
Oracle® Call Interface
Developer's Guide

23ai
F46705-09
January 2025

Oracle Call Interface Developer's Guide, 23ai

F46705-09

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Mamata Basapur

Contributing Authors: Rod Ward

Contributors: D. Adams, G. Arora, V. Arora, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, P.
Betteridge, N. Bhatt, T. Bhosle, J. Blowney, R. Chakravarthula, S. Chandrasekar, B. Cheng, D. Chiba, L. Chidambaran,
C. Colrain, T. Das, Ronald Decker, A. Desai, A. Downing, S. Fogel, T. Hoang, N. Ikeda, K. Itikarlapalli, C. Iyer, S. Iyer, V.
Jitta, C. Jones, A. Keh, B. Khaladkar, S. Krishnaswamy, R. Kumar, R. Kumar, S. Lahorani, S. Lari, T. H. Lee, T. Li, C.
Liang, I. Listvinsky, J. Liu, E. Lu, S. Lynn, K.Mensah, V. Moore, A. Mullick, K. Neel, M. Orgiyan, E. Paapanen, S. Pelski,
R. Phillips, R. Pingte, R. Rajamani, M. Ramacher, A. Ramappa, S. Sahu, A. Saxena, S. Seshadri, R. Singh, B. Sinha,
H. Slattery, J. Stewart, L. Sun, S. Suresh, S. Tata, H. Tran, A. Tuininga, S. Vallapureddy, M. Vemana, S. Vemuri, B.
Venkatakrishnan, K. Verma, G. Viswanathan, S. Wolicki, L. Wong, S. Youssef, B. Zebian

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lx

Documentation Accessibility lx

Related Documents lxi

Conventions lxi

1 OCI: Introduction

1.1 Changes in This Release for Oracle Call Interface Developer's Guide 1-2

1.2 Overview of OCI 1-5

1.3 Building an OCI Application 1-6

1.4 Alternatives to OCI 1-6

1.5 SQL Statements 1-8

1.5.1 Data Definition Language 1-9

1.5.2 Control Statements 1-9

1.5.3 Data Manipulation Language 1-10

1.5.4 Queries 1-10

1.5.5 PL/SQL 1-11

1.5.6 Embedded SQL 1-12

1.5.7 Special OCI Terms for SQL 1-12

1.6 Procedural and Nonprocedural Elements 1-13

1.7 Object Support 1-13

1.7.1 Client-Side Object Cache 1-15

1.7.2 Associative and Navigational Interfaces 1-15

1.7.3 OCI Runtime Environment for Objects 1-16

1.7.4 Type Management: Mapping and Manipulation Functions 1-16

1.7.5 Object Type Translator 1-16

1.8 Simple Oracle Document Access (SODA) 1-17

1.9 Encapsulated Interfaces 1-17

1.10 User Authentication and Password Management 1-18

1.10.1 Identity and Access Management (IAM) Token-Based Authentication 1-18

1.10.1.1 Standalone User Session 1-19

1.10.1.2 Session Pool 1-20

1.11 Features to Improve Application Performance and Scalability 1-22

iii

1.12 Oracle Database Advanced Queuing 1-22

1.13 XA Library Support 1-23

1.14 Annotations Support in OCI 1-23

1.14.1 Annotations Support for Objects 1-24

1.15 Oracle Instant Client and Oracle Instant client Basic Light 1-24

2 Building and Configuring OCI Applications

2.1 Header File and Makefile Locations 2-2

2.2 Building an OCI Application on Linux and UNIX 2-2

2.2.1 Oracle Directory Structure 2-3

2.2.2 Demonstration OCI Programs 2-3

2.3 Building an Application on Windows 2-4

2.4 Database Connection Strings 2-4

2.4.1 Examples of Oracle Database Connection String Connect Identifiers 2-5

2.5 Client and Server Operating with Different Versions of Time Zone Files 2-6

2.6 OCI Support for Centralized Configuration Store 2-7

2.6.1 User Credentials 2-8

2.6.1.1 OCISessionBegin() 2-8

2.6.1.2 OCISessionGet() 2-8

2.6.1.3 OCISessionPoolCreate() 2-9

2.6.1.4 Credentials Precedence 2-9

2.6.1.5 Restrictions 2-10

2.6.2 Application Attributes 2-10

2.6.2.1 Precedence 2-13

2.7 OCI Client-Side Deployment Parameters Using oraaccess.xml 2-13

2.7.1 About oraaccess.xml 2-14

2.7.2 About Client-Side Deployment Parameters Specified in oraaccess.xml 2-14

2.7.3 High Level Structure of oraaccess.xml 2-14

2.7.4 About Specifying Global Parameters in oraaccess.xml 2-15

2.7.5 About Specifying Defaults for Connection Parameters 2-17

2.7.6 Overriding Connection Parameters at the Connection-String Level 2-20

2.7.7 About OCI Session Pool Configuration in oraaccess.xml 2-23

2.7.8 File (oraaccess.xml) Properties 2-25

2.8 About Compatibility and Upgrading 2-25

2.8.1 Oracle Client and Server Cross Version Compatibility 2-26

2.8.2 Version Compatibility of Statically Linked and Dynamically Linked Applications 2-26

2.8.3 Unsupported OCI Routines 2-27

2.9 Fault Diagnosability in OCI 2-28

2.9.1 About Fault Diagnosability in OCI 2-29

2.9.2 ADR Base Location 2-29

2.9.3 Using ADRCI 2-31

iv

2.9.4 Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora 2-32

3 OCI Programming Basics

3.1 Overview of OCI Program Programming 3-2

3.2 OCI Data Structures 3-3

3.2.1 Handles 3-4

3.2.1.1 About Allocating and Freeing Handles 3-6

3.2.1.2 Environment Handle 3-7

3.2.1.3 Error Handle 3-7

3.2.1.4 Service Context Handle and Associated Handles 3-7

3.2.1.5 Statement, Bind, and Define Handles 3-9

3.2.1.6 Describe Handle 3-10

3.2.1.7 Complex Object Retrieval Handle 3-10

3.2.1.8 Thread Handle 3-10

3.2.1.9 Subscription Handle 3-11

3.2.1.10 Direct Path Handles 3-11

3.2.1.11 Connection Pool Handle 3-11

3.2.1.12 Handle Attributes 3-12

3.2.2 OCI Descriptors 3-13

3.2.2.1 Snapshot Descriptor 3-15

3.2.2.2 LOB and BFILE Locators 3-15

3.2.2.3 Parameter Descriptor 3-16

3.2.2.4 ROWID Descriptor 3-17

3.2.2.5 Date, Datetime, and Interval Descriptors 3-17

3.2.2.6 Complex Object Descriptor 3-17

3.2.2.7 Advanced Queuing Descriptors 3-18

3.2.2.8 User Memory Allocation 3-18

3.3 OCI Programming Steps 3-18

3.3.1 OCI Environment Initialization 3-19

3.3.1.1 About Creating the OCI Environment 3-20

3.3.1.2 About Allocating Handles and Descriptors 3-20

3.3.1.3 Application Initialization, Connection, and Session Creation 3-21

3.3.2 About Processing SQL Statements in OCI 3-26

3.3.3 Commit or Roll Back Operations 3-27

3.3.4 About Terminating the Application 3-27

3.3.5 Error Handling in OCI 3-28

3.3.5.1 Return and Error Codes for Data 3-29

3.3.5.2 Functions Returning Other Values 3-30

3.4 Additional Coding Guidelines 3-30

3.4.1 Operating System Considerations 3-31

3.4.2 Parameter Types 3-32

v

3.4.2.1 Address Parameters 3-32

3.4.2.2 Integer Parameters 3-33

3.4.2.3 Character String Parameters 3-33

3.4.3 Inserting Nulls into a Column 3-33

3.4.4 Indicator Variables 3-34

3.4.4.1 Input 3-34

3.4.4.2 Output 3-34

3.4.4.3 Indicator Variables for Named Data Types and REFs 3-35

3.4.5 About Canceling Calls 3-35

3.4.6 Positioned Updates and Deletes 3-36

3.4.7 Reserved Words 3-37

3.4.7.1 Oracle Reserved Namespaces 3-37

3.4.8 Polling Mode Operations in OCI 3-38

3.4.9 Nonblocking Mode in OCI 3-38

3.4.10 Setting Blocking Modes 3-40

3.4.11 Canceling a Nonblocking Call 3-40

3.5 About Using PL/SQL in an OCI Program 3-40

3.6 OCI Globalization Support 3-41

3.6.1 Client Character Set Control from OCI 3-43

3.6.2 Character Control and OCI Interfaces 3-43

3.6.3 Character-Length Semantics in OCI 3-44

3.6.4 Character Set Support in OCI 3-44

3.6.5 Controlling Language and Territory in OCI 3-44

3.6.6 Other OCI Globalization Support Functions 3-44

3.6.7 About Getting Locale Information in OCI 3-45

3.6.8 About OCI and the BOM (Byte Order Mark) 3-46

3.6.9 About Manipulating Strings in OCI 3-46

3.6.10 About Converting Character Sets in OCI 3-48

3.6.11 OCI Messaging Functions 3-49

3.6.12 lmsgen Utility 3-50

3.6.12.1 Guidelines for Text Message Files 3-50

3.6.12.2 An Example of Creating a Binary Message File from a Text Message File 3-51

4 Data Types

4.1 Oracle Data Types 4-1

4.1.1 About Using External Data Type Codes 4-3

4.2 Internal Data Types 4-4

4.2.1 LONG, RAW, LONG RAW, VARCHAR2 4-5

4.2.2 Character Strings and Byte Arrays 4-6

4.2.3 UROWID 4-7

4.2.4 BINARY_FLOAT and BINARY_DOUBLE 4-7

vi

4.2.5 JSON 4-8

4.3 External Data Types 4-8

4.3.1 BOOLEAN 4-12

4.3.2 VARCHAR2 4-12

4.3.2.1 Input 4-13

4.3.2.2 Output 4-14

4.3.3 NUMBER 4-14

4.3.4 64-Bit Integer Host Data Type 4-15

4.3.4.1 OCI Bind and Define for 64-Bit Integers 4-16

4.3.4.2 Support for OUT Bind DML Returning Statements 4-16

4.3.5 INTEGER 4-17

4.3.6 FLOAT 4-18

4.3.7 STRING 4-18

4.3.7.1 Input 4-18

4.3.7.2 Output 4-19

4.3.8 VARNUM 4-19

4.3.9 LONG 4-19

4.3.10 VARCHAR 4-20

4.3.11 DATE 4-20

4.3.12 RAW 4-21

4.3.13 VARRAW 4-21

4.3.14 LONG RAW 4-22

4.3.15 UNSIGNED 4-22

4.3.16 LONG VARCHAR 4-22

4.3.17 LONG VARRAW 4-22

4.3.18 CHAR 4-22

4.3.18.1 Input 4-23

4.3.18.2 Output 4-23

4.3.19 CHARZ 4-24

4.3.20 Named Data Types: Object, VARRAY, Nested Table 4-24

4.3.21 REF 4-25

4.3.22 ROWID Descriptor 4-25

4.3.23 LOB Descriptor 4-26

4.3.23.1 BFILE 4-27

4.3.23.2 BLOB 4-28

4.3.23.3 CLOB 4-28

4.3.23.4 NCLOB 4-28

4.3.24 JSON Descriptor 4-28

4.3.25 Datetime and Interval Data Type Descriptors 4-29

4.3.25.1 ANSI DATE 4-30

4.3.25.2 TIMESTAMP 4-30

4.3.25.3 TIMESTAMP WITH TIME ZONE 4-30

vii

4.3.25.4 TIMESTAMP WITH LOCAL TIME ZONE 4-30

4.3.25.5 INTERVAL YEAR TO MONTH 4-31

4.3.25.6 INTERVAL DAY TO SECOND 4-31

4.3.25.7 About Avoiding Unexpected Results Using Datetime 4-31

4.3.26 Native Float and Native Double 4-32

4.3.27 C Object-Relational Data Type Mappings 4-32

4.4 Data Conversions 4-32

4.4.1 Data Conversions for LOB Data Type Descriptors 4-34

4.4.2 Data Conversions for JSON Data Type 4-34

4.4.3 Data Conversions for Datetime and Interval Data Types 4-35

4.4.3.1 Assignment Notes 4-36

4.4.3.2 Data Conversion Notes for Datetime and Interval Types 4-36

4.4.4 Datetime and Date Upgrading Rules 4-36

4.4.4.1 Pre-9.0 Client with 9.0 or Later Server 4-37

4.4.4.2 Pre-9.0 Server with 9.0 or Later Client 4-37

4.4.5 Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI 4-37

4.5 Typecodes 4-38

4.5.1 Relationship Between SQLT and OCI_TYPECODE Values 4-40

4.6 Definitions in oratypes.h 4-41

5 Using SQL Statements in OCI

5.1 Overview of SQL Statement Processing 5-1

5.2 About Preparing Statements 5-4

5.2.1 About Using Prepared Statements on Multiple Servers 5-5

5.3 About Binding Placeholders in OCI 5-6

5.3.1 Rules for Placeholders 5-7

5.4 About Executing Statements 5-7

5.4.1 Execution Snapshots 5-8

5.4.2 Execution Modes of OCIStmtExecute() 5-9

5.4.2.1 Using Batch Error Mode 5-9

5.4.2.2 Example of Batch Error Mode 5-11

5.5 About Describing Select-List Items 5-12

5.5.1 Implicit Describe 5-13

5.5.2 Explicit Describe of Queries 5-15

5.6 About Defining Output Variables in OCI 5-16

5.7 About Fetching Results 5-16

5.7.1 About Fetching LOB Data 5-17

5.7.2 About Setting Prefetch Count 5-18

5.8 About Using Scrollable Cursors in OCI 5-19

5.8.1 About Increasing Scrollable Cursor Performance 5-20

5.8.2 Example of Access on a Scrollable Cursor 5-21

viii

5.8.3 Support for JSON and Vector Data Types with Scrollable Cursors 5-22

6 Binding and Defining in OCI

6.1 Overview of Binding in OCI 6-2

6.1.1 Named Binds and Positional Binds 6-4

6.1.2 OCI Array Interface 6-5

6.1.3 About Binding Placeholders in PL/SQL 6-6

6.1.4 Steps Used in OCI Binding 6-7

6.1.5 PL/SQL Block in an OCI Program 6-8

6.2 Advanced Bind Operations in OCI 6-10

6.2.1 About Binding LOBs 6-11

6.2.1.1 Binding LOB Locators 6-12

6.2.2 About Binding in OCI_DATA_AT_EXEC Mode 6-13

6.2.3 About Binding REF CURSOR Variables 6-14

6.3 Overview of Defining in OCI 6-14

6.3.1 Steps Used in OCI Defining 6-15

6.4 Advanced Define Operations in OCI 6-16

6.4.1 About Defining LOB Output Variables 6-17

6.4.1.1 About Defining LOB Locators 6-17

6.4.1.2 About Defining LOB Data 6-18

6.4.2 About Defining PL/SQL Output Variables 6-19

6.4.3 About Defining for a Piecewise Fetch 6-19

6.5 About Binding and Defining LOB Data 6-19

6.5.1 Restrictions on Binding LOB Data 6-20

6.5.2 Getting the LOB Length when Selecting LOB Data 6-21

6.5.3 Examples of Binding LOB Data 6-21

6.6 About Binding and Defining JSON Data 6-24

6.6.1 Using JSON Descriptor Interface (SQLT_JSON) 6-24

6.6.2 Using LOB Locator Interface 6-25

6.6.2.1 Fetching JSON as LOBs 6-25

6.6.3 Using Data Interface (Other SQL data types) 6-26

6.6.3.1 Binds 6-26

6.6.3.2 Defines 6-27

6.7 About Array Binds and Defines with JSON Data 6-28

6.8 About Binding and Defining Arrays of Structures in OCI 6-28

6.8.1 Skip Parameters 6-29

6.8.1.1 Skip Parameters for Standard Arrays 6-30

6.8.2 OCI Calls Used with Arrays of Structures 6-30

6.8.3 Arrays of Structures and Indicator Variables 6-31

6.9 About Binding and Defining Multiple Buffers 6-31

6.10 DML with a RETURNING Clause in OCI 6-34

ix

6.10.1 About Using DML with a RETURNING Clause to Combine Two SQL
Statements 6-35

6.10.2 About Binding RETURNING...INTO Variables 6-36

6.10.3 OCI Error Handling 6-37

6.10.4 DML with RETURNING REF...INTO Clause in OCI 6-37

6.10.4.1 Binding the Output Variable 6-38

6.10.5 Additional Notes About OCI Callbacks 6-39

6.10.6 Array Interface for DML RETURNING Statements in OCI 6-39

6.11 Character Conversion in OCI Binding and Defining 6-39

6.11.1 About Choosing a Character Set 6-40

6.11.1.1 Character Set Form and ID 6-41

6.11.1.2 Implicit Conversion Between CHAR and NCHAR 6-42

6.11.2 About Setting Client Character Sets in OCI 6-42

6.11.3 About Binding Variables in OCI 6-43

6.11.3.1 About Using the OCI_ATTR_MAXDATA_SIZE Attribute 6-43

6.11.3.2 About Using the OCI_ATTR_MAXCHAR_SIZE Attribute 6-44

6.11.3.3 Buffer Expansion During OCI Binding 6-45

6.11.3.4 Constraint Checking During Defining 6-46

6.11.3.5 General Compatibility Issues for Character-Length Semantics in OCI 6-47

6.12 PL/SQL REF CURSORs and Nested Tables in OCI 6-50

6.13 Natively Describe and Bind All PL/SQL Types Including Package Types 6-51

6.14 Runtime Data Allocation and Piecewise Operations in OCI 6-52

6.14.1 Valid Data Types for Piecewise Operations 6-53

6.14.2 Types of Piecewise Operations 6-54

6.14.3 About Providing INSERT or UPDATE Data at Runtime 6-54

6.14.3.1 Performing a Piecewise Insert or Update 6-55

6.14.4 Piecewise Operations with PL/SQL 6-57

6.14.5 PL/SQL Indexed Table Binding Support 6-58

6.14.5.1 Restrictions for PL/SQL Indexed Table Binding Interface 6-59

6.14.6 About Providing FETCH Information at Run Time 6-59

6.14.6.1 Performing a Piecewise Fetch 6-60

6.14.7 Piecewise Binds and Defines for LOBs 6-61

7 Describing Schema Metadata

7.1 About Using OCIDescribeAny() 7-1

7.1.1 Limitations on OCIDescribeAny() 7-3

7.1.2 Notes on Types and Attributes 7-3

7.1.2.1 Data Type Codes 7-4

7.1.2.2 About Describing Types 7-4

7.1.2.3 Implicit and Explicit Describe Operations 7-5

7.1.2.4 OCI_ATTR_LIST_ARGUMENTS Attribute 7-5

x

7.2 Parameter Attributes 7-5

7.2.1 Table or View Parameters 7-9

7.2.2 Procedure, Function, and Subprogram Attributes 7-10

7.2.3 Package Attributes 7-10

7.2.4 Type Attributes 7-11

7.2.5 Type Attribute Attributes 7-13

7.2.6 Type Method Attributes 7-14

7.2.7 Collection Attributes 7-15

7.2.8 Synonym Attributes 7-16

7.2.9 Sequence Attributes 7-16

7.2.10 Column Attributes 7-17

7.2.11 Argument and Result Attributes 7-21

7.2.12 List Attributes 7-22

7.2.13 Schema Attributes 7-23

7.2.14 Database Attributes 7-23

7.2.15 Rule Attributes 7-24

7.2.16 Rule Set Attributes 7-25

7.2.17 Evaluation Context Attributes 7-25

7.2.18 Table Alias Attributes 7-26

7.2.19 Variable Type Attributes 7-26

7.2.20 Name Value Attributes 7-26

7.3 Character-Length Semantics Support in Describe Operations 7-27

7.3.1 Implicit Describing 7-28

7.3.2 Explicit Describing 7-28

7.3.2.1 Client and Server Compatibility Issues for Describing 7-29

7.4 Examples Using OCIDescribeAny() 7-29

7.4.1 Describing with Boolean Data Type Columns 7-30

7.4.2 Retrieving Column Data Types for a Table 7-31

7.4.3 Describing the Stored Procedure 7-32

7.4.4 Retrieving Attributes of an Object Type 7-34

7.4.5 Retrieving the Collection Element's Data Type of a Named Collection Type 7-36

7.4.6 Describing with Character-Length Semantics 7-37

7.4.7 Describing Each Column to Know Whether It Is an Invisible Column 7-38

8 LOB and BFILE Operations

8.1 About Using OCI Functions for LOBs 8-2

8.1.1 LOB Performance Guidelines 8-3

8.2 About Creating and Modifying Persistent LOBs 8-3

8.3 About Associating a BFILE in a Table with an Operating System File 8-4

8.4 LOB Attributes of an Object 8-5

8.4.1 Writing to a LOB Attribute of an Object 8-5

xi

8.4.2 Transient Objects with LOB Attributes 8-6

8.5 Array Interface for LOBs 8-6

8.6 About Using LOBs of Size Greater than 4 GB 8-7

8.6.1 Functions to Use for the Increased LOB Sizes 8-8

8.6.2 Compatibility and Migration 8-9

8.7 LOB and BFILE Functions in OCI 8-11

8.7.1 About Improving LOB Read/Write Performance 8-12

8.7.1.1 About Using Data Interface for LOBs 8-12

8.7.1.2 About Using OCILobGetChunkSize() 8-13

8.7.1.3 About Using OCILobWriteAppend2() 8-13

8.7.1.4 About Using OCILobArrayRead() and OCILobArrayWrite() 8-13

8.7.2 Functions for Opening and Closing LOBs 8-14

8.7.2.1 Restrictions on Opening and Closing LOBs 8-15

8.7.3 LOB Read and Write Callbacks 8-16

8.7.3.1 Callback Interface for Streaming 8-16

8.7.3.2 Reading LOBs by Using Callbacks 8-16

8.7.3.3 Writing LOBs by Using Callbacks 8-18

8.8 Temporary LOB Support 8-19

8.8.1 Creating and Freeing Temporary LOBs 8-21

8.8.2 Temporary LOB Durations 8-21

8.8.3 About Freeing Temporary LOBs 8-22

8.8.4 Take Care When Assigning Pointers 8-23

8.8.5 Temporary LOB Example 8-23

8.9 Prefetching of LOB Data, Length, and Chunk Size 8-26

8.10 Options of SecureFiles LOBs 8-29

9 Managing Scalable Platforms

9.1 OCI Support for Transactions 9-2

9.2 Levels of Transactional Complexity 9-2

9.2.1 Simple Local Transactions 9-3

9.2.2 Serializable or Read-Only Local Transactions 9-4

9.2.3 Global Transactions 9-4

9.2.3.1 Transaction Identifiers 9-5

9.2.3.2 Attribute OCI_ATTR_TRANS_NAME 9-5

9.2.3.3 Transaction Branches 9-6

9.2.3.4 Branch States 9-7

9.2.3.5 Detaching and Resuming Branches 9-7

9.2.3.6 About Setting the Client Database Name 9-7

9.2.3.7 One-Phase Commit Versus Two-Phase Commit 9-8

9.2.3.8 Preparing Multiple Branches in a Single Message 9-9

9.2.4 Transaction Examples 9-9

xii

9.2.5 Initialization Parameters 9-9

9.2.5.1 Showing Update Successfully, One-Phase Commit 9-10

9.2.5.2 Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase
Commit 9-11

9.2.5.3 Showing a Read-Only Update Fails 9-11

9.2.5.4 Showing Starting a Read-Only Transaction, Select, and Commit 9-12

9.3 Password and Session Management 9-12

9.3.1 OCI Authentication Management 9-13

9.3.2 OCI Password Management 9-14

9.3.2.1 Gradual Database Password Rollover 9-15

9.3.3 Secure External Password Store 9-15

9.3.4 OCI Session Management 9-16

9.4 Middle-Tier Applications in OCI 9-17

9.4.1 OCI Attributes for Middle-Tier Applications 9-18

9.4.1.1 OCI_CRED_PROXY 9-19

9.4.1.2 OCI_ATTR_PROXY_CREDENTIALS 9-19

9.4.1.3 OCI_ATTR_DISTINGUISHED_NAME 9-19

9.4.1.4 OCI_ATTR_CERTIFICATE 9-20

9.4.1.5 OCI_ATTR_INITIAL_CLIENT_ROLES 9-20

9.4.1.6 OCI_ATTR_CLIENT_IDENTIFIER 9-21

9.4.1.7 OCI_ATTR_PASSWORD 9-22

9.5 Externally Initialized Context in OCI 9-24

9.5.1 Externally Initialized Context Attributes in OCI 9-25

9.5.1.1 OCI_ATTR_APPCTX_SIZE 9-26

9.5.1.2 OCI_ATTR_APPCTX_LIST 9-26

9.5.1.3 Session Handle Attributes Used to Set an Externally Initialized Context 9-26

9.5.2 End-to-End Application Tracing 9-27

9.5.2.1 OCI_ATTR_COLLECT_CALL_TIME 9-28

9.5.2.2 OCI_ATTR_CALL_TIME 9-28

9.5.2.3 Attributes for End-to-End Application Tracing 9-28

9.5.3 Using OCISessionBegin() with an Externally Initialized Context 9-29

9.6 Client Application Context 9-31

9.6.1 Using Multiple SET Operations 9-32

9.6.2 Using CLEAR-ALL Operations Between SET Operations 9-33

9.6.3 Network Transport and PL/SQL on Client Namespace 9-33

9.7 Using Edition-Based Redefinition 9-34

9.8 OCI Security Enhancements 9-35

9.8.1 Controlling the Database Version Banner Displayed 9-36

9.8.2 Banners for Unauthorized Access and User Actions Auditing 9-36

9.8.3 Non-Deferred Linkage 9-37

9.9 Overview of OCI Multithreaded Development 9-37

9.9.1 Advantages of OCI Thread Safety 9-38

xiii

9.9.2 OCI Thread Safety and Three-Tier Architectures 9-39

9.9.3 About Implementing Thread Safety 9-39

9.9.3.1 About Polling Mode Operations and Thread Safety 9-40

9.9.3.2 Mixing 7.x and Later Release OCI Calls 9-40

9.10 OCIThread Package 9-41

9.10.1 Initialization and Termination 9-42

9.10.1.1 OCIThread Context 9-42

9.10.2 Passive Threading Primitives 9-43

9.10.2.1 OCIThreadMutex 9-44

9.10.2.2 OCIThreadKey 9-44

9.10.2.3 OCIThreadKeyDestFunc 9-45

9.10.2.4 OCIThreadId 9-45

9.10.3 Active Threading Primitives 9-46

9.10.3.1 OCIThreadHandle 9-47

10

Session Pooling and Connection Pooling in OCI

10.1 Session Pooling in OCI 10-1

10.1.1 Functionality of OCI Session Pooling 10-2

10.1.2 Homogeneous and Heterogeneous Session Pools 10-3

10.1.3 About Using Tags in Session Pools 10-3

10.1.3.1 Multi-Property Tags 10-3

10.1.4 OCI Handles for Session Pooling 10-7

10.1.4.1 OCISPool 10-7

10.1.4.2 OCIAuthInfo 10-7

10.1.5 Using OCI Session Pooling 10-8

10.1.6 OCI Calls for Session Pooling 10-9

10.1.6.1 Allocate the Pool Handle 10-10

10.1.6.2 Create the Pool Session 10-10

10.1.6.3 Log On to the Database 10-11

10.1.6.4 Log Off from the Database 10-11

10.1.6.5 Destroy the Session Pool 10-12

10.1.6.6 Free the Pool Handle 10-12

10.1.7 Example of OCI Session Pooling 10-13

10.2 Database Resident Connection Pooling 10-13

10.3 About Using Oracle Connection Manager in Traffic Director Mode 10-13

10.4 Connection Pooling in OCI 10-16

10.4.1 OCI Connection Pooling Concepts 10-17

10.4.1.1 Similarities and Differences from a Shared Server 10-17

10.4.1.2 Stateless Sessions Versus Stateful Sessions 10-18

10.4.1.3 Multiple Connection Pools 10-18

10.4.1.4 Transparent Application Failover 10-19

xiv

10.4.2 Using OCI Calls for Connection Pooling 10-19

10.4.2.1 Allocate the Pool Handle 10-20

10.4.2.2 Create the Connection Pool 10-20

10.4.2.3 Log On to the Database 10-22

10.4.2.4 Deal with SGA Limitations in Connection Pooling 10-23

10.4.2.5 Log Off from the Database 10-24

10.4.2.6 Destroy the Connection Pool 10-24

10.4.2.7 Free the Pool Handle 10-25

10.4.3 Examples of OCI Connection Pooling 10-25

10.5 When to Use Connection Pooling, Session Pooling, or Neither 10-25

10.5.1 Functions for Session Creation 10-26

10.5.2 About Choosing Between Different Types of OCI Sessions 10-27

11

High Availability in OCI

11.1 Runtime Connection Load Balancing 11-1

11.2 HA Event Notification 11-2

11.2.1 OCIEvent Handle 11-4

11.2.2 OCI Failover for Connection and Session Pools 11-4

11.2.3 OCI Failover for Independent Connections 11-4

11.2.4 Event Callback 11-4

11.2.5 Custom Pooling: Tagged Server Handles 11-5

11.2.6 About Determining Transparent Application Failover (TAF) Capabilities 11-7

11.3 Transparent Application Failover in OCI 11-7

11.3.1 About Configuring Transparent Application Failover 11-8

11.3.2 Transparent Application Failover Callbacks in OCI 11-9

11.3.3 Transparent Application Failover Callback Structure and Parameters 11-9

11.3.4 Failover Callback Structure and Parameters 11-10

11.3.5 Failover Callback Registration 11-11

11.3.6 Failover Callback Example 11-12

11.3.7 Handling OCI_FO_ERROR 11-13

11.3.8 TAF Support for IAM Based Token Authentication in OCI 11-15

11.3.8.1 Providing the DB Token Programmatically 11-15

11.3.8.2 Providing the DB Token in a File 11-17

11.4 OCI and Transaction Guard 11-17

11.4.1 Developing Applications that Use Transaction Guard 11-18

11.4.1.1 Typical Transaction Guard Usage 11-19

11.4.1.2 Transaction Guard Examples 11-19

11.5 OCI and Application Continuity 11-25

11.5.1 About Added Support for Application Continuity 11-26

11.5.2 What Happens Following a Recoverable Error 11-26

11.5.3 Criteria for Successful Replay 11-26

xv

11.5.4 What Factors Disable Application Continuity in OCI 11-27

11.5.5 Failed Replay 11-27

11.5.6 When Is Application Continuity Most Effective 11-28

11.5.6.1 Application Continuity in OCI Does Not Support These Constructs 11-28

11.5.6.2 Possible Side Effects of Application Continuity 11-29

11.5.7 When Application Continuity in OCI Can Fail Over 11-29

11.6 Support for Transparent Application Continuity 11-30

11.6.1 Service Attributes and Supported Values 11-31

12

Notification Methods and Database Advanced Queuing

12.1 About Continuous Query Notification 12-1

12.2 Publish-Subscribe Notification in OCI 12-2

12.2.1 Publish-Subscribe Registration Functions in OCI 12-4

12.2.1.1 Publish-Subscribe Register Directly to the Database 12-5

12.2.1.2 Open Registration for Publish-Subscribe 12-8

12.2.1.3 Using OCI to Open Register with LDAP 12-9

12.2.1.4 Setting QOS, Timeout Interval, Namespace, Client Address, and Port
Number 12-10

12.2.1.5 OCI Functions Used to Manage Publish-Subscribe Notification 12-11

12.2.2 Notification Callback in OCI 12-12

12.2.3 Notification Procedure 12-15

12.2.4 Publish-Subscribe Direct Registration Example 12-15

12.2.5 Publish-Subscribe LDAP Registration Example 12-20

12.3 OCI and Database Advanced Queuing 12-22

12.3.1 OCI Database Advanced Queuing Functions 12-23

12.3.2 OCI Database Advanced Queuing Descriptors 12-24

12.3.3 Database Advanced Queuing in OCI Versus PL/SQL 12-24

12.3.4 Using Buffered Messaging 12-29

13

User-Defined Callback Functions in OCI

13.1 About Registering User Callbacks in OCI 13-2

13.1.1 OCIUserCallbackRegister 13-3

13.1.2 User Callback Function 13-4

13.1.3 User Callback Control Flow 13-5

13.1.4 User Callback for OCIErrorGet() 13-6

13.1.5 Errors from Entry Callbacks 13-6

13.1.6 Dynamic Callback Registrations 13-7

13.1.7 About Loading Multiple Packages 13-7

13.1.8 Package Format 13-8

13.1.9 User Callback Chaining 13-8

xvi

13.1.10 About Accessing Other Data Sources Through OCI 13-9

13.1.11 Restrictions on Callback Functions 13-9

13.1.12 Example of OCI Callbacks 13-10

13.2 OCI Callbacks from External Procedures 13-12

14

Performance Topics

14.1 Statement Caching in OCI 14-1

14.1.1 Statement Caching Without Session Pooling in OCI 14-2

14.1.2 Statement Caching with Session Pooling in OCI 14-3

14.1.3 Rules for Statement Caching in OCI 14-4

14.1.4 Bind and Define Optimization in Statement Caching 14-5

14.1.5 OCI Statement Caching Code Example 14-6

14.2 Implicit Fetching of ROWIDs 14-6

14.2.1 About Implicit Fetching of ROWIDs 14-7

14.2.2 Example of Implicit Fetching of ROWIDs 14-8

14.3 OCI Support for Implicit Results 14-9

14.4 Client Result Cache 14-12

14.5 Client Statement Cache Auto-Tuning 14-12

14.5.1 About Auto-Tuning Client Statement Cache 14-13

14.5.2 Benefit of Auto-Tuning Client Statement Cache 14-13

14.5.3 Client Statement Cache Auto-Tuning Parameters 14-14

14.5.3.1 <statement_cache> 14-14

14.5.3.2 <auto_tune> 14-15

14.5.3.3 Comparison of the Connection Specific Auto-Tuning Parameters 14-17

14.5.4 Usage Examples of Client Statement Cache Auto Tuning 14-18

14.5.5 Enabling and Disabling OCI Client Auto-Tuning 14-19

14.5.6 Usage Guidelines for Auto-Tuning Client Statement Cache 14-19

15

Database Startup and Shutdown

15.1 About OCI Database Startup and Shutdown 15-1

15.2 Examples of Startup and Shutdown in OCI 15-2

16

Support for Pluggable Databases

16.1 Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in
General 16-2

16.2 OCI Enhancements for ALTER SESSION SET CONTAINER 16-2

16.3 Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in
General 16-2

16.4 Restrictions on OCI Calls with ALTER SESSION SET CONTAINER 16-3

xvii

16.5 Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE 16-5

17

OCI Interface for Using Shards

17.1 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from an OCI Session Pool 17-5

17.2 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from a Custom Pool 17-6

18

OCI Object-Relational Programming

18.1 OCI Object Overview 18-1

18.2 About Working with Objects in OCI 18-3

18.2.1 Basic Object Program Structure 18-3

18.2.2 Persistent Objects, Transient Objects, and Values 18-4

18.2.2.1 Persistent Objects 18-5

18.2.2.2 Transient Objects 18-6

18.2.2.3 Values 18-6

18.3 About Developing an OCI Object Application 18-6

18.3.1 About Representing Objects in C Applications 18-9

18.3.2 About Initializing the Environment and the Object Cache 18-10

18.3.3 About Making Database Connections 18-11

18.3.4 Retrieving an Object Reference from the Server 18-11

18.3.5 Pinning an Object 18-12

18.3.5.1 Array Pin 18-14

18.3.6 Manipulating Object Attributes 18-14

18.3.7 About Marking Objects and Flushing Changes 18-15

18.3.8 Fetching Embedded Objects 18-16

18.3.9 Object Meta-Attributes 18-18

18.3.9.1 Persistent Object Meta-Attributes 18-18

18.3.9.2 Additional Attribute Functions 18-21

18.3.9.3 Transient Object Meta-Attributes 18-21

18.3.10 Complex Object Retrieval 18-21

18.3.10.1 About Prefetching Objects 18-23

18.3.10.2 About Implementing Complex Object Retrieval in OCI 18-24

18.3.11 COR Prefetching 18-25

18.3.11.1 COR Interface 18-25

18.3.11.2 Example of COR 18-26

18.3.12 OCI Versus SQL Access to Objects 18-28

18.3.13 Pin Count and Unpinning 18-29

18.3.14 NULL Indicator Structure 18-29

18.3.15 About Creating Objects 18-32

xviii

18.3.15.1 Attribute Values of New Objects 18-32

18.3.16 About Freeing and Copying Objects 18-34

18.3.17 Object Reference and Type Reference 18-34

18.3.18 Create Objects Based on Object Views and Object Tables with Primary-Key-
Based OIDs 18-35

18.3.19 Error Handling in Object Applications 18-36

18.4 About Type Inheritance 18-36

18.4.1 Substitutability 18-38

18.4.2 NOT INSTANTIABLE Types and Methods 18-38

18.4.3 OCI Support for Type Inheritance 18-39

18.4.3.1 OCIDescribeAny() 18-39

18.4.3.2 Bind and Define Functions 18-40

18.4.3.3 OCIObjectGetTypeRef() 18-40

18.4.3.4 OCIObjectCopy() 18-41

18.4.3.5 OCICollAssignElem() 18-41

18.4.3.6 OCICollAppend() 18-41

18.4.3.7 OCICollGetElem() 18-41

18.4.4 OTT Support for Type Inheritance 18-42

18.5 About Type Evolution 18-42

19

Object-Relational Data Types in OCI

19.1 Overview of OCI Functions for Objects 19-2

19.2 About Mapping Oracle Data Types to C 19-3

19.2.1 OCI Type Mapping Methodology 19-4

19.3 About Manipulating C Data Types with OCI 19-5

19.3.1 Precision of Oracle Number Operations 19-6

19.4 Date (OCIDate) 19-6

19.4.1 Date Example 19-7

19.5 Datetime and Interval (OCIDateTime, OCIInterval) 19-8

19.5.1 About Datetime Functions 19-9

19.5.2 Datetime Example 19-11

19.5.3 About Interval Functions 19-12

19.6 Number (OCINumber) 19-13

19.6.1 OCINumber Examples 19-13

19.7 Fixed or Variable-Length String (OCIString) 19-15

19.7.1 About String Functions 19-16

19.7.2 String Example 19-16

19.8 Raw (OCIRaw) 19-17

19.8.1 About Raw Functions 19-18

19.8.2 Raw Example 19-18

19.9 Collections (OCITable, OCIArray, OCIColl, OCIIter) 19-19

xix

19.9.1 Generic Collection Functions 19-20

19.9.2 About Collection Data Manipulation Functions 19-20

19.9.3 About Collection Scanning Functions 19-21

19.9.4 Varray/Collection Iterator Example 19-21

19.9.5 About Nested Table Manipulation Functions 19-22

19.9.5.1 Nested Table Element Ordering 19-23

19.9.6 Nested Table Locators 19-23

19.10 About Multilevel Collection Types 19-24

19.10.1 Multilevel Collection Type Example 19-25

19.11 REF (OCIRef) 19-25

19.11.1 About REF Manipulation Functions 19-26

19.11.2 REF Example 19-26

19.12 Object Type Information Storage and Access 19-27

19.12.1 Descriptor Objects 19-27

19.13 AnyType, AnyData, and AnyDataSet Interfaces 19-28

19.13.1 About Type Interfaces 19-29

19.13.1.1 About Creating a Parameter Descriptor for OCIType Calls 19-31

19.13.1.2 About Obtaining the OCIType for Persistent Types 19-32

19.13.1.3 Type Access Calls 19-32

19.13.1.4 Extensions to OCIDescribeAny() 19-33

19.13.2 About OCIAnyData Interfaces 19-33

19.13.3 NCHAR Typecodes for OCIAnyData Functions 19-34

19.13.4 About OCIAnyDataSet Interfaces 19-35

19.14 About Binding Named Data Types 19-35

19.14.1 Named Data Type Binds 19-36

19.14.2 About Binding REFs 19-37

19.14.3 Information for Named Data Type and REF Binds 19-37

19.14.4 Information Regarding Array Binds 19-38

19.15 About Defining Named Data Types 19-38

19.15.1 About Defining Named Data Type Output Variables 19-39

19.15.2 About Defining REF Output Variables 19-39

19.15.3 Information for Named Data Type and REF Defines, and PL/SQL OUT Binds 19-40

19.15.3.1 Information About Array Defines 19-41

19.16 About Binding and Defining Oracle C Data Types 19-42

19.16.1 Bind and Define Examples 19-43

19.16.2 Salary Update Examples 19-45

19.16.2.1 Method 1 - Fetch, Convert, Assign 19-46

19.16.2.2 Method 2 - Fetch and Assign 19-46

19.16.2.3 Method 3 - Direct Fetch 19-47

19.16.2.4 Summary and Notes 19-47

19.17 SQLT_NTY Bind and Define Examples 19-48

19.17.1 SQLT_NTY Bind Example 19-48

xx

19.17.2 SQLT_NTY Define Example 19-49

20

Direct Path Load Interface

20.1 Direct Path Loading Overview 20-1

20.1.1 Data Types Supported for Direct Path Loading 20-3

20.1.2 Direct Path Handles 20-4

20.1.2.1 Direct Path Context 20-5

20.1.2.2 OCI Direct Path Function Context 20-6

20.1.2.3 Direct Path Column Array and Direct Path Function Column Array 20-7

20.1.2.4 Direct Path Stream 20-7

20.1.3 About Direct Path Interface Functions 20-8

20.1.4 Limitations and Restrictions of the Direct Path Load Interface 20-9

20.1.5 Direct Path Load Examples for Scalar Columns 20-10

20.1.5.1 Data Structures Used in Direct Path Loading Example 20-10

20.1.5.2 Outline of an Example of a Direct Path Load for Scalar Columns 20-12

20.1.6 About Using a Date Cache in Direct Path Loading of Dates in OCI 20-15

20.1.6.1 OCI_ATTR_DIRPATH_DCACHE_SIZE 20-16

20.1.6.2 OCI_ATTR_DIRPATH_DCACHE_NUM 20-16

20.1.6.3 OCI_ATTR_DIRPATH_DCACHE_MISSES 20-16

20.1.6.4 OCI_ATTR_DIRPATH_DCACHE_HITS 20-16

20.1.6.5 OCI_ATTR_DIRPATH_DCACHE_DISABLE 20-16

20.1.7 About Validating Format for Oracle NUMBER and DATE Data 20-17

20.2 Direct Path Loading of Object Types 20-17

20.2.1 Direct Path Loading of Nested Tables 20-18

20.2.1.1 Describing a Nested Table Column and Its Nested Table 20-19

20.2.2 Direct Path Loading of Column Objects 20-19

20.2.2.1 Describing a Column Object 20-20

20.2.2.2 Allocating the Array Column for the Column Object 20-21

20.2.2.3 Loading Column Object Data into the Column Array 20-22

20.2.2.4 OCI_DIRPATH_COL_ERROR 20-22

20.2.3 Direct Path Loading of SQL String Columns 20-23

20.2.3.1 Describing a SQL String Column 20-24

20.2.3.2 Allocating the Column Array for SQL String Columns 20-25

20.2.3.3 Loading the SQL String Data into the Column Array 20-25

20.2.4 Direct Path Loading of REF Columns 20-26

20.2.4.1 Describing the REF Column 20-26

20.2.4.2 Allocating the Column Array for a REF Column 20-29

20.2.4.3 Loading the REF Data into the Column Array 20-29

20.2.5 Direct Path Loading of NOT FINAL Object and REF Columns 20-30

20.2.5.1 Inheritance Hierarchy 20-30

20.2.5.2 About Describing a Fixed, Derived Type to Be Loaded 20-31

xxi

20.2.5.3 About Allocating the Column Array 20-32

20.2.5.4 About Loading the Data into the Column Array 20-32

20.2.6 Direct Path Loading of Object Tables 20-32

20.2.7 Direct Path Loading a NOT FINAL Object Table 20-33

20.3 Direct Path Loading in Pieces 20-34

20.3.1 Loading Object Types in Pieces 20-35

20.4 Direct Path Context Handles and Attributes for Object Types 20-35

20.4.1 Direct Path Context Attributes 20-36

20.4.1.1 OCI_ATTR_DIRPATH_OBJ_CONSTR 20-36

20.4.2 Direct Path Function Context and Attributes 20-36

20.4.2.1 OCI_ATTR_DIRPATH_OBJ_CONSTR 20-37

20.4.2.2 OCI_ATTR_NAME 20-37

20.4.2.3 OCI_ATTR_DIRPATH_EXPR_TYPE 20-38

20.4.2.4 OCI_ATTR_DIRPATH_NO_INDEX_ERRORS 20-39

20.4.2.5 OCI_ATTR_NUM_COLS 20-39

20.4.2.6 OCI_ATTR_NUM_ROWS 20-40

20.4.3 Direct Path Column Parameter Attributes 20-41

20.4.3.1 OCI_ATTR_NAME 20-42

20.4.3.2 OCI_ATTR_DIRPATH_SID 20-43

20.4.3.3 OCI_ATTR_DIRPATH_OID 20-43

20.4.4 Direct Path Function Column Array Handle for Nonscalar Columns 20-44

20.4.4.1 OCI_ATTR_NUM_ROWS Attribute 20-44

21

Object Advanced Topics in OCI

21.1 Object Cache and Memory Management 21-1

21.1.1 Cache Consistency and Coherency 21-4

21.1.2 Object Cache Parameters 21-5

21.1.3 Object Cache Operations 21-6

21.1.3.1 About Pinning and Unpinning 21-6

21.1.3.2 About Freeing 21-7

21.1.3.3 About Marking and Unmarking 21-7

21.1.3.4 About Flushing 21-7

21.1.3.5 About Refreshing 21-7

21.1.4 About Loading and Removing Object Copies 21-7

21.1.4.1 About Pinning an Object Copy 21-8

21.1.4.2 About Unpinning an Object Copy 21-9

21.1.4.3 About Freeing an Object Copy 21-10

21.1.5 About Making Changes to Object Copies 21-10

21.1.5.1 About Marking an Object Copy 21-11

21.1.5.2 About Unmarking an Object Copy 21-11

21.1.6 About Synchronizing Object Copies with the Server 21-12

xxii

21.1.6.1 About Flushing Changes to the Server 21-12

21.1.6.2 About Refreshing an Object Copy 21-13

21.1.7 Object Locking 21-14

21.1.7.1 Lock Options 21-14

21.1.7.2 About Locking Objects for Update 21-15

21.1.7.3 About Locking with the NOWAIT Option 21-15

21.1.7.4 About Implementing Optimistic Locking 21-15

21.1.8 Commit and Rollback in Object Applications 21-16

21.1.9 Object Duration 21-17

21.1.9.1 Durations Example 21-17

21.1.10 Memory Layout of an Instance 21-19

21.2 Object Navigation 21-19

21.2.1 Simple Object Navigation 21-19

21.3 OCI Navigational Functions 21-22

21.3.1 About Pin/Unpin/Free Functions 21-23

21.3.2 About Flush and Refresh Functions 21-23

21.3.3 About Mark and Unmark Functions 21-24

21.3.4 About Object Meta-Attribute Accessor Functions 21-24

21.3.5 About Other Functions 21-24

21.4 Type Evolution and the Object Cache 21-25

22

OCI Pipelining

22.1 Blocking and Non-Blocking Concepts 22-2

22.2 Introduction to OCI Pipelining 22-3

22.2.1 Enabling OCI Pipelining 22-5

22.3 Modes of Pipeline Operation 22-6

22.4 OCIPipelineOperation 22-7

22.5 The Life Cycle of the OCI Pipeline Handle 22-7

22.5.1 Status of the Pipeline Operation 22-7

22.6 OCI Pipeline Attributes 22-8

22.7 OCI Functions that Support Pipelining 22-9

22.8 When to Use Pipelining Functionality 22-11

23

OCI Support for JSON

23.1 JSON Data Type Support 23-1

23.1.1 OCI Representation for JSON 23-2

23.2 Compatibility with Client Libraries Prior to Release 21c 23-3

23.3 Mutable and Immutable DOM 23-5

23.3.1 Manifesting JSON as a Mutable DOM 23-6

23.3.2 Manifesting JSON as an Immutable DOM 23-6

xxiii

23.4 Calling Sequence for Writing and Reading JSON Data 23-7

23.5 JSON DOM Operations 23-7

23.5.1 Scalar Types Mapping 23-8

23.5.2 Reading JSON DOM Scalar Nodes 23-9

23.5.3 Building a JSON DOM 23-11

23.5.3.1 JSON Scalar Types and Scalar Constructors 23-12

23.5.3.2 Building a DOM Using Scalar Nodes 23-13

23.6 Multithreading Using JSON Descriptor 23-18

23.7 Handling Character Sets 23-18

23.8 OCI Interface for Schema Validation 23-19

23.9 Attribute to Check if Column has JSON Schema Constraint 23-20

24

OCI Support for XML

24.1 XML Context 24-2

24.2 XML Data on the Server 24-2

24.3 Using OCI XML DB Functions 24-2

24.4 OCI Client Access to Binary XML 24-3

24.4.1 Accessing XML Data from an OCI Application 24-4

24.4.2 Repository Context 24-5

24.4.3 Create Repository Context from a Dedicated OCI Connection 24-5

24.4.4 Create Repository Context from a Connection Pool 24-5

24.4.5 About Associating Repository Context with a Data Connection 24-6

24.4.6 About Setting XMLType Encoding Format Preference 24-6

24.4.7 Example of Using a Connection Pool 24-6

25

Using the Object Type Translator with OCI

25.1 What Is the Object Type Translator? 25-1

25.1.1 About Creating Types in the Database 25-4

25.1.2 About Invoking OTT 25-4

25.1.2.1 Command Line 25-5

25.1.2.2 Configuration File 25-5

25.1.2.3 INTYPE File 25-5

25.2 OTT Command Line 25-5

25.2.1 OTT Command-Line Invocation Example 25-6

25.2.1.1 OTT 25-7

25.2.1.2 USERID 25-7

25.2.1.3 INTYPE 25-7

25.2.1.4 OUTTYPE 25-7

25.2.1.5 CODE 25-7

25.2.1.6 HFILE 25-8

xxiv

25.2.1.7 INITFILE 25-8

25.3 Intype File 25-8

25.4 OTT Data Type Mappings 25-10

25.4.1 About Mapping Object Data Types to C 25-11

25.4.2 OTT Type Mapping Example 25-13

25.4.3 Null Indicator Structs 25-15

25.4.4 OTT Support for Type Inheritance 25-16

25.4.4.1 Substitutable Object Attributes 25-18

25.5 Outtype File 25-19

25.6 About Using OTT with OCI Applications 25-20

25.6.1 About Accessing and Manipulating Objects with OCI 25-21

25.6.2 Calling the Initialization Function 25-22

25.6.3 Tasks of the Initialization Function 25-24

25.7 OTT Reference 25-24

25.7.1 OTT Command-Line Syntax 25-25

25.7.2 OTT Parameters 25-26

25.7.2.1 USERID 25-28

25.7.2.2 INTYPE 25-28

25.7.2.3 OUTTYPE 25-29

25.7.2.4 CODE 25-29

25.7.2.5 INITFILE 25-29

25.7.2.6 INITFUNC 25-30

25.7.2.7 HFILE 25-30

25.7.2.8 CONFIG 25-30

25.7.2.9 ERRTYPE 25-30

25.7.2.10 CASE 25-31

25.7.2.11 SCHEMA_NAMES 25-31

25.7.2.12 TRANSITIVE 25-32

25.7.2.13 URL 25-32

25.7.3 Where OTT Parameters Can Appear 25-32

25.7.4 Structure of the Intype File 25-33

25.7.4.1 Intype File Type Specifications 25-33

25.7.5 Nested Included File Generation 25-34

25.7.6 SCHEMA_NAMES Usage 25-36

25.7.6.1 Example: Schema_Names Usage 25-37

25.7.7 Default Name Mapping 25-38

25.7.8 OTT Restriction on File Name Comparison 25-39

25.7.9 OTT Command on Microsoft Windows 25-39

xxv

26

Oracle Database Access C API

26.1 Introduction to the Relational Functions 26-1

26.1.1 Conventions for OCI Functions 26-2

26.1.2 Purpose 26-2

26.1.3 Syntax 26-2

26.1.4 Parameters 26-2

26.1.5 Comments 26-3

26.1.6 Returns 26-3

26.1.7 Example 26-3

26.1.8 Related Functions 26-3

26.1.9 About Calling OCI Functions 26-3

26.1.10 Server Round-Trips for LOB Functions 26-3

26.2 OCI Pipelining Functions 26-4

26.2.1 OCIPipelineBegin() 26-4

26.2.1.1 Callback and Context 26-5

26.2.2 OCIPipelineProcess() 26-6

26.2.3 OCIPipelineEnd() 26-7

26.3 Connect, Authorize, and Initialize Functions 26-8

26.3.1 OCIAppCtxClearAll() 26-10

26.3.2 OCIAppCtxSet() 26-11

26.3.3 OCIConnectionPoolCreate() 26-12

26.3.4 OCIConnectionPoolDestroy() 26-14

26.3.5 OCIDBShutdown() 26-15

26.3.6 OCIDBStartup() 26-16

26.3.7 OCIEnvCreate() 26-18

26.3.8 OCIEnvNlsCreate() 26-21

26.3.9 OCIInputValidate() 26-26

26.3.10 OCILogoff() 26-27

26.3.11 OCILogon() 26-28

26.3.12 OCILogon2() 26-29

26.3.13 OCIDdlEventRegister() 26-32

26.3.14 OCIDdlEventUnregister() 26-34

26.3.15 OCIRequestBegin() 26-35

26.3.16 OCIRequestEnd() 26-37

26.3.17 OCIRequestDisableReplay() 26-38

26.3.18 OCIServerAttach() 26-38

26.3.19 OCIServerDetach() 26-40

26.3.20 OCISessionBegin() 26-41

26.3.21 OCISessionEnd() 26-45

26.3.22 OCISessionGet() 26-46

26.3.23 OCISessionPoolCreate() 26-52

xxvi

26.3.24 OCISessionPoolDestroy() 26-56

26.3.25 OCISessionRelease() 26-57

26.3.26 OCITerminate() 26-58

26.4 Handle and Descriptor Functions 26-59

26.4.1 OCIArrayDescriptorAlloc() 26-60

26.4.2 OCIArrayDescriptorFree() 26-61

26.4.3 OCIAttrGet() 26-62

26.4.4 OCIAttrSet() 26-64

26.4.5 OCIDescriptorAlloc() 26-65

26.4.6 OCIDescriptorFree() 26-66

26.4.7 OCIHandleAlloc() 26-67

26.4.8 OCIHandleFree() 26-68

26.4.9 OCIParamGet() 26-69

26.4.10 OCIParamSet() 26-70

26.5 Bind, Define, and Describe Functions 26-71

26.5.1 OCIBindArrayOfStruct() 26-73

26.5.2 OCIBindByName() 26-74

26.5.3 OCIBindByName2() 26-80

26.5.4 OCIBindByPos() 26-85

26.5.5 OCIBindByPos2() 26-90

26.5.6 OCIBindDynamic() 26-95

26.5.7 OCIBindObject() 26-98

26.5.8 OCIDefineArrayOfStruct() 26-101

26.5.9 OCIDefineByPos() 26-102

26.5.10 OCIDefineByPos2() 26-107

26.5.11 OCIDefineDynamic() 26-111

26.5.12 OCIDefineObject() 26-114

26.5.13 OCIDescribeAny() 26-115

26.5.14 OCIStmtGetBindInfo() 26-118

26.5.15 OCIServerDataLengthGet() 26-120

27

More Oracle Database Access C API

27.1 Introduction to the Relational Functions 27-2

27.1.1 Conventions for OCI Functions 27-2

27.2 Statement Functions 27-2

27.2.1 OCIStmtExecute() 27-3

27.2.2 OCIStmtFetch2() 27-6

27.2.3 OCIStmtGetNextResult() 27-8

27.2.4 OCIStmtGetPieceInfo() 27-9

27.2.5 OCIStmtPlaceholderSubstitute() 27-10

27.2.6 OCIStmtPrepare2() 27-13

xxvii

27.2.7 OCIStmtRelease() 27-15

27.2.8 OCIStmtSetPieceInfo() 27-15

27.3 LOB Functions 27-17

27.3.1 OCIDurationBegin() 27-21

27.3.2 OCIDurationEnd() 27-22

27.3.3 OCILobAppend() 27-23

27.3.4 OCILobArrayRead() 27-24

27.3.5 OCILobArrayWrite() 27-28

27.3.6 OCILobAssign() 27-32

27.3.7 OCILobCharSetForm() 27-34

27.3.8 OCILobCharSetId() 27-35

27.3.9 OCILobClose() 27-36

27.3.10 OCILobCopy2() 27-37

27.3.11 OCILobCreateTemporary() 27-39

27.3.12 OCILobErase2() 27-40

27.3.13 OCILobFileClose() 27-42

27.3.14 OCILobFileCloseAll() 27-43

27.3.15 OCILobFileExists() 27-44

27.3.16 OCILobFileGetName() 27-45

27.3.17 OCILobFileIsOpen() 27-46

27.3.18 OCILobFileOpen() 27-47

27.3.19 OCILobFileSetName() 27-49

27.3.20 OCILobFreeTemporary() 27-50

27.3.21 OCILobGetChunkSize() 27-51

27.3.22 OCILobGetContentType() 27-52

27.3.23 OCILobGetLength2() 27-53

27.3.24 OCILobGetOptions() 27-55

27.3.25 OCILobGetStorageLimit() 27-56

27.3.26 OCILobIsEqual() 27-57

27.3.27 OCILobIsOpen() 27-58

27.3.28 OCILobIsTemporary() 27-59

27.3.29 OCILobLoadFromFile2() 27-60

27.3.30 OCILobLocatorAssign() 27-61

27.3.31 OCILobLocatorIsInit() 27-63

27.3.32 OCILobOpen() 27-64

27.3.33 OCILobRead2() 27-66

27.3.34 OCILobSetContentType() 27-70

27.3.35 OCILobSetOptions() 27-71

27.3.36 OCILobTrim2() 27-72

27.3.37 OCILobWrite2() 27-74

27.3.38 OCILobWriteAppend2() 27-78

27.4 Database Advanced Queuing and Publish-Subscribe Functions 27-81

xxviii

27.4.1 OCIAQDeq() 27-82

27.4.2 OCIAQDeqArray() 27-84

27.4.3 OCIAQEnq() 27-86

27.4.4 OCIAQEnqArray() 27-88

27.4.5 OCIAQListen2() 27-90

27.4.6 OCISubscriptionDisable() 27-91

27.4.7 OCISubscriptionEnable() 27-92

27.4.8 OCISubscriptionPost() 27-93

27.4.9 OCISubscriptionRegister() 27-95

27.4.10 OCISubscriptionUnRegister() 27-97

27.5 Direct Path Loading Functions 27-98

27.5.1 OCIDirPathAbort() 27-99

27.5.2 OCIDirPathColArrayEntryGet() 27-100

27.5.3 OCIDirPathColArrayEntrySet() 27-101

27.5.4 OCIDirPathColArrayReset() 27-103

27.5.5 OCIDirPathColArrayRowGet() 27-103

27.5.6 OCIDirPathColArrayToStream() 27-104

27.5.7 OCIDirPathDataSave() 27-106

27.5.8 OCIDirPathFinish() 27-107

27.5.9 OCIDirPathFlushRow() 27-108

27.5.10 OCIDirPathLoadStream() 27-109

27.5.11 OCIDirPathPrepare() 27-110

27.5.12 OCIDirPathStreamReset() 27-111

27.6 Thread Management Functions 27-112

27.6.1 OCIThreadClose() 27-114

27.6.2 OCIThreadCreate() 27-114

27.6.3 OCIThreadHandleGet() 27-116

27.6.4 OCIThreadHndDestroy() 27-116

27.6.5 OCIThreadHndInit() 27-117

27.6.6 OCIThreadIdDestroy() 27-118

27.6.7 OCIThreadIdGet() 27-119

27.6.8 OCIThreadIdInit() 27-120

27.6.9 OCIThreadIdNull() 27-121

27.6.10 OCIThreadIdSame() 27-122

27.6.11 OCIThreadIdSet() 27-123

27.6.12 OCIThreadIdSetNull() 27-124

27.6.13 OCIThreadInit() 27-124

27.6.14 OCIThreadIsMulti() 27-125

27.6.15 OCIThreadJoin() 27-126

27.6.16 OCIThreadKeyDestroy() 27-127

27.6.17 OCIThreadKeyGet() 27-127

27.6.18 OCIThreadKeyInit() 27-128

xxix

27.6.19 OCIThreadKeySet() 27-129

27.6.20 OCIThreadMutexAcquire() 27-130

27.6.21 OCIThreadMutexDestroy() 27-131

27.6.22 OCIThreadMutexInit() 27-132

27.6.23 OCIThreadMutexRelease() 27-133

27.6.24 OCIThreadProcessInit() 27-133

27.6.25 OCIThreadTerm() 27-134

27.7 Transaction Functions 27-135

27.7.1 OCITransStart() 27-136

27.7.2 OCITransDetach() 27-142

27.7.3 OCITransCommit() 27-144

27.7.4 OCITransRollback() 27-146

27.7.5 OCITransForget() 27-147

27.7.6 OCITransMultiPrepare() 27-148

27.7.7 OCITransPrepare() 27-149

27.8 Sharding Functions 27-150

27.8.1 OCIShardingKeyColumnAdd() 27-150

27.8.2 OCIShardingKeyReset() 27-152

27.8.3 OCIShardInstancesGet() 27-153

27.9 Miscellaneous Functions 27-155

27.9.1 OCITraceEventSet() 27-157

27.9.2 OCITraceEventReset() 27-158

27.9.3 OCITraceWriteMessage() 27-158

27.9.4 OCIBreak() 27-159

27.9.5 OCIClientVersion() 27-160

27.9.6 OCIErrorGet() 27-161

27.9.7 OCILdaToSvcCtx() 27-165

27.9.8 OCIPasswordChange() 27-166

27.9.9 OCIPing() 27-169

27.9.10 OCIReset() 27-170

27.9.11 OCIRowidToChar() 27-170

27.9.12 OCIServerRelease() 27-171

27.9.13 OCIServerRelease2() 27-172

27.9.14 OCIServerVersion() 27-174

27.9.15 OCISvcCtxToLda() 27-175

27.9.16 OCIUserCallbackGet() 27-176

27.9.17 OCIUserCallbackRegister() 27-177

28

OCI Navigational and Type Functions

28.1 Introduction to the Navigational and Type Functions 28-2

28.1.1 Object Types and Lifetimes 28-2

xxx

28.1.2 Terminology 28-3

28.1.3 Conventions for OCI Functions 28-4

28.1.4 Return Values 28-4

28.1.5 Navigational Function Return Values 28-4

28.1.6 Server Round-Trips for Cache and Object Functions 28-5

28.1.7 Navigational Function Error Codes 28-5

28.2 OCI Flush or Refresh Functions 28-6

28.2.1 OCICacheFlush() 28-7

28.2.2 OCICacheRefresh() 28-9

28.2.3 OCIObjectFlush() 28-10

28.2.4 OCIObjectRefresh() 28-11

28.3 OCI Mark or Unmark Object and Cache Functions 28-13

28.3.1 OCICacheUnmark() 28-14

28.3.2 OCIObjectMarkDelete() 28-15

28.3.3 OCIObjectMarkDeleteByRef() 28-16

28.3.4 OCIObjectMarkUpdate() 28-17

28.3.5 OCIObjectUnmark() 28-18

28.3.6 OCIObjectUnmarkByRef() 28-19

28.4 OCI Get Object Status Functions 28-20

28.4.1 OCIObjectExists() 28-21

28.4.2 OCIObjectGetProperty() 28-22

28.4.3 OCIObjectIsDirty() 28-25

28.4.4 OCIObjectIsLocked() 28-26

28.5 OCI Miscellaneous Object Functions 28-27

28.5.1 OCIObjectCopy() 28-28

28.5.2 OCIObjectGetAttr() 28-30

28.5.3 OCIObjectGetInd() 28-32

28.5.4 OCIObjectGetObjectRef() 28-33

28.5.5 OCIObjectGetTypeRef() 28-34

28.5.6 OCIObjectLock() 28-35

28.5.7 OCIObjectLockNoWait() 28-36

28.5.8 OCIObjectNew() 28-37

28.5.9 OCIObjectSetAttr() 28-41

28.6 OCI Pin, Unpin, and Free Functions 28-42

28.6.1 OCICacheFree() 28-43

28.6.2 OCICacheUnpin() 28-44

28.6.3 OCIObjectArrayPin() 28-45

28.6.4 OCIObjectFree() 28-47

28.6.5 OCIObjectPin() 28-48

28.6.6 OCIObjectPinCountReset() 28-51

28.6.7 OCIObjectPinTable() 28-52

28.6.8 OCIObjectUnpin() 28-54

xxxi

28.7 OCI Type Information Accessor Functions 28-55

28.7.1 OCITypeArrayByName() 28-56

28.7.2 OCITypeArrayByFullName() 28-58

28.7.3 OCITypeArrayByRef() 28-61

28.7.4 OCITypeByFullName() 28-62

28.7.5 OCITypeByName() 28-65

28.7.6 OCITypeByRef() 28-68

28.7.7 OCITypePackage() 28-69

29

OCI Data Type Mapping and Manipulation Functions

29.1 Introduction to Data Type Mapping and Manipulation Functions 29-2

29.1.1 Conventions for OCI Functions 29-2

29.1.2 Returns 29-2

29.1.3 Data Type Mapping and Manipulation Function Return Values 29-2

29.1.4 Functions Returning Other Values 29-3

29.1.5 Server Round-Trips for Data Type Mapping and Manipulation Functions 29-3

29.1.6 Examples 29-3

29.2 OCI Collection and Iterator Functions 29-4

29.2.1 OCICollAppend() 29-5

29.2.2 OCICollAssign() 29-6

29.2.3 OCICollAssignElem() 29-7

29.2.4 OCICollKeyAssignElem() 29-9

29.2.5 OCICollGetElem() 29-9

29.2.6 OCICollKeyGetElem() 29-12

29.2.7 OCICollGetElemArray() 29-13

29.2.8 OCICollIsLocator() 29-15

29.2.9 OCICollMax() 29-16

29.2.10 OCICollSize() 29-17

29.2.11 OCICollTrim() 29-18

29.2.12 OCIIterCreate() 29-19

29.2.13 OCIIterDelete() 29-20

29.2.14 OCIIterGetCurrent() 29-22

29.2.15 OCIIterKeyGetCurrent() 29-23

29.2.16 OCIIterInit() 29-24

29.2.17 OCIIterNext() 29-25

29.2.18 OCIIterPrev() 29-26

29.3 OCI Date, Datetime, and Interval Functions 29-28

29.3.1 OCIDateAddDays() 29-32

29.3.2 OCIDateAddMonths() 29-33

29.3.3 OCIDateAssign() 29-34

29.3.4 OCIDateAddDaysSeconds() 29-35

xxxii

29.3.5 OCIDateCheck() 29-35

29.3.6 OCIDateCompare() 29-36

29.3.7 OCIDateDaysBetween() 29-37

29.3.8 OCIDateDaysSecondsBetween() 29-38

29.3.9 OCIDateFromText() 29-39

29.3.10 OCIDateGetDate() 29-40

29.3.11 OCIDateGetTime() 29-41

29.3.12 OCIDateLastDay() 29-41

29.3.13 OCIDateNextDay() 29-42

29.3.14 OCIDateSetDate() 29-43

29.3.15 OCIDateSetTime() 29-44

29.3.16 OCIDateSysDate() 29-44

29.3.17 OCIDateTimeAssign() 29-45

29.3.18 OCIDateTimeCheck() 29-46

29.3.19 OCIDateTimeCompare() 29-47

29.3.20 OCIDateTimeConstruct() 29-48

29.3.21 OCIDateTimeConvert() 29-50

29.3.22 OCIDateTimeFromArray() 29-51

29.3.23 OCIDateTimeFromText() 29-52

29.3.24 OCIDateTimeGetDate() 29-53

29.3.25 OCIDateTimeGetTime() 29-54

29.3.26 OCIDateTimeGetTimeZoneName() 29-55

29.3.27 OCIDateTimeGetTimeZoneOffset() 29-56

29.3.28 OCIDateTimeIntervalAdd() 29-57

29.3.29 OCIDateTimeIntervalSub() 29-58

29.3.30 OCIDateTimeSubtract() 29-58

29.3.31 OCIDateTimeSysTimeStamp() 29-59

29.3.32 OCIDateTimeToArray() 29-60

29.3.33 OCIDateTimeToText() 29-61

29.3.34 OCIDateToText() 29-62

29.3.35 OCIDateZoneToZone() 29-64

29.3.36 OCIIntervalAdd() 29-65

29.3.37 OCIIntervalAssign() 29-66

29.3.38 OCIIntervalCheck() 29-66

29.3.39 OCIIntervalCompare() 29-68

29.3.40 OCIIntervalDivide() 29-69

29.3.41 OCIIntervalFromNumber() 29-69

29.3.42 OCIIntervalFromText() 29-70

29.3.43 OCIIntervalFromTZ() 29-71

29.3.44 OCIIntervalGetDaySecond() 29-72

29.3.45 OCIIntervalGetYearMonth() 29-73

29.3.46 OCIIntervalMultiply() 29-74

xxxiii

29.3.47 OCIIntervalSetDaySecond() 29-75

29.3.48 OCIIntervalSetYearMonth() 29-76

29.3.49 OCIIntervalSubtract() 29-77

29.3.50 OCIIntervalToNumber() 29-78

29.3.51 OCIIntervalToText() 29-78

29.4 OCI NUMBER Functions 29-80

29.4.1 OCINumberAbs() 29-83

29.4.2 OCINumberAdd() 29-84

29.4.3 OCINumberArcCos() 29-85

29.4.4 OCINumberArcSin() 29-85

29.4.5 OCINumberArcTan() 29-86

29.4.6 OCINumberArcTan2() 29-87

29.4.7 OCINumberAssign() 29-87

29.4.8 OCINumberCeil() 29-88

29.4.9 OCINumberCmp() 29-89

29.4.10 OCINumberCos() 29-90

29.4.11 OCINumberDec() 29-90

29.4.12 OCINumberDiv() 29-91

29.4.13 OCINumberExp() 29-92

29.4.14 OCINumberFloor() 29-92

29.4.15 OCINumberFromInt() 29-93

29.4.16 OCINumberFromReal() 29-94

29.4.17 OCINumberFromText() 29-95

29.4.18 OCINumberHypCos() 29-96

29.4.19 OCINumberHypSin() 29-97

29.4.20 OCINumberHypTan() 29-97

29.4.21 OCINumberInc() 29-98

29.4.22 OCINumberIntPower() 29-99

29.4.23 OCINumberIsInt() 29-100

29.4.24 OCINumberIsZero() 29-100

29.4.25 OCINumberLn() 29-101

29.4.26 OCINumberLog() 29-102

29.4.27 OCINumberMod() 29-103

29.4.28 OCINumberMul() 29-103

29.4.29 OCINumberNeg() 29-104

29.4.30 OCINumberPower() 29-105

29.4.31 OCINumberPrec() 29-106

29.4.32 OCINumberRound() 29-106

29.4.33 OCINumberSetPi() 29-107

29.4.34 OCINumberSetZero() 29-108

29.4.35 OCINumberShift() 29-108

29.4.36 OCINumberSign() 29-109

xxxiv

29.4.37 OCINumberSin() 29-110

29.4.38 OCINumberSqrt() 29-110

29.4.39 OCINumberSub() 29-111

29.4.40 OCINumberTan() 29-112

29.4.41 OCINumberToInt() 29-113

29.4.42 OCINumberToReal() 29-114

29.4.43 OCINumberToRealArray() 29-114

29.4.44 OCINumberToText() 29-115

29.4.45 OCINumberTrunc() 29-117

29.5 OCI Raw Functions 29-117

29.5.1 OCIRawAllocSize() 29-118

29.5.2 OCIRawAssignBytes() 29-119

29.5.3 OCIRawAssignRaw() 29-120

29.5.4 OCIRawPtr() 29-121

29.5.5 OCIRawResize() 29-122

29.5.6 OCIRawSize() 29-123

29.6 OCI REF Functions 29-124

29.6.1 OCIRefAssign() 29-124

29.6.2 OCIRefClear() 29-125

29.6.3 OCIRefFromHex() 29-126

29.6.4 OCIRefHexSize() 29-127

29.6.5 OCIRefIsEqual() 29-128

29.6.6 OCIRefIsNull() 29-129

29.6.7 OCIRefToHex() 29-130

29.7 OCI String Functions 29-132

29.7.1 OCIStringAllocSize() 29-132

29.7.2 OCIStringAssign() 29-133

29.7.3 OCIStringAssignText() 29-134

29.7.4 OCIStringPtr() 29-135

29.7.5 OCIStringResize() 29-136

29.7.6 OCIStringSize() 29-137

29.8 OCI Table Functions 29-138

29.8.1 OCITableDelete() 29-139

29.8.2 OCITableKeyDelete() 29-140

29.8.3 OCITableExists() 29-141

29.8.4 OCITableKeyExists() 29-142

29.8.5 OCITableFirst() 29-143

29.8.6 OCITableKeyFirst() 29-144

29.8.7 OCITableLast() 29-144

29.8.8 OCITableKeyLast() 29-146

29.8.9 OCITableNext() 29-146

29.8.10 OCITableKeyNext () 29-148

xxxv

29.8.11 OCITablePrev() 29-149

29.8.12 OCITableSize() 29-150

30

OCI Cartridge Functions

30.1 Introduction to External Procedure and Cartridge Services Functions 30-1

30.1.1 Conventions for OCI Functions 30-2

30.2 Cartridge Services — OCI External Procedures 30-2

30.2.1 OCIExtProcAllocCallMemory() 30-3

30.2.2 OCIExtProcGetEnv() 30-4

30.2.3 OCIExtProcRaiseExcp() 30-5

30.2.4 OCIExtProcRaiseExcpWithMsg() 30-6

30.3 Cartridge Services — Memory Services 30-6

30.3.1 OCIDurationBegin() 30-7

30.3.2 OCIDurationEnd() 30-8

30.3.3 OCIMemoryAlloc() 30-9

30.3.4 OCIMemoryAlloc2() 30-10

30.3.5 OCIMemoryFree() 30-11

30.3.6 OCIMemoryResize() 30-11

30.4 Cartridge Services — Maintaining Context 30-12

30.4.1 OCIContextClearValue() 30-13

30.4.2 OCIContextGenerateKey() 30-14

30.4.3 OCIContextGetValue() 30-14

30.4.4 OCIContextSetValue() 30-15

30.5 Cartridge Services — Parameter Manager Interface 30-16

30.5.1 OCIExtractFromFile() 30-17

30.5.2 OCIExtractFromList() 30-18

30.5.3 OCIExtractFromStr() 30-19

30.5.4 OCIExtractInit() 30-20

30.5.5 OCIExtractReset() 30-21

30.5.6 OCIExtractSetKey() 30-21

30.5.7 OCIExtractSetNumKeys() 30-23

30.5.8 OCIExtractTerm() 30-23

30.5.9 OCIExtractToBool() 30-24

30.5.10 OCIExtractToInt() 30-25

30.5.11 OCIExtractToList() 30-26

30.5.12 OCIExtractToOCINum() 30-26

30.5.13 OCIExtractToStr() 30-27

30.6 Cartridge Services — File I/O Interface 30-28

30.6.1 OCIFileClose() 30-29

30.6.2 OCIFileExists() 30-30

30.6.3 OCIFileFlush() 30-30

xxxvi

30.6.4 OCIFileGetLength() 30-31

30.6.5 OCIFileInit() 30-32

30.6.6 OCIFileOpen() 30-32

30.6.7 OCIFileRead() 30-34

30.6.8 OCIFileSeek() 30-35

30.6.9 OCIFileTerm() 30-36

30.6.10 OCIFileWrite() 30-36

30.7 Cartridge Services — String Formatting Interface 30-37

30.7.1 OCIFormatInit() 30-38

30.7.2 OCIFormatString() 30-38

30.7.3 OCIFormatTerm() 30-43

31

OCI Any Type and Data Functions

31.1 Introduction to Any Type and Data Interfaces 31-1

31.1.1 Conventions for OCI Functions 31-1

31.2 OCI Type Interface Functions 31-2

31.2.1 OCITypeAddAttr() 31-3

31.2.2 OCITypeBeginCreate() 31-3

31.2.3 OCITypeEndCreate() 31-5

31.2.4 OCITypeSetBuiltin() 31-5

31.2.5 OCITypeSetCollection() 31-6

31.3 OCI Any Data Interface Functions 31-7

31.3.1 OCIAnyDataAccess() 31-8

31.3.2 OCIAnyDataAttrGet() 31-9

31.3.3 OCIAnyDataAttrSet() 31-12

31.3.4 OCIAnyDataBeginCreate() 31-14

31.3.5 OCIAnyDataCollAddElem() 31-15

31.3.6 OCIAnyDataCollGetElem() 31-17

31.3.7 OCIAnyDataConvert() 31-18

31.3.8 OCIAnyDataDestroy() 31-20

31.3.9 OCIAnyDataEndCreate() 31-20

31.3.10 OCIAnyDataGetCurrAttrNum() 31-21

31.3.11 OCIAnyDataGetType() 31-22

31.3.12 OCIAnyDataIsNull() 31-22

31.3.13 OCIAnyDataTypeCodeToSqlt() 31-23

31.4 OCI Any Data Set Interface Functions 31-24

31.4.1 OCIAnyDataSetAddInstance() 31-25

31.4.2 OCIAnyDataSetBeginCreate() 31-26

31.4.3 OCIAnyDataSetDestroy() 31-27

31.4.4 OCIAnyDataSetEndCreate() 31-28

31.4.5 OCIAnyDataSetGetCount() 31-28

xxxvii

31.4.6 OCIAnyDataSetGetInstance() 31-29

31.4.7 OCIAnyDataSetGetType() 31-30

32

OCI Globalization Support Functions

32.1 Introduction to Globalization Support in OCI 32-1

32.1.1 Conventions for OCI Functions 32-2

32.2 OCI Locale Functions 32-2

32.2.1 OCINlsCharSetIdToName() 32-3

32.2.2 OCINlsCharSetNameToId() 32-4

32.2.3 OCINlsEnvironmentVariableGet() 32-4

32.2.4 OCINlsGetInfo() 32-5

32.2.5 OCINlsNumericInfoGet() 32-8

32.3 OCI Locale-Mapping Function 32-9

32.3.1 OCINlsNameMap() 32-9

32.4 OCI String Manipulation Functions 32-10

32.4.1 OCIMultiByteInSizeToWideChar() 32-14

32.4.2 OCIMultiByteStrCaseConversion() 32-15

32.4.3 OCIMultiByteStrcat() 32-15

32.4.4 OCIMultiByteStrcmp() 32-16

32.4.5 OCIMultiByteStrcpy() 32-17

32.4.6 OCIMultiByteStrlen() 32-18

32.4.7 OCIMultiByteStrncat() 32-19

32.4.8 OCIMultiByteStrncmp() 32-19

32.4.9 OCIMultiByteStrncpy() 32-21

32.4.10 OCIMultiByteStrnDisplayLength() 32-22

32.4.11 OCIMultiByteToWideChar() 32-22

32.4.12 OCIWideCharInSizeToMultiByte() 32-23

32.4.13 OCIWideCharMultiByteLength() 32-24

32.4.14 OCIWideCharStrCaseConversion() 32-25

32.4.15 OCIWideCharStrcat() 32-26

32.4.16 OCIWideCharStrchr() 32-26

32.4.17 OCIWideCharStrcmp() 32-27

32.4.18 OCIWideCharStrcpy() 32-28

32.4.19 OCIWideCharStrlen() 32-29

32.4.20 OCIWideCharStrncat() 32-30

32.4.21 OCIWideCharStrncmp() 32-30

32.4.22 OCIWideCharStrncpy() 32-32

32.4.23 OCIWideCharStrrchr() 32-33

32.4.24 OCIWideCharToLower() 32-33

32.4.25 OCIWideCharToMultiByte() 32-34

32.4.26 OCIWideCharToUpper() 32-35

xxxviii

32.5 OCI Character Classification Functions 32-35

32.5.1 OCIWideCharIsAlnum() 32-37

32.5.2 OCIWideCharIsAlpha() 32-37

32.5.3 OCIWideCharIsCntrl() 32-37

32.5.4 OCIWideCharIsDigit() 32-38

32.5.5 OCIWideCharIsGraph() 32-38

32.5.6 OCIWideCharIsLower() 32-39

32.5.7 OCIWideCharIsPrint() 32-39

32.5.8 OCIWideCharIsPunct() 32-40

32.5.9 OCIWideCharIsSingleByte() 32-40

32.5.10 OCIWideCharIsSpace() 32-41

32.5.11 OCIWideCharIsUpper() 32-41

32.5.12 OCIWideCharIsXdigit() 32-42

32.6 OCI Character Set Conversion Functions 32-42

32.6.1 OCICharSetConversionIsReplacementUsed() 32-43

32.6.2 OCICharSetToUnicode() 32-43

32.6.3 OCINlsCharSetConvert() 32-44

32.6.4 OCIUnicodeToCharSet() 32-46

32.7 OCI Messaging Functions 32-47

32.7.1 OCIMessageClose() 32-47

32.7.2 OCIMessageGet() 32-48

32.7.3 OCIMessageOpen() 32-49

33

OCI XML DB Functions

33.1 Introduction to XML DB Support in OCI 33-1

33.1.1 Conventions for OCI Functions 33-1

33.1.2 Returns 33-1

33.2 OCI XML DB Functions 33-2

33.2.1 OCIBinXmlCreateReposCtxFromConn() 33-3

33.2.2 OCIBinXmlCreateReposCtxFromCPool() 33-3

33.2.3 OCIBinXmlSetFormatPref() 33-4

33.2.4 OCIBinXmlSetReposCtxForConn() 33-5

33.2.5 OCIXmlDbFreeXmlCtx() 33-5

33.2.6 OCIXmlDbInitXmlCtx() 33-6

34

Oracle ODBC Driver

xxxix

35

Introduction to the OCI Interface for XStream

35.1 About the XStream Interface 35-1

35.1.1 XStream Out 35-2

35.1.2 XStream In 35-2

35.1.3 Position Order and LCR Streams 35-3

35.1.4 XStream and Character Sets 35-3

35.2 Handler and Descriptor Attributes 35-3

35.2.1 Conventions 35-3

35.2.2 Server Handle Attributes 35-4

35.2.2.1 OCI_ATTR_XSTREAM_ACK_INTERVAL 35-4

35.2.2.2 OCI_ATTR_XSTREAM_IDLE_TIMEOUT 35-4

36

OCI XStream Functions

36.1 About Using the XStream Interface 36-1

36.1.1 XStream Out 36-2

36.1.1.1 LCR Streams 36-3

36.1.1.2 The Processed Low Position and Restart Considerations 36-3

36.1.2 XStream In 36-3

36.1.2.1 Processed Low Position and Restart Ability 36-4

36.1.2.2 Stream Position 36-4

36.1.3 Security of XStreams 36-5

36.2 Introduction to XStream Functions 36-5

36.3 OCI XStream Functions 36-6

36.3.1 OCILCRAttributesGet() 36-9

36.3.2 OCILCRAttributesSet() 36-10

36.3.3 OCILCRComparePosition() 36-12

36.3.4 OCILCRConvertPosition() 36-13

36.3.5 OCILCRFree() 36-14

36.3.6 OCILCRDDLInfoGet() 36-14

36.3.7 OCILCRHeaderGet() 36-16

36.3.8 OCILCRRowStmtGet() 36-19

36.3.9 OCILCRRowStmtWithBindVarGet() 36-19

36.3.10 OCILCRNew() 36-21

36.3.11 OCILCRRowColumnInfoGet() 36-22

36.3.12 OCILCRRowColumnInfoSet() 36-26

36.3.13 OCILCRDDLInfoSet() 36-28

36.3.14 OCILCRGetLCRIDVersion() 36-30

36.3.15 OCILCRHeaderSet() 36-31

36.3.16 OCILCRLobInfoGet() 36-33

36.3.17 OCILCRLobInfoSet() 36-34

xl

36.3.18 OCILCRSCNsFromPosition() 36-35

36.3.19 OCILCRSCNToPosition() 36-36

36.3.20 OCILCRScnToPosition2() 36-37

36.3.21 OCILCRWhereClauseGet() 36-38

36.3.22 OCILCRWhereClauseWithBindVarGet() 36-39

36.3.23 OCIXStreamInAttach() 36-41

36.3.24 OCIXStreamInDetach() 36-42

36.3.25 OCIXStreamInLCRSend() 36-43

36.3.26 OCIXStreamInLCRCallbackSend() 36-44

36.3.27 OCIXStreamInProcessedLWMGet() 36-48

36.3.28 OCIXStreamInErrorGet() 36-49

36.3.29 OCIXStreamInFlush() 36-50

36.3.30 OCIXStreamInChunkSend() 36-51

36.3.31 OCIXStreamInCommit() 36-54

36.3.32 OCIXStreamInSessionSet() 36-55

36.3.33 OCIXStreamOutAttach() 36-56

36.3.34 OCIXStreamOutDetach() 36-58

36.3.35 OCIXStreamOutLCRReceive() 36-58

36.3.36 OCIXStreamOutLCRCallbackReceive() 36-60

36.3.37 OCIXStreamOutProcessedLWMSet() 36-64

36.3.38 OCIXStreamOutChunkReceive() 36-65

36.3.39 OCIXStreamOutGetNextChunk() 36-68

36.3.40 OCIXStreamOutSessionSet() 36-71

37

OCI Json Descriptor Functions

37.1 Functions for Writing to a JSON Descriptor 37-1

37.1.1 OCIJsonDomDocSet () 37-2

37.1.2 OCIJsonTextBufferParse () 37-3

37.1.3 OCIJsonTextStreamParse () 37-4

37.1.4 OCIJsonBinaryBufferLoad () 37-6

37.1.5 OCIJsonBinaryStreamLoad () 37-7

37.1.6 OCIJsonClone () 37-8

37.2 Functions for Reading from a JSON Descriptor 37-9

37.2.1 OCIJsonDomDocGet () 37-10

37.2.2 OCIJsonToTextBuffer () 37-11

37.2.3 OCIJsonToTextStream () 37-13

37.2.4 OCIJsonToBinaryBuffer () 37-14

37.2.5 OCIJsonToBinaryStream () 37-15

37.2.6 OCIJsonBinaryLengthGet () 37-17

xli

38

Support for Vector Data Type in OCI

38.1 OCIVector Descriptor 38-1

38.2 Attributes of OCIVector Descriptor 38-2

38.3 External VECTOR Data Type and OCI 38-3

38.4 Bind or Define Support for VECTOR SQL Data Type 38-4

38.5 OCI Vector Support Functions 38-4

38.5.1 OCIVectorFromText 38-5

38.5.2 OCIVectorFromArray 38-6

38.5.3 OCIVectorToText 38-7

38.5.4 OCIVectorToArray 38-9

38.6 Binding and Defining OCIVector * 38-9

38.7 OCIDescribeAny Enhancements 38-10

38.8 Example Code Snippets for Vectors 38-11

39

OCI SODA Functions

39.1 Introduction to OCI SODA Functions 39-1

39.2 OCI SODA Functions 39-1

39.2.1 OCISodaBulkInsert() 39-6

39.2.2 OCISodaBulkInsertAndGet() 39-7

39.2.3 OCISodaBulkInsertAndGetWithOpts() 39-9

39.2.4 OCISodaBulkInsertAndGetWithCtnt() 39-10

39.2.5 OCISodaBulkInsertWithCtnt() 39-12

39.2.6 OCISodaCollCreate() 39-14

39.2.7 OCISodaCollCreateWithMetadata() 39-16

39.2.8 OCISodaCollDrop() 39-17

39.2.9 OCISodaCollGetNext() 39-19

39.2.10 OCISodaCollList() 39-20

39.2.11 OCISodaCollOpen() 39-21

39.2.12 OCISodaDataGuideGet() 39-23

39.2.13 OCISodaDataGuideGetWithOpts () 39-24

39.2.14 OCISodaAsOfTimestampGet () 39-26

39.2.15 OCISodaAsOfScnGet () 39-26

39.2.16 OCISodaDocCount() 39-27

39.2.17 OCISodaDocCountWithFilter() 39-29

39.2.18 OCISodaDocCreate() 39-30

39.2.19 OCISodaDocCreateWithKey() 39-32

39.2.20 OCISodaDocCreateWithKeyAndMType() 39-34

39.2.21 OCISodaDocGetNext() 39-35

39.2.22 OCISodaFind() 39-36

39.2.23 OCISodaFindOne() 39-38

xlii

39.2.24 OCISodaFindOneWithKey() 39-40

39.2.25 OCISodaIndexCreate() 39-42

39.2.26 OCISodaIndexGet() 39-43

39.2.27 OCISodaIndexList() 39-44

39.2.28 OCISodaIndexDrop() 39-44

39.2.29 OCISodaInsert() 39-46

39.2.30 OCISodaInsertAndGet() 39-47

39.2.31 OCISodaInsertAndGetWithOpts () 39-49

39.2.32 OCISodaInsertAndGetWithCtnt() 39-50

39.2.33 OCISodaInsertWithCtnt() 39-52

39.2.34 OCISodaRemove() 39-54

39.2.35 OCISodaRemoveOneWithKey() 39-55

39.2.36 OCISodaReplOne() 39-56

39.2.37 OCISodaReplOneAndGet() 39-58

39.2.38 OCISodaReplOneAndGetWithCtnt() 39-60

39.2.39 OCISodaReplOneAndGetWithKey() 39-62

39.2.40 OCISodaReplOneWithCtnt() 39-64

39.2.41 OCISodaReplOneWithKey() 39-66

39.2.42 OCISodaSave() 39-68

39.2.43 OCISodaSaveAndGet() 39-69

39.2.44 OCISodaSaveAndGetWithOpts() 39-70

39.2.45 OCISodaSaveWithCtnt() 39-71

39.2.46 OCISodaSaveAndGetWithCtnt() 39-72

39.2.47 OCISodaCollTruncate() 39-74

39.2.48 OCISodaOperKeysSet() 39-74

A Handle and Descriptor Attributes

A.1 Conventions A-3

A.2 DDL Event Descriptor Attributes A-4

A.3 Environment Handle Attributes A-5

A.4 Error Handle Attributes A-13

A.5 Service Context Handle Attributes A-13

A.6 Server Handle Attributes A-19

A.6.1 Authentication Information Handle Attributes A-25

A.6.2 User Session Handle Attributes A-29

A.7 Administration Handle Attributes A-45

A.8 Connection Pool Handle Attributes A-45

A.8.1 Session Pool Handle Attributes A-47

A.9 Transaction Handle Attributes A-52

A.10 Statement Handle Attributes A-53

A.11 Bind Handle Attributes A-63

xliii

A.12 Define Handle Attributes A-66

A.13 Describe Handle Attributes A-69

A.14 Parameter Descriptor Attributes A-70

A.15 Shard Instance Descriptor Attributes A-70

A.16 SODA Document Handle Attributes A-71

A.17 SODA Collection Handle Attributes A-74

A.18 SODA Output Options Handle Attributes A-83

A.19 SODA Operation Options Handle Attributes A-84

A.20 LOB Descriptor and LOB Locator Attributes A-88

A.21 JSON Descriptor Attributes A-89

A.22 Complex Object Attributes A-89

A.22.1 Complex Object Retrieval Handle Attributes A-90

A.22.2 Complex Object Retrieval Descriptor Attributes A-90

A.23 Database Advanced Queuing Descriptor Attributes A-91

A.23.1 OCIAQEnqOptions Descriptor Attributes A-91

A.23.2 OCIAQDeqOptions Descriptor Attributes A-93

A.23.3 OCIAQMsgProperties Descriptor Attributes A-96

A.23.4 OCIAQAgent Descriptor Attributes A-100

A.23.5 OCIServerDNs Descriptor Attributes A-101

A.24 Subscription Handle Attributes A-102

A.24.1 Continuous Query Notification Attributes A-108

A.24.2 Continuous Query Notification Descriptor Attributes A-109

A.24.3 Notification Descriptor Attributes A-111

A.24.4 Invalidated Query Attributes A-113

A.25 Direct Path Loading Handle Attributes A-114

A.25.1 Direct Path Context Handle (OCIDirPathCtx) Attributes A-114

A.25.2 Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes A-122

A.25.3 Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes A-123

A.25.4 Direct Path Stream Handle (OCIDirPathStream) Attributes A-124

A.25.5 Direct Path Column Parameter Attributes A-125

A.25.5.1 About Accessing Column Parameter Attributes A-125

A.26 Process Handle Attributes A-130

A.27 Event Handle Attributes A-131

B OCI Demonstration Programs

C OCI Function Server Round-Trips

C.1 Relational Function Round-Trips C-2

C.2 LOB Function Round-Trips C-3

C.3 JSON Function Round-Trips C-5

xliv

C.4 Object and Cache Function Round-Trips C-6

C.5 Describe Operation Round-Trips C-7

C.6 Data Type Mapping and Manipulation Function Round-Trips C-7

C.7 Any Type and Data Function Round-Trips C-8

C.8 Other Local Functions C-8

D Getting Started with OCI for Windows

D.1 What Is Included in the OCI Package for Windows? D-1

D.2 Oracle Directory Structure for Windows D-2

D.3 Sample OCI Programs for Windows D-2

D.4 About Compiling OCI Applications for Windows D-2

D.5 About Linking OCI Applications for Windows D-3

D.5.1 oci.lib D-3

D.5.2 Client DLL Loading When Using Load Library() D-4

D.6 About Running OCI Applications for Windows D-4

D.7 Oracle XA Library D-4

D.7.1 About Compiling and Linking an OCI Program with the Oracle XA Library D-5

D.7.2 About Using XA Dynamic Registration D-5

D.7.2.1 Adding an Environmental Variable for the Current Session D-6

D.7.2.2 About Adding a Registry Variable for All Sessions D-6

D.7.2.3 Adding a Registry Variable: D-6

D.7.3 XA and TP Monitor Information D-6

D.8 About Using the Object Type Translator for Windows D-7

E Deprecated OCI Features and Functions

E.1 Deprecated Initialize Functions E-1

E.1.1 OCIEnvInit() E-2

E.1.2 OCIInitialize() E-3

E.2 Deprecated Statement Functions E-5

E.2.1 OCIStmtFetch() E-6

E.2.2 OCIStmtPrepare() E-7

E.3 Deprecated Lob Functions E-9

E.3.1 OCILobCopy() E-10

E.3.2 OCILobErase() E-10

E.3.3 OCILobGetLength() E-11

E.3.4 OCILobLoadFromFile() E-11

E.3.5 OCILobRead() E-11

E.3.6 OCILobTrim() E-15

E.3.7 OCILobWrite() E-16

E.3.8 OCILobWriteAppend() E-19

xlv

E.4 Deprecated Database Advanced Queuing Functions E-22

E.4.1 OCIAQListen() E-23

F Multithreaded extproc Agent

F.1 Why Use the Multithreaded extproc Agent? F-1

F.1.1 The Challenge of Dedicated Agent Architecture F-1

F.1.2 The Advantage of Multithreading F-2

F.2 Multithreaded extproc Agent Architecture F-2

F.2.1 Monitor Thread F-4

F.2.2 Dispatcher Threads F-4

F.2.3 Task Threads F-5

F.3 Administering the Multithreaded extproc Agent F-5

F.3.1 Agent Control Utility (agtctl) Commands F-6

F.3.2 About Using agtctl in Single-Line Command Mode F-7

F.3.2.1 Setting Configuration Parameters for a Multithreaded extproc Agent F-7

F.3.2.2 Starting a Multithreaded extproc Agent F-8

F.3.2.3 Shutting Down a Multithreaded extproc Agent F-8

F.3.2.4 Examining the Value of Configuration Parameters F-8

F.3.2.5 Resetting a Configuration Parameter to Its Default Value F-9

F.3.2.6 Deleting an Entry for a Specific SID from the Control File F-9

F.3.2.7 Requesting Help F-9

F.3.3 Using Shell Mode Commands F-10

F.3.3.1 Example: Setting a Configuration Parameter F-10

F.3.3.2 Example: Starting a Multithreaded extproc Agent F-10

F.3.4 Configuration Parameters for Multithreaded extproc Agent Control F-10

Index

xlvi

List of Examples

3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the Session Handle 3-12

3-2 Returning Describe Information in the Statement Handle Relating to Select-List Items 3-12

3-3 Using the OCILogon2 Call for a Single User Session 3-22

3-4 Enabling a Local User to Serve as a Proxy for Another User 3-24

3-5 Connection String to Use for the Proxy User 3-24

3-6 Preserving Case Sensitivity When Enabling a Local User to Serve as a Proxy for Another User 3-24

3-7 Preserving Case Sensitivity in the Connection String 3-24

3-8 Using "dilbert[mybert]" in the Connection String 3-24

3-9 Using "dilbert[mybert]"["joe[myjoe]"] in the Connection String 3-24

3-10 Setting the Target User Name 3-24

3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the Proxy dilbert 3-25

3-12 Creating and Initializing an OCI Environment 3-25

3-13 Getting Locale Information in OCI 3-46

3-14 Basic String Manipulation in OCI 3-47

3-15 Classifying Characters in OCI 3-47

3-16 Converting Character Sets in OCI 3-48

3-17 Retrieving a Message from a Text Message File 3-49

4-1 OCI Bind and Define Support for 64-Bit Integers 4-16

4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning Statement 4-17

5-1 Binding Both Input and Output Variables in Nonquery Operations 5-6

5-2 Using Batch Error Execution Mode 5-11

5-3 Implicit Describe - Select List Is Available as an Attribute of the Statement Handle 5-14

5-4 Explicit Describe - Returning the Select-List Description for Each Column 5-15

5-5 Access on a Scrollable Cursor 5-21

5-6 Accessing JSON and vector data with scrollable cursor 5-22

6-1 Handle Allocation and Binding for Each Placeholder in a SQL Statement 6-7

6-2 Defining a PL/SQL Statement to Be Used in OCI 6-9

6-3 Binding the Placeholder and Executing the Statement to Insert a Single Locator 6-12

6-4 Binding the Placeholder and Executing the Statement to Insert an Array of Locators 6-12

6-5 Defining a Scalar Output Variable Following an Execute and Describe Operation 6-15

6-6 Defining LOBs Before Execution 6-18

6-7 Defining LOBs After Execution 6-18

6-8 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000 Byte-Sized Bind

Variable Data Values, Respectively 6-22

6-9 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized Bind Variable Data

Values, Respectively 6-22

xlvii

6-10 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000 Byte-Sized Bind

Variable Data Values, Respectively 6-22

6-11 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000 Byte-Sized Bind

Variable Data Values, Respectively 6-23

6-12 Allowed: Piecewise, Callback, and Array Insert or Update Operations 6-23

6-13 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG Columns Using the

Same INSERT Statement 6-23

6-14 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind Variable Data Values 6-23

6-15 Not Allowed: Binding Any Length Data to a LOB Column in an Insert As Select Operation 6-24

6-16 Using Multiple Bind and Define Buffers 6-32

6-17 Binding the REF Output Variable in an OCI Application 6-38

6-18 Setting the Client Character Set to OCI_UTF16ID in OCI 6-42

6-19 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE Attribute 6-48

6-20 Binding and Defining UTF-16 Data 6-49

6-21 Binding the :cursor1 Placeholder to the Statement Handle stm2p as a REF CURSOR 6-51

6-22 Defining a Nested Table (Second Position) as a Statement Handle 6-51

7-1 Initializing the OCI Process in Object Mode 7-4

7-2 Support for Boolean Data Type 7-30

7-3 Using an Explicit Describe to Retrieve Column Data Types for a Table 7-31

7-4 Describing the Stored Procedure 7-32

7-5 Using an Explicit Describe on a Named Object Type 7-34

7-6 Using an Explicit Describe on a Named Collection Type 7-36

7-7 Using a Parameter Descriptor to Retrieve the Data Types, Column Names, and Character-

Length Semantics 7-37

7-8 Checking for Invisible Columns 7-38

8-1 Implementing Read Callback Functions Using OCILobRead2() 8-17

8-2 Implementing Write Callback Functions Using OCILobWrite2() 8-18

8-3 Using Temporary LOBs 8-23

8-4 Prefetching of LOB Data, Length, and Chunk Size 8-27

9-1 Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server Group Name 9-17

9-2 Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the Credentials of the

Application Server for Client Authentication 9-19

9-3 Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the Distinguished Name

of the Client 9-20

9-4 Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509 Certificate 9-20

9-5 Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the Client Roles 9-21

9-6 Defining the OCI_ATTR_CLIENT_IDENTIFIER Attribute to Pass the End-User Identity 9-21

xlviii

9-7 Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for Validation 9-22

9-8 OCI Attributes That Let You Specify the External Name and Initial Privileges of a Client 9-22

9-9 Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context Array Size with the

Desired Number of Context Attributes 9-26

9-10 Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the Application Context

List Descriptor for the Session 9-26

9-11 Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th Application Context

Using the Application Context List Descriptor 9-26

9-12 Defining Session Handle Attributes to Set Externally Initialized Context 9-27

9-13 Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of the Last Server Call 9-28

9-14 Using OCISessionBegin() with an Externally Initialized Context 9-29

9-15 Changing the "responsibility" Attribute Value in the CLIENTCONTEXT Namespace 9-32

9-16 Two Ways to Clear Specific Attribute Information in a Client Namespace 9-32

9-17 Clearing All the Context Information in a Specific Client Namespace 9-33

9-18 Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attribute 9-34

10-1 Example of PL/SQL Fix-Up Callback 10-5

11-1 Event Notification 11-6

11-2 User-Defined Failover Callback Function Definition 11-12

11-3 Failover Callback Registration 11-12

11-4 Failover Callback Unregistration 11-13

11-5 Callback Function That Implements a Failover Strategy 11-14

11-6 TAF Callback Function to Accommodate Token-Based Authentication 11-15

11-7 Get Token 11-16

11-8 Transaction Guard Demo Program 11-20

12-1 Setting QOS Levels, the Notification Grouping Class, Value, and Type, and the Namespace

Specific Context 12-7

12-2 Using AQ Grouping Notification Attributes in an OCI Notification Callback 12-13

12-3 Implementing a Publish Subscription Notification 12-15

12-4 Registering for Notification Using Callback Functions 12-17

12-5 LDAP Registration 12-20

12-6 Enqueue Buffered Messaging 12-30

12-7 Dequeue Buffered Messaging 12-30

13-1 Pseudocode That Describes the Overall Processing of a Typical OCI Call 13-5

13-2 Environment Variable Setting for the ORA_OCI_UCBPKG Variable 13-10

13-3 Specifying the pkgNInit() and PkgNEnvCallback() Functions 13-11

13-4 Using pkgNEnvCallback() to Register Entry, Replacement, and Exit Callbacks 13-11

13-5 Registering User Callbacks with the NULL ucbDesc 13-11

xlix

13-6 Using the OCIStmtPrepare() Call to Call the Callbacks in Order 13-11

14-1 Optimizing Bind and Define Operations on Statements in the Cache 14-5

14-2 Implicit Fetching of ROWIDs 14-8

14-3 DBMS_SQL RETURN_RESULT Subprogram 14-10

14-4 A PL/SQL Stored Procedure to Implicitly Return Result-Sets (Cursors) to the Client 14-10

14-5 An Anonymous PL/SQL Block to Implicitly Return Result-Sets (Cursors) to the Client 14-11

14-6 Using OCIStmtGetNextResult() to Retrieve and Process the Implicit Results Returned by

Either a PL/SQL Stored Procedure or Anonymous Block 14-11

15-1 Calling OCIDBStartup() to Perform a Database Startup Operation 15-2

15-2 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL Mode 15-3

15-3 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_ABORT Mode 15-4

18-1 SQL Definition of Standalone Objects 18-5

18-2 SQL Definition of Embedded Objects 18-5

18-3 Pinning an Object 18-13

18-4 Manipulating Object Attributes in OCI 18-15

18-5 Using Complex Object Retrieval in OCI 18-27

18-6 C Representations of Types with Their Corresponding NULL Indicator Structures 18-31

18-7 Creating a New Object for an Object View 18-35

19-1 Manipulating an Attribute of Type OCIDate 19-7

19-2 Manipulating an Attribute of Type OCIDateTime 19-11

19-3 Manipulating an Attribute of Type OCINumber 19-14

19-4 Converting Values in OCINumber Format Returned from OCIDescribeAny() Calls to Unsigned

Integers 19-15

19-5 Manipulating an Attribute of Type OCIString 19-17

19-6 Manipulating an Attribute of Type OCIRaw 19-18

19-7 Using Collection Data Manipulation Functions 19-21

19-8 Using Multilevel Collection Data Manipulation Functions 19-25

19-9 Using REF Manipulation Functions 19-27

19-10 Using Type Interfaces to Construct Object Types 19-29

19-11 Using Type Interfaces to Construct Collection Types 19-30

19-12 Using Special Construction and Access Calls for Improved Performance 19-34

19-13 Method 1 for a Salary Update: Fetch, Convert, and Assign 19-46

19-14 Method 2 for a Salary Update: Fetch and Assign, No Convert 19-47

19-15 Method 3 for a Salary Update: Direct Fetch 19-47

19-16 Using the SQLT_NTY Bind Call Including OCIBindObject() 19-48

19-17 Using the SQLT_NTY Define Call Including OCIDefineObject() 19-50

20-1 Direct Path Programs Must Include the Header Files 20-5

l

20-2 Passing the Handle Type to Allocate the Function Context 20-6

20-3 Explicit Allocation of Direct Path Column Array Handle 20-7

20-4 Explicit Allocation of Direct Path Function Column Array Handle 20-7

20-5 Allocating a Direct Path Stream Handle 20-8

20-6 Data Structures Used in Direct Path Loading Examples 20-10

20-7 Contents of the Header File cdemodp.h 20-10

20-8 Use of OCI Direct Path Interfaces 20-13

20-9 Allocating the Column Array and Stream Handles 20-13

20-10 Getting the Number of Rows and Columns 20-14

20-11 Setting Input Data Fields 20-14

20-12 Resetting the Column Array State 20-14

20-13 Resetting the Stream State 20-14

20-14 Converting Data to Stream Format 20-14

20-15 Loading the Stream 20-14

20-16 Finishing the Direct Path Load Operation 20-14

20-17 Freeing the Direct Path Handles 20-15

20-18 Allocating a Child Column Array for a Column Object 20-21

20-19 Allocating a Child Column Array for a SQL String Column 20-25

20-20 Allocating a Child Column Array for a REF Column 20-29

20-21 Allocating the Column Array for the Object Table 20-33

20-22 Specifying Values for the OCI_ATTR_DIRPATH_EXPR_TYPE Attribute 20-39

20-23 Setting a Function Context as a Column Attribute 20-41

20-24 Allocating a Child Column Array for a Function Context 20-44

21-1 Object Type Representation of a Department Row 21-19

21-2 C Representation of a Department Row 21-19

22-1 Example: 22-8

22-2 Example: 22-8

22-3 Example: 22-9

22-4 Example: 22-9

22-5 Example: 22-9

23-1 Use of OCI_ATTR_HAS_JSON_SCHEMA Attribute 23-20

24-1 Initializing and Terminating XML Context with a C API 24-2

25-1 Definition of the Employee Object Type Listed in the Intype File 25-3

25-2 Contents of the Generated Header File demo.h 25-3

25-3 Contents of the demov.c File 25-3

25-4 Invoking OTT from the Command Line 25-6

25-5 Contents of a User-Created Intype File 25-9

li

25-6 Object Type Definition for Employee 25-10

25-7 OTT-Generated Struct Declarations 25-10

25-8 Object Type Definitions for the OTT Type Mapping Example 25-13

25-9 Various Type Mappings Created by OTT from Object Type Definitions 25-14

25-10 Object Type and Subtype Definitions 25-16

25-11 Contents of the Intype File 25-17

25-12 OTT Generates C Structs for the Types and Null Indicator Structs 25-17

25-13 Contents of an Intype File 25-19

25-14 Contents of the Outtype File After Running OTT 25-19

25-15 Content of an Intype File Named ex2c.typ 25-23

25-16 Invoking OTT and Specifying the Initialization Function 25-23

25-17 Content of an OTT-Generated File Named ex2cv.c 25-23

25-18 Object Type Definition to Demonstrate How OTT Generates Include Files 25-35

25-19 Content of the Intype File 25-35

25-20 Invoking OTT from the Command Line 25-35

25-21 Content of the Header File tott95b.h 25-35

25-22 Content of the Header File tott95a.h 25-36

25-23 Construct to Use to Conditionally Include the Header File tott95b.h 25-36

26-1 A user callback is registered for DDL notification. Then the tables are added to the subscription. 26-33

26-2 To register for notification on schema FA3 and FA4 26-34

26-3 Unregister tables FA1.AR_SALES_TAX and FA2.AP_INVOICES 26-35

26-4 UNREGISTER ALL TABLES OF A CLIENT 26-35

26-5 Clear all registrations without unsubscribing 26-35

26-6 Sample code snippet showing support for boolean data type 26-89

26-7 Sample code snippet showing support for boolean data type 26-105

27-1 Creating a Compound Sharding Key 27-151

27-2 Custom Pool Example 27-154

27-3 Error checking using OCIErrorGet() 27-164

27-4 Default output of OCIErrorGet() 27-164

27-5 Effect of OCI_ATTR_SUPPRESS_ERROR_URL and ORA_SUPPRESS_ERROR_URL in

OCIAttrSet() 27-165

39-1 Creating a Collection 39-15

39-2 Creating a Document 39-32

F-1 Setting Configuration Parameters and Starting agtctl F-5

lii

List of Figures

3-1 Basic OCI Program Flow 3-2

3-2 Components of a Service Context 3-8

3-3 Statement Handles 3-9

3-4 Direct Path Handles 3-11

5-1 Steps in Processing SQL Statements 5-2

6-1 Using OCIBindByName() to Associate Placeholders with Program Variables 6-3

6-2 Determining Skip Parameters 6-29

6-3 Performing Piecewise Insert 6-56

6-4 Performing Piecewise Fetch 6-60

7-1 OCIDescribeAny() Table Description 7-2

9-1 Multiple Tightly Coupled Branches 9-6

9-2 Session Operating on Multiple Branches 9-6

10-1 OCI Connection Pooling 10-19

12-1 Publish-Subscribe Model 12-3

18-1 Basic Object Operational Flow 18-7

20-1 Direct Path Loading 20-2

20-2 Inheritance Hierarchy for a Column of Type Person 20-31

21-1 Object Cache 21-3

21-2 Object Graph of person_t Instances 21-21

22-1 Blocking Functionality 22-2

22-2 Pipelining Functionality 22-3

22-3 OCI Pipeline Block Diagram 22-4

23-1 Sample JSON Document 23-3

23-2 Calling Sequence for Writing JSON Data 23-7

23-3 Calling Sequence for Reading JSON Data 23-7

25-1 Using OTT with OCI 25-21

28-1 Classification of Instances by Type and Lifetime 28-3

36-1 Execution Flow of the OCIXStreamInLCRCallbackSend() Function 36-47

36-2 Execution Flow of the OCIXStreamOutLCRCallbackReceive() Function 36-63

F-1 Multithreaded extproc Agent Architecture F-3

liii

List of Tables

2-1 ORACLE_HOME Directories and Contents 2-3

2-2 Configurable Application Parameters 2-10

2-3 Equivalent OCI Parameter Settings in oraaccess.xml and sqlnet.ora 2-17

2-4 Unsupported OCI Functions 2-27

3-1 OCI Handle Types 3-4

3-2 Descriptor Types 3-13

3-3 OCI Return Codes 3-28

3-4 Return and Error Codes 3-30

3-5 Oracle Reserved Namespaces 3-37

4-1 Internal Oracle Database Data Types 4-4

4-2 External Data Types and Codes 4-8

4-3 VARNUM Examples 4-19

4-4 Format of the DATE Data Type 4-20

4-5 Data Conversions 4-33

4-6 Data Conversions for LOBs 4-34

4-7 Data Conversions for JSON Data Type 4-35

4-8 Data Conversion for Datetime and Interval Types 4-35

4-9 Data Conversion for External Data Types to Internal Numeric Data Types 4-37

4-10 Data Conversions for Internal to External Numeric Data Types 4-38

4-11 OCITypeCode Values and Data Types 4-39

4-12 OCI_TYPECODE to SQLT Mappings 4-40

5-1 OCI_ATTR_STMT_TYPE Values and Statement Types 5-4

6-1 Information Summary for Bind Types 6-10

6-2 Defines 6-27

7-1 Attributes of All Parameters 7-6

7-2 Attributes of Tables or Views 7-9

7-3 Attributes Specific to Tables 7-10

7-4 Attributes of Procedures or Functions 7-10

7-5 Attributes Specific to Package Subprograms 7-10

7-6 Attributes of Packages 7-11

7-7 Attributes of Types 7-11

7-8 Attributes of Type Attributes 7-13

7-9 Attributes of Type Methods 7-14

7-10 Attributes of Collection Types 7-15

7-11 Attributes of Synonyms 7-16

7-12 Attributes of Sequences 7-16

liv

7-13 Attributes of Columns of Tables or Views 7-17

7-14 Predefined Collation IDs, Their ub4 Values (in parenthesis), and Their SQL Names 7-20

7-15 Attributes of Arguments and Results 7-21

7-16 List Attributes 7-23

7-17 Attributes Specific to Schemas 7-23

7-18 Attributes Specific to Databases 7-23

7-19 Attributes Specific to Rules 7-24

7-20 Attributes Specific to Rule Sets 7-25

7-21 Attributes Specific to Evaluation Contexts 7-25

7-22 Attributes Specific to Table Aliases 7-26

7-23 Attributes Specific to Variable Types 7-26

7-24 Attributes Specific to Name-Value Pair 7-27

8-1 LOB Functions Compatibility and Migration 8-9

9-1 Global Transaction Identifier 9-5

9-2 One-Phase Commit 9-10

9-3 Two-Phase Commit 9-11

9-4 Read-Only Update Fails 9-12

9-5 Read-Only Transaction 9-12

9-6 Initialization and Termination Multithreading Functions 9-42

9-7 Passive Threading Primitives 9-43

9-8 Active Threading Primitives 9-46

11-1 Time and Event 11-13

12-1 Publish-Subscribe Functions 12-12

12-2 AQ Functions 12-25

12-3 Enqueue Parameters 12-25

12-4 Dequeue Parameters 12-25

12-5 Listen Parameters 12-26

12-6 Array Enqueue Parameters 12-26

12-7 Array Dequeue Parameters 12-27

12-8 Agent Parameters 12-27

12-9 Message Properties 12-27

12-10 Enqueue Option Attributes 12-28

12-11 Dequeue Option Attributes 12-28

14-1 Comparison of Some Connection Specific Auto-Tuning Parameters 14-17

18-1 Meta-Attributes of Persistent Objects 18-18

18-2 Set and Check Functions 18-21

18-3 Transient Meta-Attributes 18-21

lv

18-4 Attribute Values for New Objects 18-33

19-1 Function Prefix Examples 19-6

19-2 Binding and Defining Datetime and Interval Data Types 19-9

19-3 Datetime Functions 19-10

19-4 Interval Functions 19-12

19-5 String Functions 19-16

19-6 Raw Functions 19-18

19-7 Collection Functions 19-21

19-8 Collection Scanning Functions 19-21

19-9 Nested Table Functions 19-23

19-10 REF Manipulation Functions 19-26

19-11 Descriptor Objects 19-28

19-12 Data Type Mappings for Binds and Defines 19-42

20-1 Direct Path Context Functions 20-8

20-2 Direct Path Column Array Functions 20-9

21-1 Object Attributes After a Refresh Operation 21-13

21-2 Example of Allocation and Pin Durations 21-18

21-3 Pin, Free, and Unpin Functions 21-23

21-4 Flush and Refresh Functions 21-23

21-5 Mark and Unmark Functions 21-24

21-6 Object Meta-Attributes Functions 21-24

21-7 Other Object Functions 21-24

23-1 Type Constructs and Constants 23-3

23-2 Scalar Types Mapping 23-8

23-3 Scalar Types and Contructors 23-12

25-1 Object Data Type Mappings for Object Type Attributes 25-11

26-1 Mode of a Parameter 26-3

26-2 OCI Pipelining Functions 26-4

26-3 Connect, Authorize, and Initialize Functions 26-8

26-4 Handle and Descriptor Functions 26-59

26-5 Bind, Define, and Describe Functions 26-72

27-1 Statement Functions 27-2

27-2 LOB Functions 27-18

27-3 Advanced Queuing and Publish-Subscribe Functions 27-81

27-4 Direct Path Loading Functions 27-98

27-5 Thread Management Functions 27-112

27-6 Transaction Functions 27-135

lvi

27-7 Sharding Functions 27-150

27-8 Miscellaneous Functions 27-156

27-9 OCI Function Codes 27-180

27-10 Continuation of OCI Function Codes from 97 and Higher 27-181

28-1 Type and Lifetime of Instances 28-3

28-2 Return Values of Navigational Functions 28-4

28-3 OCI Navigational Functions Error Codes 28-5

28-4 Flush or Refresh Functions 28-6

28-5 Object Status After Refresh 28-12

28-6 Mark or Unmark Object and Cache Functions 28-13

28-7 Get Object Status Functions 28-20

28-8 Miscellaneous Object Functions 28-27

28-9 Instances Created 28-39

28-10 Pin, Unpin, and Free Functions 28-43

28-11 Type Information Accessor Functions 28-55

29-1 Function Return Values 29-3

29-2 Collection and Iterator Functions 29-4

29-3 Element Pointers 29-10

29-4 Date Functions 29-28

29-5 Error Bits Returned by the valid Parameter for OCIDateCheck() 29-36

29-6 Comparison Results 29-37

29-7 Error Bits Returned by the valid Parameter for OCIDateTimeCheck() 29-46

29-8 Comparison Results Returned by the result Parameter for OCIDateTimeCompare() 29-48

29-9 Error Bits Returned by the valid Parameter for OCIIntervalCheck() 29-67

29-10 Comparison Results Returned by the result Parameter for OCIIntervalCompare() 29-68

29-11 NUMBER Functions 29-80

29-12 Comparison Results Returned by the result Parameter for OCINumberCmp() 29-89

29-13 Values of result 29-109

29-14 Raw Functions 29-117

29-15 Ref Functions 29-124

29-16 String Functions 29-132

29-17 Table Functions 29-138

30-1 External Procedures Functions 30-2

30-2 Memory Services Functions 30-7

30-3 Maintaining Context Functions 30-12

30-4 Parameter Manager Interface Functions 30-16

30-5 File I/O Interface Functions 30-28

lvii

30-6 String Formatting Functions 30-37

30-7 Format Modifier Flags 30-40

30-8 Format Codes to Specify How to Format an Argument Written to a String 30-41

31-1 Function Return Values 31-2

31-2 Type Interface Functions 31-2

31-3 Any Data Functions 31-7

31-4 Data Types and Attribute Values 31-11

31-5 Data Types and Attribute Values 31-13

31-6 Any Data Set Functions 31-24

32-1 Function Return Values 32-2

32-2 OCI Locale Functions 32-2

32-3 OCI Locale-Mapping Function 32-9

32-4 OCI String Manipulation Functions 32-11

32-5 OCI Character Classification Functions 32-36

32-6 OCI Character Set Conversion Functions 32-42

32-7 OCI Messaging Functions 32-47

33-1 Function Return Values 33-1

33-2 OCI XML DB Functions 33-2

36-1 Mode of a Parameter 36-5

36-2 OCI XStream Functions 36-6

36-3 Table Column Data Types 36-24

36-4 Required Column List in the First LCR 36-53

36-5 Storage of LOB or LONG Data in the LCR 36-67

38-1 OCI Vector Support Functions 38-5

38-2 Parameters 38-6

38-3 Parameters 38-7

38-4 Parameters 38-9

39-1 OCI SODA Functions 39-1

A-1 Function Code of the SQL Command Associated with the SQL Statement A-59

B-1 OCI Demonstration Programs B-1

C-1 Server Round-Trips for Relational Operations C-2

C-2 Server Round-Trips for OCILob Calls C-4

C-3 Server Round-Trips for OCIJSON Calls C-5

C-4 Server Round-Trips for Object and Cache Functions C-6

C-5 Server Round-Trips for Describe Operations C-7

C-6 Server Round-Trips for Data Type Manipulation Functions C-7

C-7 Server Round-Trips for Any Type and Data Functions C-8

lviii

C-8 Locally Processed Functions C-8

D-1 ORACLE_HOME Directories and Contents D-2

D-2 Oracle XA Components D-4

D-3 Link Libraries D-5

E-1 Deprecated OCI Functions E-1

E-2 Deprecated Initialize Functions E-2

E-3 Deprecated Statement Functions E-6

E-4 Deprecated LOB Functions E-9

E-5 Characters or Bytes in amtp for OCILobRead() E-12

E-6 Characters or Bytes in amtp for OCILobWrite() E-16

E-7 Characters or Bytes in amtp for OCILobWriteAppend() E-20

E-8 Deprecated Database Advanced Queuing Functions E-22

F-1 Agent Control Utility (agtctl) Commands F-6

F-2 Configuration Parameters for agtctl F-11

lix

Preface

Oracle Call Interface (OCI) is an application programming interface (API) that lets applications
written in C or C++ interact with Oracle Database. OCI gives your programs the capability to
perform the full range of database operations that are possible with Oracle Database, including
SQL statement processing and object manipulation.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for developers developing new applications or converting existing
applications to run in the Oracle Database environment. This comprehensive treatment of OCI
is also valuable to systems analysts, project managers, and others interested in the
development of database applications.

This guide assumes that you have a working knowledge of application programming using C.
Readers should also be familiar with the use of structured query language (SQL) to access
information in relational database systems. In addition, some sections of this guide assume
knowledge of the basic concepts of object-oriented programming.

See Also:

• Oracle Database SQL Language ReferenceandOracle Database Administrator’s
Guide for information about SQL

• Oracle Database Concepts

• Oracle Database New Features Guide for information about the differences
between the Standard Edition and the Enterprise Edition and all the features and
options that are available to you

• Oracle C++ Call Interface Developer's Guide for more information about OCI
functionality for C++ that enables developers to manipulate database objects of
user-defined types as C++ objects

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Preface

lx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. See Oracle
Database Sample Schemas for information about how these schemas were created and how
you can use them.

To download free release notes, installation documentation, white papers, or other collateral,
visit the Oracle Technology Network (OTN). You must register online before using OTN;
registration is free and can be done at

http://www.oracle.com/technetwork/community/join/overview/

If you have a user name and password for OTN, then you can go directly to the documentation
section of the OTN Web site at

http://www.oracle.com/technetwork/indexes/documentation/

Oracle Call Interface Developer's Guide does not contain all information that describes the
features and functionality of OCI in the Oracle Database Standard Edition and Enterprise
Edition products. Explore the following documents for additional information about OCI.

• Oracle Database Data Cartridge Developer's Guide provides information about cartridge
services and OCI calls pertaining to development of data cartridges.

• Oracle Database Globalization Support Guide explains OCI calls pertaining to NLS
settings and globalization support.

• Oracle Database Advanced Queuing User's Guide supplies information about OCI calls
pertaining to Advanced Queuing.

• Oracle Database Development Guide explains how to use OCI with the XA library.

• Oracle Database SecureFiles and Large Objects Developer's Guide provides information
about using OCI calls to manipulate LOBs, including code examples.

• Oracle Database Object-Relational Developer's Guide offers a detailed explanation of
object types.

For additional information about Oracle Database, consult the following documents:

• Oracle Database Net Services Administrator's Guide

• Oracle Database New Features Guide

• Oracle Database Concepts

• Oracle Database Reference

• Oracle Database Error Messages Reference

Conventions
The following text conventions are used in this document:

Preface

lxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/community/join/overview/
http://www.oracle.com/technetwork/indexes/documentation/

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

lxii

1
OCI: Introduction

This chapter contains these topics:

• Overview of OCI

• Building an OCI Application

• Alternatives to OCI

• SQL Statements

• Procedural and Nonprocedural Elements

• Object Support

• Simple Oracle Document Access (SODA)

• Encapsulated Interfaces

• User Authentication and Password Management

• Features to Improve Application Performance and Scalability

• Oracle Database Advanced Queuing

• XA Library Support

• Annotations Support in OCI

• Oracle Instant Client and Oracle Instant client Basic Light

• Changes in This Release for Oracle Call Interface Developer's Guide

• Overview of OCI
Oracle Call Interface (OCI) is an application programming interface (API) that lets you
create applications that use function calls to access an Oracle database and control all
phases of SQL statement execution and data access.

• Building an OCI Application
You compile and link an OCI program in the same way that you compile and link a non-
database application. There is no need for a separate preprocessing or precompilation
step.

• Alternatives to OCI
Some alternatives to using the Oracle Call Interface (OCI) include:

• SQL Statements
One of the main tasks of an OCI application is to process SQL statements.

• Procedural and Nonprocedural Elements
OCI enables you to develop scalable, multithreaded applications in a multitier architecture
that combines the nonprocedural data access power of structured query language (SQL)
with the procedural capabilities of C and C++.

• Object Support
OCI has facilities for working with object types and objects.

• Simple Oracle Document Access (SODA)
SODA for C is a C API that is part of Oracle Call Interface (OCI).

1-1

• Encapsulated Interfaces
All the data structures that are used by OCI calls are encapsulated in the form of opaque
interfaces that are called handles.

• User Authentication and Password Management
OCI provides application developers with user authentication and password management.

• Features to Improve Application Performance and Scalability
OCI provides several feature extensions to improve application performance and
scalability.

• Oracle Database Advanced Queuing
OCI provides an interface to Oracle Database Advanced Queuing (Database AQ) feature.

• XA Library Support
OCI supports the Oracle XA library.

• Annotations Support in OCI
This section describes the annotations functionality support in OCI.

• Oracle Instant Client and Oracle Instant client Basic Light
Oracle Instant Client enables applications to connect to a local or remote Oracle Database
for development and production deployment

1.1 Changes in This Release for Oracle Call Interface
Developer's Guide

This section contains the changes in this book for Oracle Database Release 23ai.

New Features

• Oracle Database supports passwords up to 1024 bytes: Starting with Oracle Database
Release 23ai passwords up to 1024 bytes in length is supported. In previous releases, the
maximum Oracle Database password length was 30 bytes. The increased maximum
password length provides the following benefits:

– It accommodates passwords that are used by Oracle Identity Cloud Service (IDCS)
and Identity Access Management (IAM).

– The increase of the maximum password length to 1024 bytes enables uniform
password rules for all Cloud deployments.

– The 30-byte limitation was too restrictive in an NLS configuration of the database
where multi-byte characters can be used in the password.

• Using Multi-pool DRCP: Your applications can use multiple, named DRCP pools. Multiple
pools allow finer control over the DRCP pool usage. See Database Resident Connection
Pooling.

• Oracle Call Interface (OCI) APIs to Enable Client-Side Tracing: Applications can enable
and disable OCI diagnostic tracing on client side. Updated with the following new functions:

– OCITraceEventSet()

– OCITraceEventReset()

– OCITraceWriteMessage()

.

• OCI attributes for Microsoft Azure Active Directory Integration: Included the following
new attributes:

Chapter 1
Changes in This Release for Oracle Call Interface Developer's Guide

1-2

– OCI_ATTR_TOKEN
– OCI_ATTR_TOKEN_ISBEARER
– OCI_ATTR_TOKEN_CBK
– OCI_ATTR_TOKEN_CBKCTX

See Authentication Information Handle Attributes.

• Efficient Table DDL Change Notification: Updated with the following new functions:

– OCIDdlEventRegister() and

– OCIDdlEventUnregister()
See Connect, Authorize, and Initialize Functions.

– and
Updated with the following new attributes.

* OCI_ATTR_DDL_EVENT_OBJECT_TYPE
* OCI_ATTR_DDL_EVENT_OBJECT_OWNER
* OCI_ATTR_DDL_EVENT_OBJECT_NAME
* OCI_ATTR_DDL_EVENT_OPERATION
* OCI_ATTR_DDL_EVENT_CSCN
* OCI_ATTR_DDL_EVENT_TIME
* OCI_ATTR_DDL_EVENT_DBNAME

See DDL Event Descriptor Attributes.

• Oracle Call Interface (OCI) Pipelined Operations: Pipelining functionality helps to keep
the server busy and allow an application to use the interleaving requests and responses
appropriately. See OCI Pipelining and OCI Pipelining Functions sections.

• Data Use Case Domain Metadata Support: Updated with the following attributes:

– OCI_ATTR_DOMAIN_NAME
– OCI_ATTR_DOMAIN_SCHEMA

See Parameter Attributes.

• Support for Vector Data Type in OCI: Starting with Oracle Database Release 23ai,
Vector Data Type Support is introduced. See Support for Vector Data Type in OCI.

• Support for Centralised Configuration Store: Centralized Configuration Store can be
Azure-based or Oracle Cloud Infrastructure based. Centralized Configuration Store
manages all application configurations centrally. See OCI Support for Centralized
Configuration Store.

• OCI Support for SQL BOOLEAN Data Type:
Updated with the following functions:

– OCIDefineByPos()
– OCIDefineByPos2()
– OCIBindByName()
– OCIBindByName2()

See Bind, Define, and Describe Functions.

• JSON Schema Validation Support: JSON Schema-based validation is allowed with the
SQL condition IS JSON and with a PL/SQL utility function. See

Chapter 1
Changes in This Release for Oracle Call Interface Developer's Guide

1-3

– OCI Interface for Schema Validation and

– Attribute to Check if Column has JSON Schema Constraint.

• Transportable Binary XML: A new option OCIXML_FORMATTYPE_TBXML is introduced for
OCI function OCIBinXmlSetFormatPref. See OCIBinXmlSetFormatPref().

• New Session Pool Statistics in OCI: Updated with the following attributes:

– OCI_ATTR_SPOOL_REQ_COUNT
– OCI_ATTR_SPOOL_WAIT_TOTAL_COUNT
– OCI_ATTR_SPOOL_WAIT_COUNT
– OCI_ATTR_SPOOL_HIT_COUNT and

– OCI_ATTR_SPOOL_HISTMAX_COUNT
See Session Pool Handle Attributes.

• Resumable Cursors:

– Updated with the following two functions:

* OCIRequestBegin()
* OCIRequestEnd()

See Session Pool Handle Attributes.

and

– Updated with the following two attributes:

* OCI_ATTR_SESSSTATE_CONSISTENCY
* OCI_ATTR_PING_INTERVAL

See Server Handle Attributes.

• Annotations Support: OCI now supports describing annotations for tables, views, table/
view columns, and materialized views. See Annotations Support in OCI.

• Token-Based Authentication when Connecting to the Database: Updated the following
sections:

– User Authentication and Password Management

– TAF Support for IAM Based Token Authentication in OCI

– Authentication Information Handle Attributes

• Support for String Indexed PL/SQL Associative Arrays: Updated with the following new
functions:

– OCITableKeyDelete()
– OCITableKeyExists()
– OCITableKeyFirst()
– OCITableKeyLast()
– OCITableKeyNext()
– OCITableKeyPrev()
– OCIIterKeyGetCurrent()
– OCICollKeyAssignElem()
– OCICollKeyGetElem()

Chapter 1
Changes in This Release for Oracle Call Interface Developer's Guide

1-4

See

* OCI Table Functions

* OCI Collection and Iterator Functions

• Error Improvement: Updated OCIErrorGet() functionality. OCIErrorGet() function
generates an Oracle error help URL in the error message. SeeOCIErrorGet().

• SODA API Enhancements: See OCI SODA Functions

• Sessionless transactions: Updated OCITransStart(), OCITransDetach(),
OCITransCommit() and OCITransRollback() functions sections. See Transaction
Functions.

1.2 Overview of OCI
Oracle Call Interface (OCI) is an application programming interface (API) that lets you create
applications that use function calls to access an Oracle database and control all phases of
SQL statement execution and data access.

OCI supports the data types, calling conventions, syntax, and semantics of C and C++.

OCI provides:

• High performance and scalability through the efficient use of system memory and network
connectivity

• Consistent interfaces for dynamic session and transaction management in a two-tier client/
server or multitier environment

• N-tier authentication

• Comprehensive support for application development using Oracle Database objects

• Access to external databases, such as Oracle TimesTen In-Memory Database and Oracle
In-Memory Database Cache. See Oracle TimesTen In-Memory Database C Developers
Guide.

• Applications that support an increasing number of users and requests without additional
hardware investments

• Ways to manipulate data and schemas in an Oracle Database using the C programming
language and a library of standard database access and retrieval functions in the form of a
dynamic runtime library (OCI library) that can be linked in an application at run time.

• Encapsulated or opaque interfaces, whose implementation details are unknown

• Simplified user authentication and password management

• Extensions to improve application performance and scalability

• Consistent interface for transaction management

• OCI extensions to support client-side access to Oracle objects

• Significant advantages over other methods of accessing an Oracle Database:

– More fine-grained control over all aspects of application design

– High degree of control over program execution

– Use of familiar third-generation language programming techniques and application
development tools, such as browsers and debuggers

– Connection pooling, session pooling, and statement caching that enable building of
scalable applications

Chapter 1
Overview of OCI

1-5

– Support of dynamic SQL

– Availability on the broadest range of operating systems of all the Oracle programmatic
interfaces

– Dynamic binding and defining using callbacks

– Description functionality to expose layers of server metadata

– Asynchronous event notification for registered client applications

– Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

– Ability to associate commit requests with executes to reduce round-trips

– Optimization of queries using transparent prefetch buffers to reduce round-trips

– Thread safety, which eliminates the need for mutual exclusive locks (mutexes) on OCI
handles

– APIs to design a scalable, multithreaded application that can support large numbers of
users securely

– SQL access functions, for managing database access, processing SQL statements,
and manipulating objects retrieved from an Oracle database

– Data type mapping and manipulation functions, for manipulating data attributes of
Oracle types

– Data loading functions, for loading data directly into the database without using SQL
statements

– External procedure functions, for writing C callbacks from PL/SQL

See Also:

• Oracle Call Interface

• Related Documents

1.3 Building an OCI Application
You compile and link an OCI program in the same way that you compile and link a non-
database application. There is no need for a separate preprocessing or precompilation step.

OCI supports most popular compilers. The details of linking an OCI program vary from system
to system. On some operating systems, it may be necessary to include other libraries, in
addition to the OCI library, to properly link your OCI programs. See your Oracle Database
system-specific documentation and the installation guide for more information about compiling
and linking an OCI application for your operating system.

1.4 Alternatives to OCI
Some alternatives to using the Oracle Call Interface (OCI) include:

• Oracle Database Programming Interface for C (ODPI-C)

• Oracle C++ Call Interface (OCCI)

Chapter 1
Building an OCI Application

1-6

• Oracle Pro*C/C++ Precompiler

• Oracle ODBC Driver

Oracle Database Programming Interface for C (ODPI-C)

ODPI-C is an open source library of C code that simplifies the use of common Oracle Call
Interface (OCI) features for Oracle Database drivers and user applications. ODPI-C sits on top
of OCI and requires Oracle client libraries. ODPI-C:

• Favors ease of use aimed at driver writers where niche special-case OCI features are not
needed.

• Provides a faster implementation of drivers with considerably less code. Oracle features
can be exposed to users rapidly and in a consistent way.

• Provides simpler memory management for binding variables and fetching.

• Automatically converts binding and 'defining' (for fetches) to "native" C types so that
additional calls do not need to be made. This is beneficial particularly for numbers and
dates. The ability to retrieve LONG and LOB columns as strings and buffers is an
advantage as well.

• Provides a "safer" API in that resource handles are validated. Casts are not needed. A
reference counting mechanism adds resiliency by stopping applications from destroying in-
use OCI resources.

• Provides an API that simplifies connection and resource management. For example, it
automatically does session pool pinging to provide better High Availability.

• Provides an alternative programming experience from OCI that uses a multiple getter and
setter model for handling attributes.

• Provides a sample Makefile that builds ODPI-C as a shared library. Or, the ODPI-C source
code can be included in your project and built as you would build an OCI application.

See Also:

ODPI-C Home Page, for a list of ODPI-C supported features and a list of references
including to its home page, code location on github, and documentation

Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is an application programming interface (API) that allows
applications written in C++ to interact with one or more Oracle database servers. OCCI gives
your programs the ability to perform the full range of database operations that are possible with
an Oracle database server, including SQL statement processing and object manipulation.

See Also:

Oracle C++ Call Interface Developer's Guide

Oracle Pro*C/C++ Precompiler

Oracle Pro*C/C++ Precompiler is a programming tool that enables the user to embed SQL
statements in a high-level source program. The precompiler accepts the source program as

Chapter 1
Alternatives to OCI

1-7

input, translates the embedded SQL statements into standard Oracle runtime library calls, and
generates a modified source program that you can compile, link, and execute in the usual way.

See Also:

Pro*C/C++ Developer's Guide

Oracle ODBC Driver

The Oracle ODBC Driver enables ODBC applications on Microsoft Windows, as well as UNIX
platforms like Linux, Solaris, IBM Advanced Interactive eXecutive (AIX), HP-UX Itaniutm, and
IBM Linux on Platform z read and write access to Oracle® databases through the ODBC
interface using Oracle Net Services software.

See Also:

Oracle Database Development Guide for more information about the Oracle ODBC
Driver

1.5 SQL Statements
One of the main tasks of an OCI application is to process SQL statements.

Different types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle Database
recognizes several types of SQL statements:

• Data Definition Language (DDL)

• Control Statements

– Transaction Control

– Session Control

– System Control

• Queries

• Data Manipulation Language (DML)

• PL/SQL

• Embedded SQL

• Special OCI Terms for SQL

• Data Definition Language
Data definition language (DDL) statements manage schema objects in the database.

• Control Statements
OCI applications treat transaction control, session control, and system control statements
as if they were DML statements.

• Data Manipulation Language
Data manipulation language (DML) statements can change data in the database tables.

Chapter 1
SQL Statements

1-8

• Queries
Queries are statements that retrieve data from a database.

• PL/SQL
PL/SQL is Oracle's procedural extension to the SQL language.

• Embedded SQL
OCI processes SQL statements as text strings that an application passes to the database
on execution.

• Special OCI Terms for SQL
This guide uses special terms to refer to the different parts of a SQL statement.

See Also:

Using SQL Statements in OCI

1.5.1 Data Definition Language
Data definition language (DDL) statements manage schema objects in the database.

DDL statements create new tables, drop old tables, and establish other schema objects. They
also control access to schema objects.

The following is an example of creating and specifying access to a table:

CREATE TABLE employees
 (name VARCHAR2(20),
 ssn VARCHAR2(12),
 empno NUMBER(6),
 mgr NUMBER(6),
 salary NUMBER(6));

GRANT UPDATE, INSERT, DELETE ON employees TO donna;
REVOKE UPDATE ON employees FROM jamie;

DDL statements also allow you to work with objects in the Oracle database, as in the following
series of statements that create an object table:

CREATE TYPE person_t AS OBJECT (
 name VARCHAR2(30),
 ssn VARCHAR2(12),
 address VARCHAR2(50));

CREATE TABLE person_tab OF person_t;

1.5.2 Control Statements
OCI applications treat transaction control, session control, and system control statements as if
they were DML statements.

Chapter 1
SQL Statements

1-9

See Also:

Oracle Database SQL Language Reference for information about these types of
statements

1.5.3 Data Manipulation Language
Data manipulation language (DML) statements can change data in the database tables.

For example, DML statements are used to:

• Insert new rows into a table

• Update column values in existing rows

• Delete rows from a table

• Lock a table in the database

• Explain the execution plan for a SQL statement

• Require an application to supply data to the database using input (bind) variables

See Also:

About Binding Placeholders in OCI for more information about input bind
variables

DML statements also allow you to work with objects in the Oracle database, as in the following
example, which inserts an instance of type person_t into the object table person_tab:

INSERT INTO person_tab
 VALUES (person_t('Steve May','987-65-4320','146 Winfield Street'));

1.5.4 Queries
Queries are statements that retrieve data from a database.

A query can return zero, one, or many rows of data. All queries begin with the SQL keyword
SELECT, as in the following example:

SELECT dname FROM dept
 WHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements. However,
OCI applications process queries differently, so they are considered separately in this guide.

Queries can require the program to supply data to the database using input (bind) variables, as
in the following example:

SELECT name
 FROM employees
 WHERE empno = :empnumber;

In the preceding SQL statement, :empnumber is a placeholder for a value that is to be supplied
by the application.

Chapter 1
SQL Statements

1-10

When processing a query, an OCI application also must define output variables to receive the
returned results. In the preceding statement, you must define an output variable to receive any
name values returned from the query.

See Also:

• Overview of Binding in OCI for more information about input bind variables

• Overview of Defining in OCI for information about defining output variables

• Using SQL Statements in OCI for detailed information about how SQL
statements are processed in an OCI program

1.5.5 PL/SQL
PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL processes tasks that are more complicated than simple queries and SQL data
manipulation language statements. PL/SQL allows some constructs to be grouped into a single
block and executed as a unit. Among these are:

• One or more SQL statements

• Variable declarations

• Assignment statements

• Procedural control statements (IF...THEN...ELSE statements and loops)

• Exception handling

You can use PL/SQL blocks in your OCI program to:

• Call Oracle Database stored procedures and stored functions

• Combine procedural control statements with several SQL statements, so that they are
executed as a unit

• Access special PL/SQL features such as records, tables, cursor FOR loops, and exception
handling

• Use cursor variables

• Take advantage of implicit result set capability that allows reuse of existing stored
procedure designs that return implicit result sets

• Access and manipulate objects in an Oracle database

The following PL/SQL example issues a SQL statement to retrieve values from a table of
employees, given a particular employee number. This example also demonstrates the use of
placeholders in PL/SQL statements.

BEGIN
 SELECT ename, sal, comm INTO :emp_name, :salary, :commission
 FROM emp
 WHERE empno = :emp_number;
END;

Chapter 1
SQL Statements

1-11

Note that the placeholders in this statement are not PL/SQL variables. They represent input
values passed to the database when the statement is processed. These placeholders must be
bound to C language variables in your program.

See Also:

• Oracle Database PL/SQL Language Reference for information about coding
PL/SQL blocks

• About Binding Placeholders in PL/SQL for information about working with
placeholders in PL/SQL

1.5.6 Embedded SQL
OCI processes SQL statements as text strings that an application passes to the database on
execution.

The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN) allow you to embed SQL
statements directly into your application code. A separate precompilation step is then
necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

See Also:

Pro*C/C++ Programmer's Guide

1.5.7 Special OCI Terms for SQL
This guide uses special terms to refer to the different parts of a SQL statement.

For example, consider the following SQL statement:

SELECT customer, address
FROM customers
WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales;

It contains the following parts:

• A SQL command - SELECT
• Two select-list items - customer and address
• A table name in the FROM clause - customers
• Two column names in the WHERE clause - bus_type and sales_volume
• A literal input value in the WHERE clause - 'SOFTWARE'

• A placeholder for an input variable in the WHERE clause - :sales

Chapter 1
SQL Statements

1-12

When you develop your OCI application, you call routines that specify to the Oracle database
the address (location) of input and output variables of your program. In this guide, specifying
the address of a placeholder variable for data input is called a bind operation. Specifying the
address of a variable to receive select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations.

See Also:

• Using SQL Statements in OCI for more information about these terms and
operations

1.6 Procedural and Nonprocedural Elements
OCI enables you to develop scalable, multithreaded applications in a multitier architecture that
combines the nonprocedural data access power of structured query language (SQL) with the
procedural capabilities of C and C++.

• In a nonprocedural language program, the set of data to be operated on is specified, but
what operations are to be performed, or how the operations are to be conducted, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and to use
to perform database transactions. It is also the standard language used to access and
manipulate data in modern relational and object-relational database systems.

• In a procedural language program, the execution of most statements depends on previous
or subsequent statements and on control structures, such as loops or conditional
branches, that are not available in SQL. The procedural nature of these languages makes
them more complex than SQL, but it also makes them more flexible and powerful.

The combination of both nonprocedural and procedural language elements in an OCI program
provides easy access to an Oracle database in a structured programming environment.

OCI supports all SQL data definition, data manipulation, query, and transaction control facilities
that are available through an Oracle database. For example, an OCI program can run a query
against an Oracle database. The query can require the program to supply data to the database
using input (bind) variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber;

In the preceding SQL statement, :empnumber is a placeholder for a value that is to be supplied
by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written in SQL
alone. OCI also provides facilities for accessing and manipulating objects in a database.

1.7 Object Support
OCI has facilities for working with object types and objects.

An object type is a user-defined data structure representing an abstraction of a real-world
entity. For example, the database might contain a definition of a person object. That object
might have attributes—first_name, last_name, and age—to represent a person's identifying
characteristics.

Chapter 1
Procedural and Nonprocedural Elements

1-13

The object type definition serves as the basis for creating objects that represent instances of
the object type by using the object type as a structural definition, you could create a person
object with the attribute values 'John', 'Bonivento', and '30'. Object types may also contain
methods—programmatic functions that represent the behavior of that object type.

OCI provides a comprehensive application programming interface for programmers seeking to
use Oracle Database object capabilities.

These capabilities include:

• Executing SQL statements that manipulate object data and schema information

• Passing of object references and instances as input variables in SQL statements

• Declaring object references and instances as variables to receive the output of SQL
statements

• Fetching object references and instances from a database

• Describing the properties of SQL statements that return object instances and references

• Describing PL/SQL procedures or functions with object parameters or results

• Extension of commit and rollback calls to synchronize object and relational functionality

OCI object features can be divided into the following major categories:

• Client-Side Object Cache

• Associative and Navigational Interfaces to access and manipulate objects

• OCI Runtime Environment for Objects

• Type Management: Mapping and Manipulation Functions to access information about
object types and control data attributes of Oracle types

• Object Type Translator (OTT) utility, for mapping internal Oracle Database schema
information to client-side language bind variables

• Client-Side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

• Associative and Navigational Interfaces
What are the different types of interfaces OCI applications can use to access objects?

• OCI Runtime Environment for Objects
OCI provides functions for objects to manage how Oracle Database objects are used on
the client side.

• Type Management: Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle Database objects.

• Object Type Translator
The Object Type Translator (OTT) utility translates schema information about Oracle object
types into client-side language bindings of host language variables, such as structures.

Chapter 1
Object Support

1-14

See Also:

• Encapsulated Interfaces which describes additional OCI calls that are provided to
support manipulation of objects after they have been accessed by SQL
statements

• Oracle Database Concepts

• Oracle Database Object-Relational Developer's Guide

1.7.1 Client-Side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

The object cache stores and tracks object instances that have been fetched by an OCI
application from the server to the client side. The object cache is created when the OCI
environment is initialized. When multiple applications run against the same server, each has its
own object cache. The cache tracks the objects that are currently in memory, maintains
references to objects, manages automatic object swapping, and tracks the meta-attributes or
type information about objects. The object cache provides the following features to OCI
applications:

• Improved application performance by reducing the number of client/server round-trips
required to fetch and operate on objects

• Enhanced scalability by supporting object swapping from the client-side cache

• Improved concurrency by supporting object-level locking

1.7.2 Associative and Navigational Interfaces
What are the different types of interfaces OCI applications can use to access objects?

Applications using OCI can access objects in an Oracle database through several types of
interfaces:

• Using SQL SELECT, INSERT, and UPDATE statements

• Using a C-style pointer chasing scheme to access objects in the client-side cache by
traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation using SQL
SELECT, INSERT, and UPDATE statements. To access Oracle Database objects, these SQL
statements use a consistent set of steps as if they were accessing relational tables. OCI
provides the following sets of functions required to access objects:

• Binding and defining object type instances and references as input and output variables of
SQL statements

• Executing SQL statements that contain object type instances and references

• Fetching object type instances and references

• Describing select-list items of an Oracle object type

OCI also provides a set of functions using a C-style pointer chasing scheme to access objects
after they have been fetched into the client-side cache by traversing the corresponding smart
pointers or REFs. This navigational interface provides functions for:

Chapter 1
Object Support

1-15

• Instantiating a copy of a referenceable persistent object (that is, of a persistent object with
object ID in the client-side cache) by pinning its smart pointer or REF

• Traversing a sequence of objects that are connected to each other by traversing the REFs
that point from one to the other

• Dynamically getting and setting values of an object's attributes

1.7.3 OCI Runtime Environment for Objects
OCI provides functions for objects to manage how Oracle Database objects are used on the
client side.

These functions provide for:

• Connecting to an Oracle database server to access its object functionality, including
initializing a session, logging on to a database server, and registering a connection

• Setting up the client-side object cache and tuning its parameters

• Getting errors and warning messages

• Controlling transactions that access objects in the database

• Associatively accessing objects through SQL

• Describing PL/SQL procedures or functions whose parameters or results are Oracle types

1.7.4 Type Management: Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle Database objects.

• Type Mapping functions allow applications to map attributes of an Oracle schema
represented in the server as internal Oracle data types to their corresponding host
language types.

• Type Manipulation functions allow host language applications to manipulate individual
attributes of an Oracle schema such as setting and getting their values and flushing their
values to the server.

Additionally, the OCIDescribeAny() function provides information about objects stored in the
database.

1.7.5 Object Type Translator
The Object Type Translator (OTT) utility translates schema information about Oracle object
types into client-side language bindings of host language variables, such as structures.

The OTT takes as input an intype file that contains metadata information about Oracle
schema objects. It generates an outtype file and the header and implementation files that
must be included in a C application that runs against the object schema. Both OCI applications
and Pro*C/C++ precompiler applications may include code generated by the OTT. The OTT is
beneficial because it:

• Improves application developer productivity: OTT eliminates the need for you to code the
host language variables that correspond to schema objects.

• Maintains SQL as the data definition language of choice: By providing the ability to
automatically map Oracle schema objects that are created using SQL to host language
variables, OTT facilitates the use of SQL as the data definition language of choice. This in
turn allows Oracle Database to support a consistent model of data.

Chapter 1
Object Support

1-16

• Facilitates schema evolution of object types: OTT regenerates included header files when
the schema is changed, allowing Oracle applications to support schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the outtype file,
and the specific database connection. With Oracle Database, OTT can only generate C
structures that can either be used with OCI programs or with the Pro*C/C++ precompiler
programs.

1.8 Simple Oracle Document Access (SODA)
SODA for C is a C API that is part of Oracle Call Interface (OCI).

SODA for C implements Simple Oracle Document Access (SODA). You can use it to perform
create, read (retrieve), update, and delete (CRUD) operations on documents of any kind, and
you can use it to query JSON documents. You compile programs that use SODA for C the
same way you compile other OCI programs. SODA is a set of NoSQL-style APIs that let you
create and store collections of documents in Oracle Database, retrieve them, and query them,
without needing to know Structured Query Language (SQL) or how the data in the documents
is stored in the database. Oracle Database supports storing and querying JSON data. To
access this functionality, you need structured query language (SQL) with special JSON SQL
operators. SODA for C hides the complexities of SQL/JSON programming.

Related Topics

• Oracle Database Introduction to Simple Oracle Document Access (SODA)

• Oracle Database SODA for C Developers Guide

• OCI SODA Functions
The following table lists the OCI SODA functions that are described in this chapter.

• Handles
Almost every OCI call includes in its parameter list one or more handles.

• SODA Collection Handle Attributes
Lists and describes the OCI SODA collection handle attributes.

• SODA Document Handle Attributes

• SODA Operation Options Handle Attributes
Lists and describes the OCI SODA Operation Options handle attributes.

• SODA Output Options Handle Attributes
Lists and describes the OCI SODA Output Options handle attributes. This handle is used
to return the number of documents processed by a bulk operation. Currently, it is returned
only by bulk insert methods.

1.9 Encapsulated Interfaces
All the data structures that are used by OCI calls are encapsulated in the form of opaque
interfaces that are called handles.

A handle is an opaque pointer to a storage area allocated by the OCI library that stores context
information, connection information, error information, or bind information about a SQL or
PL/SQL statement. A client allocates certain types of handles, populates one or more of those
handles through well-defined interfaces, and sends requests to the server using those handles.
In turn, applications can access the specific information contained in a handle by using
accessor functions.

Chapter 1
Simple Oracle Document Access (SODA)

1-17

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces with these
handles has several benefits to the application developer, including:

• Reduction of server-side state information that must be retained, thereby reducing server-
side memory usage

• Improvement of productivity by eliminating the need for global variables, making error
reporting easier, and providing consistency in the way OCI variables are accessed and
used

• Allows changes to be made to the underlying structure without affecting applications

1.10 User Authentication and Password Management
OCI provides application developers with user authentication and password management.

This is supported in several ways:

• OCI enables a single OCI application to authenticate and maintain multiple users.

• OCI enables the application to update a user's password, which is particularly helpful if an
expired password message is returned by an authentication attempt.

OCI supports two types of login sessions:

• A login function for sessions by which a single user connects to the database using a login
name and password

• A mechanism by which a single OCI application authenticates and maintains multiple
sessions by separating the login session (the session created when a user logs in to an
Oracle database) from the user sessions (all other sessions created by a user)

Privileged connections, such as SYSDBA, SYSOPER, proxy authentication, external authentication,
and others, are also supported.

• Identity and Access Management (IAM) Token-Based Authentication
This section describes token-based authentication for OCI applications. OCI accepts two
types of authentication credentials, password and external. External refers to Kerberos,
SSL, or RADIUS credentials. An IAM database access token (DB token) is considered as
an external authentication credential.

1.10.1 Identity and Access Management (IAM) Token-Based Authentication
This section describes token-based authentication for OCI applications. OCI accepts two types
of authentication credentials, password and external. External refers to Kerberos, SSL, or
RADIUS credentials. An IAM database access token (DB token) is considered as an external
authentication credential.

Note:

This feature is currently available only on the Linux x86-64 platform.

An updated Oracle Instant Client 19.13 release for Linux x64 introduces token-based
authentication for OCI applications. The application obtains the DB token from IAM. See
Authenticating and Authorizing IAM Users for Oracle DBaaS Databases sections for more
information. You can pass this token to the OCI using one of the following methods:

Chapter 1
User Authentication and Password Management

1-18

• At deployment without application change: Store the token in a token file whose
location is provided as an input to OCI the functions. It is assumed that a token file
contains only one token corresponding to an IAM user.

• Programmatically requiring application change: Provide the token dynamically as an
attribute-value pair using the enhanced OCI API.

Currently, OCI supports Proof of Possession (PoP) access tokens of Oracle Cloud
Infrastructure for IAM token-based authentication. The PoP tokens are associated with a
public-private key pair.

In an Oracle Cloud Infrastructure PoP token, the public key of the client is embedded in the
token as a JSON Web Key (JWK) field. The database server can verify that OCI has the
corresponding private key. An Oracle Cloud Infrastructure PoP token is used for both identity
and scope for resources within the tenancy or compartments. When a PoP DB token is
provided for database access, the associated private key must also be provided. The client of
the token can be authenticated by registering the PoP key during the Single Sign-On (SSO)
flow.

Note:

The IAM DB token are short-lived with a default expiry time of 60 minutes. They need
to be renewed after expiring.

See also:

• Authentication Information Handle Attributes

• TAF Support for IAM Based Token Authentication in OCI

• TOKEN_LOCATION

• TOKEN_AUTH

• Configuring a Client Connection for SQL*Plus That Uses an IAM Token

• Authenticating and Authorizing IAM Users for Oracle DBaaS Databases

• Standalone User Session
This section describes the enhancements for supporting DB tokens for standalone session
creation.

• Session Pool
This section describes the enhancements to OCISessionPool for supporting DB tokens.

1.10.1.1 Standalone User Session
This section describes the enhancements for supporting DB tokens for standalone session
creation.

The following are the only session creation APIs that are enhanced to support DB tokens:

• OCISessionBegin()
• OCISessionGet()
• Providing the DB Token Programmatically

Chapter 1
User Authentication and Password Management

1-19

• Providing the DB Token in a File
This section explains how the DB token is provided in a file.

1.10.1.1.1 Providing the DB Token Programmatically
Typically the OCISessionBegin() and OCISessionGet()functions accept a user handle with a
database username and password set as attributes. With token-based authentication, instead
of setting the the username and password the two new attributes, OCI_ATTR_TOKEN and
OCI_ATTR_IAM_PRIVKEY, must be set on the user handle. These attributes must be set before
invoking the OCISessionBegin() function. These attributes specify the DB token and the
private key respectively.

There are other attributes that are used in IAM-based token authentication to set the callback
functions for session pools.

To provide the DB token programmatically:

• OCI_CRED_EXT mode is passed to the OCISessionBegin() call.

• OCI_SESSGET_CREDEXT mode is passed to the OCISessionGet() call.

See Also:

Authentication Information Handle Attributes

1.10.1.1.2 Providing the DB Token in a File
This section explains how the DB token is provided in a file.

To provide the DB token in a file

• The DB token is a unique string of characters that you can request from IAM using the
Oracle Cloud Infrastructure (OCI) Command Line Interface (CLI).

• This DB token is copied to a token file.

• The location of the token file is specified in the database connect string with a new
parameter, TOKEN_LOCATION.

• OCI_CRED_EXT mode is passed to the OCISessionBegin() call.

• OCI_SESSGET_CREDEXT mode is passed to the OCISessionGet() call.

• No username or password is specified in the authentication handle or the user handle in
the preceding calls.

See Also:

Authenticating and Authorizing IAM Users for Oracle DBaaS Databases

1.10.1.2 Session Pool
This section describes the enhancements to OCISessionPool for supporting DB tokens.

Chapter 1
User Authentication and Password Management

1-20

Applications use OCI session pool to cache the sessions. The application can get a session
from the pool, execute the database operations and return the session back to the pool.

Note:

DB token-based authentication is supported only by the homogeneous session pools.

• Providing the DB Token Programmatically

• Providing the DB Token in a File

1.10.1.2.1 Providing the DB Token Programmatically
An authentication handle can be set on a session pool handle to specify pre-session creation
attributes. The authentication handle is enhanced to support setting the DB token and private
key.

Perform the following steps before creating the session pool as this feature requires the DB
token and private key attributes to be set on this authentication handle.

1. Allocate OCIAuthInfo and OCISPool handles

2. Set the DB token and private key attributes on the authentication handle

3. Set the authentication handle on the session pool handle

4. Call OCISessionPoolCreate(…, <null user/passwd arguments>
…,OCI_SPC_HOMOGENEOUS)

5. Issue OCISessionGet(…, OCI_SESSGET_SPOOL) and OCISessionRelease() calls using the
pool to check out and check in the sessions

6. The token and the key in the authentication handle are cached by OCI after the call to the
OCISessionPoolCreate() function

7. When the pool needs to expand (create new connections), if the token expires, then it calls
a callback function that must provide the latest token and key

OCI also provides other attributes to set the callback function and context for session pools
using IAM-based token authentication. The callback attributes must be set to renew the
expired tokens for the sessions in the session pool programmatically through OCI. Refer to the
section "Authentication Information Handle Attributes" for more details on creating and setting
the callback attributes, functions, and context for token-based authentication in OCI.

1.10.1.2.2 Providing the DB Token in a File

To provide the DB token in a file:

• The location of the token file is specified in the database connect string with a new
parameter TOKEN_LOCATION

• Call OCISessionPoolCreate(…, <null user/passwd arguments>, .. OCI_DEFAULT)
• Pass OCI_SESSGET_CREDEXT mode to the OCISessionGet() call

• No username or password is specified in the authentication handle or the user handle in
the preceeding calls

Chapter 1
User Authentication and Password Management

1-21

• If the session pool has to create a new connection, and the original token has expired,
session establishment succeeds if the user has replaced the original token file contents
with the new token value

See Also:

• TOKEN_LOCATION

• TOKEN_AUTH

1.11 Features to Improve Application Performance and
Scalability

OCI provides several feature extensions to improve application performance and scalability.

Application performance has been improved by reducing the number of client to server round-
trips required, and scalability improvements have been made by reducing the amount of state
information that must be retained on the server side. Some of these features include:

• Statement caching to improve performance by caching executable statements that are
used repeatedly

• Client result caching to limit the number of round trips to the database server

• Implicit prefetching of SELECT statement result sets to eliminate the describe round-trip,
reduce round-trips, and reduce memory usage

• Elimination of open and close cursor round-trips

• Support for multithreaded environments

• Session multiplexing over connections

• Consistent support for a variety of configurations, including standard two-tier client/server
configurations, server-to-server transaction coordination, and three-tier transaction
processing (TP)-monitor configurations

• Consistent support for local and global transactions, including support for the XA
interface's TM_JOIN operation

• Improved scalability by providing the ability to concentrate connections, processes, and
sessions across users on connections and by eliminating the need for separate sessions to
be created for each branch of a global transaction

• Allowing applications to authenticate multiple users and allow transactions to be started on
their behalf

1.12 Oracle Database Advanced Queuing
OCI provides an interface to Oracle Database Advanced Queuing (Database AQ) feature.

Database AQ provides message queuing as an integrated part of Oracle Database. Database
AQ provides this functionality by integrating the queuing system with the database, thereby
creating a message-enabled database. By providing an integrated solution, Database AQ frees
you to devote your efforts to your specific business logic rather than having to construct a
messaging infrastructure.

Chapter 1
Features to Improve Application Performance and Scalability

1-22

See Also:

OCI and Database Advanced Queuing

1.13 XA Library Support
OCI supports the Oracle XA library.

The xa.h header file is in the same location as all the other OCI header files. For Linux or
UNIX, the path is $ORACLE_HOME/rdbms/public. Users of the demo_rdbms.mk file on Linux or
UNIX are not affected because this make file includes the $ORACLE_HOME/rdbms/public
directory.

For Windows, the path is ORACLE_BASE\ORACLE_HOME\oci\include.

See Also:

• Oracle XA Library for more information about Windows and XA applications

• Oracle Database Development Guide for information about developing
applications with Oracle XA

1.14 Annotations Support in OCI
This section describes the annotations functionality support in OCI.

Annotation mechanism stores application metadata centrally in the database, so that they can
be shared across applications, modules, and microservices. An individual annotation has a
name and an optional value. Both the name and the value are freeform text fields. Multiple
annotations can be specified for the same schema object. Multiple annotations can be added
at once to a schema object (in a single DDL). Describe functionality is enhanced for tables,
views, and columns to provide annotation information.

An annotation is either a (Name, Value) pair or simply a Name. For instance, an annotation
(Display_Label, ‘Employee Salary’) has a name and a value, whereas an annotation
(UI_Hidden) has only a name and it does not need a value. The latter is a standalone
annotation, where its existence is enough to specify that the column should be hidden.

OCI now supports describing annotations for tables, views, table/view columns, and
materialized views.

Following is a sample pseudocode for retrieving annotations in OCI using OCIAttrGet() and
OCIParamGet():

OCIParam *paramhp; /* parameter handle */
 OCIParam *annotations; /* list of annotations */
 OCIParam *arg; /* argument handle */
 text *key;
 text *value;

Chapter 1
XA Library Support

1-23

 ub4 keylen;
 ub4 valuelen;
 ub4 num_annotations = 0;
 ub4 i;
...
 if ((status = OCIAttrGet(paramhp, OCI_DTYPE_PARAM, &numannotations, 0,
 OCI_ATTR_NUM_ANNOTATIONS, errhp)) != OCI_SUCCESS)
 checkerr (errhp, status);

 if (numannotations)
 {
 if ((status = OCIAttrGet(paramhp, OCI_DTYPE_PARAM, &annotations, 0,
 OCI_ATTR_LIST_ANNOTATIONS, errhp)) != OCI_SUCCESS)
 checkerr (errhp, status);
 for (i = 1; i <= numannotations; ++i)
 {
 if (status = OCIParamGet (annotations, OCI_DTYPE_PARAM, errhp,
 (dvoid **)&arg, i) != OCI_SUCCESS)
 checkerr (errhp, status);

 if (status = OCIAttrGet ((dvoid *)arg, OCI_DTYPE_PARAM, &key,
 (ub4 *)&keylen, OCI_ATTR_ANNOTATION_KEY, errhp) != OCI_SUCCESS)
 checkerr (errhp, status);

 if (status = OCIAttrGet ((dvoid *)arg, OCI_DTYPE_PARAM, &value,
 (ub4 *)&valuelen, OCI_ATTR_ANNOTATION_VALUE, errhp) != OCI_SUCCESS)
 checkerr (errhp, status);
 } /* end for loop */
 }

• Annotations Support for Objects

See Also:

• Parameter Attributes

• ALL_ANNOTATION_VALUES

• ALL_ANNOTATIONS

• ALL_ANNOTATIONS_USAGE

1.14.1 Annotations Support for Objects
OCI supports retrieving annotations from tables, views, materialized views, and their columns.
A new field containing the list of annotations are added to the describe structures for tables,
views, and columns.

1.15 Oracle Instant Client and Oracle Instant client Basic Light
Oracle Instant Client enables applications to connect to a local or remote Oracle Database for
development and production deployment

Chapter 1
Oracle Instant Client and Oracle Instant client Basic Light

1-24

• About Oracle Instant Client: The Oracle Instant Client libraries provide the necessary
network connectivity, as well as Oracle Database client-side files to create and run Oracle
Call Interface (OCI), OCCI, ODBC, and JDBC OCI applications to make full use of Oracle
Database.

• About Oracle Instant Client Basic Light: Oracle Instant Client Basic Light further
reduces the disk space requirements of a client installation.

See Also:

Installing Oracle Instant Client

Chapter 1
Oracle Instant Client and Oracle Instant client Basic Light

1-25

2
Building and Configuring OCI Applications

This chapter describes features about building and configuring OCI applications on Linux,
UNIX, and Windows operating systems.

For other supported operating systems, see the platform specific installation guides for more
information.

This chapter includes the following topics:

• Header File and Makefile Locations

• Building an OCI Application on Linux and UNIX

• Building an Application on Windows

• Database Connection Strings

• Client and Server Operating with Different Versions of Time Zone Files

• OCI Support for Centralized Configuration Store

• OCI Client-Side Deployment Parameters Using oraaccess.xml

• About Compatibility and Upgrading

• Fault Diagnosability in OCI

• Header File and Makefile Locations
The OCI and OCCI header files that are required for OCI and OCCI client application
development on Linux and UNIX operating systems reside in the $ORACLE_HOME/rdbms/
public directory.

• Building an OCI Application on Linux and UNIX
How to build an OCI application on Linux and UNIX.

• Building an Application on Windows
How to build an OCI application on Windows.

• Database Connection Strings
This topic describes Oracle Net naming methods for connecting to Oracle Databases.

• Client and Server Operating with Different Versions of Time Zone Files
In Oracle Database Release 11.2 (or later) you can use different versions of the time zone
file on the client and server.

• OCI Support for Centralized Configuration Store
This section discusses Oracle Call Interface (OCI) support for Centralized Configuration
Store also known as Config Store or Centralized Configuration Provider.

• OCI Client-Side Deployment Parameters Using oraaccess.xml
This topic describes the OCI client-side deployment parameters using oraaccess.xml.

• About Compatibility and Upgrading
The following sections discuss issues concerning compatibility between different releases
of OCI client and server, changes in the OCI library routines, and upgrading an application
from the release 7.x OCI to the current release of OCI:

• Fault Diagnosability in OCI

2-1

2.1 Header File and Makefile Locations
The OCI and OCCI header files that are required for OCI and OCCI client application
development on Linux and UNIX operating systems reside in the $ORACLE_HOME/rdbms/public
directory.

These files are available both with the Oracle Database Server installation, and with the Oracle
Database Client Administration and Custom installations.

All demonstration programs and their related header files reside in the $ORACLE_HOME/rdbms/
demo directory once they are installed. These demonstration files are installable only from the
Examples media. See OCI Demonstration Programs for the names of these programs and
their purposes.

Several makefiles are provided in the demo directory. Each makefile contains comments with
instructions on its use in building OCI executables. Oracle recommends that you use these
demonstration makefiles whenever possible to avoid errors in compilation and linking.

The demo_rdbms.mk file in the demo directory and is an example makefile. See the comments
on how to build the demonstration OCI programs. The demo_rdbms.mk file includes
the $ORACLE_HOME/rdbms/public directory. Ensure that your own customized makefiles have
the $ORACLE_HOME/rdbms/public directory in the INCLUDE path.

The ociucb.mk file is a makefile in demo for building a callback shared library.

2.2 Building an OCI Application on Linux and UNIX
How to build an OCI application on Linux and UNIX.

This topic describes the features of OCI that apply to building applications on Linux and UNIX
in the following topics:

• Oracle Directory Structure

• Demonstration OCI Programs

• Oracle Directory Structure
The $ORACLE_HOME directory contains the following directories described in the following
table that are relevant to OCI.

• Demonstration OCI Programs
A set of OCI demonstration programs and their corresponding project files are optionally
installed after an Oracle Database installation and set up in the ORACLE_BASE/
ORACLE_HOME/demo subdirectory.

Chapter 2
Header File and Makefile Locations

2-2

See Also:

• Oracle Database Client Installation Guide for Linux for operating system
requirements for x86–64 Linux platforms, supported Oracle Linux and Red Hat
Enterprise distributions for x86-64 platforms, and installation requirements for
programming environments for Linux x86-64

• Oracle Database Instant Client Installation Guide for Apple Mac OS X (Intel) for
checking the software requirements

2.2.1 Oracle Directory Structure
The $ORACLE_HOME directory contains the following directories described in the following table
that are relevant to OCI.

These directories are for the full client and Oracle Database, but not for the Oracle Instant
Client. These files include the library files needed to link and run OCI applications, and link with
other Oracle products.

Table 2-1 ORACLE_HOME Directories and Contents

Directory Name Contents

/admin Configuration files

/demo Sample programs, make files, SQL files, and so
forth

/imclude Header files

/lib Library files

/mesg Message files

/public Public header files

2.2.2 Demonstration OCI Programs
A set of OCI demonstration programs and their corresponding project files are optionally
installed after an Oracle Database installation and set up in the ORACLE_BASE/ORACLE_HOME/
demo subdirectory.

Build and run these OCI demonstration programs to familiarize yourself with the steps involved
in developing OCI applications.

For Oracle Database Enterprise Edition (Oracle Database EE) users:

To build a demo OCI program, run the make file (demo_rdbms.mk) located in the /demo directory.
For example, to build a single OCI demo, use the following make command syntax:

make -f demo_rdbms.mk build EXE=demo OBJS="demo.o ..."

For example, to build the OCI cdemo81.c program, enter the following make command:

make -f demo_rdbms.mk build EXE=cdemo81 OBJS=cdemo81.o

Chapter 2
Building an OCI Application on Linux and UNIX

2-3

In this example, the executable file is created or updated from the object file, which in turn is
made by compiling the source file cdemo81.c.

Where:

The build option in the command, regenerates client shared libraries. That is, it results in re-
linking the oracle shared library. The build command option should be specified only if you
apply a patch to the client.

For Oracle Database Free users:

You should not use the build option in the demo_rdbms.mk file as it does not support
regenerating the client shared library. Oracle Database Free is bundled only with binaries
required to run the applications, utilities, and the database. You can compile and link
application and demo programs with the specified header files.

Note:

genclntsh and genclntst scripts cannot be used as the object (.o's) or archive (.a's)
libraries required for patching and re-linking are not available in the installed location.

See Also:

• Oracle Database Examples Installation Guide for information about installing the
demonstration OCI programs using Oracle Universal Installer

• Review the contents of the demo_rdbms.mk file to learn more about running the
many other OCI demonstration programs that are available in the demo
subdirectory.

• OCI Demonstration Programs for more information about OCI demonstration
programs

2.3 Building an Application on Windows
How to build an OCI application on Windows.

See Getting Started with OCI for Windows for complete information.

See Also:

Oracle Database Client Installation Guide for Microsoft Windows for information
about Oracle Database software client requirements.

2.4 Database Connection Strings
This topic describes Oracle Net naming methods for connecting to Oracle Databases.

Chapter 2
Building an Application on Windows

2-4

In particular, the connect_identifier in the OCIServerAttach() call can be specified in the
following formats:

• Starting with Oracle Database 19c release, the Easy Connect Plus syntax has been
extended, see About Easy Connect Plus.

An Easy Connect Plus string has the following syntax:

[[protocol:]//]host1{,host12}[:port1]{,host2:port2}[/service_name][:server]
[/instance_name][?parameter_name=value{¶meter_name=value}]

• You can set the value of net_service_name to OCIServerAttach() as follows:

net_service_name=
 (DESCRIPTION=
(ADDRESS=(protocol_address_information))
 (CONNECT_DATA=
 (SERVICE_NAME=service_name)))

• As an Oracle Net connect descriptor of the form:

"(DESCRIPTION=(ADDRESS=(PROTOCOL=protocol-name) (HOST=host-name) (PORT=port-number))
(CONNECT_DATA=(SERVICE_NAME=service-name)))"

• A Connection Name that is resolved through Directory Naming where the site is configured
for LDAP server discovery.

• Examples of Oracle Database Connection String Connect Identifiers
If you are using OCI applications, for example SQL*Plus, then you can specify the
database connection string in the following ways:

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database Net
Services Reference for more information about naming methods such as
tnsnames.ora and directory naming.

2.4.1 Examples of Oracle Database Connection String Connect Identifiers
If you are using OCI applications, for example SQL*Plus, then you can specify the database
connection string in the following ways:

If the listener.ora file on the Oracle database contains the following:

LISTENER = (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))
)

SID_LIST_LISTENER = (SID_LIST=
 (SID_DESC=(SID_NAME=rdbms3)(GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
(ORACLE_HOME=/home/dba/rdbms3/oracle))
)

For example, the OCI application connect identifier has of the following format:

"server6:1573/rdbms3.server6.us.alchemy.com"

The connect identifier can also be specified as:

Chapter 2
Database Connection Strings

2-5

"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))(CONNECT_DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

Alternatively, you can set the LOCAL environment variable to any of the previous connect
identifiers and connect without specifying the connect identifier. For example:

export LOCAL=//server6:1573/rdbms3.server6.us.alchemy.com

You can also specify the LOCAL environment variable as follows:

export LOCAL=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))
(CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

Then you can invoke the OCI application with an empty connect identifier. For example, to run
SQL*Plus:

sqlplus user

The connect descriptor can also be stored in the tnsnames.ora file. For example, the
tnsnames.ora file contains the following connect descriptor:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))(CONNECT_DATA=
(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

If the tnsnames.ora file is located in the /home/webuser/myconfigs directory, then you can set
the variable TNS_ADMIN (or LOCAL on Windows) as:

export TNS_ADMIN=/home/webuser/myconfigs

Then you can use the connect identifier conn_str for invoking OCI application, for example
SQL*Plus, or for your OCI connection.

Note:

TNS_ADMIN specifies the directory where configuration file such as tnsnames.ora file
is located and is not the full path of the tnsnames.ora file.

If the preceding tnsnames.ora file is located in an installation based Oracle home in the /
network/server6/home/dba/oracle/network/admin directory, then the ORACLE_HOME
environment variable can be set as follows and OCI applications, for example SQL*Plus can
be invoked as previously, with the identifier conn_str:

export ORACLE_HOME=/network/server6/home/dba/oracle

Finally, if tnsnames.ora can be located by TNS_ADMIN or ORACLE_HOME, then the LOCAL
environment variable can be set as follows enabling you to invoke OCI application, for example
SQL*Plus without a connect identifier:

export LOCAL=conn_str

2.5 Client and Server Operating with Different Versions of Time
Zone Files

In Oracle Database Release 11.2 (or later) you can use different versions of the time zone file
on the client and server.

Chapter 2
Client and Server Operating with Different Versions of Time Zone Files

2-6

Both client and server must be 11.2 or later to operate in such a mixed mode. This section
discusses the ramifications of operating in such a mode. To avoid these ramifications use the
same time zone file version for client and server.

The following behavior is seen when the client and server use different time zones file
versions. Note that the use of different time zone file versions only affects the handling of
TIMESTAMP WITH TIMEZONE (TSTZ) data type values.

• The OCI Datetime and Interval APIs listed here unconditionally raise an error when the
input parameters are of TSTZ type. This is because these operations depend on the local
time zone file on the client that is not synchronized with the database. Continuing with the
computation in such a configuration can result in inconsistent computations across the
client and database tiers.

OCIDateTimeCompare()
OCIDateTimeConstruct()
OCIDateTimeConvert()
OCIDateTimeSubtract()
OCIIntervalAdd()
OCIIntervalSubtract()
OCIIntervalFromTZ()
OCIDateTimeGetTimeZoneName()
OCIDateTimeGetTimeZoneOffset()1

OCIDateTimeSysTimeStamp()

• There is a performance penalty when you retrieve or modify TSTZ values. The performance
penalty arises because of the additional conversions needed to compensate for the client
and server using different time zone file versions.

• If new time zone regions are defined by the more recent time zone file, you can see an
error operating on a TIMESTAMP WITH TIMEZONE value belonging to the new region on a
node that has a time zone file version that does not recognize the new time zone region.

Applications that manipulate opaque type or XMLType instances or both containing TSTZ type
attributes must use the same time zone file version on client and server to avoid data loss.

See Also:

Oracle Database Globalization Support Guide for information about upgrading the
time zone file and timestamp with time zone data

2.6 OCI Support for Centralized Configuration Store
This section discusses Oracle Call Interface (OCI) support for Centralized Configuration Store
also known as Config Store or Centralized Configuration Provider.

Centralized Configuration Store can be Azure-based or Oracle Cloud Infrastructure based.
Centralized Configuration Store manages all application configurations centrally. Instead of
storing connect descriptors on a client in the tnsnames.ora file, you can store them in a
Centralized Configuration Store. Oracle Call Interface related parameters can also be
configured in Centralized Configuration Store.

1 Returns an ORA-01805 error when timezone files on the client and server do not match (regions are not synchronized);
returns OCI_SUCCESS when region time zone values are the same (represent the same instant in UTC), though the TIME
ZONE offsets are different.

Chapter 2
OCI Support for Centralized Configuration Store

2-7

• User Credentials

• Application Attributes

See Also:

Overview of Centralized Configuration Provider Naming

2.6.1 User Credentials
For Centralized Configuration Store credentials to take effect, the username and password
fields must not be set in the authentication handle (authp/usrhp). If they are set on the
authentication handle, then the configuration store values are ignored.

• OCISessionBegin()

• OCISessionGet()

• OCISessionPoolCreate()

• Credentials Precedence

• Restrictions

2.6.1.1 OCISessionBegin()
For the OCISessionBegin function, the username and password should not be set on authp.
Also, OCI_CRED_RDBMS is the cred value that is passed. The configuration store is detected
internally and login succeeds.

OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
 (ub4) OCI_HTYPE_AUTHINFO,
 (size_t) 0, (dvoid **) 0);
(OCISessionBegin(svchp, errhp, authp, (ub4) OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT))

Note:

The connect string must point to the configuration store with appropriate credentials.

2.6.1.2 OCISessionGet()
For the OCISessionGet function, the username and password should not be set on authp. That
is, username or password are not set on user auth handle (authp)

OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
 (ub4) OCI_HTYPE_AUTHINFO,
 (size_t) 0, (dvoid **) 0);

 OCISessionGet(envhp, errhp, &svchp, authp,

Chapter 2
OCI Support for Centralized Configuration Store

2-8

 (OraText *)dbname, (ub4)strlen(dbname), NULL,
 0, NULL, NULL, NULL, OCI_DEFAULT|OCI_SESSGET_STMTCACHE));

Note:

The connect string must point to the Centralized Configuration Store with appropriate
credentials.

See Also:

Configuring the Easy Connect Naming Method

2.6.1.3 OCISessionPoolCreate()
For the OCISessionPoolCreate function, we need to pass an empty username and password.

OraText *appusername ="";
OraText* apppassword = "";
ub4 appusernameLen = strlen(appusername);
ub4 apppasswordLen = strlen(apppassword);

OCISessionPoolCreate(envhp, errhp,poolhp, (OraText **)&poolName, (ub4
*)&poolNameLen, database, (ub4)strlen((const signed char *)database),
sessMin, sessMax, sessIncr, (OraText *)appusername, (ub4)appusernameLen,
(OraText *)apppassword, (ub4)apppasswordLen, OCI_SPC_HOMOGENEOUS));

Note:

The connect string must point to the Centralized Configuration Store with appropriate
credentials.

2.6.1.4 Credentials Precedence
The API user credentials have higher precedence over configuration store credentials.
Configuration store credentials are picked only when it has been configured and the API
credentials are not provided. You can check if the configuration store has credentials set, using
OCI_ATTR_SERVER_FLAGS flag attribute. After OCIServerAttach() function call, you can check
OCI_ATTR_SERVER_FLAGS flag to check if credentials were detected in the configuration store. If
these flags are not set, then the application can choose alternate ways to obtain the username
or password, for example, prompts the user for the credentials.

• OCI_ATTR_SERVER_FLAGS

2.6.1.4.1 OCI_ATTR_SERVER_FLAGS
Starting with Oracle Database Release 23ai, a new attribute, OCI_ATTR_SERVER_FLAGS is
introduced in the server handle (OCIServer *srvhp). Within the attribute

Chapter 2
OCI Support for Centralized Configuration Store

2-9

OCI_ATTR_SERVER_FLAGS, two flags OCI_SERVER_FLAG_CONFIG_USR,
OCI_SERVER_FLAG_CONFIG_PASSWORD are included. These flags are used to indicate whether the
OCIServerAttach() function returned a configuration username and password respectively.
Applications can leverage this information to decide if they need to provide alternate login
information to OCISessionBegin() function through the authentication handle or through
external authentication mechanisms specified by setting credit to OCI_CRED_EXT.

OCIServerAttach (srvhp, errhp, (text *)dbname,
 (sb4) strlen((char *)dbname), 0);
OCIAttrGet((dvoid *)srvhp, (ub4)OCI_HTYPE_SERVER,
 (dvoid *)&serverFlag, (ub4 *)0,
 (ub4)OCI_ATTR_SERVER_FLAGS,
 errhp);
boolean isUser = (serverFlag & OCI_SERVER_FLAG_CONFIG_USR)? TRUE: FALSE;
boolean isPass = (serverFlag & OCI_SERVER_FLAG_CONFIG_PASSWORD) ?TRUE : FALSE;

2.6.1.5 Restrictions
The username and password from the configuration store are not applicable for OCI session
pool created in OCI_DEFAULT mode (heterogeneous pool). OCISessionPoolCreate() created
with mode OCI_DEFAULT returns an error. For all other modes, it continues to work.

The username and password from the configuration store are not applicable for OCI
connection pool. Error is returned if configuration store is detected while calling
OCIConnectionPoolCreate() function.

The username and password from the configuration store are not applicable for Oracle Cloud
Interface (OCI) connections created using OCI_CRED_EXT credential parameter or fetched using
OCISessionGet() function having OCI_SESSGET_CREDEXT and OCI_SESSGET_CREDPROXY mode
parameters.

2.6.2 Application Attributes

Table 2-2 Configurable Application Parameters

Paramet
er

OCI
Attribut
e

Oraaccess Keys Azure
Keys

Oracle Cloud
Infrastructure
Keys

Value Description

Prefetch
rows

OCI_ATT
R_PREFE
TCH_ROW
S

<prefetch>
<rows>[Value
]</rows>
</prefetch>

/oci/
prefe
tch_r
ows

"oci":
{"prefetch_ro
ws":[Value]}

0 to
UB4MAXV
AL

Specifies the
number of rows to
be prefetched
during statement
execute.

Stateme
nt cache
size

OCI_ATT
R_STMTC
ACHESIZ
E

<statement_cach
e> /oci/

state
ment_
cache
_size

"oci":
{"statement_c
ache_size":
[Value]}

0 to
UB4MAXV
AL

Specifies the
number of OCI
statement handles
that can be cached
per session.

Chapter 2
OCI Support for Centralized Configuration Store

2-10

Table 2-2 (Cont.) Configurable Application Parameters

Paramet
er

OCI
Attribut
e

Oraaccess Keys Azure
Keys

Oracle Cloud
Infrastructure
Keys

Value Description

Lob
prefetch
size

OCI_ATT
R_DEFAU
LT_LOBP
REFETCH
_SIZE

<lob_prefetch_s
ize> /oci/

lob_p
refet
ch_si
ze

"oci":
{"lob_prefetc
h_size":
[Value]}

0 to
UB4MAXV
AL
(bytes)

To improve OCI
access of smaller
LOBs, LOB data
can be prefetched
and cached while
also fetching the
locator.

Session
min

min
argumen
t in
OCISess
ionPool
Create(
)

<min_size>
/oci/
sessi
on_po
ol/mi
n

"oci":
{
"session_pool
":
 {
 "min":
[Value]
 }
}

0 to
UB4MAXV
AL

Minimum sessions
in the pool

Session
max

max
argumen
t in
OCISess
ionPool
Create(
)

<max_size>
/oci/
sessi
on_po
ol/ma
x

"oci":
{
"session_pool
":
 {
 "max":
[Value]
 }
}

0 to
UB4MAXV
AL

Maximum sessions
the pool can
expand.

Session
incr

incr
argumen
t in
OCISess
ionPool
Create(
)

<increment>
/oci/
sessi
on_po
ol/
incre
ment

"oci":
{
"session_pool
":
 {

"increment":
[Value]
 }
}

0 to
UB4MAXV
AL

Increment by this
value during pool
expansion.

Chapter 2
OCI Support for Centralized Configuration Store

2-11

Table 2-2 (Cont.) Configurable Application Parameters

Paramet
er

OCI
Attribut
e

Oraaccess Keys Azure
Keys

Oracle Cloud
Infrastructure
Keys

Value Description

Max
lifetime
session

OCI_ATT
R_SPOOL
_MAX_LI
FETIME_
SESSION

<max_life_tim
e_session>

/oci/
sessi
on_po
ol/
max_l
ifeti
me_se
ssion

"oci":
{
"session_pool
":
 {

"max_lifetime
_session":
[Value]
 }
}

0 to
UB4MAXV
AL
(seconds
)

Clean up session if
max lifetime
session is reached

Max use
session

OCI_ATT
R_SPOOL
_MAX_US
E_SESSI
ON

<max_use_sessio
n> /oci/

sessi
on_po
ol/
max_u
se_se
ssion

"oci":
{
"session_pool
":
 {

"max_use_sess
ion": [Value]
 }
}

0 to
UB4MAXV
AL

Clean up session if
reused certain
times.

Inactivity
timeout

OCI_ATT
R_SPOOL
_TIMEOU
T

<inactivity_tim
eout> /oci/

sessi
on_po
ol/
inact
ivity
_time
out

"oci":
{
"session_pool
":
 {

"inactivity_t
imeout":
[Value]
 }
}

0 to
UB4MAXV
AL
(seconds
)

Clean up session if
inactivity timeout
expires.

• Precedence

Chapter 2
OCI Support for Centralized Configuration Store

2-12

See Also:

• Azure App Configuration Store

• Step 3: Add Oracle Call Interface Parameters (Optional)

2.6.2.1 Precedence
You can configure the OCI parameters in one of the following ways:

• Cloud Config Store

• oraaccess.xml

• API specification

Centralized Configuration Store has the highest precedence followed by Oraaccess.xml while
API specification has the least preference.

2.7 OCI Client-Side Deployment Parameters Using
oraaccess.xml

This topic describes the OCI client-side deployment parameters using oraaccess.xml.

This section includes the following topics:

• About oraaccess.xml

• About Client-Side Deployment Parameters Specified in oraaccess.xml

• High Level Structure of oraaccess.xml

• About Specifying Global Parameters in oraaccess.xml

• About Specifying Defaults for Connection Parameters

• Overriding Connection Parameters at the Connection-String Level

• About OCI Session Pool Configuration in oraaccess.xml

• File (oraaccess.xml) Properties

• About oraaccess.xml
Starting with Oracle Database Release 12c Release 1 (12.1), Oracle provides an
oraaccess.xml file, a client-side configuration file.

• About Client-Side Deployment Parameters Specified in oraaccess.xml
When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml files, the
oraaccess.xml file setting takes precedence over the corresponding sqlnet.ora file
setting.

• High Level Structure of oraaccess.xml
Describes the high-level structure of the oraaccess.xml file.

• About Specifying Global Parameters in oraaccess.xml
As described, the <default_parameters> tag allows specifying default values for various
OCI parameters.

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-13

• About Specifying Defaults for Connection Parameters
Describes the default values you can set for connection parameters shared across
connections.

• Overriding Connection Parameters at the Connection-String Level
Using the oraaccess.xml file also allows you to override the very same set of connection-
specific parameters at the connection-string level as well.

• About OCI Session Pool Configuration in oraaccess.xml
Beginning with Oracle Database release 18c, version 18.1, the OCI session pool
configuration can be set up using the oraaccess.xml client-side configuration file.

• File (oraaccess.xml) Properties
Lists some high level rules with regards to the oraaccess.xml file syntax stated here for
simplicity.

2.7.1 About oraaccess.xml
Starting with Oracle Database Release 12c Release 1 (12.1), Oracle provides an
oraaccess.xml file, a client-side configuration file.

You can use the oraaccess.xml file to configure selected OCI parameters (some of which are
accepted programatically in various OCI API calls), thereby allowing OCI behavior to be
changed during deployment without modifying the source code that calls OCI.

Updates to the oraaccess.xml file will not affect already running clients. In order to pick up any
updates to the oraaccess.xml file, already running clients need to be restarted.

The oraaccess.xml file is read from the directory specified by the TNS_ADMIN environment
variable in regular and instant client installations. This is the $ORACLE_HOME/network/admin
directory on UNIX operating systems and the %ORACLE_HOME%\NETWORK\ADMIN directory on
Microsoft Windows operating systems, if TNS_ADMIN is not set in regular client installations.

2.7.2 About Client-Side Deployment Parameters Specified in oraaccess.xml
When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml files, the
oraaccess.xml file setting takes precedence over the corresponding sqlnet.ora file setting.

In such cases, Oracle recommends using the oraaccess.xml file settings moving forward. For
any network configuration, the sqlnet.ora file continues to be the primary file as network level
settings are not supported in the oraaccess.xml file.

2.7.3 High Level Structure of oraaccess.xml
Describes the high-level structure of the oraaccess.xml file.

The oraaccess.xml file has a top-level node <oraaccess> with the following three elements:

• <default_parameters> - This element describes any default parameter settings shared
across connections. These default parameters include:

– Defaults for global parameters - These global parameters can only be specified once
and hence are applicable to all connections and cannot be overridden at the
connection level. These parameters are specified using the following tags:

* <events> - Creates the OCI Environment in OCI_EVENTS mode, which is required
for Fast Application Notification (FAN) and runtime connection load balancing

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-14

* <result_cache> - Sets OCI client result cache parameters

* <diag> - Sets OCI fault diagnosability parameters

– Defaults for connection-specific parameters - Connection parameters can be set to
different values for specific connections. However, they too can be defaulted, and
overridden on a per connection string basis as needed. These defaults are shared
across all connections (unless overridden at the connection level, which is described in
the <config_descriptions> list item) that follows. These defaults are specified by the
following tags:

* <prefetch> - Sets the number of prefetch rows for all queries; specified using the
<rows> parameter.

* <statement_cache> - Sets the maximum number of statements that can be cached
per session; specified using the <size> parameter.

* <auto tune> - Consists of: <enable> to turn auto tuning on or off;
<ram_threshold>, which sets the memory threshold for auto-tuning to stop using
more memory when available physical memory on the client system has reached
this threshold; and <memory_target>, which sets the memory limit that OCI auto-
tuning can use per client process.

* <fan_subscription_failure_action> - Sets the action upon subscription failure
to be either the value trace or error.

* <ons> - Sets a variety of ONS client-side deployment configuration parameters
used for FAN notifications.

• <config_descriptions> - This element associates a configuration alias element
(<config_alias>), which is basically a name, with a specific set of parameters
(<parameters>) that contain one or more connection parameters. These connection
parameters are the same connection parameters within the element
<default_parameters> described previously, namely: <prefetch>, <statement_cache>,
<auto_tune>, <fan_subscription_failure_action> and <ons>.

• <connection_configs> - This element associates one or more connection strings used by
an application with a config alias, thus allowing multiple connection string elements to
share the same set of parameters.

A connection configuration element (<connection_config>) associates a connection string
element (<connection_string>) with a configuration alias element (<config_alias>).

A connection string is indirectly associated with a set of parameters through the
configuration alias, which allows multiple connection string elements to share the same set
of parameters.

The sections that follow describe these client-side deployment parameters in more detail.

See Also:

About Specifying Defaults for Connection Parameters

2.7.4 About Specifying Global Parameters in oraaccess.xml
As described, the <default_parameters> tag allows specifying default values for various OCI
parameters.

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-15

Of these, some parameters can only be specified once and hence apply to all connections.
These global parameters are described using the following tags:

• <events>
This creates the OCI Environment in OCI_EVENTS mode, which is required for Fast
Application Notification (FAN) and runtime connection load balancing.

<events>
 true <!--value could be false also -->
</events>

• <result_cache>
– <max_rset_rows> - Maximum size of any result set in rows in the per-process query

cache. Equivalent to OCI_RESULT_CACHE_MAX_RSET_ROWS in the sqlnet.ora file.

– <max_rset_size> - Maximum client result cache size. Set the size to 32,768 bytes (32
Kilobytes (KB)) or greater. Equivalent to OCI_RESULT_CACHE_MAX_RSET_SIZE in the
sqlnet.ora file.

– <max_size> - Maximum size in bytes for the per-process query cache. Specifying a
size less than 32,768 in the client disables the client result cache feature. Equivalent to
OCI_RESULT_CACHE_MAX_SIZE in the sqlnet.ora file.

<result_cache>
 <max_rset_rows>10</max_rset_rows>
 <max_rset_size>65535</max_rset_size>
 <max_size>65535</max_size>
</result_cache>

When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml files, the
oraaccess.xml file setting takes precedence over the corresponding sqlnet.ora file
setting.

See Table 2-3 for a listing of equivalent OCI parameter settings.

• <diag>
You can specify the following elements:

– <adr_enabled> - Enables or disables diagnosability. Equivalent to DIAG_ADR_ENABLED
in the sqlnet.ora file. Values: true or false.

– <dde_enabled> - Enables or disables DDE. Values: true or false.

– <adr_base> - Sets the ADR base directory, which is a system-dependent directory path
string to designate the location of the ADR base to use in the current ADRCI session.
Equivalent to ADR_BASE in the sqlnet.ora file. Value: directory path for ADR base
directory.

– <sighandler_enabled> - Enables or disables OCI signal handler. Values: true or false.

– <restricted> - Enables or disables full dump files. Oracle Database client contains
advanced features for diagnosing issues, including the ability to dump diagnostic
information when important errors are detected. By default, these dumps are restricted
to a small subset of available information, to ensure that application data is not
dumped. However, in many installations, secure locations for dump files may be
configured, ensuring the privacy of such logs. In such cases, it is recommended to turn
on full dumps; this can greatly speed resolution of issues. Full dumps can be enabled
by specifying a value of false. Values: true or false.

– <trace_events> - Indicates the trace event number and the level of tracing to be in
effect. Currently only event 10883 is supported. The available levels are 5 and 10.

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-16

<diag>
 <adr_enabled>false</adr_enabled>
 <dde_enabled>false</dde_enabled>
 <adr_base>/foo/adr</adr_base>
 <sighandler_enabled>false</sighandler_enabled>
 <restricted>true</restricted>
 <trace_events>
 <trace_event>
 <number>10883</number>
 <level>5</level>
 </trace_event>
 </trace_events>
</diag>

When equivalent parameters are set both in the sqlnet.ora and oraaccess.xml files, the
oraaccess.xml file setting takes precedence over the corresponding sqlnet.ora file
setting.

See Table 2-3 for a listing of equivalent OCI parameter settings.

Table 2-3 Equivalent OCI Parameter Settings in oraaccess.xml and sqlnet.ora

Parameter Group oraaccess.xml
Parameters

sqlnet.ora Parameters

OCI client result cache <max_rset_rows> OCI_RESULT_CACHE_MAX_RSET_ROWS
OCI client result cache <max_rset_size> OCI_RESULT_CACHE_MAX_RSET_SIZE
OCI client result cache <max_size> OCI_RESULT_CACHE_MAX_SIZE
OCI fault diagnosability <adr_enabled> DIAG_ADR_ENABLED
OCI fault diagnosability <dde_enabled> DIAG_DDE_ENABLED
OCI fault diagnosability <adr_base> ADR_BASE

See Also:

• Oracle Database Development Guide for information about deployment time
settings for client result cache and client configuration file parameters

• Oracle Database Net Services Reference for more information about ADR
diagnostic parameters in the sqlnet.ora file

2.7.5 About Specifying Defaults for Connection Parameters
Describes the default values you can set for connection parameters shared across
connections.

You can specify the following connection parameters that are shared across connections:

• <prefetch> - Specifies prefetch row count for SELECT statements.

<prefetch>
 <rows>100</rows>
</prefetch>

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-17

Setting this parameter appropriately can help reduce round-trips to the database, thereby
improving application performance.

Note that this only overrides the OCI_ATTR_PREFETCH_ROWS parameter (whether explicitly
specified by the application or not). If the application has specified
OCI_ATTR_PREFETCH_MEMORY explicitly, then the actual prefetch row count will be
determined by using both constraints. The OCI_ATTR_PREFETCH_MEMORY constraint
equivalent cannot be specified in the oraaccess.xml file.

Also note that OCI prefetching may still get disabled if the SELECT statement fetches
columns of specific data types. For more details, see About Fetching Results for
information about limitations of OCI prefetch.

• <statement_cache> - Specifies the number of OCI Statement handles that can be cached
per session.

<statement_cache>
 <size>100</size>
</statement_cache>

Caching statement handles improves repeat execute performance by reducing client side
and server side CPU consumption and network traffic.

Note that for this parameter to take effect, the application must be programmed to use
OCIStatementPrepare2() and OCIStatementRelease() calls (and not the older
OCISatementPrepare() and OCIHandleFree() equivalents for getting and disposing of
statement handles.

• <auto_tune> - Used to enable OCI Auto tuning.

<auto_tune>
 <enable>true</enable>
 <ram_threshold>0.1</ram_threshold><!--percentage -->
 <memory target>2M</memory_target>
</auto_tune>

Enabling auto-tuning can help OCI automatically tune the statement-cache size based on
specified memory constraints. This can help dynamically tune the statement cache size to
an appropriate value based on runtime application characteristics and available memory
resources.

Note that for auto tuning OCI Statement Cache, the application must be programmed to
use OCIStatementPrepare2() and OCIStatementRelease() calls (and not the older
OCISatementPrepare() and OCIHandleFree() equivalents for getting and disposing of
statement handles.

• <fan_subscription_failure_action> - Used to determine how OCI responds to a failure
to subscribe for FAN notifications.

A value of trace records any failure to subscribe for FAN notifications (if FAN is enabled)
in the trace file and OCI proceeds ignoring the failure. A value of error makes OCI return
an error if an attempt to subscribe for FAN notifications fails.

<fan>
 <!--only possible values are "trace" and "error" -->
 <subscription_failure_action>
 trace
 </subscription_failure_action>
</fan>

• <ons> - Sets up Oracle Notification Service (ONS) parameters.

You can specify the following connection parameters:

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-18

– <subscription_wait_timeout> - Length of time in seconds the client waits for its
subscription to the ONS server.

– <auto_config> - true or false. If true, the configuration specified in this section will
augment the auto configuration information that the client receives from the database.
If false, it will override the same.

– <thread_stack_size> - Size in bytes of the event notification thread stack.

– <debug> - true or false. Whether debug mode is on (true) or off (false).

– <wallet_location> - Directory that contains an auto logon wallet file for a secure ONS
subscription.

– <servers> - Host list with ports and connection distribution.

<ons>
 <!--values or in seconds -->
 <subscription_wait_timeout>
 5
 </subscription_wait_timeout>
 <auto_config>true</auto_config> <!--boolean -->
 <threadstacksize>100k</threadstacksize>
 <debug>true</debug>
 <wallet_location>/etc/oracle/wallets/</wallet_location>
 <servers>
 <address_list>
 <name>pacific</name>
 <max_connections> 3 <\max_connections>
 <hosts>
 10.228.215.121:25293,
 10.228.215.122:25293
 </hosts>
 </address_list>
 <address_list>
 <name>Europe</name>
 <max_connections>3<\max_connections>
 <hosts>
 myhost1.mydomain.com:25273,
 myhost2.mydomain.com:25298,
 myhost3.mydomain.com:30004
 </hosts>
 </address_list>
 </servers>
</ons>

See Also:

• <auto_tune>

• <ram_threshold>

• <memory_target>

• Oracle Universal Connection Pool Developer’s Guide for information about ONS
configuration parameters

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-19

2.7.6 Overriding Connection Parameters at the Connection-String Level
Using the oraaccess.xml file also allows you to override the very same set of connection-
specific parameters at the connection-string level as well.

This allows for overriding those connection-specific parameters based on requirements of
individual applications.

Using the <config_descriptions> tag, you can specify a set of connection-specific
parameters (<parameters>) to be associated with a configuration alias (<config_alias>, which
creates a named group of connection-specific parameters). Thereafter, using the
<connection_configs> tag, you can associate one or more connection-strings (specified using
the <connection-string> tag) with a <config_alias>. This permits a level of indirection that
allows multiple <connection_string> elements to share the same set of <parameters>.

Example 1

This example shows a very simple oraaccess.xml file configuration that highlights defaulting of
global and connection parameters applicable across all connections.

<?xml version="1.0" encoding="ASCII" ?>
<!--
 Here is a sample oraaccess.xml.
 This shows defaulting of global and connection parameters
 across all connections.
-->
 <oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 <prefetch>
 <rows>50</rows>
 </prefetch>
 <statement_cache>
 <size>100</size>
 </statement_cache>
 <result_cache>
 <max_rset_rows>100</max_rset_rows>
 <max_rset_size>10K</max_rset_size>
 <max_size>64M</max_size>
 </result_cache>
 </default_parameters>
</oraaccess>

Example 2

This example shows connection parameters being overridden at the connection level.

<?xml version="1.0" encoding="ASCII" ?>
<!--
 Here is a sample oraaccess.xml.
 This highlights some connection parameters being
 overridden at the connection level
 -->
 <oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-20

 <prefetch>
 <rows>50</rows>
 </prefetch>
 <statement_cache>
 <size>100</size>
 </statement_cache>
 <auto_tune>
 <enable>true</enable>
 <ram_threshold>2.67</ram_threshold>
 <memory_target>204800</memory_target>
 </auto_tune>
 <result_cache>
 <max_rset_rows>100</max_rset_rows>
 <max_rset_size>10K</max_rset_size>
 <max_size>64M</max_size>
 </result_cache>
 </default_parameters>
 <!--
 Create configuration descriptions, which are
 groups of connection parameters associated with
 a config_alias.
 -->
 <config_descriptions>
 <config_description>
 <config_alias>bar</config_alias>
 <parameters>
 <prefetch>
 <rows>20</rows>
 </prefetch>
 </parameters>
 </config_description>
 <config_description>
 <config_alias>foo</config_alias>
 <parameters>
 <statement_cache>
 <size>15</size>
 </statement_cache>
 </parameters>
 </config_description>
 </config_descriptions>
 <!--
 Now map the connection string used by the application
 with a config_alias.
 -->
 <connection_configs>
 <connection_config>
 <connection_string>hr_db</connection_string>
 <config_alias>foo</config_alias>
 </connection_config>
 <connection_config>
 <connection_string>finance_db</connection_string>
 <config_alias>bar</config_alias>
 </connection_config>
 </connection_configs>
</oraaccess>

Example 3

This example highlights setup for FAN notifications.

<?xml version="1.0" encoding="ASCII" ?>
 <!--
 Here is a sample for oraaccess.xml for

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-21

 setting up for FAN notifications.
 -->
 <oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 <fan>
 <!-- only possible values are "trace" or "error" -->
 <subscription_failure_action>
 error
 </subscription_failure_action>
 </fan>
 <ons>
 <subscription_wait_timeout>
 5
 </subscription_wait_timeout>
 <auto_config>true</auto_config>
 </ons>
 <events>true</events>
 </default_parameters>
 </oraaccess>

Example 4

This example highlights an advanced oraaccess.xml file configuration usage with manual
ONS settings. Manual ONS settings should be used rarely.

 <?xml version="1.0" encoding="ASCII" ?>
 <!--
 Here is a sample for oraaccess.xml that highlights
 manual ONS settings.
 -->
 <oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 <fan>
 <!-- only possible values are "trace" or "error" -->
 <subscription_failure_action>
 error
 </subscription_failure_action>
 </fan>
 <ons>
 <subscription_wait_timeout>
 5
 </subscription_wait_timeout>
 <auto_config>true</auto_config>
 <!--This provides the manual configuration for ONS.
 Note that this functionality should not need to be used
 as auto_config can normally discover this
 information. -->
 <servers>
 <address_list>
 <name>pacific</name>
 <max_connections>3</max_connections>
 <hosts>10.228.215.121:25293, 10.228.215.122:25293</hosts>
 </address_list>
 <address_list>
 <name>Europe</name>
 <max_connections>3</max_connections>

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-22

 <hosts>myhost1.mydomain.com:25273,
 myhost2.mydomain.com:25298,
 myhost3.mydomain.com:30004</hosts>
 </address_list>
 </servers>
 </ons>
 <events>true</events>
 </default_parameters>
 </oraaccess>

See Also:

About Specifying Defaults for Connection Parameters about overriding the very same
set of connection-specific parameters at the connection-string level

2.7.7 About OCI Session Pool Configuration in oraaccess.xml
Beginning with Oracle Database release 18c, version 18.1, the OCI session pool configuration
can be set up using the oraaccess.xml client-side configuration file.

The OCI session pool is configured by specifying the following set of parameters in the
oraaccess.xml configuration file. These parameters can be specified in the default parameters
section or in the configuration descriptions section. If specified in the default parameters
section, then it applies to all the session pools in the application. These settings can benefit
any OCI Session Pool allowing OCI Session Pool settings to be overridden.

• <session_pool> — Sets up session pool parameters.

– <enable> — Setting this to true makes the session pool configuration effective. This is
a mandatory parameter, that means, if the <session_pool> parameter is configured,
then <enable> parameter must also be configured.

• <min_size> — Minimum number of connections in the pool. The default is 0.

• <max_size> — Maximum number of connections in the pool. This is a mandatory
parameter, that means, if the <session_pool> parameter is configured, then <max_size>
parameter must also be configured.

• <increment> — Amount of increase in the number of connections in the pool as the pool
expands. The default is 1.

• <inactivity_timeout> — Maximum time in seconds for which a connection stays idle in
the pool, after which it is terminated. The default is 0, that means, there is no limit for which
a connection stays idle in the pool.

• <max_use_session> — Maximum number of times a connection can be taken and released
to the pool. The default is 0, that means, there is no limit to take a connection and release
to the pool.

• <max_life_time_session> — Time, in seconds, a connection will stay after it has been
created in the pool. The default is 0, that means, there is no limit for a connection to stay
after it has been created in the pool.

Using the oraaccess.xml file allows you to configure an OCI session pool for each needed
connection service. The following example shows two groups of connection parameters
associated with its respective config alias, the sales_config and the hr_config, where each

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-23

connection string that the application uses is mapped with its respective config alias, thus
providing two OCI session pools.

<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 </default_parameters>
 <!--
 Create configuration descriptions, which are
 groups of connection parameters associated with
 a config_alias.
 -->
 <config_descriptions>
 <config_description>
 <config_alias> sales_config </config_alias>
 <parameters>
 <session_pool>
 <enable>true</enable>
 <min_size> 10 </min_size>
 <max_size> 100 </max_size>
 <increment> 5 </increment>
 </session_pool>
 </parameters>
 </config_description>
 <config_description>
 <config_alias> hr_config </config_alias>
 <parameters>
 <session_pool>
 <enable>true</enable>
 <max_size> 10 </max_size>
 </session_pool>
 </parameters>
 </config_description>
 </config_descriptions>
 <!--
 Now map the connection string used by the application
 with a config_alias.
 -->
 <connection_configs>
 <connection_config>
 <connection_string>sales.us.acme.com</connection_string>
 <config_alias>sales_config</config_alias>
 </connection_config>
 <connection_config>
 <connection_string>hr.us.acme.com</connection_string>
 <config_alias>hr_config</config_alias>
 </connection_config>
 </connection_configs>
</oraaccess>

Chapter 2
OCI Client-Side Deployment Parameters Using oraaccess.xml

2-24

2.7.8 File (oraaccess.xml) Properties
Lists some high level rules with regards to the oraaccess.xml file syntax stated here for
simplicity.

The XML schema specified in the oraaccess.xsd file is the ultimate formal reference for
oraaccess syntax:

• The contents of the file are case sensitive, and all elements (tags, parameter names) are in
lower case.

• Comments are allowed between parameters (nodes); for example, Comment "<!--
comments -->".

• For the syntax with respect to the order of the parameters, see the XML Schema:
oraaccess.xsd file (see information about the oraaccess.xsd file later in this list).

• For memory size, valid values and formats are 100, 100k, 100K, 1000M, and 1121m. This
means only suffixes 'M', 'm', 'K', 'k', or no suffix are allowed. 'K' or 'k' means kilobytes and
'M' or 'm' means megabytes. No suffix means the size is in bytes.

• <ram_threshold> should be a decimal number between 0 and 100 and indicates a
percentage value.

• Where a number is expected, only positive unsigned integers are allowed; no sign is
allowed. An example of a valid number usage is <statement_cache> <size>100</size>
</statement_cache>).

• Configuration alias names (<config_alias>foo</config_alias>) are not case-sensitive

• String parameters (such as <config_alias>) are not expected to be quoted.

• These rules are all encapsulated in the schema definition.

• OCI will report an error if OCI is provided an invalid oraaccess.xml file.

• Before deploying an oraaccess.xml file, Oracle recommends that you validate it with the
Oracle supplied XML schema file: oraaccess.xsd. The schema file is installed under
ORACLE_HOME/rdbms/admin in a regular client and under instantclient_12_2/sdk/admin
in an instant client SDK. Customers can use their own favorite XML validation tools to
perform the validation after modifying the oraaccess.xml file.

• Sample oraaccess.xml files can be found in the ORACLE_HOME/rdbms/demo directory in a
regular client and in the instantclient_12_2/sdk/demo in an instant client. The
parameters in these files are for demonstration purpose only and should be modified and
tested as per the application's requirement before deploying it.

2.8 About Compatibility and Upgrading
The following sections discuss issues concerning compatibility between different releases of
OCI client and server, changes in the OCI library routines, and upgrading an application from
the release 7.x OCI to the current release of OCI:

• Oracle Client and Server Cross Version Compatibility

• Version Compatibility of Statically Linked and Dynamically Linked Applications

• Unsupported OCI Routines

Chapter 2
About Compatibility and Upgrading

2-25

• Oracle Client and Server Cross Version Compatibility
As a general guide, Oracle client and server versions are cross version compatible with a
number versions.

• Version Compatibility of Statically Linked and Dynamically Linked Applications
Here are the rules for relinking for a new release.

• Unsupported OCI Routines

2.8.1 Oracle Client and Server Cross Version Compatibility
As a general guide, Oracle client and server versions are cross version compatible with a
number versions.

This means that you can connect to some older and newer versions of the database and do
not always have to upgrade both the client and server at the same time.

However, certain products or utilities may impose additional restrictions on supported
combinations specific to the product or utility.

See Also:

My Oracle Support Document 207303.1 for information about client and server
interoperability support matrix for different Oracle versions.

2.8.2 Version Compatibility of Statically Linked and Dynamically Linked
Applications

Here are the rules for relinking for a new release.

• Statically linked OCI applications:

Statically linked OCI applications must be relinked for both major and minor releases,
because the statically linked Oracle Database client-side library code may be incompatible
with the error messages in the upgraded Oracle home. For example, if an error message
was updated with additional parameters then it is no longer compatible with the statically
linked code.

• Dynamically linked OCI applications:

Dynamically linked OCI applications from Oracle Database 10g and later releases need
not be relinked. That is, the Oracle Database client-side dynamic library is upwardly
compatible with the previous version of the library. Oracle Universal Installer creates a
symbolic link for the previous version of the library that resolves to the current version.
Therefore, an application that is dynamically linked with the previous version of the Oracle
Database client-side dynamic library does not need to be relinked to operate with the
current version of the Oracle Database client-side library.

Chapter 2
About Compatibility and Upgrading

2-26

Note:

If the application is linked with a runtime library search path (such as -rpath on
Linux), then the application may still run with the version of Oracle Database
client-side library it is linked with. To run with the current version of Oracle
Database client-side library, it must be relinked.

See Also:

– Oracle Database Upgrade Guide for information about compatibility and
upgrading

– The server versions supported currently are found on My Oracle Support
Document 207303.1

2.8.3 Unsupported OCI Routines

The release 7.3 OCI calls are not supported. Table 3-3 lists the 7.x OCI calls with their
supported equivalents.

Table 2-4 Unsupported OCI Functions

7.x OCI Routine Equivalent or Similar Later OCI Routine

obindps(), obndra(),
obndrn(), obndrv()

OCIBindByName() or OCIBindByName2(), OCIBindByPos() or
OCIBindByPos2() (Note: additional bind calls may be necessary for
some data types)

obreak() OCIBreak()
ocan() none

oclose() Note: cursors are not used in release 8.x or later

ocof(), ocon() OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS mode

ocom() OCITransCommit()
odefin(), odefinps() OCIDefineByPos() or OCIDefineByPos2() (Note: additional define

calls may be necessary for some data types)

odescr() Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, most often be done by calling
OCIAttrGet() on the statement handle after SQL statement execution.

odessp() OCIDescribeAny()
oerhms() OCIErrorGet()
oexec(), oexn() OCIStmtExecute()
oexfet() OCIStmtExecute(), OCIStmtFetch2() (Note: result set rows can be

implicitly prefetched)

ofen(), ofetch() OCIStmtFetch2()
oflng() none

ogetpi() OCIStmtGetPieceInfo()

Chapter 2
About Compatibility and Upgrading

2-27

Table 2-4 (Cont.) Unsupported OCI Functions

7.x OCI Routine Equivalent or Similar Later OCI Routine

olog() OCILogon() or OCILogon2()
ologof() OCILogoff()
onbclr(), onbset(),
onbtst()

Note: nonblocking mode can be set or checked by calling
OCIAttrSet() or OCIAttrGet() on the server context handle or
service context handle

oopen() Note: cursors are not used in release 8.x or later

oopt() none

oparse() OCIStmtPrepare2(); however, it is all local

opinit() OCIEnvCreate()
orol() OCITransRollback()
osetpi() OCIStmtSetPieceInfo()
sqlld2() SQLSvcCtxGet or SQLEnvGet
sqllda() SQLSvcCtxGet or SQLEnvGet
odsc() Note: see odescr() preceding

oermsg() OCIErrorGet()
olon() OCISessionGet()
orlon() OCISessionGet()
oname() Note: see odescr() preceding

osql3() Note: see oparse() preceding

obind() OCIBindByName(), OCIBindByPos() (Note: additional bind calls may
be necessary for some data types)

obindn() OCIBindByName(), OCIBindByPos() (Note: additional bind calls may
be necessary for some data types)

odfinn() OCIDefineByPos() (Note: additional define calls may be necessary for
some data types)

odsrbn() Note: see odescr() in Table 2-4

ologon() OCISessionget()
osql() Note: see oparse() Table 2-4

See Also:

• OCI Programming Basics for information about what additional program logic
may be required before or after the new or current call is made.

2.9 Fault Diagnosability in OCI
This section describes the following topics:

• About Fault Diagnosability in OCI

Chapter 2
Fault Diagnosability in OCI

2-28

• ADR Base Location

• Using ADRCI

• Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora

• About Fault Diagnosability in OCI
Fault diagnosability was introduced into OCI in Oracle Database 11g Release 1 (11.1).

• ADR Base Location
Describes how the location of the ADR base is determined.

• Using ADRCI
ADRCI is a command-line tool that enables you to view diagnostic data within the ADR and
to package incident and problem information into a zip file for Oracle Support to use.

• Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora
Describes how to control ADR creation and disabling fault diagnosability using sqlnet.ora.

2.9.1 About Fault Diagnosability in OCI
Fault diagnosability was introduced into OCI in Oracle Database 11g Release 1 (11.1).

An incident (an occurrence of a problem) on the OCI client is captured without user
intervention in the form of diagnostic data: dump files or core dump files. Up to Release
11.2.0.1, the diagnostic data was stored in an Automatic Diagnostic Repository (ADR)
subdirectory created for the incident. For example, if a Linux or UNIX application fails with a
NULL pointer reference, then the core file is written in the ADR home directory (if it exists)
instead of the operating system directory. The ADR subdirectory structure and a utility to deal
with the output, ADR Command Interpreter (ADRCI), are discussed in the following sections.
However, beginning with Release 11.2.0.2, the diagnostic data is stored in the current directory.

An ADR home is the root directory for all diagnostic data for an instance of a particular product
such as OCI and a particular operating system user. ADR homes are grouped under the same
root directory, the ADR base.

Fault diagnosability and the ADR structure for Oracle Database are described in detail in the
discussion of managing diagnostic data in Oracle Database Administrator's Guide.

2.9.2 ADR Base Location
Describes how the location of the ADR base is determined.

The location of the ADR base is determined by OCI in the following order:

1. For all diagnosability parameters, OCI first looks in the file oraaccess.xml. If these
parameters are not set there, then OCI looks next in sqlnet.ora (if it exists) for a
statement such as (Linux or UNIX):

ADR_BASE=/foo/adr

adr (the name of a directory) must exist and be writable by all operating system users who
execute OCI applications and want to share the same ADR base. foo stands for a path
name. The location of sqlnet.ora is given in the directory $TNS_ADMIN (%TNS_ADMIN% on
Windows). If there is no $TNS_ADMIN then the current directory is used. If ADR_BASE is set
and one sqlnet.ora is shared by all users, then OCI stops searching when directory adr
does not exist or is not writable by the user. If ADR_BASE is not set, then OCI continues the
search, testing for the existence of certain directories.

Chapter 2
Fault Diagnosability in OCI

2-29

For example, if sqlnet.ora contains the entry ADR_BASE=/home/chuck/test then the ADR
base is /home/chuck/test/oradiag_chuck and the ADR home could be something like /
home/chuck/test/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11.

2. $ORACLE_BASE (%ORACLE_BASE% on Windows) exists. In this case, the client subdirectory
exists because it was created during installation of the database using Oracle Universal
Installer.

For example, if $ORACLE_BASE is /home/chuck/obase then the ADR base is /home/chuck/
obase and the ADR home could be similar to /home/chuck/obase/diag/clients/
user_chuck/host_4144260688_11.

3. $ORACLE_HOME (%ORACLE_BASE% on Windows) exists. In this case, the client subdirectory
exists because it was created during installation of the database using Oracle Universal
Installer.

For example, if $ORACLE_HOME is /ade/chuck_l1/oracle then the ADR base is /ade/
chuck_l1/oracle/log and the ADR home could be similar to /ade/chuck_l1/oracle/log/
diag/clients/user_chuck/host_4144260688_11.

4. Operating system home directory: $HOME on Linux or UNIX, or %USERPROFILE% on Windows.
On Linux or UNIX the location could be something like this for user chuck: /home/chuck/
oradiag_chuck. On Windows, a folder named Oracle is created under C:\Documents and
Settings\chuck.

For example, in an Instant Client, if $HOME is /home/chuck then the ADR base is /home/
chuck/oradiag_chuck and the ADR home could be /home/chuck/oradiag_chuck/diag/
clients/user_chuck/host_4144260688_11.

5. On Windows, if the application is run as a service, the home directory option is skipped.

6. Temporary directory in the Linux or UNIX operating system: /var/tmp.

For example, in an Instant Client, if $HOME is not writable, then the ADR base is /var/tmp/
oradiag_chuck and the ADR home could be /var/tmp/oradiag_chuck/diag/clients/
user_chuck/host_4144260688_11.

Temporary directories in the Windows operating system, searched in the foolowing order:

a. %TMP%

b. %TEMP%

c. %USERPROFILE%

d. Windows system directory

If none of these directory choices are available and writable, or the ADR base is not created,
then there are no diagnostics.

See Also:

Oracle Database Net Services Reference

Chapter 2
Fault Diagnosability in OCI

2-30

2.9.3 Using ADRCI
ADRCI is a command-line tool that enables you to view diagnostic data within the ADR and to
package incident and problem information into a zip file for Oracle Support to use.

You can use ADRCI interactively and from a script. A problem is a critical error in OCI or the
client. Each problem has a problem key. An incident is a single occurrence of a problem and is
identified by a unique numeric incident ID. Each incident has a problem key that is a set of
attributes: the ORA error number, error parameter values, and other information. Two incidents
have the same root cause if their problem keys match.

What follows is a launch of ADRCI in a Linux system, a use of the HELP command for the SHOW
BASE command, and then the use of the SHOW BASE command with the option -PRODUCT CLIENT,
which is necessary for OCI applications. The ADRCI commands are case-insensitive. User
input is shown in bold.

% adrci

ADRCI: Release 12.2.0.0.0 - Development on Wed Dec 2 18:26:29 2015
Copyright (c) 1982, 2015, Oracle. All rights reserved. ADR base = "/u01/app/oracle/log"

adrci> help show base

 Usage: SHOW BASE [-product <product_name>]

 Purpose: Show the current ADR base setting.

 Options:
 [-product <product_name>]: This option allows users to show the
 given product's ADR Base location. The current registered products are
 "CLIENT" and "ADRCI".

 Examples:
 show base -product client
 show base

adrci> show base -product client
ADR base = "/u01/app/oracle/log"

Next, the SET BASE command is described:

adrci> help set base

 Usage: SET BASE <base_str> | -product <product_name>

 Purpose: Set the ADR base to use in the current ADRCI session.
 If there are valid ADR homes under the base, all homes will
 will be added to the current ADRCI session.

 Arguments:
 <base_str>: It is the ADR base directory, which is a system-dependent
 directory path string.
 -product <product_name>: This option allows users to set the
 given product's ADR Base location. The current registered products are
 "CLIENT" and "ADRCI".

 Notes:
 On platforms that use "." to signify current working directory,
 it can be used as base_str.

Chapter 2
Fault Diagnosability in OCI

2-31

 Example:
 set base /net/sttttd1/scratch/someone/view_storage/someone_v1/log
 set base -product client
 set base .

adrci> quit

When ADRCI is started, the default ADR base is for the rdbms server. $ORACLE_HOME is set to
"/u01/app/oracle/":

% adrci

ADRCI: Release 12.2.0.0.0 - Development on Wed Dec 2 18:26:29 2015

Copyright (c) 1982, 2015, Oracle. All rights reserved.

ADR base = "/u01/app/oracle/log"
 adrci>

For OCI application incidents you must check and set the base:

adrci> show base -product client
ADR base is "/u01/app/oracle/log"
adrci> set base /home/chuck_13/oradiag_chuck

For Instant Client there is no $ORACLE_HOME, so the default base is the user's home directory:

adrci> show base -product client
ADR base is "/home/chuck_13/oradiag_chuck"
adrci> set base /home/chuck/oradiag_chuck
adrci> show incidents

ADR Home = /home/chuck/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11:

INCIDENT_ID PROBLEM_KEY CREATE_TIME

1 oci 24550 [6] 2015-12-02 17:20:02.803697
-07:00
1 rows fetched

adrci>

See Also:

Oracle Database Utilities for an introduction to ADRCI

2.9.4 Controlling ADR Creation and Disabling Fault Diagnosability Using
sqlnet.ora

Describes how to control ADR creation and disabling fault diagnosability using sqlnet.ora.

To disable diagnosability, turn off diagnostics by setting the following parameters in sqlnet.ora
(the default is TRUE):

Chapter 2
Fault Diagnosability in OCI

2-32

DIAG_ADR_ENABLED=FALSE
DIAG_DDE_ENABLED=FALSE

To turn off the OCI signal handler and reenable standard operating system failure processing,
place the following parameter setting in sqlnet.ora:

DIAG_SIGHANDLER_ENABLED=FALSE

As noted previously, ADR_BASE is used in sqlnet.ora to set the location of the ADR base.

Oracle Database client contains advanced features for diagnosing issues, including the ability
to dump diagnostic information when important errors are detected. By default, these dumps
are restricted to a small subset of available information, to ensure that application data is not
dumped. However, in many installations, secure locations for dump files may be configured,
ensuring the privacy of such logs. In such cases, it is recommended to turn on full dumps; this
can greatly speed resolution of issues. Full dumps can be enabled by adding the following line
to the sqlnet.ora file used by your Oracle Database client installation:

DIAG_RESTRICTED=FALSE

To verify that diagnosability features are working correctly:

1. Upgrade your application to use the latest client libraries.

2. Start your application.

3. Check the file sqlnet.log in your application's TNS_ADMIN directory for error messages
indicating that diagnosability could not be started (normally this is due to invalid directory
names or permissions).

See Also:

• Oracle Database Net Services Reference for the ADR parameter settings in
sqlnet.ora

• Oracle Database Net Services Administrator's Guide for more information about
the structure of ADR

Chapter 2
Fault Diagnosability in OCI

2-33

3
OCI Programming Basics

This chapter introduces concepts and procedures involved in programming with OCI.

After reading this chapter, you should have most of the tools necessary to understand and
create a basic OCI application.

This chapter includes the following major sections:

• Overview of OCI Program Programming

• OCI Data Structures

• OCI Programming Steps

• Error Handling in OCI

• Additional Coding Guidelines

• About Using PL/SQL in an OCI Program

• OCI Globalization Support

New users should pay particular attention to the information presented in this chapter, because
it forms the basis for the rest of the material presented in this guide. The information in this
chapter is supplemented by information in later chapters.

• Overview of OCI Program Programming
The general goal of an OCI application is to operate on behalf of multiple users.

• OCI Data Structures
Handles and descriptors are opaque data structures that are defined in OCI applications.

• OCI Programming Steps
The following sections describe in detail each of the steps in developing an OCI
application.

• Additional Coding Guidelines
This section explains some additional issues when coding OCI applications.

• About Using PL/SQL in an OCI Program
PL/SQL is Oracle's procedural extension to the SQL language.

• OCI Globalization Support
The following sections introduce OCI functions that can be used for globalization purposes,
such as deriving locale information, manipulating strings, character set conversion, and
OCI messaging.

3-1

See Also:

• Oracle Database Globalization Support Guide for a discussion of the OCI
functions that apply to a multilingual environment

• Oracle Database Data Cartridge Developer's Guide for a discussion of the OCI
functions that apply to cartridge services

3.1 Overview of OCI Program Programming
The general goal of an OCI application is to operate on behalf of multiple users.

In an n-tiered configuration, multiple users are sending HTTP requests to the client application.
The client application may need to perform some data operations that include exchanging data
and performing data processing.

OCI uses the following basic program flow:

1. Create the environment by initializing the OCI programming environment and threads.

2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the server, and
perform necessary application data processing.

4. Execute prepared statements, or prepare a new statement for execution.

5. Terminate user sessions and disconnect from server connections.

6. Free handles and data structures.

Figure 3-1 illustrates the flow of steps in an OCI application. OCI Programming Steps
describes each step in more detail.

Figure 3-1 Basic OCI Program Flow

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

The diagram and the list of steps present a simple generalization of OCI programming steps.
Variations are possible, depending on the functionality of the program. OCI applications that

Chapter 3
Overview of OCI Program Programming

3-2

include more sophisticated functionality, such as managing multiple sessions and transactions
and using objects, require additional steps.

All OCI function calls are executed in the context of an environment. There can be multiple
environments within an OCI process. If an environment requires any process-level initialization,
then it is performed automatically.

Note:

It is possible to have multiple active connections and statements in an OCI
application.

See Also:

OCI Object-Relational Programming through Using the Object Type Translator with
OCI for information about accessing and manipulating objects

3.2 OCI Data Structures
Handles and descriptors are opaque data structures that are defined in OCI applications.

Handles and descriptors can be allocated directly, through specific allocate calls, or they can
be implicitly allocated by OCI functions.

Note:

Programmers who have previously written 7.x OCI applications must become familiar
with these data structures that are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or application
behavior. Handles are defined in more detail in the next section.

This section includes the following topics: Handles

• Handles
Almost every OCI call includes in its parameter list one or more handles.

• OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information.

Related Topics

• OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information.

Chapter 3
OCI Data Structures

3-3

3.2.1 Handles
Almost every OCI call includes in its parameter list one or more handles.

A handle is an opaque pointer to a storage area allocated by the OCI library. You use a handle
to store context or connection information, (for example, an environment or service context
handle), or it may store information about OCI functions or data (for example, an error or
describe handle). Handles can make programming easier, because the library, rather than the
application, maintains this data.

Most OCI applications must access the information stored in handles. The get and set attribute
OCI calls, OCIAttrGet() and OCIAttrSet(), access and set this information.

Table 3-1 lists the handles defined for OCI. For each handle type, the C data type and handle
type constant used to identify the handle type in OCI calls are listed.

Table 3-1 OCI Handle Types

Description C Data Type Handle Type Constant

OCI environment handle OCIEnv OCI_HTYPE_ENV
OCI error handle OCIError OCI_HTYPE_ERROR
OCI service context handle OCISvcCtx OCI_HTYPE_SVCCTX
OCI statement handle OCIStmt OCI_HTYPE_STMT
OCI bind handle OCIBind OCI_HTYPE_BIND
OCI define handle OCIDefine OCI_HTYPE_DEFINE
OCI describe handle OCIDescribe OCI_HTYPE_DESCRIBE
OCI server handle OCIServer OCI_HTYPE_SERVER
OCI user session handle OCISession OCI_HTYPE_SESSION
OCI authentication information handle OCIAuthInfo OCI_HTYPE_AUTHINFO
OCI connection pool handle OCICPool OCI_HTYPE_CPOOL
OCI session pool handle OCISPool OCI_HTYPE_SPOOL
OCI transaction handle OCITrans OCI_HTYPE_TRANS
OCI complex object retrieval (COR)
handle

OCIComplexObject OCI_HTYPE_COMPLEXOBJECT

OCI thread handle OCIThreadHandle Not applicable

OCI subscription handle OCISubscription OCI_HTYPE_SUBSCRIPTION
OCI direct path context handle OCIDirPathCtx OCI_HTYPE_DIRPATH_CTX
OCI direct path function context handle OCIDirPathFuncCtx OCI_HTYPE_DIRPATH_FN_CTX
OCI direct path column array handle OCIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_ARRAY
OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM
OCI process handle OCIProcess OCI_HTYPE_PROC
OCI administration handle OCIAdmin OCI_HTYPE_ADMIN
OCI HA event handle OCIEvent Not applicable

OCI SODA collection handle OCISodaColl OCI_HTYPE_SODA_COLLECTION
OCI SODA collection cursor handle OCISodaCollCursor OCI_HTYPE_SODA_CURSOR

Chapter 3
OCI Data Structures

3-4

Table 3-1 (Cont.) OCI Handle Types

Description C Data Type Handle Type Constant

OCI SODA document cursor handle OCISodaDocCursor OCI_HTYPE_SODA_DOC_CURSOR
OCI SODA document handle OCISodaDoc OCI_HTYPE_SODA_DOCUMENT
OCI SODA output options handle OCISodaOutputOptions OCI_HTYPE_SODA_OUTPUT_OPTIONS
OCI SODA operation options handle OCISodaOperationOptions OCI_HTYPE_SODA_OPER_OPTIONS

This section includes the following topics:

• About Allocating and Freeing Handles

• Environment Handle

• Error Handle

• Service Context Handle and Associated Handles

• Statement, Bind, and Define Handles

• Describe Handle

• Complex Object Retrieval Handle

• Thread Handle

• Subscription Handle

• Direct Path Handles

• Connection Pool Handle

• Handle Attributes

• OCI Descriptors

• About Allocating and Freeing Handles
Your application allocates all handles (except the bind, define, and thread handles) for a
particular environment handle.

• Environment Handle

• Error Handle
The error handle is passed as a parameter to most OCI calls.

• Service Context Handle and Associated Handles
A service context handle defines attributes that determine the operational context for OCI
calls to a server.

• Statement, Bind, and Define Handles
A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes

• Describe Handle
The describe handle is used by the OCI describe call, OCIDescribeAny().

• Complex Object Retrieval Handle
The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database.

• Thread Handle
The thread handle is used in multithreaded applications.

Chapter 3
OCI Data Structures

3-5

• Subscription Handle
The subscription handle is used by an OCI client application that registers and subscribes
to receive notifications of database events or events in the AQ namespace.

• Direct Path Handles
The direct path handles are necessary for an OCI application that uses the direct path load
engine in the Oracle database.

• Connection Pool Handle
The connection pool handle is used for applications that pool physical connections into
virtual connections.

• Handle Attributes
All OCI handles have attributes that represent data stored in that handle.

Related Topics

• Handle Attributes

• OCIAttrSet()

• OCIAttrGet()

3.2.1.1 About Allocating and Freeing Handles
Your application allocates all handles (except the bind, define, and thread handles) for a
particular environment handle.

You pass the environment handle as one of the parameters to the handle allocation call. The
allocated handle is then specific to that particular environment.

The bind and define handles are allocated for a statement handle, and contain information
about the statement represented by that handle.

Note:

The bind and define handles are implicitly allocated by the OCI library, and do not
require user allocation.

The environment handle is allocated and initialized with a call to OCIEnvCreate() or to
OCIEnvNlsCreate(), one of which is required by all OCI applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCIHandleAlloc().

The types of handles include: session pool handle, direct path context handle, thread handle,
COR handle, subscription handle, describe handle, statement handle, service context handle,
error handle, server handle, connection pool handle, event handle, and administration handle.

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The OCIHandleFree()
function frees all handles.

Chapter 3
OCI Data Structures

3-6

Note:

When a parent handle is freed, all child handles associated with it are also freed and
can no longer be used. For example, when a statement handle is freed, any bind and
define handles associated with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting easier. An
error handle is used to return errors and diagnostic information.

Related Topics

• OCI Demonstration Programs

• OCIEnvCreate()

• OCIEnvNlsCreate()

• OCIHandleAlloc()

• OCIThreadHndInit()

• OCIHandleFree()

3.2.1.2 Environment Handle
The environment handle defines a context in which all OCI functions are invoked. Each
environment handle contains a memory cache that enables fast memory access. All memory
allocation under the environment handle is done from this cache. Access to the cache is
serialized if multiple threads try to allocate memory under the same environment handle. When
multiple threads share a single environment handle, they may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc() call to
allocate all other handle types. Bind and define handles are allocated implicitly.

3.2.1.3 Error Handle
The error handle is passed as a parameter to most OCI calls.

The error handle maintains information about errors that occur during an OCI operation. If an
error occurs in a call, the error handle can be passed to OCIErrorGet() to obtain additional
information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because most OCI
calls require an error handle as a parameter.

Related Topics

• About Implementing Thread Safety
To take advantage of thread safety, an application must be running on a thread-safe
operating system.

3.2.1.4 Service Context Handle and Associated Handles
A service context handle defines attributes that determine the operational context for OCI calls
to a server.

The service context handle contains three handles as its attributes, that represent a server
connection, a user session, and a transaction. These attributes are illustrated in Figure 3-2.

Chapter 3
OCI Data Structures

3-7

Figure 3-2 Components of a Service Context

Server

Handle

Transaction

Handle

Service Context

Handle

User Session

Handle

• A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

• A user session handle defines a user's roles and privileges (also known as the user's
security domain), and the operational context in which the calls execute.

• A transaction handle defines the transaction in which the SQL operations are performed.
The transaction context includes user session state information, including any fetch state
and package instantiation.

Breaking the service context handle down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction processing (TP)
monitors to execute requests on behalf of multiple users on multiple application servers and
different transaction contexts.

You must allocate and initialize the service context handle with OCIHandleAlloc(),
OCILogon(), or OCILogon2() before you can use it. The service context handle is allocated
explicitly by OCIHandleAlloc(). It can be initialized using OCIAttrSet() with the server, user
session, and transaction handle. If the service context handle is allocated implicitly using
OCILogon(), it is already initialized.

Applications maintaining only a single user session for each database connection at any time
can call OCILogon() to get an initialized service context handle.

In applications requiring more complex session management, the service context handle must
be explicitly allocated, and the server and user session handles must be explicitly set into the
service context handle. OCIServerAttach() and OCISessionBegin() calls initialize the server
and user session handle respectively.

An application only defines a transaction explicitly if it is a global transaction or there are
multiple transactions active for sessions. It works correctly with the implicit transaction created
automatically by OCI when the application makes changes to the database.

Chapter 3
OCI Data Structures

3-8

See Also:

• OCI Support for Transactions

• OCI Environment Initialization, and Password and Session Management for more
information about establishing a server connection and user session

• OCIHandleAlloc()

• OCILogon()

• OCILogon2()

• OCIAttrSet()

• OCIServerAttach()

• OCISessionBegin()

• OCISessionGet()

3.2.1.5 Statement, Bind, and Define Handles
A statement handle is the context that identifies a SQL or PL/SQL statement and its associated
attributes

A statement handle is shown in Figure 3-3.

Figure 3-3 Statement Handles

Define

Handle

Bind

Handle

Statement

Handle

Information about input and output bind variables is stored in bind handles. The OCI library
allocates a bind handle for each placeholder bound with the OCIBindByName() or
OCIBindByName2() or OCIBindByPos() or OCIBindByPos2() function. The user must not
allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved according to
the specifications of the define handles. The OCI library allocates a define handle for each
output variable defined with OCIDefineByPos() or OCIDefineByPos2(). The user must not
allocate define handles. They are implicitly allocated by the define call.

Bind and define handles are implicitly allocated by the OCI library, and are transparently
reused if the bind or define operation is repeated. The actual value of the bind or define handle
is needed by the application for the advanced bind or define operations described in Binding
and Defining in OCI. The handles are freed when the statement handle is freed or when a new
statement is prepared on the statement handle. Explicitly allocating bind or define handles may
lead to memory leaks. Explicitly freeing bind or define handles may cause abnormal program
termination.

Chapter 3
OCI Data Structures

3-9

See Also:

• "Advanced Bind Operations in OCI"

• "Advanced Define Operations in OCI"

• OCIBindByName()

• OCIBindByName2()

• OCIBindByPos()

• OCIBindByPos2()

• OCIDefineByPos()

• OCIDefineByPos2()

3.2.1.6 Describe Handle
The describe handle is used by the OCI describe call, OCIDescribeAny().

The OCIDescribeAny() call obtains information about schema objects in a database (for
example, functions or procedures). The call takes a describe handle as one of its parameters,
along with information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can then obtain
describe information through the attributes of the parameter descriptors.

See Also:

• Describing Schema Metadata for more information about using the
OCIDescribeAny() function

• OCIDescribeAny()

3.2.1.7 Complex Object Retrieval Handle
The complex object retrieval (COR) handle is used by some OCI applications that work with
objects in an Oracle database.

The complex object retrieval (COR) handle contains COR descriptors, provides instructions for
retrieving objects referenced by another object.

Related Topics

• Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of
which are prefetched based on a given depth level.

3.2.1.8 Thread Handle
The thread handle is used in multithreaded applications.

Chapter 3
OCI Data Structures

3-10

For information about the thread handle, which is used in multithreaded applications, see the
following OCIThread Package.

Related Topics

• OCIThread Package
The OCIThread package provides some commonly used threading primitives.

3.2.1.9 Subscription Handle
The subscription handle is used by an OCI client application that registers and subscribes to
receive notifications of database events or events in the AQ namespace.

The subscription handle encapsulates all information related to a registration from a client.

Related Topics

• Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive client
notifications directly, register an email address to which notifications can be sent, register
an HTTP URL to which notifications can be posted, or register a PL/SQL procedure to be
invoked on a notification.

3.2.1.10 Direct Path Handles
The direct path handles are necessary for an OCI application that uses the direct path load
engine in the Oracle database.

The direct path load interface enables the application to access the direct block formatter of the
Oracle database. Figure 3-4 shows the different kinds of direct path handles.

Figure 3-4 Direct Path Handles

Direct Path
Column Array

Handle

Direct Path
Stream
Handle

Direct Path
Function Context

Handle

Direct Path
Context Handle

Related Topics

• Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path load
engine of Oracle Database to perform the functions of the SQL*Loader utility.

• Direct Path Loading Handle Attributes

3.2.1.11 Connection Pool Handle
The connection pool handle is used for applications that pool physical connections into virtual
connections.

The connection pool handle is used for applications that pool physical connections into virtual
connections by calling specific OCI functions.

Chapter 3
OCI Data Structures

3-11

Related Topics

• Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections by
several sessions to balance loads.

3.2.1.12 Handle Attributes
All OCI handles have attributes that represent data stored in that handle.

You can read handle attributes by using the attribute get call, OCIAttrGet(), and you can
change them with the attribute set call, OCIAttrSet().

For example, the statements in Example 3-1 set the user name in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

Some OCI functions require that particular handle attributes be set before the function is
called. For example, when OCISessionBegin() is called to establish a user's login session, the
user name and password must be set in the user session handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the function completes.
For example, when OCIStmtExecute() is called to execute a SQL query, describe information
relating to the select-list items is returned in the statement handle, as shown in Example 3-2.

See Also:

• The description of OCIArrayDescriptorAlloc() for an example showing how to
allocate a large number of descriptors

• Handle and Descriptor Attributes

• OCIAttrGet()

• OCIAttrSet()

• OCISessionBegin()

• OCIStmtExecute()

Example 3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the
Session Handle

text username[] = "hr";
err = OCIAttrSet ((void *) mysessp, OCI_HTYPE_SESSION, (void *)username,
 (ub4) strlen((char *)username), OCI_ATTR_USERNAME, (OCIError *) myerrhp);

Example 3-2 Returning Describe Information in the Statement Handle Relating to
Select-List Items

ub4 parmcnt;
/* get the number of columns in the select list */
err = OCIAttrGet ((void *)stmhp, (ub4)OCI_HTYPE_STMT, (void *)
 &parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM_COUNT, errhp);

Chapter 3
OCI Data Structures

3-12

3.2.2 OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information.

Table 3-2 lists OCI descriptors, along with their C data type, and the OCI type constant that
allocates a descriptor of that type in a call to OCIDescriptorAlloc(). The
OCIDescriptorFree() function frees descriptors and locators.

Table 3-2 Descriptor Types

Description C Data Type OCI Descriptor Type Constant

Snapshot descriptor OCISnapshot OCI_DTYPE_SNAP
Result set descriptor OCIResult OCI_DTYPE_RSET (Deprecated)

LOB data type locator OCILobLocator OCI_DTYPE_LOB
JSON Descriptor OCIJson OCI_DTYPE_JSON
BFILE data type locator OCILobLocator OCI_DTYPE_FILE
Read-only parameter descriptor OCIParam OCI_DTYPE_PARAM
ROWID descriptor OCIRowid OCI_DTYPE_ROWID
ANSI DATE descriptor OCIDateTime OCI_DTYPE_DATE
TIMESTAMP descriptor OCIDateTime OCI_DTYPE_TIMESTAMP
TIMESTAMP WITH TIME ZONE descriptor OCIDateTime OCI_DTYPE_TIMESTAMP_TZ
TIMESTAMP WITH LOCAL TIME ZONE
descriptor

OCIDateTime OCI_DTYPE_TIMESTAMP_LTZ

INTERVAL YEAR TO MONTH descriptor OCIInterval OCI_DTYPE_INTERVAL_YM
INTERVAL DAY TO SECOND descriptor OCIInterval OCI_DTYPE_INTERVAL_DS
User callback descriptor OCIUcb OCI_DTYPE_UCB
Distinguished names of the database servers
in a registration request

OCIServerDNs OCI_DTYPE_SRVDN

Complex object descriptor OCIComplexObjectComp OCI_DTYPE_COMPLEXOBJECTCOMP
Advanced queuing enqueue options OCIAQEnqOptions OCI_DTYPE_AQENQ_OPTIONS
Advanced queuing dequeue options OCIAQDeqOptions OCI_DTYPE_AQDEQ_OPTIONS
Advanced queuing message properties OCIAQMsgProperties OCI_DTYPE_AQMSG_PROPERTIES
Advanced queuing agent OCIAQAgent OCI_DTYPE_AQAGENT
Advanced queuing notification OCIAQNotify OCI_DTYPE_AQNFY
Advanced queuing listen options OCIAQListenOpts OCI_DTYPE_AQLIS_OPTIONS
Advanced queuing message properties OCIAQLisMsgProps OCI_DTYPE_AQLIS_MSG_PROPERTIES
Change notification None OCI_DTYPE_CHDES
Table change None OCI_DTYPE_TABLE_CHDES
Row change None OCI_DTYPE_ROW_CHDES
Shard key and shard group key descriptor OCIShardkey OCI_DTYPE_SHARD_KEY

Chapter 3
OCI Data Structures

3-13

Note:

Although there is a single C type for OCILobLocator, this locator is allocated with a
different OCI type constant for internal and external LOBs. LOB and BFILE Locators
discusses this difference.

