT | NCLUDI NG TABLE DATA : does not convert data

By default, the CASCADE option converts the data. In either case, table data is always returned
in the format of the latest type version. If the table data is stored in the format of an earlier type
version, the database converts the data to the format of the latest version before returning it,
even though the format in which the data is actually stored is not changed until the data is
rewritten.

You can retrieve the definition of the latest type from the system view USER_SOURCE. You can
view definitions of all versions of a type in the USER_TYPE_VERSI ONS view.

@ See Also
e "ALTER TYPE Statement for Type Evolution".

e See Oracle Al Database PL/SQL Language Reference for details about type
specification and body compilation

8.3.4 Effects of Structural Changes to Types

Structural changes to a type affect dependent data and require the data to be converted. This
is not true for changes that are confined to method definitions or behavior (implementation) of
the type.

These possible changes to a type are structural:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 24

ORACLE

Chapter 8
Type Evolution

e Add or drop an attribute
* Modify the length, precision, or scale of an attribute
e Change the finality of a type from FI NAL to NOT FI NAL or the reverse

These changes result in new versions of the altered type and all its dependent types and
require the system to add, drop, or modify internal columns of dependent tables as part of the
process of converting to the new version.

When you make any of these kinds of changes to a type that has dependent types or tables,
the effects of propagating the change are not confined only to metadata but also affect data
storage arrangements and require data conversion.

Besides converting data, you may also need to make other changes. For example, if a new
attribute is added to a type, and the type body invokes the constructor of the type, then each
constructor in the type body must be modified to specify a value for the new attribute. Similarly,
if a new method is added, then the type body must be replaced to add the implementation of
the new method. The type body can be modified by using the CREATE OR REPLACE TYPE BODY
statement.

8.3.5 Altering a Type by Adding and Dropping Attributes

You can make a simple change to a type by adding one attribute and dropping another.

Example 8-5makes such a change to per son_t ype. The CASCADE keyword propagates the type
change to dependent types and tables, but the phrase NOT | NCLUDI NG TABLE DATA prevents
conversion of the related data.

Example 8-5 Altering an Object Type by Adding and Dropping an Attribute

- Drop person_typ and person_obj table if they exist
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30),
phone VARCHAR2(20)) ;

/
CREATE TABLE person_obj _table OF person_typ;

I NSERT | NTO person_obj _table
VALUES (person_typ(12, 'Bob Jones', '650-555-0130"));

SELECT val ue(p) FROM person_obj _table p;

VALUE(P) (1 DNO, NAME, PHONE)

PERSON_TYP(12, 'Bob Jones', '650-555-0130")

You can add the email attribute and drop the phone attribute as follows:

ALTER TYPE person_typ
ADD ATTRIBUTE (enmai | VARCHAR2(80)),
DROP ATTRIBUTE phone CASCADE NOT INCLUDING TABLE DATA;

Then you can disconnect and reconnect to accommodate the type change:

connect oe/ oe;

connect hr/<password>;

ALTER SESSI ON SET PLSQ._WARNINGS = 'enable:all"';

- The data of table person_obj_table has not been converted yet, but
- when the data is retrieved, Oracle returns the data based on

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 24

ORACLE

Chapter 8
Type Evolution

- the latest type version. The new attribute is initialized to NULL.
SELECT val ue(p) FROM person_obj _table p;

VALUE(P) (1 DNO, NAME, EMAIL)

PERSON_TYP(12, ' Bob Jones', NULL)

During SELECT statements, even though column data may be converted to the latest type
version, the converted data is not written back to the column. If you retrieve a particular user-
defined type column in a table often, consider converting that data to the latest type version to
eliminate redundant data conversions. Converting is especially beneficial if the column
contains VARRAY attributes which typically take more time to convert than objects or nested
table columns.

You can convert a column of data by issuing an UPDATE statement to set the column to itself, as
indicated in the following code snippet, which is unrelated to previous code.

UPDATE dept _tab SET emp_array_col = emp_array_col,

You can convert all columns in a table by using ALTER TABLE with the UPGRADE | NCLUDI NG DATA.
For example:

ALTER TYPE person_typ ADD ATTRI BUTE (photo BLOB)
CASCADE NOT | NCLUDI NG TABLE DATA;
ALTER TABLE person_obj _tabl e UPGRADE INCLUDING DATA;

The ALTER TABLE line converts only the table listed. The CASCADE option prevents conversion of
other tables or dependents.

8.3.6 Altering a Type by Adding a Nested Table Attribute

You can add a nested table attribute to an object type that is included in a nested table.
The following steps are required to make this complex change to a type.

The steps require this initial schema which is then altered by the code in Step 1.

Initial Schema

- Drop existing person_typ, department_type, people_typ objects or tables
CREATE TYPE person_typ AS OBJECT (

i dno NUMBER,
name VARCHAR2(30) ,
phone VARCHAR2(20)) ;

/

- creating a nested table type
CREATE TYPE peopl e_typ AS TABLE OF person_typ;/
CREATE TYPE departnent _typ AS OBJECT (

manager person_typ,

enpl oyee people_typ); // a nested table/
CREATE TABLE departnent OF departnent_typ

NESTED TABLE enpl oyee STORE AS enpl oyee_store_nt;

The code example in Step 1 starts by creating a new object t asks_t yp and a nested table type
to hold it, t asks_ntt ab.

The following steps, both in the code example in Step 1, and in other programs, are necessary
to add the nested table t asks as an attribute to the object type per son_t yp, which is already
included in the nested table peopl e_typ.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 24

ORACLE

Chapter 8
Type Evolution

Altering an Object Type by Adding a Nested Table Attribute

- Requires Ex. 8-6
CREATE TYPE tasks_typ AS OBJECT (
priority VARCHAR2(2) ,
description VARCHAR2(30));
/

CREATE TYPE tasks_nttab AS TABLE OF tasks_typ;
/

- Propagate the change to enpl oyee_store_nt

- Specify a storage nane for the new nested table
ALTER TABLE enpl oyee_store_nt

UPGRADE NESTED TABLE tasks STORE AS tasks_nt;

2. Use CREATE OR REPLACE TYPE BQDY for person_t yp to update the corresponding type body
to make it current with the new type definition, if necessary.

3. Upgrade the dependent tables to the latest type version and convert the data in the tables.
This validates the table and allow for data access again.

ALTER TABLE department UPGRADE | NCLUDI NG DATA,
4. Alter dependent PL/SQL program units as needed to take account of changes to the type.

5. Use Oracle Type Translator (OTT) to generate new header files for applications, depending
on whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in all its
subtypes because these inherit the new attribute. Inherited attributes always precede
declared (locally defined) attributes, so adding a new attribute to a supertype causes the
ordinal position of all declared attributes of any subtype to be incremented by one
recursively.

You must update the mappings of the altered type to include the new attributes. Use
Oracle Type Translator (OTT) to do this. If you use another tool, you must be sure that the
type headers are properly synchronized with the type definition in the server; otherwise,
unpredictable behavior may result.

6. Modify application code as needed and rebuild the application.

8.3.7 About Validating Types That Have Been Altered

When the system executes an ALTER TYPE statement, it first validates the requested type
change syntactically and semantically to make sure it is legal.

The system performs the same validations as for a CREATE TYPE statement plus some
additional ones. If the new specification of the target type or any of its dependent types fails the
type validations, the ALTER TYPE statement aborts. No new type version is created, and all
dependent objects remain unchanged.

If dependent tables exist, further checking ensures that restrictions relating to the tables and
indexes are observed. For example, it ensures that an attribute being dropped is not used as a
partitioning key. Again, if the ALTER TYPE statement fails the check of table-related restrictions,
then the type change is aborted, and no new version of the type is created.

When a single ALTER TYPE statement adds multiple attributes, it is done in the order specified.
Multiple type changes can be specified in the same ALTER TYPE statement, but no attribute
name or method signature can be specified more than once in the statement. For example,
adding and modifying the same attribute in a single statement is not allowed.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 24

ORACLE

Chapter 8
Type Evolution

The following sections contain other notes on type changes including:

Dropping an Attribute

Modifying the Length, Precision, or Scale of an Attribute Type

Dropping a Method
Modifying the INSTANTIABLE Property

Dropping an Attribute

Dropping all attributes from a root type is not allowed. Instead, you must drop the type.
Because a subtype inherits all the attributes from its supertype, dropping all the attributes
from a subtype does not reduce its attribute count to zero; therefore, dropping all attributes
declared locally in a subtype is allowed.

Only an attribute declared locally in the target type can be dropped. You cannot drop an
inherited attribute from a subtype. Instead, drop the attribute from the type where it is
locally declared.

Dropping an attribute which is part of a table partitioning or sub-partitioning key in a table is
not allowed.

When an attribute is dropped, the column corresponding to the dropped attribute is
dropped.

When an attribute is dropped, any indexes, statistics, constraints, and referential integrity
constraints that reference it are removed.

Modifying the Length, Precision, or Scale of an Attribute Type

You are not allowed to expand the length of an attribute referenced in a function-based
index, clustered key or domain index on a dependent table.

You are not allowed to decrease the length, precision, or scale of an attribute.

Dropping a Method

You can only drop a method from the type in which the method is defined (or redefined):
You cannot drop an inherited method from a subtype, and you cannot drop an redefined
method from a supertype.

If a method is not redefined, dropping it using the CASCADE option removes the method from
the target type and all subtypes. However, if a method is redefined in a subtype, the
CASCADE will fail and roll back. For the CASCADE to succeed, you must first drop each
redefined method from the subtype that defines it and then drop the method from the
supertype.

You can consult the USER_DEPENDENCI ES table to find all the schema objects, including
types, that depend on a given type. You can also run the DBMS_UTI LI TY. GET_DEPENDENCY
utility to find the dependencies of a type.

You can use the | NVALI DATE option to drop a method that has been redefined, but the
redefined versions in the subtypes must still be dropped manually. The subtypes will
remain in an invalid state until they are explicitly altered to drop the redefined versions.
Until then, an attempt to recompile the subtypes for revalidation will produce the error
Met hod does not override.

Unlike CASCADE, | NVALI DATE bypasses all the type and table checks and simply invalidates
all schema objects dependent on the type. The objects are revalidated the next time they
are accessed. This option is faster than using CASCADE, but you must be certain that no
problems occur when revalidating dependent types and tables. Table data cannot be

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 24

ORACLE

Chapter 8
Type Evolution

accessed while a table is invalid; if a table cannot be validated, its data remains
inaccessible.

Modifying the INSTANTIABLE Property

Altering an object type from | NSTANTI ABLE to NOT | NSTANTI ABLE is allowed only if the type
has no table dependents.

Altering an object type from NOT | NSTANTI ABLE to | NSTANTI ABLE is allowed anytime. This
change does not affect tables.

Modifying the FINAL Property

Altering an object type from NOT FI NAL to FI NAL is only allowed if the target type has no
subtypes.

When you alter an object type from FI NAL to NOT FI NAL or vice versa, you must use
CASCADE to convert data in dependent columns and tables immediately. You may not use
the CASCADE option NOT | NCLUDI NG TABLE DATA to defer converting data.

— From NOT FI NAL to FI NAL, you must use CASCADE | NCLUDI NG TABLE DATA.

— From FI NAL to NOT FI NAL, you may use either CASCADE | NCLUDI NG TABLE DATA or
CASCADE CONVERT TO SUBSTI TUTABLE.

When you alter a type from FI NAL to NOT FI NAL, select the CASCADE option based on
whether or not you want to insert new subtypes of the altered types into existing
columns and tables.

By default, altering a type from FI NAL to NOT FI NAL enables you to create new substitutable
tables and columns of that type, but it does not automatically make existing columns (or
object tables) of that type substitutable. In fact, just the opposite happens: existing columns
and tables of the type are marked NOT SUBSTI TUTABLE AT ALL LEVELS. If any embedded
attribute of these columns is substitutable, an error is generated. New subtypes of the
altered type cannot be inserted into these preexisting columns and tables.

To alter an object type to NOT FI NAL in a way that makes existing columns and tables of the
type substitutable (assuming that they are not marked NOT SUBSTI TUTABLE), use the
CASCADE option CONVERT TO SUBSTI TUTABLE.

The following example shows the use of CASCADE with the option CONVERT TO
SUBSTI TUTABLE:

CREATE TYPE shape AS OBJECT (
name VARCHAR2(30),
area NUMBER)
FI NAL; /
ALTER TYPE shape NOT FI NAL CASCADE CONVERT TO SUBSTITUTABLE;

This CASCADE option marks each existing column as SUBSTI TUTABLE AT ALL LEVELS and
causes a new, hidden column to be added for the Typeld of instances stored in the column.
The column can then store subtype instances of the altered type.

8.3.8 ALTER TYPE Statement for Type Evolution

Table 8-1 lists some of the important options in the ALTER TYPE and ALTER TYPE. . . CASCADE

statements for altering the attribute or method definition of a type.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 24

ORACLE

Chapter 8
Type Evolution

Table 8-1 ALTER TYPE Options for Type Evolution
]

Option

Description

CASCADE

| NCLUDI NG TABLE DATA
(Option of CASCADE)

NOT | NCLUDI NG TABLE
DATA (Option of CASCADE)

FORCE (Option of CASCADE)

CONVERT TO
SUBSTI TUTABLE (Option of
CASCADE)

Propagates the type change to dependent types and tables. The
statement aborts if an error is found in dependent types or tables unless
the FORCE option is specified.

If CASCADE is specified without other options, then the | NCLUDI NG TABLE
DATA option for CASCADE is implied, and the database converts all table
data to the latest type version.

Converts data stored in all user-defined columns to the most recent
version of the column type.

For each new attribute added to the column type, a new attribute is added
to the data and is initialized to NULL. For each attribute dropped from the
referenced type, the corresponding attribute data is removed from the
table. All tablespaces containing the table data must be in read-write
mode; otherwise, the statement will not succeed.

Leaves column data as is, does not change type version. If an attribute is
dropped from a type referenced by a table, the corresponding column of
the dropped attribute is not removed from the table. However, the
metadata of the column is marked unused. If the dropped attribute is
stored out-of-line (for example, VARRAY, LOB, or nested table attribute),
the out-of-line data is not removed. (Unused columns can be removed
afterward by using an ALTER TABLE DROP UNUSED COLUMNS
statement.)

This option is useful when you have many large tables and may run out of
rollback segments if you convert them all in one transaction. This option
enables you to convert the data of each dependent table later in a
separate transaction (using an ALTER TABLE UPGRADE | NCLUDI NG
DATA statement).

Specifying this option speeds up the table upgrade because the table
data remains in the format of the old type version. However, selecting
data from this table requires converting the images stored in the column
to the latest type version. This is likely to affect performance during
subsequent SELECT statements.

