LOAD_ONNX_MODEL
This procedure enables you to load an ONNX model into the Database.
Syntax
DBMS_VECTOR.LOAD_ONNX_MODEL ( directory VARCHAR2, file_name VARCHAR2, model_name VARCHAR2, metadata JSON);
DBMS_VECTOR.LOAD_ONNX_MODEL(
model_name IN VARCHAR2,
model_data IN BLOB,
metadata IN JSON);
Parameters
Table 12-7 LOAD_ONNX_MODEL Procedure Parameters
Parameter | Description |
---|---|
|
The directory name of the data dump. For example,
|
|
A |
|
Name of the model in the form
|
|
It is a |
|
A JSON description of the metadata describing the model. The metadata at minimum must describe the machine learning function supported by the model. The model's metadata parameters are described in JSON Metadata Parameters for ONNX Models. |
Examples
The following examples illustrates a code snippet of using the
DBMS_VECTOR.LOAD_ONNX_MODEL
procedure. The complete step-by-step example
is illustrated in Import ONNX Models and Generate
Embeddings.
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
'DM_DUMP',
'my_embedding_model.onnx',
'doc_model',
JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": ["DATA"]}}'));
DBMS_VECTOR.LOAD_ONNX_MODEL('my_embedding_model.onnx',
:blob_bind_variable,
JSON('{"function" : "embedding",
"embeddingOutput" : "embedding" ,
"input":{"input": ["DATA"]}}'));
For a complete example to illustrate how you can define a BLOB
variable
and use it in the LOAD_ONNX_MODEL
procedure, you can have the
following:
CREATE OR REPLACE MY_LOAD_EMBEDDING_MODEL(embedding_model_name VARCHAR2, onnx_blob BLOB) IS
BEGIN
DBMS_VECTOR.LOAD_ONNX_MODEL(embedding_model_name,
onnx_blob,
JSON('{"function" : "embedding",
"embeddingOutput" : "embedding" ,
"input":{"input": ["DATA"]}}'));
END;
/
Usage Notes
The name of the model follows the same restrictions as those used for other machine learning models, namely:
- The schema name, if provided, is limited to 128 characters.
- The model name is limited to 123 characters and must follow the rules of unquoted identifiers: they contain only alphanumeric characters, the underscore (_), dollar sign ($), and pound sign (#). The initial character must be alphabetic.
- The model size is limited to 1 gigabyte.
- The model must not depend on external initializers. To know more about initializers and other ONNX concepts, see https://onnx.ai/onnx/intro/concepts.html.
-
There are default input and output names for input and output attributes for models that are prepared by the Python utility. You can load those models without the JSON parameters. For example:
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('DM_DUMP', 'my_embedding_model.onnx', 'doc_model'));
See Also:
Oracle Machine Learning for SQL User’s Guide for examples of using ONNX models for machine learning tasks- JSON Metadata Parameters for ONNX Models
When importing models using theIMPORT_ONNX_MODEL
(DBMS_DATA_MINING
),LOAD_ONNX_MODEL
(DBMS_VECTOR
), orLOAD_ONNX_MODEL_CLOUD
(DBMS_VECTOR
) procedures, you supply metadata as JSON parameters.
Parent topic: DBMS_VECTOR