Vectorize Relational Tables Using OML Feature Extraction Algorithms

This example shows you how to use OML's Feature Extraction algorithms in conjunction with the VECTOR_EMBEDDING() operator to vectorize sets of relational data, build similarity indexes, and perform similarity searches on the resulting vectors.

Feature Extraction algorithms help in extracting the most informative features/columns from the data and aim to reduce the dimensionality of large data sets by identifying the principal components that capture the most variance in the data. This reduction simplifies the data set while retaining the most important information, making it easier to analyze correlations and redundancies in the data.

The Principal Component Analysis (PCA) algorithm, a widely used dimensionality reduction technique in machine learning, is used in this tutorial.

Note:

This example uses customer bank marketing data available at https://archive.ics.uci.edu/dataset/222/bank+marketing.

The relational data table includes a mix of numeric and categorical columns. It has more than 4000 records.

SELECT column_name, data_type
FROM user_tab_columns
WHERE table_name = 'BANK'
ORDER BY data_type, column_name;

Output:

COLUMN_NAME          DATA_TYPE
-------------------- --------------------
AGE                  NUMBER
CAMPAIGN             NUMBER
CONS_CONF_IDX        NUMBER
CONS_PRICE_IDX       NUMBER
DURATION             NUMBER
EMP_VAR_RATE         NUMBER
EURIBOR3M            NUMBER
ID                   NUMBER
NR_EMPLOYED          NUMBER
PDAYS                NUMBER
PREVIOUS             NUMBER
CONTACT              VARCHAR2
CREDIT_DEFAULT       VARCHAR2
DAY_OF_WEEK          VARCHAR2
EDUCATION            VARCHAR2
HOUSING              VARCHAR2
JOB                  VARCHAR2
LOAN                 VARCHAR2
MARITAL              VARCHAR2
MONTH                VARCHAR2
POUTCOME             VARCHAR2
Y                    VARCHAR2

To perform a similarity search, you need to vectorize the relational data. To do so, you can first use the OML Feature Extraction algorithm to project the data onto a more compact numeric space. In this example, you configure the SVD algorithm to perform a Principal Component Analysis (PCA) projection of the original data table. The number of features/columns (5 in this case) is specified in the setting table. The input number determines the number of principal features or columns that will be retained after the dimensionality reduction process. Each of these columns represent a direction in the feature space along which the data varies the most.

Because you need to use the DBMS_DATA_MINING package to create the model, you need the CREATE MINING MODEL privilege in addition to the other privileges relevant to vector indexes and similarity search. For more information about the CREATE MINING MODEL privilege, see Oracle Machine Learning for SQL User’s Guide.

  1. Create a setting table, insert values, and then create a model.

    Use the DBMS_DATA_MINING package to create a model, using mod_sett as the setting table:

    CREATE TABLE mod_sett(
      setting_name  VARCHAR2(30),
      setting_value VARCHAR2(30)
    );
    
    
    BEGIN
      INSERT INTO mod_sett (setting_name, setting_value) VALUES 
            (dbms_data_mining.algo_name, dbms_data_mining.algo_singular_value_decomp);
      INSERT INTO mod_sett (setting_name, setting_value) VALUES
            (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
      INSERT INTO mod_sett (setting_name, setting_value) VALUES
            (dbms_data_mining.svds_scoring_mode, dbms_data_mining.svds_scoring_pca);
      INSERT INTO mod_sett (setting_name, setting_value) VALUES
            (dbms_data_mining.feat_num_features, 5);
      commit;
    END;
    /
    
    
    BEGIN
      DBMS_DATA_MINING.CREATE_MODEL(
        model_name          => 'pcamod',
        mining_function     => dbms_data_mining.feature_extraction,
        data_table_name     => 'bank',
        case_id_column_name => 'id',
        settings_table_name => 'mod_sett');  
    END;
    /
  2. Use the VECTOR_EMBEDDING() function to output the SVD projection results as vectors.

    The dimension of the vector column is the same as the number of features in the PCA model and the value of the vector represents the PCA projection results of the original row data.