Because this option only requires updating the table metadata, it does not
require that all tablespaces be on-line in read/write mode for the
statement to succeed.

Forces the system to ignore errors from dependent tables and indexes.
Errors are logged in a specified exception table so that they can be
queried afterward. Use this option with caution because dependent tables
can become inaccessible if some table errors occur.

For use when altering a type from FI NAL to NOT FI NAL: Converts data
stored in all user-defined columns to the most recent version of the
column type and then marks these existing columns and object tables of
the type SUBSTI TUTABLE AT ALL LEVELS so that they can store any
newly created subtypes of the type.

If the type is altered to NOT FI NAL without specifying this option, existing
columns and tables of the type are marked NOT SUBSTI TUTABLE AT
ALL LEVELS, and new subtypes of the type cannot be stored in them.
You can only store these subtypes in columns and tables created after
the type was altered.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 14 of 24

ORACLE Chapter 8
Storing XMLTypes and LOBs in an ANYDATA Column

@ See Also

Oracle Al Database SQL Language Reference for further information about ALTER
TYPE options

8.3.9 ALTER TABLE Statement for Type Evolution

You can use ALTER TABLE to convert table data to the latest version of referenced types. For an
example, see "Altering a Type by Adding a Nested Table Attribute".

® See Also
e Table 8-1 for a discussion of the | NCLUDI NG DATA option.

* Oracle Al Database SQL Language Reference for information about ALTER TABLE
options

8.4 Storing XMLTypes and LOBs in an ANYDATA Column

Beginning with Oracle Database 12c, you can use ALTER TABLE to store ADTs with XM_TYPES
and LOB attributes in ANYDATA columns. You can also do the same for standalone XMLTYPEs.

e Use the nodi fy_opaque_t ype clause, which instructs the database to store these types
unpacked. Otherwise, they cannot be stored in an ANYDATA column.

@ See Also

Oracle Al Database SQL Language Reference for information about ALTER TABLE used
with the nodi fy_opaque_t ype clause

8.5 System-Defined and User-Defined Constructors

There are various aspects to system-defined constructors, also known as attribute-value
constructors, and user-defined constructors.

Topics:

* The Attribute-Value Constructor

e Constructors and Type Evolution

 Advantages of User-Defined Constructors

* Defining and Implementing User-Defined Constructors

e Overloaded and Hidden Constructors

e Calling User-Defined Constructors

e Constructors for SQLJ Object Types

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 24

ORACLE Chapter 8
System-Defined and User-Defined Constructors

8.5.1 The Attribute-Value Constructor

The system-defined constructor, also known as the attribute-value constructor, requires you to
pass the constructor a value for each attribute of the type. The constructor then sets the
attributes of the new object instance to those values, as shown in Example 8-6.

The keyword NEWpreceding a call to a constructor is optional but recommended.

Example 8-6 Setting the attribute-value with the Constructor

CREATE TYPE shape AS OBJECT (
name VARCHAR2(30),
area NUMBER);
/
CREATE TABLE bui | di ng_bl ocks of shape;

- attribute-value constructor: Sets instance attributes to the specified val ues
I NSERT | NTO bui | di ng_bl ocks
VALUES (
NEW shape(' ny_shape', 4));

8.5.2 Constructors and Type Evolution

The attribute-value constructor saves you the trouble of defining your own constructors for a
type. However, you must supply a value for every attribute declared in the type or the
constructor call fails to compile.

This requirement can create a problem if you evolve the type later on, especially because the
attribute-value constructor is implicit and not visible in the code, unlike a user-defined
constructor. When you change the attributes of a type, the attribute-value constructor of the
type changes, too. If you add an attribute, the updated attribute-value constructor expects a
value for the new attribute; otherwise, any attribute-value constructor calls in your existing code
fail.

@ See Also
"Type Evolution"

8.5.3 Advantages of User-Defined Constructors

User-defined constructors do not need to explicitly set a value for every attribute of a type,
unlike attribute-value constructors.

A user-defined constructor can have any number of arguments, of any type, and these do not
need to map directly to type attributes. When you define a constructor, you can initialize the
attributes to any appropriate values. For any attributes which you do not supply values, the
system initialized to NULL.

If you evolve a type—for example, by adding an attribute—calls to user-defined constructors
for the type do not need to be changed. User-defined constructors are not automatically
modified when the type evolves, so their sighatures remain the same. You may, however, need
to change the definition of the constructor if you do not want the new attribute to be initialized
to NULL.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 24

ORACLE Chapter 8
System-Defined and User-Defined Constructors

8.5.4 Defining and Implementing User-Defined Constructors

You define user-defined constructors in the type body, like an ordinary method. You introduce
the declaration and the definition with the phrase CONSTRUCTOR FUNCTI ON and end with the
clause RETURN SELF AS RESULT.

A constructor for a type must have the same name as the type. Example 8-7 defines two
constructor functions for the shape type. As the example shows, you can overload user-defined
constructors by defining multiple versions with different signatures.

Example 8-7 Defining and Implementing User-Defined Constructors

CREATE TYPE shape AS OBJECT (
name VARCHAR2(30),
area NUMBER,
CONSTRUCTOR FUNCTION shape(SELF I N OUT NOCCOPY shape, nanme VARCHAR2)
RETURN SELF AS RESULT,
CONSTRUCTOR FUNCTI ON shape(SELF I N OUT NOCOPY shape, nane VARCHAR2,
area NUMBER) RETURN SELF AS RESULT
) NOT FI NAL;
/

CREATE TYPE BODY shape AS
CONSTRUCTOR FUNCTI ON shape(SELF I N OQUT NOCOPY shape, nanme VARCHARZ)
RETURN SELF AS RESULT IS

BEG N
SELF. name : = nang;
SELF. area : = 0;
RETURN;

END;

CONSTRUCTOR FUNCTI ON shape(SELF IN OUT NOCOPY shape, name VARCHARZ,
area NUMBER) RETURN SELF AS RESULT IS

BEG N
SELF. name : = nang;
SELF. area : = area;
RETURN;

END;

END;
/

A user-defined constructor has an implicit first parameter SELF. Specifying this parameter in the
declaration of a user-defined constructor is optional. If you do specify it, you must declare its
mode to be I N OUT.

The required clause RETURN SELF AS RESULT ensures that the most specific type of the
instance being returned is the same as the most specific type of the SELF argument. In the
case of constructors, this is the type for which the constructor is defined. For example, if the
most specific type of the SELF argument on a call to the shape constructor is shape, then this
clause ensures that the shape constructor returns an instance of shape (not an instance of a
subtype of shape).

When a constructor function is called, the system initializes the attributes of the SELF argument
to NULL. Names of attributes subsequently initialized in the function body may be qualified with
SELF, such as SELF. nanme in Example 8-7, to distinguish them from the names of the arguments
of the constructor function, if these are the same. If the argument names are different, this
qualification is not necessary.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 17 of 24

ORACLE

Chapter 8
System-Defined and User-Defined Constructors

The function body must include an explicit r et ur n; as shown. The return keyword must not be
followed by a r et ur n expression. The system automatically returns the newly constructed SELF
instance.

A user-defined constructor may be implemented in PL/SQL, C, or Java.

8.5.5 Overloaded and Hidden Constructors

You can overload user-defined constructors, like other type methods.

User-defined constructors are not inherited, so a user-defined constructor defined in a
supertype cannot be hidden in a subtype. However, a user-defined constructor does hide, and
thus supersede, the attribute-value constructor for its type if the signature of the user-defined
constructor exactly matches the signature of the attribute-value constructor.

For the signatures to match, the names and types of the parameters (after the implicit SELF
parameter) of the user-defined constructor must be the same as the names and types of the
attributes of the type. The mode of the parameters (after the implicit SELF parameter) of the
user-defined constructor must be | N.

If an attribute-value constructor is not hidden by a user-defined constructor that has the same
name and signature, the attribute-value constructor can still be called.

Note that, if you evolve a type—for example, by adding an attribute—the signature of the
attribute-value constructor of the type changes accordingly. This can cause a formerly hidden
attribute-value constructor to become usable again.

8.5.6 Calling User-Defined Constructors

You call a user-defined constructor like any other function and you can use it anywhere you
can use an ordinary function.

The SELF argument is passed in implicitly and may not be passed in explicitly. In other words,
usages like the following are not allowed:

NEW const ruct or (i nstance, argunent_|ist)

A user-defined constructor cannot occur in the DEFAULT clause of a CREATE or ALTER TABLE
statement, but an attribute-value constructor can. The arguments to the attribute-value
constructor must not contain references to PL/SQL functions or to other columns, including the
pseudocolumns LEVEL, PRI OR, and ROMNUM or to date constants that are not fully specified. The
same is true for check constraint expressions: an attribute-value constructor can be used as
part of check constraint expressions while creating or altering a table, but a user-defined
constructor cannot.

Parentheses are required in SQL even for constructor calls that have no arguments. In PL/
SQL, parentheses are optional when invoking a zero-argument constructor. They do, however,
make it more obvious that the constructor call is a function call. The following PL/SQL example
omits parentheses in the constructor call to create a new shape:

shape s := NEWny_schena. shape;
The NEWkeyword and the schema name are optional.

Example 8-8 creates a subtype under the type created in Example 8-7 and shows examples
for calling the user-defined constructors.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 18 of 24

ORACLE Chapter 8
System-Defined and User-Defined Constructors

Example 8-8 Calling User-Defined Constructors

-- Requires Ex. 8-8
CREATE TYPE rectangl e UNDER shape (
| en NUMBER,
wt h NUMBER,
CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
name VARCHAR2, |en NUMBER, wth NUMBER) RETURN SELF as RESULT,
CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
name VARCHAR2, side NUMBER) RETURN SELF as RESULT);
/
SHOW ERRORS
CREATE TYPE BODY rectangle IS
CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
name VARCHAR2, |en NUMBER, wth NUMBER) RETURN SELF AS RESULT IS

BEG N
SELF. nane : = nane;
SELF. area := len*wth;

SELF.len : = len;
SELF.wth := wth;
RETURN ;
END;
CONSTRUCTOR FUNCTI ON rect angl e(SELF I N QUT NOCOPY rectangl e,
name VARCHAR2, side NUMBER) RETURN SELF AS RESULT IS
BEG N
SELF. nane : = nane;
SELF. area : = side * side;

SELF.len : = side;
SELF. wth : = side;
RETURN ;

END;

END;
/

CREATE TABLE shape_t abl e OF shape;

I NSERT | NTO shape_t abl e VALUES(shape(' shapel'));

I NSERT | NTO shape_t abl e VALUES(shape(' shape2', 20));

I NSERT | NTO shape_t abl e VALUES(rectangl e('rectangle', 2, 5));

I NSERT | NTO shape_t abl e VALUES(rectangl e(' quadrangle', 12, 3));
I NSERT | NTO shape_t abl e VALUES(rectangl e(' square', 12));

The following query selects the rows in the shape_t abl e:

SELECT VALUE(s) FROM shape_table s;

VALUE(S) (NAVE, AREA)

SHAPE(' shapel', 0)

SHAPE(' shape2', 20)

RECTANGLE(' rectangle', 10, 2, 5)
RECTANGLE(' quadrangle', 36, 12, 3)
RECTANGLE(' square', 144, 12, 12)

The following PL/SQL code calls the constructor:

s shape : = NEW shape('void');

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 19 of 24

ORACLE

Chapter 8
Transient and Generic Types

8.5.7 Constructors for SQLJ Object Types

A SQLJ object type is a SQL object type mapped to a Java class. A SQLJ object type has an
attribute-value constructor. It can also have user-defined constructors that are mapped to
constructors in the referenced Java class.

Example 8-9 Creating a SQLJ Object

CREATE TYPE address AS OBJECT
EXTERNAL NAME 'university. address' LANGUAGE JAVA
USI NG SQLDat a(
street VARCHAR2(100) EXTERNAL NAME 'street',
city VARCHAR2(50) EXTERNAL NAME 'city',
state VARCHAR2(50) EXTERNAL NAME 'state',
zi pcode NUMBER EXTERNAL NAME ' zi pcode',
CONSTRUCTOR FUNCTION address (SELF IN QUT NOCOPY address, street VARCHARZ,
city VARCHAR2, state VARCHAR2, zipcode NUMBER)
RETURN SELF AS RESULT AS LANGUAGE JAVA
NAME ‘'university.address (java.lang.String, java.lang.String,
java.lang. String, int) return address');
/

A SQLJ type of a serialized representation can have only a user-defined constructor. The
internal representation of an object of SQLJ type is opaque to SQL, so an attribute-value
constructor is not possible for a SQLJ type.

8.6 Transient and Generic Types

Oracle Al Database has three generic (that is, generically programmed) SQL data types that
enable you to dynamically encapsulate and access type descriptions, data instances, and sets
of data instances of any other SQL type, including object and collection types. You can also
use these three types to create anonymous types, including anonymous collection types.

The three SQL types are implemented as opaque types. In other words, the internal structure
of these types is not known to the database; their data can be queried only by implementing
functions (typically 3GL routines) for the purpose. Oracle Al Database provides both an OCI
and a PL/SQL API for implementing such functions.

Of the three types, ANYTYPE is transient, and ANYDATA and ANYDATASET are not transient, but
rather persistent. Transient types cannot be persistently stored because their structures are
opaque to the database. You cannot create columns of transient types or make them attributes
of persistent types.

Beginning with Oracle Database release 12c, release 12.2, transient types can be created on
Active Data Guard instance if:

1. Real Time Apply is running on Active Data Guard, and
2. Logical Standby is not lagging far behind the Primary (typically, order of seconds).
The three generic SQL types are described in Table 8-2.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 24

ORACLE

Chapter 8
Transient and Generic Types

Table 8-2 Generic SQL Types

Type Description

SYS. ANYTYPE A type description type. A SYS. ANYTYPE can contain a type description of
any SQL type, named or unnamed, including object types and collection
types.

An ANYTYPE can contain a type description of a persistent type, but an
ANYTYPE itself is transient: in other words, the value in an ANYTYPE itself is
not automatically stored in the database. To create a persistent type, use a
CREATE TYPE statement from SQL.

SYS. ANYDATA A self-describing data instance type. A SYS. ANYDATA contains an instance
of a given type, with data, plus a description of the type. In this sense, a
SYS. ANYDATA is self-describing. An ANYDATA can be persistently stored in
the database.