The following list describes the main purpose of each descriptor type. The sections that follow
describe each descriptor type in more detail:

• OCISnapshot - Used in statement execution

• OCILobLocator - Used for LOB (OCI_DTYPE_LOB) or BFILE (OCI_DTYPE_FILE) calls

• OCIJson - to represent a JSON document in OCI. It is identified by the descriptor type
OCI_DTYPE_JSON

• OCIParam - Used in describe calls

• OCIRowid - Used for binding or defining ROWID values

• OCIDateTime and OCIInterval - Used for datetime and interval data types

• OCIComplexObjectComp - Used for complex object retrieval

• OCIAQEnqOptions, OCIAQDeqOptions, OCIAQMsgProperties, OCIAQAgent - Used for
Advanced Queuing

• OCIAQNotify - Used for publish-subscribe notification

• OCIServerDNs - Used for LDAP-based publish-subscribe notification

This section includes the following topics:

• Snapshot Descriptor

• LOB and BFILE Locators

• OCI Representation for JSON

• Parameter Descriptor

• ROWID Descriptor

• Date, Datetime, and Interval Descriptors

• Complex Object Descriptor

• Advanced Queuing Descriptors

• User Memory Allocation

• Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call, OCIStmtExecute().

• LOB and BFILE Locators
A large object (LOB) is an Oracle data type that can hold binary large object (BLOB) or
character large object (CLOB) data.

• Parameter Descriptor
OCI applications use parameter descriptors to obtain information about select-list columns
or schema objects.

Chapter 3
OCI Data Structures

3-14

• ROWID Descriptor
The ROWID descriptor, OCIRowid, is used by applications that must retrieve and use Oracle
ROWIDs.

• Date, Datetime, and Interval Descriptors
The date, datetime, and interval descriptors are used by applications that use the date,
datetime, or interval data types (OCIDate, OCIDateTime, and OCIInterval).

• Complex Object Descriptor
Complex object retrieval (COR) may improve application performance when dealing with
objects.

• Advanced Queuing Descriptors
There are a number of Oracle Database Advanced Queuing descriptors for use to maintain
data-specific information.

• User Memory Allocation
The OCIDescriptorAlloc() call has an xtramem_sz parameter in its parameter list.

Related Topics

• OCIDescriptorAlloc()

• OCIDescriptorFree()

• OCIArrayDescriptorAlloc()

• OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

3.2.2.1 Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call, OCIStmtExecute().

The snapshot descriptor indicates that a query is being executed against a database snapshot
that represents the state of a database at a particular time.

Allocate a snapshot descriptor with a call to OCIDescriptorAlloc() by passing
OCI_DTYPE_SNAP as the type parameter.

Related Topics

• OCIStmtExecute()

• OCIDescriptorAlloc()

• Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service contexts
operate on the same consistent snapshot of the database's committed data.

3.2.2.2 LOB and BFILE Locators
A large object (LOB) is an Oracle data type that can hold binary large object (BLOB) or
character large object (CLOB) data.

In the database, an opaque data structure called a LOB locator is stored in a LOB column of a
database row, or in the place of a LOB attribute of an object. The locator serves as a pointer to
the actual LOB value, which is stored in a separate location.

Chapter 3
OCI Data Structures

3-15

Note:

Depending on your application, you may or may not want to use LOB locators. You
can use the data interface for LOBs, which does not require LOB locators. In this
interface, you can bind or define character data for CLOB columns or RAW data for BLOB
columns.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or CLOB) or FILE
(BFILE). OCILobXXX functions take a LOB locator parameter instead of the LOB value. OCI LOB
functions do not use actual LOB data as parameters. They use the LOB locators as
parameters and operate on the LOB data referenced by them.

The LOB locator is allocated with a call to OCIDescriptorAlloc() by passing OCI_DTYPE_LOB
as the type parameter for BLOBs or CLOBs, and OCI_DTYPE_FILE for BFILEs.

Note:

The two LOB locator types are not interchangeable. When binding or defining a BLOB
or CLOB, the application must take care that the locator is properly allocated by using
OCI_DTYPE_LOB. Similarly, when binding or defining a BFILE, the application must be
sure to allocate the locator using OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the Oracle database by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In this case,
the application would first allocate the LOB locator and then use it to define an output variable.
Similarly, a LOB locator can be used as part of a bind operation to create an association
between a LOB and a placeholder in a SQL statement.

Related Topics

• LOB and BFILE Operations
This chapter describes LOB and BFILE operations.

• About Binding and Defining LOB Data
Oracle Database allows nonzero binds for INSERTs and UPDATEs of any size LOB.

• About Defining LOB Data

• OCIDescriptorAlloc()

3.2.2.3 Parameter Descriptor
OCI applications use parameter descriptors to obtain information about select-list columns or
schema objects.

This information is obtained through a describe operation.

The parameter descriptor is the only descriptor type that is not allocated using
OCIDescriptorAlloc(). You can obtain it only as an attribute of a describe handle, statement
handle, or through a complex object retrieval handle by specifying the position of the
parameter using an OCIParamGet() call.

Chapter 3
OCI Data Structures

3-16

Related Topics

• OCIDescriptorAlloc()

• OCIParamGet()

• About Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

• Describing Schema Metadata

3.2.2.4 ROWID Descriptor
The ROWID descriptor, OCIRowid, is used by applications that must retrieve and use Oracle
ROWIDs.

To work with a ROWID an application can define a ROWID descriptor for a rowid position in a SQL
select list, and retrieve a ROWID into the descriptor. This same descriptor can later be bound to
an input variable in an INSERT statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the statement handle
following an execute operation.

Related Topics

• OCIAttrGet()

3.2.2.5 Date, Datetime, and Interval Descriptors
The date, datetime, and interval descriptors are used by applications that use the date,
datetime, or interval data types (OCIDate, OCIDateTime, and OCIInterval).

These descriptors can be used for binding and defining, and are passed as parameters to the
functions OCIDescriptorAlloc() and OCIDescriptorFree() to allocate and free memory.

Related Topics

• OCIDescriptorAlloc()

• OCIDescriptorFree()

• Data Types

• OCI Data Type Mapping and Manipulation Functions

3.2.2.6 Complex Object Descriptor
Complex object retrieval (COR) may improve application performance when dealing with
objects.

Application performance when dealing with objects may be increased using complex object
retrieval (COR).

Related Topics

• Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of
which are prefetched based on a given depth level.

Chapter 3
OCI Data Structures

3-17

3.2.2.7 Advanced Queuing Descriptors
There are a number of Oracle Database Advanced Queuing descriptors for use to maintain
data-specific information.

Oracle Database Advanced Queuing provides message queuing as an integrated part of
Oracle Database.

Related Topics

• OCI and Database Advanced Queuing
OCI provides an interface to the Database Advanced Queuing (Database AQ) feature.
Database Advanced Queuing provides message queuing as an integrated part of Oracle
Database.

• Publish-Subscribe Registration Functions in OCI
You can register directly to the database or register using Lightweight Directory Access
Protocol (LDAP).

3.2.2.8 User Memory Allocation
The OCIDescriptorAlloc() call has an xtramem_sz parameter in its parameter list.

The xtramem_sz parameter is used to specify the amount of user memory that should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined structure that
has the same lifetime as the descriptor or locator. This structure can be used for application
bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to explicitly allocate
and deallocate memory as each descriptor or locator is allocated and deallocated. The
memory is allocated along with the descriptor or locator, and freeing the descriptor or locator
(with OCIDescriptorFree()) frees the user's data structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory that has the
same lifetime as the handle.

The OCIEnvCreate() and (OCIEnvInit() deprecated) calls have a similar parameter for
allocating user memory that has the same lifetime as the environment handle.

Related Topics

• OCIDescriptorAlloc()

• OCIDescriptorFree()

• OCIHandleAlloc()

• OCIEnvCreate()

• OCIEnvInit()

3.3 OCI Programming Steps
The following sections describe in detail each of the steps in developing an OCI application.

Some of the steps are optional. For example, you do not need to describe or define select-list
items if the statement is not a query. Application-specific processing also occurs in between
any and all of the OCI function steps.

Chapter 3
OCI Programming Steps

3-18

The following sections describe the steps that are required of an OCI application:

• OCI Environment Initialization

• About Processing SQL Statements in OCI

• Commit or Roll Back Operations

• About Terminating the Application

• Error Handling in OCI

• OCI Environment Initialization
This section describes how to initialize the OCI environment, establish a connection to a
server, and authorize a user to perform actions against the database.

• About Processing SQL Statements in OCI
What are the specific steps involved in processing SQL statements in OCI.

• Commit or Roll Back Operations
An application commits changes to the database by calling OCITransCommit().

• About Terminating the Application
What should an application do before it terminates.

• Error Handling in OCI
OCI function calls have a set of return codes.

See Also:

• The first sample program in OCI Demonstration Programs for an example
showing the use of OCI calls for processing SQL statements.

• Runtime Data Allocation and Piecewise Operations in OCI for a detailed
description of the special case of dynamically providing data at run time

• About Binding and Defining Arrays of Structures in OCI for a description of the
special considerations for operations involving arrays of structures

• Error Handling in OCI for an outline of the steps involved in processing a SQL
statement within an OCI program

• Overview of OCI Multithreaded Development for information about using the OCI
to write multithreaded applications

• SQL Statements for more information about types of SQL statements

3.3.1 OCI Environment Initialization
This section describes how to initialize the OCI environment, establish a connection to a
server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the following
sections:

• About Creating the OCI Environment

• About Allocating Handles and Descriptors

• Application Initialization, Connection, and Session Creation

Chapter 3
OCI Programming Steps

3-19

• About Creating the OCI Environment
Each OCI function call is executed in the context of an environment that is created with the
OCIEnvCreate() call.

• About Allocating Handles and Descriptors
Oracle Database provides OCI functions to allocate and deallocate handles and
descriptors.

• Application Initialization, Connection, and Session Creation
An application must call OCIEnvNlsCreate() to initialize the OCI environment handle.
Existing applications may have used OCIEnvCreate().

3.3.1.1 About Creating the OCI Environment
Each OCI function call is executed in the context of an environment that is created with the
OCIEnvCreate() call.

The OCIEnvCreate() call must be invoked before any other OCI call is executed. The only
exception is the setting of a process-level attribute for the OCI shared mode.

The mode parameter of OCIEnvCreate() specifies whether the application calling the OCI
library functions can:

• Run in a threaded environment (mode = OCI_THREADED).

• Use objects (mode = OCI_OBJECT). Use with AQ subscription registration.

• Use subscriptions (mode = OCI_EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines objects, or if it
uses the OCI's object navigation calls. The program may also choose to use none of these
features (mode = OCI_DEFAULT) or some combination of them, separating the options with a
vertical bar. For example if mode = (OCI_THREADED | OCI_OBJECT), then the application runs in a
threaded environment and uses objects.

You can specify user-defined memory management functions for each OCI environment.

See Also:

• OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information about the initialization calls

• Overview of OCI Multithreaded Development

• OCI Object-Relational Programming , Object-Relational Data Types in OCI,
Direct Path Load Interface, Object Advanced Topics in OCI, and Using the Object
Type Translator with OCI

• Publish-Subscribe Notification in OCI

3.3.1.2 About Allocating Handles and Descriptors
Oracle Database provides OCI functions to allocate and deallocate handles and descriptors.

Chapter 3
OCI Programming Steps

3-20

You must allocate handles using OCIHandleAlloc() before passing them into an OCI call,
unless the OCI call, such as OCIBindByPos() or OCIBindByPos2(), allocates the handles for
you.

You can allocate the types of handles listed in Table 3-1 with OCIHandleAlloc() Depending on
the functionality of your application, it must allocate some or all of these handles.

Related Topics

• OCIHandleAlloc()

• OCIBindByPos()

• OCIBindByPos2()

3.3.1.3 Application Initialization, Connection, and Session Creation
An application must call OCIEnvNlsCreate() to initialize the OCI environment handle. Existing
applications may have used OCIEnvCreate().

Following this step, the application has several options for establishing an Oracle database
connection and beginning a user session.

These methods include:

• Single User, Single Connection

• Client Access Through a Proxy

• Nonproxy Multiple Sessions or Connections

Note:

OCIEnvCreate() or OCIEnvNlsCreate() should be used instead of the
OCIInitialize() and OCIEnvInit() calls. OCIInitialize() and OCIEnvInit() calls
are supported for backward compatibility.

• Single User, Single Connection
The single user, single connection option is the simplified logon method, which can be
used if an application maintains only a single user session for each database connection at
any time.

• Client Access Through a Proxy
Proxy authentication is a process typically employed in an environment with a middle tier
such as a firewall, in which the end user authenticates to the middle tier, which then
authenticates to the database on the user's behalf—as its proxy.

• Nonproxy Multiple Sessions or Connections
The nonproxy multiple sessions or connections option uses explicit attach and begin-
session calls to maintain multiple user sessions and connections on a database
connection.

3.3.1.3.1 Single User, Single Connection
The single user, single connection option is the simplified logon method, which can be used if
an application maintains only a single user session for each database connection at any time.

Chapter 3
OCI Programming Steps

3-21

When an application calls OCILogon2() or OCILogon(), the OCI library initializes the service
context handle that is passed to it, and creates a connection to the specified Oracle database
for the user making the request.

Example 3-3 shows what a call to OCILogon2() looks like for a single user session with user
name hr, password hr, and database oracledb.

The parameters to this call include the service context handle (which has been initialized), the
user name, the user's password, and the name of the database that are used to establish the
connection. With the last parameter, mode, set to OCI_DEFAULT, this call has the same effect as
calling the older OCILogon(). Use OCILogon2() for any new applications. The server and user
session handles are implicitly allocated by this function.

If an application uses this logon method, the service context, server, and user session handles
are all read-only; the application cannot switch session or transaction by changing the
appropriate attributes of the service context handle using an OCIAttrSet() call.

An application that initializes its session and authorization using OCILogon2() must terminate
them using OCILogoff().

Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide
for password management guidelines and other security recommendations.

Example 3-3 Using the OCILogon2 Call for a Single User Session

OCILogon2(envhp, errhp, &svchp, (text *)"hr", (ub4)strlen("hr"), (text *)"hr",
 (ub4)strlen("hr"), (text *)"oracledb", (ub4)strlen("oracledb"),
 OCI_DEFAULT);

See Also:

Operating System Considerations for information regarding operating systems
providing facilities for spawning processes that allow child processes to reuse state
created by their parent process. This section explains why the child process must not
use the same database connection as created by the parent.

3.3.1.3.2 Client Access Through a Proxy
Proxy authentication is a process typically employed in an environment with a middle tier such
as a firewall, in which the end user authenticates to the middle tier, which then authenticates to
the database on the user's behalf—as its proxy.

The middle tier logs in to the database as a proxy user. A proxy user can switch identities and,
after logging in to the database, switch to the end user's identity. It can perform operations on
the end user's behalf, using the authorization appropriate to that particular end user.

Chapter 3
OCI Programming Steps

3-22

Note:

In release 1 of Oracle 11g, standards for acceptable passwords were greatly raised
to increase security. Examples of passwords in this section are incorrect. A password
must contain no fewer than eight characters. See the guidelines for securing
passwords Oracle Database Security Guide for additional information.

Proxy to database users is supported by using OCI and the ALTER USER statement, whose BNF
syntax is:

ALTER USER <targetuser> GRANT CONNECT THROUGH <proxy> [AUTHENTICATION REQUIRED];

The ALTER USER statement is used once in an application. Connections can be made multiple
times afterward. In OCI, you can either use connect strings or the function OCIAttrSet() with
the parameter OCI_ATTR_PROXY_CLIENT.

Even though beginning with Oracle Database 12c Release 2 (12.2) the maximum length of
each identifier is increased to 128 bytes, the user name and proxy combination can not exceed
250 bytes.

After a proxy switch is made, the current and connected user is the target user of the proxy.
The identity of the original user is not used for any privilege calculations. The original user can
be a local or external user.

Example 3-4 through Example 3-11 show connect strings that you can use in functions such as
OCILogon2() (set mode = OCI_DEFAULT), OCILogon(), OCISessionBegin() with OCIAttrSet()
(pass the attribute OCI_ATTR_USERNAME of the session handle), and so on.

In Example 3-4, Dilbert and Joe are two local database users. To enable Dilbert to serve as a
proxy for Joe, use the SQL statement shown in Example 3-4.

When user name dilbert is acting on behalf of joe, use the connection string shown in
Example 3-5. (The user name dilbert has the password tiger123).

The left and right brackets "[" and "]" are entered in the connection string.

In Example 3-6, "Dilbert" and "Joe" are two local database users. The names are case-
sensitive and must be enclosed in double quotation marks. To enable "Dilbert" to serve as a
proxy for "Joe", use the SQL statement shown in Example 3-6.

When "Dilbert" is acting on behalf of "Joe", use the connection string shown in Example 3-7.
Be sure to include the double quotation marks (") characters.

When the proxy user is created as "dilbert[mybert]", use the connection string shown in
Example 3-8 to connect to the database. (The left and right brackets "[" and "]" are entered in
the connection string.)

In Example 3-9, dilbert[mybert] and joe[myjoe] are two database users that contain the left and
right bracket characters "[" and "]". If dilbert[mybert] wants to act on behalf of joe[myjoe],
Example 3-9 shows the connect statement to use.

In Example 3-10, you can set the target user name by using the ALTER USER statement.

Chapter 3
OCI Programming Steps

3-23

See Also:

• OCI_ATTR_PROXY_CLIENT

• Oracle Database Security Guide for a discussion of proxy authentication

• Password and Session Management

• OCIAttrSet()

Note:

There are compatibility issues of client access through a proxy. Because this feature
was introduced in Oracle Database release 10.2, pre-10.2 clients do not have it. If
newer clients use the feature with pre-10.2 Oracle databases, the connect fails and
the client returns an error after checking the database release level.

Example 3-4 Enabling a Local User to Serve as a Proxy for Another User

ALTER USER joe GRANT CONNECT THROUGH dilbert;

Example 3-5 Connection String to Use for the Proxy User

dilbert[joe]/tiger123@db1

Example 3-6 Preserving Case Sensitivity When Enabling a Local User to Serve as a
Proxy for Another User

ALTER USER "Joe" GRANT CONNECT THROUGH "Dilbert";

Example 3-7 Preserving Case Sensitivity in the Connection String

"Dilbert"["Joe"]/tiger123@db1

Example 3-8 Using "dilbert[mybert]" in the Connection String

"dilbert[mybert]"/tiger123

rem the user was already created this way:
rem CREATE USER "dilbert[mybert]" IDENTIFIED BY tiger123;

Example 3-9 Using "dilbert[mybert]"["joe[myjoe]"] in the Connection String

"dilbert[mybert]"["joe[myjoe]"]/tiger123

Example 3-10 Setting the Target User Name

ALTER USER joe GRANT CONNECT THROUGH dilbert;

Then, as shown in Example 3-11, in an OCI program, use the OCIAttrSet() call to set the
attribute OCI_ATTR_PROXY_CLIENT and the proxy dilbert. In your program, use these
statements to connect multiple times.

Chapter 3
OCI Programming Steps

3-24

Example 3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the Proxy
dilbert

OCIAttrSet(session, OCI_HTYPE_SESSION, (void *)"dilbert",
 (ub4)strlen("dilbert"), OCI_ATTR_USERNAME,
 error_handle);
OCIAttrSet(session, OCI_HTYPE_SESSION, (void *)"tiger123",
 (ub4)strlen("tiger123"), OCI_ATTR_PASSWORD,
 error_handle);
OCIAttrSet(session, OCI_HTYPE_SESSION, (void *)"joe",
 (ub4)strlen("joe"), OCI_ATTR_PROXY_CLIENT,
 error_handle);

3.3.1.3.3 Nonproxy Multiple Sessions or Connections
The nonproxy multiple sessions or connections option uses explicit attach and begin-session
calls to maintain multiple user sessions and connections on a database connection.

Specific calls to attach to the Oracle database and begin sessions are:

• OCIServerAttach() - Creates an access path to the Oracle database for OCI operations.

• OCISessionBegin() - Establishes a session for a user against a particular Oracle
database. This call is required for the user to execute operations on the Oracle database.

A subsequent call to OCISessionBegin() using different service context and session context
handles logs off the previous user and causes an error. To run two simultaneous nonmigratable
sessions, a second OCISessionBegin() call must be made with the same service context
handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and PL/SQL
statements against a database.

See Also:

• Connect, Authorize, and Initialize Functions

• Session Pooling and Connection Pooling in OCI for more information about
maintaining multiple sessions, transactions, and connections

• Client Character Set Control from OCI for the use of OCIEnvNlsCreate()

Example 3-12 demonstrates the creation and initialization of an OCI environment.

• A server context is created and set in the service handle.

• Then a user session handle is created and initialized using a database user name and
password.

• For simplicity, error checking is not included.

The demonstration program cdemo81.c in the demo directory illustrates this process, with error
checking.

Example 3-12 Creating and Initializing an OCI Environment

#include <oci.h>
...
main()
{

Chapter 3
OCI Programming Steps

3-25

...
OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */
OCISvcCtx *mysvchp; /* the service handle */
...
/* initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate(&myenvhp, OCI_THREADED|OCI_OBJECT, (void *)0,
 0, 0, 0, (size_t) 0, (void **)0);

 /* allocate a server handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)&mysrvhp,
 OCI_HTYPE_SERVER, 0, (void **) 0);

 /* allocate an error handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)&myerrhp,
 OCI_HTYPE_ERROR, 0, (void **) 0);

 /* create a server context */
(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"inst1_alias",
 strlen ("inst1_alias"), OCI_DEFAULT);

 /* allocate a service handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)&mysvchp,
 OCI_HTYPE_SVCCTX, 0, (void **) 0);

 /* set the server attribute in the service context handle*/
(void) OCIAttrSet ((void *)mysvchp, OCI_HTYPE_SVCCTX,
 (void *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

 /* allocate a user session handle */
(void) OCIHandleAlloc ((void *)myenvhp, (void **)&myusrhp,
 OCI_HTYPE_SESSION, 0, (void **) 0);

 /* set user name attribute in user session handle */
 (void) OCIAttrSet ((void *)myusrhp, OCI_HTYPE_SESSION,
 (void *)"hr", (ub4)strlen("hr"),
 OCI_ATTR_USERNAME, myerrhp);

 /* set password attribute in user session handle */
 (void) OCIAttrSet ((void *)myusrhp, OCI_HTYPE_SESSION,
 (void *)"hr", (ub4)strlen("hr"),
 OCI_ATTR_PASSWORD, myerrhp);

 (void) OCISessionBegin ((void *) mysvchp, myerrhp, myusrhp,
 OCI_CRED_RDBMS, OCI_DEFAULT);

 /* set the user session attribute in the service context handle*/
 (void) OCIAttrSet ((void *)mysvchp, OCI_HTYPE_SVCCTX,
 (void *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);
...
}

3.3.2 About Processing SQL Statements in OCI
What are the specific steps involved in processing SQL statements in OCI.

Using SQL Statements in OCI outlines the specific steps involved in processing SQL
statements in OCI.

Chapter 3
OCI Programming Steps

3-26

3.3.3 Commit or Roll Back Operations
An application commits changes to the database by calling OCITransCommit().

The OCITransCommit() call uses a service context as one of its parameters. The transaction is
associated with the service context whose changes are committed. This transaction can be
explicitly created by the application or implicitly created when the application modifies the
database.

Note:

By using the OCI_COMMIT_ON_SUCCESS mode of the OCIStmtExecute() call, the
application can selectively commit transactions after each statement execution,
saving an extra round-trip.

To roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle Database in a way other than a normal logoff, such
as losing a network connection, and OCITransCommit() has not been called, all active
transactions are rolled back automatically.

See Also:

• "Service Context Handle and Associated Handles"

• "OCI Support for Transactions"

3.3.4 About Terminating the Application
What should an application do before it terminates.

An OCI application should perform the following steps before it terminates:

1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data sources by calling OCIServerDetach() for each source.

3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle.

4. Delete the environment handle, which deallocates all other handles associated with it.

Note:

When a parent OCI handle is freed, any child handles associated with it are freed
automatically

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory but are
recommended. If the application terminates, and OCITransCommit() (transaction commit) has
not been called, any pending transactions are automatically rolled back.

Chapter 3
OCI Programming Steps

3-27

See Also:

The first sample program in OCI Demonstration Programs for an example showing
handles being freed at the end of an application

Note:

If the application uses the simplified logon method of OCILogon2(), then a call to
OCILogoff() terminates the session, disconnects from the Oracle database, and
frees the service context and associated handles. The application is still responsible
for freeing other handles it allocated.

3.3.5 Error Handling in OCI
OCI function calls have a set of return codes.

These OCI function call return codes are listed in Table 3-3, which indicate the success or
failure of the call, such as OCI_SUCCESS or OCI_ERROR, or provide other information that may be
required by the application, such as OCI_NEED_DATA or OCI_STILL_EXECUTING. Most OCI calls
return one of these codes.

To verify that the connection to the server is not terminated by the OCI_ERROR, an application
can check the value of the attribute OCI_ATTR_SERVER_STATUS in the server handle. If the value
of the attribute is OCI_SERVER_NOT_CONNECTED, then the connection to the server and the user
session must be reestablished.

See Also:

• "Functions Returning Other Values" for exceptions

• "OCIErrorGet()" for complete details and an example of usage

• "Server Handle Attributes"

Table 3-3 OCI Return Codes

OCI Return Code Value Description

OCI_SUCCESS 0 The function completed successfully.

OCI_SUCCESS_WITH_INFO 1 The function completed successfully; a call to OCIErrorGet() returns
additional diagnostic information. This may include warnings.

OCI_NO_DATA 100 The function completed, and there is no further data.

OCI_ERROR -1 The function failed; a call to OCIErrorGet() returns additional
information.

OCI_INVALID_HANDLE -2 An invalid handle was passed as a parameter or a user callback was
passed an invalid handle or invalid context. No further diagnostics are
available.

Chapter 3
OCI Programming Steps

3-28

Table 3-3 (Cont.) OCI Return Codes

OCI Return Code Value Description

OCI_NEED_DATA 99 The application must provide runtime data.

OCI_STILL_EXECUTING -3123 The service context was established in nonblocking mode, and the current
operation could not be completed immediately. The operation must be
called again to complete. OCIErrorGet() returns ORA-03123 as the
error code.

OCI_CONTINUE -24200 This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

OCI_ROWCBK_DONE -24201 This code is returned only from a callback function. It indicates that the
callback function is done with the user row callback.

If the return code indicates that an error has occurred, the application can retrieve error codes
and messages specific to Oracle Database by calling OCIErrorGet(). One of the parameters
to OCIErrorGet() is the error handle passed to the call that caused the error.

Note:

Multiple diagnostic records can be retrieved by calling OCIErrorGet() repeatedly until
there are no more records (OCI_NO_DATA is returned). OCIErrorGet() returns at most
a single diagnostic record.

This section includes the following topics:

• Return and Error Codes for Data

• Functions Returning Other Values

• Return and Error Codes for Data
The OCI return code, error number, indicator variable, and column return code are
specified when the data fetched is normal, null, or truncated.

• Functions Returning Other Values
Some functions return values other than the OCI error codes.

3.3.5.1 Return and Error Codes for Data
The OCI return code, error number, indicator variable, and column return code are specified
when the data fetched is normal, null, or truncated.

In Table 3-4, the OCI return code, error number, indicator variable, and column return code are
specified when the data fetched is normal, null, or truncated.

See Also:

"Indicator Variables"

Chapter 3
OCI Programming Steps

3-29

Table 3-4 Return and Error Codes

State of Data Return Code Indicator - Not provided Indicator - Provided

Not null or
truncated

Not provided OCI_SUCCESS
Error = 0

OCI_SUCCESS
Error = 0

Indicator = 0

Not null or
truncated

Provided OCI_SUCCESS
Error = 0

Return code = 0

OCI_SUCCESS
Error = 0

Indicator = 0

Return code = 0

Null data Not provided OCI_ERROR
Error = 1405

OCI_SUCCESS
Error = 0

Indicator = -1

Null data Provided OCI_ERROR
Error = 1405

Return code = 1405

OCI_SUCCESS
Error = 0

Indicator = -1

Return code = 1405

Truncated data Not provided OCI_ERROR
Error = 1406

OCI_ERROR
Error = 1406

Indicator = data_len

Truncated data Provided OCI_SUCCESS_WITH_INFO
Error = 24345

Return code = 1405

OCI_SUCCESS_WITH_INFO
Error = 24345

Indicator = data_len

Return code = 1406

For truncated data, data_len is the actual length of the data that has been truncated if this
length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

3.3.5.2 Functions Returning Other Values
Some functions return values other than the OCI error codes.

These other OCI error codes are listed in Table 3-3. When you use these functions, be aware
that they return values directly from the function call, rather than through an OUT parameter.
More detailed information about each function and its return values is listed in the reference
chapters.

3.4 Additional Coding Guidelines
This section explains some additional issues when coding OCI applications.

This section includes the following topics:

• Operating System Considerations

• Parameter Types

• Inserting Nulls into a Column

• Indicator Variables

• About Canceling Calls

Chapter 3
Additional Coding Guidelines

3-30

• Positioned Updates and Deletes

• Reserved Words

• Polling Mode Operations in OCI

• Nonblocking Mode in OCI

• Setting Blocking Modes

• Canceling a Nonblocking Call

• Operating System Considerations
Operating systems may provide facilities for spawning processes that allow child
processes to reuse the state created by their parent process.

• Parameter Types
OCI functions take a variety of different types of parameters, including integers, handles,
and character strings.

• Inserting Nulls into a Column
How to insert a null into a database column.

• Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable, or an
array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

• About Canceling Calls
How do you cancel long-running or repeated OCI calls.

• Positioned Updates and Deletes
You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a later
UPDATE or DELETE statement.

• Reserved Words
Some words are reserved by Oracle.

• Polling Mode Operations in OCI
OCI has calls that poll for completion.

• Nonblocking Mode in OCI
OCI provides the ability to establish a server connection in blocking mode or nonblocking
mode.

• Setting Blocking Modes
You can modify or check an application's blocking status by calling OCIAttrSet() to set the
status, or OCIAttrGet() to read the status on the server context handle with the attrtype
parameter set to OCI_ATTR_NONBLOCKING_MODE.

• Canceling a Nonblocking Call
You can cancel a long-running OCI call by using the OCIBreak() function while the OCI call
is in progress.

3.4.1 Operating System Considerations
Operating systems may provide facilities for spawning processes that allow child processes to
reuse the state created by their parent process.

After spawning a child process, the child process must not use the same database connection
as created by the parent. Any attempt on behalf of the child process to use the same database
connection as the parent may cause undesired connection interference and result in
intermittent ORA-03137 errors, because Oracle Net expects only one user process to be using a
connection to the database.

Chapter 3
Additional Coding Guidelines

3-31

Where multiple, concurrent connections are required, consider using threads if your platform
supports a threads package. Concurrent connections are supported in either single-threaded
or multithreaded applications. For better performance with many concurrently opened
connections, consider pooling them.

See Also:

• Overview of OCI Multithreaded Development

• OCIThread Package

• Session Pooling in OCI

• When to Use Connection Pooling, Session Pooling, or Neither

3.4.2 Parameter Types
OCI functions take a variety of different types of parameters, including integers, handles, and
character strings.

Special considerations must be taken into account for some types of parameters, as described
in the following sections:

• Address Parameters

• Integer Parameters

• Character String Parameters

This section includes the following topics:

• Address Parameters
Address parameters are used to pass the address of the variable to Oracle Database.

• Integer Parameters
Binary integer and short binary integer parameters are numbers whose size is system-
dependent.

• Character String Parameters
Character strings are a special type of address parameter.

See Also:

Connect, Authorize, and Initialize Functions for more information about parameter
data types and parameter passing conventions

3.4.2.1 Address Parameters
Address parameters are used to pass the address of the variable to Oracle Database.

You should be careful when developing in C, because it normally passes scalar parameters by
value.

Chapter 3
Additional Coding Guidelines

3-32

3.4.2.2 Integer Parameters
Binary integer and short binary integer parameters are numbers whose size is system-
dependent.

See Oracle Database documentation that is specific to your operating system for the size of
these integers on your system.

3.4.2.3 Character String Parameters
Character strings are a special type of address parameter.

Each OCI routine that enables a character string to be passed as a parameter also has a string
length parameter. The length parameter should be set to the length of the string.

Note:

Unlike earlier versions of OCI, you do not pass -1 for the string length parameter of a
null-terminated string.

3.4.3 Inserting Nulls into a Column
How to insert a null into a database column.

You can insert a null into a database column in several ways.

• One method is to use a literal NULL in the text of an INSERT or UPDATE statement. For
example, the SQL statement makes the ENAME column NULL.

 INSERT INTO emp1 (ename, empno, deptno)
 VALUES (NULL, 8010, 20)

• Use indicator variables in the OCI bind call.

• Insert a NULL to set both the buffer length and maximum length parameters to zero on a
bind call.

Note:

Following the SQL standard requirements, Oracle Database returns an error if an
attempt is made to fetch a null select-list item into a variable that does not have
an associated indicator variable specified in the define call.

Related Topics

• Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable, or an
array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

Chapter 3
Additional Coding Guidelines

3-33

3.4.4 Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable, or an
array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

The C language does not have the concept of null values; therefore, you associate indicator
variables with input variables to specify whether the associated placeholder is a NULL. When
data is passed to an Oracle database, the values of these indicator variables determine
whether a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned from Oracle is a
NULL or a truncated value. For a NULL fetch in an OCIStmtFetch2() call or a truncation in an
OCIStmtExecute() call, the OCI call returns OCI_SUCCESS_WITH_INFO. The output indicator
variable is set.

The data type of indicator variables is sb2. For arrays of indicator variables, the individual array
elements should be of type sb2.

This section includes the following topics:

• Input

• Output

• Indicator Variables for Named Data Types and REFs

• Input
What values can be assigned to an indicator variable.

• Output
What values can be assigned to an indicator variable.

• Indicator Variables for Named Data Types and REFs
Indicator variables for most data types introduced after release 8.0 behave as described
earlier.

3.4.4.1 Input
What values can be assigned to an indicator variable.

For input host variables, the OCI application can assign the following values to an indicator
variable:

Input Indicator Value Action Taken by Oracle Database

-1 Oracle Database assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle Database assigns the value of the input variable to the column.

3.4.4.2 Output
What values can be assigned to an indicator variable.

On output, Oracle Database can assign the following values to an indicator variable:

Chapter 3
Additional Coding Guidelines

3-34

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output variable; the
item has been truncated. Additionally, the original length is longer than
the maximum data length that can be returned in the sb2 indicator
variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle Database assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output variable; the
item has been truncated. The positive value returned in the indicator
variable is the actual length before truncation.

3.4.4.3 Indicator Variables for Named Data Types and REFs
Indicator variables for most data types introduced after release 8.0 behave as described
earlier.

The only exception is SQLT_NTY (a named data type). For data of type SQLT_NTY, the
indicator variable must be a pointer to an indicator structure. Data of type SQLT_REF uses a
standard scalar indicator, just like other variable types.

When database types are translated into C struct representations using the Object Type
Translator (OTT), a null indicator structure is generated for each object type. This structure
includes an atomic null indicator, plus indicators for each object attribute.

See Also:

• Documentation for the OTT in Using the Object Type Translator with OCI, and
NULL Indicator Structure for information about NULL indicator structures

• Descriptions of OCIBindByName() and OCIBindByPos() in Bind, Define, and
Describe Functions, and the sections Information for Named Data Type and REF
Binds, and Information for Named Data Type and REF Defines, and PL/SQL
OUT Binds for more information about setting indicator parameters for named
data types and REFs

3.4.5 About Canceling Calls
How do you cancel long-running or repeated OCI calls.

On most operating systems, you can cancel long-running or repeated OCI calls by entering the
operating system's interrupt character (usually Control+C) from the keyboard.

Note:

This is not to be confused with canceling a cursor, which is accomplished by calling
OCIStmtFetch2() with the nrows parameter set to zero.

Chapter 3
Additional Coding Guidelines

3-35

When you cancel the long-running or repeated call using the operating system interrupt, the
error code ORA-01013 ("user requested cancel of current operation") is returned.

When given a particular service context pointer or server context pointer, the OCIBreak()
function performs an immediate (asynchronous) stop of any currently executing OCI function
associated with the server. It is normally used to stop a long-running OCI call being processed
on the server. The OCIReset() function is necessary to perform a protocol synchronization on
a nonblocking connection after an OCI application stops a function with OCIBreak().

Note:

OCIBreak() works on Windows systems.

The status of potentially long-running calls can be monitored using nonblocking calls. Use
multithreading for new applications.

See Also:

• Overview of OCI Multithreaded Development

• OCIThread Package

3.4.6 Positioned Updates and Deletes
You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a later UPDATE
or DELETE statement.

The ROWID is retrieved by calling OCIAttrGet() on the statement handle to retrieve the handle's
OCI_ATTR_ROWID attribute.

For example, consider a SQL statement such as the following:

SELECT ename FROM emp1 WHERE empno = 7499 FOR UPDATE OF sal

When the fetch is performed, the ROWID attribute in the handle contains the row identifier of the
selected row. You can retrieve the ROWID into a buffer in your program by calling OCIAttrGet()
as follows:

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
status = OCIDescriptorAlloc ((void *) envhp, (void **) &rowid,
 (ub4) OCI_DTYPE_ROWID, (size_t) 0, (void **) 0);
status = OCIAttrGet ((void *) mystmtp, OCI_HTYPE_STMT,
 (void *) rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For example, if rowid is
the buffer in which the row identifier has been saved, you can later process a SQL statement
such as the following by binding the new salary to the :1 placeholder and rowid to the :2
placeholder.

UPDATE emp1 SET sal = :1 WHERE rowid = :2

Chapter 3
Additional Coding Guidelines

3-36

Be sure to use data type code 104 (ROWID descriptor, see Table 4-2) when binding rowid to :2.

By using prefetching, you can select an array of ROWIDs for use in subsequent batch updates.

See Also:

• UROWID and DATE for more information about ROWIDs

• External Data Types for a table of external data types and codes

3.4.7 Reserved Words
Some words are reserved by Oracle.

That is, some reserved words have a special meaning to Oracle and cannot be redefined. For
this reason, you cannot use them to name database objects such as columns, tables, or
indexes.

This section includes the following topic: Oracle Reserved Namespaces

• Oracle Reserved Namespaces
What namespaces are reserved by Oracle. For a complete list of functions within a
particular namespace, refer to the document that corresponds to the appropriate Oracle
library.

See Also:

Oracle Database SQL Language Reference and Oracle Database PL/SQL Language
Reference to view the lists of the Oracle keywords or reserved words for SQL and
PL/SQL

3.4.7.1 Oracle Reserved Namespaces
What namespaces are reserved by Oracle. For a complete list of functions within a particular
namespace, refer to the document that corresponds to the appropriate Oracle library.

Table 3-5 contains a list of namespaces that are reserved by Oracle. The initial characters of
function names in Oracle libraries are restricted to the character strings in this list. Because of
potential name conflicts, do not use function names that begin with these characters.

Table 3-5 Oracle Reserved Namespaces

Namespace Library

XA External functions for XA applications only

SQ External SQLLIB functions used by Oracle Precompiler and SQL*Module
applications

O, OCI External OCI functions internal OCI functions

UPI, KP Function names from the Oracle UPI layer

Chapter 3
Additional Coding Guidelines

3-37

Table 3-5 (Cont.) Oracle Reserved Namespaces

Namespace Library

NA
NC
ND
NL
NM
NR
NS
NT
NZ
OSN
TTC

Oracle Net Native Services Product

Oracle Net RPC Project

Oracle Net Directory

Oracle Net Network Library Layer

Oracle Net Management Project

Oracle Net Interchange

Oracle Net Transparent Network Service

Oracle Net Drivers

Oracle Net Security Service

Oracle Net V1

Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM, LX Function names from the Oracle Globalization Support layer

S Function names from system-dependent libraries

KO Kernel Objects

3.4.8 Polling Mode Operations in OCI
OCI has calls that poll for completion.

Examples of such polling mode calls are:

• OCI calls in nonblocking mode

• OCI calls that operate on LOB data in pieces such as OCILobRead2() and OCILobWrite2()
• OCIStmtExecute() and OCIStmtFetch2() when used with OCIStmtSetPieceInfo() and

OCIStmtGetPieceInfo()
In such cases, OCI requires that the application ensure that the same OCI call is repeated on
the connection and nothing else is done on the connection in the interim. Performing any other
OCI call on such a connection (when OCI has handed control back to the caller) can result in
unexpected behavior.

Hence, with such polling mode OCI calls, the caller must ensure that the same call is repeated
on the connection and that nothing else is done until the call completes.

OCIBreak() and OCIReset() are exceptions to the rule. These calls are allowed so that the
caller can stop an OCI call that has been started.

3.4.9 Nonblocking Mode in OCI
OCI provides the ability to establish a server connection in blocking mode or nonblocking
mode.

Chapter 3
Additional Coding Guidelines

3-38

Note:

Because nonblocking mode requires the caller to repeat the same call until it
completes, it increases CPU usage. Instead, use multithreaded mode.

See Also:

• Overview of OCI Multithreaded Development

• OCIThread Package

When a connection is made in blocking mode, an OCI call returns control to an OCI client
application only when the call completes, either successfully or in error. With the nonblocking
mode, control is immediately returned to the OCI program if the call could not complete, and
the call returns a value of OCI_STILL_EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function to see if it
returns OCI_STILL_EXECUTING. If it does, the OCI client can continue to process program logic
while waiting to retry the OCI call to the server. This mode is particularly useful in graphical
user interface (GUI) applications, real-time applications, and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling paradigm, which
means that the client application must check whether the pending call is finished at the server
by executing the call again with the exact same parameters.

The following features and functions are not supported in nonblocking mode:

• Direct Path Load

• LOB buffering

• Objects

• Query cache

• Scrollable cursors

• Transparent application failover (TAF)

• OCIAQEnqArray()

• OCIAQDeqArray()
• OCIDescribeAny()
• OCILobArrayRead()
• OCILobArrayWrite()
• OCITransStart()
• OCITransDetach()

Chapter 3
Additional Coding Guidelines

3-39

3.4.10 Setting Blocking Modes
You can modify or check an application's blocking status by calling OCIAttrSet() to set the
status, or OCIAttrGet() to read the status on the server context handle with the attrtype
parameter set to OCI_ATTR_NONBLOCKING_MODE.

You must set this OCI_ATTR_NONBLOCKING_MODE attribute only after OCISessionBegin() or
OCILogon2() has been called. Otherwise, an error is returned.

Note:

Only functions that have a server context or a service context handle as a parameter
can return OCI_STILL_EXECUTING.

See Also:

Server Handle Attributes

3.4.11 Canceling a Nonblocking Call
You can cancel a long-running OCI call by using the OCIBreak() function while the OCI call is
in progress.

You must then issue an OCIReset() call to reset the asynchronous operation and protocol.

3.5 About Using PL/SQL in an OCI Program
PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL supports tasks that are more complicated than simple queries and SQL data
manipulation language (DML) statements. PL/SQL enables you to group some constructs into
a single block and execute it as a unit. These constructs include:

• One or more SQL statements

• Variable declarations

• Assignment statements

• Procedural control statements such as IF...THEN...ELSE statements and loops

• Exception handling

You can use PL/SQL blocks in your OCI program to perform the following operations:

• Call Oracle stored procedures and stored functions

• Combine procedural control statements with several SQL statements, to be executed as a
unit

• Access special PL/SQL features such as tables, CURSOR FOR loops, and exception handling

Chapter 3
About Using PL/SQL in an OCI Program

3-40

• Use cursor variables

• Operate on objects in a server

Note:

– Although OCI can only directly process anonymous blocks, and not named
packages or procedures, you can always put the package or procedure call
within an anonymous block and process that block.

– Note that all OUT variables must be initialized to NULL (through an indicator
of -1, or an actual length of 0) before a PL/SQL begin-end block can be
executed in OCI.

– OCI does not support the PL/SQL RECORD data type.

– When binding a PL/SQL VARCHAR2 variable in OCI, the maximum size of
the bind variable is 32767 bytes, because of the overhead of control
structures.

Note:

When you write PL/SQL code, it is important to remember that the parser treats
everything between a pair of hyphens"--" and a carriage return character as a
comment. So if comments are indicated on each line by "--", the C compiler can
concatenate all lines in a PL/SQL block into a single line without putting a
carriage return "\n" for each line. In this particular case, the parser fails to extract
the PL/SQL code of a line if the previous line ends with a comment. To avoid the
problem, the programmer should put "\n" after each "--" comment to ensure that
the comment ends there.

See Also:

Oracle Database PL/SQL Language Reference for information about coding
PL/SQL blocks

3.6 OCI Globalization Support
The following sections introduce OCI functions that can be used for globalization purposes,
such as deriving locale information, manipulating strings, character set conversion, and OCI
messaging.

These functions are also described in detail in other chapters of this guide because they have
multiple purposes and functionality.

This section includes the following topics:

• Client Character Set Control from OCI

• Character Control and OCI Interfaces

• Character-Length Semantics Support in Describe Operations

Chapter 3
OCI Globalization Support

3-41

• Character Set Support in OCI

• Controlling Language and Territory in OCI

• Other OCI Globalization Support Functions

• About Getting Locale Information in OCI

• About OCI and the BOM (Byte Order Mark)

• About Manipulating Strings in OCI

• About Converting Character Sets in OCI

• OCI Messaging Functions

• lmsgen Utility

• Client Character Set Control from OCI
The function OCIEnvNlsCreate() enables you to set character set information in
applications independently from NLS_LANG and NLS_NCHAR settings.

• Character Control and OCI Interfaces
How is character control performed by OCI interfaces.

• Character-Length Semantics in OCI
OCI works as a translator between server and client, and passes around character
information for constraint checking.

• Character Set Support in OCI
How does OCI support character sets.

• Controlling Language and Territory in OCI
The NLS language and territory can also be set programmatically using the attributes
OCI_ATTR_ENV_NLS_LANGUAGE and OCI_ATTR_ENV_NLS_TERRITORY on OCI environment
handle.

• Other OCI Globalization Support Functions
Many globalization support functions accept either the environment handle or the user
session handle.

• About Getting Locale Information in OCI
An Oracle Database locale consists of language, territory, and character set definitions.

• About OCI and the BOM (Byte Order Mark)
OCI does not support nor handle the BOM (byte order mark) and assumes that the byte
order is native to the machine on which your application is executing.

• About Manipulating Strings in OCI
Multibyte strings and wide-character strings are supported for string manipulation.

• About Converting Character Sets in OCI
Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported.

• OCI Messaging Functions
The user message API provides a simple interface for cartridge developers to retrieve their
own messages and Oracle Database messages.

• lmsgen Utility
The lmsgen utility converts text-based message files (.msg) into binary format (.msb) so
that Oracle Database messages and OCI messages provided by the user can be returned
to OCI functions in the desired language.

Chapter 3
OCI Globalization Support

3-42

3.6.1 Client Character Set Control from OCI
The function OCIEnvNlsCreate() enables you to set character set information in applications
independently from NLS_LANG and NLS_NCHAR settings.

OCI_UTF16ID cannot be set from NLS_LANG or NLS_NCHAR and must be set using
OCIEnvNlsCreate(). One application can have several environment handles initialized within
the same system environment using different client-side character set IDs and national
character set IDs. For example:

OCIEnvNlsCreate(OCIEnv **envhpp, ..., csid, ncsid);

In this example, csid is the value for the character set ID for the parameter charset, and ncsid
is the value for the national character set ID for the parameter ncharset. Either can be 0 or
OCI_UTF16ID. If both are 0, this is equivalent to using OCIEnvCreate() instead. The other
arguments are the same as for the OCIEnvCreate() call.

Any Oracle character set ID, except AL16UTF16, can be specified through the
OCIEnvNlsCtrate() function to specify the encoding of metadata, SQL CHAR data, and SQL
NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another function,
OCINlsEnvironmentVariableGet().

See Also:

• OCIEnvNlsCreate()

• About Setting Client Character Sets in OCI for a pseudocode fragment that
illustrates a sample usage of these calls

3.6.2 Character Control and OCI Interfaces
How is character control performed by OCI interfaces.

The OCINlsGetInfo() function returns information about any character set, including
OCI_UTF16ID if this value has been used in OCIEnvNlsCreate().

The OCIAttrGet() function returns the character set ID and national character set ID that were
passed into OCIEnvNlsCreate(). This is used to get OCI_ATTR_ENV_CHARSET_ID and
OCI_ATTR_ENV_NCHARSET_ID. This includes the value OCI_UTF16ID.

If both charset and ncharset parameters were set to 0 by OCIEnvNlsCreate(), the character
set IDs in NLS_LANG and NLS_NCHAR are returned.

The OCIAttrSet() function sets character IDs as the defaults if OCI_ATTR_CHARSET_FORM is
reset through this function. The eligible character set IDs include OCI_UTF16ID if
OCIEnvNlsCreate() is passed as charset or ncharset.

The OCIBindByName() or OCIBindByName2() and OCIBindByPos() or OCIBindByPos2()
functions bind variables with the default character set in the OCIEnvNlsCreate() call, including
OCI_UTF16ID. The actual length and the returned length are always in bytes if
OCIEnvNlsCreate() is used.

Chapter 3
OCI Globalization Support

3-43

The OCIDefineByPos() or OCIDefineByPos2() function defines variables with the value of
charset in OCIEnvNlsCreate(), including OCI_UTF16ID, as the default. The actual length and
returned length are always in bytes if OCIEnvNlsCreate() is used. This behavior for bind and
define handles is different from that when OCIEnvCreate() is used and OCI_UTF16ID is the
character set ID for the bind and define handles.

3.6.3 Character-Length Semantics in OCI
OCI works as a translator between server and client, and passes around character information
for constraint checking.

There are two kinds of character sets: variable-width and fixed-width. (A single-byte character
set is a special case of a fixed-width character set where each byte stands for one character.)

For fixed-width character sets, constraint checking is easier, as the number of bytes is equal to
a multiple of the number of characters. Therefore, scanning of the entire string is not needed to
determine the number of characters for fixed-width character sets. However, for variable-width
character sets, complete scanning is needed to determine the number of characters in a string.

3.6.4 Character Set Support in OCI
How does OCI support character sets.

See Character-Length Semantics Support in Describe Operations and Character Conversion in
OCI Binding and Defining for a complete discussion of character set support in OCI.

3.6.5 Controlling Language and Territory in OCI
The NLS language and territory can also be set programmatically using the attributes
OCI_ATTR_ENV_NLS_LANGUAGE and OCI_ATTR_ENV_NLS_TERRITORY on OCI environment handle.

See the following attributes for more details on their usage. These attributes will be effective for
the database sessions created from that environment handle after the attributes have been set.

• OCI_ATTR_ENV_NLS_LANGUAGE

• OCI_ATTR_ENV_NLS_TERRITORY

3.6.6 Other OCI Globalization Support Functions
Many globalization support functions accept either the environment handle or the user session
handle.

The OCI environment handle is associated with the client NLS environment variables. This
environment does not change when ALTER SESSION statements are issued to the server. The
character set associated with the environment handle is the client character set. The OCI
session handle (returned by OCISessionBegin()) is associated with the server session
environment. The NLS settings change when the session environment is modified with an
ALTER SESSION statement. The character set associated with the session handle is the
database character set.

Note that the OCI session handle does not have NLS settings associated with it until the first
transaction begins in the session. SELECT statements do not begin a transaction.

Chapter 3
OCI Globalization Support

3-44

See Also:

• OCI Globalization Support Functions

• Oracle Database Globalization Support Guide for information about OCI
programming with Unicode

3.6.7 About Getting Locale Information in OCI
An Oracle Database locale consists of language, territory, and character set definitions.

The locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale setting and
cultural conventions. For example, when the locale is set to German, users expect to see day
and month names in German.

See Also:

• OCI Locale Functions

• OCINlsEnvironmentVariableGet()

You can retrieve the following information with the OCINlsGetInfo() function:

• Days of the week (translated)

• Abbreviated days of the week (translated)

• Month names (translated)

• Abbreviated month names (translated)

• Yes/no (translated)

• AM/PM (translated)

• AD/BC (translated)

• Numeric format

• Debit/credit

• Date format

• Currency formats

• Default language

• Default territory

• Default character set

• Default linguistic sort

• Default calendar

The code in Example 3-13 retrieves locale information and checks for errors.

Chapter 3
OCI Globalization Support

3-45

Example 3-13 Getting Locale Information in OCI

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
 OraText infoBuf[OCI_NLS_MAXBUFSZ];
 sword ret;

 ret = OCINlsGetInfo(envhp, /* environment handle */
 errhp, /* error handle */
 infoBuf, /* destination buffer */
 (size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
 (ub2) OCI_NLS_LINGUISTIC_NAME); /* item */

 if (ret != OCI_SUCCESS)
 {
 checkerr(errhp, ret, OCI_HTYPE_ERROR);
 ret = OCI_ERROR;
 }
 else
 {
 printf("NLS linguistic: %s\n", infoBuf);
 }
 return(ret);
}

3.6.8 About OCI and the BOM (Byte Order Mark)
OCI does not support nor handle the BOM (byte order mark) and assumes that the byte order
is native to the machine on which your application is executing.

Your OCI application must not pass a string containing a BOM expecting that OCI can detect
the encoding of the string. Your OCI application must remove the BOM if it exists in the string
being passed in and ensure that it is in the encoding the OCI function expects.

3.6.9 About Manipulating Strings in OCI
Multibyte strings and wide-character strings are supported for string manipulation.

Multibyte strings are encoded in native Oracle character sets. Functions that operate on
multibyte strings take the string as a whole unit with the length of the string calculated in bytes.
Wide-character string (wchar) functions provide more flexibility in string manipulation. They
support character-based and string-based operations where the length the string calculated in
characters.

The wide-character data type, OCIWchar, is Oracle-specific and should not be confused with
the wchar_t data type defined by the ANSI/ISO C standard. The Oracle wide-character data
type is always 4 bytes in all operating systems, whereas the size of wchar_t depends on the
implementation and the operating system. The Oracle wide-character data type normalizes
multibyte characters so that they have a uniform fixed width for easy processing. This
guarantees no data loss for round-trip conversion between the Oracle wide-character set and
the native character set.

String manipulation can be classified into the following categories:

• Conversion of strings between multibyte and wide character

• Character classifications

Chapter 3
OCI Globalization Support

3-46

• Case conversion

• Calculations of display length

• General string manipulation, such as comparison, concatenation, and searching

See Also:

OCI String Manipulation Functions

Example 3-14 shows a simple case of manipulating strings.

The OCI character classification functions are described in detail in OCI Character
Classification Functions.

Example 3-15 shows how to classify characters in OCI.

Example 3-14 Basic String Manipulation in OCI

size_t MyConvertMultiByteToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIWchar *dstBuf;
size_t dstSize;
OraText *srcStr; /* null terminated source string */
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* destination buffer size */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

Example 3-15 Classifying Characters in OCI

boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; /* wide char source string */
{
 OCIWchar *pstr = srcStr; /* define and init pointer */
 boolean status = TRUE; /* define and initialize status variable */

 /* Check input */
 if (pstr == (OCIWchar*) NULL)
 return(FALSE);

 if (*pstr == (OCIWchar) NULL)

Chapter 3
OCI Globalization Support

3-47

 return(FALSE);

 /* check each character for digit */
 do
 {
 if (OCIWideCharIsDigit(envhp, *pstr) != TRUE)
 {
 status = FALSE;
 break; /* non-decimal digit character */
 }
 } while (*++pstr != (OCIWchar) NULL);

 return(status);
}

3.6.10 About Converting Character Sets in OCI
Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode encoding)
is supported.

Replacement characters are used if a character has no mapping from Unicode to the Oracle
character set. Therefore, conversion back to the original character set is not always possible
without data loss.

Character set conversion functions involving Unicode character sets require data bind and
define buffers to be aligned at a ub2 address or an error is raised.

Example 3-16 shows a simple conversion into Unicode.

See Also:

OCI Character Set Conversion Functions

Example 3-16 Converting Character Sets in OCI

/* Example of Converting Character Sets in OCI
--*/

size_t MyConvertMultiByteToUnicode(envhp, errhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIError *errhp;
ub2 *dstBuf;
size_t dstSize;
OraText *srcStr;
{
 size_t dstLen = 0;
 size_t srcLen = 0;
 OraText tb[OCI_NLS_MAXBUFSZ]; /* NLS info buffer */
 ub2 cid; /* OCIEnv character set ID */

 /* get OCIEnv character set */
 checkerr(errhp, OCINlsGetInfo(envhp, errhp, tb, sizeof(tb),
 OCI_NLS_CHARACTER_SET));
 cid = OCINlsCharSetNameToId(envhp, tb);

 if (cid == OCI_UTF16ID)
 {
 ub2 *srcStrUb2 = (ub2*)srcStr;

Chapter 3
OCI Globalization Support

3-48

 while (*srcStrUb2++) ++srcLen;
 srcLen *= sizeof(ub2);
 }
 else
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 checkerr(errhp,
 OCINlsCharSetConvert(
 envhp, /* environment handle */
 errhp, /* error handle */
 OCI_UTF16ID, /* Unicode character set ID */
 dstBuf, /* destination buffer */
 dstSize, /* size of destination buffer */
 cid, /* OCIEnv character set ID */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen)); /* pointer to destination length */

 return dstLen/sizeof(ub2);
}

3.6.11 OCI Messaging Functions
The user message API provides a simple interface for cartridge developers to retrieve their
own messages and Oracle Database messages.

Example 3-17 creates a message handle, initializes it to retrieve messages from impus.msg,
retrieves message number 128, and closes the message handle. It assumes that OCI
environment handles, OCI session handles, and the product, facility, and cache size have been
initialized properly.

Example 3-17 Retrieving a Message from a Text Message File

OCIMsg msghnd; /* message handle */
 /* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen(hndl,errhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err != OCI_SUCCESS)
 /* error handling */
...
 /* retrieve the message with message number = 128 */
msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
 /* do something with the message, such as display it */
...
 /* close the message handle when there are no more messages to retrieve */
OCIMessageClose(hndl, errhp, msghnd);

See Also:

• Oracle Database Data Cartridge Developer's Guide

• OCI Messaging Functions

Chapter 3
OCI Globalization Support

3-49

3.6.12 lmsgen Utility
The lmsgen utility converts text-based message files (.msg) into binary format (.msb) so that
Oracle Database messages and OCI messages provided by the user can be returned to OCI
functions in the desired language.

The BNF syntax of the Imsgen utility is as follows:

lmsgen text_file product facility [language]

In the preceding syntax:

• text_file is a message text file.

• product is the name of the product.

• facility is the name of the facility.

• language is the optional message language corresponding to the language specified in the
NLS_LANG parameter. The language parameter is required if the message file is not tagged
properly with language.

This section includes the following topics:

• Guidelines for Text Message Files

• An Example of Creating a Binary Message File from a Text Message File

• Guidelines for Text Message Files
What are the guidelines that text message files must follow.

• An Example of Creating a Binary Message File from a Text Message File
How do you create a binary message file from a text message file.

3.6.12.1 Guidelines for Text Message Files
What are the guidelines that text message files must follow.

Text message files must follow these guidelines:

• Lines that start with "/" and "//" are treated as internal comments and are ignored.

• To tag the message file with a specific language, include a line similar to the following:

CHARACTER_SET_NAME= Japanese_Japan.JA16EUC
• Each message contains three fields:

message_number, warning_level, message_text

– The message number must be unique within a message file.

– The warning level is not currently used. Set to 0.

– The message text cannot be longer than 76 bytes.

The following is an example of an Oracle Database message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/

Chapter 3
OCI Globalization Support

3-50

00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

3.6.12.2 An Example of Creating a Binary Message File from a Text Message File
How do you create a binary message file from a text message file.

The following table contains sample values for the lmsgen parameters:

lmsgen Parameter Value

product $HOME/myApplication
facility imp
language AMERICAN
text_file impus.msg

The text message file is found in the following location:

$HOME/myApp/mesg/impus.msg

One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The lmsgen utility converts the text message file (impus.msg) into binary format, resulting in a
file called impus.msb:

% lmsgen impus.msg $HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production

Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

Chapter 3
OCI Globalization Support

3-51

4
Data Types

This chapter provides a reference to Oracle external data types used by OCI applications.

It also discusses Oracle data types and the conversions between internal and external
representations that occur when you transfer data between your program and an Oracle
database.

This chapter contains these topics:

• Oracle Data Types

• Internal Data Types

• External Data Types

• Data Conversions

• Typecodes

• Definitions in oratypes.h

See Also:

Oracle Database SQL Language Reference for detailed information about Oracle
internal data types

• Oracle Data Types
One of the main functions of an OCI program is to communicate with an Oracle database.

• Internal Data Types
Lists and describes the internal data types.

• External Data Types
Lists and describes the data type codes for external data types.

• Data Conversions
Shows the supported conversions from internal data types to external data types and from
external data types into internal column representations.

• Typecodes
A unique typecode is associated with each Oracle Database type, whether scalar,
collection, reference, or object type.

• Definitions in oratypes.h
Describes the contents of the oratypes.h header file.

4.1 Oracle Data Types
One of the main functions of an OCI program is to communicate with an Oracle database.

The OCI application may retrieve data from database tables through SQL SELECT queries, or it
may modify existing data in tables through INSERT, UPDATE, or DELETE statements.

4-1

Inside a database, values are stored in columns in tables. Internally, Oracle represents data in
particular formats known as internal data types. Examples of internal data types include
NUMBER, CHAR, and DATE (see Table 4-1).

In general, OCI applications do not work with internal data type representations of data, but
with host language data types that are predefined by the language in which they are written.
When data is transferred between an OCI client application and a database table, the OCI
libraries convert the data between internal data types and external data types.

External data types are host language types that have been defined in the OCI header files.
When an OCI application binds input variables, one of the bind parameters is an indication of
the external data type code (or SQLT code) of the variable. Similarly, when output variables are
specified in a define call, the external representation of the retrieved data must be specified.

In some cases, external data types are similar to internal types. External types provide a
convenience for the developer by making it possible to work with host language types instead
of proprietary data formats.

Note:

Even though some external types are similar to internal types, an OCI application
never binds to internal data types. They are discussed here because it can be useful
to understand how internal types can map to external types.

OCI can perform a wide range of data type conversions when transferring data between an
Oracle database and an OCI application. There are more OCI external data types than Oracle
internal data types. In some cases, a single external type maps to an internal type; in other
cases, multiple external types map to a single internal type.

The many-to-one mappings for some data types provide flexibility for the OCI programmer. For
example, suppose that you are processing the following SQL statement:

SELECT sal FROM emp WHERE empno = :employee_number

You want the salary to be returned as character data, instead of a binary floating-point format.
Therefore, you specify an Oracle database external string data type, such as VARCHAR2 (code =
1) or CHAR (code = 96) for the dty parameter in the OCIDefineByPos() or OCIDefineByPos2()
call for the sal column. You also must declare a string variable in your program and specify its
address in the valuep parameter. See Table 4-2 for more information.

If you want the salary information to be returned as a binary floating-point value, however,
specify the FLOAT (code = 4) external data type. You also must define a variable of the
appropriate type for the valuep parameter.

Oracle Database performs most data conversions transparently. The ability to specify almost
any external data type provides a lot of power for performing specialized tasks. For example,
you can input and output DATE values in pure binary format, with no character conversion
involved, by using the DATE external data type.

To control data conversion, you must use the appropriate external data type codes in the bind
and define routines. You must tell Oracle Database where the input or output variables are in
your OCI program and their data types and lengths.

OCI also supports an additional set of OCI typecodes that are used by the Oracle Database
type management system to represent data types of object type attributes. You can use a set

Chapter 4
Oracle Data Types

4-2

of predefined constants to represent these typecodes. The constants each contain the prefix
OCI_TYPECODE.

In summary, the OCI developer must be aware of the following different data types or data
representations:

• Internal Oracle data types, which are used by table columns in an Oracle database. These
also include data types used by PL/SQL that are not used by Oracle Database columns
(for example, indexed table, record).

• External OCI data types, which are used to specify host language representations of
Oracle data.

• OCI_TYPECODE values, which are used by Oracle Database to represent type information for
object type attributes.

Information about a column's internal data type is conveyed to your application in the form of
an internal data type code. With this information about what type of data is to be returned, your
application can determine how to convert and format the output data. The Oracle internal data
type codes are listed in the section Internal Data Types.

• About Using External Data Type Codes
An external data type code indicates to Oracle Database how a host variable represents
data in your program.

See Also:

• DATE for a description of the external data type

• Internal Data Types

• External Data Types and About Using External Data Type Codes

• Typecodes, and Relationship Between SQLT and OCI_TYPECODE Values

• Oracle Database SQL Language Reference for detailed information about Oracle
internal data types

• About Describing Select-List Items for information about describing select-list
items in a query

4.1.1 About Using External Data Type Codes
An external data type code indicates to Oracle Database how a host variable represents data
in your program.

This determines how the data is converted when it is returned to output variables in your
program, or how it is converted from input (bind) variables to Oracle Database column values.
For example, to convert a NUMBER in an Oracle database column to a variable-length character
array, you specify the VARCHAR2 external data type code in the OCIDefineByPos() call that
defines the output variable.

To convert a bind variable to a value in an Oracle Database column, specify the external data
type code that corresponds to the type of the bind variable. For example, to input a character
string such as 02-FEB-65 to a DATE column, specify the data type as a character string and set
the length parameter to 9.

Chapter 4
Oracle Data Types

4-3

It is always the programmer's responsibility to ensure that values are convertible. If you try to
insert the string "MY BIRTHDAY" into a DATE column, you get an error when you execute the
statement.

See Also:

Table 4-2 for a complete list of the external data types and data type codes

4.2 Internal Data Types
Lists and describes the internal data types.

Table 4-1 lists the internal Oracle Database data types (also known as built-in), along with each
type's maximum internal length and data type code. PL/SQL types listed in Table 4-11 and
Table 4-12 are also considered to be internal data types.

Table 4-1 Internal Oracle Database Data Types

Internal Oracle Database Data Type Maximum Internal Length Data Type
Code

VARCHAR2, NVARCHAR2 4000 bytes (standard)

32767 bytes (extended)

1

NUMBER 21 bytes 2

LONG 2^31-1 bytes (2 gigabytes) 8

DATE 7 bytes 12

RAW 2000 bytes (standard)

32767 bytes (extended)

23

LONG RAW 2^31-1 bytes 24

ROWID 10 bytes 69

CHAR, NCHAR 2000 bytes 96

BINARY_FLOAT 4 bytes 100

BINARY_DOUBLE 8 bytes 101

User-defined type (object type, VARRAY, nested
table)

Not Applicable 108

REF Not Applicable 111

CLOB, NCLOB 128 terabytes 112

BLOB 128 terabytes 113

BFILE Maximum operating system file
size or UB8MAXVAL

114

JSON 32 MB 119

TIMESTAMP 11 bytes 180

TIMESTAMP WITH TIME ZONE 13 bytes 181

INTERVAL YEAR TO MONTH 5 bytes 182

INTERVAL DAY TO SECOND 11 bytes 183

Chapter 4
Internal Data Types

4-4

Table 4-1 (Cont.) Internal Oracle Database Data Types

Internal Oracle Database Data Type Maximum Internal Length Data Type
Code

UROWID 3950 bytes 208

TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

This section includes the following topics:

• LONG, RAW, LONG RAW, VARCHAR2

• Character Strings and Byte Arrays

• UROWID

• BINARY_FLOAT and BINARY_DOUBLE

• JSON

• LONG, RAW, LONG RAW, VARCHAR2
Use piecewise capabilities provided by specific OCI APIs to perform inserts, updates or
fetches of these data types.

• Character Strings and Byte Arrays
Use Oracle internal data types to specify columns that contain characters or arrays of
bytes.

• UROWID
The Universal ROWID (UROWID) is a data type that can store both logical and physical rowids
of Oracle Database tables.

• BINARY_FLOAT and BINARY_DOUBLE
The BINARY_FLOAT and BINARY_DOUBLE data types represent single-precision and double-
precision floating point values that mostly conform to the IEEE754 Standard for Floating-
Point Arithmetic.

• JSON

See Also:

Oracle Database SQL Language Reference for more information about these built-in
data types

4.2.1 LONG, RAW, LONG RAW, VARCHAR2
Use piecewise capabilities provided by specific OCI APIs to perform inserts, updates or fetches
of these data types.

You can use the piecewise capabilities provided by OCIBindByName() or OCIBindByName2(),
OCIBindByPos() or OCIBindByPos2(), OCIDefineByPos() or OCIDefineByPos2(),
OCIStmtGetPieceInfo(), and OCIStmtSetPieceInfo() to perform inserts, updates or fetches
involving column data of the LONG, RAW, LONG RAW, and VARCHAR2 data types.

Chapter 4
Internal Data Types

4-5

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIDefineByPos() or OCIDefineByPos2()

• OCIStmtGetPieceInfo()

• OCIStmtSetPieceInfo()

4.2.2 Character Strings and Byte Arrays
Use Oracle internal data types to specify columns that contain characters or arrays of bytes.

You can use following Oracle internal data types to specify columns that contain characters or
arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

Note:

LOBs can contain characters and BFILEs can contain binary data. They are handled
differently than other types, so they are not included in this discussion.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG RAW hold bytes
that are not interpreted as characters (for example, pixel values in a bit-mapped graphic
image). Character data can be transformed when it is passed through a gateway between
networks. Character data passed between machines using different languages, where single
characters may be represented by differing numbers of bytes, can be significantly changed in
length. Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle internal data
type for each column in the table. The OCI programmer must be aware of the many possible
ways that character and byte-array data can be represented and converted between variables
in the OCI program and Oracle Database tables.

When an array holds characters, the length parameter for the array in an OCI call is always
passed in and returned in bytes, not characters.

See Also:

LOB and BFILE Operations for more information about CHAR, VARCHAR2, RAW, LONG,
and LONG RAW data types

Chapter 4
Internal Data Types

4-6

4.2.3 UROWID
The Universal ROWID (UROWID) is a data type that can store both logical and physical rowids of
Oracle Database tables.

Logical rowids are primary key-based logical identifiers for the rows of index-organized tables
(IOTs).

To use columns of the UROWID data type, the value of the COMPATIBLE initialization parameter
must be set to 8.1 or later.

The following host variables can be bound to Universal ROWIDs:

• SQLT_CHR (VARCHAR2)

• SQLT_VCS (VARCHAR)

• SQLT_STR (NULL-terminated string)

• SQLT_LVC (LONG VARCHAR)

• SQLT_AFC (CHAR)

• SQLT_AVC (CHARZ)

• SQLT_VST (OCI String)

• SQLT_RDD (ROWID descriptor)

4.2.4 BINARY_FLOAT and BINARY_DOUBLE
The BINARY_FLOAT and BINARY_DOUBLE data types represent single-precision and double-
precision floating point values that mostly conform to the IEEE754 Standard for Floating-Point
Arithmetic.

Prior to the addition of these data types with release 10.1, all numeric values in an Oracle
Database were stored in the Oracle NUMBER format. These new binary floating point types do
not replace Oracle NUMBER. Rather, they are alternatives to Oracle NUMBER that provide the
advantage of using less disk storage.

These internal types are represented by the following codes:

• SQLT_IBFLOAT for BINARY_FLOAT
• SQLT_IBDOUBLE for BINARY_DOUBLE
All the following host variables can be bound to BINARY_FLOAT and BINARY_DOUBLE data types:

• SQLT_BFLOAT (native float)

• SQLT_BDOUBLE (native double)

• SQLT_INT (integer)

• SQLT_FLT (float)

• SQLT_NUM (Oracle NUMBER)

• SQLT_UIN (unsigned)

• SQLT_VNU (VARNUM)

• SQLT_CHR (VARCHAR2)

Chapter 4
Internal Data Types

4-7

• SQLT_VCS (VARCHAR)

• SQLT_STR (NULL-terminated String)

• SQLT_LVC (LONG VARCHAR)

• SQLT_AFC (CHAR)

• SQLT_AVC (CHARZ)

• SQLT_VST (OCIString)

For best performance, use external types SQLT_BFLOAT and SQLT_BDOUBLE in conjunction with
the BINARY_FLOAT and BINARY_DOUBLE data types.

4.2.5 JSON
Release 21c introduces a dedicated JSON data type.

JSON is a new SQL and PL/SQL data type for JSON data. The data is stored in the database
in a binary form for faster access to nested JSON values.

You can use JSON data type and its instances in most places where a SQL data type is
allowed, such as in following cases:

• As the column type for table

• View DDL

• As a parameter type for a PL/SQL subprogram

• In expressions where a SQL/JSON function or conditions are allowed

See Also:

• Overview of JSON in Oracle Database

4.3 External Data Types
Lists and describes the data type codes for external data types.

Table 4-2 lists data type codes for external data types. For each data type, the table lists the
program variable types for C from or to which Oracle Database internal data is normally
converted.

Table 4-2 External Data Types and Codes

External Data Type Code Program Variable1 OCI-Defined Constant

boolean 252 bool SQLT_BOL
VARCHAR2 1 char[n] SQLT_CHR
NUMBER 2 unsigned char[21] SQLT_NUM
8-bit signed INTEGER 3 signed char SQLT_INT
16-bit signed INTEGER 3 signed short, signed int SQLT_INT

Chapter 4
External Data Types

4-8

Table 4-2 (Cont.) External Data Types and Codes

External Data Type Code Program Variable1 OCI-Defined Constant

32-bit signed INTEGER 3 signed int, signed long SQLT_INT
64-bit signed INTEGER 3 signed long, signed long long SQLT_INT
FLOAT 4 float, double SQLT_FLT
NULL-terminated STRING 5 char[n+1] SQLT_STR
VARNUM 6 char[22] SQLT_VNU
LONG 8 char[n] SQLT_LNG
VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned char[n+sizeof(short

integer)]
SQLT_VBI

native float 21 float SQLT_BFLOAT
native double 22 double SQLT_BDOUBLE
RAW 23 unsigned char[n] SQLT_BIN
LONG RAW 24 unsigned char[n] SQLT_LBI
UNSIGNED INT 68 unsigned SQLT_UIN
LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC
LONG VARRAW 95 unsigned char[n+sizeof(integer)] SQLT_LVB
CHAR 96 char[n] SQLT_AFC
CHARZ 97 char[n+1] SQLT_AVC
ROWID descriptor 104 OCIRowid * SQLT_RDD
NAMED DATATYPE 108 struct SQLT_NTY
REF 110 OCIRef SQLT_REF
Character LOB descriptor 112 OCILobLocator2 SQLT_CLOB
Binary LOB descriptor 113 OCILobLocator2 SQLT_BLOB
Binary FILE descriptor 114 OCILobLocator SQLT_FILE
JSON descriptor 119 OCIJson SQLT_JSON
OCI STRING type 155 OCIString SQLT_VST3

OCI DATE type 156 OCIDate * SQLT_ODT3

ANSI DATE descriptor 184 OCIDateTime * SQLT_DATE
TIMESTAMP descriptor 187 OCIDateTime * SQLT_TIMESTAMP
TIMESTAMP WITH TIME ZONE
descriptor

188 OCIDateTime * SQLT_TIMESTAMP_TZ

INTERVAL YEAR TO MONTH descriptor 189 OCIInterval * SQLT_INTERVAL_YM
INTERVAL DAY TO SECOND descriptor 190 OCIInterval * SQLT_INTERVAL_DS
TIMESTAMP WITH LOCAL TIME ZONE
descriptor

232 OCIDateTime * SQLT_TIMESTAMP_LTZ

1 Where the length is shown as n, it is a variable, and depends on the requirements of the program (or of the operating system for ROWID).

Chapter 4
External Data Types

4-9

2 In applications using data type mappings generated by OTT, CLOBs may be mapped as OCIClobLocator, and BLOBs may be mapped as
OCIBlobLocator. For more information, see Chapter 15.

3 For more information about the use of these data types, see Chapter 12.

This section includes the following topics describing these external data types:

• BOOLEAN

• VARCHAR2

• NUMBER

• 64-Bit Integer Host Data Type

• INTEGER

• FLOAT

• STRING

• VARNUM

• LONG

• VARCHAR

• DATE

• RAW

• VARRAW

• LONG RAW

• UNSIGNED

• LONG VARCHAR

• LONG VARRAW

• CHAR

• CHARZ

• Named Data Types: Object, VARRAY, Nested Table

• REF

• ROWID Descriptor

• LOB Descriptor

• JSON Descriptor

• Datetime and Interval Data Type Descriptors

• Native Float and Native Double

• C Object-Relational Data Type Mappings

• BOOLEAN
The BOOLEAN data type stores boolean (TRUE or FALSE) values as a single byte.

• VARCHAR2
The VARCHAR2 data type is a variable-length string of characters with a maximum length of
4000 bytes.

• NUMBER
You should not need to use NUMBER as an external data type.

Chapter 4
External Data Types

4-10

• 64-Bit Integer Host Data Type
You can bind and define integer values greater than 32-bit size (more than nine digits of
precision) from and into a NUMBER column using a 64-bit native host variable and SQLT_INT
or SQLT_UIN as the external data type in an OCI application.

• INTEGER
The INTEGER data type converts numbers.

• FLOAT
The FLOAT data type processes numbers that have fractional parts or that exceed the
capacity of an integer.

• STRING
The NULL-terminated STRING format behaves like the VARCHAR2 format, except that the
string must contain a NULL terminator character.

• VARNUM
The VARNUM data type is like the external NUMBER data type, except that the first byte
contains the length of the number representation.

• LONG
The LONG data type stores character strings longer than 4000 bytes.

• VARCHAR
The VARCHAR data type stores character strings of varying length.

• DATE
The DATE data type can update, insert, or retrieve a date value using the Oracle internal
date binary format.

• RAW
The RAW data type is used for binary data or byte strings that are not to be interpreted by
Oracle Database, for example, to store graphics character sequences.

• VARRAW
The VARRAW data type is similar to the RAW data type.

• LONG RAW
The LONG RAW data type supports a 2 gigabyte length.

• UNSIGNED
The UNSIGNED data type is used for unsigned binary integers.

• LONG VARCHAR
The LONG VARCHAR data type stores data from and into an Oracle Database LONG column.

• LONG VARRAW
The LONG VARRAW data type is used to store data from and into an Oracle Database LONG
RAW column.

• CHAR
The CHAR data type is a string of characters, with a maximum length of 2000.

• CHARZ
The CHARZ external data type is similar to the CHAR data type, except that the string must be
NULL-terminated on input, and Oracle Database places a NULL-terminator character at the
end of the string on output.

• Named Data Types: Object, VARRAY, Nested Table
Named data types are user-defined types that are specified with the CREATE TYPE
command in SQL.

Chapter 4
External Data Types

4-11

• REF
This is a reference to a named data type.

• ROWID Descriptor
The ROWID data type identifies a particular row in a database table.

• LOB Descriptor
A LOB (large object) stores binary or character data up to 128 terabytes (TB) in length.

• JSON Descriptor
JSON data type is used to store JSON data in a native binary format.

• Datetime and Interval Data Type Descriptors
Lists and describes the datetime and interval data type descriptors.

• Native Float and Native Double
The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) data types represent the
single-precision and double-precision floating-point values.

• C Object-Relational Data Type Mappings
OCI supports Oracle-defined C data types for mapping user-defined data types to C
representations (for example, OCINumber, OCIArray).

4.3.1 BOOLEAN
The BOOLEAN data type stores boolean (TRUE or FALSE) values as a single byte.

The valid values for BOOLEAN datatype are TRUE (1), FALSE (0), or NULL. You can select or
update boolean values as integral types, such as char, short, int, long, unsigned short,
unsigned int, unsigned long, unsigned char.

To check if NULL is returned, include an indicator parameter in the OCIDefineByPos() call
when using the BOOLEAN data types.

Oracle Database sets the indicator parameter to -1 when a NULL value is fetched.

4.3.2 VARCHAR2
The VARCHAR2 data type is a variable-length string of characters with a maximum length of
4000 bytes.

If the init.ora parameter max_string_size = standard (default value), the maximum length
of a VARCHAR2 can be 4000 bytes. If the init.ora parameter max_string_size = extended,
the maximum length of a VARCHAR2 can be 32767 bytes.

Note:

If you are using Oracle Database objects, you can work with a special OCIString
external data type using a set of predefined OCI functions.

This section includes the following topics:

• Input

• Output

Chapter 4
External Data Types

4-12

• Input
The value_sz parameter determines the length in the OCIBindByName() or
OCIBindByPos() call. If you are using extended VARCHAR2 lengths, then the value_sz
parameter determines the length in the OCIBindByName2() and OCIBindByPos2() calls.

• Output
You must specify the desired length for the return value in value_sz for bind and define
functions.

See Also:

• init.ora parameter MAX_STRING_SIZE in Oracle Database Reference for
more information about extended data types

• Object-Relational Data Types in OCI for more information about the OCIString
external data type

4.3.2.1 Input
The value_sz parameter determines the length in the OCIBindByName() or OCIBindByPos()
call. If you are using extended VARCHAR2 lengths, then the value_sz parameter determines the
length in the OCIBindByName2() and OCIBindByPos2() calls.

If the value_sz parameter is greater than zero, Oracle Database obtains the bind variable
value by reading exactly that many bytes, starting at the buffer address in your program.
Trailing blanks are stripped, and the resulting value is used in the SQL statement or PL/SQL
block. If, with an INSERT statement, the resulting value is longer than the defined length of the
database column, the INSERT fails, and an error is returned.

Note:

A trailing NULL is not stripped. Variables should be blank-padded but not NULL-
terminated.

If the value_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind variable value
in the SQL statement. If you try to insert a NULL into a column that has a NOT NULL integrity
constraint, Oracle Database issues an error, and the row is not inserted.

When the Oracle internal (column) data type is NUMBER, input from a character string that
contains the character representation of a number is legal. Input character strings are
converted to internal numeric format. If the VARCHAR2 string contains an illegal conversion
character, Oracle Database returns an error and the value is not inserted into the database.

Chapter 4
External Data Types

4-13

See Also:

• OCIBindByName()

• OCIBindByPos()

• OCIBindByName2()

• OCIBindByPos2()

4.3.2.2 Output
You must specify the desired length for the return value in value_sz for bind and define
functions.

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or OCIBindByPos() for
PL/SQL blocks. If zero is specified for the length, no data is returned. If you are using extended
VARCHAR2 lengths, then the value_sz parameter determines the desired length for the return
value in the OCIDefineByPos2() call, or in the OCIBindByName2() and OCIBindByPos2() calls
for PL/SQL blocks.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank-padded to the
buffer length, and NULLs are returned as a string of blank characters. If rlenp is included,
returned values are not blank-padded. Instead, their actual lengths are returned in the rlenp
parameter.

To check if a NULL is returned or if character truncation has occurred, include an indicator
parameter in the OCIDefineByPos() call. Oracle Database sets the indicator parameter to -1
when a NULL is fetched and to the original column length when the returned value is truncated.
Otherwise, it is set to zero. If you do not specify an indicator parameter and a NULL is selected,
the fetch call returns the error code OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information
for the error returns ORA-1405.

See Also:

• Indicator Variables

• OCIDefineByPos() or OCIDefineByPos2()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

4.3.3 NUMBER
You should not need to use NUMBER as an external data type.

If you do use it as an external data type, Oracle Database returns numeric values in its internal
21-byte binary format and expects this format on input. The following discussion is included for
completeness only.

Chapter 4
External Data Types

4-14

Note:

If you are using objects in an Oracle database, you can work with a special
OCINumber data type using a set of predefined OCI functions.

Oracle Database stores values of the NUMBER data type in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers, and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an offset of
65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another 128 if
the number is positive. If the number is negative, you do the same, but subsequently the bits
are inverted. For example, -5 has a base-100 exponent = 62 (0x3e). The decimal exponent is
thus (~0x3e) -128 - 65 = 0xc1 -128 -65 = 193 -128 -65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the digit has
1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers, instead of
adding 1, the digit is subtracted from 101. So, the mantissa digit for the number -5 is 96 (101 -
5). Negative numbers have a byte containing 102 appended to the data bytes. However,
negative numbers that have 20 mantissa bytes do not have the trailing 102 byte. Because the
mantissa digits are stored in base 100, each byte can represent 2 decimal digits. The mantissa
is normalized; leading zeros are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be
accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum precision of
38 digits for an Oracle NUMBER.

If you specify the data type code 2 in the dty parameter of an OCIDefineByPos() or
OCIDefineByPos2() call, your program receives numeric data in this Oracle internal format.
The output variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank padding or
NULL termination. If you must know the number of bytes returned, use the VARNUM external data
type instead of NUMBER.

See Also:

• OCINumber Examples

• VARNUM for a description of the internal NUMBER format

• Number (OCINumber) more information about the OCINumber data type

• OCIDefineByPos() or OCIDefineByPos2()

4.3.4 64-Bit Integer Host Data Type
You can bind and define integer values greater than 32-bit size (more than nine digits of
precision) from and into a NUMBER column using a 64-bit native host variable and SQLT_INT or
SQLT_UIN as the external data type in an OCI application.

Chapter 4
External Data Types

4-15

Starting with release 11.2, OCI supports the ability to bind and define integer values greater
than 32-bit size (more than nine digits of precision) from and into a NUMBER column using a 64-
bit native host variable and SQLT_INT or SQLT_UIN as the external data type in an OCI
application.

This feature enables an application to bind and define 8-byte native host variables using
SQLT_INT or SQLT_UIN external data types in the OCI bind and define function calls on all
platforms. The OCIDefineByPos() or OCIDefineByPos2(), OCIBindByName() or
OCIBindByName2(), and OCIBindByPos() or OCIBindByPos2() function calls can specify an 8-
byte integer data type pointer as the valuep parameter. This feature enables you to insert and
fetch large integer values (up to 18 decimal digits of precision) directly into and from native
host variables and to perform free arithmetic on them.

This section includes the following topics:

• OCI Bind and Define for 64-Bit Integers

• Support for OUT Bind DML Returning Statements

• OCIDefineByPos() or OCIDefineByPos2()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCI Bind and Define for 64-Bit Integers
Shows a code fragment for an OCI bind and define for 64-bit integers.

• Support for OUT Bind DML Returning Statements
Shows a code fragment that illustrates binding 8-byte integer data types for OUT binds of a
DML returning statement.

4.3.4.1 OCI Bind and Define for 64-Bit Integers
Shows a code fragment for an OCI bind and define for 64-bit integers.

Example 4-1 shows a code fragment that works without errors.

Example 4-1 OCI Bind and Define Support for 64-Bit Integers

...
/* Variable declarations */
orasb8 sbigval1, sbigval2, sbigval3; // Signed 8-byte variables.
oraub8 ubigval1, ubigval2, ubigval3; // Unsigned 8-byte variables.
...
/* Bind Statements */
OCIBindByPos(..., (void *) &sbigval1, sizeof(sbigval1), ..., SQLT_INT, ...);
OCIBindByPos(..., (void *) &ubigval1, sizeof(ubigval1), ..., SQLT_UIN, ...);
OCIBindByName(...,(void *) &sbigval2, sizeof(sbigval2), ..., SQLT_INT, ...);
OCIBindByName(...,(void *) &ubigval2, sizeof(ubigval2), ..., SQLT_UIN, ...);
...
/* Define Statements */
OCIDefineByPos(..., (void *) &sbigval3, sizeof(sbigval3), ..., SQLT_INT, ...);
OCIDefineByPos(..., (void *) &ubigval3, sizeof(ubigval3), ..., SQLT_UIN, ...);
...

4.3.4.2 Support for OUT Bind DML Returning Statements
Shows a code fragment that illustrates binding 8-byte integer data types for OUT binds of a
DML returning statement.

Chapter 4
External Data Types

4-16

Example 4-2 shows a code fragment that illustrates binding 8-byte integer data types for OUT
binds of a DML returning statement.

Example 4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning
Statement

...
/* Define SQL statements to be used in program. */
static text *dml_stmt = (text *) " UPDATE emp SET sal = sal + :1
 WHERE empno = :2
 RETURNING sal INTO :out1";
...

/* Declare all handles to be used in program. */
OCIStmt *stmthp;
OCIError *errhp;
OCIBind *bnd1p = (OCIBind *) 0;
OCIBind *bnd2p = (OCIBind *) 0;
OCIBind *bnd3p = (OCIBind *) 0;
...

/* Bind variable declarations */
orasb8 sbigval; // OUT bind variable (8-byte size).
sword eno, hike; // IN bind variables.
...

/* get values for IN bind variables */
...

/* Bind Statements */
OCIBindByPos(stmthp, &bnd1p, errhp, 1, (dvoid *) &hike,
 (sb4) sizeof(hike), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);
OCIBindByPos(stmthp, &bnd2p, errhp, 2, (dvoid *) &eno,
 (sb4) sizeof(eno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);
OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":out1", -1,
 (dvoid *) &sbigval, sizeof(sbigval), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT);
...

/* Use the returned OUT bind variable value */
...

4.3.5 INTEGER
The INTEGER data type converts numbers.

An external integer is a signed binary number; the size in bytes is system-dependent. The host
system architecture determines the order of the bytes in the variable. A length specification is
required for input and output. If the number being returned from Oracle Database is not an
integer, the fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system, Oracle
Database returns an "overflow on conversion" error.

Chapter 4
External Data Types

4-17

4.3.6 FLOAT
The FLOAT data type processes numbers that have fractional parts or that exceed the capacity
of an integer.

The number is represented in the host system's floating-point format. Normally the length is
either 4 or 8 bytes. The length specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point implementations
are binary; therefore, Oracle Database can represent numbers with greater precision than
floating-point representations.

Note:

You may receive a round-off error when converting between FLOAT and NUMBER. Using
a FLOAT as a bind variable in a query may return an ORA-1403 error. You can avoid
this situation by converting the FLOAT into a STRING and then using VARCHAR2 or a
NULL-terminated string for the operation.

4.3.7 STRING
The NULL-terminated STRING format behaves like the VARCHAR2 format, except that the string
must contain a NULL terminator character.

The STRING data type is most useful for C language programs.

This section includes the following topics:

• Input

• Output

• Input
The string length supplied in the OCIBindByName() or OCIBindByPos() call limits the scan
for the NULL terminator.

• Output
A NULL terminator is placed after the last character returned.

4.3.7.1 Input
The string length supplied in the OCIBindByName() or OCIBindByPos() call limits the scan for
the NULL terminator.

If the NULL terminator is not found within the length specified, Oracle Database issues the
following error:

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, OCI uses an implied maximum string length of
4000.

The minimum string length is 2 bytes. If the first character is a NULL terminator and the length is
specified as 2, a NULL is inserted into the column, if permitted. Unlike types VARCHAR2 and CHAR,
a string containing all blanks is not treated as a NULL on input; it is inserted as is.

Chapter 4
External Data Types

4-18

Note:

You cannot pass -1 for the string length parameter of a NULL-terminated string

4.3.7.2 Output
A NULL terminator is placed after the last character returned.

If the string exceeds the field length specified, it is truncated and the last character position of
the output variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character position. An
ORA-01405 error is also possible.

4.3.8 VARNUM
The VARNUM data type is like the external NUMBER data type, except that the first byte contains
the length of the number representation.

This length does not include the length byte itself. Reserve 22 bytes to receive the longest
possible VARNUM. Set the length byte when you send a VARNUM value to Oracle Database.

Table 4-3 shows several examples of the VARNUM values returned for numbers in a table.

Table 4-3 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 Not applicable Not applicable

5 2 193 6 Not applicable

-5 3 62 96 102

2767 3 194 28, 68 Not applicable

-2767 4 61 74, 34 102

100000 2 195 11 Not applicable

1234567 5 196 2, 24, 46, 68 Not applicable

4.3.9 LONG
The LONG data type stores character strings longer than 4000 bytes.

You can store up to 2 gigabytes (2^31-1 bytes) in a LONG column. Columns of this type are
used only for storage and retrieval of long strings. They cannot be used in functions,
expressions, or WHERE clauses. LONG column values are generally converted to and from
character strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB) instead. LONG
columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB columns
are subject to far fewer restrictions than LONG columns. Furthermore, LOB functionality is
enhanced in every release, but LONG functionality has been static for several releases.

Chapter 4
External Data Types

4-19

4.3.10 VARCHAR
The VARCHAR data type stores character strings of varying length.

The first 2 bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the two length
bytes, so the largest VARCHAR string that can be received or sent is 65533 bytes long, not
65535.

4.3.11 DATE
The DATE data type can update, insert, or retrieve a date value using the Oracle internal date
binary format.

A date in binary format contains 7 bytes, as shown in Table 4-4.

Table 4-4 Format of the DATE Data Type

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example (for 30-NOV-1992,
3:17 PM)

119 192 11 30 16 18 1

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte stores
the value of the year, which is 1992, as an integer, divided by 100, giving 119 in excess-100
notation. The second byte stores year modulo 100, giving 192. Dates Before Common Era
(BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1. For this
date, the century byte is 53, and the year byte is 88. The hour, minute, and second bytes are in
excess-1 notation. The hour byte ranges from 1 to 24, the minute and second bytes from 1 to
60. If no time was specified when the date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external data type, the database does
not do consistency or range checking. All data in this format must be carefully validated before
input.

Note:

There is little need to use the Oracle external DATE data type in ordinary database
operations. It is much more convenient to convert DATE into character format,
because the program usually deals with data in a character format, such as DD-
MON-YY.

When a DATE column is converted to a character string in your program, it is returned using the
default format mask for your session, or as specified in the INIT.ORA file.

If you are using objects in an Oracle database, you can work with a special OCIDate data type
using a set of predefined OCI functions.

Chapter 4
External Data Types

4-20

See Also:

• Date (OCIDate) for more information about the OCIDate data type

• Datetime and Interval Data Type Descriptors for information about DATETIME and
INTERVAL data types

4.3.12 RAW
The RAW data type is used for binary data or byte strings that are not to be interpreted by
Oracle Database, for example, to store graphics character sequences.

The maximum length of a RAW column is 2000 bytes. If the init.ora parameter
max_string_size = standard (default value), the maximum length of a RAW can be 2000
bytes. If the init.ora parameter max_string_size = extended, the maximum length of a RAW
can be 32767 bytes.

When RAW data in an Oracle Database table is converted to a character string in a program, the
data is represented in hexadecimal character code. Each byte of the RAW data is returned as
two characters that indicate the value of the byte, from '00' to 'FF'. To input a character string in
your program to a RAW column in an Oracle Database table, you must code the data in the
character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCIDefineByPos(), OCIBindByName(),
OCIBindByPos(), OCIStmtGetPieceInfo(), and OCIStmtSetPieceInfo() to perform inserts,
updates, or fetches involving RAW (or LONG RAW) columns.

If you are using objects in an Oracle database, you can work with a special OCIRaw data type
using a set of predefined OCI functions.

See Also:

• Oracle Database SQL Language Reference for more information about
MAX_STRING_SIZE

• init.ora parameter MAX_STRING_SIZE in Oracle Database Reference for
more information about extended data types

• Raw (OCIRaw)for more information about this data type

4.3.13 VARRAW
The VARRAW data type is similar to the RAW data type.

However, the first 2 bytes contain the length of the data. The specified length of the string in a
bind or a define call must include the two length bytes, so the largest VARRAW string that can be
received or sent is 65533 bytes, not 65535. For converting longer strings, use the LONG VARRAW
external data type.

Chapter 4
External Data Types

4-21

4.3.14 LONG RAW
The LONG RAW data type supports a 2 gigabyte length.

The LONG RAW data type is similar to the RAW data type, except that it stores raw data with a
length up to 2 gigabytes (2^31-1 bytes).

4.3.15 UNSIGNED
The UNSIGNED data type is used for unsigned binary integers.

The size in bytes is system-dependent. The host system architecture determines the order of
the bytes in a word. A length specification is required for input and output. If the number being
output from Oracle Database is not an integer, the fractional part is discarded, and no error or
other indication is returned. If the number to be returned exceeds the capacity of an unsigned
integer for the system, Oracle Database returns an "overflow on conversion" error.

4.3.16 LONG VARCHAR
The LONG VARCHAR data type stores data from and into an Oracle Database LONG column.

The first 4 bytes of a LONG VARCHAR contain the length of the item. So, the maximum length of a
stored item is 2^31-5 bytes.

4.3.17 LONG VARRAW
The LONG VARRAW data type is used to store data from and into an Oracle Database LONG RAW
column.

The length is contained in the first four bytes. The maximum length is 2^31-5 bytes.

4.3.18 CHAR
The CHAR data type is a string of characters, with a maximum length of 2000.

CHAR strings are compared using blank-padded comparison semantics.

This section includes the following topics:

• Input

• Output

• Input
The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByName2() or OCIBindByPos() or OCIBindByPos2()call.

• Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() or OCIDefineByPos2() call.

Chapter 4
External Data Types

4-22

See Also:

Oracle Database SQL Language Reference

4.3.18.1 Input
The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByName2() or OCIBindByPos() or OCIBindByPos2()call.

Note:

The entire contents of the buffer (value_sz chars) is passed to the database,
including any trailing blanks or NULLs.

If the value_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind variable value
in the SQL statement. If you try to insert a NULL into a column that has a NOT NULL integrity
constraint, Oracle Database issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) data type is NUMBER, input from a character string that
contains the character representation of a number is legal. Input character strings are
converted to internal numeric format. If the CHAR string contains an illegal conversion character,
Oracle Database returns an error and does not insert the value. Number conversion follows the
conventions established by globalization support settings for your system. For example, your
system might be configured to recognize a comma (,) rather than a period (.) as the decimal
point.

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

4.3.18.2 Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() or OCIDefineByPos2() call.

If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos() or OCIDefineByPos2(), returned values
are blank padded to the buffer length, and NULLs are returned as a string of blank characters. If
rlenp is included, returned values are not blank-padded. Instead, their actual lengths are
returned in the rlenp parameter.

Chapter 4
External Data Types

4-23

To check whether a NULL is returned or character truncation occurs, include an indicator
parameter or array of indicator parameters in the OCIDefineByPos() or OCIDefineByPos2()
call. An indicator parameter is set to -1 when a NULL is fetched and to the original column
length when the returned value is truncated. Otherwise, it is set to zero. If you do not specify
an indicator parameter and a NULL is selected, the fetch call returns an ORA-01405 error.

You can also request output to a character string from an internal NUMBER data type. Number
conversion follows the conventions established by the globalization support settings for your
system. For example, your system might use a comma (,) rather than a period (.) as the
decimal point.

See Also:

• Indicator Variables

• OCIDefineByPos() or OCIDefineByPos2()

4.3.19 CHARZ
The CHARZ external data type is similar to the CHAR data type, except that the string must be
NULL-terminated on input, and Oracle Database places a NULL-terminator character at the end
of the string on output.

The NULL terminator serves only to delimit the string on input or output; it is not part of the data
in the table.

On input, the length parameter must indicate the exact length, including the NULL terminator.
For example, if an array in C is declared as follows, then the length parameter when you bind
my_num must be seven. Any other value would return an error for this example.

char my_num[] = "123.45";

The following new external data types were introduced with or after release 8.0. These data
types are not supported when you connect to an Oracle release 7 server.

Note:

Both internal and external data types have Oracle-defined constant values, such as
SQLT_NTY, SQLT_REF, corresponding to their data type codes. Although the constants
are not listed for all of the types in this chapter, they are used in this section when
discussing new Oracle data types. The data type constants are also used in other
chapters of this guide when referring to these new types.

4.3.20 Named Data Types: Object, VARRAY, Nested Table
Named data types are user-defined types that are specified with the CREATE TYPE command in
SQL.

Chapter 4
External Data Types

4-24

Examples include object types, varrays, and nested tables. In OCI, named data type refers to a
host language representation of the type. The SQLT_NTY data type code is used when binding
or defining named data types.

In a C application, named data types are represented as C structs. These structs can be
generated from types stored in the database by using the Object Type Translator. These types
correspond to OCI_TYPECODE_OBJECT.

See Also:

• Object Type Information Storage and Access for more information about working
with named data types in OCI

• Using the Object Type Translator with OCI for information about how named data
types are represented as C structs

4.3.21 REF
This is a reference to a named data type.

The C language representation of a REF is a variable declared to be of type OCIRef *. The
SQLT_REF data type code is used when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in object mode.
When REFs are retrieved from the server, they are stored in the client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a pointer to a
REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as the typecode parameter.

See Also:

• OCIObjectNew()

• Object Advanced Topics in OCI for more information about working with REFs in
the OCI

4.3.22 ROWID Descriptor
The ROWID data type identifies a particular row in a database table.

ROWID can be a select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This ROWID can be
read into a user-allocated ROWID descriptor by using OCIAttrGet() on the statement handle
and used in a subsequent UPDATE statement. The prefetch operation fetches all ROWIDs on a
SELECT for UPDATE; use prefetching and then a single row fetch.

Chapter 4
External Data Types

4-25

You access rowids using a ROWID descriptor, which you can use as a bind or define variable.

See Also:

• OCIAttrGet()

• OCI Descriptors and Positioned Updates and Deletes for more information about
the use of the ROWID descriptor

4.3.23 LOB Descriptor
A LOB (large object) stores binary or character data up to 128 terabytes (TB) in length.

Binary data is stored in a BLOB (binary LOB), and character data is stored in a CLOB (character
LOB) or NCLOB (national character LOB).

LOB values may or may not be stored inline with other row data in the database. In either
case, LOBs have the full transactional support of the Oracle database. A database table stores
a LOB locator that points to the LOB value, which may be in a different storage space.

When an OCI application issues a SQL query that includes a LOB column or attribute in its
select list, fetching the results of the query returns the locator, rather than the actual LOB
value. In OCI, the LOB locator maps to a variable of type OCILobLocator.

Note:

Depending on your application, you may or may not want to use LOB locators. You
can use the data interface for LOBs, which does not require LOB locators. In this
interface, you can bind or define character data for CLOB columns or RAW data for BLOB
columns.

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI functions
assume that the locator has already been created, whether or not the LOB to which it points
contains data.

Bind and define operations are performed on the LOB locator, which is allocated with the
OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then operations are
performed using the locator. The OCI functions never take the actual LOB value as a
parameter.

The data type codes available for binding or defining LOBs are:

• SQLT_BLOB - A binary LOB data type

• SQLT_CLOB - A character LOB data type

The NCLOB is a special type of CLOB with the following requirements:

• To write into or read from an NCLOB, the user must set the character set form (csfrm)
parameter to be SQLCS_NCHAR.

Chapter 4
External Data Types

4-26

• The amount (amtp) parameter in calls involving CLOBs and NCLOBs is always interpreted in
terms of characters, rather than bytes, for fixed-width character sets.

This section includes the following topics:

• BFILE

• BLOB

• CLOB

• NCLOB

• BFILE
Oracle Database supports access to binary files (BFILEs).

• BLOB
The BLOB data type stores unstructured binary large objects.

• CLOB
The CLOB data type stores fixed-width or variable-width character data.

• NCLOB
An NCLOB is a national character version of a CLOB.

See Also:

• OCI Descriptors for more information about descriptors, including the LOB
locator

• Oracle Database SQL Language Reference and Oracle Database SecureFiles
and Large Objects Developer's Guide for more information about LOBs

• About Binding and Defining LOB Data

• About Defining LOB Data

• LOB and BFILE Functions in OCI

• OCIDescriptorAlloc()

• OCIObjectPin()

• LOB and BFILE Operations for more information about OCI LOB functions

4.3.23.1 BFILE
Oracle Database supports access to binary files (BFILEs).

The BFILE data type provides access to LOBs that are stored in file systems outside an Oracle
database.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a binary file
on the server's file system. The locator maintains the directory object and the file name. The
maximum size of a BFILE is the smaller of the operating system maximum file size or
UB8MAXVAL.

Binary file LOBs do not participate in transactions. Rather, the underlying operating system
provides file integrity and durability.

Chapter 4
External Data Types

4-27

The database administrator must ensure that the file exists and that Oracle Database
processes have operating system read permissions on the file.

The BFILE data type allows read-only support of large binary files; you cannot modify a file
through Oracle Database. Oracle Database provides APIs to access file data.

The data type code available for binding or defining BFILEs is SQLT_BFILE (a binary FILE LOB
data type)

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about directory aliases

4.3.23.2 BLOB
The BLOB data type stores unstructured binary large objects.

BLOBs can be thought of as bit streams with no character set semantics. BLOBs can store up to
128 terabytes of binary data.

BLOBs have full transactional support; changes made through OCI participate fully in the
transaction. The BLOB value manipulations can be committed or rolled back. You cannot save a
BLOB locator in a variable in one transaction and then use it in another transaction or session.

4.3.23.3 CLOB
The CLOB data type stores fixed-width or variable-width character data.

CLOBs can store up to 128 terabytes of character data.

CLOBs have full transactional support; changes made through OCI participate fully in the
transaction. The CLOB value manipulations can be committed or rolled back. You cannot save a
CLOB locator in a variable in one transaction and then use it in another transaction or session.

4.3.23.4 NCLOB
An NCLOB is a national character version of a CLOB.

It stores fixed-width, single-byte or multibyte national character set (NCHAR) data, or variable-
width character set data. NCLOBs can store up to 128 terabytes of character text data.

NCLOBs have full transactional support; changes made through OCI participate fully in the
transaction. NCLOB value manipulations can be committed or rolled back. You cannot save an
NCLOB locator in a variable in one transaction and then use it in another transaction or session.

4.3.24 JSON Descriptor
JSON data type is used to store JSON data in a native binary format.

When an OCI application executes a SQL statement that includes a JSON column, the results
fetched from the query populates the descriptor. In OCI, JSON maps to a variable of type
OCIJson.

Chapter 4
External Data Types

4-28

Bind and define operations are performed on the JSON descriptor, which is allocated with the
OCIDescriptorAlloc() function. The data type code for binding and defining JSON is
SQLT_JSON. This is referred to as JSON descriptor interface.

Apart from JSON descriptor interface, depending on your application, you can use either LOB
locator or data interface to fetch the JSON value. In such cases, the conversion to textual
JSON happens on the server.

The OCI functions for JSON has JSON descriptor as one of the arguments. You can read and
write data from or to a JSON descriptor.

4.3.25 Datetime and Interval Data Type Descriptors
Lists and describes the datetime and interval data type descriptors.

The datetime and interval data type descriptors are briefly summarized here.

This section includes the following topics:

• ANSI DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• About Avoiding Unexpected Results Using Datetime

• ANSI DATE
ANSI DATE is based on DATE, but contains no time portion. It also has no time zone.

• TIMESTAMP
The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month,
and day of the DATE data type, plus the hour, minute, and second values.

• TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit time
zone displacement in its value.

• TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes a
time zone displacement in its value.

• INTERVAL YEAR TO MONTH
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.

• INTERVAL DAY TO SECOND
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds.

• About Avoiding Unexpected Results Using Datetime
How to avoid unexpected results using datetime.

Chapter 4
External Data Types

4-29

See Also:

Oracle Database SQL Language Reference

4.3.25.1 ANSI DATE
ANSI DATE is based on DATE, but contains no time portion. It also has no time zone.

ANSI DATE follows the ANSI specification for the DATE data type. When assigning an ANSI DATE
to a DATE or a time stamp data type, the time portion of the Oracle DATE and the time stamp are
set to zero. When assigning a DATE or a time stamp to an ANSI DATE, the time portion is
ignored.

Instead of using the ANSI DATE data type, Oracle recommends that you use the TIMESTAMP
data type, which contains both date and time.

4.3.25.2 TIMESTAMP
The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus the hour, minute, and second values.

The TIMESTAMP data type has no time zone. The TIMESTAMP data type has the following form:

TIMESTAMP(fractional_seconds_precision)

In this form, the optional fractional_seconds_precision specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

4.3.25.3 TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit time zone
displacement in its value.

The time zone displacement is the difference in hours and minutes between local time and
UTC (coordinated universal time—formerly Greenwich mean time). The TIMESTAMP WITH TIME
ZONE data type has the following form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

In this form, fractional_seconds_precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field, and can be a number in the range 0 to 9. The
default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data.

4.3.25.4 TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes a time
zone displacement in its value.

Storage is in the same format as for TIMESTAMP. This type differs from TIMESTAMP WITH TIME
ZONE in that data stored in the database is normalized to the database time zone, and the time

Chapter 4
External Data Types

4-30

zone displacement is not stored as part of the column data. When retrieving the data, Oracle
Database returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local time and
UTC (coordinated universal time—formerly Greenwich mean time). The TIMESTAMP WITH LOCAL
TIME ZONE data type has the following form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

In this form, fractional_seconds_precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

4.3.25.5 INTERVAL YEAR TO MONTH
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.

The INTERVAL YEAR TO MONTH data type has the following form:

INTERVAL YEAR(year_precision) TO MONTH

In this form, the optional year_precision is the number of digits in the YEAR datetime field. The
default value of year_precision is 2.

4.3.25.6 INTERVAL DAY TO SECOND
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and seconds.

The INTERVAL DAY TO SECOND data type has the following form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

In this form:

• day_precision is the number of digits in the DAY datetime field. It is optional. Accepted
values are 0 to 9. The default is 2.

• fractional_seconds_precision is the number of digits in the fractional part of the SECOND
datetime field. Accepted values are 0 to 9. The value should be provided as nanoseconds.
The Default Day to Second precision is 6 unless the precision is specified to a different
value at the time of creating the table. In this case, the least significant three digits will be
truncated.

4.3.25.7 About Avoiding Unexpected Results Using Datetime
How to avoid unexpected results using datetime.

Note:

To avoid unexpected results in your data manipulation language (DML) operations on
datetime data, you can verify the database and session time zones by querying the
built-in SQL functions DBTIMEZONE and SESSIONTIMEZONE. If the time zones have not
been set manually, Oracle Database uses the operating system time zone by default.
If the operating system time zone is not a valid Oracle Database time zone, Oracle
Database uses UTC as the default value.

Chapter 4
External Data Types

4-31

4.3.26 Native Float and Native Double
The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) data types represent the
single-precision and double-precision floating-point values.

They are represented natively, that is, in the host system's floating-point format.

These external types were added in release 10.1 to externally represent the BINARY_FLOAT and
BINARY_DOUBLE internal data types. Thus, performance for the internal types is best when used
in conjunction with external types native float and native double respectively. This draws a
clear distinction between the existing representation of floating-point values (SQLT_FLT) and
these types.

4.3.27 C Object-Relational Data Type Mappings
OCI supports Oracle-defined C data types for mapping user-defined data types to C
representations (for example, OCINumber, OCIArray).

OCI provides a set of calls to operate on these data types, and to use these data types in bind
and define operations, in conjunction with OCI external data types.

See Also:

Object-Relational Data Types in OCI for information about using these Oracle-defined
C data types

4.4 Data Conversions
Shows the supported conversions from internal data types to external data types and from
external data types into internal column representations.

Table 4-5 shows the supported conversions from internal data types to external data types, and
from external data types into internal column representations, for all data types available
through release 7.3. Information about data conversions for data types newer than release 7.3
is listed here:

• REFs stored in the database are converted to SQLT_REF on output.

• SQLT_REF is converted to the internal representation of REFs on input.

• Named data types stored in the database can be converted to SQLT_NTY (and represented
by a C struct in the application) on output.

• SQLT_NTY (represented by a C struct in an application) is converted to the internal
representation of the corresponding type on input.

LOBs are shown in Table 4-6, because of the width limitation.

Chapter 4
Data Conversions

4-32

See Also:

Object-Relational Data Types in OCI for information about OCIString, OCINumber,
and other new data types

Table 4-5 Data Conversions

NA1 INTERNAL
DATA TYPES-
>

NA NA NA NA NA NA NA NA

EXTERNAL
DATA TYPES

VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG
RAW

CHAR

VARCHAR2 I/O2 I/O I/O I/O3 I/O3 I/O4 I/O5 I/O5 NA

NUMBER I/O6 I/O I7 NA NA NA NA NA I/O6

INTEGER I/O6 I/O I NA NA NA NA NA I/O6

FLOAT I/O6 I/O I NA NA NA NA NA I/O6

STRING I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I/O5,8 I/O

VARNUM I/O6 I/O I NA NA NA NA NA I/O6

DECIMAL I/O6 I/O I NA NA NA NA NA I/O6

LONG I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I/O5,8 I/O

VARCHAR I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I/O5,8 I/O

DATE I/O NA I NA NA I/O NA NA I/O

VARRAW I/O9 NA I8,9 NA NA NA I/O I/O I/O9

RAW I/O9 NA I8,9 NA NA NA I/O I/O I/O9

LONG RAW O10,9 NA I8,9 NA NA NA I/O I/O O9

UNSIGNED I/O6 I/O I NA NA NA NA NA I/O6

LONG VARCHAR I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I/O5,8 I/O

LONG VARRAW I/O9 NA I8,9 NA NA NA I/O I/O I/O9

CHAR I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I5 I/O

CHARZ I/O I/O I/O I/O3 I/O3 I/O4 I/O5 I5 I/O

ROWID
descriptor

I3 NA NA I/O I/O NA NA NA I3

1 NA means not applicable.
2 I/O = Conversion is valid for input or output.
3 For input, host string must be in Oracle ROWID/UROWID format. On output, column value is returned in Oracle ROWID/UROWID format.
4 For input, host string must be in the Oracle DATE character format. On output, column value is returned in Oracle DATE format.
5 For input, host string must be in hexadecimal format. On output, column value is returned in hexadecimal format.
6 For output, column value must represent a valid number.
7 I = Conversion is valid for input only.
8 Length must be less than or equal to 2000.
9 On input, column value is stored in hexadecimal format. On output, column value must be in hexadecimal format.
1

0

O = Conversion is valid for output only.

Chapter 4
Data Conversions

4-33

This section includes the following topics:

• Data Conversions for LOB Data Type Descriptors

• Data Conversions for Datetime and Interval Data Types

• Datetime and Date Upgrading Rules

• Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

• Data Conversions for LOB Data Type Descriptors
Shows the data conversions for LOBs.

• Data Conversions for JSON Data Type
Shows the data conversion for JSON data type.

• Data Conversions for Datetime and Interval Data Types
Shows the data conversion for datetime and interval data types.

• Datetime and Date Upgrading Rules
OCI has full forward and backward compatibility between a client application and the
Oracle database for datetime and date columns.

• Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI
Shows the supported conversions between internal numeric data types and all relevant
external types.

4.4.1 Data Conversions for LOB Data Type Descriptors
Shows the data conversions for LOBs.

Table 4-6 shows the data conversions for LOBs. For example, the external character data types
(VARCHAR, CHAR, LONG, and LONG VARCHAR) convert to the internal CLOB data type, whereas the
external raw data types (RAW, VARRAW, LONG RAW, and LONG VARRAW) convert to the internal BLOB
data type.

Table 4-6 Data Conversions for LOBs

EXTERNAL DATA TYPES INTERNAL CLOB INTERNAL BLOB

VARCHAR I/O1 NA2

CHAR I/O NA

LONG I/O NA

LONG VARCHAR I/O NA

RAW NA I/O

VARRAW NA I/O

LONG RAW NA I/O

LONG VARRAW NA I/O

1 I/O = Conversion is valid for input or output.
2 NA means not applicable.

4.4.2 Data Conversions for JSON Data Type
Shows the data conversion for JSON data type.

Chapter 4
Data Conversions

4-34

Table 4-7 Data Conversions for JSON Data Type

External Types/Internal Types JSON

VARCHAR2 I/O1

CLOB I/O

BLOB I/O

1 I/O = Conversion is valid for input or output.

4.4.3 Data Conversions for Datetime and Interval Data Types
Shows the data conversion for datetime and interval data types.

You can also use one of the character data types for the host variable used in a fetch or insert
operation from or to a datetime or interval column. Oracle Database does the conversion
between the character data type and datetime or interval data type for you (see Table 4-8.

Table 4-8 Data Conversion for Datetime and Interval Types

External Types/Internal Types VARCHAR,C
HAR

DATE TS TSTZ TSLTZ INTERVAL
YEAR TO
MONTH

INTERVAL
DAY TO
SECOND

VARCHAR2, CHAR I/O1 I/O I/O I/O I/O I/O I/O

DATE I/O I/O I/O I/O I/O NA2 NA

OCI DATE I/O I/O I/O I/O I/O NA NA

ANSI DATE I/O I/O I/O I/O I/O NA NA

TIMESTAMP (TS) I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH TIME ZONE
(TSTZ)

I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH LOCAL TIME
ZONE (TSLTZ)

I/O I/O I/O I/O I/O NA NA

INTERVAL YEAR TO MONTH I/O NA NA NA NA I/O NA

INTERVAL DAY TO SECOND I/O NA NA NA NA NA I/O

1 I/O = Conversion is valid for input or output.
2 NA means not applicable.

This section includes the following topics:

• Assignment Notes

• Data Conversion Notes for Datetime and Interval Types

• Assignment Notes
When you assign a source with a time zone to a target without a time zone, the time zone
portion of the source is ignored.

• Data Conversion Notes for Datetime and Interval Types
Describes some information for datetime and interval types.

Chapter 4
Data Conversions

4-35

4.4.3.1 Assignment Notes
When you assign a source with a time zone to a target without a time zone, the time zone
portion of the source is ignored.

When you assign a source without a time zone to a target with a time zone, the time zone of
the target is set to the session's default time zone.

When you assign an Oracle Database DATE to a TIMESTAMP, the TIME portion of the DATE is
copied over to the TIMESTAMP. When you assign a TIMESTAMP to Oracle Database DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage upgrading of Oracle
Database DATE to ANSI-compliant DATETIME data types.

When you assign an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion of the
Oracle Database DATE and the TIMESTAMP are set to zero. When you assign an Oracle
Database DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

When you assign a DATETIME to a character string, the DATETIME is converted using the
session's default DATETIME format. When you assign a character string to a DATETIME, the
string must contain a valid DATETIME value based on the session's default DATETIME format

When you assign a character string to an INTERVAL, the character string must be a valid
INTERVAL character format.

4.4.3.2 Data Conversion Notes for Datetime and Interval Types
Describes some information for datetime and interval types.

When you convert from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTZ, the value is adjusted to the
session time zone.

When you convert from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone is stored in
memory.

When you assign TSLTZ to ANSI DATE, the time portion is zero.

When you convert from TSTZ, the time zone that the time stamp is in is stored in memory.

When you assign a character string to an interval, the character string must be a valid interval
character format.

4.4.4 Datetime and Date Upgrading Rules
OCI has full forward and backward compatibility between a client application and the Oracle
database for datetime and date columns.

This section includes the following topics:

• Pre-9.0 Client with 9.0 or Later Server

• Pre-9.0 Server with 9.0 or Later Client

• Pre-9.0 Client with 9.0 or Later Server
The only datetime data type available to a pre-9.0 application is the DATE data type,
SQLT_DAT.

Chapter 4
Data Conversions

4-36

• Pre-9.0 Server with 9.0 or Later Client
When a pre-9.0 server is used with a 9.0 or later client, the client can have a bind or define
buffer of type SQLT_TIMESTAMP_LTZ.

4.4.4.1 Pre-9.0 Client with 9.0 or Later Server
The only datetime data type available to a pre-9.0 application is the DATE data type, SQLT_DAT.

When a pre-9.0 client that defined a buffer as SQLT_DAT tries to obtain data from a TSLTZ
column, only the date portion of the value is returned to the client.

4.4.4.2 Pre-9.0 Server with 9.0 or Later Client
When a pre-9.0 server is used with a 9.0 or later client, the client can have a bind or define
buffer of type SQLT_TIMESTAMP_LTZ.

The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new datetime data
types) into a DATE column, an error is issued because there is potential data loss in this
situation.

When a client has an OUT bind or a define buffer that is of data type SQLT_TIMESTAMP_LTZ and
the underlying server-side SQL buffer or column is of DATE type, then the session time zone is
assigned.

4.4.5 Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI
Shows the supported conversions between internal numeric data types and all relevant
external types.

Table 4-9 shows the supported conversions between internal numeric data types and all
relevant external types. An (I) implies that the conversion is valid for input only (binds), and (O)
implies that the conversion is valid for output only (defines). An (I/O) implies that the
conversion is valid for input and output (binds and defines).

Table 4-9 Data Conversion for External Data Types to Internal Numeric Data Types

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE

VARCHAR I/O1 I/O

VARCHAR2 I/O I/O

NUMBER I/O I/O

INTEGER I/O I/O

FLOAT I/O I/O

STRING I/O I/O

VARNUM I/O I/O

LONG I/O I/O

UNSIGNED INT I/O I/O

LONG VARCHAR I/O I/O

CHAR I/O I/O

BINARY_FLOAT I/O I/O

Chapter 4
Data Conversions

4-37

Table 4-9 (Cont.) Data Conversion for External Data Types to Internal Numeric Data
Types

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE

BINARY_DOUBLE I/O I/O

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)

Table 4-10 shows the supported conversions between all relevant internal types and numeric
external types. An (I) implies that the conversion is valid for input only (only for binds), and (O)
implies that the conversion is valid for output only (only for defines). An (I/O) implies that the
conversion is valid for input and output (binds and defines).

Table 4-10 Data Conversions for Internal to External Numeric Data Types

Internal Types/External Types Native Float Native Double

VARCHAR2 I/O1 I/O

NUMBER I/O I/O

LONG I2 I

CHAR I/O I/O

BINARY_FLOAT I/O I/O

BINARY_DOUBLE I/O I/O

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)
2 An (I) implies that the conversion is valid for input only (only for binds)

4.5 Typecodes
A unique typecode is associated with each Oracle Database type, whether scalar, collection,
reference, or object type.

This typecode identifies the type, and is used by Oracle Database to manage information
about object type attributes. This typecode system is designed to be generic and extensible. It
is not tied to a direct one-to-one mapping to Oracle data types. Consider the following SQL
statements:

CREATE TYPE my_type AS OBJECT
(attr1 NUMBER,
 attr2 INTEGER,
 attr3 SMALLINT);

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created, my_table has
three columns, all of which are of Oracle NUMBER type, because SMALLINT and INTEGER map
internally to NUMBER. The internal representation of the attributes of my_type, however,
maintains the distinction between the data types of the three attributes: attr1 is
OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is OCI_TYPECODE_SMALLINT.
If an application describes my_type, these typecodes are returned.

Chapter 4
Typecodes

4-38

OCITypeCode is the C data type of the typecode. The typecode is used by some OCI functions,
like OCIObjectNew(), where it helps determine what type of object is created. It is also returned
as the value of some attributes when an object is described; for example, querying the
OCI_ATTR_TYPECODE attribute of a type returns an OCITypeCode value.

Table 4-11 lists the possible values for an OCITypeCode. There is a value corresponding to each
Oracle data type.

Table 4-11 OCITypeCode Values and Data Types

Value Data Type

OCI_TYPECODE_REF REF

OCI_TYPECODE_DATE DATE

OCI_TYPECODE_TIMESTAMP TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ TIMESTAMP WITH TIME ZONE

OCI_TYPECODE_TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE

OCI_TYPECODE_INTERVAL_YM INTERVAL YEAR TO MONTH

OCI_TYPECODE_INTERVAL_DS INTERVAL DAY TO SECOND

OCI_TYPECODE_REAL Single-precision real

OCI_TYPECODE_DOUBLE Double-precision real

OCI_TYPECODE_FLOAT Floating-point

OCI_TYPECODE_NUMBER Oracle NUMBER

OCI_TYPECODE_BFLOAT BINARY_FLOAT

OCI_TYPECODE_BDOUBLE BINARY_DOUBLE

OCI_TYPECODE_DECIMAL Decimal

OCI_TYPECODE_OCTET Octet

OCI_TYPECODE_INTEGER Integer

OCI_TYPECODE_SMALLINT Small int

OCI_TYPECODE_RAW RAW

OCI_TYPECODE_VARCHAR2 Variable string ANSI SQL, that is, VARCHAR2

OCI_TYPECODE_VARCHAR Variable string Oracle SQL, that is, VARCHAR

OCI_TYPECODE_CHAR Fixed-length string inside SQL, that is SQL CHAR

OCI_TYPECODE_VARRAY Variable-length array (varray)

OCI_TYPECODE_TABLE Multiset

OCI_TYPECODE_CLOB Character large object (CLOB)

OCI_TYPECODE_BLOB Binary large object (BLOB)

OCI_TYPECODE_BFILE Binary large object file (BFILE)

OCI_TYPECODE_OBJECT Named object type, or SYS.XMLType

OCI_TYPECODE_NAMEDCOLLECTION Collection

OCI_TYPECODE_BOOLEAN1 Boolean

OCI_TYPECODE_RECORD1 Record

OCI_TYPECODE_ITABLE1 Index-by BINARY_INTEGER

OCI_TYPECODE_INTEGER1 PLS_INTEGER or BINARY_INTEGER

Chapter 4
Typecodes

4-39

1 This type is a PL/SQL type only.

This section includes the following topic: Relationship Between SQLT and OCI_TYPECODE
Values.

• Relationship Between SQLT and OCI_TYPECODE Values
Oracle Database recognizes two different sets of data type code values.

4.5.1 Relationship Between SQLT and OCI_TYPECODE Values
Oracle Database recognizes two different sets of data type code values.

One set is distinguished by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a data type in a bind or define operation,
enabling you to control data conversions between Oracle Database and OCI client
applications. The OCI_TYPECODE types are used by Oracle's type system to reference or
describe predefined types when manipulating or creating user-defined types.

In many cases, there are direct mappings between SQLT and OCI_TYPECODE values. In other
cases, however, there is not a direct one-to-one mapping. For example,
OCI_TYPECODE_SIGNED8, OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and OCI_TYPECODE_SMALLINT are all mapped to
the SQLT_INT type.

Table 4-12 illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 4-12 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

BFILE OCI_TYPECODE_BFILE SQLT_BFILE
BLOB OCI_TYPECODE_BLOB SQLT_BLOB
BOOLEAN1 OCI_TYPECODE_BOOLEAN SQLT_BOL
CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n)2

CLOB OCI_TYPECODE_CLOB SQLT_CLOB
COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO
DATE OCI_TYPECODE_DATE SQLT_DAT
TIMESTAMP OCI_TYPECODE_TIMESTAMP SQLT_TIMESTAMP
TIMESTAMP WITH TIME ZONE OCI_TYPECODE_TIMESTAMP_TZ SQLT_TIMESTAMP_TZ
TIMESTAMP WITH LOCAL TIME ZONE OCI_TYPECODE_TIMESTAMP_LTZ SQLT_TIMESTAMP_LTZ
INTERVAL YEAR TO MONTH OCI_TYPECODE_INTERVAL_YM SQLT_INTERVAL_YM
INTERVAL DAY TO SECOND OCI_TYPECODE_INTERVAL_DS SQLT_INTERVAL_DS
FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8)3

DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0)4

DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)

BINARY_FLOAT OCI_TYPECODE_BFLOAT SQLT_BFLOAT
BINARY_DOUBLE OCI_TYPECODE_BDOUBLE SQLT_BDOUBLE
INDEX-BY BINARY_INTEGER1 OCI_TYPECODE_ITABLE SQLT_NTY

Chapter 4
Typecodes

4-40

Table 4-12 (Cont.) OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i)5

NUMBER OCI_TYPECODE_NUMBER (p, s) SQLT_NUM (p, s)6

OCTET OCI_TYPECODE_OCTET SQLT_INT (1)

PLS_INTEGER or BINARY_INTEGER1 OCI_TYPECODE_PLS_INTEGER SQLT_INT
POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB
REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF
RECORD1 OCI_TYPECODE_RECORD SQLT_NTY
OBJECT or SYS.XMLType OCI_TYPECODE_OBJECT SQLT_NTY
SIGNED(8) OCI_TYPECODE_SIGNED8 SQLT_INT (1)

SIGNED(16) OCI_TYPECODE_SIGNED16 SQLT_INT (2)

SIGNED(32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)

SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i)5

TABLE7 OCI_TYPECODE_TABLE <NONE>

UNSIGNED(8) OCI_TYPECODE_UNSIGNED8 SQLT_UIN (1)

UNSIGNED(16) OCI_TYPECODE_UNSIGNED16 SQLT_UIN (2)

UNSIGNED(32) OCI_TYPECODE_UNSIGNED32 SQLT_UIN (4)

VARRAY7 OCI_TYPECODE_VARRAY <NONE>

VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n)2

VARCHAR2 OCI_TYPECODE_VARCHAR2 (n) SQLT_VCS (n)2

1 This type is a PL/SQL type only.
2 n is the size of the string in bytes.
3 These are floating-point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary digits.
4 This is equivalent to a NUMBER with no decimal places.
5 i is the size of the number in bytes, set as part of an OCI call.
6 p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.
7 Can only be part of a named collection type.

4.6 Definitions in oratypes.h
Describes the contents of the oratypes.h header file.

Throughout this guide there are references to data types like ub2 or sb4, or to constants like
UB4MAXVAL. These types are defined in the oratypes.h header file, which is found in the public
directory. The exact contents may vary according to the operating system that you are using.

Chapter 4
Definitions in oratypes.h

4-41

Note:

The use of the data types in oratypes.h is the only supported means of supplying
parameters to OCI.

Chapter 4
Definitions in oratypes.h

4-42

5
Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL statements with
Oracle Call Interface.

This chapter contains these topics:

• Overview of SQL Statement Processing

• About Preparing Statements

• About Binding Placeholders in OCI

• About Executing Statements

• About Describing Select-List Items

• About Defining Output Variables in OCI

• About Fetching Results

• About Using Scrollable Cursors in OCI

• Overview of SQL Statement Processing
One of the most common tasks of an OCI program is to accept and process SQL
statements.

• About Preparing Statements
SQL and PL/SQL statements are prepared for execution by using the statement prepare
call and any necessary bind calls.

• About Binding Placeholders in OCI
Most DML statements, and some queries (such as those with a WHERE clause), require a
program to pass data to Oracle Database as part of a SQL or PL/SQL statement.

• About Executing Statements
An OCI application executes prepared statements individually using OCIStmtExecute().

• About Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

• About Defining Output Variables in OCI
Query statements return data from the database to your application.

• About Fetching Results
If an OCI application has processed a query, it is typically necessary to fetch the results
with OCIStmtFetch2() after the statement has completed execution.

• About Using Scrollable Cursors in OCI
A cursor is a current position in a result set.

5.1 Overview of SQL Statement Processing
One of the most common tasks of an OCI program is to accept and process SQL statements.

5-1

Chapter 3 “OCI Programming Basics” discussed the basic steps involved in any OCI
application. This chapter presents a more detailed look at the specific tasks involved in
processing SQL statements in an OCI program.

This section outlines the specific steps involved in accepting and processing SQL statements.

Once you have allocated the necessary handles and connected to an Oracle database, follow
the steps illustrated in Figure 5-1.

Figure 5-1 Steps in Processing SQL Statements

1. Prepare the statement. Define an application request using OCIStmtPrepare2().
OCIStmtPrepare2() is an enhanced version of OCIStmtPrepare() that was introduced to
support statement caching. Beginning with Oracle Database 12c Release 2 (12.2),
OCIStmtPrepare() is deprecated.

2. Bind placeholders, if necessary. For DML statements and queries with input variables,
perform one or more of the following bind calls to bind the address of each input variable
(or PL/SQL output variable) or array to each placeholder in the statement.

• OCIBindByPos2() or OCIBindByPos()
• OCIBindByName2() or OCIBindByName()
• OCIBindObject()
• OCIBindDynamic()
• OCIBindArrayOfStruct()

3. Execute the statement by calling OCIStmtExecute(). For DDL statements, no further steps
are necessary.

Chapter 5
Overview of SQL Statement Processing

5-2

4. Describe the select-list items, if necessary, usingOCIParamGet() and OCIAttrGet(). This is
optional step is not required if the number of select-list items and the attributes of each
item (such as its length and data type) are known at compile time.

5. Define output variables, if necessary. For queries, perform one or more define calls to
OCIDefineByPos2() or OCIDefineByPos(), , OCIDefineObject(), OCIDefineDynamic(), or
OCIDefineArrayOfStruct() to define an output variable for each select-list item in the SQL
statement. Note that you do not use a define call to define the output variables in an
anonymous PL/SQL block. You did this when you bound the data.

6. Fetch the results of the query, if necessary, by calling OCIStmtFetch2().

After these steps have been completed, the application can free allocated handles and then
detach from the server, or it may process additional statements.

Note:

OCI programs no longer require an explicit parse step. If a statement must be
parsed, that step occurs upon execution, meaning that release 8.0 or later
applications must issue an execute command for both DML and DDL statements.

The following sections describe each step in detail.

Note:

Some variation in the order of steps is possible. For example, it is possible to do the
define step before the execute step if the data types and lengths of returned values
are known at compile time.

Additional steps beyond those listed earlier may be required if your application must do any of
the following:

• Initiate and manage multiple transactions

• Manage multiple threads of execution

• Perform piecewise inserts, updates, or fetches

Chapter 5
Overview of SQL Statement Processing

5-3

See Also:

• Statement Caching in OCI

• OCI Programming Basics

• OCIStmtPrepare2() or OCIStmtPrepare()

• OCIBindByPos2() or OCIBindByPos()

• OCIBindByName2() or OCIBindByName()

• OCIBindObject()

• OCIBindDynamic()

• OCIBindArrayOfStruct()

• OCIStmtExecute()

• OCIParamGet()

• OCIAttrGet()

• OCIDefineByPos2() or OCIDefineByPos()

• OCIDefineObject()

• OCIDefineDynamic()

• OCIDefineArrayOfStruct()

• OCIStmtFetch2()

5.2 About Preparing Statements
SQL and PL/SQL statements are prepared for execution by using the statement prepare call
and any necessary bind calls.

In this phase, the application specifies a SQL or PL/SQL statement and binds associated
placeholders in the statement to data for execution. The client-side library allocates storage to
maintain the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution using the
OCIStmtPrepare2() call and passes to this call a previously allocated statement handle. This is
a completely local call, requiring no round-trip to the server. No association is made between
the statement and a particular server at this point.

Following the request call, an application can call OCIAttrGet() on the statement handle,
passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine what type of SQL
statement was prepared. The possible attribute values and corresponding statement types are
listed in Table 5-1.

Table 5-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_SELECT SELECT statement

OCI_STMT_UPDATE UPDATE statement

OCI_STMT_DELETE DELETE statement

Chapter 5
About Preparing Statements

5-4

Table 5-1 (Cont.) OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_INSERT INSERT statement

OCI_STMT_CREATE CREATE statement

OCI_STMT_DROP DROP statement

OCI_STMT_ALTER ALTER statement

OCI_STMT_BEGIN BEGIN... (PL/SQL)

OCI_STMT_DECLARE DECLARE... (PL/SQL)

OCI_STMT_CALL CALL... (PL/SQL)

OCI_STMT_MERGE MERGE... (PL/SQL)

This section includes the following topic: About Using Prepared Statements on Multiple
Servers

• About Using Prepared Statements on Multiple Servers
A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the
servers.

See Also:

• OCIStmtPrepare2()

• OCIAttrGet()

• About Using PL/SQL in an OCI Program

5.2.1 About Using Prepared Statements on Multiple Servers
A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the servers.

All information about the current service context and statement handle association is lost when
a new association is made.

For example, consider an application such as a network manager, which manages multiple
servers. In many cases, it is likely that the same SELECT statement must be executed against
multiple servers to retrieve information for display. OCI allows the network manager application
to prepare a SELECT statement once and execute it against multiple servers. It must fetch all of
the required rows from each server before reassociating the prepared statement with the next
server.

Chapter 5
About Preparing Statements

5-5

Note:

If a prepared statement must be reexecuted frequently on the same server, it is more
efficient to prepare a new statement for another service context.

5.3 About Binding Placeholders in OCI
Most DML statements, and some queries (such as those with a WHERE clause), require a
program to pass data to Oracle Database as part of a SQL or PL/SQL statement.

This data can be constant or literal, known when your program is compiled. For example, the
following SQL statement, which adds an employee to a database, contains several literals,
such as 'BESTRY' and 2365:

INSERT INTO emp VALUES
 (2365, 'BESTRY', 'PROGRAMMER', 2000, 20)

Coding a statement like this into an application would severely limit its usefulness. You must
change the statement and recompile the program each time you add a new employee to the
database. To make the program more flexible, you can write the program so that a user can
supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be supplied at
run time, placeholders in the SQL statement or PL/SQL block mark where data must be
supplied. For example, the following SQL statement contains five placeholders, indicated by
the leading colons (:ename), that show where input data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or UPDATE
statement, or in a PL/SQL block, in any position in the statement where you can use an
expression or a literal value. In PL/SQL, placeholders can also be used for output variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For example,
the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
 (12345, 'OERTEL', 'WRITER', 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI routine that
binds the address of a variable in your program to that placeholder. When the statement
executes, the database gets the data that your program placed in the input variables or bind
variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in nonquery operations. In Example 5-1, the
variables empno_out, ename_out, job_out, sal_out, and deptno_out should be bound. These
are outbinds (as opposed to regular inbinds).

Example 5-1 Binding Both Input and Output Variables in Nonquery Operations

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)
 RETURNING
 (empno, ename, job, sal, deptno)
 INTO
 (:empno_out, :ename_out, :job_out, :sal_out, :deptno_out)

Chapter 5
About Binding Placeholders in OCI

5-6

This section includes the following topic: Rules for Placeholders

• Rules for Placeholders
Lists and describes the rules for forming placeholders.

See Also:

Binding and Defining in OCI for detailed information about implementing bind
operations

5.3.1 Rules for Placeholders
Lists and describes the rules for forming placeholders.

The rules for forming placeholders are as follows:

• The first character is a colon (":").

• The colon is followed by a combination of underscore ("_"), A to Z, a to z, or 0 to 9.
However, the first character following the colon cannot be an underscore.

• The letters must be only from the English alphabet, and only the first 30 characters after
the colon are significant. The name is case-insensitive.

• The placeholder can consist of only digits after the colon. If it is only digits, the placeholder
must be less than 65536. If the name starts with a digit, then only digits are allowed.

• The hyphen ("-") is not allowed.

5.4 About Executing Statements
An OCI application executes prepared statements individually using OCIStmtExecute().

When an OCI application executes a query, it receives from the Oracle database data that
matches the query specifications. Within the database, the data is stored in Oracle-defined
formats. When the results are returned, the OCI application can request that data be converted
to a particular host language format, and stored in a particular output variable or buffer.

For each item in the select list of a query, the OCI application must define an output variable to
receive the results of the query. The define step indicates the address of the buffer and the
type of the data to be retrieved.

Note:

If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter are fetched
directly into the defined output buffers and additional rows equivalent to the prefetch
count are prefetched. If there are no additional rows, then the fetch is complete
without calling OCIStmtFetch2().

Chapter 5
About Executing Statements

5-7

For nonqueries, the number of times the statement is executed during array operations equals
iters - rowoff, where rowoff is the offset in the bound array, and is also a parameter of the
OCIStmtExecute() call.

For example, if an array of 10 items is bound to a placeholder for an INSERT statement, and
iters is set to 10, all 10 items are inserted in a single execute call when rowoff is zero. If
rowoff is set to 2, only 8 items are inserted.

This section includes the following topics:

• Execution Snapshots

• Execution Modes of OCIStmtExecute()

• Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service contexts
operate on the same consistent snapshot of the database's committed data.

• Execution Modes of OCIStmtExecute()
You can specify a number of modes for the OCIStmtExecute() call.

See Also:

• OCIStmtExecute()

• OCIStmtFetch2()

• About Defining Output Variables in OCI

5.4.1 Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service contexts operate
on the same consistent snapshot of the database's committed data.

This is achieved by taking the contents of the snap_out parameter of one OCIStmtExecute()
call and passing that value as the snap_in parameter of the next OCIStmtExecute() call.

Note:

Uncommitted data in one service context is not visible to another context, even when
both calls are using the same snapshot.

The data type of both the snap_out and snap_in parameter is OCISnapshot. OCISnapshot is
an OCI snapshot descriptor that is allocated with the OCIDescriptorAlloc() function.

It is not necessary to specify a snapshot when calling OCIStmtExecute(). The following sample
code shows a basic execution in which the snapshot parameters are passed as NULL.

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

Chapter 5
About Executing Statements

5-8

Note:

The checkerr() function, which is user-developed, evaluates the return code from an
OCI application.

See Also:

• OCIStmtExecute()

• OCIDescriptorAlloc()

• OCI Descriptors

5.4.2 Execution Modes of OCIStmtExecute()
You can specify a number of modes for the OCIStmtExecute() call.

This section describes the OCIStmtExecute() call. See OCIStmtExecute() for other values of
the parameter mode.

This section includes the following topics:

• Using Batch Error Mode

• Example of Batch Error Mode

• Using Batch Error Mode
OCI provides the ability to perform array DML operations.

• Example of Batch Error Mode
Shows how the batch error execution mode might be used.

See Also:

OCIStmtExecute()

5.4.2.1 Using Batch Error Mode
OCI provides the ability to perform array DML operations.

For example, an application can process an array of INSERT, UPDATE, or DELETE statements
with a single statement execution. If one of the operations fails due to an error from the server,
such as a unique constraint violation, the array operation terminates, and OCI returns an error.
Any rows remaining in the array are ignored. The application must then reexecute the
remainder of the array, and go through the whole process again if it encounters more errors,
which causes additional round-trips.

To facilitate processing of array DML operations, OCI provides the batch error mode (also
called the enhanced DML array feature). This mode, which is specified in the

Chapter 5
About Executing Statements

5-9

OCIStmtExecute() call, simplifies DML array processing if there are one or more errors. In this
mode, OCI attempts to insert, update, or delete all rows, and collects information about any
errors that occurred. The application can then retrieve error information and reexecute any
DML operations that failed during the first call. In this way, all DML operations in the array are
attempted in the first call, and any failed operations can be reissued in a second call.

Note:

This feature is only available to applications linked with release 8.1 or later OCI
libraries running against a release 8.1 or later server. Applications must also be
recoded to account for the new program logic described in this section.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the OCIStmtExecute()
call.

2. After performing an array DML operation with OCIStmtExecute(), the application can
retrieve the number of errors encountered during the operation by calling OCIAttrGet() on
the statement handle to retrieve the OCI_ATTR_NUM_DML_ERRORS attribute, as shown in the
following code example.

Calling OCIAttrGet() to Retrieve the Number of Errors Encountered During an Array DML
Operation

ub4 num_errs;
OCIAttrGet(stmtp, OCI_HTYPE_STMT, &num_errs, 0, OCI_ATTR_NUM_DML_ERRORS,
 errhp);

3. The application extracts each error using OCIParamGet(), along with its row information,
from the error handle that was passed to the OCIStmtExecute() call. To retrieve the
information, the application must allocate an additional new error handle for the
OCIParamGet() call, populating the new error handle with batched error information. The
application obtains the syntax of each error with OCIErrorGet(), and the row offset into the
DML array at which the error occurred, by calling OCIAttrGet() on the new error handle.

For example, after the num_errs amount has been retrieved, the application can issue the
following calls shown in the following code example.

Retrieving Information About Each Error Following an Array DML Operation

OCIError errhndl, errhp2;
for (i=0; i<num_errs; i++)
{
 OCIParamGet(errhp, OCI_HTYPE_ERROR, errhp2, (void **)&errhndl, i);
 OCIAttrGet(errhndl, OCI_HTYPE_ERROR, &row_offset, 0,
 OCI_ATTR_DML_ROW_OFFSET, errhp2);
 OCIErrorGet(..., errhndl, ...);

Following this operation, the application can correct the bind information for the appropriate
entry in the array using the diagnostic information retrieved from the batched error. Once
the appropriate bind buffers are corrected or updated, the application can reexecute the
associated DML statements.

Because it cannot be determined at compile time which rows in the first execution may
cause errors, the binds for the subsequent DML should be done dynamically by passing in
the appropriate buffers at run time. The bind buffers used in the array binds done on the
first DML operation can be reused.

Chapter 5
About Executing Statements

5-10

See Also:

• OCIStmtExecute()

• OCIAttrGet()

• OCIParamGet()

• OCIErrorGet()

5.4.2.2 Example of Batch Error Mode
Shows how the batch error execution mode might be used.

Example 5-2 shows an example of how the batch error execution mode might be used. In this
example, assume that you have an application that inserts five rows (with two columns, of
types NUMBER and CHAR) into a table. Furthermore, assume that only two rows (1 and 3) are
successfully inserted in the initial DML operation. The user then proceeds to correct the data
(wrong data was being inserted the first time) and to issue an update with the corrected data.
The user uses statement handles stmtp1 and stmtp2 to issue the INSERT and UPDATE
statements, respectively.

In Example 5-2, OCIBindDynamic() is used with a callback because the user does not know at
compile time what rows may return with errors. With a callback, you can simply pass the
erroneous row numbers, stored in row_off, through the callback context and send only those
rows that must be updated or corrected. The same bind buffers can be shared between the
INSERT and the UPDATE statement executions.

Example 5-2 Using Batch Error Execution Mode

OCIBind *bindp1[2], *bindp2[2];
ub4 num_errs, row_off[MAXROWS], number[MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {'A','B','C','D','E'};
OCIError *errhp2;
OCIError *errhndl[MAXROWS];
...
/* Array bind all the positions */
OCIBindByPos (stmtp1,&bindp1[0],errhp,1,(void *)&number[0],
 sizeof(number[0]),SQLT_INT,(void *)0, (ub2 *)0,(ub2 *)0,
 0,(ub4 *)0,OCI_DEFAULT);
OCIBindByPos (stmtp1,&bindp1[1],errhp,2,(void *)&grade[0],
 sizeof(grade[0]),SQLT_CHR,(void *)0, (ub2 *)0,(ub2 *)0,0,
 (ub4 *)0,OCI_DEFAULT);
/* execute the array INSERT */
OCIStmtExecute (svchp,stmtp1,errhp,5,0,0,0,OCI_BATCH_ERRORS);
/* get the number of errors. A different error handler errhp2 is used so that
 * the state of errhp is not changed */
OCIAttrGet (stmtp1, OCI_HTYPE_STMT, &num_errs, 0,
 OCI_ATTR_NUM_DML_ERRORS, errhp2);
if (num_errs) {
 /* The user can do one of two things: 1) Allocate as many */
 /* error handles as number of errors and free all handles */
 /* at a later time; or 2) Allocate one err handle and reuse */
 /* the same handle for all the errors */
 for (i = 0; i < num_errs; i++) {
 OCIHandleAlloc((void *)envhp, (void **)&errhndl[i],
 (ub4) OCI_HTYPE_ERROR, 0, (void *) 0);
 OCIParamGet(errhp, OCI_HTYPE_ERROR, errhp2, &errhndl[i], i);
 OCIAttrGet (errhndl[i], OCI_HTYPE_ERROR, &row_off[i], 0,

Chapter 5
About Executing Statements

5-11

 OCI_ATTR_DML_ROW_OFFSET, errhp2);
 /* get server diagnostics */
 OCIErrorGet (..., errhndl[i], ...);
 }
 }
/* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1,(void *)0,sizeof(grade[0]),SQLT_INT,
 (void *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
OCIBindByPos (stmtp2,&bindp2[1],errhp,2,(void *)0,sizeof(number[0]),SQLT_DAT,
 (void *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
/* register the callback for each bind handle, row_off and position
 * information can be passed to the callback function by means of context
 * pointers.
 */
OCIBindDynamic (bindp2[0],errhp,ctxp1,my_callback,0,0);
OCIBindDynamic (bindp2[1],errhp,ctxp2,my_callback,0,0);
/* execute the UPDATE statement */
OCIStmtExecute (svchp,stmtp2,errhp,num_errs,0,0,0,OCI_BATCH_ERRORS);
...

See Also:

OCIBindDynamic()

5.5 About Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more information about
the items in the select list.

This is particularly true for dynamic queries whose contents are not known until run time. In this
case, the program may need to obtain information about the data types and column lengths of
the select-list items. This information is necessary to define output variables that may receive
query results.

For example, consider a query where the program has no prior information about the columns
in the employees table:

SELECT * FROM employees

There are two types of describes available: implicit and explicit.

An implicit describe does not require any special calls to retrieve describe information from the
server, although special calls are necessary to access the information. An implicit describe
allows an application to obtain select-list information as an attribute of the statement handle
after a statement has been executed without making a specific describe call. It is called implicit
because no describe call is required. The describe information comes free with the statement
execution.

An explicit describe requires the application to call a particular function to bring the describe
information from the server. An application may describe a select list (query) either implicitly or
explicitly. Other schema elements must be described explicitly.

You can describe a query explicitly before execution by specifying OCI_DESCRIBE_ONLY as the
mode of OCIStmtExecute(), which does not execute the statement, but returns the select-list
description. For performance reasons, Oracle recommends that applications use the implicit
describe, which comes free with a standard statement execution.

Chapter 5
About Describing Select-List Items

5-12

An explicit describe with the OCIDescribeAny() call obtains information about schema objects
rather than select lists.

In all cases, the specific information about columns and data types is retrieved by reading
handle attributes.

This section includes the following topics:

• Implicit Describe

• Explicit Describe of Queries

• Implicit Describe
After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed.

• Explicit Describe of Queries
You can describe a query explicitly before execution by specifying OCI_DESCRIBE_ONLY as
the mode of OCIStmtExecute()

See Also:

• Describing Schema Metadata for information about using OCIDescribeAny() to
obtain metadata pertaining to schema objects

• OCIStmtExecute()

• OCIDescribeAny()

5.5.1 Implicit Describe
After a SQL statement is executed, information about the select list is available as an attribute
of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call OCIParamGet()
with the pos parameter set to 1 the first time, and then iterate the value of pos and repeat the
OCIParamGet() call until OCI_ERROR with ORA-24334 is returned. An application could also
specify any position n to get a column at random.

Once a parameter descriptor has been allocated for a position in the select list, the application
can retrieve specific information by calling OCIAttrGet() on the parameter descriptor.
Information available from the parameter descriptor includes the data type and maximum size
of the parameter.

The sample code in Example 5-3Example 5-3 shows a loop that retrieves the column names
and data types corresponding to a query following query execution. The query was associated
with the statement handle by a prior call to OCIStmtPrepare2().

The checkerr() function in Example 5-3 is used for error handling. The complete listing can be
found in the first sample application in OCI Demonstration Programs.

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require a network
round-trip, because all of the select-list information is cached on the client side after the
statement is executed.

Chapter 5
About Describing Select-List Items

5-13

Example 5-3 Implicit Describe - Select List Is Available as an Attribute of the Statement
Handle

...
OCIParam *mypard = (OCIParam *) 0;
ub2 dtype;
text *col_name;
ub4 counter, col_name_len, char_semantics;
ub2 col_width;
sb4 parm_status;

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt), NULL, 0,
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm_status = OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
 current position, starting at 1 */

while (parm_status == OCI_SUCCESS) {
 /* Retrieve the data type attribute */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 /* Retrieve the column name attribute */
 col_name_len = 0;
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
 (OCIError *) errhp));

 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errhp));
 col_width = 0;
 if (char_semantics)
 /* Retrieve the column width in characters */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errhp));
 else
 /* Retrieve the column width in bytes */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

 /* increment counter and get next descriptor, if there is one */
 counter++;
 parm_status = OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&mypard, (ub4) counter);

Chapter 5
About Describing Select-List Items

5-14

} /* while */
...

See Also:

• OCIParamGet()

• OCIAttrGet()

• OCIStmtPrepare2()

• OCIArrayDescriptorAlloc()

• Parameter Attributes for a list of the specific attributes of the parameter
descriptor that may be read by OCIArrayDescriptorAlloc()

5.5.2 Explicit Describe of Queries
You can describe a query explicitly before execution by specifying OCI_DESCRIBE_ONLY as the
mode of OCIStmtExecute()
This does not execute the statement, but returns the select-list description.

Note:

To maximize performance, Oracle recommends that applications execute the
statement in default mode and use the implicit describe that accompanies the
execution.

The code in Example 5-4 demonstrates the use of explicit describe in a select list to return
information about columns.

Example 5-4 Explicit Describe - Returning the Select-List Description for Each Column

...
int i = 0;
ub4 numcols = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) 0; /* column handle */

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt), NULL, 0,
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

/* initialize svchp, stmthp, errhp, rowoff, iters, snap_in, snap_out */
/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
 (OCISnapshot *) 0, (OCISnapshot *) 0, OCI_DESCRIBE_ONLY));

Chapter 5
About Describing Select-List Items

5-15

/* Get the number of columns in the query */
checkerr(errhp, OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, (void *)&numcols,
 (ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

/* go through the column list and retrieve the data type of each column.
Start from pos = 1 */
for (i = 1; i <= numcols; i++)
{
 /* get parameter for column i */
 checkerr(errhp, OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp, (void **)&colhd,
i));

 /* get data-type of column i */
 type = 0;
 checkerr(errhp, OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM,
 (void *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));
}
...

See Also:

OCIStmtExecute()

5.6 About Defining Output Variables in OCI
Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output variables
for each item in the select list from which to retrieve data. The define step creates an
association that determines where returned results are stored, and in what format.

For example, to process the following statement you would normally define two output
variables: one to receive the value returned from the name column, and one to receive the
value returned from the ssn column:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

See Also:

Binding and Defining in OCI

5.7 About Fetching Results
If an OCI application has processed a query, it is typically necessary to fetch the results with
OCIStmtFetch2() after the statement has completed execution.

The OCIStmtFetch2() function supports scrollable cursors.

Fetched data is retrieved into output variables that have been specified by define operations.

Chapter 5
About Defining Output Variables in OCI

5-16

Note:

If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter is fetched
directly into the defined output buffers

This section includes the following topics:

• About Fetching LOB Data

• About Setting Prefetch Count

• About Fetching LOB Data
If LOB columns or attributes are part of a select list, they can be returned as LOB locators
or actual LOB values, depending on how you define them.

• About Setting Prefetch Count
To minimize server round-trips and optimize performance, OCI can prefetch result set rows
when executing a query.

See Also:

• About Using Scrollable Cursors in OCI

• OCIStmtFetch2()

• OCIStmtExecute()

• These statements mentioned previously fetch data associated with the sample
code in Steps Used in OCI Defining. See that example for more information.

• Overview of Defining in OCI for information about defining output variables

5.7.1 About Fetching LOB Data
If LOB columns or attributes are part of a select list, they can be returned as LOB locators or
actual LOB values, depending on how you define them.

If LOB locators are fetched, then the application can perform further operations on these
locators through the OCILobXXX functions.

See Also:

• LOB and BFILE Operations for more information about working with LOB
locators in OCI

• About Defining LOB Output Variables for usage and examples of selecting LOB
data without the use of locators

Chapter 5
About Fetching Results

5-17

5.7.2 About Setting Prefetch Count
To minimize server round-trips and optimize performance, OCI can prefetch result set rows
when executing a query.

You can customize this prefetching by setting either the OCI_ATTR_PREFETCH_ROWS or
OCI_ATTR_PREFETCH_MEMORY attribute of the statement handle using the OCIAttrSet() function.
These attributes are used as follows:

• OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched. If it is not set, then the
default value is 1. If the iters parameter of OCIStmtExecute() is 0 and prefetching is
enabled, the rows are buffered during calls to OCIStmtFetch2(). The prefetch value can be
altered after execution and between fetches.

• OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be prefetched. The
application then fetches as many rows as can fit into that much memory.

When both of these attributes are set, OCI prefetches rows up to the OCI_ATTR_PREFETCH_ROWS
limit unless the OCI_ATTR_PREFETCH_MEMORY limit is reached, in which case OCI returns as
many rows as can fit in a buffer of size OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and OCI fetches one extra row, except when prefetching
cannot be supported for a query (see the note that follows). To turn prefetching off, set both the
OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY attributes to zero.

If both OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY attributes are explicitly set,
OCI uses the tighter of the two constraints to determine the number of rows to prefetch.

To prefetch exclusively based on the memory constraint, set the OCI_ATTR_PREFETCH_MEMORY
attribute and be sure to disable the OCI_ATTR_PREFETCH_ROWS attribute by setting it to zero (to
override the default setting of 1 row).

To prefetch exclusively based on the number of rows constraint, set the
OCI_ATTR_PREFETCH_ROWS attribute and disable the OCI_ATTR_PREFETCH_MEMORY attribute by
setting it to zero (if it was ever explicitly set to a non-zero value).

Prefetching is possible for REF CURSORs and nested cursor columns. By default, prefetching is
not turned on for REF CURSORs. To turn on prefetching for REF CURSORs, set the
OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY attribute before fetching rows from
the REF CURSOR. When a REF CURSOR is passed multiple times between an OCI application and
PL/SQL and fetches on the REF CURSOR are done in OCI and in PL/SQL, the rows prefetched
by OCI (if enabled) cause the application to behave as if out-of-order rows are being fetched in
PL/SQL. In such situations, OCI prefetch should not be enabled on REF CURSORs.

Note:

Prefetching is not in effect if LONG, LOB, JSON or Opaque Type columns (such as
XMLType) are part of the query.

Chapter 5
About Fetching Results

5-18

See Also:

• Statement Handle Attributes

• OCIAttrSet()

• OCIStmtExecute()

• OCIStmtFetch2()

5.8 About Using Scrollable Cursors in OCI
A cursor is a current position in a result set.

Execution of a cursor puts the results of the query into a set of rows called the result set that
can be fetched either sequentially or nonsequentially. In the latter case, the cursor is known as
a scrollable cursor.

A scrollable cursor supports forward and backward access into the result set from a given
position, by using either absolute or relative row number offsets into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch previously fetched
rows, the nth row in the result set, or the nth row from the current position. Client-side caching
of either the partial or entire result set improves performance by limiting calls to the server.

Oracle Database does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG data type is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at execution
time. OCI client prefetching works with OCI scrollable cursors. The size of the client prefetch
cache can be controlled by the existing OCI attributes OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY.

Note:

Do not use scrollable cursors unless you require their functionality, because they use
more server resources and can have greater response times than nonscrollable
cursors.

The OCIStmtExecute() call has an execution mode for scrollable cursors,
OCI_STMT_SCROLLABLE_READONLY. The default for statement handles is nonscrollable, forward
sequential access only, where the mode is OCI_FETCH_NEXT. You must set this execution mode
each time the statement handle is executed.

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved only by using
OCIAttrGet(). This attribute cannot be set by the application; it indicates the current position in
the result set.

For nonscrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows fetched into the
user buffers with the OCIStmtFetch2() calls since this statement handle was executed.
Because nonscrollable cursors are forward sequential only, OCI_ATTR_ROW_COUNT also
represents the highest row number detected by the application.

Chapter 5
About Using Scrollable Cursors in OCI

5-19

Beginning with Oracle Database Release 12.1, using the attribute OCI_ATTR_UB8_ROW_COUNT is
preferred to using the attribute OCI_ATTR_ROW_COUNT if row count values can exceed the value
of UB4MAXVAL for an OCI application.

For scrollable cursors, OCI_ATTR_ROW_COUNT represents the maximum (absolute) row number
fetched into the user buffers. Because the application can arbitrarily position the fetches, this
does not have to be the total number of rows fetched into the user's buffers since the
(scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle represents the number of rows
that were successfully fetched into the user's buffers in the last fetch call or execute. It works
for both scrollable and nonscrollable cursors.

Use the OCIStmtFetch2() call, instead of the OCIStmtFetch() call, which is retained for
backward compatibility. You are encouraged to use OCIStmtFetch2() for all new applications,
even those not using scrollable cursors. This call also works for nonscrollable cursors, but can
raise an error if any other orientation besides OCI_DEFAULT or OCI_FETCH_NEXT is passed.

Scrollable cursors are supported for remote mapped queries. Transparent application failover
(TAF) is supported for scrollable cursors.

Note:

If you call OCIStmtFetch2() with the nrows parameter set to 0, the cursor is canceled.

This section includes the following topics:

• About Increasing Scrollable Cursor Performance

• Example of Access on a Scrollable Cursor

• About Increasing Scrollable Cursor Performance
Response time is improved if you use OCI client-side prefetch buffers.

• Example of Access on a Scrollable Cursor
Shows the use of a scrollable cursor.

• Support for JSON and Vector Data Types with Scrollable Cursors

See Also:

• OCIStmtExecute()

• OCIAttrGet()

• OCIStmtFetch2()

• About Setting Prefetch Count

5.8.1 About Increasing Scrollable Cursor Performance
Response time is improved if you use OCI client-side prefetch buffers.

Chapter 5
About Using Scrollable Cursors in OCI

5-20

After calling OCIStmtExecute() for a scrollable cursor, call OCIStmtFetch2() using
OCI_FETCH_LAST to obtain the size of the result set. Then set OCI_ATTR_PREFETCH_ROWS to
about 20% of that size, and set OCI_PREFETCH_MEMORY if the result set uses a large amount of
memory.

See Also:

• OCIStmtExecute()

• OCIStmtFetch2()

5.8.2 Example of Access on a Scrollable Cursor
Shows the use of a scrollable cursor.

Assume that a result set is returned by the following SQL query, and that the table EMP has 14
rows:

SELECT empno, ename FROM emp

One use of scrollable cursors is shown in Example 5-5.

Example 5-5 Access on a Scrollable Cursor

...
/* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot *)NULL,
 (OCISnapshot *) NULL, OCI_STMT_SCROLLABLE_READONLY);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
 OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_ABSOLUTE, (sb4) 6, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
 OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_RELATIVE, (sb4) -2, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 14. After this call,
 OCI_ATTR_CURRENT_POSITION = 14, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1,
 OCI_FETCH_LAST, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row number 1. After this call,
 OCI_ATTR_CURRENT_POSITION = 1, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1,
 OCI_FETCH_FIRST, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 2, 3, 4. After this call,
 OCI_ATTR_CURRENT_POSITION = 4, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_NEXT, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
 OCI_ATTR_CURRENT_POSITION = 7, OCI_ATTR_ROW_COUNT = 14. It is assumed
the user's define memory is allocated. */

Chapter 5
About Using Scrollable Cursors in OCI

5-21

checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 5,
 OCI_FETCH_PRIOR, (sb4) 0, OCI_DEFAULT);
...
}
checkprint (errhp, status)
{
 ub4 rows_fetched;
/* This checks for any OCI errors before printing the results of the fetch call
 in the define buffers */
 checkerr (errhp, status);
 checkerr(errhp, OCIAttrGet((CONST void *) stmthp, OCI_HTYPE_STMT,
 (void *) &rows_fetched, (uint *) 0, OCI_ATTR_ROWS_FETCHED, errhp));
}
...

5.8.3 Support for JSON and Vector Data Types with Scrollable Cursors
Starting from Oracle Database Release 23ai (23.7), OCI supports scrollable cursors with
columns of JSON and Vector data types. The following vector data types are supported:

• INT8

• Float32

• Float64

• Binary

Example 5-6 Accessing JSON and vector data with scrollable cursor

1. Create table jsonvectab

create table jsonvectab(id number, jsonCol json, vecCol vector(3,
float32));

2. Insert values in table jsonvectab

insert into jsonvectab values(1, '{"ab":1, "name":"oracle"}', '[1.2, 3.45,
6.78]');

3. Run the following SQL query assuming that the table JSONVECTAB has 14 rows:

SELECT jsonCol, vecCol FROM jsonVecTab;

{
…
/* Execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot
*)NULL, (OCISnapshot *) NULL, OCI_STMT_SCROLLABLE_READONLY);

/* Allocate Json & Vector descriptors */
OCIDescriptorAlloc(envhp, (void **) &jsondp, OCI_DTYPE_JSON, 0, 0);
OCIDescriptorAlloc(envhp, (void **) &vectordp, OCI_DTYPE_VECTOR, 0, 0);

/* Define Columns */
OCIDefineByPos(stmthp, &defnhp1, errhp, 1, (dvoid *)&jsondp, (sword) 0,
SQLT_JSON, (dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);
OCIDefineByPos(stmthp, &defnhp2, errhp, 2, (dvoid *)&vectordp, (sword) 0,

Chapter 5
About Using Scrollable Cursors in OCI

5-22

SQLT_VEC, (dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 8, After this call,
OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1, OCI_FETCH_ABSOLUTE,
(sb4) 8, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 6. After this call,
OCI_ATTR_CURRENT_POSITION = 6, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1,
OCI_FETCH_RELATIVE, (sb4) -2, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 5. After this call,
OCI_ATTR_CURRENT_POSITION = 5, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1, OCI_FETCH_PRIOR,
(sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 14. After this call,
OCI_ATTR_CURRENT_POSITION = 14, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1, OCI_FETCH_LAST, (sb4)
0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 1. After this call,
OCI_ATTR_CURRENT_POSITION = 1, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1, OCI_FETCH_FIRST,
(sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 2. After this call,
OCI_ATTR_CURRENT_POSITION = 2, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1, OCI_FETCH_NEXT, (sb4)
0, OCI_DEFAULT);

/* Cancel Scrollable Cursor */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 0, OCI_FETCH_NEXT, (sb4)
0, OCI_DEFAULT);

/* Free Json & Vector descriptors */
OCIDescriptorFree((void **)jsondp, OCI_DTYPE_JSON);
OCIDescriptorFree((void **)vectordp, OCI_DTYPE_VECTOR);
...
}
checkprint (errhp, status)
{
ub4 rows_fetched;

/* This checks for any OCI errors before printing the results of the fetch
call in the define buffers */
checkerr (errhp, status);
checkerr(errhp, OCIAttrGet((CONST void *) stmthp, OCI_HTYPE_STMT,
(void *) &rows_fetched, (uint *) 0, OCI_ATTR_ROWS_FETCHED, errhp));
printf(“Rows fetched = %d¥n”, rows_fetched);
}

Chapter 5
About Using Scrollable Cursors in OCI

5-23

6
Binding and Defining in OCI

This chapter describes binding and defining in OCI.

This chapter contains these topics:

• Overview of Binding in OCI

• Advanced Bind Operations in OCI

• Overview of Defining in OCI

• Advanced Define Operations in OCI

• About Binding and Defining LOB Data

• About Binding and Defining JSON Data

• About Binding and Defining Arrays of Structures in OCI

• About Binding and Defining Multiple Buffers

• DML with a RETURNING Clause in OCI

• Character Conversion in OCI Binding and Defining

• PL/SQL REF CURSORs and Nested Tables in OCI

• Natively Describe and Bind All PL/SQL Types Including Package Types

• Runtime Data Allocation and Piecewise Operations in OCI

• Overview of Binding in OCI
This chapter expands on the basic concepts of binding and defining, and provides more
detailed information about the different types of binds and defines you can use in OCI
applications.

• Advanced Bind Operations in OCI
More advanced bind operations include multistep binds, and binds of named data types
and REFs.

• Overview of Defining in OCI
Query statements return data from the database to your application.

• Advanced Define Operations in OCI
This section covers advanced define operations, including multistep defines and defines of
named data types and REFs.

• About Binding and Defining LOB Data
Oracle Database allows nonzero binds for INSERTs and UPDATEs of any size LOB.

• About Binding and Defining JSON Data
This section describes the three possible interfaces used for performing binds and defines
against the JSON type column.

• About Array Binds and Defines with JSON Data
JSON descriptors can also work with array binds and defines. In an array of descriptors,
you must initialize each array element using OCIDescriptorAlloc () function before
OCIStmtExecute () function. The following code snippet shows an example of array binds:

6-1

• About Binding and Defining Arrays of Structures in OCI
Defining arrays of structures requires an initial call to OCIDefineByPos() or
OCIDefineByPos2().

• About Binding and Defining Multiple Buffers
You can specify multiple buffers for use with a single bind or define call.

• DML with a RETURNING Clause in OCI
This section outlines the rules for correctly implementing DML statements with the
RETURNING clause.

• Character Conversion in OCI Binding and Defining
This section discusses issues involving character conversions between the client and the
server.

• PL/SQL REF CURSORs and Nested Tables in OCI
OCI provides the ability to bind and define PL/SQL REF CURSORs and nested tables.

• Natively Describe and Bind All PL/SQL Types Including Package Types
Beginning with Oracle Database Release 12.1, OCI clients support the ability to natively
describe and bind all PL/SQL types.

• Runtime Data Allocation and Piecewise Operations in OCI
You can use OCI to perform piecewise inserts, updates, and fetches of data.

6.1 Overview of Binding in OCI
This chapter expands on the basic concepts of binding and defining, and provides more
detailed information about the different types of binds and defines you can use in OCI
applications.

Additionally, this chapter discusses the use of arrays of structures, and other issues involved in
binding, defining, and character conversions.

For example, given the INSERT statement:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

Then given the following variable declarations:

text *ename, *job;
sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address of the
program variables. The bind also indicates the data type and length of the program variables,
as illustrated in Figure 6-1.

Chapter 6
Overview of Binding in OCI

6-2

Figure 6-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO emp

OCIBindByName ()

(empno, ename, job, sal, deptno)

VALUES (:empno, :ename, :job, :sal, :deptno)

Address &empno ename job &sal &deptno

Data Type integer string string integer integer

Length sizeof(empno) strlen(ename)+1 strlen(job)+1 sizeof(sal) sizeof(deptno)

If you change only the value of a bind variable, it is not necessary to rebind it to execute the
statement again. Because the bind is by reference, as long as the address of the variable and
handle remain valid, you can reexecute a statement that references the variable without
rebinding.

Note:

At the interface level, all bind variables are considered at least IN and must be
properly initialized. If the variable is a pure OUT bind variable, you can set the variable
to 0. You can also provide a NULL indicator and set that indicator to -1 (NULL).

In the Oracle database, data types have been implemented for named data types, REFs and
LOBs, and they can be bound as placeholders in a SQL statement.

Note:

For opaque data types (descriptors or locators) whose sizes are not known, pass the
address of the descriptor or locator pointer. Set the size parameter to the size of the
appropriate data structure, (sizeof(structure)).

This section includes the following topics:

• Named Binds and Positional Binds

• OCI Array Interface

• About Binding Placeholders in PL/SQL

• Steps Used in OCI Binding

• PL/SQL Block in an OCI Program

• Named Binds and Positional Binds
In a named bind, each placeholder in the statement has a name associated with it, while in
a positional bind, the placeholders are referred to by their position in the statement rather
than by their names.

Chapter 6
Overview of Binding in OCI

6-3

• OCI Array Interface
You can pass data to the Oracle database in various ways.

• About Binding Placeholders in PL/SQL
You process a PL/SQL block by placing the block in a string variable, binding any
variables, and then executing the statement containing the block, just as you would with a
single SQL statement.

• Steps Used in OCI Binding
Placeholders are bound in several steps.

• PL/SQL Block in an OCI Program
Perhaps the most common use for PL/SQL blocks in OCI is to call stored procedures or
stored functions.

See Also:

Steps Used in OCI Binding for the code that implements this example

6.1.1 Named Binds and Positional Binds
In a named bind, each placeholder in the statement has a name associated with it, while in a
positional bind, the placeholders are referred to by their position in the statement rather than by
their names.

The SQL statement in Figure 6-1 is an example of a named bind. Each placeholder in the
statement has a name associated with it, such as 'ename' or 'sal'. When this statement is
prepared and the placeholders are associated with values in the application, the association is
made by the name of the placeholder using the OCIBindByName() or OCIBindByName2() call
with the name of the placeholder passed in the placeholder parameter.

A second type of bind is known as a positional bind. In a positional bind, the placeholders are
referred to by their position in the statement rather than by their names. For binding purposes,
an association is made between an input value and the position of the placeholder, using the
OCIBindByPos() or OCIBindByPos2() call.

To use the previous example for a positional bind:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

The five placeholders are then each bound by calling OCIBindByPos() or OCIBindByPos2() and
passing the position number of the placeholder in the position parameter. For example,
the :empno placeholder would be bound by calling OCIBindByPos() or OCIBindByPos2() with a
position of 1, :ename with a position of 2, and so on.

In a duplicate bind, only a single bind call may be necessary. Consider the following SQL
statement, which queries the database for employees whose commission and salary are both
greater than a given amount:

SELECT empno FROM emp
 WHERE sal > :some_value
 AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() or OCIBindByName2() to bind the :some_value placeholder by name. In this

Chapter 6
Overview of Binding in OCI

6-4

case, all bind placeholders for :some_value get assigned the same value as provided by the
OCIBindByName() or OCIBindByName2() call.

Now consider the case where a 6th placeholder is added that is a duplicate. For example,
add :ename as the 6th placeholder in the first previous example:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno, :ename)

If you are using the OCIBindByName() or OCIBindByName2() call, just one bind call suffices to
bind both occurrences of the :ename placeholder. All occurrences of :ename in the statement
will get bound to the same value. Moreover, if new bind placeholders get added as a result of
which bind positions for existing bind placeholders change, you do not need to change your
existing bind calls in order to update bind positions. This is a distinct advantage in using the
OCIBindByName() or OCIBindByName2() call if your program evolves to add more bind variables
in your statement text.

If you are using the OCIBindByPos() or OCIBindByPos2() call, however, you have increased
flexibility in terms of binding duplicate bind-parameters separately, if you need it. You have the
option of binding any of the duplicate occurrences of a bind parameter separately. Any
unbound duplicate occurrences of a parameter inherit the value from the first occurrence of the
bind parameter with the same name. The first occurrence must be explicitly bound.

In the context of SQL statements, the position n indicates the bind parameter at the nth
position. However, in the context of PL/SQL statements, OCIBindByPos() or OCIBindByPos2()
has a different interpretation for the position parameter: the position n in the bind call indicates
a binding for the nth unique parameter name in the statement when scanned left to right.

Using the previous example again and the same SQL statement text, if you want to bind the
6th position separately, the :ename placeholder would be bound by calling OCIBindByPos() or
OCIBindByPos2() with a position of 6. Otherwise, if left unbound, :ename would inherit the
value from the first occurrence of the bind parameter with the same name, in this case,
from :ename in position 2.

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

6.1.2 OCI Array Interface
You can pass data to the Oracle database in various ways.

You can execute a SQL statement repeatedly using the OCIStmtExecute() routine and supply
different input values on each iteration.

You can use the Oracle array interface and input many values with a single statement and a
single call to OCIStmtExecute(). In this case, you bind an array to an input placeholder, and
the entire array can be passed at the same time, under the control of the iters parameter.

The array interface significantly reduces round-trips to the database when you are updating or
inserting a large volume of data. This reduction can lead to considerable performance gains in
a busy client/server environment. For example, consider an application that inserts 10 rows
into the database. Calling OCIStmtExecute() 10 times with single values results in 10 network

Chapter 6
Overview of Binding in OCI

6-5

round-trips to insert all the data. The same result is possible with a single call to
OCIStmtExecute() using an input array, which involves only one network round-trip.

Beginning with Oracle Database 12c Release 2 (12.2), support is added for Hybrid Columnar
Compression (HCC) with conventional DMLs, so HCC can be used during array inserts with
OCI. HCC conventional array inserts are only supported for HCC tables on ASSM
tablespaces. .

Note:

When you use the OCI array interface to perform inserts, row triggers in the database
are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement is 4 billion -1
(3,999,999,999). However, if you use ub8 instead of ub4, this increases the maximum
number of rows allowed in an array DML statement to be more than 4 billion rows.

See Also:

• OCIStmtExecute()

• About Table Compression in Oracle Database Administrator’s Guide for
information about how to configure HCC

6.1.3 About Binding Placeholders in PL/SQL
You process a PL/SQL block by placing the block in a string variable, binding any variables,
and then executing the statement containing the block, just as you would with a single SQL
statement.

When you bind placeholders in a PL/SQL block to program variables, you must use
OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2() to perform the
basic binds for host variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN parameters to
a procedure that updates an employee's salary, when given the employee number and the new
salary amount:

char plsql_statement[] = "BEGIN\
 RAISE_SALARY(:emp_number, :new_sal);\
 END;" ;

These placeholders can be bound to input variables in the same way as placeholders in a SQL
statement.

When processing PL/SQL statements, output variables are also associated with program
variables by using bind calls.

For example, consider the following PL/SQL block:

BEGIN
 SELECT ename,sal,comm INTO :emp_name, :salary, :commission
 FROM emp

Chapter 6
Overview of Binding in OCI

6-6

 WHERE empno = :emp_number;
END;

In this block, you would use OCIBindByName() or OCIBindByName2() to bind variables in place
of the :emp_name, :salary, and :commission output placeholders, and in place of the input
placeholder :emp_number.

Note:

All buffers, even pure OUT buffers, must be initialized by setting the buffer length to
zero in the bind call, or by setting the corresponding indicator to -1.

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• Information for Named Data Type and REF Binds for more information about
binding PL/SQL placeholders

6.1.4 Steps Used in OCI Binding
Placeholders are bound in several steps.

For a simple scalar or array bind, it is only necessary to specify an association between the
placeholder and the data, by using OCIBindByName() or OCIBindByName2() or OCIBindByPos()
or OCIBindByPos2().

Once the bind is complete, the OCI library detects where to find the input data or where to put
the PL/SQL output data when the SQL statement is executed. Program input data does not
need to be in the program variable when it is bound to the placeholder, but the data must be
there when the statement is executed.

The following code example in Example 6-1 shows handle allocation and binding for each
placeholder in a SQL statement.

Note:

The checkerr() function evaluates the return code from an OCI application. The
code for the function is in the Example for OCIErrorGet().

Example 6-1 Handle Allocation and Binding for Each Placeholder in a SQL Statement

...
/* The SQL statement, associated with stmthp (the statement handle)
by calling OCIStmtPrepare2() */
text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\

Chapter 6
Overview of Binding in OCI

6-7

 VALUES (:empno, :ename, :job, :sal, :deptno)";
...

/* Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":ENAME",
 strlen(":ENAME"), (ub1 *) ename, enamelen+1, SQLT_STR, (void *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":JOB",
 strlen(":JOB"), (ub1 *) job, joblen+1, SQLT_STR, (void *)
 &job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":SAL",
 strlen(":SAL"), (ub1 *) &sal, (sword) sizeof(sal), SQLT_INT,
 (void *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
 strlen(":DEPTNO"), (ub1 *) &deptno,(sword) sizeof(deptno), SQLT_INT,
 (void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd5p, errhp, (text *) ":EMPNO",
 strlen(":EMPNO"), (ub1 *) &empno, (sword) sizeof(empno), SQLT_INT,
 (void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,OCI_DEFAULT));

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIErrorGet()

6.1.5 PL/SQL Block in an OCI Program
Perhaps the most common use for PL/SQL blocks in OCI is to call stored procedures or stored
functions.

Assume that there is a procedure named RAISE_SALARY stored in the database, and you
embed a call to that procedure in an anonymous PL/SQL block, and then process the PL/SQL
block.

The following program fragment shows how to embed a stored procedure call in an OCI
application. The program passes an employee number and a salary increase as inputs to a
stored procedure called raise_salary:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

This procedure raises a given employee's salary by a given amount. The increased salary that
results is returned in the stored procedure's variable, new_salary, and the program displays
this value.

Note that the PL/SQL procedure argument, new_salary, although a PL/SQL OUT variable,
must be bound, not defined.

Example 6-2 demonstrates how to perform a simple scalar bind where only a single bind call is
necessary. In some cases, additional bind calls are needed to define attributes for specific bind
data types or execution modes.

Chapter 6
Overview of Binding in OCI

6-8

Example 6-2 Defining a PL/SQL Statement to Be Used in OCI

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
 RAISE_SALARY(:emp_number,:sal_increase, :new_salary);\
 END;";
OCIBind *bnd1p = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();
sb4 status;

main()
{
 sword empno, raise, new_sal;
 OCISession *usrhp = (OCISession *)NULL;
...
/* attach to Oracle database, and perform necessary initializations
and authorizations */
...
 /* prepare the statement request, passing the PL/SQL text
 block as the statement to be prepared */
checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (text *) give_raise, (ub4)
 strlen(give_raise), NULL, 0, OCI_NTV_SYNTAX, OCI_DEFAULT));

 /* bind each of the placeholders to a program variable */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":emp_number",
 -1, (ub1 *) &empno,
 (sword) sizeof(empno), SQLT_INT, (void *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":sal_increase",
 -1, (ub1 *) &raise,
 (sword) sizeof(raise), SQLT_INT, (void *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* remember that PL/SQL OUT variables are bound, not defined */

checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":new_salary",
 -1, (ub1 *) &new_sal,
 (sword) sizeof(new_sal), SQLT_INT, (void *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* prompt the user for input values */
printf("Enter the employee number: ");
scanf("%d", &empno);
 /* flush the input buffer */
myfflush();

printf("Enter employee's raise: ");
scanf("%d", &raise);
 /* flush the input buffer */
myfflush();

 /* execute PL/SQL block*/
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

 /* display the new salary, following the raise */
printf("The new salary is %d\n", new_sal);

Chapter 6
Overview of Binding in OCI

6-9

OCIStmtRelease(stmthp, errhp, NULL, 0, OCI_DEFAULT);
}

See Also:

Why a PL/SQL OUT variable must be bound and not defined is explained in About
Defining PL/SQL Output Variables and in Information for Named Data Type and REF
Defines, and PL/SQL OUT Binds.

6.2 Advanced Bind Operations in OCI
More advanced bind operations include multistep binds, and binds of named data types and
REFs.

About Binding Placeholders in OCI discussed how a basic bind operation is performed to
create an association between a placeholder in a SQL statement and a program variable by
using OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2(). This
section covers more advanced bind operations, including multistep binds, and binds of named
data types and REFs.

In some cases, additional bind calls are necessary to define specific attributes for certain bind
data types or certain execution modes.

The following sections describe these special cases, and the information about binding is
summarized in Table 6-1.

Table 6-1 Information Summary for Bind Types

Type of Bind Bind Data Type Notes

Scalar Any scalar data type Bind a single scalar using OCIBindByName() or OCIBindByName2()
or OCIBindByPos() or OCIBindByPos2().

Array of scalars Any scalar data type Bind an array of scalars using OCIBindByName() or
OCIBindByName2() or OCIBindByPos() or OCIBindByPos2().

Named data type SQLT_NTY Includes records and collections

Two bind calls are required:

• OCIBindByName() or OCIBindByName2() or OCIBindByPos()
or OCIBindByPos2()

• OCIBindObject()
Boolean SQLT_BOL Bind a Boolean using OCIBindByName() or OCIBindByName2() or

OCIBindByPos() or OCIBindByPos2().

REF SQLT_REF Two bind calls are required:

• OCIBindByName() or OCIBindByName2() or OCIBindByPos()
or OCIBindByPos2()

• OCIBindObject()
LOB

BFILE
SQLT_BLOB
SQLT_CLOB

Allocate the LOB locator using OCIDescriptorAlloc(), and then
bind its address, OCILobLocator **, with OCIBindByName() or
OCIBindByName2() or OCIBindByPos() or OCIBindByPos2(), by
using one of the LOB data types.

Chapter 6
Advanced Bind Operations in OCI

6-10

Table 6-1 (Cont.) Information Summary for Bind Types

Type of Bind Bind Data Type Notes

Array of structures or static
arrays

Varies Two bind calls are required:

• OCIBindByName() or OCIBindByName2() or OCIBindByPos()
or OCIBindByPos2()

• OCIBindArrayOfStruct()
Piecewise insert Varies OCIBindByName() or OCIBindByName2() or OCIBindByPos() or

OCIBindByPos2() is required. The application may also need to call
OCIBindDynamic() to register piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its address,
OCIStmt **, using the SQLT_RSET data type.

This section includes the following topics:

• About Binding LOBs

• About Binding in OCI_DATA_AT_EXEC Mode

• About Binding REF CURSOR Variables

• About Binding LOBs
There are two ways of binding LOBs:

• About Binding in OCI_DATA_AT_EXEC Mode
If the mode parameter in a call to OCIBindByName() or OCIBindByName2() or
OCIBindByPos() or OCIBindByPos2() is set to OCI_DATA_AT_EXEC, an additional call to
OCIBindDynamic() is necessary if the application uses the callback method for providing
data at run time.

• About Binding REF CURSOR Variables
REF CURSORs are bound to a statement handle with a bind data type of SQLT_RSET.

See Also:

• Named Data Type Binds for information about binding named data types
(objects)

• About Binding REFs

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIBindObject()

• OCIDescriptorAlloc()

• OCIBindArrayOfStruct()

• OCIBindDynamic()

6.2.1 About Binding LOBs
There are two ways of binding LOBs:

Chapter 6
Advanced Bind Operations in OCI

6-11

• Bind the LOB locator, rather than the actual LOB values. In this case the LOB value is
written or read by passing a LOB locator to the OCI LOB functions.

• Bind the LOB value directly, without using the LOB locator.

This section includes the following topics:

• Binding LOB Locators

• About Binding and Defining LOB Data

• Binding LOB Locators
Either a single locator or an array of locators can be bound in a single bind call.

6.2.1.1 Binding LOB Locators
Either a single locator or an array of locators can be bound in a single bind call.

In each case, the application must pass the address of a LOB locator and not the locator itself.
For example, suppose that an application has prepared this SQL statement where one_lob is a
bind variable corresponding to a LOB column:

INSERT INTO some_table VALUES (:one_lob)

Then your application makes the following declaration:

OCILobLocator * one_lob;

Then the calls in Example 6-3 would be used to bind the placeholder and execute the
statement:

You can also insert an array using the same SQL INSERT statement. In this case, the
application would include the code shown in Example 6-4.

You must allocate descriptors with the OCIDescriptorAlloc() function before they can be
used. In an array of locators, you must initialize each array element using
OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter when allocating BLOBs,
CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when allocating BFILEs.

Example 6-3 Binding the Placeholder and Executing the Statement to Insert a Single
Locator

/* initialize single locator */
OCIDescriptorAlloc(..., &one_lob, OCI_DTYPE_LOB,...);
...
/* pass the address of the locator */
OCIBindByName(...,(void *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

Example 6-4 Binding the Placeholder and Executing the Statement to Insert an Array
of Locators

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
 OCIDescriptorAlloc(...,&lob_array[i], OCI_DTYPE_LOB,...);
 /* initialize array of locators */
...
OCIBindByName(...,(void *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

This section includes the following topic: Restrictions on Binding LOB Locators

Chapter 6
Advanced Bind Operations in OCI

6-12

• Restrictions on Binding LOB Locators
What are the restrictions on binding LOB locators.

See Also:

OCIDescriptorAlloc()

6.2.1.1.1 Restrictions on Binding LOB Locators
What are the restrictions on binding LOB locators.

Observe the following restrictions when you bind LOB locators:

• Piecewise and callback INSERT or UPDATE operations are not supported.

• When using a FILE locator as a bind variable for an INSERT or UPDATE statement, you must
first initialize the locator with a directory object and file name, by using
OCILobFileSetName() before issuing the INSERT or UPDATE statement.

See Also:

• LOB and BFILE Operations for more information about the OCI LOB functions

• OCILobFileSetName()

6.2.2 About Binding in OCI_DATA_AT_EXEC Mode
If the mode parameter in a call to OCIBindByName() or OCIBindByName2() or OCIBindByPos() or
OCIBindByPos2() is set to OCI_DATA_AT_EXEC, an additional call to OCIBindDynamic() is
necessary if the application uses the callback method for providing data at run time.

The call to OCIBindDynamic() sets up the callback routines, if necessary, for indicating the data
or piece provided. If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI piecewise
polling method is used instead of callbacks, the call to OCIBindDynamic() is not necessary.

When binding RETURN clause variables, an application must use OCI_DATA_AT_EXEC mode, and
it must provide callbacks.

See Also:

• Runtime Data Allocation and Piecewise Operations in OCI for more information
about piecewise operations

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIBindDynamic()

Chapter 6
Advanced Bind Operations in OCI

6-13

6.2.3 About Binding REF CURSOR Variables
REF CURSORs are bound to a statement handle with a bind data type of SQLT_RSET.

See Also:

PL/SQL REF CURSORs and Nested Tables in OCI

6.3 Overview of Defining in OCI
Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output variables
for each item in the select list for retrieving data. The define step creates an association that
determines where returned results are stored, and in what format.

For example, if your program processes the following statement then you would normally
define two output variables: one to receive the value returned from the name column, and one
to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

If you were only interested in retrieving values from the name column, you would not need to
define an output variable for ssn. If the SELECT statement being processed returns more than a
single row for a query, the output variables that you define can be arrays instead of scalar
values.

Depending on the application, the define step can occur before or after an execute operation. If
you know the data types of select-list items at compile time, the define can occur before the
statement is executed. If your application is processing dynamic SQL statements entered by
you at run time or statements that do not have a clearly defined select list, the application must
execute the statement to retrieve describe information. After the describe information is
retrieved, the type information for each select-list item is available for use in defining output
variables.

OCI processes the define call locally on the client side. In addition to indicating the location of
buffers where results should be stored, the define step determines what data conversions must
occur when data is returned to the application.

Note:

Output buffers must be 2-byte aligned.

The dty parameter of the OCIDefineByPos() or OCIDefineByPos2() call specifies the data type
of the output variable. OCI can perform a wide range of data conversions when data is fetched
into the output variable. For example, internal data in Oracle DATE format can be automatically
converted to a String data type on output.

Chapter 6
Overview of Defining in OCI

6-14

This section includes the following topic: Steps Used in OCI Defining

• Steps Used in OCI Defining
A basic define is done with a position call, OCIDefineByPos() or OCIDefineByPos2().

See Also:

• Data Types for more information about data types and conversions

• About Describing Select-List Items

• OCIDefineByPos() or OCIDefineByPos2()

6.3.1 Steps Used in OCI Defining
A basic define is done with a position call, OCIDefineByPos() or OCIDefineByPos2().

This step creates an association between a select-list item and an output variable. Additional
define calls may be necessary for certain data types or fetch modes. Once the define step is
complete, the OCI library determines where to put retrieved data. You can make your define
calls again to redefine the output variables without having to reprepare or reexecute the SQL
statement.

Example 6-5 shows a scalar output variable being defined following an execute and describe
operation.

See Also:

• About Describing Select-List Items for an explanation of the describe step

• OCIDefineByPos() or OCIDefineByPos2()

Example 6-5 Defining a Scalar Output Variable Following an Execute and Describe
Operation

SELECT department_name FROM departments WHERE department_id = :dept_input

 /* The input placeholder was bound earlier, and the data comes from the
 user input below */

 printf("Enter employee dept: ");
 scanf("%d", &deptno);

 /* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
 no data matches the query, then the department number is invalid. */

 if ((status = OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *) 0,
(OCISnapshot *) 0,
 OCI_DEFAULT))
 && (status != OCI_NO_DATA))
 {
 checkerr(errhp, status);
 return OCI_ERROR;
 }

Chapter 6
Overview of Defining in OCI

6-15

 if (status == OCI_NO_DATA) {
 printf("The dept you entered does not exist.\n");
 return 0;
 }

 /* The next two statements describe the select-list item, dname, and
 return its length */
 checkerr(errhp, OCIParamGet((void *)stmthp, (ub4) OCI_HTYPE_STMT, errhp, (void
**)&parmdp, (ub4) 1));
 checkerr(errhp, OCIAttrGet((void*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (void*) &deptlen, (ub4 *) &sizelen, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

 /* Use the retrieved length of dname to allocate an output buffer, and
 then define the output variable. If the define call returns an error,
 exit the application */
 dept = (text *) malloc((int) deptlen + 1);
 if (status = OCIDefineByPos(stmthp, &defnp, errhp,
 1, (void *) dept, (sb4) deptlen+1,
 SQLT_STR, (void *) 0, (ub2 *) 0,
 (ub2 *) 0, OCI_DEFAULT))
 {
 checkerr(errhp, status);
 return OCI_ERROR;
 }

6.4 Advanced Define Operations in OCI
This section covers advanced define operations, including multistep defines and defines of
named data types and REFs.

In some cases, the define step requires additional calls than just a call to OCIDefineByPos() or
OCIDefineByPos2(); for example, that define the attributes of an array fetch,
OCIDefineArrayOfStruct(), or a named data type fetch, OCIDefineObject(). For example, to
fetch multiple rows with a column of named data types, all the three calls must be invoked for
the column. To fetch multiple rows of scalar columns only, OCIDefineArrayOfStruct() and
OCIDefineByPos() or OCIDefineByPos2() are sufficient.

Oracle Database also provides predefined C data types that map object type attributes.

This section includes the following topics:

• About Defining LOB Output Variables

• About Defining PL/SQL Output Variables

• About Defining for a Piecewise Fetch

• About Defining LOB Output Variables

• About Defining PL/SQL Output Variables
Do not use the define calls to define output variables for select-list items in a SQL SELECT
statement inside a PL/SQL block.

• About Defining for a Piecewise Fetch
A piecewise fetch requires an initial call to OCIDefineByPos() or OCIDefineByPos2().

Chapter 6
Advanced Define Operations in OCI

6-16

See Also:

• Object-Relational Data Types in OCI

• Advanced Define Operations in OCI

• OCIDefineByPos() or OCIDefineByPos2()

• OCIDefineArrayOfStruct()

• OCIDefineObject()

6.4.1 About Defining LOB Output Variables
There are two ways of defining LOBs:

• Define a LOB locator, rather than the actual LOB values. In this case, the LOB value is
written or read by passing a LOB locator to the OCI LOB functions.

• Define a LOB value directly, without using the LOB locator.

This section includes the following topics:

• About Defining LOB Locators

• About Defining LOB Data

• About Defining LOB Locators

• About Defining LOB Data

6.4.1.1 About Defining LOB Locators
Either a single locator or an array of locators can be defined in a single define call. In each
case, the application must pass the address of a LOB locator and not the locator itself. For
example, suppose that an application has prepared the following SQL statement:

SELECT lob1 FROM some_table;

In this statement, lob1 is the LOB column, and one_lob is a define variable corresponding to a
LOB column with the following declaration:

OCILobLocator * one_lob;

Then the following calls would be used to bind the placeholder and execute the statement:

/* initialize single locator */
OCIDescriptorAlloc(...&one_lob, OCI_DTYPE_LOB...);
...
/* pass the address of the locator */
OCIBindByName(...,(void *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute(...,1,...); /* 1 is the iters parameter */

You can also insert an array using this same SQL SELECT statement. In this case, the
application would include the following code:

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
 OCIDescriptorAlloc(...&lob_array[i], OCI_DTYPE_LOB...);
 /* initialize array of locators */

Chapter 6
Advanced Define Operations in OCI

6-17

...
OCIBindByName(...,(void *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() function before they
can be used. In an array of locators, you must initialize each array element using
OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter when allocating BLOBs,
CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when allocating BFILEs.

6.4.1.2 About Defining LOB Data
Oracle Database allows nonzero defines for SELECTs of any size LOB. So you can select up to
the maximum allowed size of data from a LOB column using OCIDefineByPos() and PL/SQL
defines. Because there can be multiple LOBs in a row, you can select the maximum size of
data from each one of those LOBs in the same SELECT statement.

The following SQL statement is the basis for Example 6-6 and Example 6-7:

CREATE TABLE lob_tab (C1 CLOB, C2 CLOB);

Example 6-6 Defining LOBs Before Execution

void select_define_before_execute() /* A function in an OCI program */
{
 /* The following is allowed */
 ub1 buffer1[8000];
 ub1 buffer2[8000];
 text *select_sql = (text *)"SELECT c1, c2 FROM lob_tab";

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[0], errhp, 1, (void *)buffer1, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[1], errhp, 2, (void *)buffer2, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);
}

Example 6-7 Defining LOBs After Execution

void select_execute_before_define()
{
 /* The following is allowed */
 ub1 buffer1[8000];
 ub1 buffer2[8000];
 text *select_sql = (text *)"SELECT c1, c2 FROM lob_tab";

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[0], errhp, 1, (void *)buffer1, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[1], errhp, 2, (void *)buffer2, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
}

Chapter 6
Advanced Define Operations in OCI

6-18

6.4.2 About Defining PL/SQL Output Variables
Do not use the define calls to define output variables for select-list items in a SQL SELECT
statement inside a PL/SQL block.

Use OCI bind calls instead.

See Also:

Information for Named Data Type and REF Defines, and PL/SQL OUT Binds for
more information about defining PL/SQL output variables

6.4.3 About Defining for a Piecewise Fetch
A piecewise fetch requires an initial call to OCIDefineByPos() or OCIDefineByPos2().

An additional call to OCIDefineDynamic() is necessary if the application uses callbacks rather
than the standard polling mechanism.

See Also:

• OCIDefineByPos()or OCIDefineByPos2()

• OCIDefineDynamic()

6.5 About Binding and Defining LOB Data
Oracle Database allows nonzero binds for INSERTs and UPDATEs of any size LOB.

So you can bind data into a LOB column using OCIBindByPos() or OCIBindByPos2(),
OCIBindByName() or OCIBindByName2(), and PL/SQL binds.

The bind of more than 4 kilobytes of data to a LOB column uses space from the temporary
tablespace. Ensure that your temporary tablespace is big enough to hold at least the amount of
data equal to the sum of all the bind lengths for LOBs. If your temporary tablespace is
extendable, it is extended automatically after the existing space is fully consumed. Use the
following command to create an extendable temporary tablespace:

CREATE TABLESPACE ... AUTOEXTEND ON ... TEMPORARY ...;

This section includes the following topics:

• Restrictions on Binding LOB Data

• Getting the LOB Length when Selecting LOB Data

• Examples of Binding LOB Data

• Restrictions on Binding LOB Data
What are the restrictions on binding LOB data.

Chapter 6
About Binding and Defining LOB Data

6-19

• Getting the LOB Length when Selecting LOB Data

• Examples of Binding LOB Data
Shows some exampled of binding LOB data.

See Also:

• OCIBindByPos() or OCIBindByPos2()

• OCIBindByName() or OCIBindByName2()

6.5.1 Restrictions on Binding LOB Data
What are the restrictions on binding LOB data.

Observe the following restrictions when you bind LOB data:

• If a table has both LONG and LOB columns, then you can have binds of greater than 4
kilobytes for either the LONG column or the LOB columns, but not both in the same
statement.

• In an INSERT AS SELECT operation, Oracle Database does not allow binding of any length
data to LOB columns.

• A special consideration applies on the maximum size of bind variables that are neither
LONG or LOB, but that appear after any LOB or LONG bind variable in the SQL statement.
You receive an ORA-24816 error from Oracle Database if the maximum size for such bind
variables exceeds 4000 bytes. To avoid this error, you must set OCI_ATTR_MAXDATA_SIZE to
4000 bytes for any such binds whose maximum size may exceed 4000 bytes on the server
side after character set conversion. Alternatively, reorder the binds so that such binds are
placed before any LONG or LOBs in the bind list.

• Oracle Database does not do implicit conversions, such as HEX to RAW or RAW to HEX, for
data of size more than 4000 bytes. The PL/SQL code in the following code example
illustrates this:

Demonstrating Some Implicit Conversions That Cannot Be Done

create table t (c1 clob, c2 blob);
declare
 text varchar(32767);
 binbuf raw(32767);
begin
 text := lpad ('a', 12000, 'a');
 binbuf := utl_raw.cast_to_raw(text);

 -- The following works:
 insert into t values (text, binbuf);

 -- The following does not work because Oracle dpes not do implicit
 -- hex to raw conversion.
 insert into t (c2) values (text);

 -- The following does not work because Oracle does not do implicit
 -- raw to hex conversion.
 insert into t (c1) values (binbuf);

 -- The following does not work because you cannot combine the

Chapter 6
About Binding and Defining LOB Data

6-20

 -- utl_raw.cast_to_raw() operator with the >4k bind.
 insert into t (c2) values (utl_raw.cast_to_raw(text));

end;
/

• If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is filtered by a
SQL operator, then Oracle Database limits the size of the result to at most 4000 bytes.

For example:

create table t (c1 clob, c2 blob);
-- The following command inserts only 4000 bytes because the result of
-- LPAD is limited to 4000 bytes
insert into t(c1) values (lpad('a', 5000, 'a'));

-- The following command inserts only 2000 bytes because the result of
-- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
-- converts it to 2000 bytes of RAW data.
insert into t(c2) values (lpad('a', 5000, 'a'));

See Also:

About Using the OCI_ATTR_MAXDATA_SIZE Attribute

6.5.2 Getting the LOB Length when Selecting LOB Data

When a lob column is accessed using the Data Interface, the server sends the LOB data
length followed by LOB data. The LOB data length is the length of the LOB data stored on the
server prior to any conversions. On the OCI client side, fetched LOB data length is saved in the
define handle.

The application can use OCIServerDataLengthGet() function to access the LOB data length
right after the fetch is executed. This is available in all fetch modes, that is, single piece,
piecewise and callback. It can also be accessed inside the callback. This function helps the
application to allocate the buffer wisely and get the LOB data. The OCIServerDataLengthGet()
function does not incur a roundtrip to the server. It should not be used before a fetch operation.
For piecewise or callback operations, the OCIServerDataLengthGet() function must be used
after the first piece is fetched.

Related Topics

• Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback:
Example with Length

• OCIServerDataLengthGet()
Gets the LOB data length when fetching LOB as buffer.

6.5.3 Examples of Binding LOB Data
Shows some exampled of binding LOB data.

The following SQL statements are used in Example 6-8 through Example 6-15:

CREATE TABLE foo (a INTEGER);
CREATE TYPE lob_typ AS OBJECT (A1 CLOB);
CREATE TABLE lob_long_tab (C1 CLOB, C2 CLOB, CT3 lob_typ, L LONG);

Chapter 6
About Binding and Defining LOB Data

6-21

Example 6-8 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000
Byte-Sized Bind Variable Data Values, Respectively

void insert() /* A function in an OCI program */
{
 /* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = (text *) "INSERT INTO lob_long_tab (C1, C2, L) \
 VALUES (:1, :2, :3)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example 6-9 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized
Bind Variable Data Values, Respectively

void insert()
{
 /* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = (text *) "INSERT INTO lob_long_tab (C1, L) \
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example 6-10 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000
Byte-Sized Bind Variable Data Values, Respectively

void update()
{
 /* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *update_sql = (text *)"UPDATE lob_long_tab SET \
 C1 = :1, C2=:2, L=:3";
 OCIStmtPrepare(stmthp, errhp, update_sql, strlen((char*)update_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Chapter 6
About Binding and Defining LOB Data

6-22

Example 6-11 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000
Byte-Sized Bind Variable Data Values, Respectively

void update()
{
 /* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *update_sql = (text *)"UPDATE lob_long_tab SET \
 C1 = :1, C2=:2, L=:3";
 OCIStmtPrepare(stmthp, errhp, update_sql, strlen((char*)update_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example 6-12 Allowed: Piecewise, Callback, and Array Insert or Update Operations

void insert()
{
 /* Piecewise, callback and array insert/update operations similar to
 * the allowed regular insert/update operations are also allowed */
}

Example 6-13 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG
Columns Using the Same INSERT Statement

void insert()
{
 /* The following is NOT allowed because you cannot insert >4000 bytes
 * into both LOB and LONG columns */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (C1, L) \
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example 6-14 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind
Variable Data Values

void insert()
{
 /* Insert of data into LOB attributes is allowed */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (CT3) \
 VALUES (lob_typ(:1))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,

Chapter 6
About Binding and Defining LOB Data

6-23

 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example 6-15 Not Allowed: Binding Any Length Data to a LOB Column in an Insert As
Select Operation

void insert()
{
 /* The following is NOT allowed because you cannot do insert as
 * select character data into LOB column */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (C1) SELECT \
 :1 from FOO";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

6.6 About Binding and Defining JSON Data
This section describes the three possible interfaces used for performing binds and defines
against the JSON type column.

This section includes the following topics:

• Using JSON Descriptor Interface (SQLT_JSON)

• Using LOB Locator Interface

• Using Data Interface (Other SQL data types)

• Using JSON Descriptor Interface (SQLT_JSON)
This section describes how to perform binds using JSON descriptor Interface.

• Using LOB Locator Interface
This section lists the the SQL data types that correspond to LOB locators that are used to
bind and define by the OCI applications.

• Using Data Interface (Other SQL data types)
This section lists the other SQL data types that can be used to bind and define by the OCI
applications.

6.6.1 Using JSON Descriptor Interface (SQLT_JSON)
This section describes how to perform binds using JSON descriptor Interface.

OCI users can allocate a descriptor of type OCIJson*, write to it, and then use it to bind or
define against JSON type target. The input data type for the bind or define should be
SQLT_JSON. The following example code snippet shows how to perform binds into the JSON
column:

/* Bind an allocated descriptor against the JSON column */
 rc = OCIBindByPos2(stmthp2, &bindhp, errhp, 2,
 (void *)&jsond, /* JSON Document descriptor pointer
*/
 0, /* Size, can be 0
*/

Chapter 6
About Binding and Defining JSON Data

6-24

 SQLT_JSON, /* Data type of the bind is JSON
*/
 &ind, (ub4 *)0, (ub2 *)0, (ub4)0, (ub4
*)0,
 (ub4) OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto err_hndlr;

The following example code snippet shows how to define from the JSON column:

/* Use an allocated descriptor to read from the JSON column */
 rc = OCIDefineByPos2(stmthp1, &defhp, errhp, 1,
 (void *)&jsond, /* JSON Document descriptor pointer
*/
 0, /* Size, can be 0
*/

 SQLT_JSON, /* Data type of the define is JSON
*/
 &ind, 0, 0, 0);
 (ub4) OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto err_hndlr;

6.6.2 Using LOB Locator Interface
This section lists the the SQL data types that correspond to LOB locators that are used to bind
and define by the OCI applications.

OCI application can bind and define using the following SQL data types that correspond to
LOB locators:

• SQLT_BLOB – Binary LOB

• SQLT_CLOB – Character LOB

Note:

In case of define, when using BLOB type, the textual JSON retrieved are UTF-8
encoded.

• Fetching JSON as LOBs
This section describes fetching JSON as LOBs.

6.6.2.1 Fetching JSON as LOBs
This section describes fetching JSON as LOBs.

When using the LOB locator interface with a LOB locator returned by an SQL or JSON
operation on a JSON-type operand:

• The LOB is temporary and read-only.

• You need not explicitly free the LOB. It is freed automatically at the next fetch.

Chapter 6
About Binding and Defining JSON Data

6-25

6.6.3 Using Data Interface (Other SQL data types)
This section lists the other SQL data types that can be used to bind and define by the OCI
applications.

Following are the SQL data types corresponding to linear character and binary data:

• SQLT_CHR – Character string

• SQLT_BIN – Binary data

• SQLT_STR – Null-terminated string

• SQLT_LNG – Long character string

• SQLT_LBI – Long binary data

• SQLT_AFC – ANSI fixed character string

• SQLT_AVC – ANSI variable character string

• SQLT_VCS – Variable character string

• SQLT_VBI – Variable binary

• SQLT_VST – OCIString type

• SQLT_LVC – LONG VARCHAR type

• SQLT_LVB – LONG VARRAW type

Note:

For the preceding SQL data types listed, the output textual JSON (defines) are also
returned in the environment handle or NLS_LANG and the conversion of textual JSON
to or from the binary JSON happens on the server.

• Binds
This section lists and describes the binds.

• Defines
This section lists and describes defines.

6.6.3.1 Binds
This section lists and describes the binds.

Datatype Conversion Details

SQLT_BLOB Auto-detection of textual JSON's encoding (UTF-8 or UTF-16) happens on server..
If BLOB data is UTF-8 or UTF-16 encoded, then textual JSON conversion to native
binary JSON format happens on the server. If BLOB data is in native binary JSON
format, then no conversion happens.

SQLT_CLOB The conversion from textual JSON data in the CLOB to native binary format
happens on the server.

Chapter 6
About Binding and Defining JSON Data

6-26

Datatype Conversion Details

SQLT_CHR
SQLT_STR
SQLT_AFC
SQLT_LNG
SQLT_VST
SQLT_AVC
SQLT_VCS
SQLT_LVC

Textual JSON is assumed to be in the client character set as set in the environment
handle or in the bind handle of the column. Conversion to native binary format
happens on the server. If the size is greater than 32K, then it would take long bind
code path.

Textual is in client character set only if csid or ncsid is not set in the bind handle.

SQLT_BIN
SQLT_LVB
SQLT_LBI
SQLT_VBI

If binary data is UTF-8 or UTF-16 encoded, then textual JSON conversion to native
binary JSON format happens on the server. If data is in native binary JSON format,
then no conversion happens. If the size is greater than 32K, then it would take long
bind code path. Allowed input values must be in JSON text format and binary
JSON fomat.

If data is not in unicode an error is returned.

6.6.3.2 Defines
This section lists and describes defines.

Table 6-2 Defines

Datatype Conversion Details

SQLT_BLOB Conversion from native binary JSON format to UTF-8 encoded textual JSON in
BLOB happens on the server. Client character set has no effect. The client
receives a BLOB locator and not the BLOB data itself.

It is important that it returns text as it improves performance. The text can be
returned as database characterset as it is twice better than returning a CLOB.

SQLT_CLOB Conversion from native binary JSON format to textual JSON happens on the
server. The server sends a CLOB locator and not the CLOB data itself.

It is important that it returns text as it improves performance. The text can be
returned as database characterset as it is twice better than returning a CLOB.

SQLT_CHR
SQLT_STR
SQLT_AFC
SQLT_AVC
SQLT_LNG
SQLT_VST
SQLT_VCS
SQLT_LVC

Conversion from native binary JSON format to textual JSON happens on the
server. The textual JSON is in the character set as in the define handle or the
environment handle. Client side conversion happens based on client characterset.
In client characterset only if csid or ncsid is not set in the define handle.

SQLT_BIN
SQLT_LBI
SQLT_VBI
SQLT_LVB

Conversion from native binary JSON format to UTF-8 encoded textual JSON
happens on the server. The client character set has no effect.

It is important that it returns text as it improves performance. The text can be
returned as database characterset as it is twice better than returning a CLOB.

Chapter 6
About Binding and Defining JSON Data

6-27

6.7 About Array Binds and Defines with JSON Data
JSON descriptors can also work with array binds and defines. In an array of descriptors, you
must initialize each array element using OCIDescriptorAlloc () function before
OCIStmtExecute () function. The following code snippet shows an example of array binds:

OCIJson *jsond_arr[10];
 ...
for (i=0; i<10, i++)
 OCIDescriptorAlloc(..., &jsond_arr[i], OCI_DTYPE_JSON...);
 /* initialize array of JSON
descriptors */
...
OCIBindByPos2(..., (void *) jsond_arr,...);
OCIStmtExecute(..., 10, ...); /* 10 is the iters parameter */

The following code snippet shows an example of array fetches:

OCIJson * jsond_arr[10];
 ...
for (i=0; i<10, i++)
 OCIDescriptorAlloc(..., &jsond_arr[i],
OCI_DTYPE_JSON...);
 /* initialize array of JSON
descriptors */
 ...
OCIDefineByPos2(..., (void *) jsond_arr,...);
OCIStmtExecute(..., 10, ...); /* 10 is the iters parameter */

6.8 About Binding and Defining Arrays of Structures in OCI
Defining arrays of structures requires an initial call to OCIDefineByPos() or
OCIDefineByPos2().

An additional call to OCIDefineArrayOfStruct() is necessary to set up each additional
parameter, including the skip parameter necessary for arrays of structures operations.

Using arrays of structures can simplify the processing of multirow, multicolumn operations. You
can create a structure of related scalar data items, and then fetch values from the database
into an array of these structures, or insert values into the database from an array of these
structures.

For example, an application may need to fetch multiple rows of data from columns NAME, AGE,
and SALARY. The application can include the definition of a structure containing separate fields
to hold the NAME, AGE, and SALARY data from one row in the database table. The application
would then fetch data into an array of these structures.

To perform a multirow, multicolumn operation using an array of structures, associate each
column involved in the operation with a field in a structure. This association, which is part of
OCIDefineArrayOfStruct() and OCIBindArrayOfStruct() calls, specifies where data is
stored.

This section includes the following topics:

Chapter 6
About Array Binds and Defines with JSON Data

6-28

• Skip Parameters

• OCI Calls Used with Arrays of Structures

• Arrays of Structures and Indicator Variables

• About Array Binds and Defines with JSON Data

• Skip Parameters
When you split column data across an array of structures, it is no longer stored
contiguously in the database.

• OCI Calls Used with Arrays of Structures
What calls must be used when you perform operations involving arrays of structures.

• Arrays of Structures and Indicator Variables
The implementation of arrays of structures in addition supports the use of indicator
variables and return codes.

See Also:

• OCIDefineByPos() or OCIDefineByPos2()

• OCIDefineArrayOfStruct()

• OCIBindArrayOfStruct()

6.8.1 Skip Parameters
When you split column data across an array of structures, it is no longer stored contiguously in
the database.

The single array of structures stores data as though it were composed of several arrays of
scalars. For this reason, you must specify a skip parameter for each field that you are binding
or defining. This skip parameter is the number of bytes that must be skipped in the array of
structures before the same field is encountered again. In general, this is equivalent to the byte
size of one structure.

Figure 6-2 shows how a skip parameter is determined. In this case, the skip parameter is the
sum of the sizes of the fields field1 (2 bytes), field2 (4 bytes), and field3 (2 bytes), which is
8 bytes. This equals the size of one structure.

Figure 6-2 Determining Skip Parameters

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes

Array of Structures

.field 1 field 2 field 3 field 1 field 3 field 1 field 3 field 2 field 2

skip 8 bytes skip 8 bytes

Chapter 6
About Binding and Defining Arrays of Structures in OCI

6-29

On some operating systems it may be necessary to set the skip parameter to
sizeof(one_array_element) rather than sizeof(struct), because some compilers insert extra
bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
 ub4 field1;
 ub1 field2;
};
struct demo demo_array[MAXSIZE];

Some compilers insert 3 bytes of padding after the ub1 so that the ub4 that begins the next
structure in the array is properly aligned. In this case, the following statement may return an
incorrect value:

skip_parameter = sizeof(struct demo);

On some operating systems this produces a proper skip parameter of 8. On other systems,
skip_parameter is set to 5 bytes by this statement. In the latter case, use the following
statement to get the correct value for the skip parameter:

skip_parameter = sizeof(demo_array[0]);

This section includes the following topic: Skip Parameters for Standard Arrays.

• Skip Parameters for Standard Arrays
Arrays of structures are an extension of binding and defining arrays of single variables.

6.8.1.1 Skip Parameters for Standard Arrays
Arrays of structures are an extension of binding and defining arrays of single variables.

When you specify a single-variable array operation, the related skip equals the size of the data
type of the array under consideration. For example, consider an array declared as follows:

text emp_names[4][20];

The skip parameter for the bind or define operation is 20. Each data element in the array is
then recognized as a separate unit, rather than being part of a structure.

6.8.2 OCI Calls Used with Arrays of Structures
What calls must be used when you perform operations involving arrays of structures.

Two OCI calls must be used when you perform operations involving arrays of structures:

• Use OCIBindArrayOfStruct() for binding fields in arrays of structures for input variables

• Use OCIDefineArrayOfStruct() for defining arrays of structures for output variables.

Note:

Binding or defining for arrays of structures requires multiple calls. A call to
OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2()
must precede a call to OCIBindArrayOfStruct(), and a call to OCIDefineByPos()
or OCIDefineByPos2() must precede a call to OCIDefineArrayOfStruct().

Chapter 6
About Binding and Defining Arrays of Structures in OCI

6-30

See Also:

• OCIBindArrayOfStruct()

• OCIDefineArrayOfStruct()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIDefineByPos()or OCIDefineByPos2()

6.8.3 Arrays of Structures and Indicator Variables
The implementation of arrays of structures in addition supports the use of indicator variables
and return codes.

You can declare parallel arrays of column-level indicator variables and return codes that
correspond to the arrays of information being fetched, inserted, or updated. These arrays can
have their own skip parameters, which are specified during OCIBindArrayOfStruct() or
OCIDefineArrayOfStruct() calls.

You can set up arrays of structures of program values and indicator variables in many ways.
Consider an application that fetches data from three database columns into an array of
structures containing three fields. You can set up a corresponding array of indicator variable
structures of three fields, each of which is a column-level indicator variable for one of the
columns being fetched from the database. A one-to-one relationship between the fields in an
indicator struct and the number of select-list items is not necessary.

See Also:

• Indicator Variables

• OCIBindArrayOfStruct()

• OCIDefineArrayOfStruct()

6.9 About Binding and Defining Multiple Buffers
You can specify multiple buffers for use with a single bind or define call.

Performance is improved because the number of round-trips is decreased when data stored at
different noncontiguous addresses is not copied to one contiguous location. CPU time spent
and memory used are thus reduced.

The data type OCIIOV is defined as:

typedef struct OCIIOV
{
 void *bfp; /* The pointer to a buffer for the data */
 ub4 bfl; /* The size of the buffer */
}OCIIOV;

Chapter 6
About Binding and Defining Multiple Buffers

6-31

The value OCI_IOV for the mode parameter is used in the OCIBindByPos() or OCIBindByPos2()
and OCIBindByName() or OCIBindByName2() functions for binding multiple buffers. If this value
of mode is specified, the address of OCIIOV must be passed in parameter valuep. The size of
the data type must be passed in the parameter valuesz. For example:

OCIIOV vecarr[NumBuffers];
...
/* For bind at position 1 with data type int */
OCIBindByPos(stmthp, bindp, errhp, 1, (void *)&vecarr[0],
 sizeof(int), ... OCI_IOV);
...

The value OCI_IOV for the mode parameter is used in the OCIDefineByPos() or
OCIDefineByPos2() function for defining multiple buffers. If this value of mode is specified, the
address of OCIIOV is passed in parameter valuep. The size of the data type must be passed in
the parameter valuesz. This mode is intended to be used for scatter or gather binding, which
allows multiple buffers to be bound or defined to a position, for example column A for the first
10 rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another buffer.
That eliminates the need to allocate and copy all of them into one big buffer while doing the
array execute operation.

Example 6-16 illustrates the use of the structure OCIIOV and its mode values.

Example 6-16 Using Multiple Bind and Define Buffers

/* The following macros mention the maximum length of the data in the
 * different buffers. */

#define LENGTH_DATE 10
#define LENGTH_EMP_NAME 100

/* These two macros represent the number of elements in each bind and define
 array */
#define NUM_BIND 30
#define NUM_DEFINE 45

/* The bind buffers for inserting dates */
char buf_1[NUM_BIND][LENGTH_DATE],
char buf_2[NUM_BIND * 2][LENGTH_DATE],

/* The bind buffer for inserting emp name */
char buf_3[NUM_BIND * 3][LENGTH_EMP_NAME],

/* The define buffers */
char buf_4[NUM_DEFINE][LENGTH_EMP_NAME];
char buf_5[NUM_DEFINE][LENGTH_EMP_NAME];

/* The size of data value for buffers corresponding to the same column must be
 the same, and that value is passed in the OCIBind or Define calls.
 buf_4 and buf_5 above have the same data values; that is, LENGTH_EMP_NAME
 although the number of elements are different in the two buffers.

*/
OCIBind *bndhp1 = (OCIBind *)0;
OCIBind *bndhp2 = (OCIBind *)0;
OCIDefine *defhp = (OCIDefine *)0;
OCIStmt *stmthp = (OCIStmt *)0;
OCIError *errhp = (OCIError *)0;

OCIIOV bvec[2], dvec[2];

Chapter 6
About Binding and Defining Multiple Buffers

6-32

/*
Example of how to use indicators and return codes with this feature,
showing the allocation when using with define. You allocate memory
for indicator, return code, and the length buffer as one chunk of
NUM_DEFINE * 2 elements.
*/
short *indname[NUM_DEFINE*2]; /* indicators */
ub4 *alenname[NUM_DEFINE*2]; /* return lengths */
ub2 *rcodename[NUM_DEFINE*2]; /* return codes */

static text *insertstr =
 "INSERT INTO EMP (EMP_NAME, JOIN_DATE) VALUES (:1, :2)";
static text *selectstr = "SELECT EMP_NAME FROM EMP";

/* Allocate environment, error handles, and so on, and then initialize the
 environment. */
...
/* Prepare the statement with the insert query in order to show the
 binds. */
OCIStmtPrepare (stmthp, errhp, insertstr,
 (ub4)strlen((char *)insertstr),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

/* Populate buffers with values. The following represents the simplest
 * way of populating the buffers. However, in an actual scenario
 * these buffers may have been populated by data received from different
 * sources. */

/* Store the date in the bind buffers for the date. */
strcpy(buf_1[0], "21-SEP-02");
...
strcpy(buf_1[NUM_BIND - 1], "21-OCT-02");
...
strcpy(buf_2[0], "22-OCT-02");
...
strcpy(buf_2[2*NUM_BIND - 1], "21-DEC-02");
...
memset(bvec[0], 0, sizeof(OCIIOV));
memset(bvec[1], 0, sizeof(OCIIOV));

/* Set up the addresses in the IO Vector structure */
bvec[0].bfp = buf_1[0]; /* Buffer address of the data */
bvec[0].bfl = NUM_BIND*LENGTH_DATE; /* Size of the buffer */

/* And so on for other structures as well. */
bvec[1].bfp = buf_2[0]; /* Buffer address of the data */
bvec[1].bfl = NUM_BIND*2*LENGTH_DATE; /* Size of the buffer */

/* Do the bind for date, using OCIIOV */
OCIBindByPos (stmthp, &bindhp2, errhp, 2, (void *)&bvec[0],
 sizeof(buf_1[0]), SQLT_STR,
 (void *)inddate, (ub2 *)alendate, (ub2 *)rcodedate, 0,
 (ub4 *)0, OCI_IOV);

/* Store the employee names in the bind buffers, 3 for the names */
strcpy (buf_3[0], "JOHN ");
...
strcpy (buf_3[NUM_BIND *3 - 1], "HARRY");

/* Do the bind for employee name */
OCIBindByPos (stmthp, &bindhp1, errhp, 1, buf_3[0], sizeof(buf_3[0]),

Chapter 6
About Binding and Defining Multiple Buffers

6-33

 SQLT_STR, (void *)indemp, (ub2 *)alenemp, (ub2 *)rcodeemp, 0,
 (ub4 *)0, OCI_DEFAULT);

OCIStmtExecute (svchp, stmthp, errhp, NUM_BIND*3, 0,
 (OCISnapshot *)0, (OCISnapshot *)0, OCI_DEFAULT);

...
/* Now the statement to depict defines */
/* Prepare the statement with the select query in order to show the
 defines */
OCIStmtPrepare(stmthp, errhp, selectstr,(ub4)strlen((char *)selectstr),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

memset(dvec[0], 0, sizeof(OCIIOV);
memset(dvec[1], 0, sizeof(OCIIOV));

/* Set up the define vector */
dvec[0].bfp = buf_4[0];
dvec[0].bfl = NUM_DEFINE*LENGTH_EMP_NAME;

dvec[1].bfp = buf_5[0];
dvec[1].bfl = NUM_DEFINE*LENGTH_EMP_NAME;

/*
Pass the buffers for the indicator, length of the data, and the
return code. Note that the buffer where you receive
the data is split into two locations,
each having NUM_DEFINE number of elements. However, the indicator
buffer, the actual length buffer, and the return code buffer comprise a
single chunk of NUM_DEFINE * 2 elements.
*/
OCIDefineByPos (stmthp, &defhp, errhp, 1, (void *)&dvec[0],
 sizeof(buf_4[0]), SQLT_STR, (void *)indname,
 (ub2 *)alenname, (ub2 *)rcodename, OCI_IOV);

OCIStmtExecute (svchp, stmthp, errhp, NUM_DEFINE*2, 0,
 (OCISnapshot*)0,
 (OCISnapshot*)0, OCI_DEFAULT);
...

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIDefineByPos() or OCIDefineByPos2()

6.10 DML with a RETURNING Clause in OCI
This section outlines the rules for correctly implementing DML statements with the RETURNING
clause.

OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE, and DELETE
statements.

This section includes the following topics:

Chapter 6
DML with a RETURNING Clause in OCI

6-34

• About Using DML with a RETURNING Clause to Combine Two SQL Statements

• About Binding RETURNING...INTO Variables

• OCI Error Handling

• DML with RETURNING REF...INTO Clause in OCI

• Additional Notes About OCI Callbacks

• Array Interface for DML RETURNING Statements in OCI

• About Using DML with a RETURNING Clause to Combine Two SQL Statements
Using the RETURNING clause with a DML statement enables you to combine two SQL
statements into one, possibly saving a server round-trip.

• About Binding RETURNING...INTO Variables
Because both the UPDATE and DELETE statements can affect multiple rows in the table, and
a DML statement can be executed multiple times in a single OCIStmtExecute() call, how
much data is returned may not be known at run time.

• OCI Error Handling
The OUT bind function provided to OCIBindDynamic() must be prepared to receive partial
results of a statement if there is an error.

• DML with RETURNING REF...INTO Clause in OCI
The RETURNING clause can also be used to return a REF to an object that is being inserted
into or updated in the database.

• Additional Notes About OCI Callbacks
When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of the bind
handle tells the application the number of rows being returned in that particular iteration.

• Array Interface for DML RETURNING Statements in OCI
OCI provides additional functionality for single-row DML and array DML operations in
which each iteration returns more than one row.

See Also:

• The Database demonstration programs included with your Oracle installation for
complete examples. For additional information, see OCI Demonstration
Programs.

• Oracle Database SQL Language Reference for more information about the use
of the RETURNING clause with INSERT, UPDATE, or DELETE statements

6.10.1 About Using DML with a RETURNING Clause to Combine Two SQL
Statements

Using the RETURNING clause with a DML statement enables you to combine two SQL
statements into one, possibly saving a server round-trip.

This is accomplished by adding an extra clause to the traditional UPDATE, INSERT, and DELETE
statements. The extra clause effectively adds a query to the DML statement.

Chapter 6
DML with a RETURNING Clause in OCI

6-35

In OCI, values are returned to the application as OUT bind variables. In the following examples,
the bind variables are indicated by a preceding colon, ":". These examples assume the
existence of table1, a table that contains columns col1, col2, and col3.

The following statement inserts new values into the database and then retrieves the column
values of the affected row from the database, for manipulating inserted rows.

INSERT INTO table1 VALUES (:1, :2, :3)
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The next example updates the values of all columns where the value of col1 falls within a
given range, and then returns the affected rows that were modified.

UPDATE table1 SET col1 = col1 + :1, col2 = :2, col3 = :3
 WHERE col1 >= :low AND col1 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The DELETE statement deletes the rows where col1 value falls within a given range, and then
returns the data from those rows.

DELETE FROM table1 WHERE col1 >= :low AND col2 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

6.10.2 About Binding RETURNING...INTO Variables
Because both the UPDATE and DELETE statements can affect multiple rows in the table, and a
DML statement can be executed multiple times in a single OCIStmtExecute() call, how much
data is returned may not be known at run time.

As a result, the variables corresponding to the RETURNING...INTO placeholders must be bound
in OCI_DATA_AT_EXEC mode. An application must define its own dynamic data handling
callbacks rather than using a polling mechanism.

The returning clause can be particularly useful when working with LOBs. Normally, an
application must insert an empty LOB locator into the database, and then select it back out
again to operate on it. By using the RETURNING clause, the application can combine these two
steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
 RETURNING lob_column
 INTO :out_locator

An OCI application implements the placeholders in the RETURNING clause as pure OUT bind
variables. However, all binds in the RETURNING clause are initially IN and must be properly
initialized. To provide a valid value, you can provide a NULL indicator and set that indicator to
-1.

An application must adhere to the following rules when working with bind variables in a
RETURNING clause:

• Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using OCIBindByName()
or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2(), followed by a call to
OCIBindDynamic() for each placeholder.

• When binding RETURNING clause placeholders, supply a valid OUT bind function as the
ocbfp parameter of the OCIBindDynamic() call. This function must provide storage to hold
the returned data.

Chapter 6
DML with a RETURNING Clause in OCI

6-36

• The icbfp parameter of OCIBindDynamic() call should provide a default function that
returns NULL values when called.

• The piecep parameter of OCIBindDynamic() must be set to OCI_ONE_PIECE.

No duplicate binds are allowed in a DML statement with a RETURNING clause, and no
duplication is allowed between bind variables in the DML section and the RETURNING section of
the statement.

Note:

OCI supports only the callback mechanism for RETURNING clause binds. The polling
mechanism is not supported.

See Also:

• OCIStmtExecute()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIBindDynamic()

6.10.3 OCI Error Handling
The OUT bind function provided to OCIBindDynamic() must be prepared to receive partial
results of a statement if there is an error.

If the application has issued a DML statement that is executed 10 times, and an error occurs
during the fifth iteration, the Oracle database returns the data from iterations 1 through 4. The
callback function is still called to receive data for the first four iterations.

6.10.4 DML with RETURNING REF...INTO Clause in OCI
The RETURNING clause can also be used to return a REF to an object that is being inserted into
or updated in the database.

UPDATE extaddr e SET e.zip = '12345', e.state ='AZ'
 WHERE e.state = 'CA' AND e.zip = '95117'
 RETURNING REF(e), zip
 INTO :addref, :zip

The preceding statement updates several attributes of an object in an object table and returns
a REF to the object (and a scalar postal code (ZIP)) in the RETURNING clause.

This section includes the following topic: Binding the Output Variable.

• Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps.

Chapter 6
DML with a RETURNING Clause in OCI

6-37

6.10.4.1 Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps.

The following pseudocode in Example 6-17 shows a function that performs the binds
necessary for the preceding three steps.

1. Set the initial bind information is set using OCIBindByName() or OCIBindByName2().

2. Set additional bind information for the REF, including the type description object (TDO), is
set with OCIBindObject().

3. Make a call is made to OCIBindDynamic().

Example 6-17 Binding the REF Output Variable in an OCI Application

sword bind_output(stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhp[];
OCIError *errhp;
{
 ub4 i;
 /* get TDO for BindObject call */
 if (OCITypeByName(envhp, errhp, svchp, (CONST text *) 0,
 (ub4) 0, (CONST text *) "ADDRESS_OBJECT",
 (ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))
 {
 return OCI_ERROR;
 }

 /* initial bind call for both variables */
 if (OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":addref", (sb4) strlen((char *) ":addref"),
 (void *) 0, (sb4) sizeof(OCIRef *), SQLT_REF,
 (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":zip", (sb4) strlen((char *) ":zip"),
 (void *) 0, (sb4) MAXZIPLEN, SQLT_CHR,
 (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
 {
 return OCI_ERROR;
 }

 /* object bind for REF variable */
 if (OCIBindObject(bndhp[2], errhp, (OCIType *) addrtdo,
 (void **) &addrref[0], (ub4 *) 0, (void **) 0, (ub4 *) 0))
 {
 return OCI_ERROR;
 }

 for (i = 0; i < MAXCOLS; i++)
 pos[i] = i;
 /* dynamic binds for both RETURNING variables */
 if (OCIBindDynamic(bndhp[2], errhp, (void *) &pos[0], cbf_no_data,
 (void *) &pos[0], cbf_get_data)
 || OCIBindDynamic(bndhp[3], errhp, (void *) &pos[1], cbf_no_data,
 (void *) &pos[1], cbf_get_data))

Chapter 6
DML with a RETURNING Clause in OCI

6-38

 {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindObject()

• OCIBindDynamic()

6.10.5 Additional Notes About OCI Callbacks
When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of the bind handle
tells the application the number of rows being returned in that particular iteration.

During the first callback of an iteration, you can allocate space for all rows that are returned for
that bind variable. During subsequent callbacks of the same iteration, you increment the buffer
pointer to the correct memory within the allocated space.

6.10.6 Array Interface for DML RETURNING Statements in OCI
OCI provides additional functionality for single-row DML and array DML operations in which
each iteration returns more than one row.

To take advantage of this feature, you must specify an OUT buffer in the bind call that is at
least as big as the iteration count specified by the OCIStmtExecute() call. This is in addition to
the bind buffers provided through callbacks.

If any of the iterations returns more than one row, then the application receives an
OCI_SUCCESS_WITH_INFO return code. In this case, the DML operation is successful. At this
point, the application may choose to roll back the transaction or ignore the warning.

See Also:

OCIStmtExecute()

6.11 Character Conversion in OCI Binding and Defining
This section discusses issues involving character conversions between the client and the
server.

This section includes the following topics:

• About Choosing a Character Set

Chapter 6
Character Conversion in OCI Binding and Defining

6-39

• About Setting Client Character Sets in OCI

• About Binding Variables in OCI

• About Choosing a Character Set
If a database column containing character data is defined to be a CHAR or VARCHAR2 or
NCHAR or NVARCHAR2 column, then a bind or define involving that column must make special
considerations for dealing with character set specifications.

• About Setting Client Character Sets in OCI
You can set the client character sets through the OCIEnvNlsCreate() function parameters
charset and ncharset.

• About Binding Variables in OCI
Update or insert operations are done through variable binding.

6.11.1 About Choosing a Character Set
If a database column containing character data is defined to be a CHAR or VARCHAR2 or NCHAR or
NVARCHAR2 column, then a bind or define involving that column must make special
considerations for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is different
from the server character set, and also for proper character conversion. During conversion of
data between different character sets, the size of the data may increase or decrease by up to a
factor of four. Ensure that buffers that are provided to hold the data are of sufficient size.

Beginning with Oracle Database 12c Release 2 (12.2), OCI provides two service context
handle attributes OCI_ATTR_MAX_CHARSET_RATIO and OCI_ATTR_MAX_NCHARSET_RATIO to obtain
the maximum character set expansion ratio from server to client character set or national
character set respectively. Using these attributes lets you more efficiently allocate optimal
memory of buffers before conversion so that when data is returned from the database,
sufficient space can be allocated to hold it. Using these attributes is useful in scenarios where
there are different character sets or national character sets between server and client.

The following code example shows how get the maximum character set expansion ratio from
server to client character set:

size_t cratio;
OCIAttrGet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (size_t *)&cratio, (ub4) 0,
OCI_ATTR_MAX_CHARSET_RATIO, errhp);
printf("Conversion ratio from server to client character set is %d\n",
cratio);

Conversion ratio from server to client character set is 2

The following code example shows how get the maximum character set expansion ratio from
server to client national character set:

size_t cratio;
OCIAttrGet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (size_t *)&cratio, (ub4) 0,
OCI_ATTR_MAX_NCHARSET_RATIO, errhp);
printf("Conversion ratio from server to client ncharset is %d\n", cratio);

Conversion ratio from server to client ncharset is 1

Chapter 6
Character Conversion in OCI Binding and Defining

6-40

In some cases, it may also be easier for an application to deal with CHAR or VARCHAR2 or with
NCHAR or NVARCHAR2 data in terms of numbers of characters, rather than numbers of bytes,
which is the usual case.

This section includes the following topics:

• Character Set Form and ID

• Implicit Conversion Between CHAR and NCHAR

• Character Set Form and ID
Each OCI bind and define handle is associated with the OCI_ATTR_CHARSET_FORM and
OCI_ATTR_CHARSET_ID attributes.

• Implicit Conversion Between CHAR and NCHAR
As the result of implicit conversion between database character sets and national
character sets, OCI can support cross binding and cross defining between CHAR and NCHAR.

6.11.1.1 Character Set Form and ID
Each OCI bind and define handle is associated with the OCI_ATTR_CHARSET_FORM and
OCI_ATTR_CHARSET_ID attributes.

An application can set these attributes with the OCIAttrSet() call to specify the character form
and character set ID of the bind or define buffer.

The csform attribute (OCI_ATTR_CHARSET_FORM) indicates the character set of the client buffer
for binds, and the character set in which to store fetched data for defines. It has two possible
values:

• SQLCS_IMPLICIT - Default value indicates that the database character set ID for the bind or
define buffer and the character buffer data are converted to the server database character
set

• SQLCS_NCHAR - Indicates that the national character set ID for the bind or define buffer and
the client buffer data are converted to the server national character set.

If the character set ID attribute, OCI_ATTR_CHARSET_ID, is not specified, either the default value
of the database or the national character set ID of the client is used, depending on the value of
csform. They are the values specified in the NLS_LANG and NLS_NCHAR environment variables,
respectively.

Note:

• The data is converted and inserted into the database according to the server's
database character set ID or national character set ID, regardless of the client-
side character set ID.

• OCI_ATTR_CHARSET_ID must never be set to 0.

• The define handle attributes OCI_ATTR_CHARSET_FORM and OCI_ATTR_CHARSET_ID
do not affect the LOB types. LOB locators fetched from the server retain their
original csforms. There is no CLOB/NCLOB conversion as part of define conversion
based on these attributes.

Chapter 6
Character Conversion in OCI Binding and Defining

6-41

See Also:

• Oracle Database SQL Language Reference for more information about NCHAR
data

• OCIAttrSet()

6.11.1.2 Implicit Conversion Between CHAR and NCHAR
As the result of implicit conversion between database character sets and national character
sets, OCI can support cross binding and cross defining between CHAR and NCHAR.

Although the OCI_ATTR_CHARSET_FORM attribute is set to SQLCS_NCHAR, OCI enables conversion
of data to the database character set if the data is inserted into a CHAR column.

6.11.2 About Setting Client Character Sets in OCI
You can set the client character sets through the OCIEnvNlsCreate() function parameters
charset and ncharset.

Both of these parameters can be set as OCI_UTF16ID. The charset parameter controls coding
of the metadata and CHAR data. The ncharset parameter controls coding of NCHAR data. The
function OCINlsEnvironmentVariableGet() returns the character set from NLS_LANG and the
national character set from NLS_NCHAR.

Example 6-18 illustrates the use of these functions (OCI provides a typedef called utext to
facilitate binding and defining of UTF-16 data):

See Also:

• OCIEnvNlsCreate()

• OCINlsEnvironmentVariableGet()

Example 6-18 Setting the Client Character Set to OCI_UTF16ID in OCI

OCIEnv *envhp;
ub2 ncsid = 2; /* we8dec */
ub2 hdlcsid, hdlncsid;
OraText thename[20];
utext *selstmt = L"SELECT ename FROM emp"; /* UTF16 statement */
OCIStmt *stmthp;
OCIDefine *defhp;
OCIError *errhp;
OCIEnvNlsCreate(OCIEnv **envhp, ..., OCI_UTF16ID, ncsid);
...
OCIStmtPrepare(stmthp, ..., selstmt, ...); /* prepare UTF16 statement */
OCIDefineByPos(stmthp, defnp, ..., 1, thename, sizeof(thename), SQLT_CHR,...);
OCINlsEnvironmentVariableGet(&hdlcsid, (size_t)0, OCI_NLS_CHARSET_ID, (ub2)0,
 (size_t*)NULL);
OCIAttrSet(defnp, ..., &hdlcsid, 0, OCI_ATTR_CHARSET_ID, errhp);
 /* change charset ID to NLS_LANG setting*/
...

Chapter 6
Character Conversion in OCI Binding and Defining

6-42

6.11.3 About Binding Variables in OCI
Update or insert operations are done through variable binding.

When binding variables, specify the OCI_ATTR_MAXDATA_SIZE attribute and
OCI_ATTR_MAXCHAR_SIZE attribute in the bind handle to indicate the byte and character
constraints used when inserting data in to the Oracle database.

These attributes are defined as:

• The OCI_ATTR_MAXDATA_SIZE attribute sets the maximum number of bytes allowed in the
buffer on the server side.

• The OCI_ATTR_MAXCHAR_SIZE attribute sets the maximum number of characters allowed in
the buffer on the server side.

This section includes these additional topics:

• Buffer Expansion During OCI Binding

• Constraint Checking During Defining

• General Compatibility Issues for Character-Length Semantics in OCI

• About Using the OCI_ATTR_MAXDATA_SIZE Attribute
Every bind handle has an OCI_ATTR_MAXDATA_SIZE attribute that specifies the number of
bytes allocated on the server to accommodate client-side bind data after character set
conversions.

• About Using the OCI_ATTR_MAXCHAR_SIZE Attribute
OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of number of
characters, rather than number of bytes.

• Buffer Expansion During OCI Binding
Do not set OCI_ATTR_MAXDATA_SIZE for OUT binds or for PL/SQL binds. Only set
OCI_ATTR_MAXDATA_SIZE for INSERT or UPDATE statements.

• Constraint Checking During Defining
To select data from columns into client buffers, OCI uses defined variables.

• General Compatibility Issues for Character-Length Semantics in OCI
Character-length semantics in OCI depends on the Oracle Database release, release 9.0
or later versus release 8.1 or earlier.

See Also:

• About Using the OCI_ATTR_MAXDATA_SIZE Attribute for more information

• About Using the OCI_ATTR_MAXCHAR_SIZE Attribute for more information

6.11.3.1 About Using the OCI_ATTR_MAXDATA_SIZE Attribute
Every bind handle has an OCI_ATTR_MAXDATA_SIZE attribute that specifies the number of bytes
allocated on the server to accommodate client-side bind data after character set conversions.

An application typically sets OCI_ATTR_MAXDATA_SIZE to the maximum size of the column or the
size of the PL/SQL variable, depending on how it is used. Oracle Database issues an error if

Chapter 6
Character Conversion in OCI Binding and Defining

6-43

OCI_ATTR_MAXDATA_SIZE is not large enough to accommodate the data after conversion, and
the operation fails.

For IN/INOUT binds, when OCI_ATTR_MAXDATA_SIZE attribute is set, the bind buffer must be
large enough to hold the number of characters multiplied by the bytes in each character of the
character set.

If OCI_ATTR_MAXCHAR_SIZE is set to a nonzero value such as 100, then if the character set has
2 bytes in each character, the minimum possible allocated size is 200 bytes.

The following scenarios demonstrate some uses of the OCI_ATTR_MAXDATA_SIZE attribute:

• Scenario 1: CHAR (source data) converted to non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of
OCI_ATTR_MAXDATA_SIZE is the size of the source buffer multiplied by the worst-case
expansion factor between the client and Oracle Database character sets.

• Scenario 2: CHAR (source data) converted to CHAR (destination column) or non-CHAR (source
data) converted to CHAR (destination column)

The recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the column.

• Scenario 3: CHAR (source data) converted to a PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the PL/SQL
variable.

6.11.3.2 About Using the OCI_ATTR_MAXCHAR_SIZE Attribute
OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of number of
characters, rather than number of bytes.

For binds, the OCI_ATTR_MAXCHAR_SIZE attribute sets the number of characters reserved in the
Oracle database to store the bind data.

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and OCI_ATTR_MAXCHAR_SIZE is set
to 0, then the maximum possible size of the data in the Oracle database after conversion is
100 bytes. However, if OCI_ATTR_MAXDATA_SIZE is set to 300, and OCI_ATTR_MAXCHAR_SIZE is
set to a nonzero value, such as 100, then if the character set has 2 bytes/character, the
maximum possible allocated size is 200 bytes.

For defines, the OCI_ATTR_MAXCHAR_SIZE attribute specifies the maximum number of
characters that the client application allows in the return buffer. Its derived byte length
overrides the maxlength parameter specified in the OCIDefineByPos() or OCIDefineByPos2()
call.

Note:

Regardless of the value of the attribute OCI_ATTR_MAXCHAR_SIZE, the buffer lengths
specified in a bind or define call are always in terms of bytes. The actual length
values sent and received by you are also in bytes.

Chapter 6
Character Conversion in OCI Binding and Defining

6-44

See Also:

OCIDefineByPos() or OCIDefineByPos2()

6.11.3.3 Buffer Expansion During OCI Binding
Do not set OCI_ATTR_MAXDATA_SIZE for OUT binds or for PL/SQL binds. Only set
OCI_ATTR_MAXDATA_SIZE for INSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best estimates.

This section includes the following topics:

• IN Binds

• Dynamic SQL

• Buffer Expansion During Inserts

• IN Binds
For an IN bind, if the underlying column was created using character-length semantics,
then it is preferable to specify the constraint using OCI_ATTR_MAXCHAR_SIZE.

• Dynamic SQL
For dynamic SQL, you can use the explicit describe to get OCI_ATTR_DATA_SIZE and
OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting OCI_ATTR_MAXDATA_SIZE
and OCI_ATTR_MAXCHAR_SIZE attributes in bind handles.