    Note:

    USING * results in the use of all the relevant features present in the input row.
    SELECT id, vector_embedding(pcamod USING *) embedding
    FROM bank
    WHERE id=10000;

    Output:

                ID      EMBEDDING
    --------------     --------------------------------------------------
            10000      [-2.3551013972411354E+002,2.8160084506788273E+001,
                         5.2821278275005774E+001,-1.8960922352439308E-002,
                        -2.5441143639048378E+000]
    
    
  3. Create a table to hold the vector output results for all the data records.

    This represents a vectorization of your original relational data for the top-5 most important columns.

    CREATE TABLE pca_output AS
    (SELECT id, vector_embedding(pcamod USING *) embedding
     FROM bank);
  4. Build a vector index based on the vector table.

    For example, you can build an IVF index with cosine distance:

    CREATE VECTOR INDEX my_ivf_idx ON pca_output(embedding) 
    ORGANIZATION NEIGHBOR PARTITIONS
    DISTANCE COSINE WITH TARGET ACCURACY 95;
  5. Perform a similarity search using the my_ivf_idx index.

    In this example, you search for the top-3 results that are closest to id=10000 based on the cosine distance and join the vector table with the original bank table to retrieve the most impactful attributes from the original table. To identify the most impactful columns for this row, use the FEATURE_DETAILS() function.

    SELECT feature_details(pcamod, 5 USING *) features
    FROM bank
    WHERE id=10000;

    Output:

    FEATURES
    -----------------------------------------------------------------------------------------------
    <Details algorithm="Singular Value Decomposition" feature="5">
    <Attribute name="PDAYS" actualValue="999" weight=".041" rank="1"/>
    <Attribute name="EURIBOR3M" actualValue="4.959" weight=".028" rank="2"/>
    <Attribute name="CONTACT" actualValue="telephone" weight=".016" rank="3"/>
    <Attribute name="EMP_VAR_RATE" actualValue="1.4" weight=".014" rank="4"/>
    <Attribute name="DAY_OF_WEEK" actualValue="wed" weight=".002" rank="5"/>
    </Details>

    Join the original data table to retrieve the most impactful information:

    SELECT p.id id, b.PDAYS PDAYS, b.EURIBOR3M EURIBOR3M, b.CONTACT CONTACT, 
        b.EMP_VAR_RATE EMP_VAR_RATE, b.DAY_OF_WEEK DAY_OF_WEEK
    FROM pca_output p, bank b
    WHERE p.id <> 10000 AND p.id=b.id
    ORDER BY VECTOR_DISTANCE(embedding, (select embedding from pca_output where id=10000), COSINE)
    FETCH FIRST 3 ROWS ONLY;

    Output:

            ID      PDAYS  EURIBOR3M   CONTACT EMP_VAR_RATE DAY_OF_WEEK
    ---------- ---------- ---------- --------- ------------ -----------
          9416        999      4.967 telephone          1.4         fri
         13485        999      4.963 telephone          1.4         thu
          9800        999      4.959 telephone          1.4         wed

    The results of the previous query illustrate that the closest 3 records are very similar. In contrast, the distributions of these features across the data set are dispersed as shown in the following queries:

    SELECT avg(PDAYS) avg, stddev(PDAYS) std, min(PDAYS) min, max(PDAYS) max
    FROM bank;

    Output:

           AVG        STD        MIN        MAX
    ---------- ---------- ---------- ----------
    962.475454 186.910907          0        999
    SELECT avg(EURIBOR3M) avg, stddev(EURIBOR3M) std, min(EURIBOR3M) min, max(EURIBOR3M) max
    FROM bank;

    Output:

           AVG       STD        MIN        MAX
    ---------- --------- ---------- ----------
    
    3.62129081 1.7344474       .634      5.045

    This tutorial demonstrates how you can vectorize relational data very efficiently and achieve significant compression while maintaining a high quality similarity search.

    See Also:

    Oracle Machine Learning for SQL Concepts for more information about Feature Extraction algorithms