The following cannot be stored in an ANYDATA column:
* Another opague type except XMLTYPE
e LOB types (BLOB/CLOB/NCLOB)
« VARRAY types with maximum size greater than 4K
* Transient types
SYS. ANYDATASET A self-describing data set type. A SYS. ANYDATASET type contains a
description of a given type plus a set of data instances of that type. An
ANYDATASET can be persistently stored in the database.
The following cannot be stored in an ANYDATASET column:
¢ Another opaque type such as ANYDATA or XMLTYPE
* LOB types (BLOB/CLOB/NCLOB)
* VARRAY types with maximum size greater than 4K
e ADTs that contain any of the above types
* Transient types

Each of these three types can be used with any built-in type native to the database as well as
with object types and collection types, both named and unnamed. The types provide a generic
way to work dynamically with type descriptions, lone instances, and sets of instances of other
types. Using the APIs, you can create a transient ANYTYPE description of any kind of type.
Similarly, you can create or convert (cast) a data value of any SQL type to an ANYDATA and can
convert an ANYDATA (back) to a SQL type. And similarly again with sets of values and
ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic types to
encapsulate descriptions and data of standard types and pass the encapsulated information
into parameters of the generic types. In the body of the procedure, you can detail how to
handle the encapsulated data and type descriptions of whatever type.

You can also store encapsulated data of a variety of underlying types in one table column of
type ANYDATA or ANYDATASET. For example, you can use ANYDATA with Advanced Queuing to
model queues of heterogeneous types of data. You can query the data of the underlying data
types like any other data.

Example 8-10 defines and executes a PL/SQL procedure that uses methods built into
SYS. ANYDATA to access information about data stored in a SYS. ANYDATA table column.

Example 8-10 Using SYS.ANYDATA

CREATE OR REPLACE TYPE dogowner AS OBJECT (
ownerno NUMBER, ownername VARCHAR2(10));
/

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 24

ORACLE Chapter 8
Transient and Generic Types

CREATE OR REPLACE TYPE dog AS OBJECT (
breed VARCHAR2(10), dognane VARCHAR2(10));

/

CREATE TABLE nytab (id NUMBER, data SYS. ANYDATA);

I NSERT | NTO mytab VALUES (1, SYS. ANYDATA. ConvertNunber (5));

I NSERT | NTO nytab VALUES (2, SYS. ANYDATA. Converthject (
dogowner (5555, 'John')));

comi t;

CREATE OR REPLACE procedure P IS
CURSCR cur |'S SELECT id, data FROM nytab;

v_id mytab. i d%I'YPE;

v_data nyt ab. dat a%YPE;

v_type SYS. ANYTYPE;

v_typecode PLS | NTEGER;

v_typenane VARCHAR2(60);

v_dummy PLS | NTEGER,

v_n NUMBER;

v_dogowner dogowner ;

non_nul | _anytype_for _NUMBER excepti on;
unknown_t ypename exception;

BEG N
OPEN cur;
LooP
FETCH cur INTO v_id, v_data;
EXIT WHEN cur ¥NOTFCOUND;
v_typecode : = v_data. Get Type (v_type /* QUT */);
CASE v_typecode
VWHEN Dbns_Types. Typecode NUVBER THEN
IF v_type |'S NOT NULL
THEN RAI SE non_nul | _anytype_for _NUMBER, END | F;
v_dumy := v_data. Get NUMBER (v_n /* QUT */);
Dbns_Qut put. Put _Line (
To_Char(v_id) || ': NUMBER ="' || To_Char(v_n));
VWHEN Dbns_Types. Typecode_Obj ect THEN
v_typenanme := v_data. Cet TypeName();
I F v_typenane NOT IN ('HR DOGOWNER)
THEN RAI SE unknown_t ypename; END I F;
v_dumy := v_data. Get bj ect (v_dogowner /* OUT */);
Dbns_Qut put. Put _Line (
To_Char(v_id) || ': user-defined type ="' || v_typenane ||
"(" || v_dogowner.ownerno || ', ' || v_dogowner.ownernane || ')');
END CASE;
END LOOP;
CLCSE cur;
EXCEPTI ON

VWHEN non_nul | _anytype_f or _NUMBER THEN
RAI SE_Application_Error (-20000,
" Paradox: the return AnyType instance FROM Get Type ' ||
"should be NULL for all but user-defined types');
VWHEN unknown_t ypename THEN
RAI SE_Application_Error (-20000,
" Unknown user-defined type ' || v_typename ||
- programwitten to handle only HR DOGOMER);
END,;
/

SELECT t. data. gettypename() FROM nytab t;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 22 of 24

ORACLE

Chapter 8
User-Defined Aggregate Functions

SET SERVERQUTPUT ON,
EXEC P;

The query and the procedure P in the preceding code sample produce output like the following:

T. DATA. GETTYPENAME()

SYS. NUMBER

HR. DOGOWNER

1: NUMBER = 5

2: user-defined type = HR DOGOMNNER(5555, John)

Corresponding to the three generic SQL types are three OCI types that model them. Each has
a set of functions for creating and accessing the respective type:

e (OCl Type: corresponds to SYS. ANYTYPE
e (OCl AnyDat a: corresponds to SYS. ANYDATA
e (OCl AnyDat aSet : corresponds to SYS. ANYDATASET

@ See Also

— Oracle Call Interface Developer's Guide for the OCl Type, OCl AnyDat a, and
OCl AnyDat aSet APIs and details on how to use them

— Oracle Al Database PL/SQL Packages and Types Reference for information
about the interfaces to the ANYTYPE, ANYDATA, and ANYDATASET types and the
DBVS_TYPES package, which defines constants for built-in and user-defined
types, for use with ANYTYPE, ANYDATA, and ANYDATASET

8.7 User-Defined Aggregate Functions

Oracle Al Database provides a number of pre-defined aggregate functions such as MAX, M N,
SUMfor performing operations on a set of records.

These pre-defined aggregate functions can be used only with scalar data. However, you can
create your own custom implementations of these functions, or define entirely new aggregate
functions, to use with complex data—for example, with multimedia data stored using object
types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like the Oracle Al
Database built-in aggregates. Once such functions are registered with the server, the database
simply invokes the aggregation routines that you supplied instead of the native ones.

User-defined aggregates can be used with scalar data as well. For example, it may be
worthwhile to implement special aggregate functions for working with complex statistical data
associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You implement them
using CDCI Aggr egat e interface routines.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 23 of 24

ORACLE Chapter 8
How Locators Improve the Performance of Nested Tables

@ See Also

Oracle Al Database Data Cartridge Developer's Guide for information on using the
ODClI Aggr egat e interface routines to implement user-defined aggregate functions

8.8 How Locators Improve the Performance of Nested Tables

You can use nested table locators to improve performance when retrieving data.

Collection types do not map directly to a native type or structure in languages such as C++ and
Java. An application using those languages must access the contents of a collection through
Oracle Al Database interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by fetching the
containing object), the database returns the entire collection value to the client process. For
performance reasons, a client may wish to delay or avoid retrieving the entire contents of the
collection. Oracle Al Database handles this case for you by using a locator instead of the
actual nested table value. When you really access the contents of the collection, they are
automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve the value
or copy semantics of the nested table by containing the database snapshot as of its time of
retrieval. The snapshot helps the database retrieve the correct instantiation of the nested table
value at a later time when the collection elements are fetched using the locator. The locator is
scoped to a session and cannot be used across sessions. Because database snapshots are
used, it is possible to get a snapshot too ol d error if there is a high update rate on the nested
table. Unlike a LOB locator, the nested table locator is truly a locator and cannot be used to
modify the collection instance.

@ See Also

"Nested Table Locators" for more specific information

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 24 of 24

Design Considerations for Oracle Objects

There are implementation and performance characteristics of the Oracle object-relational
model that you should understand.

Then you can map a logical data model into an Oracle physical implementation, and develop
applications that use object-oriented features.

Topics:

* General Storage Considerations for Objects

» Performance of Object Comparisons

* Design Considerations for REFs

» Design Considerations for Collections

* Design Considerations for Methods

 Reusable Code Using Invoker Rights

« Roles with Invoker's Rights Subprograms

» Replication Support for Objects

» Materialized View Support for Objects

» Constraints on Objects

e Considerations Related to Type Evolution

» Parallel Queries with Oracle Objects

» Design Consideration Tips and Technigues

9.1 General Storage Considerations for Objects

There are general storage considerations for various object types.
Topics:

e About Storing Objects as Columns or Rows

« Storage Considerations for Object Identifiers (OIDs)

9.1.1 About Storing Objects as Columns or Rows

You can store objects in relational tables as column objects or in object tables as row objects.
Those objects that have meaning outside of the relational database they reside in, should be
made referenceable as row objects in an object table. Otherwise, they should be stored as
column objects in a relational table.

See "How Objects are Stored in Tables " for an introduction to table storage.

This section describes the following topics:

« Column Obiject Storage in Relational Tables

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 32

ORACLE

Chapter 9
General Storage Considerations for Objects

* Row Object Storage in Object Tables

9.1.1.1 Column Object Storage in Relational Tables

Column object storage is similar to storage of an equivalent set of scalar columns that
collectively make up the object.

The difference is the additional overhead of maintaining the atomic null values of any
noncollection columns objects and their embedded object attributes. These values, called null
indicators (or sometimes, null images), specify for every column object, whether or not the
column object is null and whether or not each of its embedded object attributes is null.

Note that null indicators do not specify whether the scalar attributes of a column object are null.
Oracle uses a different method to determine whether scalar attributes are null.

Consider a table that holds the identification number, name, address, and phone numbers of
people within an organization. You can create three different object types to hold the name,
address, and phone numbers and an object enpl oyee_obj t yp that contains the name and
address objects. Because each person may have more than one phone number, you need to
create a nested table type based on the phone number object type

First, enter the SQL statements in to create the four object types and a table for phone number
objects.

Example 9-1 Creating Object Types for Columns in a Relational Table

CREATE TYPE name_objtyp AS OBJECT (

first VARCHAR2(15) ,
m ddl e VARCHAR2(15) ,
| ast VARCHAR2(15)) ;
/
CREATE TYPE address_objtyp AS OBJECT (
street VARCHAR2(200) ,
city VARCHAR2(200) ,
state VARCHAR2(2) ,
zi pcode VARCHAR2(20)) ;
NOT FI NAL;

/

CREATE TYPE phone_objtyp AS OBJECT (
| ocation VARCHAR2(15) ,
num VARCHAR2(14)) ;

/

CREATE TYPE enpl oyee_objtyp AS OBJECT (
name nane_objtyp,
address address_obj typ);

/

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp;
/

@® See Also

Design Considerations for Nested Tables for more information about nested tables

Next, create a table to hold the information about the people in the organization with the SQL
statement in Example 9-2. This statement also creates an id for people in the organization.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 32

ORACLE Chapter 9
General Storage Considerations for Objects

Example 9-2 Creating a Table with Column Objects

CREATE TABLE people_reltab (
id NUMBER(4) CONSTRAI NT pk_peopl e_rel tab PRI MARY KEY,
enpl oyee enpl oyee_obj typ
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STORE AS phone_store_nt ab;

Figure 9-1 Representation of the people_reltab Relational Table

id employee | phones ntab

nested table_id | location | num

first | middle | last | address

type_id street | city | state | zipcode

The peopl e_rel t ab table has two column objects: enpl oyee and phones_nt ab. The
phones_nt ab column object is a nested table, a collection type of column object.

The storage for each object in the peopl e_rel t ab table is that of the attributes of the object
plus overhead for the null indicator.

The null indicators for an object and its embedded object attributes occupy one bit each. Thus,
an object with n embedded object attributes (including objects at all levels of nesting) has a
storage overhead of CEl L(n/ 8) bytes. There is one null indicator column for each noncollection
column object, name_obj and addr ess_obj . The null indicator column length is one byte, as
one bit represents the object itself, which translates to CEI L(1/8) or 1.

Since the null indicator is one byte in size, the overhead of null information for each row of the
peopl e_rel t ab table is two bytes, one for each object column.

Every noncollection object has a null indicator column, whether or not the object is FI NAL. The
columns in these examples are FI NAL.

@® See Also

Oracle Al Database SQL Language Reference for more information about CEl L

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 32

ORACLE Chapter 9
General Storage Considerations for Objects

9.1.1.2 Row Object Storage in Object Tables

Row objects are stored in object tables. An object table is a special kind of table that holds
objects and provides a relational view of the attributes of those objects. An object table is
logically and physically similar to a relational table whose column types correspond to the top
level attributes of the object type stored in the object table. The key difference is that an object
table can optionally contain an additional object identifier (OID) column and index.

9.1.2 Storage Considerations for Object Identifiers (OIDs)

There are two types of object identifiers for row objects in object tables which can be stored
and referenced.

An object identifier (OID) allows the corresponding row object to be referred to and from other
objects or from relational tables. A built-in data type called a REF represents such references.
REFs use object identifiers (OIDs) to point to row objects.

You can use either system-generated OIDs or primary-key based OIDs.

@ See Also

"References to Row Obijects"

9.1.2.1 System-Generated Object Identifiers (OIDs)

System-generated OIDs are the default for row objects in an object table.

Oracle assigns to each row object a unique system-generated OID, 16 bytes in length, that is
automatically indexed for efficient OID-based lookups. The OID column is the equivalent of
having an extra 16-byte primary key column. In a distributed environment, the system-
generated unique identifier lets Oracle identify objects unambiguously.

The object identifier column is a hidden column that Oracle uses to construct references to the
row objects. Oracle provides no access to the internal structure of object identifiers. This
structure can change at any time. Applications are only concerned with using object references
for fetching and navigating objects.

9.1.2.2 Primary-Key Based Object Identifiers (OIDs)

Oracle allows the option of specifying the primary key value of a row object as its object
identifier, if there is a primary key column.

Instead of using the system-generated OIDs, you use a CREATE TABLE statement with this
clause, OBJECT | DENTI FI ER| S PRI MARY KEY. This specifies that the system use the primary key
column(s) as the OIDs of the objects in the table. That way, you can use existing columns as
the OIDs of the objects or use application generated OIDs that are smaller than the 16-byte
globally unique OIDs generated by Oracle.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 32

ORACLE

Chapter 9
Performance of Object Comparisons

@ See Also

Oracle Al Database SQL Language Reference for further information on OBJECT
| DENTI FER syntax

You can enforce referential integrity on columns that store references to these row objects in a
way similar to foreign keys in relational tables.

@® Note

Each primary-key based OID is locally (but not necessarily globally) unique. If you
require a globally unique identifier, you must ensure that the primary key is globally
unique or use system-generated OIDs.

9.1.2.3 System-Generated Versus Primary-Key Based OIDs

Primary-key based identifiers make it faster and easier to load data into an object table. By
contrast, system-generated object identifiers need to be remapped using some user-specified
keys, especially when references to them are also stored.

If you use system-generated OIDs for an object table, Oracle maintains an index on the
column that stores these OIDs. A system-generated OID requires extra storage space for this
index and an extra 16 bytes of storage for each row object.