• Buffer Expansion During Inserts
Use OCI_ATTR_MAXDATA_SIZE to avoid unexpected behavior caused by buffer expansion
during inserts.

6.11.3.3.1 IN Binds
For an IN bind, if the underlying column was created using character-length semantics, then it
is preferable to specify the constraint using OCI_ATTR_MAXCHAR_SIZE.

As long as the actual buffer contains fewer characters than specified in
OCI_ATTR_MAXCHAR_SIZE, no constraints are violated at OCI level.

If the underlying column was created using byte-length semantics, then use
OCI_ATTR_MAXDATA_SIZE in the bind handle to specify the byte constraint on the server. If you
also specify an OCI_ATTR_MAXCHAR_SIZE value, then this constraint is imposed when allocating
the receiving buffer on the server side.

6.11.3.3.2 Dynamic SQL
For dynamic SQL, you can use the explicit describe to get OCI_ATTR_DATA_SIZE and
OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting OCI_ATTR_MAXDATA_SIZE and
OCI_ATTR_MAXCHAR_SIZE attributes in bind handles.

It is a good practice to specify OCI_ATTR_MAXDATA_SIZE and OCI_ATTR_MAXCHAR_SIZE to be no
more than the actual column width in bytes or characters.

Chapter 6
Character Conversion in OCI Binding and Defining

6-45

6.11.3.3.3 Buffer Expansion During Inserts
Use OCI_ATTR_MAXDATA_SIZE to avoid unexpected behavior caused by buffer expansion during
inserts.

Consider what happens when the database column has character-length semantics, and the
user tries to insert data using OCIBindByPos() or OCIBindByPos2() or OCIBindByName() or
OCIBindByName2() while setting only the OCI_ATTR_MAXCHAR_SIZE to 3000 bytes. The database
character set is UTF8 and the client character set is ASCII. Then, in this case although 3000
characters fits in a buffer of size 3000 bytes for the client, on the server side it might expand to
more than 4000 bytes. Unless the underlying column is a LONG or a LOB type, the server
returns an error. To avoid this problem specify the OCI_ATTR_MAXDATA_SIZE to be 4000 to
guarantee that the Oracle database never exceeds 4000 bytes.

See Also:

• OCIBindByPos() or OCIBindByPos2()

• OCIBindByName() or OCIBindByName2()

6.11.3.4 Constraint Checking During Defining
To select data from columns into client buffers, OCI uses defined variables.

You can set an OCI_ATTR_MAXCHAR_SIZE value on the define buffer to impose an additional
character-length constraint. There is no OCI_ATTR_MAXDATA_SIZE attribute for define handles
because the buffer size in bytes serves as the limit on byte length. The define buffer size
provided in the OCIDefineByPos() or OCIDefineByPos2() call can be used as the byte
constraint.

This section includes the following topics:

• Dynamic SQL Selects

• Return Lengths

• Dynamic SQL Selects
When sizing buffers for dynamic SQL, always use the OCI_ATTR_DATA_SIZE value in the
implicit describe to avoid data loss through truncation.

• Return Lengths
The following return length values are always in bytes regardless of the character-length
semantics of the database.

See Also:

OCIDefineByPos() or OCIDefineByPos2()

Chapter 6
Character Conversion in OCI Binding and Defining

6-46

6.11.3.4.1 Dynamic SQL Selects
When sizing buffers for dynamic SQL, always use the OCI_ATTR_DATA_SIZE value in the implicit
describe to avoid data loss through truncation.

If the database column is created using character-length semantics known through the
OCI_ATTR_CHAR_USED attribute, then you can use the OCI_ATTR_MAXCHAR_SIZE value to set an
additional constraint on the define buffer. A maximum number of OCI_ATTR_MAXCHAR_SIZE
characters is put in the buffer.

6.11.3.4.2 Return Lengths
The following return length values are always in bytes regardless of the character-length
semantics of the database.

• The value returned in the alen, or the actual length field in binds and defines

• The value that appears in the length, prefixed in special data types such as VARCHAR and
LONG VARCHAR

• The value of the indicator variable in case of truncation

The only exception to this rule is for string buffers in the OCI_UTF16ID character set ID; then the
return lengths are in UTF-16 units.

Note:

The buffer sizes in the bind and define calls and the piece sizes in the
OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo() and the callbacks are always
in bytes.

See Also:

• OCIStmtGetPieceInfo()

• OCIStmtSetPieceInfo()

6.11.3.5 General Compatibility Issues for Character-Length Semantics in OCI
Character-length semantics in OCI depends on the Oracle Database release, release 9.0 or
later versus release 8.1 or earlier.

• For a release 9.0 or later client communicating with a release 8.1 or earlier Oracle
Database, OCI_ATTR_MAXCHAR_SIZE is not known by the Oracle Database, so this value is
ignored. If you specify only this value, OCI derives the corresponding
OCI_ATTR_MAXDATA_SIZE value based on the maximum number of bytes for each character
for the client-side character set.

• For a release 8.1 or earlier client communicating with a release 9.0 or later Oracle
Database, the client can never specify an OCI_ATTR_MAXCHAR_SIZE value, so the Oracle

Chapter 6
Character Conversion in OCI Binding and Defining

6-47

Database considers the client as always expecting byte-length semantics. This is similar to
the situation when the client specifies only OCI_ATTR_MAXDATA_SIZE.

So in both cases, the Oracle database and client can exchange information in an appropriate
manner.

This section includes the following topics:

• Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE

• Code Example for UTF-16 Binding and Defining

• Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE
When a column is created by specifying a number N of characters, the actual allocation in
the database considers the worst case scenario.

• Code Example for UTF-16 Binding and Defining
The character set ID in bind and define of the CHAR or VARCHAR2, or in NCHAR or NVARCHAR2
variant handles can be set to assume that all data is passed in UTF-16 (Unicode)
encoding. To specify UTF-16, set OCI_ATTR_CHARSET_ID = OCI_UTF16ID.

6.11.3.5.1 Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE
When a column is created by specifying a number N of characters, the actual allocation in the
database considers the worst case scenario.

This is shown in Example 6-19. The real number of bytes allocated is a multiple of N, say M
times N. Currently, M is 3 as the maximum number of bytes allocated for each character in
UTF-8.

For example, in Example 6-19, in the EMP table, the ENAME column is defined as 30 characters
and the ADDRESS column is defined as 80 characters. Thus, the corresponding byte lengths in
the database are M*30 or 3*30=90, and M*80 or 3*80=240, respectively.

Example 6-19 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE
Attribute

...
utext ename[31], address[81];
/* E' <= 30+ 1, D' <= 80+ 1, considering null-termination */
sb4 ename_max_chars = EC=20, address_max_chars = ED=60;
 /* EC <= (E' - 1), ED <= (D' - 1) */
sb4 ename_max_bytes = EB=80, address_max_bytes = DB=200;
 /* EB <= M * EC, DB <= M * DC */
text *insstmt = (text *)"INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ENAME, \
:ADDRESS)";
text *selstmt = (text *)"SELECT ENAME, ADDRESS FROM EMP";
...
/* Inserting Column Data */
OCIStmtPrepare(stmthp1, errhp, insstmt, (ub4)strlen((char *)insstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIBindByName(stmthp1, &bnd1p, errhp, (text *)":ENAME",
 (sb4)strlen((char *)":ENAME"),
 (void *)ename, sizeof(ename), SQLT_STR, (void *)&insname_ind,
 (ub2 *)alenp, (ub2 *)rcodep, (ub4)maxarr_len, (ub4 *)curelep, OCI_DEFAULT);
/* either */
OCIAttrSet((void *)bnd1p, (ub4)OCI_HTYPE_BIND, (void *)&ename_max_bytes,
 (ub4)0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
/* or */
OCIAttrSet((void *)bnd1p, (ub4)OCI_HTYPE_BIND, (void *)&ename_max_chars,
 (ub4)0, (ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);
...

Chapter 6
Character Conversion in OCI Binding and Defining

6-48

/* Retrieving Column Data */
OCIStmtPrepare(stmthp2, errhp, selstmt, strlen((char *)selstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDefineByPos(stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof (ename),
 SQLT_STR, (void *)&selname_ind, (ub2 *)alenp, (ub2 *)rcodep,
 (ub4)OCI_DEFAULT);
/* if not called, byte semantics is by default */
OCIAttrSet((void *)dfn1p, (ub4)OCI_HTYPE_DEFINE, (void *)&ename_max_chars,
 (ub4)0,
 (ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);
...

6.11.3.5.2 Code Example for UTF-16 Binding and Defining
The character set ID in bind and define of the CHAR or VARCHAR2, or in NCHAR or NVARCHAR2
variant handles can be set to assume that all data is passed in UTF-16 (Unicode) encoding. To
specify UTF-16, set OCI_ATTR_CHARSET_ID = OCI_UTF16ID.

OCI provides a typedef called utext to facilitate binding and defining of UTF-16 data. The
internal representation of utext is a 16-bit unsigned integer, ub2. Operating systems where the
encoding scheme of the wchar_t data type conforms to UTF-16 can easily convert utext to the
wchar_t data type using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in bytes. Users
should use the utext data type as the buffer for input and output data.

Example 6-20 shows pseudocode that illustrates a bind and define for UTF-16 data.

Example 6-20 Binding and Defining UTF-16 Data

...
OCIStmt *stmthp1, *stmthp2;
OCIDefine *dfn1p, *dfn2p;
OCIBind *bnd1p, *bnd2p;
text *insstmt=
 (text *) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)"; \
text *selname =
 (text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; /* Name - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCI_UTF16ID;
sb4 ename_col_len = 20;
sb4 address_col_len = 50;
...
/* Inserting UTF-16 data */
OCIStmtPrepare (stmthp1, errhp, insstmt, (ub4)strlen ((char *)insstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIBindByName (stmthp1, &bnd1p, errhp, (text*)":ENAME",
 (sb4)strlen((char *)":ENAME"),
 (void *) ename, sizeof(ename), SQLT_STR,
 (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);
OCIAttrSet ((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving UTF-16 data */
OCIStmtPrepare (stmthp2, errhp, selname, strlen((char *) selname),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,

Chapter 6
Character Conversion in OCI Binding and Defining

6-49

 (sb4)sizeof(ename), SQLT_STR,
 (void *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet ((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

See Also:

Bind Handle Attributes

6.12 PL/SQL REF CURSORs and Nested Tables in OCI
OCI provides the ability to bind and define PL/SQL REF CURSORs and nested tables.

An application can use a statement handle to bind and define these types of variables. As an
example, consider this PL/SQL block:

static const text *plsql_block = (text *)
 "begin \
 OPEN :cursor1 FOR SELECT employee_id, last_name, job_id, manager_id, \
 salary, department_id \
 FROM employees WHERE job_id=:job ORDER BY employee_id; \
 OPEN :cursor2 FOR SELECT * FROM departments ORDER BY department_id;
 end;";

An application allocates a statement handle for binding by calling OCIHandleAlloc(), and then
binds the :cursor1 placeholder to the statement handle, as in the following code,
where :cursor1 is bound to stm2p.

In this code in Example 6-21, stm1p is the statement handle for the PL/SQL block, whereas
stm2p is the statement handle that is bound as a REF CURSOR for later data retrieval. A value of
SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
 "SELECT last_name, CURSOR(SELECT department_name, location_id \
 FROM departments) FROM employees WHERE last_name = 'FORD'";

The second position is a nested table, which an OCI application can define as a statement
handle shown in Example 6-22.

After execution, when you fetch a row into stm2p it becomes a valid statement handle.

Chapter 6
PL/SQL REF CURSORs and Nested Tables in OCI

6-50

Note:

If you have retrieved multiple REF CURSORs, you must take care when fetching them
into stm2p. If you fetch the first one, you can then perform fetches on it to retrieve its
data. However, after you fetch the second REF CURSOR into stm2p, you no longer have
access to the data from the first REF CURSOR.

OCI does not support PL/SQL REF CURSORs that were executed in scrollable mode.

OCI does not support scrollable REF CURSORs because you cannot scroll back to the
rows already fetched by a REF CURSOR.

Example 6-21 Binding the :cursor1 Placeholder to the Statement Handle stm2p as a
REF CURSOR

status = OCIStmtPrepare (stm1p, errhp, (text *) plsql_block,
 strlen((char *)plsql_block), OCI_NTV_SYNTAX, OCI_DEFAULT);
...
status = OCIBindByName (stm1p, (OCIBind **) &bnd1p, errhp,
 (text *)":cursor1", (sb4)strlen((char *)":cursor1"),
 (void *)&stm2p, (sb4) 0, SQLT_RSET, (void *)0,
 (ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)0, (ub4)OCI_DEFAULT);

Example 6-22 Defining a Nested Table (Second Position) as a Statement Handle

status = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab,
 strlen((char *)nst_tab), OCI_NTV_SYNTAX, OCI_DEFAULT);
...
status = OCIDefineByPos (stm1p, (OCIDefine **) &dfn2p, errhp, (ub4)2,
 (void *)&stm2p, (sb4)0, SQLT_RSET, (void *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT);

See Also:

OCIHandleAlloc()

6.13 Natively Describe and Bind All PL/SQL Types Including
Package Types

Beginning with Oracle Database Release 12.1, OCI clients support the ability to natively
describe and bind all PL/SQL types.

This includes the base scalar type Boolean, which was previously unsupported as a bind type.
This also includes types declared in PL/SQL packages, such as named record or collection
type (including nested table, varray and index table) or implicit record subtype (%rowtype)
declared inside of a PL/SQL package specification. Native support for these features means
clients can describe and bind PL/SQL types using only the provided client-side APIs.

The PL/SQL typecodes for these data types (Boolean, record, index-by BINARY_INTEGER, and
PLS_INTEGER or BINARY_INTEGER) are listed in Table 4-11. The equivalent SQLT type for these
PL/SQL typecodes is listed in Table 4-12. Clients must bind the specified type using the

Chapter 6
Natively Describe and Bind All PL/SQL Types Including Package Types

6-51

respective specified value of SQLT type as the DTY of the bind. For example, for records,
clients must bind package record types (OCI_TYPECODE_RECORD) using SQLT_NTY as the DTY of
the bind; for collections, clients must bind all package collection types (OCI_TYPECODE_ITABLE)
using SQLT_NTY as the DTY of the bind; and for Booleans, clients must bind Boolean types
(OCI_TYPECODE_BOOLEAN) using SQLT_BOL as the DTY of the bind. Bind APIs: OCIBindByName(),
OCIBindByName2(), OCIBindByPos(), and OCIBindByPos2() support each SQLT type value in
the DTY of the bind that represents these PL/SQL typecodes.

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

6.14 Runtime Data Allocation and Piecewise Operations in OCI
You can use OCI to perform piecewise inserts, updates, and fetches of data.

You can also use OCI to provide data dynamically in case of array inserts or updates, instead
of providing a static array of bind values. You can insert or retrieve a very large column as a
series of chunks of smaller size, minimizing client-side memory requirements.

The size of individual pieces is determined at run time by the application and can be uniform or
not.

The piecewise functionality of OCI is particularly useful when performing operations on
extremely large blocks of string or binary data, operations involving database columns that
store CLOB, BLOB, LONG, RAW, or LONG RAW data.

The piecewise fetch is complete when the final OCIStmtFetch2() call returns a value of
OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of calls
necessary for the operation to complete successfully. For a piecewise insert, you must call
OCIStmtExecute() one time more than the number of pieces to be inserted (if callbacks are not
used). This is because the first time OCIStmtExecute() is called, it returns a value indicating
that the first piece to be inserted is required. As a result, if you are inserting n pieces, you must
call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch2() once more than
the number of pieces to be fetched.

This section includes the following topics:

• Valid Data Types for Piecewise Operations

• Types of Piecewise Operations

• About Providing INSERT or UPDATE Data at Runtime

• Piecewise Operations with PL/SQL

• PL/SQL Indexed Table Binding Support

• About Providing FETCH Information at Run Time

• Piecewise Binds and Defines for LOBs

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-52

• Valid Data Types for Piecewise Operations
Only some data types can be manipulated in pieces.

• Types of Piecewise Operations
What are the ways you can perform piecewise operations.

• About Providing INSERT or UPDATE Data at Runtime
When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos() or
OCIBindByPos2() or OCIBindByName() or OCIBindByName2(), the value_sz parameter
defines the total size of the data that can be provided at run time.

• Piecewise Operations with PL/SQL
An OCI application can perform piecewise operations with PL/SQL for IN, OUT, and IN/OUT
bind variables in a method similar to that outlined previously.

• PL/SQL Indexed Table Binding Support
PL/SQL indexed tables can be passed as IN/OUT binds into PL/SQL anonymous blocks
using OCI.

• About Providing FETCH Information at Run Time
When a call is made to OCIDefineByPos() or OCIDefineByPos2() with the mode parameter
set to OCI_DYNAMIC_FETCH, an application can specify information about the data buffer at
the time of fetch.

• Piecewise Binds and Defines for LOBs
What are the ways of doing piecewise binds and defines for LOBs.

See Also:

• OCIStmtFetch2()

• OCIStmtExecute()

6.14.1 Valid Data Types for Piecewise Operations
Only some data types can be manipulated in pieces.

OCI applications can perform piecewise fetches, inserts, or updates of all the following data
types:

• VARCHAR2
• STRING
• LONG
• LONG RAW
• RAW
• CLOB
• BLOB
Another way of using this feature for all data types is to provide data dynamically for array
inserts or updates. The callbacks should always specify OCI_ONE_PIECE for the piecep
parameter of the callback for data types that do not support piecewise operations.

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-53

6.14.2 Types of Piecewise Operations
What are the ways you can perform piecewise operations.

You can perform piecewise operations in two ways:

• Use calls provided in the OCI library to execute piecewise operations under a polling
paradigm.

• Employ user-defined callback functions to provide the necessary information and data
blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByPos2() or
OCIBindByName() or OCIBindByName2() call to OCI_DATA_AT_EXEC, it indicates that an OCI
application is providing data for an INSERT or UPDATE operation dynamically at runtime.

Similarly, when you set the mode parameter of an OCIDefineByPos() or OCIDefineByPos2() call
to OCI_DYNAMIC_FETCH, it indicates that an application dynamically provides allocation space for
receiving data at the time of the fetch.

In each case, you can provide the runtime information for the INSERT, UPDATE, or FETCH
operation in one of two ways: through callback functions, or by using piecewise operations. If
callbacks are desired, an additional bind or define call is necessary to register the callbacks.

The following sections give specific information about runtime data allocation and piecewise
operations for inserts, updates, and fetches.

Note:

Piecewise operations are also valid for SQL and PL/SQL blocks.

See Also:

• OCIBindByPos() or OCIBindByPos2()

• OCIBindByName() or OCIBindByName2()

• OCIDefineByPos() or OCIDefineByPos2()

6.14.3 About Providing INSERT or UPDATE Data at Runtime
When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos() or
OCIBindByPos2() or OCIBindByName() or OCIBindByName2(), the value_sz parameter defines
the total size of the data that can be provided at run time.

The application must be ready to provide to the OCI library the run time IN data buffers on
demand as many times as is necessary to complete the operation. When the allocated buffers
are no longer required, they must be freed by the client.

Runtime data is provided in one of two ways:

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-54

• You can define a callback using the OCIBindDynamic() function, which when called at run
time returns either a piece of the data or all of it.

• If no callbacks are defined, the call to OCIStmtExecute() to process the SQL statement
returns the OCI_NEED_DATA error code. The client application then provides the IN/OUT data
buffer or piece using the OCIStmtSetPieceInfo() call that specifies which bind and piece
are being used.

This section includes the following topic: Performing a Piecewise Insert or Update.

• Performing a Piecewise Insert or Update
Once the OCI environment has been initialized, and a database connection and session
have been established, a piecewise insert begins with calls to prepare a SQL or PL/SQL
statement and to bind input values.

See Also:

• OCIBindByPos() or OCIBindByPos2()

• OCIBindByName() or OCIBindByName2()

• OCIBindDynamic()

• OCIStmtExecute()

• OCIStmtSetPieceInfo()

6.14.3.1 Performing a Piecewise Insert or Update
Once the OCI environment has been initialized, and a database connection and session have
been established, a piecewise insert begins with calls to prepare a SQL or PL/SQL statement
and to bind input values.

When you are using a callback to do piecewise insert, use OCIBindDynamic() function. There
are two parameters in OCIBindDynamic() function that are used by an application to provide IN
bind callback and OUT bind callback functions.

• For pure IN binds, it is mandatory to provide the IN bind callback function parameter,
icbfp, and the OUT bind callback function parameter, ocbfp and the value can be NULL.

• For pure OUT binds, it is mandatory to provide the OUT bind callback function parameter,
ocbfp, and the IN bind callback function parameter, icbfp and the value can be NULL.

• For IN/OUT binds, it is mandatory to provide both the IN bind callback function parameter,
icbfp and the OUT bind callback function parameter, ocbfp.

Note:

Additional bind variables that are not part of piecewise operations may require
additional bind calls, depending on their data types.

Piecewise operations using standard OCI calls rather than user-defined callbacks do not
require to call OCIBindDynamic() function. Following the statement preparation and bind, the
application performs a series of calls to OCIStmtExecute(), OCIStmtGetPieceInfo(), and

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-55

OCIStmtSetPieceInfo() to complete the piecewise operation. Each call to OCIStmtExecute()
returns a value that determines what action should be performed next. In general, the
application retrieves a value indicating that the next piece must be inserted, populates a buffer
with that piece, and then executes an insert. When the last piece has been inserted, the
operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run time. In
addition, each inserted piece does not need to be of the same size. The size of each piece to
be inserted is established by each OCIStmtSetPieceInfo() call.

Note:

If the same piece size is used for all inserts, and the size of the data being inserted is
not evenly divisible by the piece size, the final inserted piece is expected to be
smaller. You must account for this by indicating the smaller size in the final
OCIStmtSetPieceInfo() call.

The procedure is illustrated in Figure 6-3 and expanded in the steps following the figure.

Figure 6-3 Performing Piecewise Insert

1. Initialize the OCI environment, allocate the necessary handles, connect to a server,
authorize a user, and prepare a statement request by using OCIStmtPrepare2().

2. Bind a placeholder by using OCIBindByName() or OCIBindByName2() or OCIBindByPos() or
OCIBindByPos2(). You do not need to specify the actual size of the pieces you use, but
you must provide the total size of the data that can be provided at run time.

3. Call OCIStmtExecute() for the first time. No data is being inserted here, and the
OCI_NEED_DATA error code is returned to the application. If any other value is returned, it
indicates that an error occurred.

4. Call OCIStmtGetPieceInfo() to retrieve information about the piece that must be inserted.
The parameters of OCIStmtGetPieceInfo() include a pointer to a value indicating if the

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-56

required piece is the first piece, OCI_FIRST_PIECE, or a subsequent piece,
OCI_NEXT_PIECE.

5. The application populates a buffer with the piece of data to be inserted and calls
OCIStmtSetPieceInfo() with these parameters:

• A pointer to the piece

• A pointer to the length of the piece

• A value indicating whether this is the first piece (OCI_FIRST_PIECE), an intermediate
piece (OCI_NEXT_PIECE), or the last piece (OCI_LAST_PIECE)

• The application can return a 0-byte buffer for OCI_LAST_PIECE if they run out of data.

6. Call OCIStmtExecute() again. If OCI_LAST_PIECE was indicated in Step 5 and
OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted successfully. If
OCIStmtExecute() returns OCI_NEED_DATA, go back to Step 3 for the next insert. If
OCIStmtExecute() returns any other value, an error occurred.

The piecewise operation is complete when the final piece has been successfully inserted. This
is indicated by the OCI_SUCCESS return value from the final OCIStmtExecute() call.

Piecewise updates are performed in a similar manner. In a piecewise update operation the
insert buffer is populated with data that is being updated, and OCIStmtExecute() is called to
execute the update.

See Also:

• Polling Mode Operations in OCI

• OCIBindDynamic()

• OCIStmtExecute()

• OCIStmtGetPieceInfo()

• OCIStmtSetPieceInfo()

• OCIStmtPrepare2()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

6.14.4 Piecewise Operations with PL/SQL
An OCI application can perform piecewise operations with PL/SQL for IN, OUT, and IN/OUT bind
variables in a method similar to that outlined previously.

Keep in mind that all placeholders in PL/SQL statements are bound, rather than defined. The
call to OCIBindDynamic() specifies the appropriate callbacks for OUT or IN/OUT parameters.

See Also:

OCIBindDynamic()

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-57

6.14.5 PL/SQL Indexed Table Binding Support
PL/SQL indexed tables can be passed as IN/OUT binds into PL/SQL anonymous blocks using
OCI.

The procedure for binding PL/SQL indexed tables is quite similar to performing an array bind
for SQL statements. The OCI program must bind the location of an array with other metadata
for the array as follows, using either OCIBindByName() or OCIBindByName2() or
OCIBindByPos() or OCIBindByPos2(). The process of binding a C array into a PL/SQL indexed
table bind variable must provide the following information during the bind call:

• void *valuep (IN/OUT) - A pointer to a location that specifies the beginning of the array in
client memory

• ub2 dty (IN) - The data type of the elements of the array as represented on the client

• sb4 value_sz (IN) - The maximum size (in bytes) of each element of the array as
represented on the client

• ub4 maxarr_len (IN) - The maximum number of elements of the data type the array is
expected to hold in its lifetime

If allocating the entire array up front for doing static bindings, the array must be sized
sufficiently to contain maxarr_len number of elements, each of size value_sz. This
information is also used to constrain the indexed table as seen by PL/SQL. PL/SQL cannot
look up the indexed table (either for read or write) beyond this specified limit.

• ub4 *curelep (IN/OUT) - A pointer to the number of elements in the array (from the
beginning of the array) that are currently valid.

This should be less than or equal to the maximum array length. Note that this information
is also used to constrain the indexed table as seen by PL/SQL. For IN binds, PL/SQL
cannot read from the indexed table beyond this specified limit. For OUT binds, PL/SQL can
write to the indexed table beyond this limit, but not beyond the maxarr_len limit.

For IN indexed table binds, before performing OCIStmtExecute(), the user must set up the
current array length (*curelep) for that execution. In addition, the user also must set up the
actual length and indicator as applicable for each element of the array.

For OUT binds, OCI must return the current array length (*curelep) and the actual length,
indicator and return code as applicable for each element of the array.

For best performance, keep the array allocated with maximum array length, and then vary the
current array length between executes based on how many elements are actually being
passed back and forth. Such an approach does not require repeatedly deallocating and
reallocating the array for every execute, thereby helping overall application performance.

It is also possible to bind using OCI piecewise calls for PL/SQL indexed tables. Such an
approach does not require preallocating the entire array up front. The OCIStmtSetPieceInfo()
and OCIStmtGetPieceInfo() calls can be used to pass in individual elements piecewise.

This section includes the following topic: Restrictions for PL/SQL Indexed Table Binding
Interface.

• Restrictions for PL/SQL Indexed Table Binding Interface
What are the restrictions for the PL/SQL indexed table OCI binding interface.

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-58

See Also:

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIStmtExecute()

• OCIStmtSetPieceInfo()

• OCIStmtGetPieceInfo()

6.14.5.1 Restrictions for PL/SQL Indexed Table Binding Interface
What are the restrictions for the PL/SQL indexed table OCI binding interface.

The PL/SQL indexed table OCI binding interface does not support binding:

• Arrays of ADTs or REFs

• Arrays of descriptor types such as LOB descriptors, ROWID descriptors, datetime or
interval descriptors

• Arrays of PLSQL record types

6.14.6 About Providing FETCH Information at Run Time
When a call is made to OCIDefineByPos() or OCIDefineByPos2() with the mode parameter set
to OCI_DYNAMIC_FETCH, an application can specify information about the data buffer at the time
of fetch.

You may also need to call OCIDefineDynamic() to set a callback function that is invoked to get
information about your data buffer.

Runtime data is provided in one of two ways:

• You can define a callback using the OCIDefineDynamic() function. The value_sz
parameter defines the maximum size of the data that is provided at run time. When the
client library needs a buffer to return the fetched data, the callback is invoked to provide a
runtime buffer into which either a piece of the data or all of it is returned.

• If no callbacks are defined, the OCI_NEED_DATA error code is returned and the OUT data
buffer or piece can then be provided by the client application by using
OCIStmtSetPieceInfo(). The OCIStmtGetPieceInfo() call provides information about
which define and which piece are involved.

This section includes the following topic: Performing a Piecewise Fetch

• Performing a Piecewise Fetch
The fetch buffer can be of arbitrary size. In addition, each fetched piece does not need to
be of the same size.

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-59

See Also:

• OCIDefineByPos() or OCIDefineByPos2()

• OCIDefineDynamic()

• OCIStmtSetPieceInfo()

• OCIStmtGetPieceInfo()

6.14.6.1 Performing a Piecewise Fetch
The fetch buffer can be of arbitrary size. In addition, each fetched piece does not need to be of
the same size.

The only requirement is that the size of the final fetch must be exactly the size of the last
remaining piece. The size of each piece to be fetched is established by each
OCIStmtSetPieceInfo() call. This process is illustrated in Figure 6-4 and explained in the
steps following the figure.

Figure 6-4 Performing Piecewise Fetch

1. Initialize the OCI environment, allocate necessary handles, connect to a database,
authorize a user, prepare a statement, and execute the statement by using
OCIStmtExecute().

2. Define an output variable by using OCIDefineByPos() or OCIDefineByPos2(), with mode set
to OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual size of the pieces
you use, but you must provide the total size of the data that is to be fetched at run time.

3. Call OCIStmtFetch2() for the first time. No data is retrieved, and the OCI_NEED_DATA error
code is returned to the application. If any other value is returned, then an error occurred.

4. Call OCIStmtGetPieceInfo() to obtain information about the piece to be fetched. The
piecep parameter indicates whether it is the first piece (OCI_FIRST_PIECE), a subsequent
piece (OCI_NEXT_PIECE), or the last piece (OCI_LAST_PIECE).

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-60

5. Call OCIStmtSetPieceInfo() to specify the fetch buffer.

6. Call OCIStmtFetch2() again to retrieve the actual piece. If OCIStmtFetch2() returns
OCI_SUCCESS, all the pieces have been fetched successfully. If OCIStmtFetch2() returns
OCI_NEED_DATA, return to Step 4 to process the next piece. If any other value is returned,
an error occurred.

See Also:

• Polling Mode Operations in OCI

• OCIStmtSetPieceInfo()

• OCIStmtExecute()

• OCIDefineByPos() or OCIDefineByPos2()

• OCIStmtGetPieceInfo()

• OCIStmtFetch2()

6.14.7 Piecewise Binds and Defines for LOBs
What are the ways of doing piecewise binds and defines for LOBs.

There are two:

• Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR (VARCHAR2) or
SQLT_LNG (LONG) as the input data type for the following functions. You can also bind or
define raw data for BLOB columns using SQLT_LBI (LONG RAW), and SQLT_BIN (RAW) as the
input data type for these functions:

– OCIDefineByPos() or OCIDefineByPos2()
– OCIBindByName() or OCIBindByName2()
– OCIBindByPos() or OCIBindByPos2()
All the piecewise operations described later are supported for CLOB and BLOB columns in
this case.

• Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using SQLT_CLOB (CLOB) or
SQLT_BLOB (BLOB) as the input data type for the following functions.

– OCIDefineByPos() or OCIDefineByPos2()
– OCIBindByName() or OCIBindByName2()
– OCIBindByPos() or OCIBindByPos2()
You must then call OCILob* functions to read and manipulate the data. OCILobRead2() and
OCILobWrite2() support piecewise and callback modes.

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-61

See Also:

• OCIDefineByPos() or OCIDefineByPos2()

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data for usage and examples of SELECT statements

• OCILobRead2()

• OCILobWrite2()

• LOB Read and Write Callbacks for information about streaming using callbacks
with OCILobWrite2() and OCILobRead2()

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

6-62

7
Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny() function to obtain information about
schema elements.

This chapter contains these topics:

• About Using OCIDescribeAny()

• Parameter Attributes

• Character-Length Semantics Support in Describe Operations

• Examples Using OCIDescribeAny()

• About Using OCIDescribeAny()
Performs an explicit describe of schema objects and their subschema objects.

• Parameter Attributes
This section describes the attributes and handles that belong to different parameters.

• Character-Length Semantics Support in Describe Operations
Query and column information are supported with character-length semantics.

• Examples Using OCIDescribeAny()
The following examples demonstrate the use of OCIDescribeAny() for describing different
types of schema objects.

See Also:

OCIDescribeAny()

7.1 About Using OCIDescribeAny()
Performs an explicit describe of schema objects and their subschema objects.

The OCIDescribeAny() function enables you to perform an explicit describe of the following
schema objects and their subschema objects:

• Tables and views

• Synonyms

• Procedures

• Functions

• Packages

• Sequences

• Collections

• Types

7-1

• Schemas

• Databases

Information about other schema elements (function arguments, columns, type attributes, and
type methods) is available through a describe of one of the preceding schema objects or an
explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that table's
columns. Additionally, OCIDescribeAny() can directly describe subschema objects such as
columns of a table, packages of a function, or fields of a type if given the name of the
subschema object.

The OCIDescribeAny() call requires a describe handle as one of its arguments. The describe
handle must be previously allocated with a call to OCIHandleAlloc().

The information returned by OCIDescribeAny() is organized hierarchically like a tree, as shown
in Figure 7-1.

Figure 7-1 OCIDescribeAny() Table Description

The describe handle returned by the OCIDescribeAny() call has an attribute, OCI_ATTR_PARAM,
that points to such a description tree. Each node of the tree has attributes associated with that
node, as well as attributes that are like recursive describe handles and point to subtrees
containing further information. If all the attributes are homogenous, as with elements of a
column list, they are called parameters. The attributes associated with any node are returned
by OCIAttrGet(), and the parameters are returned by OCIParamGet().

A call to OCIAttrGet() on the describe handle for the table returns a handle to the column-list
information. An application can then use OCIParamGet() to retrieve the handle to the column
description of a particular column in the column list. The handle to the column descriptor can
be passed to OCIAttrGet() to get further information about the column, such as the name and
data type.

After a SQL statement is executed, information about the select list is available as an attribute
of the statement handle. No explicit describe call is needed. To retrieve information about
select-list items from the statement handle, the application must call OCIParamGet() once for
each position in the select list to allocate a parameter descriptor for that position.

Chapter 7
About Using OCIDescribeAny()

7-2

Note:

No subsequent OCIAttrGet() or OCIParamGet() call requires extra round-trips, as
the entire description is cached on the client side by OCIDescribeAny().

This section includes the following topics:

• Limitations on OCIDescribeAny()

• Notes on Types and Attributes

• Limitations on OCIDescribeAny()
The OCIDescribeAny() call limits information returned to the basic information and stops
expanding a node if it amounts to another describe operation.

• Notes on Types and Attributes
What to be aware of when performing describe operations.

See Also:

• OCIDescribeAny()

• OCIHandleAlloc()

• OCIAttrGet()

• OCIParamGet()

7.1.1 Limitations on OCIDescribeAny()
The OCIDescribeAny() call limits information returned to the basic information and stops
expanding a node if it amounts to another describe operation.

For example, if a table column is of an object type, then OCI does not return a subtree
describing the type, because this information can be obtained by another describe call.

The table name is not returned by OCIDescribeAny() or the implicit use of OCIStmtExecute().
Sometimes a column is not associated with a table. In most cases, the table is already known.

See Also:

• About Describing Select-List Items

• OCIDescribeAny()

• OCIStmtExecute()

7.1.2 Notes on Types and Attributes
What to be aware of when performing describe operations.

Chapter 7
About Using OCIDescribeAny()

7-3

When performing describe operations, you should be aware of the following topics:

• Data Type Codes

• About Describing Types

• Implicit and Explicit Describe Operations

• OCI_ATTR_LIST_ARGUMENTS Attribute

• Data Type Codes
The OCI_ATTR_TYPECODE attribute returns typecodes that represent the types supplied by
the user when a new type is created using the CREATE TYPE statement.

• About Describing Types
To describe type objects, it is necessary to initialize the OCI process in object mode.

• Implicit and Explicit Describe Operations
The column attribute OCI_ATTR_PRECISION can be returned using an implicit describe with
OCIStmtExecute() and an explicit describe with OCIDescribeAny().

• OCI_ATTR_LIST_ARGUMENTS Attribute
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents second-level
arguments for the method.

7.1.2.1 Data Type Codes
The OCI_ATTR_TYPECODE attribute returns typecodes that represent the types supplied by the
user when a new type is created using the CREATE TYPE statement.

These typecodes are of the enumerated type OCITypeCode, and are represented by
OCI_TYPECODE constants. Internal PL/SQL type (boolean) is supported.

The OCI_ATTR_DATA_TYPE attribute returns typecodes that represent the data types stored in
database columns. These are similar to the describe values returned by previous versions of
Oracle Database. These values are represented by SQLT constants (ub2 values). Boolean
types return SQLT_BOL.

See Also:

• External Data Types for more information about SQLT_BOL
• Typecodes for more information about typecodes, such as the OCI_TYPECODE

values returned in the OCI_ATTR_TYPECODE attribute and the SQLT typecodes
returned in the OCI_ATTR_DATA_TYPE attribute

7.1.2.2 About Describing Types
To describe type objects, it is necessary to initialize the OCI process in object mode.

This is shown in Example 7-1.

Example 7-1 Initializing the OCI Process in Object Mode

/* Initialize the OCI Process */
 if (OCIEnvCreate((OCIEnv **) &envhp, (ub4) OCI_OBJECT, (voivoid *) 0,
 (void * (*)(void *,size_t)) 0,

Chapter 7
About Using OCIDescribeAny()

7-4

 (void * (*)(void *, void *, size_t)) 0,
 (void (*)(void *, void *)) 0, (size_t) 0, (void **) 0))
 {
 printf("FAILED: OCIEnvCreate()\n");
 return OCI_ERROR;
 }

See Also:

OCIEnvCreate()

7.1.2.3 Implicit and Explicit Describe Operations
The column attribute OCI_ATTR_PRECISION can be returned using an implicit describe with
OCIStmtExecute() and an explicit describe with OCIDescribeAny().

When you use an implicit describe, set the precision to sb2. When you use an explicit describe,
set the precision to ub1 for a placeholder. This is necessary to match the data type of precision
in the dictionary.

See Also:

• OCIStmtExecute()

• OCIDescribeAny()

7.1.2.4 OCI_ATTR_LIST_ARGUMENTS Attribute
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents second-level arguments
for the method.

For example, consider the following record my_type and the procedure my_proc that takes an
argument of type my_type:
my_type record(a number, b char)
my_proc (my_input my_type)

In this example, the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b of
the my_type record.

7.2 Parameter Attributes
This section describes the attributes and handles that belong to different parameters.

A parameter is returned by OCIParamGet(). Parameters can describe different types of objects
or information, and have attributes depending on the type of description they contain, or type-
specific attributes.

The OCIDescribeAny() call does support more than two name components (for example,
schema.type.attr1.attr2.method1). With more than one component, the first component is

Chapter 7
Parameter Attributes

7-5

interpreted as the schema name (unless some other flag is set). There is a flag to specify that
the object must be looked up under PUBLIC, that is, describe "a", where "a" can be either in
the current schema or a public synonym.

If you do not know what the object type is, specify OCI_PTYPE_UNK. Otherwise, an error is
returned if the actual object type does not match the specified type.

Table 7-1 lists the attributes of all parameters.

Table 7-1 Attributes of All Parameters

Attribute Description Attribute Data Type

OCI_ATTR_LIST_ANNOTATI
ONS

Retrieves annotations from tables, views, and columns OCI_PTYPE_LIST

OCI_ATTR_NUM_ANNOTATIO
NS

Retrieves the number of annotations for an object ub4

OCI_ATTR_ANNOTATION_KE
Y

Retrieves the text value for an annotation text

OCI_ATTR_ANNOTATION_VA
LUE

Retrieves the value in the key-value pair of an annotation.
Used along with OCI_ATTR_ANNOTATION_KEY to get the
complete annotation.

text

OCI_ATTR_HAS_JSON_SCHE
MA

Indicates if a column has JSON schema constraint ub1

OCI_ATTR_OBJ_ID Object or schema ID ub4

OCI_ATTR_OBJ_NAME Database name or object name in a schema OraText *

OCI_ATTR_OBJ_SCHEMA Schema name where the object is located OraText *

Chapter 7
Parameter Attributes

7-6

Table 7-1 (Cont.) Attributes of All Parameters

Attribute Description Attribute Data Type

OCI_ATTR_PTYPE Type of information described by the parameter. Possible
values:

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type, including a package type

OCI_PTYPE_TYPE_ATTR - attribute of a type, including
package record type attributes

OCI_PTYPE_TYPE_COLL - collection type information,
including package collection elements

OCI_PTYPE_TYPE_METHOD - method of a type

OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view

OCI_PTYPE_ARG - argument of a function or procedure

OCI_PTYPE_TYPE_ARG - argument of a type method

OCI_PTYPE_TYPE_RESULT - results of a method

OCI_PTYPE_LIST - column list for tables and views, argument
list for functions and procedures, or subprogram list for
packages

OCI_PTYPE_SCHEMA - schema

OCI_PTYPE_DATABASE - database

OCI_PTYPE_UNK - unknown schema object

ub1

OCI_ATTR_TIMESTAMP The time stamp of the object on which the description is based
in Oracle date format

ub1 *

OCI_ATTR_DOMAIN_NAME Accesses the domain name OraText *
OCI_ATTR_DOMAIN_SCHEMA Accesses the domain schema OraText *

The following sections list the attributes and handles specific to different types of parameters:

• Table or View Parameters

• Procedure, Function, and Subprogram Attributes

• Package Attributes

• Type Attributes

• Type Attribute Attributes

• Type Method Attributes

• Collection Attributes

• Synonym Attributes

• Sequence Attributes

• Column Attributes

Chapter 7
Parameter Attributes

7-7

• Argument and Result Attributes

• List Attributes

• Schema Attributes

• Database Attributes

• Rule Attributes

• Rule Set Attributes

• Evaluation Context Attributes

• Table Alias Attributes

• Variable Type Attributes

• Name Value Attributes

• Table or View Parameters
Lists and describes the type-specific attributes for parameters for a table or view.

• Procedure, Function, and Subprogram Attributes
Lists and describes the type-specific attributes when a parameter is for a procedure or
function.

• Package Attributes
Lists and describes the attributes when a parameter is for a package.

• Type Attributes
Lists and describes the attributes when a parameter is for a type.

• Type Attribute Attributes
Lists and describes the attributes when a parameter is for an attribute of a type.

• Type Method Attributes
Lists and dsescribes the attributes when a parameter is for a method of a type.

• Collection Attributes
Lists and describes the attributes when a parameter is for a collection type.

• Synonym Attributes
Lists and describes the attributes when a parameter is for a synonym.

• Sequence Attributes
Lists and describes the attributes when a parameter is for a sequence.

• Column Attributes
Lists and describes the attributes when a parameter is for a column of a table or view.

• Argument and Result Attributes
Lists and describes the attributes when a parameter is for an argument of a procedure or
function.

• List Attributes
Lists and describes the attributes when the parameter is for a list of columns, arguments,
and subprograms, or fields of a package record type.

• Schema Attributes
Lists and describes the attributes when a parameter is for a schema type.

• Database Attributes
Lists and describes the attributes when a parameter is for a database type.

• Rule Attributes
Lists and describes the attributes when a parameter is for a rule.

Chapter 7
Parameter Attributes

7-8

• Rule Set Attributes
Lists and describes the attributes when a parameter is for a rule set.

• Evaluation Context Attributes
Lists and describes the attributes when a parameter is for an evaluation context.

• Table Alias Attributes
Lists and describes the attributes when a parameter is for a table alias.

• Variable Type Attributes
Lists and describes the attributes when a parameter is for a variable.

• Name Value Attributes
Lists and describes the attributes when a parameter is for a name-value pair.

See Also:

• OCIParamGet()

• OCIDescribeAny()

7.2.1 Table or View Parameters
Lists and describes the type-specific attributes for parameters for a table or view.

Table 7-2 lists the type-specific attributes for parameters for a table or view (type
OCI_PTYPE_TABLE or OCI_PTYPE_VIEW).

Table 7-2 Attributes of Tables or Views

Attribute Description Attribute Data Type

OCI_ATTR_OBJID Object ID ub4

OCI_ATTR_NUM_COLS Number of columns ub2

OCI_ATTR_LIST_COLUMNS Column list (type OCI_PTYPE_LIST) OCIParam *

OCI_ATTR_REF_TDO REF to the type description object (TDO) of the base
type for extent tables

OCIRef *

OCI_ATTR_IS_TEMPORARY Indicates that the table is temporary ub1

OCI_ATTR_IS_TYPED Indicates that the table is typed ub1

OCI_ATTR_DURATION Duration of a temporary table. Values can be:

OCI_DURATION_SESSION - session

OCI_DURATION_TRANS - transaction

OCI_DURATION_NULL - table not temporary

OCIDuration

Table 7-3 lists additional attributes that belong to tables.

Chapter 7
Parameter Attributes

7-9

Table 7-3 Attributes Specific to Tables

Attribute Description Attribute Data Type

OCI_ATTR_RDBA Data block address of the segment header ub4

OCI_ATTR_TABLESPACE Tablespace that the table resides in word

OCI_ATTR_CLUSTERED Indicates that the table is clustered ub1

OCI_ATTR_PARTITIONED Indicates that the table is partitioned ub1

OCI_ATTR_INDEX_ONLY Indicates that the table is index-only ub1

7.2.2 Procedure, Function, and Subprogram Attributes
Lists and describes the type-specific attributes when a parameter is for a procedure or
function.

Table 7-4 lists the type-specific attributes when a parameter is for a procedure or function (type
OCI_PTYPE_PROC or OCI_PTYPE_FUNC).

Table 7-4 Attributes of Procedures or Functions

Attribute Description Attribute
Data Type

OCI_ATTR_LIST_ARGUMEN
TS

Argument list. See List Attributes. void *

OCI_ATTR_IS_INVOKER_R
IGHTS

Indicates that the procedure or function has invoker's rights ub1

Table 7-5 lists the attributes that are defined only for package subprograms.

Table 7-5 Attributes Specific to Package Subprograms

Attribute Description Attribute Data Type

OCI_ATTR_NAME Name of the procedure or function OraText *

OCI_ATTR_OVERLOAD_ID Overloading ID number (relevant in case the
procedure or function is part of a package and is
overloaded). Values returned may be different from
direct query of a PL/SQL function or procedure.

ub2

7.2.3 Package Attributes
Lists and describes the attributes when a parameter is for a package.

Table 7-6 lists the attributes when a parameter is for a package (type OCI_PTYPE_PKG).

Chapter 7
Parameter Attributes

7-10

Table 7-6 Attributes of Packages

Attribute Description Attribute
Data Type

OCI_ATTR_LIST_PKG_TYP
ES

Get a list of all types in an OCI_PTYPE_PKG package parameter handle. void *

OCI_ATTR_LIST_SUBPROG
RAMS

Subprogram list. See List Attributes. void *

OCI_ATTR_IS_INVOKER_R
IGHTS

Indicates that the package has invoker's rights? ub1

7.2.4 Type Attributes
Lists and describes the attributes when a parameter is for a type.

Table 7-7 lists the attributes when a parameter is for a type (type OCI_PTYPE_TYPE). These
attributes are only valid if the application initialized the OCI process in OCI_OBJECT mode in a
call to OCIEnvCreate().

Table 7-7 Attributes of Types

Attribute Description Attribute
Data Type

OCI_ATTR_REF_TDO Returns the in-memory REF of the type descriptor object (TDO) for the type, if
the column type is an object type. If space has not been reserved for the
OCIRef, then it is allocated implicitly in the cache. The caller can then pin the
TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_TYPECODE Typecode. See Data Type Codes. Currently can be only
OCI_TYPECODE_OBJECT, OCI_TYPECODE_NAMEDCOLLECTION, or
OCI_TYPECODE_RECORD.

OCITypeCo
de

OCI_ATTR_COLLECTION_TYP
ECODE

Typecode of collection if type is collection; invalid otherwise. See Data Type
Codes. Currently can be only OCI_TYPECODE_VARRAY, OCI_TYPECODE_TABLE,
or OCI_TYPECODE_ITABLE. If this attribute is queried for a type that is not a
collection, an error is returned.

OCITypeCo
de

OCI_ATTR_IS_INCOMPLETE_
TYPE

Indicates that this is an incomplete type ub1

OCI_ATTR_IS_SYSTEM_TYPE Indicates that this is a system type ub1

OCI_ATTR_IS_PREDEFINED_
TYPE

Indicates that this is a predefined type ub1

OCI_ATTR_IS_TRANSIENT_T
YPE

Indicates that this is a transient type ub1

OCI_ATTR_IS_SYSTEM_GENE
RATED_TYPE

Indicates that this is a system-generated type ub1

OCI_ATTR_HAS_NESTED_TAB
LE

This type contains a nested table attribute. ub1

OCI_ATTR_HAS_LOB This type contains a LOB attribute. ub1

Chapter 7
Parameter Attributes

7-11

Table 7-7 (Cont.) Attributes of Types

Attribute Description Attribute
Data Type

OCI_ATTR_HAS_FILE This type contains a BFILE attribute. ub1

OCI_ATTR_COLLECTION_ELE
MENT

Handle to collection element. See Collection Attributes. void *

OCI_ATTR_NUM_TYPE_ATTRS Number of type attributes ub2

OCI_ATTR_LIST_TYPE_ATTR
S

List of type attributes. See List Attributes. void *

OCI_ATTR_NUM_TYPE_METHO
DS

Number of type methods ub2

OCI_ATTR_LIST_TYPE_METH
ODS

List of type methods. See List Attributes. void *

OCI_ATTR_MAP_METHOD Map method of type. See Type Method Attributes. void *

OCI_ATTR_ORDER_METHOD Order method of type. See Type Method Attributes. void *

OCI_ATTR_IS_INVOKER_RIG
HTS

Indicates that the type has invoker's rights ub1

OCI_ATTR_NAME A pointer to a string that is the type attribute name OraText *

OCI_ATTR_PACKAGE_NAME A string with the package name if the attribute is a package type. OraText *

OCI_ATTR_SCHEMA_NAME A string with the schema name where the type has been created OraText *

OCI_ATTR_IS_FINAL_TYPE Indicates that this is a final type ub1

OCI_ATTR_IS_INSTANTIABL
E_TYPE

Indicates that this is an instantiable type ub1

OCI_ATTR_IS_SUBTYPE Indicates that this is a subtype ub1

OCI_ATTR_SUPERTYPE_SCHE
MA_NAME

Name of the schema that contains the supertype OraText *

OCI_ATTR_SUPERTYPE_NAME Name of the supertype OraText *

See Also:

OCIEnvCreate()

Chapter 7
Parameter Attributes

7-12

7.2.5 Type Attribute Attributes
Lists and describes the attributes when a parameter is for an attribute of a type.

Table 7-8 lists the attributes when a parameter is for an attribute of a type (type
OCI_PTYPE_TYPE_ATTR).

Table 7-8 Attributes of Type Attributes

Attribute Description Attribute
Data Type

OCI_ATTR_DATA_SIZE The maximum size of the type attribute. This length is returned in bytes and not
characters for strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE Typecode. See Data Type Codes. OCITypeCode

OCI_ATTR_DATA_TYPE The data type of the type attribute. See Data Type Codes. ub2

OCI_ATTR_NAME A pointer to a string that is the type attribute name OraText *

OCI_ATTR_PRECISION The precision of numeric type attributes. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

ub1

for explicit
describe

sb2

for implicit
describe

OCI_ATTR_SCALE The scale of numeric type attributes. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

sb1

OCI_ATTR_PACKAGE_NAME A string that is the package name of a type if it is a package type. OraText *

OCI_ATTR_TYPE_NAME A string that is the type name. The returned value contains the type name if the
data type is SQLT_NTY or SQLT_REF. If the data type is SQLT_NTY, the name of
the named data type's type is returned. If the data type is SQLT_REF, the type
name of the named data type pointed to by the REF is returned.

OraText *

OCI_ATTR_SCHEMA_NAME A string with the schema name under which the type has been created OraText *

OCI_ATTR_REF_TDO Returns the in-memory REF of the TDO for the type, if the column type is an
object type. If space has not been reserved for the OCIRef, then it is allocated
implicitly in the cache. The caller can then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID The character set ID, if the type attribute is of a string or character type ub2

OCI_ATTR_CHARSET_FORM The character set form, if the type attribute is of a string or character type ub1

OCI_ATTR_FSPRECISION The fractional seconds precision of a datetime or interval ub1

Chapter 7
Parameter Attributes

7-13

Table 7-8 (Cont.) Attributes of Type Attributes

Attribute Description Attribute
Data Type

OCI_ATTR_LFPRECISION The leading field precision of an interval ub1

7.2.6 Type Method Attributes
Lists and dsescribes the attributes when a parameter is for a method of a type.

Table 7-9 lists the attributes when a parameter is for a method of a type (type
OCI_PTYPE_TYPE_METHOD).

Table 7-9 Attributes of Type Methods

Attribute Description Attribute
Data Type

OCI_ATTR_NAME Name of method (procedure or function) OraText *

OCI_ATTR_ENCAPSULATION Encapsulation level of the method (either OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

OCITypeEnca
p

OCI_ATTR_LIST_ARGUMENTS Argument list. See OCI_ATTR_LIST_ARGUMENTS Attribute, and List
Attributes.

void *

OCI_ATTR_IS_CONSTRUCTOR Indicates that method is a constructor ub1

OCI_ATTR_IS_DESTRUCTOR Indicates that method is a destructor ub1

OCI_ATTR_IS_OPERATOR Indicates that method is an operator ub1

OCI_ATTR_IS_SELFISH Indicates that method is selfish ub1

OCI_ATTR_IS_MAP Indicates that method is a map method ub1

OCI_ATTR_IS_ORDER Indicates that method is an order method ub1

OCI_ATTR_IS_RNDS Indicates that "Read No Data State" is set for method ub1

OCI_ATTR_IS_RNPS Indicates that "Read No Process State" is set for method ub1

OCI_ATTR_IS_WNDS Indicates that "Write No Data State" is set for method ub1

OCI_ATTR_IS_WNPS Indicates that "Write No Process State" is set for method ub1

OCI_ATTR_IS_FINAL_METHOD Indicates that this is a final method ub1

Chapter 7
Parameter Attributes

7-14

Table 7-9 (Cont.) Attributes of Type Methods

Attribute Description Attribute
Data Type

OCI_ATTR_IS_INSTANTIABLE
_METHOD

Indicates that this is an instantiable method ub1

OCI_ATTR_IS_OVERRIDING_M
ETHOD

Indicates that this is an overriding method ub1

7.2.7 Collection Attributes
Lists and describes the attributes when a parameter is for a collection type.

Table 7-10 lists the attributes when a parameter is for a collection type (type OCI_PTYPE_COLL).

Table 7-10 Attributes of Collection Types

Attribute Description Attribute
Data Type

OCI_ATTR_DATA_SIZE The maximum size of the type attribute. This length is returned in bytes and not
characters for strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE Typecode. See Data Type Codes. OCITypeCode

OCI_ATTR_DATA_TYPE The data type of the type attribute. See Data Type Codes. ub2

OCI_ATTR_NUM_ELEMS The number of elements in an array. It is only valid for collections that are arrays. ub4

OCI_ATTR_NAME A pointer to a string that is the type attribute name OraText *

OCI_ATTR_PRECISION The precision of numeric type attributes. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

ub1

for explicit
describe

sb2

for implicit
describe

OCI_ATTR_SCALE The scale of numeric type attributes. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

sb1

OCI_ATTR_PACKAGE_NAM
E

A string that is the package name of a type if it is a package type. OraText *

OCI_ATTR_TYPE_NAME A string that is the type name. The returned value contains the type name if the
data type is SQLT_NTY or SQLT_REF. If the data type is SQLT_NTY, the name of
the named data type's type is returned. If the data type is SQLT_REF, the type
name of the named data type pointed to by the REF is returned.

OraText *

Chapter 7
Parameter Attributes

7-15

Table 7-10 (Cont.) Attributes of Collection Types

Attribute Description Attribute
Data Type

OCI_ATTR_SCHEMA_NAME A string with the schema name under which the type has been created OraText *

OCI_ATTR_REF_TDO Returns the in-memory REF of the type descriptor object (TDO) for the type, if the
column type is an object type. If space has not been reserved for the OCIRef,
then it is allocated implicitly in the cache. The caller can then pin the TDO with
OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID The character set ID, if the type attribute is of a string or character type ub2

OCI_ATTR_CHARSET_FOR
M

The character set form, if the type attribute is of a string or character type ub1

7.2.8 Synonym Attributes
Lists and describes the attributes when a parameter is for a synonym.

Table 7-11 lists the attributes when a parameter is for a synonym (type OCI_PTYPE_SYN).

Table 7-11 Attributes of Synonyms

Attribute Description Attribute Data Type

OCI_ATTR_OBJID Object ID ub4

OCI_ATTR_SCHEMA_NAME A string containing the schema name of the synonym
translation

OraText *

OCI_ATTR_NAME A NULL-terminated string containing the object name of
the synonym translation

OraText *

OCI_ATTR_LINK A NULL-terminated string containing the database link
name of the synonym translation

OraText *

7.2.9 Sequence Attributes
Lists and describes the attributes when a parameter is for a sequence.

Table 7-12 lists the attributes when a parameter is for a sequence (type OCI_PTYPE_SEQ).

Table 7-12 Attributes of Sequences

Attribute Description Attribute Data Type

OCI_ATTR_OBJID Object ID ub4

OCI_ATTR_MIN Minimum value (in Oracle NUMBER format) ub1

OCI_ATTR_MAX Maximum value (in Oracle NUMBER format) ub1

Chapter 7
Parameter Attributes

7-16

Table 7-12 (Cont.) Attributes of Sequences

Attribute Description Attribute Data Type

OCI_ATTR_INCR Increment (in Oracle NUMBER format) ub1

OCI_ATTR_CACHE Number of sequence numbers cached; zero if the
sequence is not a cached sequence (in Oracle
NUMBER format)

ub1

OCI_ATTR_ORDER Whether the sequence is ordered ub1

OCI_ATTR_HW_MARK High-water mark (in NUMBER format) ub1

See Also:

OCINumber Examples

7.2.10 Column Attributes
Lists and describes the attributes when a parameter is for a column of a table or view.

Note:

For BINARY_FLOAT and BINARY_DOUBLE:

If OCIDescribeAny() is used to retrieve the column data type (OCI_ATTR_DATA_TYPE)
for BINARY_FLOAT or BINARY_DOUBLE columns in a table, it returns the internal data
type code.

The SQLT codes corresponding to the internal data type codes for BINARY_FLOAT and
BINARY_DOUBLE are SQLT_IBFLOAT and SQLT_IBDOUBLE.

The following table lists the attributes when a parameter is for a column of a table or view (type
OCI_PTYPE_COL).

Table 7-13 Attributes of Columns of Tables or Views

Attribute Description Attribute
Data
Type

OCI_ATTR_CHAR_USED Returns the type of length semantics of the column. Zero (0) means byte-
length semantics and 1 means character-length semantics. See Character-
Length Semantics Support in Describe Operations.

ub1

Chapter 7
Parameter Attributes

7-17

Table 7-13 (Cont.) Attributes of Columns of Tables or Views

Attribute Description Attribute
Data
Type

OCI_ATTR_CHAR_SIZE Returns the column character length that is the number of characters allowed
in the column. It is the counterpart of OCI_ATTR_DATA_SIZE, which gets the
byte length. See Character-Length Semantics Support in Describe
Operations.

ub2

OCI_ATTR_COLLATION_ID Returns the derived collation ID of the column. The
OCI_ATTR_COLLATION_ID attribute is valid only for select-list describes
based on a statement handle for a query and not for OCIDescribeAny()
describes. It is relevant only for select-list items of character data types. For
other data types the value is always OCI_COLLATION_NONE. Table 7-14
describes the predefined constraints for a number of commonly used collation
IDs.

Note:

You can use the SQL built-in functions
NLS_COLLATION_ID and
NLS_COLLATION_NAME to map between
collation IDs returned for this attribute and
collation names used in SQL syntax.

See Also:

• OCI_ATTR_COLLATION_ID
• Oracle Database Globalization Support

Guide for information on how this set
collation influences query processing

ub4 *

Chapter 7
Parameter Attributes

7-18

Table 7-13 (Cont.) Attributes of Columns of Tables or Views

Attribute Description Attribute
Data
Type

OCI_ATTR_COL_PROPERTIES Returns describe data regarding certain column properties. The following are
the flags available in OCI_ATTR_COL_PROPERTIES:

• OCI_ATTR_COL_PROPERTY_IS_IDENTITY
• OCI_ATTR_COL_PROPERTY_IS_GEN_ALWAYS

– 1 - represents it is ALWAYS GENERATED
– 0 - represents GENERATED BY DEFAULT

• OCI_ATTR_COL_PROPERTY_IS_GEN_BY_DEF_ON_NULL
• OCI_ATTR_COL_PROPERTY_IS_LPART
• OCI_ATTR_COL_PROPERTY_IS_CONID
The following is a sample usage:

OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_prop, (ub4 *) 0,(ub4) OCI_ATTR_COL_PROPERTIES,
 (OCIError *) errhp));
if(col_prop & OCI_ATTR_COL_PROPERTY_IS_IDENTITY)
 printf("Identity Column \n");
if(col_prop & OCI_ATTR_COL_PROPERTY_IS_GEN_ALWAYS)
 printf("Column is always generated\n");
if(col_prop & OCI_ATTR_COL_PROPERTY_IS_GEN_BY_DEF_ON_NULL)
 printf("Column is generated by default on NULL\n");
if(col_prop & OCI_ATTR_COL_PROPERTY_IS_LPART)
 printf("Column is an implicitly generated logical partitioning
column for container_map enabled objects\n");
if(col_prop & OCI_ATTR_COL_PROPERTY_IS_CONID)
 printf("Column is a CON_ID column implicitly generated by
CONTAINERS() or is an ORIGIN_CON_ID column implicitly generated
for Extended Data Link\n");

See Oracle Database SQL Language Reference for more information about
the SQL syntax to specify these properties in an identity clause for a column
definition in the CREATE TABLE statement.

ub8

OCI_ATTR_INVISIBLE_COL Returns whether a column is invisible or not. A value of TRUE indicates the
column is an invisible column. Otherwise, the value FALSE is returned. See
"Describing Each Column to Know Whether It Is an Invisible Column" for an
example.

ub1

OCI_ATTR_DATA_SIZE The maximum size of the column. This length is returned in bytes and not
characters for strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_DATA_TYPE The data type of the column. See Data Type Codes. ub2

OCI_ATTR_NAME A pointer to a string that is the column name OraText
*

Chapter 7
Parameter Attributes

7-19

Table 7-13 (Cont.) Attributes of Columns of Tables or Views

Attribute Description Attribute
Data
Type

OCI_ATTR_PRECISION The precision of numeric columns. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale).
When precision is 0, NUMBER(precision, scale) can be represented
simply as NUMBER.

ub1

for explicit
describe

sb2

for implicit
describe

OCI_ATTR_SCALE The scale of numeric columns. If the precision is nonzero and scale is -127,
then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

sb1

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for the column. Does not return a
correct value for a CUBE or ROLLUP operation.

ub1

OCI_ATTR_TYPE_NAME Returns a string that is the type name. The returned value contains the type
name if the data type is SQLT_NTY or SQLT_REF. If the data type is SQLT_NTY,
the name of the named data type's type is returned. If the data type is
SQLT_REF, the type name of the named data type pointed to by the REF is
returned.

OraText
*

OCI_ATTR_SCHEMA_NAME Returns a string with the schema name under which the type has been
created

OraText
*

OCI_ATTR_REF_TDO The REF of the TDO for the type, if the column type is an object type OCIRef *

OCI_ATTR_CHARSET_ID The character set ID, if the column is of a string or character type ub2

OCI_ATTR_CHARSET_FORM The character set form, if the column is of a string or character type ub1

Table 7-14 describes predefined constants for a number of commonly used collation IDs, which
can be returned for the attribute OCI_ATTR_COLLATION_ID. The constants are listed with their
values (in parenthesis) and the SQL names of the corresponding collations.

Table 7-14 Predefined Collation IDs, Their ub4 Values (in parenthesis), and Their SQL Names

Collation ID (Value) SQL Name

OCI_COLLATION_NONE (0) Undefined collation; no collation has been specified.

OCI_COLLATION_NLS_COMP (16382) USING_NLS_COMP

OCI_COLLATION_NLS_SORT (16381) USING_NLS_SORT

OCI_COLLATION_NLS_SORT_CI (16380) USING_NLS_SORT_CI

OCI_COLLATION_NLS_SORT_AI (16379) USING_NLS_SORT_AI

OCI_COLLATION_NLS_SORT_CS (16378) USING_NLS_SORT_CS

OCI_COLLATION_BINARY (16383) BINARY

OCI_COLLATION_BINARY_CI (147455) BINARY_CI

Chapter 7
Parameter Attributes

7-20

Table 7-14 (Cont.) Predefined Collation IDs, Their ub4 Values (in parenthesis), and Their SQL Names

Collation ID (Value) SQL Name

OCI_COLLATION_BINARY_AI (81919) BINARY_AI

See Also:

OCIDescribeAny()

7.2.11 Argument and Result Attributes
Lists and describes the attributes when a parameter is for an argument of a procedure or
function.

Table 7-15 lists the attributes when a parameter is for an argument of a procedure or function
(type OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG), or for method
results (type OCI_PTYPE_TYPE_RESULT).

Table 7-15 Attributes of Arguments and Results

Attribute Description Attribute Data
Type

OCI_ATTR_NAME Returns a pointer to a string that is the argument name OraText *

OCI_ATTR_POSITION The position of the argument in the argument list. Always returns zero. ub2

OCI_ATTR_TYPECODE Typecode. See Data Type Codes. OCITypeCode

OCI_ATTR_DATA_TYPE The data type of the argument. See Data Type Codes. ub2

OCI_ATTR_DATA_SIZE The size of the data type of the argument. This length is returned in bytes and
not characters for strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_PRECISION The precision of numeric arguments. If the precision is nonzero and scale is
-127, then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

sb1 for explicit
describe

sb2 for implicit
describe

OCI_ATTR_SCALE The scale of numeric arguments. If the precision is nonzero and scale is -127,
then it is a FLOAT; otherwise, it is a NUMBER(precision, scale). When
precision is 0, NUMBER(precision, scale) can be represented simply as
NUMBER.

sb1

OCI_ATTR_LEVEL The data type levels. This attribute always returns zero. ub2

OCI_ATTR_HAS_DEFAULT Indicates whether an argument has a default ub1

Chapter 7
Parameter Attributes

7-21

Table 7-15 (Cont.) Attributes of Arguments and Results

Attribute Description Attribute Data
Type

OCI_ATTR_LIST_ARGUME
NTS

The list of arguments at the next level (when the argument is of a record or
table type)

void *

OCI_ATTR_IOMODE Indicates the argument mode:

0 is IN (OCI_TYPEPARAM_IN),

1 is OUT (OCI_TYPEPARAM_OUT),

2 is IN/OUT (OCI_TYPEPARAM_INOUT)

OCITypeParamM
ode

OCI_ATTR_RADIX Returns a radix (if number type) ub1

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for the column ub1

OCI_ATTR_TYPE_NAME Returns a string that is the type name or the package name for package local
types. The returned value contains the type name if the data type is SQLT_NTY
or SQLT_REF. If the data type is SQLT_NTY, the name of the named data type's
type is returned. If the data type is SQLT_REF, the type name of the named data
type pointed to by the REF is returned.

OraText *

OCI_ATTR_SCHEMA_NAME For SQLT_NTY or SQLT_REF, returns a string with the schema name under
which the type was created, or under which the package was created for
package local types

OraText *

OCI_ATTR_SUB_NAME For SQLT_NTY or SQLT_REF, returns a string with the type name, for package
local types

OraText *

OCI_ATTR_LINK For SQLT_NTY or SQLT_REF, returns a string with the database link name of the
database on which the type exists. This can happen only for package local
types, when the package is remote.

OraText *

OCI_ATTR_REF_TDO Returns the REF of the type descriptor object (TDO) for the type, if the argument
type is an object

OCIRef *

OCI_ATTR_CHARSET_ID Returns the character set ID if the argument is of a string or character type ub2

OCI_ATTR_CHARSET_FOR
M

Returns the character set form if the argument is of a string or character type ub1

7.2.12 List Attributes
Lists and describes the attributes when the parameter is for a list of columns, arguments, and
subprograms, or fields of a package record type.

When a parameter is for a list of columns, arguments, and subprograms, or fields of a package
record type (type OCI_PTYPE_LIST), it has the type-specific attributes and handles (parameters)
shown in Table 7-16.

The list has an OCI_ATTR_LTYPE attribute that designates the list type. Table 7-16 lists the
possible values and their lower bounds when traversing the list.

Chapter 7
Parameter Attributes

7-22

Table 7-16 List Attributes

List Attribute Description Lower Bound

OCI_LTYPE_COLUMN Column list 1

OCI_LTYPE_ARG_PROC Procedure argument list 1

OCI_LTYPE_ARG_FUNC Function argument list 0

OCI_LTYPE_SUBPRG Subprogram list 0

OCI_LTYPE_TYPE_ATTR Type attribute list 1

OCI_LTYPE_TYPE_METHOD Type method list 1

OCI_LTYPE_TYPE_ARG_PROC Type method without result argument list 0

OCI_LTYPE_TYPE_ARG_FUNC Type method without result argument list 1

OCI_LTYPE_SCH_OBJ Object list within a schema 0

OCI_LTYPE_DB_SCH Schema list within a database 0

The list has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of elements in the list.

Each list has LowerBound ... OCI_ATTR_NUM_PARAMS parameters. LowerBound is the value in the
Lower Bound column of Table 7-16. For a function argument list, position 0 has a parameter for
the return value (type OCI_PTYPE_ARG).

7.2.13 Schema Attributes
Lists and describes the attributes when a parameter is for a schema type.

Table 7-17 lists the attributes when a parameter is for a schema type (type OCI_PTYPE_SCHEMA).

Table 7-17 Attributes Specific to Schemas

Attribute Description Attribute Data Type

OCI_ATTR_LIST_OBJECTS List of objects in the schema OCIParam *

7.2.14 Database Attributes
Lists and describes the attributes when a parameter is for a database type.

Table 7-18 lists the attributes when a parameter is for a database type (type
OCI_PTYPE_DATABASE).

Table 7-18 Attributes Specific to Databases

Attribute Description Attribute Data Type

OCI_ATTR_VERSION Database version OraText *

OCI_ATTR_CHARSET_ID Database character set ID from the server
handle

ub2

Chapter 7
Parameter Attributes

7-23

Table 7-18 (Cont.) Attributes Specific to Databases

Attribute Description Attribute Data Type

OCI_ATTR_NCHARSET_ID Database national character set ID from the
server handle

ub2

OCI_ATTR_LIST_SCHEMAS List of schemas (type OCI_PTYPE_SCHEMA) in
the database

ub1

OCI_ATTR_MAX_PROC_LEN Maximum length of a procedure name ub4

OCI_ATTR_MAX_COLUMN_LEN Maximum length of a column name ub4

OCI_ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors and
prepared statements in the database. Values
are:

OCI_CURSOR_OPEN - Preserve cursor state as
before the commit operation.

OCI_CURSOR_CLOSED - Cursors are closed on
COMMIT, but the application can still reexecute
the statement without preparing it again.

ub1

OCI_ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database) name ub1

OCI_ATTR_CATALOG_LOCATION Position of the catalog in a qualified table.
Values are OCI_CL_START and OCI_CL_END.

ub1

OCI_ATTR_SAVEPOINT_SUPPORT Does database support savepoints? Values
are OCI_SP_SUPPORTED and
OCI_SP_UNSUPPORTED.

ub1

OCI_ATTR_NOWAIT_SUPPORT Does database support the nowait clause?
Values are OCI_NW_SUPPORTED and
OCI_NW_UNSUPPORTED.

ub1

OCI_ATTR_AUTOCOMMIT_DDL Is autocommit mode required for DDL
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL.

ub1

OCI_ATTR_LOCKING_MODE Locking mode for the database. Values are
OCI_LOCK_IMMEDIATE and
OCI_LOCK_DELAYED.

ub1

7.2.15 Rule Attributes
Lists and describes the attributes when a parameter is for a rule.

Table 7-19 lists the attributes when a parameter is for a rule (type OCI_PTYPE_RULE).

Table 7-19 Attributes Specific to Rules

Attribute Description Attribute Data Type

OCI_ATTR_CONDITION Rule condition OraText *

Chapter 7
Parameter Attributes

7-24

Table 7-19 (Cont.) Attributes Specific to Rules

Attribute Description Attribute Data Type

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of the evaluation context associated
with the rule, if any

OraText *

OCI_ATTR_EVAL_CONTEXT_NAME Object name of the evaluation context associated
with the rule, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the rule, if any OraText *

OCI_ATTR_LIST_ACTION_CONTEXT List of name-value pairs in the action context (type
OCI_PTYPE_LIST)

void *

7.2.16 Rule Set Attributes
Lists and describes the attributes when a parameter is for a rule set.

Table 7-20 lists the attributes when a parameter is for a rule set (type OCI_PTYPE_RULE_SET).

Table 7-20 Attributes Specific to Rule Sets

Attribute Description Attribute Data Type

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of the evaluation context associated
with the rule set, if any

OraText *

OCI_ATTR_EVAL_CONTEXT_NAME Object name of the evaluation context associated
with the rule set, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the rule set, if any OraText *

OCI_ATTR_LIST_RULES List of rules in the rule set (type OCI_PTYPE_LIST) void *

7.2.17 Evaluation Context Attributes
Lists and describes the attributes when a parameter is for an evaluation context.

Table 7-21 lists the attributes when a parameter is for an evaluation context (type
OCI_PTYPE_EVALUATION_CONTEXT).

Table 7-21 Attributes Specific to Evaluation Contexts

Attribute Description Attribute Data Type

OCI_ATTR_EVALUATION_FUNCTION Evaluation function associated with the evaluation
context, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the evaluation context, if
any

OraText *

OCI_ATTR_LIST_TABLE_ALIASES List of table aliases in the evaluation context (type
OCI_PTYPE_LIST)

void *

Chapter 7
Parameter Attributes

7-25

Table 7-21 (Cont.) Attributes Specific to Evaluation Contexts

Attribute Description Attribute Data Type

OCI_ATTR_LIST_VARIABLE_TYPES List of variable types in the evaluation context (type
OCI_PTYPE_LIST)

void *

7.2.18 Table Alias Attributes
Lists and describes the attributes when a parameter is for a table alias.

Table 7-22 lists the attributes when a parameter is for a table alias (type
OCI_PTYPE_TABLE_ALIAS).

Table 7-22 Attributes Specific to Table Aliases

Attribute Description Attribute Data Type

OCI_ATTR_NAME Table alias name OraText *

OCI_ATTR_TABLE_NAME Table name associated with the alias OraText *

7.2.19 Variable Type Attributes
Lists and describes the attributes when a parameter is for a variable.

Table 7-23 lists the attributes when a parameter is for a variable (type
OCI_PTYPE_VARIABLE_TYPE).

Table 7-23 Attributes Specific to Variable Types

Attribute Description Attribute Data Type

OCI_ATTR_NAME Variable name OraText *

OCI_ATTR_TYPE Variable type OraText *

OCI_ATTR_VAR_VALUE_FUNCTION Variable value function associated with the
variable, if any

OraText *

OCI_ATTR_VAR_METHOD_FUNCTION Variable method function associated with the
variable, if any

OraText *

7.2.20 Name Value Attributes
Lists and describes the attributes when a parameter is for a name-value pair.

Table 7-24 lists the attributes when a parameter is for a name-value pair (type
OCI_PTYPE_NAME_VALUE).

Chapter 7
Parameter Attributes

7-26

Table 7-24 Attributes Specific to Name-Value Pair

Attribute Description Attribute Data Type

OCI_ATTR_NAME Name OraText *

OCI_ATTR_VALUE Value OCIAnyData*

7.3 Character-Length Semantics Support in Describe Operations
Query and column information are supported with character-length semantics.

Since release Oracle9i, query and column information are supported with character-length
semantics.

The following attributes of describe handles support character-length semantics:

• OCI_ATTR_CHAR_SIZE gets the column character length, which is the number of characters
allowed in the column. It is the counterpart of OCI_ATTR_DATA_SIZE, which gets the byte
length.

• Calling OCIAttrGet() with attribute OCI_ATTR_CHAR_SIZE or OCI_ATTR_DATA_SIZE does not
return data on stored procedure parameters, because stored procedure parameters are
not bounded.

• OCI_ATTR_CHAR_USED gets the type of length semantics of the column. Zero (0) means
byte-length semantics and 1 means character-length semantics.

An application can describe a select-list query either implicitly or explicitly through
OCIStmtExecute(). Other schema elements must be described explicitly through
OCIDescribeAny().

This section includes the following topics:

• Implicit Describing

• Explicit Describing

• Implicit Describing
If the database column was created using character-length semantics, then the implicit
describe information contains the character length, the byte length, and a flag indicating
how the database column was created.

• Explicit Describing
Explicit describes of tables have three attributes: OCI_ATTR_DATA_SIZE,
OCI_ATTR_CHAR_SIZE, and OCI_ATTR_CHAR_USED.

See Also:

• OCIStmtExecute()

• OCIDescribeAny()

Chapter 7
Character-Length Semantics Support in Describe Operations

7-27

7.3.1 Implicit Describing
If the database column was created using character-length semantics, then the implicit
describe information contains the character length, the byte length, and a flag indicating how
the database column was created.

OCI_ATTR_CHAR_SIZE is the character length of the column or expression. The
OCI_ATTR_CHAR_USED flag is 1 in this case, indicating that the column or expression was
created with character-length semantics.

The OCI_ATTR_DATA_SIZE value is always large enough to hold all the data, as many as
OCI_ATTR_CHAR_SIZE number of characters. The OCI_ATTR_DATA_SIZE is usually set to
(OCI_ATTR_CHAR_SIZE)*(the client's maximum number of bytes) for each character value.

If the database column was created with byte-length semantics, then for the implicit describe (it
behaves exactly as it does before release 9.0) the OCI_ATTR_DATA_SIZE value returned is
(column's byte length)*(the maximum conversion ratio between the client and server's
character set). That is, the column byte length divided by the server's maximum number of
bytes for each character multiplied by the client's maximum number of bytes for each
character. The OCI_ATTR_CHAR_USED value is 0 and the OCI_ATTR_CHAR_SIZE value is set to the
same value as OCI_ATTR_DATA_SIZE.

7.3.2 Explicit Describing
Explicit describes of tables have three attributes: OCI_ATTR_DATA_SIZE, OCI_ATTR_CHAR_SIZE,
and OCI_ATTR_CHAR_USED.

Explicit describes of tables have the following attributes:

• OCI_ATTR_DATA_SIZE gets the column's size in bytes, as it appears in the server

• OCI_ATTR_CHAR_SIZE indicates the length of the column in characters

• OCI_ATTR_CHAR_USED, is a flag that indicates how the column was created, as described
previously in terms of the type of length semantics of the column

When inserting, if the OCI_ATTR_CHAR_USED flag is set, you can set the OCI_ATTR_MAXCHAR_SIZE
in the bind handle to the value returned by OCI_ATTR_CHAR_SIZE in the parameter handle. This
prevents you from violating the size constraint for the column.

This section includes the following topic: Client and Server Compatibility Issues for Describing.

• Client and Server Compatibility Issues for Describing
Character-length semantics depends on the release of the server or client. It is best
described when both server and client are Oracle9i or later. Otherwise, compatibility issues
as described result.

See Also:

IN Binds

Chapter 7
Character-Length Semantics Support in Describe Operations

7-28

7.3.2.1 Client and Server Compatibility Issues for Describing
Character-length semantics depends on the release of the server or client. It is best described
when both server and client are Oracle9i or later. Otherwise, compatibility issues as described
result.

When an Oracle9i or later client talks to an Oracle8i or earlier server, it behaves as if the
database is only using byte-length semantics.

When an Oracle8i or earlier client talks to a Oracle9i or later server, the attributes
OCI_ATTR_CHAR_SIZE and OCI_ATTR_CHAR_USED are not available on the client side.

In both cases, the character-length semantics cannot be described when either the server or
client has an Oracle8i or earlier software release.

7.4 Examples Using OCIDescribeAny()
The following examples demonstrate the use of OCIDescribeAny() for describing different
types of schema objects.

For a more detailed code sample, see the demonstration program cdemodsa.c included with
your Oracle Database installation.

• Describing with Boolean Data Type Columns

• Retrieving Column Data Types for a Table

• Describing the Stored Procedure

• Retrieving Attributes of an Object Type

• Retrieving the Collection Element's Data Type of a Named Collection Type

• Describing with Character-Length Semantics

• Describing Each Column to Know Whether It Is an Invisible Column

• Describing with Boolean Data Type Columns
Describing on a table with boolean data type columns.

• Retrieving Column Data Types for a Table
Illustrates the use of an explicit describe that retrieves the column data types for a table.

• Describing the Stored Procedure
The steps required to describe type methods (also divided into functions and procedures)
are identical to those of regular PL/SQL functions and procedures.

• Retrieving Attributes of an Object Type
Illustrates the use of an explicit describe on a named object type.

• Retrieving the Collection Element's Data Type of a Named Collection Type
Illustrates the use of an explicit describe on a named collection type.

• Describing with Character-Length Semantics
Shows a loop that retrieves the column names and data types corresponding to a query
following query execution.

• Describing Each Column to Know Whether It Is an Invisible Column
Illustrates the use of invisible column properties and checking each column to determine if
it is an invisible column.

Chapter 7
Examples Using OCIDescribeAny()

7-29

See Also:

• OCI Demonstration Programs for additional information about the demonstration
programs

• OCIDescribeAny()

7.4.1 Describing with Boolean Data Type Columns
Describing on a table with boolean data type columns.

When you do a describe on a table with boolean Data Type columns, external datatype code
SQLT_BOL is returned. This function also returns the maximum data size and the display size for
boolean data type from the server. The maximum data size returned for boolean is 1byte,
whereas the display size for boolean is 11bytes. SQLplus uses the display size to display TRUE
or FALSE as string and for converting the boolean true to false to string TRUE or FALSE.

Example 7-2 Support for Boolean Data Type

text tblName[] = "BoolTable”; /* the name of a table to be described */

if (OCIDescribeAny(svch, errh, (void *)tblName, sizeof(tblName),
OCI_OTYPE_NAME, 0,OCI_PTYPE_TABLE, dschp))
return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet(). */
/* get the number of columns in the table */
numcols = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&numcols, (ub4 *)0,
OCI_ATTR_NUM_COLS, errh))
 return OCI_ERROR;

 …
 …

/* go through the column list and retrieve the data type of each column,
and then recursively describe column types. */
for (i = 1; i <= numcols; i++)
{

/* for example, get data type for ith column */
coltyp = 0;
if (OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM, (void *)&coltyp, (ub4
*)0,OCI_ATTR_DATA_TYPE, errh))
return OCI_ERROR;
if (coltype == SQLT_BOL)
 printf(“Column type is boolean\n”);

Chapter 7
Examples Using OCIDescribeAny()

7-30

/* get max data size */
if (OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM, (void *)&colmaxsz, (ub4
*)0,OCI_ATTR_DATA_SIZE, errh))
return OCI_ERROR;

/* get display size */
if (OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM, (void *)&coldispsz, (ub4
*)0,OCI_ATTR_DISP_SIZE, errh))
return OCI_ERROR;

}

7.4.2 Retrieving Column Data Types for a Table
Illustrates the use of an explicit describe that retrieves the column data types for a table.

Example 7-3 illustrates the use of an explicit describe that retrieves the column data types for a
table.

Example 7-3 Using an Explicit Describe to Retrieve Column Data Types for a Table

...
int i=0;
text objptr[] = "EMPLOYEES"; /* the name of a table to be described */
ub2 numcols, col_width;
ub1 char_semantics;
ub2 coltyp;
ub4 objp_len = (ub4) strlen((char *)objptr);
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *collsthd = (OCIParam *) 0; /* handle to list of columns */
OCIParam *colhd = (OCIParam *) 0; /* column handle */
OCIDescribe *dschp = (OCIDescribe *)0; /* describe handle */

OCIHandleAlloc((void *)envhp, (void **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0);

/* get the describe handle for the table */
if (OCIDescribeAny(svch, errh, (void *)objptr, objp_len, OCI_OTYPE_NAME, 0,
 OCI_PTYPE_TABLE, dschp))
 return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet(). */
/* get the number of columns in the table */
numcols = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&numcols, (ub4 *)0,
 OCI_ATTR_NUM_COLS, errh))
 return OCI_ERROR;

/* get the handle to the column list of the table */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&collsthd, (ub4 *)0,
 OCI_ATTR_LIST_COLUMNS, errh)==OCI_NO_DATA)
 return OCI_ERROR;

Chapter 7
Examples Using OCIDescribeAny()

7-31

/* go through the column list and retrieve the data type of each column,
and then recursively describe column types. */

for (i = 1; i <= numcols; i++)
{
 /* get parameter for column i */
 if (OCIParamGet((void *)collsthd, OCI_DTYPE_PARAM, errh, (void **)&colhd, (ub4)i))
 return OCI_ERROR;

 /* for example, get data type for ith column */
 coltyp = 0;
 if (OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM, (void *)&coltyp, (ub4 *)0,
 OCI_ATTR_DATA_TYPE, errh))
 return OCI_ERROR;

 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 OCIAttrGet((void*) colhd, (ub4) OCI_DTYPE_PARAM,
 (void*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errh);

 col_width = 0;
 if (char_semantics)
 /* Retrieve the column width in characters */
 OCIAttrGet((void*) colhd, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errh);
 else
 /* Retrieve the column width in bytes */
 OCIAttrGet((void*) colhd, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errh);
}

if (dschp)
 OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);
...

7.4.3 Describing the Stored Procedure
The steps required to describe type methods (also divided into functions and procedures) are
identical to those of regular PL/SQL functions and procedures.

The difference between a procedure and a function is that the latter has a return type at
position 0 in the argument list, whereas the former has no argument associated with position 0
in the argument list. Note that procedures and functions can take the default types of objects
as arguments. Consider the following procedure:

P1 (arg1 emp.sal%type, arg2 emp%rowtype)

In Example 7-4, assume that each row in emp table has two columns: name(VARCHAR2(20)) and
sal(NUMBER). In the argument list for P1, there are two arguments (arg1 and arg2 at positions 1
and 2, respectively) at level 0 and arguments (name and sal at positions 1 and 2, respectively)
at level 1. Description of P1 returns the number of arguments as two while returning the higher
level (> 0) arguments as attributes of the 0 zero level arguments.

Example 7-4 Describing the Stored Procedure

...
int i = 0, j = 0;
text objptr[] = "add_job_history"; /* the name of a procedure to be described */

Chapter 7
Examples Using OCIDescribeAny()

7-32

ub4 objp_len = (ub4)strlen((char *)objptr);
ub2 numargs = 0, numargs1, pos, level;
text *name, *name1;
ub4 namelen, namelen1;
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *arglst = (OCIParam *) 0; /* list of args */
OCIParam *arg = (OCIParam *) 0; /* argument handle */
OCIParam *arglst1 = (OCIParam *) 0; /* list of args */
OCIParam *arg1 = (OCIParam *) 0; /* argument handle */
OCIDescribe *dschp = (OCIDescribe *)0; /* describe handle */

OCIHandleAlloc((void *)envhp, (void **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0);

/* get the describe handle for the procedure */
if (OCIDescribeAny(svch, errh, (void *)objptr, objp_len, OCI_OTYPE_NAME, 0,
 OCI_PTYPE_PROC, dschp))
 return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* Get the number of arguments and the arg list */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&arglst,
 (ub4 *)0, OCI_ATTR_LIST_ARGUMENTS, errh))
 return OCI_ERROR;

if (OCIAttrGet((void *)arglst, OCI_DTYPE_PARAM, (void *)&numargs, (ub4 *)0,
 OCI_ATTR_NUM_PARAMS, errh))
 return OCI_ERROR;

/* For a procedure, you begin with i = 1; for a
function, you begin with i = 0. */

for (i = 1; i <= numargs; i++) {
 OCIParamGet ((void *)arglst, OCI_DTYPE_PARAM, errh, (void **)&arg, (ub4)i);
 namelen = 0;
 OCIAttrGet((void *)arg, OCI_DTYPE_PARAM, (void *)&name, (ub4 *)&namelen,
 OCI_ATTR_NAME, errh);

 /* to print the attributes of the argument of type record
 (arguments at the next level), traverse the argument list */

 OCIAttrGet((void *)arg, OCI_DTYPE_PARAM, (void *)&arglst1, (ub4 *)0,
 OCI_ATTR_LIST_ARGUMENTS, errh);

 /* check if the current argument is a record. For arg1 in the procedure
 arglst1 is NULL. */

 if (arglst1) {
 numargs1 = 0;
 OCIAttrGet((void *)arglst1, OCI_DTYPE_PARAM, (void *)&numargs1, (ub4 *)0,
 OCI_ATTR_NUM_PARAMS, errh);

 /* Note that for both functions and procedures,the next higher level
 arguments start from index 1. For arg2 in the procedure, the number of
 arguments at the level 1 would be 2 */

 for (j = 1; j <= numargs1; j++) {
 OCIParamGet((void *)arglst1, OCI_DTYPE_PARAM, errh, (void **)&arg1,

Chapter 7
Examples Using OCIDescribeAny()

7-33

 (ub4)j);
 namelen1 = 0;
 OCIAttrGet((void *)arg1, OCI_DTYPE_PARAM, (void *)&name1, (ub4 *)&namelen1,
 OCI_ATTR_NAME, errh);
 }
 }
}

if (dschp)
 OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);
...

7.4.4 Retrieving Attributes of an Object Type
Illustrates the use of an explicit describe on a named object type.

Example 7-5 illustrates the use of an explicit describe on a named object type. It illustrates how
you can describe an object by its name or by its object reference (OCIRef). The following code
fragment attempts to retrieve the data type value of each of the object type's attributes.

Example 7-5 Using an Explicit Describe on a Named Object Type

...
int i = 0;
text type_name[] = "inventory_typ";
ub4 type_name_len = (ub4)strlen((char *)type_name);
OCIRef *type_ref = (OCIRef *) 0;
ub2 numattrs = 0, describe_by_name = 1;
ub2 datatype = 0;
OCITypeCode typecode = 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *attrlsthd = (OCIParam *) 0; /* handle to list of attrs */
OCIParam *attrhd = (OCIParam *) 0; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((void *)envh, (void **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0))
 return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
 if (OCIDescribeAny(svch, errh, (void *)type_name, type_name_len,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}
else {
 /* get ref to type using OCIAttrGet */

 /* get the describe handle for the type */
 if (OCIDescribeAny(svch, errh, (void*)type_ref, 0, OCI_OTYPE_REF,
 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by OCIAttrGet */

Chapter 7
Examples Using OCIDescribeAny()

7-34

/* get the number of attributes in the type */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&numattrs, (ub4 *)0,
 OCI_ATTR_NUM_TYPE_ATTRS, errh))
 return OCI_ERROR;

/* get the handle to the attribute list of the type */
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&attrlsthd, (ub4 *)0,
 OCI_ATTR_LIST_TYPE_ATTRS, errh))
 return OCI_ERROR;

/* go through the attribute list and retrieve the data type of each attribute,
and then recursively describe attribute types. */

for (i = 1; i <= numattrs; i++)
{
/* get parameter for attribute i */
if (OCIParamGet((void *)attrlsthd, OCI_DTYPE_PARAM, errh, (void **)&attrhd, i))
 return OCI_ERROR;

/* for example, get data type and typecode for attribute; note that
OCI_ATTR_DATA_TYPE returns the SQLT code, whereas OCI_ATTR_TYPECODE returns the
Oracle Type System typecode. */

datatype = 0;
if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM, (void *)&datatype, (ub4 *)0,
 OCI_ATTR_DATA_TYPE,errh))
 return OCI_ERROR;

typecode = 0;
if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM,(void *)&typecode, (ub4 *)0,
 OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

/* if attribute is an object type, recursively describe it */
if (typecode == OCI_TYPECODE_OBJECT)
{
 OCIRef *attr_type_ref;
 OCIDescribe *nested_dschp;

 /* allocate describe handle */
 if (OCIHandleAlloc((void *)envh,(void**)&nested_dschp,
 (ub4)OCI_HTYPE_DESCRIBE,(size_t)0, (void **)0))
 return OCI_ERROR;

 if (OCIAttrGet((void *)attrhd, OCI_DTYPE_PARAM,
 (void *)&attr_type_ref, (ub4 *)0, OCI_ATTR_REF_TDO,errh))
 return OCI_ERROR;

 OCIDescribeAny(svch, errh,(void*)attr_type_ref, 0,
 OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
 /* go on describing the attribute type... */
}
}

if (dschp)
 OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);
...

Chapter 7
Examples Using OCIDescribeAny()

7-35

7.4.5 Retrieving the Collection Element's Data Type of a Named Collection
Type

Illustrates the use of an explicit describe on a named collection type.

Example 7-6 illustrates the use of an explicit describe on a named collection type.

Example 7-6 Using an Explicit Describe on a Named Collection Type

text type_name[] = "phone_list_typ";
ub4 type_name_len = (ub4) strlen((char *)type_name);
OCIRef *type_ref = (OCIRef *) 0;
ub2 describe_by_name = 1;
ub4 num_elements = 0;
OCITypeCode typecode = 0, collection_typecode = 0, element_typecode = 0;
void *collection_element_parmh = (void *) 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */

/* allocate describe handle */
if (OCIHandleAlloc((void *)envh, (void **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (void **)0))
 return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
 if (OCIDescribeAny(svch, errh, (void *)type_name, type_name_len,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}
else {
 /* get ref to type using OCIAttrGet */

 /* get the describe handle for the type */
 if (OCIDescribeAny(svch, errh, (void*)type_ref, 0, OCI_OTYPE_REF,
 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}

/* get the parameter handle */
if (OCIAttrGet((void *)dschp, OCI_HTYPE_DESCRIBE, (void *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
typecode = 0;
if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM,(void *)&typecode, (ub4 *)0,
 OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
 proceed to describe collection element */
if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
{
 /* get the collection's type: OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */
 collection_typecode = 0;
 if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, (void *)&collection_typecode,
 (ub4 *)0,
 OCI_ATTR_COLLECTION_TYPECODE, errh))

Chapter 7
Examples Using OCIDescribeAny()

7-36

 return OCI_ERROR;

 /* get the collection element; you MUST use this to further retrieve information
 about the collection's element */
 if (OCIAttrGet((void *)parmh, OCI_DTYPE_PARAM, &collection_element_parmh,
 (ub4 *)0,
 OCI_ATTR_COLLECTION_ELEMENT, errh))
 return OCI_ERROR;
 /* get the number of elements if collection is a VARRAY; not valid for nested
 tables */
 if (collection_typecode == OCI_TYPECODE_VARRAY) {
 if (OCIAttrGet((void *)collection_element_parmh, OCI_DTYPE_PARAM,
 (void *)&num_elements, (ub4 *)0, OCI_ATTR_NUM_ELEMS, errh))
 return OCI_ERROR;
 }
 /* now use the collection_element parameter handle to retrieve information about
 the collection element */
 element_typecode = 0;
 if (OCIAttrGet((void *)collection_element_parmh, OCI_DTYPE_PARAM,
 (void *)&element_typecode, (ub4 *)0, OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

 /* do the same to describe additional collection element information; this is
 very similar to describing type attributes */
}

if (dschp)
 OCIHandleFree((void *) dschp, OCI_HTYPE_DESCRIBE);
...

7.4.6 Describing with Character-Length Semantics
Shows a loop that retrieves the column names and data types corresponding to a query
following query execution.

Example 7-7 shows a loop that retrieves the column names and data types corresponding to a
query following query execution. The query was associated with the statement handle by a
prior call to OCIStmtPrepare2().

Example 7-7 Using a Parameter Descriptor to Retrieve the Data Types, Column Names,
and Character-Length Semantics

...
OCIParam *mypard = (OCIParam *) 0;
ub2 dtype;
text *col_name;
ub4 counter, col_name_len, char_semantics;
ub2 col_width;
sb4 parm_status;

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt), NULL, 0,
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm_status = OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&mypard, (ub4) counter);

Chapter 7
Examples Using OCIDescribeAny()

7-37

/* Loop only if a descriptor was successfully retrieved for
 current position, starting at 1 */
while (parm_status == OCI_SUCCESS) {
 /* Retrieve the data type attribute */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));
 /* Retrieve the column name attribute */
 col_name_len = 0;
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
 (OCIError *) errhp));
 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errhp));
 col_width = 0;
 if (char_semantics)
 /* Retrieve the column width in characters */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errhp));
 else
 /* Retrieve the column width in bytes */
 checkerr(errhp, OCIAttrGet((void*) mypard, (ub4) OCI_DTYPE_PARAM,
 (void*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));
 /* increment counter and get next descriptor, if there is one */
 counter++;
 parm_status = OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&mypard, (ub4) counter);
} /* while */
...

7.4.7 Describing Each Column to Know Whether It Is an Invisible Column
Illustrates the use of invisible column properties and checking each column to determine if it is
an invisible column.

The following code example illustrates the use of invisible column properties and checking
each column to determine if it is an invisible column. See the OCI_ATTR_INVISIBLE_COL
attribute description in the table in Column Attributes for more information.

Example 7-8 Checking for Invisible Columns

.....

.....
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));
 /* Set the invisible column attribute to get the invisible column(s). */
 checkerr(errhp, OCIAttrSet(dschp, OCI_HTYPE_DESCRIBE, &invscols, 0,
 OCI_ATTR_SHOW_INVISIBLE_COLUMNS, errhp));

 if ((retval = OCIDescribeAny(svchp, errhp, (dvoid *)tablename,
 (ub4) strlen((char *) tablename),
 OCI_OTYPE_NAME, (ub1)1,
 OCI_PTYPE_TABLE, dschp)) != OCI_SUCCESS)
 {
 if (retval == OCI_NO_DATA)

Chapter 7
Examples Using OCIDescribeAny()

7-38

 {
 printf("NO DATA: OCIDescribeAny on %s\n", tablename);
 }
 else /* OCI_ERROR */
 {
 printf("ERROR: OCIDescribeAny on %s\n", tablename);
 checkerr(errhp, retval);
 return;
 }
 }
 else
 {
 ub1 colIsInv;
 /* Get the parameter descriptor. */
 checkerr (errhp, OCIAttrGet((dvoid *)dschp, (ub4)OCI_HTYPE_DESCRIBE,
 (dvoid *)&parmp, (ub4 *)0, (ub4)OCI_ATTR_PARAM,
 (OCIError *)errhp));

 /* Get the attributes of the table. */
 checkerr (errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &objid, (ub4 *) 0,
 (ub4) OCI_ATTR_OBJID, (OCIError *)errhp));
 /* Get the column list of the table. */
 checkerr (errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &collst, (ub4 *) 0,
 (ub4) OCI_ATTR_LIST_COLUMNS, (OCIError *)errhp));
 /* Get the number of columns. */
 checkerr (errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &numcols, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_COLS, (OCIError *)errhp));

 /* Now describe each column to know whether it is a invisible column or not. */

 for (pos = 1; pos <= parmcnt; pos++)
 {
 /* Get the parameter descriptor for each column. */
 checkerr (errhp, OCIParamGet((dvoid *)parmp, (ub4)OCI_DTYPE_PARAM, errhp,
 (dvoid *)&parmdp, (ub4) pos));

 checkerr (errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &colIsInv, (ub4 *) 0,
 (ub4) OCI_ATTR_INVISIBLE_COL, (OCIError *)errhp));

 }

 }

Chapter 7
Examples Using OCIDescribeAny()

7-39

8
LOB and BFILE Operations

This chapter describes LOB and BFILE operations.

This chapter contains these topics:

• About Using OCI Functions for LOBs

• About Creating and Modifying Persistent LOBs

• About Associating a BFILE in a Table with an Operating System File

• LOB Attributes of an Object

• Array Interface for LOBs

• About Using LOBs of Size Greater than 4 GB

• LOB and BFILE Functions in OCI

• Temporary LOB Support

• Prefetching of LOB Data, Length, and Chunk Size

• Options of SecureFiles LOBs

• About Using OCI Functions for LOBs
OCI includes a set of functions for performing operations on large objects (LOBs) in a
database.

• About Creating and Modifying Persistent LOBs
LOB instances can be either persistent (stored in the database) or temporary (existing only
in the scope of your application).

• About Associating a BFILE in a Table with an Operating System File
The BFILENAME function can be used in an INSERT statement to associate an external
server-side (operating system) file with a BFILE column or attribute in a table.

• LOB Attributes of an Object
An OCI application can use the OCIObjectNew() function to create a persistent or transient
object with a LOB attribute.

• Array Interface for LOBs
You can use the OCI array interface with LOBs, just as with any other data type.

• About Using LOBs of Size Greater than 4 GB
Starting with Oracle Database 10g Release 1 of OCI, functions were introduced to support
LOBs of size greater than 4 GB. These new functions can also be used in new applications
for LOBs of less than 4 GB.

• LOB and BFILE Functions in OCI
In all LOB operations that involve offsets into the data, the offset begins at 1. For LOB
operations, such as OCILobCopy2(), OCILobErase2(), OCILobLoadFromFile2(), and
OCILobTrim2(), the amount parameter is in characters for CLOBs and NCLOBs, regardless of
the client-side character set.

8-1

• Temporary LOB Support
OCI provides functions for creating and freeing temporary LOBs,
OCILobCreateTemporary() and OCILobFreeTemporary(), and a function for determining
whether a LOB is temporary, OCILobIsTemporary().

• Prefetching of LOB Data, Length, and Chunk Size
To improve OCI access of smaller LOBs, LOB data can be prefetched and cached while
also fetching the locator.

• Options of SecureFiles LOBs
For SecureFiles (LOBs with the STORE AS SECUREFILE option, which were introduced in
Oracle Database 11g Release 1) you can specify the SQL parameter DEDUPLICATE in
CREATE TABLE and ALTER TABLE statements.

8.1 About Using OCI Functions for LOBs
OCI includes a set of functions for performing operations on large objects (LOBs) in a
database.

Persistent LOBs (BLOBs, CLOBs, NCLOBs) are stored in the database tablespaces in a way that
optimizes space and provides efficient access. These LOBs have the full transactional support
of the Oracle database. BFILEs are large data objects stored in the server's operating system
files outside the database tablespaces.

OCI also provides support for temporary LOBs, which can be used like local variables for
operating on LOB data.

BFILEs are read-only. Oracle Database supports only binary BFILEs.

Beginning with Oracle Database 12c Release 2 (12.2), most LOB functions support Application
Continuity.

Beginning with Oracle Database 12c Release 2 (12.2), OCI LOB APIs support distributed
operations on remote LOBs (CLOB, BLOB) except for OCI LOB APIs for BFILES. This
includes support for certain queries that select a remote LOB locator that in previous releases
returned an error. The only restriction is that all LOB APIs that take in two locators should have
both LOBs collocated at one database. The following LOB functions throw an error when a
remote locator is passed to it: OCILobAssign(), OCILobLocatorAssign(), OCILobArrayRead(),
OCILobArrayWrite(), and OCILobLoadFromFile2().

• LOB Performance Guidelines
Performance guidelines while using LOBs.

Chapter 8
About Using OCI Functions for LOBs

8-2

See Also:

• OCI Demonstration Programs for code samples showing the use of LOBs

• $ORACLE_HOME/rdbms/demo/lobs/oci/ for specific LOB code samples

• Oracle Database PL/SQL Packages and Types Reference for the DBMS_LOB
package

• Oracle Database SecureFiles and Large Objects Developer's Guide

• When Application Continuity in OCI Can Fail Over for a complete list.

• Deprecated Lob Functions for information about support for Application
Continuity also includes some deprecated LOB functions for compatibility.

8.1.1 LOB Performance Guidelines
Performance guidelines while using LOBs.

The following guidelines help to get the the best performance when using LOBs, and minimize
the number of round trips to the server:

• If you know the maximum size of your LOB data, and you intend to read or write the entire
LOB, then use the Data Interface as mentioned in this section. You can allocate the entire
size of LOB as a single buffer, use piecewise, or callback mechanisms.

– For read operations, define the LOB as character or binary type using the
OCIDefineByPos() function.

– For write operations, bind the LOB as character or binary type using the
OCIBindByPos() function.

• Otherwise, use the LOB functions as follows:

– Use LOB prefetching for reads. Define the LOB prefetch size such that it can
accommodate majority of the LOB values in the column.

– Use piecewise or callback mechanism while using OCILobRead2 or OCILobWrite2
operations to minimize the roundtrips to the server.

See Also:

• LOB Performance Guidelines

• Data Interface for Persistent LOBs

8.2 About Creating and Modifying Persistent LOBs
LOB instances can be either persistent (stored in the database) or temporary (existing only in
the scope of your application).

Do not confuse the concept of a persistent LOB with a persistent object.

There are two ways of creating and modifying persistent LOBs:

Chapter 8
About Creating and Modifying Persistent LOBs

8-3

• Using the data interface

You can create a LOB by inserting character data into a CLOB column or RAW data into a
BLOB column directly. You can also modify LOBs by using a SQL UPDATE statement, to bind
character data into a CLOB column or RAW data into a BLOB column.

Insert, update, and select of remote LOBs (over a dblink) is supported because neither the
remote server nor the local server is of a release earlier than Oracle Database 10g
Release 2. The data interface only supports data size up to 2 GB – 1, the maximum size of
an sb4 data type.

• Using the LOB locator

You create a new internal LOB by initializing a new LOB locator using
OCIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the
OCI_ATTR_LOBEMPTY attribute), and then binding the locator to a placeholder in an INSERT
statement. Doing so inserts the empty locator into a table with a LOB column or attribute.
You can then perform a SELECT...FOR UPDATE operation on this row to get the locator, and
write to it using one of the OCI LOB functions.

Note:

To modify a LOB column or attribute (write, copy, trim, and so forth), you must
lock the row containing the LOB. One way to do this is to use a SELECT...FOR
UPDATE statement to select the locator before performing the operation.

For any LOB write command to be successful, a transaction must be open. If you commit a
transaction before writing the data, you must lock the row again (by reissuing the
SELECT...FOR UPDATE statement, for example), because the commit closes the transaction.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide chapter
about data interface for persistent LOBs for more information and examples

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE

• OCIDescriptorAlloc()

• OCIAttrSet()

8.3 About Associating a BFILE in a Table with an Operating
System File

The BFILENAME function can be used in an INSERT statement to associate an external server-
side (operating system) file with a BFILE column or attribute in a table.

Using BFILENAME in an UPDATE statement associates the BFILE column or attribute with a
different operating system file. OCILobFileSetName() can also be used to associate a BFILE in

Chapter 8
About Associating a BFILE in a Table with an Operating System File

8-4

a table with an operating system file. BFILENAME is usually used in an INSERT or UPDATE
statement without bind variables, and OCILobFileSetName() is used for bind variables.

See Also:

• OCILobFileSetName()

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about the BFILENAME function

8.4 LOB Attributes of an Object
An OCI application can use the OCIObjectNew() function to create a persistent or transient
object with a LOB attribute.

This section includes the following topics:

• Writing to a LOB Attribute of an Object

• Transient Objects with LOB Attributes

• Writing to a LOB Attribute of an Object
It is possible to use OCI to create a new persistent object with a LOB attribute and write to
that LOB attribute.

• Transient Objects with LOB Attributes
An application can call OCIObjectNew() and create a transient object with an internal LOB
(BLOB, CLOB, NCLOB) attribute.

See Also:

OCIObjectNew()

8.4.1 Writing to a LOB Attribute of an Object
It is possible to use OCI to create a new persistent object with a LOB attribute and write to that
LOB attribute.

The application would follow these steps when using a LOB locator:

1. Call OCIObjectNew() to create a persistent object with a LOB attribute.

2. Mark the object as "dirty" (modified).

3. Flush the object, thereby inserting a row into the table.

4. Repin the latest version of the object (or refresh the object), thereby retrieving the object
from the database and acquiring a valid locator for the LOB.

5. Call OCIObjectWrite2() using the LOB locator in the object to write the data.

There is a second way of writing to a LOB attribute. When using the data interface, you can
bind or define character data for a CLOB attribute or RAW data for a BLOB attribute.

Chapter 8
LOB Attributes of an Object

8-5

See Also:

• OCI Object-Relational Programming and the chapters that follow it for more
information about objects

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data for usage and examples of SELECT statements

• OCIObjectNew()

• OCILobWrite2()

8.4.2 Transient Objects with LOB Attributes
An application can call OCIObjectNew() and create a transient object with an internal LOB
(BLOB, CLOB, NCLOB) attribute.

However, you cannot perform any operations, such as read or write, on the LOB attribute
because transient objects with LOB attributes are not supported. Calling OCIObjectNew() to
create a transient internal LOB type does not fail, but the application cannot use any LOB
operations with the transient LOB.

An application can, however, create a transient object with a BFILE attribute and use the BFILE
attribute to read data from a file stored in the server's file system. The application can also call
OCIObjectNew() to create a transient BFILE.

See Also:

OCIObjectNew()

8.5 Array Interface for LOBs
You can use the OCI array interface with LOBs, just as with any other data type.

There are two ways of using the array interface.

• Using the data interface

You can bind or define arrays of character data for a CLOB column or RAW data for a BLOB
column. You can use array bind and define interfaces to insert and select multiple rows
with LOBs in one round-trip to the server.

• Using the LOB locator

When using the LOB locator you must allocate the descriptors, as shown in the following
code example.

Using the LOB Locator and Allocating the Descriptors

/* First create an array of OCILobLocator pointers: */
OCILobLocator *lobp[10];

Chapter 8
Array Interface for LOBs

8-6

for (i=0; i < 10; i++)
{ OCIDescriptorAlloc (...,&lobp[i],...);

/* Then bind the descriptor as follows */
 OCIBindByPos(... &lobp[i], ...);

See Also:

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data for usage and examples of SELECT statements

8.6 About Using LOBs of Size Greater than 4 GB
Starting with Oracle Database 10g Release 1 of OCI, functions were introduced to support
LOBs of size greater than 4 GB. These new functions can also be used in new applications for
LOBs of less than 4 GB.

Oracle Database enables you to create tablespaces with block sizes different from the
database block size. The maximum size of a LOB depends on the size of the tablespace
blocks. The tablespace block size in which the LOB is stored controls the value of CHUNK, which
is a parameter of LOB storage. When you create a LOB column, you specify a value for CHUNK,
which is the number of bytes to be allocated for LOB manipulation. The value must be a
multiple of the tablespace block size, or Oracle Database rounds up to the next multiple. (If the
tablespace block size equals the database block size, then CHUNK is also a multiple of the
database block size.) The default CHUNK size is one tablespace block, and the maximum value
is 32 KB.

In this guide, 4 GB is defined as 4 gigabytes – 1, or 4,294,967,295 bytes. The maximum size of
a LOB, persistent or temporary, is (4 gigabytes – 1) * (CHUNK). The maximum LOB size can
range from 8 terabytes (TB) to 128 TB.

For example, suppose that your database block size is 32 KB and you create a tablespace with
a nonstandard block size of 8 KB. Further suppose that you create a table with a LOB column
and specify a CHUNK size of 16 KB (which is a multiple of the 8 KB tablespace block size). Then
the maximum size of a LOB in this column is (4 gigabytes – 1) * 16 KB.

The maximum size of a BFILE is the maximum file size allowed in the operating system, or
UB8MAXVAL, whichever is smaller.

Older LOB functions use ub4 as the data types of some parameters, and the ub4 data type can
only hold up to 4 GB. The newer functions use parameters of 8-byte length, oraub8, which is a
data type defined in oratypes.h. The data types oraub8 and orasb8 are mapped to
appropriate 64-bit native data types depending on the compiler and operating system. Macros
are used to not define oraub8 and orasb8 if compiling in 32-bit mode with strict ANSI option.

OCILobGetChunkSize() returns the usable chunk size in bytes for BLOBs, CLOBs, and NCLOBs.
The number of bytes stored in a chunk is actually less than the size of the CHUNK parameter
due to internal storage overhead. The function OCILobGetStorageLimit() is provided to return
the maximum size in bytes of internal LOBs in the current installation.

Chapter 8
About Using LOBs of Size Greater than 4 GB

8-7

Note:

Oracle Database does not support BFILEs larger than 4 gigabytes in any
programmatic environment. An additional file size limit imposed by your operating
system also applies to BFILEs.

This section includes the following topics:

• Functions to Use for the Increased LOB Sizes

• Compatibility and Migration

• OCILobGetChunkSize()

• OCILobGetStorageLimit()

• Functions to Use for the Increased LOB Sizes
Eight functions with names that end in "2" and that use the data type oraub8 in place of the
data type ub4 were introduced in Oracle Database 10g Release 1.

• Compatibility and Migration
Existing OCI programs can be enhanced to process larger amounts of LOB data that are
greater than 4 GB.

8.6.1 Functions to Use for the Increased LOB Sizes
Eight functions with names that end in "2" and that use the data type oraub8 in place of the
data type ub4 were introduced in Oracle Database 10g Release 1.

Other changes were made in the read and write functions (OCILobRead2(), OCILobWrite2(),
and OCILobWriteAppend2()) to solve several problems:

Problem: Before Oracle Database 10g Release 1, the parameter amtp assumed either byte or
char length for LOBs based on the locator type and character set. It was complicated and
users did not have the flexibility to use byte length or char length according to their
requirements.

Solution: Read/Write calls should take both byte_amtp and char_amtp parameters as
replacement for the amtp parameter. The char_amtp parameter is preferred for CLOB and NCLOB,
and the byte_amtp parameter is only considered as input if char_amtp is zero. On output for
CLOB and NCLOB, both byte_amtp and char_amtp parameters are filled. For BLOB and BFILE, the
char_ampt parameter is ignored for both input and output.

Problem: For OCILobRead2(), there is no flag to indicate polling mode. There is no easy way
for the users to say "I have a 100-byte buffer. Fill it as much as you can." Previously, they had
to estimate how many characters to specify for the amount. If they guessed too much, they
were forced into polling mode unintentionally. The user code thus can get trapped in the polling
mode and subsequent OCI calls are all blocked.

Solution: This call should take piece as an input parameter and if OCI_ONE_PIECE is passed, it
should fill the buffer as much as possible and come out even if the amount indicated by the
byte_amtp parameter or char_amtp parameter is more than the buffer length. The value of
bufl is used to specify the maximum amount of bytes to read.

Problem: After calling for a LOB write in polling mode, users do not know how many chars or
bytes are actually fetched till the end of the polling.

Chapter 8
About Using LOBs of Size Greater than 4 GB

8-8

Solution: Both the byte_amtp and char_amtp parameters must be updated after each call in
polling mode.

Problem: While reading or writing data in streaming mode with callback, users must use the
same buffer for each piece of data.

Solution: The callback function must have two new parameters to provide the buffer and the
buffer length. Callback functions can set the buffer parameter to NULL to follow old behavior: to
use the default buffer passed in the first call for all the pieces.

See Also:

• LOB Functions

• OCILobRead2()

• OCILobWrite2()

• OCILobWriteAppend2()

8.6.2 Compatibility and Migration
Existing OCI programs can be enhanced to process larger amounts of LOB data that are
greater than 4 GB.

Table 8-1 summarizes compatibility issues in this table, "old" refers to releases before Oracle
Database 10g Release 1, and NA means not applicable.

Table 8-1 LOB Functions Compatibility and Migration

LOB Function Old Client/New or Old
Server1

New Client/Old Server New Client/New Server

OCILobArrayRead() 2NA OK until piece size and
offset are < 4 GB.

OK

OCILobArrayWrite() NA OK until piece size and
offset are < 4 GB.

OK

OCILobCopy2() NA OK until LOB size, piece
size (amount) and offset are
< 4 GB.

OK

OCILobCopy() OK; limit is 4 GB. OK OK; limit is 4 GB.

OCILobErase2() NA OK until piece size and
offset are < 4 GB.

OK

OCILobErase() OK; limit is 4 GB. OK OK; limit is 4 GB.

OCILobGetLength2() NA OK OK

OCILobGetLength() OK; limit is 4 GB. OK OK; OCI_ERROR if LOB
size > 4 GB.

OCILobLoadFromFile2() NA OK until LOB size, piece
size (amount), and offset are
< 4 GB.

OK

OCILobLoadFromFile() OK; limit is 4 GB. OK OK; limit is 4 GB.

Chapter 8
About Using LOBs of Size Greater than 4 GB

8-9

Table 8-1 (Cont.) LOB Functions Compatibility and Migration

LOB Function Old Client/New or Old
Server1

New Client/Old Server New Client/New Server

OCILobRead2() NA OK until LOB size, piece
size (amount), and offset are
< 4 GB.

OK

OCILobRead() OK; limit 4 GB.

With new server: OCI_ERROR
is returned if you try to read
any amount >= 4 GB from
any offset < 4 GB. This is
because when you read any
amount >= 4 GB, that results
in an overflow of returned
value in *amtp, and so it is
flagged as an error.

Note:

• If you read up to 4 GB –
1 from offset, that is not
flagged as an error.

• When you use streaming
mode with polling, no
error is returned if no
attempt is made to use
piece size > 4 GB (you
can read data > 4 GB in
this case).

OK OK.

OCI_ERROR is returned if
you try to read any amount
>= 4 GB from any offset <
4 GB. This is because
when you read any amount
>= 4 GB, that results in an
overflow of returned value
in *amtp, and so it is
flagged as an error.

Note:

• If you read up to 4 GB
– 1 from offset, that is
not to be flagged as
an error.

• When you use
streaming mode with
polling, no error is
returned if no attempt
is made to use piece
size > 4 GB.

OCILobTrim2() NA OK OK

OCILobTrim() OK; limit 4 GB. OK OK; limit 4 GB.

OCILobWrite2() NA OK until LOB size, piece
size (amount) and offset are
< 4 GB.

OK

OCILobWrite() OK; limit 4 GB.

With new server:

OCI_ERROR is returned if you
write any amount >= 4 GB
(from any offset < 4 GB)
because that results an in
overflow of returned value in
*amtp.

Note: Updating a LOB of 10
GB from any offset up to 4
GB –1 by up to 4 GB –1
amount of data is not flagged
as an error.

OK OK.

OCI_ERROR is returned if
you write any amount > =4
GB (from any offset < 4
GB) because that results
in an overflow of returned
value in *amtp.

Note: Updating a LOB of
10 GB from any offset up
to 4 GB –1 by up to 4 GB –
1 amount of data is not
flagged as an error.

OCILobWriteAppend2() NA OK until LOB size and piece
size are <4 GB.

OK

Chapter 8
About Using LOBs of Size Greater than 4 GB

8-10

Table 8-1 (Cont.) LOB Functions Compatibility and Migration

LOB Function Old Client/New or Old
Server1

New Client/Old Server New Client/New Server

OCILobWriteAppend() OK; limit 4 GB.

With new server: OCI_ERROR
is returned if you append any
amount >= 4 GB of data
because that results in an
overflow of returned value in
*amtp.

OK OK; limit 4 GB.

OCI_ERROR is returned if
you append any amount
>= 4 GB of data because
that results in an overflow
of returned value in *amtp.

OCILobGetStorageLimit() NA Error OK

1 The term "old" refers to releases before Oracle Database 10g Release 1.
2 NA means not applicable.

Use the functions that end in "2" when using the current server and current client. Mixing
deprecated functions with functions that end in "2" can result in unexpected situations, such as
data written using OCILobWrite2() being greater than 4 GB if the application tries to read it
with OCILobRead() and gets only partial data (if a callback function is not used). In most cases,
the application gets an error message when the size crosses 4 GB and the deprecated
functions are used. However, there is no issue if you use those deprecated functions for LOBs
of size smaller than 4 GB.

8.7 LOB and BFILE Functions in OCI
In all LOB operations that involve offsets into the data, the offset begins at 1. For LOB
operations, such as OCILobCopy2(), OCILobErase2(), OCILobLoadFromFile2(), and
OCILobTrim2(), the amount parameter is in characters for CLOBs and NCLOBs, regardless of the
client-side character set.

These LOB operations refer to the amount of LOB data on the server. When the client-side
character set is of varying width, the following general rules apply to the amount and offset
parameters in LOB calls:

• amount - When the amount parameter refers to the server-side LOB, the amount is in
characters. When the amount parameter refers to the client-side buffer, the amount is in
bytes.

• offset - Regardless of whether the client-side character set is varying-width, the offset
parameter is always in characters for CLOBs or NCLOBs and in bytes for BLOBs or BFILEs.

Exceptions to these general rules are noted in the description of the specific LOB call.

This section includes the following topics:

• About Improving LOB Read/Write Performance

• Functions for Opening and Closing LOBs

• LOB Read and Write Callbacks

• About Improving LOB Read/Write Performance
How to improve LOB Read/Write performance.

Chapter 8
LOB and BFILE Functions in OCI

8-11

• Functions for Opening and Closing LOBs
OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().

• LOB Read and Write Callbacks
OCI supports read and write callback functions.

See Also:

• LOB Functions

• Buffer Expansion During OCI Binding

• OCILobCopy2()

• OCILobErase2()

• OCILobLoadFromFile2()

• OCILobTrim2()

8.7.1 About Improving LOB Read/Write Performance
How to improve LOB Read/Write performance.

Here are some hints to improve performance:

• About Using Data Interface for LOBs

• About Using OCILobGetChunkSize()

• About Using OCILobWriteAppend2()

• About Using OCILobArrayRead() and OCILobArrayWrite()

• About Using Data Interface for LOBs
You can bind or define character data for a CLOB column or RAW data for a BLOB column.

• About Using OCILobGetChunkSize()
OCILobGetChunkSize() returns the usable chunk size in bytes for BLOBs, CLOBs, and
NCLOBs.

• About Using OCILobWriteAppend2()
OCI provides a shortcut for more efficient writing of data to the end of a LOB.

• About Using OCILobArrayRead() and OCILobArrayWrite()
You can improve performance by using by using OCILobArrayRead() to read LOB data for
multiple LOB locators and OCILobArrayWrite() to write LOB data for multiple LOB
locators.

8.7.1.1 About Using Data Interface for LOBs
You can bind or define character data for a CLOB column or RAW data for a BLOB column.

This requires only one round-trip for inserting or selecting a LOB, as opposed to the traditional
LOB interface that requires multiple round-trips.

Chapter 8
LOB and BFILE Functions in OCI

8-12

See Also:

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data for usage and examples of SELECT statements

8.7.1.2 About Using OCILobGetChunkSize()
OCILobGetChunkSize() returns the usable chunk size in bytes for BLOBs, CLOBs, and NCLOBs.

You can use the OCILobGetChunkSize() call to improve the performance of LOB read and write
operations for BasicFile LOBs. When a read or write is done on BasicFile LOB data whose size
is a multiple of the usable chunk size and the operation starts on a chunk boundary,
performance is improved. There is no requirement for SecureFile LOBs to be written or read
with OCILobGetChunkSize() alignment.

Calling OCILobGetChunkSize() returns the usable chunk size of the LOB, so that an application
can batch a series of write operations for the entire chunk, rather than issuing multiple LOB
write calls for the same chunk.

See Also:

• Options of SecureFiles LOBs

• OCILobGetChunkSize()

8.7.1.3 About Using OCILobWriteAppend2()
OCI provides a shortcut for more efficient writing of data to the end of a LOB.

The OCILobWriteAppend2() call appends data to the end of a LOB without first requiring a call
to OCILobGetLength2() to determine the starting point for an OCILobWrite2() operation.
OCILobWriteAppend2() does both steps.

See Also:

• OCILobWriteAppend2()

• OCILobGetLength2()

• OCILobWrite2()

8.7.1.4 About Using OCILobArrayRead() and OCILobArrayWrite()
You can improve performance by using by using OCILobArrayRead() to read LOB data for
multiple LOB locators and OCILobArrayWrite() to write LOB data for multiple LOB locators.

Chapter 8
LOB and BFILE Functions in OCI

8-13

These functions, which were introduced in Oracle Database 10g Release 2, reduce the
number of round-trips for these operations.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide sections
"LOB Array Read" and "LOB Array Write" for more information and code
examples that show how to use these functions with callback functions and in
piecewise mode

• OCILobArrayRead()

• OCILobArrayWrite()

8.7.2 Functions for Opening and Closing LOBs
OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().

These functions mark the beginning and end of a series of LOB operations so that specific
processing, such as updating indexes, can be performed when a LOB is closed.

For internal LOBs, the concept of openness is associated with a LOB and not its locator. The
locator does not store any information about the state of the LOB. It is possible for more than
one locator to point to the same open LOB. However, for BFILEs, being open is associated with
a specific locator. Hence, more than one open call can be performed on the same BFILE by
using different locators.

If an application does not wrap LOB operations within a set of OCILobOpen() and
OCILobClose() calls, then each modification to the LOB implicitly opens and closes the LOB,
thereby firing any triggers associated with changes to the LOB.

If LOB operations are not wrapped within open and close calls, any extensible indexes on the
LOB are updated as LOB modifications are made, and thus are always valid and may be used
at any time. If the LOB is modified within a set of OCILobOpen() and OCILobClose() calls,
triggers are not fired for individual LOB modifications. Triggers are only fired after the
OCILobClose() call, so indexes are not updated until after the close call and thus are not valid
within the open and close calls. OCILobIsOpen() can be used with internal LOBs and BFILEs.

An error is returned when you commit the transaction before closing all opened LOBs that
were opened by the transaction. When the error is returned, the LOB is no longer marked as
open, but the transaction is successfully committed. Hence, all the changes made to the LOB
and non-LOB data in the transaction are committed, but the domain and functional indexing
are not updated. If this happens, rebuild your functional and domain indexes on the LOB
column.

A LOB opened when there is no transaction must be closed before the end of the session. If
there are LOBs open at the end of session, the LOB is no longer marked as open and the
domain and functional indexing is not updated. If this happens, rebuild your functional and
domain indexes on the LOB column.

This section includes the following topic: Restrictions on Opening and Closing LOBs.

Chapter 8
LOB and BFILE Functions in OCI

8-14

• Restrictions on Opening and Closing LOBs
What are the restrictions on opening and closing LOBs.

See Also:

• OCILobOpen()

• OCILobClose()

• OCILobIsOpen()

8.7.2.1 Restrictions on Opening and Closing LOBs
What are the restrictions on opening and closing LOBs.

The LOB opening and closing mechanism has the following restrictions:

• An application must close all previously opened LOBs before committing a transaction.
Failing to do so results in an error. If a transaction is rolled back, all open LOBs are
discarded along with the changes made. Because the LOBs are not closed, so the
associated triggers are not fired.

• Although there is no limit to the number of open internal LOBs, there is a limit on the
number of open files as determined by the SESSION_MAX_OPEN_FILES parameter. Assigning
an already opened locator to another locator does not count as opening a new LOB.

• It is an error to open or close the same internal LOB twice within the same transaction,
either with different locators or the same locator.

• It is an error to close a LOB that has not been opened.

Note:

The definition of a transaction within which an open LOB value must be closed is
one of the following:

– Between SET TRANSACTION and COMMIT
– Between DATA MODIFYING DML or SELECT ... FOR UPDATE and COMMIT.

– Within an autonomous transaction block

See Also:

• SESSION_MAX_OPEN_FILES parameter in Oracle Database Reference

• OCI Demonstration Programs for examples of the use of the OCILobOpen() and
OCILobClose() calls in the online demonstration programs

• Table C-2

Chapter 8
LOB and BFILE Functions in OCI

8-15

8.7.3 LOB Read and Write Callbacks
OCI supports read and write callback functions.

The following sections describe the use of callbacks in more detail:

• Callback Interface for Streaming

• Reading LOBs by Using Callbacks

• Writing LOBs by Using Callbacks

• Callback Interface for Streaming
User-defined read and write callback functions for inserting or retrieving data provide an
alternative to the polling methods for streaming LOBs.

• Reading LOBs by Using Callbacks
The user-defined read callback function is registered through the OCILobRead2() function.

• Writing LOBs by Using Callbacks
Similar to read callbacks, the user-defined write callback function is registered through the
OCILobWrite2() function.

8.7.3.1 Callback Interface for Streaming
User-defined read and write callback functions for inserting or retrieving data provide an
alternative to the polling methods for streaming LOBs.

These functions are implemented by you and registered with OCI through the OCILobRead2(),
OCILobWriteAppend2(), and OCILobWrite2() calls. These callback functions are called by OCI
whenever they are required.

See Also:

• OCILobRead2()

• OCILobWriteAppend2()

• OCILobWrite2()

8.7.3.2 Reading LOBs by Using Callbacks
The user-defined read callback function is registered through the OCILobRead2() function.

The callback function should have the following prototype:

CallbackFunctionName (void *ctxp, CONST void *bufp, oraub8 len, ub1 piece,
 void **changed_bufpp, oraub8 *changed_lenp);

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobRead2() function call. When the callback function is called, the information provided by
you in ctxp is passed back to you (OCI does not use this information on the way IN). The bufp
parameter in OCILobRead2()) is the pointer to the storage where the LOB data is returned and
bufl is the length of this buffer. It tells you how much data has been read into the buffer
provided.

Chapter 8
LOB and BFILE Functions in OCI

8-16

If the buffer length provided in the original OCILobRead2() call is insufficient to store all the data
returned by the server, then the user-defined callback is called. In this case, the piece
parameter indicates whether the information returned in the buffer is the first, next, or last
piece.

The parameters changed_bufpp and changed_lenp can be used inside the callback function to
change the buffer dynamically. The changed_bufpp parameter should point to the address of
the changed buffer and the changed_lenp parameter should point to the length of the changed
buffer. The changed_bufpp and changed_lenp parameters need not be used inside the callback
function if the application does not change the buffer dynamically.

Example 8-1 shows a code fragment that implements read callback functions using
OCILobRead2(). Assume that lobl is a valid locator that has been previously selected, svchp is
a valid service handle, and errhp is a valid error handle. In the example, the user-defined
function cbk_read_lob() is repeatedly called until all the LOB data has been read.

Example 8-1 Implementing Read Callback Functions Using OCILobRead2()

...
oraub8 offset = 1;
oraub8 loblen = 0;
oraub8 byte_amt = 0;
oraub8 char_amt = 0
ub1 bufp[MAXBUFLEN];

sword retval;
byte_amtp = 4294967297; /* 4 gigabytes plus 1 */

if (retval = OCILobRead2(svchp, errhp, lobl, &byte_amt, &char_amt, offset,
 (void *) bufp, (oraub8) MAXBUFLEN, (void *) 0, OCI_FIRST_PIECE,
 cbk_read_lob, (ub2) 0, (ub1) SQLCS_IMPLICIT))
{
 (void) printf("ERROR: OCILobRead2() LOB.\n");
 report_error();
}
...
sb4 cbk_read_lob(ctxp, bufxp, len, piece, changed_bufpp, changed_lenp)
void *ctxp;
CONST void *bufxp;
oraub8 len;
ub1 piece;
void **changed_bufpp;
oraub8 *changed_lenp;
{
 static ub4 piece_count = 0;
 piece_count++;

 switch (piece)
 {
 case OCI_LAST_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n\n", piece_count);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n", piece_count);
 /* --Optional code to set changed_bufpp and changed_lenp if the
 buffer must be changed dynamically --*/
 break;
 case OCI_NEXT_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n", piece_count);
 /* --Optional code to set changed_bufpp and changed_lenp if the

Chapter 8
LOB and BFILE Functions in OCI

8-17

 buffer must be changed dynamically --*/
 break;
 default:
 (void) printf("callback read error: unknown piece = %d.\n", piece);
 return OCI_ERROR;
 }
 return OCI_CONTINUE;
}

See Also:

OCILobRead2()

8.7.3.3 Writing LOBs by Using Callbacks
Similar to read callbacks, the user-defined write callback function is registered through the
OCILobWrite2() function.

The callback function should have the following prototype:

CallbackFunctionName (void *ctxp, void *bufp, oraub8 *lenp, ub1 *piecep,
 void **changed_bufpp, oraub8 *changed_lenp);

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobWrite2() function call. The information provided by you in ctxp is passed back to you
when the callback function is called by OCI (OCI does not use this information on the way IN).
The bufp parameter is the pointer to a storage area; you provide this pointer in the call to
OCILobWrite2().

After inserting the data provided in the call to OCILobWrite2() any data remaining is inserted
by the user-defined callback. In the callback, provide the data to insert in the storage indicated
by bufp and also specify the length in lenp. You also indicate whether it is the next
(OCI_NEXT_PIECE) or the last (OCI_LAST_PIECE) piece using the piecep parameter. You must
ensure that the storage pointer that is provided by the application does not write more than the
allocated size of the storage.

The parameters changed_bufpp and changed_lenp can be used inside the callback function to
change the buffer dynamically. The changed_bufpp parameter should point to the address of
the changed buffer and the changed_lenp parameter should point to the length of the changed
buffer. The changed_bufpp and changed_lenp parameters need not be used inside the callback
function if the application does not change the buffer dynamically.

Example 8-2 shows a code fragment that implements write callback functions using
OCILobWrite2(). Assume that lobl is a valid locator that has been locked for updating, svchp
is a valid service handle, and errhp is a valid error handle. The user-defined function
cbk_write_lob() is repeatedly called until the piecep parameter indicates that the application
is providing the last piece.

Example 8-2 Implementing Write Callback Functions Using OCILobWrite2()

...

ub1 bufp[MAXBUFLEN];
oraub8 byte_amt = MAXBUFLEN * 20;
oraub8 char_amt = 0;

Chapter 8
LOB and BFILE Functions in OCI

8-18

oraub8 offset = 1;
oraub8 nbytes = MAXBUFLEN;

/*-- code to fill bufp with data goes here. nbytes should reflect the size and
 should be less than or equal to MAXBUFLEN --*/
if (retval = OCILobWrite2(svchp, errhp, lobl, &byte_amt, &char_amt, offset,
 (void*)bufp, (ub4)nbytes, OCI_FIRST_PIECE, (void *)0, cbk_write_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
{
 (void) printf("ERROR: OCILobWrite2().\n");
 report_error();
 return;
}
...
sb4 cbk_write_lob(ctxp, bufxp, lenp, piecep, changed_bufpp, changed_lenp)
void *ctxp;
void *bufxp;
oraub8 *lenp;
ub1 *piecep;
void **changed_bufpp;
oraub8 *changed_lenp;
{
 /*-- code to fill bufxp with data goes here. *lenp should reflect the
 size and should be less than or equal to MAXBUFLEN -- */
 /* --Optional code to set changed_bufpp and changed_lenp if the
 buffer must be changed dynamically --*/
 if (this is the last data buffer)
 *piecep = OCI_LAST_PIECE;
 else
 *piecep = OCI_NEXT_PIECE;
 return OCI_CONTINUE;
}

See Also:

OCILobWrite2()

8.8 Temporary LOB Support
OCI provides functions for creating and freeing temporary LOBs, OCILobCreateTemporary()
and OCILobFreeTemporary(), and a function for determining whether a LOB is temporary,
OCILobIsTemporary().

Temporary LOBs are not permanently stored in the database, but act like local variables for
operating on LOB data. OCI functions that operate on standard (persistent) LOBs can also be
used on temporary LOBs.

As with persistent LOBs, all functions operate on the locator for the temporary LOB, and the
actual LOB data is accessed through the locator.

Temporary LOB locators can be used as arguments to the following types of SQL statements:

• UPDATE - The temporary LOB locator can be used as a value in a WHERE clause when
testing for nullity or as a parameter to a function. The locator can also be used in a SET
clause.

Chapter 8
Temporary LOB Support

8-19

• DELETE - The temporary LOB locator can be used in a WHERE clause when testing for nullity
or as a parameter to a function.

• SELECT - The temporary LOB locator can be used in a WHERE clause when testing for nullity
or as a parameter to a function. The temporary LOB can also be used as a return variable
in a SELECT...INTO statement when selecting the return value of a function.

Note:

If you select a permanent locator into a temporary locator, the temporary locator is
overwritten with the permanent locator. In this case, the temporary LOB is not
implicitly freed. You must explicitly free the temporary LOB before the SELECT...INTO
operation. If the temporary LOB is not freed explicitly, it is not freed until the end of its
specified duration. Unless you have another temporary locator pointing to the same
LOB, you no longer have a locator pointing to the temporary LOB, because the
original locator was overwritten by the SELECT...INTO operation.

This section includes the following topics:

• Creating and Freeing Temporary LOBs

• Temporary LOB Durations

• About Freeing Temporary LOBs

• Take Care When Assigning Pointers

• Temporary LOB Example

• Creating and Freeing Temporary LOBs
You create a temporary LOB with the OCILobCreateTemporary() function.

• Temporary LOB Durations
OCI supports several predefined durations for temporary LOBs, and a set of functions that
the application can use to define application-specific durations.

• About Freeing Temporary LOBs
Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, use the
OCILobIsTemporary() function to check that the locator is temporary.

• Take Care When Assigning Pointers
Special care must be taken when assigning OCILobLocator pointers.

• Temporary LOB Example
Shows how temporary LOBs can be used.

See Also:

• OCILobCreateTemporary()

• OCILobFreeTemporary()

• OCILobIsTemporary()

Chapter 8
Temporary LOB Support

8-20

8.8.1 Creating and Freeing Temporary LOBs
You create a temporary LOB with the OCILobCreateTemporary() function.

The parameters passed to this function include a value for the duration of the LOB. The default
duration is for the length of the current session. All temporary LOBs are deleted at the end of
the duration. Users can reclaim temporary LOB space by explicitly freeing the temporary LOB
with the OCILobFreeTemporary() function. A temporary LOB is empty when it is created.

When creating a temporary LOB, you can also specify whether the temporary LOB is read into
the server's buffer cache.

To make a temporary LOB permanent, use OCILobCopy2() to copy the data from the temporary
LOB into a permanent one. You can also use the temporary LOB in the VALUES clause of an
INSERT statement, as the source of the assignment in an UPDATE statement, or assign it to a
persistent LOB attribute and then flush the object. Temporary LOBs can be modified using the
same functions that are used for standard LOBs.

Note:

The most efficient way to insert an empty LOB is to bind a temporary LOB with no
value assigned to it. This uses less resources than the following method.

INSERT INTO tab1 VALUES(EMPTY_CLOB())

See Also:

• OCILobCreateTemporary()

• OCILobFreeTemporary()

• OCILobCopy2()

8.8.2 Temporary LOB Durations
OCI supports several predefined durations for temporary LOBs, and a set of functions that the
application can use to define application-specific durations.

The predefined durations and their associated attributes are:

• Call, OCI_DURATION_CALL, only on the server side

• Session, OCI_DURATION_SESSION
The session duration expires when the containing session or connection ends. The call
duration expires at the end of the current OCI call.

When you run in object mode, you can also define application-specific durations. An
application-specific duration, also referred to as a user duration, is defined by specifying the
start of a duration using OCIDurationBegin() and the end of the duration using
OCIDurationEnd().

Chapter 8
Temporary LOB Support

8-21

Note:

User-defined durations are only available if an application has been initialized in
object mode.

Each application-specific duration has a duration identifier that is returned by
OCIDurationBegin() and is guaranteed to be unique until OCIDurationEnd() is called. An
application-specific duration can be as long as a session duration.

At the end of a duration, all temporary LOBs associated with that duration are freed. The
descriptor associated with the temporary LOB must be freed explicitly with the
OCIDescriptorFree() call.

User-defined durations can be nested; one duration can be defined as a child duration of
another user duration. It is possible for a parent duration to have child durations that have their
own child durations.

Note:

When a duration is started with OCIDurationBegin(), one of the parameters is the
identifier of a parent duration. When a parent duration is ended, all child durations are
also ended.

See Also:

• OCIDurationBegin()

• OCIDurationEnd()

• OCIDescriptorFree()

8.8.3 About Freeing Temporary LOBs
Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, use the
OCILobIsTemporary() function to check that the locator is temporary.

If it is, then free the locator when your application is finished with it by using the
OCILobFreeTemporary() call. The locator can be from a define during a select or an out bind. A
temporary LOB duration is always upgraded to a session duration when it is shipped to the
client side. The application must do the following before the locator is overwritten by the locator
of the next row:

OCILobIsTemporary(env, err, locator, is_temporary);
if(is_temporary)
 OCILobFreeTemporary(svc, err, locator);

Chapter 8
Temporary LOB Support

8-22

See Also:

• OCILobIsTemporary()

• OCILobFreeTemporary()

8.8.4 Take Care When Assigning Pointers
Special care must be taken when assigning OCILobLocator pointers.

Pointer assignments create a shallow copy of the LOB. After the pointer assignment, source
and target LOBs point to the same copy of data. This behavior is different from using LOB
APIs, such as OCILobAssign() or OCILobLocatorAssign(), to perform assignments. When the
APIs are used, the locators logically point to independent copies of data after assignment.

For temporary LOBs, before pointer assignments, you must ensure that any temporary LOB in
the target LOB locator is freed by OCILobFreeTemporary(). When OCILobLocatorAssign() is
used, the original temporary LOB in the target LOB locator variable, if any, is freed before the
assignment happens.

Before an out-bind variable is reused in executing a SQL statement, you must free any
temporary LOB in the existing out-bind LOB locator buffer by using the
OCILobFreeTemporary() call.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information in the section about temporary LOB performance guidelines

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
discussion of optimal performance of temporary LOBs

• OCILobAssign()

• OCILobLocatorAssign()

• OCILobFreeTemporary()

• OCILobLocatorAssign()

8.8.5 Temporary LOB Example
Shows how temporary LOBs can be used.

Example 8-3 shows how temporary LOBs can be used.

Example 8-3 Using Temporary LOBs

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

/* Function Prototype */

Chapter 8
Temporary LOB Support

8-23

static void checkerr (/*_ OCIError *errhp, sword status _*/);
sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp);
/* This function reads in a single video frame from the print_media table.
Then it creates a temporary LOB. The temporary LOB that is created is read
through the CACHE, and is automatically cleaned up at the end of the user's
session, if it is not explicitly freed sooner. This function returns OCI_SUCCESS
if it completes successfully or OCI_ERROR if it fails. */

sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCIBind *bndhp;
 text *sqlstmt;
 int rowind =1;
 ub4 loblen = 0;
 OCILobLocator *tblob;
 printf ("in select_and_createtemp \n");
 if(OCIDescriptorAlloc((void*)envhp, (void **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (void**)0))
 {
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return OCI_ERROR;
 }
 /* arbitrarily select where Clip_ID =1 */
 sqlstmt=(text *)"SELECT Frame FROM print_media WHERE product_ID = 1 FOR UPDATE";
 if (OCIStmtPrepare2(svchp, stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),
 NULL, 0, (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* Define for BLOB */
 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4)1, (void *) &lob_loc, (sb4)0,
 (ub2) SQLT_BLOB, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: Select locator: OCIDefineByPos()\n");
 return OCI_ERROR;
 }
 /* Execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return OCI_ERROR;
 }
 if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != OCI_SUCCESS)
 {
 printf("OCILobGetLength FAILED\n");

Chapter 8
Temporary LOB Support

8-24

 return OCI_ERROR;
 }
 if (OCILobCopy(svchp, errhp, tblob,lob_loc,(ub4)loblen, (ub4) 1, (ub4) 1))
 {
 printf("OCILobCopy FAILED \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}
int main(char *argv, int argc)
{
 /* OCI Handles */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *lob_loc;
 int type =1;
 /* Initialize and Log on */
 OCIEnvCreate(&envhp, OCI_DEFAULT, (void *)0, 0, 0, 0,
 (size_t)0, (void *)0);
 (void) OCIHandleAlloc((void *) envhp, (void **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (void **) 0);
 /* server contexts */
 (void) OCIHandleAlloc((void *) envhp, (void **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (void **) 0);
 /* service context */
 (void) OCIHandleAlloc((void *) envhp, (void **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (void **) 0);
 /* attach to Oracle Database */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);
 /* set attribute server context in the service context */
 (void) OCIAttrSet ((void *) svchp, OCI_HTYPE_SVCCTX,
 (void *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);
 (void) OCIHandleAlloc((void *) envhp,
 (void **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (void **) 0);
 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) "scott", (ub4)5,
 (ub4) OCI_ATTR_USERNAME, errhp);
 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) "password", (ub4) 5,
 (ub4) OCI_ATTR_PASSWORD, errhp);
 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));
 (void) OCIAttrSet((void *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (void *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);
 /* ------- Done logging in ----------------------------------*/
 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((void *) envhp, (void **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (void **) 0));
 checkerr(errhp, OCIDescriptorAlloc((void *)envhp, (void **)&lob_loc,

Chapter 8
Temporary LOB Support

8-25

 (ub4) OCI_DTYPE_LOB, (size_t) 0, (void **) 0));
 /* Subroutine calls begin here */
 printf("calling select_and_createtemp\n");
 select_and_createtemp (lob_loc, errhp, svchp,stmthp,envhp);
 return 0;
}
void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;
 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((void *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

8.9 Prefetching of LOB Data, Length, and Chunk Size
To improve OCI access of smaller LOBs, LOB data can be prefetched and cached while also
fetching the locator.

This applies to internal LOBs, temporary LOBs, and BFILEs. Take the following steps to
prepare your application:

1. Set the OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE attribute for the session handle. The value
of this attribute indicates the default prefetch data size for a LOB locator. This attribute
value enables prefetching for all the LOB locators fetched in the session. The default value
for this attribute is zero (no prefetch of LOB data). This option relieves the application
developer from setting the prefetch LOB size for each define handle. You can either set
this attribute or set (in Step 3) OCI_ATTR_LOBPREFETCH_SIZE.

2. Perform the prepare and define steps for the statement to be executed.

Chapter 8
Prefetching of LOB Data, Length, and Chunk Size

8-26

3. You can override the default prefetch size, if required, for the LOB locators to be fetched,
by setting OCI_ATTR_LOBPREFETCH_SIZE attribute for the define handle. This optional
attribute provides control of the prefetch size for the locators fetched from a particular
column.

4. Set the OCI_ATTR_LOBPREFETCH_LENGTH attribute to the prefetch LOB length and chunk
size. This is mandatory to be set to TRUE for the attribute (OCI_ATTR_LOBPREFETCH_SIZE)
described in item 1 to work.

5. Execute the statement.

6. Call OCILobRead2() or OCILobArrayRead() with individual LOB locators; OCI takes the
data from the prefetch buffer, does the necessary character conversion, and copies the
data into the LOB read buffer (no change in LOB semantic). If the data requested is bigger
than the prefetch buffer, then it will require additional round-trips.

7. Call OCILobGetLength2() and OCILobGetChunkSize() to obtain the length and chunk size
without making round-trips to the server.

Example 8-4 Prefetching of LOB Data, Length, and Chunk Size

...
ub4 default_lobprefetch_size = 2000; /* Set default size to 2K */
...
/* set LOB prefetch attribute to session */
OCIAttrSet (sesshp, (ub4) OCI_HTYPE_SESSION,
 (void *)&default_lobprefetch_size, /* attribute value */
 0, /* attribute size; not required to specify; */
 (ub4) OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE,
 errhp);
...
/* select statement */
char *stmt = "SELECT lob1 FROM lob_table";
...
/* declare and allocate LOB locator */
OCILobLocator * lob_locator;
lob_locator = OCIDescriptorAlloc(..., OCI_DTYPE_LOB, ...);

OCIDefineByPos(..., 1, (void *) &lob_locator, ..., SQLT_CLOB, ...);
...
/* Override the default prefetch size to 4KB */
ub4 prefetch_size = 4000;
OCIAttrSet (defhp, OCI_HTYPE_DEFINE,
 (void *) &prefetch_size /* attr value */,
 0 /* restricting prefetch size to be ub4 max val */,
 OCI_ATTR_LOBPREFETCH_SIZE /* attr type */,
 errhp);
...
/* Set prefetch length attribute */
boolean prefetch_length = TRUE;
OCIAttrSet(defhp, OCI_HTYPE_DEFINE,
 (dvoid *) &prefetch_length /* attr value */,
 0,
 OCI_ATTR_LOBPREFETCH_LENGTH /* attr type */,
 errhp);
...
/* execute the statement. 4KB of data for the LOB is read and
 * cached in descriptor cache buffer.
 */
OCIStmtExecute (svchp, stmthp, errhp,
 1, /* iters */
 0, /* row offset */
 NULL, /* snapshot IN */

Chapter 8
Prefetching of LOB Data, Length, and Chunk Size

8-27

 NULL, /* snapshot out */
 OCI_DEFAULT); /* mode */
...
oraub8 char_amtp = 4000;
oraub8 lob_len;
ub4 chunk_size;

/* LOB chunk size, length, and data are read from cache. No round-trip. */

OCILobGetChunkSize (svchp, errhp, lob_locator, &chunk_size);

OCILobGetLength2(svchp, errhp, lob_locator, &lob_len);

OCILobRead2(svchp, errhp, lob_locator, NULL, &char_amtp, ...);
...

Note that the prefetch size is in number of bytes for BLOBs and BFILEs and in number of
characters for CLOBs.

Example 8-4 shows a code fragment illustrating these steps.

Prefetch cache allocation: The prefetch cache buffer for a descriptor is allocated while
fetching a LOB locator. The allocated buffer size is determined by the
OCI_ATTR_LOBPREFETCH_SIZE attribute for the define handle; the default value of this attribute is
indicated by the OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE attribute value of the session handle. If
the cache buffer is already allocated, then it is resized if required.

For the following two LOB APIs, if the source locator has cached data, then the destination
locator cache is allocated or resized and cached data is copied from source to destination.

• OCILobAssign()

• OCILobLocatorAssign()

Once allocated, the cache buffer memory for a descriptor is released when the descriptor itself
is freed.

Prefetch cache invalidation: The cache for a descriptor gets invalidated when LOB data is
updated using the locator. Meaning the cache is no longer used for reading data and the next
OCILobRead2() call on the locator makes a round-trip.

The following LOB APIs invalidate the prefetch cache for the descriptor used:

• OCILobErase() (deprecated)

• OCILobErase2()

• OCILobTrim() (deprecated)

• OCILobTrim2()

• OCILobWrite() (deprecated)

• OCILobWrite2()

• OCILobWriteAppend() (deprecated)

• OCILobWriteAppend2()

• OCILobArrayWrite()

The following LOB APIs invalidate the cache for the destination LOB locator:

• OCILobAppend()

• OCILobCopy() (deprecated)

Chapter 8
Prefetching of LOB Data, Length, and Chunk Size

8-28

• OCILobCopy2()

• OCILobLoadFromFile() (deprecated)

• OCILobLoadFromFile2()

Performance Tuning: The prefetch buffer size must be decided upon based on average LOB
size and client-side memory. If a large amount of data is prefetched, you must ensure the
memory availability. Performance gain may not be significant for prefetching large LOBs,
because the cost of fetching data is much higher compared to the cost of a round-trip to the
server.

You must have a fair idea of the LOB data size to be able to make best use of this LOB
prefetch feature. Because the parameters are part of application design, the application must
be rebuilt if any parameter value must be modified.

Upgrading: LOB prefetching cannot be used against a pre-11.1 release server or in a pre-11.1
client against an 11.1 or later server. When you use a pre-11.1 server with an 11.1 or later
client, OCIAttrSet() returns an error or an error-with-information saying that "server does not
support this functionality."

See Also:

• OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE

• OCI_ATTR_LOBPREFETCH_LENGTH

• OCI_ATTR_LOBPREFETCH_SIZE

8.10 Options of SecureFiles LOBs
For SecureFiles (LOBs with the STORE AS SECUREFILE option, which were introduced in Oracle
Database 11g Release 1) you can specify the SQL parameter DEDUPLICATE in CREATE TABLE
and ALTER TABLE statements.

Note:

Deprecated algorithms include MD4, MD5, DES, and RC4-related algorithms.
Removing older, less secure cryptography algorithms prevents accidental use of
these APIs. To meet your security requirements, Oracle recommends that you use
more modern cryptography algorithms such as AES. While 3DES is not deprecated
at this time, AES provides stronger protection.

As a consequence of this deprecation, Oracle recommends that you review your
network encryption configuration to see if you have specified use of any of the
deprecated algorithms. If any are found, then switch to using a more modern cipher,
such as AES.

This parameter value enables you to specify that LOB data that is identical in two or more rows
in a LOB column shares the same data blocks, thus saving disk space. KEEP_DUPLICATES turns
off this capability. The following options are also used with SECUREFILE:

Chapter 8
Options of SecureFiles LOBs

8-29

The parameter COMPRESS turns on LOB compression. NOCOMPRESS turns LOB compression off.

The parameter ENCRYPT turns on LOB encryption and optionally selects an encryption
algorithm. NOENCRYPT turns off LOB encryption. Each LOB column can have its own encryption
specification, independent of the encryption of other LOB or non-LOB columns. Valid
algorithms are 3DES168, AES128, AES192, and AES256.

The paradigm used before release 11.1 is the default. This default LOBs paradigm is also now
explicitly set by the option STORE AS BASICFILE.

The following OCI functions are used with the SECUREFILE features:

• OCILobGetOptions()
• OCILobSetOptions()
• OCILobGetContentType()
• OCILobSetContentType()

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for complete
details of relevant SQL functions and cross-references to PL/SQL packages and
information about migrating to SecureFiles

• OCILobGetOptions()

• OCILobSetOptions()

• OCILobGetContentType()

• OCILobSetContentType()

Chapter 8
Options of SecureFiles LOBs

8-30

9
Managing Scalable Platforms

This chapter describes how OCI manages transaction operations.

This chapter contains these topics:

• OCI Support for Transactions

• Levels of Transactional Complexity

• Password and Session Management

• Middle-Tier Applications in OCI

• Externally Initialized Context in OCI

• Client Application Context

• Using Edition-Based Redefinition

• OCI Security Enhancements

• Overview of OCI Multithreaded Development

• OCIThread Package

• OCI Support for Transactions
OCI has a set of API calls to support operations on both local and global transactions.

• Levels of Transactional Complexity
OCI supports several levels of transaction complexity.

• Password and Session Management
OCI can authenticate and maintain multiple users.

• Middle-Tier Applications in OCI
A middle-tier application receives requests from browser clients.

• Externally Initialized Context in OCI
An externally initialized context is an application context where attributes can be initialized
from OCI. Use the SQL statement CREATE CONTEXT to create a context namespace in the
server with the option INITIALIZED EXTERNALLY.

• Client Application Context
Application context enables database clients (such as mid-tier applications) to set and
send arbitrary session data to the server with each executed statement in only one round-
trip.

• Using Edition-Based Redefinition
An edition provides a staging area where "editionable" objects changed by an application
patch can be installed and executed while the existing application is still available.

• OCI Security Enhancements
The following security enhancements use configured parameters in the init.ora file or the
sqlnet.ora file (the latter file is specifically noted for that feature).

• Overview of OCI Multithreaded Development
Threads are lightweight processes that exist within a larger process.

9-1

• OCIThread Package
The OCIThread package provides some commonly used threading primitives.

9.1 OCI Support for Transactions
OCI has a set of API calls to support operations on both local and global transactions.

These calls include object support, so that if an OCI application is running in object mode, the
commit and rollback calls synchronize the object cache with the state of the transaction.

The functions listed later perform transaction operations. Each call takes a service context
handle that must be initialized with the proper server context and user session handle. The
transaction handle is the third element of the service context; it stores specific information
related to a transaction. When a SQL statement is prepared, it is associated with a particular
service context. When the statement is executed, its effects (query, fetch, insert) become part
of the transaction that is currently associated with the service context.

• OCITransStart() marks the start of a transaction.

• OCITransDetach() detaches a transaction.

• OCITransCommit() commits a transaction.

• OCITransRollback() rolls back a transaction.

• OCITransPrepare() prepares a transaction to be committed in a distributed processing
environment.

• OCITransMultiPrepare() prepares a transaction with multiple branches in a single call.

• OCITransForget() causes the server to forget a heuristically completed global transaction.

Depending on the level of transactional complexity in your application, you may need all or only
a few of these calls. The following section discusses this in more detail.

See Also:

• Transaction Functions

• OCITransStart()

• OCITransDetach()

• OCITransCommit()

• OCITransRollback()

• OCITransPrepare()

• OCITransMultiPrepare()

• OCITransForget()

9.2 Levels of Transactional Complexity
OCI supports several levels of transaction complexity.

These levels of transaction complexity include:

Chapter 9
OCI Support for Transactions

9-2

• Simple Local Transactions

• Serializable or Read-Only Local Transactions

• Global Transactions

This section includes the following additional topics:

• Transaction Examples

• Initialization Parameters

• Simple Local Transactions
Many applications work with only simple local transactions.

• Serializable or Read-Only Local Transactions
Applications requiring serializable or read-only transactions require an additional OCI
OCITransStart() call to start the transaction.

• Global Transactions
Global transactions are necessary only in more sophisticated transaction-processing
applications.

• Transaction Examples
Shows how to use the transaction OCI calls.

• Initialization Parameters
Two initialization parameters relate to the use of global transaction branches and
migratable open connections.

9.2.1 Simple Local Transactions
Many applications work with only simple local transactions.

In these applications, an implicit transaction is created when the application makes database
changes. The only transaction-specific calls needed by such applications are:

• OCITransCommit() to commit the transaction

• OCITransRollback() to roll back the transaction

As soon as one transaction has been committed or rolled back, the next modification to the
database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context. Attributes of the
implicit transaction are opaque to the user.

If an application creates multiple sessions, each one can have an implicit transaction
associated with it.

See Also:

• OCITransCommit() for sample code showing the use of simple local transactions

• OCITransRollback()

Chapter 9
Levels of Transactional Complexity

9-3

9.2.2 Serializable or Read-Only Local Transactions
Applications requiring serializable or read-only transactions require an additional OCI
OCITransStart() call to start the transaction.

The OCITransStart() call must specify OCI_TRANS_SERIALIZABLE or OCI_TRANS_READONLY, as
appropriate, for the flags parameter. If no flag is specified, the default value is
OCI_TRANS_READWRITE for a standard read/write transaction.

Specifying the read-only option in the OCITransStart() call saves the application from
performing a server round-trip to execute a SET TRANSACTION READ ONLY statement.

See Also:

OCITransStart()

9.2.3 Global Transactions
Global transactions are necessary only in more sophisticated transaction-processing
applications.

This section includes the following topics:

• Transaction Identifiers

• Attribute OCI_ATTR_TRANS_NAME

• Transaction Branches

• Branch States

• Detaching and Resuming Branches

• About Setting the Client Database Name

• One-Phase Commit Versus Two-Phase Commit

• Preparing Multiple Branches in a Single Message

• Transaction Identifiers
Three-tier applications such as transaction processing (TP) monitors create and manage
global transactions.

• Attribute OCI_ATTR_TRANS_NAME
When this attribute is set in a transaction handle, the length of the name can be at most 64
bytes.

• Transaction Branches
Within a single global transaction, Oracle Database supports both tightly coupled and
loosely coupled relationships between a pair of branches.

• Branch States
Transaction branches are classified into two states: active branches and inactive branches.

• Detaching and Resuming Branches
A branch becomes inactive when an OCI application detaches it, using the
OCITransDetach() call.

Chapter 9
Levels of Transactional Complexity

9-4

• About Setting the Client Database Name
The server handle has OCI_ATTR_EXTERNAL_NAME and OCI_ATTR_INTERNAL_NAME attributes.

• One-Phase Commit Versus Two-Phase Commit
Global transactions can be committed in one or two phases.

• Preparing Multiple Branches in a Single Message
Sometimes when multiple applications use different branches of a global transaction
against the same Oracle database.

9.2.3.1 Transaction Identifiers
Three-tier applications such as transaction processing (TP) monitors create and manage
global transactions.

They supply a global transaction identifier (XID) that a server associates with a local
transaction.

A global transaction has one or more branches. Each branch is identified by an XID. The XID
consists of a global transaction identifier (gtrid) and a branch qualifier (bqual). This structure
is based on the standard XA specification.

Table 9-1 provides the structure for one possible XID of 1234.

Table 9-1 Global Transaction Identifier

Component Value

gtrid 12
bqual 34
gtrid+bqual=XID 1234

The transaction identifier used by OCI transaction calls is set in the OCI_ATTR_XID attribute of
the transaction handle, by using OCIAttrSet(). Alternately, the transaction can be identified by
a name set in the OCI_ATTR_TRANS_NAME attribute.

See Also:

OCIAttrSet()

9.2.3.2 Attribute OCI_ATTR_TRANS_NAME
When this attribute is set in a transaction handle, the length of the name can be at most 64
bytes.

The formatid of the XID is 0 and the branch qualifier is 0.

When this attribute is retrieved from a transaction handle, the returned transaction name is the
global transaction identifier. The size is the length of the global transaction identifier.

Chapter 9
Levels of Transactional Complexity

9-5

9.2.3.3 Transaction Branches
Within a single global transaction, Oracle Database supports both tightly coupled and loosely
coupled relationships between a pair of branches.

• Tightly coupled branches share the same local transaction. The gtrid references a unique
local transaction, and multiple branches point to that same transaction. The owner of the
transaction is the branch that was created first.

• Loosely coupled branches use different local transactions. The gtrid and bqual together
map to a unique local transaction. Each branch points to a different transaction.

The flags parameter of OCITransStart() allows applications to pass OCI_TRANS_TIGHT or
OCI_TRANS_LOOSE values to specify the type of coupling.

A session corresponds to a user session, created with OCISessionBegin().

Figure 9-1 illustrates tightly coupled branches within an application. The XIDs of the two
branches (B1 and B2) share the same gtrid, because they are operating on the same
transaction (T), but they have a different bqual, because they are on separate branches.

Figure 9-1 Multiple Tightly Coupled Branches

Session

Branch

Transact ion

T

B1

S1

B2

S2

Figure 9-2 illustrates how a single session operates on different branches. The gtrid
components of the XIDs are different, because they represent separate global transactions.

Figure 9-2 Session Operating on Multiple Branches

Session

Branch

Transact ion

T1 T2

B1

S1

B2

Chapter 9
Levels of Transactional Complexity

9-6

It is possible for a single session to operate on multiple branches that share the same
transaction, but this scenario does not have much practical value.

See Also:

• OCITransStart() for sample code demonstrating this scenario

• OCISessionBegin()

9.2.3.4 Branch States
Transaction branches are classified into two states: active branches and inactive branches.

A branch is active if a server process is executing requests on the branch. A branch is inactive
if no server processes are executing requests in the branch. In this case, no session is the
parent of the branch, and the branch becomes owned by the PMON process in the server.

9.2.3.5 Detaching and Resuming Branches
A branch becomes inactive when an OCI application detaches it, using the OCITransDetach()
call.

The branch can be made active again by resuming it with a call to OCITransStart() with the
flags parameter set to OCI_TRANS_RESUME.

When an application detaches a branch with OCITransDetach(), it uses the value specified in
the timeout parameter of the OCITransStart() call that created the branch. The timeout
specifies the number of seconds the transaction can remain dormant as a child of PMON before
being deleted.

To resume a branch, the application calls OCITransStart(), specifying the XID of the branch
as an attribute of the transaction handle, OCI_TRANS_RESUME for the flags parameter, and a
different timeout parameter. This timeout value for this call specifies the length of time that the
session waits for the branch to become available if it is currently in use by another process. If
no other processes are accessing the branch, it can be resumed immediately. A transaction
can be resumed by a different process than the one that detached it, if that process has the
same authorization as the one that detached the transaction.

See Also:

• OCITransDetach()

• OCITransStart()

9.2.3.6 About Setting the Client Database Name
The server handle has OCI_ATTR_EXTERNAL_NAME and OCI_ATTR_INTERNAL_NAME attributes.

Chapter 9
Levels of Transactional Complexity

9-7

These attributes set the client database name recorded when performing global transactions.
The name can be used by the database administrator to track transactions that may be
pending in a prepared state because of failures.

Note:

An OCI application sets these attributes, by using OCIAttrSet() before logging on
and using global transactions.

See Also:

OCIAttrSet()

9.2.3.7 One-Phase Commit Versus Two-Phase Commit
Global transactions can be committed in one or two phases.

The simplest situation is when a single transaction is operating against a single database. In
this case, the application can perform a one-phase commit of the transaction by calling
OCITransCommit(), because the default value of the call is for one-phase commit.

The situation is more complicated if the application is processing transactions against multiple
Oracle databases. In this case, a two-phase commit is necessary. A two-phase commit
operation consists of these steps:

1. Prepare - The application issues an OCITransPrepare() call against each transaction.
Each transaction returns a value indicating whether or not it can commit its current work
(OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each OCITransPrepare() call returns a value of OCI_SUCCESS, the application
can issue an OCITransCommit() call to each transaction. The flags parameter of the
commit call must be explicitly set to OCI_TRANS_TWOPHASE for the appropriate behavior,
because the default for this call is for one-phase commit.

Note:

The OCITransPrepare() call can also return OCI_SUCCESS_WITH_INFO if a
transaction must indicate that it is read-only. Thus a commit is neither appropriate
nor necessary.

An additional call, OCITransForget(), causes a database to "forget" a completed transaction.
This call is for situations in which a problem has occurred that requires that a two-phase
commit be terminated. When an Oracle database receives an OCITransForget() call, it
removes all information about the transaction.

Chapter 9
Levels of Transactional Complexity

9-8

See Also:

• OCITransCommit()

• OCITransPrepare()

• OCITransForget()

9.2.3.8 Preparing Multiple Branches in a Single Message
Sometimes when multiple applications use different branches of a global transaction against
the same Oracle database.

Before such a transaction can be committed, all branches must be prepared.

Most often, the applications using the branches are responsible for preparing their own
branches. However, some architectures turn this responsibility over to an external transaction
service. This external transaction service must then prepare each branch of the global
transaction. The traditional OCITransPrepare() call is inefficient for this task as each branch
must be individually prepared. The OCITransMultiPrepare() call, prepares multiple branches
involved in the same global transaction in one round-trip. This call is more efficient and can
greatly reduce the number of messages sent from the client to the server.

See Also:

• OCITransPrepare()

• OCITransMultiPrepare()

9.2.4 Transaction Examples
Shows how to use the transaction OCI calls.

Table 9-1 through Table 9-5 illustrate how to use the transaction OCI calls.

They show a series of OCI calls and other actions, along with their resulting behavior. For
simplicity, not all parameters to these calls are listed; rather, it is the flow of calls that is being
demonstrated.

The OCI Action column indicates what the OCI application is doing, or what call it is making.
The XID column lists the transaction identifier, when necessary. The Flags column lists the
values passed in the flags parameter. The Result column describes the result of the call.

9.2.5 Initialization Parameters
Two initialization parameters relate to the use of global transaction branches and migratable
open connections.

• TRANSACTIONS - This parameter specifies the maximum number of global transaction
branches in the entire system. In contrast, the maximum number of branches on a single
global transaction is 8.

Chapter 9
Levels of Transactional Complexity

9-9

• OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum number of migratable
open connections. Migratable open connections are used by global transactions to cache
connections after committing a transaction. Contrast this with the OPEN_LINKS parameter,
which controls the number of connections from a session and is not applicable to
applications that use global transactions.

This section includes the following topics:

• Showing Update Successfully, One-Phase Commit

• Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase Commit

• Showing a Read-Only Update Fails

• Showing Starting a Read-Only Transaction, Select, and Commit

• Showing Update Successfully, One-Phase Commit
Lists the steps for a one-phase commit operation.

• Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase Commit
Lists the steps for a two-phase commit operation.

• Showing a Read-Only Update Fails
Lsts the steps in a failed read-only update operation.

• Showing Starting a Read-Only Transaction, Select, and Commit
Lists the steps for a read-only transaction.

9.2.5.1 Showing Update Successfully, One-Phase Commit
Lists the steps for a one-phase commit operation.

Table 9-2 lists the steps for a one-phase commit operation.

Table 9-2 One-Phase Commit

Step OCI Action XID Flags Result

1 OCITransStart() 1234 OCI_TRANS_NEW Starts new read/write transaction

2 SQL UPDATE - - Update rows

3 OCITransCommit() - - Commit succeeds.

See Also:

• OCITransStart()

• OCITransCommit()

Chapter 9
Levels of Transactional Complexity

9-10

9.2.5.2 Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase
Commit

Lists the steps for a two-phase commit operation.

Table 9-3 lists the steps for a two-phase commit operation.

Table 9-3 Two-Phase Commit

Step OCI Action XID Flags Result

1 OCITransStart() 1234 OCI_TRANS_NEW Starts new read-only transaction

2 SQL UPDATE - - Updates rows

3 OCITransDetach() - - Transaction is detached.

4 OCITransStart() 1234 OCI_TRANS_RESUME Transaction is resumed.

5 SQL UPDATE - - -

6 OCITransPrepare() - - Transaction is prepared for two-
phase commit.

7 OCITransCommit() - OCI_TRANS_TWOPHASE Transaction is committed.

In Step 4, the transaction can be resumed by a different process, as long as it had the same
authorization.

See Also:

• OCITransStart()

• OCITransDetach()

• OCITransPrepare()

• OCITransCommit()

9.2.5.3 Showing a Read-Only Update Fails
Lsts the steps in a failed read-only update operation.

Table 9-4 lists the steps in a failed read-only update operation.

Chapter 9
Levels of Transactional Complexity

9-11

Table 9-4 Read-Only Update Fails

Step OCI Action XID Flags Result

1 OCITransStart() 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY
Starts new read-only transaction.

2 SQL UPDATE - - Update fails, because the
transaction is read-only.

3 OCITransCommit() - - Commit has no effect.

See Also:

• OCITransStart()

• OCITransCommit()

9.2.5.4 Showing Starting a Read-Only Transaction, Select, and Commit
Lists the steps for a read-only transaction.

Table 9-5 lists the steps for a read-only transaction.

Table 9-5 Read-Only Transaction

Step OCI Action XID Flags Result

1 OCITransStart() 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY
Starts new read-only transaction

2 SQL SELECT - - Queries the database

3 OCITransCommit() - - No effect — transaction is read-only,
no changes made

See Also:

• OCITransStart()

• OCITransCommit()

9.3 Password and Session Management
OCI can authenticate and maintain multiple users.

This section includes the following topics:

Chapter 9
Password and Session Management

9-12

• OCI Authentication Management

• OCI Password Management

• Secure External Password Store

• OCI Session Management

• OCI Authentication Management
The OCISessionBegin() call authenticates a user against the server set in the service
context handle.

• OCI Password Management
The OCIPasswordChange() call enables an application to modify a user's database
password as necessary.

• Secure External Password Store
For large-scale deployments where applications use password credentials to connect to
databases, it is possible to store such credentials in a client-side Oracle wallet.

• OCI Session Management
Transaction servers that actively balance user load by multiplexing user sessions over a
few server connections must group these connections into a server group.

9.3.1 OCI Authentication Management
The OCISessionBegin() call authenticates a user against the server set in the service context
handle.

It must be the first call for any given server handle. OCISessionBegin() authenticates the user
for access to the Oracle database specified by the server handle and the service context of the
call: after OCIServerAttach() initializes a server handle, OCISessionBegin() must be called to
authenticate the user for that server.

When OCISessionBegin() is called for the first time on a server handle, the user session may
not be created in migratable mode (OCI_MIGRATE). After OCISessionBegin() has been called
for a server handle, the application can call OCISessionBegin() again to initialize another user
session handle with different or the same credentials and different or the same operation
modes. For an application to authenticate a user in OCI_MIGRATE mode, the service handle
must already be associated with a nonmigratable user handle. The userid of that user handle
becomes the ownership ID of the migratable user session. Every migratable session must
have a nonmigratable parent session.

• If OCI_MIGRATE mode is not specified, then the user session context can be used only with
the server handle specified with the OCISessionBegin().

• If OCI_MIGRATE mode is specified, then the user authentication can be set with other server
handles. However, the user session context can only be used with server handles that
resolve to the same database instance. Security checking is performed during session
switching.

A migratable session can switch to a different server handle only if the ownership ID of the
session matches the userid of a nonmigratable session currently connected to that same
server.

OCI_SYSDBA, OCI_SYSOPER, OCI_SYSBKP, OCI_SYSDGD, OCI_SYSKMT, OCI_SYSRAC, OCI_SYSASM,
and OCI_PRELIM_AUTH settings can only be used with a primary user session context. For
OCI_SYSASM, the SYSASM connection works only to ASM instances (not database instances).

A migratable session can be switched, or migrated, to a server handle within an environment
represented by an environment handle. It can also migrate or be cloned to a server handle in

Chapter 9
Password and Session Management

9-13

another environment in the same process, or in a different process in a different mode. To
perform this migration or cloning, you must do the following:

1. Extract the session ID from the session handle using OCI_ATTR_MIGSESSION. This is an
array of bytes that must not be modified by the caller.

2. Transport this session ID to another process.

3. In the new environment, create a session handle and set the session ID using
OCI_ATTR_MIGSESSION.

4. Execute OCISessionBegin(). The resulting session handle is fully authenticated.

To provide credentials for a call to OCISessionBegin(), you must provide a valid user name
and password pair for database authentication in the user session handle parameter. This
involves using OCIAttrSet() to set the OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD attributes
on the user session handle. Then OCISessionBegin() is called with OCI_CRED_RDBMS.

When the user session handle is terminated using OCISessionEnd(), the user name and
password attributes are changed and thus cannot be reused in a future call to
OCISessionBegin(). They must be reset to new values before the next OCISessionBegin()
call.

Or, you can supply external credentials. No attributes need to be set on the user session
handle before calling OCISessionBegin(). The credential type is OCI_CRED_EXT. If values have
been set for OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD, these are ignored if OCI_CRED_EXT is
used.

See Also:

• User Session Handle Attributes for more information about OCI_ATTR_MIGSESSION
• OCISessionBegin()

• OCIServerAttach()

• OCIAttrSet()

• OCISessionEnd()

9.3.2 OCI Password Management
The OCIPasswordChange() call enables an application to modify a user's database password
as necessary.

This is particularly useful if a call to OCISessionBegin() returns an error message or warning
indicating that a user's password has expired.

Applications can also use OCIPasswordChange() to establish a user authentication context and
to change the password. If OCIPasswordChange() is called with an uninitialized service context,
it establishes a service context and authenticates the user's account using the old password,
and then changes the password to the new password. If the OCI_AUTH flag is set, the call
leaves the user session initialized. Otherwise, the user session is cleared.

If the service context passed to OCIPasswordChange() is already initialized, then
OCIPasswordChange() authenticates the given account using the old password and changes

Chapter 9
Password and Session Management

9-14

the password to the new password. In this case, no matter how the flag is set, the user session
remains initialized.

• Gradual Database Password Rollover
Starting with Oracle Database Release 21c, an application can change their database
password without scheduling downtime.

See Also:

• OCIPasswordChange()

• OCISessionBegin()

9.3.2.1 Gradual Database Password Rollover
Starting with Oracle Database Release 21c, an application can change their database
password without scheduling downtime.

Starting Oracle Database Release 21c, a new configurable parameter,
PASSWORD_ROLLOVER_TIME is introduced. Gradual database password rollover parameter for the
database client applications when the database users change their passwords. With gradual
database password rollover parameter, Oracle database allows the old password to be used
while the new password is being gradually rolled out to all database clients. To accomplish this,
a user account with a profile containing a non-zero value for profile limit
PASSWORD_ROLLOVER_TIME changes the account status to OPEN & IN ROLLOVER when the
password of the account is changed.

When the parameter, PASSWORD_ROLLOVER_TIME is configured in the password profile, use the
OCIPasswordChange() function as usual to change the password and enter the password
rollover period, during this period, the old password is still usable. To change a password
during the rollover process, you can use OCIPasswordChange() function. The
OCIPasswordChange() function accepts both the old password and the rollover password
during the password rollover period. The PASSWORD_ROLLOVER_TIME parameter takes effect the
moment you successfully change the password.

For example, consider p1 as the old password and p2 as the new password. The database
user can logon using either the old password (p1) or the new password (p2) until the expiration
of PASSWORD_ROLLOVER_TIME or until the administrator manually ends the password rollover
using the following command:

ALTER USER <username> EXPIRE PASSWORD ROLLOVER PERIOD.
If the customer changes the password from password (p2) to password (p3) before the
PASSWORD_ROLLOVER_TIME has expired, then the database user account logons accepts only
the old password (p1) and the password (p3) (intrim passwords are not accepted) . The
password (p2) is no longer accepted as it is considered to be a typo or has been created by
mistake).

9.3.3 Secure External Password Store
For large-scale deployments where applications use password credentials to connect to
databases, it is possible to store such credentials in a client-side Oracle wallet.

Chapter 9
Password and Session Management

9-15

An Oracle wallet is a secure software container that is used to store authentication and signing
credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the need to
embed user names and passwords in application code, batch jobs, or scripts. This reduces the
risk of exposing passwords in the clear in scripts and application code, and simplifies
maintenance because you need not change your code each time user names and passwords
change. In addition, not having to change application code makes it easier to enforce
password management policies for these user accounts.

When you configure a client to use the external password store, applications can use the
following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement. Instead
your system looks for database login credentials in the client wallet.

See Also:

Oracle Database Administrator’s Guide for information about configuring your client
to use the secure external password store

9.3.4 OCI Session Management
Transaction servers that actively balance user load by multiplexing user sessions over a few
server connections must group these connections into a server group.

Oracle Database uses server groups to identify these connections so that sessions can be
managed effectively and securely.

The attribute OCI_ATTR_SERVER_GROUP must be defined to specify the server group name by
using the OCIAttrSet() call, as shown in Example 9-1.

The server group name is an alphanumeric string not exceeding 30 characters. This attribute
can only be set after calling OCIServerAttach(). OCI_ATTR_SERVER_GROUP attribute must be set
in the server context before creating the first nonmigratable session that uses that context.
After the session is created successfully and the connection to the server is established, the
server group name cannot be changed.

All migratable sessions created on servers within a server group can only migrate to other
servers in the same server group. Servers that terminate are removed from the server group.
New servers can be created within an existing server group at any time.

The use of server groups is optional. If no server group is specified, the server is created in a
server group called DEFAULT.

The owner of the first nonmigratable session created in a nondefault server group becomes the
owner of the server group. All subsequent nonmigratable sessions for any server in this server
group must be created by the owner of the server group.

The server group feature is useful when dedicated servers are used. It has no effect on shared
servers. All shared servers effectively belong to the server group DEFAULT.

Chapter 9
Password and Session Management

9-16

Example 9-1 Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server
Group Name

OCIAttrSet ((void *) srvhp, (ub4) OCI_HTYPE_SERVER, (void *) group_name,
 (ub4) strlen ((CONST char *) group_name),
 (ub4) OCI_ATTR_SERVER_GROUP, errhp);

See Also:

• Server Handle Attributes for more information about OCI_ATTR_SERVER_GROUP
attribute

• OCIAttrSet()

• OCIServerAttach()

9.4 Middle-Tier Applications in OCI
A middle-tier application receives requests from browser clients.

The application determines database access and whether to generate an HTML page.
Applications can have multiple lightweight user sessions within a single database session.
These lightweight sessions allow each user to be authenticated without the overhead of a
separate database connection, and they preserve the identity of the real user through the
middle tier.

As long as the client authenticates itself with the middle tier, and the middle tier authenticates
itself with the database, and the middle tier is authorized to act on behalf of the client by the
administrator, client identities can be maintained all the way into the database without
compromising the security of the client.

The design of a secure three-tier architecture is developed around a set of three trust zones.

The first is the client trust zone. Clients connecting to a web application server are
authenticated by the middle tier using any means: password, cryptographic token, or another.
This method can be entirely different from the method used to establish the other trust zones.

The second trust zone is the application server. The data server verifies the identity of the
application server and trusts it to pass the correct identity of the client.

The third trust zone is the data server interaction with the authorization server to obtain the
roles assigned to the client and the application server.

The application server creates a primary session for itself after it connects to a server. It
authenticates itself in the normal manner to the database, creating the application server trust
zone. The application server identity is now well known and trusted by the data server.

When the application verifies the identity of a client connecting to the application server, it
creates the first trust zone. The application server now needs a session handle for the client so
that it can service client requests. The middle-tier process allocates a session handle and then
sets the following attributes of the client using OCIAttrSet():

• OCI_ATTR_USERNAME sets the database user name of the client.

• OCI_ATTR_PROXY_CREDENTIALS indicates the authenticated application making the proxy
request.

Chapter 9
Middle-Tier Applications in OCI

9-17

To specify a list of roles activated after the application server connects as the client, it can call
OCIAttrSet() with the attribute OCI_ATTR_INITIAL_CLIENT_ROLES and an array of strings that
contains the list of roles before the OCISessionBegin() call. Then the role is established and
proxy capability is verified in one round-trip. If the application server is not allowed to act on
behalf of the client, or if the application server is not allowed to activate the specified roles, the
OCISessionBegin() call fails.

This section includes the following topic: OCI Attributes for Middle-Tier Applications.

• OCI Attributes for Middle-Tier Applications
The following attributes enable you to specify the external name and initial privileges of a
client.

See Also:

• OCIAttrSet()

• OCISessionBegin()

9.4.1 OCI Attributes for Middle-Tier Applications
The following attributes enable you to specify the external name and initial privileges of a
client.

These credentials are used by applications as alternative means of identifying or authenticating
the client.

These attributes include:

• OCI_CRED_PROXY

• OCI_ATTR_PROXY_CREDENTIALS

• OCI_ATTR_DISTINGUISHED_NAME

• OCI_ATTR_CERTIFICATE

• OCI_ATTR_INITIAL_CLIENT_ROLES

• OCI_ATTR_CLIENT_IDENTIFIER

• OCI_ATTR_PASSWORD

• OCI_CRED_PROXY
Use OCI_CRED_PROXY as the value passed in the credt parameter of OCISessionBegin().

• OCI_ATTR_PROXY_CREDENTIALS
Use the OCI_ATTR_PROXY_CREDENTIALS attribute to specify the credentials of the application
server in client authentication.

• OCI_ATTR_DISTINGUISHED_NAME
Use OCI_ATTR_DISTINGUISHED_NAME to pass the distinguished name of the client.

• OCI_ATTR_CERTIFICATE
Certificate-based proxy authentication using OCI_ATTR_CERTIFICATE will not be supported
in future Oracle Database releases.

Chapter 9
Middle-Tier Applications in OCI

9-18

• OCI_ATTR_INITIAL_CLIENT_ROLES
Use the OCI_ATTR_INITIAL_CLIENT_ROLES attribute to specify the roles the client is to
possess when the application server connects to the Oracle database.

• OCI_ATTR_CLIENT_IDENTIFIER
Use OCI_ATTR_CLIENT_IDENTIFIER on the middle tier to track end-user identity.

• OCI_ATTR_PASSWORD
To use the password of the client for validation on the middle-tier, the application server
can use the existing attribute OCI_ATTR_PASSWORD with the client’s authentication data.

9.4.1.1 OCI_CRED_PROXY
Use OCI_CRED_PROXY as the value passed in the credt parameter of OCISessionBegin().

When an application server starts a session on behalf of a client, use OCI_CRED_PROXY as the
value passed in the credt parameter of OCISessionBegin() rather than OCI_CRED_RDBMS
(database user name and password required) or OCI_CRED_EXT (externally provided
credentials).

See Also:

OCISessionBegin()

9.4.1.2 OCI_ATTR_PROXY_CREDENTIALS
Use the OCI_ATTR_PROXY_CREDENTIALS attribute to specify the credentials of the application
server in client authentication.

You can code the following declarations and OCIAttrSet() call, as shown in Example 9-2.

Example 9-2 Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the
Credentials of the Application Server for Client Authentication

OCISession *session_handle;
OCISvcCtx *application_server_session_handle;
OCIError *error_handle;
...
OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *)application_server_session_handle, (ub4) 0,
 OCI_ATTR_PROXY_CREDENTIALS, error_handle);

See Also:

OCIAttrSet()

9.4.1.3 OCI_ATTR_DISTINGUISHED_NAME
Use OCI_ATTR_DISTINGUISHED_NAME to pass the distinguished name of the client.

Chapter 9
Middle-Tier Applications in OCI

9-19

Your applications can use the distinguished name contained within a X.509 certificate as the
login name of the client, instead of the database user name.

To pass the distinguished name of the client, the middle-tier server calls OCIAttrSet(),
passing OCI_ATTR_DISTINGUISHED_NAME, as shown in Example 9-3.

Example 9-3 Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the
Distinguished Name of the Client

/* Declarations */
...
OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *)distinguished_name, (ub4) 0,
 OCI_ATTR_DISTINGUISHED_NAME, error_handle);

See Also:

OCIAttrSet()

9.4.1.4 OCI_ATTR_CERTIFICATE
Certificate-based proxy authentication using OCI_ATTR_CERTIFICATE will not be supported in
future Oracle Database releases.

Use OCI_ATTR_DISTINGUISHED_NAME or OCI_ATTR_USERNAME attribute instead. This method of
authentication is similar to the use of the distinguished name. The entire X.509 certificate is
passed by the middle-tier server to the database.

To pass over the entire certificate, the middle tier calls OCIAttrSet(), passing
OCI_ATTR_CERTIFICATE, as shown in Example 9-4.

Example 9-4 Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509
Certificate

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *)certificate, ub4 certificate_length,
 OCI_ATTR_CERTIFICATE, error_handle);

See Also:

OCIAttrSet()

9.4.1.5 OCI_ATTR_INITIAL_CLIENT_ROLES
Use the OCI_ATTR_INITIAL_CLIENT_ROLES attribute to specify the roles the client is to possess
when the application server connects to the Oracle database.

To enable a set of roles, the function OCIAttrSet() is called with the attribute, an array of NULL-
terminated strings, and the number of strings in the array, as shown in Example 9-5.

Chapter 9
Middle-Tier Applications in OCI

9-20

Example 9-5 Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the
Client Roles

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *)role_array, (ub4) number_of_strings,
 OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);

See Also:

OCIAttrSet()

9.4.1.6 OCI_ATTR_CLIENT_IDENTIFIER
Use OCI_ATTR_CLIENT_IDENTIFIER on the middle tier to track end-user identity.

Many middle-tier applications connect to the database as an application, and rely on the
middle tier to track end-user identity. To integrate tracking of the identity of these users in
various database components, the database client can set the CLIENT_IDENTIFIER (a
predefined attribute from the application context namespace USERENV) in the session handle at
any time. Use the OCI attribute OCI_ATTR_CLIENT_IDENTIFIER in the call to OCIAttrSet(), as
shown in Example 9-6. On the next request to the server, the information is propagated and
stored in the server session.

The CLIENT_IDENTIFIER, which can also be set using the DBMS_SESSION.SET_IDENTIFIER
procedure, is automatically truncated if the supplied input is more than 64 bytes because the
maximum size for the client id is 64 bytes.

OCI_ATTR_CLIENT_IDENTIFIER can also be used in conjunction with the global application
context to restrict availability of the context to the selected identity of these users.

When a client has multiple sessions, execute OCIAttrSet() for each session using the same
client identifier. OCIAttrSet() must be executed manually for sessions that are reestablished
through transparent application failover (TAF).

The client identifier is found in V$SESSION as a CLIENT_IDENTIFIER column or through the
system context with this SQL statement:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM DUAL;

Example 9-6 Defining the OCI_ATTR_CLIENT_IDENTIFIER Attribute to Pass the End-
User Identity

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *)"janedoe", (ub4)strlen("janedoe"),
 OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

Chapter 9
Middle-Tier Applications in OCI

9-21

See Also:

• Oracle Database Security Guide the section about preserving user identity in
multi-tiered environments"

• Transparent Application Failover in OCI

• OCIAttrSet()

9.4.1.7 OCI_ATTR_PASSWORD
To use the password of the client for validation on the middle-tier, the application server can
use the existing attribute OCI_ATTR_PASSWORD with the client’s authentication data.

A middle tier can ask the database server to authenticate a client on its behalf by validating the
password of the client rather than doing the authentication itself. Although it appears that this is
the same as a client/server connection, the client does not have to have Oracle Database
software installed on the client's system to be able to perform database operations. To use the
password of the client, the application server supplies OCIAttrSet() with the authentication
data, using the existing attribute OCI_ATTR_PASSWORD, as shown in Example 9-7.

Example 9-8 shows OCI attributes that enable you to specify the external name and initial
privileges of a client. These credentials are used by OCI applications as alternative means of
identifying or authenticating the client.

Example 9-7 Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for
Validation

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION, (void *)password,
 (ub4)0, OCI_ATTR_PASSWORD, error_handle);

Example 9-8 OCI Attributes That Let You Specify the External Name and Initial
Privileges of a Client

...
*OCIEnv *environment_handle;
OCIServer *data_server_handle;
OCIError *error_handle;
OCISvcCtx *application_server_service_handle;
OraText *client_roles[2];
OCISession *first_client_session_handle, second_client_session_handle;
...
/*
** General initialization and allocation of contexts.
*/

(void) OCIInitialize((ub4) OCI_DEFAULT, (void *)0,
 (void * (*)(void *, size_t)) 0,
 (void * (*)(void *, void *, size_t))0,
 (void (*)(void *, void *)) 0);
(void) OCIEnvInit((OCIEnv **) &environment_handle, OCI_DEFAULT, (size_t) 0,
 (void **) 0);
(void) OCIHandleAlloc((void *) environment_handle, (void **) &error_handle,
 OCI_HTYPE_ERROR, (size_t) 0, (void **) 0);
/*
** Allocate and initialize the server and service contexts used by the
** application server.
*/

Chapter 9
Middle-Tier Applications in OCI

9-22

(void) OCIHandleAlloc((void *) environment_handle,
 (void **)&data_server_handle, OCI_HTYPE_SERVER, (size_t) 0, (void **) 0);
(void) OCIHandleAlloc((void *) environment_handle, (void **)
 &application_server_service_handle, OCI_HTYPE_SVCCTX, (size_t) 0,
 (void **) 0);
(void) OCIAttrSet((void *) application_server_service_handle,
 OCI_HTYPE_SVCCTX, (void *) data_server_handle, (ub4) 0, OCI_ATTR_SERVER,
 error_handle);
/*
** Authenticate the application server. In this case, external authentication is
** being used.
*/

(void) OCIHandleAlloc((void *) environment_handle,
 (void **)&application_server_session_handle, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (void **) 0);
checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, application_server_session_handle, OCI_CRED_EXT,
 OCI_DEFAULT));
/*
** Authenticate the first client.
** Note that no password is specified by the
** application server for the client as it is trusted.
*/

(void) OCIHandleAlloc((void *) environment_handle,
 (void **)&first_client_session_handle, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0,(void **) 0);
(void) OCIAttrSet((void *) first_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) "jeff", (ub4) strlen("jeff"),
 OCI_ATTR_USERNAME, error_handle);
/*
** In place of specifying a password, pass the session handle of the application
** server instead.
*/

(void) OCIAttrSet((void *) first_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) application_server_session_handle,
 (ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);
(void) OCIAttrSet((void *) first_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) "jeff@VeryBigBank.com",
 (ub4) strlen("jeff@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
 error_handle);
/*
** Establish the roles that the application server can use as the client.
*/

client_roles[0] = (OraText *) "TELLER";
client_roles[1] = (OraText *) "SUPERVISOR";
(void) OCIAttrSet((void *) first_client_session_handle,
 OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);
checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, first_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));
/*
** To start a session as another client, the application server does the
** following.
** This code is unchanged from the current way of doing session switching.
*/

(void) OCIHandleAlloc((void *) environment_handle,
 (void **)&second_client_session_handle, (ub4) OCI_HTYPE_SESSION,

Chapter 9
Middle-Tier Applications in OCI

9-23

 (size_t) 0, (void **) 0);
(void) OCIAttrSet((void *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) "mutt", (ub4) strlen("mutt"),
 OCI_ATTR_USERNAME, error_handle);
(void) OCIAttrSet((void *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) application_server_session_handle,
 (ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);
(void) OCIAttrSet((void *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (void *) "mutt@VeryBigBank.com",
 (ub4) strlen("mutt@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
 error_handle);
/*
** Note that the application server has not specified any initial roles to have
** as the second client.
*/

checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, second_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));
/*
** To switch to the first user, the application server applies the session
** handle obtained by the first
** OCISessionBegin() call. This is the same as is currently done.
*/

(void) OCIAttrSet((void *)application_server_service_handle,
 (ub4) OCI_HTYPE_SVCCTX, (void *)first_client_session_handle,
 (ub4)0, (ub4)OCI_ATTR_SESSION, error_handle);
/*
** After doing some operations, the application server can switch to
** the second client. That
** is be done by the following call:
*/

(void) OCIAttrSet((void *)application_server_service_handle,
 (ub4) OCI_HTYPE_SVCCTX,
 (void *)second_client_session_handle, (ub4)0, (ub4)OCI_ATTR_SESSION,
 error_handle);
/*
** and then do operations as that client
*/
...

See Also:

• User Session Handle Attributes

• OCIAttrSet()

9.5 Externally Initialized Context in OCI
An externally initialized context is an application context where attributes can be initialized from
OCI. Use the SQL statement CREATE CONTEXT to create a context namespace in the server with
the option INITIALIZED EXTERNALLY.

Chapter 9
Externally Initialized Context in OCI

9-24

Then, you can initialize an OCI interface when establishing a session using OCIAttrSet() and
OCISessionBegin(). Issue subsequent commands to write to any attributes inside the
namespace only with the PL/SQL package designated in the CREATE CONTEXT statement.

You can set default values and other session attributes through the OCISessionBegin() call,
thus reducing server round-trips.

This section includes the following topics:

• Externally Initialized Context in OCI

• End-to-End Application Tracing

• Using OCISessionBegin() with an Externally Initialized Context

• Externally Initialized Context Attributes in OCI
The client applications you develop can set application contexts explicitly in the session
handle before authentication.

• End-to-End Application Tracing
Use the following attributes to measure server call time, not including server round-trips.

• Using OCISessionBegin() with an Externally Initialized Context
When you call OCISessionBegin(), the context set in the session handle is pushed to the
server.

See Also:

• Oracle Database Security Guide the chapter about managing security for
application developers

• Oracle Database SQL Language Reference the CREATE CONTEXT statement and
the SYS_CONTEXT function

• OCIAttrSet()

• OCISessionBegin()

9.5.1 Externally Initialized Context Attributes in OCI
The client applications you develop can set application contexts explicitly in the session handle
before authentication.

To do this, use the following attributes in OCI functions:

• OCI_ATTR_APPCTX_SIZE

• OCI_ATTR_APPCTX_LIST

• Session Handle Attributes Used to Set an Externally Initialized Context

• OCI_ATTR_APPCTX_SIZE
Use the OCI_ATTR_APPCTX_SIZE attribute to initialize the context array size with the desired
number of context attributes in the OCIAttrSet() call.

• OCI_ATTR_APPCTX_LIST
Use the OCI_ATTR_APPCTX_LIST attribute to get a handle on the application context list
descriptor for the session in the OCIAttrGet() call.

Chapter 9
Externally Initialized Context in OCI

9-25

• Session Handle Attributes Used to Set an Externally Initialized Context
Shows how to set the appropriate session handle attributes values for the application
context.

9.5.1.1 OCI_ATTR_APPCTX_SIZE
Use the OCI_ATTR_APPCTX_SIZE attribute to initialize the context array size with the desired
number of context attributes in the OCIAttrSet() call.

This is shown in Example 9-9.

Example 9-9 Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context
Array Size with the Desired Number of Context Attributes

OCIAttrSet(session, (ub4) OCI_HTYPE_SESSION,
 (void *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

See Also:

OCIAttrSet()

9.5.1.2 OCI_ATTR_APPCTX_LIST
Use the OCI_ATTR_APPCTX_LIST attribute to get a handle on the application context list
descriptor for the session in the OCIAttrGet() call.

This is shown in Example 9-10. (The parameter ctxl_desc must be of data type OCIParam *).

Example 9-11 shows how to use the application context list descriptor to obtain an individual
descriptor for the i-th application context in a call to OCIParamGet().

Example 9-10 Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the
Application Context List Descriptor for the Session

OCIAttrGet(session, (ub4) OCI_HTYPE_SESSION,
 (void *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Example 9-11 Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th
Application Context Using the Application Context List Descriptor

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(void **)&ctx_desc, i);

See Also:

• OCIAttrGet()

• OCIParamGet()

9.5.1.3 Session Handle Attributes Used to Set an Externally Initialized Context
Shows how to set the appropriate session handle attributes values for the application context.

Chapter 9
Externally Initialized Context in OCI

9-26

Set the appropriate values of the application context using these attributes:

• OCI_ATTR_APPCTX_NAME to set the namespace of the context, which must be a valid SQL
identifier.

• OCI_ATTR_APPCTX_ATTR to set an attribute name in the given context, a non-case-sensitive
string of up to 30 bytes.

• OCI_ATTR_APPCTX_VALUE to set the value of an attribute in the given context.

Each namespace can have many attributes, each of which has one value. Example 9-12
shows the calls you can use to set them.

Note that only character type is supported, because application context operations are based
on the VARCHAR2 data type.

Example 9-12 Defining Session Handle Attributes to Set Externally Initialized Context

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (void *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME, error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (void *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR, error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (void *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE, error_handle);

See Also:

User Session Handle Attributes

9.5.2 End-to-End Application Tracing
Use the following attributes to measure server call time, not including server round-trips.

These attributes can also be set by using the PL/SQL package DBMS_APPLICATION_INFO, which
incurs one round-trip to the server. Using OCI to set the attributes does not incur a round-trip.

This section includes the following topics:

• OCI_ATTR_COLLECT_CALL_TIME

• OCI_ATTR_CALL_TIME

• Attributes for End-to-End Application Tracing

• OCI_ATTR_COLLECT_CALL_TIME
Use the attribute OCI_ATTR_COLLECT_CALL_TIME and set the value to TRUE to enable the
server to measure each call time.

• OCI_ATTR_CALL_TIME
Use the attribute OCI_ATTR_CALL_TIME to get the elapsed time of the last server call.

• Attributes for End-to-End Application Tracing
Use these attributes for monitoring, tracing, and debugging applications.

Chapter 9
Externally Initialized Context in OCI

9-27

9.5.2.1 OCI_ATTR_COLLECT_CALL_TIME
Use the attribute OCI_ATTR_COLLECT_CALL_TIME and set the value to TRUE to enable the server
to measure each call time.

Set a boolean variable to TRUE or FALSE. After you set the OCI_ATTR_COLLECT_CALL_TIME
attribute by calling OCIAttrSet(), the server measures each call time. All server times between
setting the variable to TRUE and setting it to FALSE are measured.

See Also:

OCIAttrSet()

9.5.2.2 OCI_ATTR_CALL_TIME
Use the attribute OCI_ATTR_CALL_TIME to get the elapsed time of the last server call.

The elapsed time, in microseconds, of the last server call is returned in a ub8 variable by
calling OCIAttrGet() with the OCI_ATTR_CALL_TIME attribute. Example 9-13 shows how to do
this in a code fragment.

Example 9-13 Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of
the Last Server Call

boolean enable_call_time;
ub8 call_time;
...
enable_call_time = TRUE;
OCIAttrSet(session, OCI_HTYPE_SESSION, (void *)&enable_call_time,
 (ub4)0, OCI_ATTR_COLLECT_CALL_TIME,
 (OCIError *)error_handle);
OCIStmtExecute(...);
OCIAttrGet(session, OCI_HTYPE_SESSION, (void *)&call_time,
 (ub4)0, OCI_ATTR_CALL_TIME,
 (OCIError *)error_handle);
...

See Also:

OCIAttrGet()

9.5.2.3 Attributes for End-to-End Application Tracing
Use these attributes for monitoring, tracing, and debugging applications.

Set these attributes for monitoring, tracing, and debugging applications:

• OCI_ATTR_MODULE - Name of the current module in the client application.

• OCI_ATTR_ACTION - Name of the current action within the current module. Set to NULL if you
do not want to specify an action.

Chapter 9
Externally Initialized Context in OCI

9-28

• OCI_ATTR_DBOP - Name of the database operation set by the client application to be
monitored in the database. Set to NULL if you want to end monitoring the current running
database operation.

• OCI_ATTR_CLIENT_INFO - Client application additional information.

See Also:

User Session Handle Attributes

Monitoring Database Operations in Oracle Database SQL Tuning Guide

Monitoring Real-Time Database Performance in Oracle Database 2 Day +
Performance Tuning Guide

9.5.3 Using OCISessionBegin() with an Externally Initialized Context
When you call OCISessionBegin(), the context set in the session handle is pushed to the
server.

No additional contexts are propagated to the server session. Example 9-14 illustrates the use
of these calls and attributes.

Example 9-14 Using OCISessionBegin() with an Externally Initialized Context

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OraText *username = (OraText *) "HR";
static OraText *password = (OraText *) "HR";

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

static sword status;

int main(argc, argv)
int argc;
char *argv[];
{

 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 void *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;

 OCIEnvCreate(&envhp, OCI_DEFAULT, (void *)0, 0, 0, 0,
 (size_t)0, (void *)0);

 (void) OCIHandleAlloc((void *) envhp, (void **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (void **) 0);

Chapter 9
Externally Initialized Context in OCI

9-29

 /* server contexts */
 (void) OCIHandleAlloc((void *) envhp, (void **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (void **) 0);

 (void) OCIHandleAlloc((void *) envhp, (void **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (void **) 0);

 (void) OCIServerAttach(srvhp, errhp, (OraText *)"", strlen(""), 0);

 /* set attribute server context in the service context */
 (void) OCIAttrSet((void *) svchp, OCI_HTYPE_SVCCTX, (void *)srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp);

 (void) OCIHandleAlloc((void *) envhp, (void **)&authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (void **) 0);
/**/
 /* set app ctx size to 2 because you want to set up 2 application contexts */
 ctxsize = 2;

 /* set up app ctx buffer */
 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) &ctxsize, (ub4) 0,
 (ub4) OCI_ATTR_APPCTX_SIZE, errhp);

 /* retrieve the list descriptor */
 (void) OCIAttrGet((void *)authp, (ub4) OCI_HTYPE_SESSION,
 (void *)&ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp);

 /* retrieve the 1st ctx element descriptor */
 (void) OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp, (void**)&ctxedesc, 1);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "HR", (ub4) strlen((char *)"HR"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "ATTR1", (ub4) strlen((char *)"ATTR1"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "VALUE1", (ub4) strlen((char *)"VALUE1"),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp);

 /* set second context */
 (void) OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp, (void**)&ctxedesc, 2);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "HR", (ub4) strlen((char *)"HR"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "ATTR2", (ub4) strlen((char *)"ATTR2"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp);

 (void) OCIAttrSet((void *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (void *) "VALUE2", (ub4) strlen((char *)"VALUE2"),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp);
/**/
 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) username, (ub4) strlen((char *)username),
 (ub4) OCI_ATTR_USERNAME, errhp);

Chapter 9
Externally Initialized Context in OCI

9-30

 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) password, (ub4) strlen((char *)password),
 (ub4) OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, authp, OCI_CRED_EXT, (ub4) OCI_DEFAULT);

}

See Also:

OCISessionBegin()

9.6 Client Application Context
Application context enables database clients (such as mid-tier applications) to set and send
arbitrary session data to the server with each executed statement in only one round-trip.

The server stores this data in the session context before statement execution, from which it
can be used to restrict queries or DML operations. All database features such as views,
triggers, virtual private database (VPD) policies, or PL/SQL stored procedures can use session
data to constrain their operations.

A public writable namespace, nm, is created:

CREATE CONTEXT nm USING hr.package1;

To modify the data grouped in that namespace, users must execute the designated PL/SQL
package, hr.package1. However, no privilege is needed to query this information in a user
session.

The variable length application context data that is stored in the user session is in the form of
an attribute and value pair grouped under the context namespace.

For example, if you want a human resources application to store an end-user's responsibility
information in the user session, then it could create an nm namespace and an attribute called
"responsibility" that can be assigned a value such as "manager" or "accountant". This is
referred to as the set operation in this document.

If you want the application to clear the value of the "responsibility" attribute in the nm
namespace, then it could set it to NULL or an empty string. This is referred to as the clear
operation in this document.

To clear all information in the nm namespace, the application can send the namespace
information as a part of the clear-all operation to the server. This is referred to as the clear-all
operation in a namespace in this document.

If there is no package security defined for a namespace, then this namespace is deemed to be
a client namespace, and any OCI client can transport data for that namespace to the server.
No privilege or package security check is done.

Network transport of application context data is done in a single round-trip to the server.

This section includes the following topics:

• Using Multiple SET Operations

Chapter 9
Client Application Context

9-31

• Using CLEAR-ALL Operations Between SET Operations

• Network Transport and PL/SQL on Client Namespace

• Using Multiple SET Operations
Use the OCIAppCtxSet() function to perform a series of set operations on the
"responsibility" attribute in the CLIENTCONTEXT namespace.

• Using CLEAR-ALL Operations Between SET Operations
You can clear all the context information in a specific client namespace, using the
OCIAppCtxClearAll() function, and it will also be cleared on the server-side user session,
during the next network transport.

• Network Transport and PL/SQL on Client Namespace
It is possible that an application could send application context information on an
OCIStmtExecute() call to the server, and also attempt to change the same context
information during that call by executing the DBMS_SESSION package.

9.6.1 Using Multiple SET Operations
Use the OCIAppCtxSet() function to perform a series of set operations on the "responsibility"
attribute in the CLIENTCONTEXT namespace.

When this information is sent to the server, the latest value prevails for that particular attribute
in a namespace. To change the value of the "responsibility" attribute in the CLIENTCONTEXT
namespace from "manager" to "vp", use the code fragment shown in Example 9-15, on the
client side. When this information is transported to the server, the server shows the latest value
"vp" for the "responsibility" attribute in the CLIENTCONTEXT namespace.

You can clear specific attribute information in a client namespace. This can be done by setting
the value of an attribute to NULL or to an empty string, as shown in Example 9-16 using the
OCIAppCtxSet() function.

Example 9-15 Changing the "responsibility" Attribute Value in the CLIENTCONTEXT
Namespace

err = OCIAppCtxSet((void *) sesshndl,(void *)"CLIENTCONTEXT",(ub4) 13,
 (void *)"responsibility", 14
 (void *)"manager", 7, errhp, OCI_DEFAULT);
err = OCIAppCtxSet((void *) sesshndl, (void*)"CLIENTCONTEXT", 13,
 (void *)"responsibility", 14,(void *)"vp",2, errhp,
 OCI_DEFAULT);

Example 9-16 Two Ways to Clear Specific Attribute Information in a Client Namespace

(void) OCIAppCtxSet((void *) sesshndl, (void *)"CLIENTCONTEXT", 13,
 (void *)"responsibility", 14, (void *)0, 0,errhp,
 OCI_DEFAULT);

(void) OCIAppCtxSet((void *) sesshndl, (void *)"CLIENTCONTEXT", 13
 (void *)"responsibility", 14, (void *)"", 0,errhp,
 OCI_DEFAULT);

See Also:

OCIAppCtxSet()

Chapter 9
Client Application Context

9-32

9.6.2 Using CLEAR-ALL Operations Between SET Operations
You can clear all the context information in a specific client namespace, using the
OCIAppCtxClearAll() function, and it will also be cleared on the server-side user session,
during the next network transport.

If the client application performs a clear-all operation in a namespace after several set
operations, then values of all attributes in that namespace that were set before this clear-all
operation are cleaned up on the client side and the server side. Only the set operations that
were done after the clear-all operation are reflected on the server side. On the client side, the
code appears, as shown in Example 9-17.

The clear-all operation clears any information set by earlier operations in the namespace
CLIENTCONTEXT: "responsibility" = "manager" is removed. The information that was set
subsequently will not be reflected on the server side.

Example 9-17 Clearing All the Context Information in a Specific Client Namespace

err = OCIAppCtxSet((void *) sesshndl,(void *)"CLIENTCONTEXT", 13,
 (void *)"responsibility", 14,
 (void *)"manager", 7,errhp, OCI_DEFAULT);
err = OCIAppCtxClearAll((void *) sesshndl, (void *)"CLIENTCONTEXT", 13, errhp,
 OCI_DEFAULT);
err = OCIAppCtxSet((void *) sesshndl, (void*)"CLIENTCONTEXT",13
 (void *)"office",6, (void *)"2op123", 5, errhp, OCI_DEFAULT);

See Also:

OCIAppCtxClearAll()

9.6.3 Network Transport and PL/SQL on Client Namespace
It is possible that an application could send application context information on an
OCIStmtExecute() call to the server, and also attempt to change the same context information
during that call by executing the DBMS_SESSION package.

In general, on the server side, the transported information is processed first and the main call
is processed later. This behavior applies to the application context network transports as well.

If they are both writing to the same client namespace and attribute set, then the main call's
information overwrites the information set provided by the fast network transport mechanism. If
an error occurs in the network transport call, the main call is not executed.

However, an error in the main call does not affect the processing of the network transport call.
Once the network transport call is processed, then there is no way to undo it. When the error is
reported to the caller (by an OCI function), it is reported as a generic ORA error. Currently,
there is no easy way to distinguish an error in the network transport call from an error in the
main call. The client should not assume that an error from the main call will undo the round-trip
network processing and should implement appropriate exception-handling mechanisms to
prevent any inconsistencies.

Chapter 9
Client Application Context

9-33

See Also:

• OCIStmtExecute()

• OCIAppCtxClearAll()

• OCIAppCtxSet()

9.7 Using Edition-Based Redefinition
An edition provides a staging area where "editionable" objects changed by an application patch
can be installed and executed while the existing application is still available.

You can specify an edition other than the database default by setting the attribute
OCI_ATTR_EDITION at session initiation time. The application can call OCIAttrSet() specifying
this attribute name and the edition as the value, as shown in Example 9-18.

If OCIAttrSet() is not called, the value of the edition name is obtained from the operating
system environment variable ORA_EDITION. If that variable is not set, then the value of
OCI_ATTR_EDITION is the empty string. If a nonempty value was specified, then the server sets
the specified edition for the session, or the session uses the database default edition. The
server then checks that the user has the USE privilege on the edition. If not, then the connect
fails. If a nonexistent edition name was specified, then an error is returned.

Example 9-18 Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attribute

static void workerFunction()
{
 OCISvcCtx *svchp = (OCISvcCtx *) 0;
 OCIAuthInfo *authp = (OCIAuthInfo *)0;
 sword err;
 err = OCIHandleAlloc((void *) envhp, (void **)&authp,
 (ub4) OCI_HTYPE_AUTHINFO,
 (size_t) 0, (void **) 0);
 if (err)
 checkerr(errhp, err);

 checkerr(errhp, OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_AUTHINFO,
 (void *) username, (ub4) strlen((char *)username),
 (ub4) OCI_ATTR_USERNAME, errhp));

 checkerr(errhp,OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_AUTHINFO,
 (void *) password, (ub4) strlen((char *)password),
 (ub4) OCI_ATTR_PASSWORD, errhp));

 (void) OCIAttrSet((void *) authp, (ub4) OCI_HTYPE_SESSION,
 (void *) "Patch_Bug_12345",
 (ub4) strlen((char *)"Patch_Bug_12345"),
 (ub4) OCI_ATTR_EDITION, errhp);

 printf(("Create a new session that connects to the specified edition\n");
 if (err = OCISessionGet(envhp, errhp, &svchp, authp,
 (OraText *)connstr, (ub4)strlen((char *)connstr), NULL,
 0, NULL, NULL, NULL, OCI_DEFAULT))
 {
 checkerr(errhp, err);
 exit(1);
 }

Chapter 9
Using Edition-Based Redefinition

9-34

 checkerr(errhp, OCISessionRelease(svchp, errhp, NULL, (ub4)0, OCI_DEFAULT));

 OCIHandleFree((void *)authp, OCI_HTYPE_AUTHINFO);
}

See Also:

• OCI_ATTR_EDITION in OCI_ATTR_EDITION

• Oracle Database Development Guide for a more complete description of edition-
based redefinition

• Restrictions on Attributes Supported for OCI Session Pool in OCISessionGet()

• OCIAttrSet()

9.8 OCI Security Enhancements
The following security enhancements use configured parameters in the init.ora file or the
sqlnet.ora file (the latter file is specifically noted for that feature).

These security enhancements are described in more detail in Oracle Database Security Guide.
These initialization parameters apply to all instances of the database.

See Also:

Oracle Database Security Guide, the section about embedding calls in middle-tier
applications to get, set, and clear client session IDs

This section includes the following topics:

• Controlling the Database Version Banner Displayed

• Banners for Unauthorized Access and User Actions Auditing

• Non-Deferred Linkage

• Controlling the Database Version Banner Displayed
The OCIServerVersion() function can be issued before authentication (on a connected
server handle after calling OCIServerAttach()) to get the database version.

• Banners for Unauthorized Access and User Actions Auditing
The following systemwide parameters are in sqlnet.ora and warn users against
unauthorized access and possible auditing of user actions.

• Non-Deferred Linkage
Non-deferred linkage of applications is no longer supported and the Makefile is modified
to remove it.

Chapter 9
OCI Security Enhancements

9-35

9.8.1 Controlling the Database Version Banner Displayed
The OCIServerVersion() function can be issued before authentication (on a connected server
handle after calling OCIServerAttach()) to get the database version.

To avoid disclosing the database version string before authentication, set the
SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter to NO. For example:

SEC_RETURN_SERVER_RELEASE_BANNER = NO

This displays the following string for Oracle Database Release 11.1 and all subsequent 11.1
releases and patch sets:

Oracle Database 11g Release 11.1.0.0.0 - Production

Set SEC_RETURN_SERVER_RELEASE_BANNER to YES and then the current banner is displayed. If
you have installed Oracle Database Release 11.2.0.2, the banner displayed is:

Oracle Database 11g Enterprise Edition Release 11.2.0.2 - Production

This feature works with an Oracle Database Release 11.1 or later server, and any version
client.

See Also:

• OCIServerVersion()

• OCIServerAttach()

9.8.2 Banners for Unauthorized Access and User Actions Auditing
The following systemwide parameters are in sqlnet.ora and warn users against unauthorized
access and possible auditing of user actions.

These features are available in Oracle Database Release 11.1 and later servers and clients.
The content of the banners is in text files that the database administrator creates. There is a
512 byte buffer limit for displaying the banner content. If this buffer limit is exceeded, the
banner content will appear to be cut off. The access banner syntax is:

SEC_USER_UNAUTHORIZED_ACCESS_BANNER = file_path1

In this syntax, file_path1 is the path of a text file. To retrieve the banner, get the value of the
attribute OCI_ATTR_ACCESS_BANNER from the server handle after calls to either
OCIServerAttach() or OCISessionGet().

The audit banner syntax is:

SEC_USER_AUDIT_ACTION_BANNER = file_path2

In this syntax, file_path2 is the path of a text file. To retrieve the banner, get the value of the
attribute OCI_ATTR_AUDIT_BANNER from the session handle after calls to either
OCISessionBegin(), OCISessionGet(), OCILogon(), or OCILogon2().

Chapter 9
OCI Security Enhancements

9-36

See Also:

• OCI_ATTR_ACCESS_BANNER

• OCI_ATTR_AUDIT_BANNER

• OCIServerAttach()

• OCISessionGet()

• OCISessionBegin()

• OCILogon()

• OCILogon2()

9.8.3 Non-Deferred Linkage
Non-deferred linkage of applications is no longer supported and the Makefile is modified to
remove it.

This method of linking was used before OCI V7.

9.9 Overview of OCI Multithreaded Development
Threads are lightweight processes that exist within a larger process.

Threads share the same code and data segments but have their own program counters,
system registers, and stacks. Global and static variables are common to all threads, and a
mutual exclusion mechanism is required to manage access to these variables from multiple
threads within an application.

Once spawned, threads run asynchronously with respect to one another. They can access
common data elements and make OCI calls in any order. Because of this shared access to
data elements, a synchronized mechanism is required to maintain the integrity of data being
accessed.

The mechanism to manage data access takes the form of mutexes (mutual exclusion locks).
This mechanism is implemented to ensure that no conflicts arise between multiple threads
accessing shared internal data that are opaque to users. In OCI, mutexes are granted for each
environment handle.

The thread safety feature of Oracle Database and the OCI libraries allows developers to use
OCI in a multithreaded environment. Thread safety ensures that code can be reentrant, with
multiple threads making OCI calls without side effects.

Chapter 9
Overview of OCI Multithreaded Development

9-37

Note:

Thread safety is not available on every operating system. Check your Oracle
Database system-specific documentation for more information.

In a multithreaded Linux or UNIX environment, OCI calls except OCIBreak() are not
allowed in a user signal handler.

The correct way to use and free handles is to create the handle, use the handle, then
free the handle only after all the threads have been destroyed, when the application
is terminating.

This section includes the following topics:

• Advantages of OCI Thread Safety

• OCI Thread Safety and Three-Tier Architectures

• About Implementing Thread Safety

• Advantages of OCI Thread Safety
Lists the advantages of implementing thread safety.

• OCI Thread Safety and Three-Tier Architectures
In addition to client/server applications, where the client can be a multithreaded program, a
typical use of multithreaded applications is in three-tier (client-agent-server) architectures.

• About Implementing Thread Safety
To take advantage of thread safety, an application must be running on a thread-safe
operating system.

See Also:

OCIBreak()

9.9.1 Advantages of OCI Thread Safety
Lists the advantages of implementing thread safety.

The implementation of thread safety in OCI has the following advantages:

• Multiple threads of execution can make OCI calls with the same result as successive calls
made by a single thread.

• When multiple threads make OCI calls, there are no side effects between threads.

• Users who do not write multithreaded programs do not pay a performance penalty for
using thread-safe OCI calls.

• Use of multiple threads can improve program performance. Gains may be seen on
multiprocessor systems where threads run concurrently on separate processors, and on
single processor systems where overlap can occur between slower operations and faster
operations.

Chapter 9
Overview of OCI Multithreaded Development

9-38

9.9.2 OCI Thread Safety and Three-Tier Architectures
In addition to client/server applications, where the client can be a multithreaded program, a
typical use of multithreaded applications is in three-tier (client-agent-server) architectures.

In this architecture, the client is concerned only with presentation services. The agent
(application server) processes the application logic for the client application. Typically, this
relationship is a many-to-one relationship, with multiple clients sharing the same application
server.

The server tier in this scenario is a database. The application server (agent) is very well suited
to being a multithreaded application server, with each thread serving a single client application.
In an Oracle Database environment, this application server is an OCI or precompiler program.

9.9.3 About Implementing Thread Safety
To take advantage of thread safety, an application must be running on a thread-safe operating
system.

The application specifies that it is running in a multithreaded environment by making an
OCIEnvNlsCreate() call with OCI_THREADED as the value of the mode parameter.

All subsequent calls to OCIEnvNlsCreate() must also be made with OCI_THREADED.

Note:

Applications running on non-thread-safe operating systems must not pass a value of
OCI_THREADED to OCIEnvCreate() or OCIEnvNlsCreate().

If an application is single-threaded, whether or not the operating system is thread-safe, the
application must pass a value of OCI_DEFAULT to OCIEnvCreate() or OCIEnvNlsCreate().
Single-threaded applications that run in OCI_THREADED mode may incur lower performance.

If a multithreaded application is running on a thread-safe operating system, the OCI library
manages mutexes for the application for each environment handle. An application can override
this feature and maintain its own mutex scheme by specifying a value of OCI_ENV_NO_MUTEX in
the mode parameter of either the OCIEnvCreate() or OCIEnvNlsCreate() calls.

The following scenarios are possible, depending on how many connections exist in each
environment handle, and how many threads are spawned in each connection.

• If an application has multiple environment handles, with a single thread in each, mutexes
are not required.

• If an application running in OCI_THREADED mode maintains one or more environment
handles, with multiple connections, it has these options:

– Pass a value of OCI_ENV_NO_MUTEX for the mode of OCIEnvNlsCreate(). The application
must set mutual exclusion locks (mutex) for OCI calls made on the same environment
handle. This has the advantage that the mutex scheme can be optimized to the
application design. The programmer must also ensure that only one OCI call is in
process on the environment handle connection at any given time.

– Pass a value of OCI_DEFAULT for the mode of OCIEnvNlsCreate(). The OCI library
automatically gets a mutex on every OCI call on the same environment handle.

Chapter 9
Overview of OCI Multithreaded Development

9-39

Note:

Most processing of an OCI call happens on the server, so if two threads
using OCI calls go to the same connection, then one of them can be blocked
while the other finishes processing at the server.

Use one error handle for each thread in an application, because OCI errors
can be overwritten by other threads.

This section includes the following topics:

• About Polling Mode Operations and Thread Safety

• Mixing 7.x and Later Release OCI Calls

• About Polling Mode Operations and Thread Safety
OCI supports polling mode operations.

• Mixing 7.x and Later Release OCI Calls
If an application is mixing later release and 7.x OCI calls, and the application has been
initialized as thread-safe (with the appropriate calls of the later release), it is not necessary
to call opinit() to achieve thread safety.

See Also:

• OCIEnvNlsCreate()

• OCIEnvCreate()

9.9.3.1 About Polling Mode Operations and Thread Safety
OCI supports polling mode operations.

When OCI is operating in threaded mode, OCI calls that poll for completion acquire mutexes
when the OCI call is actively executing. However, when OCI returns control to the application,
OCI releases any acquired mutexes. The caller should ensure that no other OCI call is made
on the connection until the polling mode OCI operation in progress completes.

See Also:

Polling Mode Operations in OCI

9.9.3.2 Mixing 7.x and Later Release OCI Calls
If an application is mixing later release and 7.x OCI calls, and the application has been
initialized as thread-safe (with the appropriate calls of the later release), it is not necessary to
call opinit() to achieve thread safety.

The application gets 7.x behavior on any subsequent 7.x function calls.

Chapter 9
Overview of OCI Multithreaded Development

9-40

9.10 OCIThread Package
The OCIThread package provides some commonly used threading primitives.

The OCIThread package offers a portable interface to threading capabilities native to various
operating systems, but does not implement threading on operating systems that do not have
native threading capability.

OCIThread does not provide a portable implementation, but it serves as a set of portable covers
for native multithreaded facilities. Therefore, operating systems that do not have native support
for multithreading are only able to support a limited implementation of the OCIThread package.
As a result, products that rely on all of the OCIThread functionality do not port to all operating
systems. Products that must be ported to all operating systems must use only a subset of the
OCIThread functionality.

The OCIThread API consists of three main parts. Each part is described briefly here. The
following subsections describe each in greater detail:

• Initialization and Termination. These calls deal with the initialization and termination of
OCIThread context, which is required for other OCIThread calls.

OCIThread only requires that the process initialization function, OCIThreadProcessInit(),
is called when OCIThread is being used in a multithreaded application. Failing to call
OCIThreadProcessInit() in a single-threaded application is not an error.

Separate calls to OCIThreadInit() all return the same OCIThread context. Each call to
OCIThreadInit() must eventually be matched by a call to OCIThreadTerm().

• Passive Threading Primitives. Passive threading primitives are used to manipulate mutual
exclusion locks (mutex), thread IDs, and thread-specific data keys. These primitives are
described as passive because although their specifications allow for the existence of
multiple threads, they do not require it. It is possible for these primitives to be implemented
according to specification in both single-threaded and multithreaded environments. As a
result, OCIThread clients that use only these primitives do not require a multiple-thread
environment to work correctly. They are able to work in single-threaded environments
without branching code.

• Active Threading Primitives. Active threading primitives deal with the creation, termination,
and manipulation of threads. These primitives are described as active because they can
only be used in true multithreaded environments. Their specification explicitly requires
multiple threads. If you must determine at run time whether you are in a multithreaded
environment, call OCIThreadIsMulti() before using an OCIThread active threading
primitive.

To write a version of the same application to run on single-threaded operating system, it is
necessary to branch your code, whether by branching versions of the source file or by
branching at run time with the OCIThreadIsMuilt() call.

• Initialization and Termination
The types and functions described in this section are associated with the initialization and
termination of the OCIThread package. OCIThread must be initialized before you can use
any of its functionality.

• Passive Threading Primitives
Lists the passive threading primitive functions.

• Active Threading Primitives
Lists the active threading primitives, which deal with manipulation of actual threads.

Chapter 9
OCIThread Package

9-41

See Also:

• Thread Management Functions

• cdemothr.c in the demo directory is an example of a multithreading application

• OCIThreadProcessInit()

• OCIThreadInit()

• OCIThreadTerm()

• OCIThreadIsMulti()

9.10.1 Initialization and Termination
The types and functions described in this section are associated with the initialization and
termination of the OCIThread package. OCIThread must be initialized before you can use any of
its functionality.

The observed behavior of the initialization and termination functions is the same regardless of
whether OCIThread is in a single-threaded or a multithreaded environment. Table 9-6 lists
functions for thread initialization and termination.

Table 9-6 Initialization and Termination Multithreading Functions

Function Purpose

OCIThreadProcessInit() Performs OCIThread process initialization

OCIThreadInit() Initializes OCIThread context

OCIThreadTerm() Terminates the OCIThread layer and frees context memory

OCIThreadIsMulti() Tells the caller whether the application is running in a
multithreaded environment or a single-threaded
environment

This section includes the following topic: OCIThread Context.

• OCIThread Context
Most calls to OCIThread functions use the OCI environment or user session handle as a
parameter.

See Also:

Thread Management Functions

9.10.1.1 OCIThread Context
Most calls to OCIThread functions use the OCI environment or user session handle as a
parameter.

Chapter 9
OCIThread Package

9-42

The OCIThread context is part of the OCI environment or user session handle, and it must be
initialized by calling OCIThreadInit(). Termination of the OCIThread context occurs by calling
OCIThreadTerm().

Note:

The OCIThread context is an opaque data structure. Do not attempt to examine the
contents of the context.

See Also:

• OCIThreadInit()

• OCIThreadTerm()

9.10.2 Passive Threading Primitives
Lists the passive threading primitive functions.

The passive threading primitives deal with the manipulation of mutex, thread IDs, and thread-
specific data. Because the specifications of these primitives do not require the existence of
multiple threads, they can be used both in multithreaded and single-threaded operating
systems. Table 9-7 lists functions used to implement passive threading.

Table 9-7 Passive Threading Primitives

Function Purpose

OCIThreadMutexInit() Allocates and initializes a mutex

OCIThreadMutexDestroy() Destroys and deallocates a mutex

OCIThreadMutexAcquire() Acquires a mutex for the thread in which it is called

OCIThreadMutexRelease() Releases a mutex

OCIThreadKeyInit() Allocates and generates a new key

OCIThreadKeyDestroy() Destroys and deallocates a key

OCIThreadKeyGet() Gets the calling thread's current value for a key

OCIThreadKeySet() Sets the calling thread's value for a key

OCIThreadIdInit() Allocates and initializes a thread ID

OCIThreadIdDestroy() Destroys and deallocates a thread ID

OCIThreadIdSet() Sets one thread ID to another

OCIThreadIdSetNull() Nulls a thread ID

OCIThreadIdGet() Retrieves a thread ID for the thread in which it is called

OCIThreadIdSame() Determines if two thread IDs represent the same thread

OCIThreadIdNull() Determines if a thread ID is NULL

This section includes the following topics:

Chapter 9
OCIThread Package

9-43

• OCIThreadMutex

• OCIThreadKey

• OCIThreadKeyDestFunc

• OCIThreadId

• OCIThreadMutex
The OCIThreadMutex data type is used to represent a mutex.

• OCIThreadKey
The data type OCIThreadKey can be thought of as a process-wide variable with a thread-
specific value.

• OCIThreadKeyDestFunc
OCIThreadKeyDestFunc is the type of a pointer to a key's destructor routine.

• OCIThreadId
OCIThreadId data type is used to identify a thread.

9.10.2.1 OCIThreadMutex
The OCIThreadMutex data type is used to represent a mutex.

This mutex is used to ensure that either:

• Only one thread accesses a given set of data at a time

• Only one thread executes a given critical section of code at a time

Mutex pointers can be declared as parts of client structures or as standalone variables. Before
they can be used, they must be initialized using OCIThreadMutexInit(). Once they are no
longer needed, they must be destroyed using OCIThreadMutexDestroy().

A thread can acquire a mutex by using OCIThreadMutexAcquire(). This ensures that only one
thread at a time is allowed to hold a given mutex. A thread that holds a mutex can release it by
calling OCIThreadMutexRelease().

See Also:

• OCIThreadMutexInit()

• OCIThreadMutexDestroy()

• OCIThreadMutexAcquire()

• OCIThreadMutexRelease()

9.10.2.2 OCIThreadKey
The data type OCIThreadKey can be thought of as a process-wide variable with a thread-
specific value.

Thus all threads in a process can use a given key, but each thread can examine or modify that
key independently of the other threads. The value that a thread sees when it examines the key
is always the same as the value that it last set for the key. It does not see any values set for the
key by other threads. The data type of the value held by a key is a void * generic pointer.

Chapter 9
OCIThread Package

9-44

Keys can be created using OCIThreadKeyInit(). Key value are initialized to NULL for all
threads.

A thread can set a key's value using OCIThreadKeySet(). A thread can get a key's value using
OCIThreadKeyGet().

The OCIThread key functions save and retrieve data specific to the thread. When clients
maintain a pool of threads and assign them to different tasks, it may not be appropriate for a
task to use OCIThread key functions to save data associated with it.

Here is a scenario of how things can fail: A thread is assigned to execute the initialization of a
task. During initialization, the task stores data in the thread using OCIThread key functions.
After initialization, the thread is returned to the threads pool. Later, the threads pool manager
assigns another thread to perform some operations on the task, and the task must retrieve the
data it stored earlier in initialization. Because the task is running in another thread, it is not able
to retrieve the same data. Application developers that use thread pools must be aware of this.

See Also:

• OCIThreadKeyInit()

• OCIThreadKeySet()

• OCIThreadKeyGet()

9.10.2.3 OCIThreadKeyDestFunc
OCIThreadKeyDestFunc is the type of a pointer to a key's destructor routine.

Keys can be associated with a destructor routine when they are created using
OCIThreadKeyInit(). A key's destructor routine is called whenever a thread with a non-NULL
value for the key terminates. The destructor routine returns nothing and takes one parameter,
the value that was set for key when the thread terminated.

The destructor routine is guaranteed to be called on a thread's value in the key after the
termination of the thread and before process termination. No more precise guarantee can be
made about the timing of the destructor routine call; no code in the process may assume any
post-condition of the destructor routine. In particular, the destructor is not guaranteed to
execute before a join call on the terminated thread returns.

See Also:

OCIThreadKeyInit()

9.10.2.4 OCIThreadId
OCIThreadId data type is used to identify a thread.

At any given time, no two threads can have the same OCIThreadId, but OCIThreadId values
can be recycled; after a thread dies, a new thread may be created that has the same
OCIThreadId value. In particular, the thread ID must uniquely identify a thread T within a

Chapter 9
OCIThread Package

9-45

process, and it must be consistent and valid in all threads U of the process for which it can be
guaranteed that T is running concurrently with U. The thread ID for a thread T must be
retrievable within thread T. This is done using OCIThreadIdGet().

The OCIThreadId type supports the concept of a NULL thread ID: the NULL thread ID can never
be the same as the ID of an actual thread.

See Also:

OCIThreadIdGet()

9.10.3 Active Threading Primitives
Lists the active threading primitives, which deal with manipulation of actual threads.

Because specifications of most of these primitives require multiple threads, they work correctly
only in the enabled OCIThread. In the disabled OCIThread, they always return an error. The
exception is OCIThreadHandleGet(); it may be called in a single-threaded environment and
has no effect.

Active primitives can only be called by code running in a multithreaded environment. You can
call OCIThreadIsMulti() to determine whether the environment is multithreaded or single-
threaded. Table 9-8 lists functions used to implement active threading.

Table 9-8 Active Threading Primitives

Function Purpose

OCIThreadHndInit() Allocates and initializes a thread handle

OCIThreadHndDestroy() Destroys and deallocates a thread handle

OCIThreadCreate() Creates a new thread

OCIThreadJoin() Allows the calling thread to join with another

OCIThreadClose() Closes a thread handle

OCIThreadHandleGet() Retrieves a thread handle

This section includes the following topic: OCIThreadHandle.

• OCIThreadHandle
Data type OCIThreadHandle is used to manipulate a thread in the active primitives,
OCIThreadJoin() and OCIThreadClose().

See Also:

OCIThreadIsMulti()

Chapter 9
OCIThread Package

9-46

9.10.3.1 OCIThreadHandle
Data type OCIThreadHandle is used to manipulate a thread in the active primitives,
OCIThreadJoin() and OCIThreadClose().

A thread handle opened by OCIThreadCreate() must be closed in a matching call to
OCIThreadClose(). A thread handle is invalid after the call to OCIThreadClose().

See Also:

• OCIThreadJoin()

• OCIThreadClose()

• OCIThreadCreate()

Chapter 9
OCIThread Package

9-47

10
Session Pooling and Connection Pooling in
OCI

This chapter describes OCI session pooling and connection pooling features.

This chapter contains these topics:

• Session Pooling in OCI

• Database Resident Connection Pooling

• About Using Oracle Connection Manager in Traffic Director Mode

• Connection Pooling in OCI

• When to Use Connection Pooling, Session Pooling, or Neither

• Session Pooling in OCI
Session pooling means that the application creates and maintains a group of stateless
sessions to the database.

• Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical web application usage scenarios where the application acquires
a database connection, works on it for a relatively short duration, and then releases it.

• About Using Oracle Connection Manager in Traffic Director Mode
Oracle Connection Manager in Traffic Director Mode is a proxy that is placed between
supported database clients and database instances.

• Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections by
several sessions to balance loads.

• When to Use Connection Pooling, Session Pooling, or Neither
Indicates the circumstances in which to use them or not.

10.1 Session Pooling in OCI
Session pooling means that the application creates and maintains a group of stateless
sessions to the database.

These sessions are provided to thin clients as requested. If no sessions are available, a new
one may be created. When the client is done with the session, the client releases it to the pool.
Thus, the number of sessions in the pool can increase dynamically.

Some of the sessions in the pool may be tagged with certain properties. For instance, a user
may request a default session, set certain attributes on it, label it or tag it, and return it to the
pool. That user, or some other user, can require a session with the same attributes, and thus
request a session with the same tag. There may be several sessions in the pool with the same
tag. The tag on a session can be changed or reset.

Proxy sessions, too, can be created and maintained through session pooling in OCI.

10-1

The behavior of the application when no free sessions are available and the pool has reached
its maximum size depends on certain attributes. A new session may be created or an error
returned, or the thread may just block and wait for a session to become free.

The main benefit of session pooling is performance. Making a connection to the database is a
time-consuming activity, especially when the database is remote. Thus, instead of a client
spending time connecting to the server, authenticating its credentials, and then receiving a
valid session, it can just pick one from the pool.

This section includes the following topics:

• Functionality of OCI Session Pooling

• Homogeneous and Heterogeneous Session Pools

• About Using Tags in Session Pools

• OCI Handles for Session Pooling

• Using OCI Session Pooling

• OCI Calls for Session Pooling

• Example of OCI Session Pooling

• Functionality of OCI Session Pooling
Describes tasks that session pooling can perform.

• Homogeneous and Heterogeneous Session Pools
A session pool can be either homogeneous or heterogeneous.

• About Using Tags in Session Pools
Tags provide a way for users to customize sessions in the pool.

• OCI Handles for Session Pooling
What are the handle types for session pooling.

• Using OCI Session Pooling
Shows the steps to write a simple session pooling application that uses a user name and
password.

• OCI Calls for Session Pooling
Describes the usages for OCI calls for session pooling.

• Example of OCI Session Pooling

See Also:

About Using Tags in Session Pools

10.1.1 Functionality of OCI Session Pooling
Describes tasks that session pooling can perform.

Session pooling can perform the following tasks:

• Create, maintain, and manage a pool of stateless sessions transparently.

• Provide an interface for the application to create a pool and specify the minimum,
increment, and maximum number of sessions in the pool.

Chapter 10
Session Pooling in OCI

10-2

• Provide an interface for the user to obtain and release a default or tagged session to the
pool. A tagged session is one with certain client-defined properties.

• Allow the application to dynamically change the number of minimum and maximum
number of sessions.

• Provide a mechanism to always maintain an optimum number of open sessions, by closing
sessions that have been idle for a very long time, and creating sessions when required.

• Allow for session pooling with authentication.

10.1.2 Homogeneous and Heterogeneous Session Pools
A session pool can be either homogeneous or heterogeneous.

Homogeneous session pooling means that sessions in the pool are alike for authentication
(they have the same user name, password, and privileges). Heterogeneous session pooling
means that you must provide authentication information because the sessions can have
different security attributes and privileges.

10.1.3 About Using Tags in Session Pools
Tags provide a way for users to customize sessions in the pool.

A client can get a default or untagged session from a pool, set certain attributes on the session
(such as NLS settings), and return the session to the pool, labeling it with an appropriate tag in
the OCISessionRelease() call.

The original user, or some other user, can request a session with the same tags to have a
session with the same attributes, and can do so by providing the same tag in the
OCISessionGet() call.

This section includes the following topic: Multi-Property Tags.

• Multi-Property Tags
Beginning with 12c Release 2 (12.2), a tag can have multiple properties. This is referred to
as a multi-property tag.

See Also:

• OCISessionRelease()

• OCISessionGet()

10.1.3.1 Multi-Property Tags
Beginning with 12c Release 2 (12.2), a tag can have multiple properties. This is referred to as
a multi-property tag.

Chapter 10
Session Pooling in OCI

10-3

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB, depending
on context. In some contexts, such as upgrades, "non-CDB" refers to a non-CDB
from a previous release.

A multi-property tag is comprised of one or more <property-name>=<property-value> pairs
separated by a semi-colon, where <property-name>=<property-value> are both strings.

During an OCISessionGet() call, in the taginfo parameter, the property name appearing first
is given the highest property for finding a match and the property name appearing last is given
the lowest priority. Therefore the ordering of the properties in the string is significant in
determining a matching session in the pool. The example that follows below the list of
restrictions illustrates this point.

This functionality also works with Database Resident Connection Pooling (DRCP).

The following restrictions apply to property names and property values that can be passed in a
multi-property tag:

• Both the property name and the property value are case sensitive.

• A property name can occur only once in a tag. In case the same property name is specified
more than once, an error will be thrown.

• A non empty string should be specified for both the property name and the value.

• Leading and trailing spaces before and after a property name and leading and trailing
space before and after a property value will be truncated. For example, “PDB = PDB1” is
treated as “PDB=PDB1”.

• There should be no white spaces in the property name and the property value. For
example, NLS <space> LANGUAGE=French will result in an error because of the space
between NLS and LANGUAGE.

To explain the notion of multiple properties, assume that the application to be deployed in a
CDB environment requires that the session get requests should be satisfied with sessions from
the same pluggable database (for example, pdb1) as much as possible. Next, it also requires
that the sessions belong to the same language (for example, FRENCH), but gives a higher
priority to sessions to pdb1. The application can then provide a multi-property-tag as follows:

char *props = “PDB=pdb1;LANGUAGE=FRENCH”

Now, assume that there are two sessions in the pool with properties as shown:

Session 1 = > “PDB=pdb1;LANGUAGE=CHINESE”

Session 2 = > “PDB=pdb2;LANGUAGE=FRENCH”

In this situation, the session get request (OCISessionGet()) returns Session 1 because the PDB
property implicitly carries a higher priority by being placed ahead of the LANGUAGE property.

Chapter 10
Session Pooling in OCI

10-4

See Also:

OCISessionGet() for a further discussion of tagging sessions

This section includes the following topic: PL/SQL Callback for Session State Fix Up.

• PL/SQL Callback for Session State Fix Up
When using multi-property tags, a PL/SQL based fix-up callback for the session state can
be provided on the server.

10.1.3.1.1 PL/SQL Callback for Session State Fix Up
When using multi-property tags, a PL/SQL based fix-up callback for the session state can be
provided on the server.

This application-provided callback transforms a session checked out from the pool to the
desired state requested by the application as indicated by the multi-property tag. This callback
works with or without Database Resident Connection Pooling (DRCP).

Using this callback can improve the performance of your application because the fix-up logic is
run for the session state on the server. So, this feature eliminates application round-trips to the
database for the fix-up logic. The callback is supplied by the user who connects using
OCISessionGet(). The callback must be provided as an attribute OCI_ATTR_FIXUP_CALLBACK on
the authentication handle passed to OCISessionGet() for applications not using
OCISessionPool or using custom pools. For applications using OCISessionPool this attribute
must be set on the authentication handle, which in turn must be set on the session pool handle
as the attribute OCI_ATTR_SPOOL_AUTH.

Example 10-1 Example of PL/SQL Fix-Up Callback

The following PL/SQL fix-up callback example code snippet handles tags whose key=value
properties can be used directly in an ALTER SESSION statement, such as
TIME_ZONE=UTC;NLS_DATE_FORMAT=DD-MM-YYYY:

CREATE OR REPLACE PACKAGE myPackage AS
 TYPE property_t IS TABLE OF VARCHAR2(64) INDEX BY VARCHAR2(64);
 PROCEDURE buildTab(
 tag IN VARCHAR2,
 propertyTab OUT property_t
);
 PROCEDURE myPlsqlCallback (
 requestedTag IN VARCHAR2,
 actualTag IN VARCHAR2
);
END;
/

CREATE OR REPLACE PACKAGE BODY myPackage AS

 -- Parse the "property=value" pairs in the tag
 PROCEDURE buildTab(tag IN VARCHAR2, propertyTab OUT property_t) IS
 property VARCHAR2(64);
 propertyName VARCHAR2(64);
 propertyValue VARCHAR2(64);
 propertyEndPos NUMBER := 1;

Chapter 10
Session Pooling in OCI

10-5

 propertyStartPos NUMBER := 1;
 propertyNameEndPos NUMBER := 1;
 begin
 WHILE (LENGTH(tag) > propertyEndPos)
 LOOP
 propertyEndPos := INSTR(tag, ';', propertyStartPos);
 IF (propertyEndPos = 0) THEN
 propertyEndPos := LENGTH(tag) + 1;
 END IF;
 propertyNameEndPos := INSTR(tag, '=', propertyStartPos);
 propertyName := SUBSTR(tag, propertyStartPos,
 propertyNameEndPos - propertyStartPos);
 propertyValue := SUBSTR(tag, propertyNameEndPos + 1,
 propertyEndPos - propertyNameEndPos - 1);
 propertyTab(propertyName) := propertyValue;
 propertyStartPos := propertyEndPos + 1;
 END LOOP;
 END;

 PROCEDURE myPlsqlCallback (
 requestedTag IN VARCHAR2,
 actualTag IN VARCHAR2
) IS
 reqPropTab property_t;
 actPropTab property_t;
 propertyName VARCHAR2(64);
 BEGIN
 buildTab(requestedTag, reqPropTab);
 buildTab(actualTag, actPropTab);

 -- Iterate over requested properties to set state when it's not
 -- currently set, or not set to the desired value
 propertyName := reqPropTab.FIRST;
 WHILE (propertyName IS NOT NULL)
 LOOP
 IF ((NOT actPropTab.exists(propertyName)) OR
 (actPropTab(propertyName) != reqPropTab(propertyName))) THEN
 EXECUTE IMMEDIATE 'ALTER SESSION SET ' || propertyName || '=''' ||
reqPropTab(propertyName) || '''';
 END IF;
 propertyName := reqPropTab.NEXT(propertyName);
 END LOOP;
 -- Could iterate over other actual props to reset any extra props to a
default state
 END;
END myPackage;
/

Chapter 10
Session Pooling in OCI

10-6

See Also:

• Authentication Information Handle Attributes for more information about
OCI_ATTR_FIXUP_CALLBACK

• Session Pool Handle Attributes for more information about OCI_ATTR_SPOOL_AUTH

10.1.4 OCI Handles for Session Pooling
What are the handle types for session pooling.

The following handle types are for session pooling:

• OCISPool

• OCIAuthInfo

• OCISPool
This is the session pool handle.

• OCIAuthInfo
This is the authentication information handle.

10.1.4.1 OCISPool
This is the session pool handle.

It is allocated using OCIHandleAlloc(). It must be passed to OCISessionPoolCreate() and
OCISessionPoolDestroy(). It has the attribute type OCI_HTYPE_SPOOL.

An example of the OCIHandleAlloc() call follows:

OCISPool *spoolhp;
OCIHandleAlloc((void *) envhp, (void **) &spoolhp, OCI_HTYPE_SPOOL,
 (size_t) 0, (void **) 0));

For an environment handle, multiple session pools can be created.