However, if each primary key value requires more than 16 bytes of storage and you have a
large number of REFs, using the primary key might require more space than system-generated
OIDs because each REF is the size of the primary key.

9.2 Performance of Object Comparisons

You can compare objects by invoking either a map or order method.

A map method converts objects into scalar values while preserving the ordering of the objects.
Using a map method is preferable because it allows the system to efficiently order objects.

@® Note

For any one object type, you can implement either a map or an order method, but not
both. Neither are required.

The way objects are mapped has significant performance implications when sorting the objects
using ORDER BY or GROUP BY processes. An object may need to be compared to other objects
many times, and it is much more efficient if the objects can be mapped to scalar values first
(the map method). If the comparison semantics are extremely complex, or if the objects cannot
be mapped to scalar values for comparison, you can define an order method that, given two
objects, returns the ordering determined by the object implementor. Order methods are not as
efficient as map methods, so performance may suffer if you use order methods.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 32

ORACLE Chapter 9
Design Considerations for REFs

Consider an object type addr ess consisting of four character attributes: street, city, state,
and zi pcode. Here, the most efficient comparison method is a map method because each
object can be converted easily into scalar values. For example, you might define a map
method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In this case,
the comparison semantics may be too complex to use a map method; if so, you can use an
order method to perform comparisons. For example, you could create an order method that
compares images according to brightness or the number of pixels in each image.

If an object type does not have either a map or order method, only equality comparisons are
allowed on objects of that type. In this case, Oracle performs the comparison by doing a field-
by-field comparison of the corresponding object attributes, in the order they are defined. If the
comparison fails at any point, a FALSE value is returned. If the comparison matches at every
point, a TRUE value is returned. However, if an object has a LOB or ANYDATA attributes, then
Oracle does not compare the object on a field-by-field basis. Such objects must have a map or
order method to perform comparisons.

9.3 Design Considerations for REFs

You need to take various issues into onsideration when working with REFs.
Topics:

e Storage Size of REFs

* Inteqgrity Constraints for REF Columns

» Performance and Storage Considerations for Scoped REFs

* Performance Improvement for Object Access Using the WITH ROWID Option

9.3.1 Storage Size of REFs

A REF contains the following three logical components:

» OID of the object referenced. A system-generated OID is 16 bytes long. The size of a
primary-key based OID depends on the size of the primary key column(s).

* OID of the table or view containing the object referenced, which is 16 bytes long.

* Rowid hint, which is 10 bytes long.

9.3.2 Integrity Constraints for REF Columns

Referential integrity constraints on REF columns ensure that there is a row object for the REF.

Referential integrity constraints on REFs create the same relationship as specifying a primary
key/foreign key relationship on relational data. In general, you should use referential integrity
constraints wherever possible because they are the only way to ensure that the row object for
the REF exists. However, you cannot specify referential integrity constraints on REFs that are in
nested tables.

9.3.3 Performance and Storage Considerations for Scoped REFs

A scoped REF is constrained to contain only references to a specified object table. You can
specify a scoped REF when you declare a column type, collection element, or object type
attribute to be a REF.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 32

ORACLE

Chapter 9
Design Considerations for REFs

In general, you should use scoped REFs instead of unscoped REFs because scoped REFs are
stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to store (more if it
uses rowids), a scoped REF is stored as just the OID of its target object and can take less than
16 bytes, depending on whether the referenced OID is system-generated or primary-key
based. A system-generated OID requires 16 bytes; a primary key based (PK-based) OID
requires enough space to store the primary key value, which may be less than 16 bytes.
However, a REF to a PK-based OID, which must be dynamically constructed upon selection,
may take more space in memory than a REF to a system-generated OID.

Besides requiring less storage space, scoped REFs often enable the optimizer to optimize
queries that dereference a scoped REF into more efficient joins. This optimization is not
possible for unscoped REFs because the optimizer cannot determine the containing table(s) for
unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the referenced row
object exists; they only ensure that the referenced object table exists. Therefore, if you specify
a scoped REF to a row object and then delete the row object, the scoped REF becomes a
dangling REF because the referenced object no longer exists.

@ Note

Referential integrity constraints are scoped implicitly.

Unscoped REFs are useful if the application design requires that the objects referenced be
scattered in multiple tables. Because rowid hints are ignored for scoped REFs, you should use
unscoped REFs if the performance gain of the rowid hint, as explained in the "Performance
Improvement for Object Access Using the WITH ROWID Option", outweighs the benefits of the
storage saving and query optimization of using scoped REFs.

9.3.3.1 Indexing for Scoped REFs

You can build indexes on scoped REF columns using the CREATE | NDEX command. This allows
you to use the index to efficiently evaluate queries that dereference the scoped REFs. Such
queries are turned into joins implicitly. For certain types of queries, Oracle can use an index on
the scoped REF column to evaluate the join efficiently.

For example, suppose the object type addr ess_obj t yp is used to create an object table named
address_obj t ab:

CREATE TABLE address_objtab OF address_objtyp ;

A peopl e_rel t ab2 table can be created that has the same definition as the peopl e_rel tab
table shown in Example 9-2, except that a REF is used for the address. Next, an index can be
created on the addr ess_ref column.

Example 9-3 Creating an Index on Scoped REF Columns

CREATE TABLE peopl e_rel tab2 (
id NUMBER(4) CONSTRAI NT pk_peopl e_rel tab2 PRI MARY KEY,
name_obj name_obj typ,
address_ref REF address_objtyp SCOPE | S address_objtab,
phones_ntab phone_nt abt yp)
NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

CREATE | NDEX address_ref_idx ON people_reltab2 (address_ref) ;

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 7 of 32

ORACLE’

Chapter 9
Design Considerations for Collections

The following query dereferences the address_ref :

SELECT id FROM peopl e_reltab2 p
VWHERE p. address_ref.state = ' CA

When this query is executed, the addr ess_ref _i dx index is used to efficiently evaluate it. Here,
address_ref is a scoped REF column that stores references to addresses stored in the
addr ess_obj t ab object table. Oracle implicitly transforms the preceding query into a query with
ajoin:
SELECT p.id FROM peopl e_reltab2 p, address_objtab a

VHERE p. address_ref = REF(a) AND a.state = 'CA

The Oracle query optimizer might create a plan to perform a nested-loops join with
address_obj t ab as the outer table and look up matching addresses using the index on the
address_ref scoped REF column.

9.3.4 Performance Improvement for Object Access Using the WITH ROWID

Option

If the W TH RON D option is specified for a REF column, Oracle maintains the rowid of the object
referenced in the REF. Then, Oracle can find the object referenced directly using the rowid
contained in the REF, without the need to fetch the rowid from the OID index. Therefore, you
use the W TH ROA D option to specify a rowid hint. Maintaining the rowid requires more storage
space because the rowid adds 10 bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal (navigational
access) in applications. The actual performance gain may vary from application to application
depending on the following factors:

e How large the OID indexes are.
* Whether the OID indexes are cached in the buffer cache.
* How many REF traversals an application does.

The W TH ROW D option is only a hint because, when you use this option, Oracle checks the OID
of the row object with the OID in the REF. If the two OIDs do not match, Oracle uses the OID
index instead. The rowid hint is not supported for scoped REFs, for REFs with referential integrity
constraints. .

9.4 Design Considerations for Collections

There are certain considerations to think about when you work with collections.
Topics:

» Viewing Object Data in Relational Form with Unnesting Queries

» Storage Considerations for Varrays

e Performance of Varrays Versus Nested Tables

» Design Considerations for Nested Tables

» Design Considerations for Multilevel Collections

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 8 of 32

ORACLE Chapter 9
Design Considerations for Collections

9.4.1 Viewing Object Data in Relational Form with Unnesting Queries

An unnesting query on a collection allows the data to be viewed in a flat (relational) form.

You can execute unnesting queries on single-level and multilevel collections of either nested
tables or varrays.

Nested tables can be unnested for queries using the TABLE syntax, as in the following example:

Example 9-4 Unnesting a Nested Table with the TABLE Function

SELECT p. nane_obj, n.num
FROM peopl e_rel tab p, TABLE(p.phones_ntab) n ;

Here, phones_nt ab specifies the attributes of the phones_nt ab nested table. To retrieve even
parent rows that have no child rows (no phone numbers, in this case), use the outer join
syntax, with the +. For example:

SELECT p. nanme_obj, n.num
FROM peopl e_reltab p, TABLE(p.phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table other than the
nested table column, the query is optimized to execute only against the nested table's storage
table.

The unnesting query syntax is the same for varrays as for nested tables. For instance,
suppose the phones_nt ab nested table is instead a varray hamed phones_var . The following
example shows how to use the TABLE syntax to query the varray:

SELECT p. nanme_obj, v.num
FROM peopl e_rel tab p, TABLE(p.phones_var) v;

9.4.1.1 Creating Procedures and Functions to Unnest Queries

You can create procedures and functions that you can then execute to perform unnesting
gueries. For example, you can create a function called hone_phones() that returns only the
phone numbers where | ocati on is hone. To create the hone_phones() function, you enter code
like the following:

Example 9-5 Creating the home_phones Function

CREATE OR REPLACE FUNCTI ON hone_phones(al | phones | N phone_nt abt yp)
RETURN phone_ntabtyp IS
honephones phone_ntabtyp : = phone_ntabtyp();

i ndx1 nunber;
i ndx2 nunber := 0;
BEG N
FOR indx1 IN 1..allphones. count LOOP
I F
al I phones(indx1).location = "'hone'
THEN
honephones. ext end,; -- extend the local collection
indx2 :=indx2 + 1;
honephones(indx2) := all phones(indx1);
END I F;
END LOOP;

RETURN honephones;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 32

ORACLE Chapter 9
Design Considerations for Collections

END,
/

9.4.1.2 Querying the TABLE Function to Unnest Data

You can query for a list of people and their home phone numbers, based on the home_phones()
function you just created.

Example 9-6 Querying for Phone Numbers

See Example 9-5

SELECT p. name_obj, n.num
FROM peopl e_rel tab p, TABLE(
CAST(home_phones(p. phones_nt ab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people who do not
have a home phone number listed, enter the following:

SELECT p. nane_obj, n.num
FROM peopl e_rel tab p,
TABLE(CAST(horme_phones(p. phones_ntab) AS phone_ntabtyp))(+) n ;

@ See Also

Oracle Al Database SQL Language Reference and Oracle Al Database Data
Cartridge Developer's Guide for more information about the TABLE function

9.4.2 Storage Considerations for Varrays

The size of a stored varray depends only on the current count of the number of elements in the
varray and not on the maximum number of elements that it can hold.

Because the storage of varrays incurs some overhead, such as null information, the size of the
varray stored may be slightly greater than the size of the elements multiplied by the count.

Varrays are stored in columns either as raw values or LOBs. Oracle decides how to store the
varray when the varray is defined, based on the maximum possible size of the varray
computed using the LI M T of the declared varray. If the size exceeds approximately 4000
bytes, then the varray is stored in LOBs. Otherwise, the varray is stored in the column itself as a
raw value. In addition, Oracle supports inline LOBs which means that elements that fit in the
first 4000 bytes of a large varray, with some bytes reserved for the LOB locator, are stored in
the column of the row. See also Oracle Al Database SecureFiles and Large Objects
Developer's Guide.

9.4.2.1 About Propagating VARRAY Size Change

When changing the size of a VARRAY type, a new type version is generated for the dependent
types.

It is important to be aware of this when a VARRAY column is not explicitly stored as a LOB and
its maximum size is originally smaller than 4000 bytes. If the size is larger than or equal to
4000 bytes after the increase, the VARRAY column has to be stored as a LOB. This requires an
extra operation to upgrade the metadata of the VARRAY column in order to set up the necessary
LOB metadata information including the LOB segment and LOB index.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 32

ORACLE

Chapter 9
Design Considerations for Collections

The CASCADE option in the ALTER TYPE statement propagates the VARRAY size change to its
dependent types and tables. A new version is generated for each valid dependent type and
dependent tables metadata are updated accordingly based on the different case scenarios
described previously. If the VARRAY column is in a cluster table, an ALTER TYPE statement with
the CASCADE option fails because a cluster table does not support a LOB.

The CASCADE option in the ALTER TYPE statement also provides the [NOT] | NCLUDI NG TABLE DATA
option. The NOT | NCLUDI NG TABLE DATA option only updates the metadata of the table, but does
not convert the data image. In order to convert the VARRAY image to the latest version format,
you can either specify | NCLUDI NG TABLE DATA explicitly in ALTER TYPE CASCADE statement or
issue ALTER TABLE UPGRADE statement.

9.4.3 Performance of Varrays Versus Nested Tables

If an entire collection is manipulated as a single unit in the application, varrays perform much
better than nested tables. The varray is stored packed and requires no joins to retrieve the
data, unlike nested tables.

Varray Querying

The unnesting syntax can be used to access varray columns similar to the way it is used to
access nested tables. See "Viewing Object Data in Relational Form with Unnesting Queries"
for more information.

Varray Updates

Piece-wise updates of a varray value are not supported. Thus, when a varray is updated, the
entire old collection is replaced by the new collection.

9.4.4 Design Considerations for Nested Tables

Topics:
There are several design considerations for using nested tables.

* Nested Table Storage

* Nested Table Indexes

 Nested Table Locators

* Set Membership Query Optimazation

9.4.4.1 Nested Table Storage

Oracle stores the rows of a nested table in a separate storage table. A system generated
NESTED TABLE I D, which is 16 bytes in length, correlates the parent row with the rows in its
corresponding storage table.

Figure 9-2 shows how the storage table works. The storage table contains each value for each
nested table in a nested table column. Each value occupies one row in the storage table. The
storage table uses the NESTED TABLE_| Dto track the nested table for each value. So, in

Figure 9-2, all of the values that belong to nested table A are identified, all of the values that
belong to nested table B are identified, and so on.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 32

ORACLE

Chapter 9
Design Considerations for Collections

Figure 9-2 Nested Table Storage

DATA1 | DATA2 | DATA3 | DATA4 | NT_DATA

m|O|O|wm|>

\ Storage Table S
NESTED_TABLE_ID | Values

m|w|o|>|o|w|m|>|m|o|m|>|o|w|m
=
N

9.4.4.2 Nested Table Indexes

When creating nested tables stored in heap tables, Oracle Al Database automatically creates
an index on the NESTED TABLE_| D column of the storage table and an index on the
corresponding ID column of the parent table.

Creating an index on the NESTED TABLE | D column enables the database to access the child
rows of the nested table more efficiently, because the database must perform a join between
the parent table and the nested table using the NESTED_TABLE_| D column.

9.4.4.3 Nested Table Locators

For large child sets, the parent row and a locator to the child set can be returned so that the
child rows can be accessed on demand; the child sets also can be filtered. Using nested table
locators enables you to avoid unnecessarily transporting child rows for every parent.

You can perform either one of the following actions to access the child rows using the nested
table locator:

e Call the OCI collection functions. This action occurs implicitly when you access the
elements of the collection in the client-side code, such as OCl Col | * functions. The entire
collection is retrieved implicitly on the first access.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 32

ORACLE Chapter 9
Design Considerations for Collections

@ See Also

Oracle Call Interface Programmer's Guide for more information about OCI
collection functions.

e Use SQL to retrieve the rows corresponding to the nested table.

In a multilevel collection, you can use a locator with a specified collection at any level of
nesting.

The following topics specify ways that a collection can be retrieved as a locator:

* At Table Creation Time

 As a HINT During Retrieval

9.4.4.3.1 At Table Creation Time

When the collection type is being used as a column type and the NESTED TABLE storage clause
is used, you can use the RETURN AS LOCATOR clause to specify that a particular collection is to
be retrieved as a locator.

For instance, suppose that i nner _t abl e is a collection type consisting of three levels of nested
tables. In the following example, the RETURN AS LOCATOR clause specifies that the third level of
nested tables is always to be retrieved as a locator.

Example 9-7 Using the RETURN AS LOCATOR Clause

CREATE TYPE inner_table AS TABLE OF NUMBER;/
CREATE TYPE middl e _tabl e AS TABLE OF inner_table;/
CREATE TYPE outer _table AS TABLE OF middl e table;/
CREATE TABLE tabl (
col 1 NUMBER,
col 2 outer_table)
NESTED TABLE col 2 STORE AS col 2_ntab
(NESTED TABLE COLUWN VALUE STORE AS cval 1_ntab
(NESTED TABLE COLUWN_VALUE STORE AS cval 2_ntab RETURN AS LOCATOR));

9.4.4.3.2 As a HINT During Retrieval

A query can retrieve a collection as a locator by means of the hint NESTED TABLE GET_REFS.
Here is an example of retrieving the column col 2 from the table t abl as a locator:

SELECT /*+ NESTED_TABLE_GET_REFS +*/ col 2
FROM t abl
WHERE col 1 = 2;

Unlike with the RETURN AS LOCATCR clause, however, you cannot specify a particular inner
collection to return as a locator when using the hint.

9.4.4.4 Set Membership Query Optimization

Set membership queries are useful when you want to search for a specific item in a nested
table.

The following query tests the membership in a child-set; specifically, whether the location home
is in the nested table phones_nt ab, which is in the parent table peopl e_rel t ab:

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 32

ORACLE

Chapter 9
Design Considerations for Collections

SELECT * FROM people_reltab p
VWHERE ' home' I N (SELECT | ocation FROM TABLE(p. phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently by
transforming it internally into a semijoin. However, this optimization only happens if the
ALWAYS_SEM _JO Ninitialization parameter is set. If you want to perform semijoins, the valid
values for this parameter are MERGE and HASH; these parameter values indicate which join
method to use.

@® Note

In the preceding example, horme and | ocat i on are child set elements. If the child set
elements are object types, they must have a map or order method to perform a set
membership query.

9.4.5 Design Considerations for Multilevel Collections

You can nest collection types to create true multilevel collections.

Support for Collection Data Types describes how to nest collection types such as a nested
table of nested tables, a nested table of varrays, a varray of nested tables, or a varray or
nested table of an object type that has an attribute of a collection type. These create true
multilevel collections.

You can also nest collections indirectly using REFs. For example, you can create a nested table
of an object type that has an attribute that references an object that has a nested table or
varray attribute. If you do not actually need to access all elements of a multilevel collection,
then nesting a collection with REFs may provide better performance because only the REFs
need to be loaded, not the elements themselves.

True multilevel collections (specifically multilevel nested tables) perform better for queries that
access individual elements of the collection. Using nested table locators can improve the
performance of programmatic access if you do not need to access all elements.

A series of examples demonstrate this type of design.
Topics:

¢ Creating an Object Table with a Multilevel Collection

¢ Creating an Object Table Using REFs

« lInserting Values into Object Tables

9.4.5.1 Creating an Object Table with a Multilevel Collection

You can create an object table with a multilevel collection.

To create an example of a collection that uses REFs to nest another collection, you create a
new object type called per son_obj t yp using the object types provided: nane_obj typ,
address_obj typ, and phone_nt abt yp. Remember that the phone_nt abt yp object type is a
nested table because each person may have more than one phone number.

To create the per son_obj t yp object type and an object table called peopl e_obj t ab of
per son_obj t yp object type, issue the following SQL statement:

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 32

ORACLE

Chapter 9
Design Considerations for Collections

Example 9-8 Creating an Object Table with a Multilevel Collection

CREATE TYPE person_objtyp AS OBJECT (

id

name_obj

addr ess_obj

phones_nt ab
/

NUMBER(4) ,
name_obj typ,
address_obj typ,
phone_nt abt yp) ;

CREATE TABLE people_objtab OF person_objtyp (id PRI MARY KEY)

NESTED TABLE

The peopl e_obj t

phones_ntab STORE AS phones_store_ntab ;

ab table has the same attributes as the peopl e_rel t ab table. The difference

is that the peopl e_obj t ab is an object table with row objects, while the peopl e_rel t ab table is

a relational table
Tables".

with column objects, as seen in "Column Object Storage in Relational

Figure 9-3 Object-Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER(4) NAME_OBJTYP | ADDRESS_OBJTYP | PHONE_NTABTYP
PK

| Nested Table PHONES_NTAB (of PHONE_NTABTYP)

LOCATION NUM
Text Number
VARCHAR(15) | VARCHAR(14)

—Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

STREET CITY STATE ZIPCODE
Text Text Text Text
VARCHAR2(200) | VARCHAR(200) | CHAR(2) VARCHAR2(20)

FIRST

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text

VARCHAR2(15)

Text
VARCHAR2(15)

Text
VARCHAR2(15)

You can reference the row objects in the peopl e_obj t ab object table from other tables. For
example, suppose you want to create a pr oj ect s_obj t ab table that contains:

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 15 of 32

ORACLE Chapter 9
Design Considerations for Collections

* A project identification number for each project.

e The title of each project.

e The project lead for each project.

e A description of each project.

* Nested table collection of the team of people assigned to each project.

You can use REFs in the peopl e_obj t ab for the project leads, and you can use a nested table
collection of REFs for the team. To begin, create a nested table object type called
per sonref _ntabtyp based on the person_obj t yp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF person_objtyp;
/

You are now set up to create to create an object table as shown in Creating an Object Table
Using REFs.

9.4.5.2 Creating an Object Table Using REFs

You can create an object table using REFs

After creating the person object table, in Creating an Object Table with a Multilevel Collection,,
you are ready to create the project object table proj ect s_obj t ab. First, create the object type
proj ect s_obj typ, then create the object table proj ect s_obj t ab based on the

proj ects_objtyp.

Example 9-9 Creating an Object Table Using REFs

CREATE TYPE projects_objtyp AS OBJECT (
id NUVBER(4) ,
title VARCHAR2(15) ,
projl ead_ref REF person_obj typ,
description CLCB,
team ntab personref _ntabtyp);
/
CREATE TABLE projects_objtab OF projects_objtyp (id PRI MARY KEY)
NESTED TABLE team ntab STORE AS team store_ntab ;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 32

ORACLE

Figure 9-4 Object-Relational Representation of the projects_objtab Object Table

Chapter 9

Design Considerations for Collections

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)
ID TITLE PROJLEAD_REF DESCRIPTION | TEAM_NTAB
Number Text Reference Text Nested Table Reference
NUMBER(4) | VARCHAR2(15) | PERSON_OBJTYP | CLOB PERSONREF_NTABTYP
PK

| |

|
Refers to a
row of the
object table

Refers to multiple rows

of the object table

li Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

ID NAME_OBJ ADDRESS_OBJ PHONES_NTAB
Number Object Type Object Type Nested Table
NUMBER(4) | NAME_OBJTYP ADDRESS_OBJTYP PHONE_NTABTYP
PK

After the peopl e_obj t ab object table and the proj ect s_obj t ab object table are in place, you
indirectly have a nested collection. That is, the pr oj ect s_obj t ab table contains a nested table
collection of REFs that point to the people in the peopl e_obj t ab table, and the people in the
peopl e_obj t ab table have a nested table collection of phone numbers.

You are now set to insert value as shown Inserting Values into Object Tables.

9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table

After you have created an object table, you can then insert values into it.

You can insert values into the peopl e_obj t ab table as in this example.

Example 9-10

I NSERT | NTO peopl e_obj tab VALUES (

0001,

name_obj typ(' JOHN , 'JACOB', 'SCHM DT'),

address_obj typ(' 1252 Mapl e Road', 'Fairfax',

phone_nt abt yp(
phone_obj typ(' home', ' 650.555.0141")

phone_obj typ(' work', '510.555.0122'))) ;

I NSERT | NTO peopl e_obj tab VALUES (

0002,

name_obj typ(' MARY', 'ELLEN, 'MLLER),

address_objtyp(' 33 Spruce Street', 'MKees Rocks',

phone_nt abt yp(
phone_obj typ(' home', '415.555.0143")

phone_obj typ(' work', ' 650.555.0192'))) ;

I NSERT | NTO peopl e_obj tab VALUES (

0003,

name_obj typ(' SARAH , 'MARIE', 'SINGER),

Object-Relational Developer's Guide

G44198-01

Copyright © 1996, 2025, Oracle and/or its affiliates.

Inserting Values into the people_objtab Object Table

"VA, '22033'),

"PA, '15136'),

October 13, 2025
Page 17 of 32

ORACLE Chapter 9
Design Considerations for Methods

address_obj typ(' 525 Pine Avenue', 'San Mateo', 'CA', '94403'),
phone_nt abt yp(

phone_obj typ("' hone', '510.555.0101"),

phone_obj typ(' work', '650.555.0178"),

phone_obj typ('cell", '650.555.0143"))) ;

Example 9-11 Inserting Values into the projects_objtab Object Table

Then, you can insert into the proj ect s_obj t ab relational table by selecting from the
peopl e_obj t ab object table using a REF operator, as in .

I NSERT | NTO proj ects_objtab VALUES (
1101,
'Deno Product ',
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0001),
"Denmo the product, show all the great features.',
personref _ntabtyp(

(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0001),
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0002),
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0003))) ;

I NSERT | NTO proj ects_objtab VALUES (
1102,
' Create PRODDB',
(SELECT REF(p) FROM peopl e_objtab p WHERE id = 0002),
'Create a database of our products.',
personref _ntabtyp(
(SELECT REF(p) FROM people_objtab p WHERE i d
(SELECT REF(p) FROM people_objtab p WHERE i d

0002)
0003)

~ -

)

@ Note

This example uses nested tables to store REFs, but you also can store REFs in varrays.
That is, you can have a varray of REFs.

9.5 Design Considerations for Methods

There are special considerations to think about when working with methods.
Topics:
* Choice of Language for Method Functions

e Static Methods
e About Using SELF IN OUT NOCOPY with Member Procedures

* Function-Based Indexes on the Return Values of Type Methods

9.5.1 Choice of Language for Method Functions

Method functions can be implemented in any of the languages supported by Oracle, such as
PL/SQL, Java, or C.

Consider the following factors when you choose the language for a particular application:

* Ease of use

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 18 of 32

ORACLE

Chapter 9
Design Considerations for Methods

e SQL calls
* Speed of execution
e Same/different address space

In general, if the application performs intense computations, C is preferable, but if the
application performs a relatively large number of database calls, PL/SQL or Java is preferable.

A method implemented in C executes in a separate process from the server using external
procedures. In contrast, a method implemented in Java or PL/SQL executes in the same
process as the server.

Example: Implementing a Method

The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type | negeType has an | D
attribute, which is a NUMBER that uniquely identifies it, and an | MG attribute, which is a BLOB that
stores the raw image. The object type | mageType has the following methods:

e The method get _nane fetches the name of the image by looking it up in the database. This
method is implemented in PL/SQL.

e The method r ot at e rotates the image. This method is implemented in C.

e The method cl ear returns a new image of the specified color. This method is implemented
in Java.

For implementing a method in C, a LI BRARY object must be defined to point to the library that
contains the external C routines. For implementing a method implemented in Java, this
example assumes that the Java class with the method has been compiled and uploaded into
Oracle.

The object type specification and its methods are shown in Example 9-12.

@® Note

Type methods can be mapped only to static Java methods.

@® See Also
e Oracle Al Database Java Developer's Guide for more information

e Object Support in Oracle Programming Environments for more information about
choosing a language

Example 9-12 Creating an Object Type with Methods Implemented in Different
Languages

CREATE LI BRARY nmyCfuncs TRUSTED AS STATIC
/

CREATE TYPE | mageType AS OBJECT (
id NUMBER,
ing BLOB,
MEMBER FUNCTI ON get _name return VARCHARZ,
MEMBER FUNCTI ON rotate return BLOB,
STATI C FUNCTI ON cl ear (col or NUMBER) return BLOB);/

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 19 of 32

ORACLE Chapter 9
Design Considerations for Methods

CREATE TYPE BQODY | nageType AS

MEMBER FUNCTI ON get _name RETURN VARCHAR2

IS

i gname VARCHAR2(100) ;

sql stnt VARCHAR2(200) ;

BEG N
sql stnt := 'SELECT nanme | NTO i ngnane FROM imgtab WHERE ingid = id';
EXECUTE | MVEDI ATE sql stnt;
RETURN i ngnane;

END,;

MEMBER FUNCTI ON rotate RETURN BLOB
AS LANGUAGE C

NAME " Crot ate”

LI BRARY myCfuncs;

STATI C FUNCTI ON cl ear (col or NUMBER) RETURN BLOB
AS LANGUAGE JAVA
NAME ' myJavad ass. cl ear (oracl e. sql . NUMBER) return oracle.sql.BLOB ;

END,
/

9.5.2 Static Methods

Static methods differ from member methods in that the SELF value is not passed in as the first
parameter. Methods in which the value of SELF is not relevant should be implemented as static
methods. Static methods can be used for user-defined constructors.

Example 9-13 shows a constructor-like method that constructs an instance of the type based
on the explicit input parameters and inserts the instance into the specified table:.

Example 9-13 Creating an Object Type with a STATIC Method
CREATE TYPE atype AS OBJECT(

al NUMBER
STATI C PROCEDURE newa (
pl NUVBER,

tabnanme VARCHARZ,
schnane VARCHAR?));
/
CREATE TYPE BQODY atype AS
STATI C PROCEDURE newa (pl NUMBER tabname VARCHAR2, schnanme VARCHAR?2)

IS
sgl stmt VARCHAR2(100);
BEG N
sglstmt := "INSERT INTO ' ||schnane||'."'||tabnane|| ' VALUES (atype(:1))';
EXECUTE | MVEDI ATE sql stnt USI NG p1;
END;

END,
/

CREATE TABLE atab OF atype;

BEG N

atype.newa(l, 'atab', 'HR);
END;
/

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 32

ORACLE Chapter 9
Design Considerations for Methods

9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures

In member procedures, if SELF is not declared, its parameter mode defaults to | N QUT.
However, the default behavior does not include the NOCOPY compiler hint. See "Member
Methods".