See Also:

• OCIHandleAlloc()

• OCISessionPoolCreate()

• OCISessionPoolDestroy()

10.1.4.2 OCIAuthInfo
This is the authentication information handle.

It is allocated using OCIHandleAlloc(). It is passed to OCISessionGet(). It supports all the
attributes that are supported for a user session handle. The authentication information handle
has the attribute type OCI_HTYPE_AUTHINFO (see Table 3-1).

Chapter 10
Session Pooling in OCI

10-7

An example of the OCIHandleAlloc() call follows:

OCIAuthInfo *authp;
OCIHandleAlloc((void *) envhp, (void **) &authp, OCI_HTYPE_AUTHINFO,
 (size_t) 0, (void **) 0));

See Also:

• OCIHandleAlloc()

• User Session Handle Attributes for the attributes that belong to the authentication
information handle

• Session Pool Handle Attributes for more information about the session pooling
attributes

• Connect, Authorize, and Initialize Functions for complete information about the
functions used in session pooling

• See "OCISessionGet()" for details of the session handle attributes that you can
use with this call

10.1.5 Using OCI Session Pooling
Shows the steps to write a simple session pooling application that uses a user name and
password.

The steps in writing a simple session pooling application that uses a user name and password
are as follows:

1. Allocate the session pool handle using OCIHandleAlloc() for an OCISPool handle. Multiple
session pools can be created for an environment handle.

2. Create the session pool using OCISessionPoolCreate() with mode set to OCI_DEFAULT (for
a new session pool). See the function for a discussion of the other modes.

3. Loop for each thread. Create the thread with a function that does the following:

a. Allocates an authentication information handle of type OCIAuthInfo using
OCIHandleAlloc()

b. Sets the user name and password in the authentication information handle using
OCIAttrSet()

c. Gets a pooled session using OCISessionGet() with mode set to OCI_SESSGET_SPOOL
d. Performs the transaction

e. Allocates the handle

f. Prepares the statement

Chapter 10
Session Pooling in OCI

10-8

Note:

When using service contexts obtained from OCI session pool, you are
required to use the service context returned by OCISessionGet() (or
OCILogon2()), and not create other service contexts outside of these calls.

Any statement handle obtained using OCIStmtPrepare2() with the service
context should be subsequently used only in conjunction with the same
service context, and never with a different service context.

g. Executes the statement

h. Commits or rolls back the transactions

i. Releases the session (log off) with OCISessionRelease()
j. Frees the authentication information handle with OCIHandleFree()
k. Ends the loop for each thread

4. Destroy the session pool using OCISessionPoolDestroy().

See Also:

• OCISessionPoolCreate()

• OCIHandleAlloc()

• OCIAttrSet()

• OCISessionGet()

• OCILogon2()

• OCIStmtPrepare2()

• OCISessionRelease()

• OCIHandleFree()

• OCISessionPoolDestroy()

10.1.6 OCI Calls for Session Pooling
Describes the usages for OCI calls for session pooling.

OCI provides calls for session pooling to perform the following tasks:

• Allocate the Pool Handle

• Create the Connection Pool

• Log On to the Database

• Log Off from the Database

• Destroy the Connection Pool

• Free the Pool Handle

Chapter 10
Session Pooling in OCI

10-9

• Allocate the Pool Handle
Session pooling requires that the pool handle OCI_HTYPE_SPOOL be allocated by calling
OCIHandleAlloc().

• Create the Pool Session
You can use the function OCISessionPoolCreate() to create the session pool.

• Log On to the Database

• Log Off from the Database
Indicates two ways in which to log off from the database in session pooling mode
depending on the logon call.

• Destroy the Session Pool
Call OCISessionPoolDestroy() to destroy the session pool.

• Free the Pool Handle
Call OCIHandleFree() to free the session pool handle.

10.1.6.1 Allocate the Pool Handle
Session pooling requires that the pool handle OCI_HTYPE_SPOOL be allocated by calling
OCIHandleAlloc().

Multiple pools can be created for a given environment handle. For a single session pool, here
is an allocation example:

OCISPool *poolhp;
OCIHandleAlloc((void *) envhp, (void **) &poolhp, OCI_HTYPE_SPOOL, (size_t) 0,
 (void **) 0));

See Also:

OCIHandleAlloc()

10.1.6.2 Create the Pool Session
You can use the function OCISessionPoolCreate() to create the session pool.

Here is an example of how to use this call:

OCISessionPoolCreate(envhp, errhp, poolhp, (OraText **)&poolName,
 (ub4 *)&poolNameLen, database,
 (ub4)strlen((const signed char *)database),
 sessMin, sessMax, sessIncr,
 (OraText *)appusername,
 (ub4)strlen((const signed char *)appusername),
 (OraText *)apppassword,
 (ub4)strlen((const signed char *)apppassword),
 OCI_DEFAULT);

Chapter 10
Session Pooling in OCI

10-10

See Also:

OCISessionPoolCreate()

10.1.6.3 Log On to the Database
You can use these calls to log on to the database in session pooling mode.

• OCILogon2()
This is the simplest call. However, it does not give the user the option of using tagging.
Here is an example of how to use OCILogon2() to log on to the database in session
pooling mode:

for (i = 0; i < MAXTHREADS; ++i)
{
 OCILogon2(envhp, errhp, &svchp[i], "hr", 2, "hr", 2, poolName,
 poolNameLen, OCI_LOGON2_SPOOL));
}

• OCISessionGet()
This is the recommended call to use. It gives the user the option of using tagging to label
sessions in the pool, which makes it easier to retrieve specific sessions. An example of
using OCISessionGet() follows. It is taken from cdemosp.c in the demo directory.

OCISessionGet(envhp, errhp, &svchp, authInfop,
 (OraText *)database,strlen(database), tag,
 strlen(tag), &retTag, &retTagLen, &found,
 OCI_SESSGET_SPOOL);

When using service contexts obtained from an OCI session pool, you are required to use
the service context returned by OCISessionGet() (or OCILogon2()), and not create other
service contexts outside of these calls.

Any statement handle obtained using OCIStmtPrepare2() with the service context should
be subsequently used only in conjunction with the same service context, and never with a
different service context.

See Also:

• OCILogon2()

• OCISessionGet()

• OCIStmtPrepare2()

10.1.6.4 Log Off from the Database
Indicates two ways in which to log off from the database in session pooling mode depending
on the logon call.

From the following calls, choose the one that corresponds to the logon call and use it to log off
from the database in session pooling mode.

Chapter 10
Session Pooling in OCI

10-11

• OCILogoff()
If you used OCILogon2() to make the connection, you must call OCILogoff() to log off.

• OCISessionRelease()
If you used OCISessionGet() to make the connection, then you must call
OCISessionRelease() to log off. Pending transactions are automatically committed.

See Also:

• OCILogoff()

• OCILogon2()

• OCISessionRelease()

• OCISessionGet()

10.1.6.5 Destroy the Session Pool
Call OCISessionPoolDestroy() to destroy the session pool.

This is shown in the following example:

OCISessionPoolDestroy(poolhp, errhp, OCI_DEFAULT);

See Also:

OCISessionPoolDestroy()

10.1.6.6 Free the Pool Handle
Call OCIHandleFree() to free the session pool handle.

This is shown in the following example:

OCIHandleFree((void *)poolhp, OCI_HTYPE_SPOOL);

Note:

Developers: You are advised to commit or roll back any open transaction before
releasing the connection back to the pool. If this is not done, Oracle Database
automatically commits any open transaction when the connection is released.

If an instance failure is detected while the session pool is being used, OCI tries to
clean up the sessions to that instance.

Chapter 10
Session Pooling in OCI

10-12

See Also:

OCIHandleFree()

10.1.7 Example of OCI Session Pooling
See cdemosp.c in the demo directory for a valid and verified example of session pooling.

10.2 Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool in the database
server for typical web application usage scenarios where the application acquires a database
connection, works on it for a relatively short duration, and then releases it.

DRCP pools server processes, each of which is the equivalent of a dedicated server process
and a database session combined. (Henceforth these "dedicated" server processes are
referred to as pooled servers.)

DRCP complements middle-tier connection pools that share connections between threads in a
middle-tier process. In addition, DRCP enables sharing of database connections across
middle-tier processes on the same middle-tier host and even across middle-tier hosts. This
results in significant reduction in key database resources needed to support a large number of
client connections, thereby reducing the database tier memory footprint and boosting the
scalability of both middle-tier and database tiers. Having a pool of readily available servers has
the additional benefit of reducing the cost of creating and tearing down client connections.

DRCP is especially relevant for architectures with multiprocess single-threaded application
servers (such as PHP/Apache) that cannot do middle-tier connection pooling. Using DRCP, the
database can scale to tens of thousands of simultaneous connections.

See Also:

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

10.3 About Using Oracle Connection Manager in Traffic Director
Mode

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed between
supported database clients and database instances.

Supported clients from Oracle Database 11g Release 2 (11.2) and later can connect to Oracle
Connection Manager in Traffic Director Mode. Oracle Connection Manager in Traffic Director
Mode provides improved high availability (HA) for planned and unplanned database server
outages, connection multiplexing support, and load balancing. Support for Oracle Connection
Manager in Traffic Director Mode is described in more detail in the following sections

Chapter 10
Database Resident Connection Pooling

10-13

• Modes of Operation

• Key Features

Modes of Operation

Oracle Connection Manager in Traffic Director Mode supports the following modes of
operation:

• In pooled connection mode, Oracle Connection Manager in Traffic Director Mode supports
any application using the following database client releases:

– OCI, OCCI, and Open Source Drivers (Oracle Database 11g release 2 (11.2.0.4) and
later))

– JDBC (Oracle Database 12c release 1 (12.1) and later)

– ODP.NET (Oracle Database 12c release 2 (12.2) and later)

In addition, applications must use DRCP. That is, the application must enable DRCP in the
connect string (or in the tnsnames.ora alias).

• In non-pooled connection (or dedicated) mode, Oracle Connection Manager in Traffic
Director Mode supports any application using database client releases Oracle Database
11g release 2 (11.2.0.4) and later. In this mode, some capabilities, such as connection
multiplexing are not available.

Key Features

Oracle Connection Manager in Traffic Director Mode furnishes support for the following:

• Transparent performance enhancements and connection multiplexing, which includes:

– Statement caching, rows prefetching, and result set caching are auto-enabled for all
modes of operation.

– Database session multiplexing (pooled mode only) using the proxy resident connection
pool (PRCP), where PRCP is a proxy mode of Database Resident Connection Pooling
(DRCP). Applications get transparent connect-time load balancing and run-time load
balancing between Oracle Connection Manager in Traffic Director Mode and the
database.

– For multiple Oracle Connection Manager in Traffic Director Mode instances,
applications get increased scalability through client-side connect time load balancing
or with a load balancer (BIG-IP, NGINX, and others)

• Zero application downtime

– Planned database maintenance or pluggable database (PDB) relocation

* Pooled mode

Oracle Connection Manager in Traffic Director Mode responds to Oracle
Notification Service (ONS) events for planned outages and redirects work.
Connections are drained from the pool on Oracle Connection Manager in Traffic
Director Mode when the request completes. Service relocation is supported for
Oracle Database 11g release 2 (11.2.0.4) and later.

For PDB relocation, Oracle Connection Manager in Traffic Director Mode responds
to in-band notifications when a PDB is relocated, that is even when ONS is not
configured (for Oracle Database release 18c, version 18.1 and later server only)

* Non-pooled or dedicated mode

When there is no request boundary information from the client, Oracle Connection
Manager in Traffic Director Mode supports planned outage for many applications

Chapter 10
About Using Oracle Connection Manager in Traffic Director Mode

10-14

(as long as only simple session state and cursor state need to be preserved
across the request/transaction boundaries). This support includes:

* Stop service/PDB at the transaction boundary or it leverages Oracle Database
release 18c continuous application availability to stop the service at the
request boundary

* Oracle Connection Manager in Traffic Director Mode leverages Transparent
Application Failover (TAF) failover restore to reconnect and restore simple
states.

– Unplanned database outages for read-mostly workloads

• High Availability of Oracle Connection Manager in Traffic Director Mode to avoid a single
point of failure. This is supported by:

– Multiple instances of Oracle Connection Manager in Traffic Director Mode using a load
balancer or client side load balancing/failover in the connect string

– Rolling upgrade of Oracle Connection Manager in Traffic Director Mode instances

– Graceful close of existing connections from client to Oracle Connection Manager in
Traffic Director Mode for planned outages

– In-band notifications to Oracle Database release 18c and later clients

– For older clients, notifications are sent with the response of the current request

• For security and isolation, Oracle Connection Manager in Traffic Director Mode furnishes:

– Database Proxy supporting transmission control protocol/transmission control protocol
secure (TCP/TCPS) and protocol conversion

– Firewall based on the IP address, service name, and secure socket layer/transport
layer security (SSL/TLS) wallets

– Tenant isolation in a multi-tenant environment

– Protection against denial-of-service and fuzzing attacks

– Secure tunneling of database traffic across Oracle Database on-premises and Oracle
Cloud

Chapter 10
About Using Oracle Connection Manager in Traffic Director Mode

10-15

See Also:

• Oracle Database Net Services Administrator's Guide for information about
configuring cman.ora configuration file to set up Oracle Connection Manager in
Traffic Director Mode

• Oracle Database Net Services Administrator's Guide for information about
configuring databases for Oracle Connection Manager in Traffic Director Mode
proxy authentication

• Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for unplanned
down events

• Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for planned
down events

• Oracle Database Net Services Administrator's Guide for information about
configuring proxy resident connection pools for use by Oracle Connection
Manager in Traffic Director Mode

• Oracle Database Net Services Administrator's Guide for information about
functionality not supported for all drivers with Oracle Connection Manager in
Traffic Director Mode

• Oracle Database Net Services Reference for an overview of Oracle CMAN
configuration file

10.4 Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections by several
sessions to balance loads.

The pool is managed by OCI, not the application. Applications that can use connection pooling
include middle-tier applications for web application servers and email servers.

One use of this feature is in a web application server connected to a back-end Oracle
database. Suppose that a web application server gets several concurrent requests for data
from the database server. The application can create a pool (or a set of pools) in each
environment during application initialization.

This section includes the following topics:

• OCI Connection Pooling Concepts

• Using OCI Calls for Connection Pooling

• Examples of OCI Connection Pooling

• OCI Connection Pooling Concepts

• Using OCI Calls for Connection Pooling
Lists the steps you must follow to use connection pooling in your application.

• Examples of OCI Connection Pooling
Where to find examples of connection pooling in tested complete programs.

Chapter 10
Connection Pooling in OCI

10-16

10.4.1 OCI Connection Pooling Concepts
Oracle Database has several transaction monitoring capabilities such as the fine-grained
management of database sessions and connections. Fine-grained management of database
sessions is done by separating the notion of database sessions (user handles) from
connections (server handles). By using OCI calls for session switching and session migration,
an application server or transaction monitor can multiplex several sessions over fewer physical
connections, thus achieving a high degree of scalability by pooling connections and back-end
Oracle server processes.

The connection pool itself is normally configured with a shared pool of physical connections,
translating to a back-end server pool containing an identical number of dedicated server
processes.

The number of physical connections is less than the number of database sessions in use by
the application. The number of physical connections and back-end server processes are also
reduced by using connection pooling. Thus many more database sessions can be multiplexed.

This section includes the following topics:

• Similarities and Differences from a Shared Server

• Stateless Sessions Versus Stateful Sessions

• Multiple Connection Pools

• Transparent Application Failover

• Similarities and Differences from a Shared Server
Connection pooling on the middletier is similar to what a shared server offers on the back
end.

• Stateless Sessions Versus Stateful Sessions
Stateless sessions are serially reusable across mid-tier threads.

• Multiple Connection Pools
You can use the advanced concept of multiple connection pools for different database
connections.

• Transparent Application Failover
Transaction application failover (TAF) is enabled for connection pooling.

10.4.1.1 Similarities and Differences from a Shared Server
Connection pooling on the middletier is similar to what a shared server offers on the back end.

Connection pooling makes a dedicated server instance behave like a shared server instance
by managing the session multiplexing logic on the middle tier.

The connection pool on the middle tier controls the pooling of dedicated server processes
including incoming connections into the dedicated server processes. The main difference
between connection pooling and a shared server is that in the latter case, the connection from
the client is normally to a dispatcher in the database instance. The dispatcher is responsible for
directing the client request to an appropriate shared server. However, the physical connection
from the connection pool is established directly from the middletier to the dedicated server
process in the back-end server pool.

Connection pooling is beneficial only if the middle tier is multithreaded. Each thread can
maintain a session to the database. The actual connections to the database are maintained by

Chapter 10
Connection Pooling in OCI

10-17

the connection pool, and these connections (including the pool of dedicated database server
processes) are shared among all the threads in the middle tier.

10.4.1.2 Stateless Sessions Versus Stateful Sessions
Stateless sessions are serially reusable across mid-tier threads.

After a thread is done processing a database request on behalf of a three-tier user, the same
database session can be reused for a completely different request on behalf of a completely
different three-tier user.

Stateful sessions to the database, however, are not serially reusable across mid-tier threads
because they may have some particular state associated with a particular three-tier user.
Examples of such state may include open transactions, the fetch state from a statement, or a
PL/SQL package state. So long as the state exists, the session is not reusable for a different
request.

Note:

Stateless sessions too may have open transactions, open statement fetch state, and
so on. However, such a state persists for a relatively short duration (only during the
processing of a particular three-tier request by a mid-tier thread) that allows the
session to be serially reused for a different three-tier user (when such state is
cleaned up).

Stateless sessions are typically used in conjunction with statement caching.

What connection pooling offers is stateless connections and stateful sessions.

See Also:

Session Pooling in OCI if you must work with stateless sessions

10.4.1.3 Multiple Connection Pools
You can use the advanced concept of multiple connection pools for different database
connections.

Multiple connection pools can also be used when different priorities are assigned to users.
Different service-level guarantees can be implemented using connection pooling.

Figure 10-1 illustrates OCI connection pooling.

Chapter 10
Connection Pooling in OCI

10-18

Figure 10-1 OCI Connection Pooling

Server 1

Server 2

. . .

Physical
Connections

Sessions

Application

Thread 1

Thread 2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Pool 1

Pool 2

10.4.1.4 Transparent Application Failover
Transaction application failover (TAF) is enabled for connection pooling.

The concepts of TAF apply equally well with connections in the connection pool except that the
BACKUP and PRECONNECT clauses should not be used in the connect string and do not work with
connection pooling and TAF.

When a connection in the connection pool fails over, it uses the primary connect string itself to
connect. Sessions fail over when they use the pool for a database round-trip after their
instance failure. The listener is configured to route the connection to a good instance if
available, as is typical with service-based connect strings.

See Also:

Oracle Database Net Services Administrator's Guide, the chapter about configuring
transparent application failover

10.4.2 Using OCI Calls for Connection Pooling
Lists the steps you must follow to use connection pooling in your application.

To use connection pooling in your application, you must:

1. Allocate the Pool Handle

2. Create the Connection Pool

3. Log On to the Database

4. Deal with SGA Limitations in Connection Pooling

5. Log Off from the Database

6. Destroy the Connection Pool

Chapter 10
Connection Pooling in OCI

10-19

7. Free the Pool Handle

• Allocate the Pool Handle
Connection pooling requires that the pool handle OCI_HTYPE_CPOOL be allocated by
OCIHandleAlloc().

• Create the Connection Pool
The function OCIConnectionPoolCreate() initializes the connection pool handle.

• Log On to the Database
The application can use one of several interfaces.

• Deal with SGA Limitations in Connection Pooling
With OCI_CPOOL mode (connection pooling), the session memory (UGA) in the back-end
database comes out of the SGA.

• Log Off from the Database
Choose the appropriate call to log off from the database in connection pooling mode.

• Destroy the Connection Pool
OCIConnectionPoolDestroy() destroys it.

• Free the Pool Handle
The pool handle is freed using OCIHandleFree().

10.4.2.1 Allocate the Pool Handle
Connection pooling requires that the pool handle OCI_HTYPE_CPOOL be allocated by
OCIHandleAlloc().

Multiple pools can be created for a given environment handle.

For a single connection pool, here is an allocation example:

OCICPool *poolhp;
OCIHandleAlloc((void *) envhp, (void **) &poolhp, OCI_HTYPE_CPOOL,
 (size_t) 0, (void **) 0));

See Also:

OCIHandleAlloc()

10.4.2.2 Create the Connection Pool
The function OCIConnectionPoolCreate() initializes the connection pool handle.

It has these IN parameters:

• connMin, the minimum number of connections to be opened when the pool is created.

• connIncr, the incremental number of connections to be opened when all the connections
are busy and a call needs a connection. This increment is used only when the total number
of open connections is less than the maximum number of connections that can be opened
in that pool.

• connMax, the maximum number of connections that can be opened in the pool. When the
maximum number of connections are open in the pool, and all the connections are busy, if

Chapter 10
Connection Pooling in OCI

10-20

a call needs a connection, it waits until it gets one. However, if the OCI_ATTR_CONN_NOWAIT
attribute is set for the pool, an error is returned.

• A poolUsername and a poolPassword, to allow user sessions to transparently migrate
between connections in the pool.

• In addition, an attribute OCI_ATTR_CONN_TIMEOUT, can be set to time out the connections in
the pool. Connections idle for more than this time are terminated periodically to maintain
an optimum number of open connections. If this attribute is not set, then the connections
are never timed out.

Note:

Shrinkage of the pool only occurs when there is a network round-trip. If there are no
operations, then the connections stay active.

Because all the preceding attributes can be configured dynamically, the application can read
the current load (number of open connections and number of busy connections) and tune
these attributes appropriately.

If the pool attributes (connMax, connMin, connIncr) are to be changed dynamically,
OCIConnectionPoolCreate() must be called with mode set to OCI_CPOOL_REINITIALIZE.

The OUT parameters poolName and poolNameLen contain values to be used in subsequent
OCIServerAttach() and OCILogon2() calls in place of the database name and the database
name length arguments.

There is no limit on the number of pools that can be created by an application. Middle-tier
applications can create multiple pools to connect to the same server or to different servers, to
balance the load based on the specific needs of the application.

Here is an example of this call:

OCIConnectionPoolCreate((OCIEnv *)envhp,
 (OCIError *)errhp, (OCICPool *)poolhp,
 &poolName, &poolNameLen,
 (text *)database,strlen(database),
 (ub4) connMin, (ub4) connMax, (ub4) connIncr,
 (text *)poolUsername,strlen(poolUserLen),
 (text *)poolPassword,strlen(poolPassLen),
 OCI_DEFAULT));

See Also:

• OCIConnectionPoolCreate()

• OCI_ATTR_CONN_TIMEOUT

• OCIServerAttach()

• OCILogon2()

Chapter 10
Connection Pooling in OCI

10-21

10.4.2.3 Log On to the Database
The application can use one of several interfaces.

The application must log on to the database for each thread, using one of the following
interfaces.

• OCILogon2()
This is the simplest interface. Use this interface when you need a simple connection pool
connection and do not need to alter any attributes of the session handle. This interface can
also be used to make proxy connections to the database.

Here is an example using OCILogon2():

for (i = 0; i < MAXTHREADS; ++i)
{
 OCILogon2(envhp, errhp, &svchp[i], "hr", 2, "hr", 2, poolName,
 poolNameLen, OCI_LOGON2_CPOOL));

}

To use this interface to get a proxy connection, set the password parameter to NULL.

• OCISessionGet()
This is the recommended interface. It gives the user the additional option of using external
authentication methods, such as certificates, distinguished name, and so on.
OCISessionGet() is the recommended uniform function call to retrieve a session.

Here is an example using OCISessionGet():

for (i = 0; i < MAXTHREADS; ++i)
{
 OCISessionGet(envhp, errhp, &svchp, authp,
 (OraText *) poolName,
 strlen(poolName), NULL, 0, NULL, NULL, NULL,
 OCI_SESSGET_CPOOL)
 }

• OCIServerAttach() and OCISessionBegin()
You can use another interface if the application must set any special attributes on the user
session handle and server handle. For such a requirement, applications must allocate all
the handles (connection pool handle, server handles, session handles, and service context
handles). You would follow this sequence:

1. Create the connection pool.

Connection pooling does the multiplexing of a virtual server handle over physical
connections transparently, eliminating the need for users to do so. The user gets the
feeling of a session having a dedicated (virtual) connection. Because the multiplexing
is done transparently to the user, users must not attempt to multiplex sessions over the
virtual server handles themselves. The concepts of session migration and session
switching, which require explicit multiplexing at the user level, are defunct for
connection pooling and should not be used.

2. Call OCIServerAttach() with mode set to OCI_CPOOL.

In an OCI program, the user should create (OCIServerAttach() with mode set to
OCI_CPOOL), a unique virtual server handle for each session that is created using the
connection pool. There should be a one-to-one mapping between virtual server
handles and sessions.

Chapter 10
Connection Pooling in OCI

10-22

3. Call OCISessionBegin() with mode set to OCI_DEFAULT.

Credentials can be set to OCI_CRED_RDBMS, OCI_CRED_EXT, or OCI_CRED_PROXY using
OCISessionBegin(). If the credentials are set to OCI_CRED_EXT, no user name and no
password need to be set on the session handle. If the credentials are set to
OCI_CRED_PROXY, only the user name must be set on the session handle. (no explicit
primary session must be created and OCI_ATTR_MIGSESSION need not be set).

The user should not set OCI_MIGRATE flag in the call to OCISessionBegin() when the
virtual server handle points to a connection pool (OCIServerAttach() called with mode
set to OCI_CPOOL). Oracle supports passing the OCI_MIGRATE flag only for compatibility
reasons. Do not use the OCI_MIGRATE flag, because the perception that the user gets
when using a connection pool is of sessions having their own dedicated (virtual)
connections that are transparently multiplexed onto real connections.

See Also:

• OCILogon2()

• OCISessionGet()

• OCIServerAttach()

• OCISessionBegin()

10.4.2.4 Deal with SGA Limitations in Connection Pooling
With OCI_CPOOL mode (connection pooling), the session memory (UGA) in the back-end
database comes out of the SGA.

This may require some SGA tuning on the back-end database to have a larger SGA if your
application consumes more session memory than the SGA can accommodate. The memory
tuning requirements for the back-end database are similar to configuring the LARGE POOL in
a shared server back end except that the instance is still in dedicated mode.

If you are still running into the SGA limitation, you must consider:

• Reducing the session memory consumption by having fewer open statements for each
session

• Reducing the number of sessions in the back end by pooling sessions on the mid-tier

• Or otherwise, turning off connection pooling

The application must avoid using dedicated database links on the back end with connection
pooling.

If the back end is a dedicated server, effective connection pooling is not possible because
sessions using dedicated database links are tied to a physical connection rendering that same
connection unusable by other sessions. If your application uses dedicated database links and
you do not see effective sharing of back-end processes among your sessions, you must
consider using shared database links.

Chapter 10
Connection Pooling in OCI

10-23

See Also:

• Oracle Database Performance Tuning Guide, the section about configuring a
shared server

• Oracle Database Administrator’s Guide, the section on shared database links for
more information about distributed databases

10.4.2.5 Log Off from the Database
Choose the appropriate call to log off from the database in connection pooling mode.

From the following calls, choose the one that corresponds to the logon call and use it to log off
from the database in connection pooling mode.

• OCILogoff():

If OCILogon2() was used to make the connection, OCILogoff() must be used to log off.

• OCISessionRelease()
If OCISessionGet() was called to make the connection, then OCISessionRelease() must
be called to log off.

• OCISessionEnd() and OCIServerDetach()
If OCIServerAttach() and OCISessionBegin() were called to make the connection and
start the session, then OCISessionEnd() must be called to end the session and
OCIServerDetach() must be called to release the connection.

See Also:

• OCILogoff()

• OCILogon2()

• OCISessionRelease()

• OCISessionEnd()

• OCIServerDetach()

• OCIServerAttach()

• OCISessionBegin()

10.4.2.6 Destroy the Connection Pool
OCIConnectionPoolDestroy() destroys it.

Use OCIConnectionPoolDestroy() to destroy the connection pool.

Chapter 10
Connection Pooling in OCI

10-24

See Also:

OCIConnectionPoolDestroy()

10.4.2.7 Free the Pool Handle
The pool handle is freed using OCIHandleFree().

These last three actions are illustrated in this code fragment:

 for (i = 0; i < MAXTHREADS; ++i)
 {
 checkerr(errhp, OCILogoff((void *) svchp[i], errhp));
 }
 checkerr(errhp, OCIConnectionPoolDestroy(poolhp, errhp, OCI_DEFAULT));
 checkerr(errhp, OCIHandleFree((void *)poolhp, OCI_HTYPE_CPOOL));

See Also:

• OCIHandleFree()

• Connection Pool Handle Attributes

• OCIConnectionPoolCreate(), OCILogon2(), and OCIConnectionPoolDestroy()

10.4.3 Examples of OCI Connection Pooling
Where to find examples of connection pooling in tested complete programs.

Examples of connection pooling in tested complete programs can be found in cdemocp.c and
cdemocpproxy.c in directory demo.

10.5 When to Use Connection Pooling, Session Pooling, or
Neither

Indicates the circumstances in which to use them or not.

If database sessions are not reusable by mid-tier threads (that is, they are stateful) and the
number of back-end server processes may cause scaling problems on the database, use OCI
connection pooling.

If database sessions are reusable by mid-tier threads (that is, they are stateless) and the
number of back-end server processes may cause scaling problems on the database, use OCI
session pooling.

If database sessions are not reusable by mid-tier threads (that is, they are stateful) and the
number of back-end server processes is never large enough to potentially cause any scaling
issue on the database, there is no need to use any pooling mechanism.

Chapter 10
When to Use Connection Pooling, Session Pooling, or Neither

10-25

Note:

Having nonpooled sessions or connections results in tearing down and re-creating
the database session/connection for every mid-tier user request. This can cause
severe scaling problems on the database side and excessive latency for the
fulfillment of the request. Hence, Oracle strongly recommends that you adopt one of
the pooling strategies for mid-tier applications based on whether the database
session is stateful or stateless.

In connection pooling, the pool element is a connection and in session pooling, the pool
element is a session.

As with any pool, the pooled resource is locked by the application thread for a certain duration
until the thread has done its job on the database and the resource is released. The resource is
unavailable to other threads during its period of use. Hence, application developers must be
aware that any kind of pooling works effectively with relatively short tasks. However, if the
application is performing a long-running transaction, it may deny the pooled resource to other
sharers for long periods of time, leading to starvation. Hence, pooling should be used in
conjunction with short tasks, and the size of the pool should be sufficiently large to maintain the
desired concurrency of transactions.

Note the following additional information about connection pooling and session pooling:

• OCI Connection Pooling

Connections to the database are pooled. Sessions are created and destroyed by the user.
Each call to the database picks up an appropriate available connection from the pool.

The application is multiplexing several sessions over fewer physical connections to the
database. The users can tune the pool configuration to achieve required concurrency.

The life-time of the application sessions is independent of the life-time of the cached
pooled connections.

• OCI Session Pooling

Sessions and connections are pooled by OCI. The application gets sessions from the pool
and releases sessions back to the pool.

This section includes the following topics:

• Functions for Session Creation

• About Choosing Between Different Types of OCI Sessions

• Functions for Session Creation
There are a number of ways to create a session with varying functionality.

• About Choosing Between Different Types of OCI Sessions
How to choose the type od session to use.

10.5.1 Functions for Session Creation
There are a number of ways to create a session with varying functionality.

OCI offers the following functions for session creation:

• OCILogin

Chapter 10
When to Use Connection Pooling, Session Pooling, or Neither

10-26

OCILogon() is the simplest way to get an OCI session. The advantage is ease of obtaining
an OCI service context. The disadvantage is that you cannot perform any advance OCI
operations, such as session migration, proxy authentication, or using a connection pool or
a session pool.

• OCILogon2()
OCILogon2() includes the functionality of OCILogon() to get a session. This session may
be a new one with a new underlying connection, or one that is started over a virtual
connection from an existing connection pool, or one from an existing session pool. The
mode parameter value that the function is called with determines its behavior.

The user cannot modify the attributes (except OCI_ATTR_STMTCACHESIZE) of the service
context returned by OCI.

• OCISessionBegin()
OCISessionBegin() supports all the various options of an OCI session, such as proxy
authentication, getting a session from a connection pool or a session pool, external
credentials, and migratable sessions. This is the lowest level call, where all handles must
be explicitly allocated and all attributes set. OCIServerAttach() must be called before this
call.

• OCISessionGet()
OCISessionGet() is now the recommended method to get a session. This session may be
a new one with a new underlying connection, or one that is started over a virtual
connection from an existing connection pool, or one from an existing session pool. The
mode parameter value that the function is called with determines its behavior. This works
like OCILogon2() but additionally enables you to specify tags for obtaining specific
sessions from the pool.

See Also:

• OCILogon()

• Application Initialization, Connection, and Session Creation

• OCILogon2()

• OCISessionBegin()

• OCISessionGet()

10.5.2 About Choosing Between Different Types of OCI Sessions
How to choose the type od session to use.

OCI includes the following types of sessions:

• Basic OCI sessions

The basic OCI session works by using user name and password over a dedicated OCI
server handle. This is the no-pool mechanism. See When to Use Connection Pooling,
Session Pooling, or Neither for information of when to use it.

If authentication is obtained through external credentials, then a user name or password is
not required.

Chapter 10
When to Use Connection Pooling, Session Pooling, or Neither

10-27

• Session pool sessions

Session pool sessions are from the session pool cache. Some sessions may be tagged.
These are stateless sessions. Each OCISessionGet() and OCISessionRelease() call gets
and releases a session from the session cache. This saves the server from creating and
destroying sessions.

See When to Use Connection Pooling, Session Pooling, or Neither on connection pool
sessions versus session pooling sessions versus no-pooling sessions.

• Connection pool sessions

Connection pool sessions are created using OCISessionGet() and OCISessionBegin()
calls from an OCI connection pool. There is no session cache as these are stateful
sessions. Each call creates a new session, and the user is responsible for terminating
these sessions.

The sessions are automatically migratable between the server handles of the connection
pool. Each session can have user name and password or be a proxy session. See When
to Use Connection Pooling, Session Pooling, or Neither on connection pool sessions
versus session pooling sessions versus no-pooling sessions.

• Sessions sharing a server handle

You can multiplex several OCI sessions over a few physical connections. The application
does this manually by having the same server handle for these multiple sessions. It is
preferred to have the session multiplexing details be left to OCI by using the OCI
connection pool APIs.

• Proxy sessions

Proxy sessions are useful if the password of the client must be protected from the middle
tier. Proxy sessions can also be part of an OCI connection pool or an OCI session pool.

• Migratable Sessions

With transaction handles being migratable, there should be no need for applications to use
migratable sessions, instead use OCI connection pooling.

See Also:

• OCISessionGet()

• OCISessionRelease()

• OCISessionBegin()

• Middle-Tier Applications in OCI for more information about proxy sessions

• OCI Session Management

Chapter 10
When to Use Connection Pooling, Session Pooling, or Neither

10-28

11
High Availability in OCI

This chapter describes high availability (HA) features in OCI.

This chapter includes the following topics:

• Runtime Connection Load Balancing

• HA Event Notification

• Transparent Application Failover in OCI

• OCI and Transaction Guard

• OCI and Application Continuity

• Runtime Connection Load Balancing
Runtime connection load balancing routes work requests to sessions in a session pool that
best serve the work.

• HA Event Notification
Use HA event notification to provide a best-effort programmatic signal to the client if there
is a database failure for high availability clients connected to an Oracle RAC database.

• Transparent Application Failover in OCI
Transparent application failover (TAF) is a client-side feature designed to minimize
disruptions to end-user applications that occur when database connectivity fails because of
instance or network failure.

• OCI and Transaction Guard
Transaction Guard introduces the concept of at-most-once transaction execution in case of
a planned or unplanned outage to help prevent an application upon failover from
submitting a duplicate submission of an original submission.

• OCI and Application Continuity
Application Continuity (AC) gives High Availability (HA) during planned and unplanned
outages. Oracle Database 12c Release 2 (12.2) introduced OCI support for Application
Continuity (AC).

• Support for Transparent Application Continuity

11.1 Runtime Connection Load Balancing
Runtime connection load balancing routes work requests to sessions in a session pool that
best serve the work.

It occurs when an application selects a session from an existing session pool and thus is a
very frequent activity. For session pools that support services at one instance only, the first
available session in the pool is adequate. When the pool supports services that span multiple
instances, there is a need to distribute the work requests across instances so that the
instances that are providing better service or have greater capacity get more requests.

Applications must connect to an Oracle RAC instance to enable runtime connection load
balancing. Furthermore, these applications must:

• Initialize the OCI Environment in OCI_EVENTS mode

11-1

• Connect to a service that has runtime connection load balancing enabled (use the
DBMS_SERVICE.MODIFY_SERVICE procedure to set GOAL and CLB_GOAL as appropriate)

• Link with a thread library

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for
information about load balancing advisory

• Oracle Database Development Guide for information about enabling and
disabling runtime connection load balancing for the supported interfaces, and
receiving load balancing advisory FAN events

11.2 HA Event Notification
Use HA event notification to provide a best-effort programmatic signal to the client if there is a
database failure for high availability clients connected to an Oracle RAC database.

Suppose that a user employs a web browser to log in to an application server that accesses a
back-end database server. Failure of the database instance can result in a wait that can be up
to minutes in duration before the failure is known to the user. The ability to quickly detect
failures of server instances, communicate this to the client, close connections, and clean up
idle connections in connection pools is provided by HA event notification.

For high availability clients connected to an Oracle RAC database, you can use HA event
notification to provide a best-effort programmatic signal to the client if there is a database
failure. Client applications can register a callback on the environment handle to signal interest
in this information. When a significant failure event occurs that applies to a connection made
by this client, the callback is invoked, with information concerning the event (the event payload)
and a list of connections (server handles) that were disconnected because of the failure.

For example, consider a client application that has two connections to instance A and two
connections to instance B of the same database. If instance A goes down, a notification of the
event is sent to the client, which then disconnects the two connections to instance B and
invokes the registered callback. Note that if another instance C of the same database goes
down, the client is not notified (because it does not affect any of the client's connections).

The HA event notification mechanism improves the response time of the application in the
presence of failure. Before the mechanism was introduced in Oracle Database 10g Release 2
(10.2), a failure would result in the connection being broken only after the TCP timeout interval
expired, which could take minutes. With HA event notification, the standalone, connection pool,
and session pool connections are automatically broken and cleaned up by OCI, and the
application callback is invoked within seconds of the failure event. If any of these server
handles are TAF-enabled, failover is also automatically engaged by OCI.

In the current release, this functionality depends on Oracle Notification Service (ONS). It
requires Oracle Clusterware to be installed and configured on the database server for the
clients to receive the HA notifications through ONS. All clusterware installations (for example,
Oracle Data Guard) should have the same ONS port. There is no client configuration required
for ONS.

Chapter 11
HA Event Notification

11-2

Note:

The client transparently gets the ONS server information from the database to which
it connects. The application administrator can augment or override that information
using the deployment configuration file oraaccess.xml.

Applications must connect to an Oracle RAC instance to enable HA event notification.
Furthermore, these applications must:

• Initialize the OCI Environment in OCI_EVENTS mode

• Connect to a service that has notifications enabled (use the
DBMS_SERVICE.MODIFY_SERVICE procedure to set AQ_HA_NOTIFICATIONS to TRUE)

• Link with a thread library

Then these applications can register a callback that is invoked whenever an HA event occurs.

This section includes the following topics:

• OCIEvent Handle

• OCI Failover for Connection and Session Pools

• OCI Failover for Independent Connections

• Event Callback

• Custom Pooling: Tagged Server Handles

• About Determining Transparent Application Failover (TAF) Capabilities

• OCIEvent Handle
The OCIEvent handle encapsulates the attributes from the event payload.

• OCI Failover for Connection and Session Pools
A connection pool in an instance of Oracle RAC consists of a pool of connections
connected to different instances of Oracle RAC.

• OCI Failover for Independent Connections
No special handling is required for independent connections; all such connections that are
connected to failed instances are immediately disconnected.

• Event Callback
Shows the signature of the event callback of type OCIEventCallback.

• Custom Pooling: Tagged Server Handles
Using custom pools, you can retrieve the server handle’s tag information so appropriate
cleanup can be performed.

• About Determining Transparent Application Failover (TAF) Capabilities
You can have the application adjust its behavior if a connection is or is not TAF-enabled.

See Also:

About Client-Side Deployment Parameters Specified in oraaccess.xml for more
information about oraaccess.xml and details about the parameters under <events>,
<fan> and <ons>

Chapter 11
HA Event Notification

11-3

11.2.1 OCIEvent Handle
The OCIEvent handle encapsulates the attributes from the event payload.

OCI implicitly allocates this handle before calling the event callback, which can obtain the read-
only attributes of the event by calling OCIAttrGet(). Memory associated with these attributes is
only valid for the duration of the event callback.

See Also:

• Event Handle Attributes

• OCIAttrGet()

11.2.2 OCI Failover for Connection and Session Pools
A connection pool in an instance of Oracle RAC consists of a pool of connections connected to
different instances of Oracle RAC.

Upon receiving the node failure notification, all the connections connected to that particular
instance should be cleaned up. For the connections that are in use, OCI must close the
connections: transparent application failover (TAF) occurs immediately, and those connections
are reestablished. The connections that are idle and in the free list of the pool must be purged,
so that a bad connection is never returned to the user from the pool.

To accommodate custom connection pools, OCI provides a callback function that can be
registered on the environment handle. If registered, this callback is invoked when an HA event
occurs. Session pools are treated the same way as connection pools. Note that server handles
from OCI connection pools or session pools are not passed to the callback. Hence in some
cases, the callback could be called with an empty list of connections.

11.2.3 OCI Failover for Independent Connections
No special handling is required for independent connections; all such connections that are
connected to failed instances are immediately disconnected.

For idle connections, TAF is engaged to reestablish the connection when the connection is
used on a subsequent OCI call. Connections that are in use at the time of the failure event are
broken out immediately, so that TAF can begin. Note that this applies for the "in-use"
connections of connection and session pools also.

11.2.4 Event Callback
Shows the signature of the event callback of type OCIEventCallback.

The event callback, of type OCIEventCallback, has the following signature:

void evtcallback_fn (void *evtctx,
 OCIEvent *eventhp);

Chapter 11
HA Event Notification

11-4

In this signature evtctx is the client context, and OCIEvent is an event handle that is opaque to
the OCI library. The other input argument is eventhp, the event handle (the attributes
associated with an event).

If registered, this function is called once for each event. For Oracle RAC HA events, this
callback is invoked after the affected connections have been disconnected. The following
environment handle attributes are used to register an event callback and context, respectively:

• OCI_ATTR_EVTCBK is of data type OCIEventCallback *. It is read-only.

• OCI_ATTR_EVTCTX is of data type void *. It is also read-only.

text *myctx = "dummy context"; /* dummy context passed to callback fn */
...
/* OCI_ATTR_EVTCBK and OCI_ATTR_EVTCTX are read-only. */
OCIAttrSet(envhp, (ub4) OCI_HTYPE_ENV, (void *) evtcallback_fn,
 (ub4) 0, (ub4) OCI_ATTR_EVTCBK, errhp);
OCIAttrSet(envhp, (ub4) OCI_HTYPE_ENV, (void *) myctx,
 (ub4) 0, (ub4) OCI_ATTR_EVTCTX, errhp);
...

Within the OCI event callback, the list of affected server handles is encapsulated in the
OCIEvent handle. For Oracle RAC HA DOWN events, client applications can iterate over a list
of server handles that are affected by the event by using OCIAttrGet() with attribute types
OCI_ATTR_HA_SRVFIRST and OCI_ATTR_HA_SRVNEXT:

OCIAttrGet(eventhp, OCI_HTYPE_EVENT, (void *)&srvhp, (ub4 *)0,
 OCI_ATTR_HA_SRVFIRST, errhp);
/* or, */
OCIAttrGet(eventhp, OCI_HTYPE_EVENT, (void *)&srvhp, (ub4 *)0,
 OCI_ATTR_HA_SRVNEXT, errhp);

When called with attribute OCI_ATTR_HA_SRVFIRST, this function retrieves the first server handle
in the list of server handles affected. When called with attribute OCI_ATTR_HA_SRVNEXT, this
function retrieves the next server handle in the list. This function returns OCI_NO_DATA and
srvhp is a NULL pointer, when there are no more server handles to return.

srvhp is an output pointer to a server handle whose connection has been closed because of an
HA event. errhp is an error handle to populate. The application returns an OCI_NO_DATA error
when there are no more affected server handles to retrieve.

When retrieving the list of server handles that have been affected by an HA event, be aware
that the connection has already been closed and many server handle attributes are no longer
valid. Instead, use the user memory segment of the server handle to store any per-connection
attributes required by the event notification callback. This memory remains valid until the
server handle is freed.

See Also:

OCIAttrGet()

11.2.5 Custom Pooling: Tagged Server Handles
Using custom pools, you can retrieve the server handle’s tag information so appropriate
cleanup can be performed.

Chapter 11
HA Event Notification

11-5

The following features apply to custom pools:

• You can tag a server handle with its parent connection object if it is created on behalf of a
custom pool. Use the "user memory" parameters of OCIHandleAlloc() to request that the
server handle be allocated with a user memory segment. A pointer to the "user memory"
segment is returned by OCIHandleAlloc().

• When an HA event occurs and an affected server handle has been retrieved, there is a
means to retrieve the server handle's tag information so appropriate cleanup can be
performed. The attribute OCI_ATTR_USER_MEMORY is used to retrieve a pointer to a handle's
user memory segment. OCI_ATTR_USER_MEMORY is valid for all user-allocated handles. If the
handle was allocated with extra memory, this attribute returns a pointer to the user
memory. A NULL pointer is returned for those handles not allocated with extra memory. This
attribute is read-only and is of data type void*.

Note:

You are free to define the precise contents of the server handle's user memory
segment to facilitate cleanup activities from within the HA event callback (or for other
purposes if needed) because OCI does not write or read from this memory in any
way. The user memory segment is freed with the OCIHandleFree() call on the server
handle.

Example 11-1 shows an example of event notification.

Example 11-1 Event Notification

sword retval;
OCIServer *srvhp;
struct myctx {
 void *parentConn_myctx;
 uword numval_myctx;
};
typedef struct myctx myctx;
myctx *myctxp;
/* Allocate a server handle with user memory - pre 10.2 functionality */
if (retval = OCIHandleAlloc(envhp, (void **)&srvhp, OCI_HTYPE_SERVER,
 (size_t)sizeof(myctx), (void **)&myctxp)
/* handle error */
myctxp->parentConn_myctx = <parent connection reference>;

/* In an event callback function, retrieve the pointer to the user memory */
evtcallback_fn(void *evtctx, OCIEvent *eventhp)
{
 myctx *ctxp = (myctx *)evtctx;
 OCIServer *srvhp;
 OCIError *errhp;
 sb4 retcode;
 retcode = OCIAttrGet(eventhp, OCI_HTYPE_SERVER, &srvhp, (ub4 *)0,
 OCI_ATTR_HA_SRVFIRST, errhp);
 while (!retcode) /* OCIAttrGet will return OCI_NO_DATA if no more srvhp */
 {
 OCIAttrGet((void *)srvhp, OCI_HTYPE_SERVER, (void *)&ctxp,
 (ub4)0, (ub4)OCI_ATTR_USER_MEMORY, errhp);
 /* Remove the server handle from the parent connection object */
 retcode = OCIAttrGet(eventhp, OCI_HTYPE_SERVER, &srvhp, (ub4 *)0,
 OCI_ATTR_HA_SRVNEXT, errhp);
...

Chapter 11
HA Event Notification

11-6

 }
...
}

See Also:

• OCIHandleAlloc()

• OCIHandleFree()

11.2.6 About Determining Transparent Application Failover (TAF)
Capabilities

You can have the application adjust its behavior if a connection is or is not TAF-enabled.

Use OCIAttrGet() as follows to determine if a server handle is TAF-enabled:

boolean taf_capable;
...
OCIAttrGet(srvhp, (ub4) OCI_HTYPE_SERVER, (void *) &taf_capable,
 (ub4) sizeof(taf_capable), (ub4)OCI_ATTR_TAF_ENABLED, errhp);
...

In this example, taf_capable is a Boolean variable, which this call sets to TRUE if the server
handle is TAF-enabled, and FALSE if not; srvhp is an input target server handle;
OCI_ATTR_TAF_ENABLED is an attribute that is a pointer to a Boolean variable and is read-only;
errhp is an input error handle.

11.3 Transparent Application Failover in OCI
Transparent application failover (TAF) is a client-side feature designed to minimize disruptions
to end-user applications that occur when database connectivity fails because of instance or
network failure.

TAF can be implemented on a variety of system configurations including Oracle Real
Application Clusters (Oracle RAC) and Oracle Data Guard physical standby databases. TAF
can also be used after restarting a single instance system (for example, when repairs are
made).

TAF can be configured to restore database sessions and optionally, to replay open queries.
Starting with Oracle Database 10g Release 2 (10.2) all statements that an application attempts
to use after a failure attempt failover. That is, an attempt to execute or fetch against other
statements engages TAF recovery just as for the failure-time statement. Subsequent
statements may now succeed (whereas in the past they failed), or the application may receive
errors corresponding to an attempted TAF recovery (such as ORA-25401).

Note:

Oracle recommends for applications to register a callback, so when failover happens,
the callback can be used to restore the session to the desired state.

Chapter 11
Transparent Application Failover in OCI

11-7

Note:

TAF is not supported for remote database links or for DML statements.

This section contains the following topics:

• About Configuring Transparent Application Failover

• Transparent Application Failover Callbacks in OCI

• Transparent Application Failover Callback Structure and Parameters

• Failover Callback Structure and Parameters

• Failover Callback Registration

• Failover Callback Example

• Handling OCI_FO_ERROR

• About Configuring Transparent Application Failover
TAF can be configured on both the client side and the server side. If both are configured,
server-side settings take precedence.

• Transparent Application Failover Callbacks in OCI
Because of the delay that can occur during failover, the application developer may want to
inform the user that failover is in progress, and request that the user wait for notification
that failover is complete.

• Transparent Application Failover Callback Structure and Parameters
Describes the TAF Callback structure and parameters.

• Failover Callback Structure and Parameters
Shows and describes the basic structure of a user-defined application failover callback
function.

• Failover Callback Registration
For the failover callback to be used, it must be registered on the server context handle.
This registration is done by creating a callback definition structure and setting the
OCI_ATTR_FOCBK attribute of the server handle to this structure.

• Failover Callback Example
Shows several failover callback examples.

• Handling OCI_FO_ERROR
A failover attempt is not always successful. If the attempt fails, the callback function
receives a value of OCI_FO_ABORT or OCI_FO_ERROR in the fo_event parameter.

• TAF Support for IAM Based Token Authentication in OCI

11.3.1 About Configuring Transparent Application Failover
TAF can be configured on both the client side and the server side. If both are configured,
server-side settings take precedence.

Configure TAF on the client side by including the FAILOVER_MODE parameter in the
CONNECT_DATA portion of a connect descriptor.

Configure TAF on the server side by modifying the target service with the
DBMS_SERVICE.MODIFY_SERVICE packaged procedure.

Chapter 11
Transparent Application Failover in OCI

11-8

An initial attempt at failover may not always succeed. OCI provides a mechanism for retrying
failover after an unsuccessful attempt.

See Also:

• Oracle Database Net Services Reference for more information about client-side
configuration of TAF (Connect Data Section)

• Oracle Database PL/SQL Packages and Types Reference for more information
about the server-side configuration of TAF (DBMS_SERVICE)

11.3.2 Transparent Application Failover Callbacks in OCI
Because of the delay that can occur during failover, the application developer may want to
inform the user that failover is in progress, and request that the user wait for notification that
failover is complete.

Additionally, the session on the initial instance may have received some ALTER SESSION
commands. These ALTER SESSION commands are not automatically replayed on the second
instance. Consequently, the developer may want to replay them on the second instance.
OCIAttrSet() calls that affect the session must also be reexecuted.

To accommodate these requirements, the application developer can register a failover callback
function. If failover occurs, the callback function is invoked several times while reestablishing
the user's session.

The first call to the callback function occurs when the database first detects an instance
connection loss. This callback is intended to allow the application to inform the user of an
upcoming delay. If failover is successful, a second call to the callback function occurs when the
connection is reestablished and usable.

Once the connection has been reestablished, the client may want to replay ALTER SESSION
commands and inform the user that failover has happened. If failover is unsuccessful, then the
callback is called to inform the application that failover cannot occur. Additionally, the callback
is called each time a user handle besides the primary handle is reauthenticated on the new
connection. Because each user handle represents a server-side session, the client may want
to replay ALTER SESSION commands for that session.

See Also:

• OCIAttrSet()

• Handling OCI_FO_ERROR for more information about this scenario

11.3.3 Transparent Application Failover Callback Structure and Parameters
Describes the TAF Callback structure and parameters.

The basic structure of a Transparent Application Failover (TAF) callback function is as follows:

Chapter 11
Transparent Application Failover in OCI

11-9

sb4 TAFcbk_fn(OCISvcCtx *svchp,
 OCIEnv *envhp,
 void *fo_ctx,
 ub4 fo_type,
 ub4 fo_event);

svchp
The service context handle.

envhp
The OCI environment handle.

fo_ctx
The client context. This is a pointer to memory specified by the client. In this area the client
can keep any necessary state or context.

fo_type
The failover type. This lets the callback know what type of failover the client has requested.
The usual values are as follows:

• OCI_FO_SESSION indicates that the user has requested only session failover.

• OCI_FO_SELECT indicates that the user has requested select failover as well.

fo_event
The failover event indicates the current status of the failover.

• OCI_FO_BEGIN indicates that failover has detected a lost connection and failover is starting.

• OCI_FO_END indicates successful completion of failover.

• OCI_FO_ABORT indicates that failover was unsuccessful, and there is no option of retrying.

• OCI_FO_ERROR also indicates that failover was unsuccessful, but it gives the application the
opportunity to handle the error and retry failover.

• OCI_FO_REAUTH indicates that you have multiple authentication handles and failover has
occurred after the original authentication. It indicates that a user handle has been
reauthenticated. To determine which one, the application checks the OCI_ATTR_SESSION
attribute of the service context handle svchp.

If Application Continuity is configured, the TAF callback is called with OCI_FO_END after
successfully re-connecting, re-authenicating, and determining the status of the inflight
transaction.

Upon completion of the TAF callback, OCI returns an error if an open transaction is present
and Application Continuity for OCI is enabled.

11.3.4 Failover Callback Structure and Parameters
Shows and describes the basic structure of a user-defined application failover callback
function.

The basic structure of a user-defined application failover callback function is as follows:

sb4 appfocallback_fn (void * svchp,
 void * envhp,
 void * fo_ctx,
 ub4 fo_type,
 ub4 fo_event);

Chapter 11
Transparent Application Failover in OCI

11-10

An example is provided in "Failover Callback Example" on page 9‐31 for the following
parameters:

svchp
The first parameter, svchp, is the service context handle. It is of type void *.

envhp
The second parameter, envhp, is the OCI environment handle. It is of type void *.

fo_ctx
The third parameter, fo_ctx, is a client context. It is a pointer to memory specified by the
client. In this area the client can keep any necessary state or context. It is passed as a void *.

fo_type
The fourth parameter, fo_type, is the failover type. This lets the callback know what type of
failover the client has requested. The usual values are as follows:

• OCI_FO_SESSION indicates that the user has requested only session failover.

• OCI_FO_SELECT indicates that the user has requested select failover as well.

fo_event
The last parameter is the failover event. This indicates to the callback why it is being called. It
has several possible values:

• OCI_FO_BEGIN indicates that failover has detected a lost connection and failover is starting.

• OCI_FO_END indicates successful completion of failover.

• OCI_FO_ABORT indicates that failover was unsuccessful, and there is no option of retrying.

• OCI_FO_ERROR also indicates that failover was unsuccessful, but it gives the application the
opportunity to handle the error and retry failover.

• OCI_FO_REAUTH indicates that you have multiple authentication handles and failover has
occurred after the original authentication. It indicates that a user handle has been
reauthenticated. To determine which one, the application checks the OCI_ATTR_SESSION
attribute of the service context handle (which is the first parameter).

11.3.5 Failover Callback Registration
For the failover callback to be used, it must be registered on the server context handle. This
registration is done by creating a callback definition structure and setting the OCI_ATTR_FOCBK
attribute of the server handle to this structure.

The callback definition structure must be of type OCIFocbkStruct. It has two fields:
callback_function, which contains the address of the function to call, and fo_ctx, which
contains the address of the client context.

See Also:

Example 11-3 for an example of callback registration

Chapter 11
Transparent Application Failover in OCI

11-11

11.3.6 Failover Callback Example
Shows several failover callback examples.

This section shows an example of a simple user-defined callback function definition (see
Example 11-2), failover callback registration (see Example 11-3), and failover callback
unregistration (see Example 11-4).

Example 11-2 User-Defined Failover Callback Function Definition

sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
void * svchp;
void * envhp;
void *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover stopped. Failover will not occur.\n");
 break;
 }
 case OCI_FO_END:
 {
 printf(" Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

Example 11-3 Failover Callback Registration

int register_callback(srvh, errh)
void *srvh; /* the server handle */
OCIError *errh; /* the error handle */
{
 OCIFocbkStruct failover; /* failover callback structure */

Chapter 11
Transparent Application Failover in OCI

11-12

 /* allocate memory for context */
 if (!(failover.fo_ctx = (void *)malloc(strlen("my context.")+1)))
 return(1);
 /* initialize the context. */
 strcpy((char *)failover.fo_ctx, "my context.");
 failover.callback_function = &callback_fn;
 /* do the registration */
 if (OCIAttrSet(srvh, (ub4) OCI_HTYPE_SERVER,
 (void *) &failover, (ub4) 0,
 (ub4) OCI_ATTR_FOCBK, errh) != OCI_SUCCESS)
 return(2);
 /* successful conclusion */
 return (0);
}

Example 11-4 Failover Callback Unregistration

OCIFocbkStruct failover; /* failover callback structure */
sword status;

 /* set the failover context to null */
 failover.fo_ctx = NULL;
 /* set the failover callback to null */
 failover.callback_function = NULL;
 /* unregister the callback */
 status = OCIAttrSet(srvhp, (ub4) OCI_HTYPE_SERVER,
 (void *) &failover, (ub4) 0,
 (ub4) OCI_ATTR_FOCBK, errhp);

11.3.7 Handling OCI_FO_ERROR
A failover attempt is not always successful. If the attempt fails, the callback function receives a
value of OCI_FO_ABORT or OCI_FO_ERROR in the fo_event parameter.

A value of OCI_FO_ABORT indicates that failover was unsuccessful, and no further failover
attempts are possible. OCI_FO_ERROR, however, provides the callback function with the
opportunity to handle the error. For example, the callback may choose to wait a specified
period of time and then indicate to the OCI library that it must reattempt failover.

Note:

This functionality is only available to applications linked with the 8.0.5 or later OCI
libraries running against any Oracle Database server.

Failover does not work if a LOB column is part of the select list.

Consider the timeline of events presented in Table 11-1.

Table 11-1 Time and Event

Time Event

T0 Database fails (failure lasts until T5).

T1 Failover is triggered by user activity.

T2 User attempts to reconnect; attempt fails.

Chapter 11
Transparent Application Failover in OCI

11-13

Table 11-1 (Cont.) Time and Event

Time Event

T3 Failover callback is invoked with OCI_FO_ERROR.

T4 Failover callback enters a predetermined sleep period.

T5 Database comes back up again.

T6 Failover callback triggers a new failover attempt; it is successful.

T7 User successfully reconnects.

The callback function triggers the new failover attempt by returning a value of OCI_FO_RETRY
from the function.

Example 11-5 shows a callback function that you can use to implement the failover strategy
similar to the scenario described earlier. In this case, the failover callback enters a loop in
which it sleeps and then reattempts failover until it is successful:

Example 11-5 Callback Function That Implements a Failover Strategy

/*--*/
/* the user-defined failover callback */
/*--*/
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
void * svchp;
void * envhp;
void *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
 OCIError *errhp;
 OCIHandleAlloc(envhp, (void **)&errhp, (ub4) OCI_HTYPE_ERROR,
 (size_t) 0, (void **) 0);
 switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_NONE) ? "NONE"
 :(fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 :(fo_type==OCI_FO_TXNAL) ? "TRANSACTION"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not occur.\n");
 break;
 }
 case OCI_FO_END:
 {
 printf("\n Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {

Chapter 11
Transparent Application Failover in OCI

11-14

 printf(" Failed over user. Resuming services\n");
 break;
 }
 case OCI_FO_ERROR:
 {
 /* all invocations of this can only generate one line. The newline
 * will be put at fo_end time.
 */
 printf(" Failover error gotten. Sleeping...");
 sleep(3);
 printf("Retrying. ");
 return (OCI_FO_RETRY);
 break;
 }
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

11.3.8 TAF Support for IAM Based Token Authentication in OCI
This section covers TAF support for token-based authentication in OCI.

• Providing the DB Token Programmatically

• Providing the DB Token in a File

See Also:

• Identity and Access Management (IAM) Token-Based Authentication

11.3.8.1 Providing the DB Token Programmatically
If the cached token expires, the latest token and key must be specified in the failover callback
as attributes on the connection passed to the callback. These are cached by OCI after the
failover is complete.

A new fail over event OCI_FO_BEGIN_EXPIREDTOKEN is introduced. The TAF callback is invoked
to renew the expired token.

Example 11-6 TAF Callback Function to Accommodate Token-Based Authentication

sb4 callback_fn(dvoid *svchp, dvoid *envhp, dvoid *fo_ctx, ub4 fo_type, ub4
fo_\
event)
{
 if (fo_event == OCI_FO_BEGIN_EXPIREDTOKEN)
 {
 /* Set new token attributes */
 OCISession *usrhp=NULL;
 OCIError *ehp=NULL;
 OCIHandleAlloc ((dvoid *)envhp, (dvoid **)&ehp,

Chapter 11
Transparent Application Failover in OCI

11-15

 OCI_HTYPE_ERROR, 0, (dvoid *)0);
 OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0, (ub4)OCI_ATTR_SESSION, ehp);
 if (usrhp)
 {
 getToken(token, &tokenLen, privateKey, &privateKeyLen);
 OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) token, (ub4) tokenLen,
 OCI_ATTR_TOKEN, ehp);
 OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) privateKey, (ub4) privateKeyLen,
 OCI_ATTR_IAM_PRIVKEY, ehp);
 }
 OCIHandleFree((dvoid *) ehp, OCI_HTYPE_ERROR);
 }
}

Example 11-7 Get Token

void getToken(char *token[], sb4 *tokenLen, char *privateKey[], char
*tokenLoc)
{
 token_file_loc = 'tokenFile.txt';
 private_key_file_loc = 'privateKey.pem';
 fp = fopen(token_file_loc, "r");
 if (fp != NULL) {
 size_t newLen = fread(token, sizeof(char), MAXBUFLEN, fp);
 token[newLen++] = '\0';
 }
 *tokenLen = newLen;
 fclose(fp);
 fp = fopen(private_key_file_loc, "r");
 if (fp != NULL)
 {
 while ((rlen = getline(&line, &len, fp)) != -1 && line != NULL)
 {
 /* skip lines containing PEM delimiters */
 if (strstr(line, "--BEGIN ") != NULL) {
 start = TRUE;
 continue;
 }
 else if (strstr(line, "--END ") != NULL) {
 start = FALSE;
 break;
 }
 if (!start)
 continue;
 /* remove the \n */
 line[strlen((const char *)line) - 1] = '\0';
 strcat((char *)privateKey, line);
 pvreadLen += strlen((const char *)line);
 }
 *privateKeyLen = pvreadLen;
 return;
}

Chapter 11
Transparent Application Failover in OCI

11-16

11.3.8.2 Providing the DB Token in a File
The location of the token file must be specified in the connect string when establishing the
initial session and the post-failover session.

Note:

The token is always read from the file and not cached

The application administrator must keep the token location up-to-date with the latest token.

11.4 OCI and Transaction Guard
Transaction Guard introduces the concept of at-most-once transaction execution in case of a
planned or unplanned outage to help prevent an application upon failover from submitting a
duplicate submission of an original submission.

When an application opens a connection to the database using this service, the logical
transaction ID (LTXID) is generated at authentication and stored in the session handle. This is
a globally unique ID that identifies the database transaction from the application perspective.
When there is an outage, an application using Transaction Guard can retrieve the LTXID from
the previous failed session's handle and use it to determine the outcome of the transaction that
was active prior to the session failure. If the LTXID is determined to be unused, then the
application can replay an uncommitted transaction by first blocking the original submission
using the retrieved LTXID. If the LTXID is determined to be used, then the transaction is
committed and the result is returned to the application.

Transaction Guard is a developer API supported for JDBC Type 4 (Oracle Thin), OCI, OCCI,
and Oracle Data Provider for .NET (ODP.NET) drivers. For OCI, when an application is written
to support Transaction Guard, upon an outage, the OCI client driver acquires and retrieves the
LTXID from the previous failed session's handle by calling OCI_ATTR_GET() using the
OCI_ATTR_LTXID session handle attribute.

This section includes the following topic: Developing Applications that Use Transaction Guard.

• Developing Applications that Use Transaction Guard
This section describes developing OCI user applications that use Transaction Guard.

See Also:

Oracle Database Development Guide for information in the chapter about using
Transaction Guard in for an overview of Transaction Guard, supported transaction
types, transaction types that are not supported, and database configuration
information for using Transaction Guard.

Chapter 11
OCI and Transaction Guard

11-17

11.4.1 Developing Applications that Use Transaction Guard
This section describes developing OCI user applications that use Transaction Guard.

See the chapter about using Transaction Guard in Oracle Database Development Guide for
more detailed information about developing applications using Transaction Guard.

For the third-party or user application to use Transaction Guard in order to be able to fail over a
session for OCI, it must include several major steps:

1. Verify if Transparent Application Failover (TAF) is enabled for the connection. Do not
attempt to explicitly use Transaction Guard on a TAF-enabled connection, as TAF will
automatically check the LTXID.

2. On receipt of an error, determine whether the error is a recoverable error -
OCI_ATTR_ERROR_IS_RECOVERABLE on OCI_ERROR handle. If the error is recoverable, then
continue to Step 3.

Note:

Do not attempt to use the LTXID to check transaction outcome if the connection
has not suffered a recoverable error.

3. Retrieve the LTXID associated with the failed session by using OCI_ATTR_GET() to get
the OCI_ATTR_LTXID from the user session handle.

4. Reconnect to the database.

Note:

The new session will have a new LTXID, but you will not need it when checking
the status of the original session.

5. Invoke the DBMS_APP_CONT.GET_LTXID_OUTCOME PL/SQL procedure with the LTXID
obtained from the OCI_ATTR_GET() call. The original LTXID of the failed-over session is
marked as forced if that LTXID has not been used. The return state tells the driver if the
last transaction was COMMITTED (TRUE/FALSE) and USER_CALL_COMPLETED (TRUE/FALSE).

6. The application can replay an uncommitted transaction or return the result to the user. If
the replay itself incurs an outage, then the LTXID for the replaying session is used for the
DBMS_APP_CONT.GET_LTXID_OUTCOME procedure.

See the following sections for Transaction Guard usage and examples:

• Typical Transaction Guard Usage

• Transaction Guard Examples

• Typical Transaction Guard Usage
Shows typical usage of Transaction Guard using pseudocode.

• Transaction Guard Examples
Shows a Transaction Guard demo program.

Chapter 11
OCI and Transaction Guard

11-18

11.4.1.1 Typical Transaction Guard Usage
Shows typical usage of Transaction Guard using pseudocode.

The following pseudocode shows a typical usage of Transaction Guard:

1. Receive a FAN down event (or recoverable error)

2. FAN aborts the dead session

3. Call OCIAttrGet() using the OCI_ATTR_TAF_ENABLED attribute on the server handle. If the
value is TRUE, stop. If the value is FALSE, proceed to the next step.

4. If it is a recoverable error, for OCI (OCI_ATTR_ERROR_IS_RECOVERABLE on OCI_ERROR
handle):

a. Get the last LTXID from the dead session by calling OCIAttrGet() using the
OCI_ATTR_LTXID session handle attribute to retrieve the LTXID associated with the
session's handle

b. Obtain a new session

c. Call DBMS_APP_CONT.GET_LTXID_OUTCOME with the last LTXID to get the return state

5. If the return state is:

a. COMMITTED and USER_CALL_COMPLETED
Then return the result.

b. ELSEIF COMMITTED and NOT USER_CALL_COMPLETED
Then return the result with a warning (with details, such as out binds or row count was
not returned).

c. ELSEIF NOT COMMITTED
Resubmit the transaction or series of calls or both, or return error to user.

See Also:

OCIAttrGet()

11.4.1.2 Transaction Guard Examples
Shows a Transaction Guard demo program.

Example 11-8 is an OCI Transaction Guard demo program (cdemotg.c) that demonstrates:

• Use of the attribute OCI_ATTR_ERROR_IS_RECOVERABLE. When an error occurs, the program
checks if the error is recoverable.

• Use of the packaged procedure DBMS_APP_CONT.GET_LTXID_OUTCOME. If the error is
recoverable, the program calls DBMS_APP_CONT.GET_LTXID_OUTCOME to determine the status
of the active transaction.

If the transaction has not committed, the program re-executes the failed transaction.

Chapter 11
OCI and Transaction Guard

11-19

Note:

This program does not modify the session state such as NLS parameters, and so
forth. Programs that do so may need to reexecute such commands after obtaining a
new session from the pool following the error.

Example 11-8 Transaction Guard Demo Program

*/

#ifndef OCISP_ORACLE
include <cdemosp.h>
#endif

/* Maximum Number of threads */
#define MAXTHREAD 1
static ub4 sessMin = 1;
static ub4 sessMax = 9;
static ub4 sessIncr = 2;

static OCIError *errhp;
static OCIEnv *envhp;
static OCISPool *poolhp=(OCISPool *) 0;
static int employeeNum[MAXTHREAD];

static OraText *poolName;
static ub4 poolNameLen;
static CONST OraText *database = (text *)"ltxid_service";
static CONST OraText *appusername =(text *)"scott";
static CONST OraText *apppassword =(text *)"tiger";

static CONST char getLtxid[]=
 ("BEGIN DBMS_APP_CONT.GET_LTXID_OUTCOME ("
 ":ltxid,:committed,:callComplete); END;");

static CONST char insertst1[] =
 ("INSERT INTO EMP(ENAME, EMPNO) values ('NAME1', 1000)");

static void checkerr (OCIError *errhp, sword status);
static void threadFunction (dvoid *arg);

int main(void)
{
 int i = 0;
 sword lstat;
 int timeout =1;
 OCIEnvCreate (&envhp, OCI_THREADED, (dvoid *)0, NULL,
 NULL, NULL, 0, (dvoid *)0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &poolhp, OCI_HTYPE_SPOOL,
 (size_t) 0, (dvoid **) 0);

 /* Create the session pool */
 checkerr(errhp, OCIAttrSet((dvoid *) poolhp,
 (ub4) OCI_HTYPE_SPOOL, (dvoid *) &timeout, (ub4)0,
 OCI_ATTR_SPOOL_TIMEOUT, errhp));

Chapter 11
OCI and Transaction Guard

11-20

 if (lstat = OCISessionPoolCreate(envhp, errhp,poolhp, (OraText **)&poolName,
 (ub4 *)&poolNameLen, database,
 (ub4)strlen((const char *)database),
 sessMin, sessMax, sessIncr,
 (OraText *)appusername,
 (ub4)strlen((const char *)appusername),
 (OraText *)apppassword,
 (ub4)strlen((const char *)apppassword),
 OCI_SPC_STMTCACHE|OCI_SPC_HOMOGENEOUS))
 {
 checkerr(errhp,lstat);
 }

 printf("Session Pool Created \n");

 /* Multiple threads using the session pool */
 {
 OCIThreadId *thrid[MAXTHREAD];
 OCIThreadHandle *thrhp[MAXTHREAD];

 OCIThreadProcessInit ();
 checkerr (errhp, OCIThreadInit (envhp, errhp));
 for (i = 0; i < MAXTHREAD; ++i)
 {
 checkerr (errhp, OCIThreadIdInit (envhp, errhp, &thrid[i]));
 checkerr (errhp, OCIThreadHndInit (envhp, errhp, &thrhp[i]));
 }
 for (i = 0; i < MAXTHREAD; ++i)
 {
 employeeNum[i]=i;
 /* Inserting into EMP table */
 checkerr (errhp, OCIThreadCreate (envhp, errhp, threadFunction,
 (dvoid *) &employeeNum[i], thrid[i], thrhp[i]));
 }
 for (i = 0; i < MAXTHREAD; ++i)
 {
 checkerr (errhp, OCIThreadJoin (envhp, errhp, thrhp[i]));
 checkerr (errhp, OCIThreadClose (envhp, errhp, thrhp[i]));
 checkerr (errhp, OCIThreadIdDestroy (envhp, errhp, &(thrid[i])));
 checkerr (errhp, OCIThreadHndDestroy (envhp, errhp, &(thrhp[i])));
 }
 checkerr (errhp, OCIThreadTerm (envhp, errhp));
 } /* ALL THE THREADS ARE COMPLETE */
 lstat = OCISessionPoolDestroy(poolhp, errhp, OCI_DEFAULT);

 printf("Session Pool Destroyed \n");

 if (lstat != OCI_SUCCESS)
 checkerr(errhp, lstat);

 checkerr(errhp, OCIHandleFree((dvoid *)poolhp, OCI_HTYPE_SPOOL));

 checkerr(errhp, OCIHandleFree((dvoid *)errhp, OCI_HTYPE_ERROR));
 return 0;

} /* end of main () */

/* Inserts records into EMP table */
static void threadFunction (dvoid *arg)
{
 int empno = *(int *)arg;

Chapter 11
OCI and Transaction Guard

11-21

 OCISvcCtx *svchp = (OCISvcCtx *) 0;
 OCISvcCtx *svchp2 = (OCISvcCtx *) 0;
 OCISession *embUsrhp = (OCISession *)0;
 OCIBind *bnd1p, *bnd2p, *bnd3p;

 OCIStmt *stmthp = (OCIStmt *)0;
 OCIStmt *getLtxidStm = (OCIStmt *)0;
 OCIError *errhp2 = (OCIError *) 0;
 OCIAuthInfo *authp = (OCIAuthInfo *)0;
 sword lstat;
 text name[10];

 boolean callCompl, committed, isRecoverable;
 ub1 *myLtxid;
 ub4 myLtxidLen;

 ub4 numAttempts = 0;

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp2, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 lstat = OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_AUTHINFO,
 (size_t) 0, (dvoid **) 0);
 if (lstat)
 checkerr(errhp2, lstat);

 checkerr(errhp2, OCIAttrSet((dvoid *) authp,(ub4) OCI_HTYPE_AUTHINFO,
 (dvoid *) appusername, (ub4) strlen((char *)appusername),
 (ub4) OCI_ATTR_USERNAME, errhp2));

 checkerr(errhp2,OCIAttrSet((dvoid *) authp,(ub4) OCI_HTYPE_AUTHINFO,
 (dvoid *) apppassword, (ub4) strlen((char *)apppassword),
 (ub4) OCI_ATTR_PASSWORD, errhp2));

restart:
 if (lstat = OCISessionGet(envhp, errhp2, &svchp, authp,
 (OraText *)poolName, (ub4)strlen((char *)poolName), NULL,
 0, NULL, NULL, NULL, OCI_SESSGET_SPOOL))
 {
 checkerr(errhp2,lstat);
 }

 /* save the ltxid from the session in case we need to call
 * get_ltxid_outcome to determine the transaction status.
 */
 checkerr(errhp2, OCIAttrGet(svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)&embUsrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION, errhp2));
 checkerr(errhp2, OCIAttrGet(embUsrhp, OCI_HTYPE_SESSION,
 (dvoid *)&myLtxid, (ub4 *)&myLtxidLen,
 (ub4)OCI_ATTR_LTXID, errhp2));

 /* */
 checkerr(errhp2, OCIStmtPrepare2(svchp, &stmthp, errhp2,
 (CONST OraText *)insertst1,
 (ub4)sizeof(insertst1),
 (const oratext *)0, (ub4)0,
 OCI_NTV_SYNTAX, OCI_DEFAULT));

 if (!numAttempts)

Chapter 11
OCI and Transaction Guard

11-22

 {
 char input[1];

 printf("Kill SCOTT's session now. Press ENTER when complete\n");
 gets(input);
 }
 lstat = OCIStmtExecute (svchp, stmthp, errhp2, (ub4)1, (ub4)0,
 (OCISnapshot *)0, (OCISnapshot *)0,
 OCI_DEFAULT);
 if (lstat == OCI_ERROR)
 {
 checkerr(errhp2, OCIAttrGet(errhp2, OCI_HTYPE_ERROR,
 (dvoid *)&isRecoverable, (ub4 *)0,
 (ub4)OCI_ATTR_ERROR_IS_RECOVERABLE, errhp2));
 if (isRecoverable)
 {

 printf("Recoverable error occurred; checking transaction status.\n");
 /* get another session to use for the get_ltxid_outcome call */
 if (lstat = OCISessionGet(envhp, errhp2, &svchp2, authp,
 (OraText *)poolName,
 (ub4)strlen((char *)poolName), NULL,
 0, NULL, NULL, NULL, OCI_SESSGET_SPOOL))
 {
 checkerr(errhp2,lstat);
 }

 checkerr(errhp2,OCIStmtPrepare2(svchp2,&getLtxidStm, errhp2,
 (CONST OraText *)getLtxid,
 (ub4)sizeof(getLtxid),
 (const oratext *)0, (ub4)0,
 OCI_NTV_SYNTAX, OCI_DEFAULT));
 checkerr(errhp, OCIBindByPos(getLtxidStm, &bnd1p, errhp, 1,
 (dvoid *) myLtxid, (sword)myLtxidLen,
 SQLT_BIN, (dvoid *)0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));
 checkerr(errhp, OCIBindByPos(getLtxidStm, &bnd2p, errhp, 2,
 (dvoid *) &committed,
 (sword)sizeof(committed),
 SQLT_BOL, (dvoid *)0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));
 checkerr(errhp, OCIBindByPos(getLtxidStm, &bnd3p, errhp, 3,
 (dvoid *) &callCompl,
 (sword)sizeof(callCompl),
 SQLT_BOL, (dvoid *)0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));

 checkerr(errhp2,OCIStmtExecute(svchp2, getLtxidStm, errhp2,
 (ub4)1, (ub4)0,
 (OCISnapshot *)0, (OCISnapshot *)0,
 OCI_DEFAULT));
 checkerr(errhp2, OCISessionRelease(svchp2, errhp2,
 NULL, 0, OCI_DEFAULT));
 if (committed && callCompl)
 printf("Insert successfully commited \n");
 else if (!committed)
 {
 printf("Transaction did not commit; re-executing last transaction\n");
 numAttempts++;

Chapter 11
OCI and Transaction Guard

11-23

 /* As there was an outage, do not return this session to the pool */
 checkerr(errhp2,
 OCISessionRelease(svchp, errhp2,
 NULL, 0, OCI_SESSRLS_DROPSESS));
 svchp = (OCISvcCtx *)0;
 goto restart;
 }
 }
 }
 else
 {
 checkerr(errhp2, OCITransCommit(svchp,errhp2,(ub4)0));
 printf("Transaction committed successfully\n");
 }
 if (stmthp)
 checkerr(errhp2, OCIStmtRelease((dvoid *) stmthp, errhp2,
 (void *)0, 0, OCI_DEFAULT));
 if (getLtxidStm)
 checkerr(errhp2, OCIStmtRelease((dvoid *) getLtxidStm, errhp2,
 (void *)0, 0, OCI_DEFAULT));

 if (svchp)
 checkerr(errhp2, OCISessionRelease(svchp, errhp2, NULL, 0, OCI_DEFAULT));
 OCIHandleFree((dvoid *)authp, OCI_HTYPE_AUTHINFO);
 OCIHandleFree((dvoid *)errhp2, OCI_HTYPE_ERROR);

} /* end of threadFunction (dvoid *) */

/* This function prints the error */
void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:

Chapter 11
OCI and Transaction Guard

11-24

 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

11.5 OCI and Application Continuity
Application Continuity (AC) gives High Availability (HA) during planned and unplanned
outages. Oracle Database 12c Release 2 (12.2) introduced OCI support for Application
Continuity (AC).

AC masks hardware, software, network, storage errors, and timeouts in a HA environment
running either Oracle RAC, Oracle RAC One, or Active Data Guard for instance or site failover.
AC provides support for SQL*Plus, Tuxedo, WebLogic Server, and JDBC Type 4 (Oracle Thin),
OCI, and Oracle Data Provider for .NET (ODP.NET) drivers.

With planned outages for applications that use the OCI session pool, the OCI session pool
detects when a connection has been affected by a PLANNED DOWN event and terminates the
connection when it is returned to the pool. In planned outages for applications that do not use
the OCI session pool, an OCI application detects when a connection has been impacted by a
planned shutdown event. In either case, OCI implicitly determines when DML replay is safe
and applications see fewer errors following a shutdown event.

With unplanned outages, OCI uses Transaction Guard, which enables an OCI application to
reliably determine the outcome of a transaction by recovering an in-flight transaction after a
recoverable error occurs. This support means the completion of application requests during
outages incurs only a minor delay while restoring database connectivity and session state. AC
only attempts to replay an in-flight transaction if it can determine the transaction did not commit
during original execution.

For AC support for OCI, Oracle recommends you use an OCI session pool or Tuxedo.

This section includes the following topics:

• About Added Support for Application Continuity

• What Happens Following a Recoverable Error

• Criteria for Successful Replay

• What Factors Disable Application Continuity in OCI

• Failed Replay

• When Is Application Continuity Most Effective

• About Added Support for Application Continuity
Oracle Database release 18c, version 18.1 adds more support for Application Continuity.

• What Happens Following a Recoverable Error
Following a recoverable error, database sessions fail over from one database instance to
another database instance.

• Criteria for Successful Replay
Successful driver replay requires that the client-visible effects of a post-failover transaction
be identical to the initial submission.

• What Factors Disable Application Continuity in OCI
Lists the factors that implicitly disables Application Continuity in OCI until the start of the
next application request.

Chapter 11
OCI and Application Continuity

11-25

• Failed Replay
What causes replay to fail.

• When Is Application Continuity Most Effective
What determines the effectiveness of Application Continuity in OCI.

• When Application Continuity in OCI Can Fail Over
Describes with which functions when Application Continuity in OCI can fail over if an
outage occurs.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for
information about creating services for Application Continuity and Transaction
Guard.

11.5.1 About Added Support for Application Continuity
Oracle Database release 18c, version 18.1 adds more support for Application Continuity.

Beginning with Oracle Database release 18c, version 18.1, the following support is added for
Application Continuity:

• Support is added for OCI dynamic binds and defines for numeric, character, and date/time
types. This means the following OCI APIs are extended to support Application Continuity:
OCIBindDynamic() and OCIDefineDynamic().

• Support is added for binding and defining objects. This means the following OCI APIs are
extended to support Application Continuity: OCIBindObject(), OCIDefineObject(), and
OCITypeByName().

• During execution of LOB calls, Application Continuity now supports the handling of
connection failure by restarting LOB calls that were interrupted by an outage.

• OCI now supports the new Application Continuity FAILOVER_TYPE of AUTO, which only
attempts to fail over if the session state is known to be restorable at the explicit request
boundary.

11.5.2 What Happens Following a Recoverable Error
Following a recoverable error, database sessions fail over from one database instance to
another database instance.

The new instance may be part of the same Oracle RAC cluster, or an Oracle Data Guard
standby database that has been brought up as a primary database following a site failure. After
transparent application failover (TAF) successfully reconnects and reauthenticates, Application
Continuity in OCI replays the call history associated with the failed session, including all SQL
and PL/SQL statements. Replay operates on a single session and does not attempt to
synchronize the re-submission activity with any other database session. Replay is successful
only if the client-visible results of transaction replay are identical to the original submission.

11.5.3 Criteria for Successful Replay
Successful driver replay requires that the client-visible effects of a post-failover transaction be
identical to the initial submission.

Chapter 11
OCI and Application Continuity

11-26

This success is indicated by the following criteria:

• Return codes and error message text must be identical.

• Result sets must be identical. The define data must be identical and the rows must be
returned in the same order.

• The rows processed count must be identical. For example, a post-failover update
statement must update the same number of rows as the original update statement.

• Session state for the new connection matches session state from the original connection.

See Oracle Real Application Clusters Administration and Deployment Guide for information
about these criteria.

Stability of Mutable Data and Application Continuity

When values change from one execution to the next for a mutable object, its data is
considered to be mutable and is thus guaranteed to be non-replayable. Sequences are an
example of this mutable data.

To improve the success rate for DML replay, it is necessary to replay DML involving mutable
data with the values used at initial submission. If the original values are not kept and if different
values for these mutable objects are returned to the client, replay is rejected because the client
sees different results.

Support for keeping mutable object values is currently provided for SYSDATE, SYSTIMESTAMP,
SYS_GUID, and sequence.NEXTVAL.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information about mutable objects and Application Continuity.

11.5.4 What Factors Disable Application Continuity in OCI
Lists the factors that implicitly disables Application Continuity in OCI until the start of the next
application request.

The following situations implicitly disables Application Continuity in OCI until the start of the
next application request:

• The server detects a condition that is not consistent with replay. For example, for
SESSION_STATE_CONSISTENCY=DYNAMIC if a PL/SQL anonymous block has an embedded
top level COMMIT statement (autonomous transactions are not considered top level), the
driver implicitly disables Application Continuity in OCI.

• The application calls an OCI function that is not supported by Application Continuity in OCI.

The application can explicitly disable Application Continuity in OCI by calling
OCIRequestDisableReplay().

11.5.5 Failed Replay
What causes replay to fail.

Chapter 11
OCI and Application Continuity

11-27

When Application Continuity in OCI replays a transaction, the following situations will cause
replay to fail:

• Encountering a COMMIT statement at replay time

• Replay results are not consistent with the initial submission of the transaction

• Presence of a recoverable error during replay if the internal replay retries limit is exceeded

• Applications that use OCIStmtPrepare() return the following error: Error - ORA-25412:
transaction replay disabled by call to OCIStmtPrepare. Use the
OCIStmtPrepare2() call to support the use of Application Continuity in an HA
infrastructure.

Application Continuity returns an error if it cannot successfully replay a failed transaction.
Additional diagnostic information will be logged in the client-side trace file to indicate the
reason for the replay failure.

11.5.6 When Is Application Continuity Most Effective
What determines the effectiveness of Application Continuity in OCI.

Application Continuity in OCI is most effective under the following conditions:

• The database service specifies the COMMIT_OUTCOME attribute and transparent application
failover (TAF) is configured.

• An application is able to mark the beginning and end of an application request, either
explicitly (calling OCIRequestBegin() and OCIRequestEnd()) or implicitly through use of an
OCI session pool.

• An application request contains at most one database transaction that is committed at the
end of the request.

• If the application executes PL/SQL or Java in the server, that PL/SQL or Java:

– Does not have embedded COMMIT statements

– Does not set any state (for example, package variables) that is expected to persist
after the PL/SQL or Java completes.

• The TAF callback does not leave an open database transaction.

This section includes the following topics:

• When Application Continuity in OCI Can Fail Over

• Application Continuity in OCI Does Not Support These Constructs

• Possible Side Effects of Application Continuity

• Application Continuity in OCI Does Not Support These Constructs
What constructs are not supported by Application Continuity in OCI.

• Possible Side Effects of Application Continuity
Application Continuity in OCI replays the original PL/SQL and SQL statements following a
recoverable error once a session is rebuilt and the database state is restored. The replay
leaves side-effects that are seen twice, which may or may not be desirable.

11.5.6.1 Application Continuity in OCI Does Not Support These Constructs
What constructs are not supported by Application Continuity in OCI.

Application Continuity in OCI does not support the following constructs:

Chapter 11
OCI and Application Continuity

11-28

• XA Transactions

• PL/SQL blocks with embedded COMMIT statements

• AQ Dequeue in dequeue immediate mode (deqopt.visibility)

• Streaming binds or defines of descriptor-based types such as objects or lob locators

• Function OCIStmtPrepare()
• Registered OCI callbacks of type OCI_CBTYPE_ENTRY that do not return OCI_CONTINUE
• COMMIT NOWAIT statement

• DCL commands

11.5.6.2 Possible Side Effects of Application Continuity
Application Continuity in OCI replays the original PL/SQL and SQL statements following a
recoverable error once a session is rebuilt and the database state is restored. The replay
leaves side-effects that are seen twice, which may or may not be desirable.

It is important that applications understand these side-effects and decide whether duplicate
execution is acceptable. If it is not acceptable, then the application must take action to
accommodate or mitigate the effects of replay. For example, by calling
OCIRequestDisableReplay().

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information about examples of actions that create side effects.

11.5.7 When Application Continuity in OCI Can Fail Over
Describes with which functions when Application Continuity in OCI can fail over if an outage
occurs.

Application Continuity in OCI can fail over if an outage occurs during one of the following
functions:

• OCILobAppend()
• OCILobArrayRead()
• OCILobArrayWrite()
• OCILobAssign()
• OCILobCharSetForm()
• OCILobClose()
• OCILobCopy2()
• OCILobCreateTemporary()
• OCILobFileClose()
• OCILobFileCloseAll()
• OCILobFileGetName()

Chapter 11
OCI and Application Continuity

11-29

• OCILobFileIsOpen()
• OCILobFileOpen()
• OCILobFileSetName()
• OCILobFreeTemporary()
• OCILobGetChunkSize()
• OCILobGetLength()
• OCILobGetLength2()
• OCILobGetStorageLimit()
• OCILobIsEqual()
• OCILobIsOpen()
• OCILobIsTemporary()
• OCILobLoadFromFile()
• OCILobLoadFromFile2()
• OCILobLocatorAssign()
• OCILobLocatorIsInit()
• OCILobOpen()
• OCILobRead()
• OCILobRead2()
• OCILobTrim()
• OCILobTrim2()
• OCILobWriteAppend()
• OCILobWriteAppend2()
• OCILobWrite()
• OCILobWrite2()
• OCIPing()
• OCIStmtExecute()
• OCIStmtFetch()
• OCIStmtFetch2()
• OCISessionEnd()
• OCITransCommit()
• OCITransRollback()

11.6 Support for Transparent Application Continuity
Transparent Application Continuity is a functional mode of Application Continuity that
transparently tracks and records session and transactional state so that a database session
can be recovered following recoverable outages. This is done safely and with no need for a
DBA to have any knowledge of the application or make application code changes.

Chapter 11
Support for Transparent Application Continuity

11-30

Transparency is achieved by using a state-tracking infrastructure that categorizes session state
usage as an application issues user calls. You can enable Transparent Application Continuity
as default to protect applications during planned maintenance and when unplanned outages
occur. With Transparent Application Continuity, DBAs no longer need to have knowledge of an
application to do the following:

• Restore PRESET states

• Recognize and disable application level side effects when recovering a session.

• Keep mutable values for owned functions.

The server and the drivers track transaction and session state usage. This allows the driver to
detect and inject possible request boundaries. Transparent Application Continuity is enabled
when FAILOVER_TYPE=AUTO.

• Service Attributes and Supported Values

Related Topics

• Transparent Application Continuity

11.6.1 Service Attributes and Supported Values

RESET_SESSION_STATE

Description
RESET_SESSION_STATE service attribute is used to reset state in a session to clean values. It is
executed at the end of each request before the processing occurs in the next request. This is
used when a session is returned to a connection pool so that the session state does not leak
from one session usage to the next. This is important for security and for transparent recovery
of inflight transactions. When a request needs to be recovered, cleaning session state
provides a recoverable point and prevents the state from leaking across repeated usages.
This functionality requires a connection pool that sends request boundaries. It does not
require Application Continuity or Transparent Application Continuity.

Supported Values

• NONE: By default, the value of RESET_SESSION_STATE attribute is set to NONE, the session
state is not cleaned.

• LEVEL1: If RESET_SESSION_STATE attribute is set to LEVEL1, then the session states that are
unrestorable are reset.

At explicit end request session state:

• Cursors are cancelled

• User session duration temporary tables are truncated

• Private temporary tables are deleted

• Session duration LOBs are deleted

• PL/SQL package state is cleared

• Secure roles and SYS Context are not cleared

• Sequence CURRVAL and session-local sequences are reset

FAILOVER_RESTORE

For TAC, FAILOVER_RESTORE is always AUTO. This will restore initial states.

Chapter 11
Support for Transparent Application Continuity

11-31

Note:

You must register a callback if you are using initial states not restored by
FAILOVER_RESTORE.

Chapter 11
Support for Transparent Application Continuity

11-32

12
Notification Methods and Database Advanced
Queuing

This chapter describes continuous query notification, publish-subscribe notification, and
Database advanced queuing features.

This chapter includes the following topics:

• About Continuous Query Notification

• Publish-Subscribe Notification in OCI

• OCI and Database Advanced Queuing

• About Continuous Query Notification
Continuous Query Notification (CQN) enables client applications to register queries with
the database and receive notifications in response to DML or DDL changes on the objects
or in response to result set changes associated with the queries.

• Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive client
notifications directly, register an email address to which notifications can be sent, register
an HTTP URL to which notifications can be posted, or register a PL/SQL procedure to be
invoked on a notification.

• OCI and Database Advanced Queuing
OCI provides an interface to the Database Advanced Queuing (Database AQ) feature.
Database Advanced Queuing provides message queuing as an integrated part of Oracle
Database.

12.1 About Continuous Query Notification
Continuous Query Notification (CQN) enables client applications to register queries with the
database and receive notifications in response to DML or DDL changes on the objects or in
response to result set changes associated with the queries.

The notifications are published by the database when the DML or DDL transaction commits.

During registration, the application specifies a notification handler and associates a set of
interesting queries with the notification handler. A notification handler can be either a server-
side PL/SQL procedure or a client-side C callback. Registrations are created at either the
object level or the query level. If registration is at the object level, then whenever a transaction
changes any of the registered objects and commits, the notification handler is invoked. If
registration is at the query level, then whenever a transaction commits changes such that the
result set of the query is modified, the notification handler is invoked, but if the changes do not
affect the result set of the query, the notification handler is not invoked.

Query change notification can be registered for the following types of statements:
OCI_STMT_SELECT, OCI_STMT_BEGIN, OCI_STMT_DECLARE, and OCI_STMT_CALL.

Query change notification assumes that the PLSQL code performs only SELECT statements and
registers for every SELECT statement. Otherwise, it raises an error if there are any non SELECT
statements in the PLSQL code.

12-1

One use of continuous query notification is in middle-tier applications that must have cached
data and keep the cache as recent as possible for the back-end database.

The notification includes the following information:

• Query IDs of queries whose result sets have changed. This is if the registration was at
query granularity.

• Names of the modified objects or changed rows.

• Operation type (INSERT, UPDATE, DELETE, ALTER TABLE, DROP TABLE).

• ROWIDs of the changed rows and the associated DML operation (INSERT, UPDATE, DELETE).

• Global database events (STARTUP, SHUTDOWN). In Oracle Real Application Cluster (Oracle
RAC) the database delivers a notification when the first instance starts or the last instance
shuts down.

See Also:

• Oracle Database Development Guide, the section about using continuous query
notification for a complete discussion of the concepts of this feature and using
OCI and PL/SQL interfaces to create CQN registrations

• Publish-Subscribe Notification in OCI

12.2 Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive client
notifications directly, register an email address to which notifications can be sent, register an
HTTP URL to which notifications can be posted, or register a PL/SQL procedure to be invoked
on a notification.

Figure 12-1 illustrates the process.

Chapter 12
Publish-Subscribe Notification in OCI

12-2

Figure 12-1 Publish-Subscribe Model

Client

Consumer

HTTP Server

OCI Client

E-mail Client

Channel

push

Nonpersistent�
Queues

Persistent
Transactional

Queues

Supplier

push

Trigger
Mechanism

System
Events

Clients

Database
PL/SQL

procedure

An OCI application can:

• Register interest in notifications in the AQ namespace and be notified when an enqueue
occurs

• Register interest in subscriptions to database events and receive notifications when the
events are triggered

• Manage registrations, such as disabling registrations temporarily or dropping the
registrations entirely

• Post or send notifications to registered clients

In all the preceding scenarios the notification can be received directly by the OCI application,
or the notification can be sent to a prespecified email address, or it can be sent to a predefined
HTTP URL, or a prespecified database PL/SQL procedure can be invoked because of a
notification.

Registered clients are notified asynchronously when events are triggered or on an explicit AQ
enqueue. Clients do not need to be connected to a database.

This section includes the following topics:

• Publish-Subscribe Registration Functions in OCI

• Notification Callback in OCI

• Notification Procedure

• Publish-Subscribe Direct Registration Example

Chapter 12
Publish-Subscribe Notification in OCI

12-3

• Publish-Subscribe LDAP Registration Example

• Publish-Subscribe Registration Functions in OCI
You can register directly to the database or register using Lightweight Directory Access
Protocol (LDAP).

• Notification Callback in OCI
The client must register a notification callback that gets invoked when there is some
activity on the subscription for which interest has been registered.

• Notification Procedure
The PL/SQL notification procedure that is invoked when there is some activity on the
subscription for which interest has been registered, must be created in the database.

• Publish-Subscribe Direct Registration Example
Shows examples implementing publish subscription notification using direct registration.

• Publish-Subscribe LDAP Registration Example
Shows an example that illustrates how to do LDAP registration.

See Also:

• OCI and Database Advanced Queuing for information about Database Advanced
Queuing

• Oracle Database Advanced Queuing User's Guide for information about creating
queues and about Database AQ, including concepts, features, and examples

• The chapter about CREATE TRIGGER in the Oracle Database SQL Language
Reference for information about creating triggers

12.2.1 Publish-Subscribe Registration Functions in OCI
You can register directly to the database or register using Lightweight Directory Access
Protocol (LDAP).

Registration can be done in two ways:

• Direct registration. You register directly to the database. This way is simple and the
registration takes effect immediately.

• Open registration. You register using Lightweight Directory Access Protocol (LDAP), from
which the database receives the registration request. This is useful when the client cannot
have a database connection (the client wants to register for a database open event while
the database is down), or if the client wants to register for the same event or events in
multiple databases simultaneously.

This section includes the following topics:

• Publish-Subscribe Register Directly to the Database

• Open Registration for Publish-Subscribe

• Using OCI to Open Register with LDAP

• Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number

• OCI Functions Used to Manage Publish-Subscribe Notification

Chapter 12
Publish-Subscribe Notification in OCI

12-4

• Publish-Subscribe Register Directly to the Database
The following steps are required in an OCI application to register directly and receive
notifications for events.

• Open Registration for Publish-Subscribe
Lists the prerequisites for the open registration for publish-subscribe.

• Using OCI to Open Register with LDAP
Shows how to open register using LDAP registration.

• Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number
Shows how to set QOSFLAGS to QOS levels using OCIAttrSet().

• OCI Functions Used to Manage Publish-Subscribe Notification
Lists and describes the functions used to manage publish-subscribe notification.

See Also:

• Publish-Subscribe Register Directly to the Database

• Open Registration for Publish-Subscribe

12.2.1.1 Publish-Subscribe Register Directly to the Database
The following steps are required in an OCI application to register directly and receive
notifications for events.

It is assumed that the appropriate event trigger or AQ queue has been set up. The initialization
parameter COMPATIBLE must be set to 8.1 or later.

See Also:

• Database Advanced Queuing and Publish-Subscribe Functions

• Publish-Subscribe Direct Registration Example for examples of the use of these
functions in an application

Note:

The publish-subscribe feature is only available on multithreaded operating systems.

1. Call OCIEnvCreate() or OCIEnvNlsCreate() with OCI_EVENTS mode to specify that the
application is interested in registering for and receiving notifications. This starts a
dedicated listening thread for notifications on the client.

2. Call OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION to allocate a
subscription handle.

3. Call OCIAttrSet() to set the subscription handle attributes for:

• OCI_ATTR_SUBSCR_NAME - Subscription name

Chapter 12
Publish-Subscribe Notification in OCI

12-5

• OCI_ATTR_SUBSCR_NAMESPACE - Subscription namespace

• OCI_ATTR_SUBSCR_HOSTADDR - Environment handle attribute that sets the client IP (in
either IPv4 or IPv6 format) to which notification is sent

Oracle Database components and utilities support Internet Protocol version 6 (IPv6)
addresses.

See Also:

OCI_ATTR_SUBSCR_HOSTADDR, OCI_ATTR_SUBSCR_IPADDR, and
Oracle Database Net Services Administrator's Guide for more information
about the IPv6 format for IP addresses

• OCI_ATTR_SUBSCR_CALLBACK - Notification callback

• OCI_ATTR_SUBSCR_CTX - Callback context

• OCI_ATTR_SUBSCR_PAYLOAD - Payload buffer for posting

• OCI_ATTR_SUBSCR_RECPT - Recipient name

• OCI_ATTR_SUBSCR_RECPTPROTO - Protocol to receive notification with

• OCI_ATTR_SUBSCR_RECPTPRES - Presentation to receive notification with

• OCI_ATTR_SUBSCR_QOSFLAGS - QOS (quality of service) levels with the following values:

– If OCI_SUBSCR_QOS_PURGE_ON_NTFN is set, the registration is purged on the first
notification.

– If OCI_SUBSCR_QOS_RELIABLE is set, notifications are persistent. You can use
surviving instances of an Oracle RAC database to send and retrieve change
notification messages even after a node failure, because invalidations associated
with this registration are queued persistently into the database. If FALSE, then
invalidations are enqueued into a fast in-memory queue. Note that this option
describes the persistence of notifications and not the persistence of registrations.
Registrations are automatically persistent by default.

• OCI_ATTR_SUBSCR_TIMEOUT - Registration timeout interval in seconds. The default is 0 if
a timeout is not set.

• OCI_ATTR_SUBSCR_NTFN_GROUPING_CLASS - notification grouping class

Notifications can be spaced out by using the grouping NTFN option with the following
constants. A value supported for notification grouping class is:

#define OCI_SUBSCR_NTFN_GROUPING_CLASS_TIME 1 /* time */
• OCI_ATTR_SUBSCR_NTFN_GROUPING_VALUE - notification grouping value in seconds

• OCI_ATTR_SUBSCR_NTFN_GROUPING_TYPE - notification grouping type

Supported values for notification grouping type:

#define OCI_SUBSCR_NTFN_GROUPING_TYPE_SUMMARY 1 /* summary */
#define OCI_SUBSCR_NTFN_GROUPING_TYPE_LAST 2 /* last */

• OCI_ATTR_SUBSCR_NTFN_GROUPING_START_TIME - notification grouping start time

• OCI_ATTR_SUBSCR_NTFN_GROUPING_REPEAT_COUNT - notification grouping repeat count

OCI_ATTR_SUBSCR_NAME, OCI_ATTR_SUBSCR_NAMESPACE, and OCI_ATTR_SUBSCR_RECPTPROTO
must be set before you register a subscription.

Chapter 12
Publish-Subscribe Notification in OCI

12-6

If OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_OCI, then
OCI_ATTR_SUBSCR_CALLBACK and OCI_ATTR_SUBSCR_CTX also must be set.

If OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_MAIL,
OCI_SUBSCR_PROTO_SERVER, or OCI_SUBSCR_PROTO_HTTP, then OCI_ATTR_SUBSCR_RECPT also
must be set.

Setting OCI_ATTR_SUBSCR_CALLBACK and OCI_ATTR_SUBSCR_RECPT at the same time causes
an application error.

OCI_ATTR_SUBSCR_PAYLOAD is required before the application can perform a post to a
subscription.

See Also:

Subscription Handle Attributes and About Creating the OCI Environment for
setting up the environment with mode = OCI_EVENTS | OCI_OBJECT. OCI_OBJECT
is required for grouping notifications.

4. Set he values of QOS, timeout interval, namespace, and port (see Example 9–15).

See Also:

Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number

5. Set OCI_ATTR_SUBSCR_RECPTPROTO to OCI_SUBSCR_PROTO_OCI, then define the callback
routine to be used with the subscription handle.

See Also:

Notification Callback in OCI

6. Set OCI_ATTR_SUBSCR_RECPTPROTO to OCI_SUBSCR_PROTO_SERVER, then define the PL/SQL
procedure, to be invoked on notification, in the database.

See Also:

Notification Procedure

7. Call OCISubscriptionRegister() to register with the subscriptions. This call can register
interest in several subscriptions at the same time.

Example 12-1 shows an example of setting QOS levels.

Example 12-1 Setting QOS Levels, the Notification Grouping Class, Value, and Type,
and the Namespace Specific Context

/* Set QOS levels */
ub4 qosflags = OCI_SUBSCR_QOS_PAYLOAD;

/* Set QOS flags in subscription handle */

Chapter 12
Publish-Subscribe Notification in OCI

12-7

(void) OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &qosflags, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_QOSFLAGS, errhp);

/* Set notification grouping class */
ub4 ntfn_grouping_class = OCI_SUBSCR_NTFN_GROUPING_CLASS_TIME;
(void) OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &ntfn_grouping_class, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NTFN_GROUPING_CLASS, errhp);

/* Set notification grouping value of 10 minutes */
ub4 ntfn_grouping_value = 600;
(void) OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &ntfn_grouping_value, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NTFN_GROUPING_VALUE, errhp);

/* Set notification grouping type */
ub4 ntfn_grouping_type = OCI_SUBSCR_NTFN_GROUPING_TYPE_SUMMARY;

/* Set notification grouping type in subscription handle */
(void) OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &ntfn_grouping_type, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NTFN_GROUPING_TYPE, errhp);

/* Set namespace specific context */
(void) OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) NULL, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE_CTX, errhp);

See Also:

• OCIEnvCreate()

• OCIEnvNlsCreate()

• OCIHandleAlloc()

• OCIAttrSet()

• OCISubscriptionRegister()

12.2.1.2 Open Registration for Publish-Subscribe
Lists the prerequisites for the open registration for publish-subscribe.

Prerequisites for the open registration for publish-subscribe are as follows:

• Registering using LDAP (open registration) requires the client to be an enterprise user.

See Also:

Oracle Database Enterprise User Security Administrator's Guide, sections about
managing enterprise user security

• The compatibility of the database must be 9.0 or later.

Chapter 12
Publish-Subscribe Notification in OCI

12-8

• LDAP_REGISTRATION_ENABLED must be set to TRUE. This can be done this way:

 ALTER SYSTEM SET LDAP_REGISTRATION_ENABLED=TRUE

The default is FALSE.

• LDAP_REG_SYNC_INTERVAL must be set to the time interval (in seconds) to refresh
registrations from LDAP:

 ALTER SYSTEM SET LDAP_REG_SYNC_INTERVAL = time_interval

The default is 0, which means do not refresh.

• To force a database refresh of LDAP registration information immediately:

ALTER SYSTEM REFRESH LDAP_REGISTRATION
The steps for open registration using Oracle Enterprise Security Manager (OESM) are:

1. In each enterprise domain, create the enterprise role, ENTERPRISE_AQ_USER_ROLE.

2. For each database in the enterprise domain, add the global role GLOBAL_AQ_USER_ROLE to
the enterprise role ENTERPRISE_AQ_USER_ROLE.

3. For each enterprise domain, add the enterprise role ENTERPRISE_AQ_USER_ROLE to the
privilege group cn=OracleDBAQUsers, under cn=oraclecontext, under the administrative
context.

4. For each enterprise user that is authorized to register for events in the database, grant the
enterprise role ENTERPRISE_AQ_USER_ROLE.

12.2.1.3 Using OCI to Open Register with LDAP
Shows how to open register using LDAP registration.

1. Call OCIEnvCreate() or OCIEnvNlsCreate() with mode set to OCI_EVENTS | OCI_USE_LDAP.

2. Call OCIAttrSet() to set the following environment handle attributes for accessing LDAP:

• OCI_ATTR_LDAP_HOST: the host name on which the LDAP server resides

• OCI_ATTR_LDAP_PORT: the port on which the LDAP server is listening

• OCI_ATTR_BIND_DN: the distinguished name to log in to the LDAP server, usually the
DN of the enterprise user

• OCI_ATTR_LDAP_CRED: the credential used to authenticate the client, for example, the
password for simple authentication (user name and password)

• OCI_ATTR_WALL_LOC: for SSL authentication, the location of the client wallet

• OCI_ATTR_LDAP_AUTH: the authentication method code

See Also:

Environment Handle Attributes for a complete list of authentication modes

• OCI_ATTR_LDAP_CTX: the administrative context for Oracle Database in the LDAP
server

3. Call OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION, to allocate a
subscription handle.

Chapter 12
Publish-Subscribe Notification in OCI

12-9

4. Call OCIArrayDescriptorAlloc() with descriptor type OCI_DTYPE_SRVDN, to allocate a
server DN descriptor.

5. Call OCIAttrSet()to set the server DN descriptor attributes for OCI_ATTR_SERVER_DN, the
distinguished name of the database in which the client wants to receive notifications.
OCIAttrSet() can be called multiple times for this attribute so that more than one
database server is included in the registration.

6. Call OCIAttrSet() to set the subscription handle attributes for:

• OCI_ATTR_SUBSCR_NAME - Subscription name

• OCI_ATTR_SUBSCR_NAMESPACE - Subscription namespace

• OCI_ATTR_SUBSCR_CALLBACK- Notification callback

• OCI_ATTR_SUBSCR_CTX - Callback context

• OCI_ATTR_SUBSCR_PAYLOAD - Payload buffer for posting

• OCI_ATTR_SUBSCR_RECPT - Recipient name

• OCI_ATTR_SUBSCR_RECPTPROTO - Protocol to receive notification with

• OCI_ATTR_SUBSCR_RECPTRES - Presentation to receive notification with

• OCI_ATTR_SUBSCR_QOSFLAGS - QOS (quality of service) levels

• OCI_ATTR_SUBSCR_TIMEOUT - Registration timeout interval in seconds. The default is 0 if
a timeout is not set.

• OCI_ATTR_SUBSCR_SERVER_DN - The descriptor handles you populated in Step 5

7. The values of QOS, timeout interval, namespace, and port are set. See Setting QOS,
Timeout Interval, Namespace, Client Address, and Port Number.

8. Call OCISubscriptionRegister() to register the subscriptions. The registration takes
effect when the database accesses LDAP to pick up new registrations. The frequency of
pickups is determined by the value of LDAP_REG_SYNC_INTERVAL.

See Also:

• OCIEnvCreate()

• OCIEnvNlsCreate()

• OCIAttrSet()

• OCIHandleAlloc()

• OCIArrayDescriptorAlloc()

• OCISubscriptionRegister()

12.2.1.4 Setting QOS, Timeout Interval, Namespace, Client Address, and Port
Number

Shows how to set QOSFLAGS to QOS levels using OCIAttrSet().

You can set QOSFLAGS to the following QOS levels using OCIAttrSet():

Chapter 12
Publish-Subscribe Notification in OCI

12-10

• OCI_SUBSCR_QOS_RELIABLE - Reliable notification persists across instance and database
restarts. Reliability is of the server only and is only for persistent queues or buffered
messages. This option describes the persistence of the notifications. Registrations are
persistent by default.

• OCI_SUBSCR_QOS_PURGE_ON_NTFN - Once notification is received, purge registration on first
notification. (Subscription is unregistered.)

/* Set QOS levels */
ub4 qosflags = OCI_SUBSCR_QOS_RELIABLE | OCI_SUBSCR_QOS_PURGE_ON_NTFN;

/* Set flags in subscription handle */
(void)OCIAttrSet((void *)subscrhp, (ub4)OCI_HTYPE_SUBSCRIPTION,
 (void *)&qosflags, (ub4)0, (ub4)OCI_ATTR_SUBSCR_QOSFLAGS, errhp);

/* Set auto-expiration after 30 seconds */
ub4 timeout = 30;
(void)OCIAttrSet((void *)subscrhp, (ub4)OCI_HTYPE_SUBSCRIPTION,
 (void *)&timeout, (ub4)0, (ub4)OCI_ATTR_SUBSCR_TIMEOUT, errhp);

The registration is purged when the timeout is exceeded, and a notification is sent to the client,
so that the client can invoke its callback and take any necessary action. For client failure
before the timeout, the registration is purged.

You can set the port number on the environment handle, which is important if the client is on a
system behind a firewall that can receive notifications only on certain ports. Clients can specify
the port for the listener thread before the first registration, using an attribute in the environment
handle. The thread is started the first time OCISubscriptionRegister() is called. If available, this
specified port number is used. An error is returned if the client tries to start another thread on a
different port using a different environment handle.

ub4 port = 1581;
(void)OCIAttrSet((void *)envhp, (ub4)OCI_HTYPE_ENV, (void *)&port, (ub4)0,
 (ub4)OCI_ATTR_SUBSCR_PORTNO, errhp);

If instead, the port is determined automatically, you can get the port number at which the client
thread is listening for notification by obtaining the attribute from the environment handle.

(void)OCIAttrGet((void *)subhp, (ub4)OCI_HTYPE_ENV, (void *)&port, (ub4)0,
 (ub4)OCI_ATTR_SUBSCR_PORTNO, errhp);

Example to set client address:

text ipaddr[16] = "10.177.246.40";
(void)(OCIAttrSet((dvoid *) envhp, (ub4) OCI_HTYPE_ENV,
 (dvoid *) ipaddr, (ub4) strlen((const char *)ipaddr),
 (ub4) OCI_ATTR_SUBSCR_IPADDR, errhp));

See Also:

OCI_ATTR_SUBSCR_IPADDR

12.2.1.5 OCI Functions Used to Manage Publish-Subscribe Notification
Lists and describes the functions used to manage publish-subscribe notification.

Table 12-1 lists the functions that are used to manage publish-subscribe notification.

Chapter 12
Publish-Subscribe Notification in OCI

12-11

Table 12-1 Publish-Subscribe Functions

Function Purpose

OCISubscriptionDisable() Disables a subscription

OCISubscriptionEnable() Enables a subscription

OCISubscriptionPost() Posts a subscription

OCISubscriptionRegister() Registers a subscription

OCISubscriptionUnRegister() Unregisters a subscription

12.2.2 Notification Callback in OCI
The client must register a notification callback that gets invoked when there is some activity on
the subscription for which interest has been registered.

In the AQ namespace, for instance, this occurs when a message of interest is enqueued.

This callback is typically set through the OCI_ATTR_SUBSCR_CALLBACK attribute of the
subscription handle.

See Also:

Subscription Handle Attributes

The callback must return a value of OCI_CONTINUE and adhere to the following specification:

typedef ub4 (*OCISubscriptionNotify) (void *pCtx,
 OCISubscription *pSubscrHp,
 void *pPayload,
 ub4 iPayloadLen,
 void *pDescriptor,
 ub4 iMode);

The parameters are described as follows:

pCtx (IN)
A user-defined context specified when the callback was registered.

pSubscrHp (IN)
The subscription handle specified when the callback was registered.

pPayload (IN)
The payload for this notification. Currently, only ub1 * (a sequence of bytes) for the payload is
supported.

iPayloadLen (IN)
The length of the payload for this notification.

pDescriptor (IN)
The namespace-specific descriptor. Namespace-specific parameters can be extracted from
this descriptor. The structure of this descriptor is opaque to the user and its type is dependent
on the namespace.

Chapter 12
Publish-Subscribe Notification in OCI

12-12

The attributes of the descriptor are namespace-specific. For Advanced Queuing (AQ), the
descriptor is OCI_DTYPE_AQNFY. For the AQ namespace, the count of notifications received in
the group is provided in the notification descriptor. The attributes of pDescriptor are:

• Notification flag (regular = 0, timeout = 1, or grouping notification = 2) -
OCI_ATTR_NFY_FLAGS

• Queue name - OCI_ATTR_QUEUE_NAME
• Consumer name - OCI_ATTR_CONSUMER_NAME
• Message ID - OCI_ATTR_NFY_MSGID
• Message properties - OCI_ATTR_MSG_PROP
• Count of notifications received in the group - OCI_ATTR_AQ_NTFN_GROUPING_COUNT
• The group, an OCI collection - OCI_ATTR_AQ_NTFN_GROUPING_MSGID_ARRAY

See Also:

• OCI and Database Advanced Queuing

• Notification Descriptor Attributes

iMode (IN)
Call-specific mode. The only valid value is OCI_DEFAULT. This value executes the default call.

Example 12-2 shows how to use AQ grouping notification attributes in a notification callback.

Example 12-2 Using AQ Grouping Notification Attributes in an OCI Notification
Callback

ub4 notifyCB1(void *ctx, OCISubscription *subscrhp, void *pay, ub4 payl,
 void *desc, ub4 mode)
{
 oratext *subname;
 ub4 size;
 OCIColl *msgid_array = (OCIColl *)0;
 ub4 msgid_cnt = 0;
 OCIRaw *msgid;
 void **msgid_ptr;
 sb4 num_msgid = 0;
 void *elemind = (void *)0;
 boolean exist;
 ub2 flags;
 oratext *hexit = (oratext *)"0123456789ABCDEF";
 ub4 i, j;

 /* get subscription name */
 OCIAttrGet(subscrhp, OCI_HTYPE_SUBSCRIPTION, (void *)&subname, &size,
 OCI_ATTR_SUBSCR_NAME,ctxptr->errhp);

 /* print subscripton name */
 printf("Got notification for %.*s\n", size, subname);
 fflush((FILE *)stdout);

 /* get the #ntfns received in this group */
 OCIAttrGet(desc, OCI_DTYPE_AQNFY, (void *)&msgid_cnt, &size,
 OCI_ATTR_AQ_NTFN_GROUPING_COUNT, ctxptr->errhp);

Chapter 12
Publish-Subscribe Notification in OCI

12-13

 /* get the group - collection of msgids */
 OCIAttrGet(desc, OCI_DTYPE_AQNFY, (void *)&msgid_array, &size,
 OCI_ATTR_AQ_NTFN_GROUPING_MSGID_ARRAY, ctxptr->errhp);

 /* get notification flag - regular, timeout, or grouping notification? */
 OCIAttrGet(desc, OCI_DTYPE_AQNFY, (void *)&flags, &size,
 OCI_ATTR_NFY_FLAGS, ctxptr->errhp);

 /* print notification flag */
 printf("Flag: %d\n", (int)flags);

 /* get group (collection) size */
 if (msgid_array)
 checkerr(ctxptr->errhp,
 OCICollSize(ctxptr->envhp, ctxptr->errhp,
 CONST OCIColl *) msgid_array, &num_msgid),
 "Inside notifyCB1-OCICollSize");
 else
 num_msgid =0;

 /* print group size */
 printf("Collection size: %d\n", num_msgid);

 /* print all msgids in the group */
 for(i = 0; i < num_msgid; i++)
 {
 ub4 rawSize; /* raw size */
 ub1 *rawPtr; /* raw pointer */
 /* get msgid from group */
 checkerr(ctxptr->errhp,
 OCICollGetElem(ctxptr->envhp, ctxptr->errhp,
 (OCIColl *) msgid_array, i, &exist,
 (void **)(&msgid_ptr), &elemind),
 "Inside notifyCB1-OCICollGetElem");
 msgid = *msgid_ptr;
 rawSize = OCIRawSize(ctxptr->envhp, msgid);
 rawPtr = OCIRawPtr(ctxptr->envhp, msgid);

 /* print msgid size */
 printf("Msgid size: %d\n", rawSize);

 /* print msgid in hexadecimal format */
 for (j = 0; j < rawSize; j++)
 { /* for each byte in the raw */
 printf("%c", hexit[(rawPtr[j] & 0xf0) >> 4]);
 printf("%c", hexit[(rawPtr[j] & 0x0f)]);
 }
 printf("\n");
 }

 /* print #ntfns received in group */
 printf("Notification Count: %d\n", msgid_cnt);
 printf("\n");
 printf("***\n");
 fflush((FILE *)stdout);
 return 1;
}

Chapter 12
Publish-Subscribe Notification in OCI

12-14

12.2.3 Notification Procedure
The PL/SQL notification procedure that is invoked when there is some activity on the
subscription for which interest has been registered, must be created in the database.

This procedure is typically set through the OCI_ATTR_SUBSCR_RECPT attribute of the subscription
handle.

See Also:

• Subscription Handle Attributes

• "Oracle Database AQ PL/SQL Callback" in Oracle Database PL/SQL Packages
and Types Reference for the PL/SQL procedure specification

12.2.4 Publish-Subscribe Direct Registration Example
Shows examples implementing publish subscription notification using direct registration.

Example 12-3 shows how system events, client notification, and Advanced Queuing work
together to implement publish subscription notification.

The PL/SQL code in Example 12-3 creates all objects necessary to support a publish-
subscribe mechanism under the user schema pubsub. In this code, the Agent snoop subscribes
to messages that are published at logon events. Note that the user pubsub needs
AQ_ADMINISTRATOR_ROLE and AQ_USER_ROLE privileges to use Advance Queuing functionality.
The initialization parameter _SYSTEM_TRIG_ENABLED must be set to TRUE (the default) to enable
triggers for system events. Connect as pubsub before running Example 12-3.

After the subscriptions are created, the client must register for notification using callback
functions. Example 12-4 shows sample code that performs the necessary steps for
registration. The initial steps of allocating and initializing session handles are omitted here for
clarity.

If user IX logs on to the database, the client is notified by email, and the callback function
notifySnoop is called. An email notification is sent to the address xyz@company.com and the
PL/SQL procedure plsqlnotifySnoop is also called in the database.

Example 12-3 Implementing a Publish Subscription Notification

--
----create queue table for persistent multiple consumers
--
---- Create or replace a queue table
begin
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 QUEUE_TABLE=>'pubsub.raw_msg_table',
 MULTIPLE_CONSUMERS => TRUE,
 QUEUE_PAYLOAD_TYPE =>'RAW',
 COMPATIBLE => '8.1.5');
end;
/
--
---- Create a persistent queue for publishing messages

Chapter 12
Publish-Subscribe Notification in OCI

12-15

--
---- Create a queue for logon events
begin
 DBMS_AQADM.CREATE_QUEUE(QUEUE_NAME=>'pubsub.logon',
 QUEUE_TABLE=>'pubsub.raw_msg_table',
 COMMENT=>'Q for error triggers');
end;
/
--
---- Start the queue
--
begin
 DBMS_AQADM.START_QUEUE('pubsub.logon');
end;
/
--
---- define new_enqueue for convenience
--
create or replace procedure new_enqueue(queue_name in varchar2,
 payload in raw ,
correlation in varchar2 := NULL,
exception_queue in varchar2 := NULL)
as
 enq_ct dbms_aq.enqueue_options_t;
 msg_prop dbms_aq.message_properties_t;
 enq_msgid raw(16);
 userdata raw(1000);
begin
 msg_prop.exception_queue := exception_queue;
 msg_prop.correlation := correlation;
 userdata := payload;
 DBMS_AQ.ENQUEUE(queue_name,enq_ct, msg_prop,userdata,enq_msgid);
end;
/
--
---- add subscriber with rule based on current user name,
---- using correlation_id
--
declare
subscriber sys.aq$_agent;
begin
 subscriber := sys.aq$_agent('SNOOP', null, null);
 dbms_aqadm.add_subscriber(queue_name => 'pubsub.logon',
 subscriber => subscriber,
 rule => 'CORRID = ''ix'' ');
end;
/
--
---- create a trigger on logon on database
--
---- create trigger on after logon
create or replace trigger systrig2
 AFTER LOGON
 ON DATABASE
 begin
 new_enqueue('pubsub.logon', hextoraw('9999'), dbms_standard.login_user);
 end;
/

--
---- create a PL/SQL callback for notification of logon
---- of user 'ix' on database

Chapter 12
Publish-Subscribe Notification in OCI

12-16

--

create or replace procedure plsqlnotifySnoop(
 context raw, reginfo sys.aq$_reg_info, descr sys.aq$_descriptor,
 payload raw, payloadl number)
as
begin
 dbms_output.put_line('Notification : User ix Logged on\n');
end;
/

Example 12-4 Registering for Notification Using Callback Functions

...
static ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

static OCISubscription *subscrhpSnoop = (OCISubscription *)0;
static OCISubscription *subscrhpSnoopMail = (OCISubscription *)0;
static OCISubscription *subscrhpSnoopServer = (OCISubscription *)0;

/* callback function for notification of logon of user 'ix' on database */

static ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
 void *ctx;
 OCISubscription *subscrhp;
 void *pay;
 ub4 payl;
 void *desc;
 ub4 mode;
{
 printf("Notification : User ix Logged on\n");
 (void)OCIHandleFree((void *)subscrhpSnoop,
 (ub4) OCI_HTYPE_SUBSCRIPTION);
 return 1;
}

static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 if (status == OCI_SUCCESS) return;

 switch (status)
 {
 case OCI_SUCCESS_WITH_INFO:
 printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((void *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;

Chapter 12
Publish-Subscribe Notification in OCI

12-17

 case OCI_INVALID_HANDLE:
 printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("Error - OCI_STILL_EXECUTING\n");
 break;
 case OCI_CONTINUE:
 printf("Error - OCI_CONTINUE\n");
 break;
 default:
 printf("Error - %d\n", status);
 break;
 }
}

static void initSubscriptionHn (subscrhp,
 subscriptionName,
 func,
 recpproto,
 recpaddr,
 recppres)
OCISubscription **subscrhp;
 char * subscriptionName;
 void * func;
 ub4 recpproto;
 char * recpaddr;
 ub4 recppres;
{
 /* allocate subscription handle */
 (void) OCIHandleAlloc((void *) envhp, (void **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (void **) 0);

 /* set subscription name in handle */
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle */
 if (func)
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 /* set context in handle */
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle */
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 /* set receive with protocol in handle */
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) &recpproto, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_RECPTPROTO, errhp);

 /* set recipient address in handle */
 if (recpaddr)

Chapter 12
Publish-Subscribe Notification in OCI

12-18

 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) recpaddr, (ub4) strlen(recpaddr),
 (ub4) OCI_ATTR_SUBSCR_RECPT, errhp);

 /* set receive with presentation in handle */
 (void) OCIAttrSet((void *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) &recppres, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_RECPTPRES, errhp);

 printf("Begining Registration for subscription %s\n", subscriptionName);
 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,
 OCI_DEFAULT));
 printf("done\n");

}

int main(argc, argv)
int argc;
char * argv[];
{
 OCISession *authp = (OCISession *) 0;

/***
Initialize OCI Process/Environment
Initialize Server Contexts
Connect to Server
Set Service Context
**/

/* Registration Code Begins */
/* Each call to initSubscriptionHn allocates
 and initializes a Registration Handle */

/* Register for OCI notification */
 initSubscriptionHn(&subscrhpSnoop, /* subscription handle*/
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name */
 /*<queue_name>:<agent_name> */
 (void*)notifySnoop, /* callback function */
 OCI_SUBSCR_PROTO_OCI, /* receive with protocol */
 (char *)0, /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

/* Register for email notification */
 initSubscriptionHn(&subscrhpSnoopMail, /* subscription handle */
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name */
 /* <queue_name>:<agent_name> */
 (void*)0, /* callback function */
 OCI_SUBSCR_PROTO_MAIL, /* receive with protocol */
 (char*) "xyz@company.com", /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

/* Register for server to server notification */
 initSubscriptionHn(&subscrhpSnoopServer, /* subscription handle */
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name */
 /* <queue_name>:<agent_name> */
 (void*)0, /* callback function */
 OCI_SUBSCR_PROTO_SERVER, /* receive with protocol */
 (char*) "pubsub.plsqlnotifySnoop", /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

 checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) OCI_DEFAULT));

Chapter 12
Publish-Subscribe Notification in OCI

12-19

/***
The Client Process does not need a live Session for Callbacks.
End Session and Detach from Server.
**/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

 while (1) /* wait for callback */
 sleep(1);
}

12.2.5 Publish-Subscribe LDAP Registration Example
Shows an example that illustrates how to do LDAP registration.

Example 12-5 shows a code fragment that illustrates how to do LDAP registration. Please read
all the program comments.

Example 12-5 LDAP Registration

...

 /* To use the LDAP registration feature, OCI_EVENTS | OCI_EVENTS |OCI_USE_LDAP*/
 /* must be set in OCIEnvCreate or OCIEnvNlsCreate */
 /* (Note: OCIInitialize is deprecated): */
 (void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT|OCI_USE_LDAP, (void *)0,
 (void * (*)(void *, size_t)) 0,
 (void * (*)(void *, void *, size_t))0,
 (void (*)(void *, void *)) 0);

...

 /* set LDAP attributes in the environment handle */

 /* LDAP host name */
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)"yow", 3,
 OCI_ATTR_LDAP_HOST, (OCIError *)errhp);

 /* LDAP server port */
 ldap_port = 389;
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)&ldap_port,
 (ub4)0, OCI_ATTR_LDAP_PORT, (OCIError *)errhp);

 /* bind DN of the client, normally the enterprise user name */
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)"cn=orcladmin",
 12, OCI_ATTR_BIND_DN, (OCIError *)errhp);

 /* password of the client */
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)"welcome",
 7, OCI_ATTR_LDAP_CRED, (OCIError *)errhp);

 /* authentication method is "simple", username/password authentication */
 ldap_auth = 0x01;
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)&ldap_auth,
 (ub4)0, OCI_ATTR_LDAP_AUTH, (OCIError *)errhp);

 /* administrative context: this is the DN above cn=oraclecontext */
 (void) OCIAttrSet((void *)envhp, OCI_HTYPE_ENV, (void *)"cn=acme,cn=com",

Chapter 12
Publish-Subscribe Notification in OCI

12-20

 14, OCI_ATTR_LDAP_CTX, (OCIError *)errhp);

...

 /* retrieve the LDAP attributes from the environment handle */

 /* LDAP host */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&buf,
 &szp, OCI_ATTR_LDAP_HOST, (OCIError *)errhp);

 /* LDAP server port */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&intval,
 0, OCI_ATTR_LDAP_PORT, (OCIError *)errhp);

 /* client binding DN */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&buf,
 &szp, OCI_ATTR_BIND_DN, (OCIError *)errhp);

 /* client password */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&buf,
 &szp, OCI_ATTR_LDAP_CRED, (OCIError *)errhp);

 /* administrative context */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&buf,
 &szp, OCI_ATTR_LDAP_CTX, (OCIError *)errhp);

 /* client authentication method */
 (void) OCIAttrGet((void *)envhp, OCI_HTYPE_ENV, (void *)&intval,
 0, OCI_ATTR_LDAP_AUTH, (OCIError *)errhp);

 ...

 /* to set up the server DN descriptor in the subscription handle */

 /* allocate a server DN descriptor, dn is of type "OCIServerDNs **",
 subhp is of type "OCISubscription **" */
 (void) OCIDescriptorAlloc((void *)envhp, (void **)dn,
 (ub4) OCI_DTYPE_SRVDN, (size_t)0, (void **)0);

 /* now *dn is the server DN descriptor, add the DN of the first database
 that you want to register */
 (void) OCIAttrSet((void *)*dn, (ub4) OCI_DTYPE_SRVDN,
 (void *)"cn=server1,cn=oraclecontext,cn=acme,cn=com",
 42, (ub4)OCI_ATTR_SERVER_DN, errhp);
 /* add the DN of another database in the descriptor */
 (void) OCIAttrSet((void *)*dn, (ub4) OCI_DTYPE_SRVDN,
 (void *)"cn=server2,cn=oraclecontext,cn=acme,cn=com",
 42, (ub4)OCI_ATTR_SERVER_DN, errhp);

 /* set the server DN descriptor into the subscription handle */
 (void) OCIAttrSet((void *) *subhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *) *dn, (ub4)0, (ub4) OCI_ATTR_SERVER_DNS, errhp);

 ...

 /* now you will try to get the server DN information from the subscription
 handle */

 /* first, get the server DN descriptor out */
 (void) OCIAttrGet((void *) *subhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (void *)dn, &szp, OCI_ATTR_SERVER_DNS, errhp);

Chapter 12
Publish-Subscribe Notification in OCI

12-21

 /* then, get the number of server DNs in the descriptor */
 (void) OCIAttrGet((void *) *dn, (ub4)OCI_DTYPE_SRVDN, (void *)&intval,
 &szp, (ub4)OCI_ATTR_DN_COUNT, errhp);

 /* allocate an array of char * to hold server DN pointers returned by
 an Oracle database*/
 if (intval)
 {
 arr = (char **)malloc(intval*sizeof(char *));
 (void) OCIAttrGet((void *)*dn, (ub4)OCI_DTYPE_SRVDN, (void *)arr,
 &intval, (ub4)OCI_ATTR_SERVER_DN, errhp);
 }

 /* OCISubscriptionRegister() calls have two modes: OCI_DEFAULT and
 OCI_REG_LDAPONLY. If OCI_DEFAULT is used, there should be only one
 server DN in the server DN descriptor. The registration request will
 be sent to the database. If a database connection is not available,
 the registration request will be detoured to the LDAP server. However,
 if mode OCI_REG_LDAPONLY is used, the registration request
 will be directly sent to LDAP. This mode should be used when there is
 more than one server DN in the server DN descriptor or you are sure
 that a database connection is not available.

 In this example, two DNs are entered, so you should use mode
 OCI_REG_LDAPONLY in LDAP registration. */
 OCISubscriptionRegister(svchp, subhp, 1, errhp, OCI_REG_LDAPONLY);

 ...

 /* as OCISubscriptionRegister(), OCISubscriptionUnregister() also has
 mode OCI_DEFAULT and OCI_REG_LDAPONLY. The usage is the same. */

 OCISubscriptionUnRegister(svchp, *subhp, errhp, OCI_REG_LDAPONLY);
}
...

12.3 OCI and Database Advanced Queuing
OCI provides an interface to the Database Advanced Queuing (Database AQ) feature.
Database Advanced Queuing provides message queuing as an integrated part of Oracle
Database.

Database AQ provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution, Database
AQ frees application developers to devote their efforts to their specific business logic rather
than having to construct a messaging infrastructure.

Note:

• To use Database Advanced Queuing, you must be using the Enterprise Edition of
Oracle Database.

• Starting from Oracle Database Release 21c, OCI interface for Advanced
Queuing operations supports JSON data type. However, it does not support array
operations because we cannot create abstract data types or VARRAY of JSON
type.

Chapter 12
OCI and Database Advanced Queuing

12-22

This section includes the following topics:

• OCI Database Advanced Queuing Functions

• OCI Database Advanced Queuing Descriptors

• Database Advanced Queuing in OCI Versus PL/SQL

• Using Buffered Messaging

• OCI Database Advanced Queuing Functions
Lists the OCI Database Advanced Queuing functions.

• OCI Database Advanced Queuing Descriptors
Lists the OCI Database Advanced Queuing descriptors and shows their usage.

• Database Advanced Queuing in OCI Versus PL/SQL
Shows a comparison between functions, parameters, and options for OCI Database
Advanced Queuing functions and descriptors, and PL/SQL AQ functions in the DBMS_AQ
package.

• Using Buffered Messaging
Buffered messaging is a nonpersistent messaging capability within Database AQ that was
first available in Oracle Database 10g Release 2.

See Also:

• Oracle Database Advanced Queuing User's Guide

• Oracle XML Developer's Kit Programmer's Guide

• The description of OCIAQEnq() for example code demonstrating the use of OCI
with AQ

12.3.1 OCI Database Advanced Queuing Functions
Lists the OCI Database Advanced Queuing functions.

The OCI library includes several functions related to Database Advanced Queuing:

• OCIAQEnq()
• OCIAQDeq()
• OCIAQListen() (Deprecated)

• OCIAQListen2()
• OCIAQEnqArray()
• OCIAQDeqArray()
You can enqueue an array of messages to a single queue. The messages all share the same
enqueue options, but each message in the array can have different message properties. You
can also dequeue an array of messages from a single queue. For transaction group queues,
you can dequeue all messages for a single transaction group using one call.

Chapter 12
OCI and Database Advanced Queuing

12-23

See Also:

• Database Advanced Queuing and Publish-Subscribe Functions

• OCIAQEnq()

• OCIAQDeq()

• OCIAQListen()

• OCIAQListen2()

• OCIAQEnqArray()

• OCIAQDeqArray()

12.3.2 OCI Database Advanced Queuing Descriptors
Lists the OCI Database Advanced Queuing descriptors and shows their usage.

The following descriptors are used by OCI Database Advanced Queuing operations:

• OCIAQEnqOptions
• OCIAQDeqOptions
• OCIAQMsgProperties
• OCIAQAgent
You can allocate these descriptors with the service handle using the standard
OCIDescriptorAlloc() call. The following code shows examples of this:

OCIDescriptorAlloc(svch, &enqueue_options, OCI_DTYPE_AQENQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &dequeue_options, OCI_DTYPE_AQDEQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &message_properties, OCI_DTYPE_AQMSG_PROPERTIES, 0, 0);
OCIDescriptorAlloc(svch, &agent, OCI_DTYPE_AQAGENT, 0, 0);

Each descriptor has a variety of attributes that can be set or read.

See Also:

• Database Advanced Queuing Descriptor Attributes

• OCIDescriptorAlloc()

12.3.3 Database Advanced Queuing in OCI Versus PL/SQL
Shows a comparison between functions, parameters, and options for OCI Database Advanced
Queuing functions and descriptors, and PL/SQL AQ functions in the DBMS_AQ package.

The following tables compare functions, parameters, and options for OCI Database Advanced
Queuing functions and descriptors, and PL/SQL AQ functions in the DBMS_AQ package.
Table 12-2 compares AQ functions.

Chapter 12
OCI and Database Advanced Queuing

12-24

Table 12-2 AQ Functions

PL/SQL Function OCI Function

DBMS_AQ.ENQUEUE OCIAQEnq()
DBMS_AQ.DEQUEUE OCIAQDeq()
DBMS_AQ.LISTEN OCIAQListen(), OCIAQListen2()
DBMS_AQ.ENQUEUE_ARRAY OCIAQEnqArray()
DBMS_AQ.DEQUEUE_ARRAY OCIAQDeqArray()

Table 12-3 compares the parameters for the enqueue functions.

Table 12-3 Enqueue Parameters

DBMS_AQ.ENQUEUE Parameter OCIAQEnq() Parameter

queue_name queue_name

enqueue_options enqueue_options

message_properties message_properties

payload payload

msgid msgid

- Note: OCIAQEnq() requires the following additional
parameters: svch, errh, payload_tdo, payload_ind,
and flags.

Table 12-4 compares the parameters for the dequeue functions.

Table 12-4 Dequeue Parameters

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

queue_name queue_name

dequeue_options dequeue_options

message_properties message_properties

payload payload

msgid msgid

Chapter 12
OCI and Database Advanced Queuing

12-25

Table 12-4 (Cont.) Dequeue Parameters

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

- Note: OCIAQDeq() requires the following additional
parameters: svch, errh, dequeue_options,
message_properties, payload_tdo, payload,
payload_ind, and flags.

Table 12-5 compares parameters for the listen functions.

Table 12-5 Listen Parameters

DBMS_AQ.LISTEN Parameter OCIAQListen2() Parameter

agent_list agent_list

wait wait

agent agent

listen_delivery_mode lopts

- Note: OCIAQListen2() requires the following additional
parameters: svchp, errhp, agent_list, num_agents,
agent, lmops, and flags.

Table 12-6 compares parameters for the array enqueue functions.

Table 12-6 Array Enqueue Parameters

DBMS_AQ.ENQUEUE_ARRAY Parameter OCIAQEnqArray() Parameter

queue_name queue_name

enqueue_options enqopt

array_size iters

message_properties_array msgprop

payload_array payload

msgid_array msgid

- Note: OCIAQEnqArray() requires the following
additional parameters: svch, errh, payload_tdo,
payload_ind, ctxp, enqcbfp, and flags.

Table 12-7 compares parameters for the array dequeue functions.

Chapter 12
OCI and Database Advanced Queuing

12-26

Table 12-7 Array Dequeue Parameters

DBMS_AQ.DEQUEUE_ARRAY Parameter OCIAQDeqArray() Parameter

queue_name queue_name

dequeue_options deqopt

array_size iters

message_properties_array msgprop

payload_array payload

msgid_array msgid

- Note: OCIAQDeqArray() requires the following
additional parameters: svch, errh, msgprop,
payload_tdo, payload_ind, ctxp, deqcbfp,
and flags.

Table 12-8 compares parameters for the agent attributes.

Table 12-8 Agent Parameters

PL/SQL Agent Parameter OCIAQAgent Attribute

name OCI_ATTR_AGENT_NAME

address OCI_ATTR_AGENT_ADDRESS

protocol OCI_ATTR_AGENT_PROTOCOL

Table 12-9 compares parameters for the message properties.

Table 12-9 Message Properties

PL/SQL Message Property OCIAQMsgProperties Attribute

priority OCI_ATTR_PRIORITY

delay OCI_ATTR_DELAY

expiration OCI_ATTR_EXPIRATION

correlation OCI_ATTR_CORRELATION

attempts OCI_ATTR_ATTEMPTS

Chapter 12
OCI and Database Advanced Queuing

12-27

Table 12-9 (Cont.) Message Properties

PL/SQL Message Property OCIAQMsgProperties Attribute

recipient_list OCI_ATTR_RECIPIENT_LIST

exception_queue OCI_ATTR_EXCEPTION_QUEUE

enqueue_time OCI_ATTR_ENQ_TIME

state OCI_ATTR_MSG_STATE

sender_id OCI_ATTR_SENDER_ID

transaction_group OCI_ATTR_TRANSACTION_NO

original_msgid OCI_ATTR_ORIGINAL_MSGID

delivery_mode OCI_ATTR_MSG_DELIVERY_MODE

Table 12-10 compares enqueue option attributes.

Table 12-10 Enqueue Option Attributes

PL/SQL Enqueue Option OCIAQEnqOptions Attribute

visibility OCI_ATTR_VISIBILITY

relative_msgid OCI_ATTR_RELATIVE_MSGID

sequence_deviation OCI_ATTR_SEQUENCE_DEVIATION
(deprecated)

transformation OCI_ATTR_TRANSFORMATION

delivery_mode OCI_ATTR_MSG_DELIVERY_MODE

Table 12-11 compares dequeue option attributes.

Table 12-11 Dequeue Option Attributes

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

consumer_name OCI_ATTR_CONSUMER_NAME

dequeue_mode OCI_ATTR_DEQ_MODE

navigation OCI_ATTR_NAVIGATION

Chapter 12
OCI and Database Advanced Queuing

12-28

Table 12-11 (Cont.) Dequeue Option Attributes

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

visibility OCI_ATTR_VISIBILITY

wait OCI_ATTR_WAIT

msgid OCI_ATTR_DEQ_MSGID

correlation OCI_ATTR_CORRELATION

deq_condition OCI_ATTR_DEQCOND
transformation OCI_ATTR_TRANSFORMATION

delivery_mode OCI_ATTR_MSG_DELIVERY_MODE

Note:

OCIAQEnq() returns the error ORA-25219 while specifying the enqueue option
OCI_ATTR_SEQUENCE along with OCI_ATTR_RELATIVE_MSGID. This happens when
enqueuing two messages. For the second message, enqueue options
OCI_ATTR_SEQUENCE and OCI_ATTR_RELATIVE_MSGID are set to dequeue this message
before the first one. An error is not returned if you do not specify the sequence but, of
course, the message is not dequeued before the relative message.

OCIAQEnq() does not return an error if the OCI_ATTR_SEQUENCE attribute is not set, but
the message is not dequeued before the message with relative message ID.

See Also:

OCIAQEnq()

12.3.4 Using Buffered Messaging
Buffered messaging is a nonpersistent messaging capability within Database AQ that was first
available in Oracle Database 10g Release 2.

Buffered messages reside in shared memory and can be lost if there is an instance failure.
Unlike persistent messages, redo does not get written to disk. Buffered message enqueue and
dequeue is much faster than persistent message operations. Because shared memory is
limited, buffered messages may have to be spilled to disk. Flow control can be enabled to
prevent applications from flooding the shared memory when the message consumers are slow
or have stopped for some reason. The following functions are used for buffered messaging:

• OCIAQEnq()

Chapter 12
OCI and Database Advanced Queuing

12-29

• OCIAQDeq()
• OCIAQListen2()
Example 12-6 shows an example of enqueue buffered messaging.

Example 12-7 shows an example of dequeue buffered messaging.

Note:

Array operations are not supported for buffered messaging. Applications can use the
OCIAQEnqArray() and OCIAQDeqArray() functions with the array size set to 1.

Example 12-6 Enqueue Buffered Messaging

...
OCIAQMsgProperties *msgprop;
OCIAQEnqueueOptions *enqopt;
message msg; /* message is an object type */
null_message nmsg; /* message indicator */
...
/* Allocate descriptors */
 OCIDescriptorAlloc(envhp, (void **)&enqopt, OCI_DTYPE_AQENQ_OPTIONS, 0,
 (void **)0));

 OCIDescriptorAlloc(envhp, (void **)&msgprop,OCI_DTYPE_AQMSG_PROPERTIES, 0,
 (void **)0));

/* Set delivery mode to buffered */
 dlvm = OCI_MSG_BUFFERED;
 OCIAttrSet(enqopt, OCI_DTYPE_AQENQ_OPTIONS, (void *)&dlvm, sizeof(ub2),
 OCI_ATTR_MSG_DELIVERY_MODE, errhp);
/* Set visibility to Immediate (visibility must always be immediate for buffered
 messages) */
vis = OCI_ENQ_ON_COMMIT;

OCIAttrSet(enqopt, OCI_DTYPE_AQENQ_OPTIONS,(void *)&vis, sizeof(ub4),
 OCI_ATTR_VISIBILITY, errhp)

/* Message was an object type created earlier, msg_tdo is its type
 descriptor object */
OCIAQEnq(svchp, errhp, "Test_Queue", enqopt, msgprop, msg_tdo, (void **)&mesg,
 (void **)&nmesg, (OCIRaw **)0, 0));
...

Example 12-7 Dequeue Buffered Messaging

...
OCIAQMsgProperties *msgprop;
OCIAQDequeueOptions *deqopt;
...
OCIDescriptorAlloc(envhp, (void **)&mprop, OCI_DTYPE_AQMSG_PROPERTIES, 0,
 (void **)0));
OCIDescriptorAlloc(envhp, (void **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,
 (void **)0);

/* Set visibility to Immediate (visibility must always be immediate for buffered
 message operations) */
vis = OCI_ENQ_ON_COMMIT;
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(void *)&vis, sizeof(ub4),

Chapter 12
OCI and Database Advanced Queuing

12-30

 OCI_ATTR_VISIBILITY, errhp)
/* delivery mode is buffered */
dlvm = OCI_MSG_BUFFERED;
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (void *)&dlvm, sizeof(ub2),
 OCI_ATTR_MSG_DELIVERY_MODE, errhp);
/* Set the consumer for which to dequeue the message (this must be specified
 regardless of the type of message being dequeued).
*/
consumer = "FIRST_SUBSCRIBER";
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (void *)consumer,
 (ub4)strlen((char*)consumer), OCI_ATTR_CONSUMER_NAME, errhp);
/* Dequeue the message but do not return the payload (to simplify the code
 fragment)
*/
OCIAQDeq(svchp, errhp, "test_queue", deqopt, msgprop, msg_tdo, (void **)0,
 (void **)0, (OCIRaw**)0, 0);
...

See Also:

• OCIAQEnq()

• OCIAQDeq()

• OCIAQListen2()

Chapter 12
OCI and Database Advanced Queuing

12-31

13
User-Defined Callback Functions in OCI

Oracle Call Interface can execute user-specific code in addition to OCI calls.

You can use this functionality for:

• Adding tracing and performance measurement code to enable users to tune their
applications

• Performing preprocessing or postprocessing code for specific OCI calls

• Accessing other data sources with OCI by using the native OCI interface for Oracle
Databases and directing the OCI calls to use user callbacks for non-Oracle data sources

The OCI callback feature provides support for calling user code before or after executing the
OCI calls. It also allows the user-defined code to be executed instead of executing the OCI
code.

The user callback code can be registered dynamically without modifying the source code of the
application. The dynamic registration is implemented by loading up to five user-created
dynamically linked libraries after the initialization of the environment handle during the
OCIEnvCreate() call. These user-created libraries (such as dynamic-link libraries (DLLs) on
Windows, or shared libraries on Solaris, register the user callbacks for the selected OCI calls
transparently to the application.

Sample Application

For a listing of the complete demonstration programs that illustrate the OCI user callback
feature, see Appendix B.

This section includes the following topics:

• About Registering User Callbacks in OCI

• OCI Callbacks from External Procedures

• About Registering User Callbacks in OCI
An application can register user callback libraries with the OCIUserCallbackRegister()
function.

• OCI Callbacks from External Procedures
Provides additional reference information about using OCI callbacks from external
procedures.

See Also:

OCIEnvCreate()

13-1

13.1 About Registering User Callbacks in OCI
An application can register user callback libraries with the OCIUserCallbackRegister()
function.

Callbacks are registered in the context of the environment handle. An application can retrieve
information about callbacks registered with a handle with the OCIUserCallbackGet() function.

A user-defined callback is a subroutine that is registered against an OCI call and an
environment handle. It can be specified to be either an entry callback, a replacement callback,
or an exit callback.

• If it is an entry callback, it is called when the program enters the OCI function.

• Replacement callbacks are executed after entry callbacks. If the replacement callback
returns a value of OCI_CONTINUE, then a subsequent replacement callback or the normal
OCI-specific code is executed. If a replacement callback returns anything other than
OCI_CONTINUE, then subsequent replacement callbacks and the OCI code do not execute.

• After a replacement callback returns something other than OCI_CONTINUE, or an OCI
function successfully executes, program control transfers to the exit callback (if one is
registered).

If a replacement or exit callback returns anything other than OCI_CONTINUE, then the return
code from the callback is returned from the associated OCI call.

A user callback can return OCI_INVALID_HANDLE when either an invalid handle or an invalid
context is passed to it.

Note:

If any callback returns anything other than OCI_CONTINUE, then that return code is
passed to the subsequent callbacks. If a replacement or exit callback returns a return
code other than OCI_CONTINUE, then the final (not OCI_CONTINUE) return code is
returned from the OCI call.

This section includes the following topics:

• OCIUserCallbackRegister

• User Callback Function

• User Callback Control Flow

• User Callback for OCIErrorGet()

• Errors from Entry Callbacks

• Dynamic Callback Registrations

• About Loading Multiple Packages

• Package Format

• User Callback Chaining

• About Accessing Other Data Sources Through OCI

• Restrictions on Callback Functions

Chapter 13
About Registering User Callbacks in OCI

13-2

• Example of OCI Callbacks

• OCIUserCallbackRegister
A user callback is registered using the OCIUserCallbackRegister() call.

• User Callback Function
Details about the user callback function.

• User Callback Control Flow
Shows the control flow for a user callback.

• User Callback for OCIErrorGet()
If the callbacks are a total replacement of the OCI code, then they usually maintain their
own error information in the call context and use that to return error information in bufp and
errcodep parameters of the replacement callback of the OCIErrorGet() call.

• Errors from Entry Callbacks
If an entry callback wants to return an error to the caller of the OCI call, then it must
register a replacement or exit callback.

• Dynamic Callback Registrations
Because user callbacks are expected to be used for monitoring OCI behavior or to access
other data sources, it is desirable that the registration of the callbacks be done
transparently and nonintrusively.

• About Loading Multiple Packages
The ORA_OCI_UCBPKG variable can contain a semicolon-separated list of package names.
The packages are loaded in the order they are specified in the list.

• Package Format
The package source must provide two functions.

• User Callback Chaining
User callbacks can be registered statically in the application itself or dynamically at runtime
in the DLLs.

• About Accessing Other Data Sources Through OCI
Because Oracle Database is the predominant database software accessed, applications
can take advantage of the OCI interface to access non-Oracle data by using the user
callbacks to access them.

• Restrictions on Callback Functions
Details the restrictions on callback functions.

• Example of OCI Callbacks
Shows examples of using OCI callbacks.

See Also:

OCIUserCallbackGet() and OCIUserCallbackRegister()

13.1.1 OCIUserCallbackRegister
A user callback is registered using the OCIUserCallbackRegister() call.

Currently, OCIUserCallbackRegister() is only registered on the environment handle. The
user's callback function of typedef OCIUserCallback is registered along with its context for the

Chapter 13
About Registering User Callbacks in OCI

13-3

OCI call identified by the OCI function code, fcode. The type of the callback, whether entry,
replacement, or exit, is specified by the when parameter.

For example, the stmtprep_entry_dyncbk_fn entry callback function and its context
dynamic_context, are registered against the environment handle hndlp for the
OCIStmtPrepare2() call by calling the OCIUserCallbackRegister() function with the following
parameters.

OCIUserCallbackRegister(hndlp,
 OCI_HTYPE_ENV,
 errh,
 stmtprep_entry_dyncbk_fn,
 dynamic_context,
 OCI_FNCODE_STMTPREPARE,
 OCI_UCBTYPE_ENTRY
 (OCIUcb*) NULL);

See Also:

• OCIUserCallbackRegister()

• OCIStmtPrepare2()

13.1.2 User Callback Function
Details about the user callback function.

The user callback function must use the following syntax:

typedef sword (*OCIUserCallback)
 (void *ctxp, /* context for the user callback*/
 void *hndlp, /* handle for the callback, env handle for now */
 ub4 type, /* type of handlp, OCI_HTYPE_ENV for this release */
 ub4 fcode, /* function code of the OCI call */
 ub1 when, /* type of the callback, entry or exit */
 sword returnCode, /* OCI return code */
 ub4 *errnop, /* Oracle error number */
 va_list arglist); /* parameters of the oci call */

In addition to the parameters described in the OCIUserCallbackRegister() call, the callback is
called with the return code, errnop, and all the parameters of the original OCI as declared by
the prototype definition.

The return code is always passed in as OCI_SUCCESS and *errnop is always passed in as 0 for
the first entry callback. Note that *errnop refers to the content of errnop because errnop is an
IN/OUT parameter.

If the callback does not want to change the OCI return code, then it must return OCI_CONTINUE,
and the value returned in *errnop is ignored. If, however, the callback returns any return code
other than OCI_CONTINUE, the last returned return code becomes the return code for the call. At
this point, the value returned for *errnop is set in the error handle, or in the environment
handle if the error information is returned in the environment handle because of the absence of
the error handle for certain OCI calls such as OCIHandleAlloc().

Chapter 13
About Registering User Callbacks in OCI

13-4

For replacement callbacks, the returnCode is the non-OCI_CONTINUE return code from the
previous callback or OCI call, and *errnop is the value of the error number being returned in
the error handle. This allows the subsequent callback to change the return code or error
information if needed.

The processing of replacement callbacks is different in that if it returns anything other than
OCI_CONTINUE, then subsequent replacement callbacks and OCI code are bypassed and
processing jumps to the exit callbacks.

Note that if the replacement callbacks return OCI_CONTINUE to allow processing of OCI code,
then the return code from entry callbacks is ignored.

All the original parameters of the OCI call are passed to the callback as variable parameters,
and the callback must retrieve them using the va_arg macros. The callback demonstration
programs provide examples.

A null value can be registered to deregister a callback. That is, if the value of the callback
(OCIUserCallback()) is NULL in the OCIUserCallbackRegister() call, then the user callback is
deregistered.

When using the thread-safe mode, the OCI program acquires all mutexes before calling the
user callbacks.

See Also:

• OCI Demonstration Programs

• OCIUserCallbackRegister()

• OCIHandleAlloc()

13.1.3 User Callback Control Flow
Shows the control flow for a user callback.

Example 13-1 shows pseudocode that describes the overall processing of a typical OCI call.

Example 13-1 Pseudocode That Describes the Overall Processing of a Typical OCI Call

OCIXyzCall()
{
 Acquire mutexes on handles;
 retCode = OCI_SUCCESS;
 errno = 0;
 for all ENTRY callbacks do
 {

 EntryretCode = (*entryCallback)(..., retcode, &errno, ...);
 if (retCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle;
 retCode = EntryretCode;
 }
 }
 for all REPLACEMENT callbacks do
 {
 retCode = (*replacementCallback) (..., retcode, &errno, ...);

Chapter 13
About Registering User Callbacks in OCI

13-5

 if (retCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle
 goto executeEXITCallback;
 }
 }

 retCode = return code for XyzCall; /* normal processing of OCI call */

 errno = error number from error handle or env handle;

 executeExitCallback:
 for all EXIT callbacks do
 {
 exitRetCode = (*exitCallback)(..., retCode, &errno,...);
 if (exitRetCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle;
 retCode = exitRetCode;
 }
 }
 release mutexes;
 return retCode
}

13.1.4 User Callback for OCIErrorGet()
If the callbacks are a total replacement of the OCI code, then they usually maintain their own
error information in the call context and use that to return error information in bufp and
errcodep parameters of the replacement callback of the OCIErrorGet() call.

If, however, the callbacks are either partially overriding OCI code, or just doing some other
postprocessing, then they can use the exit callback to modify the error text and errcodep
parameters of the OCIErrorGet() call by their own error message and error number. Note that
the *errnop passed into the exit callback is the error number in the error or the environment
handle.

See Also:

OCIErrorGet()

13.1.5 Errors from Entry Callbacks
If an entry callback wants to return an error to the caller of the OCI call, then it must register a
replacement or exit callback.

This is because if the OCI code is executed, then the error code from the entry callback is
ignored. Therefore, the entry callback must pass the error to the replacement or exit callback
through its own context.

Chapter 13
About Registering User Callbacks in OCI

13-6

13.1.6 Dynamic Callback Registrations
Because user callbacks are expected to be used for monitoring OCI behavior or to access
other data sources, it is desirable that the registration of the callbacks be done transparently
and nonintrusively.

This is accomplished by loading user-created dynamically linked libraries at OCI initialization
time. These dynamically linked libraries are called packages. The user-created packages
register the user callbacks for the selected OCI calls. These callbacks can further register or
deregister user callbacks as needed when receiving control at runtime.

A makefile (ociucb.mk on Solaris) is provided with the OCI demonstration programs to create
the package. The exact naming and location of this package is operating system-dependent.
The source code for the package must provide code for special callbacks that are called at OCI
initialization and environment creation times.

Setting an operating system environment variable, ORA_OCI_UCBPKG, controls the loading of the
package. This variable names the packages in a generic way. The packages must be located
in the $ORACLE_HOME/lib directory.

13.1.7 About Loading Multiple Packages
The ORA_OCI_UCBPKG variable can contain a semicolon-separated list of package names. The
packages are loaded in the order they are specified in the list.

For example, in the past the package was specified as:

setenv ORA_OCI_UCBPKG mypkg

Currently, you can still specify the package as before, but in addition multiple packages can be
specified as:

setenv ORA_OCI_UCBPKG "mypkg;yourpkg;oraclepkg;sunpkg;msoftpkg"

All these packages are loaded in order. That is, mypkg is loaded first and msoftpkg is loaded
last.

A maximum of five packages can be specified.

Note:

The sample makefile ociucb.mk creates ociucb.so.1.0 on a Solaris or ociucb.dll
on a Windows system. To load the ociucb package, the environmental variable
ORA_OCI_UCBPKG must be set to ociucb. On Solaris, if the package name ends
with .so, OCIEnvCreate() or OCIEnvNlsCreate() fails. The package name must end
with .so.1.0.

For further details about creating the dynamic-link libraries, read the Makefiles
provided in the demo directory for your operating system. For further information
about user-defined callbacks, see your operating system-specific documentation on
compiling and linking applications.

Chapter 13
About Registering User Callbacks in OCI

13-7

13.1.8 Package Format
The package source must provide two functions.

In the past, a package had to specify the source code for the OCIEnvCallback() function.
However, the OCIEnvCallback() function is obsolete. Instead, the package source must
provide two functions. The first function must be named as packagename suffixed with the
word Init. For example, if the package is named foo, then the source file (for example, but not
necessarily, foo.c) must contain a fooInit() function with a call to OCISharedLibInit()
function specified exactly as:

sword fooInit(metaCtx, libCtx, argfmt, argc, argv)
 void * metaCtx; /* The metacontext */
 void * libCtx; /* The context for this package. */
 ub4 argfmt; /* package argument format */
 sword argc; /* package arg count*/
 void * argv[]; /* package arguments */
{
 return (OCISharedLibInit(metaCtx, libCtx, argfmt, argc, argv,
 fooEnvCallback));
}

The last parameter of the OCISharedLibInit() function, fooEnvCallback() in this case, is the
name of the second function. It can be named anything, but by convention it is named
packagename suffixed with the word EnvCallback.

This function is a replacement for OCIEnvCallback(). Currently, all the dynamic user callbacks
must be registered in this function. The function must be of type OCIEnvCallbackType, which is
specified as:

typedef sword (*OCIEnvCallbackType)(OCIEnv *env, ub4 mode,
 size_t xtramem_sz, void *usrmemp,
 OCIUcb *ucbDesc);

When an environment handle is created, then this callback function is called at the very end.
The env parameter is the newly created environment handle.

The mode, xtramem_sz, and usrmempp are the parameters passed to the OCIEnvCreate() call.
The last parameter, ucbDesc, is a descriptor that is passed to the package. The package uses
this descriptor to register the user callbacks as described later.

A sample ociucb.c file is provided in the demo directory. The makefile ociucb.mk is also
provided (on Solaris) in the demo directory to create the package. Please note that this may be
different on other operating systems. The demo directory also contains full user callback demo
programs (cdemoucb.c, cdemoucbl.c) illustrating this.

13.1.9 User Callback Chaining
User callbacks can be registered statically in the application itself or dynamically at runtime in
the DLLs.

A mechanism is needed to allow the application to override a previously registered callback
and then later invoke the overridden one in the newly registered callback to preserve the
behavior intended by the dynamic registrations. This can result in chaining of user callbacks.

The OCIUserCallbackGet() function determines which function and context is registered for an
OCI call.

Chapter 13
About Registering User Callbacks in OCI

13-8

See Also:

OCIUserCallbackGet()

13.1.10 About Accessing Other Data Sources Through OCI
Because Oracle Database is the predominant database software accessed, applications can
take advantage of the OCI interface to access non-Oracle data by using the user callbacks to
access them.

This allows an application written in OCI to access Oracle data without any performance
penalty. Drivers can be written that access the non-Oracle data in user callbacks. Because OCI
provides a very rich interface, there is usually a straightforward mapping of OCI calls to most
data sources. This solution is better than writing applications for other middle layers such as
ODBC that introduce performance penalties for all data sources. Using OCI does not incur any
penalty to access Oracle data sources, and incurs the same penalty that ODBC does for non-
Oracle data sources.

13.1.11 Restrictions on Callback Functions
Details the restrictions on callback functions.

There are certain restrictions on the usage of callback functions, including OCIEnvCallback():

• A callback cannot call other OCI functions except OCIUserCallbackRegister(),
OCIUserCallbackGet(), OCIHandleAlloc(), and OCIHandleFree(). Even for these
functions, if they are called in a user callback, then callbacks on them are not called to
avoid recursion. For example, if OCIHandleFree() is called in the callback for OCILogoff(),
then the callback for OCIHandleFree() is disabled during the execution of the callback for
OCILogoff().

• A callback cannot modify OCI data structures such as the environment or error handles.

• A callback cannot be registered for the OCIUserCallbackRegister() call itself, or for any of
the following calls:

– OCIUserCallbackGet()
– OCIEnvCreate()
– OCIInitialize() (Deprecated)

– OCIEnvNlsCreate()

Chapter 13
About Registering User Callbacks in OCI

13-9

See Also:

• OCIUserCallbackRegister()

• OCIUserCallbackGet()

• OCIHandleAlloc()

• OCIHandleFree()

• OCILogoff()

• OCIEnvCreate()

• OCIInitialize()

• OCIEnvNlsCreate()

13.1.12 Example of OCI Callbacks
Shows examples of using OCI callbacks.

Suppose that there are five packages each registering entry, replacement, and exit callbacks
for the OCIStmtPrepare2() call. That is, the ORA_OCI_UCBPKG variable is set as shown in
Example 13-2.

In each package pkgN (where N can be 1 through 5), the pkgNInit() and PkgNEnvCallback()
functions are specified, as shown in Example 13-3.

Example 13-4 shows how the pkgNEnvCallback() function registers the entry, replacement,
and exit callbacks.

Finally, Example 13-5 shows how in the source code for the application, user callbacks can be
registered with the NULL ucbDesc.

Example 13-6 shows that when the OCIStmtPrepare2() call is executed, the callbacks are
called in the following order.

Note:

The exit callbacks are called in the reverse order of the entry and replacement
callbacks.

The entry and exit callbacks can return any return code and the processing continues to the
next callback. However, if the replacement callback returns anything other than OCI_CONTINUE,
then the next callback (or OCI code if it is the last replacement callback) in the chain is
bypassed and processing jumps to the exit callback. For example, if
pkg3_replace_callback_fn() returned OCI_SUCCESS, then pkg4_replace_callback_fn(),
pkg5_replace_callback_fn(), and the OCI processing for the OCIStmtPrepare2() call are
bypassed. Instead, pkg5_exit_callback_fn() is executed next.

Example 13-2 Environment Variable Setting for the ORA_OCI_UCBPKG Variable

setenv ORA_OCI_UCBPKG "pkg1;pkg2;pkg3;pkg4;pkg5"

Chapter 13
About Registering User Callbacks in OCI

13-10

Example 13-3 Specifying the pkgNInit() and PkgNEnvCallback() Functions

pkgNInit(void *metaCtx, void *libCtx, ub4 argfmt, sword argc, void **argv)
{
 return OCISharedLibInit(metaCtx, libCtx, argfmt, argc, argv, pkgNEnvCallback);
}

Example 13-4 Using pkgNEnvCallback() to Register Entry, Replacement, and Exit
Callbacks

pkgNEnvCallback(OCIEnv *env, ub4 mode, size_t xtramemsz,
 void *usrmemp, OCIUcb *ucbDesc)
{
 OCIHandleAlloc((void *)env, (void **)&errh, OCI_HTYPE_ERROR, (size_t) 0,
 (void **)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_entry_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_ENTRY, ucbDesc);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_replace_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_REPLACE, ucbDesc);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_exit_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_EXIT, ucbDesc);

 return OCI_CONTINUE;
}

Example 13-5 Registering User Callbacks with the NULL ucbDesc

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_entry_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_ENTRY, (OCIUcb *)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_replace_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_REPLACE, (OCIUcb *)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_exit_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_EXIT, (OCIUcb *)NULL);

Example 13-6 Using the OCIStmtPrepare() Call to Call the Callbacks in Order

static_entry_callback_fn()
pkg1_entry_callback_fn()
pkg2_entry_callback_fn()
pkg3_entry_callback_fn()
pkg4_entry_callback_fn()
pkg5_entry_callback_fn()

static_replace_callback_fn()
 pkg1_replace_callback_fn()
 pkg2_replace_callback_fn()
 pkg3_replace_callback_fn()
 pkg4_replace_callback_fn()
 pkg5_replace_callback_fn()

 OCI code for OCIStmtPrepare call

pkg5_exit_callback_fn()
pkg4_exit_callback_fn()
pkg3_exit_callback_fn()
pkg2_exit_callback_fn()

Chapter 13
About Registering User Callbacks in OCI

13-11

pkg1_exit_callback_fn()

static_exit_callback_fn()

See Also:

OCIStmtPrepare2()

13.2 OCI Callbacks from External Procedures
Provides additional reference information about using OCI callbacks from external procedures.

There are several OCI functions that you can use as callbacks from external procedures.

See Also:

• OCI Cartridge Functions for a list of functions you can use as callbacks from
external procedures

• Oracle Database Development Guide for information about writing C subroutines
that can be called from PL/SQL code, including a list of which OCI calls you can
use and some example code

Chapter 13
OCI Callbacks from External Procedures

13-12

14
Performance Topics

This chapter describes topics about OCI performance features.

You can use OCI to access Oracle TimesTen In-Memory Database and Oracle TimesTen
Application-Tier Database Cache.

This chapter includes the following topics:

• Statement Caching in OCI

• Implicit Fetching of ROWIDs

• OCI Support for Implicit Results

• Client Result Cache

• Client Statement Cache Auto-Tuning

• Statement Caching in OCI
Statement caching refers to the feature that provides and manages a cache of statements
for each session.

• Implicit Fetching of ROWIDs
This section describes the following topics:

• OCI Support for Implicit Results
Beginning with Oracle Database 12c Release 1 (12.1) , PL/SQL can return results
(cursors) implicitly from stored procedures and anonymous PL/SQL blocks.
OCIStmtGetNextResult() is provided to retrieve and process the implicit results.

• Client Result Cache
OCI applications can use client memory to take advantage of the OCI result cache to
improve response times of repeated queries.

• Client Statement Cache Auto-Tuning
Describes topics about client statement cache auto-tuning.

14.1 Statement Caching in OCI
Statement caching refers to the feature that provides and manages a cache of statements for
each session.

In the server, it means that cursors are ready to be used without the need to parse the
statement again. You can use statement caching with connection pooling and with session
pooling, and improve performance and scalability. You can use it without session pooling as
well. OCI calls that implement statement caching are:

• OCIStmtPrepare2()
• OCIStmtRelease()
This section includes the following topics:

• Statement Caching Without Session Pooling in OCI

• Statement Caching with Session Pooling in OCI

14-1

• Rules for Statement Caching in OCI

• Bind and Define Optimization in Statement Caching

• OCI Statement Caching Code Example

• Statement Caching Without Session Pooling in OCI
To perform statement caching without session pooling, users perform the usual OCI steps
to log on.

• Statement Caching with Session Pooling in OCI
For statement caching with session pooling, the concepts remain the same, except that the
statement cache is enabled at the session pool layer rather than at the session layer.

• Rules for Statement Caching in OCI
If you are using statement caching, follow these rules.

• Bind and Define Optimization in Statement Caching
To avoid repeated bind and define operations on statements in the cache by the
application, the application can register an opaque context with a statement taken from the
statement cache and register a callback function with the service context.

• OCI Statement Caching Code Example
Indicates where to find a working example of statement caching.

See Also:

• OCIStmtPrepare2()

• OCIStmtRelease()

14.1.1 Statement Caching Without Session Pooling in OCI
To perform statement caching without session pooling, users perform the usual OCI steps to
log on.

The call to obtain a session has a mode that specifies whether statement caching is enabled
for the session. Initially the statement cache is empty. Developers try to find a statement in the
cache using the statement text. If the statement exists, the API returns a previously prepared
statement handle; otherwise, it returns a newly prepared statement handle.

The application developer can perform binds and defines and then simply execute and fetch
the statement before returning the statement to the cache. If the statement handle is not found
in the cache, the developer must set different attributes on the handle in addition to the other
steps.

OCIStmtPrepare2() takes a mode that determines if the developer wants a prepared statement
handle or a null statement handle if the statement is not found in the cache.

The pseudocode looks like this:

OCISessionBegin(userhp, ... OCI_STMT_CACHE) ;
OCIAttrset(svchp, userhp, ...); /* Set the user handle in the service context */
OCIStmtPrepare2(svchp, &stmthp, stmttext, key, ...);
OCIBindByPos(stmthp, ...);
OCIDefineByPos(stmthp, ...);
OCIStmtExecute(svchp, stmthp, ...);
OCIStmtFetch2(svchp, ...);

Chapter 14
Statement Caching in OCI

14-2

OCIStmtRelease(stmthp, ...);
...

See Also:

OCIStmtPrepare2()

14.1.2 Statement Caching with Session Pooling in OCI
For statement caching with session pooling, the concepts remain the same, except that the
statement cache is enabled at the session pool layer rather than at the session layer.

The attribute OCI_ATTR_SPOOL_STMTCACHESIZE sets the default statement cache size for each
of the sessions in the session pool. It is set on the OCI_HTYPE_SPOOL handle. The statement
cache size for a particular session in the pool can be overridden at any time by using
OCI_ATTR_STMTCACHESIZE on that session. The value of OCI_ATTR_SPOOL_STMTCACHESIZE can
be changed at any time. You can use this attribute to enable or disable statement caching at
the pool level, after creation, just as attribute OCI_ATTR_STMTCACHESIZE (on the service context)
is used to enable or disable statement caching at the session level. This change is reflected on
individual sessions in the pool, when they are provided to a user. Tagged sessions are an
exception to this behavior. This is explained later in this section.

Note:

You can change the attributes after acquiring a session. However, once an attribute is
changed, it will remain set on the underlying physical session. This value is reset
implicitly after releasing the session back to the session pool and acquired again,
unless it is a tagged session.

Enabling or disabling of statement caching is allowed on individual pooled sessions as it is on
nonpooled sessions.

A user can enable statement caching on a session retrieved from a non-statement cached pool
in an OCISessionGet() or OCILogon2() call by specifying OCI_SESSGET_STMTCACHE or
OCI_LOGON2_STMTCACHE, respectively, in the mode argument.

When a user asks for a session from a session pool, the statement cache size for that session
defaults to that of the pool. This may also mean enabling or disabling statement caching in that
session. For example, if a pooled session (Session A) has statement caching enabled, and
statement caching is turned off in the pool, and a user asks for a session, and Session A is
returned, then statement caching is turned off in Session A. As another example, if Session A
in a pool does not have statement caching enabled, and statement caching at the pool level is
turned on, then before returning Session A to a user, statement caching on Session A with size
equal to that of the pool is turned on.

This does not hold true if a tagged session is asked for and retrieved. In this case, the size of
the statement cache is not changed. Consequently, it is not turned on or off. Moreover, if the
user specifies mode OCI_SESSGET_STMTCACHE in the OCISessionGet() call, this is ignored if the
session is tagged. In our earlier example, if Session A was tagged, then it is returned as is to
the user.

Chapter 14
Statement Caching in OCI

14-3

See Also:

• OCISessionGet()

• OCILogon2()

14.1.3 Rules for Statement Caching in OCI
If you are using statement caching, follow these rules.

Here are some rules to follow for statement caching in OCI:

• Use the function OCIStmtPrepare2() instead of OCIStmtPrepare(). If you are using
OCIStmtPrepare(), you are strongly urged not to use a statement handle across different
service contexts. Doing so raises an error if the statement has been obtained by
OCIStmtPrepare2(). Migration of a statement handle to a new service context actually
closes the cursor associated with the old session and therefore no sharing is achieved.
Client-side sharing is also not obtained, because OCI frees all buffers associated with the
old session when the statement handle is migrated.

• You are required to keep one service context per session. Any statement handle obtained
using OCIStmtPrepare2() with a certain service context should be subsequently used only
in conjunction with the same service context, and never with a different service context.

• A call to OCIStmtPrepare2(), even if the session does not have a statement cache, also
allocates the statement handle. Therefore, applications using only OCIStmtPrepare2()
must not call OCIHandleAlloc() for the statement handle.

• A call to OCIStmtPrepare2() must be followed by a call to OCIStmtRelease() after the user
is done with the statement handle. If statement caching is used, this releases the
statement to the cache. If statement caching is not used, the statement is deallocated. Do
not call OCIHandleFree() to free the memory.

• If the call to OCIStmtPrepare2() is made with the OCI_PREP2_CACHE_SEARCHONLY mode and
a NULL statement was returned (statement was not found), the subsequent call to
OCIStmtRelease() is not required and must not be performed.

• Do not call OCIStmtRelease() for a statement that was prepared using OCIStmtPrepare().

• The statement cache has a maximum size (number of statements) that can be modified by
an attribute on the service context, OCI_ATTR_STMTCACHESIZE. The default value is 20. This
attribute can also be used to enable or disable statement caching for the session, pooled
or nonpooled. If OCISessionBegin() is called without the mode set as OCI_STMT_CACHE,
then OCI_ATTR_STMTCACHESIZE can be set on the service context to a nonzero attribute to
turn on statement caching. If statement caching is not turned on at the session pool level,
OCISessionGet() returns a non-statement cache-enabled session. You can use
OCI_ATTR_STMTCACHESIZE to turn the caching on. Similarly, you can use the same attribute
to turn off statement caching by setting the cache size to zero.

• You can tag a statement at the release time so that the next time you can request a
statement of the same tag. The tag is used to search the cache. An untagged statement
(tag is NULL) is a special case of a tagged statement. Two statements are considered
different if they differ in their tags, or if one is untagged and the other is not.

• Before the pool creation, only non-zero values are supported to modify the attribute
OCI_ATTR_SPOOL_STMTCACHESIZE. If this attribute value is set to value zero before pool
creation, then the default size is used. After the pool creation, zero value is also supported.

Chapter 14
Statement Caching in OCI

14-4

• If statement cache size value is set in oraccess.xml, then that value overrides the value
set in attribute OCI_ATTR_SPOOL_STMTCACHESIZE for pool handle.

See Also:

• OCIStmtPrepare2()

• OCIHandleAlloc()

• OCIStmtRelease()

• OCIHandleFree()

• OCISessionBegin()

• OCISessionGet()

• Statement Functions

• Service Context Handle Attributes

• Session Pool Handle Attributes

14.1.4 Bind and Define Optimization in Statement Caching
To avoid repeated bind and define operations on statements in the cache by the application,
the application can register an opaque context with a statement taken from the statement
cache and register a callback function with the service context.

The application data such as bind and define buffers can be enclosed in the opaque context.
This context is registered with the statement the first time it is taken from the cache. When a
statement is taken from the cache the second time and onwards, the application can reuse the
bind and define buffers, that it had registered with that statement. It is still the application's
responsibility to manage the bind and defines. It can reuse both the bind and define data and
the buffers, or it can change only the data and reuse the buffers, or it can free and reallocate
the buffers if the current size is not enough. In the last case, it must rebind and redefine. To
clean up the memory allocated by the application toward these bind and define buffers, the
callback function is called during aging out of the statement or purging of the whole cache as
part of session closure. The callback is called for every statement being purged. The
application frees the memory and does any other cleanup required, inside the callback
function. Example 14-1 shows the pseudocode.

Example 14-1 Optimizing Bind and Define Operations on Statements in the Cache

Get the statement using OCIStmtPrepare2(...)

Get the opaque context from the statement if it exists

If opaque context does not exist

{

 Allocate fetch buffers, do the OCIBindByPos, OCIDefineByPos, and so forth

 Enclose the buffer addresses inside a context and set the context and
 callback function on the statement

}

Chapter 14
Statement Caching in OCI

14-5

Execute/Fetch using the statement, and process the data in the fetch buffers.

OCIStmtRelease() that statement

Next OCIStmtPrepare2()

OCIAttrGet() opaque application context from statement handle

Execute/Fetch using the statement and process the data in the fetch buffers.

OCIStmtRelease()

. . .

void callback_fn (context, statement, mode)

{

 /* mode= OCI_CBK_STMTCACHE_STMTPURGE means this was called when statement was
 aging out of the statement cache or if the session is ended */

 <free the buffers in the context.>

}

See Also:

• OCI_ATTR_STMTCACHE_CBKCTX

• OCI_ATTR_STMTCACHE_CBK

14.1.5 OCI Statement Caching Code Example
Indicates where to find a working example of statement caching.

See cdemostc.c in directory demo for a working example of statement caching.

14.2 Implicit Fetching of ROWIDs
This section describes the following topics:

• About Implicit Fetching of ROWIDs

• Example of Implicit Fetching of ROWIDs

• About Implicit Fetching of ROWIDs
ROWID is a globally unique identifier for a row in a database. It is created at the time the row
is inserted into the table, and destroyed when it is removed.

• Example of Implicit Fetching of ROWIDs
Shows an example of implicit fetching of ROWIDs.

Chapter 14
Implicit Fetching of ROWIDs

14-6

14.2.1 About Implicit Fetching of ROWIDs
ROWID is a globally unique identifier for a row in a database. It is created at the time the row is
inserted into the table, and destroyed when it is removed.

ROWID values have several important uses. They are unique identifiers for rows in a table. They
are the fastest way to access a single row and can show how the rows in the table are stored.

Implicit fetching of ROWIDs in SELECT ... FOR UPDATE statements means that the ROWID is
retrieved at the client side, even if it is not one of the columns named in the select statement.
The position parameter of OCIDefineByPos() is set to zero (0). These host variables can be
specified for retrieving the ROWID pseudocolumn values:

• SQLT_CHR (VARCHAR2)

• SQLT_VCS (VARCHAR)

• SQLT_STR (NULL-terminated string)

• SQLT_LVC (LONG VARCHAR)

• SQLT_AFC (CHAR)

• SQLT_AVC (CHARZ)

• SQLT_VST (OCI String)

• SQLT_RDD (ROWID descriptor)

The SELECT ... FOR UPDATE statement identifies the rows that are to be updated and then locks
each row in the result set. This is useful when you want to base an update on the existing
values in a row. In that case, you must ensure that another user does not change the row.

When you specify character buffers for storing the values of the ROWIDs (for example, if getting
it in SQLT_STR format), allocate enough memory for storing ROWIDs. Remember the differences
between the ROWID data type and the UROWID data type. The ROWID data type can only store
physical ROWIDs, but UROWID can store logical ROWIDs (identifiers for the rows of index-organized
tables) as well. The maximum internal length for the ROWID type is 10 bytes; it is 3950 bytes for
the UROWID data type.

Dynamic define is equivalent to calling OCIDefineByPos() or OCIDefineByPos2() with mode set
as OCI_DYNAMIC_FETCH. Dynamic defines enable you to set up additional attributes for a
particular define handle. It specifies a callback function that is invoked at runtime to get a
pointer to the buffer into which the fetched data or a piece of it is to be retrieved.

The attribute OCI_ATTR_FETCH_ROWID must be set on the statement handle before you can use
implicit fetching of ROWIDs, in this way:

OCIAttrSet(stmthp, OCI_HTYPE_STMT, 0, 0 , OCI_ATTR_FETCH_ROWID, errhp);

Dynamic define is not compatible with implicit fetching of ROWIDs. In normal scenarios this
mode allows the application to provide buffers for a column, for each row; that is, a callback is
invoked every time a column value is fetched.

This feature, using OCIDefineByPos() or OCIDefineByPos2() for position 0, is for fetching an
array of data simultaneously into the user buffers and getting their respective ROWIDs at the
same time. It allows for fetching of ROWIDs with SELECT....FOR UPDATE statements even when
ROWID is not one of the columns in the SELECT query. When fetching the data one by one into
the user buffers, you can use the existing attribute OCI_ATTR_ROWID.

Chapter 14
Implicit Fetching of ROWIDs

14-7

If you use this feature to fetch the ROWIDs, the attribute OCI_ATTR_ROWID on the statement
handle cannot be used simultaneously to get the ROWIDs. You can only use one of them at a
time for a particular statement handle.

See Also:

• OCI_ATTR_FETCH_ROWID

• OCIDefineByPos() or OCIDefineByPos2()

14.2.2 Example of Implicit Fetching of ROWIDs
Shows an example of implicit fetching of ROWIDs.

Use the fragment of a C program in Example 14-2 to build upon.

Example 14-2 Implicit Fetching of ROWIDs

#include <oci.h>

int main()
{
 ...
 text *mySql = (text *) "SELECT emp_name FROM emp FOR UPDATE";
 text rowid[100][15] = {0};
 text empName[100][15] = {0};
 ...

 /* Set up the environment, error handle, etc. */
 ...

 /* Prepare the statement - select ... for update. */

 if (OCIStmtPrepare (select_p, errhp,
 mySql, strlen(mySql), OCI_NTV_SYNTAX, OCI_DEFAULT))
 {
 printf ("Prepare failed \n");
 return (OCI_ERROR);
 }

 /* Set attribute for implicit fetching of ROWIDs on the statement handle. */
 if (OCIAttrSet(select_p, OCI_HTYPE_STMT, 0, 0, OCI_ATTR_FETCH_ROWID, errhp))
 {
 printf ("Unable to set the attribute - OCI_ATTR_FETCH_ROWID \n");
 return OCI_ERROR;
 }
 /*
 * Define the positions: 0 for getting ROWIDs and other positions
 * to fetch other columns.
 * Also, get the define conversion done implicitly by fetching
 * the ROWIDs in the string format.
 */

 if (OCIDefineByPos (select_p,
 &defnp0,
 errhp,

Chapter 14
Implicit Fetching of ROWIDs

14-8

 0,
 rowid[0],
 15,
 SQLT_STR,
 (void *) ind,
 (void *) 0,
 (void *) 0,
 OCI_DEFAULT) ||
 OCIDefineByPos(select_p,
 &defnp1,
 errhp,
 1,
 empName[0],
 15,
 SQLT_STR,
 (void *) 0,
 (void *) 0,
 (void *) 0,
 OCI_DEFAULT)
)
 {
 printf ("Failed to define\n");
 return (OCI_ERROR);
 }

 /* Execute the statement. */

 if (errr = OCIStmtExecute(svchp,
 select_p,
 errhp,
 (ub4) 5,
 (ub4) 0,
 (OCISnapshot *) NULL,
 (OCISnapshot *) NULL,
 (ub4) OCI_DEFAULT))
 {
 if (errr != OCI_NO_DATA)
 return errr;
 }

 printf ("Column 0 \t Column 1\n");
 printf ("_________ \t ________\n");

 for (i =0 ;i<5 i++)
 {
 printf("%s \t %s \n", rowid[i], empName[i]);
 }

 return OCI_SUCCESS;
}

14.3 OCI Support for Implicit Results
Beginning with Oracle Database 12c Release 1 (12.1) , PL/SQL can return results (cursors)
implicitly from stored procedures and anonymous PL/SQL blocks. OCIStmtGetNextResult() is
provided to retrieve and process the implicit results.

PL/SQL provides a subprogram RETURN_RESULT in the DBMS_SQL package to return the result of
an executed statement as shown in Example 14-3. In the current release, only SELECT query

Chapter 14
OCI Support for Implicit Results

14-9

result-sets can be implicitly returned by a PL/SQL procedure block. OCIStmtGetNextResult()
returns an OCI statement handle on which the usual OCI define and fetch calls are done to
retrieve the rows.

Example 14-4 shows a PL/SQL stored procedure to implicitly return result-sets (cursors) to the
client.

Example 14-5 shows the same approach using an anonymous PL/SQL block sent by the
client. This example shows how applications can use the implicit results feature to implement
batching of SQL statements from an OCI application. An OCI application can dynamically form
a PL/SQL anonymous block to execute multiple and variable SELECT statements and return the
corresponding cursors using DBMS_SQL.RETURN_RESULT.

Example 14-6 lists an OCI program showing how to use the OCIStmtGetNextResult() call to
retrieve and process the implicit results returned by a PL/SQL stored procedure (see
Example 14-4) or an anonymous PL/SQL block (see Example 14-5).

OCIStmtGetNextResult() can be called iteratively by the application to retrieve each implicit
result from an executed PL/SQL statement. Applications retrieve each result-set sequentially
but can fetch rows from any result-set independently. The top-level OCI statement handle
tracks all the associated result-set statement handles. Freeing or releasing the top-level OCI
statement handle automatically closes and frees all the implicit result-sets.

The attribute OCI_ATTR_IMPLICIT_RESULT_COUNT is provided on the OCI statement handle to
determine the number of implicit results available.

The rtype parameter of OCIStmtGetNextResult() returns the type of the result. In this release
only the type: OCI_RESULT_TYPE_SELECT is supported. The describe metadata of the returned
result set can be accessed similar to any SELECT ResultSet.

Note:

The following OCI code can be used in external procedures too, to fetch from the
implicit results. In that case, OCI_PREP2_IMPL_RESULTS_CLIENT should be passed as
the mode to the OCIStmtPrepare2() call.

Example 14-3 DBMS_SQL RETURN_RESULT Subprogram

procedure return_result(rc in out sys_refcursor,
 to_client in boolean default true);

procedure return_result(rc in out integer,
 to_client in boolean default true);

Example 14-4 A PL/SQL Stored Procedure to Implicitly Return Result-Sets (Cursors) to
the Client

CREATE PROCEDURE foo AS
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for select * from emp;
 dbms_sql.return_result(c1); --return to client
 -- open 1 more cursor
 open c2 for select * from dept;
 dbms_sql.return_result (c2); --return to client
end;

Chapter 14
OCI Support for Implicit Results

14-10

Example 14-5 An Anonymous PL/SQL Block to Implicitly Return Result-Sets (Cursors)
to the Client

declare
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for select * from emp;
 dbms_sql.return_result (c1); --return to client
 -- open 1 more cursor
 open c2 for select * from dept;
 dbms_sql.return_result (c2); --return to client
end;

Example 14-6 Using OCIStmtGetNextResult() to Retrieve and Process the Implicit
Results Returned by Either a PL/SQL Stored Procedure or Anonymous Block

 OCIStmt *stmthp;
 ub4 rsetcnt;
 void *result;
 ub4 rtype;
 char *sql = "begin foo; end;";

 /* Prepare and execute the PL/SQL procedure. */
 OCIStmtPrepare2(svchp, &stmthp, errhp, (oratext *)sql, strlen(sql),
 NULL, 0, OCI_NTV_SYNTAX, OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
 (const OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);

 /* Now check if any implicit results are available. */
 OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, &rsetcnt, 0,
 OCI_ATTR_IMPLICIT_RESULT_COUNT, errhp);

 /* Loop and retrieve the implicit result-sets.
 * ResultSets are returned in the same order as in the PL/SQL
 * procedure/block.
 */
 while (OCIStmtGetNextResult(stmthp, errhp, &result, &rtype,
 OCI_DEFAULT) == OCI_SUCCESS)
 {
 /* Check the type of implicit ResultSet, currently
 * only supported type is OCI_RESULT_TYPE_SELECT
 */
 if (rtype == OCI_RESULT_TYPE_SELECT)
 {
 OCIStmt *rsethp = (OCIStmt *)result;

 /* Perform normal OCI actions to define and fetch rows. */
 }
 else
 printf("unknown result type %d\n", rtype);

 /* The result set handle should not be freed by the user. */
 }

 OCIStmtRelease(stmthp, errhp, NULL, 0, OCI_DEFAULT); /* Releases the statement handle.
*/

Chapter 14
OCI Support for Implicit Results

14-11

See Also:

• OCIStmtGetNextResult()

• Statement Handle Attributes for more information about the attribute
OCI_ATTR_IMPLICIT_RESULT_COUNT.

• OCIStmtPrepare2()

14.4 Client Result Cache
OCI applications can use client memory to take advantage of the OCI result cache to improve
response times of repeated queries.

See Also:

Oracle Database Development Guide for complete information about using the OCI
client result cache

14.5 Client Statement Cache Auto-Tuning
Describes topics about client statement cache auto-tuning.

This section describes the following topics:

• About Auto-Tuning Client Statement Cache

• Benefit of Auto-Tuning Client Statement Cache

• Client Statement Cache Auto-Tuning Parameters

• Usage Examples of Client Statement Cache Auto Tuning

• Enabling and Disabling OCI Client Auto-Tuning

• Usage Guidelines for Auto-Tuning Client Statement Cache

• About Auto-Tuning Client Statement Cache
Auto-tuning optimizes OCI client session features of mid-tier applications to gain higher
performance without the need to reprogram your OCI application.

• Benefit of Auto-Tuning Client Statement Cache
The more specific benefit of auto-tuning client statement cache is to transparently detect,
monitor, and adjust the statement cache size to improve performance or decrease memory
usage.

• Client Statement Cache Auto-Tuning Parameters
The following connection specific parameters in oraccess.xml can be set per configuration
alias or across all connect strings using default connection specific parameters.

• Usage Examples of Client Statement Cache Auto Tuning
The following are some usage examples showing use and interaction of client statement
cache auto-tuning parameters that are also connection specific parameters.

Chapter 14
Client Result Cache

14-12

• Enabling and Disabling OCI Client Auto-Tuning
Describes conditions that enable and disable OCI client auto-tuning.

• Usage Guidelines for Auto-Tuning Client Statement Cache
Describes guidelines to use when setting the auto-tuning parameters.

14.5.1 About Auto-Tuning Client Statement Cache
Auto-tuning optimizes OCI client session features of mid-tier applications to gain higher
performance without the need to reprogram your OCI application.

Auto tuning operations like increasing or decreasing cache memory happens implicitly during
OCIStmtPrepare2() and OCIStmtRelease() calls on a periodic basis. Calling OCIAttrGet()
with OCI_ATTR_STMTCACHESIZE on the service handle gives the current cache size being used,
if you need to check.

It is possible for the coded OCI client statement cache size setting to be sub optimal. This can
happen, for example, with changing the workload causing a different working set of SQL
statements. If the size is too low, it will cause excess network activity and more parses at the
server. If the size is too high, there will be excess memory used. It can be difficult for the client
side application to always keep this cache size optimal.

Auto-tuning automatically reconfigures the OCI statement cache size on a periodic basis. Auto-
tuning is achieved by providing a deployment time setting that provides an option to
reconfigure OCI statement caching to resolve this potential performance issue.

These settings are provided as connect string based deployment settings in the client
oraaccess.xml file that overrides manual settings to the user configuration of OCI features.

See Also:

• OCIStmtPrepare2()

• OCIStmtRelease()

14.5.2 Benefit of Auto-Tuning Client Statement Cache
The more specific benefit of auto-tuning client statement cache is to transparently detect,
monitor, and adjust the statement cache size to improve performance or decrease memory
usage.

Developers and DBAs can expect to see the following benefits of using auto-tuning for their
OCI client applications:

• Reduced time and effort in diagnosing and fixing performance problems with each part of
their system, such as statement caching

• Minimized manual modifications needed to configurations of this OCI feature to improve
performance. Usually, this manual correction requires applications to restart more than
once with different configuration parameters, thus further reducing the high availability of
the client

• One solution that can be used by all OCI applications to improve performance right out-of-
the-box without having to make any application changes

Chapter 14
Client Statement Cache Auto-Tuning

14-13

• OCI applications are freed from making custom implementations (that can be error prone)
to auto-tune their OCI application to optimize performance and memory usage. Here auto-
tuning is limited to internal automatic tuning of OCI Client-side statement cache size only.

14.5.3 Client Statement Cache Auto-Tuning Parameters
The following connection specific parameters in oraccess.xml can be set per configuration
alias or across all connect strings using default connection specific parameters.

Values specified in the client oraaccess.xml configuration file override programmatic settings.

This section includes the following topics:

• <statement_cache>

• <auto_tune>

• Comparison of the Connection Specific Auto-Tuning Parameters

• <statement_cache>
This parameter is optional and sets the limit for the statement caching tunable component.

• <auto_tune>
This section specifies auto tune parameters.

• Comparison of the Connection Specific Auto-Tuning Parameters
Lists and describes a comparison of all auto-tuning parameters.

See Also:

About Specifying Defaults for Connection Parameters for more information about
setting per configuration alias or across all connect strings using default connection
specific parameters

14.5.3.1 <statement_cache>
This parameter is optional and sets the limit for the statement caching tunable component.

<statement_cache>
 <size>100</size>
</statement_cache>

The limit is the maximum number of statements that can be cached per session. If auto-tuning
is enabled or not, this setting in oraaccess.xml overrides the programmatic setting of OCI
statement cache size.

If auto-tuning is enabled, this setting will be the upper bound on statement cache size while its
being dynamically tuned.

If the session is not using statement caching APIs as in OCIStmtPrepare2() and
OCIStmtRelease(), this setting is ignored.

Default values are as follows:

• If auto-tuning is enabled, statement caching is dynamically tuned and the initial statement
cache size is set to 100 statements.

Chapter 14
Client Statement Cache Auto-Tuning

14-14

• If auto-tuning is disabled, this setting serves as the deployment setting of statement
caching size, overriding any programmatic setting.

See Also:

• OCIStmtPrepare2()

• OCIStmtRelease()

• Enabling and Disabling OCI Client Auto-Tuning

14.5.3.2 <auto_tune>
This section specifies auto tune parameters.

If the OCI session is not using statement caching APIs as in OCIStmtPrepare2() or
OCIStmtRelease(), auto tuning parameters are ignored for that session. It is possible in a
process that some sessions or connections can have auto-tuning enabled and some disabled.

This section includes the following topics:

• <enable>true</enable>

• <ram_threshold>

• <memory_target>

• <enable>true</enable>
This parameter turns auto tuning on or off.

• <ram_threshold>
This parameter is optional.

• <memory_target>
This parameter is optional.

See Also:

• OCIStmtPrepare2()

• OCIStmtRelease()

14.5.3.2.1 <enable>true</enable>
This parameter turns auto tuning on or off.

The default is auto tuning off (FALSE) or disabled.

<auto_tune>
 <enable>true</enable>
</auto_tune>

Auto-tuning is enabled along with internal default settings.

Chapter 14
Client Statement Cache Auto-Tuning

14-15

See Also:

<statement_cache> for more information about auto-tuning is enabled along with
internal default settings

14.5.3.2.2 <ram_threshold>
This parameter is optional.

<auto_tune>
 <enable>true</enable>
 <ram_threshold>0.1</ram_threshold>
</auto_tune>

The default value is 0.01%. It is specified as percentage of installed RAM. This specifies the
total memory available across the auto tuning sessions in a process sharing this setting. This
setting can be specified per process or per connect string alias.

Note that if specified per connect string alias, the total auto tuning memory used by a client
process can add up.

Therefore, it may be preferable to specify auto tuning limits in the <default_parameters>
section of oraaccess.xml file. This way you have a common pool of memory for all sessions in
a client process.

A smaller limit uses less RAM for auto tuning, but minimizes the chance other programs
running on the system do not degrade in performance.

This parameter must be specified within the <auto_tune></auto_tune> deployment setting.

See Also:

About oraaccess.xml

14.5.3.2.3 <memory_target>
This parameter is optional.

<auto_tune>
 <enable>true</enable>
 <memory_target>40M</memory_target>
</auto_tune>

Specified in bytes. Default is undefined. It specifies the total memory available across the auto
tuning sessions in a process sharing this setting. This setting can be specified per process or
per connect string alias.

Note that if specified per connect string alias, the total auto tuning memory used by a client
process can add up.

Therefore, it may be preferable to specify auto tuning limits in the <default_parameters>
section of oraaccess.xml file. This way you have a common pool of memory for all sessions in
a client process.

Chapter 14
Client Statement Cache Auto-Tuning

14-16

This parameter must be specified within the <auto_tune></auto_tune> deployment setting.

Using this parameter ensures the use of a consistent memory limit for auto tuning irrespective
of installed RAM on that system.

If not specified, the auto tuning memory limit is based on the <ram_threshold> parameter
setting.

If both <ram_threshold> and <memory_target> parameters are specified, the effective limit is
the minimum of the two parameters.

See Also:

About oraaccess.xml

14.5.3.3 Comparison of the Connection Specific Auto-Tuning Parameters
Lists and describes a comparison of all auto-tuning parameters.

Table 14-1 shows a comparison of the connection specific auto-tuning parameters.

Table 14-1 Comparison of Some Connection Specific Auto-Tuning Parameters

Parameter Setting and Semantics For Auto-Tuning or Deployment Setting

<statement_cache> Optional setting.

Per session cache size.

If auto-tuning is enabled (see "Enabling and
Disabling OCI Client Auto-Tuning"), this is
the upper bound of each sessions
statement cache size while its tuned by auto
tuning.

Or else it refers to the deployment setting
for statement caching.

<auto_tune> Optional setting.

Specify this parameter to use
auto-tuning. Applies to all
connections using this connect
string or all connections if null
connect string is specified.

Only auto-tuning related

Chapter 14
Client Statement Cache Auto-Tuning

14-17

Table 14-1 (Cont.) Comparison of Some Connection Specific Auto-Tuning Parameters

Parameter Setting and Semantics For Auto-Tuning or Deployment Setting

<ram_threshold>0.1</ram_threshold> Optional setting.

Converts the percentage setting
to a memory value based on
installed RAM on that client or
mid-tier system.

This is the upper limit of memory
used for auto tuning within a
client process.

For installed RAM of 8GB, not
specifying this parameter gives
800 KB of memory among the
sessions.

Note each connection can
potentially have its own setting
of auto tuning parameters so
these values can add up for the
whole process based on
configuration settings. It is
preferable to use this parameter
hence in the
<default_parameters>
section of the oraaccess.xml
file. See "File (oraaccess.xml)
Properties" for a description of
the syntax.

Only auto-tuning related. If auto-tuning is
disabled, this parameter setting is ignored.
This parameter must be specified within the
<auto_tune></auto_tune> deployment
setting.

<memory_target>1048576</
memory_target>

Optional setting.

This is the upper limit of memory
used for auto tuning within a
client process.

Note each connection can
potentially have its own setting
of auto tuning parameters so
these values can add up for the
whole process based on
configuration settings. It is
preferable to use this parameter
hence in the
<default_parameters>
section of the oraaccess.xml
file.

See "File (oraaccess.xml)
Properties" for a description of
the syntax.

Value is in bytes. 1,048,576
bytes is 1 MB.

Only auto-tuning related. If auto-tuning is
disabled, this parameter setting is ignored.
This parameter must be specified within the
<auto_tune></auto_tune> deployment
setting.

14.5.4 Usage Examples of Client Statement Cache Auto Tuning
The following are some usage examples showing use and interaction of client statement cache
auto-tuning parameters that are also connection specific parameters.

Chapter 14
Client Statement Cache Auto-Tuning

14-18

<statement_cache>
 <size>100</size>
</statement_cache>

The programmatic statement cache size will be replaced by this setting. Auto-tuning is disabled
and cache is managed per LRU. In this case, the application developer believes the OCI
application statement prefetching programmatic settings do not need to be overridden.

<auto_tune>
 <enable>true</enable>
</auto_tune>

Auto-tuning is enabled along with internal default settings.

<statement_cache>
 <size>100</size>
</statement_cache>
<auto_tune>
 <enable>true</enable>
 <memory_target>40M</memory_target>
</auto_tune>

This statement caching deployment setting of 100 will replace the programmatic statement
cache size and because auto-tuning is enabled, statement caching will be auto-tuned. The
memory target setting is in effect because auto-tuning is enabled.

Auto tuning will always try to limit total statement cache memory used around a memory target.
If a memory target is not specified, it is based on the percentage of total installed RAM.

In this case, the memory limit is the specified memory target.

See Also:

<statement_cache> for more information about auto-tuning is enabled along with
internal default settings

14.5.5 Enabling and Disabling OCI Client Auto-Tuning
Describes conditions that enable and disable OCI client auto-tuning.

The following conditions enable and disable OCI client auto-tuning:

• Auto-tuning is enabled when the client oraaccess.xml <auto_tune> section is added with
enable specified as true, <enable>true</enable>

• Auto-tuning is disabled by default or when enable is set to false, <enable>false</enable>
in oraaccess.xml under the <auto_tune> section.

14.5.6 Usage Guidelines for Auto-Tuning Client Statement Cache
Describes guidelines to use when setting the auto-tuning parameters.

The following are some guidelines to use when setting the auto-tuning parameters:

• When either client response, memory allocation, or client CPU is high and you want to gain
performance without rebuilding the OCI application, you can use <auto_tune> settings or

Chapter 14
Client Statement Cache Auto-Tuning

14-19

deployment <statement_cache> settings. Auto tuning may also decrease the network
bytes transferred between client and server.

• When AWR or ADDM reports lots of parses and you cannot or you may prefer not to
programmatically modify the statement cache size, you can specify auto-tuning for
statement cache or use the deployment statement cache setting <statement_cache>.

Chapter 14
Client Statement Cache Auto-Tuning

14-20

15
Database Startup and Shutdown

This chapter describes topics about OCI database startup and shutdown.

This section describes the following topics:

• About OCI Database Startup and Shutdown

• Examples of Startup and Shutdown in OCI

• About OCI Database Startup and Shutdown
The OCI functions OCIDBStartup() and OCIDBShutdown() provide the minimal interface
needed to start and shut down an Oracle database.

• Examples of Startup and Shutdown in OCI
To perform a startup, you must be connected to the database as SYSOPER or SYSDBA in
OCI_PRELIM_AUTH mode. You cannot be connected to a shared server through a
dispatcher.

15.1 About OCI Database Startup and Shutdown
The OCI functions OCIDBStartup() and OCIDBShutdown() provide the minimal interface
needed to start and shut down an Oracle database.

Before calling OCIDBStartup(), the C program must connect to the server and start a SYSDBA
or SYSOPER session in the preliminary authentication mode. This mode is the only one permitted
when the instance is not up, and it is used only to start the instance. A call to OCIDBStartup()
starts one server instance without mounting or opening the database. To mount and open the
database, end the preliminary authentication session and start a regular SYSDBA or SYSOPER
session to execute the appropriate ALTER DATABASE statements.

An active SYSDBA or SYSOPER session is needed to shut down the database. For all modes other
than OCI_DBSHUTDOWN_ABORT, make two calls to OCIDBShutdown(): one to initiate shutdown by
prohibiting further connections to the database, followed by the appropriate ALTER DATABASE
commands to dismount and close it; and the other call to finish shutdown by bringing the
instance down. In special circumstances, to shut down the database as fast as possible, call
OCIDBShutdown() in the OCI_DBSHUTDOWN_ABORT mode, which is equivalent to SHUTDOWN ABORT
in SQL*Plus.

Both of these functions require a dedicated connection to the server. ORA-106 is signaled if an
attempt is made to start or shut down the database when it is connected to a shared server
through a dispatcher.

The OCIAdmin administration handle C data type is used to make the interface extensible.
OCIAdmin is associated with the handle type OCI_HTYPE_ADMIN. Passing a value for the
OCIAdmin parameter, admhp, is optional for OCIDBStartup() and is not needed by
OCIDBShutdown().

15-1

See Also:

• OCIDBStartup()

• OCIDBShutdown()

• Administration Handle Attributes

• Oracle Database Administrator’s Guide

15.2 Examples of Startup and Shutdown in OCI
To perform a startup, you must be connected to the database as SYSOPER or SYSDBA in
OCI_PRELIM_AUTH mode. You cannot be connected to a shared server through a dispatcher.

To use a client-side parameter file (pfile), the attribute OCI_ATTR_ADMIN_PFILE must be set in
the administration handle using OCIAttrSet(); otherwise, a server-side parameter file (spfile)
is used. In the latter case, pass (OCIAdmin *)0. A call to OCIDBStartup() starts one instance
on the server.

Example 15-1 shows sample code that uses a client-side parameter file (pfile) that is set in
the administration handle and performs a database startup operation.

To perform a shutdown, you must be connected to the database as SYSOPER or SYSDBA. You
cannot be connected to a shared server through a dispatcher. When shutting down in any
mode other than OCI_DBSHUTDOWN_ABORT, use the following procedure:

1. Call OCIDBShutdown() in OCI_DEFAULT, OCI_DBSHUTDOWN_TRANSACTIONAL,
OCI_DBSHUTDOWN_TRANSACTIONAL_LOCAL, or OCI_DBSHUTDOWN_IMMEDIATE mode to prohibit
further connections.

2. Use the necessary ALTER DATABASE commands to close and dismount the database.

3. Call OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL mode to shut down the instance.

Example 15-1 Calling OCIDBStartup() to Perform a Database Startup Operation

...

/* Example 0 - Startup: */
OCIAdmin *admhp;
text *mount_stmt = (text *)"ALTER DATABASE MOUNT";
text *open_stmt = (text *)"ALTER DATABASE OPEN";
text *pfile = (text *)"/ade/viewname/oracle/work/t_init1.ora";

/* Start the authentication session */
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp,
 OCI_CRED_RDBMS, OCI_SYSDBA|OCI_PRELIM_AUTH));

/* Allocate admin handle for OCIDBStartup */
checkerr(errhp, OCIHandleAlloc((void *) envhp, (void **) &admhp,
 (ub4) OCI_HTYPE_ADMIN, (size_t) 0, (void **) 0));

/* Set attribute pfile in the admin handle
(do not do this if you want to use the spfile) */
checkerr (errhp, OCIAttrSet((void *) admhp, (ub4) OCI_HTYPE_ADMIN,
 (void *) pfile, (ub4) strlen(pfile),
 (ub4) OCI_ATTR_ADMIN_PFILE, (OCIError *) errhp));

Chapter 15
Examples of Startup and Shutdown in OCI

15-2

/* Start up in NOMOUNT mode */
 checkerr(errhp, OCIDBStartup(svchp, errhp, admhp, OCI_DEFAULT, 0));
 checkerr(errhp, OCIHandleFree((void *) admhp, (ub4) OCI_HTYPE_ADMIN));

/* End the authentication session */
OCISessionEnd(svchp, errhp, usrhp, (ub4)OCI_DEFAULT);

/* Start the sysdba session */
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_SYSDBA));

/* Mount the database */
checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, mount_stmt, (ub4)
 strlen((char*) mount_stmt),
 (CONST OraText *) 0, (ub4) 0, (ub4) OCI_NTV_SYNTAX, (ub4)
 OCI_DEFAULT));
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4)0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));
checkerr(errhp, OCIStmtRelease(stmthp, errhp, (OraText *)0, 0, OCI_DEFAULT));

/* Open the database */
checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, open_stmt, (ub4)
 strlen((char*) open_stmt),
 (CONST OraText *)0, (ub4)0, (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4)0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));
checkerr(errhp, OCIStmtRelease(stmthp, errhp, (OraText *)0, 0, OCI_DEFAULT));

/* End the sysdba session */
OCISessionEnd(svchp, errhp, usrhp, (ub4)OCI_DEFAULT);
...

Example 15-2 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL Mode

/* Example 1 - Orderly shutdown: */
...
text *close_stmt = (text *)"ALTER DATABASE CLOSE NORMAL";
text *dismount_stmt = (text *)"ALTER DATABASE DISMOUNT";

/* Start the sysdba session */
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_SYSDBA));

/* Shutdown in the default mode (transactional, transactional-local,
 immediate would be fine too) */
checkerr(errhp, OCIDBShutdown(svchp, errhp, (OCIAdmin *)0, OCI_DEFAULT));

/* Close the database */
checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, close_stmt, (ub4)
 strlen((char*) close_stmt),
 (CONST OraText *)0, (ub4)0, (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT));
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4)0,
 (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT));
checkerr(errhp, OCIStmtRelease(stmthp, errhp, (OraText *)0, 0, OCI_DEFAULT));

/* Dismount the database */
checkerr(errhp, OCIStmtPrepare2(svchp, &stmthp, errhp, dismount_stmt,
 (ub4) strlen((char*) dismount_stmt), (CONST OraText *)0, (ub4)0,
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

Chapter 15
Examples of Startup and Shutdown in OCI

15-3

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4)0,
 (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT));
checkerr(errhp, OCIStmtRelease(stmthp, errhp, (OraText *)0, 0, OCI_DEFAULT));

/* Final shutdown */
checkerr(errhp, OCIDBShutdown(svchp, errhp, (OCIAdmin *)0,
 OCI_DBSHUTDOWN_FINAL));

/* End the sysdba session */
checkerr(errhp, OCISessionEnd(svchp, errhp, usrhp, (ub4)OCI_DEFAULT));
...

Example 15-3 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_ABORT Mode

/* Example 2 - Shutdown using abort: */
...
/* Start the sysdba session */
...
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_SYSDBA));

/* Shutdown in the abort mode */
checkerr(errhp, OCIDBShutdown(svchp, errhp, (OCIAdmin *)0,
 OCI_DBSHUTDOWN_ABORT));

/* End the sysdba session */
checkerr(errhp, OCISessionEnd(svchp, errhp, usrhp, (ub4)OCI_DEFAULT));
...

Example 15-2 shows sample code that uses a client-side parameter file (pfile) that is set in
the administration handle that performs an orderly database shutdown operation.

Example 15-3 shows a shutdown example that uses OCI_DBSHUTDOWN_ABORT mode.

See Also:

• OCIAttrSet()

• OCIDBStartup()

• OCIDBShutdown()

Chapter 15
Examples of Startup and Shutdown in OCI

15-4

16
Support for Pluggable Databases

The multitenant architecture enables an Oracle database to contain a portable collection of
schemas, schema objects, and nonschema objects that appear to an Oracle client as a
separate database.

A multitenant container database (CDB) is an Oracle database that includes one or more
pluggable databases (PDBs).

OCI clients can connect to a PDB using a service whose pluggable database property has
been set to the relevant PDB.

In general, OCI calls behave the same way whether connected to a pluggable database or a
normal database. OCI calls and features that require special consideration with a CDB are
described in the sections that follow:

• Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in General

• OCI Enhancements for ALTER SESSION SET CONTAINER

• Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in General

• Restrictions on OCI Calls with ALTER SESSION SET CONTAINER

• Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE

• Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in General
These enhancements are the result of restrictions that are now removed for Oracle
Database 12c Release 2 (12.2) and later.

• OCI Enhancements for ALTER SESSION SET CONTAINER
Some OCI restrictions about using the ALTER SESSION SET CONTAINER statement are
removed.

• Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in General
Descriptions general restrictions.

• Restrictions on OCI Calls with ALTER SESSION SET CONTAINER
Describes specific restrictions.

• Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE
Describes a restriction on OCI calls with the ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE statement.

See Also:

Oracle Database Administrator’s Guide for more information about PDBs and for
more details about configuring the services to connect to various PDBs

16-1

16.1 Enhancements on OCI API Calls with Multitenant Container
Databases (CDB) in General

These enhancements are the result of restrictions that are now removed for Oracle Database
12c Release 2 (12.2) and later.

The following enhancements are the result of restrictions that are now removed for Oracle
Database 12c Release 2 (12.2) and later.

• Client result cache works with connections to Pluggable Databases.

16.2 OCI Enhancements for ALTER SESSION SET CONTAINER
Some OCI restrictions about using the ALTER SESSION SET CONTAINER statement are removed.

The client must be Oracle Database Release 12c Release 2 (12.2) to perform these
operations. Lower version clients are returned an error if any of the following operations is
attempted.

• The ALTER SESSION SET CONTAINER statement supports applications that use TIMESTAMP
WITH TIMEZONE or TIMESTAMP WITH LOCAL TIMEZONE data types in OCI. The semantics of
these types are preserved when the application switches between pluggable databases
having different database time zone settings or different database time zone file version
settings.

• The ALTER SESSION SET CONTAINER statement supports the use of this command to switch
an OCI connection between any two pluggable databases whose character sets are
different.

16.3 Restrictions on OCI API Calls with Multitenant Container
Databases (CDB) in General

Descriptions general restrictions.

• An attempt to logon in OCI_PRELIM_AUTH mode when connected to any container other
than CDB$ROOT will result in an ORA-24542 error.

• An attempt to issue OCIDBStartup() when connected to any container other than CDB$ROOT
results in an ORA-24543 error.

• An attempt to issue OCIDBShutdown() when connected to any container other than
CDB$ROOT results in an ORA-24543 error. When OCIDBShutdown() is issued connected to
CDB$ROOT, it brings down the whole instance.

• OCI Continuous Query Notification (CQN) is not supported with CDB.

• OCI applications linked against a client library older than release 12.1 or higher and
connecting to a pluggable database will not be able to utilize Fast Application Notification
(FAN) High Availability (HA) functionality when connected as a normal (non-common) user.
As a workaround, such applications should connect as a common user. This restriction
does not exist for release 12.1 or higher OCI clients.

Chapter 16
Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in General

16-2

See Also:

• OCIDBStartup()

• OCIDBShutdown()

16.4 Restrictions on OCI Calls with ALTER SESSION SET
CONTAINER

Describes specific restrictions.

The ALTER SESSION SET CONTAINER statement can be used to switch an OCI connection from
one pluggable database to another. However, applications that use the ALTER SESSION SET
CONTAINER statement to switch between pluggable databases need to ensure that their usage
is consistent with the OCI restrictions described as follows.

• The ALTER SESSION SET CONTAINER statement is disallowed for OCI migratable sessions
(such as sessions created with OCI_MIGRATE mode during logon) and the combination
results in an ORA-65135 error.

• The ALTER SESSION SET CONTAINER statement is not supported with OCI connection pool
(which is the old OCI connection pool API) and the combination results in an ORA-65135
error.

• The ALTER SESSION SET CONTAINER statement is not supported in conjunction with OCI
session switching (wherein multiple OCI user handles share the same OCI server handle).

• If the client initially connects to a container with a EXTENDED MAX_STRING_SIZE setting, and
then within the same session switches to a container (using an ALTER SESSION SET
CONTAINER statement) with an STANDARD MAX_STRING_SIZE setting, then a subsequent
OCIStmtExecute() call will result in an ORA-14697 error if an attempt is made to use any
bind variables of size greater than 4000 bytes.

• An attempt to fetch from an OCI statement handle using OCIStmtFetch() or
OCIStmtFetch2() in the context of a different container than the one in which it was
executed will result in an ORA-65108 error.

• OCI client result cache is disabled if an ALTER SESSION SET CONTAINER statement is done
in OCI.

• Fast Application Notification (FAN) and Runtime Connection Load Balancing notifications
are not supported for applications that switch connections between pluggable databases
using an ALTER SESSION SET CONTAINER statement.

• The ALTER SESSION SET CONTAINER statement sets the current transaction, if any, to read
only and any attempt to perform any of the OCI transaction calls (OCITransStart(),
OCITransDetach(), OCITransCommit(), OCITransRollback(), OCITransPrepare(),
OCITransMultiPrepare(), OCITransForget()) will return an error in the new container. In
order to issue any of these calls, you need to switch back to the original container.

• If an OCISubscriptionUnRegister() call is attempted in the context of an incorrect
container (different from the container on which the corresponding
OCISubscriptionRegister() call was done), then an ORA-24950 is returned.

Chapter 16
Restrictions on OCI Calls with ALTER SESSION SET CONTAINER

16-3

• A OCIDescribeAny() call with OCI_PTYPE_DATABASE describes the database to which the
connection is connected. After an ALTER SESSION SET CONTAINER statement is done, if the
application wants to see the current database description, the OCIDescribeAny() call will
need to be reissued.

• Calls to any OCI Any Data, collection, or object functions that are used to manipulate an
object from a different container are not supported.

• An OCIObjectFlush() call is supported only in the container where the object instance was
created with an OCIObjectNew() call.

• Oracle recommends that OCIObjectFlush() be called prior to switching containers with an
ALTER SESSION SET CONTAINER statement. Note that an OCIObjectFlush() call will start a
transaction if one is not already started.

• An OCIObjectFlush() call done after switching containers may return an error if a
transaction was already started earlier on another container by the same session (either as
a result of explicit DMLs or as a result of an OCIObjectFlush()call).

• An OCIObjectFlush() call only flushes objects dirtied in the context of the container in
which the OCIObjectFlush() call is issued.

• Various session attributes may change on an ALTER SESSION SET CONTAINER statement. If
an application caches these attributes, their settings may no longer be the same after an
ALTER SESSION SET CONTAINER statement. Examples of attributes that can be obtained
with an OCIAttrGet() call and which can change on an ALTER SESSION SET CONTAINER
statement include the following:

– OCI_ATTR_CURRENT_SCHEMA

– OCI_ATTR_INITIAL_CLIENT_ROLES

– OCI_ATTR_EDITION

– OCI_ATTR_MAX_OPEN_CURSORS

See Also:

• Oracle Database SQL Language Reference for more information about
MAX_STRING_SIZE

• OCIStmtExecute()

• OCIStmtFetch() or OCIStmtFetch2()

• OCITransStart(), OCITransDetach(), OCITransCommit(), OCITransRollback(),
OCITransPrepare(), OCITransMultiPrepare() , OCITransForget()

• OCISubscriptionUnRegister() and OCISubscriptionRegister()

• OCIDescribeAny()

• OCIObjectFlush()

• OCIObjectNew()

• OCIAttrGet()

Chapter 16
Restrictions on OCI Calls with ALTER SESSION SET CONTAINER

16-4

16.5 Restrictions on OCI Calls with ALTER SESSION SWITCH
CONTAINER SWITCH SERVICE

Describes a restriction on OCI calls with the ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE statement.

Beginning with Oracle Database 12c Release 2 (12.2), the ALTER SESSION SWITCH CONTAINER
SWITCH SERVICE statement is added, which may result in a change of service attributes if the
new service is configured differently than when connected to the original service. However,
OCI will not alter its processing based on the new settings with this statement; instead, it will
continue to use the original settings as when connected to the original service. For example,
FAN on/off, TAF on/off settings, and so forth will remain the same as when first connected to
the original service. This is considered the desired behavior after the switch as the normal use
case for the ALTER SESSION SWITCH CONTAINER SWITCH SERVICE statement is in a multitenant
environment with the same application being in use after the switch.

Chapter 16
Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH SERVICE

16-5

17
OCI Interface for Using Shards

This chapter describes the OCI interface for using Oracle Sharding.

Shards are locations in a set of databases where each database stores some part of the data.
The part of the data stored at each database is represented by a set of chunks, where each
chunk is associated with a certain range of the data.

To make requests that read from or write to a chunk, your application must be routed to the
appropriate database (shard) that stores that chunk during the connection initiation step. This
routing is accomplished by using a data key. The data key enables routing to the specific chunk
by specifying its sharding key or to a group of chunks by specifying its super sharding key. In
order to get a connection to the correct shard containing the chunk you wish to operate on, you
must specify a key in your application before getting a connection to a sharded Oracle
database for either standalone connections or connections obtained from an OCI Session pool.
For an OCI Session pool, you must specify a data key before you check out connections from
the pool.

For OCI Session pools and stand alone connections, the steps to form sharding keys and
shard group keys and get a session with an underlying connection include:

1. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and specifying the
descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the sharding key.

a. Add all of the columns of the sharding key by calling OCIShardingKeyColumnAdd() as
many times as is needed to form the complete sharding key.

b. Call OCIAttrSet() and specify the OCI_ATTR_SHARDING_KEY attribute to set the
sharding key on the authentication handle.

2. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and specifying
the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the shard group key.

a. Add all of the group columns of the sharding key by calling
OCIShardingKeyColumnAdd() as many times as is needed to form the complete shard
group key.

b. Call OCIAttrSet() and specify the OCI_ATTR_SUPER_SHARDING_KEY attribute to set the
shard group key on the authentication handle.

3. Call OCISessionGet() using the initialized authentication handle from the previous step
containing the sharding key and shard group key information to get the database
connection to the shard and chunk specified by the sharding key and group of chunks as
specified by the shard group key.

For custom pools, the steps to form sharding keys and shard group keys and check out a
connection from the pool include:

1. If there are no existing connections in your custom pool, go directly to Step 7. Otherwise,
do the following steps.

2. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and specifying the
descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the sharding key. Add all of
the columns of the sharding key by calling OCIShardingKeyColumnAdd() as many times as
is needed to form the complete sharding key.

17-1

3. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and specifying
the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the shard group key.
Add all of the group columns of the sharding key by calling OCIShardingKeyColumnAdd()
as many times as is needed to form the complete shard group key.

4. Call OCIShardInstancesGet() with the sharding key, super sharding key descriptors and
the connect string to return the instance name or names that contain the desired chunk for
the specified sharding key descriptor and super sharding key descriptor.

5. Examine each connection in the custom pool to see if it points to one of the instances
whose name was returned by OCIShardInstancesGet(). To check the instance that a
connection in your custom pool points to, you can get the instance name using
OCI_ATTR_INSTNAME on the service context handle (OCISvcCtx *).

6. If you find a suitable connection in your custom pool that points to one of the desired
instances, then call OCIAttrSet() to associate the sharding key and super sharding key
with that connection. Now the connection is ready for executing your application's OCI
calls on the desired shard. You can skip Step 7. If you do not find a suitable connection in
your custom pool that points to the desired instance, continue to Step 7.

7. If there is no matching connection found, create a new connection with the sharding key,
super sharding key, and connect string and call OCISessionGet() and specify the
OCI_SESSGET_CUSTOM_POOL mode to explicitly cache the shard topology that contains the
shard to chunking mapping information. Now you have a connection to the desired shard.
Now the connection is ready for executing your application's OCI calls on the desired
shard.

Providing the sharding key or a super sharding key to OCI enables it to get a connection to the
desired shard. As previously noted, these keys must be specified before getting a standalone
connection to the database, or before checking out a connection from the OCI Session pool so
that an appropriate connection to the desired shard can be returned.

In the case of custom pools, when the pool is empty, the custom pool implementer can use the
steps as described above to first create standalone connections to the desired shards by
providing the sharding key and super sharding key (with OCI_SESSGET_CUSTOM_POOL mode) to
populate the custom pool, and secondly, for subsequent requests for connections to specific
shards, use the OCIShardInstancesGet() call as described in conjunction with OCIAttrGet()
of OCI_ATTR_INSTNAME to determine if an existing connection to the desired shard already
exists in the custom pool, and if it does, then the connection can be reused.

The section describes the OCI interfaces that:

• Create a sharding key and a super sharding key using OCI data types.

• Create a connection specifying a sharding key and a super sharding key.

• Specify the sharding key and super sharding key to the connection request from an OCI
session pool.

• Use custom connection pooling to get the shard name for a given connection and to get
the shard name and the chunk name, given a sharding key and super sharding key.

About Specifying a Sharding Key and Super Sharding Keys for a Standalone
Connection

Use the OCISessionGet() call for creating the connection. This call takes an authentication
handle, authp, as input, on which various properties are set, including the two attributes to
support creating connections to specific shards: OCI_ATTR_SHARDING_KEY for the sharding key
and OCI_ATTR_SUPER_SHARDING_KEY for the super sharding key.

Chapter 17

17-2

About Creating a Sharding Key and Super Sharding Key

Use the OCI descriptor type OCIShardingKey for forming the sharding key and the super
sharding key. This descriptor wraps the key value (for a single part key) or multiple values (for
a compounded key).

Use the following OCIShardingKeyColumnAdd() call to add all of the columns of the key to form
the complete key.

OCIShardingKeyColumnAdd(OCIShardingKey *shardingKey,
 OCIError *errhp,
 void *col,
 ub4 colLen,
 ub2 colType,
 ub4 mode)

You should perform this call as many times as there are columns in the compound key (or just
once for a simple sharding key) in the order in which the key is defined in the database. The
columnType parameter indicates the data type of the column.

The following table shows the supported OCI data type values for the columnType parameter
and its corresponding C data type.

OCI Data Type C Data Type

SQLT_NUM ub1*

SQLT_CHR OraText*

SQLT_DATE ub1*

SQLT_TIMESTAMP OCIDateTime*

SQLT_RAW ub1*

SQLT_VNU ub1*

SQLY_INT int*

The character key values are assumed to be in the client character set (specified by NLS_LANG
or OCIEnvNLSCreate() calls) .

After forming the sharding key and the super sharding key using
theOCIShardingKeyColumnAdd() call, the keys can be set on the authentication handle using
the sharding key attribute OCI_ATTR_SHARDING_KEY and the super sharding key attribute
OCI_ATTR_SUPER_SHARDING_KEY as follows:

OCIAttrSet(authp,
 OCI_HTYPE_AUTHINFO,
 shardKey,
 sizeof(shardKey),
 OCI_ATTR_SHARDING_KEY,
 errhp);

OCIAttrSet(authp,
 OCI_HTYPE_AUTHINFO,
 shardGroupKey,
 sizeof(shardGroupKey),

Chapter 17

17-3

 OCI_ATTR_SUPER_SHARDING_KEY,
 errhp);

When you use this authp parameter in an OCISessionGet() call, it will ensure that you create a
connection to the shard containing the data corresponding to the sharding key and super
sharding key values that are set.

About Getting the Actual Sharding Key and Super Sharding Key Values

If you want to know the Base64 representation of the sharding key and super sharding key for
diagnostic purposes, you can use the attribute OCI_ATTR_SHARDING_KEY_B64, on the
OCIShardingKey descriptor. The OCIAttrGet() call takes the OCIShardingKey descriptor as
input and returns the text value in base64 format of the sharding key and super sharding key.

OCIAttrGet((dvoid *) OCIShardingKey,
 (ub4) OCI_DTYPE_SHARDING_KEY,
 (dvoid *) &sekyVale,
 (ub4*) &skeyValueLen,
 OCI_ATTR_SHARDING_KEY_B64,
 (OCIError *) errhp);

In addition, you can use the OCIShardingKeyReset() call shown as follows for your application
to reset and reuse the allocated descriptor for creating a new sharding key and super sharding
key.

sword OCIShardingKeyReset(OCIShardingKey *shardKey,
 OCIError *errhp,
 ub4 mode);

This section includes the following topics:

• About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from
an OCI Session Pool

• About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a
Custom Pool

• About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from
an OCI Session Pool
This topic describes how to specify a sharding key and super sharding key to get a
connection from an OCI Session Pool.

• About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a
Custom Pool
This topic describes features that support specifying a sharding key and super sharding
key to get a connection from a custom pool.

See Also:

• OCIShardingKeyColumnAdd()

• OCIShardingKeyReset()

Chapter 17

17-4

17.1 About Specifying a Sharding Key and Super Sharding Key
for Getting a Connection from an OCI Session Pool

This topic describes how to specify a sharding key and super sharding key to get a connection
from an OCI Session Pool.

By default, the OCISessionGet() call creates a new connection. You can also use this call to
get an existing connection from an OCI Session pool. When you use the
OCI_ATTR_SHARDING_KEY and OCI_ATTR_SUPER_SHARDING_KEY attribute settings, you can get a
connection to the desired shard from an OCI Session pool. In an OCI Session pool, sessions in
the pool can represent a variety of shards that are each authenticated by the database
credentials passed in by the OCISessionGet() call using the initialized authentication handle
authp.

The following example shows how to get a connection to the desired database shard from an
OCI Session Pool created with the homogeneous and statement caching modes specified.
Even though this example uses a homogeneous pool, you are not restricted to that type of
pool.

OCIShardingKey *shardKey, *shardGroupKey;
 /* Error handling is omitted for brevity. */
 /* Create a homogeneous session pool. */
 checkerr(&status, errhp,
 OCISessionPoolCreate(envhp, errhp,
 spoolhp, /* session pool
handle */
 (OraText **) poolName, poolNameLenp, /* returned
poolname, length */
 (const OraText *) connstr, strlen(connstr), /* connect
string */
 min, max, increment, /* pool size
constraints */
 (OraText *) "hr", strlen((char *) "hr"), /* username */
 (OraText *) apppassword, /* password */
 strlen((char *) apppassword),
 OCI_SPC_HOMOGENEOUS|OCI_SPC_STMTCACHE)); /* modes */

/* Allocate the sharding key and super sharding key descriptors. */
OCIDescriptorAlloc(envhp,(dvoid **)&shardKey,
 OCI_DTYPE_SHARDING_KEY, 0,(dvoid **)0)))
text *name = “KK”;
text *gname = “GOLD”;
int empid = 150;

/* Add all the columns of the key to form the final sharding key. */
OCIShardingKeyColumnAdd(shardKey,(ub1*)&empid, sizeof(empid),
 SQLT_INT, errhp, OCI_DEFAULT);
OCIShardingKeyColumnAdd(shardKey, name, strlen(name),
 SQLT_CHAR, errhp, OCI_DEFAULT));

OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,
 shardKey, sizeof(shardKey),
 OCI_ATTR_SHARDING_KEY, errhp);

Chapter 17
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from an OCI Session Pool

17-5

/* Setting a shard group key. */
/* Create a shard group key, in the same way as for a sharding key. */
OCIDescriptorAlloc(envhp,(dvoid **)&shardGroupKey,
 OCI_DTYPE_SHARDING_KEY, 0, (dvoid **)0));

/* Add the column of the key to form the final super sharding key. */
OCIShardingKeyColumnAdd(shardGroupKey, gname, strlen(gname),
 SQLT_CHAR, errhp, OCI_DEFAULT));

OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,
 shardGroupKey, sizeof(shardGroupKey),
 OCI_ATTR_SUPER_SHARDING_KEY, errhp));

/* Get the database connection from the OCI Session Pool. */
checkerr(&status,
 errhp, OCISessionGet(envhp, errhp,
 &svchp, /* returned database
connection */
 authp, /* initialized
authentication handle */
 (OraText *) poolName, poolNameLen, /* connect string */
 NULL, 0, NULL, NULL, NULL, /* session tagging
parameters: optional */
 OCI_DEFAULT)); /* modes */

Chunk Migrations and OCISessionGet() in Sharding

During chunk migrations, when a chunk migrates from one shard instance to another, OCI
Session Pool can ensure that OCISessionGet() returns a connection to an instance having a
writable chunk by implicitly doing retrials during chunk migration. This requires that a couple of
properties be set:

• Setting READONLY_CHUNK_OK to FALSE in the connect string.

• Setting pool handle attributes: OCI_ATTR_SPOOL_GETMODE and
OCI_ATTR_SPOOL_WAIT_TIMEOUT to OCI_SPOOL_ATTRVAL_TIMEDWAIT and a suitable time out
value in milliseconds. If the pool is unable to get a connection to a writable instance within
the time out period, OCISessionGet() returns an ORA-24495 error.

If the application can use read only chunks, it can set READONLY_CHUNK_OK=true in the connect
string. In that case a connection available to the instance with chunks marked read-only also
may be dispensed. If the application attempts any database write operation on such a
connection, it gets in return suitable errors.

17.2 About Specifying a Sharding Key and Super Sharding Key
for Getting a Connection from a Custom Pool

This topic describes features that support specifying a sharding key and super sharding key to
get a connection from a custom pool.

This section describes the following features that support applications specifying a sharding
key and super sharding key for getting a connection from a custom pool:

• OCISessionGet() mode OCI_SESSGET_CUSTOM_POOL — Used to explicitly cache the shard
topology every time OCI connects to a new shard instance.

Chapter 17
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a Custom Pool

17-6

• OCIShardInstancesGet() — Returns instance names for a given sharding key descriptor,
super sharding key descriptor, and connection string.

OCI_ATTR_INSTNAME Attribute

If your OCI client application uses custom connection pooling, you must be able to return
connections to specific shards. To do this, you must know the shard name to which shard a
connection has been made and the sharding key and super sharding key to shard name
mapping to enable a look up for a matching connection.

This is possible when you use the attribute OCI_ATTR_INSTNAME on the service context (svchp)
for this purpose. This attribute returns the instance name for a given connection. The instance
name is unique for the shard instance pointed to by a given connection. Every shard instance
has a unique name. The following code sample shows how this attribute is used to get the
instance name from a given service context svchp.

OraText shardName[OCI_INSTNAME_MAXLEN];
ub4 shardNameLen;
 OCIAttrGet(svchp,
 OCI_HTYPE_SVCCTX,
 shardName,
 (ub4 *) &shardNameLen,
 OCI_ATTR_INSTNAME,
 errhp);

OCISessionGet() mode OCI_SESSGET_CUSTOM_POOL

OCI clients that do custom pooling must use the OCISessionGet() mode
OCI_SESSGET_CUSTOM_POOL to explicitly cache the shard topology that contains the shard to
chunking mapping information every time OCI connects to a new shard not previously visited.
OCI clients that do not use custom pooling do not need to use this mode as this caching is
done implicitly, for example, when you use OCI Session Pools.

OCIShardInstancesGet()

OCIShardInstancesGet() returns instance names for a given sharding key descriptor and
super sharding key descriptor. This method has the following signature:

sword OCIShardInstancesGet(
 void **shTopoCtx,
 OCIError *errhp,
 const OraText *connstr,
 ub4 constrl,
 OCIShardingKey *shardingKey,
 OCIShardingKey *superShardingKey,
 OCIShardinst ***shardinsts,
 ub4 numShardInsts,
 ub4 mode);

This call looks up the shard topology cache on the client.

If any connections were made with OCI_SESSGET_CUSTOM_POOL mode, then OCI maintains the
shard topology cache locally.

The returned value may be NULL if the shard topology cache does not yet have the mapping
either because no connections were made with OCI_SESSGET_CUSTOM_POOL or the connections

Chapter 17
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a Custom Pool

17-7

that were made so far with OCI_SESSGET_CUSTOM_POOL did not connect to a shard that contains
the chunk for the sharding key and super sharding key requested. In either case, the custom
pool should create a new connection explicitly using OCISessionGet() with the
OCI_ATTR_SHARDING_KEY and OCI_ATTR_SUPER_SHARDING_KEY attributes set as applicable with
OCI_SESSGET_CUSTOM_POOL mode enabled. Doing this adds information about the new shard to
the OCI shard topology cache. Subsequent OCIShardInstancesGet() calls will look for key
ranges belonging to chunks located in these shards and return these shard instance names.

Note that a sharding key and super sharding key may refer to multiple shards as a result of the
chunk being replicated. When the custom pool has a connection to the desired shard, the
custom pool should ensure that the OCI_ATTR_SHARDING_KEY and
OCI_ATTR_SUPER_SHARDING_KEY properties are set on the connection before dispensing. Setting
these properties ensures that the chunk usage is tracked on the database side and to
determine if there have been any chunk splits occurring on the database.

See Also:

OCIShardInstancesGet() for an example that uses custom pooling

Chapter 17
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a Custom Pool

17-8

18
OCI Object-Relational Programming

This chapter introduces the OCI facility for working with objects in an Oracle database. It also
discusses the object navigational function calls of OCI.

This chapter contains these topics:

• OCI Object Overview

• About Working with Objects in OCI

• About Developing an OCI Object Application

• About Type Inheritance

• About Type Evolution

• OCI Object Overview
OCI allows applications to access any of the data types found in Oracle Database,
including scalar values, collections, and instances of any object type.

• About Working with Objects in OCI
Many of the programming principles that govern a relational OCI application are the same
for an object-relational application.

• About Developing an OCI Object Application
This section discusses the steps involved in developing a basic OCI object application.

• About Type Inheritance
Type inheritance of objects has many similarities to inheritance in C++ and Java.

• About Type Evolution
Adding, dropping, and modifying type attributes are supported. This concept is known as
type evolution.

18.1 OCI Object Overview
OCI allows applications to access any of the data types found in Oracle Database, including
scalar values, collections, and instances of any object type.

This includes all of the following:

• Objects

• Variable-length arrays (varrays)

• Nested tables (multisets)

• References (REFs)

• LOBs

18-1

Note:

Beginning with Oracle Database 12c Release 2 (12.2), there is a change in the linear
snapshot size from 24 bytes to 34 bytes that requires the reconstruction of the
collection image form. When an older client or server accesses a Release 12.2 or
higher database involving any access to collections, the collection image form that
contains the linear snapshot must be converted when sending or receiving to older
clients or server. This conversion results in the performance degradation. Oracle
recommends that you use a 12.2 version of the client or server to avoid this
conversion.

To take full advantage of Oracle Database object capabilities, most applications must do more
than just access objects. After an object has been retrieved, the application must navigate
through references from that object to other objects. OCI provides the capability to do this.
Through the OCI object navigational calls, an application can perform any of the following
functions on objects:

• Creating, accessing, locking, deleting, copying, and flushing objects

• Getting references to the objects and their meta-objects

• Dynamically getting and setting values of objects' attributes

OCI also provides the ability to access type information stored in an Oracle database. The
OCIDescribeAny() function enables an application to access most information relating to types
stored in the database, including information about methods, attributes, and type metadata.

Applications interacting with Oracle Database objects need a way to represent those objects in
a host language format. Oracle Database provides a utility called the Object Type Translator
(OTT), which can convert type definitions in the database to C struct declarations. The
declarations are stored in a header file that can be included in an OCI application.

When type definitions are represented in C, the types of attributes are mapped to special C
variable types. OCI includes a set of data type mapping and manipulation functions that enable
an application to manipulate these data types, and thus manipulate the attributes of objects.

The terminology for objects can occasionally become confusing. In the remainder of this
chapter, the terms object and instance both refer to an object that is either stored in the
database or is present in the object cache.

See Also:

• About Developing an OCI Object Application for more detail about OCI
navigational calls

• Describing Schema Metadata for a discussion of OCIDescribeAny()
• Object-Relational Data Types in OCI for a more detailed discussion about

functions

• OCIDescribeAny()

Chapter 18
OCI Object Overview

18-2

18.2 About Working with Objects in OCI
Many of the programming principles that govern a relational OCI application are the same for
an object-relational application.

An object-relational application uses the standard OCI calls to establish database connections
and process SQL statements. The difference is that the SQL statements issued retrieve object
references, which can then be manipulated with the OCI object functions. An object can also
be directly manipulated as a value instance (without using its object reference).

This section includes the following topics:

• Basic Object Program Structure

• Persistent Objects, Transient Objects, and Values

• Basic Object Program Structure
The basic structure of an OCI application that uses objects is essentially the same as that
for a relational OCI application.

• Persistent Objects, Transient Objects, and Values
Instances of an Oracle type are categorized into persistent objects and transient objects
based on their lifetime.

18.2.1 Basic Object Program Structure
The basic structure of an OCI application that uses objects is essentially the same as that for a
relational OCI application.

That paradigm is reproduced here, with extra information covering basic object functionality.

1. Initialize the OCI programming environment. You must initialize the environment in object
mode.

Your application must include C struct representations of database objects in a header file.
These structs can be created by the programmer, or, more easily, they can be generated
by the Object Type Translator (OTT).

2. Allocate necessary handles, and establish a connection to a server.

3. Prepare a SQL statement for execution. This is a local (client-side) step, which may
include binding placeholders and defining output variables. In an object-relational
application, this SQL statement should return a reference (REF) to an object.

Note:

It is also possible to fetch an entire object, rather than just a reference (REF). If
you select a referenceable object, rather than pinning it, you get that object by
value. You can also select a nonreferenceable object.

4. Associate the prepared statement with a database server, and execute the statement.

5. Fetch returned results.

In an object-relational application, this step entails retrieving the REF, and then pinning the
object to which it refers. Once the object is pinned, your application can do some or all of
the following:

Chapter 18
About Working with Objects in OCI

18-3

• Manipulate the attributes of the object and mark it as dirty (modified)

• Follow a REF to another object or series of objects

• Access type and attribute information

• Navigate a complex object retrieval graph

• Flush modified objects to the server

6. Commit the transaction. This step implicitly flushes all modified objects to the server and
commits the changes.

7. Free statements and handles not to be reused, or reexecute prepared statements again.

These steps are discussed in more detail in the remainder of this chapter.

See Also:

• Overview of OCI Program Programming

• Fetching Embedded Objects describes fetching the entire object

• OCI Programming Basics for information about using OCI to connect to a server,
process SQL statements, and allocate handles and the description of the OCI
relational functions in Oracle Database Access C API

• About Representing Objects in C Applications for information about OTT and
Using the Object Type Translator with OCI

18.2.2 Persistent Objects, Transient Objects, and Values
Instances of an Oracle type are categorized into persistent objects and transient objects based
on their lifetime.

Instances of persistent objects can be further divided into standalone objects and embedded
objects depending on whether they are referenceable by way of an object identifier.

Note:

The terms object and instance are used interchangeably in this manual.

This section includes the following topics:

• Persistent Objects

• Transient Objects

• Values

• Persistent Objects
A persistent object is an object that is stored in an Oracle database.

• Transient Objects
A transient object is a temporary instance whose life does not exceed that of the
application, and that cannot be stored or flushed to the server.

Chapter 18
About Working with Objects in OCI

18-4

• Values
A value is referred to as being either a scalar value or as an embedded or
nonreferenceable object.

See Also:

Oracle Database Object-Relational Developer's Guide for more information about
objects

18.2.2.1 Persistent Objects
A persistent object is an object that is stored in an Oracle database.

It may be fetched into the object cache and modified by an OCI application. The lifetime of a
persistent object can exceed that of the application that is accessing it. Once it is created, it
remains in the database until it is explicitly deleted. There are two types of persistent objects:

• Standalone instances are stored in rows of an object table, and each instance has a
unique object identifier. An OCI application can retrieve a REF to a standalone instance, pin
the object, and navigate from the pinned object to other related objects. Standalone
objects may also be referred to as referenceable objects.

It is also possible to select a referenceable object, in which case you fetch the object by
value instead of fetching its REF.

• Embedded instances are not stored as rows in an object table. They are embedded within
other structures. Examples of embedded objects are objects that are attributes of another
object, or instances that exist in an object column of a database table. Embedded
instances do not have object identifiers, and OCI applications cannot get REFs to
embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be confused
with scalar data values. The context should make the meaning clear.

Example 18-1 and Example 18-2 show SQL examples that demonstrate the difference
between these two types of persistent objects.

Objects that are stored in the object table person_tab are standalone instances. They have
object identifiers and are referenceable. They can be pinned in an OCI application.

Objects that are stored in the manager column of the department table are embedded objects.
They do not have object identifiers, and they are not referenceable; this means they cannot be
pinned in an OCI application, and they also never need to be unpinned. They are always
retrieved into the object cache by value.