Because the value of the | N OUT actual parameter is copied into the corresponding formal
parameter, the copying slows down execution when the parameters hold large data structures
such as instances of large object types.

For performance reasons, you may want to include SELF | N QUT NOCOPY when passing a large
object type as a parameter. For example:

MEMBER PROCEDURE ny_proc (SELF IN OUT NOCOPY ny_LOB)

@ See Also

e Oracle Al Database PL/SQL Language Reference for information on performance
issues and restrictions on the use of NOCOPY

* Oracle Al Database SQL Language Reference for information about using NOCOPY
in the CREATE PROCEDURE statement

9.5.4 Function-Based Indexes on the Return Values of Type Methods

A function-based index is an index based on the return values of an expression or function.
The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of the function
for each object instance in the column or table being indexed and stores those values in the
index. There they can be referenced without having to evaluate the function again.

Function-based indexes are useful for improving the performance of queries that have a
function in the WHERE clause. For example, the following code contains a query of an object
table enps:

CREATE TYPE enp_t AS OBJECT(
namre VARCHAR2(36),
sal ary NUMBER,
MEMBER FUNCTI ON bonus RETURN NUMBER DETERM NI STI C) ;
/
CREATE TYPE BODY enp_t IS
MEMBER FUNCTI ON bonus RETURN NUMBER DETERM NISTIC IS
BEG N
RETURN sel f.salary * .1,
END;
END;
/

CREATE TABLE emps OF enp_t ;

SELECT e. nane
FROM enmps e
WHERE e. bonus() > 2000;

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 32

ORACLE

Chapter 9
Reusable Code Using Invoker Rights

To evaluate this query, Oracle must evaluate bonus() for each row object in the table. If there
is a function-based index on the return values of bonus() , then this work has already been
done, and Oracle can simply look up the results in the index. This enables Oracle to return a
result from the query more quickly.

Return values of a function can be usefully indexed only if those values are constant, that is,
only if the function always returns the same value for each object instance. For this reason, to
use a user-written function in a function-based index, the function must have been declared
with the DETERM NI STI C keyword, as in the preceding example. This keyword promises that the
function always returns the same value for each object instance's set of input argument values.

The following example creates a function-based index on the method bonus() in the table
enps:

Example 9-14 Creating a Function-Based Index on a Method

CREATE | NDEX enps_bonus_i dx ON enps x (x.bonus()) ;

9.6 Reusable Code Using Invoker Rights

To create generic object types that can be used in any schema, you must define the type to
use invoker rights, through the AUTHI D CURRENT _USER option of CREATE OR REPLACE TYPE.

@ Note

For information on controlling invoker's rights privileges, see Oracle Al Database
Security Guide.

In general, use invoker rights when both of the following conditions are true:

e There are type methods that access and manipulate data.
e Users who did not define these type methods must use them.

For example, you can grant user CE execute privileges on type at ype created by HR in Static
Methods, and then create table at ab based on the type:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;

Enter password: password
CREATE TABLE atab OF HR atype ;

Now, suppose user CE tries to use at ype in the following statement:

BEG N -- follwing call raises an error, insufficient privileges
HR atype. newa(1, 'atab', 'OFE);

END;

/

This statement raises an error because the definer of the type (HR) does not have the privileges
required to perform the insert in the newa procedure. You can avoid this error by defining at ype
using invoker rights. Here, you first drop the at ab table in both schemas and re-create at ype
using invoker rights:

DROP TABLE at ab;
CONNECT hr ;
Enter password: password

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 22 of 32

ORACLE

Chapter 9
Roles with Invoker's Rights Subprograms

DROP TABLE at ab;
DROP TYPE atype FORCE;
COWMT;

CREATE TYPE atype AUTH D CURRENT USER AS OBJECT(
al NUMBER
STATI C PROCEDURE newa(pl NUMBER, tabname VARCHAR2, schname VARCHAR2));
/
CREATE TYPE BODY atype AS
STATI C PROCEDURE newa(pl NUMBER, tabnane VARCHAR2, schname VARCHAR2)
IS
sql st VARCHAR2(100);
BEG N
sglstnmt := "INSERT INTO ' ||schnane||'."'|]|tabnane|| '
VALUES (HR atype(:1))';
EXECUTE | MVEDI ATE sql sttt USI NG pl;
END,;
END,;
/

Now, if user CE tries to use at ype again, the statement executes successfully:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;

Enter password: password
CREATE TABLE atab OF HR atype;

BEG N
HR atype. newa(1, 'atab', 'OE);
END;
/
DROP TABLE at ab;
CONNECT hr;
Enter password: password

DROP TYPE atype FORCE;

The statement is successful this time because the procedure is executed under the privileges
of the invoker (CE), not the definer (HR).

In a type hierarchy, a subtype has the same rights model as its immediate supertype. That is, it
implicitly inherits the rights model of the supertype and cannot explicitly specify one.
Furthermore, if the supertype was declared with definer rights, the subtype must reside in the
same schema as the supertype. These rules allow invoker-rights type hierarchies to span
schemas. However, type hierarchies that use a definer-rights model must reside within a single
schema. For example:

CREATE TYPE deftypel AS OBJECT (...); --Definer-rights type
CREATE TYPE subtypel UNDER deftypel (...); --subtype in sane schema as supertype
CREATE TYPE schema2. subtype2 UNDER deftypel (...); --ERROR
CREATE TYPE invtypel AUTH D CURRENT_USER AS OBJECT (...); --lnvoker-rights type
CREATE TYPE schema2. subtype2 UNDER invtypel (...); --LEGAL

9.7 Roles with Invoker's Rights Subprograms

The use of roles in a subprogram depends on whether it executes with definer's rights or
invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles are not used
for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was called
directly or indirectly by a definer's rights subprogram). Roles are used for privilege checking,

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 23 of 32

ORACLE Chapter 9
Replication Support for Objects

and you can use native dynamic SQL to set roles for the session. However, you cannot use
roles to grant privileges on template objects because roles apply at run time, not at compile
time.

9.8 Replication Support for Objects

* Object Replication Using Oracle Golden Gate

» Active Data Guard and Logical Standby Support for Objects

9.8.1 Object Replication Using Oracle Golden Gate

Beginning with Oracle Database 12c¢ Release 12.1, Oracle supports Oracle Golden Gate for all
object datatypes, except nested tables. Oracle supports object tables and columns of ADTSs,
REFs, VARRAYS, and ANYDATA. Oracle also supports type evolution and object inheritance.
The only exception is nested table columns, object tables, and columns of ADTs with nested

table attributes.

@ See Also

For information about data types supported by Oracle Golden Gate, see Oracle
Golden Gate Administration Guide.

9.8.2 Active Data Guard and Logical Standby Support for Objects

Beginning with Oracle Database release 12c, release 12.1, Oracle supports Active Data Guard
and Logical Standby for Object Tables and column for all Object datatypes, including REFs,
varrays, ANYDATA and object inheritance. The only exception is that Active Data Guard and
Logical Standby is not supported for tables with top-level nested tables and ADTs with nested

table attributes.

@ See Also

Oracle Data Guard Concepts and Administration for information about data types
supported by SQL Apply (logical standby)

9.9 Materialized View Support for Objects

Materialized view support is available for relational tables that contain columns of an object,
collection, or REF type. Such materialized views are called object-relational materialized views.

All user-defined types required by an object-relational materialized view must exist at the
materialized view site as well as at the primary site. They must have the same object type IDs
and versions at both sites.

Object-Relational Developer's Guide
G44198-01
Copyright © 1996, 2025, Oracle and/or its affiliates.

October 13, 2025
Page 24 of 32

ORACLE Chapter 9
Materialized View Support for Objects

9.9.1 Object, Collection, or REF Type Columns

To be updatable, a materialized view based on a table that contains an object column must
select the column as an object in the query that defines the view: if the query selects only
certain attributes of the column's object type, then the materialized view is read-only.

The view-definition query can also select columns of collection or REF type. REFs can be either
primary-key based or have a system-generated key, and they can be either scoped or
unscoped. Scoped REF columns can be rescoped to a different table at the site of the
materialized view—for example, to a local materialized view of the primary table instead of the
original, remote table.

9.9.2 Object Tables

A materialized view based on an object table is called an object materialized view. Such a
materialized view is itself an object table. An object materialized view is created by adding the
OF t ype keyword to the CREATE MATERI ALI ZED VI EWstatement. For example:

CREATE MATERI ALI ZED VI EW cust omer OF cust _objtyp AS
SELECT * FROM HR. Cust oner _obj t ab@bs1;

As with an ordinary object table, each row of an object materialized view is an object instance,
so the view-definition query that creates the materialized view must select entire objects from
the primary table: the query cannot select only a subset of the object type's attributes. For
example, the following materialized view is not allowed:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp AS
SELECT Cust No FROM HR. Cust orer _obj t ab@lbs1;

You can create an object-relational materialized view from an object table by omitting the COF
t ype keyword, but such a view is read-only: you cannot create an updatable object-relational
materialized view from an object table.

For example, the following CREATE MATERI ALI ZED VI EWstatement creates a read-only object-
relational materialized view of an object table. Even though the view-definition query selects all
columns and attributes of the object type, it does not select them as attributes of an object, so
the view created is object-relational and read-only:

CREATE MATERI ALI ZED VI EW cust oner AS
SELECT * FROM HR. Cust oner _objt ab@bs1;

For both object-relational and object materialized views that are based on an object table, if the
type of the primary object table is not FI NAL, the FROMclause in the materialized view definition
query must include the ONLY keyword. For example:

CREATE MATERI ALI ZED VI EW cust omer OF cust_objtyp AS
SELECT CustNo FROM ONLY HR. Cust onmer _obj t ab@lbs1;

Otherwise, the FROMclause must omit the ONLY keyword.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 25 of 32

ORACLE Chapter 9
Constraints on Objects

9.10 Constraints on Objects

Oracle does not support constraints and defaults in type specifications. However, you can
specify the constraints and defaults when creating the tables:

Example 9-15 Specifying Constraints on an Object Type When Creating a Table

CREATE TYPE cust oner _typ AS OBJECT(
cust _id | NTECER);

/

CREATE TYPE departnment _typ AS OBJECT(
deptno | NTEGER);

/

CREATE TABLE custoner _tab OF custoner_typ (
cust _id default 1 NOT NULL);

CREATE TABLE departnent _tab OF departnent _typ (
deptno PRIMARY KEY);

CREATE TABLE custoner _tabl (
cust custoner_typ DEFAULT custoner_typ(1)
CHECK (cust.cust_id I'S NOT NULL),
some_ot her _col utm VARCHAR2(32)) ;

9.11 Considerations Related to Type Evolution

The following sections contain design considerations relating to type evolution.
This section contains the following topics:

e Pushing a Type Change Out to Clients

e About Changing Default Constructors

* About Altering the FINAL Property of a Type

9.11.1 Pushing a Type Change Out to Clients

Once a type has evolved on the server side, all client applications using this type need to make
the necessary changes to structures associated with the type. You can do this with OTT/JPUB.

You also may need to make programmatic changes associated with the structural change.
After making these changes, you must recompile your application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest release of the
third-party application, you can have the clients call a release-oriented compatibility
initialization function.

This function could take as input a string that tells it which release the client application is
working with. If the release string mismatches with the latest version, an error is generated.
The client application must then change the release string as part of the changes required to
become compatible with the latest release.

Object-Relational Developer's Guide
G44198-01 October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 26 of 32

ORACLE

Chapter 9
Parallel Queries with Oracle Objects

For example:

FUNCTI ON conpatibility init(
rel IN VARCHAR2, errmsg OUT VARCHAR?2)
RETURN NUMBER;

where:
* rel is arelease string that is chosen by the product, such as, ' Rel ease 10.1'

e errnsg is any error message that may need to be returned

* The function returns 0 on success and a nonzero value on error

9.11.2 About Changing Default Constructors

When a type is altered, its default, system-defined constructors need to be changed in order
(for example) to include newly added attributes in the parameter list. If you are using default
constructors, you need to modify their invocations in your program in order for the calls to
compile.

You can avoid having to modify constructor calls if you define your own constructor functions
instead of using the system-defined default ones. See "Advantages of User-Defined
Constructors".

9.11.3 About Altering the FINAL Property of a Type

When you alter a type T1 from FI NAL to NOT FI NAL, any attribute of type T1 in the client
program changes from being an inlined structure to a pointer to T1. This means that you need
to change the program to use dereferencing when this attribute is accessed.

Conversely, when you alter a type from NOT FlI NAL to FI NAL, the attributes of that type change
from being pointers to inlined structures.

For example, say that you have the types T1(a int) and T2(b T1), where T1's property is
FI NAL. The C/JAVA structure corresponding to T2 is T2(T1 b). But if you change T1's property
to NOT FI NAL, then T2's structure becomes T2(T1 *b).

9.12 Parallel Queries with Oracle Objects

Oracle lets you perform parallel queries with objects and objects synthesized in views, when
you follow these rules:

e To make queries involving joins and sorts parallel (using the ORDER BY, GROUP BY, and SET
operations), a MAP function is required. In the absence of a MAP function, the query
automatically becomes serial.

e Parallel queries on nested tables are not supported. Even if there are parallel hints or
parallel attributes for the table, the query is serial.

e Parallel Insert Direct Load (PIDL) and Parallel Create Table As Select (PCTAS) are
supported on varray and ADT columns. The ADT columns must meet the following
characteristics:

— typeisfinal
— ADT attributes, at any level within the main type is final

— lob/varray/xmitype attributes are stored as securefile

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 27 of 32

ORACLE’

Chapter 9
Design Consideration Tips and Techniques

— all other attributes are simple scalars
Rest of the DML and DDL are always performed in serial.

* Parallel DML is not supported on views with | NSTEAD- OF trigger. However, the individual
statements within the trigger may be parallelized.