Example 18-1 SQL Definition of Standalone Objects

CREATE TYPE person_t AS OBJECT
 (name varchar2(30),
 age number(3));
CREATE TABLE person_tab OF person_t;

Example 18-2 SQL Definition of Embedded Objects

CREATE TABLE department
 (deptno number,

Chapter 18
About Working with Objects in OCI

18-5

 deptname varchar2(30),
 manager person_t);

18.2.2.2 Transient Objects
A transient object is a temporary instance whose life does not exceed that of the application,
and that cannot be stored or flushed to the server.

The application can delete a transient object at any time.

Transient objects are often created by the application using the OCIObjectNew() function to
store temporary values for computation. Transient objects cannot be converted to persistent
objects. Their role is fixed at the time they are instantiated.

See Also:

• About Creating Objects for more information about using OCIObjectNew()
• OCIObjectNew()

18.2.2.3 Values
A value is referred to as being either a scalar value or as an embedded or nonreferenceable
object.

In the context of this manual, a value refers to either:

• A scalar value that is stored in a non-object column of a database table. An OCI
application can fetch values from a database by issuing SQL statements.

• An embedded or nonreferenceable object.

The context should make it clear which meaning is intended.

Note:

It is possible to select a referenceable object into the object cache, rather than
pinning it, in which case you fetch the object by value instead of fetching its REF.

18.3 About Developing an OCI Object Application
This section discusses the steps involved in developing a basic OCI object application.

Figure 18-1 shows a simple program logic flow for how an application might work with objects.
For simplicity, some required steps are omitted. Each step in this diagram is discussed in the
following sections.

Chapter 18
About Developing an OCI Object Application

18-6

Figure 18-1 Basic Object Operational Flow

Pin Object (Brings object into
client-side cache)

Operate on Object
in Cache

Mark Object
as Dirtied

Refresh Object

Flush Changes
to Object

Initialize OCI in
Object Mode

This section includes the following topics:

• About Representing Objects in C Applications

• About Initializing the Environment and the Object Cache

• About Making Database Connections

• Retrieving an Object Reference from the Server

• Pinning an Object

• Manipulating Object Attributes

• About Marking Objects and Flushing Changes

• Fetching Embedded Objects

• Object Meta-Attributes

• Complex Object Retrieval

• COR Prefetching

• OCI Versus SQL Access to Objects

• Pin Count and Unpinning

• NULL Indicator Structure

• About Creating Objects

• About Freeing and Copying Objects

• Object Reference and Type Reference

• Create Objects Based on Object Views and Object Tables with Primary-Key-Based OIDs

• Error Handling in Object Applications

• About Representing Objects in C Applications
Before an OCI application can work with object types, those types must exist in the
database.

Chapter 18
About Developing an OCI Object Application

18-7

• About Initializing the Environment and the Object Cache
If your OCI application is going to access and manipulate objects, it is essential that you
specify a value of OCI_OBJECT for the mode parameter of the OCIEnvCreate() call, which is
the first OCI call in any OCI application. Specifying this value for mode indicates to the OCI
libraries that your application is working with objects.

• About Making Database Connections
Once the OCI environment has been properly initialized, the application can connect to a
server.

• Retrieving an Object Reference from the Server
To work with objects, your application must first retrieve one or more objects from the
server.

• Pinning an Object
Pinning an object loads the object instance into the object cache, and enables you to
access and modify the instance's attributes and follow references from that object to other
objects, if necessary.

• Manipulating Object Attributes
Once an object has been pinned, an OCI application can modify its attributes.

• About Marking Objects and Flushing Changes
The application must take specific steps to ensure that changes to objects by marking
them and then flushing them are written in the database.

• Fetching Embedded Objects
An application must fetch embedded object instances.

• Object Meta-Attributes
An object's meta-attributes serve as flags that can provide information to an application, or
to the object cache, about the status of an object.

• Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of
which are prefetched based on a given depth level.

• COR Prefetching
The application specifies a complex object while fetching the root object.

• OCI Versus SQL Access to Objects
If an application must manipulate a graph of objects (interrelated by object references),
then it is more effective to use the OCI interface rather than the SQL interface for
accessing objects.

• Pin Count and Unpinning
Each object in the object cache has a pin count associated with it.

• NULL Indicator Structure
If a column in a row of a database table has no value, then that column is said to be NULL,
or to contain a NULL.

• About Creating Objects
An OCI application can create any object using OCIObjectNew().

• About Freeing and Copying Objects
Use OCIObjectFree() to free memory allocated by OCIObjectNew().

• Object Reference and Type Reference
The object extensions to OCI provide the application with the flexibility to access the
contents of objects using their pointers or their references.

Chapter 18
About Developing an OCI Object Application

18-8

• Create Objects Based on Object Views and Object Tables with Primary-Key-Based OIDs
Applications can use the OCIObjectNew() call to create objects, which are based on object
views, or on object tables with primary-key-based object identifiers (OIDs).

• Error Handling in Object Applications
Is like any other OCI application.

See Also:

Basic Object Program Structure

18.3.1 About Representing Objects in C Applications
Before an OCI application can work with object types, those types must exist in the database.

Typically, you create types with SQL DDL statements, such as CREATE TYPE.

When the Oracle database processes the type definition DDL commands, it stores the type
definitions in the data dictionary as type descriptor objects (TDOs).

When your application retrieves instances of object types from the database, it must have a
client-side representation of the objects. In a C program, the representation of an object type is
a struct. In an OCI object application, you may also include a NULL indicator structure
corresponding to each object type structure.

Oracle Database provides a utility called the Object Type Translator (OTT), which generates C
struct representations of database object types for you. For example, suppose that you have a
type in your database declared as follows:

CREATE TYPE emp_t AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER);

OTT produces the following C struct and corresponding NULL indicator struct:

struct emp_t
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emp_t emp_t

struct emp_t_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct emp_t_ind emp_t_ind;

Chapter 18
About Developing an OCI Object Application

18-9

The variable types used in the struct declarations are special types employed by the OCI
object calls. A subset of OCI functions manipulate data of these types. These functions are
mentioned later in this chapter.

These struct declarations are automatically written to a header file whose name is determined
by the OTT input parameters. You can include this header file in the code files for an
application to provide access to objects.

See Also:

• Object Cache and Memory Management for application programmers who want
to use object representations other than the default structs generated by the
object cache

• NULL Indicator Structure

• Using the Object Type Translator with OCI for more information about OTT

• Object-Relational Data Types in OCI for more detail about the subset of OCI
functions that manipulate data of these variable types used in the struct
declarations employed by the OCI object calls

18.3.2 About Initializing the Environment and the Object Cache
If your OCI application is going to access and manipulate objects, it is essential that you
specify a value of OCI_OBJECT for the mode parameter of the OCIEnvCreate() call, which is the
first OCI call in any OCI application. Specifying this value for mode indicates to the OCI libraries
that your application is working with objects.

This notification has the following important effects:

• It establishes the object runtime environment.

• It sets up the object cache.

Memory for the object cache is allocated on demand when objects are loaded into the cache.

If the mode parameter of OCIEnvCreate() or OCIEnvNlsCreate() is not set to OCI_OBJECT, any
attempt to use an object-related function results in an error.

The client-side object cache is allocated in the program's process space. This cache is the
memory for objects that have been retrieved from the server and are available to your
application.

Note:

If you initialize the OCI environment in object mode, your application allocates
memory for the object cache, whether or not the application actually uses object
calls.

Chapter 18
About Developing an OCI Object Application

18-10

See Also:

• Object Advanced Topics in OCI for a detailed explanation of the object cache

• OCIEnvCreate()

• OCIEnvNlsCreate()

18.3.3 About Making Database Connections
Once the OCI environment has been properly initialized, the application can connect to a
server.

This is accomplished through the standard OCI connect calls. When you use these calls, no
additional considerations must be made because this application is accessing objects.

Only one object cache is allocated for each OCI environment. All objects retrieved or created
through different connections within the environment use the same physical object cache.
Each connection has its own logical object cache.

See Also:

OCI Programming Steps for more information about properly initializing the OCI
environment

18.3.4 Retrieving an Object Reference from the Server
To work with objects, your application must first retrieve one or more objects from the server.

You accomplish this by issuing a SQL statement that returns REFs to one or more objects.

Note:

It is also possible for a SQL statement to fetch embedded objects, rather than REFs,
from a database.

In the following example, the application declares a text block that stores a SQL statement
designed to retrieve a REF to a single employee object from an object table of employees
(emp_tab) in the database, when given a particular employee number that is passed as an
input variable (:emp_num) at runtime:

text *selemp = (text *) "SELECT REF(e)
 FROM emp_tab e
 WHERE empno = :emp_num";

Your application should prepare and process this statement as follows in the same way that it
would handle any relational SQL statement:

Chapter 18
About Developing an OCI Object Application

18-11

1. Prepare an application request, using OCIStmtPrepare2().

2. Bind the host input variable using one or more appropriate bind calls.

3. Declare and prepare an output variable to receive the employee object reference. Here
you would use an employee object reference:

OCIRef *emp1_ref = (OCIRef *) 0; /* reference to an employee object */

When you define the output variable, set the dty data type parameter for the define call to
SQLT_REF, the data type constant for REF.

4. Execute the statement with OCUStmtExecute().

5. Fetch the resulting REF into emp1_ref, using OCIStmtFetch2().

At this point, you could use the object reference to access and manipulate an object or objects
from the database.

See Also:

• Fetching Embedded Objects for more information

• OCI Programming Basics

• OCI Programming Steps for general information about preparing and executing
SQL statements

• Advanced Bind Operations in OCI and Advanced Define Operations in OCI for
specific information about binding and defining REF variables

• The demonstration programs included with your Oracle installation for a code
example showing REF retrieval and pinning. For additional information, see OCI
Demonstration Programs.

• OCIStmtPrepare2()

• About Representing Objects in C Applications about using an employee object
reference declaration mentioned in Step 3

• OCIStmtExecute()

• OCIStmtFetch2()

18.3.5 Pinning an Object
Pinning an object loads the object instance into the object cache, and enables you to access
and modify the instance's attributes and follow references from that object to other objects, if
necessary.

Upon completion of the fetch step, your application has a REF, or pointer, to an object. The
actual object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Your application also controls when modified objects are written back to the
server.

Chapter 18
About Developing an OCI Object Application

18-12

Note:

This section deals with a simple pin operation involving a single object at a time. For
information about retrieving multiple objects through complex object retrieval, see
Complex Object Retrieval.

An application pins an object by calling the function OCIObjectPin(). The parameters for this
function allow you to specify the pin option, pin duration, and lock option for the object.

Example 18-3 shows sample code that illustrates a pin operation for the employee reference
your application retrieved in the previous section, Retrieving an Object Reference from the
Server.

In this example, process_error() represents an error-handling function. If the call to
OCIObjectPin() returns anything but OCI_SUCCESS, the error-handling function is called. The
parameters of the OCIObjectPin() function are as follows:

• env is the OCI environment handle.

• err is the OCI error handle.

• emp1_ref is the reference that was retrieved through SQL.

• (OCIComplexObject *) 0 indicates that this pin operation is not utilizing complex object
retrieval.

• OCI_PIN_ANY is the pin option.

• OCI_DURATION_TRANS is the pin duration.

• OCI_LOCK_X is the lock option.

• emp1 is an out parameter that returns a pointer to the pinned object.

Now that the object has been pinned, the OCI application can modify that object. In this simple
example, the object contains no references to other objects.

This section includes the following topic: Array Pin.

Example 18-3 Pinning an Object

if (OCIObjectPin(env, err, emp1_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY,
 OCI_DURATION_TRANS,
 OCI_LOCK_X, &emp1) != OCI_SUCCESS)
 process_error(err);

• Array Pin
Given an array of references, an OCI application can pin an array of objects by calling
OCIObjectArrayPin().

Chapter 18
About Developing an OCI Object Application

18-13

See Also:

• Simple Object Navigation for an example of navigation from one instance to
another

• OCIObjectPin()

• About Pinning an Object Copy for more information about the pin option
OCI_PIN_ANY

• Object Duration for more information about the pin duration OCI_DURATION_TRANS
• About Locking Objects for Update for more information about the lock option

OCI_LOCK_X

18.3.5.1 Array Pin
Given an array of references, an OCI application can pin an array of objects by calling
OCIObjectArrayPin().

The references may point to objects of different types. This function provides the ability to fetch
objects of different types from different tables in one network round-trip.

See Also:

OCIObjectArrayPin()

18.3.6 Manipulating Object Attributes
Once an object has been pinned, an OCI application can modify its attributes.

OCI provides a set of functions for working with data types of object type structs, known as the
OCI data type mapping and manipulation functions.

Note:

Changes made to objects pinned in the object cache affect only those object copies
(instances), and not the original object in the database. For changes made by the
application to reach the database, those changes must be flushed or committed to
the server.

For example, assume that the employee object in the previous section was pinned so that the
employee's salary could be increased. Assume also that at this company, yearly salary
increases are prorated for employees who have been at the company for less than 180 days.

For this example, you must access the employee's hire date and check whether it is more or
less than 180 days before the current date. Based on that calculation, the employee's salary is
increased by either $5000 (for more than 180 days) or $3000 (for less than 180 days). The
sample code in Example 18-4 demonstrates this process.

Chapter 18
About Developing an OCI Object Application

18-14

Note that the data type mapping and manipulation functions work with a specific set of data
types; you must convert other types, like int, to the appropriate OCI types before using them
in calculations.

Example 18-4 points out how values must be converted to OCI data types (for example,
OCIDate, OCINumber) before being passed as parameters to the OCI data type mapping and
manipulation functions.

Example 18-4 Manipulating Object Attributes in OCI

/* assume that sysdate has been fetched into sys_date, a string. */
/* emp1 and emp1_ref are the same as in previous sections. */
/* err is the OCI error handle. */
/* NOTE: error handling code is not included in this example. */

sb4 num_days; /* the number of days between today and hiredate */
OCIDate curr_date; /* holds the current date for calculations */
int raise; /* holds the employee's raise amount before calculations */
OCINumber raise_num; /* holds employee's raise for calculations */
OCINumber new_sal; /* holds the employee's new salary */

/* convert date string to an OCIDate */
OCIDateFromText(err, (text *) sys_date, (ub4) strlen(sys_date), (text *)
 NULL, (ub1) 0, (text *) NULL, (ub4) 0, &curr_date);

 /* get number of days between hire date and today */
OCIDateDaysBetween(err, &curr_date, &emp1->hiredate, &num_days);

/* calculate raise based on number of days since hiredate */
if (num_days > 180)
 raise = 5000;
else
 raise = 3000;

/* convert raise value to an OCINumber */
OCINumberFromInt(err, (void *)&raise, (uword)sizeof(raise),
 OCI_NUMBER_SIGNED, &raise_num);

/* add raise amount to salary */
OCINumberAdd(err, &raise_num, &emp1->salary, &new_sal);
OCINumberAssign(err, &new_sal, &emp1->salary);

See Also:

• About Marking Objects and Flushing Changes for more information about
flushing changes or committing them to the server

• Object-Relational Data Types in OCI for more information about the OCI data
types and the data type mapping and manipulation functions

18.3.7 About Marking Objects and Flushing Changes
The application must take specific steps to ensure that changes to objects by marking them
and then flushing them are written in the database.

Chapter 18
About Developing an OCI Object Application

18-15

In Example 18-4, an attribute of an object instance was changed. At this point, however, that
change exists only in the client-side object cache. The application must take specific steps to
ensure that the change is written in the database.

The first step is to indicate that the object has been modified. This is done with the
OCIObjectMarkUpdate() function. This function marks the object as dirty (modified).

Objects that have had their dirty flag set must be flushed to the server for the changes to be
recorded in the database. You can do this in three ways:

• Flush a single dirty object by calling OCIObjectFlush().

• Flush the entire cache using OCICacheFlush(). In this case OCI traverses the dirty list
maintained by the cache and flushes the dirty objects to the server.

• Call OCICacheFlush() to commit a transaction. Doing so also traverses the dirty list and
flushes the dirty objects to the server.

The flush operations work only on persistent objects in the cache. Transient objects are never
flushed to the server.

Flushing an object to the server can activate triggers in the database. In fact, on some
occasions an application may want to explicitly flush objects just to fire triggers on the server
side.

See Also:

• OCI Support for Transactions for more information about OCITransCommit()
• About Creating Objects for information about transient and persistent objects

• Object Meta-Attributes for information about seeing and checking object meta-
attributes, such as dirty

• OCIObjectMarkUpdate()

• OCIObjectFlush()

• OCICacheFlush()

• OCICacheFlush()

18.3.8 Fetching Embedded Objects
An application must fetch embedded object instances.

If your application must fetch an embedded object instance—an object stored in a column of a
regular table, rather than an object table—you cannot use the REF retrieval mechanism
described in Retrieving an Object Reference from the Server. Embedded instances do not
have object identifiers, so it is not possible to get a REF to them; they cannot serve as the basis
for object navigation. Many situations exist, however, in which an application must fetch
embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
 street2 varchar2(50),
 city varchar2(30),

Chapter 18
About Developing an OCI Object Application

18-16

 state char(2),
 zip number(5));

You could then use that type as the data type of a column in another table:

CREATE TABLE clients
(name varchar2(40),
 addr address);

Your OCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name='BEAR BYTE DATA MANAGEMENT'

This statement would return an embedded address object from the clients table. The
application could then use the values in the attributes of this object for other processing.

Your application should prepare and process this statement in the same way that it would
handle any relational SQL statement, as described in OCI Programming Basics:

• Prepare an application request, using OCIStmtPrepare2().

• Bind the input variable using one or more appropriate bind calls.

• Define an output variable to receive the address instance. You use a C struct
representation of the object type that was generated by OTT, as described in About
Representing Objects in C Applications.

addr1 *address; /* variable of the address struct type */

When you define the output variable, set the dty data type parameter for the define call to
SQLT_NTY, the data type constant for named data types.

• Execute the statement with OCIStmtExecute().

• Fetch the resulting instance into addr1, using OCIStmtFetch2().

Following this operation, you can access the attributes of the instance, as described in
Manipulating Object Attributes, or pass the instance as an input parameter for another SQL
statement.

Note:

Changes made to an embedded instance can be made persistent only by executing
a SQL UPDATE statement.

Chapter 18
About Developing an OCI Object Application

18-17

See Also:

• OCI Programming Steps for more information about preparing and executing
SQL statements

• OCIStmtPrepare2()

• OCIStmtExecute()

• OCIStmtFetch2()

18.3.9 Object Meta-Attributes
An object's meta-attributes serve as flags that can provide information to an application, or to
the object cache, about the status of an object.

For example, one of the meta-attributes of an object indicates whether it has been flushed to
the server. Object meta-attributes can help an application control the behavior of instances.

Persistent and transient object instances have different sets of meta-attributes. The meta-
attributes for persistent objects are further subdivided into persistent meta-attributes and
transient meta-attributes. Transient meta-attributes exist only when an instance is in memory.
Persistent meta-attributes also apply to objects stored in the server.

This section includes the following topics:

• Persistent Object Meta-Attributes

• Additional Attribute Functions

• Transient Object Meta-Attributes

• Persistent Object Meta-Attributes
Lists and describes the meta-attributes for standalone persistent objects.

• Additional Attribute Functions
Lists and describes additional attribute functions known as set and check functions.

• Transient Object Meta-Attributes
Lists and describes transient object meta-attributes.

18.3.9.1 Persistent Object Meta-Attributes
Lists and describes the meta-attributes for standalone persistent objects.

Table 18-1 shows the meta-attributes for standalone persistent objects.

Table 18-1 Meta-Attributes of Persistent Objects

Meta‐Attributes Meaning

existent Does the object exist?

nullity Null information of the instance

locked Has the object been locked?

dirty Has the object been marked as dirtied?

pinned Is the object pinned?

Chapter 18
About Developing an OCI Object Application

18-18

Table 18-1 (Cont.) Meta-Attributes of Persistent Objects

Meta‐Attributes Meaning

allocation duration See Object Duration.

pin duration See Object Duration.

Note:

Embedded persistent objects only have the nullity and allocation duration attributes,
which are transient.

OCI provides the OCIObjectGetProperty() function, which allows an application to check the
status of a variety of attributes of an object. The syntax of the function is:

sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 const void *obj,
 OCIObjectPropId propertyId,
 void *property,
 ub4 *size);

The propertyId and property parameters are used to retrieve information about any of a
variety of properties or attributes.

The different property IDs and the corresponding type of property argument follow.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or a value
instance. The property argument must be a pointer to a variable of type OCIObjectLifetime.
Possible values include:

• OCI_OBJECT_PERSISTENT
• OCI_OBJECT_TRANSIENT
• OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big enough to
hold the schema name, an error is returned; the error message communicates the required
size. Upon success, the size of the returned schema name in bytes is returned by size. The
property argument must be an array of type text, and size should be set to the size of the
array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the given object
points to a transient instance or a value. If the input buffer is not big enough to hold the table
name, an error is returned; the error message communicates the required size. Upon success,
the size of the returned table name in bytes is returned by size. The property argument must
be an array of type text and size should be set to the size of the array in bytes by the caller.

Chapter 18
About Developing an OCI Object Application

18-19

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object points to a
value instance. The property argument must be a pointer to a variable of type OCIDuration.
Valid values include:

• OCI_DURATION_SESSION
• OCI_DURATION_TRANS

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a pointer to
a variable of type OCIDuration. Valid values include:

• OCI_DURATION_SESSION
• OCI_DURATION_TRANS

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock status is indicated by OCILockOpt.
An error is returned if the given object points to a transient or value instance. The property
argument must be a pointer to a variable of type OCILockOpt. The lock status of an object can
also be retrieved by calling OCIObjectIsLocked().

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object, updated object,
or deleted object. An error is returned if the given object points to a transient or value instance.
The property argument must be of type OCIObjectMarkStatus. Valid values include:

• OCI_OBJECT_NEW
• OCI_OBJECT_DELETED
• OCI_OBJECT_UPDATED
The following macros are available to test the object mark status:

• OCI_OBJECT_IS_UPDATED (flag)

• OCI_OBJECT_IS_DELETED (flag)

• OCI_OBJECT_IS_NEW (flag)

• OCI_OBJECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is an object view or not. If the property value
returned is TRUE, the object is a view; otherwise, it is not. An error is returned if the given
object points to a transient or value instance. The property argument must be of type
boolean.
Just as a view is a virtual table, an object view is a virtual object table. Each row in the view is
an object: you can call its methods, access its attributes using the dot notation, and create a
REF that points to it.

Chapter 18
About Developing an OCI Object Application

18-20

See Also:

• OCIObjectGetProperty()

• Object Duration for more information about durations

• OCIObjectIsLocked()

18.3.9.2 Additional Attribute Functions
Lists and describes additional attribute functions known as set and check functions.

OCI also provides functions that allow an application to set or check some of these attributes
directly or indirectly, as shown in Table 18-2.

Table 18-2 Set and Check Functions

Meta-Attribute Set with Check with

nullity <none> OCIObjectGetInd()

existence <none> OCIObjectExists()

locked OCIObjectLock() OCIObjectIsLocked()

dirty OCIObjectMarkUpdate() OCIObjectIsDirty()

18.3.9.3 Transient Object Meta-Attributes
Lists and describes transient object meta-attributes.

Transient objects have no persistent attributes. Table 18-3 shows the following transient
attributes.

Table 18-3 Transient Meta-Attributes

Transient Meta-Attributes Meaning

existent Does the object exist?

pinned Is the object being accessed by the application?

dirty Has the object been marked as dirtied?

nullity Null information of the instance.

allocation duration See Object Duration.

pin duration See Object Duration.

18.3.10 Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of which
are prefetched based on a given depth level.

In Example 18-3 and Example 18-4, only a single instance at a time was fetched or pinned. In
these cases, each pin operation involved a separate server round-trip to retrieve the object.

Chapter 18
About Developing an OCI Object Application

18-21

Object-oriented applications often model their problems as a set of interrelated objects that
form graphs of objects. The applications process these objects by starting at some initial set of
objects, and then using the references in these initial objects to traverse the remaining objects.
In a client/server setting, each of these traversals could result in costly network round-trips to
fetch objects.

Application performance with objects can be improved with complex object retrieval (COR).
This is a prefetching mechanism in which an application specifies the criteria for retrieving a
set of linked objects in a single operation.

Note:

As described later, this does not mean that these prefetched objects are all pinned.
They are fetched into the object cache, so that subsequent pin calls are local
operations.

A complex object is a set of logically related objects consisting of a root object, and a set of
objects each of which is prefetched based on a given depth level. The root object is explicitly
fetched or pinned. The depth level is the shortest number of references that must be traversed
from the root object to a given prefetched object in a complex object.

An application specifies a complex object by describing its content and boundary. The fetching
of complex objects is constrained by an environment's prefetch limit, the amount of memory in
the object cache that is available for prefetching objects.

Note:

The use of COR does not add functionality, but it improves performance. Its use is
optional.

Consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
(po_number NUMBER,
 cust REF customer,
 related_orders REF purchase_order,
 line_items line_item_varray);

The purchase_order type contains a scalar value for po_number, a VARRAY of line items, and
two references. The first is to a customer type, and the second is to a purchase_order type,
indicating that this type may be implemented as a linked list.

When fetching a complex object, an application must specify the following:

• A REF to the desired root object.

• One or more pairs of type and depth information to specify the boundaries of the complex
object. The type information indicates which REF attributes should be followed for COR,
and the depth level indicates how many levels deep those links should be followed.

In the preceding purchase order object, the application must specify the following:

Chapter 18
About Developing an OCI Object Application

18-22

• The REF to the root purchase order object

• One or more pairs of type and depth information for cust, related_orders, or line_items
An application fetching a purchase order may very likely need access to the customer
information for that order. Using simple navigation, this would require two server accesses to
retrieve the two objects. Through complex object retrieval, the customer can be prefetched
when the application pins the purchase order. In this case, the complex object would consist of
the purchase order object and the customer object that it references.

In the previous example, the application would specify the purchase_order REF, and would
indicate that the cust REF attribute should be followed to a depth level of 1, as follows:

• REF(PO object)
• {(customer, 1)}

For the application to prefetch the purchase_order object and all objects in the object graph it
contains, the application would specify that both the cust and related_orders should be
followed to the maximum depth level possible.

• REF(PO object)
• {(customer, UB4MAXVAL), (purchase_order, UB4MAXVAL)}

(In this example, UB4MAXVAL specifies that all objects of the specified type reachable through
references from the root object should be prefetched.)

For an application to fetch a PO and all the associated line items, it would specify:

• REF(PO object)
• {(line_item, 1)}

The application can also fetch all objects reachable from the root object by way of REFs
(transitive closure) by setting the level parameter to the depth desired. For the preceding two
examples, the application could also specify (PO object REF, UB4MAXVAL) and (PO object
REF, 1) respectively, to prefetch required objects. Although, doing so results in many
extraneous fetches, quite simple to specify and requires only one server round-trip.

This section includes the following topics:

• About Prefetching Objects

• About Implementing Complex Object Retrieval in OCI

• About Prefetching Objects
After specifying and fetching a complex object, subsequent fetches of objects contained in
the complex object do not incur the cost of a network round-trip, because these objects
have been prefetched and are in the object cache.

• About Implementing Complex Object Retrieval in OCI
Complex object retrieval (COR) allows an application to prefetch a complex object while
fetching the root object.

18.3.10.1 About Prefetching Objects
After specifying and fetching a complex object, subsequent fetches of objects contained in the
complex object do not incur the cost of a network round-trip, because these objects have been
prefetched and are in the object cache.

Chapter 18
About Developing an OCI Object Application

18-23

Consider that excessive prefetching of objects can lead to a flooding of the object cache. This
flooding, in turn, may force out other objects that the application had pinned, leading to a
performance degradation instead of performance improvement.

Note:

If there is insufficient memory in the cache to hold all prefetched objects, some
objects may not be prefetched. The application incurs a network round-trip when
those objects are accessed later.

The READ or SELECT privilege is needed for all prefetched objects. Objects in the complex object
for which the application does not have READ or SELECT privilege are not prefetched.

18.3.10.2 About Implementing Complex Object Retrieval in OCI
Complex object retrieval (COR) allows an application to prefetch a complex object while
fetching the root object.

The complex object specifications are passed to the same OCIObjectPin() function used for
simple objects.

An application specifies the parameters for complex object retrieval using a complex object
retrieval handle. This handle is of type OCIComplexObject and is allocated in the same way as
other OCI handles.

The complex object retrieval handle contains a list of complex object retrieval descriptors. The
descriptors are of type OCIComplexObjectComp, and are allocated in the same way as other
OCI descriptors.

Each COR descriptor contains a type REF and a depth level. The type REF specifies a type of
reference to be followed while constructing the complex object. The depth level indicates how
far a particular type of reference should be followed. Specify an integer value, or specify the
constant UB4MAXVAL for the maximum possible depth level.

The application can also specify the depth level in the COR handle without creating COR
descriptors for type and depth parameters. In this case, all REFs are followed to the depth
specified in the COR handle. The COR handle can also be used to specify whether a collection
attribute should be fetched separately on demand (out-of-line) as opposed to the default case
of fetching it along with the containing object (inline).

The application uses OCIAttrSet() to set the attributes of a COR handle. The attributes are:

OCI_ATTR_COMPLEXOBJECT_LEVEL - the depth level

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE - fetch collection attribute in an object type out-of-
line

The application allocates the COR descriptor using OCIDescriptorAlloc() and then can set
the following attributes:

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE - the type REF
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL - the depth level for references of the preceding
type

Chapter 18
About Developing an OCI Object Application

18-24

Once these attributes are set, the application calls OCIParamSet() to put the descriptor into a
complex object retrieval handle. The handle has an OCI_ATTR_PARAM_COUNT attribute that
specifies the number of descriptors on the handle. This attribute can be read with
OCIAttrGet().

Once the handle has been populated, it can be passed to the OCIObjectPin() call to pin the
root object and prefetch the remainder of the complex object.

The complex object retrieval handles and descriptors must be freed explicitly when they are no
longer needed.

See Also:

• Handles

• OCI Descriptors

• OCIObjectPin()

• OCIAttrSet()

• OCIDescriptorAlloc()

• OCIParamSet()

• OCIAttrGet()

• OCIObjectPin()

18.3.11 COR Prefetching
The application specifies a complex object while fetching the root object.

The prefetched objects are obtained by doing a breadth-first traversal of the graphs of objects
rooted at a given root object. The traversal stops when all required objects have been
prefetched, or when the total size of all the prefetched objects exceeds the prefetch limit.

This section includes the following topics:

• COR Interface

• Example of COR

• COR Interface
The interface for fetching complex objects is the OCI pin interface.

• Example of COR
Shows how an application program can be modified to use complex object retrieval.

18.3.11.1 COR Interface
The interface for fetching complex objects is the OCI pin interface.

The application can pass an initialized COR handle to OCIObjectPin() (or an array of handles
to OCIObjectArrayPin()) to fetch the root object and the prefetched objects specified in the
COR handle.

sword OCIObjectPin (OCIEnv *env,
 OCIError *err,

Chapter 18
About Developing an OCI Object Application

18-25

 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 void **object);

sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 void **obj_array,
 ub4 *pos);

Note the following points when using COR:

• A null COR handle argument defaults to pinning just the root object.

• A COR handle with the type of the root object and a depth level of 0 fetches only the root
object and is thus equivalent to a null COR handle.

• The lock options apply only to the root object.

Note:

To specify lock options for prefetched objects, the application can visit all the
objects in a complex object, create an array of REFs, and lock the entire complex
object in another round-trip using the array interface (OCIObjectArrayPin()).

See Also:

• OCIObjectPin()

• OCIObjectArrayPin()

• OCIObjectArrayPin()

18.3.11.2 Example of COR
Shows how an application program can be modified to use complex object retrieval.

Example 18-5 illustrates how an application program can be modified to use complex object
retrieval.

Consider an application that displays a purchase order and the line items associated with it.
The code in boldface accomplishes this. The rest of the code uses complex object retrieval for
prefetching and thus enhances the application's performance.

Chapter 18
About Developing an OCI Object Application

18-26

Example 18-5 Using Complex Object Retrieval in OCI

OCIEnv *envhp;
OCIError *errhp;
OCIRef **liref;
OCIRef *poref;
OCIIter *itr;
boolean eoc;
purchase_order *po = (purchase_order *)0;
line_item *li = (line_item *)0;
OCISvcCtx *svchp;
OCIComplexObject *corhp;
OCIComplexObjectComp *cordp;
OCIType *litdo;
ub4 level = 0;

/* get COR Handle */
OCIHandleAlloc((void *) envhp, (void **) &corhp, (ub4)
 OCI_HTYPE_COMPLEXOBJECT, 0, (void **)0);

/* get COR descriptor for type line_item */
OCIDescriptorAlloc((void *) envhp, (void **) &cordp, (ub4)
 OCI_DTYPE_COMPLEXOBJECTCOMP, 0, (void **) 0);

/* get type of line_item to set in COR descriptor */
OCITypeByName(envhp, errhp, svchp, (const text *) 0, (ub4) 0,
 (const text *) "LINE_ITEM",
 (ub4) strlen((const char *) "LINE_ITEM"), (text *) 0,
 (ub4) 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &litdo);

/* set line_item type in COR descriptor */
OCIAttrSet((void *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (void *) litdo, (ub4) sizeof(void *), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE, (OCIError *) errhp);
level = 1;

/* set depth level for line_item_varray in COR descriptor */
OCIAttrSet((void *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (void *) &level, (ub4) sizeof(ub4), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL, (OCIError *) errhp);

/* put COR descriptor in COR handle */
OCIParamSet(corhp, OCI_HTYPE_COMPLEXOBJECT, errhp, cordp,
 OCI_DTYPE_COMPLEXOBJECTCOMP, 1);

/* pin the purchase order */
OCIObjectPin(envhp, errhp, poref, corhp, OCI_PIN_LATEST,
 OCI_DURATION_SESSION, OCI_LOCK_NONE, (void **)&po);

/* free COR descriptor and COR handle */
OCIDescriptorFree((void *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP);
OCIHandleFree((void *) corhp, (ub4) OCI_HTYPE_COMPLEXOBJECT);

/* iterate and print line items for this purchase order */
OCIIterCreate(envhp, errhp, po->line_items, &itr);

/* get first line item */
OCIIterNext(envhp, errhp, itr, (void **)&liref, (void **)0, &eoc);
while (!eoc) /* not end of collection */
{
/* pin line item */

Chapter 18
About Developing an OCI Object Application

18-27

 OCIObjectPin(envhp, errhp, *liref, (void *)0, OCI_PIN_RECENT,
 OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (void **)&li));
 display_line_item(li);

/* get next line item */
OCIIterNext(envhp, errhp, itr, (void **)&liref, (void **)0, &eoc);
}

18.3.12 OCI Versus SQL Access to Objects
If an application must manipulate a graph of objects (interrelated by object references), then it
is more effective to use the OCI interface rather than the SQL interface for accessing objects.

Retrieving a graph of objects using the SQL interface may require executing multiple SELECT
statements, requiring multiple network round-trips. Using the complex object retrieval capability
provided by OCI, the application can retrieve the graph of objects in one OCIObjectPin() call.

Consider the update case where the application retrieves a graph of objects, and modifies it
based upon user interaction, and then wants to make the modifications persistent in the
database. Using the SQL interface, the application would have to execute multiple UPDATE
statements to update the graph of objects. If the modifications involved creation of new objects
and deletion of existing objects, then execution of corresponding INSERT and DELETE
statements would also be required. In addition, the application would have to do more
bookkeeping, such as keeping track of table names, because this information is required for
executing the INSERT, UPDATE, and DELETE statements.

Using the OCICacheFlush() function, the application can flush all modifications (insertion,
deletion, and update of objects) in a single operation. OCI does all the bookkeeping, thereby
requiring less coding in the application. For manipulating a graph of objects OCI is not only
efficient, but also provides an easy-to-use interface.

Consider a different case in which the application must fetch an object when given its REF. In
OCI, this is achieved by pinning the object using the OCIObjectPin() call. In the SQL interface,
this can be achieved by dereferencing the REF in a SELECT statement (for example, SELECT
DEREF(ref) from tbl;). Consider situations where the same REF (reference to the same
object) is being dereferenced multiple times in a transaction. By calling OCIObjectPin() with
the OCI_PIN_RECENT option, the object is fetched from the server only once for the transaction,
and repeated pins on the same REF return a pointer to the pinned object in the cache. In the
SQL interface, each execution of the SELECT DEREF... statement would result in fetching the
object from the server. This would result in multiple round-trips to the server and multiple
copies of the same object.

Finally, consider the case in which the application must fetch a nonreferenceable object, as in
the following example:

CREATE TABLE department
(
deptno number,
deptname varchar2(30),
manager employee_t
);

The employee_t instances stored in the manager column are nonreferenceable. You can only
use the SQL interface to fetch manager column instances. But if employee_t has any REF
attributes, OCI calls can then be used to navigate the REF.

Chapter 18
About Developing an OCI Object Application

18-28

See Also:

• OCIObjectPin()

• OCICacheFlush()

18.3.13 Pin Count and Unpinning
Each object in the object cache has a pin count associated with it.

The pin count indicates the number of code modules that are concurrently accessing the
object. The pin count is set to 1 when an object is pinned into the cache for the first time.
Objects prefetched with complex object retrieval enter the object cache with a pin count of
zero.

It is possible to pin an pinned object. Doing so increases the pin count by one. When a process
finishes using an object, it should unpin it, using OCIObjectUnpin(). This call decrements the
pin count by one.

When the pin count of an object reaches zero, that object is eligible to be aged out of the
cache if necessary, freeing up the memory space occupied by the object.

The pin count of an object can be set to zero explicitly by calling OCIObjectPinCountReset().

An application can unpin all objects in the cache related to a specific connection, by calling
OCICacheUnpin().

See Also:

• About Freeing an Object Copy for more information about the conditions under
which objects with zero pin count are removed from the cache and about objects
being aged out of the cache

• About Marking Objects and Flushing Changes for information about explicitly
flushing an object or the entire cache

• OCIObjectUnpin()

• OCIObjectPinCountReset()

• OCICacheUnpin()

18.3.14 NULL Indicator Structure
If a column in a row of a database table has no value, then that column is said to be NULL, or to
contain a NULL.

Two different types of NULLs can apply to objects:

• Any attribute of an object can have a NULL value. This indicates that the value of that
attribute of the object is not known.

• An object instance may be atomically NULL, meaning that the value of the entire object is
unknown.

Chapter 18
About Developing an OCI Object Application

18-29

Atomic nullity is not the same thing as nonexistence. An atomically NULL instance still exists; its
value is just not known. It may be thought of as an existing object with no data.

When working with objects in OCI, an application can define a NULL indicator structure for
each object type used by the application. In most cases, doing so simply requires including the
NULL indicator structure generated by OTT along with the struct declaration. When the OTT
output header file is included, the NULL indicator struct becomes available to your application.

For each type, the NULL indicator structure includes an atomic NULL indicator (whose type is
OCIInd), and a NULL indicator for each attribute of the instance. If the type has an object
attribute, the NULL indicator structure includes that attribute's NULL indicator structure.
Example 18-6 shows the C representations of types with their corresponding NULL indicator
structures.

Note:

The dependentsAge field of person_ind indicates whether the entire varray
(dependentsAge field of person) is atomically NULL or not. NULL information of
individual elements of dependentsAge can be retrieved through the elemind
parameter of a call to OCICollGetElem(). Similarly, the prevAddr field of person_ind
indicates whether the entire nested table (prevAddr field of person) is atomically NULL
or not. NULL information of individual elements of prevAddr can be retrieved through
the elemind parameter of a call to OCICollGetElem().

For an object type instance, the first field of the NULL indicator structure is the atomic NULL
indicator, and the remaining fields are the attribute NULL indicators whose layout resembles the
layout of the object type instance's attributes.

Checking the value of the atomic NULL indicator allows an application to test whether an
instance is atomically NULL. Checking any of the others allows an application to test the NULL
status of that attribute, as in the following code sample:

person_ind *my_person_ind
if(my_person_ind -> _atomic == OCI_IND_NULL)
 printf ("instance is atomically NULL\n");
else
if(my_person_ind -> fname == OCI_IND_NULL)
 printf ("fname attribute is NULL\n");

In the preceding example, the value of the atomic NULL indicator, or one of the attribute NULL
indicators, is compared to the predefined value OCI_IND_NULL to test if it is NULL. The following
predefined values are available for such a comparison:

• OCI_IND_NOTNULL, indicating that the value is not NULL
• OCI_IND_NULL, indicating that the value is NULL
• OCI_IND_BADNULL indicates that an enclosing object (or parent object) is NULL. This is used

by PL/SQL, and may also be referred to as an INVALID_NULL. For example, if a type
instance is NULL, then its attributes are INVALID_NULLs.

Use the function OCIObjectGetInd() to retrieve the NULL indicator structure of an object.

If you update an attribute in its C structure, you must also set the NULL indicator for that
attribute:

Chapter 18
About Developing an OCI Object Application

18-30

obj->attr1 = string1;
OCIObjectGetInd(envhp, errhp, obj, &ind);
ind->attr1 = OCI_IND_NOTNULL;

Example 18-6 C Representations of Types with Their Corresponding NULL Indicator
Structures

struct address
{
 OCINumber no;
 OCIString *street;
 OCIString *state;
 OCIString *zip;
};
typedef struct address address;

struct address_ind
{
 OCIInd _atomic;
 OCIInd no;
 OCIInd street;
 OCIInd state;
 OCIInd zip;
};
typedef struct address_ind address_ind;

struct person
{
 OCIString *fname;
 OCIString *lname;
 OCINumber age;
 OCIDate birthday;
 OCIArray *dependentsAge;
 OCITable *prevAddr;
 OCIRaw *comment1;
 OCILobLocator *comment2;
 address addr;
 OCIRef *spouse;
};
typedef struct person person;

struct person_ind
{
 OCIInd _atomic;
 OCIInd fname;
 OCIInd lname;
 OCIInd age;
 OCIInd birthday;
 OCIInd dependentsAge;
 OCIInd prevAddr;
 OCIInd comment1;
 OCIInd comment2;
 address_ind addr;
 OCIInd spouse;
};
typedef struct person_ind person_ind;

Chapter 18
About Developing an OCI Object Application

18-31

See Also:

• Using the Object Type Translator with OCI for more information about OTT-
generated NULL indicator structures

• OCICollGetElem()

• OCIObjectGetInd()

18.3.15 About Creating Objects
An OCI application can create any object using OCIObjectNew().

To create a persistent object, the application must specify the object table where the new
object resides. This value can be retrieved by calling OCIObjectPinTable(), and it is passed in
the table parameter. To create a transient object, the application must pass only the type
descriptor object (retrieved by calling OCIDescribeAny()) for the type of object being created.

OCIObjectNew() can also be used to create instances of scalars (for example, REF, LOB,
string, raw, number, and date) and collections (for example, varray and nested table) by
passing the appropriate value for the typecode parameter.

This section includes the following topic: Attribute Values of New Objects.

• Attribute Values of New Objects
By default, all attributes of a newly created object have NULL values.

See Also:

• OCIObjectNew()

• OCIObjectPinTable()

• OCIDescribeAny()

18.3.15.1 Attribute Values of New Objects
By default, all attributes of a newly created object have NULL values.

After initializing attribute data, the user must change the corresponding NULL status of each
attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created. This is
accomplished by setting the OCI_ATTR_OBJECT_NEWNOTNULL attribute of the environment handle
to TRUE using OCIAttrSet(). This mode can later be turned off by setting the attribute to FALSE.

If OCI_ATTR_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew() creates a non-NULL
object. The attributes of the object have the default values described in Table 18-4, and the
corresponding NULL indicators are set to NOT NULL.

Chapter 18
About Developing an OCI Object Application

18-32

Table 18-4 Attribute Values for New Objects

Attribute Type Default Value

REF If an object has a REF attribute, the user must set it to a valid REF before
flushing the object or an error is returned

DATE The earliest possible date that Oracle Database allows, which is
midnight, 01-JAN-4712 BCE (equivalent to Julian day 1)

ANSI DATE The earliest possible date that Oracle Database allows, 01-JAN-4712
BCE (equivalent to Julian day 1)

TIMESTAMP The earliest possible date and time that Oracle Database allows, which
is midnight, 01-JAN-4712 BCE (equivalent to Julian day 1)

TIMESTAMP WITH TIME ZONE The earliest possible date and time that Oracle Database allows, which
is midnight, 01-JAN-4712 BCE (equivalent to Julian day 1) at UTC (0:0)
time zone

TIMESTAMP WITH LOCAL TIME
ZONE

The earliest possible date and time that Oracle Database allows, which
is midnight, 01-JAN-4712 BCE (equivalent to Julian day 1) at UTC (0:0)
time zone

INTERVAL YEAR TO MONTH INTERVAL '0-0' YEAR TO MONTH

INTERVAL DAY TO SECOND INTERVAL '0 0:0:0' DAY TO SECOND

FLOAT 0

NUMBER 0

DECIMAL 0

RAW Raw data with length set to 0. Note: the default value for a RAW attribute
is the same as that for a NULL RAW attribute.

VARCHAR2, NVARCHAR2 OCIString with 0 length and first char set to NULL. The default value is
the same as that of a NULL string attribute.

CHAR, NCHAR OCIString with 0 length and first char set to NULL. The default value is
the same as that of a null string attribute.

VARCHAR OCIString with 0 length and first char set to NULL. The default value is
the same as that of a null string attribute.

VARRAY Collection with 0 elements

NESTED TABLE Table with 0 elements

CLOB, NCLOB Empty CLOB

BLOB Empty BLOB

BFILE The user must initialize the BFILE to a valid value by setting the
directory object and file name.

Chapter 18
About Developing an OCI Object Application

18-33

See Also:

• OCIAttrSet()

• OCIObjectNew()

18.3.16 About Freeing and Copying Objects
Use OCIObjectFree() to free memory allocated by OCIObjectNew().

An object instance can have attributes that are pointers to additional memory (secondary
memory chunks).

Freeing an object deallocates all the memory allocated for the object, including the associated
NULL indicator structure and any secondary memory chunks. You must neither explicitly free
the secondary memory chunks nor reassign the pointers. Doing so can result in memory leaks
and memory corruption. This procedure deletes a transient, but not a persistent, object before
its lifetime expires. An application should use OCIObjectMarkDelete() to delete a persistent
object.

An application can copy one instance to another instance of the same type using
OCIObjectCopy().

See Also:

• Memory Layout of an Instance

• OCI Navigational and Type Functions

• OCIObjectNew()

• OCIObjectFree()

• OCIObjectMarkDelete()

• OCIObjectCopy()

18.3.17 Object Reference and Type Reference
The object extensions to OCI provide the application with the flexibility to access the contents
of objects using their pointers or their references.

OCI provides the function OCIObjectGetObjectRef() to return a reference to an object when
given the object's pointer.

For applications that also want to access the type information of objects, OCI provides the
function OCIObjectGetProperty() to return a reference to an object's type descriptor object
(TDO), when given a pointer to the object.

When a persistent object based on an object table with system-generated object identifiers
(OIDs) is created, a reference to this object may be immediately obtained by using
OCIObjectGetObjectRef(). But when a persistent object is based on an object view or on an

Chapter 18
About Developing an OCI Object Application

18-34

object table with primary-key-based OIDs, all attributes belonging to the primary key must first
be set before a reference can be obtained.

See Also:

• OCIObjectGetObjectRef()

• OCIObjectGetProperty()

• OCIObjectGetObjectRef()

18.3.18 Create Objects Based on Object Views and Object Tables with
Primary-Key-Based OIDs

Applications can use the OCIObjectNew() call to create objects, which are based on object
views, or on object tables with primary-key-based object identifiers (OIDs).

Because object identifiers of such views and tables are based on attribute values, applications
must then use OCIObjectSetAttr() to set all attributes belonging to the primary key. Once the
attribute values have been set, applications can obtain an object reference based on the
attribute value by calling OCIObjectGetObjectRef().

This process involves the following steps:

1. Pin the object view or object table on which the new object is to be based.

2. Create a new object using OCIObjectNew(), passing in the handle to the table or view
obtained by the pin operation in Step 1.

3. Use OCIObjectSetAttr() to fill in the necessary values for the object attributes. These
must include those attributes that make up the user-defined object identifier for the object
table or object view.

4. Use OCIObjectNew() to allocate an object reference, passing in the handle to the table or
view obtained by the pin operation in Step 1.

5. Use OCIObjectGetObjectRef() to obtain the primary-key-based reference to the object, if
necessary. If desired, return to Step 2 to create more objects.

6. Flush the newly created objects to the server.

Example 18-7 Creating a New Object for an Object View

void object_view_new ()
{
void *table;
OCIRef *pkref;
void *object;
OCIType *emptdo;
...
/* Set up the service context, error handle and so on.. */
...
/* Pin the object view */
OCIObjectPinTable(envp,errorp,svctx, "HR", strlen("HR"), "EMP_VIEW",
 strlen("EMP_VIEW"),(void *) 0, OCI_DURATION_SESSION, (void **) &table);

/* Create a new object instance */
OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_OBJECT,(OCIType *)emptdo, table,

Chapter 18
About Developing an OCI Object Application

18-35

OCI_DURATION_SESSION,FALSE,&object);

/* Populate the attributes of "object" */
OCIObjectSetAttr(...);
...
/* Allocate an object reference */
OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_REF, (OCIType *)0, (void *)0,
 OCI_DURATION_SESSION,TRUE,&pkref);

/* Get the reference using OCIObjectGetObjectRef */
OCIObjectGetObjectRef(envp,errorp,object,pkref);
...
/* Flush new objects to server */
...
} /* end function */

Example 18-7 shows how this process might be implemented to create a new object for the
emp_view object view in the HR schema.

See Also:

• OCIObjectNew()

• OCIObjectSetAttr()

• OCIObjectGetObjectRef()

18.3.19 Error Handling in Object Applications
Is like any other OCI application.

Error handling in OCI applications is the same whether or not the application uses objects.

See Also:

Error Handling in OCI for more information about function return codes and error
messages

18.4 About Type Inheritance
Type inheritance of objects has many similarities to inheritance in C++ and Java.

You can create an object type as a subtype of an existing object type. The subtype is said to
inherit all the attributes and methods (member functions and procedures) of the supertype,
which is the original type. Only single inheritance is supported; an object cannot have more
than one supertype. The subtype can add new attributes and methods to the ones it inherits. It
can also override (redefine the implementation) of any of its inherited methods. A subtype is
said to extend (that is, inherit from) its supertype.

As an example, a type Person_t can have a subtype Student_t and a subtype Employee_t. In
turn, Student_t can have its own subtype, PartTimeStudent_t. A type declaration must have

Chapter 18
About Type Inheritance

18-36

the flag NOT FINAL so that it can have subtypes. The default is FINAL, which means that the
type can have no subtypes.

All types discussed so far in this chapter are FINAL. All types in applications developed before
Oracle Database Release 9.0 are FINAL. A type that is FINAL can be altered to be NOT FINAL. A
NOT FINAL type with no subtypes can be altered to be FINAL. Person_t is declared as NOT
FINAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;

A subtype inherits all the attributes and methods declared in its supertype. It can also declare
new attributes and methods, which must have different names than those of the supertype.
The keyword UNDER identifies the supertype, like this:

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

The newly declared attributes deptid and major belong to the subtype Student_t. The
subtype Employee_t is declared as, for example:

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

See OTT Support for Type Inheritance for the resulting structs generated by OTT for this
example.

This subtype Student_t can have its own subtype, such as PartTimeStudent_t:

CREATE TYPE PartTimeStudent_t UNDER Student_t
(numhours NUMBER) ;

This section includes the following topics:

• Substitutability

• NOT INSTANTIABLE Types and Methods

• OCI Support for Type Inheritance

• OTT Support for Type Inheritance

• Substitutability
Object type attributes and collection element types are substitutable.

• NOT INSTANTIABLE Types and Methods
A type can be declared to be NOT INSTANTIABLE, which means that there is no constructor
(default or user-defined) for the type.

• OCI Support for Type Inheritance
Lists the calls that support type inheritance.

• OTT Support for Type Inheritance
The Object Type Translator (OTT) supports type inheritance of objects by declaring first the
inherited attributes in an encapsulated struct called "_super", followed by the new declared
attributes.

Chapter 18
About Type Inheritance

18-37

See Also:

Oracle Database Object-Relational Developer's Guide for a more complete
discussion about type inheritance

18.4.1 Substitutability
Object type attributes and collection element types are substitutable.

The benefits of polymorphism derive partially from the property substitutability. Substitutability
allows a value of some subtype to be used by code originally written for the supertype, without
any specific knowledge of the subtype being needed in advance. The subtype value behaves
to the surrounding code, just like a value of the supertype would, even if it perhaps uses
different mechanisms within its specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a context
declared in terms of a supertype. REF substitutability refers to the ability to use a REF to a
subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable; that is, an attribute defined as REF T can hold a REF to an
instance of T or any of its subtypes.

Object type attributes are substitutable; an attribute defined to be of (an object) type T can hold
an instance of T or any of its subtypes.

Collection element types are substitutable; if you define a collection of elements of type T, it
can hold instances of type T and any of its subtypes. Here is an example of object attribute
substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
 author Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or any
subtype of Person_t) instance:

Book_t('My Oracle Experience',
 Employee_t(12345, 'Joe', 'SF', 1111, NULL))

18.4.2 NOT INSTANTIABLE Types and Methods
A type can be declared to be NOT INSTANTIABLE, which means that there is no constructor
(default or user-defined) for the type.

Thus, it is not possible to construct instances of this type. The typical usage would be to define
instantiable subtypes for such a type. Here is how this property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method as NOT
INSTANTIABLE means that the type is not providing an implementation for that method. Further,
a type that contains any NOT INSTANTIABLE methods must necessarily be declared as NOT
INSTANTIABLE. For example:

Chapter 18
About Type Inheritance

18-38

CREATE TYPE T AS OBJECT
(
 x NUMBER,
 NOT INSTANTIABLE MEMBER FUNCTION func1() RETURN NUMBER
) NOT INSTANTIABLE NOT FINAL;

A subtype of a NOT INSTANTIABLE type can override any of the NOT INSTANTIABLE methods of
the supertype and provide concrete implementations. If there are any NOT INSTANTIABLE
methods remaining, the subtype must also necessarily be declared as NOT INSTANTIABLE.

A NOT INSTANTIABLE subtype can be defined under an instantiable supertype. Declaring a NOT
INSTANTIABLE type to be FINAL is not useful and is not allowed.

18.4.3 OCI Support for Type Inheritance
Lists the calls that support type inheritance.

The following calls support type inheritance:

• OCIDescribeAny()

• Bind and Define Functions

• OCIObjectGetTypeRef()

• OCIObjectCopy()

• OCICollAssignElem()

• OCICollAppend()

• OCICollGetElem()

• OCIDescribeAny()
The OCIDescribeAny() function provides information specific to inherited types.

• Bind and Define Functions
OCI bind functions support REF, instance, and collection element substitutability (subtype
instances can be passed in where supertype is expected).

• OCIObjectGetTypeRef()
The OCIObjectGetTypeRef() function returns the REF of the TDO of the most specific type
of the input object.

• OCIObjectCopy()
The OCIObjectCopy() function copies the contents of the source instance to the target
instance.

• OCICollAssignElem()
The input element can be an instance of the subtype of the declared type.

• OCICollAppend()
The input element can be an instance of the subtype of the declared type.

• OCICollGetElem()
The collection element returned could be an instance of the subtype of the declared type.

18.4.3.1 OCIDescribeAny()
The OCIDescribeAny() function provides information specific to inherited types.

Additional attributes have been added for the properties of inherited types. For example, you
can get the supertype of a type.

Chapter 18
About Type Inheritance

18-39

See Also:

• Table 7-7 and Table 7-9 for attributes that OCIDescribeAny() can use to describe
existing schema and subschema objects

• OCIDescribeAny()

18.4.3.2 Bind and Define Functions
OCI bind functions support REF, instance, and collection element substitutability (subtype
instances can be passed in where supertype is expected).

There are no changes to the OCI bind interface, because all type checking and conversions
are done on the server side.

OCI define functions also support substitutability (subtype instances can be fetched into define
variables declared to hold the supertype). However, this might require the system to resize the
memory to hold the subtype instance.

Note:

The client program must use objects that are allocated out of the object cache (and
are thus resizable) in such scenarios.

The client should not use a struct (allocated on the stack) as the define variable if the value is
potentially polymorphic.

See Also:

Object-Relational Data Types in OCI for details of the bind and define processes

18.4.3.3 OCIObjectGetTypeRef()
The OCIObjectGetTypeRef() function returns the REF of the TDO of the most specific type of
the input object.

This operation returns an error if the user does not have privileges on the most specific type.

See Also:

OCIObjectGetTypeRef()

Chapter 18
About Type Inheritance

18-40

18.4.3.4 OCIObjectCopy()
The OCIObjectCopy() function copies the contents of the source instance to the target
instance.

The source and target instances must be of the same type. It is not possible to copy between a
supertype and a subtype.

Similarly, the tdo argument must describe the same object type as the source and target
objects, and must not refer to a subtype or supertype of the source and target objects.

See Also:

OCIObjectCopy()

18.4.3.5 OCICollAssignElem()
The input element can be an instance of the subtype of the declared type.

If the collection is of type Person_t, you can use the OCICollAssignElem() function to assign
an Employee_t instance as an element of the collection.

See Also:

OCICollAssignElem()

18.4.3.6 OCICollAppend()
The input element can be an instance of the subtype of the declared type.

If the collection is of type Person_t, you can use the OCICollAppend() function to append an
Employee_t instance to the collection.

See Also:

OCICollAppend()

18.4.3.7 OCICollGetElem()
The collection element returned could be an instance of the subtype of the declared type.

If the collection is of type Person_t, you can use the OCICollGetElem() function to get a
pointer to an element, such as an Employee_t instance, in this collection.

Chapter 18
About Type Inheritance

18-41

See Also:

OCICollGetElem()

18.4.4 OTT Support for Type Inheritance
The Object Type Translator (OTT) supports type inheritance of objects by declaring first the
inherited attributes in an encapsulated struct called "_super", followed by the new declared
attributes.

This is done because C does not support type inheritance.

See Also:

OTT Support for Type Inheritance for an example and discussion

18.5 About Type Evolution
Adding, dropping, and modifying type attributes are supported. This concept is known as type
evolution.

It is discussed in the Oracle Database Object-Relational Developer's Guide.

OCIDescribeAny() returns information about the latest version of the requested type if the type
of the input object is OCI_OTYPE_NAME, and the type of the described object is OCI_PTYPE_TYPE,
that is, if the name input to OCIDescribeAny() is a type name.

See Also:

• OCITypeArrayByName() and OCITypeByName(). To access type information,
use these functions and OCIDescribeAny()

• Type Evolution and the Object Cache for a discussion of the effect of type
evolution on the object cache

• OCIDescribeAny()

Chapter 18
About Type Evolution

18-42

19
Object-Relational Data Types in OCI

This chapter describes the purpose and structure of each of the data types that can be
manipulated by the OCI data type mapping and manipulation functions.

This chapter also summarizes the different function groups giving lists of available functions
and their purposes. In addition, provides information about how to use these data types in bind
and define operations within an OCI application.

This chapter contains these topics:

• Overview of OCI Functions for Objects

• About Mapping Oracle Data Types to C

• About Manipulating C Data Types with OCI

• Date (OCIDate)

• Datetime and Interval (OCIDateTime, OCIInterval)

• Number (OCINumber)

• Fixed or Variable-Length String (OCIString)

• Raw (OCIRaw)

• Collections (OCITable, OCIArray, OCIColl, OCIIter)

• About Multilevel Collection Types

• REF (OCIRef)

• Object Type Information Storage and Access

• AnyType, AnyData, and AnyDataSet Interfaces

• About Binding Named Data Types

• About Defining Named Data Types

• About Binding and Defining Oracle C Data Types

• SQLT_NTY Bind and Define Examples

• Overview of OCI Functions for Objects
The OCI data type mapping and manipulation functions provide the ability to manipulate
instances of predefined Oracle C data types.

• About Mapping Oracle Data Types to C
Oracle provides a rich set of predefined data types with which you can create tables and
specify user-defined data types (including object types).

• About Manipulating C Data Types with OCI
Shows how you can manipulate C data types with OCI and shows the various function
prefixes, along with example function names and the data types on which the functions
operate.

19-1

• Date (OCIDate)
The Oracle date format is mapped in C by the OCIDate type, which is an opaque C struct.
Elements of the struct represent the year, month, day, hour, minute, and second of the
date.

• Datetime and Interval (OCIDateTime, OCIInterval)
The OCIDateTime data type is an opaque structure used to represent Oracle time-stamp
data types (TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE) and
the ANSI DATE data type.

• Number (OCINumber)
The OCINumber data type is an opaque structure used to represent Oracle numeric data
types (NUMBER, FLOAT, DECIMAL, and so forth).

• Fixed or Variable-Length String (OCIString)
Fixed or variable-length string data is represented to C programs as an OCIString *.

• Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * data type.

• Collections (OCITable, OCIArray, OCIColl, OCIIter)
Oracle Database provides two types of collections: variable-length arrays (varrays) and
nested tables. In C applications, varrays are represented as OCIArray *, and nested
tables are represented as OCITable *.

• About Multilevel Collection Types
The collection element itself can be directly or indirectly another collection type.

• REF (OCIRef)
A REF (reference) is an identifier to an object.

• Object Type Information Storage and Access
The OCI data types and type descriptors are discussed in this section.

• AnyType, AnyData, and AnyDataSet Interfaces
The AnyType, AnyData, and AnyDataSet interfaces allow you to model self-descriptive
data.

• About Binding Named Data Types
This section provides information about binding named data types (such as objects and
collections) and REFs.

• About Defining Named Data Types

• About Binding and Defining Oracle C Data Types
This section summarizes information about binding and defining Oracle C named data
types

• SQLT_NTY Bind and Define Examples
The following code fragments demonstrate the use of the SQLT_NTY named data type in the
bind call including OCIBindObject() and the SQLT_NTY named data type in the define call
including OCIDefineObject().

19.1 Overview of OCI Functions for Objects
The OCI data type mapping and manipulation functions provide the ability to manipulate
instances of predefined Oracle C data types.

These data types are used to represent the attributes of user-defined data types, including
object types in Oracle Database.

Chapter 19
Overview of OCI Functions for Objects

19-2

Each group of functions within OCI is distinguished by a particular naming convention. The
data type mapping and manipulation functions, for example, can be easily recognized because
the function names start with the prefix OCI, followed by the name of a data type, as in
OCIDateFromText() and OCIRawSize(). As will be explained later, the names can be further
subdivided into function groups that operate on a particular type of data.

The predefined Oracle C types on which these functions operate are also distinguished by
names that begin with the prefix OCI, as in OCIDate or OCIString.

The data type mapping and manipulation functions are used when an application must
manipulate, bind, or define attributes of objects that are stored in an Oracle database, or that
have been retrieved by a SQL query. Retrieved objects are stored in the client-side object
cache.

The OCI client must allocate a descriptor before performing a bind or define operation.
OCIStmtExecute() and OCIStmtFetch2() cannot allocate the memory for the descriptors if they
are not allocated by OCIDescriptorAlloc().

These functions are valid only when an OCI application is running in object mode. For
information about initializing OCI in object mode and creating an OCI application that accesses
and manipulates objects, see About Initializing the Environment and the Object Cache.

Note:

Operations on object types such as OCIDate, allow the address of the result to be the
same as that of one of the operands.

See Also:

• OCIDateFromText()

• OCIRawSize()

• Object Advanced Topics in OCI for more information about retrieved objects
being stored in the client-side object cache

• OCIStmtExecute()

• OCIStmtFetch2()

• OCIDescriptorAlloc()

• Oracle Database Object-Relational Developer's Guide for detailed information
about object types, attributes, and collection data types

19.2 About Mapping Oracle Data Types to C
Oracle provides a rich set of predefined data types with which you can create tables and
specify user-defined data types (including object types).

Object types extend the functionality of Oracle Database by allowing you to create data types
that precisely model the types of data with which they work. This can provide increased
efficiency and ease-of-use for programmers who are accessing the data.

Chapter 19
About Mapping Oracle Data Types to C

19-3

You can use NCHAR and NVARCHAR2 as attributes in objects and map to OCIString * in C.

Database tables and object types are based upon the data types supplied by Oracle. These
tables and types are created with SQL statements and stored using a specific set of Oracle
internal data types, like VARCHAR2 or NUMBER. For example, the following SQL statements create
a user-defined address data type and an object table to store instances of that type:

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
street2 varchar2(50),
city varchar2(30),
state char(2),
zip number(5));
CREATE TABLE address_table OF address;

The new address type could also be used to create a regular table with an object column:

CREATE TABLE employees
(name varchar2(30),
birthday date,
home_addr address);

An OCI application can manipulate information in the name and birthday columns of the
employees table using straightforward bind and define operations in association with SQL
statements. Accessing information stored as attributes of objects requires some extra steps.

The OCI application first needs a way to represent the objects in a C language format. This is
accomplished by using the Object Type Translator (OTT) to generate C struct representations
of user-defined types. The elements of these structs have data types that represent C
language mappings of Oracle data types.

An additional C type, OCIInd, is used to represent null indicator information corresponding to
attributes of object types.

This section includes the following topic: OCI Type Mapping Methodology.

• OCI Type Mapping Methodology
Oracle followed a distinct design philosophy when specifying the mappings of Oracle
predefined types.

See Also:

• Table 25-1 for the available Oracle types and their C mappings you can use as
object attribute types

• Using the Object Type Translator with OCI for more information and examples
about using OTT

19.2.1 OCI Type Mapping Methodology
Oracle followed a distinct design philosophy when specifying the mappings of Oracle
predefined types.

The current system has the following benefits and advantages:

Chapter 19
About Mapping Oracle Data Types to C

19-4

• The actual representation of data types like OCINumber is opaque to client applications, and
the data types are manipulated with a set of predefined functions. This allows the internal
representation to change to accommodate future enhancements without breaking user
code.

• The implementation is consistent with object-oriented paradigms in which class
implementation is hidden and only the required operations are exposed.

• This implementation can have advantages for programmers. Consider writing a C program
to manipulate Oracle number variables without losing the accuracy provided by Oracle
numbers. To do this operation in Oracle Database Release 7, you would have had to issue
a "SELECT ... FROM DUAL" statement. In later releases, this is accomplished by invoking
the OCINumber*() functions.

19.3 About Manipulating C Data Types with OCI
Shows how you can manipulate C data types with OCI and shows the various function
prefixes, along with example function names and the data types on which the functions
operate.

In an OCI application, the manipulation of data may be as simple as adding together two
integer variables and storing the result in a third variable:

int int_1, int_2, sum;
...
/* some initialization occurs */
...
sum = int_1 + int_2;

The C language provides a set of predefined operations on simple types such as integer.
However, the C data types listed in Table 25-1 are not simple C primitives. Types such as
OCIString and OCINumber are actually structs with a specific Oracle-defined internal structure.
It is not possible to simply add together two OCINumbers and store the value in the third.

The following is not valid:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
sum = num_1 + num_2; /* NOT A VALID OPERATION */

The OCI data type mapping and manipulation functions are provided to enable you to perform
operations on these new data types. For example, the preceding addition of OCINumbers could
be accomplished as follows, using the OCINumberAdd() function:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
OCINumberAdd(errhp, &num_1, &num_2, &sum): /* errhp is error handle */

OCI provides functions to operate on each of the new data types. The names of the functions
provide information about the data types on which they operate. The first three letters, OCI,
indicate that the function is part of OCI. The next part of the name indicates the data type on
which the function operates. Table 19-1 shows the various function prefixes, along with
example function names and the data types on which the functions operate.

Chapter 19
About Manipulating C Data Types with OCI

19-5

Table 19-1 Function Prefix Examples

Function Prefix Example Operates on

OCIColl OCICollGetElem() OCIColl, OCIIter, OCITable, OCIArray

OCIDate OCIDateDaysBetween() OCIDate

OCIDateTime OCIDateTimeSubtract() OCIDate, OCIDateTime

OCIInterval OCIIntervalToText() OCIInterval

OCIIter OCIIterInit() OCIIter

OCINumber OCINumberAdd() OCINumber

OCIRaw OCIRawResize() OCIRaw *

OCIRef OCIRefAssign() OCIRef *

OCIString OCIStringSize() OCIString *

OCITable OCITableLast() OCITable *

The structure of each of the data types is described later in this chapter, along with a list of the
functions that manipulate that type.

This section includes the following topic: Precision of Oracle Number Operations.

• Precision of Oracle Number Operations
Oracle numbers have a precision of 38 decimal digits.

19.3.1 Precision of Oracle Number Operations
Oracle numbers have a precision of 38 decimal digits.

All Oracle number operations are accurate to the full precision, with the following exceptions:

• Inverse trigonometric functions are accurate to 28 decimal digits.

• Other transcendental functions, including trigonometric functions, are accurate to
approximately 37 decimal digits.

• Conversions to and from native floating-point types have the precision of the relevant
floating-point type, not to exceed 38 decimal digits.

19.4 Date (OCIDate)
The Oracle date format is mapped in C by the OCIDate type, which is an opaque C struct.
Elements of the struct represent the year, month, day, hour, minute, and second of the date.

Chapter 19
Date (OCIDate)

19-6

The specific elements can be set and retrieved using the appropriate OCI functions.

The OCIDate data type can be bound or defined directly using the external typecode SQLT_ODT
in the bind or define call.

Unless otherwise specified, the term date in these function calls refers to a value of type
OCIDate.

See Also:

OCI Data Type Mapping and Manipulation Functions for the prototypes and
descriptions of all the functions

This section includes the following topic: Date Example.

• Date Example
Shows how to manipulate an attribute of type OCIDate using OCI calls.

19.4.1 Date Example
Shows how to manipulate an attribute of type OCIDate using OCI calls.

Example 19-1 provides examples of how to manipulate an attribute of type OCIDate using OCI
calls. For this example, assume that OCIEnv and OCIError have been initialized.

The output is:

For: FRIDAY , OCTOBER 05, 1990
The last day of the month is: WEDNESDAY, OCTOBER 31, 1990
The next Wednesday is: WEDNESDAY, OCTOBER 10, 1990

Example 19-1 Manipulating an Attribute of Type OCIDate

#define FMT "DAY, MONTH DD, YYYY"
#define LANG "American"
struct person
{
OCIDate start_date;
};
typedef struct person person;

OCIError *err;
person *tim;
sword status; /* error status */
uword invalid;
OCIDate last_day, next_day;
text buf[100], last_day_buf[100], next_day_buf[100];
ub4 buflen = sizeof(buf);

/* Pin tim person object in the object cache. */
/* For this example, assume that
/* tim is pointing to the pinned object. */
/* set the start date of tim */

OCIDateSetTime(&tim->start_date,8,0,0);
OCIDateSetDate(&tim->start_date,1990,10,5);

/* check if the date is valid */

Chapter 19
Date (OCIDate)

19-7

if (OCIDateCheck(err, &tim->start_date, &invalid) != OCI_SUCCESS)
/* error handling code */

if (invalid)
/* error handling code */

/* get the last day of start_date's month */
if (OCIDateLastDay(err, &tim->start_date, &last_day) != OCI_SUCCESS)
/* error handling code */

/* get date of next named day */
if (OCIDateNextDay(err, &tim->start_date, "Wednesday", strlen("Wednesday"),
&next_day) != OCI_SUCCESS)
/* error handling code */
/* convert dates to strings and print the information */
/* first convert the date itself*/
buflen = sizeof(buf);
if (OCIDateToText(err, &tim->start_date, FMT, sizeof(FMT)-1, LANG,
 sizeof(LANG)-1, &buflen, buf) != OCI_SUCCESS)
/* error handling code */

/* now the last day of the month */
buflen = sizeof(last_day_buf);
if (OCIDateToText(err, &last_day, FMT, sizeof(FMT)-1, LANG, sizeof(LANG)-1,
&buflen, last_day_buf) != OCI_SUCCESS)
/* error handling code */

/* now the first Wednesday after this date */
buflen = sizeof(next_day_buf);
if (OCIDateToText(err, &next_day, FMT, sizeof(FMT)-1, LANG,
 sizeof(LANG)-1, &buflen, next_day_buf) != OCI_SUCCESS)
/* error handling code */

/* print the information */
printf("For: %s\n", buf);
printf("The last day of the month is: %s\n", last_day_buf);
printf("The next Wednesday is: %s\n", next_day_buf);

See Also:

• OCI Environment Initialization for information about initializing OCIEnv and
OCIError

• Object Cache Operations for information about pinning.

19.5 Datetime and Interval (OCIDateTime, OCIInterval)
The OCIDateTime data type is an opaque structure used to represent Oracle time-stamp data
types (TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE) and the ANSI
DATE data type.

You can set or retrieve the data in these types (that is, year, day, fractional second) using the
appropriate OCI functions.

The OCIInterval data type is also an opaque structure and is used to represent Oracle
interval data types (INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND).

Chapter 19
Datetime and Interval (OCIDateTime, OCIInterval)

19-8

You can bind and define OCIDateTime and OCIInterval data using the following external
typecodes shown in Table 19-2 in the bind or define call.

Table 19-2 Binding and Defining Datetime and Interval Data Types

OCI Data Type Type of Data External Typecode for Binding/
Defining

OCIDateTime ANSI DATE SQLT_DATE

OCIDateTime TIMESTAMP SQLT_TIMESTAMP

OCIDateTime TIMESTAMP WITH TIME
ZONE

SQLT_TIMESTAMP_TZ

OCIDateTime TIMESTAMP WITH
LOCAL TIME ZONE

SQLT_TIMESTAMP_LTZ

OCIInterval INTERVAL YEAR TO
MONTH

SQLT_INTERVAL_YM

OCIInterval INTERVAL DAY TO
SECOND

SQLT_INTERVAL_DS

In general, functions that operate on OCIDateTime data are also valid for OCIDate data.

This section includes the following topics:

• About Datetime Functions

• Datetime Example

• About Interval Functions

• About Datetime Functions
Lists and describes functions that operate on OCIDateTime values.

• Datetime Example
Shows how to use an OCIDateTime data type to select data from a TIMESTAMP WITH LOCAL
TIME ZONE column.

• About Interval Functions
Lists and describes the interval functions.

See Also:

• Table 19-3 and Table 19-4 for information about OCI functions that operate on
datetime and interval data

• OCI Date, Datetime, and Interval Functions for more detailed information about
datetime and interval functions

19.5.1 About Datetime Functions
Lists and describes functions that operate on OCIDateTime values.

Chapter 19
Datetime and Interval (OCIDateTime, OCIInterval)

19-9

The following functions operate on OCIDateTime values. Some of these functions also perform
arithmetic operations on datetime and interval values. Some functions may only work for
certain datetime types. The possible types are:

• SQLT_DATE - DATE
• SQLT_TIMESTAMP - TIMESTAMP
• SQLT_TIMESTAMP_TZ - TIMESTAMP WITH TIME ZONE
• SQLT_TIMESTAMP_LTZ - TIMESTAMP WITH LOCAL TIME ZONE
See the individual function descriptions listed in Table 19-3 for more information about input
types that are valid for a particular function.

Table 19-3 Datetime Functions

Function Purpose

OCIDateTimeAssign() Performs datetime
assignment

OCIDateTimeCheck() Checks if the given date is
valid

OCIDateTimeCompare() Compares two datetime
values

OCIDateTimeConstruct() Constructs a datetime
descriptor

OCIDateTimeConvert() Converts one datetime type
to another

OCIDateTimeFromArray() Converts an array containing
a date to an OCIDateTime
descriptor

OCIDateTimeFromText() Converts the given string to
Oracle datetime type in the
OCIDateTime descriptor,
according to the specified
format

OCIDateTimeGetDate() Gets the date (year, month,
day) portion of a datetime
value

OCIDateTimeGetTime() Gets the time (hour, minute,
second, fractional second)
from datetime value

OCIDateTimeGetTimeZoneName() Gets the time zone name
portion of a datetime value

OCIDateTimeGetTimeZoneOffset() Gets the time zone (hour,
minute) portion of a datetime
value

OCIDateTimeIntervalAdd() Adds an interval to a
datetime to produce a
resulting datetime

OCIDateTimeIntervalSub() Subtracts an interval from a
datetime and stores the
result in a datetime

Chapter 19
Datetime and Interval (OCIDateTime, OCIInterval)

19-10

Table 19-3 (Cont.) Datetime Functions

Function Purpose

OCIDateTimeSubtract() Takes two datetimes as input
and stores their difference in
an interval

OCIDateTimeSysTimeStamp() Gets the system current date
and time as a time stamp
with time zone

OCIDateTimeToArray() Converts an OCIDateTime
descriptor to an array

OCIDateTimeToText() Converts the given date to a
string according to the
specified format

OCIDateZoneToZone() Converts the date from one
time zone to another time
zone

19.5.2 Datetime Example
Shows how to use an OCIDateTime data type to select data from a TIMESTAMP WITH LOCAL
TIME ZONE column.

The code fragment in Example 19-2 shows how to use an OCIDateTime data type to select
data from a TIMESTAMP WITH LOCAL TIME ZONE column.

Example 19-2 Manipulating an Attribute of Type OCIDateTime

...

/* allocate the program variable for storing the data */
OCIDateTime *tstmpltz = (OCIDateTime *)NULL;

/* Col1 is a time stamp with local time zone column */
OraText *sqlstmt = (OraText *)"SELECT col1 FROM foo";

/* Allocate the descriptor (storage) for the data type */
status = OCIDescriptorAlloc(envhp,(void **)&tstmpltz, OCI_DTYPE_TIMESTAMP_LTZ,
 0, (void **)0);
....

status = OCIStmtPrepare (stmthp, errhp, sqlstmt, (ub4)strlen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

/* specify the define buffer for col1 */
status = OCIDefineByPos(stmthp, &defnp, errhp, 1, &tstmpltz, sizeof(tstmpltz),
 SQLT_TIMESTAMP_LTZ, 0, 0, 0, OCI_DEFAULT);

/* Execute and Fetch */
OCIStmtExecute(svchp, stmthp, errhp, 1, 0,(OCISnapshot *) NULL,
 (OCISnapshot *)NULL, OCI_DEFAULT)

At this point tstmpltz contains a valid time stamp with local time zone data. You
can get the time zone name of the datetime data using:

status = OCIDateTimeGetTimeZoneName(envhp, errhp, tstmpltz, (ub1 *)buf,

Chapter 19
Datetime and Interval (OCIDateTime, OCIInterval)

19-11

 (ub4 *)&buflen);
...

19.5.3 About Interval Functions
Lists and describes the interval functions.

The functions listed in Table 19-4 operate exclusively on interval data. In some cases it is
necessary to specify the type of interval involved. Possible types include:

• SQLT_INTERVAL_YM - interval year to month

• SQLT_INTERVAL_DS - interval day to second

See the individual function descriptions for more detailed information.

Table 19-4 Interval Functions

Function Purpose

OCIIntervalAdd() Adds two intervals to
produce a resulting interval

OCIIntervalAssign() Copies one interval to
another

OCIIntervalCheck() Checks the validity of an
interval

OCIIntervalCompare() Compares two intervals

OCIIntervalDivide() Divides an interval by an
Oracle NUMBER to produce
an interval

OCIIntervalFromNumber() Converts an Oracle NUMBER
to an interval

OCIIntervalFromText() When given an interval
string, converts the interval
represented by the string

OCIIntervalFromTZ() Returns an interval when
given an input string of time
zone form

OCIIntervalGetDaySecond() Gets values of day, hour,
minute, and second from an
interval

OCIIntervalGetYearMonth() Gets year and month from
an interval

OCIIntervalMultiply() Multiplies an interval by an
Oracle NUMBER to produce
an interval

OCIIntervalSetDaySecond() Sets day, hour, minute, and
second in an interval

OCIIntervalSetYearMonth() Sets year and month in an
interval

OCIIntervalSubtract() Subtracts two intervals and
stores the result in an
interval

Chapter 19
Datetime and Interval (OCIDateTime, OCIInterval)

19-12

Table 19-4 (Cont.) Interval Functions

Function Purpose

OCIIntervalToNumber() Converts an interval to an
Oracle NUMBER

OCIIntervalToText() When given an interval,
produces a string
representing the interval

See Also:

OCI Date, Datetime, and Interval Functions for complete lists of the names and
purposes and more detailed information about these functions

19.6 Number (OCINumber)
The OCINumber data type is an opaque structure used to represent Oracle numeric data types
(NUMBER, FLOAT, DECIMAL, and so forth).

You can bind or define this type using the external typecode SQLT_VNU in the bind or define call.

Unless otherwise specified, the term number in these functions refers to a value of type
OCINumber.

This section includes the following topic: OCINumber Examples.

• OCINumber Examples
Shows how to manipulate an attribute of type OCINumber, how to convert values in
OCINumber format returned from OCIDescribeAny() calls to unsigned integers, and how to
convert a numeric type returned from an OCIDescribeAny() call in OCINumber format, such
as OCI_ATTR_MAX or OCI_ATTR_MIN, to an unsigned C integer.

See Also:

Table 29-11for the prototypes and descriptions for all the OCI NUMBER functions

19.6.1 OCINumber Examples
Shows how to manipulate an attribute of type OCINumber, how to convert values in OCINumber
format returned from OCIDescribeAny() calls to unsigned integers, and how to convert a
numeric type returned from an OCIDescribeAny() call in OCINumber format, such as
OCI_ATTR_MAX or OCI_ATTR_MIN, to an unsigned C integer.

The code fragment in Example 19-3 shows how to manipulate an attribute of type OCINumber.
The code fragment in Example 19-4 shows how to convert values in OCINumber format returned
from OCIDescribeAny() calls to unsigned integers.

Chapter 19
Number (OCINumber)

19-13

Example 19-4 shows how to convert a numeric type returned from an OCIDescribeAny() call in
OCINumber format, such as OCI_ATTR_MAX or OCI_ATTR_MIN, to an unsigned C integer.

Example 19-3 Manipulating an Attribute of Type OCINumber

/* Example 1 */
struct person
{
OCINumber sal;
};
typedef struct person person;
OCIError *err;
person* steve;
person* scott;
person* jason;
OCINumber *stevesal;
OCINumber *scottsal;
OCINumber *debsal;
sword status;
int inum;
double dnum;
OCINumber ornum;
text buffer[21];
ub4 buflen;
sword result;

/* For this example, assume OCIEnv and OCIError are initialized. */
/* For this example, assume that steve, scott, and jason are pointing to
 person objects that have been pinned in the object cache. */
stevesal = &steve->sal;
scottsal = &scott->sal;
debsal = &jason->sal;

/* initialize steve's salary to be $12,000 */
inum = 12000;
status = OCINumberFromInt(err, &inum, sizeof(inum), OCI_NUMBER_SIGNED,
 stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromInt */;

/* initialize scott's salary to be the same as steve's */
OCINumberAssign(err, stevesal, scottsal);

/* initialize jason's salary to be 20% more than steve's */
dnum = 1.2;
status = OCINumberFromReal(err, &dnum, sizeof(dnum), &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, stevesal, &ornum, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* give scott a 50% raise */
dnum = 1.5;
status = OCINumberFromReal(err, &dnum, sizeof(dnum), &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, scottsal, &ornum, scottsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* double steve's salary */
status = OCINumberAdd(err, stevesal, stevesal, stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberAdd */;

/* get steve's salary in integer */
status = OCINumberToInt(err, stevesal, sizeof(inum), OCI_NUMBER_SIGNED, &inum);

Chapter 19
Number (OCINumber)

19-14

if (status != OCI_SUCCESS) /* handle error from OCINumberToInt */;

/* inum is set to 24000 */
/* get jason's salary in double */
status = OCINumberToReal(err, debsal, sizeof(dnum), &dnum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToReal */;

/* dnum is set to 14400 */
/* print scott's salary as DEM0001'8000.00 */
buflen = sizeof(buffer);
status = OCINumberToText(err, scottsal, (text *)"C0999G9999D99", 13,
 (text *)"NLS_NUMERIC_CHARACTERS='.'' NLS_ISO_CURRENCY='Germany'",
 54, &buflen, (text *)buffer);
if (status != OCI_SUCCESS) /* handle error from OCINumberToText */;
printf("scott's salary = %s\n", buffer);

/* compare steve and scott's salaries */
status = OCINumberCmp(err, stevesal, scottsal, &result);
if (status != OCI_SUCCESS) /* handle error from OCINumberCmp */;

/* result is positive */
/* read jason's new salary from string */
status = OCINumberFromText(err, (text *)"48'000.00", 9, (text
*)"99G999D99", 9,
 (text *)"NLS_NUMERIC_CHARACTERS='.''", 27, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromText */;
/* jason's salary is now 48000.00 */

Example 19-4 Converting Values in OCINumber Format Returned from
OCIDescribeAny() Calls to Unsigned Integers

/* Example 2 */
ub4 max_seq_val = 0;
ub1 *max_valp = NULL;
ub4 max_val_size;
OCINumber max_val;
 OCINumberSetZero(_errhp, &max_val);
 OCIParam* parmdp = 0;
 status = OCIAttrGet ((void *)_dschp, (ub4)OCI_HTYPE_DESCRIBE, &parmdp, 0,
 (ub4)OCI_ATTR_PARAM, _errhp);
if (isError (status, _errhp))
{
return 0;
}
status = OCIAttrGet ((void *)parmdp, (ub4)OCI_DTYPE_PARAM, &max_valp,
 &max_val_size, (ub4)OCI_ATTR_MAX, _errhp);
//create an OCINumber object from the ORACLE NUMBER FORMAT
max_val.OCINumberPart[0] = max_val_size; //set the length byte
memcpy(&max_val.OCINumberPart[1], max_valp, max_val_size); //copy the actual bytes
//now convert max_val to an unsigned C integer, max_seq_val
status = OCINumberToInt(_errhp, &max_val, sizeof(max_seq_val),
 OCI_NUMBER_UNSIGNED, &max_seq_val);

19.7 Fixed or Variable-Length String (OCIString)
Fixed or variable-length string data is represented to C programs as an OCIString *.

The length of the string does not include the NULL character.

For binding and defining variables of type OCIString * use the external typecode SQLT_VST.

Chapter 19
Fixed or Variable-Length String (OCIString)

19-15

This section includes the following topics:

• About String Functions

• String Example

• About String Functions
Lists and describes functions that allow the C programmer to manipulate an instance of a
string.

• String Example
Assigns a text string to a string, then gets a pointer to the string part of the string, and the
string size, and prints it out.

See Also:

Table 29-16 for the prototypes and descriptions for all the string functions

19.7.1 About String Functions
Lists and describes functions that allow the C programmer to manipulate an instance of a
string.

Table 19-5 shows the functions that allow the C programmer to manipulate an instance of a
string.

Table 19-5 String Functions

Function Purpose

OCIStringAllocSize() Get allocated size of string
memory in code points
(Unicode) or bytes

OCIStringAssign() Assign one string to another
string

OCIStringAssignText() Assign the source text string to
the target string

OCIStringPtr() Get a pointer to the text of a
given string

OCIStringResize() Resize the memory of a given
string

OCIStringSize() Get the size of a given string

19.7.2 String Example
Assigns a text string to a string, then gets a pointer to the string part of the string, and the
string size, and prints it out.

Example 19-5 assigns a text string to a string, then gets a pointer to the string part of the
string, and the string size, and prints it out.

Note the double indirection used in passing the vstring1 parameter in
OCIStringAssignText().

Chapter 19
Fixed or Variable-Length String (OCIString)

19-16

Example 19-5 Manipulating an Attribute of Type OCIString

OCIEnv *envhp;
OCIError *errhp;
OCIString *vstring1 = (OCIString *)0;
OCIString *vstring2 = (OCIString *)0;
text c_string[20];
text *text_ptr;
sword status;

strcpy((char *)c_string, "hello world");
/* Assign a text string to an OCIString */
status = OCIStringAssignText(envhp, errhp, c_string,
 (ub4)strlen((char *)c_string),&vstring1);
/* Memory for vstring1 is allocated as part of string assignment */

status = OCIStringAssignText(envhp, errhp, (text *)"hello again",
 (ub4)strlen("This is a longer string."),&vstring1);
/* vstring1 is automatically resized to store the longer string */

/* Get a pointer to the string part of vstring1 */
text_ptr = OCIStringPtr(envhp, vstring1);
/* text_ptr now points to "hello world" */
printf("%s\n", text_ptr);

See Also:

OCIStringAssignText()

19.8 Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * data type.

For binding and defining variables of type OCIRaw *, use the external typecode SQLT_LVB.

This section includes the following topics:

• About Raw Functions

• Raw Example

• About Raw Functions
Lists and describes the Raw functions.

• Raw Example
Shows how to set up a raw data block and obtain a pointer to its data.

See Also:

Table 29-14 for the prototypes and descriptions for all the raw functions

Chapter 19
Raw (OCIRaw)

19-17

19.8.1 About Raw Functions
Lists and describes the Raw functions.

Table 19-6 shows the functions that perform OCIRaw operations.

Table 19-6 Raw Functions

Function Purpose

OCIRawAllocSize() Get the allocated size of raw
memory in bytes

OCIRawAssignBytes() Assign raw data (ub1 *) to
OCIRaw *

OCIRawAssignRaw() Assign one OCIRaw * to another

OCIRawPtr() Get pointer to raw data

OCIRawResize() Resize memory of variable-length
raw data

OCIRawSize() Get size of raw data

19.8.2 Raw Example
Shows how to set up a raw data block and obtain a pointer to its data.

Example 19-6 shows how to set up a raw data block and obtain a pointer to its data.

Note the double indirection in the call to OCIRawAssignBytes().

Example 19-6 Manipulating an Attribute of Type OCIRaw

OCIEnv *envhp;
OCIError *errhp;
sword status;
ub1 data_block[10000];
ub4 data_block_len = 10000;
OCIRaw *raw1 = (OCIRaw *) 0;
ub1 *raw1_pointer;

/* Set up the RAW */
/* assume 'data_block' has been initialized */
status = OCIRawAssignBytes(envhp, errhp, data_block, data_block_len,
&raw1);

/* Get a pointer to the data part of the RAW */
raw1_pointer = OCIRawPtr(envhp, raw1);

See Also:

OCIRawAssignBytes()

Chapter 19
Raw (OCIRaw)

19-18

19.9 Collections (OCITable, OCIArray, OCIColl, OCIIter)
Oracle Database provides two types of collections: variable-length arrays (varrays) and nested
tables. In C applications, varrays are represented as OCIArray *, and nested tables are
represented as OCITable *.

Both of these data types (along with OCIColl and OCIIter, described later) are opaque
structures.

A variety of generic collection functions enable you to manipulate collection data. You can use
these functions on both varrays and nested tables. In addition, there is a set of functions
specific to nested tables.

This section includes the following topics:

• Generic Collection Functions

• About Collection Data Manipulation Functions

• About Collection Scanning Functions

• Varray/Collection Iterator Example

• About Nested Table Manipulation Functions

• About Nested Table Manipulation Functions

You can allocate an instance of a varray or nested table using OCIObjectNew() and free it
using OCIObjectFree().

• Generic Collection Functions
Oracle Database provides two types of collections: variable-length arrays (varrays) and
nested tables.

• About Collection Data Manipulation Functions
Lists and describes the collection data manipulation functions.

• About Collection Scanning Functions
Lists and describes the collection scanning functions.

• Varray/Collection Iterator Example
Shows how to create and use a collection iterator to scan through a varray.

• About Nested Table Manipulation Functions
As its name implies, one table may be nested, or contained within another, as a variable,
attribute, parameter, or column.

• Nested Table Locators
You can retrieve a locator to a nested table. A locator is like a handle to a collection value,
and it contains information about the database snapshot that exists at the time of retrieval.

Chapter 19
Collections (OCITable, OCIArray, OCIColl, OCIIter)

19-19

See Also:

• About Nested Table Manipulation Functions

• OCIObjectNew()

• OCIObjectFree()

• OCI Collection and Iterator Functions for the prototypes and descriptions for
these functions

19.9.1 Generic Collection Functions
Oracle Database provides two types of collections: variable-length arrays (varrays) and nested
tables.

Both varrays and nested tables can be viewed as subtypes of a generic collection type.

In C, a generic collection is represented as OCIColl *, a varray is represented as OCIArray *,
and a nested table is represented as OCITable *. Oracle provides a set of functions to operate
on generic collections (such as OCIColl *). These functions start with the prefix OCIColl, as in
OCICollGetElem(). The OCIColl*() functions can also be called to operate on varrays and
nested tables.

The generic collection functions are grouped into two main categories:

• Manipulating varray or nested table data

• Scanning through a collection with a collection iterator

The generic collection functions represent a complete set of functions for manipulating varrays.
Additional functions are provided to operate specifically on nested tables. They are identified
by the prefix OCITable, as in OCITableExists().

Note:

Indexes passed to collection functions are zero-based.

See Also:

• OCITableExists()

• About Nested Table Manipulation Functions

19.9.2 About Collection Data Manipulation Functions
Lists and describes the collection data manipulation functions.

Table 19-7 shows the generic functions that manipulate collection data.

Chapter 19
Collections (OCITable, OCIArray, OCIColl, OCIIter)

19-20

Table 19-7 Collection Functions

Function Purpose

OCICollAppend() Append an element to the end of a
collection

OCICollAssign() Assign one collection to another

OCICollAssignElem() Assign element at given index

OCICollGetElem() Get pointer to an element when
given its index

OCICollGetElemArray() Get array of elements from a
collection

OCICollIsLocator() Indicate whether a collection is
locator-based or not

OCICollMax() Get upper bound of collection

OCICollSize() Get current size of collection

OCICollTrim() Trim n elements from the end of the
collection

19.9.3 About Collection Scanning Functions
Lists and describes the collection scanning functions.

Table 19-8 shows the generic functions that enable you to scan collections with a collection
iterator. The iterator is of type OCIIter, and is created by first calling OCIIterCreate().

Table 19-8 Collection Scanning Functions

Function Purpose

OCIIterCreate() Create an iterator to scan the
elements of a collection

OCIIterDelete() Delete a collection iterator

OCIIterGetCurrent() Get a pointer to the current element
pointed to by the iterator

OCIIterInit() Initialize an iterator to scan the
given collection

OCIIterNext() Get a pointer to the next iterator
collection element

OCIIterPrev() Get pointer to the previous iterator
collection element

19.9.4 Varray/Collection Iterator Example
Shows how to create and use a collection iterator to scan through a varray.

Example 19-7 creates and uses a collection iterator to scan through a varray.

Example 19-7 Using Collection Data Manipulation Functions

OCIEnv *envhp;
OCIError *errhp;

Chapter 19
Collections (OCITable, OCIArray, OCIColl, OCIIter)

19-21

text *text_ptr;
sword status;
OCIArray *clients;
OCIString *client_elem;
OCIIter *iterator;
boolean eoc;
void *elem;
OCIInd *elemind;

/* Assume envhp, errhp have been initialized */
/* Assume clients points to a varray */

/* Print the elements of clients */
/* To do this, create an iterator to scan the varray */
status = OCIIterCreate(envhp, errhp, clients, &iterator);

/* Get the first element of the clients varray */
printf("Clients' list:\n");
status = OCIIterNext(envhp, errhp, iterator, &elem,
 (void **) &elemind, &eoc);

while (!eoc && (status == OCI_SUCCESS))
{
 client_elem = *((OCIString **)elem);
 /* client_elem points to the string */

 /*
 the element pointer type returned by OCIIterNext() through 'elem' is

 the same as that of OCICollGetElem(). See OCICollGetElem() for
 details. */

 /*
 client_elem points to an OCIString descriptor, so to print it out,
 get a pointer to where the text begins
 */
 text_ptr = OCIStringPtr(envhp, client_elem);

 /*
 text_ptr now points to the text part of the client OCIString, which
is a
NULL-terminated string
 */
 printf(" %s\n", text_ptr);
 status = OCIIterNext(envhp, errhp, iterator, &elem,
 (void **)&elemind, &eoc);
}

if (status != OCI_SUCCESS)
{
 /* handle error */
}

/* destroy the iterator */
status = OCIIterDelete(envhp, errhp, &iterator);

19.9.5 About Nested Table Manipulation Functions
As its name implies, one table may be nested, or contained within another, as a variable,
attribute, parameter, or column.

Chapter 19
Collections (OCITable, OCIArray, OCIColl, OCIIter)

19-22

Nested tables may have elements deleted by the OCITableDelete() function.

For example, suppose a table is created with 10 elements, and OCITableDelete() is used to
delete elements at index 0 through 4 and 9. The first existing element is now element 5, and
the last existing element is element 8.

As noted previously, the generic collection functions may be used to map to and manipulate
nested tables. In addition, Table 19-9 shows the functions that are specific to nested tables.
They should not be used on varrays.

Table 19-9 Nested Table Functions

Function Purpose

OCITableDelete() Delete an element at a given index

OCITableExists() Test whether an element exists at a
given index

OCITableFirst() Return the index for the first existing
element of a table

OCITableLast() Return the index for the last existing
element of a table

OCITableNext() Return the index for the next existing
element of a table

OCITablePrev() Return the index for the previous
existing element of a table

OCITableSize() Return the table size, not including
any deleted elements

This section includes the following topic: Nested Table Element Ordering.

• Nested Table Element Ordering
When a nested table is fetched into the object cache, its elements are given a transient
ordering, numbered from zero to the number of elements, minus 1.

19.9.5.1 Nested Table Element Ordering
When a nested table is fetched into the object cache, its elements are given a transient
ordering, numbered from zero to the number of elements, minus 1.

For example, a table with 40 elements would be numbered from 0 to 39.

You can use these position ordinals to fetch and assign the values of elements (for example,
fetch to element i, or assign to element j, where i and j are valid position ordinals for the given
table).

When the table is copied back to the database, its transient ordering is lost. Delete operations
may be performed against elements of the table. Delete operations create transient holes; that
is, they do not change the position ordinals of the remaining table elements.

19.9.6 Nested Table Locators
You can retrieve a locator to a nested table. A locator is like a handle to a collection value, and
it contains information about the database snapshot that exists at the time of retrieval.

This snapshot information helps the database retrieve the correct instantiation of a collection
value at a later time when collection elements are fetched using the locator.

Chapter 19
Collections (OCITable, OCIArray, OCIColl, OCIIter)

19-23

Unlike a LOB locator, a collection locator cannot be used to modify a collection instance; it only
locates the correct data. Using the locator enables an application to return a handle to a nested
table without having to retrieve the entire collection, which may be quite large.

A user specifies when a table is created if a locator should be returned when a collection
column or attribute is fetched, using the RETURN AS LOCATOR specification.

You can use the OCICollIsLocator() function to determine whether a collection is locator-
based or not.

See Also:

• OCICollIsLocator()

• Oracle Database SQL Language Reference

19.10 About Multilevel Collection Types
The collection element itself can be directly or indirectly another collection type.

Multilevel collection type is the name given to such a top-level collection type.

Multilevel collections have the following characteristics:

• They can be collections of other collection types.

• They can be collections of objects with collection attributes.

• They have no limit to the number of nesting levels.

• They can contain any combination of varrays and nested tables.

• They can be used as columns in tables.

OCI routines work with multilevel collections. The following routines can return in parameter
elem an OCIColl, which you can use in any of the collection routines:

• OCICollGetElem()
• OCIIterGetCurrent()
• OCIIterNext()
• OCIIterPrev()
The following functions take a collection element and add it to an existing collection. Parameter
elem could be an OCIColl* if the element type is another collection:

• OCICollAssignElem()
• OCICollAppend()
This section includes the following topic: Multilevel Collection Type Example.

• Multilevel Collection Type Example
Shows how to iterate over the multilevel collection.

Chapter 19
About Multilevel Collection Types

19-24

See Also:

• OCICollGetElem()

• OCIIterGetCurrent()

• OCIIterNext()

• OCIIterPrev()

• OCICollAssignElem()

• OCICollAppend()

19.10.1 Multilevel Collection Type Example
Shows how to iterate over the multilevel collection.

The following types and tables are used for Example 19-8.

type_1 (a NUMBER, b NUMBER)
NT1 TABLE OF type_1
NT2 TABLE OF NT1

The code fragment in Example 19-8 iterates over the multilevel collection.

Example 19-8 Using Multilevel Collection Data Manipulation Functions

...
OCIColl *outer_coll;
OCIColl *inner_coll;
OCIIter *itr1, *itr2;
Type_1 *type_1_instance;
..
/* assume that outer_coll points to a valid coll of type NT2 */
checkerr(errhp, OCIIterCreate(envhp, errhp, outer_coll, &itr1));
for(eoc = FALSE;!OCIIterNext(envhp, errhp, itr1, (void **) &elem,
 (void **) &elem_null, &eoc) && !eoc;)
{
 inner_coll = (OCIColl *)elem;
 /* iterate over inner collection.. */
 checkerr(errhp, OCIIterCreate(envhp, errhp, inner_coll, &itr2));
 for(eoc2 = FALSE;!OCIIterNext(envhp, errhp, itr2, (void **)&elem2,
 (void **) &elem2_null, &eoc2) && !eoc2;)
 {
 type_1_instance = (Type_1 *)elem2;
 /* use the fields of type_1_instance */
 }
 /* close iterator over inner collection */
 checkerr(errhp, OCIIterDelete(envhp, errhp, &itr2));
}
/* close iterator over outer collection */
checkerr(errhp, OCIIterDelete(envhp, errhp, &itr1));
...

19.11 REF (OCIRef)
A REF (reference) is an identifier to an object.

Chapter 19
REF (OCIRef)

19-25

It is an opaque structure that uniquely locates the object. An object may point to another object
by way of a REF.

In C applications, the REF is represented by OCIRef*.

This section includes the following topic:

• About REF Manipulation Functions

• REF Example

• About REF Manipulation Functions
Lists and describes REF manipulation functions.

• REF Example
Shows how to test two REFs for NULL, compares them for equality, and assigns one REF to
another.

See Also:

Table 29-15 for the prototypes and descriptions for all the REF manipulation functions

19.11.1 About REF Manipulation Functions
Lists and describes REF manipulation functions.

Table 19-10 shows the functions that perform REF operations.

Table 19-10 REF Manipulation Functions

Function Purpose

OCIRefAssign() Assign one REF to another

OCIRefClear() Clear or nullify a REF
OCIRefFromHex() Convert a hexadecimal string to

a REF
OCIRefHexSize() Return the size of a

hexadecimal string
representation of REF

OCIRefIsEqual() Compare two REFs for equality

OCIRefIsNull() Test whether a REF is NULL
OCIRefToHex() Convert a REF to a hexadecimal

string

19.11.2 REF Example
Shows how to test two REFs for NULL, compares them for equality, and assigns one REF to
another.

Example 19-9 tests two REFs for NULL, compares them for equality, and assigns one REF to
another. Note the double indirection in the call to OCIRefAssign().

Chapter 19
REF (OCIRef)

19-26

Example 19-9 Using REF Manipulation Functions

OCIEnv *envhp;
OCIError *errhp;
sword status;
boolean refs_equal;
OCIRef *ref1, *ref2;

/* assume REFs have been initialized to point to valid objects */
/*Compare two REFs for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After first OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

/*Assign ref1 to ref2 */
status = OCIRefAssign (envhp, errhp, ref1, &ref2);
if(status != OCI_SUCCESS)
/*error handling*/

/*Compare the two REFs again for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After second OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

See Also:

OCIRefAssign()

19.12 Object Type Information Storage and Access
The OCI data types and type descriptors are discussed in this section.

This section includes the following topic: Descriptor Objects.

• Descriptor Objects
Lists and describes the descriptor objects.

19.12.1 Descriptor Objects
Lists and describes the descriptor objects.

When a given type is created with the CREATE TYPE statement, it is stored in the server and
associated with a type descriptor object (TDO). In addition, the database stores descriptor
objects for each data attribute of the type, each method of the type, each parameter of each
method, and the results returned by methods. Table 19-11 lists the OCI data types associated
with each type of descriptor object.

Chapter 19
Object Type Information Storage and Access

19-27

Table 19-11 Descriptor Objects

Information Type OCI Data Type

Type OCIType

Type Attributes Collection Elements Method
Parameters Method Results

OCITypeElem

Method OCITypeMethod

Several OCI functions (including OCIBindObject() and OCIObjectNew()) require a TDO as an
input parameter. An application can obtain the TDO by calling OCITypeByName(), which gets
the type's TDO in an OCIType variable. Once you obtain the TDO, you can pass it, as
necessary, to other calls.

See Also:

• OCIBindObject()

• OCIObjectNew()

• OCITypeByName()

19.13 AnyType, AnyData, and AnyDataSet Interfaces
The AnyType, AnyData, and AnyDataSet interfaces allow you to model self-descriptive data.

You can store heterogeneous data types in the same column and query the type of data in an
application.

These definitions are used in the discussion in the following sections:

• Persistent types. Types that are created using the SQL statement CREATE TYPE. They are
stored persistently in the database.

• Transient types. Anonymous type descriptions that are not stored persistently in the
database. They are created by programs as needed. They are useful for exchanging type
information, if necessary, between various components of an application in a dynamic
fashion.

• Self-descriptive data. Data encapsulating type information with its actual contents. The
OCIAnyData data type models such data in OCI. A data value of most SQL types can be
converted to an OCIAnyData that can then be converted back to the old data value. The
type SYS.ANYDATA models such data in SQL or PL/SQL.

• Self-descriptive dataset. Encapsulation of a set of data instances (all of the same type)
along with their type description. They should all have the same type description. The
OCIDataAnySet data type models this data in OCI. The type SYS.ANYDATASET models such
data in SQL or PL/SQL.

Interfaces are available in both OCI (C language) and in SQL and PL/SQL for constructing and
manipulating these type descriptions and self-descriptive data. The following sections describe
the relevant OCI interfaces.

This section includes the following topics:

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-28

• About Type Interfaces

• About OCIAnyData Interfaces

• NCHAR Typecodes for OCIAnyData Functions

• About OCIAnyDataSet Interfaces

• About Type Interfaces
You can use the type interfaces to construct named and anonymous transient object types
(structured with attributes) and collection types.

• About OCIAnyData Interfaces
An OCIAnyData encapsulates type information and a data instance of that type (that is, self-
descriptive data).

• NCHAR Typecodes for OCIAnyData Functions
The function OCIAnyDataTypeCodeToSqlt() converts the OCITypeCode for an OCIAnyData
value to the SQLT code that corresponds to the representation of the value as returned by
the OCIAnyData API.

• About OCIAnyDataSet Interfaces
An OCIAnyDataSet encapsulates type information and a set of instances of that type. To
begin the construction process, call OCIAnyDataSetBeginCreate().

See Also:

• Persistent Objects, Transient Objects, and Values

• Oracle Database SQL Language Reference for an overview in the section about
Oracle-supplied types

19.13.1 About Type Interfaces
You can use the type interfaces to construct named and anonymous transient object types
(structured with attributes) and collection types.

Use the OCITypeBeginCreate() call to begin type construction of transient object types and
collection types (the typecode parameter determines which one is being constructed).

You must allocate a parameter handle using OCIDescriptorAlloc(). Subsequently, you set
type information (for attributes of an object type and for the collection element's type) by using
OCIAttrSet(). For object types, as shown in Example 19-10, use OCITypeAddAttr() to add
the attribute information to the type. After adding information for the last attribute, you must call
OCITypeEndCreate().

For collection types, as shown in Example 19-11, use OCITypeSetCollection() to set the
information on the collection element type. Subsequently, call OCITypeEndCreate() to finish
construction.

You can use the OCIDescribeAny() call to obtain the OCIType corresponding to a persistent
type.

Example 19-10 Using Type Interfaces to Construct Object Types

OCITypeBeginCreate(...) /* Begin Type Creation */
OCIDescriptorAlloc(...)

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-29

OCIAttrSet(...)
OCITypeAddAttr(...) /* Add attribute 1 */
OCIAttrSet(...)
OCITypeAddAttr(...) /* Add attribute 2 */
...
OCITypeEndCreate(...) /* End Type Creation */

Example 19-11 Using Type Interfaces to Construct Collection Types

OCITypeBeginCreate(...) /* Begin Type Creation */
OCIDescriptorAlloc(...)
OCIAttrSet(...)
OCITypeSetCollection(...) /* Set information on collection element */
OCITypeEndCreate(...) /* End Type Creation */

This section includes the following topics:

• About Creating a Parameter Descriptor for OCIType Calls

• About Obtaining the OCIType for Persistent Types

• Type Access Calls

• Extensions to OCIDescribeAny()

• About Creating a Parameter Descriptor for OCIType Calls
You can use the OCIDescriptorAlloc() call to allocate an OCIParam (with the parent
handle being the environment handle).

• About Obtaining the OCIType for Persistent Types
You can use the OCIDescribeAny() call to obtain the OCIType corresponding to a
persistent type.

• Type Access Calls
OCIDescribeAny() can be called with these transient type descriptions for a dynamic
description of the type.

• Extensions to OCIDescribeAny()
For transient types that represent built-in types (created with a built-in typecode), the
parameter handle that describes these types (which are of type OCI_PTYPE_TYPE) .

See Also:

• OCITypeBeginCreate()

• OCIDescriptorAlloc()

• OCIAttrSet()

• OCITypeAddAttr()

• OCITypeEndCreate()

• OCITypeSetCollection()

• OCITypeEndCreate()

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-30

19.13.1.1 About Creating a Parameter Descriptor for OCIType Calls
You can use the OCIDescriptorAlloc() call to allocate an OCIParam (with the parent handle
being the environment handle).

Subsequently, you can call OCIAttrSet() with the following allowed attribute types to set
relevant type information:

• OCI_ATTR_PRECISION
To set numeric precision. Pass a (ub1 *) attribute value to the buffer holding the precision
value.

• OCI_ATTR_SCALE
To set numeric scale. Pass a (sb1 *) attribute value to the buffer that is holding the scale
value.

• OCI_ATTR_CHARSET_ID
To set the character set ID for character types. Pass a (ub2 *) attribute value to the buffer
holding the char set ID.

• OCI_ATTR_CHARSET_FORM
To set the character set form for character types. Pass a (ub1 *) attribute value to the buffer
holding the character set form value.

• OCI_ATTR_DATA_SIZE
Length of VARCHAR2, RAW, and so on. Pass a (ub2 *) attribute value to the buffer holding the
length.

• OCI_ATTR_TYPECODE
To set typecode. Pass a (ub2 *) attribute value to the buffer holding the typecode. This
attribute must be set first.

• OCI_ATTR_TDO
To set OCIType of an object or collection attribute. Pass an (OCIType *) attribute value to the
OCIType corresponding to the attribute. Ensure that the OCIType is pinned when this OCIParam
is used during AnyType construction. If it is a transient type attribute, its allocation duration
should be at least as much as the top-level OCIType being created. Otherwise, an exception is
returned.

• For built-in types, the following typecodes are acceptable (permissible values for
OCI_ATTR_TYPECODE) for SQL type attributes:

OCI_TYPECODE_DATE, OCI_TYPECODE_NUMBER,

OCI_TYPECODE_VARCHAR, OCI_TYPECODE_RAW,

OCI_TYPECODE_CHAR, OCI_TYPECODE_VARCHAR2,

OCI_TYPECODE_VARCHAR, OCI_TYPECODE_BLOB,

OCI_TYPECODE_BFILE, OCI_TYPECODE_CLOB,

OCI_TYPECODE_TIMESTAMP, OCI_TYPECODE_TIMESTAMP_TZ,

OCI_TYPECODE_TIMESTAMP_LTZ,

OCI_TYPECODE_INTERVAL_YM, and OCI_TYPECODE_INTERVAL_DS.

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-31

• If the attribute or collection element type is itself another transient type, set
OCI_ATTR_TYPECODE to OCI_TYPECODE_OBJECT or OCI_TYPECODE_REF (for REFs) or
OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE and set the OCI_ATTR_TDO to the OCIType
corresponding to the transient type.

• For user-defined type attributes, the permissible values for OCI_ATTR_TYPECODE are:

– OCI_TYPECODE_OBJECT (for an Object Type)

– OCI_TYPECODE_REF (for a REF type)

– and OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE (for collections)

The OCI_ATTR_TDO should be set in these cases to the appropriate user-defined type's
OCIType.

See Also:

• OCIDescriptorAlloc()

• OCIAttrSet()

19.13.1.2 About Obtaining the OCIType for Persistent Types
You can use the OCIDescribeAny() call to obtain the OCIType corresponding to a persistent
type.

This is shown in the following example:

OCIDescribeAny(svchp, errhp. (void *)"HR.EMPLOYEES",
 (ub4)strlen("HR.EMPLOYEES"),
 (ub1)OCI_OTYPE_NAME, (ub1)OCI_DEFAULT, OCI_PTYPE_TYPE, dschp);

From the describe handle (dschp), you can use OCIAttrGet() calls to obtain the OCIType.

See Also:

• OCIDescribeAny()

• OCIAttrGet()

19.13.1.3 Type Access Calls
OCIDescribeAny() can be called with these transient type descriptions for a dynamic
description of the type.

The OCIType pointer can be passed directly to OCIDescribeAny() (with objtype set to
OCI_OTYPE_PTR). This provides a way to obtain attribute information by name and position.

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-32

See Also:

OCIDescribeAny()

19.13.1.4 Extensions to OCIDescribeAny()
For transient types that represent built-in types (created with a built-in typecode), the
parameter handle that describes these types (which are of type OCI_PTYPE_TYPE) .

The parameter handle that describes these transient types supports the following extra
attributes:

• OCI_ATTR_DATA_SIZE
• OCI_ATTR_TYPECODE
• OCI_ATTR_DATA_TYPE
• OCI_ATTR_PRECISION
• OCI_ATTR_SCALE
• OCI_ATTR_CHARSET_ID
• OCI_ATTR_CHARSET_FORM
• OCI_ATTR_LFPRECISION
• OCI_ATTR_FSPRECISION
These attributes have the usual meanings they have while describing a type attribute.

Note:

These attributes are supported only for transient built-in types. The attributes
OCI_ATTR_IS_TRANSIENT_TYPE and OCI_ATTR_IS_PREDEFINED_TYPE are true for these
types. For persistent types, these attributes are supported only from the parameter
handle of the type's attributes (which are of type OCI_PTYPE_TYPE_ATTR).

19.13.2 About OCIAnyData Interfaces
An OCIAnyData encapsulates type information and a data instance of that type (that is, self-
descriptive data).

An OCIAnyData can be created from any built-in or user-defined type instance by using the
OCIAnyDataConvert() call. This call does a conversion (cast) to an OCIAnyData.

Alternatively, object types and collection types can be constructed piece by piece (an attribute
at a time for object types or a collection element at a time) by calling
OCIAnyDataBeginCreate() with the type information (OCIType). Subsequently, you can use
OCIAnyDataAttrSet() for object types and use OCIAnyDataCollAddElem() for collection types.
Finally, use the OCIAnyDataEndCreate() call to finish the construction process.

Subsequently, you can invoke the access routines. To convert (cast) an OCIAnyData to the
corresponding type instance, you can use OCIAnyDataAccess().

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-33

An OCIAnyData that is based on an object or collection type can also be accessed piece by
piece.

Special collection construction and access calls are provided for performance improvement.
You can use these calls to avoid unnecessary creation and copying of the entire collection in
memory, as shown in Example 19-12.

or

OCIAnyDataCollAddElem(...) /* Element-wise construction for collections */

OCIAnyDataEndCreate(...) /* End OCIAnyData Creation */

Example 19-12 Using Special Construction and Access Calls for Improved
Performance

OCIAnyDataConvert(...) /* Cast a built-in or user-defined type instance
 to an OCIAnyData in 1 call. */

OCIAnyDataBeginCreate(...) /* Begin AnyData Creation */

OCIAnyDataAttrSet(...) /* Attribute-wise construction for object types */

See Also:

• OCIAnyDataConvert()

• OCIAnyDataBeginCreate()

• OCIAnyDataAttrSet()

• OCIAnyDataCollAddElem()

• OCIAnyDataEndCreate()

• OCIAnyDataAccess()

19.13.3 NCHAR Typecodes for OCIAnyData Functions
The function OCIAnyDataTypeCodeToSqlt() converts the OCITypeCode for an OCIAnyData
value to the SQLT code that corresponds to the representation of the value as returned by the
OCIAnyData API.

The following typecodes are used in the OCIAnyData functions only:

• OCI_TYPECODE_NCHAR
• OCI_TYPECODE_NVARCHAR2
• OCI_TYPECODE_NCLOB
In calls to other functions, such as OCIDescribeAny(), these typecodes are not returned, and
you must use the character set form to determine if the data is NCHAR (if character set form is
SQLCS_NCHAR).

OCIAnyDataTypeCodeToSqlt() converts OCI_TYPECODE_CHAR and OCI_TYPECODE_VARCHAR2 to
the output values SQLT_VST (which corresponds to the OCIString mapping) with a character

Chapter 19
AnyType, AnyData, and AnyDataSet Interfaces

19-34

set form of SQLCS_IMPLICIT. OCI_TYPECODE_NVARCHAR2 also returns SQLT_VST (OCIString
mapping is used by OCIAnyData API) with a character set form of SQLCS_NCHAR.

See Also:

• OCIDescribeAny()

• OCIAnyDataTypeCodeToSqlt()

19.13.4 About OCIAnyDataSet Interfaces
An OCIAnyDataSet encapsulates type information and a set of instances of that type. To begin
the construction process, call OCIAnyDataSetBeginCreate().

Call OCIAnyDataSetAddInstance() to add a new instance; this call returns the OCIAnyData
corresponding to that instance.

Then, you can invoke the OCIAnyData functions to construct this instance. Call
OCIAnyDataSetEndCreate() when all instances have been added.

For access, call OCIAnyDataSetGetInstance() to get the OCIAnyData corresponding to the
instance. Only sequential access is supported. Subsequently, you can invoke the OCIAnyData
access functions, as in the following example:

OCIAnyDataSetBeginCreate(...) /* Begin AnyDataSet Creation */
OCIAnyDataSetAddInstance(...) /* Add a new instance to the AnyDataSet */
 /* Use the OCIAnyData*() functions to create
 the instance */
OCIAnyDataSetEndCreate(...) /* End OCIAnyDataSet Creation */

See Also:

• OCIAnyDataSetBeginCreate()

• OCIAnyDataSetAddInstance()

• OCIAnyDataSetEndCreate()

• OCIAnyDataSetGetInstance()

• OCI Any Type and Data Functions for complete descriptions of all the calls in
these interfaces

19.14 About Binding Named Data Types
This section provides information about binding named data types (such as objects and
collections) and REFs.

This section includes the following topics:

• Named Data Type Binds

Chapter 19
About Binding Named Data Types

19-35

• About Binding REFs

• Information for Named Data Type and REF Binds

• Information Regarding Array Binds

• Named Data Type Binds
For a named data type (object type or collection) bind, a second bind call is necessary
following OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2().

• About Binding REFs
As with named data types, binding REFs is a two-step process.

• Information for Named Data Type and REF Binds
Remember the following important information when you work with named data type and
REF binds.

• Information Regarding Array Binds
For doing array binds of named data types or REFs, for array inserts or fetches, the user
must pass in an array of pointers to buffers (preallocated or otherwise) of the appropriate
type.

19.14.1 Named Data Type Binds
For a named data type (object type or collection) bind, a second bind call is necessary
following OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2().

The OCIBindObject() call sets up additional attributes specific to the object type bind. An OCI
application uses this call when fetching data from a table that has a column with an object data
type.

The OCIBindObject() call takes, among other parameters, a type descriptor object (TDO) for
the named data type. The TDO of data type OCIType is created and stored in the database
when a named data type is created. It contains information about the type and its attributes. An
application can obtain a TDO by calling OCITypeByName().

The OCIBindObject() call also sets up the indicator variable or structure for the named data
type bind.

When binding a named data type, use the SQLT_NTY data type constant to indicate the data
type of the program variable being bound. SQLT_NTY indicates that a C struct representing the
named data type is being bound. A pointer to this structure is passed to the bind call.

With inheritance and instance substitutability, you can bind a subtype instance where the
supertype is expected.

Working with named data types may require the use of three bind calls in some circumstances.
For example, to bind a static array of named data types to a PL/SQL table, three calls must be
invoked: OCIBindByName() or OCIBindByName2(), OCIBindArrayOfStruct(), and
OCIBindObject().

Chapter 19
About Binding Named Data Types

19-36

See Also:

• Fetching Embedded Objects for information about using these data types to fetch
an embedded object from the database

• Information for Named Data Type and REF Binds

• Descriptor Objects

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIBindObject()

• OCITypeByName()

• OCIBindArrayOfStruct()

19.14.2 About Binding REFs
As with named data types, binding REFs is a two-step process.

First, call OCIBindByName() or OCIBindByName2() or OCIBindByPos() or OCIBindByPos2(), and
then call OCIBindObject().

REFs are bound using the SQLT_REF data type. When SQLT_REF is used, then the program
variable being bound must be of type OCIRef *.

With inheritance and REF substitutability, you can bind a REF value to a subtype instance where
a REF to the supertype is expected.

See Also:

• Retrieving an Object Reference from the Server for information about binding
and pinning REFs to objects

• Information for Named Data Type and REF Binds for additional important
information

• OCIBindByName() or OCIBindByName2()

• OCIBindByPos() or OCIBindByPos2()

• OCIBindObject()

19.14.3 Information for Named Data Type and REF Binds
Remember the following important information when you work with named data type and REF
binds.

It includes pointers about memory allocation and indicator variable usage.

Chapter 19
About Binding Named Data Types

19-37

• If the data type being bound is SQLT_NTY, the indicator struct parameter of the
OCIBindObject() call (void ** indpp) is used, and the scalar indicator is completely
ignored.

• If the data type is SQLT_REF, the scalar indicator is used, and the indicator struct parameter
of OCIBindObject() is completely ignored.

• The use of indicator structures is optional. The user can pass a NULL pointer in the indpp
parameter for the OCIBindObject() call. During the bind, therefore, the object is not
atomically NULL and none of its attributes are NULL.

• The indicator struct size pointer, indsp, and program variable size pointer, pgvsp, in the
OCIBindObject() call are optional. Users can pass NULL if these parameters are not
needed.

See Also:

OCIBindObject()

19.14.4 Information Regarding Array Binds
For doing array binds of named data types or REFs, for array inserts or fetches, the user must
pass in an array of pointers to buffers (preallocated or otherwise) of the appropriate type.

Similarly, an array of scalar indicators for SQLT_REF types or an array of pointers to indicator
structs for SQLT_NTY types must be passed.

See Also:

Named Data Types: Object, VARRAY, Nested Table for more information about
SQLT_NTY

19.15 About Defining Named Data Types
This section provides information about defining named data types (for example, objects,
collections) and REFs.

This section includes the following topics:

• About Defining Named Data Type Output Variables

• About Defining REF Output Variables

• Information for Named Data Type and REF Defines, and PL/SQL OUT Binds

• About Defining Named Data Type Output Variables
For a named data type (object type, nested table, varray) define, two define calls are
necessary.

• About Defining REF Output Variables
As with named data types, defining for a REF output variable is a two-step process.

Chapter 19
About Defining Named Data Types

19-38

• Information for Named Data Type and REF Defines, and PL/SQL OUT Binds
Consider the following important information as you work with named data type and REF
defines. It includes pointers about memory allocation and indicator variable usage.

19.15.1 About Defining Named Data Type Output Variables
For a named data type (object type, nested table, varray) define, two define calls are
necessary.

The application should first call OCIDefineByPos() or OCIDefineByPos2(), specifying SQLT_NTY
in the dty parameter. Following OCIDefineByPos() or OCIDefineByPos2(), the application must
call OCIDefineObject() to set up additional attributes pertaining to a named data type define.
In this case, the data buffer pointer in OCIDefineByPos() or OCIDefineByPos2() is ignored.

Specify the SQLT_NTY data type constant for a named data type define. In this case, the
application fetches the result data into a host-language representation of the named data type.
In most cases, this is a C struct generated by the Object Type Translator.

To make an OCIDefineObject() call, a pointer to the address of the C struct (preallocated or
otherwise) must be provided. The object may have been created with OCIObjectNew(),
allocated in the cache, or with user-allocated memory.

However, in the presence of inheritance, Oracle strongly recommends using objects in the
object cache and not passing objects allocated out of user memory from the stack. Otherwise,
due to instance substitutability, the server may send back a subtype instance when the client is
expecting a supertype instance. This requires the server to dynamically resize the object,
which is possible only for objects in the cache.

See Also:

• Information for Named Data Type and REF Defines, and PL/SQL OUT Binds for
more important information about defining named data types

• OCIDefineByPos() or OCIDefineByPos2()

• OCIDefineObject()

• OCIObjectNew()

19.15.2 About Defining REF Output Variables
As with named data types, defining for a REF output variable is a two-step process.

The first step is a call to OCIDefineByPos() or OCIDefineByPos2(), and the second is a call to
OCIDefineObject(). Also as with named data types, the SQLT_REF data type constant is
passed to the dty parameter of OCIDefineByPos().

SQLT_REF indicates that the application is fetching the result data into a variable of type OCIRef
*. This REF can then be used as part of object pinning and navigation.

Chapter 19
About Defining Named Data Types

19-39

See Also:

• OCIDefineByPos() or OCIDefineByPos2()

• OCIDefineObject()

• Information for Named Data Type and REF Defines, and PL/SQL OUT Binds for
more important information about defining REFs

• About Working with Objects in OCI for more information about object pinning and
navigation

19.15.3 Information for Named Data Type and REF Defines, and PL/SQL
OUT Binds

Consider the following important information as you work with named data type and REF
defines. It includes pointers about memory allocation and indicator variable usage.

A PL/SQL OUT bind refers to binding a placeholder to an output variable in a PL/SQL block.
Unlike a SQL statement, where output buffers are set up with define calls, in a PL/SQL block,
output buffers are set up with bind calls.

• If the data type being defined is SQLT_NTY, then the indicator struct parameter of the
OCIDefineObject() call (void ** indpp) is used, and the scalar indicator is completely
ignored.

• If the data type is SQLT_REF, then the scalar indicator is used, and the indicator struct
parameter of OCIDefineObject() is completely ignored.

• The use of indicator structures is optional. The user can pass a NULL pointer in the indpp
parameter for the OCIDefineObject() call. During a fetch or PL/SQL OUT bind, therefore,
the user is not interested in any information about being null.

• In a SQL define or PL/SQL OUT bind, you can pass in preallocated memory for either the
output variable or the indicator. Then that preallocated memory is used to store result data,
and any secondary memory (out-of-line memory), is deallocated. The preallocated memory
must come from the cache (the result of an OCIObjectNew() call).

Note:

If you want your client application to allocate memory from its own private
memory space, instead of the cache, your application must ensure that there is
no secondary out-of-line memory in the object.

To preallocate object memory for an object define with type SQLT_NTY, client applications must
use the OCIObjectNew() function. A client application should not allocate the object in its own
private memory space, such as with malloc() or on the stack. The OCIObjectNew() function
allocates the object in the object cache. The allocated object can be freed using
OCIObjectFree().

Chapter 19
About Defining Named Data Types

19-40

Note:

There is no change to the behavior of OCIDefineObject() when the user does not
preallocate the object memory and instead initializes the output variable to null
pointer value. In this case, the object is implicitly allocated in the object cache by the
OCI library.

• In a SQL define or PL/SQL OUT bind, if the user passes in a NULL address for the output
variable or the indicator, memory for the variable or the indicator is implicitly allocated by
OCI.

• If an output object of type SQLT_NTY is atomically NULL (in a SQL define or PL/SQL OUT
bind), only the NULL indicator struct gets allocated (implicitly if necessary) and populated
accordingly to indicate the atomic nullity of the object. The top-level object does not get
implicitly allocated.

• An application can free indicators by calling OCIObjectFree(). If there is a top-level object
(as with a non-atomically NULL object), then the indicator is freed when the top-level object
is freed with OCIObjectFree(). If the object is atomically null, then there is no top-level
object, so the indicator must be freed separately.

• The indicator struct size pointer, indszp, and program variable size pointer, pvszsp, in the
OCIDefineObject() call are optional. Users can pass NULL if these parameters are not
needed.

This section includes the following topic: Information About Array Defines.

• Information About Array Defines
To perform array defines of named data types or REFs, the user must pass in an array of
pointers to buffers (preallocated or otherwise) of the appropriate type.

See Also:

• About Binding Placeholders in PL/SQL for more information

• OCIDefineObject()

• OCIObjectNew()

• OCIObjectFree()

• OCI Navigational and Type Functions for details about OCIObjectNew() and
OCIObjectFree()

• OCIDefineObject()

19.15.3.1 Information About Array Defines
To perform array defines of named data types or REFs, the user must pass in an array of
pointers to buffers (preallocated or otherwise) of the appropriate type.

Similarly, an array of scalar indicators (for SQLT_REF types) or an array of pointers to indicator
structs (for SQLT_NTY types) must be passed.

Chapter 19
About Defining Named Data Types

19-41

19.16 About Binding and Defining Oracle C Data Types
This section summarizes information about binding and defining Oracle C named data types

Previous chapters of this book have discussed OCI bind and define operations. About Binding
Placeholders in OCI discussed the basics of OCI bind operations, whereas About Defining
Output Variables in OCI discussed the basics of OCI define operations. Information specific to
binding and defining named data types and REFs was described in Binding and Defining in
OCI.

The sections covering basic bind and define functionality showed how an application could use
a scalar variable or array of scalars as an input (bind) value in a SQL statement, or as an
output (define) buffer for a query.

The sections covering named data types and REFs showed how to bind or define an object or
reference. Pinning an Object expanded on this to talk about pinning object references,
Fetching Embedded Objects discussed fetching embedded instances, and Object Navigation
discussed object navigation.

The purpose of this section is to cover binding and defining of individual attribute values, using
the data type mappings explained in this chapter.

Variables of one of the types defined in this chapter, such as OCINumber or OCIString, can
typically be declared in an application and used directly in an OCI bind or define operation
because the appropriate data type code is specified. Table 19-12 lists the data types that you
can use for binds and defines, along with their C mapping, and the OCI external data type that
must be specified in the dty (data type code) parameter of the bind or define call.

Table 19-12 Data Type Mappings for Binds and Defines

Data Type C Mapping OCI External Data Type and Code

Oracle NUMBER OCINumber VARNUM (SQLT_VNU)

Oracle DATE OCIDate SQLT_ODT

BLOB OCILobLocator * SQLT_BLOB

CLOB, NCLOB CILobLocator * SQLTY_LOB

VARCHAR2, NVARCHAR2 OCIString * SQLT_VST 1

RAW OCIRaw * SQLT_LVB 1

CHAR, NCHAR OCIString * SQLT_VST

Object struct * Named Data Type (SQLT_NTY)

REF OCIRef * REF (SQLT_REF)

VARRAY OCIArray * Named Data Type (SQLT_NTY)

Chapter 19
About Binding and Defining Oracle C Data Types

19-42

Table 19-12 (Cont.) Data Type Mappings for Binds and Defines

Data Type C Mapping OCI External Data Type and Code

Nested Table OCITable * Named Data Type (SQLT_NTY)

DATETIME OCIDateTime * See Datetime and Interval (OCIDateTime,
OCIInterval).

INTERVAL OCIInterval * See Datetime and Interval (OCIDateTime,
OCIInterval).

1 Before fetching data into a define variable of type OCIString *, the size of the string must first be set using the
OCIStringResize() routine. This may require a describe operation to obtain the length of the select-list data.
Similarly, an OCIRaw * must be first sized with OCIStringResize().

The following sections presents examples of how to use C-mapped data types in an OCI
application:

• Bind and Define Examples

• Salary Update Examples

• Bind and Define Examples
Shows how you can use variables of type OCINumber in OCI bind and define operations

• Salary Update Examples
Shows how the flow of calls is used to perform certain OCI tasks.

See Also:

• Data Types for a discussion of OCI external data types, and a list of data
typecodes

• OCIStringResize()

19.16.1 Bind and Define Examples
Shows how you can use variables of type OCINumber in OCI bind and define operations

The examples in this section demonstrate how you can use variables of type OCINumber in OCI
bind and define operations.

Assume, for this example, that the following person object type was created:

CREATE TYPE person AS OBJECT
(name varchar2(30),
salary number);

This type is then used to create an employees table that has a column of type person.

CREATE TABLE employees
(emp_id number,
job_title varchar2(30),
emp person);

Chapter 19
About Binding and Defining Oracle C Data Types

19-43

The Object Type Translator (OTT) generates the following C struct and null indicator struct for
person:

struct person
{ OCIString * name;
 OCINumber salary;};
typedef struct person person;

struct person_ind
{ OCIInd _atomic;
 OCIInd name;
 OCIInd salary;}
typedef struct person_ind person_ind;

Assume that the employees table has been populated with values, and an OCI application has
declared a person variable:

person *my_person;

The application then fetches an object into that variable through a SELECT statement, such as:

text *mystmt = (text *) "SELECT person FROM employees
 WHERE emp.name='Andrea'";

This requires defining my_person to be the output variable for this statement, using appropriate
OCI define calls for named data types, as described in Advanced Define Operations in OCI.
Executing the statement retrieves the person object named Andrea into the my_person
variable.

Once the object is retrieved into my_person, the OCI application has access to the attributes of
my_person, including the name and the salary.

The application could go on to update another employee's salary to be the same as Andrea's,
as in the following example:

text *updstmt = (text *) "UPDATE employees SET emp.salary = :newsal
 WHERE emp.name = 'MONGO'";

Andrea's salary (stored in my_person->salary) would be bound to the placeholder :newsal,
specifying an external data type of VARNUM (data type code=6) in the bind operation:

OCIBindByName(...,":newsal",...,&my_person->salary,...,6,...);
OCIStmtExecute(...,updstmt,...);

Executing the statement updates Mongo's salary in the database to be equal to Andrea's, as
stored in my_person.
Conversely, the application could update Andrea's salary to be the same as Mongo's, by
querying the database for Mongo's salary, and then making the necessary salary assignment:

text *selstmt = (text *) "SELECT emp.salary FROM employees
 WHERE emp.name = 'MONGO'";
OCINumber mongo_sal;
...
OCIDefineByPos(...,1,...,&mongo_sal,...,6,...);
OCIStmtExecute(...,selstmt,...);
OCINumberAssign(...,&mongo_sal, &my_person->salary);

In this case, the application declares an output variable of type OCINumber and uses it in the
define step. The application also defines an output variable for position 1, and uses the
appropriate data type code (6 for VARNUM).

Chapter 19
About Binding and Defining Oracle C Data Types

19-44

The salary value is fetched into the mongo_sal OCINumber, and the appropriate OCI function,
OCINumberAssign(), is used to assign the new salary to the copy of the Andrea object currently
in the cache. To modify the data in the database, the change must be flushed to the server.

See Also:

• Using the Object Type Translator with OCI for a complete discussion of OTT

• OCINumberAssign()

19.16.2 Salary Update Examples
Shows how the flow of calls is used to perform certain OCI tasks.

The examples in the previous section demonstrate the flexibility that the Oracle data types
provide for bind and define operations. This section shows how you can perform the same
operation in several different ways. You can use these data types in variety of ways in OCI
applications.

The examples in this section demonstrate the flow of calls used to perform certain OCI tasks.
An expanded pseudocode is used for these examples. Actual function names are used, but for
simplicity not all parameters and typecasts are filled in. Other necessary OCI calls, such as
handle allocations, have been omitted.

The Scenario

The scenario for these examples is as follows:

• An employee named BRUCE exists in the employees table for a hospital. See person type
and employees table creation statements in the previous section.

• Bruce's current job title is RADIOLOGIST.

• Bruce is being promoted to RADIOLOGY_CHIEF, and along with the promotion comes a
salary increase.

• Hospital salaries are in whole dollar values, are set according to job title, and are stored in
a table called salaries, defined as follows:

CREATE TABLE salaries
(job_title varchar2(20),
salary integer));

• Bruce's salary must be updated to reflect his promotion.

To update Bruce's salary to reflect the promotion, the application must retrieve the salary
corresponding to RADIOLOGY_CHIEF from the salaries table, and update Bruce's salary. A
separate step would write his new title and the modified object back to the database.

Assume that a variable of type person has been declared as follows:

person * my_person;

The object corresponding to Bruce has been fetched into person. The following sections
present three different ways in which the salary update could be performed.

This section includes the following topics:

Chapter 19
About Binding and Defining Oracle C Data Types

19-45

• Method 1 - Fetch, Convert, Assign

• Method 2 - Fetch and Assign

• Method 3 - Direct Fetch

• Summary and Notes

• Method 1 - Fetch, Convert, Assign
Shows how to fetch the new salary, convert the integer data type to OCINumber, then assign
the new salary to an employee.

• Method 2 - Fetch and Assign
Shows how to fetch the salary and get it as an OCINumber and then assign the new salary
to an employee.

• Method 3 - Direct Fetch
Shows how to do the entire operation with a single define and fetch.

• Summary and Notes
Summarizes what the previous examples demonstrated and highlights additional
information.

19.16.2.1 Method 1 - Fetch, Convert, Assign
Shows how to fetch the new salary, convert the integer data type to OCINumber, then assign the
new salary to an employee.

Example 19-13 uses the following method:

1. Do a traditional OCI define using an integer variable to retrieve the new salary from the
database.

2. Convert the integer to an OCINumber.
3. Assign the new salary to Bruce.

Example 19-13 Method 1 for a Salary Update: Fetch, Convert, and Assign

#define INT_TYPE 3 /* data type code for sword integer define */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
sword new_sal;
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,new_sal,...,INT_TYPE,...);
 /* define int output */
OCIStmtExecute(...,getsal,...);
 /* get new salary as int */
OCINumberFromInt(...,new_sal,...,&orl_new_sal);
 /* convert salary to OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */

19.16.2.2 Method 2 - Fetch and Assign
Shows how to fetch the salary and get it as an OCINumber and then assign the new salary to an
employee.

This method (Example 19-14) eliminates one of the steps described in Method 1.

Chapter 19
About Binding and Defining Oracle C Data Types

19-46

1. Define an output variable of type OCINumber, so that no conversion is necessary after the
value is retrieved.

2. Assign the new salary to Bruce.

Example 19-14 Method 2 for a Salary Update: Fetch and Assign, No Convert

#define VARNUM_TYPE 6 /* data type code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,orl_new_sal,...,VARNUM_TYPE,...);
 /* define OCINumber output */
OCIStmtExecute(...,getsal,...); /* get new salary as OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */

19.16.2.3 Method 3 - Direct Fetch
Shows how to do the entire operation with a single define and fetch.

This method (Example 19-15) accomplishes the entire operation with a single define and fetch.
No intervening output variable is used, and the value retrieved from the database is fetched
directly into the salary attribute of the object stored in the cache.

Because the object corresponding to Bruce is pinned in the object cache, use the location of
his salary attribute as the define variable, and execute or fetch directly into it.

Example 19-15 Method 3 for a Salary Update: Direct Fetch

#define VARNUM_TYPE 6 /* data type code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
...
OCIDefineByPos(...,1,...,&my_person->salary,...,VARNUM_TYPE,...);
 /* define bruce's salary in cache as output variable */
OCIStmtExecute(...,getsal,...);
 /* execute and fetch directly */

19.16.2.4 Summary and Notes
Summarizes what the previous examples demonstrated and highlights additional information.

As the previous three examples show, the C data types provide flexibility for binding and
defining. In these examples an integer can be fetched, and then converted to an OCINumber for
manipulation. You can use an OCINumber as an intermediate variable to store the results of a
query. Or, data can be fetched directly into a desired OCINumber attribute of an object.

Note:

In these examples it is important to remember that in OCI, if an output variable is
defined before the execution of a query, the resulting data is prefetched directly into
the output buffer.

Chapter 19
About Binding and Defining Oracle C Data Types

19-47

In the preceding examples, extra steps would be necessary to ensure that the application
writes changes to the database permanently. These might involve SQL UPDATE calls and OCI
transaction commit calls.

These examples all dealt with define operations, but a similar situation applies for binding.

Similarly, although these examples dealt exclusively with the OCINumber type, a similar variety
of operations are possible for the other Oracle C types described in the remainder of this
chapter.

19.17 SQLT_NTY Bind and Define Examples
The following code fragments demonstrate the use of the SQLT_NTY named data type in the
bind call including OCIBindObject() and the SQLT_NTY named data type in the define call
including OCIDefineObject().

In each example, a previously defined SQL statement is being processed.

This section includes the following topics:

• SQLT_NTY Bind Example

• SQLT_NTY Define Example

• SQLT_NTY Bind Example
Shows how to use the SQLT_NTY named data type in the bind call including
OCIBindObject().

• SQLT_NTY Define Example
Shows how to use the SQLT_NTY named data type in the define call including
OCIDefineObject().

See Also:

• OCIBindObject()

• OCIDefineObject()

19.17.1 SQLT_NTY Bind Example
Shows how to use the SQLT_NTY named data type in the bind call including OCIBindObject().

Example 19-16 shows how to use the SQLT_NTY named data type in the bind call including
OCIBindObject().

Example 19-16 Using the SQLT_NTY Bind Call Including OCIBindObject()

/*
** This example performs a SQL insert statement
*/
void insert(envhp, svchp, stmthp, errhp, insstmt, nrows)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
text *insstmt;

Chapter 19
SQLT_NTY Bind and Define Examples

19-48

ub2 nrows;
{
 OCIType *addr_tdo = (OCIType *)0 ;
 address addrs;
 null_address naddrs;
 address *addr = &addrs;
 null_address *naddr = &naddrs;
 sword custno =300;
 OCIBind *bnd1p, *bnd2p;
 ub2 i;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
 (ub4) strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno",
 (sb4) -1, (void *) &custno,
 (sb4) sizeof(sword), SQLT_INT,
 (void *) 0, (ub2 *)0, (ub2 *)0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":addr",
 (sb4) -1, (void *) 0,
 (sb4) 0, SQLT_NTY, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr(errhp,
 OCITypeByName(envhp, errhp, svchp, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA),
 (const text *)"ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"),
 (text *)0, 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &addr_tdo));

 if(!addr_tdo)
 {
 printf("Null tdo returned\n");
 return;
 }

 checkerr(errhp, OCIBindObject(bnd2p, errhp, addr_tdo, (void **) &addr,
 (ub4 *) 0, (void **) &naddr, (ub4 *) 0));

See Also:

OCIBindObject()

19.17.2 SQLT_NTY Define Example
Shows how to use the SQLT_NTY named data type in the define call including
OCIDefineObject().

Example 19-17 shows how to use the SQLT_NTY named data type in the define call including
OCIDefineObject().

Chapter 19
SQLT_NTY Bind and Define Examples

19-49

Example 19-17 Using the SQLT_NTY Define Call Including OCIDefineObject()

/*
** This example executes a SELECT statement from a table that includes
** an object.
*/

void selectval(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 OCIType *addr_tdo = (OCIType *)0;
 OCIDefine *defn1p, *defn2p;
 address *addr = (address *)NULL;
 sword custno =0;
 sb4 status;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
 (ub4) strlen((char *)selvalstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* define the output variable */
checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (void *)
 &custno, (sb4) sizeof(sword), SQLT_INT, (void *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (void *)
 0, (sb4) 0, SQLT_NTY, (void *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp,
 OCITypeByName(envhp, errhp, svchp, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA),
 (const text *) "ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"),
 (text *)0, 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &addr_tdo));

 if(!addr_tdo)
 {
 printf("NULL tdo returned\n");
 return;
 }

 checkerr(errhp, OCIDefineObject(defn2p, errhp, addr_tdo, (void **)
 &addr, (ub4 *) 0, (void **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

See Also:

OCIDefineObject()

Chapter 19
SQLT_NTY Bind and Define Examples

19-50

20
Direct Path Load Interface

The direct path loading functions are used to load data from external files into tables and
partitions.

This chapter contains these topics:

• Direct Path Loading Overview

• Direct Path Loading of Object Types

• Direct Path Loading in Pieces

• Direct Path Context Handles and Attributes for Object Types

• Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path load
engine of Oracle Database to perform the functions of the SQL*Loader utility.

• Direct Path Loading of Object Types
The use of the direct path function contexts to load various nonscalar types is discussed in
this section.

• Direct Path Loading in Pieces
To support loading data that does not all fit in memory at one time, use loading in pieces.

• Direct Path Context Handles and Attributes for Object Types
The following discussion gives the supplemental details of the handles and attributes.

20.1 Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path load engine
of Oracle Database to perform the functions of the SQL*Loader utility.

This functionality provides the ability to load data from external files into either a table or a
partition of a partitioned table.

Figure 20-1 introduces the subject of this chapter. On the client side of the illustration, data
enters a column array through an input buffer. The OCIDirPathColArrayToStream() call moves
the data to the server side through stream formats. These pass data to a column array that
uses a block formatter to send the data to the database table.

20-1

Figure 20-1 Direct Path Loading

Block

Formatter

Input
Buffer

Column
Array

Client Server

Data

ColumnArrayToStream

Stream

Format
Stream

Format

Two-Task

Column
Array

OracleTable

The OCI direct path load interface can load multiple rows by loading a direct path stream that
contains data for multiple rows.

To use the direct path API, the client application performs the following steps:

1. Initialize OCI.

2. Allocate a direct path context handle and set the attributes.

3. Supply the name of the object (table, partition, or subpartition) to be loaded.

4. Describe the external data types of the columns of the object.

5. Prepare the direct path interface.

6. Allocate one or more column arrays.

7. Allocate one or more direct path streams.

8. Set entries in the column array to point to the input data value for each column.

9. Convert a column array to a direct path stream format.

10. Load the direct path stream.

11. Retrieve any errors that may have occurred.

12. Invoke the direct path finishing function.

13. Free handles and data structures.

14. Disconnect from the server.

Steps 8 through 11 can be repeated many times, depending on the data to be loaded.

A direct load operation requires that the object being loaded is locked to prevent DML
operations on the object. Note that queries are lock-free and are allowed while the object is
being loaded. The mode of the DML lock, and which DML locks are obtained, depend upon the
specification of the OCI_ATTR_DIRPATH_PARALLEL option, and if a partition or subpartition load is
being done as opposed to an entire table load.

• For a table load, if the OCI_ATTR_DIRPATH_PARALLEL option is set to:

Chapter 20
Direct Path Loading Overview

20-2

– FALSE, then the table DML X-Lock is acquired

– TRUE, then the table DML S-Lock is acquired

• For a partition load, if the OCI_ATTR_DIRPATH_PARALLEL option is set to:

– FALSE, then the table DML SX-Lock and partition DML X-Lock are acquired

– TRUE, then the table DML SS-Lock and partition DML S-Lock are acquired

This section includes the following topics:

• Data Types Supported for Direct Path Loading

• Direct Path Handles

• About Direct Path Interface Functions

• Limitations and Restrictions of the Direct Path Load Interface

• Direct Path Load Examples for Scalar Columns

• About Using a Date Cache in Direct Path Loading of Dates in OCI

• About Validating Format for Oracle NUMBER and DATE Data

• Data Types Supported for Direct Path Loading
Lists the external data types that are valid for scalar columns in a direct path load
operation.

• Direct Path Handles
A direct path load corresponds to a direct path array insert operation.

• About Direct Path Interface Functions
Lists and describes the functions used with the direct path load interface.

• Limitations and Restrictions of the Direct Path Load Interface
Lists the limitations of the direct path load interface.

• Direct Path Load Examples for Scalar Columns
This section describes the direct path load examples for scalar columns.

• About Using a Date Cache in Direct Path Loading of Dates in OCI
The date cache feature provides improved performance when loading Oracle date and
time-stamp values that require data type conversions to be stored in the table.

• About Validating Format for Oracle NUMBER and DATE Data
Describes validating format for Oracle NUMBER and DATE data when loading stream
data.

See Also:

• Direct Path Context Handle (OCIDirPathCtx) Attributes

• OCIDirPathColArrayToStream()

20.1.1 Data Types Supported for Direct Path Loading
Lists the external data types that are valid for scalar columns in a direct path load operation.

The following external data types are valid for scalar columns in a direct path load operation:

Chapter 20
Direct Path Loading Overview

20-3

• SQLT_CHR
• SQLT_DAT
• SQLT_INT
• SQLT_UIN
• SQLT_FLT
• SQLT_BIN
• SQLT_NUM
• SQLT_PDN
• SQLT_CLOB
• SQLT_BLOB
• SQLT_DATE
• SQLT_TIMESTAMP
• SQLT_TIMESTAMP_TZ
• SQLT_TIMESTAMP_LTZ
• SQLT_INTERVAL_YM
• SQLT_INTERVAL_DS
The following external object data types are supported:

• SQLT_NTY - column objects (FINAL and NOT FINAL) and SQL string columns

• SQLT_REF - REF columns (FINAL and NOT FINAL)

The following table types are supported:

• Nested tables

• Object tables (FINAL and NOT FINAL)

See Also:

• About Accessing Column Parameter Attributes for information on setting or
retrieving the data type of a column

• Table 4-2 for information about data types

20.1.2 Direct Path Handles
A direct path load corresponds to a direct path array insert operation.

The direct path load interface uses the following handles to keep track of the objects loaded
and the specification of the data operated on:

• Direct Path Context

• OCI Direct Path Function Context

• Direct Path Column Array and Direct Path Function Column Array

Chapter 20
Direct Path Loading Overview

20-4

• Direct Path Stream

See Also:

Direct Path Loading Handle Attributes and all the descriptions of direct path
attributes that follow

• Direct Path Context
The direct path context handle must be allocated for each object, either a table or a
partition of a partitioned table, being loaded.

• OCI Direct Path Function Context
Use the direct path function context handle to describe named type and REF columns:
column objects, REF columns, and SQL string columns.

• Direct Path Column Array and Direct Path Function Column Array
The direct path column array handle and direct path function column handle are used to
present an array of rows to the direct path interface.

• Direct Path Stream
A direct path stream is a linear representation of Oracle table data.

20.1.2.1 Direct Path Context
The direct path context handle must be allocated for each object, either a table or a partition of
a partitioned table, being loaded.

Because an OCIDirPathCtx handle is the parent handle of the OCIDirPathFuncCtx,
OCIDirPathColArray, and OCIDirPathStream handles, freeing an OCIDirPathCtx handle frees
its child handles also (although for good coding practices, free child handles individually before
you free the parent handle).

A direct path context is allocated with OCIHandleAlloc(). Note that the parent handle of a
direct path context is always the environment handle. A direct path context is freed with
OCIHandleFree(). Include the header files in the first two lines in all direct path programs, as
shown in Example 20-1.

Example 20-1 Direct Path Programs Must Include the Header Files

...
#include <cdemodp0.h>
#include <cdemodp.h>

OCIEnv *envp;
OCIDirPathCtx *dpctx;
sword error;
error = OCIHandleAlloc((void *)envp, (void **)&dpctx,
 OCI_HTYPE_DIRPATH_CTX, (size_t)0,(void **)0);
...
error = OCIHandleFree(dpctx, OCI_HTYPE_DIRPATH_CTX);

Chapter 20
Direct Path Loading Overview

20-5

See Also:

• OCIHandleAlloc()

• OCIHandleFree()

20.1.2.2 OCI Direct Path Function Context
Use the direct path function context handle to describe named type and REF columns: column
objects, REF columns, and SQL string columns.

The direct path function context handle, of type OCIDirPathFuncCtx, is used to describe the
following named type and REF columns:

• Column objects. The function context here describes the object type, which is to be used
as the default constructor to construct the object, and the object attributes of the
constructor.

• REF columns. The function context here describes a single object table (optional) to
reference row objects from, and the REF arguments that identify each row object.

• SQL string columns. The function context here describes a SQL string and its arguments
to compute the value to be loaded into the column.

The handle type OCI_HTYPE_DIRPATH_FN_CTX is passed to OCIHandleAlloc() to indicate that a
function context is to be allocated, as shown in Example 20-2.

Note that the parent handle of a direct path function context is always the direct path context
handle. A direct path function context handle is freed with OCIHandleFree():

error = OCIHandleFree(dpfnctx, OCI_HTYPE_DIRPATH_FN_CTX);

Example 20-2 Passing the Handle Type to Allocate the Function Context

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIHandleAlloc((void *)dpctx, (void **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (void **)0);

See Also:

• Oracle Database Object-Relational Developer's Guide for more information about
the data types supported

• OCIHandleAlloc()

• OCIHandleFree()

Chapter 20
Direct Path Loading Overview

20-6

20.1.2.3 Direct Path Column Array and Direct Path Function Column Array
The direct path column array handle and direct path function column handle are used to
present an array of rows to the direct path interface.

A row is represented by three arrays: column values, column lengths, and column flags.
Methods used on a column array include: allocate the array handle and set or get values
corresponding to an array entry.

Both handles share the same data structure, OCIDirPathColArray, but these column array
handles differ in parent handles and handle types.

A direct path column array handle is allocated with OCIHandleAlloc(). The code fragment in
Example 20-3 shows explicit allocation of the direct path column array handle.

A direct path column array handle is freed with OCIHandleFree().

error = OCIHandleFree(dpca, OCI_HTYPE_DIRPATH_COLUMN_ARRAY);

Example 20-4 shows that a direct path function column array handle is allocated in almost the
same way.

A direct path function column array is freed with OCIHandleFree():

error = OCIHandleFree(dpfnca, OCI_HTYPE_DIRPATH_FN_COL_ARRAY);

Freeing an OCIDirPathColArray handle also frees the column array associated with the
handle.

Example 20-3 Explicit Allocation of Direct Path Column Array Handle

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathColArray *dpca; /* direct path column array */
sword error;
error = OCIHandleAlloc((void *)dpctx, (void **)&dpca,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (void **)0);

Example 20-4 Explicit Allocation of Direct Path Function Column Array Handle

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;
error = OCIHandleAlloc((void *)dpfnctx, (void **)&dpfnca,
 (ub4)OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (void **)0);

See Also:

OCIHandleAlloc()

20.1.2.4 Direct Path Stream
A direct path stream is a linear representation of Oracle table data.

Chapter 20
Direct Path Loading Overview

20-7

The direct path stream handle is used by the conversion operation,
OCIDirPathColArrayToStream(), and by the load operation, OCIDirPathLoadStream().

Direct path stream handles are allocated by the client with OCIHandleAlloc(). The structure of
an OCIDirPathStream handle can be thought of as a pair in the form (buffer, buffer length).

The conversion operations always append to the end of the stream. Load operations always
start from the beginning of the stream. After a stream is completely loaded, the stream must be
reset by calling OCIDirPathStreamReset().

Example 20-5 shows a direct path stream handle allocated with OCIHandleAlloc(). The parent
handle is always an OCIDirPathCtx handle.

A direct path stream handle is freed using OCIHandleFree().

error = OCIHandleFree(dpstr, OCI_HTYPE_DIRPATH_STREAM);

Freeing an OCIDirPathStream handle also frees the stream buffer associated with the handle.

Example 20-5 Allocating a Direct Path Stream Handle

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathStream *dpstr; /* direct path stream */
sword error;
error = OCIHandleAlloc((void *)dpctx, (void **)&dpstr,
 OCI_HTYPE_DIRPATH_STREAM, (size_t)0,(void **)0);

See Also:

• OCIDirPathColArrayToStream()

• OCIDirPathLoadStream()

• OCIHandleAlloc()

• OCIDirPathStreamReset()

20.1.3 About Direct Path Interface Functions
Lists and describes the functions used with the direct path load interface.

The functions listed in this section are used with the direct path load interface.

Operations on the direct path context are performed by the functions in Table 20-1.

Table 20-1 Direct Path Context Functions

Function Purpose

OCIDirPathAbort() Terminates a direct path operation

OCIDirPathDataSave() Executes a data savepoint

OCIDirPathFinish() Commits the loaded data

OCIDirPathFlushRow() Flushes a partially loaded row from the server. This function is
deprecated.

Chapter 20
Direct Path Loading Overview

20-8

Table 20-1 (Cont.) Direct Path Context Functions

Function Purpose

OCIDirPathLoadStream() Loads the data that has been converted to direct path stream
format

OCIDirPathPrepare() Prepares the direct path interface to convert or load rows

Operations on the direct path column array are performed by the functions in Table 20-2.

Table 20-2 Direct Path Column Array Functions

Function Purpose

OCIDirPathColArrayEntryGet() Gets a specified entry in a column array

OCIDirPathColArrayEntrySet() Sets a specified entry in a column array to a specific value

OCIDirPathColArrayRowGet() Gets the base row pointers for a specified row number

OCIDirPathColArrayReset() Resets the row array state

OCIDirPathColArrayToStream() Converts from a column array format to a direct path
stream format

Operations on the direct path stream are performed by the function OCIDirPathStreamReset()
that resets the direct stream state.

See Also:

Direct Path Loading Functions for detailed descriptions of each function

20.1.4 Limitations and Restrictions of the Direct Path Load Interface
Lists the limitations of the direct path load interface.

The direct path load interface has the following limitations that are the same as SQL*Loader:

• Triggers are not supported.

• Referential integrity constraints are not supported.

• Clustered tables are not supported.

• Loading of remote objects is not supported.

• LONGs must be specified last.

• SQL strings that return LOBs, objects, or collections are not supported.

• Loading of VARRAY columns is not supported.

• All partitioning columns must come before any LOBs. This is because you must determine
what partition the LOB goes into before you start writing to it.

Chapter 20
Direct Path Loading Overview

20-9

20.1.5 Direct Path Load Examples for Scalar Columns
This section describes the direct path load examples for scalar columns.

This is described in the following topics:

• Data Structures Used in Direct Path Loading Example

• Outline of an Example of a Direct Path Load for Scalar Columns

• Data Structures Used in Direct Path Loading Example
Shows examples that use the data structures in direct path loading.

• Outline of an Example of a Direct Path Load for Scalar Columns
Shows sample code that illustrates the use of several of the OCI direct path interfaces.

20.1.5.1 Data Structures Used in Direct Path Loading Example
Shows examples that use the data structures in direct path loading.

Example 20-6 shows the data structure used in Example 20-7 through Example 20-17.

Example 20-7 shows the header file cdemodp.h from the demo directory, which defines several
structs.

Example 20-6 Data Structures Used in Direct Path Loading Examples

/* load control structure */
struct loadctl
{
 ub4 nrow_ctl; /* number of rows in column array */
 ub2 ncol_ctl; /* number of columns in column array */
 OCIEnv *envhp_ctl; /* environment handle */
 OCIServer *srvhp_ctl; /* server handle */
 OCIError *errhp_ctl; /* error handle */
 OCIError *errhp2_ctl; /* yet another error handle */
 OCISvcCtx *svchp_ctl; /* service context */
 OCISession *authp_ctl; /* authentication context */
 OCIParam *colLstDesc_ctl; /* column list parameter handle */
 OCIDirPathCtx *dpctx_ctl; /* direct path context */
 OCIDirPathColArray *dpca_ctl; /* direct path column array handle */
 OCIDirPathColArray *dpobjca_ctl; /* dp column array handle for obj*/
 OCIDirPathColArray *dpnestedobjca_ctl; /* dp col array hndl for nested obj*/
 OCIDirPathStream *dpstr_ctl; /* direct path stream handle */
 ub1 *buf_ctl; /* pre-alloc'd buffer for out-of-line data */
 ub4 bufsz_ctl; /* size of buf_ctl in bytes */
 ub4 bufoff_ctl; /* offset into buf_ctl */
 ub4 *otor_ctl; /* Offset to Recnum mapping */
 ub1 *inbuf_ctl; /* buffer for input records */
 struct pctx pctx_ctl; /* partial field context */
 boolean loadobjcol_ctl; /* load to obj col(s)? T/F */
};

Example 20-7 Contents of the Header File cdemodp.h

#ifndef cdemodp_ORACLE
define cdemodp_ORACLE

include <oratypes.h>

ifndef externdef

Chapter 20
Direct Path Loading Overview

20-10

define externdef
endif

/* External column attributes */
struct col
{
 text *name_col; /* column name */
 ub2 id_col; /* column load ID */
 ub2 exttyp_col; /* external type */
 text *datemask_col; /* datemask, if applicable */
 ub1 prec_col; /* precision, if applicable */
 sb1 scale_col; /* scale, if applicable */
 ub2 csid_col; /* character set ID */
 ub1 date_col; /* is column a chrdate or date? 1=TRUE. 0=FALSE */
 struct obj * obj_col; /* description of object, if applicable */
#define COL_OID 0x1 /* col is an OID */
 ub4 flag_col;
};

/* Input field descriptor
 * For this example (and simplicity),
 * fields are strictly positional.
 */
struct fld
{
 ub4 begpos_fld; /* 1-based beginning position */
 ub4 endpos_fld; /* 1-based ending position */
 ub4 maxlen_fld; /* max length for out-of-line field */
 ub4 flag_fld;
#define FLD_INLINE 0x1
#define FLD_OUTOFLINE 0x2
#define FLD_STRIP_LEAD_BLANK 0x4
#define FLD_STRIP_TRAIL_BLANK 0x8
};

struct obj
{
 text *name_obj; /* type name*/
 ub2 ncol_obj; /* number of columns in col_obj*/
 struct col *col_obj; /* column attributes*/
 struct fld *fld_obj; /* field descriptor*/
 ub4 rowoff_obj; /* current row offset in the column array*/
 ub4 nrows_obj; /* number of rows in col array*/
 OCIDirPathFuncCtx *ctx_obj; /* Function context for this obj column*/
 OCIDirPathColArray *ca_obj; /* column array for this obj column*/
 ub4 flag_obj; /* type of obj */
#define OBJ_OBJ 0x1 /* obj col */
#define OBJ_OPQ 0x2 /* opaque/sql str col */
#define OBJ_REF 0x4 /* ref col */
};

struct tbl
{
 text *owner_tbl; /* table owner */
 text *name_tbl; /* table name */
 text *subname_tbl; /* subname, if applicable */
 ub2 ncol_tbl; /* number of columns in col_tbl */
 text *dfltdatemask_tbl; /* table level default date mask */
 struct col *col_tbl; /* column attributes */
 struct fld *fld_tbl; /* field descriptor */
 ub1 parallel_tbl; /* parallel: 1 for true */
 ub1 nolog_tbl; /* no logging: 1 for true */

Chapter 20
Direct Path Loading Overview

20-11

 ub4 xfrsz_tbl; /* transfer buffer size in bytes */
 text *objconstr_tbl; /* obj constr/type if loading a derived obj */
};

struct sess /* options for a direct path load session */
{
 text *username_sess; /* user */
 text *password_sess; /* password */
 text *inst_sess; /* remote instance name */
 text *outfn_sess; /* output filename */
 ub4 maxreclen_sess; /* max size of input record in bytes */
};
#endif /* cdemodp_ORACLE */

20.1.5.2 Outline of an Example of a Direct Path Load for Scalar Columns
Shows sample code that illustrates the use of several of the OCI direct path interfaces.

Example 20-8 shows sample code that illustrates the use of several of the OCI direct path
interfaces. It is not a complete code example.

The init_load function performs a direct path load using the direct path API on the table
described by tblp. The loadctl structure given by ctlp has an appropriately initialized
environment and service context. A connection has been made to the server.

Additional attributes, such as OCI_ATTR_SUB_NAME and OCI_ATTR_SCHEMA_NAME, are also set
here. After the attributes have been set, prepare the load.

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathPrepare(dpctx, ctlp->svchp_ctl, ctlp->errhp_ctl));

Allocate the Column Array and Stream Handles

Note that the direct path context handle is the parent handle for the column array and stream
handles, as shown in Example 20-9. Also note that errors are returned with the environment
handle associated with the direct path context.

Get the Number of Rows and Columns

Get the number of rows and columns in the column array just allocated, as shown in
Example 20-10.

Set the Input Data Fields

Set the input data fields to their corresponding data columns, as shown in Example 20-11.

Reset the Column Array State

Reset the column array state in case a previous conversion must be continued or a row is
expecting more data, as shown in Example 20-12.

Reset the Stream State

Reset the stream state to start a new stream, as shown in Example 20-13. Otherwise, data in
the stream is appended to existing data.

Convert the Data in the Column Array to Stream Format

After inputting the data, convert the data in the column array to stream format and filter out any
bad records, as shown in Example 20-14.

Chapter 20
Direct Path Loading Overview

20-12

Load the Stream

Note that the position in the stream is maintained internally to the stream handle, along with
offset information for the column array that produced the stream. When the conversion to
stream format is done, the data is appended to the stream, as shown in Example 20-15. It is
the responsibility of the caller to reset the stream when appropriate. On errors, the position is
moved to the next row, or to the end of the stream if the error occurs on the last row. The next
OCIDirPathLoadStream() call starts on the next row, if any. If an OCIDirPathLoadStream() call
is made and the end of a stream has been reached, OCI_NO_DATA is returned.

Finish the Direct Path Load

Finish the direct path load as shown in Example 20-16.

Free the Direct Path Handles

Free all the direct path handles allocated, as shown in Example 20-17. Note that the direct
path column array and stream handles are freed before the parent direct path context handle is
freed.

Example 20-8 Use of OCI Direct Path Interfaces

STATICF void
init_load(ctlp, tblp)
struct loadctl *ctlp;
struct tbl *tblp;
{
 struct col *colp;
 struct fld *fldp;
 sword ociret; /* return code from OCI calls */
 OCIDirPathCtx *dpctx; /* direct path context */
 OCIParam *colDesc; /* column parameter descriptor */
 ub1 parmtyp;
 ub1 *timestamp = (ub1 *)0;
 ub4 size;
 ub4 i;
 ub4 pos;

 /* allocate and initialize a direct path context */
 /* See cdemodp.c for the definition of OCI_CHECK */
 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((void *)ctlp->envhp_ctl,
 (void **)&ctlp->dpctx_ctl,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (size_t)0, (void **)0));

 dpctx = ctlp->dpctx_ctl; /* shorthand */

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (void *)tblp->name_tbl,
 (ub4)strlen((const char *)tblp->name_tbl),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));

Example 20-9 Allocating the Column Array and Stream Handles

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((void *)ctlp->dpctx_ctl, (void **)&ctlp->dpca_ctl,
 (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (void **)0));

Chapter 20
Direct Path Loading Overview

20-13

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((void *)ctlp->dpctx_ctl,(void **)&ctlp->dpstr_ctl,
 (ub4)OCI_HTYPE_DIRPATH_STREAM,
 (size_t)0, (void **)0));

Example 20-10 Getting the Number of Rows and Columns

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->nrow_ctl, 0, OCI_ATTR_NUM_ROWS,
 ctlp->errhp_ctl));

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->ncol_ctl, 0, OCI_ATTR_NUM_COLS,
 ctlp->errhp_ctl));

Example 20-11 Setting Input Data Fields

ub4 rowoff; /* column array row offset */
ub4 clen; /* column length */
ub1 cflg; /* column state flag */
ub1 *cval; /* column character value */

OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathColArrayEntrySet(ctlp->dpca_ctl, ctlp->errhp_ctl,
 rowoff, colp->id_col,
 cval, clen, cflg));

Example 20-12 Resetting the Column Array State

(void) OCIDirPathColArrayReset(ctlp->dpca_ctl, ctlp->errhp_ctl);

Example 20-13 Resetting the Stream State

(void) OCIDirPathStreamReset(ctlp->dpstr_ctl, ctlp->errhp_ctl);

Example 20-14 Converting Data to Stream Format

ub4 rowcnt; /* number of rows in column array */
ub4 startoff; /* starting row offset into column array */

/* convert array to stream, filter out bad records */
ocierr = OCIDirPathColArrayToStream(ctlp->dpca_ctl, ctlp->dpctx_ctl,
 ctlp->dpstr_ctl, ctlp->errhp_ctl,
 rowcnt, startoff);

Example 20-15 Loading the Stream

/* load the stream */
ociret = OCIDirPathLoadStream(ctlp->dpctx_ctl, ctlp->dpstr_ctl,
 ctlp->errhp_ctl);

Example 20-16 Finishing the Direct Path Load Operation

/* finish the direct path load operation */
OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathFinish(ctlp->dpctx_ctl, ctlp->errhp_ctl));

Chapter 20
Direct Path Loading Overview

20-14

Example 20-17 Freeing the Direct Path Handles

/* free up server data structures for the load */
ociret = OCIHandleFree((void *)ctlp->dpca_ctl,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY);
ociret = OCIHandleFree((void *)ctlp->dpstr_ctl,
 OCI_HTYPE_DIRPATH_STREAM);
ociret = OCIHandleFree((void *)ctlp->dpctx_ctl,
 OCI_HTYPE_DIRPATH_CTX);

See Also:

OCIDirPathLoadStream()

20.1.6 About Using a Date Cache in Direct Path Loading of Dates in OCI
The date cache feature provides improved performance when loading Oracle date and time-
stamp values that require data type conversions to be stored in the table.

For more information about using this feature in direct path loading, see Oracle Database
Utilities.

This feature is specifically targeted to direct path loads where the same input date or
timestamp values are being loaded over and over again. Date conversions are very expensive
and can account for a large percentage of the total load time, especially if multiple date
columns are being loaded. The date cache feature can significantly improve performance by
reducing the actual number of date conversions done when many duplicate date values occur
in the input data. However, date cache only improves performance when many duplicate input
date values are being loaded into date columns (the word date in this chapter applies to all the
date and time-stamp data types).

The date cache is enabled by default. When you explicitly specify the date cache size, the date
cache feature is not disabled, by default. To override this behavior, set
OCI_ATTR_DIRPATH_DCACHE_DISABLE to 1. Otherwise, the cache continues to be searched to
avoid date conversions. However, any misses (entries for which there are no duplicate values)
are converted the usual way using expensive date conversion functions without the benefit of
using the date cache feature.

Query the attributes OCI_ATTR_DIRPATH_DCACHE_NUM, OCI_ATTR_DIRPATH_DCACHE_MISSES, and
OCI_ATTR_DIRPATH_DCACHE_HITS and then tune the cache size for future loads.

You can lower the cache size when there are no misses and the number of elements in the
cache is less than the cache size. The cache size can be increased if there are many cache
misses and relatively few hits (entries for which there are duplicate values). Excessive date
cache misses, however, can cause the application to run slower than not using the date cache
at all. Note that increasing the cache size too much can cause other problems, like paging or
exhausting memory. If increasing the cache size does not improve performance, the feature
should not be used.

The date cache feature can be explicitly and totally disabled by setting the date cache size to
0.

The following OCI direct path context attributes support this functionality:

• OCI_ATTR_DIRPATH_DCACHE_SIZE

Chapter 20
Direct Path Loading Overview

20-15

• OCI_ATTR_DIRPATH_DCACHE_NUM

• OCI_ATTR_DIRPATH_DCACHE_MISSES

• OCI_ATTR_DIRPATH_DCACHE_HITS

• OCI_ATTR_DIRPATH_DCACHE_DISABLE

• OCI_ATTR_DIRPATH_DCACHE_SIZE

• OCI_ATTR_DIRPATH_DCACHE_NUM

• OCI_ATTR_DIRPATH_DCACHE_MISSES

• OCI_ATTR_DIRPATH_DCACHE_HITS

• OCI_ATTR_DIRPATH_DCACHE_DISABLE
Used to disable the data cache if the size is exceeded.

20.1.6.1 OCI_ATTR_DIRPATH_DCACHE_SIZE
This attribute, when not equal to 0, sets the date cache size (in elements) for a table. For
example, if the date cache size is set to 200, then at most 200 unique date or time-stamp
values can be stored in the cache. The date cache size cannot be changed once
OCIDirPathPrepare() has been called. The default value is 0, meaning a date cache is not
created for a table. A date cache is created for a table only if one or more date or time-stamp
values are loaded that require data type conversions and the attribute value is nonzero.

20.1.6.2 OCI_ATTR_DIRPATH_DCACHE_NUM
This attribute is used to query the current number of entries in a date cache.

20.1.6.3 OCI_ATTR_DIRPATH_DCACHE_MISSES
This attribute is used to query the current number of date cache misses. If the number of
misses is high, consider using a larger date cache size. If increasing the date cache size does
not cause this number to decrease significantly, the date cache should probably not be used.
Date cache misses are expensive, due to hashing and lookup times.

20.1.6.4 OCI_ATTR_DIRPATH_DCACHE_HITS
This attribute is used to query the number of date cache hits. This number should be relatively
large to see any benefit of using the date cache support.

20.1.6.5 OCI_ATTR_DIRPATH_DCACHE_DISABLE
Used to disable the data cache if the size is exceeded.

Setting this attribute to 1 indicates that the date cache should be disabled if the size is
exceeded. Note that this attribute cannot be changed or set after OCIDirPathPrepare() has
been called.

The default (= 0) is to not disable a cache on overflow. When not disabled, the cache is
searched to avoid conversions, but overflow input date value entries are not added to the date
cache, and are converted using expensive date conversion functions. Again, excessive date
cache misses can cause the application to run slower than not using the date cache at all.

This attribute can also be queried to see if a date cache has been disabled due to overflow.

Chapter 20
Direct Path Loading Overview

20-16

See Also:

• Direct Path Context Handle (OCIDirPathCtx) Attributes

• OCIDirPathPrepare()

20.1.7 About Validating Format for Oracle NUMBER and DATE Data
Describes validating format for Oracle NUMBER and DATE data when loading stream data.

Use the direct path context handle attribute OCI_ATTR_DIRPATH_FLAGS with the
OCI_DIRPATH_FLAGS_VLDT 0x01 flag set to validate format for Oracle NUMBER and DATE data
when the stream is parsed on the server. The default value is to not set this flag because it is
an expensive operation. It can be used when you suspect that there is a problem with
OCIDirPath generating invalid internal representation of dates and numbers.

See Direct Path Context Handle (OCIDirPathCtx) Attributes for more information.

20.2 Direct Path Loading of Object Types
The use of the direct path function contexts to load various nonscalar types is discussed in this
section.

The nonscalar types are:

• Nested tables

• Object tables (FINAL and NOT FINAL)

• Column objects (FINAL and NOT FINAL)

• REF columns (FINAL and NOT FINAL)

• SQL string columns

This section includes the following topics:

• Direct Path Loading of Nested Tables

• Direct Path Loading of Column Objects

• Direct Path Loading of SQL String Columns

• Direct Path Loading of REF Columns

• Direct Path Loading of NOT FINAL Object and REF Columns

• Direct Path Loading of Object Tables

• Direct Path Loading a NOT FINAL Object Table

• Direct Path Loading of Nested Tables
Nested tables are stored in a separate table.

• Direct Path Loading of Column Objects
A column object is a table column that is defined as an object.

Chapter 20
Direct Path Loading of Object Types

20-17

• Direct Path Loading of SQL String Columns
A column value can be computed by a SQL string. SQL strings can be used for scalar
column types.

• Direct Path Loading of REF Columns
The REF type is a pointer, or reference, to a row object in an object table.

• Direct Path Loading of NOT FINAL Object and REF Columns
Recall that SQL object inheritance is based on a family tree of object types that forms a
type hierarchy.

• Direct Path Loading of Object Tables
An object table is a table in which each row is an object (or row object). Each column in the
table is an object attribute.

• Direct Path Loading a NOT FINAL Object Table
A NOT FINAL object table supports inheritance and a FINAL object table cannot.

See Also:

Table B-1 for a listing of the programs demonstrating direct path loading that are
available with your Oracle Database installation

20.2.1 Direct Path Loading of Nested Tables
Nested tables are stored in a separate table.

Using the direct path loading API, a nested table is loaded separately from its parent table with
a foreign key, called a SETID, to link the two tables together.

Note:

• Currently, the SETIDs must be user-supplied and are not system-generated.

• When loading the parent and child tables separately, it is possible for orphaned
children to be created when the rows are inserted in to the child table, but the
corresponding parent row is not inserted in to the parent table. It is also possible
to insert a parent row in to the parent table without inserting child rows in to the
child table, so that the parent row has missing children.

• Describing a Nested Table Column and Its Nested Table
Lists and describes loading the parent table with a nested table column, whichis a separate
action from loading the child nested table.

Chapter 20
Direct Path Loading of Object Types

20-18

20.2.1.1 Describing a Nested Table Column and Its Nested Table
Lists and describes loading the parent table with a nested table column, whichis a separate
action from loading the child nested table.

Note:

Steps that are different from loading scalar data are in italic.

Loading the parent table with a nested table column is a separate action from loading the child
nested table.

• To load the parent table with a nested table column:

1. Describe the parent table and its columns as usual, except:

2. When describing the nested table column, this is the column that stores the SETIDs.
Its external data type is SQLT_CHR if the SETIDs in the data file are in characters,
SQLT_BIN if binary.

• To load the nested table (child):

1. Describe the nested table and its columns as usual.

2. The SETID column is required.

– Set its OCI_ATTR_NAME using a dummy name (for example "setid"), because the
API does not expect you to know its system name.

– Set the column attribute with OCI_ATTR_DIRPATH_SID to indicate that this is a
SETID column:

ub1 flg = 1;
sword error;

error = OCIAttrSet((void *)colDesc,
 OCI_DTYPE_PARAM,
 (void *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_SID, ctlp->errhp_ctl);

This section includes the following topic: Describing a Nested Table Column and Its Nested
Table.

20.2.2 Direct Path Loading of Column Objects
A column object is a table column that is defined as an object.

Currently only the default constructor, which consists of all of the constituent attributes, is
supported.

This section includes the following topics:

• Describing a Column Object

• Allocating the Array Column for the Column Object

• Loading Column Object Data into the Column Array

• OCI_DIRPATH_COL_ERROR

Chapter 20
Direct Path Loading of Object Types

20-19

• Describing a Column Object
To describe a column object and its object attributes, use a direct path function context.

• Allocating the Array Column for the Column Object
When you direct path load a column object, the data for its object attributes is loaded into a
separate column array created just for that object.

• Loading Column Object Data into the Column Array
If a column is scalar, its value is set in the column array by passing the address of its value
to OCIDirPathColArrayEntrySet().

• OCI_DIRPATH_COL_ERROR
The OCI_DIRPATH_COL_ERROR value is passed to OCIDirPathColArrayEntry() to indicate
that the current column array row should be ignored.

20.2.2.1 Describing a Column Object
To describe a column object and its object attributes, use a direct path function context.

Describing a column object requires setting its object constructor. Describing object attributes
is similar to describing a list of scalar columns.

To describe a column object:

Note:

• Nested column objects are supported.

• The steps shown here are similar to those describing a list of scalar columns to
be loaded for a table. Steps that are different from loading scalar data are in
italic.

1. Allocate a parameter handle on the column object with OCI_DTYPE_PARAM. This parameter
handle is used to set the column's external attributes.

2. Set the column name and its other external column attributes (for example, maximum data
size, precision, scale).

3. Set the external type as SQLT_NTY (named type) with OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context is used to describe the
column's object type and attributes:

OCIDirPathFuncCtx *dpfnctx /* direct path function context */;
sword error;
error = OCIHandleAlloc((void *)dpctx, (void **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (void **)0);

5. Set the column's object type name (for example, "Employee") with OCI_ATTR_NAME in
the function context:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *obj_type; /* column object's object type */
sword error;

error = OCIAttrSet((void *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,

Chapter 20
Direct Path Loading of Object Types

20-20

 (void *)obj_type, (ub4)strlen((const char *)obj_type),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_OBJ_CONSTR. This indicates that the expression set with
OCI_ATTR_NAME is used as the default object constructor:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
ub1 expr_type = OCI_DIRPATH_EXPR_OBJ_CONSTR;
sword error;

error = OCIAttrSet((void *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (void *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE,
 ctlp->errhp_ctl);

7. Set the number of columns or object attributes that are to be loaded for this column object
using OCI_ATTR_NUM_COLS.

8. Get the column or attribute parameter list for the function context OCIDirPathFuncCtx.

9. For each object attribute:

a. Get the column descriptor for the object attribute with OCI_DTYPE_PARAM.

b. Set the attribute's column name with OCI_ATTR_NAME.

c. Set the external column type (the type of the data that is to be passed to the direct
path API) with OCI_ATTR_DATA_TYPE.

d. Set any other external column attributes (maximum data size, precision, scale, and so
on.)

e. If this attribute column is a column object, then do Steps 3 through 10 for its object
attributes.

f. Free the handle to the column descriptor.

10. Set the function context OCIDirPathFuncCtx that was created in Step 4 into the parent
column object's parameter handle with OCI_ATTR_DIRPATH_FN_CTX.

20.2.2.2 Allocating the Array Column for the Column Object
When you direct path load a column object, the data for its object attributes is loaded into a
separate column array created just for that object.

A child column array is allocated for each column object, whether it is nested or not. Each row
of object attributes in the child column array maps to the corresponding non-NULL row of its
parent column object in the parent column array.

Use the column object's direct path function context handle and function column array value
OCI_HTYPE_DIRPATH_FN_COL_ARRAY.

Example 20-18 shows how to allocate a child column array for a column object.

Example 20-18 Allocating a Child Column Array for a Column Object

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((void *)dpfnctx, (void **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (void **)0);

Chapter 20
Direct Path Loading of Object Types

20-21

20.2.2.3 Loading Column Object Data into the Column Array
If a column is scalar, its value is set in the column array by passing the address of its value to
OCIDirPathColArrayEntrySet().

If a column is an object, the address of its child column array handle is passed instead. The
child column array contains the data of the object attributes.

To load data into a column object:

Note:

Steps that are different from loading scalar data are in italic.

(Start.) For each column object:

1. If the column is non-NULL:

a. For each of its object attribute columns:

If an object attribute is a nested column object, then go to (Start.) and do this entire
procedure recursively.

Set the data in the child column array using OCIDirPathColArrayEntrySet().

b. Set the column object's data in the column array by passing the address of its child
column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

Set the column object's data in the column array by passing a NULL address for the data,
a length of 0, and an OCI_DIRPATH_COL_NULL flag to OCIDirPathColArrayEntrySet().

See Also:

OCIDirPathColArrayEntrySet()

20.2.2.4 OCI_DIRPATH_COL_ERROR
The OCI_DIRPATH_COL_ERROR value is passed to OCIDirPathColArrayEntry() to indicate that
the current column array row should be ignored.

A typical use of this value is to back out all previous conversions for a row when an error
occurs, providing that more data for a partial column (OCI_NEED_DATA was returned from the
previous OCIDirPathColArrayToStream() call). Any previously converted data placed in the
output stream buffer for the current row is removed. Conversion then continues with the next
row in the column array. The purged row is counted in the converted row count.

When OCI_DIRPATH_COL_ERROR is specified, the current row is ignored, as well as any
corresponding rows in any child column arrays referenced, starting from the top-level column
array row. Any NULL child column array references are ignored when moving all referenced
child column arrays to their next row.

Chapter 20
Direct Path Loading of Object Types

20-22

See Also:

OCIDirPathColArrayToStream()

20.2.3 Direct Path Loading of SQL String Columns
A column value can be computed by a SQL string. SQL strings can be used for scalar column
types.

SQL strings cannot be used for object types, but can be used for object attributes of scalar
column types. They cannot be used for nested tables, sequences, and LONGs.

A SQL expression is represented to the direct path API using the OCIDirPathFuncCtx. Its
OCI_ATTR_NAME value is the SQL string with the parameter list of the named bind variables for
the expression.

The bind variable namespace is limited to a column's SQL string. The same bind variable
name can be used for multiple columns, but any arguments with the same name only apply to
the SQL string of that column.

If a SQL string of a column contains multiple references to a bind variable and multiple
arguments are specified for that name, all of the values must be the same; otherwise, the
results are undefined. Only one argument is actually required for this case, as all references to
the same bind variable name in a particular SQL expression are bound to that single argument.

A SQL string example is:

substr(substr(:string, :offset, :length), :offset, :length)

Things to note about this example are:

• SQL expressions can be nested.

• Bind variable names can be repeated within the expression.

This section includes the following topics:

• Describing a SQL String Column

• Allocating the Column Array for SQL String Columns

• Loading the SQL String Data into the Column Array

• Describing a SQL String Column
Lists steps for describing a SQL string column.

• Allocating the Column Array for SQL String Columns
When you direct path load a SQL string column, the data for its arguments is loaded into a
separate column array created just for that SQL string column.

• Loading the SQL String Data into the Column Array
If a column is scalar, its value would be set in the column array by passing the address of
its value to OCIDirPathColArrayEntrySet().

Chapter 20
Direct Path Loading of Object Types

20-23

20.2.3.1 Describing a SQL String Column
Lists steps for describing a SQL string column.

Note:

Steps that are different from loading scalar data are in italic.

1. Allocate a parameter handle on the SQL string column with OCI_DTYPE_PARAM. This
parameter handle is used to set the column's external attributes.

2. Set the column name and its other external column attributes (for example, maximum data
size, precision, scale).

3. Set the SQL string column's external type as SQLT_NTY with OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context is used to describe the
arguments of the SQL string.

OCIDirPathFuncCtx *dpfnctx /* direct path function context */;
sword error;
error = OCIHandleAlloc((void *)dpctx, (void **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (void **)0);

5. Set the column's SQL string in OCI_ATTR_NAME in the function context.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *sql_str; /* column's SQL string expression */
sword error;

error = OCIAttrSet((void *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (void *)sql_str, (ub4)strlen((const char *)sql_str),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_SQL. This indicates that the expression set with OCI_ATTR_NAME
is used as the SQL string to derive the value from.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
ub1 expr_type = OCI_DIRPATH_EXPR_SQL;
sword error;

error = OCIAttrSet((void *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (void *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE, ctlp->errhp_ctl);

7. Set the number of arguments that are to be passed to the SQL string with
OCI_ATTR_NUM_COLS.

8. Get the column or attribute parameter list for the function context.

9. For each SQL string argument:

a. Get the column descriptor for the object attribute with OCI_DTYPE_PARAM.

b. The order in which the SQL string arguments are defined does not matter. The order
does not have to match the order used in the SQL string.

Chapter 20
Direct Path Loading of Object Types

20-24

c. Set the attribute's column name with OCI_ATTR_NAME.

d. Use the naming convention for SQL string arguments.

e. The argument names must match the bind variable names used in the SQL string in
content but not in case. For example, if the SQL string is "substr(:INPUT_STRING, 3,
5)", then it is acceptable if you give the argument name as "input_string".

f. If an argument is used multiple times in a SQL string, declaring it once and counting it
as one argument only is correct.

g. Set the external column type (the type of the data that is to be passed to the direct
path API) with OCI_ATTR_DATA_TYPE.

h. Set any other external column attributes (maximum data size, precision, scale, and so
on).

i. Free the handle to the column descriptor.

10. Set the function context OCIDirPathFuncCtx that was created in Step 4 into the parent
column object's parameter handle with OCI_ATTR_DIRPATH_FN_CTX.

20.2.3.2 Allocating the Column Array for SQL String Columns
When you direct path load a SQL string column, the data for its arguments is loaded into a
separate column array created just for that SQL string column.

A child column array is allocated for each SQL string column. Each row of arguments in the
child column array maps to the corresponding non-NULL row of its parent SQL string column in
the parent column array.

Example 20-19 shows how to allocate a child column array for a SQL string column.

Example 20-19 Allocating a Child Column Array for a SQL String Column

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((void *)dpfnctx, (void **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (void **)0);

20.2.3.3 Loading the SQL String Data into the Column Array
If a column is scalar, its value would be set in the column array by passing the address of its
value to OCIDirPathColArrayEntrySet().

If a column is of a SQL string type, the address of its child column array handle would be
passed instead. The child column array would contain the SQL string's argument data.

To load data into a SQL string column:

Note:

Steps that are different from loading scalar data are in italic.

For each SQL string column:

Chapter 20
Direct Path Loading of Object Types

20-25

1. If the column is non-NULL:

a. For each of its function argument columns:

Set the data in the child column array using OCIDirPathColArrayEntrySet().

b. Set the SQL string column's data into the column array by passing the address of its
child column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

Set the SQL string column data into the column array by passing a NULL address for the
data, a length of 0, and an OCI_DIRPATH_COL_NULL flag to OCIDirPathColArrayEntrySet().

This process is similar to that for column objects.

See Also:

• OCI_DIRPATH_COL_ERROR for more information about passing the
OCI_DIRPATH_COL_ERROR value to OCIDirPathColArrayEntry() to indicate that
the current column array row should be ignored when an error occurs

• OCIDirPathColArrayEntrySet()

20.2.4 Direct Path Loading of REF Columns
The REF type is a pointer, or reference, to a row object in an object table.

This section includes the following topics:

• Describing the REF Column

• Allocating the Column Array for a REF Column

• Loading the REF Data into the Column Array

• Describing the REF Column
Describing the arguments to a REF column is similar to describing the list of columns to be
loaded for a table.

• Allocating the Column Array for a REF Column
Shows how to allocate a child column array for a REF column.

• Loading the REF Data into the Column Array
If a column is scalar, its value is set in the column array by passing the address of its value
to OCIDirPathColArrayEntrySet().

20.2.4.1 Describing the REF Column
Describing the arguments to a REF column is similar to describing the list of columns to be
loaded for a table.

Chapter 20
Direct Path Loading of Object Types

20-26

Note:

A REF column can be a top-table-level column or nested as an object attribute to a
column object.

Steps that are different from loading scalar data are in italic.

1. Get a parameter handle on the REF column with OCI_DTYPE_PARAM. This parameter handle
is used to set the column's external attributes.

2. Set the column name and its other external column attributes (for example, maximum data
size, precision, scale).

3. Set the REF column's external type as SQLT_REF with OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context is used to describe the REF
column's arguments.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIHandleAlloc((void *)dpctx, (void **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (void **)0);

5. OPTIONAL: Set the REF column's table name in OCI_ATTR_NAME in the function
context. See the next step for more details.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *ref_tbl; /* column's reference table */
sword error;

error = OCIAttrSet((void *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (void *)ref_tbl, (ub4)strlen((const char *)ref_tbl),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. OPTIONAL: Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_REF_TBLNAME. Set this only if Step 5 was done. This indicates
that the expression set with OCI_ATTR_NAME is to be used as the object table to
reference row objects from. This parameter is optional. The behavior for this parameter
varies for the REF type.

• Unscoped REF columns (unscoped, system-OID-based):

If not set, then by the definition of an "unscoped" REF column, this REF column is
required to have a reference table name as its argument for every data row.

If set, this REF column can only refer to row objects from this specified object table for
the duration of the load. And the REF column is not allowed to have a reference table
name as its argument. (The direct path API is providing this parameter as a shortcut to
users who will be loading to an unscoped REF column that refers to the same
reference object table during the entire load.)

• Scoped REF columns (scoped, system-OID-based, and primary-key-based):

If not set, the direct path API uses the reference table specified in the schema.

If set, the reference table name must match the object table specified in the schema
for this scoped REF column. An error occurs if the table names do not match.

Chapter 20
Direct Path Loading of Object Types

20-27

Whether this parameter is set or not, it does not matter to the API whether this
reference table name is in the data row or not. If the name is in the data row, it must
match the table name specified in the schema. If it is not in the data row, the API uses
the reference table specified in the schema.

7. Set the number of REF arguments that are to be used to reference a row object with
OCI_ATTR_NUM_COLS. The number of arguments required varies for the REF column
type. This number is derived from Step 6 earlier.

• Unscoped REF columns (unscoped, system-OID-based REF columns):

One if OCI_DIRPATH_EXPR_REF_TBLNAME is used. None for the reference table
name, and one for the OID value.

Two if OCI_DIRPATH_EXPR_REF_TBLNAME is not used. One for the reference table
name, and one for the OID value.

• Scoped REF columns (scoped, system-OID-based, and primary-key-based):

N or N+1 are acceptable, where N is the number of columns making up the object ID,
regardless if OCI_DIRPATH_EXPR_REF_TBLNAME is used or not. Minimum is N if
the reference table name is not in the data row. It is N+1 if the reference table name is
in the data row. Note: If the REF is system-OID-based, then N is one. If the REF is
primary-key-based, then N is the number of component columns that make up the
primary key. If the reference table name is in the data row, then add one to N.

Note:

To simplify the error message if you pass in some REF arguments other than
N or N+1, the error message says that it found so-and-so number of
arguments when it expects N. Although N+1 is not stated in the message,
N+1 is acceptable (even though the reference table name is not needed) and
does not invoke an error message.

8. Get the column or attribute parameter list for the function context.

9. For each REF argument or attribute:

a. Get the column descriptor for the REF argument using OCI_DTYPE_PARAM.

b. Set the attribute's column name using OCI_ATTR_NAME.

The order of the REF arguments given matter. The reference table name comes first, if
given. The object ID, whether it is system-generated or primary-key-based, comes
next.

There is a naming convention for the REF arguments. Because the reference table
name is not a table column, you can use any dummy names for its column name, such
as "ref-tbl." For a system-generated OID column, you can use any dummy names for
its column name, such as "sys-OID". For a primary-key-based object ID, list all the
primary-key columns to load into. There is no need to create a dummy name for OID.
The component column names, if given (see shortcut note later), can be given in any
order.

Do not set the attribute column names for the object ID to use the shortcut.

Shortcut. If loading a system-OID-based REF column, do not set the column name
with a name. The API figures it out. But you must still set other column attributes, such
as external data type.

Chapter 20
Direct Path Loading of Object Types

20-28

If loading a primary-key REF column and its primary key consists of multiple columns,
the shortcut is not to set their column names. But you must still set other column
attributes, such as external data type.

Note:

If the component column names are NULL, then the API code determines the
column names in the position or order in which they were defined for the
primary key. So, when you set column attributes other than the name, ensure
that the attributes are set for the component columns in the correct order.

c. Set the external column type (the type of the data that is to be passed to the direct
path API) using OCI_ATTR_DATA_TYPE.

d. Set any other external column attributes (max data size, precision, scale, and so on).

e. Free the handle to the column descriptor.

f. Set the function context OCIDirPathFuncCtx that was created in Step 4 in the parent
column object's parameter handle using OCI_ATTR_DIRPATH_FN_CTX.

20.2.4.2 Allocating the Column Array for a REF Column
Shows how to allocate a child column array for a REF column.

Example 20-20 shows how to allocate a child column array for a REF column.

Example 20-20 Allocating a Child Column Array for a REF Column

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((void *)dpfnctx, (void **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (void **)0);

20.2.4.3 Loading the REF Data into the Column Array
If a column is scalar, its value is set in the column array by passing the address of its value to
OCIDirPathColArrayEntrySet().

If a column is a REF, the address of its child column array handle is passed instead. The child
column array contains the REF arguments' data.

To load data into a REF column:

Note:

Steps that are different from loading scalar data are in italic.

For each REF column:

1. If the column is non-NULL:

Chapter 20
Direct Path Loading of Object Types

20-29

a. For each of its REF argument columns:

Set its data in the child column array using OCIDirPathColArrayEntrySet().

b. Set the REF column's data into the column array by passing the address of its child
column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

Set the REF column's data into the column array by passing a NULL address for the data, a
length of 0, and an OCI_DIRPATH_COL_NULL flag to OCIDirPathColArrayEntrySet().

See Also:

• OCI_DIRPATH_COL_ERROR

• OCIDirPathColArrayEntrySet()

20.2.5 Direct Path Loading of NOT FINAL Object and REF Columns
Recall that SQL object inheritance is based on a family tree of object types that forms a type
hierarchy.

The type hierarchy consists of a parent object type, called a supertype, and one or more levels
of child object types, called subtypes, which are derived from the parent.

This section includes the following topics:

• Inheritance Hierarchy

• About Describing a Fixed, Derived Type to Be Loaded

• About Allocating the Column Array

• About Loading the Data into the Column Array

• Inheritance Hierarchy
Recall that for an object type to be inheritable, the object type definition must specify that it
is inheritable.

• About Describing a Fixed, Derived Type to Be Loaded
Note that the steps to describe a NOT FINAL or substitutable object columns and REF
columns of a fixed, derived type are similar to the steps that describe its FINAL counterpart.

• About Allocating the Column Array
Indicates it is the same as for a FINAL column of the same type.

• About Loading the Data into the Column Array
Indicates it is the same as for a FINAL column of the same type.

20.2.5.1 Inheritance Hierarchy
Recall that for an object type to be inheritable, the object type definition must specify that it is
inheritable.

Figure 20-2 diagrams the inheritance hierarchy for a column of type Person. The Person
supertype is at the top of the hierarchy with two attributes: Name, Address. Person has two
subtypes, Employee and Student. The Employee subtype has two attributes: Manager, Deptid.
The Student subtype has two attributes: Units, GPA. ParttimeEmployee is a subtype of

Chapter 20
Direct Path Loading of Object Types

20-30

Employee and appears below it. The subtype ParttimeEmployee has one attribute: Hours.
These are the types that can be stored in a Person column.

Figure 20-2 Inheritance Hierarchy for a Column of Type Person

Once specified, subtypes can be derived from it. To specify an object to be inheritable, the
keyword NOT FINAL must be specified in its type definition. To specify an object to not be
inheritable, the keyword FINAL must be specified in its type definition.

When you direct path load a table that contains a column of type Person, the actual set of
types could include any of these four: the NOT FINAL type Person, and its three subtypes:
Student, Employee, and ParttimeEmployee. Because the direct path load API only supports
the loading of one fixed, derived type to this NOT FINAL column for the duration of this load, the
direct path load API must know which one of these types is to be loaded, the attributes to load
for this type, and the function used to create this type.

So when you describe and load a derived type, you must specify all of the attributes for that
type that are to be loaded. Think of a subtype as a flattened representation of all the object
attributes that are unique to this type, plus all the attributes of its ancestors. Therefore, any of
these attribute columns that are to be loaded into, you must describe and count.

For example, to load all columns in ParttimeEmployee, you must describe and count five
object attributes to load into: Name, Address, Manager, Deptid, and Hours.

See Also:

Oracle Database Object-Relational Developer's Guide for more information about
defining FINAL and NOT FINAL types.

20.2.5.2 About Describing a Fixed, Derived Type to Be Loaded
Note that the steps to describe a NOT FINAL or substitutable object columns and REF columns
of a fixed, derived type are similar to the steps that describe its FINAL counterpart.

These sections describe a FINAL column of this type. Because the derived type (could be a
supertype or a subtype) is fixed for the duration of the load, the client interface for describing a
NOT FINAL column is the same as for describing a FINAL column.

A subtype can be thought of as a flattened representation of all the object attributes that are
unique to this type plus all the attributes of its ancestors. Therefore, any of these attribute
columns that are to be loaded into must be described and counted.

Chapter 20
Direct Path Loading of Object Types

20-31

See Also:

Direct Path Loading of Column Objects or Direct Path Loading of REF Columns for
information about how to describe a NOT FINAL column of type X (where X is an
object or a REF)

20.2.5.3 About Allocating the Column Array
Indicates it is the same as for a FINAL column of the same type.

Allocating the column array is the same as for a FINAL column of the same type.

20.2.5.4 About Loading the Data into the Column Array
Indicates it is the same as for a FINAL column of the same type.

Loading the data into the column array is the same as for a FINAL column of the same type.

20.2.6 Direct Path Loading of Object Tables
An object table is a table in which each row is an object (or row object). Each column in the
table is an object attribute.

Describing an Object Table

Describing an object table is very similar to describing a non-object table. Each object attribute
is a column in the table. The only difference is that you may need to describe the OID, which
could be system-generated, user-generated, or primary-key-based.

To describe an object table:

Note:

Steps that are different from loading a non-object table are in italic.

For each object attribute column:

Describe each object attribute column as it must be described, depending on its type (for
example, NUMBER, REF):

For the object table OID (Oracle Internet Directory):

1. If the object ID is system-generated:

There is nothing extra to do. The system generates OIDs for each row object.

2. If the object ID is user-generated:

a. Use a dummy name to represent the column name for the OID (for example,
"cust_oid").

b. Set the OID column attribute with OCI_ATTR_DIRPATH_OID.

Chapter 20
Direct Path Loading of Object Types

20-32

3. If the object ID is primary-key-based:

a. Load all of the primary-key columns making up the OID.

b. Do not set OCI_ATTR_DIRPATH_OID, because no OID column with a dummy name
was created.

Allocating the Column Array for the Object Table

Example 20-21 shows that allocating the column array for the object table is the same as
allocating a column array for a non-object table.

Loading Data into the Column Array

Loading data into the column array is the same as loading data into a non-object table.

Example 20-21 Allocating the Column Array for the Object Table

OCIDirPathColArray *dpca; /* direct path column array */
sword error;

error = OCIHandleAlloc((void *)dpctx, (void **)&dpca,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (void **)0);

20.2.7 Direct Path Loading a NOT FINAL Object Table
A NOT FINAL object table supports inheritance and a FINAL object table cannot.

Describing a NOT FINAL Object Table

Describing a NOT FINAL object table of a fixed derived type is very similar to describing a FINAL
object table.

To describe a NOT FINAL object table of a fixed derived type:

Note:

Steps that are different from describing a FINAL object table are in italic.

1. Set the object table's object type in the direct path context with
OCI_ATTR_DIRPATH_OBJ_CONSTR. This indicates that the object type, whether it is a
supertype or a derived type, are used as the default object constructor when loading to this
table for the duration of the load.

text *obj_type; /* the object type to load into this NOT FINAL */
 /* object table */
sword error;

error = OCIAttrSet((void *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (void *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

2. Describe according to its data type each of the object attribute columns to be loaded.
Describe the object ID, if needed. This is the same as describing a FINAL object table.

Chapter 20
Direct Path Loading of Object Types

20-33

Allocating the Column Array for the NOT FINAL Object Table

Allocating the column array for the NOT FINAL object table is the same as for a FINAL object
table.

20.3 Direct Path Loading in Pieces
To support loading data that does not all fit in memory at one time, use loading in pieces.

The direct path API supports loading LONGs and LOBs incrementally. This is accomplished
through the following steps:

1. Set the first piece into the column array using OCIDirPathColArrayEntrySet() and
passing in the OCI_DIRPATH_COL_PARTIAL flag to indicate that all the data for this column
has not been loaded yet.

2. Convert the column array to a stream.

3. Load the stream.

4. Set the next piece of that data into the column array. If it is not complete, set the partial flag
and go back to Step 2. If it is complete, then set the OCI_DIRPATH_COL_COMPLETE flag and
continue to the next column.

This approach is essentially the same for dealing with large attributes for column objects and
large arguments for SQL string types.

Note:

Collections are not loaded in pieces, as such. Nested tables are loaded separately
and are loaded like a top-level table. Nested tables can be loaded incrementally and
can have columns that are loaded in pieces. Therefore, do not set the
OCI_DIRPATH_COL_PARTIAL flag for the column containing the collection.

This section includes the following topic: Loading Object Types in Pieces.

• Loading Object Types in Pieces
Objects are loaded into a separate column array from the parent table that contains them.

See Also:

• OCI_DIRPATH_COL_ERROR for more information about passing the
OCI_DIRPATH_COL_ERROR value to OCIDirPathColArrayEntry() to indicate that
the current column array row should be ignored when an error occurs

• OCIDirPathColArrayEntrySet()

Chapter 20
Direct Path Loading in Pieces

20-34

20.3.1 Loading Object Types in Pieces
Objects are loaded into a separate column array from the parent table that contains them.

Therefore, when they need to be loaded in pieces you must set the elements in the child
column array up to and including the pieced element.

The general steps are:

1. For the pieced element, set the OCI_DIRPATH_COL_PARTIAL flag.

2. Set the child column array handle into the parent column array and mark that entry with the
OCI_DIRPATH_COL_PARTIAL flag as well.

3. Convert the parent column array to a stream. This converts the child column array as well.

4. Load the stream.

5. Go back to Step 1 and continue loading the remaining data for that element until it is
complete.

Here are some rules about loading in pieces:

• There can only be one partial element at a time at any level. Once one partial element is
marked complete, then another one at that level can be partial.

• If an element is partial and it is not top-level, then all of its ancestors up the containment
hierarchy must be marked partial as well.

• If there are multiple levels of nesting, it is necessary to go up to a level where the data can
be converted into a stream. This is a top-level table.

See Also:

OCI_DIRPATH_COL_ERROR for more information about passing the
OCI_DIRPATH_COL_ERROR value to OCIDirPathColArrayEntry() to indicate that the
current column array row should be ignored when an error occurs.

20.4 Direct Path Context Handles and Attributes for Object Types
The following discussion gives the supplemental details of the handles and attributes.

This section includes the following topics:

• Direct Path Context Attributes

• Direct Path Function Context and Attributes

• Direct Path Column Parameter Attributes

• Direct Path Function Column Array Handle for Nonscalar Columns

• Direct Path Context Attributes
There is one direct path context attribute.

• Direct Path Function Context and Attributes
Here is a summary of the attributes for function context handles.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-35

• Direct Path Column Parameter Attributes
When you describe an object, SQL string, or REF column, one of its column attributes is a
function context.

• Direct Path Function Column Array Handle for Nonscalar Columns
The handle type OCI_HTYPE_DIRPATH_FN_COL_ARRAY is used if the column is an object, SQL
string, or REF.

See Also:

Handle and Descriptor Attributes for a discussion that gives the supplemental details
of the handles and attributes

20.4.1 Direct Path Context Attributes
There is one direct path context attribute.

• OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a NOT FINAL object table.

See Also:

OCI_ATTR_DIRPATH_OBJ_CONSTR is the only direct path context attribute

20.4.1.1 OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a NOT FINAL object table.

ttext *obj_type; /* the object type to load into this NOT FINAL */
 /* object table */
sword error;

error = OCIAttrSet((void *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (void *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

20.4.2 Direct Path Function Context and Attributes
Here is a summary of the attributes for function context handles.

This section includes the following topics:

• OCI_ATTR_DIRPATH_OBJ_CONSTR

• OCI_ATTR_NAME

• OCI_ATTR_DIRPATH_EXPR_TYPE

• OCI_ATTR_DIRPATH_NO_INDEX_ERRORS

• OCI_ATTR_NUM_COLS

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-36

• OCI_ATTR_NUM_ROWS

• OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a substitutable object table.

• OCI_ATTR_NAME
When a function context is created, set OCI_ATTR_NAME equal to the expression that
describes the nonscalar column.

• OCI_ATTR_DIRPATH_EXPR_TYPE
This attribute is used to indicate the type of the expression specified in OCI_ATTR_NAME for
the nonscalar column's function context.

• OCI_ATTR_DIRPATH_NO_INDEX_ERRORS
When OCI_ATTR_DIRPATH_NO_INDEX_ERRORS is 1, indexes are not set unusable at any time
during the load.

• OCI_ATTR_NUM_COLS
This attribute describes the number of attributes or arguments that are to be loaded or
processed for a nonscalar column.

• OCI_ATTR_NUM_ROWS
This attribute, when used for an OCI_HTYPE_DIRPATH_FN_CTX (function context), is
retrievable only, and cannot be set by the user.

See Also:

Direct Path Context Handle (OCIDirPathCtx) Attributes

20.4.2.1 OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a substitutable object table.

text *obj_type; /* stores an object type name */
sword error;

error = OCIAttrSet((void *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (void *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

20.4.2.2 OCI_ATTR_NAME
When a function context is created, set OCI_ATTR_NAME equal to the expression that describes
the nonscalar column.

Then set an OCI attribute to indicate the type of the expression. The expression type varies
depending on whether it is a column object, a REF column, or a SQL string column.

Column Objects

This required expression is the object type name. The object type is used as the default object
constructor.

Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to OCI_DIRPATH_EXPR_OBJ_CONSTR to
indicate that this expression is an object type name.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-37

REF Columns

This optional expression is the reference table name. This table is the object table from which
the REF column is to reference row objects.

Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to OCI_DIRPATH_EXPR_REF_TBLNAME to
indicate that this expression is a reference object table.

The behavior for this parameter, set or not set, varies for each REF type.

• Unscoped REF columns (unscoped, system-OID-based):

– If not set, then by the definition of an "unscoped" REF column, this REF column must
have a reference table name as its argument for every data row.

– If set, this REF column can only refer to row objects from this specified object table for
the duration of the load. The REF column is not allowed to have a reference table name
as its argument. (Direct path API provides this parameter as a shortcut for the users
who will be loading to an unscoped REF column that refers to the same reference
object table during the entire load.)

• Scoped REFcolumns (scoped, system-OID-based and primary-key-based):

– If not set, the direct path API uses the reference table specified in the schema.

– If set, the reference table name must match the object table specified in the schema
for this scoped REF column. An error occurs if the table names do not match.

– Whether this parameter is set or not, it does not matter to the API whether this
reference table name is in the data row or not. If the name is in the data row, it must
match the table name specified in the schema. If it is not in the data row, the API uses
the reference table defined in the schema.

SQL String Columns

This mandatory expression contains a SQL string to derive the value that is to be stored in the
column.

Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to OCI_DIRPATH_EXPR_SQL to indicate
that this expression is a SQL string.

20.4.2.3 OCI_ATTR_DIRPATH_EXPR_TYPE
This attribute is used to indicate the type of the expression specified in OCI_ATTR_NAME for the
nonscalar column's function context.

If OCI_ATTR_NAME is set, then OCI_ATTR_DIRPATH_EXPR_TYPE is required.

The possible values for OCI_ATTR_DIRPATH_EXPR_TYPE are:

• OCI_DIRPATH_EXPR_OBJ_CONSTR
– Indicates that the expression is an object type name and is to be used as the default

object constructor for a column object.

– Is required for column objects.

• OCI_DIRPATH_EXPR_REF_TBLNAME
– Indicates that the expression is a reference object table name. This table is the object

table from which the REF column is referencing row objects.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-38

– Is optional for REF columns.

• OCI_DIRPATH_EXPR_SQL
– Indicates that the expression is a SQL string that is executed to derive a value to be

stored in the column.

– Is required for SQL string columns.

Example 20-22 shows the pseudocode that illustrates the preceding rules and values.

Example 20-22 Specifying Values for the OCI_ATTR_DIRPATH_EXPR_TYPE Attribute

OCIDirPathFuncCtx *dpfnctx; /* function context for this nonscalar column */
ub1 expr_type; /* expression type */
sword error;

if (...) /* (column type is an object) */
expr_type = OCI_DIRPATH_EXPR_OBJ_CONSTR;
...
if (...) /* (column type is a REF && function context name exists) */
expr_type = OCI_DIRPATH_EXPR_REF_TBLNAME;
...
if (...) /* (column type is a SQL string) */
expr_type = OCI_DIRPATH_EXPR_SQL;
...
error = OCIAttrSet((void *)(dpfnctx),
 OCI_HTYPE_DIRPATH_FN_CTX,
 (void *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE, ctlp->errhp_ctl);

20.4.2.4 OCI_ATTR_DIRPATH_NO_INDEX_ERRORS
When OCI_ATTR_DIRPATH_NO_INDEX_ERRORS is 1, indexes are not set unusable at any time
during the load.

If any index errors are detected, the load is terminated. That is, no rows are loaded, and the
indexes are left as is. The default is 0.

See Also:

OCI_ATTR_DIRPATH_NO_INDEX_ERRORS

20.4.2.5 OCI_ATTR_NUM_COLS
This attribute describes the number of attributes or arguments that are to be loaded or
processed for a nonscalar column.

This parameter must be set before the column list can be retrieved. The expression type varies
depending on whether it is a column object, a SQL string column, or a REF column.

Column Objects

The number of object attribute columns to be loaded for this column object.

SQL String Columns

The number of arguments to be passed to the SQL string.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-39

If an argument is used multiple times in the function, counting it as one is correct.

REF Columns

The number of REF arguments to identify the row object the REF column should point to.

The number of arguments required varies for the REF column type:

• Unscoped REF columns (unscoped, system-OID-based REF columns):

– If OCI_DIRPATH_EXPR_REF_TBLNAME is used. None for the reference table name, and
one for the OID value. (Only the OID values are in the data rows.)

– If OCI_DIRPATH_EXPR_REF_TBLNAME is not used. One for the reference table name, and
one for the OID value. (Both the reference table names and the OID values are in the
data rows.)

• Scoped REF columns (scoped, system-OID-based and primary-key-based):

– N or N+1 are acceptable, where N is the number of columns making up the object ID,
regardless if OCI_DIRPATH_EXPR_REF_TBLNAME is used or not. The minimum is N if the
reference table name is not in the data row. Use N+1 if the reference table name is in
the data row.

– If the REF is system-OID-based, then N is 1. If the REF is primary-key-based, then N is
the number of component columns that make up the primary key. If the reference table
name is in the data row, then add 1 to N.

Note:

To simplify the error message if you pass in some REF arguments other than N or
N+1, the error message says that it found so-and-so number of arguments when
it expects N. Although N+1 is not stated in the message, N+1 is acceptable (even
though the reference table name is not needed) and does not invoke an error
message.

20.4.2.6 OCI_ATTR_NUM_ROWS
This attribute, when used for an OCI_HTYPE_DIRPATH_FN_CTX (function context), is retrievable
only, and cannot be set by the user.

You can only use this attribute in OCIAttrGet() and not OCIAttrSet(). When OCIAttrGet() is
called with OCI_ATTR_NUM_ROWS, the number of rows loaded so far is returned.

However, the attribute OCI_ATTR_NUM_ROWS, when used for an OCI_HTYPE_DIRPATH_CTX (table-
level context), can be both set and retrieved by the user.

Calling OCIAttrSet() with OCI_ATTR_NUM_ROWS and OCI_HTYPE_DIRPATH_CTX sets the number
of rows to be allocated for the table-level column array. If not set, the direct path API code
derives a "reasonable" number based on the maximum record size and the transfer buffer size.
To see how many rows were allocated, call OCIAttrGet() with OCI_ATTR_NUM_ROWS on
OCI_HTYPE_DIRPATH_COLUMN_ARRAY for a table-level column array, and with
OCI_HTYPE_DIRPATH_FN_COL_ARRAY for a function column array.

Calling OCIAttrGet() with OCI_ATTR_NUM_ROWS and OCI_HTYPE_DIRPATH_CTX returns the
number of rows loaded so far.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-40

This attribute cannot be set by the user for a function context. You are not allowed to specify
the number of rows desired in a function column array through OCI_ATTR_NUM_ROWS with
OCIAttrSet() because then all function column arrays will have the same number of rows as
the table-level column array. Thus this attribute can only be set for a table-level context and not
for a function context.

See Also:

• OCIAttrGet()

• OCIAttrSet()

20.4.3 Direct Path Column Parameter Attributes
When you describe an object, SQL string, or REF column, one of its column attributes is a
function context.

If a column is an object, then its function context describes its object type and object attributes.
If the column is a SQL string, then its function context describes the expression to be called. If
the column is a REF, its function context describes the reference table name and row object
identifiers.

Example 20-23 shows that when you set a function context as a column attribute,
OCI_ATTR_DIRPATH_FN_CTX is used in the OCIAttrSet() call.

Attributes for column parameter context handles follow.

Example 20-23 Setting a Function Context as a Column Attribute

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIAttrSet((void *)colDesc,
 OCI_DTYPE_PARAM,
 (void *)(dpfnctx), (ub4)0,
 OCI_ATTR_DIRPATH_FN_CTX, ctlp->errhp_ctl);

This section includes the following topics:

• OCI_ATTR_NAME

• OCI_ATTR_DIRPATH_SID

• OCI_ATTR_DIRPATH_OID

See Also:

• Direct Path Column Parameter Attributes

• OCIAttrSet()

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-41

• OCI_ATTR_NAME
The naming conventions for loading nested tables, object tables, SQL string columns, and
REF columns are described in the following paragraphs.

• OCI_ATTR_DIRPATH_SID
Indicates that a column is a nested table's SETID column. Required if loading to a nested
table.

• OCI_ATTR_DIRPATH_OID
Indicates that a column is an object table's object ID column.

20.4.3.1 OCI_ATTR_NAME
The naming conventions for loading nested tables, object tables, SQL string columns, and REF
columns are described in the following paragraphs.

In general, a dummy column name is used if you are loading data into a column that is a
system column with a system name that you are not aware of (for example, an object table's
system-generated object ID (OID) column or a nested table's SETID (SID) column) or if a
column is an argument that does not have a database table column (for example, SQL string
and REF arguments).

If the column is a database table column but a dummy name was used, then a column attribute
must be set so that the function can identify the column even though it is not under the name
known to the database.

The naming rules are as follows:

• Child nested table's SETID (SID) column

The SETID column is required. Set its OCI_ATTR_NAME using a dummy name, because the
API does not expect the user to know its system name. Then set the column attribute with
OCI_ATTR_DIRPATH_SID to indicate that this is a SID column.

• Object table's object ID (OID) column

An object ID is required if:

1. The object ID is system-generated:

Use a dummy name as its column name (for example, "cust_oid").

Set its column attribute with OCI_ATTR_DIRPATH_OID. So if you have multiple columns
with dummy names, you know which one represents the system-generated OID.

2. The object id is primary-key-based:

You cannot use a dummy name as its column name. Therefore, you do not need to set
its column attribute with OCI_ATTR_DIRPATH_OID.

• SQL string argument

1. Set the attribute's column name with OCI_ATTR_NAME.

2. The order of the SQL string arguments given does not matter. The order does not have
to match the order used in the SQL string.

3. Use the naming convention for SQL string arguments.

– The argument names must match the bind variable names used in the SQL string
in content but not in case. For example, if the SQL string is
substr(:INPUT_STRING, 3, 5), then you can give the argument name as
"input_string".

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-42

– If an argument is used multiple times in an SQL string, then you can declare it
once and count it as only one argument.

• REF argument

1. Set the attribute's column name using OCI_ATTR_NAME.

The order of the REF arguments does matter.

– The reference table name comes first, if given.

– The object ID, whether it is system-generated or primary-key-based, comes next.

2. Use the naming convention for the REF arguments.

– For the reference table name argument, use any dummy name for its column
name, for example, "ref-tbl."

– For the system-generated OID argument, use any dummy name for its column
name, such as "sys-OID." Note: Because this column is used as an argument and
not as a column to load into, do not set this column with OCI_ATTR_DIRPATH_OID.

– For a primary-key-based object ID, list all the primary-key columns to load into.
There is no need to create a dummy name for OID. The component column
names, if given (see step for shortcut later), can be given in any order.

3. Do not set the attribute column names for the object ID to use the shortcut.

– Shortcut. If loading a system-OID-based REF column, do not set the column name
with a name. The API figures it out. But you must still set other column attributes,
such as external data type.

– If loading a primary-key REF column and its primary key consists of multiple
columns, the shortcut is not to set their column names. However, you must set
other column attributes, such as the external data type.

Note:

If the component column names are NULL, then the API code
determines the column names in the position or order in which they were
defined for the primary key. So, when you set column attributes other
than the name, ensure that the attributes are set for the component
columns in the correct order.

20.4.3.2 OCI_ATTR_DIRPATH_SID
Indicates that a column is a nested table's SETID column. Required if loading to a nested table.

ub1 flg = 1;
sword error;

error = OCIAttrSet((void *)colDesc,
 OCI_DTYPE_PARAM,
 (void *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_SID, ctlp->errhp_ctl);

20.4.3.3 OCI_ATTR_DIRPATH_OID
Indicates that a column is an object table's object ID column.

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-43

ub1 flg = 1;
sword error;

error = OCIAttrSet((void *)colDesc,
 OCI_DTYPE_PARAM,
 (void *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_OID, ctlp->errhp_ctl);

20.4.4 Direct Path Function Column Array Handle for Nonscalar Columns
The handle type OCI_HTYPE_DIRPATH_FN_COL_ARRAY is used if the column is an object, SQL
string, or REF.

The structure OCIDirPathColArray is the same for both scalar and nonscalar columns.

Example 20-24 shows how to allocate a child column array for a function context.

Example 20-24 Allocating a Child Column Array for a Function Context

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((void *)dpfnctx, (void **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (void **)0);

This section includes the following topic: OCI_ATTR_NUM_ROWS Attribute.

• OCI_ATTR_NUM_ROWS Attribute
This attribute, when used for an OCI_HTYPE_DIRPATH_FN_COL_ARRAY (function column
array), is retrievable only, and cannot be set by the user.

See Also:

Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes

20.4.4.1 OCI_ATTR_NUM_ROWS Attribute
This attribute, when used for an OCI_HTYPE_DIRPATH_FN_COL_ARRAY (function column array), is
retrievable only, and cannot be set by the user.

When the OCI_ATTR_NUM_ROWS attribute is called with the function OCIAttrGet(), the number of
rows allocated for the function column array is returned.

See Also:

OCIAttrGet()

Chapter 20
Direct Path Context Handles and Attributes for Object Types

20-44

21
Object Advanced Topics in OCI

This chapter introduces the OCI facility for working with objects in an Oracle Database.

It also discusses the object navigational function calls, type evolution, and support for XML
produced by OCI.

This chapter contains these topics:

• Object Cache and Memory Management

• Object Navigation

• OCI Navigational Functions

• Type Evolution and the Object Cache

• Object Cache and Memory Management
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

• Object Navigation
This section discusses how OCI applications can navigate through graphs of objects in the
object cache.

• OCI Navigational Functions
This section provides a brief summary of the available OCI navigational functions.

• Type Evolution and the Object Cache
When type information is requested based on the type name, OCI returns the type
descriptor object (TDO) corresponding to the latest version of the type.

21.1 Object Cache and Memory Management
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

It stores and tracks object instances that have been fetched by an OCI application. The object
cache provides memory management.

When objects are fetched by the application through a SQL SELECT statement, or through an
OCI pin operation, a copy of the object is stored in the object cache. Objects that are fetched
directly through a SELECT statement are fetched by value, and they are nonreferenceable
objects that cannot be pinned. Only referenceable objects can be pinned.

If an object is being pinned, and an appropriate version exists in the cache, it does not need to
be fetched from the server.

Every client program that uses OCI to dereference REFs to retrieve objects utilizes the object
cache. A client-side object cache is allocated for every OCI environment handle initialized in
object mode. Multiple threads of a process can share the same client-side cache by sharing
the same OCI environment handle.

Exactly one copy of each referenceable object exists in the cache for each connection. The
object cache is logically partitioned by the connection.

21-1

Dereferencing a REF many times or dereferencing several equivalent REFs in the same
connection returns the same copy of the object.

If you modify a copy of an object in the cache, you must flush the changes to the server before
they are visible to other processes. Objects that are no longer needed can be unpinned or
freed; they can then be swapped out of the cache, freeing the memory space they occupied.

When database objects are loaded into the cache, they are transparently mapped into the C
language structures. The object cache maintains the association between all object copies in
the cache and their corresponding objects in the database. When the transaction is committed,
changes made to the object copy in the cache are automatically propagated to the database.

The cache does not manage the contents of object copies; it does not automatically refresh
object copies. The application must ensure the correctness and consistency of the contents of
object copies. For example, if the application marks an object copy for insert, update, or delete,
and then terminates the transaction, the cache simply unmarks the object copy but does not
purge or invalidate the copy. The application must pin recent or latest, or refresh the object
copy in the next transaction. If it pins any, it may get the same object copy with its uncommitted
changes from the previous terminated transaction.

The object cache is created when the OCI environment is initialized using OCIEnvCreate() with
mode set to OCI_OBJECT.

The object cache maintains a fast lookup table for mapping REFs to objects. When an
application dereferences a REF and the corresponding object is not yet cached in the object
cache, the object cache automatically sends a request to the server to fetch the object from the
database and load it into the object cache.

Subsequent dereferences of the same REF are faster because they use local cache access and
do not incur network round-trips. To notify the object cache that an application is accessing an
object in the cache, the application pins the object; when it is done with the object, it should
unpin it. The object cache maintains a pin count for each object in the cache; the count is
incremented upon a pin call, and an unpin call decrements it. The pin count goes to zero when
the object is no longer needed by the application.

The object cache uses a least recently used (LRU) algorithm to manage the size of the cache.
The LRU algorithm frees candidate objects when the cache reaches the maximum size. The
candidate objects are objects with a pin count of zero.

Each application process running against the same server has its own object cache, as shown
in Figure 21-1.

Chapter 21
Object Cache and Memory Management

21-2

Figure 21-1 Object Cache

Application 1
Object Cache

Application 2
Object Cache

System Global
Area (SGA)

Oracle�

Database

The object cache tracks the objects that are currently in memory, maintains references to the
objects, manages automatic object swapping, and tracks object meta-attributes.

This section includes the following topics:

• Cache Consistency and Coherency

• Object Cache Parameters

• Object Cache Operations

• About Loading and Removing Object Copies

• About Making Changes to Object Copies

• About Synchronizing Object Copies with the Server

• Object Locking

• Commit and Rollback in Object Applications

• Object Duration

• Memory Layout of an Instance

• Cache Consistency and Coherency
The object cache does not automatically maintain value coherency or consistency between
object copies and their corresponding objects in the database.

Chapter 21
Object Cache and Memory Management

21-3

• Object Cache Parameters
The object cache has two important parameters associated with it, which are attributes of
the environment handle.

• Object Cache Operations
This section describes the most important functions that the object cache provides to
operate on object copies.

• About Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

• About Making Changes to Object Copies
Functions for marking and unmarking object copies are discussed in this section.

• About Synchronizing Object Copies with the Server
Cache and server synchronization operations (flushing, refreshing) are discussed in this
section.

• Object Locking
OCI functions related to object locking are discussed in this section.

• Commit and Rollback in Object Applications
When a transaction is committed (OCITransCommit()), all marked objects are flushed to
the server.

• Object Duration
To maintain free space in memory, the object cache attempts to reuse objects' memory
whenever possible. The object cache reuses an object's memory when the object's lifetime
(allocation duration) expires or when the object's pin duration expires.

• Memory Layout of an Instance
An instance in memory is composed of a top-level memory chunk of the instance, a top-
level memory of the null indicator structure and optionally, some secondary memory
chunks.

See Also:

• About Pinning an Object Copy

• OCIEnvCreate()

21.1.1 Cache Consistency and Coherency
The object cache does not automatically maintain value coherency or consistency between
object copies and their corresponding objects in the database.

In other words, if an application makes changes to an object copy, the changes are not
automatically applied to the corresponding object in the database, and vice versa. The cache
provides operations such as flushing a modified object copy to the database and refreshing a
stale object copy with the latest value from the database to enable the program to maintain
some coherency.

Chapter 21
Object Cache and Memory Management

21-4

Note:

Oracle Database does not support automatic cache coherency with the server's
buffer cache or database. Automatic cache coherency refers to the mechanism by
which the object cache refreshes local object copies when the corresponding objects
have been modified in the server's buffer cache. This mechanism occurs when the
object cache flushes the changes made to local object copies to the buffer cache
before any direct access of corresponding objects in the server. Direct access
includes using SQL, triggers, or stored procedures to read or modify objects in the
server.

21.1.2 Object Cache Parameters
The object cache has two important parameters associated with it, which are attributes of the
environment handle.

They include:

• OCI_ATTR_CACHE_MAX_SIZE – The maximum cache size

• OCI_ATTR_CACHE_OPT_SIZE – The optimal cache size

These parameters refer to levels of cache memory usage, and they help determine when the
cache automatically ages out eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the maximum
cache size, the cache automatically begins to free (or ages out) unmarked objects that have a
pin count of zero. The cache continues freeing such objects until memory usage in the cache
reaches the optimal size, or until it runs out of objects eligible for freeing. Note that the cache
can grow beyond the specified maximum cache size.

OCI_ATTR_CACHE_MAX_SIZE is specified as a percentage of OCI_ATTR_CACHE_OPT_SIZE. The
maximum object cache size (in bytes) is computed by incrementing OCI_ATTR_CACHE_OPT_SIZE
by the OCI_ATTR_CACHE_MAX_SIZE percentage, using the following algorithm:

maximum_cache_size = optimal_size + optimal_size * max_size_percentage / 100

Next, represent the algorithm in terms of environment handle attributes.

maximum_cache_size = OCI_ATTR_CACHE_OPT_SIZE + OCI_ATTR_CACHE_OPT_SIZE *
 OCI_ATTR_CACHE_MAX_SIZE / 100

You can set the value of OCI_ATTR_CACHE_MAX_SIZE at 10% (the default) of the
OCI_ATTR_CACHE_OPT_SIZE. The default value for OCI_ATTR_CACHE_OPT_SIZE is 8 MB.

The cache size attributes of the environment handle can be set with the OCIAttrSet() call and
retrieved with the OCIAttrGet() function.

Chapter 21
Object Cache and Memory Management

21-5

See Also:

• Environment Handle Attributes for more information

• OCIAttrSet()

• OCIAttrGet()

21.1.3 Object Cache Operations
This section describes the most important functions that the object cache provides to operate
on object copies.

This section includes the following topics:

• About Pinning and Unpinning

• About Freeing

• About Marking and Unmarking

• About Flushing

• About Refreshing

• About Pinning and Unpinning
Pinning an object copy enables the application to access it in the cache by dereferencing
the REF to it.

• About Freeing
What about freeing an object. What does it do.

• About Marking and Unmarking
Marking an object notifies the cache that an object copy has been updated in the cache
and the corresponding object must be updated in the server when the object copy is
flushed.

• About Flushing
Flushing an object writes local changes made to marked object copies in the cache to the
corresponding objects in the server.

• About Refreshing
Refreshing an object copy in the cache replaces it with the latest value of the
corresponding object in the server.

See Also:

OCI Navigational Functions for a list of all the OCI navigational, cache, and object
management functions

21.1.3.1 About Pinning and Unpinning
Pinning an object copy enables the application to access it in the cache by dereferencing the
REF to it.

Chapter 21
Object Cache and Memory Management

21-6

Unpinning an object indicates to the cache that the object currently is not being used. Objects
should be unpinned when they are no longer needed to make them eligible for implicit freeing
by the cache, thus freeing up memory.

21.1.3.2 About Freeing
What about freeing an object. What does it do.

Freeing an object copy removes it from the cache and frees its memory.

21.1.3.3 About Marking and Unmarking
Marking an object notifies the cache that an object copy has been updated in the cache and
the corresponding object must be updated in the server when the object copy is flushed.

Unmarking an object removes the indication that the object has been updated.

21.1.3.4 About Flushing
Flushing an object writes local changes made to marked object copies in the cache to the
corresponding objects in the server.

When this happens, the copies in the object cache are unmarked.

21.1.3.5 About Refreshing
Refreshing an object copy in the cache replaces it with the latest value of the corresponding
object in the server.

Note that pointers to top-level object memory are valid after a refresh. However, pointers to
secondary-level memory (for example, string text pointers, collections, and so on) may become
invalid after a refresh.

For example, if the object is of type person with two attributes: salary (number), and name
(varchar2(20)). The type is:

struct Person {
OCINumber salary;
OCIString *name;
}

If the client has a pointer scott_p to Person instance, and calls OCIObjectRefresh() on that
instance, the pointer scott_p is still the same after the refresh, but the pointers to second-level
memory, such as scott_p->name, can be different.

See Also:

OCIObjectRefresh()

21.1.4 About Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

Chapter 21
Object Cache and Memory Management

21-7

This section includes the following topics:

• About Pinning an Object Copy

• About Unpinning an Object Copy

• About Freeing an Object Copy

• About Pinning an Object Copy

• About Unpinning an Object Copy
An object copy can be unpinned when it is no longer used by the program.

• About Freeing an Object Copy
Freeing an object copy removes it from the object cache and frees up its memory.

21.1.4.1 About Pinning an Object Copy

When an application must dereference a REF in the object cache, it calls OCIObjectPin(). This
call dereferences the REF and pins the object copy in the cache. As long as the object copy is
pinned, it is guaranteed to be accessible by the application. OCIObjectPin() takes a pin
option, any, recent, or latest. The data type of the pin option is OCIPinOpt.

• If the any (OCI_PIN_ANY) option is specified, the object cache immediately returns the
object copy that is in the cache, if one exists. If no copy is in the cache, the object cache
loads the latest object copy from the database and then returns the object copy. The any
option is appropriate for read-only, informational, fact, or meta objects, such as products,
sales representatives, vendors, regions, parts, or offices. These objects usually do not
change often, and even if they change, the change does not affect the application.

Note that the object cache looks for the object copy only within the logical partition of the
cache for the specified connection. If there is no copy in the partition, the latest copy of the
object is loaded from the server.

• If the latest (OCI_PIN_LATEST) option is specified, the object cache loads into the cache the
latest object copy from the database. It returns that copy unless the object copy is locked
in the cache, in which case the marked object copy is returned immediately. If the object is
in the cache and not locked, the latest object copy is loaded and overwrites the existing
one. The latest option is appropriate for operational objects, such as purchase orders,
bugs, line items, bank accounts, or stock quotes. These objects usually change often, and
it is important that the program access these objects at their latest possible state.

• If the recent (OCI_PIN_RECENT) option is specified, there are two possibilities:

– If in the same transaction the object copy has been previously pinned using the latest
or recent option, the recent option becomes equivalent to the any option.

– If the previous condition does not apply, the recent option becomes equivalent to the
latest option.

When the program pins an object, the program also specifies one of two possible values for
the pin duration: session or transaction. The data type of the duration is OCIDuration.

• If the pin duration is session (OCI_DURATION_SESSION), the object copy remains pinned until
the end of session (that is, end of connection) or until it is unpinned explicitly by the
program (by calling OCIObjectUnpin()).

• If the pin duration is transaction (OCI_DURATION_TRANS), the object copy remains pinned
until the end of transaction or until it is unpinned explicitly.

When loading an object copy into the cache from the database, the cache effectively executes
the following statement:

Chapter 21
Object Cache and Memory Management

21-8

SELECT VALUE(t) FROM t WHERE REF(t) = :r

In this statement, t is the object table storing the object, r is the REF, and the fetched value
becomes the value of the object copy in the cache.

Because the object cache effectively executes a separate SELECT statement to load each
object copy into the cache, in a read-committed transaction, object copies are not guaranteed
to be read-consistent with each other.

In a serializable transaction, object copies pinned as recent or latest are read-consistent with
each other because the SELECT statements to load these object copies are executed based on
the same database snapshot.

Read-committed and serialized transactions refer to different isolation levels that a database
can support. There are other isolation levels also, such as read-uncommitted, repeatable read,
and so on. Each isolation level permits more or less interference among concurrent
transactions. Typically, when an isolation level permits more interference, simultaneous
transactions have higher concurrency. In a read-committed transaction, when a query is
executed multiple times, this type of transaction can produce inconsistent sets of data because
it allows changes made by other committed transactions to be seen. This does not happen in
serializable transactions.

The object cache model is orthogonal to or independent of the Oracle Database transaction
model. The behavior of the object cache does not change based on the transaction model,
even though the objects that are retrieved from the server through the object cache can be
different when running the same program under different transaction models (for example,
read-committed versus serializable).

Note:

For OCIObjectArrayPin() the pin option has no effect, because objects are always
retrieved from the database. If a REF is to an object in the cache,
OCIObjectArrayPin() fails with:

ORA-22881: dangling REF

See Also:

• OCIObjectPin()

• OCIObjectArrayPin()

21.1.4.2 About Unpinning an Object Copy
An object copy can be unpinned when it is no longer used by the program.

It then becomes available to be freed. An object copy must be both completely unpinned and
unmarked to become eligible to be implicitly freed by the cache when the cache begins to run
out of memory. To be completely unpinned, an object copy that has been pinned n times must
be unpinned n times.

Chapter 21
Object Cache and Memory Management

21-9

An unpinned but marked object copy is not eligible for implicit freeing until the object copy is
flushed or explicitly unmarked by the user. However, the object cache implicitly frees object
copies only when it begins to run out of memory, so an unpinned object copy need not
necessarily be freed. If it has not been implicitly freed and is pinned again (with the any or
recent options), the program gets the same object copy.

An application calls OCIObjectUnpin() or OCIObjectPinCountReset() to unpin an object copy.
In addition, a program can call OCICacheUnpin() to completely unpin all object copies in the
cache for a specific connection.

See Also:

• OCIObjectUnpin()

• OCIObjectPinCountReset()

• OCICacheUnpin()

21.1.4.3 About Freeing an Object Copy
Freeing an object copy removes it from the object cache and frees up its memory.

The cache supports two methods for freeing up memory:

• Explicit freeing – A program explicitly frees or removes an object copy from the cache by
calling OCIObjectFree(), which takes an option to (forcefully) free either a marked or
pinned object copy. The program can also call OCIObjectFree() to free all object copies in
the cache.

• Implicit freeing – if the cache begins to run out of memory, it implicitly frees object copies
that are both unpinned and unmarked. Unpinned objects that are marked are eligible for
implicitly freeing only when the object copy is flushed or unmarked.

For memory management reasons, it is important that applications unpin objects when they
are no longer needed. This makes these objects available for aging out of the cache, and
makes it easier for the cache to free memory when necessary.

OCI does not provide a function to free unreferenced objects in the client-side cache.

See Also:

• Object Cache Parameters for more information

• OCIObjectFree()

21.1.5 About Making Changes to Object Copies
Functions for marking and unmarking object copies are discussed in this section.

This section includes the following topics:

• About Marking an Object Copy

Chapter 21
Object Cache and Memory Management

21-10

• About Unmarking an Object Copy

• About Marking an Object Copy
An object copy can be created, updated, and deleted locally in the cache.

• About Unmarking an Object Copy
A marked object copy can be unmarked in the object cache.

21.1.5.1 About Marking an Object Copy
An object copy can be created, updated, and deleted locally in the cache.

If the object copy is created in the cache (by calling OCIObjectNew()), the object copy is
marked for insert by the object cache, so that the object is inserted in the server when the
object copy is flushed.

If the object copy is updated in the cache, the user must notify the object cache by marking the
object copy for update (by calling OCIObjectMarkUpdate()). When the object copy is flushed,
the corresponding object in the server is updated with the value in the object copy.

If the object copy is deleted, the object copy is marked for delete in the object cache (by calling
OCIObjectMarkDelete()). When the object copy is flushed, the corresponding object in the
server is deleted. The memory of the marked object copy is not freed until it is flushed and
unpinned. When pinning an object marked for delete, the program receives an error, as if the
program is dereferencing a dangling reference.

When a user makes multiple changes to an object copy, it is the final results of these changes
that are applied to the object in the server when the copy is flushed. For example, if the user
updates and deletes an object copy, the object in the server is deleted when the object copy is
flushed. Similarly, if an attribute of an object copy is updated multiple times, it is the final value
of this attribute that is updated in the server when the object copy is flushed.

The program can mark an object copy as updated or deleted only if the object copy has been
loaded into the object cache.

See Also:

• OCIObjectNew()

• OCIObjectMarkUpdate()

• OCIObjectMarkDelete()

21.1.5.2 About Unmarking an Object Copy
A marked object copy can be unmarked in the object cache.

By unmarking a marked object copy, the program ensures that the changes that are made to
the object copy are not flushed to the server. The object cache does not undo the local
changes that are made to the object copy.

A program calls OCIObjectUnmark() to unmark an object. In addition, a program can call
OCICacheUnmark() to unmark all object copies in the cache for a specific connection.

Chapter 21
Object Cache and Memory Management

21-11

See Also:

• OCIObjectUnmark()

• OCICacheUnmark()

21.1.6 About Synchronizing Object Copies with the Server
Cache and server synchronization operations (flushing, refreshing) are discussed in this
section.

This section includes the following topics:

• About Flushing Changes to the Server

• About Refreshing an Object Copy

• About Flushing Changes to the Server
When the program flushes the object copy, it writes the local changes made to a marked
object copy in the cache to the server.

• About Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the corresponding
object in the server.

21.1.6.1 About Flushing Changes to the Server
When the program flushes the object copy, it writes the local changes made to a marked object
copy in the cache to the server.

The program can call OCIObjectFlush() to flush a single object copy. The program can call
OCICacheFlush() to flush all marked object copies in the cache or a list of selected marked
object copies. OCICacheFlush() flushes objects associated with a specific service context. See
OCICacheFlush().

After the object copy is flushed, it is unmarked. (Note that the object is locked in the server
after it is flushed; the object copy is therefore marked as locked in the cache.)

Note:

The OCIObjectFlush() operation incurs only a single server round-trip even if
multiple objects are being flushed.

The callback function (an optional argument to the OCIObjectFlush() call) enables an
application to flush only dirty objects of a certain type. The application can define a callback
that returns only the desired objects. In this case, the operation still incurs only a single server
round-trip for the flush.

In the default mode during OCIObjectFlush(), the objects are flushed in the order that they are
marked dirty. The performance of this flush operation can be considerably improved by setting
the OCI_ATTR_CACHE_ARRAYFLUSH attribute in the environment handle.

Chapter 21
Object Cache and Memory Management

21-12

However, the OCI_ATTR_CACHE_ARRAYFLUSH attribute should be used only if the order in which
the objects are flushed is not important. While this attribute is in effect, the dirty objects are
grouped together and sent to the server in a manner that enables the server to efficiently
update its tables. When this attribute is enabled, it is not guaranteed that the order in which the
objects are marked dirty is preserved.

See Also:

• Environment Handle Attributes

• OCIObjectFlush()

• OCICacheFlush()

21.1.6.2 About Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the corresponding object in
the server.

The latest value may contain changes made by other committed transactions and changes
made directly (not through the object cache) in the server by the transaction. The program can
change objects directly in the server using SQL DML, triggers, or stored procedures.

To refresh a marked object copy, the program must first unmark the object copy. An unpinned
object copy is freed when it is refreshed (that is, when the whole cache is refreshed).

The program can call OCIObjectRefresh() to refresh a single object copy or
OCICacheRefresh() to refresh all object copies in the cache, all object copies that are loaded in
a transaction (that is, object copies that are pinned recent or pinned latest), or a list of selected
object copies.

When an object is flushed to the server, triggers can be fired to modify more objects in the
server. The same objects (modified by the triggers) in the object cache become out-of-date,
and must be refreshed before they can be locked or flushed.

The various meta-attribute flags and durations of an object are modified as described in
Table 21-1 after being refreshed.

Table 21-1 Object Attributes After a Refresh Operation

Object Attribute Status After Refresh

Existent Set to appropriate value

Pinned Unchanged

Flushed Reset

Allocation duration Unchanged

Pin duration Unchanged

During the refresh operation, the object cache loads the new data into the top-level memory of
an object copy, thus reusing the top-level memory. The top-level memory of an object copy
contains the inline attributes of the object. However, the memory for the out-of-line attributes of
an object copy can be freed and relocated, because the out-of-line attributes can vary in size.

Chapter 21
Object Cache and Memory Management

21-13

See Also:

• Memory Layout of an Instance for more information about object memory

• OCIObjectRefresh()

• OCICacheRefresh()

21.1.7 Object Locking
OCI functions related to object locking are discussed in this section.

This section includes the following topics:

• Lock Options

• About Locking Objects for Update

• About Locking with the NOWAIT Option

• About Implementing Optimistic Locking

• Lock Options
When pinning an object, you can specify whether the object should be locked or not
through lock options.

• About Locking Objects for Update
The program can optionally call OCIObjectLock() to lock an object for update.

• About Locking with the NOWAIT Option
Occasionally, an application attempts to lock an object that is currently locked by another
user. In this case, the application is blocked.

• About Implementing Optimistic Locking
There are two options available for implementing optimistic locking in an OCI application.

21.1.7.1 Lock Options
When pinning an object, you can specify whether the object should be locked or not through
lock options.

When an object is locked, a server-side lock is acquired, which prevents any other user from
modifying the object. The lock is released when the transaction commits or rolls back. The
different lock options are as follows:

• The lock option OCI_LOCK_NONE instructs the cache to pin the object without locking.

• The lock option OCI_LOCK_X instructs the cache to pin the object only after acquiring a lock.
If the object is currently locked by another user, the pin call with this option waits until it can
acquire the lock before returning to the caller. This is equivalent to executing a SELECT FOR
UPDATE statement.

• The lock option OCI_LOCK_X_NOWAIT instructs the cache to pin the object only after
acquiring a lock. Unlike the OCI_LOCK_X option, the pin call with the OCI_LOCK_X_NOWAIT
option does not wait if the object is currently locked by another user. This is equivalent to
executing a SELECT FOR UPDATE WITH NOWAIT statement.

Chapter 21
Object Cache and Memory Management

21-14

21.1.7.2 About Locking Objects for Update
The program can optionally call OCIObjectLock() to lock an object for update.

This call instructs the object cache to get a row lock on the object in the database. This is
similar to executing the following statement:

SELECT NULL FROM t WHERE REF(t) = :r FOR UPDATE

In this statement, t is the object table storing the object to be locked, and r is the REF
identifying the object. The object copy is marked locked in the object cache after
OCIObjectLock() is called.

To lock a graph or set of objects, several OCIObjectLock() calls are required (one for each
object) or the array pin OCIObjectArrayPin() call can be used for better performance.

By locking an object, the application is guaranteed that the object in the cache is up-to-date.
No other transaction can modify the object while the application has it locked.

At the end of a transaction, all locks are released automatically by the server. The locked
indicator in the object copy is reset.

See Also:

• OCIObjectLock()

• OCIObjectArrayPin()

21.1.7.3 About Locking with the NOWAIT Option
Occasionally, an application attempts to lock an object that is currently locked by another user.
In this case, the application is blocked.