9.13 Design Consideration Tips and Techniques

There are assorted tips on various aspects of working with Oracle object types.
Topics:

* Whether to Evolve a Type or Create a Subtype

* How ANYDATA Differs from User-Defined Types

» Polymorphic Views: An Alternative to an Object View Hierarchy
e The SQLJ Object Type

« Miscellaneous Design Tips

9.13.1 Whether to Evolve a Type or Create a Subtype

As an application goes through its life cycle, the question often arises whether to change an
existing object type or to create a specialized subtype to meet new requirements. The answer
depends on the nature of the new requirements and their context in the overall application
semantics. Here are two examples:

Changing a Widely Used Base Type
Suppose that we have an object type addr ess with attributes Street, State, and ZI P:

CREATE TYPE address AS OBJECT (
Street VARCHAR(80),
State VARCHAR(20),
ZIP VARCHAR2(10)) ;

/

We later find that we need to extend the addr ess type by adding a Count ry attribute to support
addresses internationally. Is it better to create a subtype of addr ess or to evolve the addr ess
type itself?

With a general base type that has been widely used throughout an application, it is better to
implement the change using type evolution.

Adding Specialization

Suppose that an existing type hierarchy of Graphic types (for example, curve, circle, square,
text) needs to accommodate an additional variation, namely, Bezier curve. To support a new
specialization of this sort that does not reflect a shortcoming of the base type, we should use
inheritance and create a new subtype Bezi er Cur ve under the Cur ve type.

To sum up, the semantics of the required change dictates whether we should use type
evolution or inheritance. For a change that is more general and affects the base type, use type
evolution. For a more specialized change, implement the change using inheritance.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 28 of 32

ORACLE Chapter 9
Design Consideration Tips and Techniques

9.13.2 How ANYDATA Differs from User-Defined Types

ANYDATA is an Oracle-supplied type that can hold instances of any Oracle data type, whether
built-in or user-defined. ANYDATA is a self-describing type and supports a reflection-like API that
you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide the
polymorphic ability to store any of a set of possible instances in a placeholder, the two models
give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part of a single
type hierarchy. A variable can potentially hold instances only of its defined type or of its
subtypes. You can access attributes of the supertype and call methods defined in the
supertype (and potentially overridden by the subtype). You can also test the specific type of an
instance using the IS OF and the TREAT operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access attributes
or call methods of the actual instance stored in an ANYDATA variable (unless you extract out the
instance). You use the ANYDATA methods to discover and extract the type of the instance.
ANYDATA is a very useful mechanism for parameter passing when the function/procedure does
not care about the specific type of the parameter(s).

Inheritance provides better modeling, strong typing, specialization, and so on. Use ANYDATA
when you simply want to be able to hold one of any number of possible instances that do not
necessarily have anything in common.

9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy

Applying an Object Model to Relational Data describes how to build up a view hierarchy from a
set of object views each of which contains objects of a single type. Such a view hierarchy
enables queries on a view within the hierarchy to see a polymorphic set of objects contained
by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an object view
based on a query that returns a polymorphic set of objects. This approach is especially useful
when you want to define a view over a set of tables or views that already exists.

For example, an object view of Per son_t can be defined over a query that returns Per son_t
instances, including Enpl oyee_t instances. The following statement creates a view based on
queries that select persons from a per sons table and employees from an enpl oyees table.

CREATE VI EW Persons_vi ew OF Person_t AS

SELECT Person_t(...) FROM persons

UNION ALL

SELECT TREAT(Enpl oyee t(...) AS Person_t) FROM enpl oyees;

An | NSTEAD CF trigger defined for this view can use the VALUE function to access the current
object and to take appropriate action based on the object's most specific type.

Polymorphic views and object view hierarchies have these important differences:

* Addressability: In a view hierarchy, each subview can be referenced independently in
queries and DML statements. Thus, every set of objects of a particular type has a logical
name. However, a polymorphic view is a single view, so you must use predicates to obtain
the set of objects of a particular type.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 29 of 32

ORACLE’

Chapter 9
Design Consideration Tips and Techniques

* Evolution: If a new subtype is added, a subview can be added to a view hierarchy without
changing existing view definitions. With a polymorphic view, the single view definition must
be modified by adding another UNI ON branch.

DML Statements: In a view hierarchy, each subview can be either inherently updatable or
can have its own | NSTEAD COF trigger. With a polymorphic view, only one | NSTEAD OF trigger
can be defined for a given operation on the view.

9.13.4 The SQLJ Object Type

This section discusses the SQLJ object type.

Topics:

e The Intended Use of SQLJ Object Types

* Actions Performed When Creating a SQLJ Object Type
e Uses of SQLJ Object Types

* Uses of Custom Object Types

» Differences Between SQLJ and Custom Object Types Through JDBC

9.13.4.1 The Intended Use of SQLJ Object Types

According to the Information Technology - SQLJ - Part 2 document (SQLJ Standard), a SQLJ
object type is a database object type designed for Java. A SQLJ object type maps to a Java
class. Once the mapping is registered through the extended SQL CREATE TYPE command (a
DDL statement), the Java application can insert or select the Java objects directly into or from
the database through an Oracle JDBC driver. This enables the user to deploy the same class
in the client, through JDBC, and in the server, through SQL method dispatch.

9.13.4.2 Actions Performed When Creating a SQLJ Object Type

The extended SQL CREATE TYPE command:

« Populates the database catalog with the external names for attributes, functions, and the
Java class. Also, dependencies between the Java class and its corresponding SQLJ object
type are maintained.

e Validates the existence of the Java class and validates that it implements the interface
corresponding to the value of the USI NG clause.

* Validates the existence of the Java fields (as specified in the EXTERNAL NAVE clause) and
whether these fields are compatible with corresponding SQL attributes.

* Generates an internal class to support constructors, external variable names, and external
functions that return sel f as a result.

9.13.4.3 Uses of SQLJ Object Types

The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class.

The mapping between a Java class and its corresponding SQL type is managed by the SQLJ
object type specification. That is, the SQLJ Object type specification cannot have a
corresponding type body specification.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 30 of 32

ORACLE

Chapter 9
Design Consideration Tips and Techniques

Also, the inheritance rules among SQLJ object types specify the legal mapping between a
Java class hierarchy and its corresponding SQLJ object type hierarchy. These rules ensure
that the SQLJ Type hierarchy contains a valid mapping. That is, the supertype or subtype of a
SQLJ object type has to be another SQLJ object type.

9.13.4.4 Uses of Custom Object Types

The custom object type is the Java interface for accessing SQL object types. A SQL object
type may include methods that are implemented in languages such as PLSQL, Java, and C.
Methods implemented in Java in a given SQL object type can belong to different unrelated
classes. That is, the SQL object type does not map to a specific Java class.

In order for the client to access these objects, Oracle JVM Web Services Call-Out Utility can be
used to generate the corresponding Java class. Furthermore, the user has to augment the
generated classes with the code of the corresponding methods. Alternatively, the user can
create the class corresponding to the SQL object type.

At runtime, the JDBC user has to register the correspondence between a SQL Type name and
its corresponding Java class in a map.

@ See Also

Oracle Al Database Java Developer’s Guide

9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC

The following table summarizes the differences between SQLJ object types and custom object
types.

Table 9-1 Differences Between SQLJ and Custom Object Types

Method Support

Type Mapping

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the Or acl eTypes. JAVA STRUCT typecode to Use the Or acl eTypes. STRUCT typecode to
register a SQLJ object type as a SQL OUT register a custom object type as a SQL OUT
parameter. The Or acl eTypes. JAVA STRUCT parameter. The Or acl eTypes. STRUCT typecode
typecode is also used in the _SQL_TYPECCDE field is also used in the _SQL_TYPECQDE field of a
of a class implementing the ORADat a or SQLData class implementing the ORADat a or SQLDat a
interface. interface.

Creation Create a Java class implementing the SQLDat a or Issue the extended SQL CREATE TYPE command

ORADat a and ORADat aFact ory interfaces first and for a custom object type and then create the
then load the Java class into the database. Next, SQLDat a or ORADat a Java wrapper class using

you issue the extended SQL CREATE TYPE Oracle JVM Web Services Call-Out Utility or do

command for SQLJ object type. this manually.

Supports external names, constructor calls, and There is no default class for implementing type

calls for member functions with side effects. methods as Java methods. Some methods may
also be implemented in SQL.

Type mapping is automatically done by the Register the correspondence between SQL and

extended SQL CREATE TYPE command. However, Java in a type map. Otherwise, the type is

the SQLJ object type must have a defining Java materialized as or acl e. sql . STRUCT.

class on the client.

Object-Relational Developer's Guide

G44198-01

October 13, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 31 of 32

ORACLE Chapter 9
Design Consideration Tips and Techniques

Table 9-1 (Cont.) Differences Between SQLJ and Custom Object Types
|

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Inheritance There are rules for mapping SQL hierarchy to a There are no mapping rules.
Java class hierarchy. See the Oracle Al Database
SQL Language Reference for a complete
description of these rules.

9.13.5 Miscellaneous Design Tips

You should know these miscellaneous tips for designing with Oracle objects.

9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy

If a column or table is of type T, Oracle adds a hidden column for each attribute of type T and, if
the column or table is substitutable, for each attribute of every subtype of T, to store attribute
data. A hidden t ypei d column is added as well, to keep track of the type of the object instance
in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a number of total
attributes approaching 1,000 puts you at risk of running up against this limit when using
substitutable columns of a type in the hierarchy. To avoid problems as a result of this, consider
one of the following options for dealing with a hierarchy that has a large number of total
attributes:

¢ Use views
e Use REFs
* Break up the hierarchy

9.13.5.2 Circular Dependencies Among Types

Avoid creating circular dependencies among types. In other words, do not create situations in
which a method of type T returns a type T1, which has a method that returns a type T.

Object-Relational Developer's Guide
G44198-01 October 13, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 32 of 32

	Contents
	Preface
	Audience
	Conventions

	Changes in This Release
	New Features in Oracle AI Database 26ai
	Wide Tables

	1 Introduction to Oracle Objects
	1.1 About Oracle Objects
	1.2 Advantages of Objects
	1.3 Key Features of the Object-Relational Model
	1.3.1 Database Features of Oracle Objects
	1.3.1.1 About Object Types
	1.3.1.2 About Object Instances
	1.3.1.3 About Object Methods
	1.3.1.4 How Objects are Stored in Tables
	1.3.1.4.1 Creating and Using Object Tables
	1.3.1.4.2 Performing Operations on Object Tables

	1.3.1.5 Object Identifiers Used to Identify Row Objects
	1.3.1.6 References to Row Objects
	1.3.1.6.1 Using Scoped REFs
	1.3.1.6.2 Checking for Dangling REFs

	1.3.1.7 Dereferencing REFs
	1.3.1.7.1 Dereferencing a REF with the DEREF Command
	1.3.1.7.2 Dereferencing a Dangling REF
	1.3.1.7.3 Dereferencing a REF Implicilty

	1.3.1.8 Obtaining a REF to a Row Object
	1.3.1.9 REF Variables Compared
	1.3.1.10 Oracle Collections Data Types
	1.3.1.11 Object Views Used to Access Relational Data
	1.3.1.12 Use of Type Inheritance
	1.3.1.13 Type Evolution Used to Change an Existing Object Type

	1.3.2 Language Binding Features of Oracle Objects

	2 Basic Components of Oracle Objects
	2.1 SQL Object Types and References
	2.1.1 Null Objects and Attributes
	2.1.2 Character Length Semantics
	2.1.3 Defining Object Tables with Single Constraints
	2.1.4 Defining Object Tables with Multiple Constraints
	2.1.5 Defining Indexes for Object Tables
	2.1.6 Defining Triggers for Object Tables
	2.1.7 Rules for REF Columns and Attributes
	2.1.8 Name Resolution
	2.1.8.1 When Table Aliases Are Required

	2.1.9 Restriction on Using User-Defined Types with a Remote Database

	2.2 Object Methods
	2.2.1 About Object Methods
	2.2.2 Member Methods
	2.2.2.1 Declaring SELF Parameters in Member Methods
	2.2.2.2 Member Methods for Comparing Objects
	2.2.2.2.1 About Map Methods
	2.2.2.2.2 Creating a Map Method
	2.2.2.2.3 Invoking a Map Method
	2.2.2.2.4 Order Methods
	2.2.2.2.5 Guidelines for Comparison Methods
	2.2.2.2.6 Comparison Methods in Type Hierarchies

	2.2.3 Declaring and Invoking Static Methods
	2.2.4 Constructor Methods
	2.2.4.1 System-Defined Constructors
	2.2.4.2 Defining User-Defined Constructors
	2.2.4.3 Literal Invocation of a Constructor Method

	2.2.5 External Implemented Methods

	2.3 Inheritance in SQL Object Types
	2.3.1 About Inheritance in SQL Object Types
	2.3.2 Supertypes and Subtypes
	2.3.3 FINAL and NOT FINAL Types and Methods for Inheritance
	2.3.3.1 Creating an Object Type as NOT FINAL with a FINAL Member Function
	2.3.3.2 Creating a NOT FINAL Object Type

	2.3.4 Changing a FINAL TYPE to NOT FINAL
	2.3.5 Subtype Creation
	2.3.5.1 Creating a Parent or Supertype Object
	2.3.5.2 Creating a Subtype Object
	2.3.5.3 Generalized Invocation
	2.3.5.4 Using Generalized Invocation
	2.3.5.5 Using Generalized Expression
	2.3.5.6 Creating Multiple Subtypes
	2.3.5.7 Creating a Subtype Under Another Subtype
	2.3.5.8 Creating Tables that Contain Supertype and Subtype Objects

	2.3.6 NOT INSTANTIABLE Types and Methods
	2.3.7 Creating a Non-INSTANTIABLE Object Type
	2.3.8 Changing an Object Type to INSTANTIABLE
	2.3.9 Overloaded and Overridden Methods
	2.3.9.1 Overloading Methods
	2.3.9.2 Overriding and Hiding Methods
	2.3.9.3 Restrictions on Overriding Methods

	2.3.10 Dynamic Method Dispatch
	2.3.11 Type Substitution in a Type Hierarchy
	2.3.12 Column and Row Substitutability
	2.3.12.1 About Column and Row Substitutability
	2.3.12.2 Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
	2.3.12.3 Subtypes with Attributes of a Supertype
	2.3.12.4 Substitution of REF Columns and Attributes
	2.3.12.5 Substitution of Collection Elements

	2.3.13 Newly Created Subtypes Stored in Substitutable Columns
	2.3.14 Dropping Subtypes After Creating Substitutable Columns
	2.3.15 Turning Off Substitutability in a New Table
	2.3.16 Constraining Substitutability
	2.3.17 Modifying Substitutability on a Table
	2.3.18 Restrictions on Modifying Substitutability
	2.3.19 Assignments Across Types
	2.3.19.1 Typical Object to Object Assignment
	2.3.19.2 Widening Assignment
	2.3.19.3 Narrowing Assignment
	2.3.19.4 Collection Assignments