To avoid blocking when trying to lock an object, an application can use the
OCIObjectLockNoWait() call instead of OCIObjectLock(). This function returns an error if it
cannot lock an object immediately because it is locked by another user.

The NOWAIT option is also available to pin calls by passing a value of OCI_LOCK_X_NOWAIT as
the lock option parameter.

See Also:

• OCIObjectLockNoWait()

• OCIObjectLock()

21.1.7.4 About Implementing Optimistic Locking
There are two options available for implementing optimistic locking in an OCI application.

Chapter 21
Object Cache and Memory Management

21-15

Optimistic locking makes the assumption that a transaction will modify objects in the cache,
flush them, and commit the changes successfully.

Optimistic Locking Option 1
The first optimistic locking option is for OCI applications that run transactions at the
serializable level.
OCI supports calls that allow you to dereference and pin objects in the object cache without
locking them, modify them in the cache (again without locking them), and then flush them (the
dirtied objects) to the database.
During the flush operation, if a dirty object has been modified by another committed
transaction since the beginning of your transaction, a nonserializable transaction error is
returned. If none of the dirty objects has been modified by any other transaction since the
beginning of your transaction, then your transaction writes the changes to the database
successfully.

Note:

OCITransCommit() flushes dirty objects into the database before committing a
transaction.

The preceding mechanism effectively implements an optimistic locking model.

Optimistic Locking Option 2
Alternately, an application can enable object change detection mode. To do this operation, set
the OCI_ATTR_OBJECT_DETECTCHANGE attribute of the environment handle to a value of TRUE.
When this mode has been activated, the application receives an ORA-08179 error
("concurrency check failed") when it attempts to flush an object that has been changed in the
server by another committed transaction. The application can then handle this error in an
appropriate manner.

See Also:

OCITransCommit()

21.1.8 Commit and Rollback in Object Applications
When a transaction is committed (OCITransCommit()), all marked objects are flushed to the
server.

If an object copy is pinned with a transaction duration, the object copy is unpinned.

When a transaction is rolled back, all marked objects are unmarked. If an object copy is pinned
with a transaction duration, the object copy is unpinned.

See Also:

OCITransCommit()

Chapter 21
Object Cache and Memory Management

21-16

21.1.9 Object Duration
To maintain free space in memory, the object cache attempts to reuse objects' memory
whenever possible. The object cache reuses an object's memory when the object's lifetime
(allocation duration) expires or when the object's pin duration expires.

The allocation duration is set when an object is created with OCIObjectNew(), and the pin
duration is set when an object is pinned with OCIObjectPin(). The data type of the duration
value is OCIDuration.

Note:

The pin duration for an object cannot be longer than the object's allocation duration.

When an object reaches the end of its allocation duration, it is automatically deleted and its
memory can be reused. The pin duration indicates when an object's memory can be reused;
memory is reused when the cache is full.

OCI supports two predefined durations:

• Transaction (OCI_DURATION_TRANS)

• Session (OCI_DURATION_SESSION)

The transaction duration expires when the containing transaction ends (commits or
terminates). The session duration expires when the containing session or connection ends.

The application can explicitly unpin an object using OCIObjectUnpin(). To minimize explicit
unpinning of individual objects, the application can unpin all objects currently pinned in the
object cache using the function OCICacheUnpin(). By default, all objects are unpinned at the
end of the pin duration.

This section includes the following topic: Durations Example.

• Durations Example
Illustrates the use of the different durations in an application.

See Also:

• OCIObjectNew()

• OCIObjectPin()

• OCIObjectUnpin()

• OCICacheUnpin()

21.1.9.1 Durations Example
Illustrates the use of the different durations in an application.

Chapter 21
Object Cache and Memory Management

21-17

Table 21-2 illustrates the use of the different durations in an application. Four objects are
created or pinned in this application over the course of one connection and three transactions.
The first column is the relative time indicator. The second column indicates the action
performed by the database, and the third column indicates the function that performs the
action. The remaining columns indicate the states of the various objects at each point in the
application.

For example, Object 1 comes into existence at T2 when it is created with a connection
duration, and it exists until T19 when the connection is terminated. Object 2 is pinned at T7
with a transaction duration, after being fetched at T6, and it remains pinned until T9 when the
transaction is committed.

Table 21-2 Example of Allocation and Pin Durations

Time Application Action Function Object 1 Object 2 Object 3 Object 4

T1 Establish connection - - - - -

T2 Create object 1 - allocation
duration = connection

OCIObjectNew() Exists - - -

T5 Start Transaction1 OCITransStart() Exists - - -

T6 SQL - fetch REF to object 2 - Exists - - -

T7 Pin object 2 - pin duration =
transaction

OCIObjectPin() Exists Pinned - -

T8 Process application data - Exists Pinned - -

T9 Commit Transaction1 OCITransCommit() Exists Unpinned - -

T10 Start Transaction2 OCITransStart() Exists - - -

T11 Create object 3 - allocation
duration = transaction

OCIObjectNew() Exists - Exists -

T12 SQL - fetch REF to object 4 - Exists - Exists -

T13 Pin object 4 - pin duration =
connection

OCIObjectPin() Exists - Exists Pinned

T14 Commit Transaction2 OCITransCommit() Exists - Deleted Pinned

T15 Terminate session1 OCIDurationEnd() Exists - - Pinned

T16 Start Transaction3 OCITransStart() Exists - - Pinned

T17 Process application data - Exists - - Pinned

T18 Commit Transaction3 OCITransCommit() Exists - - Pinned

T19 Terminate connection - Deleted - - Unpinned

See Also:

• The descriptions of OCIObjectNew() and OCIObjectPin() in OCI Navigational and
Type Functions for specific information about parameter values that can be
passed to these functions

• About Creating Objects for information about freeing up an object's memory
before its allocation duration has expired

Chapter 21
Object Cache and Memory Management

21-18

21.1.10 Memory Layout of an Instance
An instance in memory is composed of a top-level memory chunk of the instance, a top-level
memory of the null indicator structure and optionally, some secondary memory chunks.

Consider the DEPARTMENT row type defined in Example 21-1.

The C representation of the DEPARTMENT is shown in Example 21-2.

Each instance of DEPARTMENT has a top-level memory chunk that contains the top-level
attributes such as dep_name, budget, manager, and employees. The attributes dep_name and
employees are pointers to the additional memory (the secondary memory chunks). The
secondary memory is used to contain the data for the embedded instances (for example,
employees varray and dep_name string).

The top-level memory of the null indicator structure contains the null statuses of the attributes
in the top-level memory chunk of the instance. In Example 21-2, the top-level memory of the
null structure contains the null statuses of the attributes dep_name, budget, and manager, and
the atomic nullity of employees.

Example 21-1 Object Type Representation of a Department Row

CREATE TYPE department AS OBJECT
(dep_name varchar2(20),
 budget number,
 manager person, /* person is an object type */
 employees person_array); /* varray of person objects */

Example 21-2 C Representation of a Department Row

struct department
{
OCIString * dep_name;
OCINumber budget;
struct person manager;
OCIArray * employees;
);
typedef struct department department;

21.2 Object Navigation
This section discusses how OCI applications can navigate through graphs of objects in the
object cache.

This section includes the following topic: Simple Object Navigation.

• Simple Object Navigation
If an application retrieves an object with an attribute that is a REF to another object, the
application can use OCI calls to traverse the object graph and access the referenced
instance.

21.2.1 Simple Object Navigation
If an application retrieves an object with an attribute that is a REF to another object, the
application can use OCI calls to traverse the object graph and access the referenced instance.

In Example 21-1 and Example 21-2, the object retrieved by the application was a simple
object, whose attributes were all scalar values.

Chapter 21
Object Navigation

21-19

As an example, consider the following declaration for a new type in the database:

CREATE TYPE person_t AS OBJECT
(name VARCHAR2(30),
 mother REF person_t,
 father REF person_t);

An object table of person_t objects is created with the following statement:

CREATE TABLE person_table OF person_t;

Instances of the person_t type can now be stored in the typed table. Each instance of
person_t includes references to two other objects, which would also be stored in the table. A
NULL reference could represent a parent about whom information is not available.

An object graph is a graphical representation of the REF links between object instances. For
example, Figure 21-2 depicts an object graph of person_t instances, showing the links from
one object to another. The circles represent objects, and the arrows represent references to
other objects. The M and F adjacent to the arrows indicate mother and father, respectively.

Chapter 21
Object Navigation

21-20

Figure 21-2 Object Graph of person_t Instances

person1

M F

person2

M F

person3

M F

person4

M F

person5

M F

person6

M F

NULL

M F

M F M F

M F M F M F

NULL

person1

person2 person3

person4 person5 person6

In this case, each object has links to two other instances (M and F) of the same object. This
need not always be the case. Objects may have links to other object types. Other types of
graphs are also possible. For example, if a set of objects is implemented as a linked list, the

Chapter 21
Object Navigation

21-21

object graph could be viewed as a simple chain, where each object references either the
previous or next objects or both in the linked list.

You can use the methods described earlier in this chapter to retrieve a reference to a person_t
instance and then pin that instance. OCI provides functionality that enables you to traverse the
object graph by following a reference from one object to another.

As an example, assume that an application fetches the person1 instance in the preceding
graph and pins it as pers_1. Once that has been done, the application can access the mother
instance of person1 and pin it into pers_2 through a second pin operation:

OCIObjectPin(env, err, pers_1->mother, OCI_PIN_ANY, OCI_DURATION_TRANS,
 OCI_LOCK_X, (OCIComplexObject *) 0, &pers_2);

In this case, an OCI fetch operation is not required to retrieve the second instance.

The application could then pin the father instance of person1, or it could operate on the
reference links of person2.

Note:

Attempting to pin a NULL or dangling REF results in an error on the OCIObjectPin()
call.

See Also:

OCIObjectPin()

21.3 OCI Navigational Functions
This section provides a brief summary of the available OCI navigational functions.

The functions are grouped according to their general functionality.

This section includes the following topics:

• About Pin/Unpin/Free Functions

• About Flush and Refresh Functions

• About Mark and Unmark Functions

• About Object Meta-Attribute Accessor Functions

• About Other Functions

Earlier sections of this chapter describe the use of these functions.

The navigational functions follow a naming scheme that uses different prefixes for different
types of functionality:

OCICache*() – These functions are cache operations.

OCIObject*() – These functions are individual object operations.

Chapter 21
OCI Navigational Functions

21-22

• About Pin/Unpin/Free Functions
Lists and describes the pin, unpin, and free functions.

• About Flush and Refresh Functions
Lists and describes the flush and refresh functions.

• About Mark and Unmark Functions
Lists and describes the mark and unmark functions.

• About Object Meta-Attribute Accessor Functions
Lists and describes the meta-attribute accessor functions.

• About Other Functions
Lists and describes the miscellaneous functions.

See Also:

OCI Navigational and Type Functions for more detailed descriptions of each of these
functions

21.3.1 About Pin/Unpin/Free Functions
Lists and describes the pin, unpin, and free functions.

The functions in Table 21-3 are available to pin, unpin, or free objects.

Table 21-3 Pin, Free, and Unpin Functions

Function Purpose

OCICacheFree() Free all instances in the cache

OCICacheUnpin() Unpin persistent objects in cache or connection

OCIObjectArrayPin() Pin an array of references

OCIObjectFree() Free and unpin a standalone instance

OCIObjectPin() Pin an object

OCIObjectPinCountReset() Unpin an object to zero pin count

OCIObjectPinTable() Pin a table object with a given duration

OCIObjectUnpin() Unpin an object

21.3.2 About Flush and Refresh Functions
Lists and describes the flush and refresh functions.

The functions in Table 21-4 are available to flush modified objects to the server.

Table 21-4 Flush and Refresh Functions

Function Purpose

OCICacheFlush() Flush modified persistent objects in cache to server

OCIObjectFlush() Flush a modified persistent object to the server

OCICacheRefresh() Refresh pinned persistent objects in the cache

Chapter 21
OCI Navigational Functions

21-23

Table 21-4 (Cont.) Flush and Refresh Functions

Function Purpose

OCIObjectRefresh() Refresh a single persistent object

21.3.3 About Mark and Unmark Functions
Lists and describes the mark and unmark functions.

The functions in Table 21-5 allow an application to mark or unmark an object by modifying one
of its meta-attributes.

Table 21-5 Mark and Unmark Functions

Function Purpose

OCIObjectMarkDeleteByRef() Mark an object deleted when given a REF
OCIObjectMarkUpdate() Mark an object as updated (dirty)

OCIObjectMarkDelete() Mark an object deleted or delete a value instance

OCICacheUnmark() Unmark all objects in the cache

OCIObjectUnmark() Mark a given object as updated

OCIObjectUnmarkByRef() Mark an object as updated, when given a REF

21.3.4 About Object Meta-Attribute Accessor Functions
Lists and describes the meta-attribute accessor functions.

The functions in Table 21-6 allow an application to access the meta-attributes of an object.

Table 21-6 Object Meta-Attributes Functions

Function Purpose

OCIObjectExists() Get existence status of an instance

OCIObjectGetInd() Get null structure of an instance

OCIObjectIsDirty() Has an object been marked as updated?

OCIObjectIsLocked() Is an object locked?

21.3.5 About Other Functions
Lists and describes the miscellaneous functions.

The functions in Table 21-7 provide additional object functionality for OCI applications.

Table 21-7 Other Object Functions

Function Purpose

OCIObjectCopy() Copy one instance to another

OCIObjectGetObjectRef() Return a reference to a given object

Chapter 21
OCI Navigational Functions

21-24

Table 21-7 (Cont.) Other Object Functions

Function Purpose

OCIObjectGetTypeRef() Get a reference to a TDO of an instance

OCIObjectLock() Lock a persistent object

OCIObjectLockNoWait() Lock an object in NOWAIT mode

OCIObjectNew() Create a new instance

21.4 Type Evolution and the Object Cache
When type information is requested based on the type name, OCI returns the type descriptor
object (TDO) corresponding to the latest version of the type.

Because there is no synchronization between the server and the object cache, the TDO in the
object cache may not be current.

It is possible that the version of the image might differ from the TDO version during the pinning
of an object. Then, an error is issued. It is up to you to stop the application or refresh the TDO
and repin the object. Continuing with the application may cause the application to fail because
even if the image and the TDO are at the same version, there is no guarantee that the object
structure (that is, C struct) defined in the application is compatible with the new type version,
especially when an attribute has been dropped from the type in the server.

Thus, when the structure of a type is altered, you must regenerate the header files of the
changed type, modify their application, recompile, and relink before executing the program
again.

See Also:

About Type Evolution

Chapter 21
Type Evolution and the Object Cache

21-25

22
OCI Pipelining

Pipelining increases the overall throughput and responsiveness of the application. Starting with
Oracle Database Release 23ai, pipelining feature is introduced to help the applications utilize
the interleaving effectively and keep the server busy by overlapping the application requests,
and the responses returned by the server.

This chapter contains these topics:

• Blocking and Non-Blocking Concepts

• Introduction to OCI Pipelining

• Modes of Pipeline Operation

• OCIPipelineOperation

• The Life Cycle of the OCI Pipeline Handle

• OCI Pipeline Attributes

• OCI Functions that Support Pipelining

• When to Use Pipelining Functionality

• Blocking and Non-Blocking Concepts
This section describes the blocking and non-blocking concepts.

• Introduction to OCI Pipelining
This chapter introduces the pipelining functionality.

• Modes of Pipeline Operation
This section describes the different modes of pipeline operation.

• OCIPipelineOperation

• The Life Cycle of the OCI Pipeline Handle
This section describes the life cycle of the OCI pipeline handle.

• OCI Pipeline Attributes
This section lists and describes the OCI pipeline attributes.

• OCI Functions that Support Pipelining

• When to Use Pipelining Functionality
This sections describes when to use pipelining functionality.

See Also:

OCI Pipelining Functions

22-1

22.1 Blocking and Non-Blocking Concepts
This section describes the blocking and non-blocking concepts.

Blocking functionality

All OCI functions that make a network round trip are request and response in nature. An
application sends a request and waits for a response before sending another request.

For example, OCIStmtExecute() function sends a request to execute an SQL and waits for the
response from the server. A single OCI function is executed at a time. If another OCI function
is invoked simultaneously without completing the previous request, then the operation results
in an error. This model of execution leaves the server in idle state between the current
response and the next request. It also leaves the client in an idle state between the current
request and its response from the server.

Figure 22-1 Blocking Functionality

Request

Request

Request

Response

Response

Response

Client Server

Client Idle

Server Idle

Non-blocking functionality

Non-blocking functionality is helpful to applications as they benefit from using the interleaving
to do some other operations during the idle time. This model improves the application
responsiveness that is, the client idle time by allowing the application to choose what to do
instead of blocking for the responses from the server.

Chapter 22
Blocking and Non-Blocking Concepts

22-2

Figure 22-2 Pipelining Functionality

Request 1

Response 1

Request 2

Response 2

Request 3

Response 3

Client idle time reduced

Client Server

Server idle time reduced

22.2 Introduction to OCI Pipelining
This chapter introduces the pipelining functionality.

The fundamental idea of pipelining is to keep the server busy and allow an application to use
the interleaving requests and responses appropriately.

The application keeps sending several requests, server builds up a queue and executes them
one by one. The server sends the responses back to the client in the same order in which it
received the requests.

It is the responsibility of the application to ensure that the requests are independent as it is an
essential requirement for the pipeline functionality.

Note:

As the pipeline does not read the responses so often, using the data from a previous
SQL response as in-bind data to the subsequent request creates a dependency and
breaks the pipeline.

The following diagram shows the end-to-end depiction of a sample scenario in the pipeline:

Chapter 22
Introduction to OCI Pipelining

22-3

Figure 22-3 OCI Pipeline Block Diagram

ServerOCI Pipeline
API

7

1 2

6 5 4 3
TCP/IP Send

TCP/IP Receive

Server
Side

Pipeline

• The OCI pipeline application is processing seven operations simultaneously as shown in
the preceding diagram.

• The server processes the first request, the response to this request reaches the client. The
response is now ready to be read.

• The second request is in the process of completion at the server end.

• The requests, three to six are queued at the server end and are yet to be processed by the
server.

• The client is asynchronously sending the seventh request to the server.

The following new functions are introduced:

• OCIPipelineBegin(): Indicates the start of the pipeline block of operations.

• OCIPipelineProcess(): Processes an operation.

• OCIPipelineEnd(): Indicates the end of the pipeline block of operations.

An OCI function that supports pipelining and involves in a round-trip is divided into the
following two parts:

• The top half (send a request)

• The bottom half (receive a response)

The top half of the operation is the request sent to the server for processing. The bottom half is
the response received from the server. The response is obtained using either
OCIPipelineProcess() or OCIPipelineEnd() function.

Chapter 22
Introduction to OCI Pipelining

22-4

With this approach, all the OCI functions that support pipelining (for example,
OCIStmtExecute(), OCIStmtFetch2()) in the pipeline operation block are implicitly pipelined.

Note:

In pipeline mode, it is the responsibility of the application to ensure that the
dependency on two consecutive operations is resolved or avoided.

Two adjacent blocks of pipeline operations are supported. The following is a sample code
snippet:

OCIPipelineBegin();
OCIPipelineEnd();

;;;
OCIPipelineBegin();
OCIPipelineEnd();

Overlapping and nested pipeline blocks on the same service context are not supported. The
following is a sample code snippet:

OCIPipelineBegin();
OCIPipelineBegin();
OCIPipelineEnd();
OCIPipelineEnd();

Note:

Starting with Oracle Database Release 23ai, enhancements are being made to both
the client and the server, to provide pipelining functionality.

• Enabling OCI Pipelining
This section describes how to enable pipelining for OCI APIs.

22.2.1 Enabling OCI Pipelining
This section describes how to enable pipelining for OCI APIs.

By default, OCI APIs are not available to an application for pipelining. A new attribute,
OCI_PIPELINE_ENABLE, is introduced to enable pipelining. The pipeline functionality is available
only when the application sets the attribute on the environment. Any call to OCI pipeline
function without this mode set, returns an error.

Syntax

boolean pipelineEnable = TRUE;
status = OCIAttrSet((dvoid *) envhp,
 OCI_HTYPE_ENV,
 (dvoid *) &sts,
 (ub4) sizeof(sts),

Chapter 22
Introduction to OCI Pipelining

22-5

 OCI_ATTR_PIPELINE_ENABLE,
 (OCIError *) errhp));

Most of the applications use OCI functions in a blocking or non-blocking mode.
OCI_ATTR_PIPELINE_ENABLE attribute helps to avoid performance regressions in blocking and
non-blocking scenarios and acts like a switch to disable pipelining in the OCI application.

22.3 Modes of Pipeline Operation
This section describes the different modes of pipeline operation.

The OCIPipelineBegin() function marks the beginning of the pipelined block of operations.

The modes of pipelined operations defines how the pipelined operations are executed. There
are two levels of pipeline modes. Each level can set one of the two modes of execution.

• Operation level mode (OCI_ATTR_PIPELINE_OP_MODE): The server continues executing the
operations even after one of the pipelined operations fails with an error, until
OCIPipelineEnd()function is executed.
Applications need to set the OCI_ATTR_PIPELINE_OP_MODE attribute on the handle ((svchp)
in the operation using the OCIAttrSet attribute.

Example:

For OCIStmtExecute, the following attribute is set:

rc = OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVC,
 (dvoid *) OCI_PIPELINE_CONT_ON_ERROR, (ub4) 0,
 (ub4) OCI_ATTR_PIPELINE_OP_MODE, (OCIError *)
 errhp);
rc = OCIStmtExecute(svchp, stmthp, … , OCI_DEFAULT);

• Block-level mode (OCI_PIPELINE_ABORT_ON_ERROR): The pipeline operation aborts if an
error is encountered while processing the pipelined block of operations.
If any error is returned in any operation in a pipelined block of operations, then it aborts all
the pipelined operations following that operation. All the operations till the
OCIPipelineEnd() function returns an error to the client.

The responses of the operations executed successfully before the failure of an operation
are returned to the application. The operation that resulted in an error is also a valid
operation. The error handle has more details on the error returned.

The following example shows the usage of OCI_PIPELINE_ABORT_ON_ERROR mode:

rc = OCIPipelineBegin(svchp, cbk, cbkCtx, errhp,
OCI_PIPELINE_ABORT_ON_ERROR);

When the block level mode is OCI_PIPELINE_ABORT_ON_ERROR this means the pipeline
aborts if an error has encountered while processing the pipelined operations.

The server returns an error (ORA-43610) for each operation until the end of the pipelined
operations.

Chapter 22
Modes of Pipeline Operation

22-6

22.4 OCIPipelineOperation
OCIPipelineOperation is an opaque handle representing a pipelined operation in a pipeline
block. OCIPipelineOperation contains the information of the OCI operation executed. An
operation instance stores the parameters along with the states to complete the top (send
request) and bottom (receive response) parts of the pipelined operations.

22.5 The Life Cycle of the OCI Pipeline Handle
This section describes the life cycle of the OCI pipeline handle.

The pipeline operation handle starts with an OCI function in the pipeline operation block. After
the top half of the operation (send a request) operation is executed, the state of the operation
handle is OCI_PIPELINE_OP_SENT. When a response is received, it changes to
OCI_PIPELINE_OP_READY state. After the operation is completed implicitly or explicitly, the
registered callback is processed.

Note:

It is the responsibility of the application to keep the OCI call parameters valid until the
bottom half (receive a response) of the operation is executed.

Applications can modify the values for IN binds after the previous OCIStmtExecute() function
has been completed.

Note:

The identical outbind or define parameters are overridden after the bottom half
(receive a response) of the operation.

• Status of the Pipeline Operation
This section describes how to obtain the status of the pipeline operation handle.

22.5.1 Status of the Pipeline Operation
This section describes how to obtain the status of the pipeline operation handle.

OCI_ATTR_PIPELINE_OP_STATUS

You can obtain the status of the pipeline operation handle using the OCIAttrGet() attribute.
The value can be one of the following:

• OCI_PIPELINE_OP_READY
• OCI_PIPELINE_OP_SENT

Chapter 22
OCIPipelineOperation

22-7

Note:

All the operation handles are freed after the OCIPipelineEnd() operation is
executed.

22.6 OCI Pipeline Attributes
This section lists and describes the OCI pipeline attributes.

Following are the OCI pipeline attributes:

OCI_ATTR_PIPELINE_PROCESS_FIRST

Mode
READ

Description
Obtains the first operation in the pipeline queue of the service context.

Attribute Data Type
OCIPipelineOperationID

Example 22-1 Example:

OCIPipelineOperationID first;
status = OCIAttrGet (svchp, OCI_HTYPE_SVC, &first, NULL,
OCI_ATTR_PIPELINE_PROCESS_LAST, errhp);

OCI_ATTR_PIPELINE_PROCESS_LAST

Mode
READ

Description
Obtains the last operation in the pipeline queue of the service context.

Attribute Data Type
OCIPipelineOperationID

Example 22-2 Example:

OCIPipelineOperationID last;
status = OCIAttrGet (svchp, OCI_HTYPE_SVC, &last, NULL,
OCI_ATTR_PIPELINE_PROCESS_LAST, errhp);

OCI_ATTR_PIPELINE_DEPTH

Mode
Write

Description
The depth of the pipeline queue is set to the value of this attribute throughout the pipeline.

Chapter 22
OCI Pipeline Attributes

22-8

The default depth of the pipeline is 256 operations. After 256 operations, one response is
processed before enqueuing another request. This way, the depth of the pipeline queue is
retained.

Attribute Data Type
ub4 *

Example 22-3 Example:

ub4 depth = 300;
status = OCIAttrSet (svchp, OCI_HTYPE_SVC, &depth, size of(depth),
OCI_ATTR_PIPELINE_DEPTH, errhp);

OCI_ATTR_PIPELINE_HANDLE

Mode
Read

Description
The OCI_ATTR_PIPELINE_HANDLE attribute is used on an operation handle to get the actual OCI
handle. After you get the actual handle in the operation, you can query for any attribute similar
to any other OCI handle for attributes.

Attribute Data Type
void *

Example 22-4 Example:

OCIStmt *updateHandle;
status = OCIAttrGet (operation, OCI_HTYPE_OPERATION, &updateHandle, NULL,
OCI_ATTR_PIPELINE_HANDLE, errhp);

OCI_ATTR_PIPELINE_HANDLE_TYPE

Mode
Read

Description
A callback application can query the handle type obtained from
OCI_ATTR_PIPELINE_HANDLE_TYPE attribute.
This makes the programming paradigm easy in callbacks. After you get the operation handle,
query for the actual OCI handle and its type and then get the attribute of the OCI handle.

Attribute Data Type
ub4 *

Example 22-5 Example:

ub4 handleType = 0;status = OCIAttrGet (operation, OCI_HTYPE_OPERATION,
&handleType, sizeof(handleType),
OCI_ATTR_PIPELINE_HANDLE_TYPE, errhp);

22.7 OCI Functions that Support Pipelining
The following is the list of OCI functions that support pipelining.

Chapter 22
OCI Functions that Support Pipelining

22-9

Note:

• If OCIStmtExecute(), OCIStmtFetch(), and OCIStmtFetch2() requests include
OCI objects, then they cannot be pipelined.

• OCITransCommit() and OCITransRollback() transaction requests pipelining
functions support only local transactions.

• OCIStmtExecute()
• OCIStmtFetch()
• OCIStmtFetch2()
• OCITransCommit
• OCITransRollback
• OCILobAppend
• OCILobArrayWrite
• OCILobArrayRead
• OCILobClose
• OCILobCopy2
• OCILobCreateTemporary
• OCILobErase2
• OCILobFileClose
• OCILobFileCLoseAll
• OCILobFileExists
• OCILobFileIsOpen
• OCILobFileOpen
• OCILobFreeTemporary
• OCILobGetChunkSize
• OCILobGetLength2
• OCILobOpen
• OCILobIsOpen
• OCILobLoadFromFile2
• OCILobOpen
• OCILobRead
• OCILobRead2
• OCILobTrim2
• OCILobWrite
• OCILobWrite2

Chapter 22
OCI Functions that Support Pipelining

22-10

• OCILobWriteAppend2

22.8 When to Use Pipelining Functionality
This sections describes when to use pipelining functionality.

Pipelining functionality is useful when many small operations are being performed in rapid
succession.

For example:

• OCIStmtExecute

• DDL, DML, Queries, PL/SQL, array inserts, DML with returning clause

• Exact fetch, multiple fetches

• Fetches from two different statement handles can be pipelined

Pipelining is more performant when the server is distant. That is, when the network latency is
high.

Pipelining is less performant when operation has either implicit or explicit dependency on the
result of the previous operation. In such cases, the client must introduce a synchronization
point and wait for a complete client or server round-trip to get the results it needs.

For example:

• Implicit dependency: Execute a statement followed by a fetch on the same statement
handle

• Explicit dependency: The result from a previous operation is used to bind the next
operation execution

Chapter 22
When to Use Pipelining Functionality

22-11

23
OCI Support for JSON

Support for SQL type JSON is designed for JSON data. Oracle recommends you to use JSON
type for your JSON data with Oracle Database.

This chapter contains these topics:

• JSON Data Type Support

• Mutable and Immutable DOM

• Calling Sequence for Writing and Reading JSON Data

• JSON DOM Operations

• Multithreading Using JSON Descriptor

• Handling Character Sets

• OCI Interface for Schema Validation

• Attribute to Check if Column has JSON Schema Constraint

• JSON Data Type Support

• Compatibility with Client Libraries Prior to Release 21c
This section describes how client versions prior to Oracle Database Release 21c can be
made compatible for querying the JSON data type.

• Mutable and Immutable DOM
This section describes the mutable and immutable forms of JSON DOM.

• Calling Sequence for Writing and Reading JSON Data
This section describes the calling sequence for writing and reading JSON data to the
database.

• JSON DOM Operations
This section describe the various JSON DOM operations.

• Multithreading Using JSON Descriptor

• Handling Character Sets
In OCI, the character set of textual input depends on the settings of OCI environment
handle.

• OCI Interface for Schema Validation
OCI interface for performing JSON schema validation in OCI applications.

• Attribute to Check if Column has JSON Schema Constraint
OCI attribute OCI_ATTR_HAS_JSON_SCHEMA checks to find if a column has JSON schema
constraint.

23.1 JSON Data Type Support
Starting Oracle Database Release 21c, support for SQL type JSON is designed specifically for
JSON data. Oracle recommends that you use JSON type for your JSON data with Oracle
Database. This uses a binary format, OSON, which is an optimized binary JSON format for
Oracle used for fast query, and update in both Oracle database server and Oracle database

23-1

clients. In order to use the JSON data type, the database initialization parameter, compatible
must be set to at least 20.

When JSON data is of SQL data type JSON, then Oracle extends the set of standard JSON-
language scalar types such as number, string, boolean, and null to include scalars that
correspond to SQL scalar types such as binary, date, timestamp, year-month interval, day-
second interval, double, and float. This enhances the JSON language, and makes conversion
of the scalar data between that language and SQL more simple and with no loss in data.

• OCI Representation for JSON
This section describes the OCI representation for JSON.

See Also:

JSON Data and Oracle Database

23.1.1 OCI Representation for JSON
This section describes the OCI representation for JSON.

Standard JSON as a language or notation, has predefined data types such as object, array,
number, string, boolean, and null. All JSON-language types except object, and array are scalar
types.

OCIJson descriptor is used to represent a JSON document in OCI. It is identified by the
descriptor type, OCI_DTYPE_JSON. The descriptor can be allocated and freed with the functions
OCIDescriptorAlloc() and OCIDescriptorFree(). User can allocate and free an array of
descriptors using OCIArrayDescriptorAlloc() and OCIArrayDescriptorFree() functions
respectively.

A sample JSON document structure is as shown in the following figure:

Chapter 23
JSON Data Type Support

23-2

Figure 23-1 Sample JSON Document

You can use OCIJsonDomDocGet() function to obtain a reference to the underlying JSON DOM
(Document Object Model) container represented by JsonDomDoc *. A JSON DOM document
contains nodes that are either object, array, or scalar types.

Table 23-1 Type Constructs and Constants

Program Variable Type Constant

JsonDomScalar JZNDOM_SCALAR
JsonDomArray JZNDOM_ARRAY
JsonDomObject JZNDOM_OBJECT

Note:

JsonDomNode is an incomplete type. The type values listed in the preceding table can
be set to (JsonDomNode *) type.

23.2 Compatibility with Client Libraries Prior to Release 21c
This section describes how client versions prior to Oracle Database Release 21c can be made
compatible for querying the JSON data type.

Starting with Oracle Database Release 21c, JSON data type is supported in both 21c version
of RDBMS server and 21c version of the client libraries. This support enables the client

Chapter 23
Compatibility with Client Libraries Prior to Release 21c

23-3

programs to query JSON data and receive OSON bytes that can be natively decoded. This is
recommended for better performance.

If you do not update your instant client version to 21c, your application can still read and write
data to JSON type column as strings. So, to query data in a C OCI program, you can define
using SQLT_CHR, SQLT_BLOB, or SQLT_CLOB data types. If the JSON data is extracted as BLOB
data, then for both old and new clients, the JSON text is UTF-8 encoded. The result is in JSON
text form. If SQLT_CHR is used as define type, then the JSON text size is restricted to 32K only.
To overcome size limitation from SQLT_CHR, you must use SQLT_CLOB or SQLT_BLOB as define
variable type.

The following code snippet shows how to query a JSON type column:

void testDescribe()
{
 oratext stmt[400] = {0};
 ub4 stmtlen;
 ub4 numcols;
 ub4 i;
 OCIStmt *stmthp;
 OCIParam *colhd = (OCIParam *) 0;
 OCIAuthInfo *authhp = (OCIAuthInfo *)0;
 sword status;

 getSession(&authhp);

 strcpy(stmt, "SELECT jcol FROM jtab where rownum < 2");
 stmtlen = strlen(stmt);

 Checkerr(errhp,
 OCIStmtPrepare2(svchp, &stmthp, errhp, stmt, stmtlen,
 (oratext *)0, (ub4)0, (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT), "OCIStmtPrepare2");

 printf("\n########### Describe-only test #############\n");

 Checkerr(errhp,
 OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
 (OCISnapshot *)0, (OCISnapshot *)0,
 OCI_DESCRIBE_ONLY), "OCIStmtExecute");

 /* Get the number of columns in the query */
 Checkerr(errhp,
 OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, (void *)&numcols,
 (ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp),
"OCIAttrGet");

 for (i = 1; i <= numcols; i++)
 {
 ub4 type = 0;

 Checkerr(errhp,
 OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&colhd, i), "OCIStmtParamGet");

Chapter 23
Compatibility with Client Libraries Prior to Release 21c

23-4

 Checkerr(errhp,
 OCIAttrGet((void*)colhd, OCI_DTYPE_PARAM, (void*)&type,
 (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp),
"OCIAttrGet");

 printf("Col %d type %d\n", i, type);
 }

 releaseSession(authhp);
}

Following is the output of the preceding code showing that describe execution returns BLOB as
the type of the JSON type column:

########### Describe-only test #############
Col 1 type 113

See Also:

• Data Conversions for JSON Data Type

• Using LOB Locator Interface

• Using Data Interface (Other SQL data types)

23.3 Mutable and Immutable DOM
This section describes the mutable and immutable forms of JSON DOM.

OCI descriptor can be used to capture one of the two forms of JSON DOM, mutable or
immutable DOM. DOM nodes in the mutable DOM can be modified. Whereas, immutable DOM
is read-only and any write operation on the DOM results in an error. The default DOM retained
by the descriptor is immutable, unless it is altered using OCIAttrSet() function with the
boolean attribute type.

Note:

You can use OCIJsonDomDocSet() function to set a JSON DOM container in the
descriptor. The source DOM can be in a different form than descriptor form. That is,
the source can be a mutable DOM and the target descriptor can be set to immutable
DOM.

• Manifesting JSON as a Mutable DOM

• Manifesting JSON as an Immutable DOM

Chapter 23
Mutable and Immutable DOM

23-5

23.3.1 Manifesting JSON as a Mutable DOM
An OCI client application can manifest the JSON content as a mutable DOM. You can use XDK
C DOM functions to read and write JSON elements such as objects, arrays, and scalars to or
from a JSON document.

The following example code snippet shows how to set a DOM document reference to or from
the OCIJson* descriptor in a mutable mode:

/* Set the JSON DOM MUTABLE Attribute to TRUE */
boolean attr = TRUE;
rc = OCIAttrSet(jsond, /* OCIJson descriptor */
 OCI_DTYPE_JSON, /* Descriptor type */
 &attr,
 OCI_ATTR_JSON_DOM_MUTABLE, /* Attribute type */
 errhp);
if (rc != OCI_SUCCESS) goto err_hndlr;

You can set the descriptor attribute OCI_ATTR_JSON_DOM_MUTABLE to TRUE using OCIAttrSet().

An OCI application can also set the following types of JSON inputs to the descriptor.

• Buffer Input – oratext*
• Streaming Input – orastream *

23.3.2 Manifesting JSON as an Immutable DOM
An OCI client application can manifest the JSON content as an immutable linear binary buffer
backed by binary JSON.

The following example code snippet shows how to set a DOM document reference to or from
the OCIJson* descriptor in a immutable mode. If this setting was not done for the descriptor, it
defaults to value, FALSE:

/* Set the JSON DOM IMMUTABLE Attribute to FALSE */
boolean attr = FALSE;
rc = OCIAttrSet(jsond, /* OCIJson descriptor */
 OCI_DTYPE_JSON, /* Descriptor Type
*/
 &attr,
 OCI_ATTR_JSON_DOM_MUTABLE, /* Attribute type
*/
 errhp);
if (rc != OCI_SUCCESS) goto err_hndlr;

You can set OCI_ATTR_JSON_DOM_MUTABLE to FALSE in the JSON descriptor using
OCIAttrSet().
An OCI application can also set the following types of JSON inputs to the descriptor.

• Buffer Input – oratext*
• Streaming Input – orastream *

Chapter 23
Mutable and Immutable DOM

23-6

23.4 Calling Sequence for Writing and Reading JSON Data
This section describes the calling sequence for writing and reading JSON data to the
database.

The calling sequence for writing JSON data to the database is illustrated in the following figure:

Figure 23-2 Calling Sequence for Writing JSON Data

OCIDesriptorAlloc()

Any write function

OCIBindByPos2()

OCIStmtExecute()

OCIDescriptoFree()

The calling sequence for reading JSON data to the database is illustrated in the following
figure:

Figure 23-3 Calling Sequence for Reading JSON Data

OCIDescriptorFree()

OCIDesriptorAlloc()

OCIDefineByPos2()

OCIStmtFetch2()

OCIJsonDomDocGet()

JSON DOM functions()

23.5 JSON DOM Operations
This section describe the various JSON DOM operations.

Topics:

• Scalar Types Mapping

• Reading JSON DOM Scalar Nodes

• Building a JSON DOM

Chapter 23
Calling Sequence for Writing and Reading JSON Data

23-7

• Scalar Types Mapping
This section lists and describes the scalar types mapping that are supported.

• Reading JSON DOM Scalar Nodes
This section describes how to read JSON DOM scalar nodes.

• Building a JSON DOM
This section describes how to build a JSON DOM.

23.5.1 Scalar Types Mapping
This section lists and describes the scalar types mapping that are supported.

In textual JSON, only the standard JSON-language scalar types are supported. When JSON
data is of SQL type JSON, then Oracle Database extends the set of standard JSON-language
types to include several scalar types that correspond directly to SQL scalar data types such as
binary, date, timestamp, double, float, year-month interval, day-second interval.

Analogous to this, JSON values fetched from the database with OCIJson as the program
variable have direct mapping to the extended scalar types. These primitive type mappings are
summarized in the following table:

Table 23-2 Scalar Types Mapping

JSON Scalar Type Database SQL Type OCI SQL Type
Constant

OCI Program Variable JSON Scalar Type
Constant

String VARCHAR2 SQLT_CHR oratext[n] JZNVAL_STRING
Number NUMBER SQLT_VNU OCINumber* JZNVAL_ORA_NUMBER
True (Boolean) Not Applicable Not Applicable Not Applicable JZNVAL_TRUE
False (Boolean) Not Applicable Not Applicable Not Applicable JZNVAL_FALSE
Binary RAW SQLT_BIN ub1[n] JZNVAL_BINARY
Double BINARY_DOUBLE SQLT_BDOUBLE double JZNVAL_DOUBLE
Float BINARY_FLOAT SQLT_BFLOAT float JZNVAL_FLOAT
Date DATE SQLT_ODT JsonDateTime* JZNVAL_ORA_DATE
Timestamp TIMESTAMP SQLT_TIMESTAMP JsonDateTime* JZNVAL_ORA_TIMESTA

MP
Timestamp with
timezone

TIMESTAMP WITH
TIMEZONE

SQLT_TIMESTAMP_TZ JsonDateTime* JZNVAL_ORA_TIMESTA
MPTZ

Day-Second
Interval

INTERVAL DAY TO
SECOND

SQLT_INTERVAL_DS JsonDayInterval* JZNVAL_ORA_DAYSECO
ND_DUR

Year-Month
Interval

INTERVAL YEAR TO
MONTH

SQLT_INTERVAL_YM JsonYearInterval* JZNVAL_ORA_YEARMON
TH_DUR

Null Not Applicable Not Applicable Not Applicable JZNVAL_NULL

See Also:

• jznvaltype Datatype

• External Data Types

Chapter 23
JSON DOM Operations

23-8

23.5.2 Reading JSON DOM Scalar Nodes
This section describes how to read JSON DOM scalar nodes.

OCI implicitly converts binary float and double to IEEE float and double formats. For number,
timestamp, day-second interval, and year-month interval types, you can use the type,
JsonOCIVal * to read the data in a structured form using the JsonDomGetScalarInfoOci()
function. JsonOCIVal * is a C union defined as shown in the following code snippet:

/* Auxiliary Union of helper structures */
typedef union JsonOCIVal
{
 JsonDateTime dt_JsonOCIVal;
 JsonDayInterval dayInv_JsonOCIVal;
 JsonYearInterval yrInv_JsonOCIVal;
 ub1 num_JsonOCIVal[JZN_ORA_NUM_MAX_LEN];
} JsonOCIVal;

The following code snippet shows how to fetch the values from a scalar node from the JSON
DOM:

#include <ocijson.h>
void introspectDomNode(appctx *c,
 JsonDomDoc *doc,
 JsonDomNode *node)
{
 JsonOCIVal av;
 jznScalarVal sval;
 jznnodetype ntype;
 /* Check the JSON node type */
 ntype = JsonDomGetNodeType(doc, node);
 if (ntype == JZNDOM_SCALAR)
 {
 /* Get information for this JSON scalar node */
 JsonDomGetScalarInfoOci(doc, (JsonDomScalar *)node, &sval, &av);
 printScalarInfo(c, &sval, &av);
 }
 else if (ntype == JZNDOM_ARRAY) {...}
 else if (ntype == JZNDOM_OBJECT) {...}
 ...
}
void printScalarInfo(appctx *c,
 jznScalarVal *sval,
 JsonOCIVal *av)
{
 jznvaltype vtype = sval->type_jznScalarVal;
 ub4 i;
 switch (vtype)
 {
 case JZNVAL_STRING:
 printf("Type: JZNVAL_STRING\n");
 printf("Value: %.*s\n", sval->len_jznScalarVal, sval->val_jznScalarVal);
 break;

Chapter 23
JSON DOM Operations

23-9

 case JZNVAL_BINARY:
 printf("Type: JZNVAL_BINARY\n");
 printf("Value: ");
 for (i = 0 ; i < sval->binlen_jznScalarVal; i++)
 printf("%X", (sval->binval_jznScalarVal)[i]);
 printf("\n");
 break;
 case JZNVAL_FLOAT:
 printf("Type: JZNVAL_FLOAT\n");
 printf("Value: %f\n", sval->flt_jznScalarVal);
 break;
 case JZNVAL_DOUBLE:
 printf("Type: JZNVAL_DOUBLE\n");
 printf("Value: %lf\n", sval->db_jznScalarVal);
 break;
 case JZNVAL_TRUE:
 printf("Type: JZNVAL_TRUE\n");
 break;
 case JZNVAL_FALSE:
 printf("Type: JZNVAL_FALSE\n");
 break;
 case JZNVAL_NULL:
 printf("Type: JZNVAL_NULL\n");
 break;
 case JZNVAL_ORA_NUMBER:
 {
 double nval;
 printf("Type: JZNVAL_ORA_NUMBER\n");
 OCINumberToReal(c->errhp, (const OCINumber *) av, (uword) sizeof(nval),
&nval);
 printf("Value: %d\n", nval);
 break;
 }
 case JZNVAL_ORA_DATE:
 {
 JsonDateTime *ts;
 printf("Type: JZNVAL_ORA_DATE\n");
 ts = &(av->dt_JsonOCIVal);
 printf("Value: %d-%d-%d\n", ts->year_JsonDateTime, ts-
>month_JsonDateTime,
 ts->day_JsonDateTime);
 break;
 }
 case JZNVAL_ORA_TIMESTAMP:
 {
 JsonDateTime *ts;
 printf("Type: JZNVAL_ORA_TIMESTAMP\n");
 ts = &(av->dt_JsonOCIVal);
 printf("Value: %d-%d-%d %d:%d:%d:%d\n", ts->year_JsonDateTime,
 ts->month_JsonDateTime, ts->day_JsonDateTime, ts-
>hour_JsonDateTime,
 ts->minute_JsonDateTime, ts->second_JsonDateTime,
 ts->fsecond_JsonDateTime);
 break;
 }
 case JZNVAL_ORA_TIMESTAMPTZ:

Chapter 23
JSON DOM Operations

23-10

 {
 JsonDateTime *ts;
 printf("Type: JZNVAL_ORA_TIMESTAMPTZ\n");
 ts = &(av->dt_JsonOCIVal);
 printf("Value: %d-%d-%d %d:%d:%d:%d %03d:%02d\n", ts->year_JsonDateTime,
 ts->month_JsonDateTime, ts->day_JsonDateTime, ts-
>hour_JsonDateTime,
 ts->minute_JsonDateTime, ts->second_JsonDateTime,
 ts->fsecond_JsonDateTime, ts->tzHourOffset_JsonDateTime,
 ts->tzMinuteOffset_JsonDateTime);
 break;
 }

 case JZNVAL_ORA_YEARMONTH_DUR:
 {
 JsonYearInterval *yint;
 printf("Type: JZNVAL_ORA_YEARMONTH_DUR\n");
 yint = &(av->yrInv_JsonOCIVal);
 printf("Value: %dY-%dM\n",
 yint->years_JsonYearInterval, yint->months_JsonYearInterval);
 break;
 }
 case JZNVAL_ORA_DAYSECOND_DUR:
 {
 JsonDayInterval *dint;
 printf("Type: JZNVAL_ORA_DAYSECOND_DUR\n");
 dint = &(av->dayInv_JsonOCIVal);
 printf("Value: %dD-%dH-%dM-%dS-%dSS\n",
 dint->days_JsonDayInterval, dint->hours_JsonDayInterval,
 dint->minutes_JsonDayInterval, dint->seconds_JsonDayInterval,
 dint->fseconds_JsonDayInterval);
 break;
 }
 default:
 printf("ERROR: Unsupported value type encountered [%d]\n", vtype);
 break;
 }
}

See Also:

jznScalarVal Datatype

23.5.3 Building a JSON DOM
This section describes how to build a JSON DOM.

Topics:

• JSON Scalar Types and Scalar Constructors

• Building a DOM Using Scalar Nodes

Chapter 23
JSON DOM Operations

23-11

• JSON Scalar Types and Scalar Constructors
This section lists the JSON scalar types with corresponding scalar constructor.

• Building a DOM Using Scalar Nodes
This section describes how to build a DOM using various types of scalar nodes.

23.5.3.1 JSON Scalar Types and Scalar Constructors
This section lists the JSON scalar types with corresponding scalar constructor.

In a mutable DOM, new nodes can be added and existing nodes can be modified. The
following table summarizes the scalar types and its corresponding constructor function.

Table 23-3 Scalar Types and Contructors

JSON Scalar Type Scalar Constructor

JZNVAL_STRING JsonDomCreateString
JZNVAL_ORA_NUMBER JsonDomCreateOCINumber
JZNVAL_TRUE JsonDomCreateBoolean
JZNVAL_FALSE JsonDomCreateBoolean
JZNVAL_BINARY JsonDomCreateBinary
JZNVAL_DOUBLE JsonDomCreateDouble
JZNVAL_FLOAT JsonDomCreateFloat
JZNVAL_ORA_DATE JsonDomCreateOCIDate
JZNVAL_ORA_TIMESTAMP JsonDomCreateOCIDateTime
JZNVAL_ORA_TIMESTAMPTZ JsonDomCreateOCIDateTime
JZNVAL_NULL JsonDomCreateNull
JZNVAL_ORA_YEARMONTH_DUR JsonDomCreateOCIInteval
JZNVAL_ORA_DAYSECOND_DUR JsonDomCreateOCIInteval

Constructor functions for non-scalar types

The following table summarizes the constructor functions for non-scalar types (array and
object).

JSON Node Type Scalar Constructor

JZNDOM_ARRAY JsonDomCreateArray
JZNDOM_OBJECT JsonDomCreateObject

Note:

You can use the JsonDomSetField() function to set the value of a specified field to
the specified object within DOM.

Chapter 23
JSON DOM Operations

23-12

See Also:

JSON DOM Functions

23.5.3.2 Building a DOM Using Scalar Nodes
This section describes how to build a DOM using various types of scalar nodes.

The following code shows how to build a DOM using various types of scalar nodes and this
code performs the following operations:

1. Allocates a JSON descriptor and sets the mutable property

2. Creates scalar nodes of different types (string, number, boolean, binary, double, float, date,
timestamp, null) and adds these nodes to the DOM

3. Sets the JSON DOM container in the descriptor

4. Serializes the JSON descriptor to the text

5. Frees the descriptors

#include <ocijson.h>

sword buildDom(appctx *c,
 JsonDomDoc *jdoc,
 JsonDomObject *root,
 boolean ismut)
{

 OCIJson *jsond;
 oratext outbuf[1024] = {0};
 oraub8 outlen = 1024;
 JsonDomScalar *node;

 /* Field names */
 oratext *s_name = (oratext *) "string_val";
 oratext *n_name = (oratext *) "number_val";
 oratext *bt_name = (oratext *) "true_val";
 oratext *bf_name = (oratext *) "false_val";
 oratext *b_name = (oratext *) "binary_val";
 oratext *d_name = (oratext *) "double_val";
 oratext *f_name = (oratext *) "float_val";
 oratext *dt_name = (oratext *) "date_val";
 oratext *dtt_name = (oratext *) "datetime_val";
 oratext *dttz_name = (oratext *) "datetimetz_val";
 oratext *yminv_name = (oratext *) "yminterval_val";
 oratext *dsinv_name = (oratext *) "dsinterval_val";
 oratext *nl_name = (oratext *) "null_val";

 /* Values */
 oratext *sval = (oratext *) "Strings are sequence of characters";
 ub4 slen = (ub4) strlen(sval);
 int inval = -29873546;
 OCINumber nval;
 boolean btval = TRUE;

Chapter 23
JSON DOM Operations

23-13

 boolean bfval = FALSE;
 ub1 bval[8] = {0x000D, 0x000E, 0x000A, 0x000D,
 0x000B, 0x000E, 0x000E, 0x000F};
 ub4 blen = (ub4) 8;
 double dval = 34837749.5699837;
 float fval = -133424.75;
 OCIDate *odval = NULL;
 sb2 yrval = 2020;
 ub1 mnval = 10;
 ub1 dyval = 25;
 OCIDateTime *odtval = NULL;
 ub1 hrval = 8;
 ub1 minval = 32;
 ub1 secval = 56;
 ub4 fsecval = 123456789;
 OCIDateTime *odtzval = NULL;
 oratext *tzone = (oratext *)"-05:30";
 ub4 tzlen = (ub4) strlen(tzone);
 OCIInterval *yminval = NULL;
 oratext *yminvt = (oratext *)"04-11";
 OCIInterval *dsinval = NULL;
 oratext *dsinvt = (oratext *)"11 10:36:19.000005";

 /* (1) Allocate JSON descriptor and set mutable property */
 checkerr("Allocate JSON descriptor", c,
 OCIDescriptorAlloc(c->envhp, (void **) &jsond,
 OCI_DTYPE_JSON, 0, 0));
 checkerr("Attr set mutable", c,
 OCIAttrSet((void *) jsond, OCI_DTYPE_JSON, &ismut, 0,
 OCI_ATTR_JSON_DOM_MUTABLE, c->errhp));

 /* (2) Create scalar fields and add to DOM */
 /* (a) Add string field */
 node = JsonDomCreateString(jdoc, sval, slen);
 JsonDomSetField(jdoc, root, s_name, (ub2) strlen(s_name),
 (JsonDomNode *) node);

 /* (b) Add number field */
 checkerr("Create OCINumber", c,
 OCINumberFromInt(c->errhp, &inval, sizeof(int), OCI_NUMBER_SIGNED,
 &nval));
 node = JsonDomCreateOCINumber(jdoc, &nval);
 JsonDomSetField(jdoc, root, n_name, (ub2) strlen(n_name),
 (JsonDomNode *) node);

 /* (c) Add boolean TRUE field */
 node = JsonDomCreateBoolean(jdoc, btval);
 JsonDomSetField(jdoc, root, bt_name, (ub2) strlen(bt_name),
 (JsonDomNode *) node);

 /* (d) Add boolean FALSE field */
 node = JsonDomCreateBoolean(jdoc, bfval);
 JsonDomSetField(jdoc, root, bf_name, (ub2) strlen(bf_name),
 (JsonDomNode *) node);

Chapter 23
JSON DOM Operations

23-14

 /* (e) Add binary field */
 node = JsonDomCreateBinary(jdoc, bval, blen);
 JsonDomSetField(jdoc, root, b_name, (ub2) strlen(b_name),
 (JsonDomNode *) node);

 /* (f) Add double field */
 node = JsonDomCreateDouble(jdoc, dval);
 JsonDomSetField(jdoc, root, d_name, (ub2) strlen(d_name),
 (JsonDomNode *) node);

 /* (g) Add float field */
 node = JsonDomCreateFloat(jdoc, fval);
 JsonDomSetField(jdoc, root, f_name, (ub2) strlen(f_name),
 (JsonDomNode *) node);

 /* (h) Add date field */
 checkerr("Create OCIDate", c,
 OCIDescriptorAlloc(c->envhp, (void **) &odval, OCI_DTYPE_DATE,
 0, NULL));
 OCIDateSetDate(odval, yrval, mnval, dyval);
 node = JsonDomCreateOCIDate(jdoc, odval);
 JsonDomSetField(jdoc, root, dt_name, (ub2) strlen(dt_name),
 (JsonDomNode *) node);

 /* (i) Add datetime field */
 checkerr("Create OCIDateTime", c,
 OCIDescriptorAlloc(c->envhp, (void **) &odtval,
OCI_DTYPE_TIMESTAMP,
 0, NULL));
 checkerr("Construct OCIDateTime timezone", c,
 OCIDateTimeConstruct (c->envhp, c->errhp, odtval,
 yrval-10, mnval-5, dyval-10,
 hrval, minval, secval, fsecval, NULL, 0));
 node = JsonDomCreateOCIDateTime(jdoc, odtval);
 JsonDomSetField(jdoc, root, dtt_name, (ub2) strlen(dtt_name),
 (JsonDomNode *) node);

 /* (j) Add datetime timezone field */
 checkerr("Create OCIDateTime timezone", c,
 OCIDescriptorAlloc(c->envhp, (void **) &odtzval,
OCI_DTYPE_TIMESTAMP_TZ,
 0, NULL));
 checkerr("Construct OCIDateTime timezone", c,
 OCIDateTimeConstruct (c->envhp, c->errhp, odtzval,
 yrval-7, mnval-3, dyval-2,
 hrval-1, minval-10, secval-25, fsecval-98765432,
 tzone, tzlen));
 node = JsonDomCreateOCIDateTime(jdoc, odtzval);
 JsonDomSetField(jdoc, root, dttz_name, (ub2) strlen(dttz_name),
 (JsonDomNode *) node);

 /* (k) Add year-month interval field */
 checkerr("Create OCIInterval year-month", c,
 OCIDescriptorAlloc(c->envhp, (void **) &yminval,
OCI_DTYPE_INTERVAL_YM,
 0, NULL));

Chapter 23
JSON DOM Operations

23-15

 checkerr("Construct OCIInterval year-month", c,
 OCIIntervalFromText(c->envhp, c->errhp, yminvt, strlen(yminvt),
yminval));
 node = JsonDomCreateOCIInterval(jdoc, yminval);
 JsonDomSetField(jdoc, root, yminv_name, (ub2) strlen(yminv_name),
 (JsonDomNode *) node);

 /* (l) Add day-second interval field */
 checkerr("Create OCIInterval day-second", c,
 OCIDescriptorAlloc(c->envhp, (void **) &dsinval,
OCI_DTYPE_INTERVAL_DS,
 0, NULL));
 checkerr("Construct OCIInterval day-second", c,
 OCIIntervalFromText(c->envhp, c->errhp, dsinvt, strlen(dsinvt),
dsinval));
 node = JsonDomCreateOCIInterval(jdoc, dsinval);
 JsonDomSetField(jdoc, root, dsinv_name, (ub2) strlen(dsinv_name),
 (JsonDomNode *) node);

 /* (m) Add NULL field */
 node = JsonDomCreateNull(jdoc);
 JsonDomSetField(jdoc, root, nl_name, (ub2) strlen(nl_name),
 (JsonDomNode *) node);

 /* (3) Set the JSON DOM container in the descriptor */
 checkerr("Set JSON DOM container", c,
 OCIJsonDomDocSet(c->svchp, jsond, jdoc, c->errhp, 0));

 /* (4) Serialize JSON descriptor to text */
 checkerr("To Text Buffer", c,
 OCIJsonToTextBuffer(c->svchp, jsond, outbuf, &outlen,
 JZNU_PRINT_PRETTY, c->errhp,
 OCI_JSON_TEXT_ENV_NLS));
 printf("Descriptor content:\n");
 printf("%.*s \n", outlen, outbuf);

finally:

 /* (5) Free the descriptors */
 if (odval)
 checkerr("Free Date descriptor", c,
 OCIDescriptorFree(odval, OCI_DTYPE_DATE));
 if (odtval)
 checkerr("Free DateTime descriptor", c,
 OCIDescriptorFree(odtval, OCI_DTYPE_TIMESTAMP));
 if (odtzval)
 checkerr("Free DateTime timezone descriptor", c,
 OCIDescriptorFree(odtzval, OCI_DTYPE_TIMESTAMP_TZ));
 if (yminval)
 checkerr("Free Interval year-month descriptor", c,
 OCIDescriptorFree(yminval, OCI_DTYPE_INTERVAL_YM));
 if (dsinval)
 checkerr("Free Interval day-second descriptor", c,
 OCIDescriptorFree(dsinval, OCI_DTYPE_INTERVAL_DS));
 if (jsond)
 checkerr("Free JSON descriptor", c,

Chapter 23
JSON DOM Operations

23-16

 OCIDescriptorFree(jsond, OCI_DTYPE_JSON));

 return c->status;
}

The function printScalarInfo() returns the following output:

Note:

All the types information are preserved

Key: "string_val"
Type: JZNVAL_STRING
Value: Strings are sequence of characters

Key: "number_val"
Type: JZNVAL_ORA_NUMBER
Value: -29873546.000000

Key: "true_val"
Type: JZNVAL_TRUE

Key: "false_val"
Type: JZNVAL_FALSE

Key: "binary_val"
Type: JZNVAL_BINARY
Value: DEADBEEF

Key: "double_val"
Type: JZNVAL_DOUBLE
Value: 34837749.569984

Key: "float_val"
Type: JZNVAL_FLOAT
Value: -133424.750000

Key: "date_val"
Type: JZNVAL_ORA_DATE
Value: 2020-10-25

Key: "datetime_val"
Type: JZNVAL_ORA_TIMESTAMP
Value: 2010-5-15 8:32:56:123456789

Key: "datetimetz_val"
Type: JZNVAL_ORA_TIMESTAMPTZ
Value: 2013-7-23 7:22:31:24691357 -05:-30

Key: "yminterval_val"
Type: JZNVAL_ORA_YEARMONTH_DUR
Value: 4Y-11M

Chapter 23
JSON DOM Operations

23-17

Key: "dsinterval_val"
Type: JZNVAL_ORA_DAYSECOND_DUR
Value: 11D-10H-36M-19S-5000SS

Key: "null_val"
Type: JZNVAL_NULL

The OCIJsonToTextBuffer() function returns the following textual JSON output:

Note:

The extended types are lost and are converted into strings

{
 "true_val" : true,
 "number_val" : -29873546,
 "string_val" : "Strings are sequence of characters",
 "date_val" : "2020-10-25T00:00:00",
 "dsinterval_val" : "P11DT10H36M19.000005S",
 "yminterval_val" : "P4Y11M",
 "datetime_val" : "2010-05-15T08:32:56.123456789",
 "binary_val" : "0D0E0A0D0B0E0E0F",
 "null_val" : null,
 "false_val" : false,
 "datetimetz_val" : "2013-07-23T07:22:31.024691357-05:30",
 "float_val" : -133424.75,
 "double_val" : 34837749.5699837
}

See Also:

JSON DOM Functions

23.6 Multithreading Using JSON Descriptor
OCIJson* descriptor is not thread-safe. It is the responsibility of the user to ensure that a
descriptor and its descendant DOM nodes are manipulated with only one thread at a time.

23.7 Handling Character Sets
In OCI, the character set of textual input depends on the settings of OCI environment handle.

If the user does not specify the csid parameter when creating OCIEnv*, then the NLS_LANG
settings are used as default settings in the handle. For APIs, such as
OCIJsonTextBufferParse(), OCIJsonTextStreamParse() where textual JSON is the input, the
input can be in any Oracle recognized character set, (as long as it conforms to JSON syntax)
and not necessarily the one set in the environment handle or NLS_LANG parameter.

Chapter 23
Multithreading Using JSON Descriptor

23-18

Note:

If JZN_INPUT_DETECT is used for unicode-encoded inputs, the encoding of the input is
detected as one of UTF-8, UTF-16 (LE or BE) and is processed accordingly. If the
textual JSON input is not in one of the unicode encodings in this mode, then it is an
user error and the behavior is not guaranteed.

OCIJson APIs, such as OCIJsonToTextBuffer (), OCIJsonToTextStream () return textual
JSON in AL32UTF8 character set, unless OCI_JSON_TEXT_ENV_NLS mode is set.

23.8 OCI Interface for Schema Validation
OCI interface for performing JSON schema validation in OCI applications.

Purpose

Validates a JSON document instance against a JSON schema. Detailed error messages are
reported as a JSON instance in errors JSON descriptor.

Syntax

sword OCIJsonSchemaValidate (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 OCIJson *schemad,
 ub4 sflags,
 OCIJson *errors,
 ub1 errmode,
 OCIError *errhp,
 ub4 mode
);

Parameters

svchp IN
An allocated OCI Service Context handle.

jsond IN
Document instance as a JSON descriptor.

schemad IN
Schema instance as a JSON descriptor.

sflags IN
Schema flags.

errors IN/OUT
Error message returned as a JSON descriptor.

errmode IN
Mode of error. Valid values are:

• OCI_JSON_SCHEMA_ERROR_NONE: No error messages requested.

Chapter 23
OCI Interface for Schema Validation

23-19

• OCI_JSON_SCHEMA_ERROR_SIMPLE: Boolean field only.

• OCI_JSON_SCHEMA_ERROR_BASIC: Flat list of error output units.

errhp IN/OUT
An allocated OCI Error handle.

mode IN
Specifies the mode of execution.

• OCI_DEFAULT: Is the default mode. The operation is executed as is, with no special modes.

Server Round Trips
0 or 1

Returns

• OCI_SUCCESS: If the schema validation is successful.

• OCI_ERROR: The OCIError parameter has the necessary error information. More
information is available in errors JSON descriptor based on error mode requested.

See Also:

JSON Schema

23.9 Attribute to Check if Column has JSON Schema Constraint
OCI attribute OCI_ATTR_HAS_JSON_SCHEMA checks to find if a column has JSON schema
constraint.

Example 23-1 Use of OCI_ATTR_HAS_JSON_SCHEMA Attribute

SYNTAX
 ub1 has_schema;

tkpgjsCheck("Get ith column handle", c,
 OCIParamGet(collsthd, OCI_DTYPE_PARAM, c->errhp,
 (void **) &colhd, i));

tkpgjsCheck("OCI_ATTR_HAS_JSON_SCHEMA", c,
 OCIAttrGet(colhd, OCI_DTYPE_PARAM, &has_schema, (ub4 *)0,
 OCI_ATTR_HAS_JSON_SCHEMA, c->errhp));

printf("OCI_ATTR_HAS_JSON_SCHEMA: %d\n", has_schema);

Chapter 23
Attribute to Check if Column has JSON Schema Constraint

23-20

https://json-schema.org/

24
OCI Support for XML

Oracle XML DB provides support for storing and manipulating XML instances by using the
XMLType data type. You can access these XML instances with OCI, in conjunction with the C
DOM API for XML.

An application program must initialize the usual OCI handles, such as the server handle or the
statement handle, and it must then initialize the XML context. The program can either operate
on XML instances in the back end or create new instances on the client side. The initialized
XML context can be used with all the C DOM functions.

XML data stored in Oracle XML DB can be accessed on the client side with the C DOM
structure xmldocnode. You can use this structure for binding, defining, and operating on XML
values in OCI statements.

This section includes the following topics:

• XML Context

• XML Data on the Server

• Using OCI XML DB Functions

• OCI Client Access to Binary XML

• XML Context
An XML context is a required parameter in all the C DOM API functions.

• XML Data on the Server
XML data on the server can be operated on with OCI statement calls. You can bind and
define XMLType values using xmldocnode, as with other object instances.

• Using OCI XML DB Functions
To initialize and terminate the XML context, use the functions OCIXmlDbInitXmlCtx() and
OCIXmlDbFreeXmlCtx() respectively.

• OCI Client Access to Binary XML
The middle tier and client tiers can produce, consume, and process XML in binary XML
format.

See Also:

• OCI XML DB Functions for information about the XML support in C

• Oracle XML DB Developer’s Guide for more information about using the C API
for XML, including a binary XML example

• Oracle XML Developer's Kit Programmer's Guide for more information about the
XML parser for C

• Oracle Database XML C API Reference for information about the DOM C APIs
for XML

24-1

24.1 XML Context
An XML context is a required parameter in all the C DOM API functions.

This opaque context encapsulates information pertaining to data encoding, error message
language, and so on. The contents of this context are different for XDK and for Oracle XML DB
applications.

For Oracle XML DB, there are two OCI functions provided to initialize and free an XML context:

xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
 ocixmldbparam *params, ub4 num_params);

void OCIXmlDbFreeXmlCtx (xmlctx *xctx);

24.2 XML Data on the Server
XML data on the server can be operated on with OCI statement calls. You can bind and define
XMLType values using xmldocnode, as with other object instances.

OCI statements are used to select XML data from the server. This data can be used in the C
DOM functions directly. Similarly, the values can be bound back to SQL statements directly.

24.3 Using OCI XML DB Functions
To initialize and terminate the XML context, use the functions OCIXmlDbInitXmlCtx() and
OCIXmlDbFreeXmlCtx() respectively.

The header file ocixmldb.h is used with the unified C API.

Example 24-1 is a code fragment of a tested example that shows how to perform operations
with the C API.

Example 24-1 Initializing and Terminating XML Context with a C API

#ifndef S_ORACLE
#include <s.h>
#endif
#ifndef ORATYPES_ORACLE
#include <oratypes.h>
#endif
#ifndef XML_ORACLE
#include <xml.h>
#endif
#ifndef OCIXML_ORACLE
#include <ocixmldb.h>
#endif
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#include <string.h>

typedef struct test_ctx {
 OCIEnv *envhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCIServer *srvhp;

Chapter 24
XML Context

24-2

 OCIDuration dur;
 OCISession *sesshp;
 oratext *username;
 oratext *password;
} test_ctx;

...
void main()
{
 test_ctx temp_ctx;
 test_ctx *ctx = &temp_ctx;
 OCIType *xmltdo = (OCIType *) 0;
 xmldocnode *doc = (xmldocnode *)0;
 ocixmldbparam params[1];
 xmlnode *quux, *foo, *foo_data, *top;
 xmlerr err;
 sword status = 0;
 xmlctx *xctx;
 ...
 /* Initialize envhp, svchp, errhp, dur, stmthp */
 ...

 /* Get an xml context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &ctx->dur;
 xctx = OCIXmlDbInitXmlCtx(ctx->envhp, ctx->svchp, ctx->errhp, params, 1);

/* Do unified C API operations next */
...

/* Free the statement handle using OCIHandleFree() */
...
/* Free the allocations associated with the context */
OCIXmlDbFreeXmlCtx(xctx);
/* Free envhp, svchp, errhp, stmthp */
...
}

See Also:

• OCIXmlDbInitXmlCtx()

• OCIXmlDbFreeXmlCtx()

24.4 OCI Client Access to Binary XML
The middle tier and client tiers can produce, consume, and process XML in binary XML format.

The C application fetches data from the XML DB repository, performs updates on the XML
using DOM, and stores it back in the database. Or an XML document is created or input on the
client and XSLT, XQuery, and other utilities can be used on it. Then the output XML is saved in
XML DB.

A client application requires a connection (called a metadata connection) to the metadata
repository (typically a back-end database) to fetch token definitions, XML schemas, and DTDs
while encoding or decoding a binary XML document.

Chapter 24
OCI Client Access to Binary XML

24-3

A repository context is initialized using either a dedicated connection or a connection pool. The
connection obtained from the repository context is used to fetch metadata such as token
definitions and XML schemas. In contrast, the application also has data connections that are
used for the regular transfer of data (including XML data) to and from the database. A
repository context is explicitly associated with (one or more) data connections. When XML data
is read or written from or to the database using the data connection, the appropriate repository
context is accessed during the underlying encode or decode operations. As required, the
metadata connection is used to fetch the metadata from the repository.

This section includes the following topics:

• Accessing XML Data from an OCI Application

• Repository Context

• Create Repository Context from a Dedicated OCI Connection

• Create Repository Context from a Connection Pool

• About Associating Repository Context with a Data Connection

• About Setting XMLType Encoding Format Preference

• Example of Using a Connection Pool

• Accessing XML Data from an OCI Application
Your C application can use OCI to access persistent XML in the database and the Unified
XML C API to operate on the fetched XML data.

• Repository Context
OCIBinXmlReposCtx is the repository context data structure.

• Create Repository Context from a Dedicated OCI Connection
OCIBinXmlCreateReposCtxFromConn() creates a repository context using the specified
dedicated OCI connection.

• Create Repository Context from a Connection Pool
OCIBinXmlCreateReposCtxFromCPool() creates a repository context from a connection
pool.

• About Associating Repository Context with a Data Connection
OCIBinXmlSetReposCtxForConn() associates a repository context with a data connection
described by OCISvcCtx *.

• About Setting XMLType Encoding Format Preference

• Example of Using a Connection Pool
Creating a repository context from a connection pool and associating the repository context
with a data connection is shown in this example in the XML DB documentation.

24.4.1 Accessing XML Data from an OCI Application
Your C application can use OCI to access persistent XML in the database and the Unified XML
C API to operate on the fetched XML data.

The following steps are taken by a client application:

1. Create the usual OCI handles such as OCIEnv, OCISvcCtx, and OCIError.

2. Create one or more repository contexts to fetch the binary XML metadata.

3. Associate the repository context with the data connection.

4. Bind or define (xmldocnode) variables into the select, insert, and update statements.

Chapter 24
OCI Client Access to Binary XML

24-4

5. Execute the select, insert, or update statement to fetch or store the XML document. At this
point, the client OCI libraries interact with the database back end to fetch the needed XML
Schemas, DTDs, token definitions, and so on.

6. Use the Unified C API to operate on the XML data (DOM).

24.4.2 Repository Context
OCIBinXmlReposCtx is the repository context data structure.

The client application creates this context by providing the connection information to the
metadata repository. An application can create multiple repository contexts to connect to
multiple token repositories. A repository context is explicitly associated with a data connection
(OCISvcCtx). When the system must fetch metadata to encode or decode data to or from a
data connection, it accesses the appropriate metadata.

It is recommended that applications create one repository context per OCIEnv. This allows
better concurrency for multithreaded applications.

The repository context can be created out of a dedicated OCI connection or an OCI connection
pool.

24.4.3 Create Repository Context from a Dedicated OCI Connection
OCIBinXmlCreateReposCtxFromConn() creates a repository context using the specified
dedicated OCI connection.

The OCI connection is only to be used for metadata access and should not be used in any
other scenarios by the application. Also note that the access to this connection is serialized;
that is, if multiple threads try to use the same connection, access is limited to one thread at a
time. For scalability reasons, it is recommended that applications create a repository context
using a connection pool, as described in the next section.

Note: You can also potentially pass in the same connection as the one being used for data.
However, this might result in an error in certain cases where the client system attempts to
contact the metadata repository while part of another operation (such as select or insert).

See Also:

OCIBinXmlCreateReposCtxFromConn()

24.4.4 Create Repository Context from a Connection Pool
OCIBinXmlCreateReposCtxFromCPool() creates a repository context from a connection pool.

When the application accesses the back-end repository, any available connection from the pool
is used. Further, this connection is released back to the pool as soon as the metadata
operation is complete. Connection pools are highly recommended for multithreaded application
scenarios. Different threads can use different connections in the pool and release them as
soon as they are done. This approach allows for higher scalability and concurrency with a
smaller number of physical connections.

Chapter 24
OCI Client Access to Binary XML

24-5

See Also:

OCIBinXmlCreateReposCtxFromCPool()

24.4.5 About Associating Repository Context with a Data Connection
OCIBinXmlSetReposCtxForConn() associates a repository context with a data connection
described by OCISvcCtx *.

Multiple data connections can share the same repository context, but access to the repository
can be serialized (if it is based on a dedicated connection). When the system must fetch the
metadata for encode or decode operations, it looks up the appropriate repository connection
from the OCIEnv, OCISvcCtx pair and uses it to fetch the metadata required.

See Also:

OCIBinXmlSetReposCtxForConn()

24.4.6 About Setting XMLType Encoding Format Preference

By default, XML data sent to the database is encoded in one of these possible formats (text,
object-relational, or binary XML) based on certain internal criteria such as the source format (if
it was read from the DB). OCIBinXmlSetFormatPref() provides an explicit mechanism to set
the preference for encoding format. In the future, the default format can be binary XML, but this
function could be used to override it if needed.

See Also:

OCIBinXmlSetFormatPref()

24.4.7 Example of Using a Connection Pool
Creating a repository context from a connection pool and associating the repository context
with a data connection is shown in this example in the XML DB documentation.

The database is local and the test is in single-threaded mode.

See Also:

Oracle XML DB Developer’s Guide for more information about using OCI and the C
API for XML with Oracle XML DB

Chapter 24
OCI Client Access to Binary XML

24-6

25
Using the Object Type Translator with OCI

This chapter discusses the Object Type Translator (OTT), which is used to map database
object types and named collection types to C structs for use in OCI applications.

This chapter contains these topics:

• What Is the Object Type Translator?

• OTT Command Line

• Intype File

• OTT Data Type Mappings

• Outtype File

• About Using OTT with OCI Applications

• OTT Reference

• What Is the Object Type Translator?
The Object Type Translator (OTT) assists in the development of C language applications
that make use of user-defined types in an Oracle database.

• OTT Command Line
On most operating systems, OTT is invoked on the command line.

• Intype File
When OTT runs, the intype file tells OTT which database types should be translated.

• OTT Data Type Mappings
When OTT generates a C struct from a database type, the struct contains one element
corresponding to each attribute of the object type.

• Outtype File
The outtype file is named on the OTT command line.

• About Using OTT with OCI Applications
An OCI application that accesses objects in an Oracle server can use C header and
implementation files that have been generated by OTT.

• OTT Reference
Parameters that can appear on the OTT command line or in a CONFIG file control the
behavior of OTT. Certain parameters can also appear in the intype file.

25.1 What Is the Object Type Translator?
The Object Type Translator (OTT) assists in the development of C language applications that
make use of user-defined types in an Oracle database.

With SQL CREATE TYPE statements, you can create object types. The definitions of these types
are stored in the database, and can be used in the creation of database tables. Once these
tables are populated, an OCI programmer can access objects stored in the tables.

An application that accesses object data must be able to represent the data in a host language
format. This is accomplished by representing object types as C structs. Although it is possible

25-1

for a programmer to code struct declarations by hand to represent database object types, this
can be very time-consuming and error-prone if many types are involved. OTT obviates the
need for such manual coding by automatically generating appropriate struct declarations. In
OCI, the application also must call an initialization function generated by OTT.

In addition to creating structs that represent stored data types, OTT generates parallel indicator
structs that indicate whether an object type or its fields are NULL.

The Object Type Translator (OTT) converts database definitions of object types and named
collection types into C struct declarations that can be included in an OCI application.

You must explicitly invoke OTT to translate database types to C representations.

On most operating systems, OTT is invoked on the command line. It takes as input an intype
file, and it generates an outtype file and one or more C header files and an optional
implementation file. The following is an example of a command that invokes OTT:

ott userid=scott intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h\
 initfile=demov.c

This command causes OTT to connect to the database with user name scott. The user is
prompted for the password.

The implementation file (demov.c) contains the function to initialize the type version table with
information about the user-defined types translated.

Later sections of this chapter describe each of these parameters in more detail.

Sample demoin.typ file:

CASE=LOWER
TYPE emptype

Sample demoout.typ file:

CASE = LOWER
TYPE SCOTT.EMPTYPE AS emptype
 VERSION = "$8.0"
 HFILE = demo.h

In this example, the demoin.typ file contains the type to be translated, preceded by TYPE (for
example, TYPE emptype). The structure of the outtype file is similar to the intype file, with the
addition of information obtained by OTT.

Once OTT has completed the translation, the header file contains a C struct representation of
each type specified in the intype file, and a NULL indicator struct corresponding to each type.
Suppose for example, that the employee type listed in the intype file was defined as shown in
Example 25-1.

Then the header file generated by OTT (demo.h) includes, among other items, the declarations
shown in Example 25-2.

Example 25-3 shows what a sample implementation file (demov.c) produced by this command
contains.

Parameters in the intype file control the way generated structs are named. In this example, the
struct name emptype matches the database type name emptype. The struct name is in
lowercase because of the line CASE=lower in the intype file.

The data types that appear in the struct declarations (for example, OCIString, OCIInd) are
special data types.

Chapter 25
What Is the Object Type Translator?

25-2

The remaining sections of this chapter discuss the use of OTT with OCI, followed by a
reference section that describes command-line syntax, parameters, intype file structure, nested
#include file generation, schema names usage, default name mapping, and restrictions.

Example 25-1 Definition of the Employee Object Type Listed in the Intype File

CREATE TYPE emptype AS OBJECT
(
 name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

Example 25-2 Contents of the Generated Header File demo.h

struct emptype
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emptype emptype;

struct emptype_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct employee_ind employee_ind;

Example 25-3 Contents of the demov.c File

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword demov(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "HR", 2,
 "EMPTYPE", 7,
 "$8.0", 4);
 return status;
}

This section includes the following topics:

• About Creating Types in the Database

• About Invoking OTT

Chapter 25
What Is the Object Type Translator?

25-3

• About Creating Types in the Database
The first step in using OTT is to create object types or named collection types and store
them in the database.

• About Invoking OTT
The next step is to invoke OTT. OTT parameters can be specified on the command line, or
in a file called a configuration file.

See Also:

OTT Data Type Mappings for more information about these types

25.1.1 About Creating Types in the Database
The first step in using OTT is to create object types or named collection types and store them
in the database.

This is accomplished through the use of the SQL CREATE TYPE statement.

See Also:

Oracle Database SQL Language Reference for information about the CREATE TYPE
statement

25.1.2 About Invoking OTT
The next step is to invoke OTT. OTT parameters can be specified on the command line, or in a
file called a configuration file.

Certain parameters can also be specified in the intype file.

If a parameter is specified in more than one place, its value on the command line takes
precedence over its value in the intype file, which takes precedence over its value in a user-
defined configuration file, which takes precedence over its value in the default configuration
file.

For global options — that is, options on the command line or options at the beginning of the
intype file before any TYPE statements — the value on the command line overrides the value in
the intype file. (The options that can be specified globally in the intype file are CASE, CODE,
INITFILE, and INITFUNC, but not HFILE.) However, anything in the intype file in a TYPE
specification applies to a particular type only, and overrides anything on the command line that
would otherwise apply to the type. So if you enter TYPE person HFILE=p.h, it applies to person
only and overrides the HFILE on the command line. The statement is not considered a
command-line parameter.

This section includes the following topics:

• Command Line

• Configuration File

• INTYPE File

Chapter 25
What Is the Object Type Translator?

25-4

• Command Line
Parameters (also called options) set on the command line override any set elsewhere.

• Configuration File
A configuration file is a text file that contains OTT parameters.

• INTYPE File
The intype file gives a list of user-defined types for OTT to translate.

25.1.2.1 Command Line
Parameters (also called options) set on the command line override any set elsewhere.

See Also:

OTT Command Line

25.1.2.2 Configuration File
A configuration file is a text file that contains OTT parameters.

Each nonblank line in the file contains one parameter, with its associated value or values. If
more than one parameter is put on a line, only the first one is used. Whitespace is not allowed
on any nonblank line of a configuration file.

A configuration file can be named on the command line. In addition, a default configuration file
is always read. This default configuration file must always exist, but can be empty. The name of
the default configuration file is ottcfg.cfg, and the location of the file is system-specific. For
example, on Solaris, the file specification is $ORACLE_HOME/precomp/admin/ottcfg.cfg. See
your operating system-specific documentation for further information.

25.1.2.3 INTYPE File
The intype file gives a list of user-defined types for OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the intype file.

See Also:

Intype File

25.2 OTT Command Line
On most operating systems, OTT is invoked on the command line.

You can specify the input and output files, and the database connection information, among
other things. Consult your operating system-specific documentation to see how to invoke OTT.

This section includes the following topic: OTT Command-Line Invocation Example.

Chapter 25
OTT Command Line

25-5

• OTT Command-Line Invocation Example
Shows how to invoke OTT from the command line.

See Also:

About Using the Object Type Translator for Windows

25.2.1 OTT Command-Line Invocation Example
Shows how to invoke OTT from the command line.

Example 25-4 shows how to invoke OTT from the command line.

Note:

No spaces are permitted around the equal sign (=).

Example 25-4 Invoking OTT from the Command Line

ott userid=bren intype=demoin.typ outtype=demoout.typ code=c \
 hfile=demo.h initfile=demov.c

The following sections describe the elements of the command line used in this example.

This section includes the following topics:

• OTT

• USERID

• INTYPE

• OUTTYPE

• CODE

• HFILE

• INITFILE

• OTT
Causes OTT to be invoked.

• USERID
Specifies the database connection information that OTT uses.

• INTYPE
Specifies the name of the intype file that is used.

• OUTTYPE
Specifies the name of the outtype file.

• CODE
Specifies the target language for the translation.

• HFILE
Specifies the name of the C header file to which the generated structs should be written.

Chapter 25
OTT Command Line

25-6

• INITFILE
Specifies the name of the C source file into which the type initialization function is to be
written.

See Also:

OTT Reference for a detailed discussion of the various OTT command-line options

25.2.1.1 OTT
Causes OTT to be invoked.

It must be the first item on the command line.

25.2.1.2 USERID
Specifies the database connection information that OTT uses.

In Example 25-4, OTT attempts to connect with user name bren and is then prompted for the
password.

25.2.1.3 INTYPE
Specifies the name of the intype file that is used.

In Example 25-4, the name of the intype file is specified as demoin.typ.

25.2.1.4 OUTTYPE
Specifies the name of the outtype file.

When OTT generates the C header file, it also writes information about the translated types
into the outtype file. This file contains an entry for each of the types that is translated, including
its version string, and the header file to which its C representation was written.

In Example 25-4, the name of the outtype file is specified as demoout.typ.

Note:

If the file specified by the outtype keyword exists, it is overwritten when OTT runs. If
the name of the outtype file is the same as the name of the intype file, the outtype
information overwrites the intype file.

25.2.1.5 CODE
Specifies the target language for the translation.

The following options are available:

• C (equivalent to ANSI_C)

• ANSI_C (for ANSI C)

Chapter 25
OTT Command Line

25-7

• KR_C (for Kernighan & Ritchie C)

There is currently no default option, so this parameter is required.

Struct declarations are identical in both C dialects. The style in the initialization function defined
in the INITFILE file depends on whether KR_C is used. If the INITFILE option is not used, all
three options are equivalent.

25.2.1.6 HFILE
Specifies the name of the C header file to which the generated structs should be written.

In Example 25-4, the generated structs are stored in a file called demo.h.

Note:

If the file specified by the hfile keyword exists, it is overwritten when OTT runs, with
one exception: if the contents of the file as generated by OTT are identical to the
previous contents of the file, OTT does not actually write to the file. This preserves
the modification time of the file so that Linux and UNIX make and similar facilities on
other operating systems do not perform unnecessary recompilations.

25.2.1.7 INITFILE
Specifies the name of the C source file into which the type initialization function is to be written.

Note:

If the file specified by the initfile keyword exists, it is overwritten when OTT runs,
with one exception: if the contents of the file as generated by OTT are identical to the
previous contents of the file, OTT does not actually write to the file. This preserves
the modification time of the file so that Linux and UNIX make and similar facilities on
other operating systems do not perform unnecessary recompilations.

25.3 Intype File
When OTT runs, the intype file tells OTT which database types should be translated.

It can also control the naming of the generated structs. The intype file can be a user-created
file, or it can be the outtype file of a previous invocation of OTT. If the intype parameter is not
used, all types in the schema to which OTT connects are translated.

Example 25-5 shows a simple user-created intype file.

Example 25-5 is further described as follows.

The first line, with the CASE keyword, indicates that generated C identifiers should be in
lowercase. However, this CASE option is only applied to those identifiers that are not explicitly
mentioned in the intype file. Thus, employee and ADDRESS would always result in C structures
employee and ADDRESS, respectively. The members of these structures would be named in
lowercase.

Chapter 25
Intype File

25-8

In the lines that begin with the TYPE keyword specify which types in the database should be
translated: in this case, the employee, ADDRESS, item, Person, and PURCHASE_ORDER types.

The TRANSLATE ... AS keywords specify that the name of an object attribute should be
changed when the type is translated into a C struct. In this case, the SALARY$ attribute of the
employee type is translated to salary.

The AS keyword in the final line specifies that the name of an object type should be changed
when it is translated into a struct. In this case, the PURCHASE_ORDER database type is translated
into a struct called p_o.

If AS is not used to translate a type or attribute name, the database name of the type or
attribute is used as the C identifier name, except that the CASE option is observed, and any
character that cannot be mapped to a legal C identifier character is replaced by an underscore.
Reasons for translating a type or attribute name include the following:

• The name contains characters other than letters, digits, and underscores

• The name conflicts with a C keyword.

• The type name conflicts with another identifier in the same scope. This can happen, for
example, if the program uses two types with the same name from different schemas.

• The programmer prefers a different name.

OTT may need to translate additional types that are not listed in the intype file. This is because
OTT analyzes the types in the intype file for type dependencies before performing the
translation, and translates other types as necessary. For example, if the ADDRESS type were not
listed in the intype file, but the "Person" type had an attribute of type ADDRESS, OTT would still
translate ADDRESS because it is required to define the "Person" type.

If you specify FALSE as the value of the TRANSITIVE parameter, then OTT does not generate
types that are not specified in the intype file.

A normal case-insensitive SQL identifier can be spelled in any combination of uppercase and
lowercase in the intype file, and is not enclosed within quotation marks.

Use quotation marks, such as TYPE "Person", to reference SQL identifiers that have been
created in a case-sensitive manner (for example, CREATE TYPE "Person"). A SQL identifier is
case-sensitive if it was enclosed within quotation marks when it was declared. Quotation marks
can also be used to refer to a SQL identifier that is an OTT-reserved word (for example, TYPE
"CASE"). Therefore, when a name is enclosed within quotation marks, the name enclosed
within quotation marks must be in uppercase if the SQL identifier was created in a case-
insensitive manner (for example, CREATE TYPE Case). If an OTT-reserved word is used to refer
to the name of a SQL identifier but is not enclosed within quotation marks, OTT reports a
syntax error in the intype file.

Example 25-5 Contents of a User-Created Intype File

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

Chapter 25
Intype File

25-9

See Also:

• CASE

• Structure of the Intype File for a more detailed specification of the structure of the
intype file and the available options

25.4 OTT Data Type Mappings
When OTT generates a C struct from a database type, the struct contains one element
corresponding to each attribute of the object type.

The data types of the attributes are mapped to types that are used in Oracle's object data
types. The data types found in Oracle Database include a set of predefined, primitive types.
These data types provide for the creation of user-defined types, such as object types and
collections.

Oracle Database also includes a set of predefined types that are used to represent object type
attributes in C structs. As an example, consider the object type definition in Example 25-6, and
its corresponding OTT-generated struct declarations in Example 25-7.

The OTT output, assuming CASE=LOWER and no explicit mappings of type or attribute names, is
shown in Example 25-7.

The data types in the struct declarations—OCIString, OCINumber, OCIDate, and OCIInd—are
used here to map the data types of the object type attributes. The NUMBER data type of the
empno attribute maps to the OCINumber data type, for example. These data types can also be
used as the types of bind and define variables.

Example 25-6 Object Type Definition for Employee

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary$ NUMBER);

Example 25-7 OTT-Generated Struct Declarations

struct employee
{ OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary_;
};
typedef struct emp_type emp_type;
struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary_;

Chapter 25
OTT Data Type Mappings

25-10

}
typedef struct employee_ind employee_ind;

This section includes the following topics:

• About Mapping Object Data Types to C

• OTT Type Mapping Example

• Null Indicator Structs

• OTT Support for Type Inheritance

• About Mapping Object Data Types to C
This section describes the mappings of Oracle object attribute types to C types generated
by OTT.

• OTT Type Mapping Example
Shows the various type mappings created by OTT when given the database types.

• Null Indicator Structs
Each time OTT generates a C struct to represent a database object type, it also generates
a corresponding NULL indicator struct.

• OTT Support for Type Inheritance
To support type inheritance of objects, OTT generates a C struct to represent an object
subtype by declaring the inherited attributes in an encapsulated struct with the special
name "_super", before declaring the new attributes.

See Also:

Null Indicator Structs for an explanation of the indicator struct (struct employee_ind)

25.4.1 About Mapping Object Data Types to C
This section describes the mappings of Oracle object attribute types to C types generated by
OTT.

The previous section OTT Type Mapping Example includes examples of many of these
different mappings. Table 25-1 lists the mappings from types that you can use as attributes to
object data types that are generated by OTT and the corresponding OCI type code values.

Table 25-1 Object Data Type Mappings for Object Type Attributes

Object Attribute Types C Mapping OCITypeCode Values

BFILE OCIBFileLocator* OCI_TYPECODE_BFILE

BLOB OCILobLocator * or
OCIBlobLocator *

OCI_TYPECODE_BLOB

CHAR(N), CHARACTER(N), NCHAR(N) OCIString * OCI_TYPECODE_CHAR (n),
OCI_TYPECODE_NCHAR

CLOB, NCLOB OCILobLocator * or
OCIClobLocator *

OCI_TYPECODE_CLOB,
OCI_TYPECODE_NCLOB

DATE OCIDate OCI_TYPECODE_DATE

ANSI DATE OCIDateTime * OCI_TYPECODE_TIMESTAMP

Chapter 25
OTT Data Type Mappings

25-11

Table 25-1 (Cont.) Object Data Type Mappings for Object Type Attributes

Object Attribute Types C Mapping OCITypeCode Values

TIMESTAMP, TIMESTAMP WITH TIME
ZONE, TIMESTAMP WITH LOCAL TIME
ZONE

OCIDateTime * OCI_TYPECODE_TIMESTAMP,
OCI_TYPECODE_TIMESTAMP_TZ,
OCI_TYPECODE_TIMESTAMP_LTZ

INTERVAL YEAR TO MONTH, INTERVAL
DAY TO SECOND

OCIInterval * OCI_TYPECODE_INTERVAL_YM,
OCI_TYPECODE_INTERVAL_DS

DEC, DEC(N), DEC(N,N) OCINumber OCI_TYPECODE_DECIMAL (p)

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber OCI_TYPECODE_DECIMAL (p)

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber OCI_TYPECODE_FLOAT (b)

BINARY_FLOAT float OCI_TYPECODE_BFLOAT

BINARY_DOUBLE double OCI_TYPECODE_BDOUBLE

INT, INTEGER, SMALLINT OCINumber OCI_TYPECODE_INTEGER,
OCI_TYPECODE_SMALLINT

Nested Object Type C name of the nested
object type

OCI_TYPECODE_OBJECT

Nested Table OCITable * OCI_TYPECODE_TABLE

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber OCI_TYPECODE_NUMBER (p, s)

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber OCI_TYPECODE_NUMBER (p, s)

RAW(N) OCIRaw * OCI_TYPECODE_RAW

REAL OCINumber OCI_TYPECODE_REAL

REF OCIRef * OCI_TYPECODE_REF

VARCHAR(N) OCIString * OCI_TYPECODE_VARCHAR (n)

VARCHAR2(N), NVARCHAR2(N) OCIString * OCI_TYPECODE_VARCHAR2 (n),
OCI_TYPECODE_NVARCHAR2

VARRAY OCIArray * OCI_TYPECODE_VARRAY

collections OCIColl * OCI_TYPECODE_NAMEDCOLLECTION

Note:

For REF, varray, and nested table types, OTT generates a typedef. The type
declared in the typedef is then used as the type of the data member in the struct
declaration. For an example, see OTT Type Mapping Example.

If an object type includes an attribute of a REF or collection type, a typedef for the REF or
collection type is first generated. Then the struct declaration corresponding to the object type is
generated. The struct includes an element whose type is a pointer to the REF or collection type.

If an object type includes an attribute whose type is another object type, OTT first generates
the nested type (if TRANSITIVE=TRUE). It then maps the object type attribute to a nested struct
of the type of the nested object type.

The Oracle C data types to which OTT maps non-object database attribute types are
structures, which, except for OCIDate, are opaque.

Chapter 25
OTT Data Type Mappings

25-12

25.4.2 OTT Type Mapping Example
Shows the various type mappings created by OTT when given the database types.

Example 25-9 demonstrates the various type mappings created by OTT when given the
database types shown in Example 25-8.

The intype file includes the following:

CASE = LOWER
TYPE many_types

OTT generates the C structs shown in Example 25-9.

Note:

Comments are provided in Example 25-9 to help explain the structs. These
comments are not part of actual OTT output.

Notice that although only one item was listed for translation in the intype file, two object types
and two named collection types were translated. This is because the OTT parameter
TRANSITIVE has the default value of TRUE. As described in that section, when
TRANSITIVE=TRUE, OTT automatically translates any types that are used as attributes of a type
being translated, to complete the translation of the listed type.

This is not the case for types that are only accessed by a pointer or REF in an object type
attribute. For example, although the many_types type contains the attribute another_ref REF
other_type, a declaration of struct other_type was not generated.

This example also illustrates how typedefs are used to declare varray, nested table, and
REF types.

The typedefs occur near the beginning:

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

In the struct many_types, the varray, nested table, and REF attributes are declared:

struct many_types
{ ...
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 ...
}

Example 25-8 Object Type Definitions for the OTT Type Mapping Example

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT

Chapter 25
OTT Data Type Mappings

25-13

(object_name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

CREATE TYPE other_type AS OBJECT (object_number NUMBER);

CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255));

Example 25-9 Various Type Mappings Created by OTT from Object Type Definitions

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray; /* used in many_types */
typedef OCITable my_table; /* used in many_types*/
typedef OCIRef other_type_ref;
struct object_type /* used in many_types */
{
 OCIString * object_name;
};
typedef struct object_type object_type;

struct object_type_ind /*indicator struct for*/
{ /*object_types*/
 OCIInd _atomic;
 OCIInd object_name;
};
typedef struct object_type_ind object_type_ind;

struct many_types
{
 OCIString * the_varchar;
 OCIString * the_char;
 OCIBlobLocator * the_blob;
 OCIClobLocator * the_clob;
 struct object_type the_object;
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 OCIDate the_date;
 OCINumber the_num;
 OCIRaw * the_raw;
};

Chapter 25
OTT Data Type Mappings

25-14

typedef struct many_types many_types;

struct many_types_ind /*indicator struct for*/
{ /*many_types*/
 OCIInd _atomic;
 OCIInd the_varchar;
 OCIInd the_char;
 OCIInd the_blob;
 OCIInd the_clob;
 struct object_type_ind the_object; /*nested*/
 OCIInd another_ref;
 OCIInd the_ref;
 OCIInd the_varray;
 OCIInd the_table;
 OCIInd the_date;
 OCIInd the_num;
 OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

#endif

See Also:

TRANSITIVE

25.4.3 Null Indicator Structs
Each time OTT generates a C struct to represent a database object type, it also generates a
corresponding NULL indicator struct.

When an object type is selected into a C struct, NULL indicator information may be selected into
a parallel struct.

For example, the following NULL indicator struct was generated in Example 25-9.

struct many_types_ind
{
OCIInd _atomic;
OCIInd the_varchar;
OCIInd the_char;
OCIInd the_blob;
OCIInd the_clob;
struct object_type_ind the_object;
OCIInd another_ref;
OCIInd the_ref;
OCIInd the_varray;
OCIInd the_table;
OCIInd the_date;
OCIInd the_num;
OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

The layout of the NULL struct is important. The first element in the struct (_atomic) is the atomic
null indicator. This value indicates the NULL status for the object type as a whole. The atomic

Chapter 25
OTT Data Type Mappings

25-15

null indicator is followed by an indicator element corresponding to each element in the OTT-
generated struct representing the object type.

Notice that when an object type contains another object type as part of its definition (in the
preceding example it is the object_type attribute), the indicator entry for that attribute is the
NULL indicator struct (object_type_ind) corresponding to the nested object type (if
TRANSITIVE=TRUE).

The varrays and nested tables contain the NULL information for their elements.

The data type for all other elements of a NULL indicator struct is OCIInd.

See Also:

NULL Indicator Structure for more information about atomic nullity

25.4.4 OTT Support for Type Inheritance
To support type inheritance of objects, OTT generates a C struct to represent an object
subtype by declaring the inherited attributes in an encapsulated struct with the special name
"_super", before declaring the new attributes.

Thus, for an object subtype that inherits from a supertype, the first element in the struct is
named "_super", followed by elements corresponding to each attribute of the subtype. The
type of the element named "_super" is the name of the supertype.

For example, suppose that you have a type Person_t, with subtype Student_t and subtype
Employee_t, as shown in Example 25-10.

Suppose that you also have an intype file with the content shown in Example 25-11.

Then, OTT generates the C structs for Person_t, Student_t, and Employee_t, and their NULL
indicator structs, as shown in Example 25-12.

The preceding C mapping convention allows simple upcasting from an instance of a subtype to
an instance of a supertype in C to work properly. For example:

STUDENT_T *stu_ptr = some_ptr; /* some STUDENT_T instance */
PERSON_T *pers_ptr = (PERSON_T *)stu_ptr; /* upcasting */

The NULL indicator structs are generated similarly. Note that for the supertype Person_t NULL
indicator struct, the first element is "_atomic", and that for the subtypes Employee_t and
Student_t NULL indicator structs, the first element is "_super" (no atomic element is generated
for subtypes).

Example 25-10 Object Type and Subtype Definitions

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

Chapter 25
OTT Data Type Mappings

25-16

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

Example 25-11 Contents of the Intype File

CASE=SAME
TYPE EMPLOYEE_T
TYPE STUDENT_T
TYPE PERSON_T

Example 25-12 OTT Generates C Structs for the Types and Null Indicator Structs

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef EMPLOYEE_T_ref;
typedef OCIRef STUDENT_T_ref;
typedef OCIRef PERSON_T_ref;

struct PERSON_T
{
 OCINumber SSN;
 OCIString * NAME;
 OCIString * ADDRESS;
};
typedef struct PERSON_T PERSON_T;

struct PERSON_T_ind
{
 OCIInd _atomic;
 OCIInd SSN;
 OCIInd NAME;
 OCIInd ADDRESS;
};
typedef struct PERSON_T_ind PERSON_T_ind;

struct EMPLOYEE_T
{
 PERSON_T_ind;
 OCINumber EMPID;
 OCIString * MGR;
};
typedef struct EMPLOYEE_T EMPLOYEE_T;

struct EMPLOYEE_T_ind
{
 PERSON_T _super;
 OCIInd EMPID;
 OCIInd MGR;
};
typedef struct EMPLOYEE_T_ind EMPLOYEE_T_ind;

struct STUDENT_T
{
 PERSON_T _super;
 OCINumber DEPTID;
 OCIString * MAJOR;
};

Chapter 25
OTT Data Type Mappings

25-17

typedef struct STUDENT_T STUDENT_T;

struct STUDENT_T_ind
{
 PERSON_T _super;
 OCIInd DEPTID;
 OCIInd MAJOR;
};
typedef struct STUDENT_T_ind STUDENT_T_ind;

#endif

This section includes the following topic: Substitutable Object Attributes.

• Substitutable Object Attributes
For attributes of NOT FINAL types (potentially substitutable), the embedded attribute is
represented as a pointer.

25.4.4.1 Substitutable Object Attributes
For attributes of NOT FINAL types (potentially substitutable), the embedded attribute is
represented as a pointer.

Consider a type Book_t created as follows:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
 author Person_t /* substitutable */);

The corresponding C struct generated by OTT contains a pointer to Person_t:

struct Book_t
{
 OCIString *title;
 Person_t *author; /* pointer to Person_t struct */
}

The NULL indicator struct corresponding to the preceding type is as follows:

struct Book_t_ind
{
 OCIInd _atomic;
 OCIInd title;
 OCIInd author;
}

Note that the NULL indicator struct corresponding to the author attribute can be obtained from
the author object itself. See OCIObjectGetInd().

If a type is defined to be FINAL, it cannot have any subtypes. An attribute of a FINAL type is
therefore not substitutable. In such cases, the mapping is as before: the attribute struct is
inline. Now, if the type is altered and defined to be NOT FINAL, the mapping must change. The
new mapping is generated by running OTT again.

See Also:

OCIObjectGetInd()

Chapter 25
OTT Data Type Mappings

25-18

25.5 Outtype File
The outtype file is named on the OTT command line.

When OTT generates the C header file, it also writes the results of the translation into the
outtype file. This file contains an entry for each of the types that is translated, including its
version string, and the header file to which its C representation was written.

The outtype file from one OTT run can be used as the intype file for a subsequent OTT
invocation.

For example, suppose that you have a simple intype file, as shown in Example 25-13, which
was used in Example 25-5.

The user has chosen to specify the case for the OTT-generated C identifiers, and has provided
a list of types to be translated. In two of these types, naming conventions are specified.

Example 25-14 shows what the outtype file might look like after running OTT.

When examining the contents of the outtype file, you might discover types listed that were not
included in the intype specification. For example, suppose that the intype file only specified that
the person type was to be translated as follows:

CASE = LOWER
TYPE PERSON

However, because the definition of the person type includes an attribute of type address, the
outtype file includes entries for both PERSON and ADDRESS. The person type cannot be
translated completely without first translating address.

When the parameter TRANSITIVE has been set to TRUE (it is the default), OTT analyzes the
types in the intype file for type dependencies before performing the translation, and translates
other types as necessary.

Example 25-13 Contents of an Intype File

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

Example 25-14 Contents of the Outtype File After Running OTT

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person

Chapter 25
Outtype File

25-19

 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

25.6 About Using OTT with OCI Applications
An OCI application that accesses objects in an Oracle server can use C header and
implementation files that have been generated by OTT.

The header file is incorporated into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and manipulate object
data in the host language format.

Figure 25-1 shows the steps involved in using OTT with OCI for the simplest applications:

1. SQL is used to create type definitions in the database.

2. OTT generates a header file containing C representations of object types and named
collection types. It also generates an implementation file, as named with the INITFILE
option.

3. The application is written. User-written code in the OCI application declares and calls the
INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCI application, including the implementation file generated by OTT, is compiled and
linked with the OCI libraries.

6. The OCI executable is run against the Oracle database.

Chapter 25
About Using OTT with OCI Applications

25-20

Figure 25-1 Using OTT with OCI

SQL DDL

Object File

OCI library

Executable

Object File

Linker

ORACLE
Database

Type
Definitions

Compiler

OTT

Implementation
File

Header
File

OCI source
File

#include

This section includes the following topics:

• About Accessing and Manipulating Objects with OCI

• Calling the Initialization Function

• Tasks of the Initialization Function

• About Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations using
program variables declared to be of types that appear in the OTT-generated header file.

• Calling the Initialization Function
OTT generates a C initialization function if requested. The initialization function tells the
environment, for each object type used in the program, which version of the type is used.

• Tasks of the Initialization Function
The C initialization function supplies version information about the types processed by
OTT. It adds to the type-version table the name and version identifier of every OTT-
processed object data type.

25.6.1 About Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations using program
variables declared to be of types that appear in the OTT-generated header file.

Chapter 25
About Using OTT with OCI Applications

25-21

For example, an application might fetch a REF to an object using a SQL SELECT statement and
then pin that object using the appropriate OCI function. Once the object has been pinned, its
attribute data can be accessed and manipulated with other OCI functions.

OCI includes a set of data type mapping and manipulation functions that are specifically
designed to work on attributes of object types and named collection types.

The following are examples of the available functions:

• OCIStringSize() gets the size of an OCIString string.

• OCINumberAdd() adds two OCINumber numbers together.

• OCILobIsEqual() compares two LOB locators for equality.

• OCIRawPtr() gets a pointer to an OCIRaw raw data type.

• OCICollAppend() appends an element to a collection type (OCIArray or OCITable).

• OCITableFirst() returns the index for the first existing element of a nested table
(OCITable).

• OCIRefIsNull() tests if a REF (OCIRef) is NULL.

These functions are described in detail in other chapters of this guide.

See Also:

• OCIStringSize()

• OCINumberAdd()

• OCILobIsEqual()

• OCIRawPtr()

• OCICollAppend()

• OCITableFirst()

• OCIRefIsNull()

25.6.2 Calling the Initialization Function
OTT generates a C initialization function if requested. The initialization function tells the
environment, for each object type used in the program, which version of the type is used.

You can specify a name for the initialization function when you invoke OTT with the INITFUNC
option, or you can allow OTT to select a default name based on the name of the
implementation file (INITFILE) containing the function.

The initialization function takes two arguments; an environment handle pointer and an error
handle pointer. There is typically a single initialization function, but this is not required. If a
program has several separately compiled pieces requiring different types, you may want to
execute OTT separately for each piece, requiring for each piece, one initialization file
containing an initialization function.

After an environment handle is created by an explicit OCI object call (for example, by calling
OCIEnvCreate()) you must also explicitly call the initialization functions. All the initialization

Chapter 25
About Using OTT with OCI Applications

25-22

functions must be called for each explicitly created environment handle. This gives each
handle access to all the Oracle data types used in the entire program.

If an environment handle is implicitly created by embedded SQL statements, such as EXEC SQL
CONTEXT USE and EXEC SQL CONNECT, the handle is initialized implicitly, and the initialization
functions need not be called. This is only relevant when Pro*C/C++ is being combined with
OCI applications.

The following example shows an initialization function.

Suppose that you have an intype file, ex2c.typ, containing the content shown in
Example 25-15.

Then you invoke OTT from the command line and specify the initialization function, as shown
in Example 25-16.

OTT generates the ex2cv.c file with the contents shown in Example 25-17.

The function ex2cv() creates the type version table and inserts the types BREN.PERSON and
BREN.ADDRESS.

If a program explicitly creates an environment handle, all the initialization functions must be
generated, compiled, and linked, because they must be called for each explicitly created
handle. If a program does not explicitly create any environment handles, initialization functions
are not required.

A program that uses an OTT-generated header file must also use the initialization function
generated at the same time. When a header file is generated by OTT and an environment
handle is explicitly created in the program, then the implementation file must also be compiled
and linked into the executable.

Example 25-15 Content of an Intype File Named ex2c.typ

TYPE BREN.PERSON
TYPE BREN.ADDRESS

Example 25-16 Invoking OTT and Specifying the Initialization Function

ott userid=bren intype=ex2c outtype=ex2co hfile=ex2ch.h initfile=ex2cv.c

Example 25-17 Content of an OTT-Generated File Named ex2cv.c

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "PERSON", 6,
 "$8.0", 4);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "ADDRESS", 7,
 "$8.0", 4);
 return status;
}

Chapter 25
About Using OTT with OCI Applications

25-23

See Also:

OCIEnvCreate()

25.6.3 Tasks of the Initialization Function
The C initialization function supplies version information about the types processed by OTT. It
adds to the type-version table the name and version identifier of every OTT-processed object
data type.

The type-version table is used by the Oracle database type manager to determine which
version of a type a particular program uses. Different initialization functions generated by OTT
at different times can add some of the same types to the type version table. When a type is
added more than once, Oracle Database ensures that the same version of the type is
registered each time.

It is the OCI programmer's responsibility to declare a function prototype for the initialization
function, and to call the function.

Note:

In the current release of Oracle Database, each type has only one version.
Initialization of the type version table is required only for compatibility with future
releases of Oracle Database.

25.7 OTT Reference
Parameters that can appear on the OTT command line or in a CONFIG file control the behavior
of OTT. Certain parameters can also appear in the intype file.

This section provides detailed information about the following topics:

• OTT Command-Line Syntax

• OTT Parameters

• Where OTT Parameters Can Appear

• Structure of the Intype File

• Nested Included File Generation

• SCHEMA_NAMES Usage

• Default Name Mapping

• OTT Restriction on File Name Comparison

• OTT Command on Microsoft Windows

The following conventions are used in this section to describe OTT syntax:

• Italic strings are variables or parameters to be supplied by the user.

• Strings in UPPERCASE are entered as shown, except that case is not significant.

Chapter 25
OTT Reference

25-24

• OTT keywords are listed in a lowercase monospaced font in examples and headings, but
are printed in uppercase in text to make them more distinctive.

• Square brackets [...] enclose optional items.

• An ellipsis (...) immediately following an item (or items enclosed in brackets) means that
the item can be repeated any number of times.

• Punctuation symbols other than those described earlier are entered as shown. These
include ".", "@", and so on.

• OTT Command-Line Syntax
The OTT command-line interface is used when explicitly invoking OTT to translate
database types into C structs.

• OTT Parameters

• Where OTT Parameters Can Appear
OTT parameters can appear on the command line, in a CONFIG file named on the
command line, or both.

• Structure of the Intype File
The intype and outtype files list the types translated by OTT, and provide all the information
needed to determine how a type or attribute name is translated to a legal C identifier.

• Nested Included File Generation
Every HFILE generated by OTT uses #include directives to include other necessary files
and #define directives to define a symbol constructed from the name of the file, which can
be used to determine if the HFILE has been included.

• SCHEMA_NAMES Usage
The SCHEMA_NAMES parameter affects whether the name of a type from the default schema
to which OTT is connected is qualified with a schema name in the outtype file.

• Default Name Mapping
When OTT creates a C identifier name for an object type or attribute, it translates the name
from the database character set to a legal C identifier.

• OTT Restriction on File Name Comparison
Currently, OTT determines if two files are the same by comparing the file names provided
by the user on the command line or in the intype file.

• OTT Command on Microsoft Windows
OTT executable on Microsoft Windows in the current release is ott.bat, instead of
ott.exe as in the earlier releases.

25.7.1 OTT Command-Line Syntax
The OTT command-line interface is used when explicitly invoking OTT to translate database
types into C structs.

This is always required when you develop OCI applications that use objects.

An OTT command-line statement consists of the keyword OTT, followed by a list of OTT
parameters.

The parameters that can appear on an OTT command-line statement are as follows:

[userid=username/password[@db_name]]

[intype=filename]

outtype=filename

Chapter 25
OTT Reference

25-25

code=C|ANSI_C|KR_C

[hfile=filename]

[errtype=filename]

[config=filename]

[initfile=filename]

[initfunc=filename]

[case=SAME|LOWER|UPPER|OPPOSITE]

[schema_name=ALWAYS|IF_NEEDED|FROM_INTYPE]

[transitive=TRUE|FALSE]

[URL=url]

Note:

Generally, the order of the parameters following the ott command does not matter.
Only the OUTTYPE and CODE parameters are always required.

The HFILE parameter is almost always used. If omitted from the command line, HFILE must be
specified individually for each type in the intype file. If OTT determines that a type not listed in
the intype file must be translated, an error is reported. Therefore, it is safe to omit the HFILE
parameter only if the intype file was previously generated as an OTT outtype file.

If the intype file is omitted, the entire schema is translated. The OTT parameter descriptions
are described in the sections that follow.

The following is an example of an OTT command-line statement (you are prompted for the
password):

ott userid=marc intype=in.typ outtype=out.typ code=c hfile=demo.h\
 errtype=demo.tls case=lower

The following sections describe each of the OTT command-line parameters.

See Also:

OTT Parameters

25.7.2 OTT Parameters
Enter parameters on the OTT command line using the following format:

parameter=value

Chapter 25
OTT Reference

25-26

In this format, parameter is the literal parameter string and value is a valid parameter setting.
The literal parameter string is not case-sensitive.

Separate command-line parameters by using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no whitespace is
permitted within a line, and each parameter must appear on a separate line. Additionally, the
parameters CASE, HFILE,INITFUNC, and INITFILE can appear in the intype file.

This section includes the following OTT parameters:

• USERID

• INTYPE

• OUTTYPE

• CODE

• INITFILE

• INITFUNC

• HFILE

• CONFIG

• ERRTYPE

• CASE

• SCHEMA_NAMES

• TRANSITIVE

• URL

• USERID
The USERID parameter specifies the database user name, password, and optional
database name (Oracle Net Services database specification string).

• INTYPE
The INTYPE parameter specifies the name of the file from which to read the list of object
type specifications. OTT translates each type in the list.

• OUTTYPE
The OUTTYPE parameter specifies the name of a file into which OTT writes type information
for all the object data types it processes.

• CODE
This is the desired host language for OTT output, which is specified as CODE=C,
CODE=KR_C, or CODE=ANSI_C.

• INITFILE
The INITFILE parameter specifies the name of the file where the OTT-generated
initialization file is to be written.

• INITFUNC
The INITFUNC parameter is only used in OCI programs.

• HFILE
The HFILE parameter specifies the name of the include (.h) file to be generated by OTT for
the declarations of types that are mentioned in the intype file but whose include files are
not specified there.

Chapter 25
OTT Reference

25-27

• CONFIG
The CONFIG parameter specifies the name of the OTT configuration file, which lists
commonly used parameter specifications.

• ERRTYPE
If the ERRTYPE parameter is supplied, OTT writes a listing of the intype file to the ERRTYPE
file, along with all informational and error messages.

• CASE
This CASE parameter affects the case of certain C identifiers generated by OTT.

• SCHEMA_NAMES
The SCHEMA_NAMES parameter offers control in qualifying the database name of a type from
the default schema with a schema name in the outtype file.

• TRANSITIVE
The TRANSITIVE parameter takes the values TRUE (the default) or FALSE.

• URL
For the URL parameter, OTT uses JDBC (Java Database Connectivity), the Java interface
for connecting to the database.

25.7.2.1 USERID
The USERID parameter specifies the database user name, password, and optional database
name (Oracle Net Services database specification string).

If the database name is omitted, the default database is assumed. The syntax of this
parameter is:

userid=username/password[@db_name]

The USERID parameter is optional. If it is omitted, OTT automatically attempts to connect to the
default database as user OPS$username, where username is the user's operating system user
name. If this is the first parameter, "USERID=" and the password and the database name can be
omitted, as shown here:

ott username ...

For security purposes, when you enter only the user name you are prompted for the rest of the
entry.

The username and db_name (schema name) combination is appended and used as a key in the
OCIContextGetValue() call, which supports a maximum length of 64 bytes in Oracle Database
21c Release. In 21c Release, this maximum length is extended to support 243 bytes, not
including 1 character for the period (.).

25.7.2.2 INTYPE
The INTYPE parameter specifies the name of the file from which to read the list of object type
specifications. OTT translates each type in the list.

The syntax for this parameter is

intype=filename

"INTYPE=" can be omitted if USERID and INTYPE are the first two parameters, in that order, and
"USERID=" is omitted. If the INTYPE parameter is not specified, all types in the user's schema
are translated.

Chapter 25
OTT Reference

25-28

ott username filename...

The intype file can be thought of as a makefile for type declarations. It lists the types for which
C struct declarations are needed.

If the file name on the command line or in the intype file does not include an extension, an
operating system-specific extension such as "TYP" or ".typ" is added.

See Also:

Structure of the Intype File for a description of the format of the intype file

25.7.2.3 OUTTYPE
The OUTTYPE parameter specifies the name of a file into which OTT writes type information for
all the object data types it processes.

This includes all types explicitly named in the intype file, and can include additional types that
are translated because they are used in the declarations of other types that must be translated
(if TRANSITIVE=TRUE). This file must be used as an intype file in a future invocation of OTT.

outtype=filename

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE parameter
information replaces the old information in the intype file. This provides a convenient way for
the same intype file to be used repeatedly in the cycle of altering types, generating type
declarations, editing source code, precompiling, compiling, and debugging.

The parameter OUTTYPE must be specified.

If the file name on the command line or in the outtype file does not include an extension, an
operating system-specific extension such as "TYP" or ".typ" is added.

25.7.2.4 CODE
This is the desired host language for OTT output, which is specified as CODE=C, CODE=KR_C, or
CODE=ANSI_C.

"CODE=C" is equivalent to "CODE=ANSI_C".

CODE=C|KR_C|ANSI_C

There is no default value for this parameter; it must be supplied.

25.7.2.5 INITFILE
The INITFILE parameter specifies the name of the file where the OTT-generated initialization
file is to be written.

The initialization function is not generated if this parameter is omitted.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB runtime library
performs the necessary initializations. An OCI program user must compile and link the
INITFILE files, and must call the initialization file functions when an environment handle is
created.

Chapter 25
OTT Reference

25-29

If the file name of an INITFILE on the command line or in the intype file does not include an
extension, an operating system-specific extension such as "C" or ".c" is added.

initfile=filename

25.7.2.6 INITFUNC
The INITFUNC parameter is only used in OCI programs.

It specifies the name of the initialization function generated by OTT. If this parameter is
omitted, the name of the initialization function is derived from the name of the INITFILE.

initfunc=filename

25.7.2.7 HFILE
The HFILE parameter specifies the name of the include (.h) file to be generated by OTT for the
declarations of types that are mentioned in the intype file but whose include files are not
specified there.

This parameter is required unless the include file for each type is specified individually in the
intype file. This parameter is also required if a type not mentioned in the intype file must be
generated because other types require it, and these other types are declared in two or more
different files, and TRANSITIVE=TRUE.

If the file name of an HFILE on the command line or in the intype file does not include an
extension, an operating system-specific extension such as "H" or ".h" is added.

hfile=filename

25.7.2.8 CONFIG
The CONFIG parameter specifies the name of the OTT configuration file, which lists commonly
used parameter specifications.

Parameter specifications are also read from a system configuration file in an operating system-
dependent location. All remaining parameter specifications must appear on the command line,
or in the intype file.

config=filename

Note:

A CONFIG parameter is not allowed in the CONFIG file.

25.7.2.9 ERRTYPE
If the ERRTYPE parameter is supplied, OTT writes a listing of the intype file to the ERRTYPE file,
along with all informational and error messages.

Informational and error messages are sent to the standard output whether ERRTYPE parameter
is specified or not.

Essentially, the ERRTYPE file is a copy of the intype file with error messages added. In most
cases, an error message includes a pointer to the text that caused the error.

Chapter 25
OTT Reference

25-30

If the file name of an ERRTYPE on the command line or in the intype file does not include an
extension, an operating system-specific extension such as "TLS" or ".tls" is added.

errtype=filename

25.7.2.10 CASE
This CASE parameter affects the case of certain C identifiers generated by OTT.

The possible values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE = SAME, the case
of letters is not changed when converting database type and attribute names to C identifiers. If
CASE=LOWER, all uppercase letters are converted to lowercase. If CASE=UPPER, all lowercase
letters are converted to uppercase. If CASE=OPPOSITE, all uppercase letters are converted to
lowercase, and vice versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

This option affects only those identifiers (attributes or types not explicitly listed) not mentioned
in the intype file. Case conversion occurs after a legal identifier has been generated.

Note that the case of the C struct identifier for a type specifically mentioned in the INTYPE
parameter option is the same as its case in the intype file. For example, if the intype file
includes the following line:

TYPE Worker

Then OTT generates the following line:

struct Worker {...};

However, suppose that the intype file is written as follows:

TYPE wOrKeR

Then OTT generates the following line, following the case specified in the intype file.

struct wOrKeR {...};

Case-insensitive SQL identifiers not mentioned in the intype file appear in uppercase if
CASE=SAME, and in lowercase if CASE=OPPOSITE. A SQL identifier is case-insensitive if it was not
enclosed in quotation marks when it was declared.

25.7.2.11 SCHEMA_NAMES
The SCHEMA_NAMES parameter offers control in qualifying the database name of a type from the
default schema with a schema name in the outtype file.

The outtype file generated by OTT contains information about the types processed by OTT,
including the type names.

See Also:

SCHEMA_NAMES Usage

Chapter 25
OTT Reference

25-31

25.7.2.12 TRANSITIVE
The TRANSITIVE parameter takes the values TRUE (the default) or FALSE.

It indicates whether type dependencies not explicitly listed in the intype file are to be translated
or not.

If TRANSITIVE=TRUE is specified, then types needed by other types but not mentioned in the
intype file are generated.

If TRANSITIVE=FALSE is specified, then types not mentioned in the intype file are not generated,
even if they were used as attribute types of other generated types.

25.7.2.13 URL
For the URL parameter, OTT uses JDBC (Java Database Connectivity), the Java interface for
connecting to the database.

The default value of parameter URL is:

URL=jdbc:oracle:oci8:@

The OCI8 driver is for client-side use with an Oracle Database installation.

To specify the JDBC Thin driver (the Java driver for client-side use without an Oracle Database
installation), use the following URL parameter syntax:

URL=jdbc:oracle:thin:@host:port:sid

The host is the name of the host on which the database is running, port is the port number,
and sid is the Oracle SID.

25.7.3 Where OTT Parameters Can Appear
OTT parameters can appear on the command line, in a CONFIG file named on the command
line, or both.

Some parameters are also allowed in the intype file.

OTT is invoked as follows:

ott username/password parameters

If one of the parameters on the command line is the following, then additional parameters are
read from the configuration file filename:

config=filename

In addition, parameters are also read from a default configuration file in an operating system-
dependent location. This file must exist, but can be empty. Parameters in a configuration file
must appear one in each line, with no whitespace on the line.

If OTT is executed without any arguments, an online parameter reference is displayed.

The types for OTT to translate are named in the file specified by the INTYPE parameter. The
parameters CASE, INITFILE, INITFUNC, and HFILE can also appear in the intype file. The
outtype files generated by OTT include the CASE parameter, and include the INITFILE, and

Chapter 25
OTT Reference

25-32

INITFUNC parameters if an initialization file was generated. The outtype file specifies the HFILE
individually for each type.

The case of the OTT command is operating system-dependent.

25.7.4 Structure of the Intype File
The intype and outtype files list the types translated by OTT, and provide all the information
needed to determine how a type or attribute name is translated to a legal C identifier.

These files contain one or more type specifications. These files also can contain specifications
of the following options:

• CASE
• HFILE
• INITFILE
• INITFUNC
If the CASE, INITFILE, or INITFUNC options are present, they must precede any type
specifications. If these options appear both on the command line and in the intype file, the
value on the command line is used.

This section includes the following topic: Intype File Type Specifications.

• Intype File Type Specifications
A type specification in the intype file names an object data type that is to be translated.

See Also:

Outtype File for an example of a simple user-defined intype file, and of the full
outtype file that OTT generates from it

25.7.4.1 Intype File Type Specifications
A type specification in the intype file names an object data type that is to be translated.

A type specification in the outtype file names an object data type that has been translated.

TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows, where [] indicates optional inputs inside:

TYPE type_name [AS type_identifier]
[VERSION [=] version_string]
[HFILE [=] hfile_name]
[TRANSLATE{member_name [AS identifier]}...]

The syntax of type_name is:

[schema_name.]type_name

Chapter 25
OTT Reference

25-33

The schema_name is the name of the schema that owns the given object data type, and
type_name is the name of the type. The default schema is that of the user running OTT. The
default database is the local database.

The components of a type specification are described as follows:

• type_name is the name of an Oracle Database object data type.

• type_identifier is the C identifier used to represent the type. If type_identifier is
omitted, the default name mapping algorithm is used.

• version_string is the version string of the type that was used when the code was
generated by a previous invocation of OTT. The version string is generated by OTT and
written to the outtype file, which can be used as the intype file when OTT is executed later.
The version string does not affect the operation of OTT, but is eventually used to select the
version of the object data type that should be used in the running program.

• hfile_name is the name of the header file in which the declarations of the corresponding
struct or class appear. If hfile_name is omitted, the file named by the command-line HFILE
parameter is used if a declaration is generated.

• member_name is the name of an attribute (data member) that is to be translated to the
identifier.

• identifier is the C identifier used to represent the attribute in the user program.
Identifiers can be specified in this way for any number of attributes. The default name
mapping algorithm is used for the attributes that are not mentioned.

An object data type may need to be translated for one of two reasons:

• It appears in the intype file.

• It is required to declare another type that must be translated, and TRANSITIVE=TRUE.

If a type that is not mentioned explicitly is required by types declared in exactly one file, OTT
writes the translation of the required type to the same file or files as the explicitly declared
types that require it.

If a type that is not mentioned explicitly is required by types declared in two or more different
files, OTT writes the translation of the required type to the global HFILE file.

See Also:

Default Name Mapping for more information about naming the intype file related to
the version_string component.

25.7.5 Nested Included File Generation
Every HFILE generated by OTT uses #include directives to include other necessary files and
#define directives to define a symbol constructed from the name of the file, which can be used
to determine if the HFILE has been included.

Consider, for example, a database with the types shown in Example 25-18.

The intype file content is shown in Example 25-19.

If you invoke OTT with the command shown in Example 25-20, then it generates the header
files shown in Example 25-21 and Example 25-22.

Chapter 25
OTT Reference

25-34

The content of the header file tott95b.h is shown in Example 25-21.

The content of the header file tott95a.h is shown in Example 25-22.

In Example 25-21, the symbol TOTT95B_ORACLE is defined first so that the programmer can
conditionally include tott95b.h without having to worry whether tott95b.h depends on the
include file using the construct, as shown in Example 25-23.

Using this technique, the programmer can include tott95b.h from some file, say foo.h,
without having to know whether some other file included by foo.h also includes tott95b.h.

After the definition of the symbol TOTT95B_ORACLE, the file oci.h is included. Every HFILE
generated by OTT includes oci.h, which contains type and function declarations that the
Pro*C/C++ or OCI programmer can use. This is the only case in which OTT uses angle
brackets in an #include directive.

Next, the file tott95a.h is included. This file is included because it contains the declaration of
"struct px1", which tott95b.h requires. When the user's intype file requests that type
declarations be written to more than one file, OTT determines which other files each HFILE
must include, and generates the necessary #includes directives.

Note that OTT uses quotation marks in this #include directive. When a program including
tott95b.h is compiled, the search for tott95a.h begins where the source program was found,
and thereafter follows an implementation-defined search rule. If tott95a.h cannot be found in
this way, a complete file name (for example, a Linux or UNIX absolute path name beginning
with /) should be used in the intype file to specify the location of tott95a.h.

Example 25-18 Object Type Definition to Demonstrate How OTT Generates Include
Files

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

Example 25-19 Content of the Intype File

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

Example 25-20 Invoking OTT from the Command Line

ott scott tott95i.typ outtype=tott95o.typ code=c

Example 25-21 Content of the Header File tott95b.h

#ifndef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#ifndef TOTT95A_ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref;
struct px3
{
 struct px1 col1;
};

Chapter 25
OTT Reference

25-35

typedef struct px3 px3;
struct px3_ind
{
 OCIInd _atomic;
 struct px1_ind col1
};
typedef struct px3_ind px3_ind;
#endif

Example 25-22 Content of the Header File tott95a.h

#ifndef TOTT95A_ORACLE
#define TOTT95A_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
typedef OCIRef px1_ref;
struct px1
{
 OCINumber col1;
 OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{
 OCIInd _atomic;
 OCIInd col1;
 OCIInd col2;
}
typedef struct px1_ind px1_ind;
#endif

Example 25-23 Construct to Use to Conditionally Include the Header File tott95b.h

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

25.7.6 SCHEMA_NAMES Usage
The SCHEMA_NAMES parameter affects whether the name of a type from the default schema to
which OTT is connected is qualified with a schema name in the outtype file.

This parameter affects whether the name of a type from the default schema to which OTT is
connected is qualified with a schema name in the outtype file.

The name of a type from a schema other than the default schema is always qualified with a
schema name in the outtype file.

The schema name, or its absence, determines in which schema the type is found during
program execution.

There are three settings:

• schema_names=ALWAYS (default)

All type names in the outtype file are qualified with a schema name.

• schema_names=IF_NEEDED
The type names in the outtype file that belong to the default schema are not qualified with
a schema name. As always, type names belonging to other schemas are qualified with the
schema name.

Chapter 25
OTT Reference

25-36

• schema_names=FROM_INTYPE
A type mentioned in the intype file is qualified with a schema name in the outtype file if,
and only if, it was qualified with a schema name in the intype file. A type in the default
schema that is not mentioned in the intype file but that must be generated because of type
dependencies is written with a schema name only if the first type encountered by OTT that
depends on it was written with a schema name. However, a type that is not in the default
schema to which OTT is connected is always written with an explicit schema name.

The outtype file generated by OTT is an input parameter to Pro*C/C++. From the point of view
of Pro*C/C++, it is the Pro*C/C++ intype file. This file matches database type names to C struct
names. This information is used at runtime to ensure that the correct database type is selected
into the struct. If a type appears with a schema name in the outtype file (Pro*C/C++ intype file),
the type is found in the named schema during program execution. If the type appears without a
schema name, the type is found in the default schema to which the program connects, which
can be different from the default schema that OTT used.

This section includes the following topic: Example: Schema_Names Usage.

• Example: Schema_Names Usage
Shows examples of using SCHEMA_NAMES parameter.

25.7.6.1 Example: Schema_Names Usage
Shows examples of using SCHEMA_NAMES parameter.

Suppose that SCHEMA_NAMES is set to FROM_INTYPE, and the intype file reads as follows:

TYPE Person
TYPE david.Dept
TYPE sam.Company

Then the Pro*C/C++ application that uses the OTT-generated structs uses the types
sam.Company, david.Dept, and Person. Using Person without a schema name refers to the
Person type in the schema to which the application is connected.

If OTT and the application both connect to schema david, the application uses the same type
(david.Person) that OTT used. If OTT connected to schema david but the application
connects to schema jana, the application uses the type jana.Person. This behavior is
appropriate only if the same "CREATE TYPE Person" statement has been executed in schema
david and schema jana.

In contrast, the application uses type david.Dept regardless of to which schema the
application is connected. If this is the behavior that you want, be sure to include schema
names with your type names in the intype file.

In some cases, OTT translates a type that the user did not explicitly name. For example,
consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(street VARCHAR2(40),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(10));

CREATE TYPE Person AS OBJECT
(name CHAR(20),
 age NUMBER,
 addr ADDRESS);

Chapter 25
OTT Reference

25-37

Now suppose that OTT connects to schema david, SCHEMA_NAMES=FROM_INTYPE is specified,
and the user's intype files include either TYPE Person or TYPE david.Person.

However, the intype file does not mention the type david.Address, which is used as a nested
object type in type david.Person. If "TYPE david.Person" appeared in the intype file, then
"TYPE david.Person" and "TYPE david.Address" appear in the outtype file. If "Type Person"
appeared in the intype file, then "TYPE Person" and "TYPE Address" appear in the outtype file.

If the david.Address type is embedded in several types translated by OTT, but is not explicitly
mentioned in the intype file, the decision of whether to use a schema name is made the first
time OTT encounters the embedded david.Address type. If, for some reason, the user wants
type david.Address to have a schema name but does not want type Person to have one, the
user should explicitly specify the following in the intype file:

TYPE david.Address

In the usual case in which each type is declared in a single schema, it is safest for the user to
qualify all type names with schema names in the intype file.

25.7.7 Default Name Mapping
When OTT creates a C identifier name for an object type or attribute, it translates the name
from the database character set to a legal C identifier.

First, the name is translated from the database character set to the character set used by OTT.
Next, if a translation of the resulting name is supplied in the intype file, that translation is used.
Otherwise, OTT translates the name character-by-character to the compiler character set,
applying the CASE option. The following describes this process in more detail.

When OTT reads the name of a database entity, the name is automatically translated from the
database character set to the character set used by OTT. In order for OTT to read the name of
the database entity successfully, all the characters of the name must be found in the OTT
character set, although a character can have different encodings in the two character sets.

The easiest way to guarantee that the character set used by OTT contains all the necessary
characters is to make it the same as the database character set. Note, however, that the OTT
character set must be a superset of the compiler character set. That is, if the compiler
character set is 7-bit ASCII, the OTT character set must include 7-bit ASCII as a subset, and if
the compiler character set is 7-bit EBCDIC, the OTT character set must include 7-bit EBCDIC
as a subset. The user specifies the character set that OTT uses by setting the NLS_LANG
environment variable, or by some other operating system-specific mechanism.

Once OTT has read the name of a database entity, it translates the name from the character
set used by OTT to the compiler's character set. If a translation of the name appears in the
intype file, OTT uses that translation.

Otherwise, OTT attempts to translate the name by using the following steps:

1. If the OTT character set is a multibyte character set, all multibyte characters in the name
that have single-byte equivalents are converted to those single-byte equivalents.

2. The name is converted from the OTT character set to the compiler character set. The
compiler character set is a single-byte character set such as US7ASCII.

3. The case of letters is set according to the CASE option in effect, and any character that is
not legal in a C identifier, or that has no translation in the compiler character set, is
replaced by an underscore. If at least one character is replaced by an underscore, OTT
gives a warning message. If all the characters in a name are replaced by underscores,
OTT gives an error message.

Chapter 25
OTT Reference

25-38

Character-by-character name translation does not alter underscores, digits, or single-byte
letters that appear in the compiler character set, so legal C identifiers are not altered.

Name translation can, for example, translate accented single-byte characters such as "o" with
an umlaut or "a" with an accent grave to "o" or "a", and can translate a multibyte letter to its
single-byte equivalent. Name translation typically fails if the name contains multibyte
characters that lack single-byte equivalents. In this case, the user must specify name
translations in the intype file.

OTT does not detect a naming clash caused by two or more database identifiers being
mapped to the same C name, nor does it detect a naming problem where a database identifier
is mapped to a C keyword.

25.7.8 OTT Restriction on File Name Comparison
Currently, OTT determines if two files are the same by comparing the file names provided by
the user on the command line or in the intype file.

But one potential problem can occur when OTT needs to know if two file names refer to the
same file. For example, if the OTT-generated file foo.h requires a type declaration written to
foo1.h, and another type declaration written to /private/elias/foo1.h, OTT should generate
one #include directive if the two files are the same, and two #includes directives if the files
are different. In practice, though, it would conclude that the two files are different, and would
generate two #includes directives, as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/elias/foo1.h"
#endif

If foo1.h and /private/elias/foo1.h are different files, only the first one is included. If foo1.h
and /private/elias/foo1.h are the same file, a redundant #include directive is written.

Therefore, if a file is mentioned several times on the command line or in the intype file, each
mention of the file should use exactly the same file name.

25.7.9 OTT Command on Microsoft Windows
OTT executable on Microsoft Windows in the current release is ott.bat, instead of ott.exe as
in the earlier releases.

This may break Windows batch scripts, as the scripts exit immediately after executing ott. To
fix this problem, OTT should be invoked as follows, in Windows batch scripts:

call ott [arguments]

Note:

ORACLE_HOME\precomp\admin\ott.exe can be used until the scripts are fixed, as an
intermediate solution. However, this intermediate solution will not be provided in
future releases.

Chapter 25
OTT Reference

25-39

26
Oracle Database Access C API

This chapter begins to describe the Oracle Database Access C API and in particular the OCI
relational functions for C.

This chapter includes information about calling OCI functions in your application, along with
detailed descriptions of each function call.

See Also:

For code examples, see the demonstration programs included with your Oracle
Database installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to the Relational Functions

• OCI Pipelining Functions

• Connect, Authorize, and Initialize Functions

• Handle and Descriptor Functions

• Bind, Define, and Describe Functions

• Introduction to the Relational Functions
Introduces OCI relational function calls.

• OCI Pipelining Functions
Lists and describes the OCI pipelining functions.

• Connect, Authorize, and Initialize Functions
Lists and describes connect, authorize, and initialize functions.

• Handle and Descriptor Functions
Lists and describes the OCI handle and descriptor functions.

• Bind, Define, and Describe Functions
Lists and describes the bind, define, and describe functions.

26.1 Introduction to the Relational Functions
Introduces OCI relational function calls.

This chapter and More Oracle Database Access C API describe the OCI relational function
calls and cover the functions in the basic OCI.

• Conventions for OCI Functions
Introduces the conventions used for OCI functions.

• Purpose
What is the functions purpose?

26-1

• Syntax

• Parameters
A description of each of the function's parameters and their modes.

• Comments
Describes more detailed information about the function (if available).

• Returns
This optional section describes the possible values that can be returned.

• Example
Provides acomplete or partial code example demonstrating the use of the function call
being described.

• Related Functions
Shows a list of related function calls to the function if applicable.

• About Calling OCI Functions
Provides useful information about calling OCI functions.

• Server Round-Trips for LOB Functions
Indicates the number of server round-trips required for individual OCI LOB functions.

See Also:

Error Handling in OCI for information about return codes and error handling

26.1.1 Conventions for OCI Functions
Introduces the conventions used for OCI functions.

For each function, the following information is listed:

26.1.2 Purpose
What is the functions purpose?

A brief description of the action performed by the function.

26.1.3 Syntax

What is the function declaration?

The function declaration.

26.1.4 Parameters
A description of each of the function's parameters and their modes.

This description includes the parameter's mode. The mode of a parameter has three possible
values, as described in Table 26-1.

Chapter 26
Introduction to the Relational Functions

26-2

Table 26-1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call

26.1.5 Comments
Describes more detailed information about the function (if available).

This information may include restrictions on the use of the function, or other information that
might be useful when using the function in an application.

26.1.6 Returns
This optional section describes the possible values that can be returned.

This section can be found either before or after the Comments section.

26.1.7 Example
Provides acomplete or partial code example demonstrating the use of the function call being
described.

Not all function descriptions include an example.

26.1.8 Related Functions
Shows a list of related function calls to the function if applicable.

A list of related function calls.

26.1.9 About Calling OCI Functions
Provides useful information about calling OCI functions.

Unlike earlier versions of OCI, in and after release 8, you cannot pass -1 for the string length
parameter of a NULL-terminated string. When you pass string lengths as parameters, do not
include the NULL terminator byte in the length. The OCI does not expect strings to be NULL-
terminated.

Buffer lengths that are OCI parameters are in bytes, with the following exceptions:

• The amount parameters in some LOB calls are in characters

• When UTF-16 encoding of text is used in function parameters, the length is in character
points

26.1.10 Server Round-Trips for LOB Functions
Indicates the number of server round-trips required for individual OCI LOB functions.

Chapter 26
Introduction to the Relational Functions

26-3

For a table showing the number of server round-trips required for individual OCI LOB functions,
see OCI Function Server Round-Trips.

26.2 OCI Pipelining Functions
Lists and describes the OCI pipelining functions.

Table 26-2 OCI Pipelining Functions

Function Purpose

OCIPipelineBegin() Specifies the beginning of the pipelining block of
operations.

OCIPipelineProcess() Processes an operation.

OCIPipelineEnd() Specifies the end of pipelining block of operations.

• OCIPipelineBegin()
This function indicates the beginning of the OCI pipelining block of operations.

• OCIPipelineProcess()
Process a pipeline operation or operations given by the OCIoperationID.

• OCIPipelineEnd()
This function indicates the end of the pipeline block of operations.

See Also:

OCI Pipelining

26.2.1 OCIPipelineBegin()
This function indicates the beginning of the OCI pipelining block of operations.

Purpose

OCIPipelineBegin() function indicates the beginning of the OCI pipeline operations. All the
prologue activities to set the service context in pipeline mode.

Syntax

sword OCIPipelineBegin(OCISvcCtx *svchp,
 ub4 errSetID,
 boolean errSetMode,
 OCIPipelineOpCbk pipeOpCbk,
 void *pipeOpCbkCtx,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
OCI service context.

Chapter 26
OCI Pipelining Functions

26-4

cbk (IN)
Call to be executed for each OCI pipeline operation.

cbkCtx (IN)
The callback context.

errhp (IN/OUT)
Error handle

mode (IN)
Modes supported:

• OCI_PIPELINE_CONT_ON_ERROR
• OCI_PIPELINE_ABORT_ON_ERROR

Returns

• OCI_SUCCESS: When the function is successful.

• OCI_ERROR: When the function fails, the actual error can be retrieved from errhp.

• Callback and Context
This section describes callback and callback context used in the OCI pipeline operation.

26.2.1.1 Callback and Context
This section describes callback and callback context used in the OCI pipeline operation.

Callback and context are provided to OCIPipelineBegin() function to allow the application to
process the result of the operation. This callback is executed for every operation that is
executed on a server and returned with a response. This is one standard callback for every
operation in the pipeline block.

Syntax

typedef sword (*OCIPipelineOperationCallback) (
OCISvcCtxt *svchp,
ub4 operationIndex,
OCIPipelineOperation *hndlp,
ub4 operationStatus,
void *callbackCtx,
OCIError *errhp);

Parameters

• svchp: The service context on which the operation is executing.

• operationIndex: Index of the operation in the operation queue of the service context.

• hndlp: Operation handle pointer.

• operationStatus: Status of the operation (OCI_ERROR/OCI_SUCCESS) can be any of the valid
return values of the OCI function.

• callbackCtx: Callback context is an application provided context.

• errhp: Error handle pointer.

Chapter 26
OCI Pipelining Functions

26-5

Note:

An application cannot pipeline another OCI operation in the callback. It creates a
non trivial recursion.

26.2.2 OCIPipelineProcess()
Process a pipeline operation or operations given by the OCIoperationID.

Purpose

OCIPipelineProcess() processes the pending operations obtained from the earlier operations.
When an application uses OCIPipelineProcess() function on a pipelined operation handle, all
the pipelined bottom halve operations are queued up till this operation handle is processed.
The respective callbacks are also processed. All the operations prior to the provided operation
are completed before returning.

The execution of the operations is performed according to the following semantics:

• If the application processes the first operation, only the first operation is processed.

• If the application processes the kth operation, then all the operations prior to the kth
operation are processed.

• If the application processes the last operation, then all the operations prior the last
operation are processed.

Syntax

sword OCIPipelineProcess (OCISvcCtx *svchp,
 OCIPipelineOperationID opID,
 ub4 timeout,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
OCI service context.

hndl (IN/OUT)
Operation handle.

timeout (IN)
Timeout in milliseconds for this function complete or exit from the operation. If the value is set
to 0, then it waits forever or till the operation is complete.

errhp (OUT)
Error handle.

mode (IN)
The supported modes are:

• OCI_DEFAULT

The timeout specified in this function is for the set of operations executed in this call. If there
are operations before the supplied operation, then all the operations are read before this one.

Chapter 26
OCI Pipelining Functions

26-6

The following code snippet demonstrates the application executing three statements in pipeline
mode and processing the bottom halves of all the three statements in order.

OCIPipelineBegin(svchp …);
OCIStmtExecute(stmthp1, …., OCI_DEFAULT) – Send
OCIStmtExecute(stmthp2, … ,OCI_DEFAULT) - Send
OCIStmtExecute(stmthp3, …, OCI_DEFAULT) – Send

OCIPipelineOperations *oparr = NULL;
ub4 arrlen = 0;
status = OCIAttrGet(svchp, OCI_HTYPE_SVC, &oparr, &arrlen,
OCI_ATTR_PIPELINE_OPERATIONS, errhp, OCI_DEFAULT);
for(int i =0; i < arrlen, i< arrlen)
{
rc = OCIPipelineProcess(svchp, oparr[i], 1000, errhp,
 OCI_DEFAULT); // recv (ith statement)
 if(!rc)
 break;
}
 OCIPipelineEnd(svchp, timeout …);

26.2.3 OCIPipelineEnd()
This function indicates the end of the pipeline block of operations.

Purpose

This function indicates the end of the pipeline block of operations. By default, this function is
blocking. It means the function OCIPipelineEnd() is also queued up along with other
operations in the pipeline. In this mode, the queued-up operations are not processed. It is the
responsibility of applications to introduce the sync points. By default, this function is blocking. It
reads all the operations, and sends and receives "Pipeline End" RPC. In blocking mode, it is
used to process all the OCI pipeline operations associated with this service context and end
the pipeline block created by OCIPipelineBegin(). The callback is called for every operation
successfully executed on the server.

Syntax

sword OCIPipelineEnd (OCISvcCtx *svchp,
 ub4 timeout,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
OCI service context.

timeout (IN)
Timeout in milli seconds for this function to complete or quit.

errhp (OUT)
Error handle.

Chapter 26
OCI Pipelining Functions

26-7

mode (IN)
Supported modes are:

• OCI_DEFAULT

Returns:

• OCI_SUCCESS: When the function is successful

• OCI_ERROR: When this fails, the actual error can be retrieved through errhp.

The following code snippet demonstrates the usage of OCIPipelineEnd function in a service
context:

OCIPipelineBegin(svchp … OCI_DEFAULT);
OCIStmtExecute(stmthp1, .. , OCI_DEFAULT) – Send
OCIStmtExecute(stmthp2, .. , OCI_DEFAULT) - Send
OCIStmtExecute(stmthp3, .. , OCI_DEFAULT) – Send

OCIPipelineEnd(svchp, timeout, errhp, OCI_DEFAULT);
/*All 3 stmts are complete here */

26.3 Connect, Authorize, and Initialize Functions
Lists and describes connect, authorize, and initialize functions.

Table 26-1 describes the OCI connect, authorize, and initialize functions that are described in
this section.

Table 26-3 Connect, Authorize, and Initialize Functions

Function Purpose

OCIAppCtxClearAll() Clear all attribute-value information in a
namespace of an application context

OCIAppCtxSet() Set an attribute and its associated value in a
namespace of an application context

OCIConnectionPoolCreate() Initialize the connection pool

OCIConnectionPoolDestroy() Destroy the connection pool

OCIDBShutdown() Shut down Oracle Database

OCIDBStartup() Start an Oracle Database instance

OCIEnvCreate() Create and initialize an OCI environment
handle

OCIEnvNlsCreate() Create and initialize an environment handle
for OCI functions to work under. Enable you
to set character set ID and national
character set ID at environment creation
time.

OCIInputValidate() Validates the user inputs.

OCILogoff() Release a session that was retrieved using
OCILogon2() or OCILogon()

OCILogon() Simplify single-session logon

OCILogon2() Create a logon session in various modes

Chapter 26
Connect, Authorize, and Initialize Functions

26-8

Table 26-3 (Cont.) Connect, Authorize, and Initialize Functions

Function Purpose

OCIDdlEventRegister() Registers an object for event notification on
table DDL changes.

OCIDdlEventUnregister() Unregisters table, schema. or database
level registrations for event notification.

OCIRequestBegin() Indicates that a connection is about to be
used for the database requests.

OCIRequestEnd() Indicates that a database request has been
completed.

OCIRequestDisableReplay() Disables application continuity replay for a
session for the duration of the current
database request.

OCIServerAttach() Attach to a server; initialize server context
handle

OCIServerDetach() Detach from a server; uninitialize server
context handle

OCISessionBegin() Authenticate a user

OCISessionEnd() Terminate a user session

OCISessionGet() Get a session from a session pool

OCISessionPoolCreate() Initialize a session pool

OCISessionPoolDestroy() Destroy a session pool

OCISessionRelease() Release a session

OCITerminate() Detach from a shared memory subsystem

• OCIAppCtxClearAll()
Clears all attribute-value information in a namespace of an application context.

• OCIAppCtxSet()
Sets an attribute and its associated value in a namespace of an application context.

• OCIConnectionPoolCreate()
Initializes the connection pool.

• OCIConnectionPoolDestroy()
Destroys the connection pool.

• OCIDBShutdown()
Shuts down an Oracle Database instance.

• OCIDBStartup()
Starts an Oracle Database instance.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInputValidate()
This function is used to validate the connect string attribute value received from the user
and detect injection attacks.

• OCILogoff()
Releases a session that was retrieved using OCILogon2() or OCILogon().

Chapter 26
Connect, Authorize, and Initialize Functions

26-9

• OCILogon()
Creates a simple logon session.

• OCILogon2()
Gets a session.

• OCIDdlEventRegister()
Register for table DDL events on a table, schema, or database.

• OCIDdlEventUnregister()
Unregister for table DDL change events on a table, schema, or database.

• OCIRequestBegin()

• OCIRequestEnd()
Indicates that a database request has completed.

• OCIRequestDisableReplay()
Disables Application Continuity replay for a session for the duration of the current database
request.

• OCIServerAttach()
Creates an access path to a data source for OCI operations.

• OCIServerDetach()
Deletes an access path to a data source for OCI operations.

• OCISessionBegin()
Creates a user session and begins a user session for a given server.

• OCISessionEnd()
Terminates a user session context created by OCISessionBegin().

• OCISessionGet()
Gets a session.

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

• OCISessionPoolDestroy()
Destroys a session pool.

• OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the
session to the session pool. Its default behavior is to commit an active transaction in the
session, including the Flex transaction.

• OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared
memory.

26.3.1 OCIAppCtxClearAll()
Clears all attribute-value information in a namespace of an application context.

Purpose

Clears all attribute-value information in a namespace of an application context.

Syntax

sword OCIAppCtxClearAll (void *sesshndl,
 void *nsptr,

Chapter 26
Connect, Authorize, and Initialize Functions

26-10

 ub4 nsptrlen,
 OCIError *errhp,
 ub4 mode ;

Parameters

sesshndl (IN/OUT)
Pointer to a session handle.

nsptr (IN)
Pointer to the namespace string (currently only CLIENTCONTEXT).

nsptrlen (IN)
Length of the namespace string.

errhp (OUT)
An error handle that can be passed to OCIErrorGet().

mode (IN)
Mode (OCI_DEFAULT is the default).

Returns

Returns an error number.

Comments

This cleans up the context information on the server side during the next call to the server. This
namespace information is cleared from the session handle after the information has been sent
to the server and must be set up again if needed.

Related Topics

• OCIAppCtxSet()
Sets an attribute and its associated value in a namespace of an application context.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.2 OCIAppCtxSet()
Sets an attribute and its associated value in a namespace of an application context.

Purpose

Sets an attribute and its associated value in a namespace of an application context.

Syntax

sword OCIAppCtxSet (void *sesshndl,
 void *nsptr,
 ub4 nsptrlen,
 void *attrptr,
 ub4 attrptrlen,
 void *valueptr,
 ub4 valueptrlen,
 OCIError *errhp,
 ub4 mode);

Chapter 26
Connect, Authorize, and Initialize Functions

26-11

Parameters

sesshndl (IN/OUT)
Pointer to a session handle.

nsptr (IN)
Pointer to the namespace string (currently only CLIENTCONTEXT).

nsptrlen (IN)
Length of the namespace string.

attrptr (IN)
Pointer to the attribute string.

attrptrlen (IN)
The length of the string pointed to by attrptr.

valueptr (IN)
Pointer to the value string.

valueptrlen (IN)
The length of the string pointed to by valueptr.

errhp (OUT)
An error handle that can be passed to OCIErrorGet().

mode (IN)
Mode (OCI_DEFAULT is the default).

Returns

Returns an error number.

Comments

The information set on the session handle is sent to the server during the next call to the
server.

This information is cleared from the session handle after the information has been sent to the
server and must be set up again if needed.

Related Topics

• OCIAppCtxClearAll()
Clears all attribute-value information in a namespace of an application context.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.3 OCIConnectionPoolCreate()
Initializes the connection pool.

Purpose

Initializes the connection pool.

Chapter 26
Connect, Authorize, and Initialize Functions

26-12

Syntax

sword OCIConnectionPoolCreate (OCIEnv *envhp,
 OCIError *errhp,
 OCICPool *poolhp,
 OraText **poolName,
 sb4 *poolNameLen,
 const OraText *dblink,
 sb4 dblinkLen,
 ub4 connMin,
 ub4 connMax,
 ub4 connIncr,
 const OraText *poolUsername,
 sb4 poolUserLen,
 const OraText *poolPassword,
 sb4 poolPassLen,
 ub4 mode);

Parameters

envhp (IN)
A pointer to the environment where the connection pool is to be created

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet().

poolhp (IN)
An allocated pool handle.

poolName (OUT)
The name of the connection pool connected to.

poolNameLen (OUT)
The length of the string pointed to by poolName.

dblink (IN)
Specifies the database (server) to connect to.

dblinkLen (IN)
The length of the string pointed to by dblink.

connMin (IN)
Specifies the minimum number of connections in the connection pool. Valid values are 0 and
higher.
These connections are opened to the server by OCIConnectionPoolCreate(). After the
connection pool is created, connections are opened only when necessary. Generally, this
parameter should be set to the number of concurrent statements that the application is
planning or expecting to run.

connMax (IN)
Specifies the maximum number of connections that can be opened to the database. After this
value is reached, no more connections are opened. Valid values are 1 and higher.

connIncr (IN)
Allows the application to set the next increment for connections to be opened to the database
if the current number of connections is less than connMax. Valid values are 0 and higher.

Chapter 26
Connect, Authorize, and Initialize Functions

26-13

poolUsername (IN)
Connection pooling requires an implicit primary session. This attribute provides a user name
for that session.

poolUserLen (IN)
The length of poolUsername.

poolPassword (IN)
The password for the user name poolUsername.

poolPassLen (IN)
The length of poolPassword.

mode (IN)
The modes supported are:

• OCI_DEFAULT
• OCI_CPOOL_REINITIALIZE
Ordinarily, OCIConnectionPoolCreate() is called with mode set to OCI_DEFAULT.

To change the pool attributes dynamically (for example, to change the connMin, connMax, and
connIncr parameters), call OCIConnectionPoolCreate() with mode set to
OCI_CPOOL_REINITIALIZE. When this is done, the other parameters are ignored.

Comments

The OUT parameters poolName and poolNameLen contain values to be used in subsequent
OCIServerAttach() and OCILogon2() calls in place of the database name and the database
name length arguments.

Related Topics

• OCIConnectionPoolDestroy()
Destroys the connection pool.

• OCILogon2()
Gets a session.

• OCIServerAttach()
Creates an access path to a data source for OCI operations.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Connection Pool Handle Attributes
Lists and describes connection pool handle attributes.

26.3.4 OCIConnectionPoolDestroy()
Destroys the connection pool.

Purpose

Destroys the connection pool.

Chapter 26
Connect, Authorize, and Initialize Functions

26-14

Syntax

sword OCIConnectionPoolDestroy (OCICPool *poolhp,
 OCIError *errhp,
 ub4 mode);

Parameters

poolhp (IN)
A pool handle for which a pool has been created.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet().

mode (IN)
Currently, this function supports only the OCI_DEFAULT mode.

Related Topics

• OCIConnectionPoolCreate()
Initializes the connection pool.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.5 OCIDBShutdown()
Shuts down an Oracle Database instance.

Purpose

Shuts down an Oracle Database instance.

Syntax

sword OCIDBShutdown (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAdmin *admhp,
 ub4 mode);

Parameters

svchp (IN)
A handle to a service context. There must be a valid server handle and a valid user handle set
in svchp.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet() for diagnostic information when there is
an error.

admhp (IN) - Optional
An instance administration handle. Currently not used; pass (OCIAdmin *)0.

mode (IN)
OCI_DEFAULT - Further connects are prohibited. Waits for users to disconnect from the
database.

Chapter 26
Connect, Authorize, and Initialize Functions

26-15

OCI_DBSHUTDOWN_TRANSACTIONAL - Further connects are prohibited and no new transactions
are allowed. Waits for active transactions to complete.
OCI_DBSHUTDOWN_TRANSACTIONAL_LOCAL - Further connects are prohibited and no new
transactions are allowed. Waits only for local transactions to complete.
OCI_DBSHUTDOWN_IMMEDIATE - Does not wait for current calls to complete or users to
disconnect from the database. All uncommitted transactions are terminated and rolled back.
OCI_DBSHUTDOWN_FINAL - Shuts down the database. Should be used only in the second call to
OCIDBShutdown() after the database is closed and dismounted.
OCI_DBSHUTDOWN_ABORT - Does not wait for current calls to complete or users to disconnect
from the database. All uncommitted transactions are terminated and are not rolled back. This
is the fastest possible way to shut down the database, but the next database startup may
require instance recovery. Therefore, this option should be used only in unusual
circumstances; for example, if a background process terminates abnormally.

Comments

To do a shut down, you must be connected to the database as SYSOPER or SYSDBA. You cannot
be connected to a shared server through a dispatcher. When shutting down in any mode other
than OCI_DBSHUTDOWN_ABORT, use the following procedure:

1. Call OCIDBShutdown() in OCI_DEFAULT, OCI_DBSHUTDOWN_TRANSACTIONAL,
OCI_DBSHUTDOWN_TRANSACTIONAL_LOCAL, or OCI_DBSHUTDOWN_IMMEDIATE mode to prohibit
further connects.

2. Issue the necessary ALTER DATABASE commands to close and dismount the database.

3. Call OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL mode to shut down the instance.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIDBStartup()
Starts an Oracle Database instance.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Database Startup and Shutdown
This chapter describes topics about OCI database startup and shutdown.

26.3.6 OCIDBStartup()
Starts an Oracle Database instance.

Purpose

Starts an Oracle Database instance.

Syntax

sword OCIDBStartup (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAdmin *admhp,
 ub4 mode,
 ub4 flags);

Chapter 26
Connect, Authorize, and Initialize Functions

26-16

Parameters

svchp (IN)
A handle to a service context. There must be a valid server handle and user handle set in
svchp.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet() for diagnostic information when there is
an error.

admhp (IN) - Optional
An instance administration handle. Use to pass additional arguments to the startup call, or
pass (OCIAdmin *)0 if you do not set OCI_ATTR_ADMIN_PFILE.

mode (IN)
OCI_DEFAULT - This is the only supported mode. It starts the instance, but does not mount or
open the database. Same as STARTUP NOMOUNT.

flags (IN)
OCI_DEFAULT - Allows database access to all users.
OCI_DBSTARTUPFLAG_RESTRICT - Allows database access only to users with both the CREATE
SESSION and RESTRICTED SESSION privileges (normally, the DBA).
OCI_DBSTARTUPFLAG_FORCE - Shuts down a running instance (if there is any) using ABORT
before starting a new one. This mode should be used only in unusual circumstances.

Comments

You must be connected to the database as SYSOPER or SYSDBA in OCI_PRELIM_AUTH mode. You
cannot be connected to a shared server through a dispatcher (that is, when you restart a
running instance with OCI_DBSTARTUPFLAG_FORCE). To use a client-side parameter file (pfile),
OCI_ATTR_ADMIN_PFILE must be set in the administration handle; otherwise, a server-side
parameter file (spfile) is used. A call to OCIDBStartup() starts one instance on the server.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIDBShutdown()
Shuts down an Oracle Database instance.

• OCIServerAttach()
Creates an access path to a data source for OCI operations.

• OCISessionBegin()
Creates a user session and begins a user session for a given server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Database Startup and Shutdown
This chapter describes topics about OCI database startup and shutdown.

Chapter 26
Connect, Authorize, and Initialize Functions

26-17

26.3.7 OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

Purpose

Creates and initializes an environment handle for OCI functions to work under.

Syntax

sword OCIEnvCreate (OCIEnv **envhpp,
 ub4 mode,
 const void *ctxp,
 const void *(*malocfp)
 (void *ctxp,
 size_t size),
 const void *(*ralocfp)
 (void *ctxp,
 void *memptr,
 size_t newsize),
 const void (*mfreefp)
 (void *ctxp,
 void *memptr))
 size_t xtramemsz,
 void **usrmempp);

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode. The setting is
inherited by statement handles derived from envhpp.

mode (IN)
Specifies initialization of the mode. Valid modes are:

• OCI_DEFAULT - The default value, which is non-UTF-16 encoding.

• OCI_THREADED - Uses threaded environment. Internal data structures not exposed to the
user are protected from concurrent accesses by multiple threads.

• OCI_OBJECT - Uses object features.

• OCI_EVENTS - Uses publish-subscribe notifications.

• OCI_NO_UCB - Suppresses the calling of the dynamic callback routine OCIEnvCallback().
The default behavior is to allow calling of OCIEnvCallback() when the environment is
created.

See Also:

"Dynamic Callback Registrations"

• OCI_ENV_NO_MUTEX - No mutual exclusion (mutex) locking occurs in this mode. All OCI calls
done on the environment handle, or on handles derived from the environment handle, must
be serialized. OCI_THREADED must also be specified when OCI_ENV_NO_MUTEX is specified.

Chapter 26
Connect, Authorize, and Initialize Functions

26-18

• OCI_SUPPRESS_NLS_VALIDATION - Suppresses NLS character validation; NLS character
validation suppression is on by default beginning with Oracle Database 11g Release 1
(11.1). Use OCI_ENABLE_NLS_VALIDATION to enable NLS character validation. See
Comments for more information.

• OCI_NEW_LENGTH_SEMANTICS - Byte-length semantics is used consistently for all handles,
regardless of character sets.

• OCI_NCHAR_LITERAL_REPLACE_ON - Turns on N' substitution.

• OCI_NCHAR_LITERAL_REPLACE_OFF - Turns off N' substitution. If neither this mode nor
OCI_NCHAR_LITERAL_REPLACE_ON is used, the substitution is determined by the environment
variable ORA_NCHAR_LITERAL_REPLACE, which can be set to TRUE or FALSE. When it is set to
TRUE, the replacement is turned on; otherwise it is turned off, which is the default setting in
OCI.

• OCI_ENABLE_NLS_VALIDATION - Enables NLS character validation. See Comments for more
information.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If mode is OCI_THREADED, this memory
allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation function.

ralocfp (IN)
Specifies the user-defined memory reallocation function. If the mode is OCI_THREADED, this
memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memptr (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated.

mfreefp (IN)
Specifies the user-defined memory free function. If the mode is OCI_THREADED, this memory
free routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory free function.

memptr (IN)
Pointer to memory to be freed.

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the environment.

Chapter 26
Connect, Authorize, and Initialize Functions

26-19

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the user.

Comments

This call creates an environment for all the OCI calls using the modes specified by the user.

Note:

This call should be invoked before any other OCI call and should be used instead of
the OCIInitialize() call.

This call returns an environment handle, which is then used by the remaining OCI functions.
There can be multiple environments in OCI, each with its own environment modes. This
function also performs any process level initialization if required by any mode. For example, if
you want to initialize an environment as OCI_THREADED, then all libraries that are used by OCI
are also initialized in the threaded mode.

If N' substitution is turned on, the OCIStmtPrepare2() function performs the N' substitution on
the SQL text and stores the resulting SQL text in the statement handle. Thus, if the application
uses OCI_ATTR_STATEMENT to retrieve the SQL text from the OCI statement handle, the
modified SQL text, instead of the original SQL text, is returned.

To turn on N' substitution in ksh shell:

export ORA_NCHAR_LITERAL_REPLACE=TRUE

To turn on N' substitution in csh shell:

setenv ORA_NCHAR_LITERAL_REPLACE TRUE

If a remote database is of a release before 10.2, N' substitution is not performed.

If you are writing a DLL or a shared library using the OCI library, then use this call instead of
the deprecated OCIInitialize() call.

See Also:

"User Memory Allocation" for more information about the xtramemsz parameter and
user memory allocation

Regarding OCI_SUPPRESS_NLS_VALIDATION and OCI_ENABLE_NLS_VALIDATION modes, by
default, when client and server character sets are identical, and client and server releases are
both Oracle Database 11g Release 1 (11.1) or later, OCI does not validate character data in
the interest of better performance. This means that if the application inserts a character string
with partial multibyte characters (for example, at the end of a bind variable), then such strings
could get persisted in the database as is.

Note that if either the client or the server release is older than Oracle Database 11g Release 1
(11.1), then OCI does not allow partial characters.

The OCI_ENABLE_NLS_VALIDATION mode, which was the default until Oracle Database 10g
Release 2 (10.2), ensures that partial multibyte characters are not persisted in the database

Chapter 26
Connect, Authorize, and Initialize Functions

26-20

(when client and server character sets are identical). If the application can produce partial
multibyte characters, and if the application can run in an environment where the client and
server character sets are identical, then Oracle recommends using the
OCI_ENABLE_NLS_VALIDATION mode explicitly in order to ensure that such partial characters get
stripped out.

Example

Creating a Thread-Safe OCI Environment with N' Substitution Turned On

OCIEnv *envhp;
...
/* Create a thread-safe OCI environment with N' substitution turned on. */
if(OCIEnvCreate((OCIEnv **)&envhp,
 (ub4)OCI_THREADED | OCI_NCHAR_LITERAL_REPLACE_ON,
 (void *)0, (void * (*)(void *, size_t))0,
 (void * (*)(void *, void *, size_t))0,
 (void (*)(void *, void *))0,
 (size_t)0, (void **)0))
{
 printf("Failed: OCIEnvCreate()\n");
 return 1;
}
...

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIHandleFree()
Explicitly deallocates a handle

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared
memory.

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

26.3.8 OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Purpose

This function is an enhanced version of the OCIEnvCreate() function.

Syntax

sword OCIEnvNlsCreate (OCIEnv **envhpp,
 ub4 mode,
 void *ctxp,
 void *(*malocfp)
 (void *ctxp,
 size_t size),
 void *(*ralocfp)
 (void *ctxp,
 void *memptr,

Chapter 26
Connect, Authorize, and Initialize Functions

26-21

 size_t newsize),
 void (*mfreefp)
 (void *ctxp,
 void *memptr))
 size_t xtramemsz,
 void **usrmempp
 ub2 charset,
 ub2 ncharset);

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode. The setting is
inherited by statement handles derived from envhpp.

mode (IN)
Specifies initialization of the mode. Valid modes are:

• OCI_PIPELINE - Enables the OCI pipeline APIs.

• OCI_DEFAULT - The default value, which is non-UTF-16 encoding.

• OCI_THREADED - Uses threaded environment. Internal data structures not exposed to the
user are protected from concurrent accesses by multiple threads.

• OCI_OBJECT - Uses object features.

• OCI_EVENTS - Uses publish-subscribe notifications.

• OCI_NO_UCB - Suppresses the calling of the dynamic callback routine OCIEnvCallback().
The default behavior is to allow calling of OCIEnvCallback() when the environment is
created.

See Also:

Dynamic Callback Registrations

• OCI_ENV_NO_MUTEX - No mutual exclusion (mutex) locking occurs in this mode. All OCI calls
done on the environment handle, or on handles derived from the environment handle, must
be serialized. OCI_THREADED must also be specified when OCI_ENV_NO_MUTEX is specified.

• OCI_SUPPRESS_NLS_VALIDATION - Suppresses NLS character validation; NLS character
validation suppression is on by default beginning with Oracle Database 11g Release 1
(11.1). Use OCI_ENABLE_NLS_VALIDATION to enable NLS character validation. See
Comments for more information.

• OCI_NCHAR_LITERAL_REPLACE_ON - Turns on N' substitution.

• OCI_NCHAR_LITERAL_REPLACE_OFF - Turns off N' substitution. If neither this mode nor
OCI_NCHAR_LITERAL_REPLACE_ON is used, the substitution is determined by the environment
variable ORA_NCHAR_LITERAL_REPLACE, which can be set to TRUE or FALSE. When it is set to
TRUE, the replacement is turned on; otherwise it is turned off, the default setting in OCI.

• OCI_ENABLE_NLS_VALIDATION - Enables NLS character validation. See Comments for more
information.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

Chapter 26
Connect, Authorize, and Initialize Functions

26-22

malocfp (IN)
Specifies the user-defined memory allocation function. If mode is OCI_THREADED, this memory
allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation function.

ralocfp (IN)
Specifies the user-defined memory reallocation function. If the mode is OCI_THREADED, this
memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memptr (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated.

mfreefp (IN)
Specifies the user-defined memory free function. If the mode is OCI_THREADED, this memory
free routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory free function.

memptr (IN)
Pointer to memory to be freed.

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the user.

charset (IN)
The client-side character set for the current environment handle. If it is 0, the NLS_LANG setting
is used. OCI_UTF16ID is a valid setting; it is used by the metadata and the CHAR data.

ncharset (IN)
The client-side national character set for the current environment handle. If it is 0, NLS_NCHAR
setting is used. OCI_UTF16ID is a valid setting; it is used by the NCHAR data.

Returns

OCI_SUCCESS - Environment handle has been successfully created.

OCI_ERROR - An error occurred.

Comments

This call creates an environment for all the OCI calls using the modes you specify.

Chapter 26
Connect, Authorize, and Initialize Functions

26-23

After you use OCIEnvNlsCreate() to create the environment handle, the actual lengths and
returned lengths of bind and define handles are always expressed in number of bytes. This
applies to the following calls:

• OCIBindByName() and OCIBindByName2()
• OCIBindByPos() and OCIBindByPos2()
• OCIBindDynamic()
• OCIDefineByPos() and OCIDefineByPos2()
• OCIDefineDynamic()
This function enables you to set charset and ncharset IDs at environment creation time. It is
an enhanced version of the OCIEnvCreate() function.

OCIEnvNlsCreate() must be called with charset and ncharset either both zero or both non-
zero. Failure to do so results in an error (ORA-24820).

This function sets nonzero charset and ncharset as client-side database and national
character sets, replacing the ones specified by NLS_LANG and NLS_NCHAR. When charset and
ncharset are 0, the function behaves exactly the same as OCIEnvCreate(). Specifically,
charset controls the encoding for metadata and data with implicit form attribute, and ncharset
controls the encoding for data with SQLCS_NCHAR form attribute.

Although OCI_UTF16ID can be set by OCIEnvNlsCreate(), it cannot be set in NLS_LANG or
NLS_NCHAR. To access the character set IDs in NLS_LANG and NLS_NCHAR, use
OCINlsEnvironmentVariableGet().

This call returns an environment handle, which is then used by the remaining OCI functions.
There can be multiple environments in OCI, each with its own environment modes. This
function also performs any process level initialization if required by any mode. For example, if
you want to initialize an environment as OCI_THREADED, then all libraries that are used by OCI
are also initialized in the threaded mode.

If N' substitution is turned on, the OCIStmtPrepare2() function performs the N' substitution on
the SQL text and stores the resulting SQL text in the statement handle. Thus, if the application
uses OCI_ATTR_STATEMENT to retrieve the SQL text from the OCI statement handle, the
modified SQL text, instead of the original SQL text, is returned.

To turn on N' substitution in ksh shell:

export ORA_NCHAR_LITERAL_REPLACE=TRUE

To turn on N' substitution in csh shell:

setenv ORA_NCHAR_LITERAL_REPLACE TRUE

If a remote database is of a release before 10.2, N' substitution is not performed.

If you are writing a DLL or a shared library using the OCI library, then use this call instead of
the deprecated OCIInitialize() call.

Chapter 26
Connect, Authorize, and Initialize Functions

26-24

See Also:

• User Memory Allocation for more information about the xtramemsz parameter and
user memory allocation

• OCIEnvCreate() for a code example illustrating setting N' substitution in a related
function

Regarding OCI_SUPPRESS_NLS_VALIDATION and OCI_ENABLE_NLS_VALIDATION modes, by
default, when client and server character sets are identical, and client and server releases are
both Oracle Database 11g Release 1 (11.1) or later, OCI does not validate character data in
the interest of better performance. This means that if the application inserts a character string
with partial multibyte characters (for example, at the end of a bind variable), then such strings
could get persisted in the database as is.

Note that if either the client or the server release is older than Oracle Database 11g Release 1
(11.1), then OCI does not allow partial characters.

The OCI_ENABLE_NLS_VALIDATION mode, which was the default until Oracle Database 10g
Release 2 (10.2), ensures that partial multibyte characters are not persisted in the database
(when client and server character sets are identical). If the application can produce partial
multibyte characters, and if the application can run in an environment where the client and
server character sets are identical, then Oracle recommends using the
OCI_ENABLE_NLS_VALIDATION mode explicitly in order to ensure that such partial characters get
stripped out.

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIHandleFree()
Explicitly deallocates a handle

• OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared
memory.

• OCINlsEnvironmentVariableGet()
Returns the character set ID from NLS_LANG or the national character set ID from
NLS_NCHAR.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

Chapter 26
Connect, Authorize, and Initialize Functions

26-25

26.3.9 OCIInputValidate()
This function is used to validate the connect string attribute value received from the user and
detect injection attacks.

Purpose

Some applications may construct Oracle Net Services connect strings dynamically based on
the user input. In such cases, application needs to validate the user input in order to protect
against injection attacks. The OCIInputValidate() function is used to validate such values.

Note:

Oracle Database release 21c supports only validation of Oracle Net Services connect
string attributes.

When a value is received as user input for a connect string attribute, the OCIInputValidate()
function is called. If it returns success, only then the value is used to become a part of the
connect string.

For example, if a value is passed for HOST attribute HOST=<value>, then the <value> needs to
be passed to OCIInputValidate() function for validation.

Example valid values can be of the form "salhost.dom.com" or "sales-hst.dom.com" but not of
the form "salhost.dom.com)(PORT=somemaliciousport", this is considered to be an invalid
value.

Syntax

sword OCIInputValidate(oratext *str,
 ub4 strl,
 OCIError *errhp,
 Ub4 mode);

Parameters

str (IN)
A pointer to an input value string to be validated.

strl (IN)
Length of the preceding string.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the event of an
error.

Mode (IN)
Mode for the validation.
Valid mode: OCI_INPUTVLD_CONNSTR_ATTR
This mode is to validate that the string is a valid Oracle Net connect string attribute.

This function returns OCI_SUCCESS if the input string is a valid string. Otherwise it returns
OCI_ERROR and errhp is populated with the errors depending on what mode is passed.

The following kinds of errors can occur:

Chapter 26
Connect, Authorize, and Initialize Functions

26-26

• ORA-24297: If syntax err in Name Value pair string

• ORA-24298: If string tries to insert or substitute other Name Value Pair

• ORA-24299: General Name Value pair validation error

Returns

OCI_SUCCESS if the input string is a valid string. Otherwise it returns OCI_ERROR.

26.3.10 OCILogoff()
Releases a session that was retrieved using OCILogon2() or OCILogon().

Purpose

Releases a session that was retrieved using OCILogon2() or OCILogon().

Syntax

sword OCILogoff (OCISvcCtx *svchp
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle that was used in the call to OCILogon() or OCILogon2().

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

This function is used to release a session that was retrieved using OCILogon2() or OCILogon().
If OCILogon() was used, then this function terminates the connection and session. If
OCILogon2() was used, then the exact behavior of this call is determined by the mode in which
the corresponding OCILogon2() function was called. In the default case, this function closes
the session or connection. For connection pooling, it closes the session and returns the
connection to the pool. For session pooling, it returns the session or connection pair to the
pool.

Related Topics

• OCILogon()
Creates a simple logon session.

• OCILogon2()
Gets a session.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

"Application Initialization, Connection, and Session Creation" for more information
about logging on and off in an application

Chapter 26
Connect, Authorize, and Initialize Functions

26-27

26.3.11 OCILogon()
Creates a simple logon session.

Purpose

Creates a simple logon session.

Syntax

sword OCILogon (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 const OraText *username,
 ub4 uname_len,
 const OraText *password,
 ub4 passwd_len,
 const OraText *dbname,
 ub4 dbname_len);

Parameters

envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

svchp (IN/OUT)
The service context pointer.

username (IN)
The user name. Must be in the encoding specified by the charset parameter of a previous call
to OCIEnvNlsCreate().

uname_len (IN)
The length of username, in number of bytes, regardless of the encoding.

password (IN)
The user's password. Must be in the encoding specified by the charset parameter of a
previous call to OCIEnvNlsCreate().

passwd_len (IN)
The length of password, in number of bytes, regardless of the encoding.

dbname (IN)
The name of the database to connect to. Must be in the encoding specified by the charset
parameter of a previous call to OCIEnvNlsCreate().

dbname_len (IN)
The length of dbname, in number of bytes, regardless of the encoding.

Comments

This function is used to create a simple logon session for an application.

Chapter 26
Connect, Authorize, and Initialize Functions

26-28

Note:

Users requiring more complex sessions, such as TP monitor applications, should see
"Application Initialization, Connection, and Session Creation".

This call allocates the service context handles that are passed to it. This call also implicitly
allocates server and user session handles associated with the session. These handles can be
retrieved by calling OCIArrayDescriptorAlloc() on the service context handle.

Related Topics

• OCILogoff()
Releases a session that was retrieved using OCILogon2() or OCILogon().

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.12 OCILogon2()
Gets a session.

Purpose

This session may be a new one with a new underlying connection, or one that is started over a
virtual connection from an existing connection pool, or one from an existing session pool. The
mode that the function is called with determines its behavior.

Syntax

sword OCILogon2 (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 const OraText *username,
 ub4 uname_len,
 const OraText *password,
 ub4 passwd_len,
 const OraText *dbname,
 ub4 dbname_len);
 ub4 mode);

Parameters

envhp (IN)
The OCI environment handle. For connection pooling and session pooling, this must be the
one that the respective pool was created in.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Chapter 26
Connect, Authorize, and Initialize Functions

26-29

svchp (IN/OUT)
Address of an OCI service context pointer. This is filled with a server and session handle.
In the default case, a new session and server handle is allocated, the connection and session
are started, and the service context is populated with these handles.
For connection pooling, a new session handle is allocated, and the session is started over a
virtual connection from the connection pool.
For session pooling, the service context is populated with an existing session or server handle
pair from the session pool.
Note that you must not change any attributes of the server and user or session handles
associated with the service context pointer. Doing so results in an error being returned by the
OCIAttrSet() call.
The only attribute of the service context that can be altered is OCI_ATTR_STMTCACHESIZE.

username (IN)
The user name used to authenticate the session. Must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate().

uname_len (IN)
The length of username, in number of bytes, regardless of the encoding.

password (IN)
The user's password. For connection pooling, if this parameter is NULL then OCILogon2()
assumes that the logon is for a proxy user. It implicitly creates a proxy connection in such a
case, using the pool user to authenticate the proxy user. Must be in the encoding specified by
the charset parameter of a previous call to OCIEnvNlsCreate().

passwd_len (IN)
The length of password, in number of bytes, regardless of the encoding.

dbname (IN)
For the default case, this indicates the connect string to use to connect to the Oracle
Database.
For connection pooling, this indicates the connection pool from which to retrieve the virtual
connection to start the session. This value is returned by the OCIConnectionPoolCreate()
call.
For session pooling, it indicates the pool to get the session from. It is returned by the
OCISessionPoolCreate() call.
The dbname must be in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().

dbname_len (IN)
The length of dbname. For session pooling and connection pooling, this value is returned by
the OCISessionPoolCreate() or OCIConnectionPoolCreate() call respectively.

mode (IN)
The values accepted are:

• OCI_DEFAULT
• OCI_LOGON2_CPOOL
• OCI_LOGON2_SPOOL
• OCI_LOGON2_STMTCACHE
• OCI_LOGON2_PROXY
For the default (nonpooling case), the following modes are valid:

Chapter 26
Connect, Authorize, and Initialize Functions

26-30

OCI_DEFAULT - Equivalent to calling OCILogon().

OCI_LOGON2_STMTCACHE - Enable statement caching.

For connection pooling, the following modes are valid:

OCI_LOGON2_CPOOL or OCI_CPOOL - This must be set to use connection pooling.

OCI_LOGON2_STMTCACHE - Enable statement caching.

To use proxy authentication for connection pooling, the password must be set to NULL. You are
then given a session that is authenticated by the user name provided in the OCILogon2() call,
through the proxy credentials supplied in the OCIConnectionPoolCreate() call.

For session pooling, the following modes are valid:

OCI_LOGON2_SPOOL - This must be set to use session pooling.

OCI_LOGON2_STMTCACHE - Enable statement caching.

OCI_LOGON2_PROXY - Use proxy authentication. You are given a session that is authenticated by
the user name provided in the OCILogon2() call, through the proxy credentials supplied in the
OCISessionPoolCreate() call.

Comments

None.

Related Topics

• OCILogon()
Creates a simple logon session.

• OCILogoff()
Releases a session that was retrieved using OCILogon2() or OCILogon().

• OCISessionGet()
Gets a session.

• OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the
session to the session pool. Its default behavior is to commit an active transaction in the
session, including the Flex transaction.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIConnectionPoolCreate()
Initializes the connection pool.

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Connect, Authorize, and Initialize Functions

26-31

26.3.13 OCIDdlEventRegister()
Register for table DDL events on a table, schema, or database.

Purpose

OCI clients can be notified of table DDL changes on specific tables, schemas, or on all tables
within the database. This is useful for external clients that cache table metadata in the mid-tier.
They can register over cached tables and then notified when DDLs cause the table shape to
change. This event can be used to invalidate stale metadata and keep the mid-tier cache in
sync with the database.

Syntax

sword OCIDdlEventRegister (OCISvcCtx *svchp,
OCIError *errhp
OCISubscription *subhp,
ub1 type,
oratext **filter,
ub4 filter_len,
ub4 include_operation,
oratext *client_id,
ub2 client_id_len)

Parameters

subhp (IN)
Subscription handle initialized using OCISubscriptionRegister() with a client callback with
the following subscription handle attributes:

• OCI_ATTR_SUBSCR_CQ_QOSFLAGS (IN): QoS must be OCI_SUBSCR_CQ_QOS_DDL_NTFN.

• OCI_ATTR_SUBSCR_NAMESPACE (IN): Namespace must be
OCI_SUBSCR_NAMESPACE_DBCHANGE.

type (IN)
Possible values are:

• OCI_DDL_EVENT_FILTER_DATABASE: Database wide table DDL events.

• OCI_DDL_EVENT_FILTER_SCHEMA: Schema wide table DDL events.

• OCI_DDL_EVENT_FILTER_TABLE: Table level DDL events.

filter (IN)
Array of Table or schema names to subscribe for table DDL events. For database type
registrations, the table filter is ignored.

filter_len (IN)
Length of filter name array.

Include_operation (IN)
Used to include notification for DDL events not notified by default. The following values are
supported:

• OCI_DDL_TRUNCATE: Notify truncate table operations.

Chapter 26
Connect, Authorize, and Initialize Functions

26-32

• OCI_DDL_PMOP: Notify partition maintenance operation.

client_id (IN) (optional)
User specified client ID. For example: Application name.

client_id_len (IN)
Length of the client ID.

Comments

If the filter name is case sensitive, it must be enclosed in double quotes.

Example 26-1 A user callback is registered for DDL notification. Then the tables are
added to the subscription.

/* USER CALLBACK */
ub4 callback(void* pctx, OCISubscription* subscrhp, void* payload, ub4* payl,
 void* ddl_event, ub4 mode)
{
 oratext* tname = NULL;
 OCIAttrGet(ddl_event, OCI_DTYPE_DDL_EVENT, (void*)&tname,
 NULL, OCI_ATTR_DDL_EVENT_OBJECT_NAME,
 errhp);
}
/* REGISTER USER CALLBACK */
int namespace = OCI_SUBSCR_NAMESPACE_DBCHANGE;
/* set namespace in handle of subscription */
OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

/* set ddl notification qos */
ub4 qosflags = OCI_SUBSCR_CQ_QOS_DDL_NTFN;
OCIAttrSet((void *)subscrhp, OCI_HTYPE_SUBSCRIPTION,
 (void*)&qosflags, sizeof(ub4),
 OCI_ATTR_SUBSCR_CQ_QOSFLAGS, errhp);
OCIAttrSet((dvoid *) subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) callback, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);
OCISubscriptionRegister(svchp, &subscrhp, 1, errhp, OCI_SECURE_NOTIFICATION);
/* REGISTER TABLES FOR DDL NOTIFICATION */

ub4 include_operations = OCI_DDL_PMOP | OCI_DDL_TRUNCATE;
Oratext *tables[] = {“FA1.AR_SALES_TAX”, “FA2.AP_INVOICES”};
OCIDdlEventRegister(svchp, errhp, *subscrhp, OCI_DDL_EVENT_FILTER_TABLE,
 &tables[0], 2, include_operations, “FA_SALES_APP”,
 strlen(“FA_SALES_APP”);

To add tables to the above registration, use the same subscription handle
used to register previously. E.g. To add FA2.ap_invoice_history to the
registration above;
/* REGISTER ADDITIONAL TABLES FOR DDL NOTIFICATION */
Oratext *more_tables[] = {“\”FA2\”.\”ap_invoice_history\””};
OCIDdlEventRegister(svchp, errhp, *subscrhp, OCI_DDL_EVENT_FILTER_TABLE,
&more_tables[0], 1, 0, “FA_SALES_APP”, strlen(“FA_SALES_APP”));

Chapter 26
Connect, Authorize, and Initialize Functions

26-33

Example 26-2 To register for notification on schema FA3 and FA4

Oratext *filter3[] = {“FA3”, “FA4”};
OCIDdlEventRegister(svchp, errhp, *subscrhp, OCI_DDL_EVENT_FILTER_SCHEMA,
&filter3[0], 2, 0, “OCI_DATA_CATALOG”, strlen(“OCI_DATA_CATALOG”));

26.3.14 OCIDdlEventUnregister()
Unregister for table DDL change events on a table, schema, or database.

Purpose

Unregister specific tables, schemas, or all tables in the database so that the client is no longer
notified of the table DDL change events on them. The client can selectively unregister a subset
of tables or schemas from the set of registrations.

Syntax

sword OCIDdlEventUnregister(OCISvcCtx *svchp,
OCIError *errhp,
OCISubscription *subscrhp,
ub1 type,
oratext **filter,
ub4 filter_len);

Parameters

subhp (IN)
Valid subscription handle.

type (IN)
Possible values are:

• OCI_DDL_EVENT_FILTER_DATABASE: Database wide table DDL events.

• OCI_DDL_EVENT_FILTER_SCHEMA: Schema wide table DDL events.

• OCI_DDL_EVENT_FILTER_TABLE: Table level DDL events.

filter (IN)
Array of Schema or table names to unsubscribe.

filter_len (IN)
Length of filter.

Comments

If filter value is NULL, then all table, schema, or database level registrations registered using
the given subscription handle are unregistered. Also, all registrations are dropped if the client
unsubscribes using OCISubscriptionUnRegister().

Chapter 26
Connect, Authorize, and Initialize Functions

26-34

Example 26-3 Unregister tables FA1.AR_SALES_TAX and FA2.AP_INVOICES

The following code snippet unregisters tables FA1.AR_SALES_TAX and FA2.AP_INVOICES:

Oratext *tables[] = {“FA1.AR_SALES_TAX”, “FA2.AP_INVOICES”};

OCIDdlEventUnregister(svchp, errhp, subscrhp, OCI_DDL_EVENT_FILTER_TABLE,
&tables[0], 2);

Example 26-4 UNREGISTER ALL TABLES OF A CLIENT

In case the client exists without unregistering, then its registrations are automatically cleaned
up by the server. If the client no longer wants to be notified then use the following code snippet:

OCISubscriptionUnRegister(svchp, subhp, errhp, OCI_SECURE_NOTIFICATION);

Example 26-5 Clear all registrations without unsubscribing

If the client wants to clear all registrations without unsubscribing, then use the following code
snippet to set the filter to NULL:

OCIDdlEventUnregister(svchp, errhp, subhp, 0, NULL, 0);

26.3.15 OCIRequestBegin()
Indicates that a connection is about to be used for the database requests. Using the
OCIRequestBegin() call, the OCI-based applications can establish explicit request boundaries
without the use of the OCI session pool.

Purpose

OCIRequestBegin() function performs the following two tasks:

• Validates the connection and session embedded in the service context. If the validation
fails, then this call creates a brand new connection and a session using the same handles.
To validate the connection, OCIRequestBegin() function internally checks the attribute
OCI_ATTR_SERVER_STATUS which is updated based on a lightweight connection health
check that is sensitive to inband notifications and FAN event notifications. Validation fails if
the connection receives either type of the notifications.

Note:

– Inband notifications are sent by the server before the start of planned
maintenance directing the clients to start proactively draining connections
when it is least disruptive.

– FAN notifications are sent by Oracle Clusterware for both planned and
unplanned outages of databases, networks, and nodes.

The session is validated when OCIPing()is called based on the setting of
OCI_ATTR_PING_INTERVAL.

Chapter 26
Connect, Authorize, and Initialize Functions

26-35

• Establishes the start of a database request and an explicit request boundary. If the non-
client connection pools such as DRCP and PRCP are configured, then the explicit request
boundary is communicated to those connection pools. If the connection is to a TAC or AC
service, then OCIRequestBegin() is an alternative to OCISessionGet() for applications
that cannot use the OCI session pool. The OCI calls made between OCIRequestBegin()
and OCIRequestEnd() are captured at runtime for possible replay by AC, if a recoverable
error occurs. These pools may check out a new session to be used for the duration of the
request.

Syntax

sword OCIRequestBegin (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode)

Parameters

svchp (IN/OUT)
The OCI service context handle

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() to retrieve diagnostic information if an
error occurs.

mode (IN)
The supported modes are:
OCI_DEFAULT: In the default mode, OCI performs an implicit connection health check by
checking OCI_ATTR_SERVER_STATUS for the server handle embedded in the service context.
Based on the setting of OCI_ATTR_PING_INTERVAL, this call may internally invoke OCIPing() to
validate the session embedded in the service context. OCI attempts to create a brand new
connection and session if either fails validation.

Errors
OCIRequestBegin() may return an error in the following conditions:

• If called when a database request is already active

• If called with a pooled service context obtained by OCISessionGet()
• If a connection and/or session fails validation and cannot be replaced with a brand new

connection and session.

Usage Notes
The health of the session is only checked if OCIRequestBegin() makes an implicit round trip.
Set the new service context attribute, OCI_ATTR_PING_INTERVAL to OCI_PING_ALWAYS if your
application wishes to guarantee an implicit round trip. Frequent pings impacts application
scalability.
To check if OCIRequestBegin() created a brand new connection and session. An application
can check the service context attribute OCI_ATTR_SESSGET_FLAGS for a value of
OCI_SESSGET_FLAGS_NEW.

Chapter 26
Connect, Authorize, and Initialize Functions

26-36

26.3.16 OCIRequestEnd()
Indicates that a database request has completed.

Purpose

Use OCIRequestEnd() only when the active database request was started using the call to
OCIRequestBegin(). AC calls that had been captured for possible replay, are purged. State not
permitted to span explicit request boundaries including open cursors and temporary LOBs that
have been returned to the client are canceled or freed. If an open transaction is present, then it
is rolled back. After OCIRequestEnd() completes, connection must not be used in the OCI calls
until the next OCIRequestBegin() call completes. States such as temporary tables and
sequence CURRVALs should not be used in any future database requests. If the request uses
any DRCP and PRCP sessions, then they are released back to their respective pools.

This function marks the end of the request and rolls back an active transaction in the session,
including Flex transaction.

Syntax

sword OCIRequestEnd (OCISvcCtx *svchp, OCIError *errhp, ub4 mode)

Parameters

svchp (IN/OUT)
The OCI service context handle

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() to retrieve diagnostic information if an
error occurs.

mode (IN)
OCI_DEFAULT: If an open transaction is present, it is rolled back. This implicit rollback may
result in a failover if the connection and/or session are not healthy.

Errors
OCIRequestEnd() returns an error in the following scenarios:

• If there is no active request initiated by OCIRequestBegin().

• If connected to an AC or TAC service and the presence of an open transaction triggers a
failover that is not successful.

• If called with a pooled service context obtained from OCISessionGet().

Usage Notes
A call to OCIRequestEnd() can incur a round trip if pending state changes exist that have not
yet been sent to the server.
After OCIRequestEnd() completes, it is an error to reference the connection in OCI calls until
OCIRequestBegin() is called to initiate the next database request.

Chapter 26
Connect, Authorize, and Initialize Functions

26-37

26.3.17 OCIRequestDisableReplay()
Disables Application Continuity replay for a session for the duration of the current database
request.

Purpose

Triggers OCI to stop recording calls until the end of an application request (the end of a
request is marked by OCISessionRelease()). Use this call when Application Continuity for OCI
is enabled but the application is entering a section of code that is not replayable.

Syntax

OCIRequestDisableReplay(OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context; the service context handle must be initialized and have a session handle
associated with it.

errhp (IN/OUT)
The error handle.

mode (IN)
This call supports the following modes:

• OCI_DEFAULT

Usage Notes

See OCI and Application Continuity for more information. See Oracle Real Application Clusters
Administration and Deployment Guide for information about enabling Application Continuity.

26.3.18 OCIServerAttach()
Creates an access path to a data source for OCI operations.

Purpose

Creates an access path to a data source for OCI operations.

Syntax

sword OCIServerAttach (OCIServer *srvhp,
 OCIError *errhp,
 const OraText *dblink,
 sb4 dblink_len,
 ub4 mode);

Chapter 26
Connect, Authorize, and Initialize Functions

26-38

Parameters

srvhp (IN/OUT)
An uninitialized server handle, which is initialized by this call. Passing in an initialized server
handle causes an error.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

dblink (IN)
Specifies the database server to use. This parameter points to a character string that specifies
a connect string or a service point. If the connect string is NULL, then this call attaches to the
default host. The string itself could be in UTF-16 encoding mode or not, depending on the mode
or the setting in application's environment handle. The length of dblink is specified in
dblink_len. The dblink pointer may be freed by the caller on return.
The name of the connection pool to connect to when mode = OCI_CPOOL. This must be the
same as the poolName parameter of the connection pool created by
OCIConnectionPoolCreate(). Must be in the encoding specified by the charset parameter of
a previous call to OCIEnvNlsCreate().

dblink_len (IN)
The length of the string pointed to by dblink. For a valid connect string name or alias,
dblink_len must be nonzero. Its value is in number of bytes.
The length of poolName, in number of bytes, regardless of the encoding, when mode =
OCI_CPOOL.

mode (IN)
Specifies the various modes of operation. The valid modes are:

• OCI_DEFAULT - For encoding, this value tells the server handle to use the setting in the
environment handle.

• OCI_CPOOL - Use connection pooling.

Because an attached server handle can be set for any connection session handle, the mode
value here does not contribute to any session handle.

Comments

This call is used to create an association between an OCI application and a particular server.

This call assumes that OCIConnectionPoolCreate() has been called, giving poolName, when
connection pooling is in effect.

This call initializes a server context handle, which must have been previously allocated with a
call to OCIHandleAlloc(). The server context handle initialized by this call can be associated
with a service context through a call to OCIAttrSet(). After that association has been made,
OCI operations can be performed against the server.

If an application is operating against multiple servers, multiple server context handles can be
maintained. OCI operations are performed against whichever server context is currently
associated with the service context.

When OCIServerAttach() is successfully completed, an Oracle Database shadow process is
started. OCISessionEnd() and OCIServerDetach() should be called to clean up the Oracle
Database shadow process. Otherwise, the shadow processes accumulate and cause the Linux

Chapter 26
Connect, Authorize, and Initialize Functions

26-39

or UNIX system to run out of processes. If the database is restarted and there are not enough
processes, the database may not start up.

See OCI and Application Continuity for more information about Application Continuity. See
Oracle Real Application Clusters Administration and Deployment Guide for information about
enabling Application Continuity.

Example

The following code example demonstrates the use of OCIServerAttach(). This code segment
allocates the server handle, makes the attach call, allocates the service context handle, and
then sets the server context into it.

Using the OCIServerAttach() Call

OCIHandleAlloc((void *) envhp, (void **) &srvhp, (ub4)
 OCI_HTYPE_SERVER, 0, (void **) 0);
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((void *) envhp, (void **) &svchp, (ub4)
 OCI_HTYPE_SVCCTX, 0, (void **) 0);
/* set attribute server context in the service context */
OCIAttrSet((void *) svchp, (ub4) OCI_HTYPE_SVCCTX, (void *) srvhp,
 (ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

Related Topics

• OCIServerDetach()
Deletes an access path to a data source for OCI operations.

• OCIConnectionPoolCreate()
Initializes the connection pool.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCISessionEnd()
Terminates a user session context created by OCISessionBegin().

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.19 OCIServerDetach()
Deletes an access path to a data source for OCI operations.

Purpose

Deletes an access path to a data source for OCI operations.

Syntax

sword OCIServerDetach (OCIServer *srvhp,
 OCIError *errhp,
 ub4 mode);

Chapter 26
Connect, Authorize, and Initialize Functions

26-40

Parameters

srvhp (IN)
A handle to an initialized server context, which is reset to an uninitialized state. The handle is
not deallocated.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Specifies the various modes of operation. The only valid mode is OCI_DEFAULT for the default
mode.

Comments

This call deletes an access path a to data source for OCI operations. The access path was
established by a call to OCIServerAttach().

Related Topics

• OCIServerAttach()
Creates an access path to a data source for OCI operations.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.20 OCISessionBegin()
Creates a user session and begins a user session for a given server.

Purpose

Creates a user session and begins a user session for a given server.

Syntax

sword OCISessionBegin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 credt,
 ub4 mode);

Parameters

svchp (IN)
A handle to a service context. There must be a valid server handle set in svchp.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

usrhp (IN/OUT)
A handle to a user session context, which is initialized by this call.

Chapter 26
Connect, Authorize, and Initialize Functions

26-41

credt (IN)
Specifies the type of credentials to use for establishing the user session. Valid values for
credt are:

• OCI_CRED_RDBMS - Authenticate using a database user name and password pair as
credentials. The attributes OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD should be set on
the user session context before this call.

• OCI_CRED_EXT - Authenticate using external credentials. No user name or password is
provided.

mode (IN)
Specifies the various modes of operation. Valid modes are:

• OCI_DEFAULT - In this mode, the user session context returned can only ever be set with
the server context specified in svchp. For encoding, the server handle uses the setting in
the environment handle.

• OCI_MIGRATE - In this mode, the new user session context can be set in a service handle
with a different server handle. This mode establishes the user session context. To create a
migratable session, the service handle must already be set with a nonmigratable user
session, which becomes the "creator" session of the migratable session. That is, a
migratable session must have a nonmigratable parent session.

OCI_MIGRATE should not be used when the session uses connection pool underneath. The
session migration and multiplexing happens transparently to the user.

• OCI_SYSDBA - In this mode, you are authenticated for SYSDBA access.

• OCI_SYSOPER - In this mode, you are authenticated for SYSOPER access.

• OCI_SYSASM - In this mode, you are authenticated for SYSASM access.

• OCI_SYSBKB - In this mode, you are authenticated for SYSBACKUP access.

• OCI_SYSDGD - In this mode, you are authenticated for SYSDG access.

• OCI_SYSKMT - In this mode, you are authenticated for SYSKM access.

• OCI_SYSRAC - In this mode, you are authenticated for SYSRAC access.

• OCI_PRELIM_AUTH - This mode can only be used with OCI_SYSDBA or OCI_SYSOPER to
authenticate for certain administration tasks.

• OCI_STMT_CACHE - Enables statement caching with default size on the given service handle.
It is optional to pass this mode if the application is going to explicitly set the size later using
OCI_ATTR_STMTCACHESIZE on that service handle.

Comments

The OCISessionBegin() call is used to authenticate a user against the server set in the service
context handle.

Note:

Check for any errors returned when trying to start a session. For example, if the
password for the account has expired, an ORA-28001 error is returned.

Chapter 26
Connect, Authorize, and Initialize Functions

26-42

For release 8.1 or later, OCISessionBegin() must be called for any given server handle before
requests can be made against it. OCISessionBegin() only supports authenticating the user for
access to the Oracle database specified by the server handle in the service context. In other
words, after OCIServerAttach() is called to initialize a server handle, OCISessionBegin() must
be called to authenticate the user for that given server.

If Application Continuity for OCI is enabled, OCISessionBegin() implicitly marks the beginning
of an application request. When using the OCI session pool APIs, it is not necessary to call
OCIRequestBegin() and OCIRequestEnd().

When using Unicode, when the mode or the environment handle has the appropriate setting,
the user name and password that have been set in the session handle usrhp should be in
Unicode. Before calling this function to start a session with a user name and password, you
must have called OCIAttrSet() to set these two Unicode strings into the session handle with
corresponding length in bytes, because OCIAttrSet() only takes void pointers. The string
buffers then are interpreted by OCISessionBegin().

When OCISessionBegin() is called for the first time for a given server handle, the user session
may not be created in migratable (OCI_MIGRATE) mode.

After OCISessionBegin() has been called for a server handle, the application may call
OCISessionBegin() again to initialize another user session handle with different (or the same)
credentials and different (or the same) operation modes. If an application wants to authenticate
a user in OCI_MIGRATE mode, the service handle must be associated with a nonmigratable user
handle. The user ID of that user handle becomes the ownership ID of the migratable user
session. Every migratable session must have a nonmigratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only be used with
the same server handle set in svchp. If the OCI_MIGRATE mode is specified, then the user
authentication can be set with different server handles. However, the user session context can
only be used with server handles that resolve to the same database instance. Security
checking is done during session switching. A session can migrate to another process only if
there is a nonmigratable session currently connected to that process whose userid is the same
as that of the creator's userid or its own userid.

Do not set the OCI_MIGRATE flag in the call to OCISessionBegin() when the virtual server
handle points to a connection pool (OCIServerAttach() called with mode set to OCI_CPOOL).
Oracle Database supports passing this flag only for compatibility reasons. Do not use the
OCI_MIGRATE flag, as the perception that you get when using a connection pool is of sessions
having their own dedicated (virtual) connections that are transparently multiplexed onto real
connections.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH can only be used with a primary user session
context.

To provide credentials for a call to OCISessionBegin(), two methods are supported. The first
method is to provide a valid user name and password pair for database authentication in the
user session handle passed to OCISessionBegin(). This involves using OCIAttrSet() to set
the OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD attributes on the user session handle. Then
OCISessionBegin() is called with OCI_CRED_RDBMS.

Chapter 26
Connect, Authorize, and Initialize Functions

26-43

Note:

When the user session handle is terminated using OCISessionEnd(), the user name
and password attributes remain unchanged and thus can be reused in a future call to
OCISessionBegin(). Otherwise, they must be reset to new values before the next
OCISessionBegin() call.

The second method is to use external credentials. No attributes need to be set on the user
session handle before calling OCISessionBegin(). The credential type is OCI_CRED_EXT. This is
equivalent to the Oracle7 'connect /' syntax. If values have been set for OCI_ATTR_USERNAME
and OCI_ATTR_PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Another way of setting credentials is to use the session ID of an authenticated user with the
OCI_MIGSESSION attribute. This ID can be extracted from the session handle of an
authenticated user using the OCIAttrGet() call.

Example

The following code example demonstrates the use of OCISessionBegin(). This code segment
allocates the user session handle, sets the user name and password attributes, calls
OCISessionBegin(), and then sets the user session into the service context.

Using the OCISessionBegin() Call

/* allocate a user session handle */
OCIHandleAlloc((void *)envhp, (void **)&usrhp, (ub4)
 OCI_HTYPE_SESSION, (size_t) 0, (void **) 0);
OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"hr",
 (ub4)strlen("hr"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"hr",
 (ub4)strlen("hr"), OCI_ATTR_PASSWORD, errhp);
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));
OCIAttrSet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (void *)usrhp,
 (ub4)0, OCI_ATTR_SESSION, errhp);

Related Topics

• OCISessionEnd()
Terminates a user session context created by OCISessionBegin().

• OCIServerAttach()
Creates an access path to a data source for OCI operations.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIAttrGet()
Gets the value of an attribute of a handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Connect, Authorize, and Initialize Functions

26-44

26.3.21 OCISessionEnd()
Terminates a user session context created by OCISessionBegin().

Purpose

Terminates a user session context created by OCISessionBegin().

Syntax

sword OCISessionEnd (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context handle. There must be a valid server handle and user session handle
associated with svchp.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

usrhp (IN)
Deauthenticate this user. If this parameter is passed as NULL, the user in the service context
handle is deauthenticated.

mode (IN)
The only valid mode is OCI_DEFAULT.

Comments

The user security context associated with the service context is invalidated by this call. Storage
for the user session context is not freed. The transaction specified by the service context is
implicitly committed. The transaction handle, if explicitly allocated, may be freed if it is not
being used. Resources allocated on the server for this user are freed. The user session handle
can be reused in a new call to OCISessionBegin().

If Application Continuity for OCI is enabled, OCISessionEnd() implicitly marks the end of an
application request. OCI stops recording calls and purges its call history. When using the OCI
session pool APIs, it is not necessary to call OCIRequestBegin() and OCIRequestEnd().

Related Topics

• OCISessionBegin()
Creates a user session and begins a user session for a given server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Connect, Authorize, and Initialize Functions

26-45

26.3.22 OCISessionGet()
Gets a session.

Purpose

This session may be a new one with a new underlying connection, or one that is started over a
virtual connection from an existing connection pool, or one from an existing session pool. The
mode that the function is called with determines its behavior.

Syntax

sword OCISessionGet (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 OCIAuthInfo *authInfop,
 OraText *dbName,
 ub4 dbName_len,
 const OraText *tagInfo,
 ub4 tagInfo_len,
 OraText **retTagInfo,
 ub4 *retTagInfo_len,
 boolean *found,
 ub4 mode);

Parameters

envhp (IN/OUT)
OCI environment handle. For connection pooling and session pooling, the environment handle
in which the respective pool was created.

errhp (IN/OUT)
OCI error handle. Multithreaded OCI clients should pass a unique errhp to the
OCISessionGet() call.

svchp (OUT)
Address of an OCI service context pointer. This is filled with a server and session handle.
In the default case, a new session and server handle are allocated, the connection and
session are started, and the service context is populated with these handles.
For connection pooling, a new session handle is allocated, and the session is started over a
virtual connection from the connection pool.
For session pooling, the service context is populated with an existing session and server
handle pair from the session pool.
Do not change any attributes of the server and user and session handles associated with the
service context pointer. Doing so results in an error being returned by the OCIAttrSet() call.
The only attribute of the service context that can be altered is OCI_ATTR_STMTCACHESIZE.

authInfop (IN)
Authentication information handle to be used while getting the session.
In the default and connection pooling cases, this handle can take all the attributes of the
session handle.
For session pooling, the authentication information handle is considered only if the session
pool mode is not set to OCI_SPC_HOMOGENEOUS. In other words, setting the mode to
OCI_SPC_HOMOGENEOUS, the authentication information is not used, while all other possible
specified attributes are used.

Chapter 26
Connect, Authorize, and Initialize Functions

26-46

The attributes that can be set on the OCIAuthInfo handle can be categorized into pre-session-
creation attributes and post-session-creation attributes. The pre-session-creation attributes
are:
Pre-session-creation attributes
Pre-session-creation attributes are those OCI attributes that must be specified before a
session is created. These attributes are used to create a session and cannot be changed after
a session is created. The pre-session creation attributes are:
OCI_ATTR_USERNAME
OCI_ATTR_PASSWORD
OCI_ATTR_CONNECTION_CLASS
OCI_ATTR_PURITY
OCI_ATTR_DISTINGUISHED_NAME
OCI_ATTR_CERTIFICATE
OCI_ATTR_INITIAL_CLIENT_ROLES
OCI_ATTR_APPCTX_SIZE
OCI_ATTR_EDITION
OCI_ATTR_DRIVER_NAME
Post-session-creation attributes
Post-session-creation attributes are those that can be specified after a session is created.
They can be changed freely after a session is created as many times as desired. The
following attributes can be set on the OCISession handle after the session has been created:
OCI_ATTR_CLIENT_IDENTIFIER
OCI_ATTR_CURRENT_SCHEMA
OCI_ATTR_MODULE
OCI_ATTR_ACTION
OCI_ATTR_DBOP
OCI_ATTR_CLIENT_INFO
OCI_ATTR_COLLECT_CALL_TIME
OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE
OCI_ATTR_SESSION_STATE

See Also:

• Session Pooling in OCI

• cdemosp.c in the demo directory

• User Session Handle Attributes for more information about the attributes

• The Comments section

dbName (IN)
For the default case, this indicates the connect string to use to connect to the Oracle
database.
For connection pooling, it indicates the connection pool to retrieve the virtual connection from,
to start the session. This value is returned by the OCIConnectionPoolCreate() call.
For session pooling, it indicates the pool to get the session from. It is returned by the
OCISessionPoolCreate() call.

dbName_len (IN)
The length of dbName. For session pooling and connection pooling, this value is returned by
the call to OCISessionPoolCreate() or OCIConnectionPoolCreate(), respectively.

Chapter 26
Connect, Authorize, and Initialize Functions

26-47

tagInfo (IN)
This parameter is used only for session pooling.
This indicates the type of session that the user wants. If you want a default session, you must
set this to NULL. See the Comments for a detailed explanation of this parameter.
Beginning with 12c Release 2 (12.2), a tag can have multiple properties. This is referred to as
a multi-property tag. A multi-property tag is comprised of one or more <property-
name>=<property-value> pairs separated by a semi-colon, where <property-
name>=<property-value> are both strings. See About Using Tags in Session Pools for more
information.

tagInfo_len (IN)
The length, in bytes, of tagInfo. Used for session pooling only.

retTagInfo (OUT)
This parameter is used only for session pooling. This indicates the type of session that is
returned to the user. See the Comments for a detailed explanation of this parameter.

retTagInfo_len (OUT)
The length, in bytes, of retTagInfo. Used for session pooling only.

found (OUT)
This parameter is used only for session pooling. If the type of session that the user requested
was returned (that is, the value of tagInfo and retTagInfo is the same), then found is set to
TRUE. Otherwise, found is set to FALSE.

mode (IN)
The valid modes are:

• OCI_DEFAULT
• OCI_SESSGET_CPOOL
• OCI_SESSGET_SPOOL
• OCI_SESSGET_CREDPROXY
• OCI_SESSGET_CREDEXT - Supported only for heterogeneous pools.

• OCI_SESSGET_CUSTOM_POOL
• OCI_SESSGET_MULTIPROPERTY_TAG
• OCI_SESSGET_PURITY_NEW
• OCI_SESSGET_PURITY_SELF
• OCI_SESSGET_SPOOL_MATCHANY
• OCI_SESSGET_STMTCACHE
• OCI_SESSGET_SYSDBA
In the default (nonpooling) case, the following modes are valid:

OCI_SESSGET_STMTCACHE - Enables statement caching in the session.

OCI_SESSGET_CREDEXT - Returns a session authenticated with external credentials.

OCI_SESSGET_SYSDBA - Returns a session with SYSDBA privilege for either nonpooling or for
session pooling.

For connection pooling, the following modes are valid:

Chapter 26
Connect, Authorize, and Initialize Functions

26-48

OCI_SESSGET_CPOOL - Must be set to use connection pooling.

OCI_SESSGET_STMTCACHE - Enables statement caching in the session.

OCI_SESSGET_CREDPROXY - Returns a proxy session. The user is given a session that is
authenticated by the user name provided in the OCISessionGet() call, through the proxy
credentials supplied in the OCIConnectionPoolCreate() call.

OCI_SESSGET_CREDEXT - Returns a session authenticated with external credentials.

For session pooling, the following modes are valid:

OCI_SESSGET_SPOOL - Must be set to use session pooling.

OCI_SESSGET_SYSDBA - Returns a session with SYSDBA privilege for either nonpooling or for
session pooling.

OCI_SESSGET_CREDEXT - Returns a session authenticated with external credentials.

OCI_SESSGET_CREDPROXY - In this case, the user is given a session that is authenticated by the
user name provided in the OCISessionGet() call, through the proxy credentials supplied in the
OCISessionPoolCreate() call.

OCI_SESSGET_SPOOL_MATCHANY - Refers to the tagging behavior. If this mode is set, then a
session that has a different tag than what was asked for, may be returned. See the Comments
section.

OCI_SESSGET_MULTIPROPERTY_TAG - Must be set when using multiple properties in case
applications previously used a (;) semi-colon character was in a tag name; the semi-colon
character is used as a separator for specifying multiple properties. See the Comments section.

For database resident connection pooling, the following modes are valid:

OCI_SESSGET_MULTIPROPERTY_TAG - Must be set when using multiple properties in case
applications used a (;) semi-colon character was in a tag name; the semi-colon character is
used as a separator for specifying multiple properties. See the Comments section.

OCI_SESSGET_PURITY_SELF - The application can use a session that has been used before. You
can also specify application-specific tags.

OCI_SESSGET_PURITY_NEW - The application requires a new session that is not tainted with any
prior session state. This is the default.

For custom pools, the following modes are valid:

OCI_SESSGET_CUSTOM_POOL - Must be set by applications that are not using OCI session pool,
but instead are using custom pools. This attribute is set to support shard key lookup in custom
pools.

Comments

The tags provide a way for users to customize sessions in the pool. A client can get a default
or untagged session from a pool, set certain attributes on the session (such as globalization
settings), and return the session to the pool, labeling it with an appropriate tag in the
OCISessionRelease() call.

The user, or some other user, can request a session with the same attributes, and can do so
by providing the same tag in the OCISessionGet() call.

If a user asks for a session with tag 'A', and a matching session is not available, an
appropriately authenticated untagged session (session with a NULL tag) is returned, if such a

Chapter 26
Connect, Authorize, and Initialize Functions

26-49

session is free. If even an untagged session is not free and OCI_SESSGET_SPOOL_MATCHANY has
been specified, then an appropriately authenticated session with a different tag is returned. If
OCI_SESSGET_SPOOL_MATCHANY is not set, then a session with a different tag is never returned.

In case of DRCP, if a user asks for a same session again with a same tag and
OCI_SESSGET_SPOOL_MATCHANY has been specified, then DRCP may not return the same
session back if the previous release was in-progress on the server. Also, if a user asks for a
session with tag 'B' with OCI_SESSGET_SPOOL_MATCHANY and the OCI Session Pool picks the
authenticated session with tag 'A', then DRCP does not return the session with tag 'B' even if it
is available.

The following code example demonstrates the use of OCI_ATTR_MODULE with session pooling.

Using the OCI_ATTR_MODULE Attribute with OCI Session Pooling

Oratext *module = (Oratext*) "mymodule";
/* Allocate the pool handle */
 checkerr(errhp,OCIHandleAlloc(envhp,(void**)&poolhp,
 OCI_HTYPE_SPOOL,0,0));

 checkerr(errhp,OCISessionPoolCreate(envhp,
 errhp,poolhp,&poolname,&pnamelen,
 (oratext*)conn_str,
 len,min,max,incr,0,0,0,0,OCI_DEFAULT));

 /* Allocate the auth handle for session get */
 checkerr(errhp, OCIHandleAlloc(envhp,
 (void**)&authp, OCI_HTYPE_AUTHINFO, 0,0));

 checkerr(errhp,OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,
 username, strlen((char*)username), OCI_ATTR_USERNAME,errhp);
 checkerr(errhp,OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,
 password, strlen((char*)password), OCI_ATTR_PASSWORD,
 errhp));

 checkerr(errhp,OCISessionGet(envhp,errhp,
 &svchp,authp,poolname, pnamelen,0,0,0,0,0,
 OCI_SESSGET_SPOOL));

/* Get the user handle from the service context handle */
checkerr(errhp, OCIAttrGet(svhcp, OCI_HTYPE_SVCCTX, &usrhp_svc,
 0,OCI_ATTR_SESSION,errhp));

/* Set module name on the user handle that you obtained */
checkerr (errhp, OCIAttrSet(usrhp_svc, OCI_HTYPE_SESSION, module,
 strlen((char*)module), OCI_ATTR_MODULE,errhp));
/* Make Database calls. */

Restrictions on Attributes Supported for OCI Session Pools

You can use the following pre-session-creation attributes with OCI session pools:

OCI_ATTR_EDITION
OCI_ATTR_DRIVER_NAME
OCI_ATTR_USERNAME,
OCI_ATTR_PASSWORD,
OCI_ATTR_CONNECTION_CLASS,
OCI_ATTR_PURITY

However, OCI_ATTR_EDITION and OCI_ATTR_DRIVERNAME can only be specified during
OCISessionPoolCreate() by setting them on the OCIAuthInfo handle that is an attribute of
OCISPool handle. They cannot be specified on the OCIAuthInfo handle passed into individual

Chapter 26
Connect, Authorize, and Initialize Functions

26-50

OCISessionGet() calls. This ensures that all sessions that are part of an OCI session pool
have uniform values for these attributes.

The following code example shows how to use the OCI_ATTR_EDITION attribute with an OCI
session pool.

Using the OCI_ATTR_EDITION Attribute with OCI Session Pooling

/* allocate the auth handle to be set on the spool handle */
 checkerr(errhp, OCIHandleAlloc(envhp,(void**)&authp_sp,
 OCI_HTYPE_AUTHINFO, 0,0));

 /* Set the edition on the auth handle */

 checkerr(errhp,OCIAttrSet(authp_sp, OCI_HTYPE_AUTHINFO,
 "Patch_Bug_12345", strlen("Patch_Bug_12345"),
 OCI_ATTR_EDITION,errhp));

/* Allocate the pool handle */
 checkerr(errhp,OCIHandleAlloc(envhp,(void**)&poolhp,
 OCI_HTYPE_SPOOL,0,0));

 /* Set the auth handle created above on the spool handle */
 checkerr(errhp,OCIAttrSet(poolhp, OCI_HTYPE_SPOOL,authp_sp,
 0,OCI_ATTR_SPOOL_AUTH,errhp));
checkerr(errhp,OCISessionPoolCreate(envhp,
 errhp,poolhp,&poolname,&pnamelen,
 (oratext*)conn_str,
 len,min,max,incr,0,0,0,0,OCI_DEFAULT));

 /* Allocate the auth handle for session get */
 checkerr(errhp, OCIHandleAlloc(envhp,
 (void**)&authp_sessget, OCI_HTYPE_AUTHINFO, 0,0));

 checkerr(errhp,OCIAttrSet(authp_sessget, OCI_HTYPE_AUTHINFO,
 username, strlen((char*)username), OCI_ATTR_USERNAME,errhp);
 checkerr(errhp,OCIAttrSet(authp_sessget, OCI_HTYPE_AUTHINFO,
 password, strlen((char*)password), OCI_ATTR_PASSWORD,
 errhp));

 checkerr(errhp,OCISessionGet(envhp,errhp,
 &svchp,authp_sessget,poolname, pnamelen,0,0,0,0,0,
 OCI_SESSGET_SPOOL));

You can use all post-session-creation attributes with OCI session pool. However, as a session
pool can age out sessions, reuse preexisting sessions in the pool, or re-create new sessions
transparently, Oracle recommends that the application explicitly set any post-session-creation
attributes that it needs after getting a session from a pool. This ensures that the application
logic works irrespective of the specific session returned by the OCI session pool.

When you specify the OCI_SESSGET_MULTIPROPERTY_TAG, the parameter retTagInfo needs to
be interpreted in conjunction with the found parameter and the mode parameter values
specified during OCISessionGet(). The following table specifies these semantics:

Chapter 26
Connect, Authorize, and Initialize Functions

26-51

Specified Modes refTagInfo Parameter found Parameter

OCI_SESSGET_SPOOL |
OCI_SESSGET_MULTIPROPERTY_T
AG

All the properties set on the
found session are returned as
one composite string delimited
by (;) semi-colon.

TRUE, only if the found session
matches all requested properties
and the session has no
additional properties set.

FALSE, if no matching session
was found. In this case, a new
session, with no properties set,
is returned.

OCI_SESSGET_SPOOL |
OCI_SESSGET_MULTIPROPERTY_T
AG |
OCI_SESSGET_SPOOL_MATCHANY

All the properties set on the
found session are returned as
one composite string delimited
by (;) semi-colon.

TRUE, if the found session
matches all requested properties
(but may have additional
properties).

FALSE, if the found session did
not match at least one property.

There is a difference in the manner in which retTagInfo is returned in the case of multi-
property tags as compared to non multi-property tags. In a non multi-property tag
scenario,retTagInfo will be the same as the requested tag when the found parameter is
returned as TRUE. Whereas in the case of a multi-property tag, the retTagInfo contains the
complete set of properties associated with the returned session and further information should
be deduced by the application from the found flag as shown in the previous table.

Note that OCI_SESSGET_MULTIPROPERTY_TAG (with OCISessionGet()) or
OCI_SESSRLS_MULTIPROPERTY_TAG (with OCISessionRelease()) are only supported with OCI
Session Pool (with or without DRCP). Thus, these modes cannot be used with standalone
connections or with OCI Connection Pool.

Related Topics

• OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the
session to the session pool. Its default behavior is to commit an active transaction in the
session, including the Flex transaction.

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

• OCISessionPoolDestroy()
Destroys a session pool.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIConnectionPoolCreate()
Initializes the connection pool.

26.3.23 OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident connection
pooling (DRCP).

Purpose

It starts sessMin number of sessions and connections to the database. Before making this call,
make a call to OCIHandleAlloc() to allocate memory for the session pool handle.

Chapter 26
Connect, Authorize, and Initialize Functions

26-52

Syntax

sword OCISessionPoolCreate (OCIEnv *envhp,
 OCIError *errhp,
 OCISPool *spoolhp,
 OraText **poolName,
 ub4 *poolNameLen,
 const OraText *connStr,
 ub4 connStrLen,
 ub4 sessMin,
 ub4 sessMax,
 ub4 sessIncr,
 OraText *userid,
 ub4 useridLen,
 OraText *password,
 ub4 passwordLen,
 ub4 mode);

Parameters

envhp (IN)
A pointer to the environment handle in which the session pool is to be created.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet().

spoolhp (IN/OUT)
A pointer to the session pool handle that is initialized.

poolName (OUT)
The name of the session pool returned. It is unique across all session pools in an
environment. This value must be passed to the OCISessionGet() call.

poolNameLen (OUT)
Length of poolName in bytes.

connStr (IN)
The TNS alias of the database to connect to.

connStrLen (IN)
The length of connStr in bytes.

sessMin (IN)
Specifies the minimum number of sessions in the session pool.
This number of sessions are started by OCISessionPoolCreate(). After the sessions are
started, sessions are opened only when necessary.
This value is used when mode is set to OCI_SPC_HOMOGENEOUS. Otherwise, it is ignored.

sessMax (IN)
Specifies the maximum number of sessions that can be opened in the session pool. After this
value is reached, no more sessions are opened. The valid values are 1 and higher.

sessIncr (IN)
Allows applications to set the next increment for sessions to be started if the current number of
sessions is less than sessMax. The valid values are 0 and higher.

Chapter 26
Connect, Authorize, and Initialize Functions

26-53

userid (IN)
Specifies the userid with which to start the sessions.

See Also:

Authentication Note in the Comments Section.

useridLen (IN)
Length of the userid in bytes.

password (IN)
The password for the corresponding userid.

passwordLen (IN)
The length of the password in bytes.

mode (IN)
The modes supported are:

• OCI_DEFAULT - For a new session pool creation.

• OCI_SPC_REINITIALIZE - After creating a session pool, if you want to change the pool
attributes dynamically (change the sessMin, sessMax, and sessIncr parameters), call
OCISessionPoolCreate() with mode set to OCI_SPC_REINITIALIZE. When mode is set to
OCI_SPC_REINITIALIZE, then connStr, userid, and password are ignored.

• OCI_SPC_STMTCACHE - An OCI statement cache is created for the session pool. If the pool is
not created with OCI statement caching turned on, server-side statement caching is
automatically used. Note that in general, client-side statement caching gives better
performance.

See Also:

Statement Caching in OCI

• OCI_SPC_HOMOGENEOUS - All sessions in the pool are authenticated with the user name and
password passed to OCISessionPoolCreate(). The authentication handle (parameter
authInfop) passed into OCISessionGet() is ignored in this case. Moreover, the sessMin
and the SessIncr values are considered only in this case. No proxy session can be
created in this mode. This mode can be used in database resident connection pooling
(DRCP).

• OCI_SPC_NO_RLB - By default, the runtime connection load balancing is enabled in the
session pool if the client and the server are capable of supporting it. To turn it off, use the
new mode, OCI_SPC_NO_RLB mode of OCISessionPoolCreate(). You can only use this
mode at the time of pool creation. If this mode is passed for a pool that has been created,
an error, ORA-24411, is thrown.

Chapter 26
Connect, Authorize, and Initialize Functions

26-54

Comments

Authentication Note
A session pool can contain two types of connections to the database: direct connections and
proxy connections. To make a proxy connection, a user must have Connect through Proxy
privilege.

See Also:

For more information about proxy connections, see

• Client Access Through a Proxy

• Oracle Database SQL Language Reference

When the session pool is created, the userid and password may or may not be specified. If
these values are NULL, no proxy connections can exist in this pool. If mode is set to
OCI_SPC_HOMOGENEOUS, no proxy connection can exist.
A userid and password pair may also be specified through the authentication handle in the
OCISessionGet() call. If this call is made with mode set to OCI_SESSGET_CREDPROXY, then the
user is given a session that is authenticated by the userid provided in the OCISessionGet()
call, through the proxy credentials supplied in the OCISessionPoolCreate() call. In this case,
the password in the OCISessionGet() call is ignored.
If OCISessionGet() is called with mode not set to OCI_SESSGET_CREDPROXY, then the user gets
a direct session that is authenticated by the credentials provided in the OCISessionGet() call.
If none have been provided in this call, the user gets a session authenticated by the
credentials in the OCISessionPoolCreate() call.

Example

The following code example shows how to disable runtime load balancing.

Disabling Runtime Load Balancing

OCISessionPoolCreate(envhp, errhp, spoolhp, (OraText **)&poolName,
 (ub4 *)&poolNameLen,
 database, (ub4) strlen ((const signed char *) database),
 sessMin, sessMax, sessIncr, (OraText *) appusername,
 (ub4) strlen ((const signed char *) appusername),
 (OraText *) apppassword,
 (ub4) strlen ((const signed char *) apppassword),
 OCI_SPC_HOMOGENEOUS | OCI_SPC_NO_RLB);

Related Topics

• OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the
session to the session pool. Its default behavior is to commit an active transaction in the
session, including the Flex transaction.

• OCISessionGet()
Gets a session.

• OCISessionPoolDestroy()
Destroys a session pool.

Chapter 26
Connect, Authorize, and Initialize Functions

26-55

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.3.24 OCISessionPoolDestroy()
Destroys a session pool.

Purpose

Destroys a session pool.

Syntax

sword OCISessionPoolDestroy (OCISPool *spoolhp,
 OCIError *errhp,
 ub4 mode);

spoolhp (IN/OUT)
The session pool handle for the session pool to be destroyed.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet().

mode (IN)
Currently, OCISessionPoolDestroy() supports modes OCI_DEFAULT, OCI_SPD_DRAIN, and
OCI_SPD_FORCE.
If this call is made with mode set to OCI_SPD_FORCE, and there are active sessions in the pool,
the sessions are closed and the pool is destroyed. However, if this mode is not set, and there
are busy sessions in the pool, an error is returned.

Note:

After the call is made with this mode, the applications should not be issuing
OCISessionRelease() for any of the connections that are checked out.

If this call is made with OCI_SPD_DRAIN mode, and there are active sessions in the pool, the
application waits for the specified timeout period and after that the sessions are closed and
the pool is destroyed.

Note:

After the call is made with this mode, the applications should not be issuing
OCISessionRelease() for any of the connections that are checked out.

Related Topics

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

Chapter 26
Connect, Authorize, and Initialize Functions

26-56

• OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the
session to the session pool. Its default behavior is to commit an active transaction in the
session, including the Flex transaction.

• OCISessionGet()
Gets a session.

26.3.25 OCISessionRelease()
Releases a session that was retrieved using OCISessionGet(). This API releases the session
to the session pool. Its default behavior is to commit an active transaction in the session,
including the Flex transaction.

Purpose

Releases a session that was retrieved using OCISessionGet(). The exact behavior of this call
is determined by the mode in which the corresponding OCISessionGet() function was called. In
the default case, it closes the session or connection. For connection pooling, it closes the
session and returns the connection to the pool. For session pooling, it returns the session or
connection pair to the pool, and any pending transaction is committed.

Syntax

sword OCISessionRelease (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *tag,
 ub4 tag_len,
 ub4 mode);

Parameters

svchp (IN)
The service context that was populated during the corresponding OCISessionGet() call.
In the default case, the session and connection associated with this handle is closed.
In the connection pooling case, the session is closed and the connection released to the pool.
For session pooling, the session or connection pair associated with this service context is
released to the pool.

errhp (IN/OUT)
The OCI error handle.

tag (IN)
This parameter is used only for session pooling.
This parameter is ignored unless mode OCI_SESSRLS_RETAG is specified. In this case, the
session is labeled with this tag and returned to the pool. If this is NULL, then the session is not
tagged.

tag_len (IN)
This parameter is used only for session pooling.
Length of the tag. This is ignored unless mode OCI_SESSRLS_RETAG is set.

mode (IN)
The supported modes are:

• OCI_DEFAULT
• OCI_SESSRLS_DROPSESS

Chapter 26
Connect, Authorize, and Initialize Functions

26-57

• OCI_SESSRLS_MULTIPROPERTY_TAG
• OCI_SESSRLS_RETAG
You can only use OCI_DEFAULT for the default case and for connection pooling.

OCI_SESSRLS_DROPSESS and OCI_SESSRLS_RETAG are only used for session pooling.

When OCI_SESSRLS_DROPSESS is specified, the session is removed from the session pool.

Set OCI_SESSRLS_MULTIPROPERTY_TAG, if the tag is a multi-property tag. For more information,
see Multi-Property Tags.

The tag on the session is altered if and only if OCI_SESSRLS_RETAG is set. If this mode is not set,
the tag and tag_len parameters are ignored.

Comments

Be careful to pass in the correct tag when using the tag parameter. If a default session is
requested and the user sets certain properties on this session (probably through an ALTER
SESSION command), then the user must label this session appropriately by tagging it as such.

If, however, the user requested a tagged session and got one, and has changed the properties
on the session, then the user must pass in a different tag if appropriate.

For the correct working of the session pool layer, the application developer must be very
careful to pass in the correct tag to the OCISessionGet() and OCISessionRelease() calls.

Related Topics

• OCISessionGet()
Gets a session.

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

• OCISessionPoolDestroy()
Destroys a session pool.

• OCILogon2()
Gets a session.

26.3.26 OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared memory.

Purpose

Detaches the process from the shared memory subsystem and releases the shared memory.

Syntax

sword OCITerminate (ub4 mode);

Parameters

mode (IN)
Call-specific mode. Valid value:

• OCI_DEFAULT - Executes the default call.

Chapter 26
Connect, Authorize, and Initialize Functions

26-58

Comments

OCITerminate() should be called only once for each process and is the counterpart of the
OCIEnvCreate(), OCIEnvNlsCreate(), deprecated OCIInitialize() calls. The call tries to
detach the process from the shared memory subsystem and shut it down. It also performs
additional process cleanup operations. When two or more processes connecting to the same
shared memory call OCITerminate() simultaneously, the fastest one releases the shared
memory subsystem completely and the slower ones must terminate.

Related Topics

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

26.4 Handle and Descriptor Functions
Lists and describes the OCI handle and descriptor functions.

Table 26-4 lists the OCI handle and descriptor functions that are described in this section.

Table 26-4 Handle and Descriptor Functions

Function Purpose

OCIArrayDescriptorAlloc() Allocate an array of descriptors

OCIArrayDescriptorFree() Free an array of descriptors

OCIAttrGet() Get the value of an attribute of a handle

OCIAttrSet() Set the value of an attribute of a handle or descriptor

OCIDescriptorAlloc() Allocate and initialize a descriptor or LOB locator

OCIDescriptorFree() Free a previously allocated descriptor

OCIHandleAlloc() Allocate and initialize a handle

OCIHandleFree() Free a previously allocated handle

OCIParamGet() Get a parameter descriptor

OCIParamSet() Set parameter descriptor in COR handle

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

• OCIAttrGet()
Gets the value of an attribute of a handle.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

Chapter 26
Handle and Descriptor Functions

26-59

• OCIDescriptorFree()
Deallocates a previously allocated descriptor.

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIHandleFree()
Explicitly deallocates a handle

• OCIParamGet()
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

• OCIParamSet()
Sets a complex object retrieval (COR) descriptor into a COR handle.

26.4.1 OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

Purpose

Allocates an array of descriptors.

Syntax

sword OCIArrayDescriptorAlloc (const void *parenth,
 void **descpp,
 const ub4 type,
 ub4 array_size,
 const size_t xtramem_sz,
 void **usrmempp);

Parameters

parenth (IN)
An environment handle.

descpp (OUT)
Returns a pointer to a contiguous array of descriptors of the desired type.

type (IN)
Specifies the type of descriptor or LOB locator to be allocated.

See Also:

OCI Descriptors

array_size (IN)
Specifies the number of descriptors to allocate. An error is thrown when the call cannot
allocate the number of descriptors.

xtramem_sz (IN)
Specifies an amount of user memory to be allocated for use by the application for the lifetime
of the descriptors.

Chapter 26
Handle and Descriptor Functions

26-60

usrmempp (OUT)
Returns a pointer to an array of pointers numbering in array_size, since there is one chunk
allocated for each of the descriptors allocated.

Comments

This call returns OCI_SUCCESS if successful, or a suitable error if an out-of-memory condition
occurs.

See Also:

User Memory Allocation for more information about the xtramem_sz parameter and
user memory allocation

Example

The following code example can be modified to allocate a large number of descriptors.

Allocating a Large Number of Descriptors

OCIDateTime *descpp1[500];
...
for (i = 0; i!=500; i++)
{
 /* Allocate descriptors */
OCIDescriptorAlloc((void *)envhp,(void **)&descpp1[i], OCI_DTYPE_TIMESTAMP_TZ,
 0,(void **)0);
}
...

The for loop in the previous code example can now be replaced with a single call, as shown in
the following code example.

Allocating an Array of Descriptors

OCIArrayDescriptorAlloc((void *)envhp,(void **)&descpp1,
 OCI_DTYPE_TIMESTAMP_TZ, 500, 0, (void **)0);

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

26.4.2 OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

Purpose

Free a previously allocated array of descriptors.

Syntax

sword OCIArrayDescriptorFree (void **descp,
 const ub4 type);

Chapter 26
Handle and Descriptor Functions

26-61

Parameters

descp (IN)
Pointer to an array of allocated descriptors.

type (IN)
Specifies the type of storage to be freed.

See Also:

OCI Descriptors

Comments

An error is returned when a descriptor is allocated using OCIDescriptorAlloc(), but freed
using OCIArrayDescriptorFree().

If you perform LOB operations, you must always call OCILobFreeTemporary() before calling
OCIArrayDescriptorFree() to free the contents of the temporary LOB. See About Freeing
Temporary LOBs for more information.

Descriptors allocated using OCIArrayDescriptorAlloc() must be freed using
OCIArrayDescriptorFree(). You must be careful to free the entire array at once: pass in the
pointer descpp returned by OCIArrayDescriptorAlloc() to OCIArrayDescriptorFree()
appropriately. Otherwise, there can be memory leaks.

Related Topics

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

26.4.3 OCIAttrGet()
Gets the value of an attribute of a handle.

Purpose

Gets the value of an attribute of a handle.

Syntax

sword OCIAttrGet (const void *trgthndlp,
 ub4 trghndltyp,
 void *attributep,
 ub4 *sizep,
 ub4 attrtype,
 OCIError *errhp);

Chapter 26
Handle and Descriptor Functions

26-62

Parameters

trgthndlp (IN)
Pointer to a handle type. The actual handle can be a statement handle, a session handle, and
so on. When this call is used to get encoding, users are allowed to check against either an
environment or statement handle.

trghndltyp (IN)
The handle type. Valid types are:

• OCI_DTYPE_PARAM, for a parameter descriptor

• OCI_HTYPE_STMT, for a statement handle

• Any handle type in Table 3-1 or any descriptor in Table 3-2.

attributep (OUT)
Pointer to the storage for an attribute value. Is in the encoding specified by the charset
parameter of a previous call to OCIEnvNlsCreate().

sizep (OUT)
The size of the attribute value, always in bytes because attributep is a void pointer. This can
be passed as NULL for most attributes because the sizes of non-string attributes are already
known by the OCI library. For text* parameters, a pointer to a ub4 must be passed in to get
the length of the string.

attrtype (IN)
The type of attribute being retrieved. The handle types and their readable attributes are listed
in Handle and Descriptor Attributes.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

This call is used to get a particular attribute of a handle. OCI_DTYPE_PARAM is used to do implicit
and explicit describes. The parameter descriptor is also used in direct path loading. For implicit
describes, the parameter descriptor has the column description for each select list. For explicit
describes, the parameter descriptor has the describe information for each schema object that
you are trying to describe. If the top-level parameter descriptor has an attribute that is itself a
descriptor, use OCI_ATTR_PARAM as the attribute type in the subsequent call to OCIAttrGet() to
get the Unicode information in an environment or statement handle.

See Also:

Examples Using OCIDescribeAny() and About Describing Select-List Items

A function closely related to OCIAttrGet() is OCIDescribeAny(), which is a generic describe
call that describes existing schema objects: tables, views, synonyms, procedures, functions,
packages, sequences, and types. As a result of this call, the describe handle is populated with
the object-specific attributes that can be obtained through an OCIAttrGet() call.

Chapter 26
Handle and Descriptor Functions

26-63

Then an OCIParamGet() call on the describe handle returns a parameter descriptor for a
specified position. Parameter positions begin with 1. Calling OCIAttrGet() on the parameter
descriptor returns the specific attributes of a stored procedure or function parameter or a table
column descriptor. These subsequent calls do not need an extra round-trip to the server
because the entire schema object description is cached on the client side by
OCIDescribeAny(). Calling OCIAttrGet() on the describe handle can also return the total
number of positions.

In UTF-16 mode, particularly when executing a loop, try to reuse the same pointer variable
corresponding to an attribute and copy the contents to local variables after OCIAttrGet() is
called. If multiple pointers are used for the same attribute, a memory leak can occur.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIDescribeAny()
Describes existing schema and subschema objects.

• OCIParamGet()
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.4.4 OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

Purpose

Sets the value of an attribute of a handle or a descriptor.

Syntax

sword OCIAttrSet (void *trgthndlp,
 ub4 trghndltyp,
 void *attributep,
 ub4 size,
 ub4 attrtype,
 OCIError *errhp);

Parameters

trgthndlp (IN/OUT)
Pointer to a handle whose attribute gets modified.

trghndltyp (IN/OUT)
The handle type.

attributep (IN)
Pointer to an attribute value. The attribute value is copied into the target handle. If the attribute
value is a pointer, then only the pointer is copied, not the contents of the pointer. String
attributes must be in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().

Chapter 26
Handle and Descriptor Functions

26-64

size (IN)
The size of an attribute value. This can be passed in as 0 for most attributes, as the size is
already known by the OCI library. For text* attributes, a ub4 must be passed in set to the
length of the string in bytes, regardless of encoding.

attrtype (IN)
The type of attribute being set.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

See Handle and Descriptor Attributes for a list of handle types and their writable attributes.

Related Topics

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.4.5 OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

Purpose

Allocates storage to hold descriptors or LOB locators.

Syntax

sword OCIDescriptorAlloc (const void *parenth,
 void **descpp,
 ub4 type,
 size_t xtramem_sz,
 void **usrmempp);

Parameters

parenth (IN)
An environment handle.

descpp (OUT)
Returns a descriptor or LOB locator of the desired type.

type (IN)
Specifies the type of descriptor or LOB locator to be allocated.

Chapter 26
Handle and Descriptor Functions

26-65

See Also:

OCI Descriptors

xtramem_sz (IN)
Specifies an amount of user memory to be allocated for use by the application for the lifetime
of the descriptor.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for the user for
the lifetime of the descriptor.

Comments

Returns a pointer to an allocated and initialized descriptor, corresponding to the type specified
in type. A non-NULL descriptor or LOB locator is returned on success. No diagnostics are
available on error.

This call returns OCI_SUCCESS if successful, or OCI_INVALID_HANDLE if an out-of-memory error
occurs.

Related Topics

• OCIDescriptorFree()
Deallocates a previously allocated descriptor.

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIArrayDescriptorFree()
Free a previously allocated array of descriptors.

See Also:

User Memory Allocation for more information about the xtramem_sz parameter and
user memory allocation

26.4.6 OCIDescriptorFree()
Deallocates a previously allocated descriptor.

Purpose

Deallocates a previously allocated descriptor.

Syntax

sword OCIDescriptorFree (void *descp,
 ub4 type);

Chapter 26
Handle and Descriptor Functions

26-66

Parameters

descp (IN)
An allocated descriptor.

type (IN)
Specifies the type of storage to be freed.

See Also:

OCI Descriptors

Comments

This call frees storage associated with a descriptor. Returns OCI_SUCCESS or
OCI_INVALID_HANDLE. All descriptors can be explicitly deallocated; however, OCI deallocates a
descriptor if the environment handle is deallocated.

If you perform LOB operations, you must always call OCILobFreeTemporary() before calling
OCIDescriptorFree() to free the contents of the temporary LOB. See About Freeing
Temporary LOBs for more information.

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

26.4.7 OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

Purpose

Returns a pointer to an allocated and initialized handle.

Syntax

sword OCIHandleAlloc (const void *parenth,
 void **hndlpp,
 ub4 type,
 size_t xtramem_sz,
 void **usrmempp);

Parameters

parenth (IN)
An environment handle.

hndlpp (OUT)
Returns a handle.

type (IN)
Specifies the type of handle to be allocated. The allowed handles are described in Table 3-1.

Chapter 26
Handle and Descriptor Functions

26-67

xtramem_sz (IN)
Specifies an amount of user memory to be allocated.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for the user.

Comments

Returns a pointer to an allocated and initialized handle, corresponding to the type specified in
type. A non-NULL handle is returned on success. All handles are allocated with respect to an
environment handle that is passed in as a parent handle.

No diagnostics are available on error. This call returns OCI_SUCCESS if successful, or
OCI_INVALID_HANDLE if an error occurs.

Handles must be allocated using OCIHandleAlloc() before they can be passed into an OCI
call.

Related Topics

• OCIHandleFree()
Explicitly deallocates a handle

See Also:

User Memory Allocation for more information about using the xtramem_sz parameter
for user memory allocation

26.4.8 OCIHandleFree()
Explicitly deallocates a handle

Purpose

This call explicitly deallocates a handle.

Syntax

sword OCIHandleFree (void *hndlp,
 ub4 type);

Parameters

hndlp (IN)
A handle allocated by OCIHandleAlloc().

type (IN)
Specifies the type of storage to be freed. The handles are described in Table 3-1.

Comments

This call frees up storage associated with a handle, corresponding to the type specified in the
type parameter.

This call returns either OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Chapter 26
Handle and Descriptor Functions

26-68

All handles may be explicitly deallocated. The OCI deallocates a child handle if the parent is
deallocated.

When a statement handle is freed, the cursor associated with the statement handle is closed,
but the actual cursor closing may be deferred to the next round-trip to the server. If the
application must close the cursor immediately, you can make a server round-trip call, such as
OCIServerVersion() or OCIPing(), after the OCIHandleFree() call.

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIServerVersion()
Returns the Oracle Database version string.

• OCIPing()
Confirms that the connection and the server are active.

26.4.9 OCIParamGet()
Returns a descriptor of a parameter specified by position in the describe handle or statement
handle.

Purpose

Returns a descriptor of a parameter specified by position in the describe handle or statement
handle.