	2.4 Functions and Operators Useful with Objects
	2.4.1 CAST
	2.4.2 CURSOR
	2.4.3 DEREF
	2.4.4 IS OF type
	2.4.5 REF
	2.4.6 SYS_TYPEID
	2.4.7 TABLE()
	2.4.8 TREAT
	2.4.8.1 Using TREAT for Narrowing Assignments
	2.4.8.2 Using the TREAT Function to Access Subtype Attributes or Methods

	2.4.9 VALUE

	3 Using PL/SQL With Object Types
	3.1 Declaring and Initializing Objects in PL/SQL
	3.1.1 Defining Object Types
	3.1.2 Declaring Objects in a PL/SQL Block
	3.1.3 How PL/SQL Treats Uninitialized Objects

	3.2 Object Manipulation in PL/SQL
	3.2.1 Accessing Object Attributes With Dot Notation
	3.2.2 Calling Object Constructors and Methods
	3.2.3 Accessing Object Methods
	3.2.4 Updating and Deleting Objects
	3.2.5 Manipulating Object Manipulation with Ref Modifiers

	3.3 Use of Overloading in PL/SQL with Inheritance
	3.3.1 Resolving PL/SQL Functions with Inheritance
	3.3.2 Resolving PL/SQL Functions with Inheritance Dynamically

	3.4 Using Dynamic SQL With Objects
	3.4.1 Using Dynamic SQL with Object Types and Collections
	3.4.2 Calling Package Procedures with Object Types and Collections

	4 Object Support in Oracle Programming Environments
	4.1 SQL and Object Types
	4.2 SQL Developer
	4.3 PL/SQL
	4.4 Oracle Call Interface (OCI)
	4.4.1 About Oracle Call Interface (OCI)
	4.4.2 Associative Access in OCI Programs
	4.4.3 Navigational Access in OCI Programs
	4.4.4 Object Cache
	4.4.5 Building an OCI Program That Manipulates Objects
	4.4.6 Defining User-Defined Constructors in C

	4.5 Pro*C/C++
	4.5.1 About Pro*C/C++
	4.5.2 Associative Access in Pro*C/C++
	4.5.3 Navigational Access in Pro*C/C++
	4.5.4 Conversion Between Oracle Types and C Types
	4.5.5 Oracle Type Translator (OTT)

	4.6 Oracle C++ Call Interface (OCCI)
	4.6.1 About Oracle C++ Call Interface (OCCI)
	4.6.2 OCCI Associative Relational and Object Interfaces
	4.6.3 The OCCI Navigational Interface

	4.7 Java Tools for Accessing Oracle Objects
	4.7.1 JDBC Access to Oracle Object Data
	4.7.2 Data Mapping Strategies
	4.7.3 Java Object Storage
	4.7.3.1 Creating SQLJ Object Types
	4.7.3.2 Additional Notes About Mapping
	4.7.3.3 SQLJ Type Evolution
	4.7.3.4 Constraints
	4.7.3.5 Querying SQLJ Objects
	4.7.3.6 Inserting Java Objects
	4.7.3.7 Updating SQLJ Objects

	4.7.4 Defining User-Defined Constructors in Java
	4.7.5 JDeveloper
	4.7.5.1 Application Development Framework (ADF)
	4.7.5.2 TopLink

	4.8 XML
	4.9 Utilities Providing Support for Objects
	4.9.1 Import/Export of Object Types
	4.9.1.1 Types
	4.9.1.2 Object View Hierarchies

	4.9.2 SQL*Loader

	5 Support for Collection Data Types
	5.1 Collection Data Types
	5.1.1 Creating a Collection Type
	5.1.2 Creating an Instance of a VARRAY or Nested Table
	5.1.3 Using the Constructor Method to Insert Values into a Nested Table
	5.1.4 Invoking Constructors Literally to Specify Defaults
	5.1.5 About Varrays
	5.1.6 Creating and Populating a VARRAY
	5.1.7 Nested Tables
	5.1.7.1 Creating Nested Tables
	5.1.7.2 Storing Elements of Nested Tables
	5.1.7.3 Specifying a Tablespace When Storing a Nested Table

	5.1.8 Increasing the Size and Precision of VARRAY and Nested Table Elements
	5.1.9 Increasing VARRAY Limit Size
	5.1.10 Creating a Varray Containing LOB References

	5.2 Multilevel Collection Types
	5.2.1 Nested Table Storage Tables for Multilevel Collection Types
	5.2.1.1 Creating Multilevel Nested Table Storage
	5.2.1.2 Creating Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword
	5.2.1.3 Specifying Physical Attributes for Nested Table Storage

	5.2.2 Varray Storage for Multilevel Collections
	5.2.3 Specifying LOB Storage for VARRAY of VARRAY Type
	5.2.4 Specifying LOB Storage for a Nested Table of VARRAYs
	5.2.5 Constructors for Multilevel Collections

	5.3 Operations on Collection Data Types
	5.3.1 Collection Querying
	5.3.1.1 Nesting Results of Collection Queries
	5.3.1.2 Unnesting Results of Collection Queries
	5.3.1.3 Unnesting Queries Containing Table Expression Subqueries
	5.3.1.4 Using a Table Expression in a CURSOR Expression
	5.3.1.5 Unnesting Queries with Multilevel Collections

	5.3.2 DML Operations on Collections
	5.3.2.1 Performing Piecewise Operations on Nested Tables
	5.3.2.1.1 Updating a Nested Table

	5.3.2.2 Performing Piecewise Operations on Multilevel Nested Tables
	5.3.2.2.1 Performing Piecewise INSERT to Inner Nested Table

	5.3.2.3 Performing Atomical Changes on VARRAYs and Nested Tables
	5.3.2.4 Updating Collections as Atomic Data Items

	5.3.3 Using BULK COLLECT to Return Entire Result Sets
	5.3.4 Conditions that Compare Nested Tables
	5.3.4.1 Comparing Equal and Not Equal Conditions
	5.3.4.2 Comparing the IN Condition
	5.3.4.3 Comparing Subset of Multiset Conditions
	5.3.4.4 Determing Members of a Nested Table
	5.3.4.5 Determining Empty Conditions
	5.3.4.6 Determining Set Conditions

	5.3.5 Multiset Operations for Nested Tables
	5.3.5.1 CARDINALITY
	5.3.5.2 COLLECT
	5.3.5.3 MULTISET EXCEPT
	5.3.5.4 MULTISET INTERSECT
	5.3.5.5 MULTISET UNION
	5.3.5.6 POWERMULTISET
	5.3.5.7 POWERMULTISET_BY_CARDINALITY
	5.3.5.8 SET

	5.4 Partitioning Tables That Contain Oracle Objects

	6 Applying an Object Model to Relational Data
	6.1 Why Use Object Views
	6.2 Defining Object Views
	6.3 Object Views Used in Applications
	6.4 Objects Nested in Object Views
	6.5 Identifying Null Objects in Object Views
	6.6 Nested Tables and Varrays Used in Object Views
	6.6.1 Single-Level Collections in Object Views
	6.6.2 Multilevel Collections in Object Views

	6.7 Object Identifiers for Object Views
	6.8 References Created to View Objects
	6.9 Creating References to Objects with REF
	6.10 Inverse Relationships Modelled with Object Views
	6.11 Object View Manipulations
	6.11.1 Nested Table Columns Updated in Views
	6.11.2 INSTEAD OF Triggers to Control Mutating and Validation

	6.12 Applying the Object Model to Remote Tables
	6.13 Defining Complex Relationships in Object Views
	6.13.1 Tables and Types to Demonstrate Circular View References
	6.13.2 Creating Object Views with Circular References
	6.13.2.1 Method 1: Re-create First View After Creating Second View
	6.13.2.2 Method 2: Create First View Using FORCE Keyword

	6.14 Object View Hierarchies
	6.14.1 Creating an Object View Hierarchy
	6.14.1.1 The Flat Model
	6.14.1.2 The Horizontal Model
	6.14.1.3 The Vertical Model

	6.14.2 About Querying a View in a Hierarchy
	6.14.3 Privileges for Operations on View Hierarchies

	7 Managing Oracle Objects
	7.1 Privileges on Object Types and Their Methods
	7.1.1 System Privileges for Object Types
	7.1.2 Schema Object Privileges
	7.1.3 Types Used in New Types or Tables
	7.1.4 Example: Privileges on Object Types
	7.1.5 Access Privileges on Objects, Types, and Tables

	7.2 Type Dependencies
	7.2.1 Creating Incomplete Types
	7.2.2 Completing Incomplete Types
	7.2.3 Recompiling a Type Manually
	7.2.4 Using CREATE OR REPLACE TYPE with Type and Table Dependencies
	7.2.5 Creating or Replacing Type with Force
	7.2.6 Type Dependencies of Substitutable Tables and Columns
	7.2.7 The DROP TYPE FORCE Option

	7.3 Synonyms for Object Types
	7.3.1 Creating a Type Synonym
	7.3.2 Using a Type Synonym
	7.3.2.1 Describing Schema Objects That Use Synonyms
	7.3.2.2 Dependents of Type Synonyms
	7.3.2.3 Restriction on Replacing a Type Synonym
	7.3.2.4 Dropping Type Synonyms
	7.3.2.5 Renaming Type Synonyms
	7.3.2.6 Public Type Synonyms and Local Schema Objects

	7.4 Performance Tuning

	8 Advanced Topics for Oracle Objects
	8.1 Storage of Objects
	8.1.1 Leaf-Level Attributes
	8.1.2 How Row Objects Are Split Across Columns
	8.1.3 Hidden Columns for Tables with Column Objects
	8.1.4 Hidden Columns for Substitutable Columns and Object Tables
	8.1.5 Querying for Typeids of Objects Stored in Tables
	8.1.6 Storage of REFs
	8.1.7 Internal Layout of Nested Tables
	8.1.8 Internal Layout of VARRAYs

	8.2 Creating Indexes on Typeids or Attributes
	8.2.1 Indexing a Type-Discriminant Column
	8.2.2 Indexing Subtype Attributes of a Substitutable Column

	8.3 Type Evolution
	8.3.1 About Type Evolution
	8.3.2 Type Evolution and Dependent Schema Objects
	8.3.3 Options for Updating Data
	8.3.4 Effects of Structural Changes to Types
	8.3.5 Altering a Type by Adding and Dropping Attributes
	8.3.6 Altering a Type by Adding a Nested Table Attribute
	8.3.7 About Validating Types That Have Been Altered
	8.3.8 ALTER TYPE Statement for Type Evolution
	8.3.9 ALTER TABLE Statement for Type Evolution

	8.4 Storing XMLTypes and LOBs in an ANYDATA Column
	8.5 System-Defined and User-Defined Constructors
	8.5.1 The Attribute-Value Constructor
	8.5.2 Constructors and Type Evolution
	8.5.3 Advantages of User-Defined Constructors
	8.5.4 Defining and Implementing User-Defined Constructors
	8.5.5 Overloaded and Hidden Constructors
	8.5.6 Calling User-Defined Constructors
	8.5.7 Constructors for SQLJ Object Types

	8.6 Transient and Generic Types
	8.7 User-Defined Aggregate Functions
	8.8 How Locators Improve the Performance of Nested Tables

	9 Design Considerations for Oracle Objects
	9.1 General Storage Considerations for Objects
	9.1.1 About Storing Objects as Columns or Rows
	9.1.1.1 Column Object Storage in Relational Tables
	9.1.1.2 Row Object Storage in Object Tables

	9.1.2 Storage Considerations for Object Identifiers (OIDs)
	9.1.2.1 System-Generated Object Identifiers (OIDs)
	9.1.2.2 Primary-Key Based Object Identifiers (OIDs)
	9.1.2.3 System-Generated Versus Primary-Key Based OIDs

	9.2 Performance of Object Comparisons
	9.3 Design Considerations for REFs
	9.3.1 Storage Size of REFs
	9.3.2 Integrity Constraints for REF Columns
	9.3.3 Performance and Storage Considerations for Scoped REFs
	9.3.3.1 Indexing for Scoped REFs

	9.3.4 Performance Improvement for Object Access Using the WITH ROWID Option

	9.4 Design Considerations for Collections
	9.4.1 Viewing Object Data in Relational Form with Unnesting Queries
	9.4.1.1 Creating Procedures and Functions to Unnest Queries
	9.4.1.2 Querying the TABLE Function to Unnest Data

	9.4.2 Storage Considerations for Varrays
	9.4.2.1 About Propagating VARRAY Size Change

	9.4.3 Performance of Varrays Versus Nested Tables
	9.4.4 Design Considerations for Nested Tables
	9.4.4.1 Nested Table Storage
	9.4.4.2 Nested Table Indexes
	9.4.4.3 Nested Table Locators
	9.4.4.3.1 At Table Creation Time
	9.4.4.3.2 As a HINT During Retrieval

	9.4.4.4 Set Membership Query Optimization

	9.4.5 Design Considerations for Multilevel Collections
	9.4.5.1 Creating an Object Table with a Multilevel Collection
	9.4.5.2 Creating an Object Table Using REFs
	9.4.5.3 Inserting Values into the PEOPLE_OBJTAB Object Table

	9.5 Design Considerations for Methods
	9.5.1 Choice of Language for Method Functions
	9.5.2 Static Methods
	9.5.3 About Using SELF IN OUT NOCOPY with Member Procedures
	9.5.4 Function-Based Indexes on the Return Values of Type Methods

	9.6 Reusable Code Using Invoker Rights
	9.7 Roles with Invoker's Rights Subprograms
	9.8 Replication Support for Objects
	9.8.1 Object Replication Using Oracle Golden Gate
	9.8.2 Active Data Guard and Logical Standby Support for Objects

	9.9 Materialized View Support for Objects
	9.9.1 Object, Collection, or REF Type Columns
	9.9.2 Object Tables

	9.10 Constraints on Objects
	9.11 Considerations Related to Type Evolution
	9.11.1 Pushing a Type Change Out to Clients
	9.11.2 About Changing Default Constructors
	9.11.3 About Altering the FINAL Property of a Type

	9.12 Parallel Queries with Oracle Objects
	9.13 Design Consideration Tips and Techniques
	9.13.1 Whether to Evolve a Type or Create a Subtype
	9.13.2 How ANYDATA Differs from User-Defined Types
	9.13.3 Polymorphic Views: An Alternative to an Object View Hierarchy
	9.13.4 The SQLJ Object Type
	9.13.4.1 The Intended Use of SQLJ Object Types
	9.13.4.2 Actions Performed When Creating a SQLJ Object Type
	9.13.4.3 Uses of SQLJ Object Types
	9.13.4.4 Uses of Custom Object Types
	9.13.4.5 Differences Between SQLJ and Custom Object Types Through JDBC

	9.13.5 Miscellaneous Design Tips
	9.13.5.1 Column Substitutability and the Number of Attributes in a Hierarchy
	9.13.5.2 Circular Dependencies Among Types