Syntax

sword OCIParamGet (const void *hndlp,
 ub4 htype,
 OCIError *errhp,
 void **parmdpp,
 ub4 pos);

Parameters

hndlp (IN)
A statement handle or describe handle. The OCIParamGet() function returns a parameter
descriptor for this handle.

htype (IN)
The type of the handle passed in the hndlp parameter. Valid types are:

• OCI_DTYPE_PARAM, for a parameter descriptor

• OCI_HTYPE_COMPLEXOBJECT, for a complex object retrieval handle

• OCI_HTYPE_STMT, for a statement handle

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

parmdpp (OUT)
A descriptor of the parameter at the position given in the pos parameter, of handle type
OCI_DTYPE_PARAM.

Chapter 26
Handle and Descriptor Functions

26-69

pos (IN)
Position number in the statement handle or describe handle. A parameter descriptor is
returned for this position.

Note:

OCI_ERROR is returned if there are no parameter descriptors for this position.

Comments

This call returns a descriptor of a parameter specified by position in the describe handle or
statement handle. Parameter descriptors are always allocated internally by the OCI library.
They can be freed using OCIDescriptorFree(). For example, if you fetch the same column
metadata for every execution of a statement, then the program leaks memory unless you
explicitly free the parameter descriptor between each call to OCIParamGet().

Related Topics

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIParamSet()
Sets a complex object retrieval (COR) descriptor into a COR handle.

• OCIDescriptorFree()
Deallocates a previously allocated descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Handle and Descriptor Attributes for more detailed information about parameter
descriptor attributes

26.4.10 OCIParamSet()
Sets a complex object retrieval (COR) descriptor into a COR handle.

Purpose

Sets a complex object retrieval (COR) descriptor into a COR handle.

Syntax

sword OCIParamSet (void *hndlp,
 ub4 htype,
 OCIError *errhp,
 const void *dscp,
 ub4 dtyp,
 ub4 pos);

Chapter 26
Handle and Descriptor Functions

26-70

Parameters

hndlp (IN/OUT)
Handle pointer.

htype (IN)
Handle type.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

dscp (IN)
Complex object retrieval descriptor pointer.

dtyp (IN)
Descriptor type. The descriptor type for a COR descriptor is OCI_DTYPE_COMPLEXOBJECTCOMP.

pos (IN)
Position number.

Comments

The COR handle must have been previously allocated using OCIHandleAlloc(), and the
descriptor must have been previously allocated using OCIDescriptorAlloc(). Attributes of the
descriptor are set using OCIAttrSet().

Related Topics

• OCIParamGet()
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Complex Object Retrieval for more information about complex object retrieval

26.5 Bind, Define, and Describe Functions
Lists and describes the bind, define, and describe functions.

Table 26-5 lists the bind, define, and describe functions that are described in this section.

Chapter 26
Bind, Define, and Describe Functions

26-71

Table 26-5 Bind, Define, and Describe Functions

Function Purpose

OCIBindArrayOfStruct() Set skip parameters for static array bind

OCIBindByName() Bind by name

OCIBindByName2() Bind by name. Use when return lengths exceed
UB2MAXVAL on the client.

OCIBindByPos() Bind by position

OCIBindByPos2() Bind by position. Use when return lengths
exceed UB2MAXVAL on the client.

OCIBindDynamic() Set additional attributes after bind with
OCI_DATA_AT_EXEC mode

OCIBindObject() Set additional attributes for bind of named data
type

OCIDefineArrayOfStruct() Set additional attributes for static array define

OCIDefineByPos() Define an output variable association

OCIDefineByPos2() Define an output variable association. Use when
return lengths exceed UB2MAXVAL on the client.

OCIDefineDynamic() Set additional attributes for define in
OCI_DYNAMIC_FETCH mode

OCIDefineObject() Set additional attributes for define of named data
type

OCIDescribeAny() Describe existing schema objects

OCIStmtGetBindInfo() Get bind and indicator variable names and
handle

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

Chapter 26
Bind, Define, and Describe Functions

26-72

• OCIDefineArrayOfStruct()
Specifies additional attributes necessary for a static array define, used in an array of
structures (multirow, multicolumn) fetch.

• OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

• OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

• OCIDefineDynamic()
Sets the additional attributes required if the OCI_DYNAMIC_FETCH mode was selected in
OCIDefineByPos() or OCIDefineByPos2().

• OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

• OCIDescribeAny()
Describes existing schema and subschema objects.

• OCIStmtGetBindInfo()
Gets the bind and indicator variable names.

• OCIServerDataLengthGet()
Gets the LOB data length when fetching LOB as buffer.

26.5.1 OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

Purpose

Sets up the skip parameters for a static array bind.

Syntax

sword OCIBindArrayOfStruct (OCIBind *bindp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 alskip,
 ub4 rcskip);

Parameters

bindp (IN/OUT)
The handle to a bind structure.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator value or structure.

Chapter 26
Bind, Define, and Describe Functions

26-73

alskip (IN)
Skip parameter for the next actual length value.

rcskip (IN)
Skip parameter for the next column-level return code value.

Comments

This call sets up the skip parameters necessary for a static array bind. It follows a call to
OCIBindByName() or OCIBindByPos(). The bind handle returned by that initial bind call is used
as a parameter for the OCIBindArrayOfStruct() call.

Related Topics

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

See Also:

About Binding and Defining Arrays of Structures in OCI for information about skip
parameters

26.5.2 OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block.

Purpose

Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block.

Syntax

sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 const OraText *placeholder,
 sb4 placeh_len,
 void *valuep,
 sb4 value_sz,

Chapter 26
Bind, Define, and Describe Functions

26-74

 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
A pointer to save the pointer of a bind handle that is implicitly allocated by this call. The bind
handle maintains all the bind information for this particular input value. The default encoding
for the call depends on the UTF-16 setting in stmtp unless the mode parameter has a different
value. The handle is freed implicitly when the statement handle is deallocated. On input, the
value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

placeholder (IN)
The placeholder, specified by its name, that maps to a variable in the statement associated
with the statement handle. The encoding of placeholder should always be consistent with
that of the environment. That is, if the statement is prepared in UTF-16, so is the placeholder.
As a string type parameter, the placeholder should be cast as (text *) and terminated with
NULL.

placeh_len (IN)
The length of the name specified in placeholder, in number of bytes regardless of the
encoding.

valuep (IN/OUT)
The pointer to a data value or an array of data values of type specified in the dty parameter.
This data could be a UTF-16 (formerly known as UCS-2) string, if an OCIAttrSet() function
has been called to set OCI_ATTR_CHARSET_ID as OCI_UTF16ID or the deprecated OCI_UCS2ID.
OCI_UTF16ID is the new designation for OCI_UCS2ID.
Furthermore, as pointed out for OCIStmtPrepare2() , the default encoding for the string type
valuep is in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate(), unless you call OCIAttrSet() to manually reset the character set for the
bind handle.

See Also:

Bind Handle Attributes

An array of data values can be specified for mapping into a PL/SQL table or for providing data
for SQL multiple-row operations. When an array of bind values is provided, this is called an
array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers to OUT buffers
are set in the pgvpp parameter initialized by OCIBindObject().

Chapter 26
Bind, Define, and Describe Functions

26-75

When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

value_sz (IN)
The maximum size possible in bytes of any data value (passed using valuep) for this bind
variable. This size is always expected to be the size in bytes. In the case of an array bind, this
is the maximum size of any element possible with the actual sizes being specified in the alenp
parameter.
For descriptors, locators, or REFs, whose size is unknown to client applications, use the size
of the pointer to the specific type; for example, sizeof (OCILobLocator *).
The same applies even when mode is OCI_IOV.

dty (IN)
The data type of the values being bound. Named data types (SQLT_NTY) and REFs (SQLT_REF)
are valid only if the application has been initialized in object mode. For named data types or
REFs, additional calls must be made with the bind handle to set up the data type-specific
attributes. See Comments for information about records, collections, and Booleans. For
named data type SQLT_CHR, OCIBindByName() trims trailing blanks when the actual length is 0.
Specify the actual length to prevent trailing blanks from being trimmed.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types except SQLT_NTY, this is a pointer to
sb2 or an array of sb2.
For SQLT_NTY, this pointer is ignored, and the actual pointer to the indicator structure or an
array of indicator structures is initialized in a subsequent call to OCIBindObject(). This
parameter is ignored for dynamic binds.

See Also:

Indicator Variables

alenp (IN/OUT)
Pointer to the array of actual lengths of array elements.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then alenp lengths are consistently expected in bytes (for IN binds) and
reported in bytes for OUT binds. The same treatment consistently also holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types. There are
no special exceptions for UCS2 or for NCHAR cases.
When the older OCI environment handle creation interfaces are used (either OCIEnvCreate())
or deprecated OCIEnvInit()), alenp lengths are in bytes in general. However, alenp lengths
are expected in characters for IN binds and also reported in characters for OUT binds only
when either the character set is OCI_UC2ID (= OCI_UTF16ID) or when OCI_ATTR_CHAR_COUNT
attribute is set on the corresponding OCIBind handle. The same treatment holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types.
This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to the array of column-level return codes. This parameter is ignored for dynamic binds.

maxarr_len (IN)
A maximum array length parameter (the maximum possible number of elements the user's
array can accommodate). Used only for PL/SQL indexed table bindings.

Chapter 26
Bind, Define, and Describe Functions

26-76

curelep (IN/OUT)
Current array length parameter (a pointer to the actual number of elements in the array before
or after the execute operation). Used only for PL/SQL indexed table bindings.

mode (IN)
To maintain coding consistency, theoretically this parameter can take all three possible values
used by OCIStmtPrepare2(). Because the encoding of bind variables should always be same
as that of the statement containing this variable, an error is raised if you specify an encoding
other than that of the statement. So the recommended setting for mode is OCI_DEFAULT, which
makes the bind variable have the same encoding as its statement.
The valid modes are:

• OCI_DEFAULT - The default mode. The statement handle that stmtp uses whatever is
specified by its parent environment handle.

• OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the call. If this is
the first bind or some input value like dty or value_sz is changed from the previous bind,
this mode is ignored. An error is returned if the statement is not executed. Unexpected
behavior results if the bind handle passed is not valid.

• OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter defines the
maximum size of the data that can be provided at run time. The application must be ready
to provide the OCI library runtime IN data buffers at any time and any number of times.
Runtime data is provided in one of these two ways:

– Callbacks using a user-defined function that must be registered with a subsequent call
to OCIBindDynamic().

– A polling mechanism using calls supplied by the OCI. This mode is assumed if no
callbacks are defined.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more
information about using the OCI_DATA_AT_EXEC mode

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep, indp, alenp, and
rcodep in the main call. Pass zeros (0) for indp and alenp. Provide the values through the
callback function registered using OCIBindDynamic().

• OCI_IOV - Bind noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV *. This mode is intended to be used for scatter or gather binding, which allows
multiple buffers to be bound or defined to a position, for example column A for the first 10
rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another buffer.
That eliminates the need to allocate and copy all of them into one big buffer while doing the
array execute operation.

See Also:

About Binding and Defining Multiple Buffers

When the allocated buffers are not required anymore, they should be freed by the client.

Chapter 26
Bind, Define, and Describe Functions

26-77

Comments

This call is used to perform a basic bind operation. The bind creates an association between
the address of a program variable and a placeholder in a SQL statement or PL/SQL block. The
bind call also specifies the type of data that is being bound, and may also indicate the method
by which data is provided at run time.

Encoding is determined by either the bind handle using the setting in the statement handle as
default, or you can override the setting by specifying the mode parameter explicitly.

The OCIBindByName() and OCIBimdByName2() also implicitly allocates the bind handle indicated
by the bindpp parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that
this points to a valid handle that has been previously allocated with a call to OCIHandleAlloc()
or OCIBindByName().

Data in an OCI application can be bound to placeholders statically or dynamically. Binding is
static when all the IN bind data and the OUT bind buffers are well defined just before the
execute operation. Binding is dynamic when the IN bind data and the OUT bind buffers are
provided by the application on demand at execution time to the client library. Dynamic binding
is indicated by setting the mode parameter of this call to OCI_DATA_AT_EXEC.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
dynamic binding

Both OCIBindByName() and OCIBindByName2() and OCIBindByPos() and OCIBindByPos2()
take as a parameter a bind handle, which is implicitly allocated by the bind call. A separate
bind handle is allocated for each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary when binding
certain data types or handling input data in certain ways:

• If arrays of structures are being used, OCIBindArrayOfStruct() must be called to set up
the necessary skip parameters.

• If data is being provided dynamically at run time, and the application uses user-defined
callback functions, OCIBindDynamic() must be called to register the callbacks.

• If lengths in alenp greater than 64 Kilobytes (KB) are required, use OCIBindDynamic().

• If a named data type is being bound, OCIBindObject() must be called to specify additional
necessary information.

• If a statement with the RETURNING clause is used, a call to OCIBindDynamic() must follow
this call.

With IN binds, the values for each element of the array, the actual lengths of each element, and
the actual array length must be set up before the call to OCIStmtExecute().

With OUT binds, the values for each element of the array, the actual lengths of each element,
and the actual array length are returned from the server after the OCIStmtExecute() call.

Chapter 26
Bind, Define, and Describe Functions

26-78

For Records
Clients must bind package record types using SQLT_NTY as the DTY of the bind. In the OCI
client, objects and records are represented as Named Types (NTY) and must use the same
SQLT code.

For Collections
Clients must bind all package collection types using SQLT_NTY. This is the DTY used to bind all
schema level collection types.

For Booleans
Clients must bind Boolean types (OCI_TYPECODE_BOOLEAN) using SQLT_BOL.

Related Topics

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIStmtExecute()
Associates an application request with a server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Bind, Define, and Describe Functions

26-79

26.5.3 OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block. Use this function when working with data types when actual lengths exceed
UB2MAXVAL on the client.

Purpose

Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block. Use this call instead of OCIBindByName() when working with data types when
actual lengths exceed UB2MAXVAL on the client.

Syntax

sword OCIBindByName2 (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 const OraText *placeholder,
 sb4 placeh_len,
 void *valuep,
 sb8 value_sz,
 ub2 dty,
 void *indp,
 ub4 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
A pointer to save the pointer of a bind handle that is implicitly allocated by this call. The bind
handle maintains all the bind information for this particular input value. The default encoding
for the call depends on the UTF-16 setting in stmtp unless the mode parameter has a different
value. The handle is freed implicitly when the statement handle is deallocated. On input, the
value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

placeholder (IN)
The placeholder, specified by its name, that maps to a variable in the statement associated
with the statement handle. The encoding of placeholder should always be consistent with
that of the environment. That is, if the statement is prepared in UTF-16, so is the placeholder.
As a string type parameter, the placeholder should be cast as (text *) and terminated with
NULL.

placeh_len (IN)
The length of the name specified in placeholder, in number of bytes regardless of the
encoding.

Chapter 26
Bind, Define, and Describe Functions

26-80

valuep (IN/OUT)
The pointer to a data value or an array of data values of type specified in the dty parameter.
This data could be a UTF-16 (formerly known as UCS-2) string, if an OCIAttrSet() function
has been called to set OCI_ATTR_CHARSET_ID as OCI_UTF16ID or the deprecated OCI_UCS2ID.
OCI_UTF16ID is the new designation for OCI_UCS2ID.
Furthermore, as pointed out for OCIStmtPrepare2(), the default encoding for the string type
valuep is in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate(), unless you call OCIAttrSet() to manually reset the character set for the
bind handle.

See Also:

Bind Handle Attributes

An array of data values can be specified for mapping into a PL/SQL table or for providing data
for SQL multiple-row operations. When an array of bind values is provided, this is called an
array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers to OUT buffers
are set in the pgvpp parameter initialized by OCIBindObject().

When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

value_sz (IN)
The maximum size possible in bytes of any data value (passed using valuep) for this bind
variable. This size is always expected to be the size in bytes. In the case of an array bind, this
is the maximum size of any element possible with the actual sizes being specified in the alenp
parameter.
If the value of value_sz > SB4MAXVAL, an ORA-24452 error will be issued, meaning that values
> SB4MAXVAL are not supported in Release 12.1 or later.
For descriptors, locators, or REFs, whose size is unknown to client applications, use the size
of the pointer to the specific type; for example, sizeof (OCILobLocator *).
The same applies even when mode is OCI_IOV.

dty (IN)
The data type of the values being bound. Named data types (SQLT_NTY) and REFs (SQLT_REF)
are valid only if the application has been initialized in object mode. For named data types or
REFs, additional calls must be made with the bind handle to set up the data type-specific
attributes. See Comments for information about records, collections, and Booleans. For
named data type SQLT_CHR, OCIBindByName2() trims trailing blanks when the actual length is
0. Specify the actual length to prevent trailing blanks from being trimmed.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types except SQLT_NTY, this is a pointer to
sb2 or an array of sb2.
For SQLT_NTY, this pointer is ignored, and the actual pointer to the indicator structure or an
array of indicator structures is initialized in a subsequent call to OCIBindObject(). This
parameter is ignored for dynamic binds.

Chapter 26
Bind, Define, and Describe Functions

26-81

See Also:

Indicator Variables

alenp (IN/OUT)
Pointer to the array of actual lengths of array elements.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then alenp lengths are consistently expected in bytes (for IN binds) and
reported in bytes for OUT binds. The same treatment consistently also holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types. There are
no special exceptions for UCS2 or for NCHAR cases.
When the older OCI environment handle creation interfaces are used (either OCIEnvCreate())
or deprecated OCIEnvInit()), alenp lengths are in bytes in general. However, alenp lengths
are expected in characters for IN binds and also reported in characters for OUT binds only
when either the character set is OCI_UC2ID (= OCI_UTF16ID) or when OCI_ATTR_CHAR_COUNT
attribute is set on the corresponding OCIBind handle. The same treatment holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types.
This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to the array of column-level return codes. This parameter is ignored for dynamic binds.

maxarr_len (IN)
A maximum array length parameter (the maximum possible number of elements the user's
array can accommodate). Used only for PL/SQL indexed table bindings.

curelep (IN/OUT)
Current array length parameter (a pointer to the actual number of elements in the array before
or after the execute operation). Used only for PL/SQL indexed table bindings.

mode (IN)
To maintain coding consistency, theoretically this parameter can take all three possible values
used by OCIStmtPrepare2(). Because the encoding of bind variables should always be same
as that of the statement containing this variable, an error is raised if you specify an encoding
other than that of the statement. So the recommended setting for mode is OCI_DEFAULT, which
makes the bind variable have the same encoding as its statement.
The valid modes are:

• OCI_DEFAULT - The default mode. The statement handle that stmtp uses whatever is
specified by its parent environment handle.

• OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the call. If this is
the first bind or some input value like dty or value_sz is changed from the previous bind,
this mode is ignored. An error is returned if the statement is not executed. Unexpected
behavior results if the bind handle passed is not valid.

• OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter defines the
maximum size of the data that can be provided at run time. The application must be ready
to provide the OCI library runtime IN data buffers at any time and any number of times.
Runtime data is provided in one of these two ways:

– Callbacks using a user-defined function that must be registered with a subsequent call
to OCIBindDynamic().

– A polling mechanism using calls supplied by the OCI. This mode is assumed if no
callbacks are defined.

Chapter 26
Bind, Define, and Describe Functions

26-82

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more
information about using the OCI_DATA_AT_EXEC mode

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep, indp, alenp, and
rcodep in the main call. Pass zeros (0) for indp and alenp. Provide the values through the
callback function registered using OCIBindDynamic().

• OCI_IOV - Bind noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV *. This mode is intended to be used for scatter or gather binding, which allows
multiple buffers to be bound or defined to a position, for example column A for the first 10
rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another buffer.
That eliminates the need to allocate and copy all of them into one big buffer while doing the
array execute operation.

See Also:

About Binding and Defining Multiple Buffers

When the allocated buffers are not required anymore, they should be freed by the client.

Comments

This call is used to perform a basic bind operation. The bind creates an association between
the address of a program variable and a placeholder in a SQL statement or PL/SQL block. The
bind call also specifies the type of data that is being bound, and may also indicate the method
by which data is provided at run time.

Encoding is determined by either the bind handle using the setting in the statement handle as
default, or you can override the setting by specifying the mode parameter explicitly.

The OCIBindByName2() also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this points to a
valid handle that has been previously allocated with a call to OCIHandleAlloc() or
OCIBindByName2().

Data in an OCI application can be bound to placeholders statically or dynamically. Binding is
static when all the IN bind data and the OUT bind buffers are well defined just before the
execute operation. Binding is dynamic when the IN bind data and the OUT bind buffers are
provided by the application on demand at execution time to the client library. Dynamic binding
is indicated by setting the mode parameter of this call to OCI_DATA_AT_EXEC.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
dynamic binding

Both OCIBindByName2() and OCIBindByPos2() take as a parameter a bind handle, which is
implicitly allocated by the bind call. A separate bind handle is allocated for each placeholder
the application is binding.

Chapter 26
Bind, Define, and Describe Functions

26-83

Additional bind calls may be required to specify particular attributes necessary when binding
certain data types or handling input data in certain ways:

• If arrays of structures are being used, OCIBindArrayOfStruct() must be called to set up
the necessary skip parameters.

• If data is being provided dynamically at run time, and the application uses user-defined
callback functions, OCIBindDynamic() must be called to register the callbacks.

• If lengths in alenp greater than 64 Kilobytes (KB) are required, use OCIBindDynamic().

• If a named data type is being bound, OCIBindObject() must be called to specify additional
necessary information.

• If a statement with the RETURNING clause is used, a call to OCIBindDynamic() must follow
this call.

With IN binds, the values for each element of the array, the actual lengths of each element, and
the actual array length must be set up before the call to OCIStmtExecute().

With OUT binds, the values for each element of the array, the actual lengths of each element,
and the actual array length are returned from the server after the OCIStmtExecute() call.

For Records
Clients must bind package record types using SQLT_NTY as the DTY of the bind. In the OCI
client, objects and records are represented as Named Types (NTY) and must use the same
SQLT code.

For Collections
Clients must bind all package collection types using SQLT_NTY. This is the DTY used to bind all
schema level collection types.

For Booleans
Clients must bind Boolean types (OCI_TYPECODE_BOOLEAN) using SQLT_BOL.

Related Topics

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 26
Bind, Define, and Describe Functions

26-84

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIStmtExecute()
Associates an application request with a server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.5.4 OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block.

Purpose

Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block.

Syntax

sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle that is implicitly allocated by this call. The bind handle maintains
all the bind information for this particular input value. The handle is freed implicitly when the
statement handle is deallocated. On input, the value of the pointer must be NULL or a valid
bind handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Chapter 26
Bind, Define, and Describe Functions

26-85

position (IN)
The placeholder attributes are specified by position if OCIBindByPos() is being called.
Positions are 1-based.

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL table or for
providing data for SQL multiple-row operations. When an array of bind values is provided, this
is called an array bind in OCI terms.
For a LOB, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator. Give
the address of the pointer.
For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers to OUT
buffers are set in the pgvpp parameter initialized by OCIBindObject().
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding bind call is assumed to be in UTF-16 encoding.
When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

See Also:

Bind Handle Attributes

value_sz (IN)
The maximum size possible in bytes of any data value (passed using valuep) for this bind
variable. This size is always expected to be the size in bytes. In the case of an array bind, this
is the maximum size of any element possible with the actual sizes being specified in the alenp
parameter.
For descriptors, locators, or REFs, whose size is unknown to client applications, use the size of
the pointer to the specific type; for example, sizeof (OCILobLocator *).
The same applies even when mode is OCI_IOV.

dty (IN)
The data type of the values being bound. Named data types (SQLT_NTY) and REFs
(SQLT_REF) are valid only if the application has been initialized in object mode. For named
data types or REFs, additional calls must be made with the bind handle to set up the attributes
specific to the data type. See Comments for information about records, collections, and
Booleans. For named data type SQLT_CHR, OCIBindByPos() trims trailing blanks when the
actual length is 0. Specify the actual length to prevent trailing blanks from being trimmed.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types, this is a pointer to sb2 or an array
of sb2 values. The only exception is SQLT_NTY, where this pointer is ignored and the actual
pointer to the indicator structure or an array of indicator structures is initialized by
OCIBindObject(). The indp parameter is ignored for dynamic binds. If valuep is an OUT
parameter, then you must set indp to point to OCI_IND_NULL.

See Also:

Indicator Variables

Chapter 26
Bind, Define, and Describe Functions

26-86

alenp (IN/OUT)
Pointer to an array of actual lengths of array elements.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then alenp lengths are consistently expected in bytes (for IN binds) and
reported in bytes for OUT binds. The same treatment consistently also holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types. There are
no special exceptions for UCS2 or for NCHAR cases.
When the older OCI environment handle creation interfaces are used (either OCIEnvCreate()
or deprecated OCIEnvInit()), alenp lengths are in bytes in general. However, alenp lengths
are expected in characters for IN binds and also reported in characters for OUT binds only
when either the character set is OCI_UC2ID (= OCI_UTF16ID) or when OCI_ATTR_CHAR_COUNT
attribute is set on the corresponding OCIBind handle. The same treatment holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types.
This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to an array of column-level return codes. This parameter is ignored for dynamic binds.

maxarr_len (IN)
A maximum array length parameter (the maximum possible number of elements that the
user's array can accommodate). Used only for PL/SQL indexed table bindings.

curelep (IN/OUT)
Current array length parameter (a pointer to the actual number of elements in the array before
or after the execute operation). Used only for PL/SQL indexed table bindings.

mode (IN)
The valid modes for this parameter are:

• OCI_DEFAULT - This is default mode.

• OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the call. If this
is the first bind or some input value like dty or value_sz is changed from the previous
bind, this mode is ignored. An error is returned if the statement is not executed.
Unexpected behavior results if the bind handle passed is not valid.

• OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter defines the
maximum size of the data that can be provided at run time. The application must be ready
to provide the OCI library runtime IN data buffers at any time and any number of times.
Runtime data is provided in one of the following ways:

– Callbacks using a user-defined function that must be registered with a subsequent call
to OCIBindDynamic().

– A polling mechanism using calls supplied by OCI. This mode is assumed if no
callbacks are defined.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more
information about using the OCI_DATA_AT_EXEC mode

Chapter 26
Bind, Define, and Describe Functions

26-87

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep, indp, alenp,
and rcodep in the main call. Pass zeros (0) for indp and alenp. Provide the values
through the callback function registered using OCIBindDynamic().

• OCI_IOV - Bind noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV *. This mode is intended to be used for scatter or gather binding, which
allows multiple buffers to be bound or defined to a position, for example column A for the
first 10 rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another
buffer. That eliminates the need to allocate and copy all of them into one big buffer while
doing the array execute operation.

See Also:

About Binding and Defining Multiple Buffers

When the allocated buffers are not required anymore, they should be freed by the client.

Comments

This call is used to perform a basic bind operation. The bind creates an association between
the address of a program variable and a placeholder in a SQL statement or PL/SQL block. The
bind call also specifies the type of data that is being bound, and may also indicate the method
by which data is to be provided at run time.

This function also implicitly allocates the bind handle indicated by the bindpp parameter. If a
non-NULL pointer is passed in **bindpp, OCI assumes that this points to a valid handle that
has been previously allocated with a call to OCIHandleAlloc() or OCIBindByPos().

Data in an OCI application can be bound to placeholders statically or dynamically. Binding is
static when all the IN bind data and the OUT bind buffers are well defined just before the
execute operation. Binding is dynamic when the IN bind data and the OUT bind buffers are
provided by the application on demand at execution time to the client library. Dynamic binding
is indicated by setting the mode parameter of this call to OCI_DATA_AT_EXEC.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
dynamic binding

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind handle, which is
implicitly allocated by the bind call. A separate bind handle is allocated for each placeholder
the application is binding.

Additional bind calls may be required to specify particular attributes necessary when binding
certain data types or handling input data in certain ways:

• If arrays of structures are being used, OCIBindArrayOfStruct() must be called to set up
the necessary skip parameters.

• If data is being provided dynamically at run time, and the application uses user-defined
callback functions, OCIBindDynamic() must be called to register the callbacks.

• If lengths in alenp greater than 64 KB are required, use OCIBindDynamic().

Chapter 26
Bind, Define, and Describe Functions

26-88

• If a named data type is being bound, OCIBindObject() must be called to specify additional
necessary information.

• If a statement with the RETURNING clause is used, a call to OCIBindDynamic() must follow
this call.

With IN binds, the values for each element of the array, the actual lengths of each element, and
the actual array length must be set up before the call to OCIStmtExecute().

With OUT binds, the values for each element of the array, the actual lengths of each element,
and the actual array length are returned from the server after theOCIStmtExecute() call.

For Records
Clients must bind package record types using SQLT_NTY as the DTY of the bind. In the OCI
client, objects and records are represented as Named Types (NTY) and must use the same
SQLT code.

For Collections
Clients must bind all package collection types using SQLT_NTY. This is the DTY used to bind all
schema level collection types.

For Booleans
Clients must bind Boolean types (OCI_TYPECODE_BOOLEAN) using SQLT_BOL.

Example 26-6 Sample code snippet showing support for boolean data type

The following code snippet demonstrates how OCIBindByPos () works with a boolean type:

#include <stdbool.h>
static text *insStmt = (text *)"INSERT INTO BoolTable(booleanColumn)VALUES
(:booleanColumn)";
OCIBind *bndp = (OCIBind *) 0;
bool boolIn = true;

// example Boolean bind showing relevant parameters for brevity
status = OCIBindByPos(stmthp, &bndp, errhp, 1,(dvoid *) &boolIn, (sword)
sizeof(boolIn), SQLT_BOL, ...)

Note:

If the columns that the values are being compared with or inserted into are not the
appropriate types, then a conversion can take place. If the value cannot be
converted, an error is returned.

Related Topics

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

Chapter 26
Bind, Define, and Describe Functions

26-89

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIStmtExecute()
Associates an application request with a server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.5.5 OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

Purpose

Creates an association between a program variable and a placeholder in a SQL statement or
PL/SQL block. Use this call instead of OCIBindByPos() when working with data types when
actual lengths exceed UB2MAXVAL on the client.

Syntax

sword OCIBindByPos2 (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb8 value_sz,
 ub2 dty,
 void *indp,
 ub4 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

Chapter 26
Bind, Define, and Describe Functions

26-90

bindpp (IN/OUT)
An address of a bind handle that is implicitly allocated by this call. The bind handle maintains
all the bind information for this particular input value. The handle is freed implicitly when the
statement handle is deallocated. On input, the value of the pointer must be NULL or a valid
bind handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

position (IN)
The placeholder attributes are specified by position if OCIBindByPos() is being called.
Positions are 1-based.

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL table or for
providing data for SQL multiple-row operations. When an array of bind values is provided, this
is called an array bind in OCI terms.
For a LOB, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator. Give
the address of the pointer.
For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers to OUT
buffers are set in the pgvpp parameter initialized by OCIBindObject().
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding bind call is assumed to be in UTF-16 encoding.
When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

See Also:

Bind Handle Attributes

value_sz (IN)
The maximum size possible in bytes of any data value (passed using valuep) for this bind
variable. This size is always expected to be the size in bytes. In the case of an array bind, this
is the maximum size of any element possible with the actual sizes being specified in the alenp
parameter.
If the value of value_sz > SB4MAXVAL, an ORA-24452 error will be issued, meaning that values
> SB4MAXVAL are not supported in Release 12.1 or later.
For descriptors, locators, or REFs, whose size is unknown to client applications, use the size of
the pointer to the specific type; for example, sizeof (OCILobLocator *).
The same applies even when mode is OCI_IOV.

dty (IN)
The data type of the values being bound. Named data types (SQLT_NTY) and REFs
(SQLT_REF) are valid only if the application has been initialized in object mode. For named
data types or REFs, additional calls must be made with the bind handle to set up the attributes
specific to the data type. See Comments for information about records, collections, and
Booleans. For named data type SQLT_CHR, OCIBindByPos2() trims trailing blanks when the
actual length is 0. Specify the actual length to prevent trailing blanks from being trimmed.

Chapter 26
Bind, Define, and Describe Functions

26-91

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types, this is a pointer to sb2 or an array
of sb2 values. The only exception is SQLT_NTY, where this pointer is ignored and the actual
pointer to the indicator structure or an array of indicator structures is initialized by
OCIBindObject(). The indp parameter is ignored for dynamic binds. If valuep is an OUT
parameter, then you must set indp to point to OCI_IND_NULL.

See Also:

Indicator Variables

alenp (IN/OUT)
Pointer to an array of actual lengths of array elements.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then alenp lengths are consistently expected in bytes (for IN binds) and
reported in bytes for OUT binds. The same treatment consistently also holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types. There are
no special exceptions for UCS2 or for NCHAR cases.
When the older OCI environment handle creation interfaces are used (either OCIEnvCreate()
or deprecated OCIEnvInit()), alenp lengths are in bytes in general. However, alenp lengths
are expected in characters for IN binds and also reported in characters for OUT binds only
when either the character set is OCI_UC2ID (= OCI_UTF16ID) or when OCI_ATTR_CHAR_COUNT
attribute is set on the corresponding OCIBind handle. The same treatment holds for the length
prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte length prefix) types.
This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to an array of column-level return codes. This parameter is ignored for dynamic binds.

maxarr_len (IN)
A maximum array length parameter (the maximum possible number of elements that the
user's array can accommodate). Used only for PL/SQL indexed table bindings.

curelep (IN/OUT)
Current array length parameter (a pointer to the actual number of elements in the array before
or after the execute operation). Used only for PL/SQL indexed table bindings.

mode (IN)
The valid modes for this parameter are:

• OCI_DEFAULT - This is default mode.

• OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the call. If this
is the first bind or some input value like dty or value_sz is changed from the previous
bind, this mode is ignored. An error is returned if the statement is not executed.
Unexpected behavior results if the bind handle passed is not valid.

• OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter defines the
maximum size of the data that can be provided at run time. The application must be ready
to provide the OCI library runtime IN data buffers at any time and any number of times.
Runtime data is provided in one of the following ways:

Chapter 26
Bind, Define, and Describe Functions

26-92

– Callbacks using a user-defined function that must be registered with a subsequent call
to OCIBindDynamic().

– A polling mechanism using calls supplied by OCI. This mode is assumed if no
callbacks are defined.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more
information about using the OCI_DATA_AT_EXEC mode

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep, indp, alenp,
and rcodep in the main call. Pass zeros (0) for indp and alenp. Provide the values
through the callback function registered using OCIBindDynamic().

• OCI_IOV - Bind noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV * . This mode is intended to be used for scatter or gather binding, which
allows multiple buffers to be bound or defined to a position, for example column A for the
first 10 rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another
buffer. That eliminates the need to allocate and copy all of them into one big buffer while
doing the array execute operation.

See Also:

About Binding and Defining Multiple Buffers

When the allocated buffers are not required anymore, they should be freed by the client.

Comments

This call is used to perform a basic bind operation. The bind creates an association between
the address of a program variable and a placeholder in a SQL statement or PL/SQL block. The
bind call also specifies the type of data that is being bound, and may also indicate the method
by which data is to be provided at run time.

This function also implicitly allocates the bind handle indicated by the bindpp parameter. If a
non-NULL pointer is passed in **bindpp, OCI assumes that this points to a valid handle that
has been previously allocated with a call to OCIHandleAlloc() or OCIBindByPos2().

Data in an OCI application can be bound to placeholders statically or dynamically. Binding is
static when all the IN bind data and the OUT bind buffers are well defined just before the
execute operation. Binding is dynamic when the IN bind data and the OUT bind buffers are
provided by the application on demand at execution time to the client library. Dynamic binding
is indicated by setting the mode parameter of this call to OCI_DATA_AT_EXEC.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
dynamic binding

Chapter 26
Bind, Define, and Describe Functions

26-93

Both OCIBindByName2() and OCIBindByPos2() take as a parameter a bind handle, which is
implicitly allocated by the bind call. A separate bind handle is allocated for each placeholder
the application is binding.

Additional bind calls may be required to specify particular attributes necessary when binding
certain data types or handling input data in certain ways:

• If arrays of structures are being used, OCIBindArrayOfStruct() must be called to set up
the necessary skip parameters.

• If data is being provided dynamically at run time, and the application uses user-defined
callback functions, OCIBindDynamic() must be called to register the callbacks.

• If lengths in alenp greater than 64 KB are required, use OCIBindDynamic().

• If a named data type is being bound, OCIBindObject() must be called to specify additional
necessary information.

• If a statement with the RETURNING clause is used, a call to OCIBindDynamic() must follow
this call.

With IN binds, the values for each element of the array, the actual lengths of each element, and
the actual array length must be set up before the call to OCIStmtExecute() .

With OUT binds, the values for each element of the array, the actual lengths of each element,
and the actual array length are returned from the server after the OCIStmtExecute() call.

For Records
Clients must bind package record types using SQLT_NTY as the DTY of the bind. In the OCI
client, objects and records are represented as Named Types (NTY) and must use the same
SQLT code.

For Collections
Clients must bind all package collection types using SQLT_NTY. This is the DTY used to bind all
schema level collection types.

For Booleans
Clients must bind Boolean types (OCI_TYPECODE_BOOLEAN) using SQLT_BOL.

Related Topics

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Chapter 26
Bind, Define, and Describe Functions

26-94

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIStmtExecute()
Associates an application request with a server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.5.6 OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

Purpose

Registers user callbacks for dynamic data allocation.

Syntax

sword OCIBindDynamic (OCIBind *bindp,
 OCIError *errhp,
 void *ictxp,
 OCICallbackInBind (icbfp)(
 void *ictxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 void **bufpp,
 ub4 *alenp,
 ub1 *piecep,
 void **indpp),
 void *octxp,
 OCICallbackOutBind (ocbfp)(
 void *octxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 void **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 void **indpp,
 ub2 **rcodepp));

Parameters

bindp (IN/OUT)
A bind handle returned by a call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

ictxp (IN)
The context pointer required by the callback function icbfp.

Chapter 26
Bind, Define, and Describe Functions

26-95

icbfp (IN)
The callback function that returns a pointer to the IN bind value or piece at run time. The
callback takes in the following parameters:

ictxp (IN/OUT)
The context pointer for this callback function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
A 0-based execute iteration value.

index (IN)
Index of the current array, for an array bind in PL/SQL. For SQL it is the row index. The value
is 0-based and not greater than the curelep parameter of the bind call.

bufpp (OUT)
The pointer to the buffer or storage. For descriptors, *bufpp contains a pointer to the
descriptor. For example, if you define the following parameter, then you set *bufpp to lobp,
not *lobp.

OCILobLocator *lobp;

For REFs, pass the address of the ref; that is, pass &my_ref for *bufpp.
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding bind call is assumed to be in UTF-16 encoding.

See Also:

Bind Handle Attributes

alenp (OUT)
A pointer to storage for OCI to fill in the size of the bind value or piece after it has been read.
For descriptors, pass the size of the pointer to the descriptor; for example,
sizeof(OCILobLocator *).

piecep (OUT)
A piece of the bind value. This can be one of the following values: OCI_ONE_PIECE,
OCI_FIRST_PIECE, OCI_NEXT_PIECE, and OCI_LAST_PIECE. For data types that do not support
piecewise operations, you must pass OCI_ONE_PIECE or an error is generated.

indpp (OUT)
Contains the indicator value. This is either a pointer to an sb2 value or a pointer to an indicator
structure for binding named data types.

octxp (IN)
The context pointer required by the callback function ocbfp().

ocbfp (IN)
The callback function that returns a pointer to the OUT bind value or piece at run time. The
callback takes in the following parameters:

Chapter 26
Bind, Define, and Describe Functions

26-96

octxp (IN/OUT)
The context pointer for this callback function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
A 0-based execute iteration value.

index (IN)
For PL/SQL, the index of the current array for an array bind. For SQL, the index is the row
number in the current iteration. It is 0-based, and must not be greater than the curelep
parameter of the bind call.

bufpp (OUT)
A pointer to a buffer to write the bind value or piece in.
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding bind call is assumed to be in UTF-16 encoding. For more information, see
"Bind Handle Attributes".

alenpp (IN/OUT)
A pointer to storage for OCI to fill in the size of the bind value or piece after it has been read. It
is in bytes except for Unicode encoding (if the OCI_ATTR_CHARSET_ID attribute is set to
OCI_UTF16ID), when it is in code points.

piecep (IN/OUT)
Returns a piece value from the callback (application) to the Oracle Database, as follows:

• IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

• OUT - Depends on the IN value:

– If IN value is OCI_ONE_PIECE, then OUT value can be OCI_ONE_PIECE or
OCI_FIRST_PIECE.

– If IN value is OCI_NEXT_PIECE, then OUT value can be OCI_NEXT_PIECE or
OCI_LAST_PIECE.

indpp (OUT)
Contains the indicator value. This is either a pointer to an sb2 value, or a pointer to an
indicator structure for binding named data types.

rcodepp (OUT)
Returns a pointer to the return code.

Comments

This call is used to register user-defined callback functions for providing or receiving data if
OCI_DATA_AT_EXEC mode was specified in a previous call to OCIBindByName() or
OCIBindByPos().

The callback function pointers must return OCI_CONTINUE if the call is successful. Any return
code other than OCI_CONTINUE signals that the client wants to terminate processing
immediately.

Chapter 26
Bind, Define, and Describe Functions

26-97

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
the OCI_DATA_AT_EXEC mode

When passing the address of a storage area, ensure that the storage area exists even after the
application returns from the callback. This means that you should not allocate such storage on
the stack.

Note:

After you use OCIEnvNlsCreate() to create the environment handle, the actual
lengths and returned lengths of bind and define handles are always in number of
bytes.

Related Topics

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.5.7 OCIBindObject()
Sets up additional attributes that are required for a named data type (object) bind.

Purpose

Sets up additional attributes that are required for a named data type (object) bind.

Syntax

sword OCIBindObject (OCIBind *bindp,
 OCIError *errhp,
 const OCIType *type,
 void **pgvpp,
 ub4 *pvszsp,

Chapter 26
Bind, Define, and Describe Functions

26-98

 void **indpp,
 ub4 *indszp,);

Parameters

bindp (IN/OUT)
The bind handle returned by the call to OCIBindByName() or OCIBindByName2() or
OCIBindByPos() or OCIBindByPos2().

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

type (IN)
Points to the TDO that describes the type of program variable being bound. Retrieved by
calling OCITypeByName(). Optional for REFs in SQL, but required for REFs in PL/SQL.

pgvpp (IN/OUT)
Address of the program variable buffer. For an array, pgvpp points to an array of addresses.
When the bind variable is also an OUT variable, the OUT named data type value or REF is
allocated in the Object Cache, and a REF is returned.
pgvpp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the named data type buffers are
requested at run time. For static array binds, skip factors may be specified using the
OCIBindArrayOfStruct() call. The skip factors are used to compute the address of the next
pointer to the value, the indicator structure, and their sizes.

pvszsp (OUT) [optional]
Points to the size of the program variable. The size of the named data type is not required on
input. For an array, pvszsp is an array of ub4s. On return, for OUT bind variables, this points to
sizes of the named data types and REFs received. pvszsp is ignored if the OCI_DATA_AT_EXEC
mode is set. Then the size of the buffer is taken at run time.

indpp (IN/OUT) [optional]
Address of the program variable buffer containing the parallel indicator structure. For an array,
indpp points to an array of pointers. When the bind variable is also an OUT bind variable,
memory is allocated in the object cache, to store the OUT indicator values. At the end of the
execute operation when all OUT values have been received, indpp points to the pointers of
these newly allocated indicator structures. Required only for SQLT_NTY binds. The indpp
parameter is ignored if the OCI_DATA_AT_EXEC mode is set. Then the indicator is requested at
run time.

indszp (IN/OUT)
Points to the size of the IN indicator structure program variable. For an array, it is an array of
sb2s. On return for OUT bind variables, this points to sizes of the received OUT indicator
structures. indszp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the indicator size is
requested at run time.

Comments

This function sets up additional attributes for binding a named data type or a REF. An error is
returned if this function is called when the OCI environment has been initialized in non-object
mode.

This call takes as a parameter a type descriptor object (TDO) of data type OCIType for the
named data type being defined. The TDO can be retrieved with a call to OCITypeByName().

Chapter 26
Bind, Define, and Describe Functions

26-99

If the OCI_DATA_AT_EXEC mode was specified in OCIBindByName() or OCIBindByName2() or
OCIBindByPos() or OCIBindByPos2(), the pointers to the IN buffers are obtained either using
the callback icbfp registered in the OCIBindDynamic() call or by the OCIStmtSetPieceInfo()
call.

The buffers are dynamically allocated for the OUT data. The pointers to these buffers are
returned either by:

• Calling ocbfp() registered by the OCIBindDynamic()
• Setting the pointer to the buffer in the buffer passed in by OCIStmtSetPieceInfo() called

when OCIStmtExecute() returned OCI_NEED_DATA
The memory of these client library-allocated buffers must be freed when not in use anymore by
using the OCIObjectFree() call.

Related Topics

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIBindArrayOfStruct()
Sets up the skip parameters for a static array bind.

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCIStmtSetPieceInfo()
Sets piece information for a piecewise operation.

• OCIStmtExecute()
Associates an application request with a server.

• OCIObjectFree()
Frees and unpins an object instance.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Bind, Define, and Describe Functions

26-100

26.5.8 OCIDefineArrayOfStruct()
Specifies additional attributes necessary for a static array define, used in an array of structures
(multirow, multicolumn) fetch.

Purpose

Specifies additional attributes necessary for a static array define, used in an array of structures
(multirow, multicolumn) fetch.

Syntax

sword OCIDefineArrayOfStruct (OCIDefine *defnp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 rlskip,
 ub4 rcskip);

Parameters

defnp (IN/OUT)
The handle to the define structure that was returned by a call to OCIDefineByPos() or
OCIDefineByPos2().

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator location.

rlskip (IN)
Skip parameter for the next return length value.

rcskip (IN)
Skip parameter for the next return code.

Comments

This call follows a call to OCIDefineByPos() or OCIDefineByPos2(). If the application is binding
an array of structures involving objects, it must call OCIDefineObject() first, and then call
OCIDefineArrayOfStruct().

Related Topics

• OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

• OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

• OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

Chapter 26
Bind, Define, and Describe Functions

26-101

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Skip Parameters

26.5.9 OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

Purpose

Associates an item in a select list with the type and output data buffer.

Syntax

sword OCIDefineByPos (OCIStmt *stmtp,
 OCIDefine **defnpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb4 value_sz,
 ub2 dty,
 void *indp,
 ub2 *rlenp,
 ub2 *rcodep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
A handle to the requested SQL query operation.

defnpp (IN/OUT)
A pointer to a pointer to a define handle. If this parameter is passed as NULL, this call implicitly
allocates the define handle. For a redefine, a non-NULL handle can be passed in this
parameter. This handle is used to store the define information for this column.

Note:

You must keep track of this pointer. If a second call to OCIDefineByPos() is made for
the same column position, there is no guarantee that the same pointer will be
returned.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

position (IN)
The position of this value in the select list. Positions are 1-based and are numbered from left
to right. The value 0 selects ROWIDs (the globally unique identifier for a row in a table).

Chapter 26
Bind, Define, and Describe Functions

26-102

valuep (IN/OUT)
A pointer to a buffer or an array of buffers of the type specified in the dty parameter. A number
of buffers can be specified when results for more than one row are desired in a single fetch
call.
For a LOB, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator. Give
the address of the pointer.
When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

value_sz (IN)
The size of each valuep buffer in bytes. If the data is stored internally in VARCHAR2 format,
the number of characters desired, if different from the buffer size in bytes, can be specified by
using OCIAttrSet().
In a multibyte conversion environment, a truncation error is generated if the number of bytes
specified is insufficient to handle the number of characters needed.
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding define call is assumed to be in UTF-16 encoding.
When mode is set to OCI_IOV, pass the size of the data value.

See Also:

Bind Handle Attributes

dty (IN)
The data type. Named data type (SQLT_NTY) and REF (SQLT_REF) are valid only if the
environment has been initialized in object mode.
SQLT_CHR and SQLT_LNG can be specified for CLOB columns, SQLT_BIN and SQLT_LBI can be
specified for BLOB columns, and SQLT_BOL can be specified for Boolean columns.

See Also:

Data Types for a listing of data type codes and values

indp (IN)
Pointer to an indicator variable or array. For scalar data types, pointer to sb2 or an array of
sb2s. Ignored for SQLT_NTY defines. For SQLT_NTY defines, a pointer to a named data type
indicator structure or an array of named data type indicator structures is associated by a
subsequent OCIDefineObject() call.

See Also:

Indicator Variables

rlenp (IN/OUT)
Pointer to array of length of data fetched.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then rlenp lengths are consistently reported in bytes. The same treatment

Chapter 26
Bind, Define, and Describe Functions

26-103

consistently also holds for the length prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-
byte length prefix) types. There are no special exceptions for UCS2 or for NCHAR cases.
When the older OCI environment handle creation interfaces are used (either OCIEnvCreate()
or deprecated OCIEnvInit()), rlenp lengths are in bytes in general. However, rlenp lengths
are reported in characters when either the character set is OCI_UC2ID (= OCI_UTF16ID) or
when OCI_ATTR_CHAR_COUNT attribute is set on the corresponding OCIBind handle. The same
treatment holds for the length prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte
length prefix) types.

rcodep (OUT)
Pointer to array of column-level return codes.

mode (IN)
The valid modes are:

• OCI_DEFAULT - This is the default mode.

• OCI_DEFINE_SOFT - Soft define mode. This mode increases the performance of the call. If
this is the first define, or some input parameter such as dty or value_sz is changed from
the previous define, this mode is ignored. Unexpected behavior results if an invalid define
handle is passed. An error is returned if the statement is not executed.

• OCI_DYNAMIC_FETCH - For applications requiring dynamically allocated data at the time of
fetch, this mode must be used. You can define a callback using the OCIDefineDynamic()
call. The value_sz parameter defines the maximum size of the data that is to be provided
at run time. When the client library needs a buffer to return the fetched data, the callback is
invoked to provide a runtime buffer into which a piece or all the data is returned.

See Also:

Implicit Fetching of ROWIDs

• OCI_IOV - Define noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV *. This mode is intended to be used for scatter or gather binding, which allows
multiple buffers to be bound or defined to a position, for example column A for the first 10
rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another buffer.
That eliminates the need to allocate and copy all of them into one big buffer while doing the
array execute operation.

See Also:

About Binding and Defining Multiple Buffers

Comments

This call defines an output buffer that receives data retrieved from Oracle Database. The
define is a local step that is necessary when a SELECT statement returns data to your OCI
application.

This call also implicitly allocates the define handle for the select-list item. If a non-NULL pointer
is passed in *defnpp, OCI assumes that this points to a valid handle that has been previously
allocated with a call to OCIHandleAlloc() or OCIDefineByPos() or OCIDefineByPos2(). This

Chapter 26
Bind, Define, and Describe Functions

26-104

would be true for an application that is redefining a handle to a different address so that it can
reuse the same define handle for multiple fetches.

Defining attributes of a column for a fetch is done in one or more calls. The first call is to
OCIDefineByPos() or OCIDefineByPos2(), which defines the minimal attributes required to
specify the fetch.

Following the call to OCIDefineByPos() or OCIDefineByPos2() additional define calls may be
necessary for certain data types or fetch modes:

• A call to OCIDefineArrayOfStruct() is necessary to set up skip parameters for an array
fetch of multiple columns.

• A call to OCIDefineObject() is necessary to set up the appropriate attributes of a named
data type (that is, object or collection) or REF fetch. In this case, the data buffer pointer in
OCIDefineByPos() or OCIDefineByPos2() is ignored.

• Both OCIDefineArrayOfStruct() and OCIDefineObject() must be called after
OCIDefineByPos() or OCIDefineByPos2() to fetch multiple rows with a column of named
data types.

For a LOB define, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator,
allocated by the OCIDescriptorAlloc() call. LOB locators, and not LOB values, are always
returned for a LOB column. LOB values can then be fetched using OCI LOB calls on the
fetched locator. This same mechanism applies for all descriptor data types.

For NCHAR (fixed and varying length), the buffer pointer must point to an array of bytes
sufficient for holding the required NCHAR characters.

Nested table columns are defined and fetched like any other named data type.

When defining an array of descriptors or locators, you should pass in an array of pointers to
descriptors or locators.

When doing an array define for character columns, you should pass in an array of character
buffers.

If the mode parameter in this call is set to OCI_DYNAMIC_FETCH, the client application can fetch
data dynamically at run time. Runtime data can be provided in one of two ways:

• Callbacks using a user-defined function that must be registered with a subsequent call to
OCIDefineDynamic(). When the client library needs a buffer to return the fetched data, the
callback is invoked and the runtime buffers provided return a piece or all of the data.

• A polling mechanism using calls supplied by OCI. This mode is assumed if no callbacks
are defined. In this case, the fetch call returns the OCI_NEED_DATA error code, and a
piecewise polling method is used to provide the data.

Example 26-7 Sample code snippet showing support for boolean data type

OCIDefineByPos ()

bool boolOut;
OCIDefine *defhp = (OCIDefine *) 0;
static text *selstmt = (text *)"SELECT * from BoolTable";

// example Boolean define showing relevant parameters for brevity
status = OCIDefineByPos(stmthp, &defhp, errhp, 1, (dvoid *) &boolOut, (sword)
sizeof(boolOut), SQLT_BOL, ...);

Chapter 26
Bind, Define, and Describe Functions

26-105

Note:

If the database column types and the host variable types do not match, then an
implicit conversion can take place. If the value cannot be converted, then an error is
returned.

Related Topics

• OCIDefineArrayOfStruct()
Specifies additional attributes necessary for a static array define, used in an array of
structures (multirow, multicolumn) fetch.

• OCIDefineDynamic()
Sets the additional attributes required if the OCI_DYNAMIC_FETCH mode was selected in
OCIDefineByPos() or OCIDefineByPos2().

• OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

• OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• Runtime Data Allocation and Piecewise Operations in OCI for more information
about using the OCI_DYNAMIC_FETCH mode

• Overview of Defining in OCI for more information about defines

• Implicit Fetching of ROWIDs

Chapter 26
Bind, Define, and Describe Functions

26-106

26.5.10 OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

Purpose

Associates an item in a select list with the type and output data buffer. Use this call instead of
OCIDefineByPos() when working with data types when actual lengths exceed UB2MAXVAL on
the client.

Syntax

sword OCIDefineByPos2 (OCIStmt *stmtp,
 OCIDefine **defnpp,
 OCIError *errhp,
 ub4 position,
 void *valuep,
 sb8 value_sz,
 ub2 dty,
 void *indp,
 ub4 *rlenp,
 ub2 *rcodep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
A handle to the requested SQL query operation.

defnpp (IN/OUT)
A pointer to a pointer to a define handle. If this parameter is passed as NULL, this call implicitly
allocates the define handle. For a redefine, a non-NULL handle can be passed in this
parameter. This handle is used to store the define information for this column.

Note:

You must keep track of this pointer. If a second call to OCIDefineByPos() is made for
the same column position, there is no guarantee that the same pointer will be
returned.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

position (IN)
The position of this value in the select list. Positions are 1-based and are numbered from left
to right. The value 0 selects ROWIDs (the globally unique identifier for a row in a table).

valuep (IN/OUT)
A pointer to a buffer or an array of buffers of the type specified in the dty parameter. A number
of buffers can be specified when results for more than one row are desired in a single fetch
call.

Chapter 26
Bind, Define, and Describe Functions

26-107

For a LOB, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator. Give
the address of the pointer.
When mode is set to OCI_IOV, pass the base address of the OCIIOV struct.

value_sz (IN)
The size of each valuep buffer in bytes. If the data is stored internally in VARCHAR2 format, the
number of characters desired, if different from the buffer size in bytes, can be specified as
additional bytes by using OCIAttrSet().
If the value of value_sz > SB4MAXVAL, an ORA-24452 error will be issued, meaning that values
> SB4MAXVAL are not supported in Release 12.1 or later.
In a multibyte conversion environment, a truncation error is generated if the number of bytes
specified is insufficient to handle the number of characters needed.
If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the deprecated
OCI_UCS2ID, which is retained for backward compatibility), all data passed to and received with
the corresponding define call is assumed to be in UTF-16 encoding.
When mode is set to OCI_IOV, pass the size of the data value.

See Also:

Bind Handle Attributes

dty (IN)
The data type. Named data type (SQLT_NTY) and REF (SQLT_REF) are valid only if the
environment has been initialized in object mode.
SQLT_CHR and SQLT_LNG can be specified for CLOB columns, SQLT_BIN and SQLT_LBI can be
specified for BLOB columns, and SQLT_BOL can be specified for Boolean columns.

See Also:

Data Types for a listing of data type codes and values

indp (IN)
Pointer to an indicator variable or array. For scalar data types, pointer to sb2 or an array of
sb2s. Ignored for SQLT_NTY defines. For SQLT_NTY defines, a pointer to a named data type
indicator structure or an array of named data type indicator structures is associated by a
subsequent OCIDefineObject() call.

See Also:

Indicator Variables

rlenp (IN/OUT)
Pointer to array of length of data fetched.
When OCIEnvNlsCreate() (which is the recommended OCI environment handle creation
interface) is used, then rlenp lengths are consistently reported in bytes. The same treatment
consistently also holds for the length prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-
byte length prefix) types. There are no special exceptions for UCS2 or for NCHAR cases.

Chapter 26
Bind, Define, and Describe Functions

26-108

When the older OCI environment handle creation interfaces are used (either OCIEnvCreate()
or deprecated OCIEnvInit()), rlenp lengths are in bytes in general. However, rlenp lengths
are reported in characters when either the character set is OCI_UC2ID (= OCI_UTF16ID) or
when OCI_ATTR_CHAR_COUNT attribute is set on the corresponding OCIBind handle. The same
treatment holds for the length prefix in SQLT_VCS (2-byte length prefix) and SQLT_LVC (4-byte
length prefix) types.

rcodep (OUT)
Pointer to array of column-level return codes.

mode (IN)
The valid modes are:

• OCI_DEFAULT - This is the default mode.

• OCI_DEFINE_SOFT - Soft define mode. This mode increases the performance of the call. If
this is the first define, or some input parameter such as dty or value_sz is changed from
the previous define, this mode is ignored. Unexpected behavior results if an invalid define
handle is passed. An error is returned if the statement is not executed.

• OCI_DYNAMIC_FETCH - For applications requiring dynamically allocated data at the time of
fetch, this mode must be used. You can define a callback using the OCIDefineDynamic()
call. The value_sz parameter defines the maximum size of the data that is to be provided
at run time. When the client library needs a buffer to return the fetched data, the callback is
invoked to provide a runtime buffer into which a piece or all the data is returned.

See Also:

Implicit Fetching of ROWIDs

• OCI_IOV - Define noncontiguous addresses of data. The valuep parameter must be of the
type OCIIOV *. This mode is intended to be used for scatter or gather binding, which allows
multiple buffers to be bound or defined to a position, for example column A for the first 10
rows in one buffer, next 5 rows in one buffer, and the remaining 25 rows in another buffer.
That eliminates the need to allocate and copy all of them into one big buffer while doing the
array execute operation.

See Also:

About Binding and Defining Multiple Buffers

Comments

This call defines an output buffer that receives data retrieved from Oracle Database. The
define is a local step that is necessary when a SELECT statement returns data to your OCI
application.

This call also implicitly allocates the define handle for the select-list item. If a non-NULL pointer
is passed in *defnpp, OCI assumes that this points to a valid handle that has been previously
allocated with a call to OCIHandleAlloc() or OCIDefineByPos2(). This would be true for an
application that is redefining a handle to a different address so that it can reuse the same
define handle for multiple fetches.

Chapter 26
Bind, Define, and Describe Functions

26-109

Defining attributes of a column for a fetch is done in one or more calls. The first call is to
OCIDefineByPos2(), which defines the minimal attributes required to specify the fetch.

Following the call to OCIDefineByPos2() additional define calls may be necessary for certain
data types or fetch modes:

• A call to OCIDefineArrayOfStruct() is necessary to set up skip parameters for an array
fetch of multiple columns.

• A call to OCIDefineObject() is necessary to set up the appropriate attributes of a named
data type (that is, object or collection) or REF fetch. In this case, the data buffer pointer in
OCIDefineByPos2() is ignored.

• Both OCIDefineArrayOfStruct() and OCIDefineObject() must be called after
OCIDefineByPos2() to fetch multiple rows with a column of named data types.

For a LOB define, the buffer pointer must be a pointer to a LOB locator of type OCILobLocator,
allocated by the OCIDescriptorAlloc() call. LOB locators, and not LOB values, are always
returned for a LOB column. LOB values can then be fetched using OCI LOB calls on the
fetched locator. This same mechanism applies for all descriptor data types.

For NCHAR (fixed and varying length), the buffer pointer must point to an array of bytes
sufficient for holding the required NCHAR characters.

Nested table columns are defined and fetched like any other named data type.

When defining an array of descriptors or locators, you should pass in an array of pointers to
descriptors or locators.

When doing an array define for character columns, you should pass in an array of character
buffers.

If the mode parameter in this call is set to OCI_DYNAMIC_FETCH, the client application can fetch
data dynamically at run time. Runtime data can be provided in one of two ways:

• Callbacks using a user-defined function that must be registered with a subsequent call to
OCIDefineDynamic(). When the client library needs a buffer to return the fetched data, the
callback is invoked and the runtime buffers provided return a piece or all of the data.

• A polling mechanism using calls supplied by OCI. This mode is assumed if no callbacks
are defined. In this case, the fetch call returns the OCI_NEED_DATA error code, and a
piecewise polling method is used to provide the data.

See Also:

– Runtime Data Allocation and Piecewise Operations in OCI for more
information about using the OCI_DYNAMIC_FETCH mode

– Overview of Defining in OCI for more information about defines

– Implicit Fetching of ROWIDs

Related Topics

• OCIDefineArrayOfStruct()
Specifies additional attributes necessary for a static array define, used in an array of
structures (multirow, multicolumn) fetch.

Chapter 26
Bind, Define, and Describe Functions

26-110

• OCIDefineDynamic()
Sets the additional attributes required if the OCI_DYNAMIC_FETCH mode was selected in
OCIDefineByPos() or OCIDefineByPos2().

• OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

• OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

26.5.11 OCIDefineDynamic()
Sets the additional attributes required if the OCI_DYNAMIC_FETCH mode was selected in
OCIDefineByPos() or OCIDefineByPos2().

Purpose

Sets the additional attributes required if the OCI_DYNAMIC_FETCH mode was selected in
OCIDefineByPos() or OCIDefineByPos2().

Syntax

sword OCIDefineDynamic (OCIDefine *defnp,
 OCIError *errhp,
 void *octxp,
 OCICallbackDefine (ocbfp)(
 void *octxp,
 OCIDefine *defnp,
 ub4 iter,
 void **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 void **indpp,
 ub2 **rcodep);

Parameters

defnp (IN/OUT)
The handle to a define structure returned by a call to OCIDefineByPos().

Chapter 26
Bind, Define, and Describe Functions

26-111

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

octxp (IN)
Points to a context for the callback function.

ocbfp (IN)
Points to a callback function. This is invoked at run time to get a pointer to the buffer into
which the fetched data or a piece of it is to be retrieved. The callback also specifies the
indicator, the return code, and the lengths of the data piece and indicator.

Note:

Normally, in an OCI function, an IN parameter refers to data being passed to OCI,
and an OUT parameter refers to data coming back from OCI. For callbacks, this is
reversed. IN means that data is coming from OCI into the callback, and OUT means
that data is coming out of the callback and going to OCI.

The callback parameters are:

octxp (IN/OUT)
A context pointer passed as an argument to all the callback functions. When the client library
needs a buffer to return the fetched data, the callback is invoked and the runtime buffers
provided return a piece or all of the data.

defnp (IN)
The define handle.

iter (IN)
Specifies which row of this current fetch; 0-based.

bufpp (OUT)
Returns a pointer to a buffer to store the column value; that is, *bufpp points to some
appropriate storage for the column value.

alenpp (IN/OUT)
Used by the application to set the size of the storage it is providing in *bufpp. After data is
fetched into the buffer, alenpp indicates the actual size of the data in bytes. If the buffer length
provided in the first call is insufficient to store all the data returned by the server, then the
callback is called again, and so on.

piecep (IN/OUT)
Returns a piece value from the callback (application) to OCI, as follows:
The piecep parameter indicates whether the piece to be fetched is the first piece,
OCI_FIRST_PIECE, a subsequent piece, OCI_NEXT_PIECE, or the last piece, OCI_LAST_PIECE.
The program can process the piece the next time the callback is called, or after the series of
callbacks is over.

• IN - The value can be OCI_ONE_PIECE, OCI_FIRST_PIECE, or OCI_NEXT_PIECE.

• OUT - Depends on the IN value:

Chapter 26
Bind, Define, and Describe Functions

26-112

– The OUT value can be OCI_ONE_PIECE if the IN value was OCI_ONE_PIECE.

– The OUT value can be OCI_ONE_PIECE or OCI_FIRST_PIECE if the IN value was
OCI_FIRST_PIECE.

– The OUT value can be OCI_NEXT_PIECE or OCI_LAST_PIECE if the IN value was
OCI_NEXT_PIECE.

indpp (IN)
Indicator variable pointer.

rcodep (IN)
Return code variable pointer.

Comments

This call is used to set the additional attributes required if the OCI_DYNAMIC_FETCH mode has
been selected in a call to OCIDefineByPos() or OCIDefineByPos2(). If OCI_DYNAMIC_FETCH
mode was selected, and the call to OCIDefineDynamic() is skipped, then the application can
fetch data piecewise using OCI calls (OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()).

Note:

After you use OCIEnvNlsCreate() to create the environment handle, the actual
lengths and returned lengths of bind and define handles are always in number of
bytes.

Related Topics

• OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

• OCIBindDynamic()
Registers user callbacks for dynamic data allocation.

• OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

• OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

• OCIStmtGetPieceInfo()
Returns piece information for a piecewise operation.

• OCIStmtSetPieceInfo()
Sets piece information for a piecewise operation.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

See Also:

Runtime Data Allocation and Piecewise Operations in OCI for more information about
OCI_DYNAMIC_FETCH mode

Chapter 26
Bind, Define, and Describe Functions

26-113

26.5.12 OCIDefineObject()
Sets up additional attributes necessary for a named data type or REF define.

Purpose

Sets up additional attributes necessary for a named data type or REF define.

Syntax

sword OCIDefineObject (OCIDefine *defnp,
 OCIError *errhp,
 const OCIType *type,
 void **pgvpp,
 ub4 *pvszsp,
 void **indpp,
 ub4 *indszp);

Parameters

defnp (IN/OUT)
A define handle previously allocated in a call to OCIDefineByPos() or OCIDefineByPos2().

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

type (IN) [optional]
Points to the type descriptor object (TDO) that describes the type of the program variable. This
parameter is optional for variables of type SQLT_REF, and may be passed as NULL if it is not
being used.

pgvpp (IN/OUT)
Points to a pointer to a program variable buffer. For an array, pgvpp points to an array of
pointers. Memory for the fetched named data type instances is dynamically allocated in the
object cache. At the end of the fetch when all the values have been received, pgvpp points to
the pointers to these newly allocated named data type instances. The application must call
OCIObjectFree() to deallocate the named data type instances when they are no longer
needed.

Note:

If the application wants the buffer to be implicitly allocated in the cache, *pgvpp
should be passed in as NULL.

pvszsp (IN/OUT)
Points to the size of the program variable. For an array, it is an array of ub4.

indpp (IN/OUT)
Points to a pointer to the program variable buffer containing the parallel indicator structure. For
an array, points to an array of pointers. Memory is allocated to store the indicator structures in
the object cache. At the end of the fetch when all values have been received, indpp points to
the pointers to these newly allocated indicator structures.

Chapter 26
Bind, Define, and Describe Functions

26-114

indszp (IN/OUT)
Points to the sizes of the indicator structure program variable. For an array, it is an array of
ub4s.

Comments

This function follows a call to OCIDefineByPos() or OCIDefineByPos2() to set initial define
information. This call sets up additional attributes necessary for a named data type define. An
error is returned if this function is called when the OCI environment has been initialized in non-
object mode.

This call takes as a parameter a type descriptor object (TDO) of data type OCIType for the
named data type being defined. The TDO can be retrieved with a call to OCIDescribeAny().

Related Topics

• OCIDefineByPos()
Associates an item in a select list with the type and output data buffer.

• OCIDefineByPos2()
Associates an item in a select list with the type and output data buffer. Use this call when
working with data types when actual lengths exceed UB2MAXVAL on the client.

• OCIObjectFree()
Frees and unpins an object instance.

• OCIDescribeAny()
Describes existing schema and subschema objects.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• OCIEnvCreate(), and OCIEnvNlsCreate() for more information about initializing
the OCI process environment

• About Binding and Defining Multiple Buffers for an example of using multiple
buffers

26.5.13 OCIDescribeAny()
Describes existing schema and subschema objects.

Purpose

Describes existing schema and subschema objects.

Syntax

sword OCIDescribeAny (OCISvcCtx *svchp,
 OCIError *errhp,

Chapter 26
Bind, Define, and Describe Functions

26-115

 void *objptr,
 ub4 objptr_len,
 ub1 objptr_typ,
 ub1 info_level,
 ub1 objtyp,
 OCIDescribe *dschp);

Parameters

svchp (IN)
A service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

objptr (IN)
This parameter can be:

1. A string containing the name of the object to be described. Must be in the encoding
specified by the charset parameter of a previous call to OCIEnvNlsCreate().

2. A pointer to a REF to the TDO (for a type).

3. A pointer to a TDO (for a type).

These cases are distinguished by passing the appropriate value for objptr_typ. This
parameter must be non-NULL.

In case 1, the string containing the object name should be in the format name1[.name2 ...]
[@linkname], such as hr.employees.employee_id@mydb. Database links are only allowed to
Oracle8i or later databases. The object name is interpreted by the following SQL rules:

• If only name1 is entered and objtyp is equal to OCI_PTYPE_SCHEMA, then the name refers to
the named schema. The Oracle Database must be release 8.1 or later.

• If only name1 is entered and objtyp is equal to OCI_PTYPE_DATABASE, then the name refers
to the named database. When describing a remote database with
database_name@db_link_name, the remote Oracle Database must be release 8.1 or later.

• If only name1 is entered and objtyp is not equal to OCI_PTYPE_SCHEMA or
OCI_PTYPE_DATABASE, then the name refers to the named object (of type table, view,
procedure, function, package, type, synonym, sequence) in the current schema of the
current user. When connected to an Oracle7 Server, the only valid types are procedure
and function.

• If name1.name2.name3 ... is entered, the object name refers to a schema or subschema
object in the schema named name1. For example, in the string
hr.employees.department_id, hr is the name of the schema, employees is the name of a
table in the schema, and department_id is the name of a column in the table.

objnm_len (IN)
The length of the name string pointed to by objptr. Must be nonzero if a name is passed. Can
be zero if objptr is a pointer to a TDO or its REF.

objptr_typ (IN)
The type of object passed in objptr. Valid values are:

• OCI_OTYPE_NAME, if objptr points to the name of a schema object

• OCI_OTYPE_REF, if objptr is a pointer to a REF to a TDO

Chapter 26
Bind, Define, and Describe Functions

26-116

• OCI_OTYPE_PTR, if objptr is a pointer to a TDO

info_level (IN)
Reserved for future extensions. Pass OCI_DEFAULT.

objtyp (IN)
The type of schema object being described. Valid values are:

• OCI_PTYPE_TABLE, for tables

• OCI_PTYPE_VIEW, for views

• OCI_PTYPE_PROC, for procedures

• OCI_PTYPE_FUNC, for functions

• OCI_PTYPE_PKG, for packages

• OCI_PTYPE_TYPE, for types

• OCI_PTYPE_SYN, for synonyms

• OCI_PTYPE_SEQ, for sequences

• OCI_PTYPE_SCHEMA, for schemas

• OCI_PTYPE_DATABASE, for databases

• OCI_PTYPE_UNK, for unknown schema objects

dschp (IN/OUT)
A describe handle that is populated with describe information about the object after the call.
Must be non-NULL.

Comments

This is a generic describe call that describes existing schema objects: tables, views,
synonyms, procedures, functions, packages, sequences, types, schemas, and databases. In
addition, the OCIDescribeAny() call describes all package types and package type attributes
contained in the package. This call also describes subschema objects, such as a column in a
table. This call populates the describe handle with the object-specific attributes that can be
obtained through an OCIAttrGet() call.

An OCIParamGet() on the describe handle returns a parameter descriptor for a specified
position. Parameter positions begin with 1. Calling OCIAttrGet() on the parameter descriptor
returns the specific attributes of a stored procedure or function parameter, or a table column
descriptor. These subsequent calls do not need an extra round-trip to the server because the
entire schema object description is cached on the client side by OCIDescribeAny(). Calling
OCIAttrGet() on the describe handle also returns the total number of positions.

If the OCI_ATTR_DESC_PUBLIC attribute is set on the describe handle, then the object named is
looked up as a public synonym when the object does not exist in the current schema and only
name1 is specified.

By default, explicit describe (OCIDescribeAny()) does not list the invisible columns. To get the
user defined invisible column's metadata, you must set the describe handle attribute
OCI_ATTR_SHOW_INVISIBLE_COLUMNS before calling OCIDescribeAny(). To know whether the
column is of an invisible type, you can get the column attribute OCI_ATTR_INVISIBLE_COL using
OCIAttrGet().

The property whether a column is visible or not can be controlled by the user. Invisible columns
are not seen unless specified explicitly in the SELECT list. Any generic access of a table, such

Chapter 26
Bind, Define, and Describe Functions

26-117

as a SELECT * FROM table-name statement or a DESCRIBE statement, will not show invisible
columns.

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIParamGet()
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

• OCIAttrGet()
Gets the value of an attribute of a handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Describing Schema Metadata for more information about describe operations

26.5.14 OCIStmtGetBindInfo()
Gets the bind and indicator variable names.

Purpose

Gets the bind and indicator variable names.

Syntax

sword OCIStmtGetBindInfo (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 size,
 ub4 startloc,
 sb4 *found,
 OraText *bvnp[],
 ub1 bvnl[],
 OraText *invp[],
 ub1 inpl[],
 ub1 dupl[],
 OCIBind *hndl[]);

Parameters

stmtp (IN)
The statement handle prepared by OCIStmtPrepare2().

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

size (IN)
The number of elements in each array.

Chapter 26
Bind, Define, and Describe Functions

26-118

startloc (IN)
Position of the bind variable at which to start getting bind information.

found (IN)
The expression abs(found) gives the total number of bind variables in the statement
irrespective of the start position. Positive value if the number of bind variables returned is less
than the size provided, otherwise negative.

bvnp (OUT)
Array of pointers to hold bind variable names. Is in the encoding specified by the charset
parameter of a previous call to OCIEnvNlsCreate().

bvnl (OUT)
Array to hold the length of the each bvnp element. The length is in bytes.

invp (OUT)
Array of pointers to hold indicator variable names. Must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate().

inpl (OUT)
Array of pointers to hold the length of the each invp element. In number of bytes.

dupl (OUT)
An array whose element value is 0 or 1 depending on whether the bind position is a duplicate
of another.

hndl (OUT)
An array that returns the bind handle if binds have been done for the bind position. No handle
is returned for duplicates.

Comments

This call returns information about bind variables after a statement has been prepared. This
includes bind names, indicator names, and whether binds are duplicate binds. This call also
returns an associated bind handle if there is one. The call sets the found parameter to the total
number of bind variables and not just the number of distinct bind variables.

OCI_NO_DATA is returned if the statement has no bind variables or if the starting bind position
specified in the invocation does not exist in the statement.

This function does not include SELECT INTO list variables, because they are not considered to
be binds.

The statement must have been prepared with a call to OCIStmtPrepare2() prior to this call.
The encoding setting in the statement handle determines whether Unicode strings are
retrieved.

This call is processed locally.

Related Topics

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 26
Bind, Define, and Describe Functions

26-119

26.5.15 OCIServerDataLengthGet()
Gets the LOB data length when fetching LOB as buffer.

Purpose

To get the LOB data length when fetching LOB as buffer.

Syntax

sword OCIServerDataLengthGet(void *hndlp,
 boolean *lengthValidp,
 ub8 *lengthp,
 OCIError *errhp,
 ub4 mode);

Parameters

hndlp (IN)
Defines handle.

lengthValidp (IN)
Returns whether the data length for this define handle is valid. The value is FALSE when the
server is not capable of sending the server data length or if server data length is not supported
for this define type or column type.

Note:

The length returned *lengthp is valid only when the value of *lengthValidp is TRUE.

lengthp (IN)
Returns the length of the column in the define handle. The data length is the length of the
column stored on the server, prior to any conversions.

errhp (IN)
Error handle.

mode (IN)
Specifies the mode of execution.

Description

Returns the length of data for the column fetched or being fetched for the define handle
provided. The data length is the length of the column stored on the server, prior to any
conversions. This is available in all fetch modes, that is, single piece, piecewise, and callback.
It can also be accessed inside the callback.. The OCIServerDataLengthGet() function does not
incur a roundtrip to the server. This function should not be used before a fetch operation. For
piecewise or callback operations, this function should be used right after the first piece is
fetched.

Currently, this function is supported only where the column is of a LOB dataype and it is being
selected as a buffer using the LOB data interface.

Chapter 26
Bind, Define, and Describe Functions

26-120

Returns

OCI Status.

Chapter 26
Bind, Define, and Describe Functions

26-121

27
More Oracle Database Access C API

This chapter describes more Oracle Database Access C API OCI relational functions.

This chapter describes more Oracle Database Access C API and completes the description of
the OCI relational functions started in the previous chapter. It includes information about calling
OCI functions in your application, along with detailed descriptions of each function call.

See Also:

For code examples, see the demonstration programs included with your Oracle
Database installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to the Relational Functions

• Statement Functions

• LOB Functions

• Database Advanced Queuing and Publish-Subscribe Functions

• Direct Path Loading Functions

• Thread Management Functions

• Transaction Functions

• Sharding Functions

• Miscellaneous Functions

• Introduction to the Relational Functions
Introduces relational function calls.

• Statement Functions
Lists and describes the statement functions.

• LOB Functions

• Database Advanced Queuing and Publish-Subscribe Functions
Lists and describes the Database Advanced Queuing and publish-subscribe functions.

• Direct Path Loading Functions
Lists and describes the direct path loading functions.

• Thread Management Functions
Lists and describes the thread management functions.

• Transaction Functions
Lists and describes the transaction functions.

• Sharding Functions
Lists the sharding functions.

27-1

• Miscellaneous Functions
Lists and describes the miscellaneous OCI functions.

27.1 Introduction to the Relational Functions
Introduces relational function calls.

This chapter describes the OCI relational function calls. This chapter and the previous one,
cover the functions in the basic OCI.

• Conventions for OCI Functions
Describes conventions used for OCI functions.

See Also:

Error Handling in OCI for information about return codes and error handling

27.1.1 Conventions for OCI Functions
Describes conventions used for OCI functions.

See the Conventions for OCI Functions for the conventions used in describing each function.

27.2 Statement Functions
Lists and describes the statement functions.

Table 27-1 lists the statement functions that are described in this section. Use functions that
end in "2" for all new applications.

Table 27-1 Statement Functions

Function Purpose

OCIStmtExecute() Send statements to server for execution

OCIStmtFetch2() Fetch rows from a query and fetches a row from the
(scrollable) result set

OCIStmtGetNextResult() Returns the implicit results from an executed
PL/SQL statement handle

OCIStmtGetPieceInfo() Get piece information for piecewise operations

OCIStmtPrepare2() Prepare a SQL or PL/SQL statement for execution.
The user also has the option of using the statement
cache, if it has been enabled.

OCIStmtRelease() Release the statement handle

OCIStmtSetPieceInfo() Set piece information for piecewise operations

• OCIStmtExecute()
Associates an application request with a server.

• OCIStmtFetch2()
Fetches a row from the (scrollable) result set.

Chapter 27
Introduction to the Relational Functions

27-2

• OCIStmtGetNextResult()
Returns the implicit results from an executed PL/SQL statement handle.

• OCIStmtGetPieceInfo()
Returns piece information for a piecewise operation.

• OCIStmtPlaceholderSubstitute()
The OCIStmtPlaceholderSubstitute() function substitutes placeholder strings in SQL
statements.

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

• OCIStmtRelease()
Releases the statement handle obtained by a call to OCIStmtPrepare2().

• OCIStmtSetPieceInfo()
Sets piece information for a piecewise operation.

27.2.1 OCIStmtExecute()
Associates an application request with a server.

Purpose

Associates an application request with a server.

Syntax

sword OCIStmtExecute (OCISvcCtx *svchp,
 OCIStmt *stmtp,
 OCIError *errhp,
 ub4 iters,
 ub4 rowoff,
 const OCISnapshot *snap_in,
 OCISnapshot *snap_out,
 ub4 mode);

Parameters

svchp (IN/OUT)
Service context handle.

stmtp (IN/OUT)
A statement handle. It defines the statement and the associated data to be executed at the
server. It is invalid to pass in a statement handle that has bind of data types only supported in
release 8.x or later, when svchp points to an Oracle7 server.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information, when there is
an error.

iters (IN)
For non-SELECT statements, the number of times this statement is executed equals iters -
rowoff.
For SELECT statements, if iters is nonzero, then defines must have been done for the
statement handle. The execution fetches iters rows into these predefined buffers and
prefetches more rows depending upon the prefetch row count. If you do not know how many
rows the SELECT statement retrieves, then set iters to zero.

Chapter 27
Statement Functions

27-3

This function returns an error if iters=0 for non-SELECT statements.
This function returns an error if iters is not 1 for DDL statements.

Note:

For array DML operations, set iters <= 32767 to get better performance.

rowoff (IN)
The starting index from which the data in an array bind is relevant for this multiple row
execution.

snap_in (IN)
This parameter is optional. If it is supplied, then it must point to a snapshot descriptor of type
OCI_DTYPE_SNAP. The contents of this descriptor must be obtained from the snap_out
parameter of a previous call. The descriptor is ignored if the SQL is not a SELECT statement.
This facility allows multiple service contexts to Oracle Database to see the same consistent
snapshot of the database's committed data. However, uncommitted data in one context is not
visible to another context even using the same snapshot.

snap_out (OUT)
This parameter is optional. If it is supplied, then it must point to a descriptor of type
OCI_DTYPE_SNAP. This descriptor is filled in with an opaque representation that is the current
Oracle Database system change number (SCN) suitable as a snap_in input to a subsequent
call to OCIStmtExecute(). To avoid "snapshot too old" errors, do not use this descriptor any
longer than necessary.

mode (IN)
The modes are:

• OCI_BATCH_ERRORS - See Using Batch Error Mode for information about this mode.

• OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the current
transaction is committed after execution, if execution completes successfully.

• OCI_DEFAULT - Calling OCIStmtExecute() in this mode executes the statement. It also
implicitly returns describe information about the select list.

• OCI_DESCRIBE_ONLY - This mode is for users who want to describe a query before
execution. Calling OCIStmtExecute() in this mode does not execute the statement, but it
does return the select-list description. To maximize performance, Oracle recommends that
applications execute the statement in default mode and use the implicit describe that
accompanies the execution.

• OCI_EXACT_FETCH - Used when the application knows in advance exactly how many rows it
is fetching. This mode turns prefetching off for Oracle Database release 8 or later mode,
and requires that defines be done before the execute call. Using this mode cancels the
cursor after the desired rows are fetched and may result in reduced server-side resource
usage.

• OCI_PARSE_ONLY - This mode allows the user to parse the query before execution.
Executing in this mode parses the query and returns parse errors in the SQL, if any. Users
must note that this involves an additional round-trip to the server. To maximize
performance, Oracle recommends that the user execute the statement in the default mode,
which, parses the statement as part of the bundled operation.

Chapter 27
Statement Functions

27-4

• OCI_STMT_SCROLLABLE_READONLY - Required for the result set to be scrollable. The result
set cannot be updated. See About Fetching Results for more information about this mode.
This mode cannot be used with any other mode.

OCI_RETURN_ROW_COUNT_ARRAY - This mode allows the user to get DML rowcounts per
iteration. It is an error to pass this mode for statements that are not DMLs. See Statement
Handle Attributes for more information. This mode can be used along with
OCI_BATCH_ERRORS.

The modes are not mutually exclusive; you can use them together, except for
OCI_STMT_SCROLLABLE_READONLY.

Comments

This function is used to execute a prepared SQL statement. Using an execute call, the
application associates a request with a server.

If a SELECT statement is executed, then the description of the select list is available implicitly as
a response. This description is buffered on the client side for describes, fetches, and define
type conversions. Hence it is optimal to describe a select list only after an execute.

See Also:

About Describing Select-List Items

Also for SELECT statements, some results are available implicitly. Rows are received and
buffered at the end of the execute. For queries with small row count, a prefetch causes
memory to be released in the server if the end of fetch is reached, an optimization that may
result in memory usage reduction. The set attribute call has been defined to set the number of
rows to be prefetched for each result set.

For SELECT statements, at the end of the execute, the statement handle implicitly maintains a
reference to the service context on which it is executed. It is the developer's responsibility to
maintain the integrity of the service context. The implicit reference is maintained until the
statement handle is freed or the fetch is canceled or an end of fetch condition is reached.

To reexecute a DDL statement, you must prepare the statement again using
OCIStmtPrepare2().

Note:

If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by iters are fetched directly into
the defined output buffers and additional rows equivalent to the prefetch count are
prefetched. If there are no additional rows, then the fetch is complete without calling
OCIStmtFetch2() or deprecated OCIStmtFetch().

Related Topics

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

Chapter 27
Statement Functions

27-5

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Polling Mode Operations in OCI

27.2.2 OCIStmtFetch2()
Fetches a row from the (scrollable) result set.

Purpose

Fetches a row from the (scrollable) result set. You are encouraged to use this fetch call instead
of the deprecated call OCIStmtFetch().

Syntax

sword OCIStmtFetch2 (OCIStmt *stmthp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 sb4 fetchOffset,
 ub4 mode);

Parameters

stmthp (IN/OUT)
This is the statement handle of the (scrollable) result set.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information if an error
occurs.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
The acceptable values are:

• OCI_DEFAULT - Has the same effect as OCI_FETCH_NEXT
• OCI_FETCH_CURRENT - Gets the current row.

• OCI_FETCH_NEXT - Gets the next row from the current position. It is the default (has the
same effect as OCI_DEFAULT). Use for a nonscrollable statement handle.

• OCI_FETCH_FIRST - Gets the first row in the result set.

• OCI_FETCH_LAST - Gets the last row in the result set.

• OCI_FETCH_PRIOR - Positions the result set on the previous row from the current row in the
result set. You can fetch multiple rows using this mode, from the "previous row" also.

• OCI_FETCH_ABSOLUTE - Fetches the row number (specified by fetchOffset parameter) in
the result set using absolute positioning.

Chapter 27
Statement Functions

27-6

• OCI_FETCH_RELATIVE - Fetches the row number (specified by fetchOffset parameter) in
the result set using relative positioning.

fetchOffset (IN)
The offset to be used with the orientation parameter for changing the current row position.

mode (IN)
Pass in OCI_DEFAULT.

Comments

The fetch call works similarly to the deprecated OCIStmtFetch() call, but with the addition of
the fetchOffset parameter. It can be used on any statement handle, whether it is scrollable or
not. For a nonscrollable statement handle, the only acceptable value of orientation is
OCI_FETCH_NEXT, and the fetchOffset parameter is ignored.

For new applications you are encouraged to use this call, OCIStmtFetch2().

A fetchOffset with orientation set to OCI_FETCH_RELATIVE is equivalent to all of the
following:

• OCI_FETCH_CURRENT with a value of fetchOffset equal to 0

• OCI_FETCH_NEXT with a value of fetchOffset equal to 1

• OCI_FETCH_PRIOR with a value of fetchOffset equal to -1

OCI_ATTR_UB8_ROW_COUNT contains the highest absolute row value that was fetched.

All other orientation modes besides OCI_FETCH_ABSOLUTE and OCI_FETCH_RELATIVE ignore the
fetchOffset value.

This call can also be used to determine the number of rows in the result set by using
OCI_FETCH_LAST and then calling OCIAttrGet() on OCI_ATTR_CURRENT_POSITION. But the
response time of this call can be high. If nrows is set to be greater than 1 with OCI_FETCH_LAST
orientation, nrows is considered to be 1.

The return codes are the same as for deprecated OCIStmtFetch(), except that OER(1403) with
return code OCI_NO_DATA is returned every time a fetch on a scrollable statement handle (or
execute) is made and not all rows requested by the application could be fetched.

If you call OCIStmtFetch2() with the nrows parameter set to 0, this cancels the cursor.

The scrollable statement handle must be explicitly canceled (that is, fetch with 0 rows) or freed
to release server-side resources for the scrollable cursor. A nonscrollable statement handle is
implicitly canceled on receiving the OER(1403).

Use OCI_ATTR_ROWS_FETCHED to find the number of rows that were successfully fetched into the
user's buffers in the last fetch call.

Related Topics

• OCIStmtFetch()
This function was deprecated in a release previous to Oracle 11g R2 (11.2).

• OCIStmtExecute()
Associates an application request with a server.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

Chapter 27
Statement Functions

27-7

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• About Using Scrollable Cursors in OCI
A cursor is a current position in a result set.

• Polling Mode Operations in OCI
OCI has calls that poll for completion.

27.2.3 OCIStmtGetNextResult()
Returns the implicit results from an executed PL/SQL statement handle.

Purpose

Returns the implicit results from an executed PL/SQL statement handle.

Syntax

sword OCIStmtGetNextResult (OCIStmt *stmthp,
 OCIError *errhp,
 void **result,
 ub4 *rtype,
 ub4 mode)

Parameters

stmthp (IN)
The executed statement handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

result (OUT)
The next implicit result from the executed PL/SQL statement.

rtype (OUT)
The type of the implicit result. The only possible value is OCI_RESULT_TYPE_SELECT.

mode (IN)
The only possible value is OCI_DEFAULT (default mode).

Comments

Each call to OCIStmtGetNextResult() retrieves a single implicit result in the order in which
they were returned from the PL/SQL procedure or block. If no more results are available, then
OCI_NO_DATA is returned. If rtype is OCI_RESULT_TYPE_SELECT, then the returned result can be
cast as an OCI statement handle, and is allocated by OCI. Applications can do normal OCI
define and fetch calls to fetch rows from the implicit result sets. The returned OCI statement
handle cannot be freed explicitly. All implicit result sets are automatically closed and freed
when the top-level statement handle is freed or released.

Chapter 27
Statement Functions

27-8

See OCI_ATTR_IMPLICIT_RESULT_COUNT for information about this statement handle
attribute, which returns the total number of implicit results available on the top-level OCI
statement handle.

Returns

Returns one of the following:

• OCI_ERROR
• OCI_SUCCESS
• OCI_NO_DATA - When all implicit result sets have been retrieved from the top-level

statement handle

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.2.4 OCIStmtGetPieceInfo()
Returns piece information for a piecewise operation.

Purpose

Returns piece information for a piecewise operation.

Syntax

sword OCIStmtGetPieceInfo(const OCIStmt *stmtp,
 OCIError *errhp,
 void **hndlpp,
 ub4 *typep,
 ub1 *in_outp,
 ub4 *iterp,
 ub4 *idxp,
 ub1 *piecep);

Parameters

stmtp (IN)
The statement that when executed returned OCI_NEED_DATA.

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

hndlpp (OUT)
Returns a pointer to the bind or define handle of the bind or define whose run-time data is
required or is being provided.

typep (OUT)
The type of the handle pointed to by hndlpp: OCI_HTYPE_BIND (for a bind handle) or
OCI_HTYPE_DEFINE (for a define handle).

in_outp (OUT)
Returns OCI_PARAM_IN if the data is required for an IN bind value. Returns OCI_PARAM_OUT if
the data is available as an OUT bind variable or a define position value.

Chapter 27
Statement Functions

27-9

iterp (OUT)
Returns the row number of a multiple row operation.

idxp (OUT)
The index of an array element of a PL/SQL array bind operation.

piecep (OUT)
Returns one of these defined values: OCI_ONE_PIECE, OCI_FIRST_PIECE, OCI_NEXT_PIECE, or
OCI_LAST_PIECE.

Comments

When an execute or fetch call returns OCI_NEED_DATA to get or return a dynamic bind, define
value, or piece, OCIStmtGetPieceInfo() returns the relevant information: bind or define
handle, iteration, index number, and which piece.

Related Topics

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIStmtExecute()
Associates an application request with a server.

• OCIStmtFetch2()
Fetches a row from the (scrollable) result set.

• OCIStmtSetPieceInfo()
Sets piece information for a piecewise operation.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Polling Mode Operations in OCI
OCI has calls that poll for completion.

See Also:

• Runtime Data Allocation and Piecewise Operations in OCI for more information
about using OCIStmtGetPieceInfo()

27.2.5 OCIStmtPlaceholderSubstitute()
The OCIStmtPlaceholderSubstitute() function substitutes placeholder strings in SQL
statements.

Purpose

The placeholders can be specified only in those statements that cannot have bind variables.
OCI placeholders are not the same as bind variables. Both OCI placeholders and bind
variables have different functionality. The bind variables are processed by the database server
whereas placeholders are processed by the client, the server is not aware of OCI placeholders.

Chapter 27
Statement Functions

27-10

Since DDLs do not support binds, if some application constructs a DDL dynamically based on
the user input, it may be subject to SQL injection attacks. This function validates the user input
substitute string before the application can use it in the dynamically constructed statement.

Syntax

OCIStmtPlaceholderSubstitute(OCIStmt *stmthp,
 oratext *phName, ub2 phNamel,
 oratext *subStr, ub4 subStrl,
 OCIError *errhp, ub4 mode)

Parameters

stmthp (IN)
Specifies the statement handle on which the placeholder substitution needs to be done.

phName (IN)
Name of the placeholder.

phNamel (IN)
The length of the placeholder name.

substituteStr (IN)
The string to be substituted. Must be in the specified client character set.

substituteStrl (IN)
The length of the string to be substituted.

mode (IN)
Specifies the mode of execution. Valid modes are:

• OCI_DEFAULT: OCI does not validate the substituteStr. If this option is passed, the
substitution string is enclosed within single quotes by default. Also, it verifies that all single
quotes except leading and trailing characters are paired with adjacent single quotes.

• OCI_SPS_NUMERIC_LITERAL:

Verifies that the substituteStr contains a valid number. Accepted numbers are of the
form [99][.99][E[+|-]99] where 99 is a string of decimal digits.

When this string is substituted in the SQL statement, it is not enclosed in quotes.

• OCI_SPS_SIMPLE_SQL_NAME:

– The name passed in substituteStr must meet the following conditions for a “simple
sql name”:

* The name must begin with an alphabetic character. It may contain alphanumeric
characters as well as the characters underscore(_), dollar sign($), and (hash
sign)# in the second and subsequent character positions.

* Quoted SQL names are also allowed.

* Quoted names must be enclosed in double quotes.

* Quoted names allow any characters between the quotes.

* The input parameter may have any number of leading and/or trailing white space
characters.

Chapter 27
Statement Functions

27-11

– The length of the name is not checked.

• OCI_SPS_QUALIFIED_SQL_NAME: Verifies that the name specified by substituteStr is a
qualified SQL name.
<qualified name> can be expressed in the following syntax:

<qualified name> ::= <local qualified name> ['@' <database link name>]
 <local qualified name> ::= <simple name> {'.' <simple name>}
 <database link name> ::= <local qualified name> ['@' <connection
string>]
 <connection string> ::= <simple name>

errhp (IN)
Error handle
Error is returned in the following cases:

• If the placeholder name is incorrect or if the specified validation fails.

• If this call is made on an unprepared statement. The statement must have been prepared
prior to using OCIStmtPrepare2 () (or OCIStmtPrepare()).

• Placeholders are supported in OCI only for DDL statements. It results in an error if you
attempt to use placeholders for any other statement types. OCIStmtPrepare2() (and
OCIStmtPrepare()) will return an error in such case.

• If the SQL text passed into OCIStmtPrepare2() (or OCIStmtPrepare()) contains
placeholders that are not substituted, and an OCIStmtExecute() call is invoked on the
same statement handle, an error is returned by the OCIStmtExecute().

Returns

OCI status code.

Example

The following is an example code snippet containing placeholders:

CREATE USER :!username
 IDENTIFIED BY :!password
 DEFAULT TABLESPACE example
 QUOTA 10M ON example
 TEMPORARY TABLESPACE temp
 QUOTA 5M ON system
 PROFILE app_user
 PASSWORD EXPIRE;

The following is an example of OCIStmtPrepare2() call applied on the preceding statement:

OCIStmtPrepare2(svchp, &stmthp, errhp, (oratext *)stmt, strlen(stmt), NULL,
0, OCI_NTV_SYNTAX, OCI_DEFAULT | OCI_PREP2_OCI_PLACEHOLDER);

The following is an example of OCIStmtPlaceholderSubstitute() call for the username in the
preceding statement:

OCIStmtPlaceholderSubstitute(stmthp, "username", sizeof("username"), "scott",
sizeof("scott"), OCI_DEFAULT);

Chapter 27
Statement Functions

27-12

27.2.6 OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

Purpose

Prepares a SQL or PL/SQL statement for execution. The user has the option of using the
statement cache, if it has been enabled.

Oracle strongly encourages use of OCIStmtPrepare2() in all OCI applications instead of the
deprecated call OCIStmtPrepare().

Syntax

sword OCIStmtPrepare2 (OCISvcCtx *svchp,
 OCIStmt **stmthp,
 OCIError *errhp,
 const OraText *stmttext,
 ub4 stmt_len,
 const OraText *key,
 ub4 keylen,
 ub4 language,
 ub4 mode);

Parameters

svchp (IN)
The service context to be associated with the statement.

stmthp (OUT)
Pointer to the statement handle returned.

errhp (IN)
A pointer to the error handle for diagnostics.

stmttext (IN)
The statement text. The semantics of the stmttext are same as those of OCIStmtPrepare();
that is, the string must be NULL-terminated.

stmt_len (IN)
The statement text length.

key (IN)
For statement caching only. The key to be used for searching the statement in the statement
cache. If the key is passed in, then the statement text and other parameters are ignored and
the search is solely based on the key.

keylen (IN)
For statement caching only. The length of the key.

language (IN)
Specifies V7, or native syntax. Possible values are as follows:

• OCI_V7_SYNTAX - V7 ORACLE parsing syntax.

• OCI_NTV_SYNTAX - Syntax depends upon the version of the server.

Chapter 27
Statement Functions

27-13

OCI_FOREIGN_SYNTAX - Specifies the statement to be translated according to the SQL
translation profile set in the session.

mode (IN)
This function can be used with and without statement caching. This is determined at the time
of connection or session pool creation. If caching is enabled for a session, then all statements
in the session have caching enabled, and if caching is not enabled, then all statements are not
cached.
The valid modes are as follows:

• OCI_DEFAULT - Caching is not enabled. If the statement is not found in the cache, this
mode allocates a new statement handle and prepares the statement handle for execution.
If the statement is not found in the cache and one of the following circumstances applies,
then the subsequent actions follow:

– Only the text has been supplied: a new statement is allocated and prepared and
returned. The tag NULL. OCI_SUCCESS is returned.

– Only the tag has been supplied: stmthp is NULL. OCI_ERROR is returned.

– Both text and key were supplied: a new statement is allocated and prepared and
returned. The tag NULL. OCI_SUCCESS_WITH_INFO is returned, as the returned
statement differs from the requested statement in that the tag is NULL.

• OCI_PREP2_CACHE_SEARCHONLY - In this case, if the statement is not found (a NULL
statement handle is returned), you must take further action. If the statement is found,
OCI_SUCCESS is returned. Otherwise, OCI_ERROR is returned.

• OCI_PREP2_GET_PLSQL_WARNINGS - If warnings are enabled in the session and the PL/SQL
program is compiled with warnings, then OCI_SUCCESS_WITH_INFO is the return status from
the execution. Use OCIErrorGet() to find the new error number corresponding to the
warnings.

• OCI_PREP2_IMPL_RESULTS_CLIENT - The mode should be passed as
OCI_PREP2_IMPL_RESULTS_CLIENT when this call is made in an external procedure and
implicit results need to be processed. See OCI Support for Implicit Results for more
details.

• OCI_PREP2_OCI_PLACEHOLDER - The current behavior is to not parse the statements that do
not contain the bind variables (DML, PL/SQL), but to let the server do the parsing and to
detect if there are any syntax errors.
This new mode, OCI_PREP2_OCI_PLACEHOLDER is introduced where the statement contains
OCI placeholders, and so it is parsed before sending to the server.

Related Topics

• OCIStmtPrepare()
This function was deprecated beginning with Oracle Database 12c Release 2 (12.2).

• OCIStmtRelease()
Releases the statement handle obtained by a call to OCIStmtPrepare2().

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Statement Functions

27-14

27.2.7 OCIStmtRelease()
Releases the statement handle obtained by a call to OCIStmtPrepare2().

Purpose

Releases the statement handle obtained by a call to OCIStmtPrepare2().

Syntax

sword OCIStmtRelease (OCIStmt *stmthp,
 OCIError *errhp,
 const OraText *key,
 ub4 keylen,
 ub4 mode);

Parameters

stmthp (IN/OUT)
The statement handle returned by OCIStmtPrepare2().

errhp (IN)
The error handle used for diagnostics.

key (IN)
Only valid for statement caching. The key to be associated with the statement in the cache.
This is a SQL string passed in by the caller. If a NULL key is passed in, the statement is not
tagged.

keylen (IN)
Only valid for statement caching. The length of the key.

mode (IN)
The valid modes are:

• OCI_DEFAULT
• OCI_STRLS_CACHE_DELETE - Only valid for statement caching. The statement is not kept in

the cache anymore.

Related Topics

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

27.2.8 OCIStmtSetPieceInfo()
Sets piece information for a piecewise operation.

Purpose

Sets piece information for a piecewise operation.

Syntax

sword OCIStmtSetPieceInfo (void *hndlp,
 ub4 type,
 OCIError *errhp,

Chapter 27
Statement Functions

27-15

 const void *bufp,
 ub4 *alenp,
 ub1 piece,
 const void *indp,
 ub2 *rcodep);

Parameters

hndlp (IN/OUT)
The bind or define handle.

type (IN)
Type of the handle.

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

bufp (IN/OUT)
A pointer to storage containing the data value or the piece when it is an IN bind variable;
otherwise, bufp is a pointer to storage for getting a piece or a value for OUT binds and define
variables. For named data types or REFs, a pointer to the object or REF is returned.

alenp (IN/OUT)
The length of the piece or the value. Do not change this parameter between executions of the
same SQL statement.

piece (IN)
The piece parameter. Valid values are:

• OCI_ONE_PIECE
• OCI_FIRST_PIECE
• OCI_NEXT_PIECE
• OCI_LAST_PIECE
This parameter is used for IN bind variables only.

indp (IN/OUT)
Indicator. A pointer to an sb2 value or pointer to an indicator structure for named data types
(SQLT_NTY) and REFs (SQLT_REF), that is, depending upon the data type, *indp is either an
sb2 or a void *.

rcodep (IN/OUT)
Return code.

Comments

When an execute call returns OCI_NEED_DATA to get a dynamic IN/OUT bind value or piece,
OCIStmtSetPieceInfo() sets the piece information: the buffer, the length, which piece is
currently being processed, the indicator, and the return code for this column.

Related Topics

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

Chapter 27
Statement Functions

27-16

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIStmtExecute()
Associates an application request with a server.

• OCIStmtFetch2()
Fetches a row from the (scrollable) result set.

• OCIStmtGetPieceInfo()
Returns piece information for a piecewise operation.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Polling Mode Operations in OCI
OCI has calls that poll for completion.

See Also:

• Runtime Data Allocation and Piecewise Operations in OCI for more information
about using OCIStmtSetPieceInfo()

27.3 LOB Functions
Table 27-2 lists the LOB functions that use the LOB locator that are described in this section.
Use functions that end in "2" for all new applications.

Beginning with Oracle Database 12c Release 2 (12.2), most LOB functions support Application
Continuity (see When Application Continuity in OCI Can Fail Over for a complete list). This
support also includes some deprecated LOB functions for compatibility listed in Deprecated
Lob Functions.

Beginning with Oracle Database 12c Release 2 (12.2), OCI LOB functions support distributed
operations on remote LOBs (CLOB, BLOB) except for OCI LOB functions for BFILES. This
includes support for certain queries that select a remote LOB locator that in previous releases
returned an error. The only restriction is that all LOB functions that take in two locators should
have both LOBs collocated at one database. The following LOB functions throw an error when
a remote locator is passed to it: OCILobAssign(), OCILobLocatorAssign(),
OCILobArrayRead(), OCILobArrayWrite(), and OCILobLoadFromFile2().

Note:

There is another way of accessing LOBs -- using the data interface for LOBs. You
can bind or define character data for a CLOB column or RAW data for a BLOB column, as
described in these locations:

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data for usage and examples of SELECT statements

• LOB and BFILE Operations

Chapter 27
LOB Functions

27-17

Table 27-2 LOB Functions

Function Purpose

OCIDurationBegin() Start user duration for temporary LOB

OCIDurationEnd() End user duration for temporary LOB

OCILobAppend() Append one LOB to another

OCILobArrayRead() Read LOB data for multiple locators

OCILobArrayWrite() Write LOB data for multiple locators

OCILobAssign() Assign one LOB locator to another

OCILobCharSetForm() Get character set form from LOB locator

OCILobCharSetId() Get character set ID from LOB locator

OCILobClose() Close a previously opened LOB

OCILobCopy2() Copy all or part of one LOB to another. This
function must be used for LOBs of size greater than
4 GB.

OCILobCreateTemporary() Create a temporary LOB

OCILobErase2() Erase a portion of a LOB. This function must be
used for LOBs of size greater than 4 GB.

OCILobFileClose() Close a previously opened BFILE
OCILobFileCloseAll() Close all previously opened files

OCILobFileExists() Check if a file exists on the server

OCILobFileGetName() Get directory object and file name from the LOB
locator

OCILobFileIsOpen() Check if file on server is open using this locator

OCILobFileOpen() Open a BFILE
OCILobFileSetName() Set directory object and file name in the LOB

locator

OCILobFreeTemporary() Free a temporary LOB

OCILobGetChunkSize() Get the chunk size of a LOB

OCILobGetContentType() Retrieve the user-specified content type string (a
file format identifier) for a SecureFile

OCILobGetLength2() Get length of a LOB. This function must be used for
LOBs of size greater than 4 GB.

OCILobGetOptions() Get option settings of a SecureFile

OCILobGetStorageLimit() Get the maximum length of an internal LOB (BLOB,
CLOB, or NCLOB) in bytes

OCILobIsEqual() Compare two LOB locators for Equality

OCILobIsOpen() Check to see if a LOB is open

OCILobIsTemporary() Determine if a given LOB is temporary

OCILobLoadFromFile2() Load a LOB from a BFILE. This function must be
used for LOBs of size greater than 4 GB.

OCILobLocatorAssign() Assign one LOB locator to another

OCILobLocatorIsInit() Check to see if a LOB locator is initialized

OCILobOpen() Open a LOB

Chapter 27
LOB Functions

27-18

Table 27-2 (Cont.) LOB Functions

Function Purpose

OCILobRead2() Read a portion of a LOB. This function must be
used for LOBs of size greater than 4 GB.

OCILobSetContentType() Store the user-specified content type string of the
SecureFile

OCILobSetOptions() Enable option settings for existing and newly
created SecureFiles

OCILobTrim2() Truncate a LOB. This function must be used for
LOBs of size greater than 4 GB.

OCILobWrite2() Write into a LOB. This function must be used for
LOBs of size greater than 4 GB.

OCILobWriteAppend2() Write data beginning at the end of a LOB. This
function must be used for LOBs of size greater than
4 GB.

Note the following for parameters in the OCI LOB calls:

• For fixed-width client-side character sets, the offset and amount parameters are always in
characters for CLOBs and NCLOBs, and in bytes for BLOBs and BFILEs.

• For varying-width client-side character sets, these rules generally apply:

– Amount (amtp) parameter - When the amount parameter refers to the server-side LOB,
the amount is in characters. When the amount parameter refers to the client-side
buffer, the amount is in bytes.

For more information, see individual LOB calls, such as OCILobGetLength()
(deprecated), OCILobGetLength2(), OCILobRead() (deprecated), OCILobRead2(),
OCILobWrite() (deprecated), and OCILobWrite2().

– Offset (offset) parameter - Regardless of whether the client-side character set is
varying-width, the offset parameter is always in characters for CLOBs and NCLOBs and in
bytes for BLOBs and BFILEs.

• For many of the LOB operations, regardless of the client-side character set, the amount
parameter is in characters for CLOBs and NCLOBs. These LOB operations include
OCILobCopy2(), OCILobErase2(), OCILobGetLength2(), OCILobLoadFromFile2(), and
OCILobTrim2(). All these operations refer to the amount of LOB data on the server.

A streaming operation means that the LOB is read or written in pieces. Streaming can be
implemented using a polling mechanism or by registering a user-defined callback.

• OCIDurationBegin()
Starts a user duration for a temporary LOB.

• OCIDurationEnd()
Terminates a user duration for a temporary LOB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobArrayRead()
Reads LOB data for multiple locators in one round-trip.

• OCILobArrayWrite()

Chapter 27
LOB Functions

27-19

• OCILobAssign()
Assigns one LOB or BFILE locator to another

• OCILobCharSetForm()
Gets the character set form of the LOB locator, if any.

• OCILobCharSetId()
Gets the LOB locator's database character set ID of the LOB locator, if any.

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobCreateTemporary()
Creates a temporary LOB.

• OCILobErase2()
Erases a specified portion of the internal LOB data starting at a specified offset.

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileGetName()
Gets the BFILE locator's directory object and file name.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCILobFreeTemporary()
Frees a temporary LOB.

• OCILobGetChunkSize()
Gets the chunk size of a LOB.

• OCILobGetContentType()
Gets the user-specified content type string for the data in a SecureFile, if set.

• OCILobGetLength2()
Gets the length of a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobGetOptions()
Obtains the enabled settings corresponding to the given input option types for a given
SecureFile LOB.

• OCILobGetStorageLimit()
Gets the maximum length of an internal LOB (BLOB, CLOB, or NCLOB) in bytes.

• OCILobIsEqual()
Compares two LOB or BFILE locators for equality.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

Chapter 27
LOB Functions

27-20

• OCILobIsTemporary()
Tests if a locator points to a temporary LOB.

• OCILobLoadFromFile2()
Loads and copies all or a portion of the file into an internal LOB. This function must be
used for LOBs of size greater than 4 GB.

• OCILobLocatorAssign()
Assigns one LOB or BFILE locator to another.

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobSetContentType()
Sets a content type string for the data in the SecureFile to something that can be used by
an application.

• OCILobSetOptions()
Enables option settings for a SecureFile LOB.

• OCILobTrim2()
Truncates the LOB value to a shorter length. This function must be used for LOBs of size
greater than 4 GB.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

27.3.1 OCIDurationBegin()
Starts a user duration for a temporary LOB.

Purpose

Starts a user duration for a temporary LOB.

Syntax

sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Parameters

env (IN/OUT)
Pass as a NULL pointer.

Chapter 27
LOB Functions

27-21

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

svc (IN)
An OCI service context handle. Must be non-NULL.

parent (IN)
The duration number of the parent duration. It is one of these:

• OCI_DURATION_STATEMENT
• OCI_DURATION_SESSION

duration (OUT)
An identifier unique to the newly created user duration.

Comments

This function starts a user duration. In release 8.1 or later, user durations can be used when
creating temporary LOBs. A user can have multiple active user durations simultaneously. The
user durations do not have to be nested. The duration parameter is used to return a number
that uniquely identifies the duration created by this call.

Related Topics

• Temporary LOB Durations
OCI supports several predefined durations for temporary LOBs, and a set of functions that
the application can use to define application-specific durations.

27.3.2 OCIDurationEnd()
Terminates a user duration for a temporary LOB.

Purpose

Terminates a user duration for a temporary LOB.

Syntax

sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCIDuration duration);

Parameters

env (IN/OUT)
Pass as a NULL pointer.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

svc (IN)
OCI service context. This should be passed as NULL for cartridge services.

Chapter 27
LOB Functions

27-22

duration (IN)
A number to identify the user duration.

Comments

This function terminates a user duration. Temporary LOBs that are allocated for the user
duration are freed.

Related Topics

• OCIDurationBegin()
Starts a user duration for a temporary LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Temporary LOB Durations
OCI supports several predefined durations for temporary LOBs, and a set of functions that
the application can use to define application-specific durations.

Related Topics

• OCIDurationBegin()
Starts a user duration.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.3 OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

Purpose

Appends a LOB value at the end of another LOB as specified.

Syntax

sword OCILobAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator must have
been a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

Chapter 27
LOB Functions

27-23

Comments

Appends a LOB value at the end of another LOB as specified. The data is copied from the
source to the end of the destination. The source and destination LOBs must exist. The
destination LOB is extended to accommodate the newly written data. It is an error to extend
the destination LOB beyond the maximum length allowed (4 Gigabytes (GB)) or to try to copy
from a NULL LOB.

The source and the destination LOB locators must be of the same type (that is, they must both
be BLOBs or both be CLOBs). LOB buffering must not be enabled for either type of locator. This
function does not accept a BFILE locator as the source or the destination.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobTrim2()
Truncates the LOB value to a shorter length. This function must be used for LOBs of size
greater than 4 GB.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.4 OCILobArrayRead()
Reads LOB data for multiple locators in one round-trip.

Purpose

This function can be used for LOBs of size greater than or less than 4 GB.

Syntax

sword OCILobArrayRead (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 *array_iter,
 OCILobLocator **locp_arr,
 oraub8 *byte_amt_arr,
 oraub8 *char_amt_arr,
 oraub8 *offset_arr,
 void **bufp_arr,

Chapter 27
LOB Functions

27-24

 oraub8 bufl_arr,
 ub1 piece,
 void *ctxp,
 OCICallbackLobArrayRead (cbfp)
 (
 void *ctxp,
 ub4 array_iter,
 const void *bufp,
 oraub8 lenp,
 ub1 piecep
 void **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

array_iter (IN/OUT)
IN - This parameter indicates the size of the LOB locator array. For polling this is relevant only
for the first call and is ignored in subsequent calls.
OUT - In polling mode, this parameter indicates the array index of the element read from.

locp_arr (IN)
An array of LOB or BFILE locators.

byte_amt_arr (IN/OUT)
An array of oraub8 variables. The array size must be the same as the locator array size. The
entries correspond to the amount in bytes for the locators.
IN - The number of bytes to read from the database. Used for BLOB and BFILE always. For
CLOB and NCLOB, it is used only when the corresponding value in char_amt_arr is zero.
OUT - The number of bytes read into the user buffer.

char_amt_arr (IN/OUT)
An array of oraub8 variables. The array size must be the same as the locator array size. The
entries correspond to the amount in characters for the locators.
IN - The maximum number of characters to read into the user buffer. Ignored for BLOB and
BFILE.
OUT - The number of characters read into the user buffer. Undefined for BLOB and BFILE.

offset_arr (IN)
An array of oraub8 variables. The array size must be the same as the locator array size. For
character LOBs (CLOBs, NCLOBs) it is the number of characters from the beginning of the LOB;
for binary LOBs or BFILEs, it is the number of bytes. The first position is 1.

bufp _arr (IN/OUT)
An array of pointers to buffers into which the piece is read. The array size must be the same
as the locator array size.

Chapter 27
LOB Functions

27-25

bufl_arr (IN)
An array of oraub8 variables indicating the buffer lengths for the buffer array. The array size
must be the same as the locator array size.

piece (IN)
OCI_ONE_PIECE - The call never assumes polling. If the amount indicated is more than the
buffer length, then the buffer is filled as much as possible.
For polling, pass OCI_FIRST_PIECE the first time and OCI_NEXT_PIECE in subsequent calls.
OCI_FIRST_PIECE should be passed while using the callback.

ctxp (IN)
The context pointer for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA is returned for each piece.
The callback function must return OCI_CONTINUE for the read to continue. If any other error
code is returned, the LOB read is terminated.

ctxp (IN)
The context for the callback function. Can be NULL.

array_iter (IN)
The index of the element read from.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN)
The length in bytes of the current piece in bufp.

piecep (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE, or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a new buffer for
the next piece to read. The default old buffer bufp is used if this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the buffer data. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm. It is never assumed to be the
server character set, unless the server and client have the same settings.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT. If csfrm is not specified, the default is assumed.

Chapter 27
LOB Functions

27-26

Comments

It is an error to try to read from a NULL LOB or BFILE.

Note:

When reading or writing LOBs, the character set form (csfrm) specified should match
the form of the locator itself.

OCILobArrayRead() throws an error when a remote locator is passed to it.

For BFILEs, the operating system file must exist on the server, and it must have been opened
by OCILobFileOpen() or OCILobOpen() using the input locator. The Oracle Database must
have permission to read the operating system file, and the user must have read permission on
the directory object.

When you use the polling mode for OCILobArrayRead(), the first call must specify values for
offset_arr and amt_arr, but on subsequent polling calls to OCILobArrayRead(), you need not
specify these values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Note:

To terminate an OCILobArrayRead() operation and free the statement handle, use the
OCIBreak() call.

The following points apply to reading LOB data in streaming mode:

• When you use polling mode, be sure to specify the char_amt_arr and byte_amt_arr and
offset_arr parameters only in the first call to OCILobArrayRead(). On subsequent polling
calls, these parameters are ignored. If both byte_amt_arr and char_amt_arr are set to
point to zero and OCI_FIRST_PIECE is passed, then polling mode is assumed and data is
read to the end of the LOB. On output, byte_amt_arr gives the number of bytes read in the
current piece. For CLOBs and NCLOBs, char_amt_arr gives the number of characters read in
the current piece.

• When you use callbacks, the lenp parameter, which is input to the callback, indicates how
many bytes are filled in the buffer. Check the lenp parameter during your callback
processing, because the entire buffer may not be filled with data.

• When you use polling, examine the byte_amt_arr parameter to see how much the buffer is
filled for the current piece. For CLOBs and NCLOBs, char_amt_arr returns the number of
characters read in the buffer as well.

To read data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

Related Topics

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

Chapter 27
LOB Functions

27-27

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCILobArrayWrite()

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information on
Unicode format

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
description of BFILEs

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

27.3.5 OCILobArrayWrite()
Purpose

Writes LOB data for multiple locators in one round-trip. This function can be used for LOBs of
size greater than or less than 4 GB.

Syntax

sword OCILobArrayWrite (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 *array_iter,
 OCILobLocator **locp_arr,
 oraub8 *byte_amt_arr,
 oraub8 *char_amt_arr,
 oraub8 *offset_arr,
 void **bufp_arr,
 oraub8 *bufl_arr,
 ub1 piece,
 void *ctxp,
 OCICallbackLobArrayWrite (cbfp)
 (
 void *ctxp,
 ub4 array_iter,
 void *bufp,

Chapter 27
LOB Functions

27-28

 oraub8 *lenp,
 ub1 *piecep
 void **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

array_iter (IN/OUT)
IN - This parameter indicates the size of the LOB locator array. For polling this is relevant only
for the first call and is ignored in subsequent calls.
OUT - In polling mode this parameter indicates the array index of the element just written to.

locp_arr (IN/OUT)
An array of LOB locators.

byte_amt_arr (IN/OUT)
An array of pointers to oraub8 variables. The array size must be the same as the locator array
size. The entries correspond to the amount in bytes for the locators.
IN - The number of bytes to write to the database. Always used for BLOB. For CLOB and NCLOB it
is used only when char_amt_arr is zero.
OUT - The number of bytes written to the database.

char_amt (IN/OUT)
An array of pointers to oraub8 variables. The array size must be the same as the locator array
size. The entries correspond to the amount in characters for the locators.
IN - The maximum number of characters to write to the database. Ignored for BLOB.
OUT - The number of characters written to the database. Undefined for BLOB.

offset_arr (IN)
An array of pointers to oraub8 variables. The array size must be the same as the locator array
size. Each entry in the array is the absolute offset from the beginning of the LOB value. For
character LOBs (CLOBs, NCLOBs), it is the number of characters from the beginning of the LOB;
for BLOBs, it is the number of bytes. The first position is 1.

bufp_arr (IN/OUT)
An array of pointers to buffers into which the pieces for the locators are written. The array size
must be the same as the locator array size.

bufl_arr (IN)
An array of oraub8 variables indicating the buffer lengths for the buffer array. The array size
must be the same as the locator array size.

Chapter 27
LOB Functions

27-29

Note:

This parameter assumes an 8-bit byte. If your operating system uses a longer byte,
you must adjust the value of bufl_arr accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating that the buffer is written in a single piece.
The following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE, and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA is returned for each piece. The callback function must return OCI_CONTINUE for
the write to continue. If any other error code is returned, the LOB write is terminated.
The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

array_iter (IN)
The index of the element written to.

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input to the
OCILobArrayWrite() routine.

lenp (IN/OUT)
The length (in bytes) of the data in the buffer (IN), and the length (in bytes) of the current piece
in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a new buffer for
the next piece to read. The default old buffer bufp is used if this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the data in the buffer. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

Chapter 27
LOB Functions

27-30

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments

If LOB data exists, it is overwritten with the data stored in the buffer. The buffers can be written
to the LOBs in a single piece with this call, or the buffers can be provided piecewise using
callbacks or a standard polling method.

OCILobArrayWrite() throws an error when a remote locator is passed to it.

Note:

When you read or write LOBs, specify a character set form (csfrm) that matches the
form of the locator itself.

The parameters piece, csid, and csfrm are the same for all locators of the array.

When you use the polling mode for OCILobArrayWrite(), the first call must specify values for
offset_arr, byte_amt_arr, and char_amt_arr, but on subsequent polling calls to
OCILobArrayWrite(), you need not specify these values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be provided through
callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function is invoked to
get the next piece after a piece is written to the pipe. Each piece is written from bufp_arr. If no
callback function is defined, then OCILobArrayWrite() returns the OCI_NEED_DATA error code.
The application must call OCILobArrayWrite() again to write more pieces of the LOBs. In this
mode, the buffer pointer and the length can be different in each call if the pieces are of different
sizes and from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of whether the
polling or callback method is used.

If the amount of data passed to the database (through either input mechanism) is less than the
amount specified by the byte_amt_arr or the char_amt_arr parameter, an ORA-22993 error is
returned.

This function is valid for internal LOBs only. BFILEs are not valid, because they are read-only. If
the LOB is a BLOB, the csid and csfrm parameters are ignored.

If both byte_amt_arr and char_amt_arr are set to point to zero amount and OCI_FIRST_PIECE
is given as input, then polling mode is assumed and data is written until you specify
OCI_LAST_PIECE. For CLOBs and NCLOBs, byte_amt_arr and char_amt_arr return the data
written by each piece in terms of number of bytes and number of characters respectively. For
BLOBs, byte_amt_arr returns the number of bytes written by each piece, whereas
char_amt_arr is undefined on output.

To write data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before

Chapter 27
LOB Functions

27-31

performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCILobArrayRead()
Reads LOB data for multiple locators in one round-trip.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information on
Unicode format

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

27.3.6 OCILobAssign()
Assigns one LOB or BFILE locator to another

Purpose

Assigns one LOB or BFILE locator to another.

Syntax

sword OCILobAssign (OCIEnv *envhp,
 OCIError *errhp,
 const OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Chapter 27
LOB Functions

27-32

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

src_locp (IN)
LOB or BFILE locator to copy from.

dst_locpp (IN/OUT)
LOB or BFILE locator to copy to. The caller must have allocated space for the destination
locator by calling OCIDescriptorAlloc().

Comments

Assign source locator to destination locator. After the assignment, both locators refer to the
same LOB value. For internal LOBs, the source locator's LOB value gets copied to the
destination locator's LOB value only when the destination locator gets stored in the table.
Therefore, issuing a flush of the object containing the destination locator copies the LOB value.

OCILobAssign() throws an error when a remote locator is passed to it.

OCILobAssign() cannot be used for temporary LOBs; it generates an OCI_INVALID_HANDLE
error. For temporary LOBs, use OCILobLocatorAssign().

For BFILEs, only the locator that refers to the file is copied to the table. The operating system
file itself is not copied.

It is an error to assign a BFILE locator to an internal LOB locator, and vice versa.

If the source locator is for an internal LOB that was enabled for buffering, and the source
locator has been used to modify the LOB data through the LOB buffering subsystem, and the
buffers have not been flushed since the write, then the source locator may not be assigned to
the destination locator. This is because only one locator for each LOB can modify the LOB data
through the LOB buffering subsystem.

The value of the input destination locator must have been allocated with a call to
OCIDescriptorAlloc(). For example, assume the following declarations:

OCILobLocator *source_loc = (OCILobLocator *) 0;
OCILobLocator *dest_loc = (OCILobLocator *) 0;

The following code example shows how an application could allocate the source_loc locator.

Allocating a source_loc Source Locator

if (OCIDescriptorAlloc((void *) envhp, (void **) &source_loc,
 (ub4) OCI_DTYPE_LOB, (size_t) 0, (void **) 0))
 handle_error;

Assume that it then selects a LOB from a table into the source_loc to initialize it. The
application must allocate the destination locator, dest_loc, before issuing the OCILobAssign()
call to assign the value of source_loc to dest_loc, as shown in the following code example.

Allocating a dest_loc Destination Locator

Chapter 27
LOB Functions

27-33

if (OCIDescriptorAlloc((void *) envhp, (void **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (void **) 0))
 handle_error;
if (OCILobAssign(envhp, errhp, source_loc, &dest_loc))
 handle_error

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCILobIsEqual()
Compares two LOB or BFILE locators for equality.

• OCILobLocatorAssign()
Assigns one LOB or BFILE locator to another.

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.7 OCILobCharSetForm()
Gets the character set form of the LOB locator, if any.

Purpose

Gets the character set form of the LOB locator, if any.

Syntax

sword OCILobCharSetForm (OCIEnv *envhp,
 OCIError *errhp,
 const OCILobLocator *locp,
 ub1 *csfrm);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
LOB locator for which to get the character set form.

csfrm (OUT)
Character set form of the input LOB locator. If the input locator, locp, is for a BLOB or a BFILE,
csfrm is set to 0 because there is no concept of a character set for binary LOBs and BFILEs.
The caller must allocate space for csfrm (a ub1).
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID, the default

• SQLCS_NCHAR - NCHAR character set ID

Chapter 27
LOB Functions

27-34

Comments

Returns the character set form of the input CLOB or NCLOB locator in the csfrm output
parameter.

Related Topics

• OCILobCharSetId()
Gets the LOB locator's database character set ID of the LOB locator, if any.

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.8 OCILobCharSetId()
Gets the LOB locator's database character set ID of the LOB locator, if any.

Purpose

Gets the LOB locator's database character set ID of the LOB locator, if any.

Syntax

sword OCILobCharSetId (OCIEnv *envhp,
 OCIError *errhp,
 const OCILobLocator *locp,
 ub2 *csid);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
LOB locator for which to get the character set ID.

csid (OUT)
Database character set ID of the input LOB locator. If the input locator is for a BLOB or a BFILE,
csid is set to 0 because there is no concept of a character set for binary LOBs or binary files.
The caller must allocate space for the csid ub2.

Comments

Returns the character set ID of the input CLOB or NCLOB locator in the csid output parameter.

Related Topics

• OCILobCharSetForm()
Gets the character set form of the LOB locator, if any.

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

Chapter 27
LOB Functions

27-35

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.9 OCILobClose()
Closes a previously opened LOB or BFILE.

Purpose

Closes a previously opened LOB or BFILE.

Syntax

sword OCILobClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
The LOB to close. The locator can refer to an internal or external LOB.

Comments

Closes a previously opened internal or external LOB. No error is returned if the BFILE exists
but is not opened. An error is returned if the internal LOB is not open.

Closing a LOB requires a round-trip to the server for both internal and external LOBs. For
internal LOBs, close triggers other code that relies on the close call and for external LOBs
(BFILEs), close actually closes the server-side operating system file.

It is not mandatory that you wrap all LOB operations inside the open or close calls. However, if
you open a LOB, then you must close it before you commit your transaction. When an internal
LOB is closed, it updates the functional and domain indexes on the LOB column. It is an error
to commit the transaction before closing all opened LOBs that were opened by the transaction.

When the error is returned, the LOB is no longer marked as open, but the transaction is
successfully committed. Hence, all the changes made to the LOB and non-LOB data in the
transaction are committed, but the domain and function-based indexing are not updated. If this
happens, rebuild your functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance, so if you have functional or domain indexes, Oracle recommends that you
enclose write operations to the LOB within the open or close statements.

Related Topics

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

Chapter 27
LOB Functions

27-36

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Functions for Opening and Closing LOBs
OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().

27.3.10 OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

Purpose

Copies all or a portion of a LOB value into another LOB value. This function must be used for
LOBs of size greater than 4 GB. You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobCopy2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 oraub8 amount,
 oraub8 dst_offset,
 oraub8 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator must have
been a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

amount (IN)
The number of characters for CLOBs or NCLOBs or the number of bytes for BLOBs to be copied
from the source LOB to the destination LOB. The maximum value accepted by this parameter
is UB8MAXVAL (18446744073709551615). Specifying UB8MAXVAL also indicates that the entire
source LOB will be copied to the destination LOB using the specified source and destination
offsets.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs, it is the number of
characters from the beginning of the LOB at which to begin writing. For binary LOBs, it is the
number of bytes from the beginning of the LOB from which to begin writing. The offset starts at
1.

Chapter 27
LOB Functions

27-37

src_offset (IN)
This is the absolute offset for the source LOB. For character LOBs, it is the number of
characters from the beginning of the LOB. For binary LOBs, it is the number of bytes. Starts at
1.

Comments

Copies all or a portion of an internal LOB value into another internal LOB as specified. The
data is copied from the source to the destination. The source (src_locp) and the destination
(dst_locp) LOBs must exist.

Copying a complete SecureFile in a column or partition with deduplicate enabled, to a LOB in
the same column or partition, causes the copy to be deduplicated.

If the data exists at the destination's start position, it is overwritten with the source data. If the
destination's start position is beyond the end of the current data, zero-byte fillers (for BLOBs) or
spaces (for CLOBs) are written into the destination LOB from the end of the current data to the
beginning of the newly written data from the source. The destination LOB is extended to
accommodate the newly written data if it extends beyond the current length of the destination
LOB. It is an error to extend the destination LOB beyond the maximum length allowed (that is,
4 gigabytes) or to try to copy from a NULL LOB. Use OCILobCopy2() for LOBs of size greater
than 4 GB.

Both the source and the destination LOB locators must be of the same type (that is, they must
both be BLOBs or both be CLOBs). LOB buffering must not be enabled for either locator.

This function does not accept a BFILE locator as the source or the destination.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Note:

You can call OCILobGetLength2() to determine the length of the source LOB.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

Chapter 27
LOB Functions

27-38

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.11 OCILobCreateTemporary()
Creates a temporary LOB.

Purpose

Creates a temporary LOB.

Syntax

sword OCILobCreateTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub2 csid,
 ub1 csfrm,
 ub1 lobtype,
 boolean cache,
 OCIDuration duration);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
A locator that points to the temporary LOB. You must allocate the locator using
OCIDescriptorAlloc() before passing it to this function. It does not matter whether this
locator points to a LOB; the temporary LOB gets overwritten either way.

csid (IN)
The LOB character set ID. For Oracle8i or later, pass as OCI_DEFAULT.

csfrm (IN)
The LOB character set form of the buffer data. The csfrm parameter has two possible nonzero
values:

• SQLCS_IMPLICIT - Database character set ID, to create a CLOB. OCI_DEFAULT can also be
used to implicitly create a CLOB.

• SQLCS_NCHAR - NCHAR character set ID, to create an NCLOB.

The default value is SQLCS_IMPLICIT.

lobtype (IN)
The type of LOB to create. Valid values include:

• OCI_TEMP_BLOB - For a temporary BLOB
• OCI_TEMP_CLOB - For a temporary CLOB or NCLOB

Chapter 27
LOB Functions

27-39

cache (IN)
Pass TRUE if the temporary LOB should be read into the cache; pass FALSE if it should not. The
default is FALSE for NOCACHE functionality.

duration (IN)
The duration of the temporary LOB. The following are valid values:

• OCI_DURATION_SESSION
• OCI_DURATION_CALL

Comments

This function creates a temporary LOB and its corresponding index in the user's temporary
tablespace.

When this function is complete, the locp parameter points to an empty temporary LOB whose
length is zero.

The lifetime of the temporary LOB is determined by the duration parameter. At the end of its
duration the temporary LOB is freed. An application can free a temporary LOB sooner with the
OCILobFreeTemporary() call.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Related Topics

• OCILobFreeTemporary()
Frees a temporary LOB.

• OCILobIsTemporary()
Tests if a locator points to a temporary LOB.

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Temporary LOB Support for more information about temporary LOBs and their
durations

27.3.12 OCILobErase2()
Erases a specified portion of the internal LOB data starting at a specified offset.

Purpose

Erases a specified portion of the internal LOB data starting at a specified offset. This function
must be used for LOBs of size greater than 4 GB. You can also use this function for LOBs
smaller than 4 GB.

Chapter 27
LOB Functions

27-40

Syntax

sword OCILobErase2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *amount,
 oraub8 offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

amount (IN/OUT)
The number of characters for CLOBs or NCLOBs, or bytes for BLOBs, to erase. On IN, the value
signifies the number of characters or bytes to erase. On OUT, the value identifies the actual
number of characters or bytes erased.

offset (IN)
Absolute offset in characters for CLOBs or NCLOBs, or bytes for BLOBs, from the beginning of the
LOB value from which to start erasing data. Starts at 1.

Comments

The actual number of characters or bytes erased is returned. For BLOBs, erasing means that
zero-byte fillers overwrite the existing LOB value. For CLOBs, erasing means that spaces
overwrite the existing LOB value.

This function is valid only for internal LOBs; BFILEs are not allowed.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

Chapter 27
LOB Functions

27-41

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.13 OCILobFileClose()
Closes a previously opened BFILE.

Purpose

Closes a previously opened BFILE.

Syntax

sword OCILobFileClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filep (IN/OUT)
A pointer to a BFILE locator that refers to the BFILE to be closed.

Comments

Closes a previously opened BFILE. It is an error if this function is called for an internal LOB. No
error is returned if the BFILE exists but is not opened.

This function is only meaningful the first time it is called for a particular BFILE locator.
Subsequent calls to this function using the same BFILE locator have no effect.

Related Topics

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

Chapter 27
LOB Functions

27-42

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.14 OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

Purpose

Closes all open BFILEs on a given service context.

Syntax

sword OCILobFileCLoseAll (OCISvcCtx *svchp,
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

Closes all open BFILEs on a given service context.

Related Topics

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
LOB Functions

27-43

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.15 OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

Purpose

Tests to see if the BFILE exists on the server's operating system.

Syntax

sword OCILobFileExists (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filep (IN)
Pointer to the BFILE locator that refers to the file.

flag (OUT)
Returns TRUE if the BFILE exists on the server; FALSE if it does not.

Comments

Checks to see if the BFILE exists on the server's file system. It is an error to call this function
for an internal LOB.

Related Topics

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

Chapter 27
LOB Functions

27-44

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.16 OCILobFileGetName()
Gets the BFILE locator's directory object and file name.

Purpose

Gets the BFILE locator's directory object and file name.

Syntax

sword OCILobFileGetName (OCIEnv *envhp,
 OCIError *errhp,
 const OCILobLocator *filep,
 OraText *dir_alias,
 ub2 *d_length,
 OraText *filename,
 ub2 *f_length);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filep (IN)
BFILE locator for which to get the directory object and file name.

dir_alias (OUT)
Buffer into which the directory object name is placed. This can be in UTF-16. You must
allocate enough space for the directory object name. The maximum length for the directory
object is 30 bytes.

d_length (IN/OUT)
Serves the following purposes (can be in code point for Unicode, or bytes):

• IN: length of the input dir_alias string

• OUT: length of the returned dir_alias string

filename (OUT)
Buffer into which the file name is placed. You must allocate enough space for the file name.
The maximum length for the file name is 255 bytes.

Chapter 27
LOB Functions

27-45

f_length (IN/OUT)
Serves the following purposes (in number of bytes):

• IN: length of the input filename buffer

• OUT: length of the returned filename string

Comments

Returns the directory object and file name associated with this BFILE locator. The environment
handle determines whether it is in Unicode. It is an error to call this function for an internal
LOB.

Related Topics

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.17 OCILobFileIsOpen()
Tests to see if the BFILE is open.

Purpose

Tests to see if the BFILE is open.

Syntax

sword OCILobFileIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filep (IN)
Pointer to the BFILE locator being examined.

flag (OUT)
Returns TRUE if the BFILE was opened using this particular locator; returns FALSE if it was not.

Chapter 27
LOB Functions

27-46

Comments

Checks to see if a file on the server was opened with the filep BFILE locator. It is an error to
call this function for an internal LOB.

If the input BFILE locator was never passed to the OCILobFileOpen() or OCILobOpen()
command, the file is considered not to be opened by this locator. However, a different locator
may have the file open. Openness is associated with a particular locator.

Related Topics

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.18 OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

Purpose

Opens a BFILE on the file system of the server for read-only access.

Syntax

sword OCILobFileOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 ub1 mode);

Chapter 27
LOB Functions

27-47

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filep (IN/OUT)
The BFILE to open. It is an error if the locator does not refer to a BFILE.

mode (IN)
Mode in which to open the file. The only valid mode is OCI_FILE_READONLY.

Comments

Opens a BFILE on the file system of the server. The BFILE can be opened for read-only
access. BFILEs can not be written through Oracle Database. It is an error to call this function
for an internal LOB.

This function is only meaningful the first time it is called for a particular BFILE locator.
Subsequent calls to this function using the same BFILE locator have no effect.

Related Topics

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

Chapter 27
LOB Functions

27-48

27.3.19 OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

Purpose

Sets the directory object and file name in the BFILE locator.

Syntax

sword OCILobFileSetName (OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator **filepp,
 const OraText *dir_alias,
 ub2 d_length,
 const OraText *filename,
 ub2 f_length);

Parameters

envhp (IN/OUT)
OCI environment handle. Contains the UTF-16 setting.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

filepp (IN/OUT)
Pointer to the BFILE locator for which to set the directory object and file name.

dir_alias (IN)
Buffer that contains the directory object name (must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate() to set in the BFILE locator.

d_length (IN)
Length (in bytes) of the input dir_alias parameter.

filename (IN)
Buffer that contains the file name (must be in the encoding specified by the charset
parameter of a previous call to OCIEnvNlsCreate() to set in the BFILE locator.

f_length (IN)
Length (in bytes) of the input filename parameter.

Comments

It is an error to call this function for an internal LOB.

Related Topics

• OCILobFileGetName()
Gets the BFILE locator's directory object and file name.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
LOB Functions

27-49

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for a description
of BFILEs

27.3.20 OCILobFreeTemporary()
Frees a temporary LOB.

Purpose

Frees a temporary LOB.

Syntax

sword OCILobFreeTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
A locator uniquely referencing the LOB to be freed.

Comments

This function frees the contents of the temporary LOB to which this locator points. Note that the
locator itself is not freed until OCIDescriptorFree() is called. You must always call
OCILobFreeTemporary() before calling OCIDescriptorFree() or OCIArrayDescriptorFree()
to free the contents of the temporary LOB. See About Freeing Temporary LOBs for more
information.

This function returns an error if the LOB locator passed in the locp parameter does not point to
a temporary LOB, possibly because the LOB locator:

• Points to a permanent LOB

• Pointed to a temporary LOB that has been freed

• Has never pointed to anything

Related Topics

• OCILobCreateTemporary()
Creates a temporary LOB.

• OCILobIsTemporary()
Tests if a locator points to a temporary LOB.

• OCIDescriptorFree()
Deallocates a previously allocated descriptor.

Chapter 27
LOB Functions

27-50

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.21 OCILobGetChunkSize()
Gets the chunk size of a LOB.

Purpose

Gets the chunk size of a LOB.

Syntax

sword OCILobGetChunkSize (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *chunk_size);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
The internal LOB for which to get the usable chunk size.

chunk_size (OUT)
For LOBs with storage parameter BASICFILE, the amount of a chunk's space that is used to
store the internal LOB value. This is the amount that users should use when reading or writing
the LOB value. If possible, users should start their writes at chunk boundaries, such as the
beginning of a chunk, and write a chunk at a time.
The chunk_size parameter is returned in terms of bytes for BLOBs, CLOBs, and NCLOBs.
For LOBs with storage parameter SECUREFILE, chunk_size is an advisory size and is provided
for backward compatibility.

Comments

When creating a table that contains an internal LOB, the user can specify the chunking factor,
which can be a multiple of Oracle Database blocks. This corresponds to the chunk size used
by the LOB data layer when accessing and modifying the LOB value. Part of the chunk is used
to store system-related information, and the rest stores the LOB value. This function returns
the amount of space used in the LOB chunk to store the LOB value. Performance is improved
if the application issues read or write requests using a multiple of this chunk size. For writes,
there is an added benefit because LOB chunks are versioned and, if all writes are done on a
chunk basis, no extra versioning is done or duplicated. Users could batch up the write until
they have enough for a chunk instead of issuing several write calls for the same chunk.

Related Topics

• OCILobGetStorageLimit()
Gets the maximum length of an internal LOB (BLOB, CLOB, or NCLOB) in bytes.

Chapter 27
LOB Functions

27-51

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

About Improving LOB Read/Write Performance

27.3.22 OCILobGetContentType()
Gets the user-specified content type string for the data in a SecureFile, if set.

Purpose

Gets the user-specified content type string for the data in a SecureFile, if set.

Syntax

sword OCILobGetContentType (OCIEnv *envhp,
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *lobp,
 oratext *contenttypep,
 ub4 *contenttypelenp,
 ub4 mode);

Parameters

envhp (IN)
The environment handle.

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet() for diagnostic information when there is
an error.

lobp (IN)
A LOB locator that uniquely references a LOB.

Chapter 27
LOB Functions

27-52

contenttypep (IN/OUT)
Pointer to the buffer where the content type is stored after successful execution. You must
allocate the buffer before calling this function. The size of the allocated buffer must be >=
OCI_LOB_CONTENTTYPE_MAXSIZE.

contenttypelenp (IN/OUT)
Set this field to the size of contenttypep buffer. After the call successfully executes, this field
holds the size of the contenttypep returned.

mode (IN)
For future use. Pass zero now.

Comments

This function only works on SecureFiles. If lobp is not a SecureFile, then the error
SECUREFILE_WRONGTYPE is returned. If lobp is buffered, a temporary LOB, or an abstract LOB,
then the error SECUREFILE_BADLOB is returned.

If the SecureFile does not have a contenttype associated with it, the contenttype length
(contenttypelenp) is returned as 0 without modifying the buffer contenttypep.

The maximum possible size of the ContentType string is defined as:

#define OCI_LOB_CONTENTTYPE_MAXSIZE 128

The ContentType is ASCII (that is, 1-byte/7-bit UTF8).

Related Topics

• OCILobSetContentType()
Sets a content type string for the data in the SecureFile to something that can be used by
an application.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.23 OCILobGetLength2()
Gets the length of a LOB. This function must be used for LOBs of size greater than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobGetLength2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *lenp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Chapter 27
LOB Functions

27-53

locp (IN)
A LOB locator that uniquely references the LOB. For internal LOBs, this locator must have
been a locator that was obtained from the server specified by svchp. For BFILEs, the locator
can be set by OCILobFileSetName(), by a SELECT statement, or by OCIObjectPin().

lenp (OUT)
On output, it is the length of the LOB if the LOB is not NULL. For character LOBs, it is the
number of characters; for binary LOBs and BFILEs, it is the number of bytes in the LOB.

Comments

Gets the length of a LOB. If the LOB is NULL, the length is undefined. The length of a BFILE
includes the EOF, if it exists. The length of an empty internal LOB is zero.

Regardless of whether the client-side character set is varying-width, the output length is in
characters for CLOBs and NCLOBs, and in bytes for BLOBs and BFILEs.

Note:

Any zero-byte or space fillers in the LOB written by previous calls to OCILobErase2()
or OCILobWrite2() are also included in the length count.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobLoadFromFile2()
Loads and copies all or a portion of the file into an internal LOB. This function must be
used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
LOB Functions

27-54

27.3.24 OCILobGetOptions()
Obtains the enabled settings corresponding to the given input option types for a given
SecureFile LOB.

Purpose

Obtains the enabled settings corresponding to the given input option types for a given
SecureFile LOB.

Syntax

sword OCILobGetOptions (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 option_types,
 void *optionsp,
 ub4 optionslenp,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
The LOB locator or BFILE locator that uniquely references the LOB or BFILE. This locator must
have been obtained from the server specified by svchp.

option_types (IN)
The given option types that can be combined by a bit-wise inclusive OR (symbol "|"):

• Compression - OCI_LOB_OPT_COMPRESS
• Encryption - OCI_LOB_OPT_ENCRYPT
• Deduplication - OCI_LOB_OPT_DEDUPLICATE

optionsp (OUT)
The current settings for each of the option types given. Possible values are:

• OCI_LOB_OPT_COMPRESS_ON
• OCI_LOB_OPT_ENCRYPT_ON
• OCI_LOB_OPT_DEDUPLICATE_ON

optionslenp (OUT)
The length of the value in optionsp.

mode (IN)
Reserved for future use. Pass in 0.

Chapter 27
LOB Functions

27-55

Comments

You can only specify option types that have been enabled on the column. An error is returned
when an attempt is made to get the value of an option type that is not enabled on the column.
For example, if you have a LOB column with compression enabled, and you call
OCILobGetOptions() with OCI_LOB_OPT_ENCRYPT set in the option_types parameter, an error
occurs.

Note that the returned value is a ub4 pointer cast as a void pointer to allow for future
expansion of option types and values. The optionslenp returned should be equal to
sizeof(ub4).

Related Topics

• OCILobSetOptions()
Enables option settings for a SecureFile LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.25 OCILobGetStorageLimit()
Gets the maximum length of an internal LOB (BLOB, CLOB, or NCLOB) in bytes.

Purpose

Gets the maximum length of an internal LOB (BLOB, CLOB, or NCLOB) in bytes.

Syntax

sword OCILobGetStorageLimit (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *limitp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
A LOB locator that uniquely references the LOB. The locator must have been one that was
obtained from the server specified by svchp.

limitp (OUT)
The maximum length of the LOB (in bytes) that can be stored in the database.

Comments

Because block size ranges from 2 KB to 32 KB, the maximum LOB size ranges from 8
terabytes to 128 terabytes (TB) for LOBs.

Chapter 27
LOB Functions

27-56

Related Topics

• OCILobGetChunkSize()
Gets the chunk size of a LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• About Using LOBs of Size Greater than 4 GB
Starting with Oracle Database 10g Release 1 of OCI, functions were introduced to support
LOBs of size greater than 4 GB. These new functions can also be used in new applications
for LOBs of less than 4 GB.

27.3.26 OCILobIsEqual()
Compares two LOB or BFILE locators for equality.

Purpose

Compares two LOB or BFILE locators for equality.

Syntax

sword OCILobIsEqual (OCIEnv *envhp,
 const OCILobLocator *x,
 const OCILobLocator *y,
 boolean *is_equal);

Parameters

envhp (IN)
The OCI environment handle.

x (IN)
LOB locator to compare.

y (IN)
LOB locator to compare.

is_equal (OUT)
TRUE, if the LOB locators are equal; FALSE if they are not.

Comments

Compares the given LOB or BFILE locators for equality. Two LOB or BFILE locators are equal if
and only if they both refer to the same LOB or BFILE value.

Two NULL locators are considered not equal by this function.

Related Topics

• OCILobAssign()
Assigns one LOB or BFILE locator to another

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

Chapter 27
LOB Functions

27-57

27.3.27 OCILobIsOpen()
Tests whether a LOB or BFILE is open.

Purpose

Tests whether a LOB or BFILE is open.

Syntax

sword OCILobIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *flag);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
Pointer to the LOB locator being examined. The locator can refer to an internal or external
LOB.

flag (OUT)
Returns TRUE if the internal LOB is open or if the BFILE was opened using the input locator.
Returns FALSE if it was not.

Comments

Checks to see if the internal LOB is open or if the BFILE was opened using the input locator.

For BFILEs
If the input BFILE locator was never passed to OCILobOpen() or OCILobFileOpen(), the BFILE
is considered not to be opened by this BFILE locator. However, a different BFILE locator may
have opened the BFILE. Multiple opens can be performed on the same BFILE using different
locators. In other words, openness is associated with a specific locator for BFILEs.

For internal LOBs
Openness is associated with the LOB, not with the locator. If locator1 opened the LOB, then
locator2 also sees the LOB as open.
For internal LOBs, this call requires a server round-trip because it checks the state on the
server to see if the LOB is open. For external LOBs (BFILEs), this call also requires a round-
trip because the operating system file on the server side must be checked to see if it is open.

Related Topics

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

Chapter 27
LOB Functions

27-58

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Functions for Opening and Closing LOBs
OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().

27.3.28 OCILobIsTemporary()
Tests if a locator points to a temporary LOB.

Purpose

Tests if a locator points to a temporary LOB.

Syntax

sword OCILobIsTemporary(OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *is_temporary);

Parameters

envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
The locator to test.

is_temporary (OUT)
Returns TRUE if the LOB locator points to a temporary LOB; FALSE if it does not.

Comments

This function tests a locator to determine if it points to a temporary LOB. If so, is_temporary is
set to TRUE. If not, is_temporary is set to FALSE.

Related Topics

• OCILobCreateTemporary()
Creates a temporary LOB.

Chapter 27
LOB Functions

27-59

• OCILobFreeTemporary()
Frees a temporary LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.29 OCILobLoadFromFile2()
Loads and copies all or a portion of the file into an internal LOB. This function must be used for
LOBs of size greater than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobLoadFromFile2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 oraub8 amount,
 oraub8 dst_offset,
 oraub8 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

dst_locp (IN/OUT)
A locator uniquely referencing the destination internal LOB, that may be of type BLOB, CLOB, or
NCLOB.

src_locp (IN/OUT)
A locator uniquely referencing the source BFILE.

amount (IN)
The number of bytes to be loaded.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs, it is the number of
characters from the beginning of the LOB at which to begin writing. For binary LOBs, it is the
number of bytes from the beginning of the LOB from which to begin reading. The offset starts
at 1.

src_offset (IN)
This is the absolute offset for the source BFILE. It is the number of bytes from the beginning of
the BFILE. The offset starts at 1.

Comments

Loads and copies a portion or all of a BFILE value into an internal LOB as specified. The data
is copied from the source BFILE to the destination internal LOB (BLOB or CLOB). No character
set conversions are performed when copying the BFILE data to a CLOB or NCLOB. Also, when

Chapter 27
LOB Functions

27-60

binary data is loaded into a BLOB, no character set conversions are performed. Therefore, the
BFILE data must be in the same character set as the LOB in the database. No error checking is
performed to verify this.

OCILobLoadFromFile2() throws an error when a remote locator is passed to it.

The source (src_locp) and the destination (dst_locp) LOBs must exist. If the data exists at the
destination's start position, it is overwritten with the source data. If the destination's start
position is beyond the end of the current data, zero-byte fillers (for BLOBs) or spaces (for CLOBs)
are written into the destination LOB from the end of the data to the beginning of the newly
written data from the source. The destination LOB is extended to accommodate the newly
written data if it extends beyond the current length of the destination LOB.

It is an error to extend the destination LOB beyond the maximum length allowed (4 gigabytes)
(see OCILobLoadFromFile2() to use for LOBs of size greater than 4 GB) or to try to copy from
a NULL BFILE.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobTrim2()
Truncates the LOB value to a shorter length. This function must be used for LOBs of size
greater than 4 GB.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobGetLength2()
Gets the length of a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.30 OCILobLocatorAssign()
Assigns one LOB or BFILE locator to another.

Purpose

Assigns one LOB or BFILE locator to another.

Chapter 27
LOB Functions

27-61

Syntax

sword OCILobLocatorAssign (OCISvcCtx *svchp,
 OCIError *errhp,
 const OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters

svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

src_locp (IN)
The LOB or BFILE locator to copy from.

dst_locpp (IN/OUT)
The LOB or BFILE locator to copy to. The caller must allocate space for the OCILobLocator by
calling OCIDescriptorAlloc().

Comments

This call assigns the source locator to the destination locator. After the assignment, both
locators refer to the same LOB data. For internal LOBs, the source locator's LOB data gets
copied to the destination locator's LOB data only when the destination locator gets stored in
the table. Therefore, issuing a flush of the object containing the destination locator copies the
LOB data. For BFILEs, only the locator that refers to the operating system file is copied to the
table; the operating system file is not copied.

OCILobLocatorAssign() throws an error when a remote locator is passed to it.

Note that this call is similar to OCILobAssign(), but OCILobLocatorAssign() takes an OCI
service handle pointer instead of an OCI environment handle pointer. Also,
OCILobLocatorAssign() can be used for temporary LOBs, but OCILobAssign() cannot be
used for temporary LOBs.

Note:

If the OCILobLocatorAssign() function fails, the target locator is not restored to its
previous state. The target locator should not be used in subsequent operations
unless it is reinitialized.

If the destination locator is for a temporary LOB, the destination temporary LOB is freed before
the source LOB locator is assigned to it.

If the source LOB locator refers to a temporary LOB, the destination is made into a temporary
LOB too. The source and the destination are conceptually different temporary LOBs. In the
OCI_DEFAULT mode, the source temporary LOB is deep copied, and a destination locator is
created to refer to the new deep copy of the temporary LOB. Hence OCILobIsEqual() returns
FALSE after the OCILobLocatorAssign() call. However, in the OCI_OBJECT mode, an
optimization is made to minimize the number of deep copies, so the source and destination

Chapter 27
LOB Functions

27-62

locators point to the same LOB until any modification is made through either LOB locator.
Hence OCILobIsEqual() returns TRUE right after OCILobLocatorAssign() until the first
modification. In both these cases, after the OCILobLocatorAssign(), any changes to the
source or the destination do not reflect in the other (that is, destination or source) LOB. If you
want the source and the destination to point to the same LOB and want your changes to reflect
in the other, then you must use the equal sign to ensure that the two LOB locator pointers refer
to the same LOB locator.

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCILobAssign()
Assigns one LOB or BFILE locator to another

• OCILobIsEqual()
Compares two LOB or BFILE locators for equality.

• OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.31 OCILobLocatorIsInit()
Tests to see if a given LOB or BFILE locator is initialized.

Purpose

Tests to see if a given LOB or BFILE locator is initialized.

Syntax

sword OCILobLocatorIsInit (OCIEnv *envhp,
 OCIError *errhp,
 const OCILobLocator *locp,
 boolean *is_initialized);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
The LOB or BFILE locator being tested.

is_initialized (OUT)
Returns TRUE if the given LOB or BFILE locator is initialized; returns FALSE if it is not.

Comments

Tests to see if a given LOB or BFILE locator is initialized.

Internal LOB locators can be initialized by one of these methods:

Chapter 27
LOB Functions

27-63

• Selecting a non-NULL LOB into the locator

• Pinning an object that contains a non-NULL LOB attribute by OCIObjectPin()
• Setting the locator to empty by OCIAttrSet()

See Also:

LOB Descriptor and LOB Locator Attributes

BFILE locators can be initialized by one of these methods:

• Selecting a non-NULL BFILE into the locator

• Pinning an object that contains a non-NULL BFILE attribute by OCIObjectPin()
• Calling OCILobFileSetName()

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCILobIsEqual()
Compares two LOB or BFILE locators for equality.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.32 OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

Purpose

Opens a LOB, internal or external, in the indicated mode.

Syntax

sword OCILobOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub1 mode);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
The LOB to open. The locator can refer to an internal or external LOB.

Chapter 27
LOB Functions

27-64

mode (IN)
The mode in which to open the LOB or BFILE. In Oracle8i or later, valid modes for LOBs are
OCI_LOB_READONLY and OCI_LOB_READWRITE. Note that OCI_FILE_READONLY exists as input to
OCILobFileOpen(). OCI_FILE_READONLY can be used with OCILobOpen() if the input locator is
for a BFILE.

Comments

It is an error to open the same LOB twice. BFILEs cannot be opened in read/write mode. If a
user tries to write to a LOB or BFILE that was opened in read-only mode, an error is returned.

Opening a LOB requires a round-trip to the server for both internal and external LOBs. For
internal LOBs, the open triggers other code that relies on the open call. For external LOBs
(BFILEs), open requires a round-trip because the actual operating system file on the server
side is being opened.

It is not necessary to open a LOB to perform operations on it. When using function-based
indexes, extensible indexes or context, and making multiple calls to update or write to the LOB,
you should first call OCILobOpen(), then update the LOB as many times as you want, and
finally call OCILobClose(). This sequence of operations ensures that the indexes are only
updated once at the end of all the write operations instead of once for each write operation.

It is not mandatory that you wrap all LOB operations inside the open and close calls. However,
if you open a LOB, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column. It is
an error to commit the transaction before closing all opened LOBs that were opened by the
transaction.

When the error is returned, the LOB is no longer marked as open, but the transaction is
successfully committed. Hence, all the changes made to the LOB and non-LOB data in the
transaction are committed, but the domain and function-based indexing are not updated. If this
happens, rebuild your functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance, so if you have functional or domain indexes, Oracle recommends that you
enclose write operations to the LOB within the open or close statements.

Related Topics

• OCILobClose()
Closes a previously opened LOB or BFILE.

• OCILobFileCloseAll()
Closes all open BFILEs on a given service context.

• OCILobFileExists()
Tests to see if the BFILE exists on the server's operating system.

• OCILobFileClose()
Closes a previously opened BFILE.

• OCILobFileIsOpen()
Tests to see if the BFILE is open.

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobIsOpen()
Tests whether a LOB or BFILE is open.

Chapter 27
LOB Functions

27-65

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Functions for Opening and Closing LOBs
OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a LOB,
OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().

27.3.33 OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function must be
used for LOBs of size greater than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobRead2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 oraub8 offset,
 void *bufp,
 oraub8 bufl,
 ub1 piece,
 void *ctxp,
 OCICallbackLobRead2 (cbfp)
 (void *ctxp,
 const void *bufp,
 oraub8 lenp,
 ub1 piecep
 void **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN)
A LOB or BFILE locator that uniquely references the LOB or BFILE. This locator must have
been a locator that was obtained from the server specified by svchp.

byte_amtp (IN/OUT)
IN - The number of bytes to read from the database. Used for BLOB and BFILE always. For
CLOB and NCLOB, it is used only when char_amtp is zero.
OUT - The number of bytes read into the user buffer.

Chapter 27
LOB Functions

27-66

char_amtp (IN/OUT)
IN - The maximum number of characters to read into the user buffer. Ignored for BLOB and
BFILE.
OUT - The number of characters read into the user buffer. Undefined for BLOB and BFILE.

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For character LOBs
(CLOBs, NCLOBs), it is the number of characters from the beginning of the LOB; for binary LOBs
or BFILEs, it is the number of bytes. The first position is 1.
If you use streaming (by polling or a callback), specify the offset in the first call; in subsequent
polling calls, the offset parameter is ignored. When you use a callback, there is no offset
parameter.

bufp (IN/OUT)
The pointer to a buffer into which the piece is read. The length of the allocated memory is
assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value differs from the amtp value for CLOBs and for
NCLOBs (csfrm=SQLCS_NCHAR) when the amtp parameter is specified in terms of characters, and
the bufl parameter is specified in terms of bytes.

piece (IN)
OCI_ONE_PIECE - The call never assumes polling. If the amount indicated is more than the
buffer length, then the buffer is filled as much as possible.
For polling, pass OCI_FIRST_PIECE the first time and OCI_NEXT_PIECE in subsequent calls.
OCI_FIRST_PIECE should be passed while using the callback.

ctxp (IN)
The context pointer for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA is returned for each piece.
The callback function must return OCI_CONTINUE for the read to continue. If any other error
code is returned, the LOB read is terminated.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN)
The length in bytes of the current piece in bufp.

piecep (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE, or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a new buffer for
the next piece to read. The default old buffer bufp is used if this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

Chapter 27
LOB Functions

27-67

csid (IN)
The character set ID of the buffer data. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm. It is never assumed to be the
server character set, unless the server and client have the same settings.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT. If csfrm is not specified, the default is assumed.

Comments

Reads a portion of a LOB or BFILE as specified by the call into a buffer. It is an error to try to
read from a NULL LOB or BFILE.

Note:

When you read or write LOBs, specify a character set form (csfrm) that matches the
form of the locator itself.

For BFILEs, the operating system file must exist on the server, and it must have been opened
by OCILobFileOpen() or OCILobOpen() using the input locator. Oracle Database must have
permission to read the operating system file, and the user must have read permission on the
directory object.

When you use the polling mode for OCILobRead2(), the first call must specify values for offset
and amtp, but on subsequent polling calls to OCILobRead2(), you need not specify these
values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Note:

To terminate an OCILobRead2() operation and free the statement handle, use the
OCIBreak() call.

The following points apply to reading LOB data in streaming mode:

• When you use polling mode, be sure to specify the char_amtp and byte_amtp and offset
parameters only in the first call to OCILobRead2(). On subsequent polling calls these
parameters are ignored. If both byte_amtp and char_amtp are set to point to zero and
OCI_FIRST_PIECE is passed, then polling mode is assumed and data is read till the end of
the LOB. On output, byte_amtp gives the number of bytes read in the current piece.

For CLOBs and NCLOBs, char_amtp gives the number of characters read in the current piece.

Chapter 27
LOB Functions

27-68

For CLOBs and NCLOBs, if you do not pass char_amtp, then char_amtp is calculated
internally as byte_amtp/max char width, so if max char width is 4, char_amtp is
calculated as byte_amtp/4. Thus, OCILobRead2() does not calculate how many bytes are
required for each character. Instead, OCILobRead2() fetches in the worst case the number
of characters that can fit in byte_amtp. To fill the buffer, check the byte_amtp parameter to
see how much of the buffer is filled, then call OCILobRead2() again to fetch the remaining
bytes.

• When you use callbacks, the len parameter, which is input to the callback, indicates how
many bytes are filled in the buffer. Check the len parameter during your callback
processing, because the entire buffer cannot be filled with data.

• When you use polling, look at the byte_amtp parameter to see how much the buffer is filled
for the current piece. For CLOBs and NCLOBs, char_amtp returns the number of characters
read in the buffer as well.

To read data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

Related Topics

• OCILobFileOpen()
Opens a BFILE on the file system of the server for read-only access.

• OCILobOpen()
Opens a LOB, internal or external, in the indicated mode.

• OCIBreak()
Performs an immediate asynchronous break.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
LOB Functions

27-69

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information
about Unicode format

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
description of BFILEs

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

• Polling Mode Operations in OCI

27.3.34 OCILobSetContentType()
Sets a content type string for the data in the SecureFile to something that can be used by an
application.

Purpose

Sets a content type string for the data in the SecureFile to something that can be used by an
application.

Syntax

sword OCILobSetContentType (OCIEnv *envhp,
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *lobp,
 const oratext *contenttypep,
 ub4 contenttypelen,
 ub4 mode);

Parameters

envhp (IN)
The environment handle.

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that can be passed to OCIErrorGet() for diagnostic information when there is
an error.

lobp (IN)
A LOB locator that uniquely references a LOB.

contenttypep (IN)
The contenttype to be set for the given LOB.

Chapter 27
LOB Functions

27-70

contenttypelen (IN)
The size of contenttype in bytes. The size must be less than or equal to
OCI_LOB_CONTENTTYPE_MAXSIZE bytes.

mode (IN)
For future use. Pass zero now.

Comments

This function only works on SecureFiles. If lobp is not a SecureFile, then the error
SECUREFILE_WRONGTYPE is returned. If lobp is buffered, a temporary LOB, or an abstract LOB,
then the error SECUREFILE_BADLOB is returned.

The maximum possible size of the ContentType string is defined as:

#define OCI_LOB_CONTENTTYPE_MAXSIZE 128

The ContentType is ASCII (that is, 1-byte/7-bit UTF8).

To clear an existing contenttype set on a SecureFile, invoke OCILobSetContentType() with
contenttypep set to (oratext *)0 and contenttypelen set to 0.

Related Topics

• OCILobGetContentType()
Gets the user-specified content type string for the data in a SecureFile, if set.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.35 OCILobSetOptions()
Enables option settings for a SecureFile LOB.

Purpose

Enables option settings for a SecureFile LOB.

Syntax

sword OCILobSetOptions (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 option_types,
 void *optionsp,
 ub4 optionslen,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Chapter 27
LOB Functions

27-71

locp (IN/OUT)
The LOB locator that uniquely references the LOB. This locator must have been a locator that
was obtained from the server specified by svchp.

option_types (IN)
You can specify multiple option types and values by using the bit-wise inclusive OR ("|"). An
error results if you specify an option_types value that is not enabled on the LOB column.

• Compression —OCI_LOB_OPT_COMPRESS
• Encryption — OCI_LOB_OPT_ENCRYPT
• Deduplication —OCI_LOB_OPT_DEDUPLICATE
• Allocation size — OCI_LOB_OPT_ALLOCSIZE
• Content type — OCI_LOB_OPT_CONTENTTYPE
• Modification time — OCI_LOB_OPT_MODTIME

optionsp (IN)
The possible settings are:

• OCI_LOB_OPT_COMPRESS_OFF
• OCI_LOB_OPT_COMPRESS_ON
• OCI_LOB_ENCRYPT_OFF
• OCI_LOB_ENCRYPT_ON
• OCI_LOB_OPT_DEDUPLICATE_OFF
• OCI_LOB_OPT_DEDUPLICATE_ON

optionslen (IN)
The length of the value in optionsp. Note that the only valid length at this time is sizeof(ub4).

mode (IN)
Reserved for future use. Pass in 0.

Related Topics

• OCILobGetOptions()
Obtains the enabled settings corresponding to the given input option types for a given
SecureFile LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.36 OCILobTrim2()
Truncates the LOB value to a shorter length. This function must be used for LOBs of size
greater than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobTrim2 (OCISvcCtx *svchp,
 OCIError *errhp,

Chapter 27
LOB Functions

27-72

 OCILobLocator *locp,
 oraub8 newlen);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

newlen (IN)
The new length of the LOB value, which must be less than or equal to the current length. For
character LOBs, it is the number of characters; for binary LOBs and BFILEs, it is the number of
bytes in the LOB.

Comments

This function trims the LOB data to a specified shorter length. The function returns an error if
newlen is greater than the current LOB length. This function is valid only for internal LOBs.
BFILEs are not allowed.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobErase2()
Erases a specified portion of the internal LOB data starting at a specified offset.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

Chapter 27
LOB Functions

27-73

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.3.37 OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobWrite2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 oraub8 offset,
 void *bufp,
 oraub8 buflen,
 ub1 piece,
 void *ctxp,
 OCICallbackLobWrite2 (cbfp)
 (
 void *ctxp,
 void *bufp,
 oraub8 *lenp,
 ub1 *piecep
 void **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

byte_amtp (IN/OUT)
IN - The number of bytes to write to the database. Always used for BLOB. For CLOB and NCLOB it
is used only when char_amtp is zero.
OUT - The number of bytes written to the database. In polling mode, it is the length of the
piece, in bytes, just written.

char_amtp (IN/OUT)
IN - The maximum number of characters to write to the database. Ignored for BLOB.
OUT - The number of characters written to the database. Undefined for BLOB. In polling mode,
it is the length of the piece, in characters, just written.

Chapter 27
LOB Functions

27-74

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For character LOBs, it
is the number of characters from the beginning of the LOB; for binary LOBs, it is the number of
bytes. The first position is 1.
If you use streaming (by polling or a callback), specify the offset in the first call; in subsequent
polling calls, the offset parameter is ignored. When you use a callback, there is no offset
parameter.

bufp (IN)
The pointer to a buffer from which the piece is written. The length of the data in the buffer is
assumed to be the value passed in buflen. Even if the data is being written in pieces using
the polling method, bufp must contain the first piece of the LOB when this call is invoked. If a
callback is provided, bufp must not be used to provide data or an error results.

buflen (IN)
The length, in bytes, of the data in the buffer. This value differs from the char_amtp value for
CLOBs and NCLOBs when the amount is specified in terms of characters using the char_amtp
parameter, and the buflen parameter is specified in terms of bytes.

Note:

This parameter assumes an 8-bit byte. If your operating system uses a longer byte,
you must adjust the value of buflen accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating that the buffer is written in a single piece.
The following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE, and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece in a piecewise write. If this is
NULL, the standard polling method is used.
The callback function must return OCI_CONTINUE for the write to continue. If any other error
code is returned, the LOB write is terminated. The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input to the
OCILobWrite() routine.

lenp (IN/OUT)
The length (in bytes) of the data in the buffer (IN), and the length (in bytes) of the current piece
in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

Chapter 27
LOB Functions

27-75

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a new buffer for
next piece to read. The default old buffer bufp is used if this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the data in the buffer. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments

Writes a buffer into an internal LOB as specified. If LOB data exists, it is overwritten with the
data stored in the buffer. The buffer can be written to the LOB in a single piece with this call, or
it can be provided piecewise using callbacks or a standard polling method.

Note:

When you read or write LOBs, specify a character set form (csfrm) that matches the
form of the locator itself.

When you use the polling mode for OCILobWrite2(), the first call must specify values for
offset, byte_amtp, and char_amtp, but on subsequent polling calls to OCILobWrite2(), you
need not specify these values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be provided through
callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function is invoked to
get the next piece after a piece is written to the pipe. Each piece is written from bufp. If no
callback function is defined, then OCILobWrite2() returns the OCI_NEED_DATA error code. The
application must call OCILobWrite2() again to write more pieces of the LOB. In this mode, the
buffer pointer and the length can be different in each call if the pieces are of different sizes and
from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of whether the
polling or callback method is used.

If the amount of data passed to the database (through either input mechanism) is less than the
amount specified by the byte_amtp or the char_amtp parameter, an ORA-22993 error is
returned.

This function is valid for internal LOBs only. BFILEs are not allowed, because they are read-
only. If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Chapter 27
LOB Functions

27-76

If both byte_amtp and char_amtp are set to point to zero amount, and OCI_FIRST_PIECE is
given as input, then polling mode is assumed and data is written until you specify
OCI_LAST_PIECE. For CLOBs and NCLOBs, byte_amtp and char_amtp return the data written by
each piece in terms of number of bytes and number of characters respectively. For BLOBs,
byte_amtp returns the number of bytes written by each piece, whereas char_amtp is undefined
on output.

To write data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information
about Unicode format

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

• Polling Mode Operations in OCI

Chapter 27
LOB Functions

27-77

27.3.38 OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size greater
than 4 GB.

Purpose

You can also use this function for LOBs smaller than 4 GB.

Syntax

sword OCILobWriteAppend2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 void *bufp,
 oraub8 buflen,
 ub1 piece,
 void *ctxp,
 OCICallbackLobWrite2 (cbfp)
 (
 void *ctxp,
 void *bufp,
 oraub8 *lenp,
 ub1 *piecep
 void **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

locp (IN/OUT)
An internal LOB locator that uniquely references a LOB.

byte_amtp (IN/OUT)
IN - The number of bytes to write to the database. Used for BLOB. For CLOB and NCLOB it is
used only when char_amtp is zero.
OUT - The number of bytes written to the database.

char_amtp (IN/OUT)
IN - The maximum number of characters to write to the database. Ignored for BLOB.
OUT - The number of characters written to the database. Undefined for BLOB.

bufp (IN)
The pointer to a buffer from which the piece is written. The length of the data in the buffer is
assumed to be the value passed in buflen. Even if the data is being written in pieces, bufp

Chapter 27
LOB Functions

27-78

must contain the first piece of the LOB when this call is invoked. If a callback is provided, bufp
must not be used to provide data or an error results.

buflen (IN)
The length, in bytes, of the data in the buffer. Note that this parameter assumes an 8-bit byte.
If your operating system uses a longer byte, the value of buflen must be adjusted accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating that the buffer is written in a single piece. The following other
values are also possible for piecewise or callback mode: OCI_FIRST_PIECE, OCI_NEXT_PIECE,
and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece in a piecewise write. If this is
NULL, the standard polling method is used. The callback function must return OCI_CONTINUE for
the write to continue. If any other error code is returned, the LOB write is terminated. The
callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN/OUT)
The length (in bytes) of the data in the buffer (IN), and the length (in bytes) of the current piece
in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a new buffer for
next piece to be written. The default old buffer bufp is used if this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments

The buffer can be written to the LOB in a single piece with this call, or it can be provided
piecewise using callbacks or a standard polling method. If the value of the piece parameter is

Chapter 27
LOB Functions

27-79

OCI_FIRST_PIECE, data must be provided through callbacks or polling. If a callback function is
defined in the cbfp parameter, then this callback function is invoked to get the next piece after
a piece is written to the pipe. Each piece is written from bufp. If no callback function is defined,
then OCILobWriteAppend2() returns the OCI_NEED_DATA error code.

The application must call OCILobWriteAppend2() again to write more pieces of the LOB. In this
mode, the buffer pointer and the length can be different in each call if the pieces are of different
sizes and from different locations. A piece value of OCI_LAST_PIECE terminates the piecewise
write.

The OCILobWriteAppend2() function is not supported if LOB buffering is enabled.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If both byte_amtp and char_amtp are set to point to zero amount and OCI_FIRST_PIECE is given
as input, then polling mode is assumed and data is written until you specify OCI_LAST_PIECE.
For CLOBs and NCLOBs, byte_amtp and char_amtp return the data written by each piece in terms
of number of bytes and number of characters respectively. For BLOBs, byte_amtp returns the
number of bytes written by each piece whereas char_amtp is undefined on output.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit your transaction. When an
internal LOB is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

• OCILobAppend()
Appends a LOB value at the end of another LOB as specified.

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

About Improving LOB Read/Write Performance

Chapter 27
LOB Functions

27-80

27.4 Database Advanced Queuing and Publish-Subscribe
Functions

Lists and describes the Database Advanced Queuing and publish-subscribe functions.

Table 27-3 lists the Database Advanced Queuing and publish-subscribe functions that are
described in this section. Use functions that end in "2" for all new applications.

See Also:

Table B-1 for Database Advanced Queuing programs

Table 27-3 Advanced Queuing and Publish-Subscribe Functions

Function Purpose

OCIAQDeq() Performs an Advanced Queuing dequeue
operation

OCIAQDeqArray() Dequeue an array of messages

OCIAQEnq() Performs an Advanced Queuing enqueue
operation

OCIAQEnqArray() Enqueue an array of messages

OCIAQListen2() Listen on one or more queues on behalf of
a list of agents. Supports buffered
messaging and persistent queues.

OCISubscriptionDisable() Disable a subscription registration to turn
off notifications

OCISubscriptionEnable() Enable notifications on a subscription

OCISubscriptionPost() Post to a subscription to receive
notifications

OCISubscriptionRegister() Register a subscription

OCISubscriptionUnRegister() Unregister a subscription

• OCIAQDeq()

• OCIAQDeqArray()
Dequeues an array of messages from a queue.

• OCIAQEnq()
Performs an enqueue operation using Database Advanced Queuing.

• OCIAQEnqArray()
Enqueues an array of messages to a queue.

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISubscriptionDisable()
Disables a subscription registration that turns off all notifications.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-81

• OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

27.4.1 OCIAQDeq()
Purpose

Performs a dequeue operation using Database Advanced Queuing with OCI.

Syntax

sword OCIAQDeq (OCISvcCtx *svch,
 OCIError *errh,
 OraText *queue_name,
 OCIAQDeqOptions *dequeue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 void **payload,
 void **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

queue_name (IN)
The target queue for the dequeue operation.

dequeue_options (IN)
The options for the dequeue operation; stored in an OCIAQDeqOptions descriptor, with OCI
type constant OCI_DTYPE_AQDEQ_OPTIONS.
OCI_DTYPE_AQDEQ_OPTIONS has the additional attribute OCI_ATTR_MSG_DELIVERY_MODE
(introduced in Oracle Database 10g Release 2) with the following values:

• OCI_MSG_PERSISTENT (default)

• OCI_MSG_BUFFERED
• OCI_MSG_PERSISTENT_OR_BUFFERED

message_properties (OUT)
The message properties for the message; the properties are stored in an OCIAQMsgProperties
descriptor, with OCI type constant OCI_DTYPE_AQMSG_PROPERTIES, which can have the
following values:

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-82

• OCI_AQ_PERSISTENT (default)

• OCI_AQ_BUFFERED

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter should
point to the TDO of SYS.RAW.

payload (IN/OUT)
A pointer to a pointer to a program variable buffer that is an instance of an object type. For a
raw queue, this parameter should point to an instance of OCIRaw.
Memory for the payload is dynamically allocated in the object cache. The application can
optionally call OCIObjectFree() to deallocate the payload instance when it is no longer
needed. If the pointer to the program variable buffer (*payload) is passed as NULL, the buffer
is implicitly allocated in the cache.
The application may choose to pass NULL for payload the first time OCIAQDeq() is called, and
let the OCI allocate the memory for the payload. It can then use a pointer to that previously
allocated memory in subsequent calls to OCIAQDeq().
To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().
The OCI provides functions that allow the user to set attributes of the payload, such as its text.
For information about setting these attributes, see "Manipulating Object Attributes".

payload_ind (IN/OUT)
A pointer to a pointer to the program variable buffer containing the parallel indicator structure
for the object type.
The memory allocation rules for payload_ind are the same as those for payload.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package to use this
call. The OCI environment must be initialized in object mode (using OCIEnvCreate(),
OCIEnvNlsCreate()), or OCIInitialize() (deprecated) to use this call.

Related Topics

• OCIObjectFree()
Frees and unpins an object instance.

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCIAQEnq()
Performs an enqueue operation using Database Advanced Queuing.

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-83

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• OCI and Database Advanced Queuing

• Oracle Database Advanced Queuing User's Guide

27.4.2 OCIAQDeqArray()
Dequeues an array of messages from a queue.

Purpose

All messages in the array are dequeued with the same option and have the same queue table
payload column TDO.

Syntax

sword OCIAQDeqArray (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *queue_name,
 OCIAQDeqOptions *deqopt,
 ub4 *iters,
 OCIAQMsgProperties **msgprop,
 OCIType *payload_tdo,
 void **payload,
 void **payload_ind,
 OCIRaw **msgid,
 void *ctxp,
 OCICallbackAQDeq (cbfp)
 (
 void *ctxp,
 void **payload,
 void **payload_ind
),
 ub4 flags);

Parameters

svchp (IN)
OCI service context (unchanged from OCIAQDeq()).

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error (unchanged from OCIAQDeq()).

queue_name (IN)
The name of the queue from which messages are dequeued (unchanged from OCIAQDeq()

deqopt (IN)
A pointer to an OCIAQDeqOptions descriptor (unchanged from OCIAQDeq()).

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-84

OCI_DTYPE_AQDEQ_OPTIONS OCI type constant has the additional attribute
OCI_ATTR_MSG_DELIVERY_MODE (introduced in Oracle Database 10g Release 2) with the
following values:

• OCI_MSG_PERSISTENT (default)

• OCI_MSG_BUFFERED
• OCI_MSG_PERSISTENT_OR_BUFFERED

iters (IN/OUT)
On input, the number of messages to dequeue. On output, the number of messages
successfully dequeued.

msgprop (OUT)
An array of pointers to OCIAQMsgProperties descriptors, of OCI type constant
OCI_DTYPE_AQMSG_PROPERTIES, which can have the following values:

• OCI_AQ_PERSISTENT (default)

• OCI_AQ_BUFFERED

payload_tdo (OUT)
A pointer to the TDO of the queue table's payload column.

payload (OUT)
An array of pointers to dequeued messages.

payload_ind (OUT)
An array of pointers to indicators.

msgid (OUT)
An array of pointers to the message ID of the dequeued messages.

ctxp (IN)
The context that is passed to the callback function.

cbfp (IN)
The callback that can be registered to provide a buffer pointer into which the dequeued
message is placed. If NULL, then messages are dequeued into buffers pointed to by payload.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package to use this
call. The OCI environment must be initialized in object mode (using OCIEnvCreate(),
OCIEnvNlsCreate()), or OCIInitialize() (deprecated) to use this call.

A nonzero wait time, as specified in the OCIAQDeqOptions, is recognized only when there are
no messages in the queue. If the queue contains messages that are eligible for dequeuing,
then the OCIAQDeqArray() function dequeues up to iters messages and returns immediately.

This function is not supported in nonblocking mode.

Related Topics

• OCIAQDeq()

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-85

• OCIAQEnqArray()
Enqueues an array of messages to a queue.

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

• OCI and Database Advanced Queuing

• Oracle Database Advanced Queuing User's Guide

27.4.3 OCIAQEnq()
Performs an enqueue operation using Database Advanced Queuing.

Purpose

Performs an enqueue operation using Database Advanced Queuing.

Syntax

sword OCIAQEnq (OCISvcCtx *svch,
 OCIError *errh,
 OraText *queue_name,
 OCIAQEnqOptions *enqueue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 void **payload,
 void **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

queue_name (IN)
The target queue for the enqueue operation.

enqueue_options (IN)
The options for the enqueue operation; stored in an OCIAQEnqOptions descriptor.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-86

message_properties (IN)
The message properties for the message. The properties are stored in an
OCIAQMsgProperties descriptor, of OCI type constant OCI_DTYPE_AQMSG_PROPERTIES,
introduced in Oracle Database 10g Release 2.
Descriptor OCI_DTYPE_AQMSG_PROPERTIES has the attribute OCI_ATTR_MSG_DELIVERY_MODE,
which has the following values:

• OCI_MSG_PERSISTENT (default)

• OCI_MSG_BUFFERED

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter should
point to the TDO of SYS.RAW.

payload (IN)
A pointer to a pointer to an instance of an object type. For a raw queue, this parameter should
point to an instance of OCIRaw.
OCI provides functions that allow the user to set attributes of the payload, such as its text.

See Also:

Manipulating Object Attributes for information about setting these attributes

payload_ind (IN)
A pointer to a pointer to the program variable buffer containing the parallel indicator structure
for the object type.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package to use this
call.

The OCI environment must be initialized in object mode (using OCIEnvCreate(),
OCIEnvNlsCreate()), or OCIInitialize() (deprecated) to use this call.

See Also:

• OCI and Database Advanced Queuing for more information about OCI and
Advanced Queuing

• Oracle Database Advanced Queuing User's Guide

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-87

Related Topics

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCIAQDeq()

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.4 OCIAQEnqArray()
Enqueues an array of messages to a queue.

Purpose

The array of messages is enqueued with the same options and has the same payload column
TDO.

Syntax

sword OCIAQEnqArray (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *queue_name,
 OCIAQEnqOptions *enqopt,
 ub4 *iters,
 OCIAQMsgProperties **msgprop,
 OCIType *payload_tdo,
 void **payload,
 void **payload_ind,
 OCIRaw **msgid,
 void *ctxp,
 OCICallbackAQEnq (cbfp)
 (
 void *ctxp,
 void **payload,
 void **payload_ind
),
 ub4 flags);

Parameters

svchp (IN)
The service context (unchanged from OCIAQEnq()).

errhp (IN/OUT)
The error handle (unchanged from OCIAQEnq()).

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-88

queue_name (IN)
The name of the queue in which messages are enqueued (unchanged from OCIAQEnq()).

enqopt (IN)
A pointer to an OCIAQEnqOptions descriptor (unchanged from OCIAQEnq()).

iters (IN/OUT)
On input, the number of messages to enqueue. On output, the number of messages
successfully enqueued.

msgprop (IN)
An array of pointers to OCIAQMsgProperties descriptors, of OCI type constant
OCI_DTYPE_AQMSG_PROPERTIES, introduced in Oracle Database 10g Release 2.
OCI_DTYPE_AQMSG_PROPERTIES has the attribute OCI_ATTR_MSG_DELIVERY_MODE, which has the
following values:

• OCI_MSG_PERSISTENT (default)

• OCI_MSG_BUFFERED

payload_tdo (IN)
A pointer to the TDO of the queue table's payload column.

payload (IN)
An array of pointers to messages to be enqueued.

payload_ind (IN)
An array of pointers to indicators, or a NULL pointer if indicator variables are not used.

msgid (OUT)
An array of pointers to the message ID of the enqueued messages, or a NULL pointer if no
message IDs are returned.

ctxp (IN)
The context that is passed to the registered callback function.

cbfp (IN)
A callback that can be registered to provide messages dynamically. If NULL, then all messages
must be materialized before calling OCIAQEnqArray().

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

This function is not supported in nonblocking mode.

Related Topics

• OCIAQEnq()
Performs an enqueue operation using Database Advanced Queuing.

• OCIAQDeqArray()
Dequeues an array of messages from a queue.

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-89

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.5 OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

Purpose

Supports buffered messaging and persistent queues. Introduced in Oracle Database 10g
Release 2.

Syntax

sword OCIAQListen2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAQAgent **agent_list,
 ub4 num_agents,
 OCIAQListenOpts *lopts,
 OCIAQAgent **agent,
 OCIAQLisMsgProps *lmops,
 ub4 flags);

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

agent_list (IN)
List of agents for which to monitor messages.

num_agents (IN)
Number of agents in the agent list.

lopts (IN)
Type constant OCI_DTYPE_AQLIS_OPTIONS has the following attributes:

• OCI_ATTR_WAIT - Maximum wait time, in seconds, for the listen call

• OCI_ATTR_MSG_DELIVERY_MODE - Has one of these values:

– OCI_MSG_PERSISTENT
– OCI_MSG_BUFFERED
– OCI_MSG_PERSISTENT_OR_BUFFERED

agent (OUT)
Agent for which there is a message. OCIAgent is an OCI descriptor.

lmops (OUT)
OCI_DTYPE_AQLIS_MSG_PROPERTIES (listen message properties) has one attribute,
OCI_ATTR_MSG_DELIVERY_MODE, which has the following values:

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-90

• OCI_MSG_PERSISTENT
• OCI_MSG_BUFFERED

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

This is a blocking call that returns when there is a message ready for consumption for an agent
in the list. If there are no messages found when the wait time expires, an error is returned.

Related Topics

• OCIAQEnq()
Performs an enqueue operation using Database Advanced Queuing.

• OCIAQDeq()

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

• OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.6 OCISubscriptionDisable()
Disables a subscription registration that turns off all notifications.

Purpose

Disables a subscription registration that turns off all notifications.

Syntax

ub4 OCISubscriptionDisable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE
attributes set.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-91

See Also:

Subscription Handle Attributes

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Call-specific mode. The only valid value is OCI_DEFAULT. OCI_DEFAULT executes the default call
that discards all notifications on this subscription until the subscription is enabled.

Comments

This call is used to temporarily turn off notifications. This is useful when the application is
running a critical section of the code and should not be interrupted.

The user need not be connected or authenticated to perform this operation. A registration must
have been performed to the subscription specified by the subscription handle before this call is
made.

All notifications after an OCISubscriptionDisable() are discarded by the system until an
OCISubscriptionEnable() is performed.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

• OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.7 OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

Purpose

This turns on all notifications.

Syntax

ub4 OCISubscriptionEnable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-92

Parameters

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE
attributes set.

See Also:

Subscription Handle Attributes

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Call-specific mode. The only valid value is OCI_DEFAULT. This value executes the default call
that buffers all notifications on this subscription until a subsequent enable is performed.

Comments

This call is used to turn on notifications after a subscription registration has been disabled.

The user need not be connected or authenticated to perform this operation. A registration must
have been done for the specified subscription before this call is made.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.8 OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

Purpose

Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

Syntax

ub4 OCISubscriptionPost (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-93

 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a subscription handle
with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE attributes set.

See Also:

Subscription Handle Attributes

The OCI_ATTR_SUBSCR_PAYLOAD attribute must be set for each subscription handle before this
call. If it is not set, the payload is assumed to be NULL and no payload is delivered when the
notification is received by the clients that have registered interest. Note that the caller must
preserve the payload until the post is done, as the OCIAttrSet() call keeps track of the
reference to the payload but does not copy the contents.

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Call-specific mode. The only valid value is OCI_DEFAULT. This value executes the default
call.

Comments

Posting to a subscription involves identifying the subscription name and the payload if desired.
If no payload is associated, the payload length can be set to 0.

This call provides a best-effort guarantee. A notification goes to registered clients at most
once.

This call is primarily used for nonpersistent notification and is useful for several system events.
If the application needs more rigid guarantees, it can use the Advanced Queuing functionality
by enqueuing to the queue.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-94

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.9 OCISubscriptionRegister()
Registers a callback for message notification.

Purpose

Registers a callback for message notification.

Syntax

ub4 OCISubscriptionRegister (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,
 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a subscription handle
with all of the following attributes set:

• OCI_ATTR_SUBSCR_NAME
• OCI_ATTR_SUBSCR_NAMESPACE
• OCI_ATTR_SUBSCR_RECPTPROTO
Otherwise, an error is returned.

One of the following attributes must also be set:

• OCI_ATTR_SUBSCR_CALLBACK
• OCI_ATTR_SUBSCR_CTX
• OCI_ATTR_SUBSCR_RECPT

See Also:

Subscription Handle Attributes for information about the handle attributes

When a notification is received for the registration denoted by subscrhpp[i], either the user-
defined callback function (OCI_ATTR_SUBSCR_CALLBACK) set for subscrhpp[i] is invoked with
the context (OCI_ATTR_SUBSCR_CTX) set for subscrhpp[i], or an email is sent to

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-95

(OCI_ATTR_SUBSCR_RECPT) set for subscrhpp[i], or the PL/SQL procedure
(OCI_ATTR_SUBSCR_RECPT) set for subscrhpp[i] is invoked in the database, provided the
subscriber of subscrhpp[i] has the appropriate permissions on the procedure.

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Call-specific mode. Valid values are:

• OCI_DEFAULT - Use when there is only one server DN in the server DN descriptor. The
registration request is sent to the database. If a database connection is not available, the
registration request is detoured to the LDAP server.

• OCI_REG_LDAPONLY - The registration request is sent directly to the LDAP server. Use this
mode when there are multiple server DNs in the server DN descriptor, or you are certain
that a database connection is not available.

Whenever a new client process comes up, or an old one goes down and comes back up, it
must register for all subscriptions of interest. If the client stays up and the server first goes
down and then comes back up, the client continues to receive notifications for registrations that
are DISCONNECTED. However, the client does not receive notifications for CONNECTED
registrations, as they are lost after the server goes down and comes back up.

Comments

This call is invoked for registration to a subscription that identifies the subscription name of
interest and the associated callback to be invoked. Interest in several subscriptions can be
registered simultaneously.

This interface is only valid for the asynchronous mode of message delivery. In this mode, a
subscriber issues a registration call that specifies a callback. When messages are received
that match the subscription criteria, the callback is invoked. The callback may then issue an
explicit message_receive (dequeue) to retrieve the message.

The user must specify a subscription handle at registration time with the namespace attribute
set to OCI_SUBSCR_NAMESPACE_AQ.

The subscription name is the string SCHEMA.QUEUE if the registration is for a single consumer
queue and SCHEMA.QUEUE:CONSUMER_NAME if the registration is for a multiconsumer queue. The
string should be in uppercase.

Each namespace has its own privilege model. If the user performing the registration is not
entitled to register in the namespace for the specified subscription, an error is returned.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-96

• OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

• OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.4.10 OCISubscriptionUnRegister()
Unregisters a subscription that turns off notifications.

Purpose

Unregisters a subscription that turns off notifications.

Syntax

ub4 OCISubscriptionUnRegister (OCISvcCtx *svchp,
 OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE
attributes set.

See Also:

Subscription Handle Attributes

errhp (OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
Call-specific mode. Valid values are:

• OCI_DEFAULT - Use when there is only one server DN in the server DN descriptor. The
registration request is sent to the database. If a database connection is not available, the
registration request is detoured to the LDAP server.

• OCI_REG_LDAPONLY - The registration request is sent directly to the LDAP server. Use this
mode when there are multiple server DNs in the server DN descriptor, or you are certain
that a database connection is not available.

Chapter 27
Database Advanced Queuing and Publish-Subscribe Functions

27-97

Comments

Unregistering a subscription ensures that the user does not receive notifications regarding the
specified subscription in the future. If the user wants to resume notification, then the only
option is to reregister for the subscription.

All notifications that would otherwise have been delivered are not delivered after a subsequent
registration is performed because the user is no longer in the list of interested clients.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCISubscriptionEnable()
Enables a subscription registration that has been disabled.

• OCISubscriptionPost()
Posts to a subscription that allows all clients who are registered for the subscription to get
notifications.

• OCISubscriptionRegister()
Registers a callback for message notification.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5 Direct Path Loading Functions
Lists and describes the direct path loading functions.

Table 27-4 lists the direct path loading functions that are described in this section.

Table 27-4 Direct Path Loading Functions

Function Purpose

OCIDirPathAbort() Terminate a direct path operation

OCIDirPathColArrayEntryGet() Get a specified entry in a column array

OCIDirPathColArrayEntrySet() Set a specified entry in a column array to a
specific value

OCIDirPathColArrayReset() Reset the row array state

OCIDirPathColArrayRowGet() Get the base row pointers for a specified
row number

OCIDirPathColArrayToStream() Convert from a column array to a direct path
stream format

OCIDirPathDataSave() Do a data savepoint, or commit the loaded
data and finish the load operation

OCIDirPathFinish() Finish and commit the loaded data

OCIDirPathFlushRow() Deprecated.

OCIDirPathLoadStream() Load the data converted to direct path
stream format

Chapter 27
Direct Path Loading Functions

27-98

Table 27-4 (Cont.) Direct Path Loading Functions

Function Purpose

OCIDirPathPrepare() Prepare direct path interface to convert or
load rows

OCIDirPathStreamReset() Reset the direct path stream state

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathColArrayEntryGet()

• OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

• OCIDirPathColArrayReset()
Resets the column array state.

• OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathFlushRow()
Flushes a partially loaded row from the server. This function is deprecated.

• OCIDirPathLoadStream()
Loads the data converted to direct path stream format.

• OCIDirPathPrepare()

• OCIDirPathStreamReset()
Resets the direct path stream state.

27.5.1 OCIDirPathAbort()
Terminates a direct path operation.

Purpose

Terminates a direct path operation.

Syntax

sword OCIDirPathAbort (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle.

Chapter 27
Direct Path Loading Functions

27-99

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

All state that was maintained by the server on behalf of the direct path operation is destroyed
by a termination. For a direct path load, the data loaded before the terminate operation is not
visible to any queries. However, the data may still consume space in the segments that are
being loaded. Any load completion operations, such as index maintenance operations, are not
performed.

Related Topics

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathLoadStream()
Loads the data converted to direct path stream format.

• OCIDirPathStreamReset()
Resets the direct path stream state.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.2 OCIDirPathColArrayEntryGet()
Purpose

Gets a specified entry in a column array.

Syntax

sword OCIDirPathColArrayEntryGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 **cvalpp,
 ub4 *clenp,
 ub1 *cflgp);

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

rownum (IN)
Zero-based row offset.

Chapter 27
Direct Path Loading Functions

27-100

colIdx (IN)
The column's index used when building the column parameter list.

cvalpp (IN/OUT)
Pointer to pointer to column data.

clenp (IN/OUT)
Pointer to length of column data.

cflgp (IN/OUT)
Pointer to column flag.
One of these values is returned:

• OCI_DIRPATH_COL_COMPLETE - All data for the column is present.

• OCI_DIRPATH_COL_NULL - Column is NULL.

• OCI_DIRPATH_COL_PARTIAL - Partial column data is being supplied.

Comments

If cflgp is set to OCI_DIRPATH_COL_NULL, the cvalpp and clenp parameters are not set by this
operation.

Related Topics

• OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

• OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

• OCIDirPathColArrayReset()
Resets the column array state.

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.3 OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

Purpose

Sets a specified entry in a column array to the supplied values.

Syntax

sword OCIDirPathColArrayEntrySet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 *cvalp,
 ub4 clen,
 ub1 cflg);

Chapter 27
Direct Path Loading Functions

27-101

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

rownum (IN)
Zero-based row offset.

colIdx (IN)
The column's index used when building the column parameter list.

cvalp (IN)
Pointer to column data.

clen (IN)
Length of column data.

cflg (IN)
Column flag. One of these values is returned:

• OCI_DIRPATH_COL_COMPLETE - All data for the column is present.

• OCI_DIRPATH_COL_NULL - Column is NULL.

• OCI_DIRPATH_COL_PARTIAL - Partial column data is being supplied.

Comments

If cflg is set to OCI_DIRPATH_COL_NULL, the cvalp and clen parameters are not used.

Example

This example sets the source of data for the first row in a column array to addr, with a length of
len. In this example, the column is identified by colId.

err = OCIDirPathColArrayEntrySet(dpca, errhp, (ub2)0, colId, addr, len,
 OCI_DIRPATH_COL_COMPLETE);

Related Topics

• OCIDirPathColArrayEntryGet()

• OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

• OCIDirPathColArrayReset()
Resets the column array state.

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Direct Path Loading Functions

27-102

27.5.4 OCIDirPathColArrayReset()
Resets the column array state.

Purpose

Resets the column array state.

Syntax

sword OCIDirPathColArrayReset (OCIDirPathColArray *dpca,
 OCIError *errhp);

Parameters

dpca (IN)
Direct path column array handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

Resetting the column array state is necessary when piecing in a large column and an error
occurs in the middle of loading the column. Do not reset the column array if the last
OCIDirPathColArrayReset() call returned OCI_NEED_DATA or OCI_CONTINUE. That is, you are in
the middle of a row conversion. Use OCI_DIRPATH_COL_ERROR to purge the current row for
OCI_NEED_DATA.

Related Topics

• OCIDirPathColArrayEntryGet()

• OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

• OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.5 OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

Purpose

Gets the column array row pointers for a given row number.

Syntax

sword OCIDirPathColArrayRowGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub1 ***cvalppp,

Chapter 27
Direct Path Loading Functions

27-103

 ub4 **clenpp,
 ub1 **cflgpp);

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

rownum (IN)
Zero-based row offset

cvalppp (IN/OUT)
Pointer to vector of pointers to column data

clenpp (IN/OUT)
Pointer to vector of column data lengths

cflgpp (IN/OUT)
Pointer to vector of column flags

Comments

Returns pointers to column array entries for the given row. This allows the application to do
simple pointer arithmetic to iterate across the columns of the specific row. You can use this
interface to efficiently get or set the column array entries of a row, as opposed to calling
OCIDirPathColArrayEntrySet() for every column. The application is also responsible for not
dereferencing memory beyond the column array boundaries. The dimensions of the column
array are available as attributes of the column array.

Related Topics

• OCIDirPathColArrayEntryGet()

• OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

• OCIDirPathColArrayReset()
Resets the column array state.

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.6 OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

Purpose

Converts from column array format to a direct path stream format.

Syntax

sword OCIDirPathColArrayToStream (OCIDirPathColArray *dpca,
 OCIDirPathCtx const *dpctx,

Chapter 27
Direct Path Loading Functions

27-104

 OCIDirPathStream *dpstr,
 OCIError *errhp,
 ub4 rowcnt,
 ub4 rowoff);

Parameters

dpca (IN)
Direct path column array handle.

dpctx (IN)
Direct path context handle for the object being loaded.

dpstr (IN/OUT)
Direct path stream handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

rowcnt (IN)
Number of rows in the column array.

rowoff (IN)
Starting index in the column array.

Comments

This interface is used to convert a column array representation of data in its external format to
a direct path stream format. The converted format is suitable for loading with
OCIDirPathLoadStream().

The column data in direct path stream format is converted to its Oracle Database internal
representation. All conversions are done on the client side of the two-task interface; all
conversion errors occur synchronously with the call to this interface. Information concerning
which row and column an error occurred on is available as an attribute of the column array
handle.

Note that in a threaded environment, concurrent OCIDirPathColArrayToStream() operations
can be referencing the same direct path context handle. However, the direct path context
handle is not modified by this interface.

The return codes for this call are:

• OCI_SUCCESS - All data in the column array was successfully converted to stream format.
The column array attribute OCI_ATTR_ROW_COUNT is the number of rows processed.

• OCI_ERROR - An error occurred during conversion; the error handle contains the error
information. The column array attribute OCI_ATTR_ROW_COUNT is the number of rows
successfully converted in the last call. The attribute OCI_ATTR_COL_COUNT contains the
column index into the column array for the column that caused the error. A stream must
always be loaded after column array to stream conversion returns OCI_ERROR. It cannot be
reset or converted to until it is loaded.

• OCI_CONTINUE - Not all of the data in the column array could be converted to stream
format. The stream buffer is not large enough to contain all of the column array data. The
caller should either load the data, save the data to a file, or use another stream and call
OCIDirPathColArrayToStream() again to convert the remainder of the column array data.
The column array attribute OCI_ATTR_ROW_COUNT is the number of rows successfully

Chapter 27
Direct Path Loading Functions

27-105

converted in the last call. The row offset must be updated for the next conversion; internal
state does keep track of the column to continue conversion from. The OCI_ATTR_ROW_COUNT
value must be added to the previous row offset by the caller.

• OCI_NEED_DATA - All of the data in the column array was successfully converted, but a
partial column was encountered. The caller should load the resulting stream, and supply
the remainder of the row, iteratively if necessary. The column array attribute
OCI_ATTR_ROW_COUNT is the number of rows successfully converted in the last call. The
attribute OCI_ATTR_COL_COUNT contains the column index into the column array for the
column that is marked partial.

Related Topics

• OCIDirPathLoadStream()
Loads the data converted to direct path stream format.

• OCIDirPathColArrayEntryGet()

• OCIDirPathColArrayEntrySet()
Sets a specified entry in a column array to the supplied values.

• OCIDirPathColArrayReset()
Resets the column array state.

• OCIDirPathColArrayRowGet()
Gets the column array row pointers for a given row number.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.7 OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data and
finishes the direct path load operation.

Purpose

Depending on the action requested, does a data savepoint, or commits the loaded data and
finishes the direct path load operation.

Syntax

sword OCIDirPathDataSave (OCIDirPathCtx *dpctx,
 OCIError *errhp,
 ub4 action);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

action (IN)
Values for action parameter to OCIDirPathDataSave() are as follows:

• OCI_DIRPATH_DATASAVE_SAVEONLY - To execute a data savepoint only

Chapter 27
Direct Path Loading Functions

27-106

• OCI_DIRPATH_DATASAVE_FINISH - To commit the loaded data and call the direct finishing
function

Comments

A return value of OCI_SUCCESS indicates that the backend has properly executed a data
savepoint or executed the finishing logic.

Executing a data savepoint is not allowed for LOBs.

Executing the finishing logic is different from properly terminating the load, because resources
allocated are not freed.

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathStreamReset()
Resets the direct path stream state.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.8 OCIDirPathFinish()
Finishes the direct path load operation.

Purpose

Finishes the direct path load operation.

Syntax

sword OCIDirPathFinish (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

After the load has completed, and the loaded data is to be committed, the direct path finishing
function is called. Finish is not allowed until all streams have been loaded, and there is not a
partially loaded row.

A return value of OCI_SUCCESS indicates that the backend has properly terminated the load.

Chapter 27
Direct Path Loading Functions

27-107

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathStreamReset()
Resets the direct path stream state.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.9 OCIDirPathFlushRow()
Flushes a partially loaded row from the server. This function is deprecated.

Purpose

Flushes a partially loaded row from the server. This function is deprecated.

Syntax

sword OCIDirPathFlushRow (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

This function is necessary when part of a row is loaded, but a conversion error occurs on the
next piece being processed by the application. Only the row currently in partial state is
discarded. If the server is not currently processing a partial row for the object associated with
the direct path context, this function does nothing.

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathLoadStream()
Loads the data converted to direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Direct Path Loading Functions

27-108

27.5.10 OCIDirPathLoadStream()
Loads the data converted to direct path stream format.

Purpose

Loads the data converted to direct path stream format.

Syntax

sword OCIDirPathLoadStream (OCIDirPathCtx *dpctx,
 OCIDirPathStream *dpstr,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

dpstr (IN)
Direct path stream handle for the stream to load.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

When the interface returns an error, information concerning the row in the column array that
sourced the stream can be obtained as an attribute of the direct path stream. Also, the offset
into the stream where the error occurred can be obtained as an attribute of the stream.

Return codes for this function are:

• OCI_SUCCESS - All data in the stream was successfully loaded.

• OCI_ERROR - An error occurred while loading the data. The problem could be a partition
mapping error, a NULL constraint violation, a function-based index evaluation error, or an
out of space condition, such as cannot allocate extent. OCI_ATTR_ROW_COUNT is the number
of rows successfully loaded in the last call.

• OCI_NEED_DATA - Last row was not complete. The caller must supply another row piece. If
the stream was sourced from a column array, the attribute OCI_ATTR_ROW_COUNT is the
number of complete rows successfully loaded in the last call.

• OCI_NO_DATA - Attempt to load an empty stream or a stream that has been completely
processed.

A stream must be repeatedly loaded until OCI_SUCCESS, OCI_NEED_DATA, or OCI_NO_DATA is
returned. For example, a stream cannot be reset if OCI_ERROR is returned from
OCIDirPathLoadStream().

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

Chapter 27
Direct Path Loading Functions

27-109

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathStreamReset()
Resets the direct path stream state.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.11 OCIDirPathPrepare()
Purpose

Prepares the direct path load interface before any rows can be converted or loaded.

Syntax

sword OCIDirPathPrepare (OCIDirPathCtx *dpctx,
 OCISvcCtx *svchp,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

svchp (IN)
Service context.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

After the name of the object to be operated on is set, the external attributes of the column data
are set, and all load options are set, the direct path interface must be prepared with
OCIDirPathPrepare() before any rows can be converted or loaded.

A return value of OCI_SUCCESS indicates that the backend has been properly initialized for a
direct path load operation. A nonzero return indicates an error. Possible errors are:

• Invalid context

• Not connected to a server

• Object name not set

• Already prepared (cannot prepare twice)

• Object not suitable for a direct path operation

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

Chapter 27
Direct Path Loading Functions

27-110

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathStreamReset()
Resets the direct path stream state.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.5.12 OCIDirPathStreamReset()
Resets the direct path stream state.

Purpose

Resets the direct path stream state.

Syntax

sword OCIDirPathStreamReset (OCIDirPathStream *dpstr,
 OCIError *errhp);

Parameters

dpstr (IN)
Direct path stream handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

A direct path stream maintains the state that indicates where the next
OCIDirPathColArrayToStream() call should start writing into the stream. Normally, data is
appended to the end of the stream. A stream cannot be reset until it is successfully loaded (the
loading returned OCI_SUCCESS, OCI_NEED_DATA, or OCI_NO_DATA).

Related Topics

• OCIDirPathAbort()
Terminates a direct path operation.

• OCIDirPathDataSave()
Depending on the action requested, does a data savepoint, or commits the loaded data
and finishes the direct path load operation.

• OCIDirPathFinish()
Finishes the direct path load operation.

• OCIDirPathPrepare()

• OCIDirPathColArrayToStream()
Converts from column array format to a direct path stream format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Direct Path Loading Functions

27-111

27.6 Thread Management Functions
Lists and describes the thread management functions.

Table 27-5 lists the thread management functions that are described in this section.

Table 27-5 Thread Management Functions

Function Purpose

OCIThreadClose() Close a thread handle

OCIThreadCreate() Create a new thread

OCIThreadHandleGet() Retrieve the OCIThreadHandle of the thread
in which it is called

OCIThreadHndDestroy() Destroy and deallocate the thread handle

OCIThreadHndInit() Allocate and initialize the thread handle

OCIThreadIdDestroy() Destroy and deallocate a thread ID

OCIThreadIdGet() Retrieve the OCIThreadId of the thread in
which it is called

OCIThreadIdInit() Allocate and initialize the thread ID

OCIThreadIdNull() Determine whether a given OCIThreadId is
the NULL thread ID

OCIThreadIdSame() Determine whether two OCIThreadIds
represent the same thread

OCIThreadIdSet() Set one OCIThreadId to another

OCIThreadIdSetNull() Set the NULL thread ID to a given
OCIThreadId

OCIThreadInit() Initialize OCIThread context

OCIThreadIsMulti() Tell the caller whether the application is
running in a multithreaded environment or a
single-threaded environment

OCIThreadJoin() Allow the calling thread to join with another
thread

OCIThreadKeyDestroy() Destroy and deallocate the key pointed to by
key

OCIThreadKeyGet() Get the calling thread's current value for a
key

OCIThreadKeyInit() Create a key

OCIThreadKeySet() Set the calling thread's value for a key

OCIThreadMutexAcquire() Acquire a mutex for the thread in which it is
called

OCIThreadMutexDestroy() Destroy and deallocate a mutex

OCIThreadMutexInit() Allocate and initialize a mutex

OCIThreadMutexRelease() Release a mutex

OCIThreadProcessInit() Perform OCIThread process initialization

OCIThreadTerm() Release the OCIThread context

Chapter 27
Thread Management Functions

27-112

• OCIThreadClose()
Closes a thread handle.

• OCIThreadCreate()
Creates a new thread.

• OCIThreadHandleGet()
Retrieves the OCIThreadHandle of the thread in which it is called.

• OCIThreadHndDestroy()
Destroys and deallocates the thread handle.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

• OCIThreadInit()
Initializes the OCIThread context.

• OCIThreadIsMulti()
Tells the caller whether the application is running in a multithreaded environment or a
single-threaded environment.

• OCIThreadJoin()
Allows the calling thread to join with another thread.

• OCIThreadKeyDestroy()
Destroys and deallocates the key pointed to by key.

• OCIThreadKeyGet()
Gets the calling thread's current value for a key.

• OCIThreadKeyInit()
Creates a key.

• OCIThreadKeySet()
Sets the calling thread's value for a key.

• OCIThreadMutexAcquire()
Acquires a mutex for the thread in which it is called.

• OCIThreadMutexDestroy()
Destroys and deallocates a mutex.

• OCIThreadMutexInit()
Allocates and initializes a mutex.

Chapter 27
Thread Management Functions

27-113

• OCIThreadMutexRelease()
Releases a mutex.

• OCIThreadProcessInit()
Performs OCIThread process initialization.

• OCIThreadTerm()
Releases the OCIThread context.

27.6.1 OCIThreadClose()
Closes a thread handle.

Purpose

Closes a thread handle.

Syntax

sword OCIThreadClose (void *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tHnd (IN/OUT)
The OCIThread thread handle to close.

Comments

The tHnd parameter should be initialized by OCIThreadHndInit(). Both the thread handle and
the thread ID that was returned by the same call to OCIThreadCreate() are invalid after the call
to OCIThreadClose().

Related Topics

• OCIThreadCreate()
Creates a new thread.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.2 OCIThreadCreate()
Creates a new thread.

Purpose

Creates a new thread.

Chapter 27
Thread Management Functions

27-114

Syntax

sword OCIThreadCreate (void *hndl,
 OCIError *err,
 void (*start) (void *),
 void *arg,
 OCIThreadId *tid,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

start (IN)
The function in which the new thread should begin execution.

arg (IN)
The argument to give the function pointed to by start.

tid (IN/OUT)
If not NULL, gets the ID for the new thread.

tHnd (IN/OUT)
If not NULL, gets the handle for the new thread.

Comments

The new thread starts by executing a call to the function pointed to by start with the argument
given by arg. When that function returns, the new thread terminates. The function should not
return a value and should accept one parameter, a void. The call to OCIThreadCreate() must
be matched by a call to OCIThreadClose() if and only if tHnd is non-NULL.

If tHnd is NULL, a thread ID placed in *tid is not valid in the calling thread because the timing
of the spawned threads termination is unknown.

The tid parameter should be initialized by OCIThreadIdInit() and tHnd should be initialized
by OCIThreadHndInit().

Related Topics

• OCIThreadClose()
Closes a thread handle.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Thread Management Functions

27-115

27.6.3 OCIThreadHandleGet()
Retrieves the OCIThreadHandle of the thread in which it is called.

Purpose

Retrieves the OCIThreadHandle of the thread in which it is called.

Syntax

sword OCIThreadHandleGet (void *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tHnd (IN/OUT)
If not NULL, the location to place the thread handle for the thread.

Comments

The tHnd parameter should be initialized by OCIThreadHndInit().

The thread handle tHnd retrieved by this function must be closed with OCIThreadClose() and
destroyed by OCIThreadHndDestroy() after it is used.

Related Topics

• OCIThreadHndDestroy()
Destroys and deallocates the thread handle.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIThreadClose()
Closes a thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.4 OCIThreadHndDestroy()
Destroys and deallocates the thread handle.

Purpose

Destroys and deallocates the thread handle.

Chapter 27
Thread Management Functions

27-116

Syntax

sword OCIThreadHndDestroy (void *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

thnd (IN/OUT)
The address of pointer to the thread handle to destroy.

Comments

The thnd parameter should be initialized by OCIThreadHndInit().

Related Topics

• OCIThreadHandleGet()
Retrieves the OCIThreadHandle of the thread in which it is called.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.5 OCIThreadHndInit()
Allocates and initializes the thread handle.

Purpose

Allocates and initializes the thread handle.

Syntax

sword OCIThreadHndInit (void *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

thnd (OUT)
The address of the pointer to the thread handle to initialize.

Chapter 27
Thread Management Functions

27-117

Related Topics

• OCIThreadHandleGet()
Retrieves the OCIThreadHandle of the thread in which it is called.

• OCIThreadHndDestroy()
Destroys and deallocates the thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.6 OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

Purpose

Destroys and deallocates a thread ID.

Syntax

sword OCIThreadIdDestroy (void *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

tid (IN/OUT)
Pointer to the thread ID to destroy.

Comments

The tid parameter should be initialized by OCIThreadHndInit().

Related Topics

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

Chapter 27
Thread Management Functions

27-118

• OCIThreadHndInit()
Allocates and initializes the thread handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.7 OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

Purpose

Retrieves the OCIThreadId of the thread in which it is called.

Syntax

sword OCIThreadIdGet (void *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tid (OUT)
This should point to the location in which to place the ID of the calling thread.

Comments

The tid parameter should be initialized by OCIThreadHndInit(). When OCIThread is used in a
single-threaded environment, OCIThreadIdGet() always places the same value in the location
pointed to by tid. The exact value itself is not important. The important thing is that it is
different from the NULL thread ID and that it is always the same value.

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

Chapter 27
Thread Management Functions

27-119

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.8 OCIThreadIdInit()
Allocate and initialize the thread ID tid.

Purpose

Allocate and initialize the thread ID tid.

Syntax

sword OCIThreadIdInit (void *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

tid (OUT)
Pointer to the thread ID to initialize.

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Related Topics

• OCIThreadTerm()
Releases the OCIThread context.

• OCIThreadProcessInit()
Performs OCIThread process initialization.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Thread Management Functions

27-120

27.6.9 OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

Purpose

Determines whether a given OCIThreadId is the NULL thread ID.

Syntax

sword OCIThreadIdNull (void *hndl,
 OCIError *err,
 OCIThreadId *tid,
 boolean *result);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tid (IN)
Pointer to the OCIThreadId to check.

result (IN/OUT)
Pointer to the result.

Comments

If tid is the NULL thread ID, result is set to TRUE. Otherwise, result is set to FALSE. The tid
parameter should be initialized by OCIThreadIdInit().

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Thread Management Functions

27-121

27.6.10 OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

Purpose

Determines whether two OCIThreadIds represent the same thread.

Syntax

sword OCIThreadIdSame (void *hndl,
 OCIError *err,
 OCIThreadId *tid1,
 OCIThreadId *tid2,
 boolean *result);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tid1 (IN)
Pointer to the first OCIThreadId.

tid2 (IN)
Pointer to the second OCIThreadId.

result (IN/OUT)
Pointer to the result.

Comments

If tid1 and tid2 represent the same thread, result is set to TRUE. Otherwise, result is set to
FALSE. The result parameter is set to TRUE if both tid1 and tid2 are the NULL thread ID. The
parameters tid1 and tid2 should be initialized by OCIThreadIdInit().

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

Chapter 27
Thread Management Functions

27-122

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.11 OCIThreadIdSet()
Sets one OCIThreadId to another.

Purpose

Sets one OCIThreadId to another.

Syntax

sword OCIThreadIdSet (void *hndl,
 OCIError *err,
 OCIThreadId *tidDest,
 OCIThreadId *tidSrc);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

tidDest (OUT)
This should point to the location of the OCIThreadId to set to.

tidSrc (IN)
This should point to the OCIThreadId to set from.

Comments

The tid parameter should be initialized by OCIThreadIdInit().

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Thread Management Functions

27-123

27.6.12 OCIThreadIdSetNull()
Sets the NULL thread ID to a given OCIThreadId.

Purpose

Sets the NULL thread ID to a given OCIThreadId.

Syntax

sword OCIThreadIdSetNull (void *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tid (OUT)
This should point to the OCIThreadId in which to put the NULL thread ID.

Comments

The tid parameter should be initialized by OCIThreadIdInit().

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.13 OCIThreadInit()
Initializes the OCIThread context.

Purpose

Initializes the OCIThread context.

Chapter 27
Thread Management Functions

27-124

Syntax

sword OCIThreadInit (void *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

Comments

It is illegal for OCIThread clients to try to examine the memory pointed to by the returned
pointer. It is safe to make concurrent calls to OCIThreadInit(). Unlike
OCIThreadProcessInit(), there is no need to have a first call that occurs before all the others.

The first time OCIThreadInit() is called, it initializes the OCIThread context. It also saves a
pointer to the context in some system-dependent manner. Subsequent calls to
OCIThreadInit() return the same context.

Each call to OCIThreadInit() must eventually be matched by a call to OCIThreadTerm().

27.6.14 OCIThreadIsMulti()
Tells the caller whether the application is running in a multithreaded environment or a single-
threaded environment.

Purpose

Tells the caller whether the application is running in a multithreaded environment or a single-
threaded environment.

Syntax

boolean OCIThreadIsMulti ();

Returns

TRUE if the environment is multithreaded.

FALSE if the environment is single-threaded.

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

Chapter 27
Thread Management Functions

27-125

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

27.6.15 OCIThreadJoin()
Allows the calling thread to join with another thread.

Purpose

Allows the calling thread to join with another thread.

Syntax

sword OCIThreadJoin (void *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tHnd (IN)
The OCIThreadHandle of the thread to join with.

Comments

This function blocks the caller until the specified thread terminates.

The tHnd parameter should be initialized by OCIThreadHndInit(). The result of multiple
threads all trying to join with the same thread is undefined.

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

• OCIThreadHndInit()
Allocates and initializes the thread handle.

Chapter 27
Thread Management Functions

27-126

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.16 OCIThreadKeyDestroy()
Destroys and deallocates the key pointed to by key.

Purpose

Destroys and deallocates the key pointed to by key.

Syntax

sword OCIThreadKeyDestroy (void *hndl,
 OCIError *err,
 OCIThreadKey **key);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

key (IN/OUT)
The OCIThreadKey in which to destroy the key.

Comments

This is different from the destructor function callback passed to the key create routine. The
function OCIThreadKeyDestroy() is used to terminate any resources that the OCIThread
acquired when it created key. The OCIThreadKeyDestFunc callback of OCIThreadKeyInit() is a
key value destructor; it does not operate on the key itself.

This must be called after the user has finished using the key. Not calling the
OCIThreadKeyDestroy() function may result in memory leaks.

Related Topics

• OCIThreadKeyGet()
Gets the calling thread's current value for a key.

• OCIThreadKeyInit()
Creates a key.

• OCIThreadKeySet()
Sets the calling thread's value for a key.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.17 OCIThreadKeyGet()
Gets the calling thread's current value for a key.

Purpose

Gets the calling thread's current value for a key.

Chapter 27
Thread Management Functions

27-127

Syntax

sword OCIThreadKeyGet (void *hndl,
 OCIError *err,
 OCIThreadKey *key,
 void **pValue);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

key (IN)
The key.

pValue (IN/OUT)
The location in which to place the thread-specific key value.

Comments

It is illegal to use this function on a key that has not been created using OCIThreadKeyInit().

If the calling thread has not yet assigned a value to the key, NULL is placed in the location
pointed to by pValue.

Related Topics

• OCIThreadKeyDestroy()
Destroys and deallocates the key pointed to by key.

• OCIThreadKeyInit()
Creates a key.

• OCIThreadKeySet()
Sets the calling thread's value for a key.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.18 OCIThreadKeyInit()
Creates a key.

Purpose

Creates a key.

Syntax

sword OCIThreadKeyInit (void *hndl,
 OCIError *err,
 OCIThreadKey **key,
 OCIThreadKeyDestFunc destFn);

Chapter 27
Thread Management Functions

27-128

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

key (OUT)
The OCIThreadKey in which to create the new key.

destFn (IN)
The destructor for the key. NULL is permitted.

Comments

Each call to this routine allocates and generates a new key that is distinct from all other keys.
After this function executes successfully, a pointer to an allocated and initialized key is
returned. That key can be used with OCIThreadKeyGet() and OCIThreadKeySet(). The initial
value of the key is NULL for all threads.

It is illegal for this function to be called more than once with the same value for the key
parameter.

If the destFn parameter is not NULL, the routine pointed to by destFn is called whenever a
thread that has a non-NULL value for the key terminates. The routine is called with one
parameter. The parameter is the key's value for the thread at the time at which the thread
terminated. If the key does not need a destructor function, pass NULL for destFn.

Related Topics

• OCIThreadKeyDestroy()
Destroys and deallocates the key pointed to by key.

• OCIThreadKeyGet()
Gets the calling thread's current value for a key.

• OCIThreadKeySet()
Sets the calling thread's value for a key.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.19 OCIThreadKeySet()
Sets the calling thread's value for a key.

Purpose

Sets the calling thread's value for a key.

Syntax

sword OCIThreadKeySet (void *hndl,
 OCIError *err,
 OCIThreadKey *key,
 void *value);

Chapter 27
Thread Management Functions

27-129

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

key (IN/OUT)
The key.

value (IN)
The thread-specific value to set in the key.

Comments

It is illegal to use this function on a key that has not been created using OCIThreadKeyInit().

Related Topics

• OCIThreadKeyDestroy()
Destroys and deallocates the key pointed to by key.

• OCIThreadKeyGet()
Gets the calling thread's current value for a key.

• OCIThreadKeyInit()
Creates a key.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.20 OCIThreadMutexAcquire()
Acquires a mutex for the thread in which it is called.

Purpose

Acquires a mutex for the thread in which it is called.

Syntax

sword OCIThreadMutexAcquire (void *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

mutex (IN/OUT)
The mutex to acquire.

Chapter 27
Thread Management Functions

27-130

Comments

If the mutex is held by another thread, the calling thread is blocked until it can acquire the
mutex.

It is illegal to attempt to acquire an uninitialized mutex.

This function's behavior is undefined if it is used by a thread to acquire a mutex that is already
held by that thread.

Related Topics

• OCIThreadMutexDestroy()
Destroys and deallocates a mutex.

• OCIThreadMutexInit()
Allocates and initializes a mutex.

• OCIThreadMutexRelease()
Releases a mutex.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.21 OCIThreadMutexDestroy()
Destroys and deallocates a mutex.

Purpose

Destroys and deallocates a mutex.

Syntax

sword OCIThreadMutexDestroy (void *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

mutex (IN/OUT)
The mutex to destroy.

Comments

Each mutex must be destroyed after it is no longer needed.

It is not legal to destroy a mutex that is uninitialized or is currently held by a thread. The
destruction of a mutex must not occur concurrently with any other operations on the mutex. A
mutex must not be used after it has been destroyed.

Chapter 27
Thread Management Functions

27-131

Related Topics

• OCIThreadMutexAcquire()
Acquires a mutex for the thread in which it is called.

• OCIThreadMutexInit()
Allocates and initializes a mutex.

• OCIThreadMutexRelease()
Releases a mutex.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.22 OCIThreadMutexInit()
Allocates and initializes a mutex.

Purpose

Allocates and initializes a mutex.

Syntax

sword OCIThreadMutexInit (void *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

mutex (OUT)
The mutex to initialize.

Comments

All mutexes must be initialized before use.

Multiple threads must not initialize the same mutex simultaneously. Also, a mutex must not be
reinitialized until it has been destroyed (see OCIThreadMutexDestroy()).

Related Topics

• OCIThreadMutexDestroy()
Destroys and deallocates a mutex.

• OCIThreadMutexAcquire()
Acquires a mutex for the thread in which it is called.

• OCIThreadMutexRelease()
Releases a mutex.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Thread Management Functions

27-132

27.6.23 OCIThreadMutexRelease()
Releases a mutex.

Purpose

Releases a mutex.

Syntax

sword OCIThreadMutexRelease (void *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

mutex (IN/OUT)
The mutex to release.

Comments

If there are any threads blocked on the mutex, one of them acquires it and becomes
unblocked.

It is illegal to attempt to release an uninitialized mutex. It is also illegal for a thread to release a
mutex that it does not hold.

Related Topics

• OCIThreadMutexDestroy()
Destroys and deallocates a mutex.

• OCIThreadMutexInit()
Allocates and initializes a mutex.

• OCIThreadMutexAcquire()
Acquires a mutex for the thread in which it is called.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.6.24 OCIThreadProcessInit()
Performs OCIThread process initialization.

Purpose

Performs OCIThread process initialization.

Syntax

void OCIThreadProcessInit ();

Chapter 27
Thread Management Functions

27-133

Comments

Whether this function must be called depends on how OCIThread is going to be used.

In a single-threaded application, calling this function is optional. If it is called at all, the first call
to it must occur before calls to any other OCIThread functions. Subsequent calls can be made
without restriction; they do not have any effect.

In a multithreaded application, this function must be called. The first call to it must occur strictly
before any other OCIThread calls; that is, no other calls to OCIThread functions (including
other calls to this one) can be concurrent with the first call.

Subsequent calls to this function can be made without restriction; they do not have any effect.

Related Topics

• OCIThreadIdDestroy()
Destroys and deallocates a thread ID.

• OCIThreadIdGet()
Retrieves the OCIThreadId of the thread in which it is called.

• OCIThreadIdInit()
Allocate and initialize the thread ID tid.

• OCIThreadIdNull()
Determines whether a given OCIThreadId is the NULL thread ID.

• OCIThreadIdSame()
Determines whether two OCIThreadIds represent the same thread.

• OCIThreadIdSet()
Sets one OCIThreadId to another.

27.6.25 OCIThreadTerm()
Releases the OCIThread context.

Purpose

Releases the OCIThread context.

Syntax

sword OCIThreadTerm (void *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is recorded in
err and diagnostic information can be obtained by calling OCIErrorGet().

Comments

This function should be called exactly once for each call made to OCIThreadInit().

Chapter 27
Thread Management Functions

27-134

It is safe to make concurrent calls to OCIThreadTerm(). OCIThreadTerm() does not do anything
until it has been called as many times as OCIThreadInit() has been called. When that
happens, OCIThreadTerm() terminates the OCIThread layer and frees the memory allocated
for the context. Once this happens, the context should not be reused. It is necessary to obtain
a new one by calling OCIThreadInit().

Related Topics

• OCIThreadInit()
Initializes the OCIThread context.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7 Transaction Functions
Lists and describes the transaction functions.

Table 27-6 lists the transaction functions that are described in this section.

Table 27-6 Transaction Functions

Function Purpose

OCITransStart() Start a transaction on a service context

OCITransDetach() Detach a transaction from a service context

OCITransCommit() Commit a transaction on a service context

OCITransRollback() Roll back a transaction

OCITransForget() Forget a prepared global transaction

OCITransMultiPrepare() Prepare a transaction with multiple branches in
a single cell

OCITransPrepare() Prepare a global transaction for commit

• OCITransStart()
Sets the beginning of a transaction.

• OCITransDetach()
Detaches a global transaction or suspends the Sessionless transaction that is active.

• OCITransCommit()
Commits the transaction associated with a specified service context.

• OCITransRollback()
Rolls back the current transaction.

• OCITransForget()
Causes the server to forget a heuristically completed global transaction.

• OCITransMultiPrepare()
Prepares a transaction with multiple branches in a single call.

• OCITransPrepare()
Prepares a global transaction for commit.

Chapter 27
Transaction Functions

27-135

27.7.1 OCITransStart()
Sets the beginning of a transaction.

Purpose

Sets the beginning of a transaction. Starting Oracle release 23ai, OCITransStart() function is
enhanced to handle starting and resuming the Sessionless transactions.

Syntax

sword OCITransStart (OCISvcCtx *svchp,
 OCIError *errhp,
 uword timeout,
 ub4 flags);

Parameters

svchp (IN/OUT)
The service context handle. The transaction context in the service context handle is initialized
at the end of the call if the flag specified a new transaction to be started.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

timeout (IN)
The time, in seconds, to wait for a transaction to become available for resumption when
OCI_TRANS_RESUME is specified. When OCI_TRANS_NEW is specified, the timeout parameter
indicates the number of seconds the transaction can be inactive before it is automatically
terminated by the system. An global transaction branch or a Sessionless transaction is
inactive between the time it is detached (global transaction branch) or suspended
(Sessionless transaction) with OCITransDetach() and the time it is resumed with
OCITransStart().

• When OCI_TRANS_RESUME is specified and when OCI_TRANS_SESSIONLESS is not specified,
it is the time in seconds to wait for a transaction to become available for resumption.

• When OCI_TRANS_RESUME and OCI_TRANS_SESSIONLESS is specified, timeout is not used.

flags (IN)
Transaction flags are categorized as follows:

• Transaction type: You can specify only one type of flag in this category. If no flag is
specified, then by default, tightly-coupled global transaction (OCI_TRANS_TIGHT) is started.

– OCI_TRANS_LOOSE: Specifies a loosely coupled global transaction branch.

– OCI_TRANS_TIGHT: Specifies a tightly coupled global transaction branch.

– OCI_TRANS_SESSIONLESS: Specifies a Sessionless transaction.

• Start operation:

– If you set the Transaction type as OCI_TRANS_LOOSE or OCI_TRANS_TIGHT, or if you
use the default type, which is OCI_TRANS_TIGHT, then the start operation can be one of

Chapter 27
Transaction Functions

27-136

OCI_TRANS_NEW, OCI_TRANS_JOIN, OCI_TRANS_RESUME, or OCI_TRANS_PROMOTE. If you
do not specify the start operation, then the default flag is OCI_TRANS_NEW.

– If you set the Transaction type as OCI_TRANS_SESSIONLESS, start operation can be
either OCI_TRANS_NEW or OCI_TRANS_RESUME. You must specify the start operation as
there is no default value.

– OCI_TRANS_NEW: Starts a new global transaction branch or a new Sessionless
transaction. When using it to start a global transaction, by default, it starts a tightly
coupled and migratable branch.

– OCI_TRANS_JOIN: Joins an existing global transaction.

– OCI_TRANS_RESUME: Resumes the global transaction branch or the Sessionless
transaction.

– OCI_TRANS_PROMOTE: Promotes the local transaction to global transaction.

• Isolation:

– If you set the Transaction type to OCI_TRANS_LOOSE or OCI_TRANS_TIGHT, or if you
use the default type which is OCI_TRANS_TIGHT then you can set isolation flag to either
OCI_TRANS_READONLY, OCI_TRANS_READWRITE, or OCI_TRANS_SERIALIZABLE. If no
isolation flag is specified, then the transaction starts with OCI_TRANS_READWRITE
isolation level.

– If you set the Transaction type to OCI_TRANS_SESSIONLESS, then isolation flags are
not used. Transaction always starts with OCI_TRANS_READWRITE isolation level.

– OCI_TRANS_READONLY: Starts a read-only transaction.

– OCI_TRANS_READWRITE: Starts a read-write transaction.

– OCI_TRANS_SERIALIZABLE: Starts a serializable transaction.

• Other Flags:

– OCI_TRANS_NOMIGRATE
– OCI_TRANS_SEPARABLE: Separates the transaction after each call. This flag results in a

warning that the transaction was started using regular transactions. Separated
transactions are not supported through release 9.0.1 of the server.

– OCI_TRANS_OTSRESUME

Error Messages: An error message results if there is an error in your code or the transaction
service. The error indicates that you attempted an action on a transaction that has already
been initiated. The error message indicates one of the following conditions:

• Invalid combination of flags passed to the API

• Invalid XID is used

• Session already has an active local transaction

• Session has a global transaction which could not be detached to start a new one specified
by the XID

• Timeout occurred while starting or resuming a global transaction

Comments

This function sets the beginning of a global, serializable, or Sessionless transaction. The
transaction context currently associated with the service context handle is initialized at the end
of the call if the flags parameter specifies that a new transaction should be started.

Chapter 27
Transaction Functions

27-137

If the call is used to control a global transaction, then the transaction identifier (XID structure)
must be set as the OCI_ATTR_XID attribute of the transaction handle, whose pointer is set as
the OCI_ATTR_TRANS attribute of Service Context handle svchp. If the call is used to start a new
Sessionless transaction, the OCI_ATTR_XID attribute can be set to a transaction identifier (XID
structure) that specifies the Global Transaction ID (GTRID) of the new transaction or set to null
pointer to request a generated GTRID. If the call is used to resume a Sessionless transaction.
The OCI_ATTR_XID attribute must be set to a transaction identifier (XID structure) that specifies
the Global Transaction ID (GTRID) of the resuming transaction.

Examples

The following code example and the one following that one demonstrate the use of OCI
transactional calls for manipulating global transactions. The concept for a single session
operating on different branches, as shown in the following code example, is illustrated by
Figure 9-2.

Using OCITransStart() in a Single Session Operating on Different Branches

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp1, *stmthp2;
 OCITrans *txnhp1, *txnhp2;
 void *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIEnvCreate(&envhp, OCI_DEFAULT, (void *)0, 0, 0, 0,
 (size_t)0, (void *)0);

 OCIHandleAlloc((void *) envhp, (void **) &errhp, (ub4)
 OCI_HTYPE_ERROR, 52, (void **) &tmp);
 OCIHandleAlloc((void *) envhp, (void **) &srvhp, (ub4)
 OCI_HTYPE_SERVER, 52, (void **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((void *) envhp, (void **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (void **) &tmp);

 OCIHandleAlloc((void *)envhp, (void **)&stmthp1, OCI_HTYPE_STMT, 0, 0);
 OCIHandleAlloc((void *)envhp, (void **)&stmthp2, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((void *)srvhp, OCI_HTYPE_SERVER, (void *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((void *)srvhp, OCI_HTYPE_SERVER, (void *) "txn demo", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((void *)envhp, (void **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (void **) 0);

Chapter 27
Transaction Functions

27-138

 OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"HR",
 (ub4)strlen("HR"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"HR",
 (ub4)strlen("HR"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (void *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((void *)envhp, (void **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((void *)txnhp1, OCI_HTYPE_TRANS, (void *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60-second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7902");
 OCIStmtPrepare(stmthp1, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((void *)envhp, (void **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);

 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 124, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 124 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 4;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((void *)txnhp2, OCI_HTYPE_TRANS, (void *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7934, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7934");
 OCIStmtPrepare(stmthp2, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);

Chapter 27
Transaction Functions

27-139

 OCIStmtExecute(svchp, stmthp2, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1, increment salary and commit it */
 /* Set transaction handle 1 into the service handle */
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* attach to transaction 1, wait for 10 seconds if the transaction is busy */
 /* The wait is clearly not required in this example because no other */
 /* process/thread is using the transaction. It is only for illustration */
 OCITransStart(svchp, errhp, 10, OCI_TRANS_RESUME);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Using OCITransStart() in a Single Session Operating on Multiple Branches Sharing the Same
Transaction

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp;
 OCITrans *txnhp1, *txnhp2;
 void *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIEnvCreate(&envhp, OCI_DEFAULT, (void *)0, 0, 0, 0,
 (size_t)0, (void *)0);

 OCIHandleAlloc((void *) envhp, (void **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (void **) &tmp);
 OCIHandleAlloc((void *) envhp, (void **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (void **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((void *) envhp, (void **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (void **) &tmp);

 OCIHandleAlloc((void *)envhp, (void **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((void *)srvhp, OCI_HTYPE_SERVER, (void *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);

Chapter 27
Transaction Functions

27-140

 OCIAttrSet((void *)srvhp, OCI_HTYPE_SERVER, (void *) "txn demo2", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((void *)envhp, (void **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (void **) 0);

 OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"HR",
 (ub4)strlen("HR"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((void *)usrhp, (ub4)OCI_HTYPE_SESSION, (void *)"HR",
 (ub4)strlen("HR"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (void *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((void *)envhp, (void **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((void *)txnhp1, OCI_HTYPE_TRANS, (void *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60-second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7902");
 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((void *)envhp, (void **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 2] */
 /* The global transaction is tightly coupled with earlier transactions */
 /* There is not much practical value in doing this but the example */
 /* illustrates the use of tightly coupled transaction branches. */
 /* In a practical case, the second transaction that tightly couples with */
 /* the first can be executed from a different process/thread. */

 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 2 */
 gxid.data[3] = 2;

Chapter 27
Transaction Functions

27-141

 OCIAttrSet((void *)txnhp2, OCI_HTYPE_TRANS, (void *)&gxid,
sizeof(XID), OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90-second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7902, increment salary */
 /* This is possible even if the earlier transaction has locked this row */
 /* because the two global transactions are tightly coupled */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1 and prepare it. This returns */
 /* OCI_SUCCESS_WITH_INFO because all branches except the last branch */
 /* are treated as read-only transactions for tightly coupled transactions */

 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);
 if (OCITransPrepare(svchp, errhp, (ub4) 0) == OCI_SUCCESS_WITH_INFO)
 {
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 OCIErrorGet ((void *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("OCITransPrepare - %s\n", errbuf);
 }

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Topics

• OCITransDetach()
Detaches a global transaction or suspends the Sessionless transaction that is active.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7.2 OCITransDetach()
Detaches a global transaction or suspends the Sessionless transaction that is active.

Purpose

Detaches a global transaction. Starting Oracle release 23ai, this function is enhanced to
suspend the active Sessionless transaction.

Syntax

sword OCITransDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Chapter 27
Transaction Functions

27-142

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

flags (IN)
While detaching a global transaction, you must pass OCI_DEFAULT for this parameter.
While suspending the active Sessionless transaction, you must pass OCI_TRANS_SESSIONLESS
along with one of the following flags:

• OCI_DEFAULT: The suspend call is executed immediately.

• OCI_TRANS_PRE_CALL: Requests a pre-call suspend. The suspend is attached to the next
server round-trip and executed before the main call.

• OCI_TRANS_POST_CALL: Requests a post-call suspend. The suspend is attached to the next
server round-trip and executed after the main call.

Round-trip call is a call that induces non-zero server round-trip.

See Also:

OCI Function Server Round-Trips

Comments

If the call is used to detach a global transaction, then the transaction becomes inactive at the
end of this call. If the call is used to suspend a Sessionless transaction, then the suspend can
either happen immediately, be attached to the next server round-trip and execute before the
main call (pre-call suspend) or be attached to the next server round-trip and execute after the
main call (post-call piggyback).

The transaction may be resumed later by calling OCITransStart(), specifying the value of the
flag OCI_TRANS_RESUME.

When a transaction is detached or suspended, the value that was specified in the timeout
parameter of OCITransStart() when the transaction was started is used to determine the
amount of time the branch can remain inactive before being deleted by the server's PMON
process.

Note:

The transaction can be resumed by a different session or process than the one that
detached it, if the transaction has the same authorization. If this function is called
before a transaction is actually started, this function has no effect.

For example code demonstrating the use of OCITransDetach(), see the Examples section of
OCITransStart().

Chapter 27
Transaction Functions

27-143

Related Topics

• OCITransStart()
Sets the beginning of a transaction.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7.3 OCITransCommit()
Commits the transaction associated with a specified service context.

Purpose

Commits the transaction associated with a specified service context.

Syntax

sword OCITransCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

flags (IN)
A flag used for one-phase commit optimization in global transactions.
OCI_DEFAULT - If the transaction is nondistributed (including Sessionless transaction), the
parameter of the flag parameter is ignored, and OCI_DEFAULT can be passed as its value.
OCI_TRANS_TWOPHASE - OCI applications managing global transactions should pass this value
to the flags parameter for a two-phase commit. The default is one-phase commit.
OCI_TRANS_WRITEIMMED - I/O is initiated by LGWR (Log Writer Process in the background) to
write the (in-memory) redo buffers to the online redo logs. IMMEDIATE means that the redo
buffers of the transaction are written out immediately by sending a message to LGWR, which
processes the message immediately.
OCI_TRANS_WRITEBATCH - No I/O is issued by LGWR to write the in-memory redo buffers of the
transaction to the online redo logs. BATCH means that the LGWR batches the redo buffers
before initiating I/O for the entire batch. An error occurs when you specify both BATCH and
IMMEDIATE. IMMEDIATE is the default.
OCI_TRANS_WRITEWAIT - LGWR is requested to write the redo for the commit to the online redo
logs, and the commit waits for the redo buffers to be written to the online redo logs. WAIT
means that the commit does not return until the in-memory redo buffers corresponding to the
transaction are written in the (persistent) online redo logs.
OCI_TRANS_WRITENOWAIT - LGWR is requested to write the redo for the commit to the online
redo logs, but the commit returns without waiting for the buffers to be written to the online redo
logs. NOWAIT means that the commit returns to the user before the in-memory redo buffers are
flushed to the online redo logs. An error occurs when you specify both WAIT and NOWAIT. WAIT
is the default.

Chapter 27
Transaction Functions

27-144

Note:

There is a potential for silent transaction loss when you use
OCI_TRANS_WRITENOWAIT. Transaction loss occurs silently with shutdown abort,
startup force, and any instance or node failure. On an Oracle RAC system,
asynchronously committed changes may not be immediately available to read on
other instances.

These last four options only affect the commit of top-level nondistributed transactions and are
ignored for externally coordinated distributed transactions. They can be combined using the OR
operator, subject to the stated restrictions.

Comments

The transaction currently associated with the service context is committed. If the application
has defined multiple transactions, then this function operates on the transaction currently
associated with the service context. Depending on the type of the transaction, the behavior of
this function is as follows:

• If the application is working with only the implicit local transaction created when the
database changes are made, then that implicit transaction is committed.

• If the application is working with a Sessionless transaction, then that Sessionless
transaction is committed.

• If the application is running in the object mode, then the modified or updated objects in the
object cache for this transaction are also flushed and committed.

• If it is a global transaction that the server cannot commit, then this call additionally retrieves
the state of the transaction from the database. Which is then returned to the user in the
error handle.

Under normal circumstances, OCITransCommit() returns with a status indicating that the
transaction has either been committed or rolled back. With global transactions, it is possible
that the transaction is now in doubt, meaning that it is neither committed nor terminated. In
such a case, OCITransCommit() attempts to retrieve the status of the transaction from the
server.

Example

The following code example demonstrates the use of a simple local transaction, as described
in "Simple Local Transactions".

Using OCITransCommit() in a Simple Local Transaction

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 void *tmp;
 text sqlstmt[128];

 OCIEnvCreate(&envhp, OCI_DEFAULT, (void *)0, 0, 0, 0,
 (size_t)0, (void *)0);

Chapter 27
Transaction Functions

27-145

 OCIHandleAlloc((void *) envhp, (void **) &errhp, (ub4) OCI_HTYPE_ERROR,
 (size_t)0, (void **) 0);
 OCIHandleAlloc((void *) envhp, (void **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 (size_t)0, (void **) 0);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((void *) envhp, (void **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 (size_t)0, (void **) 0);

 OCIHandleAlloc((void *)envhp, (void **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((void *)svchp, OCI_HTYPE_SVCCTX, (void *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 OCILogon(envhp, errhp, &svchp, (text *)"HR", strlen("HR"),
 (text *)"HR", strlen("HR"), 0, 0);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7902");

 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* update hr.employees employee_id=7902, increment salary again, but rollback */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransRollback(svchp, errhp, (ub4) 0);
}

Related Topics

• OCITransRollback()
Rolls back the current transaction.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7.4 OCITransRollback()
Rolls back the current transaction.

Purpose

Rolls back the current transaction.

Syntax

sword OCITransRollback (void *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
A service context handle. The transaction currently set in the service context handle is rolled
back.

Chapter 27
Transaction Functions

27-146

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments

The current transaction— defined as the set of statements executed since the last
OCITransCommit() or since OCISessionBegin() —is rolled back.

If the application is running under object mode, then the modified or updated objects in the
object cache for this transaction are also rolled back.

OCITransRollback() can roll back the active Sessionless transaction. Attempting to roll back a
global transaction that is not currently active causes an error.

Note:

Users can rollback Sessionless transactions similar to local transactions.

Examples

For example code demonstrating the use of OCITransRollback() see the Examples section of
OCITransCommit().

Related Topics

• OCITransCommit()
Commits the transaction associated with a specified service context.

• OCISessionBegin()
Creates a user session and begins a user session for a given server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7.5 OCITransForget()
Causes the server to forget a heuristically completed global transaction.

Purpose

Causes the server to forget a heuristically completed global transaction.

Syntax

sword OCITransForget (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle in which the transaction resides.

Chapter 27
Transaction Functions

27-147

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments

Forgets a heuristically completed global transaction. The server deletes the status of the
transaction from the system's pending transaction table.

You set the XID of the transaction to be forgotten as an attribute of the transaction handle
(OCI_ATTR_XID).

Related Topics

• OCITransCommit()
Commits the transaction associated with a specified service context.

• OCITransRollback()
Rolls back the current transaction.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.7.6 OCITransMultiPrepare()
Prepares a transaction with multiple branches in a single call.

Purpose

Prepares a transaction with multiple branches in a single call.

Syntax

sword OCITransMultiPrepare (OCISvcCtx *svchp,
 ub4 numBranches,
 OCITrans **txns,
 OCIError **errhp);

Parameters

srvchp (IN)
The service context handle.

numBranches (IN)
The number of branches expected. It is also the array size for the next two parameters.

txns (IN)
The array of transaction handles for the branches to prepare. They should all have the
OCI_ATTR_XID set. The global transaction ID should be the same.

errhp (IN)
The array of error handles. If OCI_SUCCESS is not returned, then these indicate which branches
received which errors.

Chapter 27
Transaction Functions

27-148

Comments

Prepares the specified global transaction for commit. This call is valid only for distributed
transactions. This call is an advanced performance feature intended for use only in situations
where the caller is responsible for preparing all the branches in a transaction.

Related Topics

• OCITransPrepare()
Prepares a global transaction for commit.

27.7.7 OCITransPrepare()
Prepares a global transaction for commit.

Purpose

Prepares a global transaction for commit.

Syntax

sword OCITransPrepare (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments

Prepares the specified global transaction for commit.

This call is valid only for global transactions.

The call returns OCI_SUCCESS_WITH_INFO if the transaction has not made any changes. The
error handle indicates that the transaction is read-only. The flags parameter is not currently
used.

Related Topics

• OCITransCommit()
Commits the transaction associated with a specified service context.

• OCITransForget()
Causes the server to forget a heuristically completed global transaction.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Transaction Functions

27-149

27.8 Sharding Functions
Lists the sharding functions.

The following table lists the sharding OCI functions that are described in this section.

Table 27-7 Sharding Functions

Function Purpose

OCIShardingKeyColumnAdd() Adds sharding key columns to form a compound
sharding key or a compound super sharding key.

OCIShardingKeyReset() Resets an already created sharding key or super
sharding key for reuse with new key column values.

OCIShardInstancesGet() Returns instance names for a given sharding key
descriptor, super sharding key descriptor, and
connection string.

• OCIShardingKeyColumnAdd()
Adds sharding key columns to form a compound sharding key or a compound super
sharding key.

• OCIShardingKeyReset()
Resets an already created sharding key or super sharding key for reuse with new key
column values.

• OCIShardInstancesGet()
For use with custom pools only, gets the instance names given a sharding key descriptor,
super sharding key descriptor, and a connection string.

27.8.1 OCIShardingKeyColumnAdd()
Adds sharding key columns to form a compound sharding key or a compound super sharding
key.

Purpose

Adds sharding key columns to form a compound sharding key or a compound super sharding
key. A sharding key column is a column in a table that is used as the key. If there are multiple
columns to be used as the key then it is a compound key.

Syntax

sword OCIShardingKeyColumnAdd(OCIShardingKey *shardingKey,
 OCIError *errhp,
 void *col,
 ub4 colLen,
 ub2 colType,
 ub4 mode);

Parameters

shardingKey (IN)
The sharding key or super sharding key.

Chapter 27
Sharding Functions

27-150

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information in the event of
an error.

col (IN)
The sharding key column, a component of the compound key. For character strings, the
values are assumed to be in the client character set (specified by NLS_LANG or the
OCIEnvNLSCreate() call).

colLen (IN)
Length of the sharding key column.

colType (IN)
The data type of the column.

mode (IN)
OCI_DEFAULT is the only value supported.

Returns

OCI_SUCCESS or OCI_ERROR

Usage Notes

Users must allocate an OCIShardingKey descriptor.

Call OCIShardingKeyColumnAdd() as many times as there are columns in the compound key
(one time for a simple sharding key), in the order in which the key is defined in the database.
The colType variable indicates the data type of the column.

The following table shows the supported OCI data type values for the colType parameter and
its corresponding C data type.

OCI Data Type C Data Type

SQLT_NUM ub1*

SQLT_CHR OraText*

SQLT_DATE ub1*

SQLT_TIMESTAMP OCIDateTime*

SQLT_RAW ub1*

SQLT_VNU ub1*

SQLT_INT int*

Examples

Example 27-1 Creating a Compound Sharding Key

Use the OCIShardingKey descriptor for the sharding key, then allocate a descriptor and call
OCIShardingKeyColumnAdd() as many times as needed to create the compound sharding key.

OCIShardingKey *shardKey;
text *name = “KK”;
int empid = 150;

checker(&status, errhp, OCIDescriptorAlloc(envhp,(dvoid **)&shardKey,
 OCI_DTYPE_SHARDING_KEY, 0,(dvoid **)0)));

Chapter 27
Sharding Functions

27-151

/* construct a compound key */

OCIShardingKeyColumnAdd(shardKey, OCIError *errhp,(ub4*)&empid,
sizeof(empid),
 SQLT_INT, OCI_DEFAULT);
OCIShardingKeyColumnAdd(shardKey, OCIError *errhp, name, strlen(name),
 SQLT_CHR, OCI_DEFAULT));

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCISessionPoolCreate()
Initializes a session pool for use with OCI session pooling and database resident
connection pooling (DRCP).

27.8.2 OCIShardingKeyReset()
Resets an already created sharding key or super sharding key for reuse with new key column
values.

Purpose

A sharding key or super sharding key descriptor can be reset using this routine, which removes
all the key column values added prior to this call. After this call, the descriptor can be used to
set new key column values.

Syntax

sword OCIShardingKeyReset(OCIShardKey *shardKey,
 OCIError *errhp,
 ub4 mode);

Parameters

shardKey(IN)
The sharding key or super sharding key descriptor.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the event of an
error.

mode (IN)
OCI_DEFAULT is the only value currently supported.

Returns

OCI_SUCCESS or OCI_ERROR

Usage Notes

None.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

Chapter 27
Sharding Functions

27-152

• OCIAttrGet()
Gets the value of an attribute of a handle.

27.8.3 OCIShardInstancesGet()
For use with custom pools only, gets the instance names given a sharding key descriptor,
super sharding key descriptor, and a connection string.

Purpose

For use with custom pools only, returns instance names for a given sharding key descriptor for
a chunk and super sharding key descriptor for a group of chunks and a connection string.
Shards are locations in a set of databases where each database stores some part of the data.
The part of the data stored at each database is represented by a set of chunks, where each
chunk is associated with a certain range of the data.

Syntax

sword OCIShardInstancesGet(
 void **shTopoCtx,
 OCIError *errhp,
 const OraText *connstr,
 ub4 constrl,
 OCIShardingKey *shardingKey,
 OCIShardingKey *superShardingKey,
 OCIShardinst ***shardinsts,
 ub4 numShardInsts,
 ub4 mode);

Parameters

shTopoCtx(IN/OUT)
An opaque context that is created by OCI and returned in the first call to this method for a
given connect string. This is an optional parameter and can be passed as NULL. For better
performance, pass the void * shardTopoCtx returned from a prior call (if any) to
OCIShardInstancesGet() for the same connection string.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the event of an
error.

connstr (IN)
The original connect string passed by the application to the OCISessionGet() call.

connstrl(IN)
Length of the connstr parameter.

shardingKey (IN)
The sharding key for the desired chunk.

superShardingKey (IN)
The super sharding key for the desired chunk; this value can be NULL.

Chapter 27
Sharding Functions

27-153

shardInsts(OUT)
An array of OCIShardInst descriptors corresponding to instances that serve the chunk
associated with the sharding key and super sharding key.

numShardInsts(OUT)
The number of elements in shardInsts.

mode(IN)
OCI_DEFAULT is the only value supported.

Returns

OCI_SUCCESS or OCI_ERROR

Usage Notes

None.

Examples

Example 27-2 Custom Pool Example

This example uses a custom pool and illustrates how to get the instance name of a given
connection and how to look up for instances hosting a given sharding key, shard name, and
super sharding name for a given connection. If there is no matching connection in the custom
pool, it creates a new connection.

 OCIShardInstancesGet(
 &shTopoCtx,
 errhp,
 connstr,
 strlen(connstrl),
 shardingKey,
 superShardingKey,
 &shardInsts,
 &numShardInsts,
 OCI_DEFAULT);

 /* Iterate through all the shard instances that have the data satisfying the
sharding key. */

 for (k=0; k < numShardInsts; k++)
 {
 OCIAttrGet(shardInstances[k],
 (ub4) OCI_DTYPE_SHARD_INST,
 (dvoid *)&iName,
 (ub4 *)&inameLen,
 OCI_ATTR_INSTNAME,
 (OCIError *)errhp);

/* Look up in the custom pool for a connection to the same shard instance.
*/
/* The following attribute can be used to find the instance name.
*/

 OCIAttrGet(svchp[i],
 OCI_HTYPE_SVCCTX,

Chapter 27
Sharding Functions

27-154

 &cshardName[i],
 (ub4 *) &cshardNameLen[i],
 OCI_ATTR_INSTNAME, errhp);

/* If a matching connection is found (iName and cshardName[i]). */

 {
 OCIAttrSet(svchp[i],
 OCI_HTYPE_SVCCTX,
 shardingKey,
 sizeof(shardingKey),
 OCI_ATTR_SHARDING_KEY,
 errhp);

/* Return that connection to the requester. */
 return svchp[i];
 }
 }

/* If no free existing connection is found, create a new connection in the
pool and return it. */
 {
 OCIAttrSet(authp,
 OCI_HTYPE_AUTHINFO,
 shardingKey,
 sizeof(shardingKey),
 OCI_ATTR_SHARDING_KEY,
 errhp);

 OCISessionGet ((OCIEnv *)envhp,
 (OCIError *)errhp,
 (OCISvcCtx **)&mysvc,
 (OCIAuthInfo *)authp,
 (OraText *)connstr,
 (ub4)strlen((char*)connstrl),
 (OraText *)NULL, (ub4)0,
 (OraText **)0, (ub4 *)0,
 (boolean *)0,OCI_SESSGET_CUSTOM_POOL);
 return mysvc; /* Track in the pool too. */
 }

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIAttrGet()
Gets the value of an attribute of a handle.

• OCISessionGet()
Gets a session.

27.9 Miscellaneous Functions
Lists and describes the miscellaneous OCI functions.

Table 27-8 lists the miscellaneous OCI functions that are described in this section.

Chapter 27
Miscellaneous Functions

27-155

Table 27-8 Miscellaneous Functions

Function Purpose

OCITraceEventSet() Enables the OCI diagnostic tracing.

OCITraceEventReset() Disables the OCI diagnostic tracing.

OCITraceWriteMessage() Writes custom message in the trace file.

OCIBreak() Perform an immediate asynchronous break

OCIClientVersion() Return the client library version

OCIErrorGet() Return error message and Oracle error

OCILdaToSvcCtx() Toggle Lda_Def to service context handle

OCIPasswordChange() Change password

OCIPing() Confirm that the connection and the server are active

OCIReset() Call after OCIBreak() to reset asynchronous
operation and protocol

OCIRowidToChar() Convert a Universal ROWID to character extended
(base 64) representation

OCIServerRelease() Get the Oracle release string

OCIServerVersion() Get the Oracle version string

OCISvcCtxToLda() Toggle service context handle to Lda_Def
OCIUserCallbackGet() Identify the callback that is registered for handle

OCIUserCallbackRegister() Register a user-created callback function

• OCITraceEventSet()
Enables the OCI diagnostic tracing. The setting of an event is process-wide and traces all
the sessions in the process.

• OCITraceEventReset()
Disables the OCI diagnostic tracing and clears the trace event.

• OCITraceWriteMessage()
Writes a custom message in the trace file.

• OCIBreak()
Performs an immediate asynchronous break.

• OCIClientVersion()
Returns the client library version.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• OCILdaToSvcCtx()
Converts a V7 Lda_Def to a V8 or later service context handle.

• OCIPasswordChange()
Changes the password of an account.

• OCIPing()
Confirms that the connection and the server are active.

• OCIReset()
Resets the interrupted asynchronous operation and protocol.

Chapter 27
Miscellaneous Functions

27-156

• OCIRowidToChar()
Converts a Universal ROWID to character extended (base 64) representation.

• OCIServerRelease()
Returns the Oracle Database release string.

• OCIServerRelease2()
Returns the Oracle Database release string.

• OCIServerVersion()
Returns the Oracle Database version string.

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCIUserCallbackGet()
Determines the callback that is registered for a handle.

• OCIUserCallbackRegister()
Registers a user-created callback function.

27.9.1 OCITraceEventSet()
Enables the OCI diagnostic tracing. The setting of an event is process-wide and traces all the
sessions in the process.

Purpose

Enables the OCI diagnostic tracing.

Syntax

sword OCITraceEventSet (OCIErr * errhp,
 ub8 eventNum,
 ub4 level,
 ub4 mode);

Parameters

errhp (IN)
OCI error handle.

eventNum (IN)
Event number that is set.

level (IN)
The level to which the event must be set.

mode (IN)
OCI_DEFAULT

Returns

Returns the status of the API. Returns status OCI_SUCCESS on success and OCI_ERROR if an
invalid parameter is specified in the function.

Chapter 27
Miscellaneous Functions

27-157

27.9.2 OCITraceEventReset()
Disables the OCI diagnostic tracing and clears the trace event.

Purpose

Disables the OCI diagnostic tracing and clears the trace event.

Syntax

sword OCITraceEventReset (OCIErr * errhp,
 ub8 eventNum,
 ub4 mode)

Parameters

errhp (IN)
OCI error handle.

eventNum (IN)
Event number that you want to reset.

mode (IN)
OCI _DEFAULT

Returns

Returns the status of the API. Returns status OCI_SUCCESS on success and OCI_ERROR if an
invalid parameter is specified in the function.

27.9.3 OCITraceWriteMessage()
Writes a custom message in the trace file.

Purpose

Writes a custom message in the trace file.

Syntax

sword OCITraceWriteMessage (OCIErr *errhp,
 oratext *message,
 ub4 len)

Parameters

errhp (IN)
OCI error handle.

message (IN)
Custom message to write into the trace file.

len (IN)
Message length.

Chapter 27
Miscellaneous Functions

27-158

Returns

Returns the status of the API. Returns status OCI_SUCCESS on success and OCI_ERROR if an
invalid parameter is specified in the function.

27.9.4 OCIBreak()
Performs an immediate asynchronous break.

Purpose

Performs an immediate (asynchronous) termination of any currently executing OCI function
that is associated with a server.

Syntax

sword OCIBreak (void *hndlp,
 OCIError *errhp);

Parameters

hndlp (IN/OUT)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

This call performs an immediate (asynchronous) termination of any currently executing OCI
function that is associated with a server. It is normally used to stop a long-running OCI call
being processed on the server. It can be called by a user thread in multithreaded applications,
or by a user signal handler on Linux or UNIX systems. OCIBreak() is the only OCI call allowed
in a user signal handler.

Note:

OCIBreak() works on Windows systems, including Windows 2000 and Windows XP.

This call can take either the service context handle or the server context handle as a
parameter to identify the function to be terminated.

Related Topics

• OCIReset()
Resets the interrupted asynchronous operation and protocol.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Server Handle Attributes
Lists and describes server handle attributes.

Chapter 27
Miscellaneous Functions

27-159

• Nonblocking Mode in OCI
OCI provides the ability to establish a server connection in blocking mode or nonblocking
mode.

• About Canceling Calls
How do you cancel long-running or repeated OCI calls.

27.9.5 OCIClientVersion()
Returns the client library version.

Purpose

Returns the 5 digit Oracle Database version number of the client library at run time.

Syntax

void OCIClientVersion (sword *featureRelease,
 sword *releaseUpdate,
 sword *releaseUpdateRevision,
 sword *increment,
 sword *ext);

Parameters

featureRelease (OUT)
The feature release year.

releaseUpdate (OUT)
The release update number.

releaseUpdateRevision (OUT)
The release update revision number.

increment (OUT)
The release update increment number.

ext (OUT)
The extension number.

Comments

Beginning with release 18c, version 18.1, there are five new client macros for extracting each
of the components of the database version. These macros are intended to be used in
conjunction with the encoded database version number returned by OCIServerRelease2() to
extract each of the 5 components of the database version. These macros are named according
to the new release naming scheme started with version 18.1. The 5 digits extracted from the
version number are: <feature release>.<release update>.<release update
revision>.<release update increment>.<extension>. For example, 18.1.1.1.1 would
represent feature release 18, release update 1, release update revision 1, release update
increment 1, extension 1.featureRelease() returns the feture release year of OCI client that
the application is running with. This is useful for the application to know at run time. An
application or a test program can determine the version and the patch set of a particular OCI
client installation by calling this function. This is also useful if the application wants to have
different codepaths depending upon the level of the client patchset.

These macros are useful for writing a generic application that can be built and run with different
versions of OCI client. For example:

Chapter 27
Miscellaneous Functions

27-160

....
#if (featureRelease > 12)
...
#endif
....

Even though the naming is based on the new convention, for convenience, the same macros
can be used to extract the corresponding 5 components of the database version from an
encoded version number returned by OCIServerRelease() from a pre version 18.1 database,
which used a different encoding scheme. In that case though, the components correspond to
the following:

• Version number

• Release number

• Update number

• Porting release number

• Porting update number

Related Topics

• OCIServerRelease()
Returns the Oracle Database release string.

27.9.6 OCIErrorGet()
Returns an error message and an Oracle Database error code.

Purpose

Returns an error message and an Oracle Database error code in the buffer provided. Starting
with Oracle Database Release 23ai, OCIErrorGet() function generates an Oracle error help
URL and appends it to the last line of the error message. Oracle error help URL, helps the user
to understand the cause of the error and how to fix the error.

Chapter 27
Miscellaneous Functions

27-161

Note:

• Following are the different ways you can enable or disable the generation of
Oracle error help URL in the error message returned by OCIErrorGet() function:

– To disable the Oracle error help URL without making any change in
application: Set the environment variable ORA_SUPPRESS_ERROR_URL to TRUE,
this disables the URL generation in the applications that are calling the
OCIErrorGet() function to read the error message. To enable the Oracle
error help URL, unset this environment variable or set this environment
variable to FALSE.

– To disable the Oracle error help URL generation in an application: Set
the attribute OCI_ATTR_SUPPRESS_ERROR_URL in the environment handle value
to TRUE, this disables the generation of the Oracle error help URL. To enable
the Oracle error help URL back again, the application can set this attribute
value to FALSE anytime in the environment handle.

– Note:

The attribute OCI_ATTR_SUPPRESS_ERROR_URL value set in the
application overrides the value set in the environment variable
ORA_SUPPRESS_ERROR_URL.

If OCIErrorGet() function returns a stack of error messages, then the Oracle error help URL is
generated only for the first error code.

Syntax

sword OCIErrorGet (void *hndlp,
 ub4 recordno,
 OraText *sqlstate,
 sb4 *errcodep,
 OraText *bufp,
 ub4 bufsiz,
 ub4 type);

Parameters

hndlp (IN)
The error handle, usually, or the environment handle (for errors on OCIEnvCreate(),
OCIHandleAlloc()).

recordno (IN)
Indicates the status record from which the application seeks information. Starts from 1.

sqlstate (OUT)
Not supported in release 8.x or later.

errcodep (OUT)
The error code returned.

Chapter 27
Miscellaneous Functions

27-162

bufp (OUT)
The error message text returned.

bufsiz (IN)
The size of the buffer provided for the error message, in number of bytes. If the error message
length is more than bufsiz, a truncated error message text is returned in bufp.
If type is set to OCI_HTYPE_ERROR, then the return code during truncation for OCIErrorGet() is
OCI_ERROR. The client can then specify a bigger buffer and call OCIErrorGet() again.
If bufsiz is sufficient to hold the entire message text and the message could be successfully
copied into bufp, the return code for OCIErrorGet() is OCI_SUCCESS.
Use one of the following constants to define the error message buffers into which you get the
returned message back from OCIErrorGet():

define OCI_ERROR_MAXMSG_SIZE 1024 /* max size of an error message */
define OCI_ERROR_MAXMSG_SIZE2 3072 /* new length max size of an error message */

You should use OCI_ERROR_MAXMSG_SIZE2 to ensure you get more information in the returned
error text.
For example, you can do the following:

char errorMesg[OCI_ERROR_MAXMSG_SIZE2];

Then pass this buffer into OCIErrorGet(). You also need to pass the same
OCI_ERROR_MAXMSG_SIZE2 value into the OCIErrorGet() call to indicate the size of the buffer
that you have allocated.

type (IN)
The type of the handle (OCI_HTYPE_ERROR or OCI_HTYPE_ENV).

Comments

This function does not support SQL statements. Usually, hndlp is actually the error handle, or
the environment handle. You should always get the message in the encoding that was set in
the environment handle.

Note that if OCIErrorGet() is called following an OCI call that does not return an OCI_ERROR or
OCI_SUCCESS_WITH_INFO, then an error message from some earlier OCI call that resulted in an
error may be found by OCIErrorGet(). To avoid this issue, OCIErrorGet() should only be
called following OCI calls that return either OCI_ERROR or OCI_SUCCESS_WITH_INFO.

The error handle is originally allocated with a call to OCIHandleAlloc().

Note:

The OCIErrorGet() function returns at least one single diagnostic record. Multiple
diagnostic records can be retrieved by calling the OCIErrorGet() method repeatedly,
until there are no more records and the method returns OCI_NO_DATA.

See Also:

• Error Handling in OCI

• Error Handle Attributes

Chapter 27
Miscellaneous Functions

27-163

Examples

Example 27-3 Error checking using OCIErrorGet()
The following code example shows a simplified example of a function for error checking using
OCIErrorGet().

Using OCIErrorGet() for error checking

static void checkerr(OCIError *errhp, sword status)
{
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 if (status == OCI_SUCCESS) return;

 switch (status)
 {
 case OCI_SUCCESS_WITH_INFO:
 printf("Error - OCI_SUCCESS_WITH_INFO\n");
 OCIErrorGet ((void *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;
 case OCI_NEED_DATA:
 printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((void *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("Error - OCI_STILL_EXECUTING\n");
 break;
 case OCI_CONTINUE:
 printf("Error - OCI_CONTINUE\n");
 break;
 default:
 printf("Error - %d\n", status);
 break;
 }
}

Example 27-4 Default output of OCIErrorGet()

The following code example shows the output with the Oracle error help URL appended in the
error message:

OCILogon2(env_handle, err_handle, &svc_handle, "MYUSER1", strlen("MYUSER1"),
"PASSWORD", strlen("PASSWORD"), DBNAME, strlen(DBNAME), OCI_DEFAULT);
OCIErrorGet(handle, 1, (text *) NULL, &error_code, error_message_buffer,

Chapter 27
Miscellaneous Functions

27-164

(ub4) size_of_buffer, handle_type);
printf("Error - %.*s\n", size_of_buffer, error_message_buffer);

Error - ORA-01045: Login denied. User USER1 does not have CREATE SESSION
privilege.
Help: https://docs.oracle.com/error-help/db/ora-01045/

Example 27-5 Effect of OCI_ATTR_SUPPRESS_ERROR_URL and
ORA_SUPPRESS_ERROR_URL in OCIAttrSet()

The following code example shows the output with the Oracle error help URL appended in the
error message:

OCILogon2(env_handle, err_handle, &svc_handle, "", 0, "", 0, "", 0);
OCIErrorGet(handle, 1, (text *) NULL, &error_code, error_message_buffer,
(ub4) size_of_buffer, handle_type);
printf("Error - %.*s\n", size_of_buffer, error_message_buffer);
setvar = FALSE;
OCIAttrSet(env_handle, OCI_HTYPE_ENV, (void*) &setvar, 0,
OCI_ATTR_SUPPRESS_ERROR_URL, err_handle);
OCILogon2(env_handle, err_handle, &svc_handle, "", 0, "", 0, "", 0);
OCIErrorGet(handle, 1, (text *) NULL, &error_code, error_message_buffer,
(ub4) size_of_buffer, handle_type);
printf("Error - %.*s\n", size_of_buffer, error_message_buffer);

Output:

$ setenv ORA_SUPPRESS_ERROR_URL TRUE
$./myapplication
Error - ORA-01017: invalid username/password; logon denied

Error - ORA-01017: invalid username/password; logon denied
Help: https://docs.oracle.com/error-help/db/ora-01017/

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

27.9.7 OCILdaToSvcCtx()
Converts a V7 Lda_Def to a V8 or later service context handle.

Purpose

Converts a V7 Lda_Def to a V8 or later service context handle.

Syntax

sword OCILdaToSvcCtx (OCISvcCtx **svchpp,
 OCIError *errhp,
 Lda_Def *ldap);

Chapter 27
Miscellaneous Functions

27-165

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

ldap (IN/OUT)
The Oracle7 logon data area returned by OCISvcCtxToLda() from this service context.

Comments

Converts an Oracle7 Lda_Def to a release 8 or later service context handle. The action of this
call can be reversed by passing the resulting service context handle to the OCISvcCtxToLda()
function.

You should use the OCILdaToSvcCtx() call only for resetting an Lda_Def obtained from
OCISvcCtxToLda() back to a service context handle. It cannot be used to transform an Lda_def
that started as an Lda_def back to a service context handle.

If the service context has been converted to an Lda_Def, only Oracle7 calls can be used. It is
illegal to make OCI release 8 or later calls without first resetting the Lda_Def to a service
context.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context handle enables an
application to determine whether the application is currently in Oracle release 7 mode or
Oracle release 8 or later mode.

Related Topics

• OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Handler and Descriptor Attributes
Describes the attributes for OCI handles and descriptors.

27.9.8 OCIPasswordChange()
Changes the password of an account.

Purpose

Allows the password of an account to be changed.

Syntax

sword OCIPasswordChange (OCISvcCtx *svchp,
 OCIError *errhp,
 const OraText *user_name,
 ub4 usernm_len,
 const OraText *opasswd,
 ub4 opasswd_len,
 const OraText *npasswd,

Chapter 27
Miscellaneous Functions

27-166

 sb4 npasswd_len,
 ub4 mode);

Parameters

svchp (IN/OUT)
A handle to a service context. The service context handle must be initialized and have a
server context handle associated with it.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

user_name (IN)
Specifies the user name, which can be in UTF-16 encoding. It must be terminated with a NULL
character if the service context has been initialized with an authentication handle.

usernm_len (IN)
The length of the user name string specified in user_name, in number of bytes regardless of
the encoding. The usernm_len value must be nonzero.

opasswd (IN)
Specifies the user's old password, which can be in UTF-16 encoding. During the password
rollover period, the OCIPasswordChange() function accepts both the old password and the
rollover password.

opasswd_len (IN)
The length of the old password string specified in opasswd, in bytes. The opasswd_len value
must be nonzero.

npasswd (IN)
Specifies the user's new password, which can be in UTF-16 encoding. If the password
complexity verification routine is specified in the user's profile to verify the new password's
complexity, the new password must meet the complexity requirements of the verification
function.

npasswd_len (IN)
The length in bytes of the new password string specified in npasswd. For a valid password
string, npasswd_len must be nonzero.

mode (IN)
OCI_DEFAULT - Use the setting in the environment handle.

• OCI_UTF16 - Use UTF-16 encoding, regardless of the setting of the environment handle.

There is only one encoding allowed, either UTF-16 or not, for user_name, opasswd, and
npasswd.

• OCI_AUTH - If a user session context is not created, a call with this flag creates the user
session context and changes the password. At the end of the call, the user session
context is not cleared. Hence the user remains logged in.

If the user session context is created, a call with this flag only changes the password and
has no effect on the session. Hence the user still remains logged in.

Chapter 27
Miscellaneous Functions

27-167

The OCI_AUTH mode can be used with any of the OCI_CPW_* modes listed in this section to
establish the respective administrative session for the expired user account at logon
before changing the password.

Note:

The gradual password rollover feature is not supported for the administrative
users.

• OCI_CPW_SYSDBA — In this mode, you are authenticated for SYSDBA access.

• OCI_CPW_SYSOPER — In this mode, you are authenticated for SYSOPER access.

• OCI_CPW_SYSASM — In this mode, you are authenticated for SYSASM access.

• OCI_CPW_SYSBKP — In this mode, you are authenticated for SYSBKP access.

• OCI_CPW_SYSDGD — In this mode, you are authenticated for SYSDGD access.

• OCI_CPW_SYSKMT — In this mode, you are authenticated for SYSKMT access.

Comments

This call allows the password of an account to be changed. This call is similar to
OCISessionBegin() with the following differences:

• If the user session is established, this call authenticates the account using the old
password and rollover password during the password rollover period and then changes the
password to the new password.

• If the user session is not established, this call establishes a user session and authenticates
the account using the old password and rollover password during the password rollover
period, and then changes the password to the new password.

• For expired user accounts, when the account is in the rollover period, the status is similar
to the following example:
EXPIRED & IN ROLLOVER

This call is useful when the password of an account has expired and OCISessionBegin()
returns an error (ORA-28001) or warning that indicates that the password has expired.

The mode or the environment handle determines if UTF-16 is being used.

For a Release 12.1 or later client password change with a Release 11.2 server, you must first
call OCISessionBegin() before calling OCIPasswordChange(); otherwise the password change
operation fails with an ORA-1017 error.

Related Topics

• OCISessionBegin()
Creates a user session and begins a user session for a given server.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

Gradual Database Password Change for Applications

Chapter 27
Miscellaneous Functions

27-168

27.9.9 OCIPing()
Confirms that the connection and the server are active.

Purpose

Makes a round-trip call to the server to confirm that the connection and the server are active.

Syntax

sword OCIPing (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
A handle to a service context. The service context handle must be initialized and have a
server context handle associated with it.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

mode (IN)
The mode for the call. Use OCI_DEFAULT.

Comments

OCIPing() makes a dummy round-trip call to the server; that is, a dummy packet is sent to the
server for response. OCIPing() returns after the round-trip is completed. No server operation is
performed for this call itself.

You can use OCIPing() to make a lightweight call to the server. A successful return of the call
indicates that the connection and server are active. If the call blocks, the connection may be in
use by other threads. If it fails, there may be some problem with the connection or the server,
and the error can be retrieved from the error handle. Because OCIPing() is a round-trip call,
you can also use it to flush all the pending OCI client-side calls to the server, if any exist. For
example, calling OCIPing() after OCIHandleFree() can force the execution of the pending call
to close back-end cursors. The call is useful when the application requires the back-end
cursors to be closed immediately, which otherwise would be closed in the next round-trip on
that connection. Also, with the enhanced functionality of OCI_ATTR_SERVER_STATUS, OCIPing
may not be needed if the requirement is just to check the health of the connection. See the
OCI_ATTR_SERVER_STATUS attribute in Server Handle Attributes for more information.

Related Topics

• OCIHandleFree()
Explicitly deallocates a handle

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Miscellaneous Functions

27-169

27.9.10 OCIReset()
Resets the interrupted asynchronous operation and protocol.

Purpose

Must be called if an OCIBreak() call was issued while a nonblocking operation was in
progress.

Syntax

sword OCIReset (void *hndlp,
 OCIError *errhp);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

This call is called in nonblocking mode only. It resets the interrupted asynchronous operation
and protocol. OCIReset() must be called if an OCIBreak() call was issued while a nonblocking
operation was in progress.

Related Topics

• OCIBreak()
Performs an immediate asynchronous break.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.9.11 OCIRowidToChar()
Converts a Universal ROWID to character extended (base 64) representation.

Purpose

Converts a Universal ROWID to character extended (base 64) representation.

Syntax

sword OCIRowidToChar (OCIRowid *rowidDesc,
 OraText *outbfp,
 ub2 *outbflp
 OCIError *errhp);

Parameters

rowidDesc (IN)
The ROWID descriptor that is allocated by OCIDescriptorAlloc() and populated by a prior
execution of a SQL statement.

Chapter 27
Miscellaneous Functions

27-170

outbfp (OUT)
Pointer to the buffer where the character representation is stored after successful execution of
this call.

outbflp (IN/OUT)
Pointer to the output buffer length. Before execution, the buffer length contains the size of
outbfp. After execution it contains the number of bytes converted.
If there is truncation during conversion, outbfp contains the length required to make
conversion successful. An error is also returned.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

Comments

After this conversion, the ROWID in character format can be bound with the OCIBindByPos() or
OCIBindByName() calls, and used to query a row at the given ROWID.

If the environment was created using OCIEnvNlsCreate() with parameters charset and
ncharset set to OCI_UTF16ID, the function OCIRowidToChar() returns the rowid representation
in ASCII, not in UTF-16 as expected.

Related Topics

• OCIDescriptorAlloc()
Allocates storage to hold descriptors or LOB locators.

• OCIBindByPos()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByPos2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this call when working with data types when actual lengths exceed
UB2MAXVAL on the client.

• OCIBindByName()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block.

• OCIBindByName2()
Creates an association between a program variable and a placeholder in a SQL statement
or PL/SQL block. Use this function when working with data types when actual lengths
exceed UB2MAXVAL on the client.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.9.12 OCIServerRelease()
Returns the Oracle Database release string.

Purpose

Returns the Oracle Database release string.

Chapter 27
Miscellaneous Functions

27-171

Syntax

sword OCIServerRelease (void *hndlp,
 OCIError *errhp,
 OraText *bufp,
 ub4 bufsz
 ub1 hndltype
 ub4 *version);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

bufp (IN/OUT)
The buffer in which the release string is returned.

bufsz (IN)
The length of the buffer in number of bytes.

hndltype (IN)
The type of handle passed to the function.

version (IN/OUT)
The release string in integer format.

Comments

The buffer pointer bufp points to the release information in a string representation up to the
bufsz including the NULL terminator. If the buffer size is too small, the result is truncated to the
size bufsz. The version argument contains the 5-digit Oracle Database release string in
integer format, which can be retrieved using the following macros:

#define MAJOR_NUMVSN(v) ((sword)(((v) >> 24) & 0x000000FF)) /* version number */
#define MINOR_NUMRLS(v) ((sword)(((v) >> 20) & 0x0000000F)) /* release number */
#define UPDATE_NUMUPD(v) ((sword)(((v) >> 12) & 0x000000FF)) /* update number */
#define PORT_REL_NUMPRL(v) ((sword)(((v) >> 8) & 0x0000000F)) /* port release number */
#define PORT_UPDATE_NUMPUP(v) ((sword)(((v) >> 0) & 0x000000FF)) /* port update number */

Related Topics

• OCIServerVersion()
Returns the Oracle Database version string.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.9.13 OCIServerRelease2()
Returns the Oracle Database release string.

Purpose

To return the Oracle Database release string.

Chapter 27
Miscellaneous Functions

27-172

Syntax

sword OCIServerRelease2(void *hndlp,
 OCIError *errhp,
 OraText *bufp,
 ub4 bufsz,
 ub1 hndltype,
 ub4 *versionp,
 ub4 mode);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

bufp (IN/OUT)
The buffer in which the release string is returned.

bufsz (IN)
The length of the buffer in number of bytes.

hndltype (IN)
The type of handle passed to the function.

versionp (IN/OUT)
The release string in integer format.

mode (IN)
The valid values are OCI_SRVRELEASE2_CACHED and OCI_DEFAULT.
If the mode is provided as OCI_SRVRELEASE2_CACHED, then a cached version of the server
release is returned if it is available. This saves a round-trip if the application calls this function
more than once. With this mode, the application can choose to provide a null bufp. In such a
case, only the versionp parameter is populated. OCI_DEFAULT does do a round-trip.

Comments

The buffer pointer bufp points to the release information in a string representation up to the
bufsz including the NULL terminator. If the buffer size is too small, the result is truncated to the
size bufsz. The version argument contains the 5-digit Oracle Database release string in
integer format, which can be retrieved using the following macros:

OCI_SERVER_RELEASE_REL(v)
 /* old: version number */
 /* new: feature release */
OCI_SERVER_RELEASE_REL_UPD(v)
 /* old: release number */
 /* new: release update */
OCI_SERVER_RELEASE_REL_UPD_REV(v)
 /* old: update number */
 /* new: release update revision */
OCI_SERVER_RELEASE_REL_UPD_INC(v)

Chapter 27
Miscellaneous Functions

27-173

 /* old: porting release number */
 /* new: release update increment */
OCI_SERVER_RELEASE_EXT(v)
 /* old: porting update number */
 /* new: extension */

Old means applicable when connected to a pre-version 18.1 database. New means applicable
when connected to version 18.1 or later database.

27.9.14 OCIServerVersion()
Returns the Oracle Database version string.

Purpose

Returns the Oracle Database version string.

Syntax

sword OCIServerVersion (void *hndlp,
 OCIError *errhp,
 OraText *bufp,
 ub4 bufsz
 ub1 hndltype);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

bufp (IN/OUT)
The buffer in which the version information is returned.

bufsz (IN)
The length of the buffer in number of bytes.

hndltype (IN)
The type of handle passed to the function.

Comments

This call returns the version string of Oracle Database. It can be in Unicode if the environment
handle so determines.

For example, the following is returned in bufp as the version string if an application is running
on an 8.1.5 SunOS server:

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.5.0.0 - Production

Related Topics

• OCIClientVersion()
Returns the client library version.

Chapter 27
Miscellaneous Functions

27-174

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

27.9.15 OCISvcCtxToLda()
Toggles between a V8 or later service context handle and a V7 Lda_Def.

Purpose

Toggles between a V8 or later service context handle and a V7 Lda_Def.

Syntax

sword OCISvcCtxToLda (OCISvcCtx *srvhp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is
an error.

ldap (IN/OUT)
A Logon Data Area for Oracle7-style OCI calls that is initialized by this call.

Comments

Toggles between an OCI release 8 or later service context handle and an Oracle7 Lda_Def.

This function can only be called after a service context has been properly initialized.

Once the service context has been translated to an Lda_Def, it can be used in release 7.x OCI
calls (for example, obindps(), ofen()).

If there are multiple service contexts that share the same server handle, only one can be in
Oracle7 mode at any time.

The action of this call can be reversed by passing the resulting Lda_Def to the
OCILdaToSvcCtx() function.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context handle enables an
application to determine whether the application is currently in Oracle release 7 mode or
Oracle release 8 or later mode.

Related Topics

• OCILdaToSvcCtx()
Converts a V7 Lda_Def to a V8 or later service context handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Handler and Descriptor Attributes
Describes the attributes for OCI handles and descriptors.

Chapter 27
Miscellaneous Functions

27-175

27.9.16 OCIUserCallbackGet()
Determines the callback that is registered for a handle.

Purpose

Determines the callback that is registered for a handle.

Syntax

sword OCIUserCallbackGet (void *hndlp,
 ub4 type,
 void *ehndlp,
 ub4 fcode,
 ub4 when,
 OCIUserCallback (*callbackp)
 (
 void *ctxp,
 void *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
),
 void **ctxpp,
 OCIUcb *ucbDesc);

Parameters

hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is OCI_HTYPE_ENV. The callback is registered for all
calls of the function specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp, and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

fcode (IN)
A unique function code of an OCI function. These are listed in Table 27-9.

when (IN)
Defines when the callback is invoked. Valid modes are:

• OCI_UCBTYPE_ENTRY - The callback is invoked on entry into the OCI function.

• OCI_UCBTYPE_EXIT - The callback is invoked before exit from the OCI function.

• OCI_UCBTYPE_REPLACE - If it returns anything other than an OCI_CONTINUE, then the next
replacement callback and the OCI code for the OCI function are not called. Instead,
processing jumps to the exit callbacks. For information about this parameter, see
OCIUserCallbackRegister().

Chapter 27
Miscellaneous Functions

27-176

callbackp (OUT)
A pointer to a callback function pointer. This returns the function that is currently registered for
these values of fcode, when, and hndlp. The value returned would be NULL if no callback is
registered for this case.

See Also:

OCIUserCallbackRegister() for information about the parameters of callbackp

ctxpp (OUT)
A pointer to return context for the currently registered callback.

ucbDesc (IN)
A descriptor provided by OCI. This descriptor is passed by OCI in the environment callback. It
contains the priority at which the callback would be registered. If the ucbDesc parameter is
specified as NULL, then this callback has the highest priority.
User callbacks registered statically (as opposed to those registered dynamically in a package)
use a NULL descriptor because they do not have a ucb descriptor to use.

Comments

This function discovers or detects what callback is registered for a particular handle.

Related Topics

• OCIUserCallbackRegister()
Registers a user-created callback function.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Restrictions on Callback Functions
Details the restrictions on callback functions.

27.9.17 OCIUserCallbackRegister()
Registers a user-created callback function.

Purpose

Registers a user-created callback function.

Syntax

sword OCIUserCallbackRegister (void *hndlp,
 ub4 type,
 void *ehndlp,
 OCIUserCallback (callback)
 (
 void *ctxp,
 void *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
),

Chapter 27
Miscellaneous Functions

27-177

 void *ctxp,
 ub4 fcode,
 ub4 when,
 OCIUcb *ucbDesc);

Parameters

hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is OCI_HTYPE_ENV. The callback is registered for all
calls of the function specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().
Because an error handle is not available within OCIEnvCallback, the environment handle is
passed in as a ehndlp.

callback (IN)
A callback function pointer. The variable argument list in the OCIUserCallback function
prototype are the parameters passed to the OCI function. The typedef for OCIUserCallback is
described later.
If an entry callback returns anything other than OCI_CONTINUE, then the return code is passed
to the subsequent entry or replacement callback, if there is one. If this is the last entry callback
and there is no replacement callback, then the OCI code is executed and the return code is
ignored.
If a replacement callback returns anything other than OCI_CONTINUE, then subsequent
replacement callbacks and the OCI code are bypassed, and processing jumps to the exit
callbacks.
If the exit callback returns anything other than OCI_CONTINUE, then that returned value is
returned by the OCI function; otherwise, the return value from the OCI code or the
replacement callback (if the replacement callback did not return OCI_CONTINUE and essentially
bypassed the OCI code) is returned by the call.
If a NULL value is passed in for callback, then the callback is removed for the when value and
the specified handle. This is the way to deregister a callback for a given ucbDesc value,
including the NULL ucbDesc.

ctxp (IN)
A context pointer for the callback.

fcode (IN)
A unique function code of an OCI function. These are listed in Table 27-9.

when (IN)
Defines when the callback is invoked. Valid modes are:

• OCI_UCBTYPE_ENTRY - The callback is invoked on entry into the OCI function.

• OCI_UCBTYPE_EXIT - The callback is invoked before exit from the OCI function.

• OCI_UCBTYPE_REPLACE - If the callback returns anything other than OCI_CONTINUE, then the
next replacement callback and the OCI code for the OCI function is not called. Instead,
processing jumps to the exit callbacks.

Chapter 27
Miscellaneous Functions

27-178

ucbDesc (IN)
A descriptor provided by OCI. This descriptor is passed by OCI in the environment callback. It
contains the priority at which the callback would be registered. If the ucbDesc parameter is
specified as NULL, then this callback has the highest priority.
User callbacks registered statically (as opposed to those registered dynamically in a package)
use a NULL descriptor as they do not have a ucb descriptor to use.

Comments

This function is used to register a user-created callback with the OCI environment.

Such callbacks allow an application to:

• Trace OCI calls for debugging and performance measurements

• Perform additional pre-processing or post-processing after selected OCI calls

• Substitute the body of a given function with proprietary code to execute on a foreign data
source

The OCI supports: entry callbacks, replacement callbacks, and exit callbacks.

The three types of callbacks are identified by the modes OCI_UCBTYPE_ENTRY,
OCI_UCBTYPE_REPLACE, and OCI_UCBTYPE_EXIT.

The control flow now is:

1. Execute entry callbacks.

2. Execute replacement callbacks.

3. Execute OCI code.

4. Execute exit callbacks.

Entry callbacks are executed when a program enters an OCI function.

Replacement callbacks are executed after entry callbacks. If the replacement callback returns
a value of OCI_CONTINUE, then subsequent replacement callbacks or the normal OCI-specific
code is executed. If the callback returns anything other than OCI_CONTINUE, then subsequent
replacement callbacks and the OCI code do not execute.

After an OCI function successfully executes, or after a replacement callback returns something
other than OCI_CONTINUE, program control transfers to the exit callback (if one is registered).

If a replacement or exit callback returns anything other than OCI_CONTINUE, then the return
code from the callback is returned from the associated OCI call.

To determine the callback that is registered for the handle, you can use
OCIUserCallbackGet().

The prototype of the OCIUserCallback typedef is:

typedef sword (*OCIUserCallback)
 (void *ctxp,
 void *hndlp,
 ub4 type,
 ub4 fcode,
 ub4 when,
 sword returnCode,
 sb4 *errnop,
 va_list arglist);

The parameters to the OCIUserCallback function prototype are:

Chapter 27
Miscellaneous Functions

27-179

ctxp (IN)
The context passed in as ctxp in the register callback function.

hndlp (IN)
This is the handle whose type is specified in the type parameter. It is the handle on which the
callback is invoked. Because only a type of OCI_HTYPE_ENV is allowed, the environment
handle, env, would be passed in here.

type (IN)
The type registered for the hndlp. The valid handle type is OCI_HTYPE_ENV. The callback is
registered for all calls of the function specified by fcode made on the environment handle.

fcode (IN)
The function code of the OCI call. These are listed in Table 27-9. Note that callbacks can be
registered for only the OCI calls listed in Table 27-3.

when (IN)
The when value of the callback.

returnCode (IN)
This is the return code from the previous callback or the OCI code. For the first entry callback,
OCI_SUCCESS is always passed in. For the subsequent callbacks, the return code from the OCI
code or the previous callback is passed in.

errnop (IN/OUT)
When the first entry callback is called, the input value of *errnop is 0. If the callback is
returning any value other than OCI_CONTINUE, then it must also set an error number in
*errnop. This value is the set in the error handle passed in the OCI call.
For all subsequent callbacks, the input value of *errnop is the value of error number in the
error handle. Therefore, if the previous callback did not return OCI_CONTINUE, then the out
value of *errnop from the previous callback would be the one in the error handle, and that
value would be passed in here to the subsequent callback. If, however, the previous callback
returned OCI_CONTINUE, then whatever value is in the error handle would be passed in here.
Note that if a non-Oracle error number is returned in *errnop, then a callback must also be
registered for the OCIErrorGet() function to return appropriate text for the error number.

arglist (IN)
These are the parameters to the OCI call passed in here as variable number of arguments.
They should be dereferenced using va_arg, as illustrated in the user callback demonstration
programs.

See Also:

OCI Demonstration Programs

Table 27-9 and Table 27-10 list the OCI Function codes and provides the OCI routine name
and its function number.

Table 27-9 OCI Function Codes

OCI Routine # OCI Routine # OCI Routine

1 OCIInitialize 33 OCITransStart 65 OCIDefineByPos

Chapter 27
Miscellaneous Functions

27-180

Table 27-9 (Cont.) OCI Function Codes

OCI Routine # OCI Routine # OCI Routine

2 OCIHandleAlloc 34 OCITransDetach 66 OCIBindByPos

3 OCIHandleFree 35 OCITransCommit 67 OCIBindByName

4 OCIDescriptorAlloc 36 (not used) 68 OCILobAssign

5 OCIDescriptorFree 37 OCIErrorGet 69 OCILobIsEqual

6 OCIEnvInit 38 OCILobFileOpen 70 OCILobLocatorIsInit

7 OCIServerAttach 39 OCILobFileClose 71 (not used)

8 OCIServerDetach 40 (not used) 72 OCILobCharSetId

9 (not used) 41 (not used) 73 OCILobCharSetForm

10 OCISessionBegin 42 OCILobCopy 74 OCILobFileSetName

11 OCISessionEnd 43 OCILobAppend 75 OCILobFileGetName

12 OCIPasswordChange 44 OCILobErase 76 OCILogon

13 OCIStmtPrepare 45 OCILobGetLength 77 OCILogoff

14 (not used) 46 OCILobTrim 78 (not used)

15 (not used) 47 OCILobRead 79 (not used)

16 (not used) 48 OCILobWrite 80 OCILobLoadFromFile

17 OCIBindDynamic 49 (not used) 81 OCILobOpen

18 OCIBindObject 50 OCIBreak 82 OCILobClose

19 (not used) 51 OCIServerVersion 83 OCILobIsOpen

20 OCIBindArrayOfStruct 52 (not used) 84 OCILobFileIsOpen

21 OCIStmtExecute 53 (not used) 85 OCILobFileExists

22 (not used) 54 OCIAttrGet 86 OCILobFileCloseAll

23 (not used) 55 OCIAttrSet 87 OCILobCreateTemporary

24 (not used) 56 OCIParamSet 88 OCILobFreeTemporary

25 OCIDefineObject 57 OCIParamGet 89 OCILobIsTemporary

26 OCIDefineDynamic 58 OCIStmtGetPieceInfo 90 OCIAQEnq

27 OCIDefineArrayOfStruct 59 OCILdaToSvcCtx 91 OCIAQDeq

28 OCIStmtFetch 60 (not used) 92 OCIReset

29 OCIStmtGetBindInfo 61 OCIStmtSetPieceInfo 93 OCISvcCtxToLda

30 (not used) 62 OCITransForget 94 OCILobLocatorAssign

31 (not used) 63 OCITransPrepare 95 (not used)

32 OCIDescribeAny 64 OCITransRollback 96 OCIAQListen

Table 27-10 Continuation of OCI Function Codes from 97 and Higher

OCI Routine # OCI Routine # OCI Routine

97 Reserved 113 OCILobErase2 129 OCILobGetOptions

98 Reserved 114 OCILobGetLength2 130 OCILobSetOptions

99 OCITransMultiPrepare 115 OCILobLoadFromFile2 131 OCILobFragementInsert

Chapter 27
Miscellaneous Functions

27-181

Table 27-10 (Cont.) Continuation of OCI Function Codes from 97 and Higher

OCI Routine # OCI Routine # OCI Routine

100 OCIConnectionPoolCreate 116 OCILobRead2 132 OCILobFragementDelete

101 OCIConnectionPoolDestroy 117 OCILobTrim2 133 OCILobFragementMove

102 OCILogon2 118 OCILobWrite2 134 OCILobFragementReplace

103 OCIRowidToChar 119 OCILobGetStorageLimit 135 OCILobGetDeduplicateRegions

104 OCISessionPoolCreate 120 OCIDBStartup 136 OCIAppCtxSet

105 OCISessionPoolDestroy 121 OCIDBShutdown 137 OCIAppCtxClearAll

106 OCISessionGet 122 OCILobArrayRead 138 OCILobGetContentType

107 OCISessionRelease 123 OCILobArrayWrite 139 OCILobSetContentType

108 OCIStmtPrepare2 124 OCIAQEnqStreaming

109 OCIStmtRelease 125 OCIAQGetReplayInfo

110 OCIAQEnqArray 126 OCIAQResetReplayInfo

111 OCIAQDeqArray 127 OCIArrayDescriptorAlloc

112 OCILobCopy2 128 OCIArrayDescriptorFree

Related Topics

• OCIUserCallbackGet()
Determines the callback that is registered for a handle.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 27
Miscellaneous Functions

27-182

28
OCI Navigational and Type Functions

This chapter describes the OCI navigational functions that are used to navigate through
objects retrieved from an Oracle database.

It also contains the descriptions of the functions that are used to obtain type descriptor objects
(TDOs).

See Also:

For code examples, see the demonstration programs included with your Oracle
Database installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to the Navigational and Type Functions

• OCI Flush or Refresh Functions

• OCI Mark or Unmark Object and Cache Functions

• OCI Get Object Status Functions

• OCI Miscellaneous Object Functions

• OCI Pin, Unpin, and Free Functions

• OCI Type Information Accessor Functions

• Introduction to the Navigational and Type Functions
In an object navigational paradigm, data is represented as a graph of objects connected by
references.

• OCI Flush or Refresh Functions
Lists and describes OCI flush or refresh functions.

• OCI Mark or Unmark Object and Cache Functions
Lists and describes the OCI mark or unmark object and cache functions.

• OCI Get Object Status Functions
Lists and describes the OCI get object status functions.

• OCI Miscellaneous Object Functions
Lists and describes the miscellaneous object functions.

• OCI Pin, Unpin, and Free Functions
Lists and describes the OCI pin, unpin, and free functions.

• OCI Type Information Accessor Functions
Lists and describes the OCI type information accessor functions.

28-1

28.1 Introduction to the Navigational and Type Functions
In an object navigational paradigm, data is represented as a graph of objects connected by
references.

Objects in the graph are reached by following the references. OCI provides a navigational
interface to objects in an Oracle database. Those calls are described in this chapter.

The OCI object environment is initialized when the application calls OCIEnvCreate(),
OCIEnvNlsCreate(), or OCIInitialize() (deprecated) in OCI_OBJECT mode.

• Object Types and Lifetimes
An object instance is an occurrence of a type defined in an Oracle database.

• Terminology
Describes the terminology used.

• Conventions for OCI Functions
Describes the conventions for OCI functions.

• Return Values
Describes the return values by the function if the function returns something other then the
standard codes.

• Navigational Function Return Values
Describes the navigational function return values.

• Server Round-Trips for Cache and Object Functions
Describes the number of server round-trips required for individual OCI cache and object
functions.

• Navigational Function Error Codes
Describes the external Oracle error codes that can be returned by each of the OCI
navigational functions.

See Also:

OCI Object-Relational Programming and Object Advanced Topics in OCI for more
information about using the calls in this chapter

28.1.1 Object Types and Lifetimes
An object instance is an occurrence of a type defined in an Oracle database.

This section describes how an object instance can be represented in OCI. In OCI, an object
instance can be classified based on the type, the lifetime, and referenceability:

• A persistent object is an instance of an object type. A persistent object resides in a row of a
table in the server and can exist longer than the duration of a session (connection).
Persistent objects can be identified by object references that contain the object identifiers.
A persistent object is obtained by pinning its object reference.

• A transient object is an instance of an object type. A transient object cannot exist longer
than the duration of a session, and it is used to contain temporary computing results.
Transient objects can also be identified by references that contain transient object
identifiers.

Chapter 28
Introduction to the Navigational and Type Functions

28-2

• A value is an instance of a user-defined type (object type or collection type) or any built-in
Oracle type. Unlike objects, values of object types are identified by memory pointers,
rather than by references.

A value can be standalone or embedded. A standalone value is usually obtained by issuing a
select statement. OCI also allows the client program to select a row of object table into a value
by issuing a SQL statement. A referenceable object in the database can be represented as a
value that cannot be identified by a reference. A standalone value can also be an out-of-line
attribute in an object, such as VARCHAR or RAW, or an out-of-line element in a collection, such as
VARCHAR, RAW, or object.

An embedded value is physically included in a containing instance. An embedded value can be
an inline attribute in an object (such as number or nested object), or an inline element in a
collection.

All values are considered to be transient by OCI, which means that OCI does not support
automatic flushing of a value to the database, and the client must explicitly execute a SQL
statement to store a value into the database. Embedded values are flushed when their
containing instances are flushed.

Figure 28-1 shows how instances can be classified according to their type and lifetime. The
type can be an object or the value of an object. The lifetime can be persistent (can exist longer
than the duration of a session) or transient (can exist no long than the duration of the session).

Figure 28-1 Classification of Instances by Type and Lifetime

Lifetime

Type

Instance

OBJECT VALUE

PERSISTENT TRANSIENT

The distinction between various instances is further described in Table 28-1.

Table 28-1 Type and Lifetime of Instances

Characteristic Persistent Object Transient Object Value

Type object type object type object type, built-in,
collection

Maximum Lifetime until object is deleted session session

Referenceable yes yes no

Embeddable no no yes

28.1.2 Terminology
Describes the terminology used.

The remainder of this chapter uses the following terms:

Chapter 28
Introduction to the Navigational and Type Functions

28-3

• An object is generally used to refer to a persistent object, a transient object, a standalone
value of object type, or an embedded value of object type.

• A referenceable object refers to a persistent object or a transient object.

• A standalone object refers to a persistent object, a transient object, or a standalone value
of object type.

• An embedded object refers to a embedded value of object type.

• An object is dirty if it has been created (newed), marked as updated, or marked as deleted.

See Also:

Persistent Objects, Transient Objects, and Values for further discussion of the
terms used to refer to different types of objects

28.1.3 Conventions for OCI Functions
Describes the conventions for OCI functions.

See the Conventions for OCI Functions for the conventions used in describing each function.
The entries for each function may also contain the following information:

28.1.4 Return Values
Describes the return values by the function if the function returns something other then the
standard codes.

A description of what value is returned by the function if the function returns something other
then the standard codes listed in Table 28-3.

28.1.5 Navigational Function Return Values
Describes the navigational function return values.

Table 28-2 lists the values that OCI navigational functions typically return.

Table 28-2 Return Values of Navigational Functions

Return Value Meaning

OCI_SUCCESS The operation succeeded.

OCI_ERROR The operation failed. The specific error can be retrieved by calling
OCIErrorGet() on the error handle passed to the function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

Function-specific return information follows the description of each function in this chapter.
Information about specific error codes returned by each function is presented in the following
section.

Chapter 28
Introduction to the Navigational and Type Functions

28-4

See Also:

Error Handling in OCI for more information about return codes and error handling

28.1.6 Server Round-Trips for Cache and Object Functions
Describes the number of server round-trips required for individual OCI cache and object
functions.

For a table showing the number of server round-trips required for individual OCI cache and
object functions, see Table C-4.

28.1.7 Navigational Function Error Codes
Describes the external Oracle error codes that can be returned by each of the OCI navigational
functions.

Table 28-3 lists the external Oracle error codes that can be returned by each of the OCI
navigational functions. The list following the table identifies what each error represents.

Table 28-3 OCI Navigational Functions Error Codes

Function Possible ORA Errors

OCICacheFlush() 24350, 21560, 21705

OCICacheFree() 24350, 21560, 21705

OCICacheRefresh() 24350, 21560, 21705

OCICacheUnmark() 24350, 21560, 21705

OCICacheUnpin() 24350, 21560, 21705

OCIObjectArrayPin() 24350, 21560

OCIObjectCopy() 24350, 21560, 21705, 21710

OCIObjectExists() 24350, 21560, 21710

OCIObjectFlush() 24350, 21560, 21701, 21703, 21708, 21710

OCIObjectFree() 24350, 21560, 21603, 21710

OCIObjectGetAttr() 21560, 21600, 22305

OCIObjectGetInd() 24350, 21560, 21710

OCIObjectGetObjectRef() 24350, 21560, 21710

OCIObjectGetTypeRef() 24350, 21560, 21710

OCIObjectIsDirty() 24350, 21560, 21710

OCIObjectIsLocked() 24350, 21560, 21710

OCIObjectLock() 24350, 21560, 21701, 21708, 21710

OCIObjectLockNoWait() 24350, 21560, 21701, 21708, 21710

OCIObjectMarkDelete() 24350, 21560, 21700, 21701, 21702, 21710

OCIObjectMarkDeleteByRef() 24350, 21560

OCIObjectMarkUpdate() 24350, 21560, 21700, 21701, 21710

Chapter 28
Introduction to the Navigational and Type Functions

28-5

Table 28-3 (Cont.) OCI Navigational Functions Error Codes

Function Possible ORA Errors

OCIObjectNew() 24350, 21560, 21705, 21710

OCIObjectPin() 24350, 21560, 21700, 21702

OCIObjectPinCountReset() 24350, 21560, 21710

OCIObjectPinTable() 24350, 21560, 21705

OCIObjectRefresh() 24350, 21560, 21709, 21710

OCIObjectSetAttr() 21560, 21600, 22305, 22279, 21601

OCIObjectUnmark() 24350, 21560, 21710

OCIObjectUnmarkByRef() 24350, 21560

OCIObjectUnpin() 24350, 21560, 21710

The ORA errors in Table 28-3 have the following meanings.

• ORA-21560 - name argument should not be NULL
• ORA-21600 - path expression too long

• ORA-21601 - attribute is not an instance of user-defined type

• ORA-21603 - cannot free a dirtied persistent object

• ORA-21700 - object does not exist or has been deleted

• ORA-21701 - invalid object

• ORA-21702 - object is not instantiated in the cache

• ORA-21703 - cannot flush an object that is not modified

• ORA-21704 - cannot terminate cache or connection without flushing

• ORA-21705 - service context is invalid

• ORA-21708 - operations cannot be performed on a transient object

• ORA-21709 - operations can only be performed on a current object

• ORA-21710 - invalid pointer or value passed to the function

• ORA-22279 - cannot perform operation with LOB buffering enabled

• ORA-22305 - name argument is invalid

• ORA-24350 - this OCI call is not allowed from external subroutines

28.2 OCI Flush or Refresh Functions
Lists and describes OCI flush or refresh functions.

Table 28-4 describes the OCI flush or refresh functions that are described in this section.

Table 28-4 Flush or Refresh Functions

Function Purpose

OCICacheFlush() Flush modified persistent objects in cache to server

Chapter 28
OCI Flush or Refresh Functions

28-6

Table 28-4 (Cont.) Flush or Refresh Functions

Function Purpose

OCICacheRefresh() Refresh pinned persistent objects

OCIObjectFlush() Flush a modified persistent object to the server

OCIObjectRefresh() Refresh a persistent object

• OCICacheFlush()
Flushes modified persistent objects to the server.

• OCICacheRefresh()
Refreshes all pinned persistent objects in the cache.

• OCIObjectFlush()
Flushes a modified persistent object to the server.

• OCIObjectRefresh()
Refreshes a persistent object from the most current database snapshot.

28.2.1 OCICacheFlush()
Flushes modified persistent objects to the server.

Purpose

Flushes modified persistent objects to the server.

Syntax

sword OCICacheFlush (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 void *context,
 OCIRef *(*get)
 (void *context,
 ub1 *last),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

context (IN) [optional]
Specifies a user context that is an argument to the client callback function get. This parameter
is set to NULL if there is no user context.

Chapter 28
OCI Flush or Refresh Functions

28-7

get (IN) [optional]
A client-defined function that acts as an iterator to retrieve a batch of dirty objects that need to
be flushed. If the function is not NULL, this function is called to get a reference of a dirty object.
This is repeated until a NULL reference is returned by the client function or the parameter last
is set to TRUE. The parameter context is passed to get() for each invocation of the client
function. This parameter should be NULL if user callback is not given. If the object that is
returned by the client function is not a dirtied persistent object, the object is ignored.
All the objects that are returned from the client function must be newed or pinned using the
same service context; otherwise, an error is signaled. Note that the cache flushes the returned
objects in the order in which they were marked dirty.
If this parameter is passed as NULL (for example, no client-defined function is provided), then
all dirty persistent objects for the given service context are flushed in the order in which they
were dirtied.

ref (OUT) [optional]
If there is an error in flushing the objects, (*ref) points to the object that is causing the error. If
ref is NULL, then the object is not returned. If *ref is NULL, then a reference is allocated and
set to point to the object. If *ref is not NULL, then the reference of the object is copied into the
given space. If the error is not caused by any of the dirtied objects, the given REF is initialized
to be a NULL reference (OCIRefIsNull(*ref) is TRUE).
The REF is allocated for session duration (OCI_DURATION_SESSION). The application can free
the allocated REF using the OCIObjectFree() function.

Comments

This function flushes the modified persistent objects from the object cache to the server. The
objects are flushed in the order that they are new or marked as updated or marked as deleted.

See Also:

OCIObjectFlush()

This function incurs, at most, one network round-trip.

Related Topics

• OCIObjectFlush()
Flushes a modified persistent object to the server.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Flush or Refresh Functions

28-8

28.2.2 OCICacheRefresh()
Refreshes all pinned persistent objects in the cache.

Purpose

Refreshes all pinned persistent objects in the cache.

Syntax

sword OCICacheRefresh (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCIRefreshOpt option,
 void *context,
 OCIRef *(*get)(void *context),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

option (IN) [optional]
If OCI_REFRESH_LOADED is specified, all objects that are loaded within the transaction are
refreshed. If the option is OCI_REFRESH_LOADED and the parameter get is not NULL, this function
ignores the parameter.

context (IN) [optional]
Specifies a user context that is an argument to the client callback function get. This parameter
is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function that acts as an iterator to retrieve a batch of objects that need to be
refreshed. If the function is not NULL, this function is called to get a reference of an object. If
the reference is not NULL, then the object is refreshed. These steps are repeated until a NULL
reference is returned by this function. The parameter context is passed to get() for each
invocation of the client function. This parameter should be NULL if user callback is not given.

ref (OUT) [optional]
If there is an error in refreshing the objects, (*ref) points to the object that is causing the error.
If ref is NULL, then the object is not returned. If *ref is NULL, then a reference is allocated and
set to point to the object. If *ref is not NULL, then the reference of the object is copied into the
given space. If the error is not caused by any of the objects, the given ref is initialized to be a
NULL reference (OCIRefIsNull(*ref) is TRUE).

Chapter 28
OCI Flush or Refresh Functions

28-9

Comments

This function refreshes all pinned persistent objects and frees all unpinned persistent objects
from the object cache.

Note:

When objects are refreshed, the secondary-level memory of those objects could
potentially move to a different place in memory. As a result, any pointers to attributes
that were saved prior to this call may be invalidated. Examples of attributes using
secondary-level memory include OCIString *, OCIColl *, and OCIRaw *.

Related Topics

• OCIObjectRefresh()
Refreshes a persistent object from the most current database snapshot.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• About Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the corresponding
object in the server.

28.2.3 OCIObjectFlush()
Flushes a modified persistent object to the server.

Purpose

Flushes a modified persistent object to the server.

Syntax

sword OCIObjectFlush (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

Chapter 28
OCI Flush or Refresh Functions

28-10

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object. The object must be pinned before this call.

Comments

This function flushes a modified persistent object to the server. An exclusive lock is obtained
implicitly for the object when it is flushed. When this function writes the object to the server,
triggers may be fired. This function returns an error for transient objects and values, and for
unmodified persistent objects.

Objects can be modified by triggers at the server. To keep objects in the cache consistent with
the database, an application can free or refresh objects in the cache.

If the object to flush contains an internal LOB attribute and the LOB attribute was modified due
to an OCIObjectCopy(), OCILobAssign(), or OCILobLocatorAssign() operation or by assigning
another LOB locator to it, then the flush makes a copy of the LOB value that existed in the
source LOB at the time of the assignment or copy of the internal LOB locator or object.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCICacheFlush()
Flushes modified persistent objects to the server.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectCopy()
Copies a source instance to a destination.

• OCILobAssign()
Assigns one LOB or BFILE locator to another

• OCILobLocatorAssign()
Assigns one LOB or BFILE locator to another.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• LOB Functions

28.2.4 OCIObjectRefresh()
Refreshes a persistent object from the most current database snapshot.

Purpose

Refreshes a persistent object from the most current database snapshot.

Chapter 28
OCI Flush or Refresh Functions

28-11

Syntax

sword OCIObjectRefresh (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments

This function refreshes an object with data retrieved from the latest snapshot in the server. An
object should be refreshed when the objects in the object cache are inconsistent with the
objects in the server.

Note:

When an object is flushed to the server, triggers can be fired to modify more objects
in the server. The same objects (modified by the triggers) in the object cache become
out-of-date, and must be refreshed before they can be locked or flushed.

This occurs when the user issues a SQL statement or PL/SQL procedure to modify
any object in the server.

Note:

Modifications made to objects (dirty objects) since the last flush are lost if unmarked
objects are refreshed by this function.

Table 28-5 shows how the various meta-attribute flags and durations of an object are modified
after being refreshed.

Table 28-5 Object Status After Refresh

Object Attribute Status After Refresh

existent Set to appropriate value

pinned Unchanged

allocation duration Unchanged

Chapter 28
OCI Flush or Refresh Functions

28-12

Table 28-5 (Cont.) Object Status After Refresh

Object Attribute Status After Refresh

pin duration Unchanged

The object that is refreshed is replaced-in-place. When an object is replaced-in-place, the top-
level memory of the object is reused so that new data can be loaded into the same memory
address. The top-level memory of the NULL indicator structure is also reused. Unlike the top-
level memory chunk, the secondary memory chunks are freed and reallocated.

You should be careful when writing functionality that retains a pointer to the secondary memory
chunk, such as assigning the address of a secondary memory chunk to a local variable,
because this pointer can become invalid after the object is refreshed.

This function does no affect transient objects or values.

Related Topics

• OCICacheRefresh()
Refreshes all pinned persistent objects in the cache.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.3 OCI Mark or Unmark Object and Cache Functions
Lists and describes the OCI mark or unmark object and cache functions.

Table 28-6 describes the OCI mark or unmark object and cache functions that are described in
this section.

Table 28-6 Mark or Unmark Object and Cache Functions

Function Purpose

OCICacheUnmark() Unmark objects in the cache

OCIObjectMarkDelete() Mark an object deleted or delete a value
instance

OCIObjectMarkDeleteByRef() Mark an object deleted when given a
reference to it

OCIObjectMarkUpdate() Mark an object as updated or dirty

OCIObjectUnmark() Unmark an object

OCIObjectUnmarkByRef() Unmark an object, when given a reference
to it

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-13

• OCICacheUnmark()
Unmarks all dirty objects in the object cache.

• OCIObjectMarkDelete()
Marks a standalone instance as deleted, when given a pointer to the instance.

• OCIObjectMarkDeleteByRef()
Marks an object as deleted, when given a reference to the object.

• OCIObjectMarkUpdate()
Marks a persistent object as updated (dirty).

• OCIObjectUnmark()
Unmarks an object as dirty.

• OCIObjectUnmarkByRef()
Unmarks an object as dirty, when given a ref to the object.

28.3.1 OCICacheUnmark()
Unmarks all dirty objects in the object cache.

Purpose

Unmarks all dirty objects in the object cache.

Syntax

sword OCICacheUnmark (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

Comments

If a connection is specified, this function unmarks all dirty objects in that connection.
Otherwise, all dirty objects in the cache are unmarked.

Related Topics

• OCIObjectUnmark()
Unmarks an object as dirty.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-14

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

OCIObjectUnmark() for more information about unmarking an object

28.3.2 OCIObjectMarkDelete()
Marks a standalone instance as deleted, when given a pointer to the instance.

Purpose

Marks a standalone instance as deleted, when given a pointer to the instance.

Syntax

sword OCIObjectMarkDelete (OCIEnv *env,
 OCIError *err,
 void *instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to the instance. It must be standalone, and if it is an object, it must be pinned.

Comments

This function accepts a pointer to a standalone instance and marks the object as deleted. The
object is freed according to the following rules:

For Persistent Objects
The object is marked deleted. The memory of the object is not freed. The object is deleted in
the server when the object is flushed.

For Transient Objects
The object is marked deleted. The memory of the object is not freed.

For Values
This function frees a value immediately.

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-15

Related Topics

• OCIObjectMarkDeleteByRef()
Marks an object as deleted, when given a reference to the object.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.3.3 OCIObjectMarkDeleteByRef()
Marks an object as deleted, when given a reference to the object.

Purpose

Marks an object as deleted, when given a reference to the object.

Syntax

sword OCIObjectMarkDeleteByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
Reference to the object to be deleted.

Comments

This function accepts a reference to an object, and marks the object designated by object_ref
as deleted. The object is marked and freed as follows:

For Persistent Objects
If the object is not loaded, then a temporary object is created and is marked deleted.
Otherwise, the object is marked deleted.
The object is deleted in the server when the object is flushed.

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-16

For Transient Objects
The object is marked deleted. The object is not freed until it is unpinned.

Related Topics

• OCIObjectMarkDelete()
Marks a standalone instance as deleted, when given a pointer to the instance.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.3.4 OCIObjectMarkUpdate()
Marks a persistent object as updated (dirty).

Purpose

Marks a persistent object as updated (dirty).

Syntax

sword OCIObjectMarkUpdate (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments

This function marks a persistent object as updated (dirty). The following special rules apply to
different types of objects. The dirty status of an object can be checked by calling
OCIObjectIsLocked().

For Persistent Objects
This function marks the specified persistent object as updated.

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-17

When the object cache is flushed, it writes the persistent objects to the server. The object is
not locked or flushed by this function. It is an error to update a deleted object.
After an object is marked updated and flushed, this function must be called again to mark the
object as updated if it has been dirtied after being flushed.

For Transient Objects
This function marks the specified transient object as updated. The transient objects are not
written to the server. It is an error to update a deleted object.

For Values
This function has no effect on values.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIObjectIsDirty()
Checks to see if an object is marked as dirty.

• OCIObjectUnmark()
Unmarks an object as dirty.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectIsLocked()
Gets lock status of an object.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• About Marking Objects and Flushing Changes
The application must take specific steps to ensure that changes to objects by marking
them and then flushing them are written in the database.

28.3.5 OCIObjectUnmark()
Unmarks an object as dirty.

Purpose

Unmarks an object as dirty.

Syntax

sword OCIObjectUnmark (OCIEnv *env,
 OCIError *err,
 void *object);

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-18

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to the persistent object. It must be pinned.

Comments

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are made to the
object are not written to the server. If the object is marked as locked, it remains marked as
locked. The changes that have already been made to the object are not undone implicitly.

For Values
This function has no effect if called on a value.

Related Topics

• OCIObjectUnmarkByRef()
Unmarks an object as dirty, when given a ref to the object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.3.6 OCIObjectUnmarkByRef()
Unmarks an object as dirty, when given a ref to the object.

Purpose

Unmarks an object as dirty, when given a ref to the object.

Syntax

sword OCIObjectUnmarkByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *ref);

Chapter 28
OCI Mark or Unmark Object and Cache Functions

28-19

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
Reference of the object. It must be pinned.

Comments

This function unmarks an object as dirty. This function is identical to OCIObjectUnmark(),
except that it takes a ref to the object as an argument.

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are made to the
object are not written to the server. If the object is marked as locked, it remains marked as
locked. The changes that have already been made to the object are not undone implicitly.

For Values
This function has no effect on values.

Related Topics

• OCIObjectUnmark()
Unmarks an object as dirty.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.4 OCI Get Object Status Functions
Lists and describes the OCI get object status functions.

Table 28-7 describes the OCI get object status functions that are described in this section.

Table 28-7 Get Object Status Functions

Function Purpose

OCIObjectExists() Get the existent status of an instance

OCIObjectGetProperty() Get the status of a particular object property

Chapter 28
OCI Get Object Status Functions

28-20

Table 28-7 (Cont.) Get Object Status Functions

Function Purpose

OCIObjectIsDirty() Get the dirtied status of an instance

OCIObjectIsLocked() Get the locked status of an instance

• OCIObjectExists()
Returns the existence meta-attribute of a standalone instance.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIObjectIsDirty()
Checks to see if an object is marked as dirty.

• OCIObjectIsLocked()
Gets lock status of an object.

28.4.1 OCIObjectExists()
Returns the existence meta-attribute of a standalone instance.

Purpose

Returns the existence meta-attribute of a standalone instance.

Syntax

sword OCIObjectExists (OCIEnv *env,
 OCIError *err,
 void *ins,
 boolean *exist);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. If it is an object, it must be pinned.

exist (OUT)
Return value for the existence status.

Comments

This function returns the existence meta-attribute of an instance. If the instance is a value, this
function always returns TRUE. The instance must be a standalone persistent or transient object.

Chapter 28
OCI Get Object Status Functions

28-21

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Object Meta-Attributes
An object's meta-attributes serve as flags that can provide information to an application, or
to the object cache, about the status of an object.

28.4.2 OCIObjectGetProperty()
Retrieves a given property of an object.

Purpose

Retrieves a given property of an object.

Syntax

sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 const void *obj,
 OCIObjectPropId propertyId,
 void *property,
 ub4 *size);

Parameters

envh (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

errh (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

obj (IN)
The object whose property is returned.

propertyId (IN)
The identifier that specifies the property.

property (OUT)
The buffer into which the specified property is copied.

Chapter 28
OCI Get Object Status Functions

28-22

size (IN/OUT)
On input, this parameter specifies the size of the property buffer passed by the caller.
On output, it contains the size in bytes of the property returned. This parameter is required for
string-type properties only, such as OCI_OBJECTPROP_SCHEMA and OCI_OBJECTPROP_TABLE. For
non-string properties this parameter is ignored because the size is fixed.

Comments

This function returns the specified property of the object. This property is identified by
propertyId. The property value is copied into property and for string typed properties, the
string size is returned by size.

Objects are classified as persistent, transient, and value depending upon the lifetime and
referenceability of the object. Some of the properties are applicable only to persistent objects
and some others apply only to persistent and transient objects. An error is returned if the user
tries to get a property that is not applicable to the given object. To avoid such an error, first
check whether the object is persistent or transient or value (OCI_OBJECTPROP_LIFETIME
property) and then appropriately query for other properties.

The different property IDs and the corresponding type of property argument are given next.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or a value
instance. The property argument must be a pointer to a variable of type OCIObjectLifetime.
Possible values include:

• OCI_OBJECT_PERSISTENT
• OCI_OBJECT_TRANSIENT
• OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big enough to
hold the schema name, an error is returned; the error message communicates the required
size. Upon success, the size of the returned schema name in bytes is returned by size. The
property argument must be an array of type text, and size should be set to size of array in
bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the given object
points to a transient instance or a value. If the input buffer is not big enough to hold the table
name, an error is returned; the error message communicates the required size. Upon success,
the size of the returned table name in bytes is returned by size. The property argument must
be an array of type text, and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object points to a
value instance. The property argument must be a pointer to a variable of type OCIDuration.
Valid values include:

• OCI_DURATION_SESSION
• OCI_DURATION_TRANS
For more information about durations, see Object Duration.

Chapter 28
OCI Get Object Status Functions

28-23

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a pointer to
a variable of type OCIDuration. Valid values include:

• OCI_DURATION_SESSION
• OCI_DURATION_TRANS
For more information about durations, see Object Duration.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock statuses are enumerated by
OCILockOpt. An error is returned if the given object points to a transient or value instance. The
property argument must be a pointer to a variable of type OCILockOpt. The lock status of an
object can also be retrieved by calling OCIObjectIsLocked(). Valid values include:

• OCI_LOCK_NONE (no lock)

• OCI_LOCK_X (exclusive lock)

• OCI_LOCK_X_NOWAIT (exclusive lock with the NOWAIT option)

See Also:

About Locking with the NOWAIT Option

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object, updated object,
or deleted object. An error is returned if the given object points to a transient or value instance.
The property argument must be of type OCIObjectMarkStatus. Valid values include:

• OCI_OBJECT_NEW
• OCI_OBJECT_DELETED
• OCI_OBJECT_UPDATED
The following macros are available to test the object mark status:

• OCI_OBJECT_IS_UPDATED (flag)

• OCI_OBJECT_IS_DELETED (flag)

• OCI_OBJECT_IS_NEW (flag)

• OCI_OBJECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property value
returned is TRUE, the object is a view; otherwise, it is not. An error is returned if the given
object points to a transient or value instance. The property argument must be of type
boolean.

Related Topics

• OCIObjectLock()
Locks a persistent object at the server.

• OCIObjectMarkDelete()
Marks a standalone instance as deleted, when given a pointer to the instance.

Chapter 28
OCI Get Object Status Functions

28-24

• OCIObjectMarkUpdate()
Marks a persistent object as updated (dirty).

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectIsLocked()
Gets lock status of an object.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.4.3 OCIObjectIsDirty()
Checks to see if an object is marked as dirty.

Purpose

Checks to see if an object is marked as dirty.

Syntax

sword OCIObjectIsDirty (OCIEnv *env,
 OCIError *err,
 void *ins,
 boolean *dirty);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance.

dirty (OUT)
Return value for the dirty status.

Comments

The instance passed to this function must be standalone. If the instance is an object, the
instance must be pinned.

This function returns the dirty status of an instance. If the instance is a value, this function
always returns FALSE for the dirty status.

Chapter 28
OCI Get Object Status Functions

28-25

Related Topics

• OCIObjectMarkUpdate()
Marks a persistent object as updated (dirty).

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.4.4 OCIObjectIsLocked()
Gets lock status of an object.

Purpose

Gets lock status of an object.

Syntax

sword OCIObjectIsLocked (OCIEnv *env,
 OCIError *err,
 void *ins,
 boolean *lock);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. The instance must be standalone, and if it is an object, it must be
pinned.

lock (OUT)
Return value for the lock status.

Comments

This function returns the lock status of an instance. If the instance is a value, this function
always returns FALSE.

Chapter 28
OCI Get Object Status Functions

28-26

Related Topics

• OCIObjectLock()
Locks a persistent object at the server.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.5 OCI Miscellaneous Object Functions
Lists and describes the miscellaneous object functions.

Table 28-8 describes the miscellaneous object functions that are described in this section.

Table 28-8 Miscellaneous Object Functions

Function Purpose

OCIObjectCopy() Copy one instance to another

OCIObjectGetAttr() Get an object attribute

OCIObjectGetInd() Get NULL structure of an instance

OCIObjectGetObjectRef() Return reference to a given object

OCIObjectGetTypeRef() Get a reference to a TDO of an instance

OCIObjectLock() Lock a persistent object

OCIObjectLockNoWait() Lock a persistent object but do not wait for
the lock

OCIObjectNew() Create a new instance

OCIObjectSetAttr() Set an object attribute

• OCIObjectCopy()
Copies a source instance to a destination.

• OCIObjectGetAttr()
Retrieves an object attribute.

• OCIObjectGetInd()
Retrieves the NULL indicator structure of a standalone instance.

• OCIObjectGetObjectRef()
Returns a reference to a given persistent object.

• OCIObjectGetTypeRef()
Returns a reference to the type descriptor object (TDO) of a standalone instance.

Chapter 28
OCI Miscellaneous Object Functions

28-27

• OCIObjectLock()
Locks a persistent object at the server.

• OCIObjectLockNoWait()
Locks a persistent object at the server but does not wait for the lock.

• OCIObjectNew()
Creates a standalone instance.

• OCIObjectSetAttr()
Sets an object attribute.

28.5.1 OCIObjectCopy()
Copies a source instance to a destination.

Purpose

Copies a source instance to a destination.

Syntax

sword OCIObjectCopy (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 void *source,
 void *null_source,
 void *target,
 void *null_target,
 OCIType *tdo,
 OCIDuration duration,
 ub1 option);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle, specifying the service context on which the copy operation is
occurring.

source (IN)
A pointer to the source instance; if it is an object, it must be pinned.

See Also:

OCIObjectPin()

Chapter 28
OCI Miscellaneous Object Functions

28-28

null_source (IN)
Pointer to the NULL structure of the source object.

target (IN)
A pointer to the target instance; if it is an object, it must be pinned.

null_target (IN)
A pointer to the NULL structure of the target object.

tdo (IN)
The TDO for both the source and the target. Can be retrieved with OCIDescribeAny().

duration (IN)
Allocation duration of the target memory.

option (IN)
This parameter is currently unused. Pass as zero or OCI_DEFAULT.

Comments

This function copies the contents of the source instance to the target instance. This function
performs a deep copy such that all of the following information is copied:

• All the top-level attributes (see the exceptions later)

• All secondary memory (of the source) reachable from the top-level attributes

• The NULL structure of the instance

Memory is allocated with the duration specified in the duration parameter.

Certain data items are not copied, such as, if the attribute is an internal LOB, then only the
LOB locator from the source object is copied. A copy of the LOB data is not made until
OCIObjectFlush() is called. Before the target object is flushed, both the source and the target
locators refer to the same LOB value.

The target or the containing instance of the target must have been created. This can be done
with OCIObjectNew() or OCIObjectPin() depending on whether the target object exists.

The source and target instances must be of the same type. If the source and target are
located in different databases, then the same type must exist in both databases.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectFlush()
Flushes a modified persistent object to the server.

• OCIObjectNew()
Creates a standalone instance.

Chapter 28
OCI Miscellaneous Object Functions

28-29

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.5.2 OCIObjectGetAttr()
Retrieves an object attribute.

Purpose

Retrieves an object attribute.

Syntax

sword OCIObjectGetAttr (OCIEnv *env,
 OCIError *err,
 void *instance,
 void *null_struct,
 struct OCIType *tdo,
 const OraText **names,
 const ub4 *lengths,
 const ub4 name_count,
 const ub4 *indexes,
 const ub4 index_count,
 OCIInd *attr_null_status,
 void **attr_null_struct,
 void **attr_value,
 struct OCIType **attr_tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object.

null_struct (IN)
The NULL structure of the object or array.

tdo (IN)
Pointer to the type descriptor object (TDO).

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the path
expression.

lengths (IN)
Array of lengths of attribute names, in bytes.

name_count (IN)
Number of elements in the array names.

Chapter 28
OCI Miscellaneous Object Functions

28-30

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (OUT)
The NULL status of the attribute if the type of attribute is primitive.

attr_null_struct (OUT)
This parameter is filled only for object and opaque attributes, not for collections. For
collections (pass OCICollGetElem), attr_null_struct is NULL. For collections, this parameter
indicates if the entire collection is NULL or not.

attr_value (OUT)
Pointer to the attribute value. See
Table 25-1 that lists the type of data and what C data type can be found in parameter
attr_value after this call completes successfully.

attr_tdo (OUT)
Pointer to the TDO of the attribute.

Comments

This function gets a value from an object. The position of the attribute returned is specified as a
path expression, which is an array of names and an array of indexes. If the parameter
instance points to an object, then the path expression specifies the location of the attribute in
the object. It is assumed that the object is pinned and that the value returned is valid until the
object is unpinned. The values returned are considered read-only and should not be modified
in any way.

If both attr_null_status and attr_null_struct are NULL, no NULL information is returned.

Example

For the path expression stanford.cs.stu[5].addr, the arrays appear as:

names = {"stanford", "cs", "stu", "addr"}

lengths = {8, 2, 3, 4}

indexes = {5}

Related Topics

• OCIObjectSetAttr()
Sets an object attribute.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Miscellaneous Object Functions

28-31

28.5.3 OCIObjectGetInd()
Retrieves the NULL indicator structure of a standalone instance.

Purpose

Retrieves the NULL indicator structure of a standalone instance.

Syntax

sword OCIObjectGetInd (OCIEnv *env,
 OCIError *err,
 void *instance,
 void **null_struct);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the instance whose NULL structure is being retrieved. The instance must be
standalone. If instance is an object, it must already be pinned.

null_struct (OUT)
The NULL indicator structure for the instance.

See Also:

NULL Indicator Structure for a discussion of the NULL indicator structure and
examples of its use

Comments

None.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Chapter 28
OCI Miscellaneous Object Functions

28-32

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.5.4 OCIObjectGetObjectRef()
Returns a reference to a given persistent object.

Purpose

Returns a reference to a given persistent object.

Syntax

sword OCIObjectGetObjectRef (OCIEnv *env,
 OCIError *err,
 void *object,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to a persistent object. It must already be pinned.

object_ref (OUT)
A reference to the object specified in object. The reference must already be allocated. This
can be accomplished with OCIObjectNew().

Comments

This function returns a reference to the given persistent object, when given a pointer to the
object. Passing a value (rather than an object) to this function causes an error.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Miscellaneous Object Functions

28-33

• Object Meta-Attributes
An object's meta-attributes serve as flags that can provide information to an application, or
to the object cache, about the status of an object.

28.5.5 OCIObjectGetTypeRef()
Returns a reference to the type descriptor object (TDO) of a standalone instance.

Purpose

Returns a reference to the type descriptor object (TDO) of a standalone instance.

Syntax

sword OCIObjectGetTypeRef (OCIEnv *env,
 OCIError *err,
 void *instance,
 OCIRef *type_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the standalone instance. It must be standalone, and if it is an object, it must
already be pinned.

type_ref (OUT)
A reference to the type of the object. The reference must already be allocated. This can be
accomplished with OCIObjectNew().

Comments

None.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectNew()
Creates a standalone instance.

Chapter 28
OCI Miscellaneous Object Functions

28-34

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.5.6 OCIObjectLock()
Locks a persistent object at the server.

Purpose

Locks a persistent object at the server.

Syntax

sword OCIObjectLock (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments

This function returns an error for transient objects and values. It also returns an error if the
object does not exist.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectIsLocked()
Gets lock status of an object.

• OCIObjectGetProperty()
Retrieves a given property of an object.

• OCIObjectLockNoWait()
Locks a persistent object at the server but does not wait for the lock.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Miscellaneous Object Functions

28-35

• About Locking Objects for Update
The program can optionally call OCIObjectLock() to lock an object for update.

28.5.7 OCIObjectLockNoWait()
Locks a persistent object at the server but does not wait for the lock.

Purpose

Locks a persistent object at the server but does not wait for the lock. Returns an error if the
lock is unavailable.

Syntax

sword OCIObjectLockNoWait (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments

This function locks a persistent object at the server. However, unlike OCIObjectLock(), this
function does not wait if another user holds the lock on the object and an error is returned if the
object is currently locked by another user. This function also returns an error for transient
objects and values, or objects that do not exist.

The lock of an object is released at the end of a transaction.

OCIObjectLockNoWait() returns the following values:

• OCI_INVALID_HANDLE, if the environment handle or error handle is NULL
• OCI_SUCCESS, if the operation succeeds

• OCI_ERROR, if the operation fails

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectIsLocked()
Gets lock status of an object.

• OCIObjectGetProperty()
Retrieves a given property of an object.

Chapter 28
OCI Miscellaneous Object Functions

28-36

• OCIObjectLock()
Locks a persistent object at the server.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• About Locking Objects for Update
The program can optionally call OCIObjectLock() to lock an object for update.

28.5.8 OCIObjectNew()
Creates a standalone instance.

Purpose

Creates a standalone instance.

Syntax

sword OCIObjectNew (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCITypeCode typecode,
 OCIType *tdo,
 void *table,
 OCIDuration duration,
 boolean value,
 void **instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. The handle can be initialized in
UTF-16 (Unicode) mode. See the description of OCIEnvNlsCreate().

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

typecode (IN)
The typecode of the type of the instance.

Chapter 28
OCI Miscellaneous Object Functions

28-37

See Also:

Typecodes

tdo (IN) [optional]
Pointer to the type descriptor object. The TDO describes the type of the instance that is to be
created. See OCITypeByName() for obtaining a TDO. The TDO is required for creating a named
type, such as an object or a collection.

table (IN) [optional]
Pointer to a table object that specifies a table in the server. This parameter can be set to NULL
if no table is given. See the following description to learn how the table object and the TDO
are used together to determine the kind of instances (persistent, transient, value) to be
created. Also see OCIObjectPinTable() for retrieving a table object.

duration (IN)
This is an overloaded parameter. The use of this parameter is based on the kind of the
instance that is to be created. See Table 28-9 for more information.

• For a persistent object type of instance, this parameter specifies the pin duration.

• For a transient object type of instance, this parameter specifies the allocation duration and
pin duration.

• For a value type of instance, this parameter specifies the allocation duration.

value (IN)
Specifies whether the created object is a value. If TRUE, then a value is created. Otherwise, a
referenceable object is created. If the instance is not an object, then this parameter is ignored.

instance (OUT)
Address of the newly created instance. The instance can be a character string in UTF-16
(Unicode) if the environment handle has the appropriate setting and the object is OCIString.

Comments

This function creates a new instance of the type specified by the typecode or the TDO. The
type can be complex or primitive.

For Records
When creating a package record type using OCIObjectNew(), clients must use typecode
OCI_TYPECODE_RECORD when instantiating a record type.
Records are allocated in the allocation duration specified in OCIObjectNew(). They are
subsequently freed at the end of that duration.
Record field initializers are not supported for records instantiated on the client. For instance,
given the following mypack package definition, the following error is returned when you
resolve it using OCITypeByFullName(): OCI-22352: Type is unsupported or contains an
unsupported attribute or element. (Thus, you will never even get to call OCIObjectNew()).

create or replace package mypack is
 type r is record (rec_field number := 10);
end;

All records are null activated; that is, all fields of an instantiated record are set to NULL. In
keeping with PL/SQL null semantics, all instantiated records are also atomically not-NULL.

Chapter 28
OCI Miscellaneous Object Functions

28-38

For Collections
When creating a new instance of a package collection type, the value parameter must be
TRUE. This is because package collection types cannot be persistent or referenceable, and so
they must always be instantiated as values. Calling OCIObjectNew() for a package collection
type with a FALSE value parameter results in an error.
Package collections are allocated in the allocation duration specified in OCIObjectNew(). They
are subsequently freed at the end of that duration.
When creating a package, clients can use the typecodes as follows:

• OCI_TYPECODE_NAMEDCOLLECTION for schema level collections and package collection
types

• OCI_TYPECODE_ITABLE for index tables

• OCI_TYPECODE_TABLE for nested tables

• OCI_TYPECODE_VARRAY for varrays

For Booleans
When creating new Boolean types, clients should use OCI_TYPECODE_BOOLEAN.

OCI String Objects
It can create an OCIString object with a Unicode buffer if the typecode indicates the object to
be created is OCIString.

See Also:

Typecodes

Table 28-9 shows that based on the parameters typecode (or tdo), value, and table, different
instances are created.

Type of the Instance Table != NULL Table == NULL

object type (value=TRUE) value value

object type (value=FALSE) persistent object transient object

built-in type value value

collection type value value

This function allocates the top-level memory chunk of an instance. The attributes in the top-
level memory are initialized, which means that an attribute of VARCHAR2 is initialized to an
OCIString of 0 length. If the instance is an object, the object is marked existent but is
atomically NULL.

See Also:

Create Objects Based on Object Views and Object Tables with Primary-Key-Based
OIDs for information about creating new objects based on object views or user-
created OIDs

For Persistent Objects
The object is marked dirty and existent. The allocation duration for the object is session. The
object is pinned, and the pin duration is specified by the given parameter duration. Creating a

Chapter 28
OCI Miscellaneous Object Functions

28-39

persistent object does not cause any entries to be made into a database table until the object
is flushed to the server.

For Transient Objects
The object is pinned. The allocation duration and the pin duration are specified by the given
parameter duration.

For Values
The allocation duration is specified by the given parameter duration.

Attribute Values of New Objects

By default, all attributes of a newly created object have NULL values. After initializing attribute
data, the user must change the corresponding NULL status of each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created. This is
accomplished by setting the OCI_ATTR_OBJECT_NEWNOTNULL attribute of the environment handle
to TRUE using OCIAttrSet(). This mode can later be turned off by setting the attribute to FALSE.
If OCI_ATTR_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew() creates a non-NULL
object.

See Also:

Attribute Values of New Objects

Objects with LOB Attributes

If the object contains an internal LOB attribute, the LOB is set to empty. The object must be
marked as dirty and flushed (to insert the object into the table) and repinned before the user
can start writing data into the LOB. When pinning the object after creating it, you must use the
OCI_PIN_LATEST pin option to retrieve the newly updated LOB locator from the server.

If the object contains an external LOB attribute (FILE), the FILE locator is allocated but not
initialized. The user must call OCILobFileSetName() to initialize the FILE attribute before
flushing the object to the database. It is an error to perform an INSERT or UPDATE operation on a
FILE without first indicating a directory object and file name. Once the file name is set, the user
can start reading from the FILE.

Note:

Oracle Database supports only binary FILEs (BFILEs).

Related Topics

• OCIObjectPinTable()
Pins a table object for a specified duration.

• OCIObjectFree()
Frees and unpins an object instance.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 28
OCI Miscellaneous Object Functions

28-40

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCILobFileSetName()
Sets the directory object and file name in the BFILE locator.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.5.9 OCIObjectSetAttr()
Sets an object attribute.

Purpose

Sets an object attribute.

Syntax

sword OCIObjectSetAttr (OCIEnv *env,
 OCIError *err,
 void *instance,
 void *null_struct,
 struct OCIType *tdo,
 const OraText **names,
 const ub4 *lengths,
 const ub4 name_count,
 const ub4 *indexes,
 const ub4 index_count,
 const OCIInd attr_null_status,
 const void *attr_null_struct,
 const void *attr_value);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object instance.

null_struct (IN)
The NULL structure of the object instance or array.

tdo (IN)
Pointer to the TDO.

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the path
expression.

lengths (IN)
Array of lengths of attribute names, in bytes.

Chapter 28
OCI Miscellaneous Object Functions

28-41

name_count (IN)
Number of elements in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (IN)
The NULL status of the attribute if the type of attribute is primitive.

attr_null_struct (IN)
The NULL structure of an object or collection attribute.

attr_value (IN)
Pointer to the attribute value. See Table 25-1 that lists the type of data and what C data type
can be found in parameter attr_value after this call completes successfully. Note that the
given element is deep copied, and attr_value is strictly an input parameter.

Comments

This function sets the attribute of the given object with the given value. The position of the
attribute is specified as a path expression, which is an array of names and an array of indexes.

Example

For the path expression stanford.cs.stu[5].addr, the arrays appear as:

names = {"stanford", "cs", "stu", "addr"}

lengths = {8, 2, 3, 4}

indexes = {5}

Related Topics

• OCIObjectGetAttr()
Retrieves an object attribute.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.6 OCI Pin, Unpin, and Free Functions
Lists and describes the OCI pin, unpin, and free functions.

Table 28-10 describes the OCI pin, unpin, and free functions that are described in this section.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-42

Table 28-10 Pin, Unpin, and Free Functions

Function Purpose

OCICacheFree() Free objects in the cache

OCICacheUnpin() Unpin persistent objects in cache or connection

OCIObjectArrayPin() Pin an array of references

OCIObjectFree() Free a previously allocated object

OCIObjectPin() Pin an object

OCIObjectPinCountReset() Unpin an object to zero pin count

OCIObjectPinTable() Pin a table object with a given duration

OCIObjectUnpin() Unpin an object

• OCICacheFree()
Frees all objects and values in the cache for the specified connection.

• OCICacheUnpin()
Unpins persistent objects.

• OCIObjectArrayPin()
Pins an array of references.

• OCIObjectFree()
Frees and unpins an object instance.

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

• OCIObjectPinTable()
Pins a table object for a specified duration.

• OCIObjectUnpin()
Unpins an object.

28.6.1 OCICacheFree()
Frees all objects and values in the cache for the specified connection.

Purpose

Frees all objects and values in the cache for the specified connection.

Syntax

sword OCICacheFree (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc);

Chapter 28
OCI Pin, Unpin, and Free Functions

28-43

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context.

Comments

If a connection is specified, this function frees the persistent objects, transient objects and
values allocated for that connection. Otherwise, all persistent objects, transient objects and
values in the object cache are freed. Objects are freed regardless of their pin count.

Related Topics

• OCIObjectFree()
Frees and unpins an object instance.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

OCIObjectFree() for more information about freeing an instance

28.6.2 OCICacheUnpin()
Unpins persistent objects.

Purpose

Unpins persistent objects.

Syntax

sword OCICacheUnpin (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc);

Chapter 28
OCI Pin, Unpin, and Free Functions

28-44

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle. The objects on the specified connection are unpinned.

Comments

This function completely unpins all of the persistent objects for the given connection. The pin
count for the objects is reset to zero.

Related Topics

• OCIObjectUnpin()
Unpins an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Pinning an Object
Pinning an object loads the object instance into the object cache, and enables you to
access and modify the instance's attributes and follow references from that object to other
objects, if necessary.

• Pin Count and Unpinning
Each object in the object cache has a pin count associated with it.

28.6.3 OCIObjectArrayPin()
Pins an array of references.

Purpose

Pins an array of references.

Syntax

sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,

Chapter 28
OCI Pin, Unpin, and Free Functions

28-45

 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 void **obj_array,
 ub4 *pos);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref_array (IN)
Array of references to be pinned.

array_size (IN)
Number of elements in the array of references.

cor_array
An array of COR handles corresponding to the objects being pinned.

cor_array_size
The number of elements in cor_array.

pin_option (IN)
Pin option.

See Also:

OCIObjectPin()

pin_duration (IN)
Pin duration. See OCIObjectPin().

lock (IN)
Lock option. See OCIObjectPin().

obj_array (OUT)
If this argument is not NULL, the pinned objects are returned in the array. The user must
allocate this array with the element type being void *. The size of this array is identical to
array_size.

pos (OUT)
If there is an error, this argument indicates the element that is causing the error. Note that this
argument is set to 1 for the first element in the ref_array.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-46

Comments

All the pinned objects are retrieved from the database in one network round-trip. If the user
specifies an output array (obj_array), then the address of the pinned objects are assigned to
the elements in the array.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.6.4 OCIObjectFree()
Frees and unpins an object instance.

Purpose

Frees and unpins an object instance.

Syntax

sword OCIObjectFree (OCIEnv *env,
 OCIError *err,
 void *instance,
 ub2 flags);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to a standalone instance. If it is an object, it must be pinned.

flags (IN)
If OCI_OBJECTFREE_FORCE is passed, free the object even if it is pinned or dirty. If
OCI_OBJECTFREE_NONULL is passed, the NULL structure is not freed.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-47

Comments

This function deallocates all the memory allocated for an object instance, including the NULL
structure. The following rules apply to different instance types:

For Persistent Objects
This function returns an error if the client is attempting to free a dirty persistent object that has
not been flushed. The client should either flush the persistent object, unmark it, or set the
parameter flags to OCI_OBJECTFREE_FORCE.
This function calls OCIObjectUnpin() once to check if the object can be completely unpinned.
If it succeeds, the rest of the function proceeds to free the object. If it fails, then an error is
returned unless the parameter flags is set to OCI_OBJECTFREE_FORCE.
Freeing a persistent object in memory does not change the persistent state of that object at
the server. For example, the object remains locked after the object is freed.

For Transient Objects
This function calls OCIObjectUnpin() once to check if the object can be completely unpinned.
If it succeeds, the rest of the function proceeds to free the object. If it fails, then an error is
returned unless the parameter flags is set to OCI_OBJECTFREE_FORCE.

For Values
The memory of the object is freed immediately.

Related Topics

• OCICacheFree()
Frees all objects and values in the cache for the specified connection.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.6.5 OCIObjectPin()
Pins a referenceable object.

Purpose

Pins a referenceable object.

Syntax

sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 void **object);

Chapter 28
OCI Pin, Unpin, and Free Functions

28-48

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
The reference to the object.

corhdl (IN)
Handle for complex object retrieval.

pin_option (IN)
Used to specify the copy of the object that is to be retrieved.

pin_duration (IN)
The duration during which the object is being accessed by a client. The object is implicitly
unpinned at the end of the pin duration. If OCI_DURATION_NULL is passed, there is no pin
promotion if the object is already loaded into the cache. If the object is not yet loaded, then the
pin duration is set to OCI_DURATION_DEFAULT for OCI_DURATION_NULL.

lock_option (IN)
Lock option (for example, exclusive). If a lock option is specified, the object is locked in the
server. The lock status of an object can also be retrieved by calling OCIObjectIsLocked().
Valid values include:

• OCI_LOCK_NONE (no lock)

• OCI_LOCK_X (exclusive lock)

• OCI_LOCK_X_NOWAIT (exclusive lock with the NOWAIT option)

See Also:

About Locking with the NOWAIT Option

object (OUT)
The pointer to the pinned object.

Comments

This function pins a referenceable object instance when given the object reference. The
process of pinning serves two purposes:

• It locates an object given its reference. This is done by the object cache that keeps track of
the objects in the object cache.

• It notifies the object cache that a persistent object is being used such that the persistent
object cannot be aged out. Because a persistent object can be loaded from the server
whenever is needed, the memory utilization can be increased if a completely unpinned
persistent object can be freed (aged out) even before the allocation duration is expired. An

Chapter 28
OCI Pin, Unpin, and Free Functions

28-49

object can be pinned many times. A pinned object remains in memory until it is completely
unpinned.

See Also:

OCIObjectUnpin()

For Persistent Objects
When pinning a persistent object, if it is not in the cache, the object is fetched from the
persistent store. The allocation duration of the object is session. If the object is already in the
cache, it is returned to the client. The object is locked in the server if a lock option is specified.
This function returns an error for a nonexistent object.
A pin option is used to specify the copy of the object that is to be retrieved:

• If pin_option is OCI_PIN_ANY (pin any), then if the object is already in the object cache,
return this object. Otherwise, the object is retrieved from the database. In this case, it is the
same as OCI_PIN_LATEST. This option is useful when the client knows that he has the
exclusive access to the data in a session.

• If pin_option is OCI_PIN_LATEST (pin latest), if the object is not locked, it is retrieved from
the database. If the object is cached, it is refreshed with the latest version. See
OCIObjectRefresh() for more information about refreshing. If the object is already pinned
in the cache and marked dirty, then a pointer to that object is returned. The object is not
refreshed from the database.

• If pin_option is OCI_PIN_RECENT (pin recent), if the object is loaded into the cache in the
current transaction, the object is returned. If the object is not loaded in the current
transaction, the object is refreshed from the server.

For Transient Objects
This function returns an error if the transient object has already been freed. This function does
not return an error if an exclusive lock is specified in the lock option.

Related Topics

• OCIObjectUnpin()
Unpins an object.

• OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-50

28.6.6 OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

Purpose

Completely unpins an object, setting its pin count to zero.

Syntax

sword OCIObjectPinCountReset (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments

This function completely unpins an object, setting its pin count to zero. When an object is
completely unpinned, it can be freed implicitly by the OCI at any time without error. The
following rules apply to specific object types:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging. The
memory of an object is freed when it is aged out. Aging is used to maximize the utilization of
memory. A dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient object can be freed only at the end of
its allocation duration or when it is explicitly freed by calling OCIObjectFree().

For Values
This function returns an error for value.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectUnpin()
Unpins an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-51

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectFree()
Frees and unpins an object instance.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• Pin Count and Unpinning
Each object in the object cache has a pin count associated with it.

28.6.7 OCIObjectPinTable()
Pins a table object for a specified duration.

Purpose

Pins a table object for a specified duration.

Syntax

sword OCIObjectPinTable (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 const OraText *schema_name,
 ub4 s_n_length,
 const OraText *object_name,
 ub4 o_n_length,
 const OCIRef *scope_obj_ref,
 OCIDuration pin_duration,
 void **object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
The OCI service context handle.

schema_name (IN) [optional]
The schema name of the table.

s_n_length (IN) [optional]
The length of the schema name indicated in schema_name, in bytes.

object_name (IN)
The name of the table.

o_n_length (IN)
The length of the table name specified in object_name, in bytes.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-52

scope_obj_ref (IN) [optional]
The reference of the scoping object.

pin_duration (IN)
The pin duration.

See Also:

OCIObjectPin()

object (OUT)
The pinned table object.

Comments

This function pins a table object with the specified pin duration. The client can unpin the object
by calling OCIObjectUnpin().

The table object pinned by this call can be passed as a parameter to OCIObjectNew() to create
a standalone persistent object.

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectUnpin()
Unpins an object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectNew()
Creates a standalone instance.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Pin, Unpin, and Free Functions

28-53

28.6.8 OCIObjectUnpin()
Unpins an object.

Purpose

Unpins an object.

Syntax

sword OCIObjectUnpin (OCIEnv *env,
 OCIError *err,
 void *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments

There is a pin count associated with each object, which is incremented whenever an object is
pinned. When the pin count of the object is zero, the object is said to be completely unpinned.
An unpinned object can be freed implicitly by OCI at any time without error.

This function unpins an object. An object is completely unpinned when any of the following is
true:

• The object's pin count reaches zero (that is, it is unpinned a total of n times after being
pinned a total of n times).

• It is the end of the object's pin duration.

• The function OCIObjectPinCountReset() is called on the object.

When an object is completely unpinned, it can be freed implicitly by OCI at any time without
error.

The following rules apply to unpinning different types of objects:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging. The
memory of an object is freed when it is aged out. Aging is used to maximize the utilization of
memory. A dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient object can be freed only at the end of
its allocation duration or when it is explicitly deleted by calling OCIObjectFree().

Chapter 28
OCI Pin, Unpin, and Free Functions

28-54

For Values
This function returns an error for values.

Related Topics

• OCIObjectPin()
Pins a referenceable object.

• OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7 OCI Type Information Accessor Functions
Lists and describes the OCI type information accessor functions.

Table 28-11 describes the OCI type information accessor functions that are described in this
section.

Table 28-11 Type Information Accessor Functions

Function Purpose

OCITypeArrayByName() Get an array of TDOs when given an array of
object names

OCITypeArrayByFullName() Get an array of TDOs when given an array of
names for schema level or package level types

OCITypeArrayByRef() Get an array of TDOs when given an array of
object references

OCITypeByFullName() Get a TDO when given a name for a schema
level or package level type

OCITypeByName() Get a TDO when given an object name

OCITypeByRef() Get a TDO when given an object reference

OCITypePackage() Get the package name of a type if it is a package
type

• OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

• OCITypeArrayByFullName()
Gets the most current version of an existing array of TDOs when given an array of names
for schema level or package level types.

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

Chapter 28
OCI Type Information Accessor Functions

28-55

• OCITypeByFullName()
Gets the most current version of an existing TDO when given a name for a schema level or
package level type.

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCITypePackage()
Returns the package name of a type if it is a package type.

28.7.1 OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

Purpose

Gets an array of TDOs when given an array of names.

Note:

OCITypeArrayByName() does not support package level types.

Syntax

sword OCITypeArrayByName (OCIEnv *envhp,
 OCIError *errhp,
 const OCISvcCtx *svc,
 ub4 array_len,
 const OraText *schema_name[],
 ub4 s_length[],
 const OraText *type_name[],
 ub4 t_length[],
 const OraText *version_name[],
 ub4 v_length[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

Chapter 28
OCI Type Information Accessor Functions

28-56

array_len (IN)
Number of schema_name or type_name or version_name entries to be retrieved.

schema_name (IN, optional)
Array of schema names associated with the types to be retrieved. The array must have
array_len elements if specified. If 0 is supplied, the default schema is assumed; otherwise,
schema_name must have array_len number of elements. Zero (0) can be supplied for one or
more of the entries to indicate that the default schema is desired for those entries.

s_length (IN)
Array of schema_name lengths with each entry corresponding to the length of the corresponding
schema_name entry in the schema_name array in bytes. The array must either have array_len
number of elements or it must be 0 if schema_name is not specified.

type_name (IN)
Array of the names of the types to retrieve. This must have array_len number of elements.

t_length (IN)
Array of the lengths of type names in the type_name array in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned. Because
type evolution was available starting in release 9.0, pre-9.0 applications attempting to access
an altered type generate an error. These applications must be modified, recompiled, and
relinked using the latest type definition.
Array of the version names of the types to retrieve corresponding. This can be 0 to indicate
retrieval of the most current versions, or it must have array_len number of elements.
If 0 is supplied, the most current version is assumed, otherwise it must have array_len
number of elements. Zero (0) can be supplied for one or more of the entries to indicate that
the current version is desired for those entries.

v_length (IN)
Array of the lengths of version names in the version_name array in bytes.

pin_duration (IN)
Pin duration (for example, until the end of the current transaction) for the types retrieved. See
oro.h for a description of each option.

get_option (IN)
Option for loading the types. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have space for
array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each pinned type
descriptor.

Comments

Gets pointers to the existing types associated with the schema or type name array.

You can use the get_option parameter to control the portion of the TDO that gets loaded for
each round-trip.

Chapter 28
OCI Type Information Accessor Functions

28-57

This function returns an error if any of the required parameters is NULL or any object types
associated with a schema or type name entry do not exist.

To retrieve a single type, rather than an array, use OCITypeByName().

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectGetObjectRef()
Returns a reference to a given persistent object.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.2 OCITypeArrayByFullName()
Gets the most current version of an existing array of TDOs when given an array of names for
schema level or package level types.

Purpose

Gets the most current version of an existing array of TDOs when given an array of names for
schema level or package level types.

Note:

OCITypeArrayByFullName() is the array version of OCITypeByFullName(). This
means that these two functions are functionally identical and one implements
OCITypeArrayByFullName() using OCITypeByName() and vice versa.

Chapter 28
OCI Type Information Accessor Functions

28-58

Syntax

sword OCITypeArrayByFullName(OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 ub4 array_len,
 const oratext *full_type_name[],
 ub4 f_t_length[],
 const oratext *version_name[],
 ub4 v_length[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[])

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

array_len (IN)
Number of schema_name or type_name or version_name entries to be retrieved.

full_type_name (IN)
The name of the type. If the full_type_name is not fully qualified, name resolution will
determine the type inferred. For example, SCOTT.MYPACK.MYTYPE would refer to type MYTYPE in
package MYPACK. If the current schema is SCOTT, this could also be MYPACK.MYTYPE. See
Oracle Database PL/SQL Language Reference for more information about PL/SQL name
resolution.
This also applies for schema level types. The string could be SCOTT.MYTYPE or simply MYTYPE
to specify a schema level type.

f_t_length (IN)
Length of full_type_name in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned. Because
type evolution was available starting in release 9.0, pre-9.0 applications attempting to access
an altered type generate an error. These applications must be modified, recompiled, and
relinked using the latest type definition.
Array of the version names of the types to retrieve corresponding. This can be 0 to indicate
retrieval of the most current versions, or it must have array_len number of elements.
If 0 is supplied, the most current version is assumed, otherwise it must have array_len
number of elements. Zero (0) can be supplied for one or more of the entries to indicate that
the current version is desired for those entries.

v_length (IN)
Array of the lengths of version names in the version_name array in bytes.

Chapter 28
OCI Type Information Accessor Functions

28-59

pin_duration (IN)
Pin duration (for example, until the end of the current transaction) for the types retrieved. See
oro.h for a description of each option.

get_option (IN)
Option for loading the types. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have space for
array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each pinned type
descriptor.

Comments

Gets pointers to the existing types associated with the schema or package type name array.

You can use the get_option parameter to control the portion of the TDO that gets loaded for
each round-trip.

This function returns an error if any of the required parameters is NULL or any object types
associated with a schema or package type name entry do not exist.

To retrieve a single type, rather than an array, use OCITypeByFullName().

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

• OCITypeByFullName()
Gets the most current version of an existing TDO when given a name for a schema level or
package level type.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCITypePackage()
Returns the package name of a type if it is a package type.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Chapter 28
OCI Type Information Accessor Functions

28-60

• OCIObjectGetObjectRef()
Returns a reference to a given persistent object.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.3 OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

Purpose

Gets an array of TDOs when given an array of references.

Syntax

sword OCITypeArrayByRef (OCIEnv *envhp,
 OCIError *errhp,
 ub4 array_len,
 const OCIRef *type_ref[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

array_len (IN)
Number of schema_name or type_name or version_name entries to be retrieved.

type_ref (IN)
Array of OCIRef * pointing to the particular version of the type descriptor object to obtain. The
array must have array_len elements if specified.

pin_duration (IN)
Pin duration (for example, until the end of the current transaction) for the types retrieved. See
oro.h for a description of each option.

get_option (IN)
Option for loading the types. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have space for
array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each pinned type
descriptor.

Chapter 28
OCI Type Information Accessor Functions

28-61

Comments

Gets pointers to the existing types with the schema or type name array.

This function returns an error if:

• Any of the required parameters is NULL
• One or more object types associated with a schema or type name entry does not exist

To retrieve a single type, rather than an array of types, use OCITypeByRef().

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

• OCITypeByRef()
Gets a TDO when given a reference.

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectGetObjectRef()
Returns a reference to a given persistent object.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.4 OCITypeByFullName()
Gets the most current version of an existing TDO when given a name for a schema level or
package level type.

Purpose

Gets the most current version of an existing TDO when given a name for a schema level or
package level type.

Chapter 28
OCI Type Information Accessor Functions

28-62

Syntax

sword OCITypeByFullName(OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 const oratext *full_type_name,
 ub4 f_t_length,
 const oratext *version_name,
 ub4 v_length,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType **tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

full_type_name (IN)
The name of the type. If the full_type_name is not fully qualified, name resolution will
determine the type inferred. Thus, the full path name to the object can include the schema,
package name, and type name. For example, SCOTT.MYPACK.MYTYPE would refer to type
MYTYPE in package MYPACK. If the current schema is SCOTT, this could also be MYPACK.MYTYPE.
See Oracle Database PL/SQL Language Reference for more information about PL/SQL name
resolution.
This also applies for schema level types. The string could be SCOTT.MYTYPE or simply MYTYPE
to specify a schema level type.

f_t_length (IN)
Length of full_type_name in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned. Because
type evolution was available starting in release 9.0, pre-9.0 applications attempting to access
an altered type generate an error. These applications must be modified, recompiled, and
relinked using the latest type definition.
User-readable version of the type. Pass as (text *)0 to retrieve the most current version.

v_length (IN)
Length of version_name in bytes.

pin_duration (IN)
Pin duration.

Chapter 28
OCI Type Information Accessor Functions

28-63

See Also:

Object Duration

get_option ((IN)
Option for loading the types. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments

The fact that the type name is passed as a single string also enables other clients and drivers,
such as thick-client JDBC, to easily resolve type names contained in a single name string.

Package types which contain remote package type fields will not be supported by
OCITypeByFullName(). Any attempt to get a package type, which contains a remote package
type field, results in an error.

This function gets a pointer to the existing type associated with the schema or package type
name. It returns an error if any of the required parameters is NULL, or if the object type
associated with the schema or package type name does not exist, or if version_name does not
exist.

Note:

Schema and package type names are case-sensitive. If they have been created with
SQL, you must use strings in all uppercase, or the program stops.

This function always makes a round-trip to the server. Therefore calling this function repeatedly
to get the type can significantly reduce performance. To minimize the round-trips, the
application can call the function for each type and cache the type objects.

To free the type obtained by this function, call OCIObjectUnpin() or
OCIObjectPinCountReset().

An application can retrieve an array of TDOs by calling OCITypeArrayByName() or
OCITypeArrayByRef().

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Chapter 28
OCI Type Information Accessor Functions

28-64

Related Topics

• OCITypeByRef()
Gets a TDO when given a reference.

• OCITypeArrayByFullName()
Gets the most current version of an existing array of TDOs when given an array of names
for schema level or package level types.

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectUnpin()
Unpins an object.

• OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

• OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.5 OCITypeByName()
Gets the most current version of an existing TDO.

Purpose

Gets the most current version of an existing TDO. This call does not support package level
types. The name of the schema and the name of the type are each entered in separate strings.

Syntax

sword OCITypeByName (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 const OraText *schema_name,
 ub4 s_length,
 const OraText *type_name,
 ub4 t_length,
 const OraText *version_name,
 ub4 v_length,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option
 OCIType **tdo);

Chapter 28
OCI Type Information Accessor Functions

28-65

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

schema_name (IN, optional)
Name of schema associated with the type. By default, the user's schema name is used. This
string must be all uppercase, or OCI throws an internal error and the program stops.

s_length (IN)
Length of the schema_name parameter, in bytes.

type_name (IN)
Name of the type to get. This string must be all uppercase, or OCI throws an internal error and
the program stops.

t_length (IN)
Length of the type_name parameter, in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned. Because
type evolution was available starting in release 9.0, pre-9.0 applications attempting to access
an altered type generate an error. These applications must be modified, recompiled, and
relinked using the latest type definition.
User-readable version of the type. Pass as (text *)0 to retrieve the most current version.

v_length (IN)
Length of version_name in bytes.

pin_duration (IN)
Pin duration.

See Also:

Object Duration

get_option ((IN)
Option for loading the types. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Pointer to the pinned type in the object cache.

Chapter 28
OCI Type Information Accessor Functions

28-66

Comments

This function gets a pointer to the existing type associated with the schema or type name. It
returns an error if any of the required parameters is NULL, or if the object type associated with
the schema or type name does not exist, or if version_name does not exist.

Note:

Schema and type names are case-sensitive. If they have been created with SQL, you
must use strings in all uppercase, or the program stops.

This function always makes a round-trip to the server. Therefore calling this function repeatedly
to get the type can significantly reduce performance. To minimize the round-trips, the
application can call the function for each type and cache the type objects.

To free the type obtained by this function, call OCIObjectUnpin() or
OCIObjectPinCountReset().

An application can retrieve an array of TDOs by calling OCITypeArrayByName() or
OCITypeArrayByRef().

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCITypeByRef()
Gets a TDO when given a reference.

• OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIObjectUnpin()
Unpins an object.

• OCIObjectPinCountReset()
Completely unpins an object, setting its pin count to zero.

Chapter 28
OCI Type Information Accessor Functions

28-67

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.6 OCITypeByRef()
Gets a TDO when given a reference.

Purpose

Gets a TDO when given a reference.

Syntax

sword OCITypeByRef (OCIEnv *env,
 OCIError *err,
 const OCIRef *type_ref,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType **tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type_ref (IN)
An OCIRef * pointing to the version of the type descriptor object to obtain.

pin_duration (IN)
Pin duration until the end of the current transaction for the type to retrieve. See oro.h for a
description of each option.

get_option (IN)
Option for loading the type. It can be one of two values:

• OCI_TYPEGET_HEADER (only the header is loaded)

• OCI_TYPEGET_ALL (TDO and all ADO and MDOs are loaded)

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments

OCITypeByRef() returns an error if any of the required parameters is NULL.

Chapter 28
OCI Type Information Accessor Functions

28-68

Note:

The TDO (array of TDOs or table definition) obtained by this function belongs to the
logical partition of the cache corresponding to the service handle (connection) passed
in. If TDOs or tables are used across logical partitions, then the behavior is not
known and may change between releases.

Related Topics

• OCITypeByName()
Gets the most current version of an existing TDO.

• OCITypeArrayByName()
Gets an array of TDOs when given an array of names.

• OCITypeArrayByRef()
Gets an array of TDOs when given an array of references.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

28.7.7 OCITypePackage()
Returns the package name of a type if it is a package type.

Purpose

Returns the package name of a type if it is a package type.

Syntax

oratext* OCITypePackage(OCIEnv *env,
 OCIError *err,
 const OCIType *tdo,
 ub4 *n_length);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 28
OCI Type Information Accessor Functions

28-69

tdo (OUT)
Pointer to the pinned type in the object cache.

n_length
Length of the package name, in bytes.

Comments

If the type is not a package type, the return value will be null and n_length will be zero.

Related Topics

• OCITypeArrayByFullName()
Gets the most current version of an existing array of TDOs when given an array of names
for schema level or package level types.

• OCITypeByFullName()
Gets the most current version of an existing TDO when given a name for a schema level or
package level type.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 28
OCI Type Information Accessor Functions

28-70

29
OCI Data Type Mapping and Manipulation
Functions

This chapter describes the OCI data type mapping and manipulation functions.

These functions are Oracle's external C language interface to Oracle Database predefined
types.

See Also:

For code examples, see the demonstration programs included with your Oracle
Database installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to Data Type Mapping and Manipulation Functions

• OCI Collection and Iterator Functions

• OCI Date, Datetime, and Interval Functions

• OCI NUMBER Functions

• OCI Raw Functions

• OCI REF Functions

• OCI String Functions

• OCI Table Functions

• Introduction to Data Type Mapping and Manipulation Functions
Introduces detailed information about OCI data type mapping and manipulation functions.

• OCI Collection and Iterator Functions
Lists and describes the OCI collection and iterator functions.

• OCI Date, Datetime, and Interval Functions
Lists and describes the OCI date and interval functions.

• OCI NUMBER Functions
Lists and describes the OCI NUMBER functions.

• OCI Raw Functions
Lists and describes the OCI raw functions.

• OCI REF Functions
Lists and describes the OCI Reference (REF) functions.

• OCI String Functions
Lists and describes the OCI string functions.

• OCI Table Functions
Lists and describes the OCI table functions.

29-1

29.1 Introduction to Data Type Mapping and Manipulation
Functions

Introduces detailed information about OCI data type mapping and manipulation functions.

This section describes the OCI data type mapping and manipulation functions in detail.

• Conventions for OCI Functions
Reports the conventions used for describing OCI functions.

• Returns
Describes the value returned by the function.

• Data Type Mapping and Manipulation Function Return Values
Describes the function return values.

• Functions Returning Other Values
Lists functions returning values directly from the function call.

• Server Round-Trips for Data Type Mapping and Manipulation Functions
Indicates the number of server round-trips required for individual OCI data type mapping
and manipulation functions.

• Examples
Describes information about the examples.

See Also:

Object-Relational Data Types in OCI for more information about the functions listed in
this chapter

29.1.1 Conventions for OCI Functions
Reports the conventions used for describing OCI functions.

See the Conventions for OCI Functions for the conventions used in describing each function.
The entries for each function may also contain the following information:

29.1.2 Returns
Describes the value returned by the function.

A description of what value is returned by the function if the function returns something other
than the standard return codes listed in "Table 29-1".

29.1.3 Data Type Mapping and Manipulation Function Return Values
Describes the function return values.

The OCI data type mapping and manipulation functions typically return one of the values
shown in Table 29-1.

Chapter 29
Introduction to Data Type Mapping and Manipulation Functions

29-2

Table 29-1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded.

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

See Also:

Error Handling in OCI for more information about return codes and error handling

29.1.4 Functions Returning Other Values
Lists functions returning values directly from the function call.

Some functions return values other than those listed in Table 29-1. When you use the following
functions, consider that they return a value directly from the function call, rather than through
an OUT parameter.

• OCICollMax()

• OCIRawPtr()

• OCIRawSize()

• OCIRefHexSize()

• OCIRefIsEqual()

• OCIRefIsNull()

• OCIStringPtr()

• OCIStringSize()

29.1.5 Server Round-Trips for Data Type Mapping and Manipulation
Functions

Indicates the number of server round-trips required for individual OCI data type mapping and
manipulation functions.

For a table showing the number of server round-trips required for individual OCI data type
mapping and manipulation functions, see Table C-6.

29.1.6 Examples
Describes information about the examples.

For more information about these functions, including some code examples, see Object-
Relational Data Types in OCI.

Chapter 29
Introduction to Data Type Mapping and Manipulation Functions

29-3

29.2 OCI Collection and Iterator Functions
Lists and describes the OCI collection and iterator functions.

Table 29-2 describes the OCI collection and iterator functions that are described in this section.

Table 29-2 Collection and Iterator Functions

Function Purpose

OCICollAppend() Append an element to the end of a collection

OCICollAssign() Assign (deep copy) one collection to another

OCICollAssignElem() Assign the given element value elem to the
element at coll[index]

OCICollGetElem() Get pointer to an element

OCICollGetElemArray() Get an array of elements from a collection

OCICollIsLocator() Indicate whether a collection is locator-based or
not

OCICollMax() Return maximum number of elements in collection

OCICollSize() Get current size of collection (in number of
elements)

OCICollTrim() Trim elements from the collection

OCIIterCreate() Create iterator to scan the varray elements

OCIIterDelete() Delete iterator

OCIIterGetCurrent() Get current collection element

OCIIterInit() Initialize iterator to scan the given collection

OCIIterNext() Get next collection element

OCIIterPrev() Get previous collection element

• OCICollAppend()
Appends an element to the end of a collection.

• OCICollAssign()
Assigns (deep copies) one collection to another.

• OCICollAssignElem()
Assigns the given element value elem to the element at coll[index].

• OCICollKeyAssignElem()
Assigns an element to an associative array collection using a string key.

• OCICollGetElem()
Gets a pointer to the element at the given index.

• OCICollKeyGetElem()
Gets an element from an associative array collection using a string key.

• OCICollGetElemArray()
Gets an array of elements from a collection when given a starting index.

• OCICollIsLocator()
Indicates whether a collection is locator-based or not.

Chapter 29
OCI Collection and Iterator Functions

29-4

• OCICollMax()
Gets the maximum size in number of elements of the given collection.

• OCICollSize()
Gets the current size in number of elements of the given collection.

• OCICollTrim()
Trims the given number of elements from the end of the collection.

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

• OCIIterDelete()
Deletes a collection iterator.

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterKeyGetCurrent()
Returns a reference to the current key value of an associative array collection.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

29.2.1 OCICollAppend()
Appends an element to the end of a collection.

Purpose

Appends an element to the end of a collection.

Syntax

sword OCICollAppend (OCIEnv *env,
 OCIError *err,
 const void *elem,
 const void *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

elem (IN)
Pointer to the element to be appended to the end of the given collection.

Chapter 29
OCI Collection and Iterator Functions

29-5

elemind (IN) [optional]
Pointer to the element's NULL indicator information. If (elemind == NULL) then the NULL
indicator information of the appended element is set to non-NULL.

coll (IN/OUT)
Updated collection.

Comments

Appending an element is equivalent to increasing the size of the collection by one element and
updating (deep copying) the last element's data with the given element's data. Note that the
pointer to the given element elem is not saved by this function, which means that elem is strictly
an input parameter.

OCICollAppend() creates an element at index 0 if no elements exist. The method (array bind)
for binding PL/SQL index-by tables assumes a start index of 1.

Returns

This function returns an error if the current size of the collection equals the maximum size
(upper bound) of the collection before appending the element. This function also returns an
error if any of the input parameters is NULL.

Related Topics

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.2 OCICollAssign()
Assigns (deep copies) one collection to another.

Purpose

Assigns (deep copies) one collection to another.

Syntax

sword OCICollAssign (OCIEnv *env,
 OCIError *err,
 const OCIColl *rhs,
 OCIColl *lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

Chapter 29
OCI Collection and Iterator Functions

29-6

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) collection to be assigned from.

lhs (OUT)
Left-hand side (target) collection to be assigned to.

Comments

Assigns rhs (source) to lhs (target). The lhs collection may be decreased or increased
depending upon the size of rhs. If the lhs collection contains any elements, then the elements
are deleted before the assignment. This function performs a deep copy. The memory for the
elements comes from the object cache.

Returns

An error is returned if the element types of the lhs and rhs collections do not match. Also, an
error is returned if the upper bound of the lhs collection is less than the current number of
elements in the rhs collection. An error is also returned if:

• Any of the input parameters is NULL
• There is a type mismatch between the lhs and rhs collections

• The upper bound of the lhs collection is less than the current number of elements in the
rhs collection

Related Topics

• OCICollAssignElem()
Assigns the given element value elem to the element at coll[index].

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.3 OCICollAssignElem()
Assigns the given element value elem to the element at coll[index].

Purpose

Assigns the given element value elem to the element at coll[index].

Syntax

sword OCICollAssignElem (OCIEnv *env,
 OCIError *err,
 sb4 index,

Chapter 29
OCI Collection and Iterator Functions

29-7

 const void *elem,
 const void *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element to which the element is assigned.

elem (IN)
Source element from which the element is assigned. See Table 25-1 that lists the type of data
and what C data type can be found in parameter elem.

elemind (IN) [optional]
Pointer to the element's NULL indicator information; if (elemind == NULL), then the NULL
indicator information of the assigned element is set to non-NULL.

coll (IN/OUT)
Collection to be updated.

Comments

If the collection is of type nested table, the element at the given index might not exist, as when
an element has been deleted. In this case, the given element is inserted at index. Otherwise,
the element at index is updated with the value of elem.

Note that the given element is deep copied, and elem is strictly an input parameter.

Returns

This function returns an error if any input parameter is NULL or if the given index is beyond the
bounds of the given collection.

Related Topics

• OCICollAssign()
Assigns (deep copies) one collection to another.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Collection and Iterator Functions

29-8

29.2.4 OCICollKeyAssignElem()
Assigns an element to an associative array collection using a string key.

Purpose

Assigns an element to an associative array collection using a string key. Before the element is
added to the collection, the constraint checking of the string key is performed.

Syntax

sword OCICollKeyAssignElem (OCIEnv *env,
 OCIError *err,
 CONST void *key,
 ub4 keylen,
 OCIKeyType keytype,
 CONST void *elem,
 CONST void *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

key (IN)
The non-null key value of the element in the associative array collection.

keylen (IN)
If the keytype is OCI_KEYTYPE_STRING, then the length of the key value is in bytes.

keytype (IN)
The type of the key.

elem (IN)
The element from which the assignment is made (source element).

elemind (IN) (optional)
The pointer to the null indicator information of the element. If (elemind == NULL), then the null
indicator information of the assigned element is set to non-null value.

coll (IN/OUT)
The pointer to the associative array collection to be updated.

29.2.5 OCICollGetElem()
Gets a pointer to the element at the given index.

Purpose

Gets a pointer to the element at the given index.

Chapter 29
OCI Collection and Iterator Functions

29-9

Syntax

sword OCICollGetElem (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll,
 sb4 index,
 boolean *exists,
 void **elem,
 void **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointer to the element in this collection to be returned.

index (IN)
Index of the element whose pointer is returned.

exists (OUT)
Set to FALSE if the element at the specified index does not exist; otherwise, set to TRUE.

elem (OUT)
Address of the element to be returned.

elemind (OUT) [optional]
Address of the NULL indicator information is returned. If (elemind == NULL), then the NULL
indicator information is not returned.

Comments

Gets the address of the element at the given position. Optionally, this function also returns the
address of the element's NULL indicator information.

Table 29-3 describes for each OCI type code value, the element pointer type, and what the
corresponding collection element type is. The element pointer is returned with the elem
parameter of OCICollGetElem(). See the table for object data type mappings for object type
attributes in About Mapping Object Data Types to Cfor a more complete list of the OCITypeCode
values.

Table 29-3 Element Pointers

OCITypeCode Values *elem Is Set to Element Type

OCI_TYPECODE_NUMBER OCINumber* Oracle NUMBER (OCINumber)

OCI_TYPECODE_DATE OCIDate* Date (OCIDate)

OCI_TYPECODE_TIMESTAMP OCIDateTime* Datetime (OCIDateTime)

Chapter 29
OCI Collection and Iterator Functions

29-10

Table 29-3 (Cont.) Element Pointers

OCITypeCode Values *elem Is Set to Element Type

OCI_TYPECODE_INTERVAL_YM,
OCI_TYPECODE_INTERVAL_DS

OCIInterval* Interval (OCIInterval)

OCI_TYPECODE_CHAR (n),
OCI_TYPECODE_NCHAR

OCIString** Variable-length string (OCIString*)

OCI_TYPECODE_RAW OCIRaw** Variable-length raw (OCIRaw*)

OCI_TYPECODE_REF OCIRef** Object reference (OCIRef*)

OCI_TYPECODE_BLOB, OCI_TYPECODE_CLOB,
OCI_TYPECODE_NCLOB

OCILobLocator** Lob locator (OCILobLocator*)

OCI_TYPECODE_OBJECT person* Object type (such as person)

OCI_TYPECODE_NAMEDCOLLECTION OCIColl * Collections

The element pointer returned by OCICollGetElem() is in a form that can be used not only to
access the element data but also to serve as the target (left-hand side) of an assignment
statement.

For example, assume the user is iterating over the elements of a collection whose element
type is object reference (OCIRef*). A call to OCICollGetElem() returns the pointer to a
reference handle (OCIRef**). After getting the pointer to the collection element, you may want
to modify it by assigning a new reference.

The following code example shows how this can be accomplished with the OCIRefAssign()
function.

Assigning a New Reference to the Pointer to the Collection Element

sword OCIRefAssign(OCIEnv *env,
 OCIError *err,
 const OCIRef *source,
 OCIRef **target);

Note that the target parameter of OCIRefAssign() is of type OCIRef**. Hence
OCICollGetElem() returns OCIRef**. If *target equals NULL, a new REF is allocated by
OCIRefAssign() and returned in the target parameter.

Similarly, if the collection element was of type string (OCIString*), OCICollGetElem() returns
the pointer to the string handle (that is, OCIString**). If a new string is assigned, through
OCIStringAssign() or OCIStringAssignText(), the type of the target must be OCIString **.

If the collection element is of type Oracle NUMBER, OCICollGetElem() returns OCINumber*. The
following code example shows the prototype of the OCINumberAssign() call.

Prototype of OCINumberAssign() Call

sword OCINumberAssign(OCIError *err,
 const OCINumber *from,
 OCINumber *to);

Returns

The OCICollGetElem() function returns an error if any of the input parameters is NULL.

Chapter 29
OCI Collection and Iterator Functions

29-11

Related Topics

• OCICollAssignElem()
Assigns the given element value elem to the element at coll[index].

• OCIRefAssign()
Assigns one REF to another, such that both reference the same object.

• OCIStringAssign()
Assigns one string to another string.

• OCIStringAssignText()
Assigns the source text string to the target string.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.6 OCICollKeyGetElem()
Gets an element from an associative array collection using a string key.

Purpose

Gets an element from an associative array collection using a string key. The retrieved element
is in the collection memory.

Syntax

sword OCICollKeyGetElem (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 CONST void *key,
 ub4 keylen,
 OCIKeyType keytype,
 void **elem,
 void **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

coll (IN)
Pointer to the associative array collection

Chapter 29
OCI Collection and Iterator Functions

29-12

key (IN)
The non-null key value of the element in the associative array collection.

keylen (IN)
The length of the key value in bytes if the keytype is OCI_KEYTYPE_STRING.

keytype (IN)
The type of the key.

elem (OUT)
The address of the desired element is returned.

elemind (OUT)
The address of the null indicator information. If (elemind == NULL), then the null indicator
information is returned.

29.2.7 OCICollGetElemArray()
Gets an array of elements from a collection when given a starting index.

Purpose

Gets an array of elements from a collection when given a starting index.

Syntax

sword OCICollGetElemArray (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll,
 sb4 index,
 boolean *exists,
 void **elem,
 void **elemind,
 uword *nelems);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointers to the elements in this collection to be returned.

index (IN)
Starting index of the elements.

exists (OUT)
Is set to FALSE if the element at the specified index does not exist; otherwise, it is set to TRUE.

elem (OUT)
Address of the desired elements to be returned.

Chapter 29
OCI Collection and Iterator Functions

29-13

elemind (OUT) [optional]
Address of the NULL indicator information to be returned. If (elemind == NULL), then the NULL
indicator information is not returned.

nelems (IN)
Maximum number of pointers to both elem and elemind.

Comments

Gets the address of the elements from the given position.

For index by integer collections, OCICollGetElemArray() gets the elements beginning at the
given index, but loses the index information for each element in the process. Users are able to
get the element data beginning at that index as an array, but cannot get the index for each
element in the array. This behavior is similar to what happens for the OCIIterCreate(),
OCIIterDelete(), OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev()
functions.

Returns

Optionally, this function also returns the address of the element's NULL indicator information.

Related Topics

• OCICollGetElem()
Gets a pointer to the element at the given index.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

• OCIIterDelete()
Deletes a collection iterator.

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Collection and Iterator Functions

29-14

29.2.8 OCICollIsLocator()
Indicates whether a collection is locator-based or not.

Purpose

Indicates whether a collection is locator-based or not.

Syntax

sword OCICollIsLocator (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll,
 boolean *result);

Parameters

env (IN)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
A collection item.

result (OUT)
Returns TRUE if the collection item is locator-based, FALSE otherwise.

Comments

This function tests to see whether a collection is locator-based.

Returns

Returns TRUE in the result parameter if the collection item is locator-based; otherwise, it
returns FALSE.

Related Topics

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Collection and Iterator Functions

29-15

29.2.9 OCICollMax()
Gets the maximum size in number of elements of the given collection.

Purpose

Gets the maximum size in number of elements of the given collection.

Syntax

sb4 OCICollMax (OCIEnv *env,
 const OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

coll (IN)
Collection whose number of elements is returned. The coll parameter must point to a valid
collection descriptor.

Comments

Returns the maximum number of elements that the given collection can hold. A value of zero
indicates that the collection has no upper bound.

For collections that do not support negative indexes, the largest index number is also the
maximum size of the collection. However, this is not true for index-by integer collections
because some of the elements can have negative indexes, so the largest index numbered
element is not the same as the maximum collection size.

Returns

The upper bound of the given collection.

The return value is always 0 (no upper bound) for index-by integer collections.

Related Topics

• OCICollSize()
Gets the current size in number of elements of the given collection.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Collection and Iterator Functions

29-16

29.2.10 OCICollSize()
Gets the current size in number of elements of the given collection.

Purpose

Gets the current size in number of elements of the given collection.

Syntax

sword OCICollSize (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection whose number of elements is returned. Must point to a valid collection descriptor.

size (OUT)
Current number of elements in the collection.

Comments

Returns the current number of elements in the given collection. For a nested table, this count is
not decremented when elements are deleted. So, this count includes any holes created by
deleting elements. A trim operation (OCICollTrim()) decrements the count by the number of
trimmed elements. To get the count minus the deleted elements use OCITableSize().

The following pseudocode shows some examples:

OCICollSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCICollSize(...);
// 'size' returned is still 5

To get the count minus the deleted elements use OCITableSize(). Continuing the earlier
example:

OCITableSize(...)
// 'size' returned is equal to 4

A trim operation OCICollTrim()) decrements the count by the number of trimmed elements.
Continuing the earlier example:

OCICollTrim(..,1..); // trim one element
OCICollSize(...);
// 'size' returned is equal to 4

Chapter 29
OCI Collection and Iterator Functions

29-17

Returns

The OCICollSize() function returns an error if an error occurs during the loading of the
collection into the object cache or if any of the input parameters is NULL.

Related Topics

• OCICollMax()
Gets the maximum size in number of elements of the given collection.

• OCICollTrim()
Trims the given number of elements from the end of the collection.

• OCITableSize()
Returns the size of the given table, not including any holes created by deleted elements.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.11 OCICollTrim()
Trims the given number of elements from the end of the collection.

Purpose

Trims the given number of elements from the end of the collection.

Syntax

sword OCICollTrim (OCIEnv *env,
 OCIError *err,
 sb4 trim_num,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

trim_num (IN)
Number of elements to trim.

Chapter 29
OCI Collection and Iterator Functions

29-18

coll (IN/OUT)
Removes (frees) trim_num of elements from the end of the collection coll.

Comments

The elements are removed from the end of the collection.

Returns

An error is returned if trim_num is greater than the current size of the collection.

Related Topics

• OCICollSize()
Gets the current size in number of elements of the given collection.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.12 OCIIterCreate()
Creates an iterator to scan the elements or the collection.

Purpose

Creates an iterator to scan the elements or the collection.

Syntax

sword OCIIterCreate (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection that is scanned. For Oracle8i or later, valid collection types include varrays and
nested tables.

Chapter 29
OCI Collection and Iterator Functions

29-19

itr (OUT)
Address to the allocated collection iterator to be returned by this function.

Comments

The iterator is created in the object cache. The iterator is initialized to point to the beginning of
the collection.

If OCIIterNext() is called immediately after creating the iterator, then the first element of the
collection is returned. If OCIIterPrev() is called immediately after creating the iterator, then an
"at beginning of collection" error is returned.

For index-by integer collections, the OCIIterCreate(), OCIIterDelete(),
OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev() functions all
ignore the index for each element in the collection. That is, OCIIterGetCurrent() returns only
the element value and not the index of the element.

Returns

This function returns an error if any of the input parameters is NULL.

Related Topics

• OCIIterDelete()
Deletes a collection iterator.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.13 OCIIterDelete()
Deletes a collection iterator.

Purpose

Deletes a collection iterator.

Chapter 29
OCI Collection and Iterator Functions

29-20

Syntax

sword OCIIterDelete (OCIEnv *env,
 OCIError *err,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
The allocated collection iterator that is destroyed and set to NULL before returning.

Comments

Deletes an iterator that was previously created by a call to OCIIterCreate().

For index-by integer collections, the OCIIterCreate(), OCIIterDelete(),
OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev() functions all
ignore the index for each element in the collection. That is, OCIIterGetCurrent() returns only
the element value and not the index of the element.

Returns

This function returns an error if any of the input parameters is NULL.

Related Topics

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Collection and Iterator Functions

29-21

29.2.14 OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

Purpose

Gets a pointer to the current iterator collection element.

Syntax

sword OCIIterGetCurrent (OCIEnv *env,
 OCIError *err,
 const OCIIter *itr,
 void **elem,
 void **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN)
Iterator that points to the current element.

elem (OUT)
Address of the element pointed to by the iterator to be returned. See Table 25-1 that lists the
type of data and what C data type can be found in parameter elem.

elemind (OUT) [optional]
Address of the element's NULL indicator information to be returned; if (elem_ind == NULL) then
the NULL indicator information is not returned.

Comments

Returns the pointer to the current iterator collection element and its corresponding NULL
information.

For index-by integer collections, the OCIIterCreate(), OCIIterGetCurrent(), OCIIterInit(),
OCIIterNext(), and OCIIterPrev() functions all ignore the index for each element in the
collection. That is, OCIIterGetCurrent() returns only the element value and not the index of
the element.

Returns

This function returns an error if any input parameter is NULL.

Related Topics

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

Chapter 29
OCI Collection and Iterator Functions

29-22

• OCIIterDelete()
Deletes a collection iterator.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.15 OCIIterKeyGetCurrent()
Returns a reference to the current key value of an associative array collection.

Purpose

Returns a reference to the current key value of an associative array collection.

Syntax

sword OCIIterKeyGetCurrent (OCIEnv *env,
 OCIError *err,
 CONST OCIIter *iter,
 void **key,
 ub4 *keylen,
 OCIKeyType *keytype);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

iter (IN)
Iterator that points to the current key value in an associative array.

key (OUT)
Reference pointer to the key of the current element, the reference pointer must not be
modified.

keylen (IN/OUT)
Size of the referenced key string.

Chapter 29
OCI Collection and Iterator Functions

29-23

keytype (OUT)
The type of the key.

29.2.16 OCIIterInit()
Initializes an iterator to scan a collection.

Purpose

Initializes an iterator to scan a collection.

Syntax

sword OCIIterInit (OCIEnv *env,
 OCIError *err,
 const OCIColl *coll,
 OCIIter *itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection that is scanned. For Oracle8i or later, valid collection types include varrays and
nested tables.

itr (IN/OUT)
Pointer to an allocated collection iterator.

Comments

Initializes at the given iterator to point to the beginning of the given collection. You can use this
function to perform either of the following tasks:

• Reset an iterator to point back to the beginning of the collection.

• Reuse an allocated iterator to scan a different collection.

For index-by integer collections, the OCIIterCreate(), OCIIterDelete(),
OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev() functions all
ignore the index for each element in the collection. That is, OCIIterGetCurrent() returns only
the element value and not the index of the element.

Returns

Returns an error if any input parameter is NULL.

Related Topics

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

Chapter 29
OCI Collection and Iterator Functions

29-24

• OCIIterDelete()
Deletes a collection iterator.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.17 OCIIterNext()
Gets a pointer to the next iterator collection element.

Purpose

Gets a pointer to the next iterator collection element.

Syntax

sword OCIIterNext (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 void **elem,
 void **elemind,
 boolean *eoc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet()..

itr (IN/OUT)
Iterator that is updated to point to the next element.

elem (OUT)
Address of the next element; returned after the iterator is updated to point to it. See Table 25-1
that lists the type of data and what C data type can be found in parameter elem.

Chapter 29
OCI Collection and Iterator Functions

29-25

elemind (OUT) [optional]
Address of the element's NULL indicator information; if (elem_ind == NULL), then the NULL
indicator information is not returned.

eoc (OUT)
TRUE if the iterator is at the end of the collection (that is, the next element does not exist);
otherwise, FALSE.

Comments

This function returns a pointer to the next iterator collection element and its corresponding NULL
information. It also updates the iterator to point to the next element.

If the iterator is pointing to the last element of the collection before you execute this function,
then calling this function sets the eoc flag to TRUE. The iterator is left unchanged in that case.

For index-by integer collections, the OCIIterCreate(), OCIIterDelete(),
OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev() functions all
ignore the index for each element in the collection. That is, OCIIterGetCurrent() returns only
the element value and not the index of the element.

Returns

This function returns an error if any input parameter is NULL.

Related Topics

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

• OCIIterDelete()
Deletes a collection iterator.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterPrev()
Gets a pointer to the previous iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.2.18 OCIIterPrev()
Gets a pointer to the previous iterator collection element.

Purpose

Gets a pointer to the previous iterator collection element.

Chapter 29
OCI Collection and Iterator Functions

29-26

Syntax

sword OCIIterPrev (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 void **elem,
 void **elemind,
 boolean *boc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator that is updated to point to the previous element.

elem (OUT)
Address of the previous element; returned after the iterator is updated to point to it. See
Table 25-1 that lists the type of data and what C data type can be found in parameter elem.

elemind (OUT) [optional]
Address of the element's NULL indicator information; if (elemind == NULL), then the NULL
indicator information is not returned.

boc (OUT)
TRUE if iterator is at the beginning of the collection (that is, the previous element does not
exist); otherwise, FALSE.

Comments

This function returns a pointer to the previous iterator collection element and its corresponding
NULL information. The iterator is updated to point to the previous element.

If the iterator is pointing to the first element of the collection before you execute this function,
then calling this function sets boc to TRUE. The iterator is left unchanged in that case.

For index-by integer collections, the OCIIterCreate(), OCIIterDelete(),
OCIIterGetCurrent(), OCIIterInit(), OCIIterNext(), and OCIIterPrev() functions all
ignore the index for each element in the collection. That is, OCIIterGetCurrent() returns only
the element value and not the index of the element.

Returns

This function returns an error if any input parameter is NULL.

Related Topics

• OCIIterCreate()
Creates an iterator to scan the elements or the collection.

• OCIIterDelete()
Deletes a collection iterator.

Chapter 29
OCI Collection and Iterator Functions

29-27

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIIterGetCurrent()
Gets a pointer to the current iterator collection element.

• OCIIterInit()
Initializes an iterator to scan a collection.

• OCIIterNext()
Gets a pointer to the next iterator collection element.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3 OCI Date, Datetime, and Interval Functions
Lists and describes the OCI date and interval functions.

Table 29-4 describes the OCI date and interval functions that are described in this section.

Table 29-4 Date Functions

Function Purpose

OCIDateAddDays() Add or subtract days

OCIDateAddMonths() Add or subtract months

OCIDateAssign() Assign date

OCIDateAddDaysSeconds()

OCIDateCheck() Check if the given date is valid

OCIDateCompare() Compare dates

OCIDateDaysBetween() Get number of days between two dates

OCIDateDaysSecondsBetween()

OCIDateFromText() Convert string to date

OCIDateGetDate() Get the date portion of a date

OCIDateGetTime() Get the time portion of a date

OCIDateLastDay() Get date of last day of month

OCIDateNextDay() Get date of next day

OCIDateSetDate() Set the date portion of a date

OCIDateSetTime() Set the time portion of a date

OCIDateSysDate() Get the current system date and time

OCIDateTimeAssign() Perform a datetime assignment

OCIDateTimeCheck() Check if the given date is valid

OCIDateTimeCompare() Compare two datetime values

OCIDateTimeConstruct() Construct a datetime descriptor

Chapter 29
OCI Date, Datetime, and Interval Functions

29-28

Table 29-4 (Cont.) Date Functions

Function Purpose

OCIDateTimeConvert() Convert one datetime type to another

OCIDateTimeFromArray() Convert an array of size
OCI_DT_ARRAYLEN to an
OCIDateTime descriptor

OCIDateTimeFromText() Convert the given string to Oracle
datetime type in the OCIDateTime
descriptor, according to the specified
format

OCIDateTimeGetDate() Get the date (year, month, day) portion
of a datetime value

OCIDateTimeGetTime() Get the time (hour, min, second,
fractional second) of a datetime value

OCIDateTimeGetTimeZoneName() Get the time zone name portion of a
datetime value

OCIDateTimeGetTimeZoneOffset() Get the time zone (hour, minute)
portion of a datetime value

OCIDateTimeIntervalAdd() Add an interval to a datetime to
produce a resulting datetime

OCIDateTimeIntervalSub() Subtract an interval from a datetime
and store the result in a datetime

OCIDateTimeSubtract() Take two datetimes as input and store
their difference in an interval

OCIDateTimeSysTimeStamp() Get the system current date and time
as a time stamp with time zone

OCIDateTimeToArray() Convert an OCIDateTime descriptor to
an array

OCIDateTimeToText() Convert the given date to a string
according to the specified format

OCIDateToText() Convert date to string

OCIDateZoneToZone() Convert date from one time zone to
another zone

OCIIntervalAdd() Add two intervals to produce a
resulting interval

OCIIntervalAssign() Copy one interval to another

OCIIntervalCheck() Check the validity of an interval

OCIIntervalCompare() Compare two intervals

OCIIntervalDivide() Divide an interval by an Oracle NUMBER
to produce an interval

OCIIntervalFromNumber() Convert an Oracle NUMBER to an
interval

OCIIntervalFromText() When given an interval string, return
the interval represented by the string

OCIIntervalFromTZ() Return an OCI_DTYPE_INTERVAL_DS
OCIIntervalGetDaySecond() Get values of day, hour, minute, and

second from an interval

Chapter 29
OCI Date, Datetime, and Interval Functions

29-29

Table 29-4 (Cont.) Date Functions

Function Purpose

OCIIntervalGetYearMonth() Get year and month from an interval

OCIIntervalMultiply() Multiply an interval by an Oracle
NUMBER to produce an interval

OCIIntervalSetDaySecond() Set day, hour, minute, and second in
an interval

OCIIntervalSetYearMonth() Set year and month in an interval

OCIIntervalSubtract() Subtract two intervals and stores the
result in an interval

OCIIntervalToNumber() Convert an interval to an Oracle
NUMBER

OCIIntervalToText() When given an interval, produce a
string representing the interval

• OCIDateAddDays()
Adds or subtracts days from a given date.

• OCIDateAddMonths()
Adds or subtracts months from a given date.

• OCIDateAssign()
Performs a date assignment.

• OCIDateAddDaysSeconds()
Adds or subtracts the days and seconds from the specified date.

• OCIDateCheck()
Checks if the given date is valid.

• OCIDateCompare()
Compares two dates.

• OCIDateDaysBetween()
Gets the number of days between two dates.

• OCIDateDaysSecondsBetween()
Gets the number of days and seconds between the two dates.

• OCIDateFromText()
Converts a character string to a date type according to the specified format.

• OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

• OCIDateGetTime()
Gets the time stored in an Oracle date.

• OCIDateLastDay()
Gets the date of the last day of the month in a specified date.

• OCIDateNextDay()
Gets the date of the next day of the week after a given date.

• OCIDateSetDate()
Set the values in an Oracle date.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-30

• OCIDateSetTime()
Sets the time information in an Oracle date.

• OCIDateSysDate()
Gets the current system date and time of the client.

• OCIDateTimeAssign()
Performs a datetime assignment.

• OCIDateTimeCheck()
Checks if the given date is valid.

• OCIDateTimeCompare()
Compares two datetime values.

• OCIDateTimeConstruct()
Constructs a datetime descriptor.

• OCIDateTimeConvert()
Converts one datetime type to another.

• OCIDateTimeFromArray()
Converts an array containing a date to an OCIDateTime descriptor.

• OCIDateTimeFromText()
Converts the given string to an Oracle datetime type in the OCIDateTime descriptor,
according to the specified format.

• OCIDateTimeGetDate()
Gets the date (year, month, day) portion of a datetime value.

• OCIDateTimeGetTime()
Gets the time (hour, min, second, fractional second) of a datetime value.

• OCIDateTimeGetTimeZoneName()
Gets the time zone name portion of a datetime value.

• OCIDateTimeGetTimeZoneOffset()
Gets the time zone (hour, minute) portion of a datetime value.

• OCIDateTimeIntervalAdd()
Adds an interval to a datetime to produce a resulting datetime.

• OCIDateTimeIntervalSub()
Subtracts an interval from a datetime and stores the result in a datetime.

• OCIDateTimeSubtract()
Takes two datetimes as input and stores their difference in an interval.

• OCIDateTimeSysTimeStamp()
Gets the system current date and time as a time stamp with time zone.

• OCIDateTimeToArray()
Converts an OCIDateTime descriptor to an array.

• OCIDateTimeToText()
Converts the given date to a string according to the specified format.

• OCIDateToText()
Converts a date type to a character string.

• OCIDateZoneToZone()
Converts a date from one time zone to another.

• OCIIntervalAdd()
Adds two intervals to produce a resulting interval.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-31

• OCIIntervalAssign()
Copies one interval to another.

• OCIIntervalCheck()
Checks the validity of an interval.

• OCIIntervalCompare()
Compares two intervals.

• OCIIntervalDivide()
Divides an interval by an Oracle NUMBER to produce an interval.

• OCIIntervalFromNumber()
Converts an Oracle NUMBER to an interval.

• OCIIntervalFromText()
When given an interval string, returns the interval represented by the string. The type of
the interval is the type of the result descriptor.

• OCIIntervalFromTZ()
Returns an OCI_DTYPE_INTERVAL_DS of data type OCIInterval with the region ID set (if the
region is specified in the input string) and the current absolute offset, or an absolute offset
with the region ID set to 0.

• OCIIntervalGetDaySecond()
Gets values of day, hour, minute, and second from an interval.

• OCIIntervalGetYearMonth()
Gets year and month from an interval.

• OCIIntervalMultiply()
Multiplies an interval by an Oracle NUMBER to produce an interval.

• OCIIntervalSetDaySecond()
Sets day, hour, minute, and second in an interval.

• OCIIntervalSetYearMonth()
Sets year and month in an interval.

• OCIIntervalSubtract()
Subtracts two intervals and stores the result in an interval.

• OCIIntervalToNumber()
Converts an interval to an Oracle NUMBER.

• OCIIntervalToText()
When given an interval, produces a string representing the interval.

29.3.1 OCIDateAddDays()
Adds or subtracts days from a given date.

Purpose

Adds or subtracts days from a given date.

Syntax

sword OCIDateAddDays (OCIError *err,
 const OCIDate *date,
 sb4 num_days,
 OCIDate *result);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-32

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
he given date from which to add or subtract.

num_days (IN)
Number of days to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Returns

This function returns an error if an invalid date is passed to it.

Related Topics

• OCIDateAddMonths()
Adds or subtracts months from a given date.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.2 OCIDateAddMonths()
Adds or subtracts months from a given date.

Purpose

Adds or subtracts months from a given date.

Syntax

sword OCIDateAddMonths (OCIError *err,
 const OCIDate *date,
 sb4 num_months,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The given date from which to add or subtract.

num_months (IN)
Number of months to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-33

Comments

If the input date is the last day of a month, then the appropriate adjustments are made to
ensure that the output date is also the last day of the month. For example, Feb. 28 + 1 month =
March 31, and November 30 – 3 months = August 31. Otherwise the result date has the
same day component as date.

Returns

This function returns an error if an invalid date is passed to it.

Related Topics

• OCIDateAddDays()
Adds or subtracts days from a given date.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.3 OCIDateAssign()
Performs a date assignment.

Purpose

Performs a date assignment.

Syntax

sword OCIDateAssign (OCIError *err,
 const OCIDate *from,
 OCIDate *to);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Date to be assigned.

to (OUT)
Target of assignment.

Comments

This function assigns a value from one OCIDate variable to another.

Related Topics

• OCIDateCheck()
Checks if the given date is valid.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-34

29.3.4 OCIDateAddDaysSeconds()
Adds or subtracts the days and seconds from the specified date.

Purpose

To add or subtract days and seconds from the specified date.

Syntax

sword OCIDateAddDaysSeconds (OCIError *err,
 const OCIDate *date,
 sb4 num_days,
 sb4 num_seconds,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The specified date from which you want to add or subtract.

num_days (IN)
Number of days to be added or subtracted. A negative value is subtracted.

num seconds (IN)
Number of seconds to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days and seconds to date.

Returns

This function returns an error if an invalid date is passed.

29.3.5 OCIDateCheck()
Checks if the given date is valid.

Purpose

Checks if the given date is valid.

Syntax

sword OCIDateCheck (OCIError *err,
 const OCIDate *date,
 uword *valid);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 29
OCI Date, Datetime, and Interval Functions

29-35

date (IN)
Date to be checked.

valid (OUT)
Returns zero for a valid date; otherwise, it returns the logical operator OR combination of all
error bits specified in Table 29-5.

Table 29-5 Error Bits Returned by the valid Parameter for OCIDateCheck()

Macro Name Bit Number Error

OCI_DATE_INVALID_DAY 0x1 Bad day

OCI_DATE_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_DATE_INVALID_MONTH 0x4 Bad month

OCI_DATE_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_DATE_INVALID_YEAR 0x10 Bad year

OCI_DATE_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_DATE_INVALID_HOUR 0x40 Bad hour

OCI_DATE_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_DATE_INVALID_MINUTE 0x100 Bad minute

OCI_DATE_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_DATE_INVALID_SECOND 0x400 Bad second

OCI_DATE_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_DATE_DAY_MISSING_FROM_1582 0x1000 Day is one of those missing from 1582

OCI_DATE_YEAR_ZERO 0x2000 Year may not equal zero

OCI_DATE_INVALID_FORMAT 0x8000 Bad date format input

For example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year
hours:minutes:seconds format), the error returned is:

OCI_DATE_INVALID_DAY | OCI_DATE_DAY_BELOW_VALID | OCI_DATE_INVALID_HOUR |
 OCI_DATE_INVALID_MINUTE.

Returns

This function returns an error if date or valid pointer is NULL.

Related Topics

• OCIDateCompare()
Compares two dates.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.6 OCIDateCompare()
Compares two dates.

Purpose

To compare two dates for equality.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-36

Syntax

sword OCIDateCompare (OCIError *err,
 const OCIDate *date1,
 const OCIDate *date2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result as listed in Table 29-6.

Table 29-6 Comparison Results

Comparison Result Output in result Parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1

Returns

This function returns an error if an invalid date is passed to it.

Related Topics

• OCIDateCheck()
Checks if the given date is valid.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.7 OCIDateDaysBetween()
Gets the number of days between two dates.

Purpose

Gets the number of days between two dates.

Syntax

sword OCIDateDaysBetween (OCIError *err,
 const OCIDate *date1,
 const OCIDate *date2,
 sb4 *num_days);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-37

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Input date.

date2 (IN)
Input date.

num_days (OUT)
Number of days between date1 and date2.

Comments

When the number of days between date1 and date2 is computed, the time is ignored.

Returns

This function returns an error if an invalid date is passed to it.

Related Topics

• OCIDateCheck()
Checks if the given date is valid.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.8 OCIDateDaysSecondsBetween()
Gets the number of days and seconds between the two dates.

Purpose

To get the number of days and seconds between the two dates.

Syntax

sword OCIDateDaysSecondsBetween (OCIError *err,
 const OCIDate *date1,
 const OCIDate *date2,
 sb4 *num_days
 Sb4 *num_seconds);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Input dates in OCIDate format.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-38

num_days (OUT)
Number of full days between date1 and date2 (date1 - date2). If the value of date1 is earlier
than the value of date2, then a negative value is returned.

num_seconds(OUT)
Number of residual seconds (after maximum possible full days between the dates has been
subtracted) between date1 and date2. Returns negative value when the value of date1 is
earlier than the value of date2

Returns

• OCI_SUCCESS if the function completes successfully.

• OCI_INVALID_HANDLE if value of err is NULL.

• OCI_ERROR if case of invalid date.

29.3.9 OCIDateFromText()
Converts a character string to a date type according to the specified format.

Purpose

Converts a character string to a date type according to the specified format.

Syntax

sword OCIDateFromText (OCIError *err,
 const OraText *date_str,
 ub4 d_str_length,
 const OraText *fmt,
 ub1 fmt_length,
 const OraText *lang_name,
 ub4 lang_length,
 OCIDate *date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
Input string to be converted to Oracle date.

d_str_length (IN)
Size of the input string. If the length is –1, then date_str is treated as a NULL-terminated
string.

fmt (IN)
Conversion format. If fmt is a NULL pointer, then the string is expected to be in "DD-MON-YY"
format.

fmt_length (IN)
Length of the fmt parameter.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-39

lang_name (IN)
Language in which the names and abbreviations of days and months are specified. If
lang_name is a NULL string, (text *)0, then the default language of the session is used.

lang_length (IN)
Length of the lang_name parameter.

date (OUT)
Given string converted to date.

Comments

See the TO_DATE conversion function described in the Oracle Database SQL Language
Referencefor a description of format and multilingual arguments.

Returns

This function returns an error if it receives an invalid format, language, or input string.

Related Topics

• OCIDateToText()
Converts a date type to a character string.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.10 OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

Purpose

Gets the year, month, and day stored in an Oracle date.

Syntax

void OCIDateGetDate (const OCIDate *date,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters

date (IN)
Oracle date whose year, month, day data is retrieved.

year (OUT)
Year value returned.

month (OUT)
Month value returned.

day (OUT)
Day value returned.

Comments

None.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-40

Related Topics

• OCIDateSetDate()
Set the values in an Oracle date.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.11 OCIDateGetTime()
Gets the time stored in an Oracle date.

Purpose

Gets the time stored in an Oracle date.

Syntax

void OCIDateGetTime (const OCIDate *date,
 ub1 *hour,
 ub1 *min,
 ub1 *sec);

Parameters

date (IN)
Oracle date whose time data is retrieved.

hour (OUT)
Hour value returned.

min (OUT)
Minute value returned.

sec (OUT)
Second value returned.

Returns

Returns the time information in the form: hour, minute and seconds.

Related Topics

• OCIDateSetTime()
Sets the time information in an Oracle date.

• OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

29.3.12 OCIDateLastDay()
Gets the date of the last day of the month in a specified date.

Purpose

Gets the date of the last day of the month in a specified date.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-41

Syntax

sword OCIDateLastDay (OCIError *err,
 const OCIDate *date,
 OCIDate *last_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Input date.

last_day (OUT)
Last day of the month in date.

Returns

This function returns an error if an invalid date is passed to it.

Related Topics

• OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.13 OCIDateNextDay()
Gets the date of the next day of the week after a given date.

Purpose

Gets the date of the next day of the week after a given date.

Syntax

sword OCIDateNextDay (OCIError *err,
 const OCIDate *date,
 const OraText *day,
 ub4 day_length,
 OCIDate *next_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Returned date should be later than this date.

day (IN)
First day of the week named by this is returned.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-42

day_length (IN)
Length in bytes of string day.

next_day (OUT)
First day of the week named by day that is later than date.

Returns

Returns the date of the first day of the week named by day that is later than date.

Example

The following code example shows how to get the date of the next Monday after April 18, 1996
(a Thursday).

Getting the Date for a Specific Day After a Specified Date

OCIDate one_day, next_day;
/* Add code here to set one_day to be '18-APR-96' */
OCIDateNextDay(err, &one_day, "MONDAY", strlen("MONDAY"), &next_day);

OCIDateNextDay() returns "22-APR-96".

This function returns an error if an invalid date or day is passed to it.

Related Topics

• OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.14 OCIDateSetDate()
Set the values in an Oracle date.

Purpose

Set the values in an Oracle date.

Syntax

void OCIDateSetDate (OCIDate *date,
 sb2 year,
 ub1 month,
 ub1 day);

Parameters

date (OUT)
Oracle date whose time data is set.

year (IN)
Year value to be set.

month (IN)
Month value to be set.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-43

day (IN)
Day value to be set.

Comments

None.

Related Topics

• OCIDateGetDate()
Gets the year, month, and day stored in an Oracle date.

29.3.15 OCIDateSetTime()
Sets the time information in an Oracle date.

Purpose

Sets the time information in an Oracle date.

Syntax

void OCIDateSetTime (OCIDate *date,
 ub1 hour,
 ub1 min,
 ub1 sec);

Parameters

date (OUT)
Oracle date whose time data is set.

hour (IN)
Hour value to be set.

min (IN)
Minute value to be set.

sec (IN)
Second value to be set.

Comments

None.

Related Topics

• OCIDateGetTime()
Gets the time stored in an Oracle date.

29.3.16 OCIDateSysDate()
Gets the current system date and time of the client.

Purpose

Gets the current system date and time of the client.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-44

Syntax

sword OCIDateSysDate (OCIError *err,
 OCIDate *sys_date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Current system date and time of the client.

Comments

None.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.17 OCIDateTimeAssign()
Performs a datetime assignment.

Purpose

Performs a datetime assignment.

Syntax

sword OCIDateTimeAssign (void *hndl,
 OCIError *err,
 const OCIDateTime *from,
 OCIDateTime *to);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is passed, the
conversion occurs in the session's NLS_LANGUAGE and the session's NLS_CALENDAR; otherwise,
the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Source, right-hand side (rhs) datetime to be assigned.

to (OUT)
Target, left-hand side (lhs) of assignment.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-45

Comments

This function performs an assignment from the from datetime to the to datetime for any of the
datetime types listed in the description of the type parameter.

The type of the output is the same as that of the input.

Returns

OCI_SUCCESS; or OCI_ERROR.

Related Topics

• OCIDateTimeCheck()
Checks if the given date is valid.

• OCIDateTimeConstruct()
Constructs a datetime descriptor.

29.3.18 OCIDateTimeCheck()
Checks if the given date is valid.

Purpose

Checks if the given date is valid.

Syntax

sword OCIDateTimeCheck (void *hndl,
 OCIError *err,
 const OCIDateTime *date,
 ub4 *valid);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is passed, the
conversion occurs in the session's NLS_LANGUAGE and the session's NLS_CALENDAR, otherwise,
the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The date to be checked.

valid (OUT)
Returns zero for a valid date; otherwise, it returns the logical operator OR combination of all
the error bits specified in Table 29-7.

Table 29-7 Error Bits Returned by the valid Parameter for OCIDateTimeCheck()

Macro Name Bit Number Error

OCI_DT_INVALID_DAY 0x1 Bad day

OCI_DT_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

Chapter 29
OCI Date, Datetime, and Interval Functions

29-46

Table 29-7 (Cont.) Error Bits Returned by the valid Parameter for OCIDateTimeCheck()

Macro Name Bit Number Error

OCI_DT_INVALID_MONTH 0x4 Bad month

OCI_DT_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_DT_INVALID_YEAR 0x10 Bad year

OCI_DT_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_DT_INVALID_HOUR 0x40 Bad hour

OCI_DT_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_DT_INVALID_MINUTE 0x100 Bad minute

OCI_DT_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_DT_INVALID_SECOND 0x400 Bad second

OCI_DT_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_DT_DAY_MISSING_FROM_1582 0x1000 Day is one of those missing from 1582

OCI_DT_YEAR_ZERO 0x2000 Year may not equal zero

OCI_DT_INVALID_TIMEZONE 0x4000 Bad time zone

OCI_DT_INVALID_FORMAT 0x8000 Bad date format input

So, for example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year
hours:minutes:seconds format), the error returned is:

 OCI_DT_INVALID_DAY | OCI_DT_DAY_BELOW_VALID |
 OCI_DT_INVALID_HOUR | OCI_DT_INVALID_MINUTE.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; OCI_ERROR, if date or valid is a
NULL pointer.

Related Topics

• OCIDateTimeAssign()
Performs a datetime assignment.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.19 OCIDateTimeCompare()
Compares two datetime values.

Purpose

Compares two datetime values.

Syntax

sword OCIDateTimeCompare (void *hndl,
 OCIError *err,
 const OCIDateTime *date1,
 const OCIDateTime *date2,
 sword *result);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-47

Parameters

hndl (IN/OUT)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result as listed in Table 29-8.

Table 29-8 Comparison Results Returned by the result Parameter for
OCIDateTimeCompare()

Comparison Result Output in result Parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; OCI_ERROR, if an invalid date is used
or if the input date arguments are not of mutually comparable types.

Related Topics

• OCIDateTimeConstruct()
Constructs a datetime descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.20 OCIDateTimeConstruct()
Constructs a datetime descriptor.

Purpose

Constructs a datetime descriptor.

Syntax

sword OCIDateTimeConstruct (void *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 sb2 year,
 ub1 month,
 ub1 day,
 ub1 hour,
 ub1 min,
 ub1 sec,
 ub4 fsec,

Chapter 29
OCI Date, Datetime, and Interval Functions

29-48

 OraText *timezone,
 size_t timezone_length);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

year (IN)
Year value.

month (IN)
Month value.

day (IN)
Day value.

hour (IN)
Hour value.

min (IN)
Minute value.

sec (IN)
Second value.

fsec (IN)
Fractional second value.

timezone (IN)
Time zone string. A string representation of time zone displacement is the difference (in hours
and minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time) in the format "[+|-][HH:MM]". For example, "-08:00".

timezone_length (IN)
Length of the time zone string.

Comments

The type of the datetime is the type of the OCIDateTime descriptor. Only the relevant fields
based on the type are used. For types with a time zone, the date and time fields are assumed
to be in the local time of the specified time zone.

If the time zone is not specified, then the session default time zone is assumed.

Returns

OCI_SUCCESS; or OCI_ERROR, if datetime is not valid.

Related Topics

• OCIDateTimeAssign()
Performs a datetime assignment.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-49

• OCIDateTimeConvert()
Converts one datetime type to another.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.21 OCIDateTimeConvert()
Converts one datetime type to another.

Purpose

Converts one datetime type to another.

Syntax

sword OCIDateTimeConvert (void *hndl,
 OCIError *err,
 OCIDateTime *indate,
 OCIDateTime *outdate);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

indate (IN)
A pointer to the input date.

outdate (OUT)
A pointer to the output datetime.

Comments

This function converts one datetime type to another. The result type is the type of the outdate
descriptor. The session default time zone (ORA_SDTZ) is used when converting a datetime
without a time zone to one with a time zone.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE if err is NULL; or OCI_ERROR, if the conversion is not
possible with the given input values.

Related Topics

• OCIDateTimeCheck()
Checks if the given date is valid.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-50

29.3.22 OCIDateTimeFromArray()
Converts an array containing a date to an OCIDateTime descriptor.

Purpose

Converts an array containing a date to an OCIDateTime descriptor.

Syntax

sword OCIDateTimeFromArray (void *hndl,
 OCIError *err,
 const ub1 *inarray,
 ub4 *len
 ub1 type,
 OCIDateTime *datetime,
 const OCIInterval *reftz,
 ub1 fsprec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inarray(IN)
Array of ub1, containing the date.

len (IN)
Length of inarray.

type (IN)
Type of the resulting datetime. The array is converted to the specific SQLT type.

datetime (OUT)
Pointer to an OCIDateTime descriptor.

reftz (IN)
Descriptor for OCIInterval used as a reference when converting a SQLT_TIMESTAMP_LTZ type.

fsprec (IN)
Fractional second precision of the resulting datetime.

Returns

OCI_SUCCESS; or OCI_ERROR if type is invalid.

Related Topics

• OCIDateTimeFromText()
Converts the given string to an Oracle datetime type in the OCIDateTime descriptor,
according to the specified format.

• OCIDateTimeToArray()
Converts an OCIDateTime descriptor to an array.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-51

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.23 OCIDateTimeFromText()
Converts the given string to an Oracle datetime type in the OCIDateTime descriptor, according
to the specified format.

Purpose

Converts the given string to an Oracle datetime type in the OCIDateTime descriptor, according
to the specified format.

Syntax

sword OCIDateTimeFromText (void *hndl,
 OCIError *err,
 const OraText *date_str,
 size_t dstr_length,
 const OraText *fmt,
 ub1 fmt_length,
 const OraText *lang_name,
 size_t lang_length,
 OCIDateTime *datetime);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is passed, the
conversion occurs in the session's NLS_LANGUAGE and the session's NLS_CALENDAR;
otherwise, the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
The input string to be converted to an Oracle datetime.

dstr_length (IN)
The size of the input string. If the length is –1, then date_str is treated as a NULL-terminated
string.

fmt (IN)
The conversion format. If fmt is a NULL pointer, then the string is expected to be in the default
format for the datetime type.

fmt_length (IN)
The length of the fmt parameter.

lang_name (IN)
Specifies the language in which the names and abbreviations of months and days are
specified. The default language of the session is used if lang_name is NULL (lang_name =
(text *)0).

lang_length (IN)
The length of the lang_name parameter.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-52

datetime (OUT)
The given string converted to a date.

Comments

See the description of the TO_DATE conversion function in the Oracle Database SQL Language
Reference for a description of the format argument.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE if err is NULL; or OCI_ERROR, if any of the following is true:

• An invalid format is used.

• An unknown language is used.

• An invalid input string is used.

Related Topics

• OCIDateTimeToText()
Converts the given date to a string according to the specified format.

• OCIDateTimeFromArray()
Converts an array containing a date to an OCIDateTime descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.24 OCIDateTimeGetDate()
Gets the date (year, month, day) portion of a datetime value.

Purpose

Gets the date (year, month, day) portion of a datetime value.

Syntax

sword OCIDateTimeGetDate (void *hndl,
 OCIError *err,
 const OCIDateTime *datetime,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor from which date information is retrieved.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-53

year (OUT)
month (OUT)
day (OUT)
The retrieved year, month, and day values.

Comments

This function gets the date (year, month, day) portion of a datetime value.

Returns

OCI_SUCCESS or OCI_ERROR.

Related Topics

• OCIDateTimeGetTime()
Gets the time (hour, min, second, fractional second) of a datetime value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.25 OCIDateTimeGetTime()
Gets the time (hour, min, second, fractional second) of a datetime value.

Purpose

Gets the time (hour, min, second, fractional second) of a datetime value.

Syntax

sword OCIDateTimeGetTime (void *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 ub1 *hour,
 ub1 *min,
 ub1 *sec,
 ub4 *fsec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor from which time information is retrieved.

hour (OUT)
The retrieved hour value.

min (OUT)
The retrieved minute value.

sec (OUT)
The retrieved second value.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-54

fsec (OUT)
The retrieved fractional second value.

Comments

This function gets the time portion (hour, min, second, fractional second) from a given datetime
value.

This function returns an error if the given datetime does not contain time information.

Returns

OCI_SUCCESS; or OCI_ERROR, if datetime does not contain time (SQLT_DATE).

Related Topics

• OCIDateTimeGetDate()
Gets the date (year, month, day) portion of a datetime value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.26 OCIDateTimeGetTimeZoneName()
Gets the time zone name portion of a datetime value.

Purpose

Gets the time zone name portion of a datetime value.

Syntax

sword OCIDateTimeGetTimeZoneName (void *hndl,
 OCIError *err,
 const OCIDateTime *datetime,
 ub1 *buf,
 ub4 *buflen,);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

buf (OUT)
Buffer to store the retrieved time zone name.

buflen (IN/OUT)
The size of the buffer (IN). The size of the name field (OUT)

Comments

This function gets the time portion (hour, min, second, fractional second) from a given datetime
value.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-55

This function returns an error if the given datetime does not contain time information.

Returns

OCI_SUCCESS; or OCI_ERROR, if datetime does not contain a time zone (SQLT_DATE,
SQLT_TIMESTAMP).

Related Topics

• OCIDateTimeGetDate()
Gets the date (year, month, day) portion of a datetime value.

• OCIDateTimeGetTimeZoneOffset()
Gets the time zone (hour, minute) portion of a datetime value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.27 OCIDateTimeGetTimeZoneOffset()
Gets the time zone (hour, minute) portion of a datetime value.

Purpose

Gets the time zone (hour, minute) portion of a datetime value.

Syntax

sword OCIDateTimeGetTimeZoneOffset (void *hndl,
 OCIError *err,
 const OCIDateTime *datetime,
 sb1 *hour,
 sb1 *min,);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

hour (OUT)
The retrieved time zone hour value.

min (OUT)
The retrieved time zone minute value.

Comments

This function gets the time zone hour and the time zone minute portion from a given datetime
value.

This function returns an error if the given datetime does not contain time information.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-56

Returns

OCI_SUCCESS; or OCI_ERROR, if datetime does not contain a time zone (SQLT_DATE,
SQLT_TIMESTAMP).

Related Topics

• OCIDateTimeGetDate()
Gets the date (year, month, day) portion of a datetime value.

• OCIDateTimeGetTimeZoneName()
Gets the time zone name portion of a datetime value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.28 OCIDateTimeIntervalAdd()
Adds an interval to a datetime to produce a resulting datetime.

Purpose

Adds an interval to a datetime to produce a resulting datetime.

Syntax

sword OCIDateTimeIntervalAdd (void *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 OCIInterval *inter,
 OCIDateTime *outdatetime);

Parameters

hndl (IN)
The user session or environment handle. If a session handle is passed, the addition occurs in
the session default calendar.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to the input datetime.

inter (IN)
Pointer to the input interval.

outdatetime (OUT)
Pointer to the output datetime. The output datetime is of same type as the input datetime.

Returns

OCI_SUCCESS, if the function completes successfully; OCI_INVALID_HANDLE, if err is a NULL
pointer; or OCI_ERROR, if the resulting date is before Jan 1, -4713 or is after Dec 31, 9999.

Related Topics

• OCIDateTimeIntervalSub()
Subtracts an interval from a datetime and stores the result in a datetime.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-57

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.29 OCIDateTimeIntervalSub()
Subtracts an interval from a datetime and stores the result in a datetime.

Purpose

Subtracts an interval from a datetime and stores the result in a datetime.

Syntax

sword OCIDateTimeIntervalSub (void *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 OCIInterval *inter,
 OCIDateTime *outdatetime);

Parameters

hndl (IN)
The user session or environment handle. If a session handle is passed, the subtraction occurs
in the session default calendar. The interval is assumed to be in the session calendar.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to the input datetime value.

inter (IN)
Pointer to the input interval.

outdatetime (OUT)
Pointer to the output datetime. The output datetime is of same type as the input datetime.

Returns

OCI_SUCCESS, if the function completes successfully; OCI_INVALID_HANDLE, if err is a NULL
pointer; or OCI_ERROR, if the resulting date is before Jan 1, -4713 or is after Dec 31, 9999.

Related Topics

• OCIDateTimeIntervalAdd()
Adds an interval to a datetime to produce a resulting datetime.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.30 OCIDateTimeSubtract()
Takes two datetimes as input and stores their difference in an interval.

Purpose

Takes two datetimes as input and stores their difference in an interval.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-58

Syntax

sword OCIDateTimeSubtract (void *hndl,
 OCIError *err,
 OCIDateTime *indate1,
 OCIDateTime *indate2,
 OCIInterval *inter);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

indate1 (IN)
Pointer to the subtrahend (number to be subtracted).

indate2 (IN)
Pointer to the minuend (number to be subtracted from).

inter (OUT)
Pointer to the output interval.

Returns

OCI_SUCCESS, if the function completes successfully; OCI_INVALID_HANDLE if err is NULL
pointer; or OCI_ERROR, if the input datetimes are not of comparable types.

Related Topics

• OCIDateTimeCompare()
Compares two datetime values.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.31 OCIDateTimeSysTimeStamp()
Gets the system current date and time as a time stamp with time zone.

Purpose

Gets the system current date and time as a time stamp with time zone.

Syntax

sword OCIDateTimeSysTimeStamp (void *hndl,
 OCIError *err,
 OCIDateTime *sys_date);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-59

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Pointer to the output time stamp.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIDateSysDate()
Gets the current system date and time of the client.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.32 OCIDateTimeToArray()
Converts an OCIDateTime descriptor to an array.

Purpose

Converts an OCIDateTime descriptor to an array.

Syntax

sword OCIDateTimeToArray (void *hndl,
 OCIError *err,
 const OCIDateTime *datetime,
 const OCIInterval *reftz,
 ub1 *outarray,
 ub4 *len
 ub1 fsprec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

reftz (IN)
Descriptor for the OCIInterval used as a reference when converting the SQL_TIMESTAMP_LTZ
type.

outarray(OUT)
Array of bytes containing the date.

len (OUT)
Length of outarray.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-60

fsprec (IN)
Fractional second precision in the array.

Comments

The array is allocated by OCI and its length is returned.

Returns

OCI_SUCCESS; or OCI_ERROR, if datetime is invalid.

Related Topics

• OCIDateTimeToText()
Converts the given date to a string according to the specified format.

• OCIDateTimeFromArray()
Converts an array containing a date to an OCIDateTime descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.33 OCIDateTimeToText()
Converts the given date to a string according to the specified format.

Purpose

Converts the given date to a string according to the specified format.

Syntax

sword OCIDateTimeToText (void *hndl,
 OCIError *err,
 const OCIDateTime *date,
 const OraText *fmt,
 ub1 fmt_length,
 ub1 fsprec,
 const OraText *lang_name,
 size_t lang_length,
 ub4 *buf_size,
 OraText *buf);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is passed, the
conversion occurs in the session's NLS_LANGUAGE and the session's NLS_CALENDAR; otherwise,
the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle datetime value to be converted.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-61

fmt (IN)
The conversion format. If it is a NULL string pointer, (text*)0, then the date is converted to a
character string in the default format for that type.

fmt_length (IN)
The length of the fmt parameter.

fsprec (IN)
Specifies the precision in which the fractional seconds value is returned.

lang_name (IN)
Specifies the language in which the names and abbreviations of months and days are
returned. The default language of the session is used if lang_name is NULL (lang_name =
(OraText *)0).

lang_length (IN)
The length of the lang_name parameter.

buf_size (IN/OUT)
The size of the buf buffer (IN).
The size of the resulting string after the conversion (OUT).

buf (OUT)
The buffer into which the converted string is placed.

Comments

See the description of the TO_DATE conversion function in the Oracle Database SQL Language
Reference for a description of format and multilingual arguments. The converted NULL-
terminated date string is stored in the buffer buf.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is NULL; or OCI_ERROR, if any of the following
statements is true:

• The buffer is too small.

• An invalid format is used.

• An unknown language is used.

• There is an overflow error.

Related Topics

• OCIDateTimeFromText()
Converts the given string to an Oracle datetime type in the OCIDateTime descriptor,
according to the specified format.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.34 OCIDateToText()
Converts a date type to a character string.

Purpose

Converts a date type to a character string.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-62

Syntax

sword OCIDateToText (OCIError *err,
 const OCIDate *date,
 const OraText *fmt,
 ub1 fmt_length,
 const OraText *lang_name,
 ub4 lang_length,
 ub4 *buf_size,
 OraText *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle date to be converted.

fmt (IN)
Conversion format. If NULL, (text *)0, then the date is converted to a character string in the
default date format, DD-MON-YY.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Specifies the language in which names and abbreviations of months and days are returned;
the default language of the session is used if lang_name is NULL ((text *)0).

lang_length (IN)
Length of the lang_name parameter.

buf_size (IN/OUT)
Size of the buffer (IN). Size of the resulting string is returned with this parameter (OUT).

buf (OUT)
Buffer into which the converted string is placed.

Comments

Converts the given date to a string according to the specified format. The converted NULL-
terminated date string is stored in buf.

See the TO_DATE conversion function described in the Oracle Database SQL Language
Reference for a description of format and multilingual arguments.

Returns

This function returns an error if the buffer is too small, or if the function is passed an invalid
format or unknown language. Overflow also causes an error. For example, converting a value
of 10 into format '9' causes an error.

Related Topics

• OCIDateFromText()
Converts a character string to a date type according to the specified format.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-63

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.35 OCIDateZoneToZone()
Converts a date from one time zone to another.

Purpose

Converts a date from one time zone to another.

Syntax

sword OCIDateZoneToZone (OCIError *err,
 const OCIDate *date1,
 const OraText *zon1,
 ub4 zon1_length,
 const OraText *zon2,
 ub4 zon2_length,
 OCIDate *date2);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Date to convert.

zon1 (IN)
Zone of the input date.

zon1_length (IN)
Length in bytes of zon1.

zon2 (IN)
Zone to be converted to.

zon2_length (IN)
Length in bytes of zon2.

date2 (OUT)
Converted date (in zon2).

Comments

Converts a given date date1 in time zone zon1 to a date date2 in time zone zon2. Works only
with North American time zones.

For a list of valid zone strings, see the description of the NEW_TIME function in the Oracle
Database SQL Language Reference. Examples of valid zone strings include:

• AST, Atlantic Standard Time

• ADT, Atlantic Daylight Time

• BST, Bering Standard Time

• BDT, Bering Daylight Time

Chapter 29
OCI Date, Datetime, and Interval Functions

29-64

Returns

This function returns an error if an invalid date or time zone is passed to it.

Related Topics

• OCIDateCheck()
Checks if the given date is valid.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.36 OCIIntervalAdd()
Adds two intervals to produce a resulting interval.

Purpose

Adds two intervals to produce a resulting interval.

Syntax

sword OCIIntervalAdd (void *hndl,
 OCIError *err,
 OCIInterval *addend1,
 OCIInterval *addend2,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

addend1 (IN)
Interval to be added.

addend2 (IN)
Interval to be added.

result (OUT)
The resulting interval (addend1 + addend2).

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if any of the
following statements is true:

• The two input intervals are not mutually comparable.

• The resulting year is greater than SB4MAXVAL.

• The resulting year is less than SB4MINVAL.

Related Topics

• OCIIntervalSubtract()
Subtracts two intervals and stores the result in an interval.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-65

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.37 OCIIntervalAssign()
Copies one interval to another.

Purpose

Copies one interval to another.

Syntax

void OCIIntervalAssign (void *hndl,
 OCIError *err,
 const OCIInterval *inpinter,
 OCIInterval *outinter);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inpinter (IN)
Input interval.

outinter (OUT)
Output interval.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalCompare()
Compares two intervals.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.38 OCIIntervalCheck()
Checks the validity of an interval.

Purpose

Checks the validity of an interval.

Syntax

sword OCIIntervalCheck (void *hndl,
 OCIError *err,
 const OCIInterval *interval,
 ub4 *valid);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-66

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be checked.

valid (OUT)
Returns zero if the interval is valid; otherwise, it returns the logical operator OR combination of
the codes specified in Table 29-9.

Table 29-9 Error Bits Returned by the valid Parameter for OCIIntervalCheck()

Macro Name Bit Number Error

OCI_INTER_INVALID_DAY 0x1 Bad day

OCI_INTER_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_INTER_INVALID_MONTH 0x4 Bad month

OCI_INTER_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_INTER_INVALID_YEAR 0x10 Bad year

OCI_INTER_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_INTER_INVALID_HOUR 0x40 Bad hour

OCI_INTER_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_INTER_INVALID_MINUTE 0x100 Bad minute

OCI_INTER_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_INTER_INVALID_SECOND 0x400 Bad second

OCI_INTER_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_INTER_INVALID_FRACSEC 0x1000 Bad fractional second

OCI_INTER_FRACSEC_BELOW_VALID 0x2000 Bad fractional second low/high bit
(1=low)

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, on error.

Related Topics

• OCIIntervalCompare()
Compares two intervals.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-67

29.3.39 OCIIntervalCompare()
Compares two intervals.

Purpose

Compares two intervals.

Syntax

sword OCIIntervalCompare (void *hndl,
 OCIError *err,
 OCIInterval *inter1,
 OCIInterval *inter2,
 sword *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inter1 (IN)
Interval to be compared.

inter2 (IN)
Interval to be compared.

result (OUT)
Comparison result as specified in Table 29-10.

Table 29-10 Comparison Results Returned by the result Parameter for
OCIIntervalCompare()

Comparison Result Output in result Parameter

inter1 < inter2 -1

inter1 = inter2 0

inter1 > inter2 1

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if the input values
are not mutually comparable.

Related Topics

• OCIIntervalAssign()
Copies one interval to another.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-68

29.3.40 OCIIntervalDivide()
Divides an interval by an Oracle NUMBER to produce an interval.

Purpose

Divides an interval by an Oracle NUMBER to produce an interval.

Syntax

sword OCIIntervalDivide (void *hndl,
 OCIError *err,
 OCIInterval *dividend,
 OCINumber *divisor,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dividend (IN)
Interval to be divided.

divisor (IN)
Oracle NUMBER dividing dividend.

result (OUT)
The resulting interval (dividend / divisor).

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalMultiply()
Multiplies an interval by an Oracle NUMBER to produce an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.41 OCIIntervalFromNumber()
Converts an Oracle NUMBER to an interval.

Purpose

Converts an Oracle NUMBER to an interval.

Syntax

sword OCIIntervalFromNumber (void *hndl,
 OCIError *err,

Chapter 29
OCI Date, Datetime, and Interval Functions

29-69

 OCIInterval *interval,
 OCINumber *number);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (OUT)
Interval result.

number (IN)
Oracle NUMBER to be converted (in years for YEAR TO MONTH intervals and in days for DAY
TO SECOND intervals).

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalToNumber()
Converts an interval to an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.42 OCIIntervalFromText()
When given an interval string, returns the interval represented by the string. The type of the
interval is the type of the result descriptor.

Purpose

When given an interval string, returns the interval represented by the string. The type of the
interval is the type of the result descriptor.

Syntax

sword OCIIntervalFromText (void *hndl,
 OCIError *err,
 const OraText *inpstring,
 size_t str_len,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 29
OCI Date, Datetime, and Interval Functions

29-70

inpstring (IN)
Input string.

str_len (IN)
Length of the input string.

result (OUT)
Resultant interval.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if any of the
following statements is true:

• There are too many fields in the literal string.

• The year is out of range (–4713 to 9999).

• The month is out of range (1 to 12).

• The day of month is out of range (1 to 28...31).

• The hour is out of range (0 to 23).

• The hour is out of range (0 to 11).

• The minutes are out of range (0 to 59).

• The seconds in the minute are out of range (0 to 59).

• The seconds in the day are out of range (0 to 86399).

• The interval is invalid.

Related Topics

• OCIIntervalToText()
When given an interval, produces a string representing the interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.43 OCIIntervalFromTZ()
Returns an OCI_DTYPE_INTERVAL_DS of data type OCIInterval with the region ID set (if the
region is specified in the input string) and the current absolute offset, or an absolute offset with
the region ID set to 0.

Purpose

Returns an OCI_DTYPE_INTERVAL_DS of data type OCIInterval with the region ID set (if the
region is specified in the input string) and the current absolute offset, or an absolute offset with
the region ID set to 0.

Syntax

sword OCIIntervalFromTZ (void *hndl,
 OCIError *err,
 const oratext *inpstring,
 size_t str_len,
 OCIInterval *result) ;

Chapter 29
OCI Date, Datetime, and Interval Functions

29-71

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inpstring (IN)
Pointer to the input string.

str_len (IN)
Length of inpstring.

result (OUT)
Output interval.

Returns

OCI_SUCCESS, on success; OCI_INVALID_HANDLE, if err is NULL; or OCI_ERROR, if there is a bad
interval type or there are time zone errors.

Comments

The input string must be of the form [+/-]TZH:TZM or 'TZR [TZD]'

Related Topics

• OCIIntervalFromText()
When given an interval string, returns the interval represented by the string. The type of
the interval is the type of the result descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.44 OCIIntervalGetDaySecond()
Gets values of day, hour, minute, and second from an interval.

Purpose

Gets values of day, hour, minute, and second from an interval.

Syntax

sword OCIIntervalGetDaySecond (void *hndl,
 OCIError *err,
 sb4 *dy,
 sb4 *hr,
 sb4 *mm,
 sb4 *ss,
 sb4 *fsec,
 const OCIInterval *interval);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-72

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dy (OUT)
Number of days.

hr (OUT)
Number of hours.

mm (OUT)
Number of minutes.

ss (OUT)
Number of seconds.

fsec (OUT)
Number of nano seconds.

interval (IN)
The input interval.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalSetDaySecond()
Sets day, hour, minute, and second in an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.45 OCIIntervalGetYearMonth()
Gets year and month from an interval.

Purpose

Gets year and month from an interval.

Syntax

sword OCIIntervalGetYearMonth (void *hndl,
 OCIError *err,
 sb4 *yr,
 sb4 *mnth,
 const OCIInterval *interval);

Chapter 29
OCI Date, Datetime, and Interval Functions

29-73

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

yr (OUT)
Year value.

mnth (OUT)
Month value.

interval (IN)
The input interval.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalSetYearMonth()
Sets year and month in an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.46 OCIIntervalMultiply()
Multiplies an interval by an Oracle NUMBER to produce an interval.

Purpose

Multiplies an interval by an Oracle NUMBER to produce an interval.

Syntax

sword OCIIntervalMultiply (void *hndl,
 OCIError *err,
 const OCIInterval *inter,
 OCINumber *nfactor,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inter (IN)
Interval to be multiplied.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-74

nfactor (IN)
Oracle NUMBER to be multiplied.

result (OUT)
The resulting interval (inter * nfactor).

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if any of the
following statements is true:

• The resulting year is greater than SB4MAXVAL.

• The resulting year is less than SB4MINVAL.

Related Topics

• OCIIntervalDivide()
Divides an interval by an Oracle NUMBER to produce an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.47 OCIIntervalSetDaySecond()
Sets day, hour, minute, and second in an interval.

Purpose

Sets day, hour, minute, and second in an interval.

Syntax

sword OCIIntervalSetDaySecond (void *hndl,
 OCIError *err,
 sb4 dy,
 sb4 hr,
 sb4 mm,
 sb4 ss,
 sb4 fsec,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dy (IN)
Number of days.

hr (IN)
Number of hours.

mm (IN)
Number of minutes.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-75

ss (IN)
Number of seconds.

fsec (IN)
Number of nano seconds.

result (OUT)
The resulting interval.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalGetDaySecond()
Gets values of day, hour, minute, and second from an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.48 OCIIntervalSetYearMonth()
Sets year and month in an interval.

Purpose

Sets year and month in an interval.

Syntax

sword OCIIntervalSetYearMonth (void *hndl,
 OCIError *err,
 sb4 yr,
 sb4 mnth,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

yr (IN)
Year value.

mnth (IN)
Month value.

result (OUT)
The resulting interval.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if any of the
following statements is true:

Chapter 29
OCI Date, Datetime, and Interval Functions

29-76

• The resulting year is greater than SB4MAXVAL.

• The resulting year is less than SB4MINVAL.

Related Topics

• OCIIntervalGetYearMonth()
Gets year and month from an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.49 OCIIntervalSubtract()
Subtracts two intervals and stores the result in an interval.

Purpose

Subtracts two intervals and stores the result in an interval.

Syntax

sword OCIIntervalSubtract (void *hndl,
 OCIError *err,
 OCIInterval *minuend,
 OCIInterval *subtrahend,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

minuend (IN)
The interval to be subtracted from.

subtrahend (IN)
The interval subtracted from minuend.

result (OUT)
The resulting interval (minuend - subtrahend).

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if any of the
following statements is true:

• The resulting year is greater than SB4MAXVAL.

• The resulting year is less than SB4MINVAL.

• The two input intervals are not mutually comparable.

Related Topics

• OCIIntervalAdd()
Adds two intervals to produce a resulting interval.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-77

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.50 OCIIntervalToNumber()
Converts an interval to an Oracle NUMBER.

Purpose

Converts an interval to an Oracle NUMBER.

Syntax

sword OCIIntervalToNumber (void *hndl,
 OCIError *err,
 OCIInterval *interval,
 OCINumber *number);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be converted.

number (OUT)
Oracle NUMBER result (in years for YEARMONTH interval and in days for DAYSECOND).

Comments

Fractional portions of the date (for instance, minutes and seconds if the unit chosen is hours)
are included in the Oracle NUMBER produced. Excess precision is truncated.

Returns

OCI_SUCCESS; or OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Topics

• OCIIntervalFromNumber()
Converts an Oracle NUMBER to an interval.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.3.51 OCIIntervalToText()
When given an interval, produces a string representing the interval.

Purpose

When given an interval, produces a string representing the interval.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-78

Syntax

sword OCIIntervalToText (void *hndl,
 OCIError *err,
 const OCIInterval *interval,
 ub1 lfprec,
 ub1 fsprec,
 OraText *buffer,
 size_t buflen,
 size_t *resultlen);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be converted.

lfprec (IN)
Leading field precision. (The number of digits used to represent the leading field.)

fsprec (IN)
Fractional second precision of the interval (the number of digits used to represent the
fractional seconds).

buffer (OUT)
Buffer to hold the result.

buflen (IN)
The length of buffer.

resultlen (OUT)
The length of the result placed into buffer.

Comments

The interval literal is output as 'year' or '[year-]month' for INTERVAL YEAR TO MONTH intervals
and as 'seconds' or 'minutes[:seconds]' or 'hours[:minutes[:seconds]]' or
'days[hours[:minutes[:seconds]]]' for INTERVAL DAY TO SECOND intervals (where optional fields
are surrounded by brackets).

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE, if err is a NULL pointer; or OCI_ERROR, if the buffer is not
large enough to hold the result.

Related Topics

• OCIIntervalFromText()
When given an interval string, returns the interval represented by the string. The type of
the interval is the type of the result descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Date, Datetime, and Interval Functions

29-79

29.4 OCI NUMBER Functions
Lists and describes the OCI NUMBER functions.

Table 29-11 describes the OCI NUMBER functions that are described in this section.

See Also:

OCINumber Examples

Table 29-11 NUMBER Functions

Function Purpose

OCINumberAbs() Compute the absolute value

OCINumberAdd() Add a NUMBER to a NUMBER
OCINumberArcCos() Compute the arc cosine

OCINumberArcSin() Compute the arc sine

OCINumberArcTan() Compute the arc tangent

OCINumberArcTan2() Compute the arc tangent given two arguments
for NUMBER

OCINumberAssign() Assign one NUMBER to another

OCINumberCeil() Compute the ceiling of NUMBER
OCINumberCmp() Compare one NUMBER with another NUMBER
OCINumberCos() Compute the cosine

OCINumberDec() Decrement a NUMBER
OCINumberDiv() Divide a NUMBER by a NUMBER
OCINumberExp() Raise e to the specified Oracle NUMBER power

OCINumberFloor() Compute the floor value of a NUMBER
OCINumberFromInt() Convert an integer to an Oracle NUMBER
OCINumberFromReal() Convert a real type to an Oracle NUMBER
OCINumberFromText() Convert a string to an Oracle NUMBER
OCINumberHypCos() Compute the hyperbolic cosine

OCINumberHypSin() Compute the hyperbolic sine

OCINumberHypTan() Compute the hyperbolic tangent

OCINumberInc() Increment an Oracle NUMBER
OCINumberIntPower() Raise a given base to an integer power

OCINumberIsInt() Test if a NUMBER is an integer

OCINumberIsZero() Test if a NUMBER is zero

OCINumberLn() Compute the natural logarithm

OCINumberLog() Compute the logarithm to an arbitrary base

OCINumberMod() Gets the modulus (remainder) of the division of
two Oracle NUMBERs

Chapter 29
OCI NUMBER Functions

29-80

Table 29-11 (Cont.) NUMBER Functions

Function Purpose

OCINumberMul() Multiply one Oracle NUMBER by another Oracle
NUMBER

OCINumberNeg() Negates an Oracle NUMBER
OCINumberPower() Raises a given base to a given exponent

OCINumberPrec() Round a NUMBER to a specified number of
decimal places

OCINumberRound() Round an Oracle NUMBER to a specified decimal
place

OCINumberSetPi() Initialize a NUMBER to pi

OCINumberSetZero() Initialize a NUMBER to zero

OCINumberShift() Multiply by 10, shifting a specified number of
decimal places

OCINumberSign() Obtain the sign of an Oracle NUMBER
OCINumberSin() Compute the sine

OCINumberSqrt() Compute the square root of a NUMBER
OCINumberSub() Subtract a NUMBER from a NUMBER
OCINumberTan() Compute the tangent

OCINumberToInt() Convert an Oracle NUMBER to an integer

OCINumberToReal() Convert an Oracle NUMBER to a real type

OCINumberToRealArray() Convert an array of NUMBER to a real array.

OCINumberToText() Convert an Oracle NUMBER to a string

OCINumberTrunc() Truncate an Oracle NUMBER at a specified
decimal place

• OCINumberAbs()
Computes the absolute value of an Oracle NUMBER.

• OCINumberAdd()
Adds a NUMBER to another NUMBER.

• OCINumberArcCos()
Takes the arc cosine in radians of an Oracle NUMBER.

• OCINumberArcSin()
Takes the arc sine in radians of an Oracle NUMBER.

• OCINumberArcTan()
Takes the arc tangent in radians of an Oracle NUMBER.

• OCINumberArcTan2()
Takes the arc tangent given two arguments for Oracle NUMBER.

• OCINumberAssign()
Assigns one Oracle NUMBER to another Oracle NUMBER.

• OCINumberCeil()
Computes the ceiling value of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-81

• OCINumberCmp()
Compares one Oracle NUMBER with another Oracle NUMBER.

• OCINumberCos()
Computes the cosine in radians of an Oracle NUMBER.

• OCINumberDec()
12.1.0.2, added a short description.

• OCINumberDiv()
Divides one Oracle NUMBER by another Oracle NUMBER.

• OCINumberExp()
Raises e to the specified Oracle NUMBER power.

• OCINumberFloor()
Computes the floor (round down) value of an Oracle NUMBER.

• OCINumberFromInt()
Converts an integer to an Oracle NUMBER.

• OCINumberFromReal()
Converts a real (floating-point) type to an Oracle NUMBER.

• OCINumberFromText()
Converts a character string to an Oracle NUMBER.

• OCINumberHypCos()
Computes the hyperbolic cosine of an Oracle NUMBER.

• OCINumberHypSin()
Computes the hyperbolic sine of an Oracle NUMBER.

• OCINumberHypTan()
Computes the hyperbolic tangent of an Oracle NUMBER.

• OCINumberInc()
Increments an Oracle NUMBER.

• OCINumberIntPower()
Raises a given base to a given integer power.

• OCINumberIsInt()
Tests if an OCINumber is an integer.

• OCINumberIsZero()
Tests if the given NUMBER equals zero.

• OCINumberLn()
Takes the natural logarithm (base e) of an Oracle NUMBER.

• OCINumberLog()
Takes the logarithm, to any base, of an Oracle NUMBER.

• OCINumberMod()
Gets the modulus (remainder) of the division of two Oracle NUMBERs.

• OCINumberMul()
Multiplies one Oracle NUMBER by another Oracle NUMBER.

• OCINumberNeg()
Negates an Oracle NUMBER.

• OCINumberPower()
Raises a given base to a given exponent.

Chapter 29
OCI NUMBER Functions

29-82

• OCINumberPrec()
Rounds an OCINumber to a specified number of decimal digits.

• OCINumberRound()
Rounds an Oracle NUMBER to a specified decimal place.

• OCINumberSetPi()
Sets an OCINumber to pi.

• OCINumberSetZero()
Initializes an Oracle NUMBER to zero.

• OCINumberShift()
Multiplies a NUMBER by a power of 10 by shifting it a specified number of decimal places.

• OCINumberSign()
Gets sign of an Oracle NUMBER.

• OCINumberSin()
Computes the sine in radians of an Oracle NUMBER.

• OCINumberSqrt()
Computes the square root of an Oracle NUMBER.

• OCINumberSub()
Subtracts one Oracle NUMBER from another Oracle NUMBER.

• OCINumberTan()
Computes the tangent in radians of an Oracle NUMBER.

• OCINumberToInt()
Converts an Oracle NUMBER type to integer.

• OCINumberToReal()
Converts an Oracle NUMBER type to a real type.

• OCINumberToRealArray()
Converts an array of NUMBER to an array of real type.

• OCINumberToText()
Converts an Oracle NUMBER to a character string according to a specified format.

• OCINumberTrunc()
Truncates an Oracle NUMBER at a specified decimal place.

29.4.1 OCINumberAbs()
Computes the absolute value of an Oracle NUMBER.

Purpose

Computes the absolute value of an Oracle NUMBER.

Syntax

sword OCINumberAbs (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Chapter 29
OCI NUMBER Functions

29-83

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
The absolute value of the input NUMBER.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.2 OCINumberAdd()
Adds a NUMBER to another NUMBER.

Purpose

Adds a NUMBER to another NUMBER.

Syntax

sword OCINumberAdd (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
The first NUMBER to be added to the second NUMBER.

result (OUT)
Result of adding number1 to number2.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberSub()
Subtracts one Oracle NUMBER from another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-84

29.4.3 OCINumberArcCos()
Takes the arc cosine in radians of an Oracle NUMBER.

Purpose

Takes the arc cosine in radians of an Oracle NUMBER.

Syntax

sword OCINumberArcCos (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc cosine.

result (OUT)
Result of the arc cosine in radians.

Returns

This function returns an error if any of the NUMBER arguments is NULL, if number is less than –1,
or if number is greater than 1.

Related Topics

• OCINumberCos()
Computes the cosine in radians of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.4 OCINumberArcSin()
Takes the arc sine in radians of an Oracle NUMBER.

Purpose

Takes the arc sine in radians of an Oracle NUMBER.

Syntax

sword OCINumberArcSin (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Chapter 29
OCI NUMBER Functions

29-85

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc sine.

result (OUT)
Result of the arc sine in radians.

Returns

This function returns an error if any of the NUMBER arguments is NULL, if number is less than –1,
or if number is greater than 1.

Related Topics

• OCINumberSin()
Computes the sine in radians of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.5 OCINumberArcTan()
Takes the arc tangent in radians of an Oracle NUMBER.

Purpose

Takes the arc tangent in radians of an Oracle NUMBER.

Syntax

sword OCINumberArcTan (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberTan()
Computes the tangent in radians of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-86

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.6 OCINumberArcTan2()
Takes the arc tangent given two arguments for Oracle NUMBER.

Purpose

Takes the arc tangent given two arguments for Oracle NUMBER.

Syntax

sword OCINumberArcTan2 (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Argument 1 of the arc tangent.

number2 (IN)
Argument 2 of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Returns

This function returns an error if any of the NUMBER arguments is NULL or if number2 equals 0.

Related Topics

• OCINumberTan()
Computes the tangent in radians of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.7 OCINumberAssign()
Assigns one Oracle NUMBER to another Oracle NUMBER.

Purpose

Assigns one Oracle NUMBER to another Oracle NUMBER.

Syntax

sword OCINumberAssign (OCIError *err,
 const OCINumber *from,
 OCINumber *to);

Chapter 29
OCI NUMBER Functions

29-87

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
NUMBER to be assigned.

to (OUT)
NUMBER copied into.

Comments

Assigns the NUMBER identified by from to the NUMBER identified by to.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberCmp()
Compares one Oracle NUMBER with another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.8 OCINumberCeil()
Computes the ceiling value of an Oracle NUMBER.

Purpose

Computes the ceiling value of an Oracle NUMBER.

Syntax

sword OCINumberCeil (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
Output that contains the ceiling value of the input NUMBER.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Chapter 29
OCI NUMBER Functions

29-88

Related Topics

• OCINumberFloor()
Computes the floor (round down) value of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.9 OCINumberCmp()
Compares one Oracle NUMBER with another Oracle NUMBER.

Purpose

Compares one Oracle NUMBER with another Oracle NUMBER.

Syntax

sword OCINumberCmp (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
The first NUMBER to compare with the second NUMBER.

result (OUT)
Comparison result as specified in Table 29-12.

Table 29-12 Comparison Results Returned by the result Parameter for
OCINumberCmp()

Comparison Result Output in result Parameter

number1 < number2 negative

number1 = number2 0
number1 > number2 positive

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberAssign()
Assigns one Oracle NUMBER to another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-89

29.4.10 OCINumberCos()
Computes the cosine in radians of an Oracle NUMBER.

Purpose

Computes the cosine in radians of an Oracle NUMBER.

Syntax

sword OCINumberCos (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine in radians.

result (OUT)
Result of the cosine.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberArcCos()
Takes the arc cosine in radians of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.11 OCINumberDec()
12.1.0.2, added a short description.

Purpose

Decrements an Oracle NUMBER in place.

Syntax

sword OCINumberDec (OCIError *err,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 29
OCI NUMBER Functions

29-90

number (IN/OUT)
A positive Oracle NUMBER to be decremented.

Comments

Decrements an Oracle NUMBER in place. It is assumed that the input is an integer between 0
and 100^21-2. If the input is too large, it is treated as 0; the result is an Oracle NUMBER 1. If the
input is not a positive integer, the result is unpredictable.

Returns

This function returns an error if the input NUMBER is NULL.

Related Topics

• OCINumberInc()
Increments an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.12 OCINumberDiv()
Divides one Oracle NUMBER by another Oracle NUMBER.

Purpose

Divides one Oracle NUMBER by another Oracle NUMBER.

Syntax

sword OCINumberDiv (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Division result.

Comments

Divides number1 by number2 and returns the result in result.

Returns

This function returns an error if any of the following statements is true:

• Any of the NUMBER arguments is NULL.

Chapter 29
OCI NUMBER Functions

29-91

• There is an underflow error.

• There is a divide-by-zero error.

Related Topics

• OCINumberMul()
Multiplies one Oracle NUMBER by another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.13 OCINumberExp()
Raises e to the specified Oracle NUMBER power.

Purpose

Raises e to the specified Oracle NUMBER power.

Syntax

sword OCINumberExp (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
This function raises e to this Oracle NUMBER power.

result (OUT)
Output of exponentiation.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberLn()
Takes the natural logarithm (base e) of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.14 OCINumberFloor()
Computes the floor (round down) value of an Oracle NUMBER.

Purpose

Computes the floor (round down) value of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-92

Syntax

sword OCINumberFloor (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
The floor (round down) value of the input NUMBER.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberCeil()
Computes the ceiling value of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.15 OCINumberFromInt()
Converts an integer to an Oracle NUMBER.

Purpose

Converts an integer to an Oracle NUMBER.

Syntax

sword OCINumberFromInt (OCIError *err,
 const void *inum,
 uword inum_length,
 uword inum_s_flag,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inum (IN)
Pointer to the integer to convert.

inum_length (IN)
Size of the integer.

Chapter 29
OCI NUMBER Functions

29-93

inum_s_flag (IN)
Flag that designates the sign of the integer, as follows:

• OCI_NUMBER_UNSIGNED - Unsigned values

• OCI_NUMBER_SIGNED - Signed values

number (OUT)
Given integer converted to Oracle NUMBER.

Comments

This is a native type conversion function. It converts any Oracle standard system-native integer
type, such as ub4 or sb2, to an Oracle NUMBER.

Returns

This function returns an error if the number is too big to fit into an Oracle NUMBER, if number or
inum is NULL, or if an invalid sign flag value is passed in inum_s_flag.

Related Topics

• OCINumberToInt()
Converts an Oracle NUMBER type to integer.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.16 OCINumberFromReal()
Converts a real (floating-point) type to an Oracle NUMBER.

Purpose

Converts a real (floating-point) type to an Oracle NUMBER.

Syntax

sword OCINumberFromReal (OCIError *err,
 const void *rnum,
 uword rnum_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rnum (IN)
Pointer to the floating-point number to convert.

rnum_length (IN)
The size of the desired result, which equals sizeof({float | double | long double}).

number (OUT)
Given float converted to Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-94

Comments

This is a native type conversion function. It converts a system-native floating-point type to an
Oracle NUMBER.

Returns

This function returns an error if number or rnum is NULL, or if rnum_length equals zero.

Related Topics

• OCINumberFromText()
Converts a character string to an Oracle NUMBER.

29.4.17 OCINumberFromText()
Converts a character string to an Oracle NUMBER.

Purpose

Converts a character string to an Oracle NUMBER.

Syntax

sword OCINumberFromText (OCIError *err,
 const OraText *str,
 ub4 str_length,
 const OraText *fmt,
 ub4 fmt_length,
 const OraText *nls_params,
 ub4 nls_p_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

str (IN)
Input string to convert to Oracle NUMBER.

str_length (IN)
Size of the input string.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
Globalization support format specification. If it is the NULL string (""), then the default
parameters for the session are used.

nls_p_length (IN)
Length of the nls_params parameter.

Chapter 29
OCI NUMBER Functions

29-95

number (OUT)
Given string converted to NUMBER.

Comments

Converts the given string to a NUMBER according to the specified format. See the TO_NUMBER
conversion function described in the Oracle Database SQL Language Reference for a
description of format and multilingual parameters.

Returns

This function returns an error if there is an invalid format, an invalid multibyte format, or an
invalid input string, if number or str is NULL, or if str_length is zero.

29.4.18 OCINumberHypCos()
Computes the hyperbolic cosine of an Oracle NUMBER.

Purpose

Computes the hyperbolic cosine of an Oracle NUMBER.

Syntax

sword OCINumberHypCos (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine hyperbolic.

result (OUT)
Result of the cosine hyperbolic.

Returns

This function returns an error if either of the number arguments is NULL.

Note:

An Oracle NUMBER overflow causes an unpredictable result value.

Related Topics

• OCINumberHypSin()
Computes the hyperbolic sine of an Oracle NUMBER.

• OCINumberHypTan()
Computes the hyperbolic tangent of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-96

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.19 OCINumberHypSin()
Computes the hyperbolic sine of an Oracle NUMBER.

Purpose

Computes the hyperbolic sine of an Oracle NUMBER.

Syntax

sword OCINumberHypSin (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine hyperbolic.

result (OUT)
Result of the sine hyperbolic.

Returns

This function returns an error if either of the NUMBER arguments is NULL.

Note:

An Oracle NUMBER overflow causes an unpredictable result value.

Related Topics

• OCINumberHypCos()
Computes the hyperbolic cosine of an Oracle NUMBER.

• OCINumberHypTan()
Computes the hyperbolic tangent of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.20 OCINumberHypTan()
Computes the hyperbolic tangent of an Oracle NUMBER.

Purpose

Computes the hyperbolic tangent of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-97

Syntax

sword OCINumberHypTan (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent hyperbolic.

result (OUT)
Result of the tangent hyperbolic.

Returns

This function returns an error if either of the NUMBER arguments is NULL.

Note:

An Oracle NUMBER overflow causes an unpredictable result value.

Related Topics

• OCINumberHypCos()
Computes the hyperbolic cosine of an Oracle NUMBER.

• OCINumberHypSin()
Computes the hyperbolic sine of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.21 OCINumberInc()
Increments an Oracle NUMBER.

Purpose

Increments an Oracle NUMBER.

Syntax

sword OCINumberInc (OCIError *err,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 29
OCI NUMBER Functions

29-98

number (IN/OUT)
A positive Oracle NUMBER to be incremented.

Comments

Increments an Oracle NUMBER in place. It is assumed that the input is an integer between 0 and
100^21-2. If the input is too large, it is treated as 0 - the result is an Oracle NUMBER 1. If the
input is not a positive integer, the result is unpredictable.

Returns

This function returns an error if the input NUMBER is NULL.

Related Topics

• OCINumberDec()
12.1.0.2, added a short description.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.22 OCINumberIntPower()
Raises a given base to a given integer power.

Purpose

Raises a given base to a given integer power.

Syntax

sword OCINumberIntPower (OCIError *err,
 const OCINumber *base,
 const sword exp,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

exp (IN)
Exponent to which the base is raised.

result (OUT)
Output of exponentiation.

Returns

This function returns an error if either of the NUMBER arguments is NULL.

Related Topics

• OCINumberPower()
Raises a given base to a given exponent.

Chapter 29
OCI NUMBER Functions

29-99

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.23 OCINumberIsInt()
Tests if an OCINumber is an integer.

Purpose

Tests if an OCINumber is an integer.

Syntax

sword OCINumberIsInt (OCIError *err,
 const OCINumber *number,
 boolean *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to be tested.

result (OUT)
Set to TRUE if integer value; otherwise, FALSE

Returns

This function returns an error if number or result is NULL.

Related Topics

• OCINumberRound()
Rounds an Oracle NUMBER to a specified decimal place.

• OCINumberTrunc()
Truncates an Oracle NUMBER at a specified decimal place.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.24 OCINumberIsZero()
Tests if the given NUMBER equals zero.

Purpose

Tests if the given NUMBER equals zero.

Syntax

sword OCINumberIsZero (OCIError *err,
 const OCINumber *number,
 boolean *result);

Chapter 29
OCI NUMBER Functions

29-100

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to compare.

result (OUT)
Set to TRUE if equal to zero; otherwise, set to FALSE.

Returns

This function returns an error if the NUMBER argument is NULL.

Related Topics

• OCINumberSetZero()
Initializes an Oracle NUMBER to zero.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.25 OCINumberLn()
Takes the natural logarithm (base e) of an Oracle NUMBER.

Purpose

Takes the natural logarithm (base e) of an Oracle NUMBER.

Syntax

sword OCINumberLn (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Logarithm of this NUMBER is computed.

result (OUT)
Logarithm result.

Returns

This function returns an error if either of the NUMBER arguments is NULL, or if number is less than
or equal to zero.

Related Topics

• OCINumberExp()
Raises e to the specified Oracle NUMBER power.

Chapter 29
OCI NUMBER Functions

29-101

• OCINumberLog()
Takes the logarithm, to any base, of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.26 OCINumberLog()
Takes the logarithm, to any base, of an Oracle NUMBER.

Purpose

Takes the logarithm, to any base, of an Oracle NUMBER.

Syntax

sword OCINumberLog (OCIError *err,
 const OCINumber *base,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the logarithm.

number (IN)
Operand.

result (OUT)
Logarithm result.

Returns

This function returns an error if:

• Any of the NUMBER arguments is NULL
• The value of number <= 0

• The value of base <= 0

Related Topics

• OCINumberLn()
Takes the natural logarithm (base e) of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-102

29.4.27 OCINumberMod()
Gets the modulus (remainder) of the division of two Oracle NUMBERs.

Purpose

Gets the modulus (remainder) of the division of two Oracle NUMBERs.

Syntax

sword OCINumberMod (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Remainder of the result.

Returns

This function returns an error if number1 or number2 is NULL, or if there is a divide-by-zero error.

Related Topics

• OCINumberDiv()
Divides one Oracle NUMBER by another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.28 OCINumberMul()
Multiplies one Oracle NUMBER by another Oracle NUMBER.

Purpose

Multiplies one Oracle NUMBER by another Oracle NUMBER.

Syntax

sword OCINumberMul (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Chapter 29
OCI NUMBER Functions

29-103

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
NUMBER to multiply.

number2 (IN)
NUMBER to multiply.

result (OUT)
Multiplication result.

Comments

Multiplies number1 with number2 and returns the result in result.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberDiv()
Divides one Oracle NUMBER by another Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.29 OCINumberNeg()
Negates an Oracle NUMBER.

Purpose

Negates an Oracle NUMBER.

Syntax

sword OCINumberNeg (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to negate.

result (OUT)
Contains negated value of number.

Chapter 29
OCI NUMBER Functions

29-104

Returns

This function returns an error if either of the NUMBER arguments is NULL.

Related Topics

• OCINumberAbs()
Computes the absolute value of an Oracle NUMBER.

• OCINumberSign()
Gets sign of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.30 OCINumberPower()
Raises a given base to a given exponent.

Purpose

Raises a given base to a given exponent.

Syntax

sword OCINumberPower (OCIError *err,
 const OCINumber *base,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

number (IN)
Exponent to which the base is to be raised.

result (OUT)
Output of exponentiation.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberExp()
Raises e to the specified Oracle NUMBER power.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-105

29.4.31 OCINumberPrec()
Rounds an OCINumber to a specified number of decimal digits.

Purpose

Rounds an OCINumber to a specified number of decimal digits.

Syntax

sword OCINumberPrec (OCIError *err,
 const OCINumber *number,
 eword nDigs,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
The number for which to set precision.

nDigs (IN)
The number of decimal digits desired in the result.

result (OUT)
The result.

Comments

Performs a floating-point round with respect to the number of digits.

Returns

This function returns an error any of the NUMBER arguments is NULL.

Related Topics

• OCINumberRound()
Rounds an Oracle NUMBER to a specified decimal place.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.32 OCINumberRound()
Rounds an Oracle NUMBER to a specified decimal place.

Purpose

Rounds an Oracle NUMBER to a specified decimal place.

Syntax

sword OCINumberRound (OCIError *err,
 const OCINumber *number,

Chapter 29
OCI NUMBER Functions

29-106

 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to round.

decplace (IN)
Number of decimal digits to the right of the decimal point to round to. Negative values are
allowed.

result (OUT)
Output of rounding.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberTrunc()
Truncates an Oracle NUMBER at a specified decimal place.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.33 OCINumberSetPi()
Sets an OCINumber to pi.

Purpose

Sets an OCINumber to pi.

Syntax

void OCINumberSetPi (OCIError *err,
 OCINumber *num);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

num (OUT)
NUMBER set to the value of pi.

Comments

Initializes the given NUMBER to the value of pi.

Chapter 29
OCI NUMBER Functions

29-107

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.34 OCINumberSetZero()
Initializes an Oracle NUMBER to zero.

Purpose

Initializes an Oracle NUMBER to zero.

Syntax

void OCINumberSetZero (OCIError *err
 OCINumber *num);

Parameters

err (IN)
A valid OCI error handle. This function does not check for errors because the function never
produces an error.

num (IN/OUT)
Oracle NUMBER to initialize to zero value.

Comments

None.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.35 OCINumberShift()
Multiplies a NUMBER by a power of 10 by shifting it a specified number of decimal places.

Purpose

Multiplies a NUMBER by a power of 10 by shifting it a specified number of decimal places.

Syntax

sword OCINumberShift (OCIError *err,
 const OCINumber *number,
 const sword nDig,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

Chapter 29
OCI NUMBER Functions

29-108

number (IN)
Oracle NUMBER to be shifted.

nDig (IN)
Number of decimal places to shift.

result (OUT)
Shift result.

Comments

Multiplies number by 10^nDig and sets product to the result.

Returns

This function returns an error if the input number is NULL.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.36 OCINumberSign()
Gets sign of an Oracle NUMBER.

Purpose

Gets sign of an Oracle NUMBER.

Syntax

sword OCINumberSign (OCIError *err,
 const OCINumber *number,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER whose sign is returned.

result (OUT)
Table 29-13 lists the possible return values.

Table 29-13 Values of result

Value of number Output in result Parameter

number < 0 -1

number == 0 0

number > 0 1

Chapter 29
OCI NUMBER Functions

29-109

Returns

This function returns an error if number or result is NULL.

Related Topics

• OCINumberAbs()
Computes the absolute value of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.37 OCINumberSin()
Computes the sine in radians of an Oracle NUMBER.

Purpose

Computes the sine in radians of an Oracle NUMBER.

Syntax

sword OCINumberSin (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine in radians.

result (OUT)
Result of the sine.

Returns

This function returns an error if either of the number arguments is NULL.

Related Topics

• OCINumberArcSin()
Takes the arc sine in radians of an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.38 OCINumberSqrt()
Computes the square root of an Oracle NUMBER.

Purpose

Computes the square root of an Oracle NUMBER.

Chapter 29
OCI NUMBER Functions

29-110

Syntax

sword OCINumberSqrt (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
Output that contains the square root of the input NUMBER.

Returns

This function returns an error if number is NULL or number is negative.

Related Topics

• OCINumberPower()
Raises a given base to a given exponent.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.39 OCINumberSub()
Subtracts one Oracle NUMBER from another Oracle NUMBER.

Purpose

Subtracts one Oracle NUMBER from another Oracle NUMBER.

Syntax

sword OCINumberSub (OCIError *err,
 const OCINumber *number1,
 const OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
This function subtracts number2 from number1.

result (OUT)
Subtraction result.

Chapter 29
OCI NUMBER Functions

29-111

Comments

Subtracts number2 from number1 and returns the result in result.

Returns

This function returns an error if any of the number arguments is NULL.

Related Topics

• OCINumberAdd()
Adds a NUMBER to another NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.40 OCINumberTan()
Computes the tangent in radians of an Oracle NUMBER.

Purpose

Computes the tangent in radians of an Oracle NUMBER.

Syntax

sword OCINumberTan (OCIError *err,
 const OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent in radians.

result (OUT)
Result of the tangent.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberArcTan()
Takes the arc tangent in radians of an Oracle NUMBER.

• OCINumberArcTan2()
Takes the arc tangent given two arguments for Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-112

29.4.41 OCINumberToInt()
Converts an Oracle NUMBER type to integer.

Purpose

Converts an Oracle NUMBER type to integer.

Syntax

sword OCINumberToInt (OCIError *err,
 const OCINumber *number,
 uword rsl_length,
 uword rsl_flag,
 void *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER to convert.

rsl_length (IN)
Size of the desired result.

rsl_flag (IN)
Flag that designates the sign of the output, as follows:

• OCI_NUMBER_UNSIGNED - Unsigned values

• OCI_NUMBER_SIGNED - Signed values

rsl (OUT)
Pointer to space for the result.

Comments

This is a native type conversion function. It converts the given Oracle NUMBER into an integer of
the form xbn, such as ub2, ub4, or sb2.

Returns

This function returns an error if number or rsl is NULL, if number is too big (overflow) or too
small (underflow), or if an invalid sign flag value is passed in rsl_flag.

Related Topics

• OCINumberFromInt()
Converts an integer to an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-113

29.4.42 OCINumberToReal()
Converts an Oracle NUMBER type to a real type.

Purpose

Converts an Oracle NUMBER type to a real type.

Syntax

sword OCINumberToReal (OCIError *err,
 const OCINumber *number,
 uword rsl_length,
 void *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER to convert.

rsl_length (IN)
The size of the desired result, which equals sizeof({ float | double | long double}).

rsl (OUT)
Pointer to space for storing the result.

Comments

This is a native type conversion function. It converts an Oracle NUMBER into a system-native real
type. This function only converts NUMBERs up to LDBL_DIG, DBL_DIG, or FLT_DIG digits of
precision and removes trailing zeros. These constants are defined in float.h.

You must pass a valid OCINumber to this function. Otherwise, the result is undefined.

Related Topics

• OCINumberFromReal()
Converts a real (floating-point) type to an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.43 OCINumberToRealArray()
Converts an array of NUMBER to an array of real type.

Purpose

Converts an array of NUMBER to an array of real type.

Syntax

sword OCINumberToRealArray (OCIError *err,
 const OCINumber **number,

Chapter 29
OCI NUMBER Functions

29-114

 uword elems,
 uword rsl_length,
 void *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Pointer to array of NUMBER to be converted.

elems (IN)
Maximum number of NUMBER pointers.

rsl_length (IN)
The size of the desired result, that is, sizeof({ float | double | long double }).

rsl (OUT)
Pointer to array of space for storing the result.

Comments

Native type conversion function that converts an Oracle NUMBER into a system-native real type.
This function only converts numbers up to LDBL_DIG, DBL_DIG, or FLT_DIG digits of precision
and removes trailing zeroes. The constants are defined in the float.h header file.

You must pass a valid OCINumber to this function. Otherwise, the result is undefined.

Returns

OCI_SUCCESS, if the function completes successfully; OCI_INVALID_HANDLE, if err is NULL; or
OCI_ERROR, if number or rsl is NULL or rsl_length is 0.

Related Topics

• OCINumberToReal()
Converts an Oracle NUMBER type to a real type.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.4.44 OCINumberToText()
Converts an Oracle NUMBER to a character string according to a specified format.

Purpose

Converts an Oracle NUMBER to a character string according to a specified format.

Syntax

sword OCINumberToText (OCIError *err,
 const OCINumber *number,
 const OraText *fmt,
 ub4 fmt_length,
 const OraText *nls_params,
 ub4 nls_p_length,

Chapter 29
OCI NUMBER Functions

29-115

 ub4 *buf_size,
 OraText *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER to convert.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
Globalization support format specification. If it is a NULL string ((text *)0), then the default
parameters for the session is used.

nls_p_length (IN)
Length of the nls_params parameter.

buf_size (IN)
Size of the buffer.

buf (OUT)
Buffer into which the converted string is placed.

Comments

See the TO_NUMBER conversion function described in the Oracle Database SQL Language
Referencefor a description of format and globalization support parameters.

The converted number string is stored in buf, up to a maximum of buf_size bytes.

Returns

This function returns an error if:

• The value of number or buf is NULL
• The buffer is too small

• An invalid format or invalid multibyte format is passed

• A number to text translation for given format causes an overflow

Related Topics

• OCINumberFromText()
Converts a character string to an Oracle NUMBER.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI NUMBER Functions

29-116

29.4.45 OCINumberTrunc()
Truncates an Oracle NUMBER at a specified decimal place.

Purpose

Truncates an Oracle NUMBER at a specified decimal place.

Syntax

sword OCINumberTrunc (OCIError *err,
 const OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

decplace (IN)
Number of decimal digits to the right of the decimal point at which to truncate. Negative values
are allowed.

result (OUT)
Output of truncation.

Returns

This function returns an error if any of the NUMBER arguments is NULL.

Related Topics

• OCINumberRound()
Rounds an Oracle NUMBER to a specified decimal place.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5 OCI Raw Functions
Lists and describes the OCI raw functions.

Table 29-14 describes the OCI raw functions that are described in this section.

Table 29-14 Raw Functions

Function Purpose

OCIRawAllocSize() Get allocated size of raw memory in bytes

OCIRawAssignBytes() Assign raw bytes to raw

OCIRawAssignRaw() Assign raw to raw

Chapter 29
OCI Raw Functions

29-117

Table 29-14 (Cont.) Raw Functions

Function Purpose

OCIRawPtr() Get raw data pointer

OCIRawResize() Resize memory of variable-length raw

OCIRawSize() Get raw size

• OCIRawAllocSize()
Gets the allocated size of raw memory in bytes.

• OCIRawAssignBytes()
Assigns raw bytes of type ub1* to Oracle OCIRaw* data type.

• OCIRawAssignRaw()
Assigns one Oracle RAW data type to another Oracle RAW data type.

• OCIRawPtr()
Gets the pointer to raw data.

• OCIRawResize()
Resizes the memory of a given variable-length raw.

• OCIRawSize()
Returns the size of a given raw in bytes.

29.5.1 OCIRawAllocSize()
Gets the allocated size of raw memory in bytes.

Purpose

Gets the allocated size of raw memory in bytes.

Syntax

sword OCIRawAllocSize (OCIEnv *env,
 OCIError *err,
 const OCIRaw *raw,
 ub4 *allocsize);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

raw (IN)
Raw data whose allocated size in bytes is returned. This must be a non-NULL pointer.

allocsize (OUT)
The allocated size of raw memory in bytes that is returned.

Chapter 29
OCI Raw Functions

29-118

Comments

The allocated size is greater than or equal to the actual raw size.

Related Topics

• OCIRawResize()
Resizes the memory of a given variable-length raw.

• OCIRawSize()
Returns the size of a given raw in bytes.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5.2 OCIRawAssignBytes()
Assigns raw bytes of type ub1* to Oracle OCIRaw* data type.

Purpose

Assigns raw bytes of type ub1* to Oracle OCIRaw* data type.

Syntax

sword OCIRawAssignBytes (OCIEnv *env,
 OCIError *err,
 const ub1 *rhs,
 ub4 rhs_len,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, of data type ub1.

rhs_len (IN)
Length of the rhs raw bytes.

Chapter 29
OCI Raw Functions

29-119

lhs (IN/OUT)
Left-hand side (target) of the assignment OCIRaw data.

Comments

Assigns rhs raw bytes to lhs raw data type. The lhs raw may be resized depending upon the
size of the rhs. The raw bytes assigned are of type ub1.

Related Topics

• OCIRawAssignRaw()
Assigns one Oracle RAW data type to another Oracle RAW data type.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5.3 OCIRawAssignRaw()
Assigns one Oracle RAW data type to another Oracle RAW data type.

Purpose

Assigns one Oracle RAW data type to another Oracle RAW data type.

Syntax

sword OCIRawAssignRaw (OCIEnv *env,
 OCIError *err,
 const OCIRaw *rhs,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (rhs) (source) of the assignment; OCIRaw data.

lhs (IN/OUT)
Left-hand side (lhs) (target) of the assignment; OCIRaw data.

Chapter 29
OCI Raw Functions

29-120

Comments

Assigns rhs OCIRaw to lhs OCIRaw. The lhs OCIRaw may be resized depending upon the size of
the rhs.

Related Topics

• OCIRawAssignBytes()
Assigns raw bytes of type ub1* to Oracle OCIRaw* data type.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5.4 OCIRawPtr()
Gets the pointer to raw data.

Purpose

Gets the pointer to raw data.

Syntax

ub1 *OCIRawPtr (OCIEnv *env,
 const OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

raw (IN)
Pointer to the data of a given raw.

Comments

None.

Related Topics

• OCIRawAssignBytes()
Assigns raw bytes of type ub1* to Oracle OCIRaw* data type.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 29
OCI Raw Functions

29-121

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5.5 OCIRawResize()
Resizes the memory of a given variable-length raw.

Purpose

Resizes the memory of a given variable-length raw.

Syntax

sword OCIRawResize (OCIEnv *env,
 OCIError *err,
 ub2 new_size,
 OCIRaw **raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New size of the raw data in bytes.

raw (IN)
Variable-length raw pointer; the raw is resized to new_size.

Comments

This function resizes the memory of the given variable-length raw in the object cache. The
previous contents of the raw are not preserved. This function may allocate the raw in a new
memory region in which case the original memory occupied by the given raw is freed. If the
input raw is NULL (raw == NULL), then this function allocates memory for the raw data.

If the new_size is 0, then this function frees the memory occupied by raw, and a NULL pointer
value is returned.

Related Topics

• OCIRawAllocSize()
Gets the allocated size of raw memory in bytes.

• OCIRawSize()
Returns the size of a given raw in bytes.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 29
OCI Raw Functions

29-122

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.5.6 OCIRawSize()
Returns the size of a given raw in bytes.

Purpose

Returns the size of a given raw in bytes.

Syntax

ub4 OCIRawSize (OCIEnv *env,
 const OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

raw (IN/OUT)
Raw whose size is returned.

Comments

None.

Related Topics

• OCIRawAllocSize()
Gets the allocated size of raw memory in bytes.

• OCIRawResize()
Resizes the memory of a given variable-length raw.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Raw Functions

29-123

29.6 OCI REF Functions
Lists and describes the OCI Reference (REF) functions.

Table 29-15 describes the OCI Reference (REF) functions that are described in this section.

Table 29-15 Ref Functions

Function Purpose

OCIRefAssign() Assign one REF to another

OCIRefClear() Clear or nullify a REF
OCIRefFromHex() Convert hexadecimal string to REF
OCIRefHexSize() Return size of hexadecimal representation of REF
OCIRefIsEqual() Compare two REFs for equality

OCIRefIsNull() Test if a REF is NULL
OCIRefToHex() Convert REF to hexadecimal string

• OCIRefAssign()
Assigns one REF to another, such that both reference the same object.

• OCIRefClear()
Clears or NULLifies a given REF.

• OCIRefFromHex()
Converts the given hexadecimal string into a REF.

• OCIRefHexSize()
Returns the size of the hexadecimal representation of a REF.

• OCIRefIsEqual()
Compares two REFs to determine if they are equal.

• OCIRefIsNull()
Tests if a REF is NULL.

• OCIRefToHex()
Converts a REF to a hexadecimal string.

29.6.1 OCIRefAssign()
Assigns one REF to another, such that both reference the same object.

Purpose

Assigns one REF to another, such that both reference the same object.

Syntax

sword OCIRefAssign (OCIEnv *env,
 OCIError *err,
 const OCIRef *source,
 OCIRef **target);

Chapter 29
OCI REF Functions

29-124

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

source (IN)
REF to copy from.

target (IN/OUT)
REF to copy to.

Comments

Copies source REF to target REF; both then reference the same object. If the target REF
pointer is NULL (*target == NULL), then OCIRefAssign() allocates memory for the target REF
in the OCI object cache before the copy operation.

Related Topics

• OCIRefIsEqual()
Compares two REFs to determine if they are equal.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.2 OCIRefClear()
Clears or NULLifies a given REF.

Purpose

Clears or NULLifies a given REF.

Syntax

void OCIRefClear (OCIEnv *env,
 OCIRef *ref);

Chapter 29
OCI REF Functions

29-125

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

ref (IN/OUT)
REF to clear.

Comments

A REF is considered to be a NULL REF if it no longer points to an object. Logically, a NULL REF is a
dangling REF.

Note that a NULL REF is still a valid SQL value and is not SQL NULL. It can be used as a valid
non-NULL constant REF value for a NOT NULL column or attribute of a row in a table.

If a NULL pointer value is passed as a REF, then this function is nonoperational.

Related Topics

• OCIRefIsNull()
Tests if a REF is NULL.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.3 OCIRefFromHex()
Converts the given hexadecimal string into a REF.

Purpose

Converts the given hexadecimal string into a REF.

Syntax

sword OCIRefFromHex (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 const OraText *hex,
 ub4 length,
 OCIRef **ref);

Chapter 29
OCI REF Functions

29-126

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
The OCI service context handle, if the resulting ref is initialized with this service context.

hex (IN)
Hexadecimal text string, previously output by OCIRefToHex(), to convert into a REF.

length (IN)
Length of the hexadecimal text string.

ref (IN/OUT)
The REF into which the hexadecimal string is converted. If *ref is NULL on input, then space
for the REF is allocated in the object cache; otherwise, the memory occupied by the given REF
is reused.

Comments

This function ensures that the resulting REF is well formed. It does not ensure that the object
pointed to by the resulting REF exists.

Related Topics

• OCIRefToHex()
Converts a REF to a hexadecimal string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.4 OCIRefHexSize()
Returns the size of the hexadecimal representation of a REF.

Purpose

Returns the size of the hexadecimal representation of a REF.

Chapter 29
OCI REF Functions

29-127

Syntax

ub4 OCIRefHexSize (OCIEnv *env,
 const OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

ref (IN)
REF whose size in hexadecimal representation in bytes is returned.

Comments

Returns the size of the buffer in bytes required for the hexadecimal representation of the ref. A
buffer of at least this size must be passed to the ref-to-hex (OCIRefToHex()) conversion
function.

Returns

The size of the hexadecimal representation of the REF.

Related Topics

• OCIRefFromHex()
Converts the given hexadecimal string into a REF.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.5 OCIRefIsEqual()
Compares two REFs to determine if they are equal.

Purpose

Compares two REFs to determine if they are equal.

Syntax

boolean OCIRefIsEqual (OCIEnv *env,
 const OCIRef *x,
 const OCIRef *y);

Chapter 29
OCI REF Functions

29-128

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

x (IN)
REF to compare.

y (IN)
REF to compare.

Comments

Two REFs are equal if and only if they are both referencing the same object, whether persistent
or transient.

Note:

Two NULL REFs are considered not equal by this function.

Returns

TRUE, if the two REFs are equal.

FALSE, if the two REFs are not equal, or x is NULL, or y is NULL.
Related Topics

• OCIRefAssign()
Assigns one REF to another, such that both reference the same object.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.6 OCIRefIsNull()
Tests if a REF is NULL.

Purpose

Tests if a REF is NULL.

Chapter 29
OCI REF Functions

29-129

Syntax

boolean OCIRefIsNull (OCIEnv *env,
 const OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

ref (IN)
REF to test for NULL.

Comments

A REF is NULL if and only if:

• It is supposed to be referencing a persistent object, but the object's identifier is NULL
• It is supposed to be referencing a transient object, but it is currently not pointing to an

object

Note:

A REF is a dangling REF if the object that it points to does not exist.

Returns

Returns TRUE if the given REF is NULL; otherwise, it returns FALSE.

Related Topics

• OCIRefClear()
Clears or NULLifies a given REF.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.6.7 OCIRefToHex()
Converts a REF to a hexadecimal string.

Purpose

Converts a REF to a hexadecimal string.

Chapter 29
OCI REF Functions

29-130

Syntax

sword OCIRefToHex (OCIEnv *env,
 OCIError *err,
 const OCIRef *ref,
 OraText *hex,
 ub4 *hex_length);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
REF to be converted into a hexadecimal string; if ref is a NULL REF (that is, OCIRefIsNull(ref)
== TRUE), then a zero hex_length value is returned.

hex (OUT)
Buffer that is large enough to contain the resulting hexadecimal string; the content of the string
is opaque to the caller.

hex_length (IN/OUT)
On input, specifies the size of the hex buffer; on output, specifies the actual size of the
hexadecimal string being returned in hex.

Comments

Converts the given REF into a hexadecimal string, and returns the length of the string. The
resulting string is opaque to the caller.

Returns

This function returns an error if the given buffer is not big enough to hold the resulting string.

Related Topics

• OCIRefFromHex()
Converts the given hexadecimal string into a REF.

• OCIRefHexSize()
Returns the size of the hexadecimal representation of a REF.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI REF Functions

29-131

29.7 OCI String Functions
Lists and describes the OCI string functions.

Table 29-16 describes the OCI string functions that are described in this section.

Table 29-16 String Functions

Function Purpose

OCIStringAllocSize() Get the allocated size of string memory in
bytes

OCIStringAssign() Assign a string to a string

OCIStringAssignText() Assign a text string to a string

OCIStringPtr() Get a string pointer

OCIStringResize() Resize the string memory

OCIStringSize() Get the string size

• OCIStringAllocSize()
Gets the allocated size of string memory in code points (Unicode) or in bytes.

• OCIStringAssign()
Assigns one string to another string.

• OCIStringAssignText()
Assigns the source text string to the target string.

• OCIStringPtr()
Gets a pointer to the text of a given string.

• OCIStringResize()
Resizes the memory of a given string.

• OCIStringSize()
Gets the size of the given string vs.

29.7.1 OCIStringAllocSize()
Gets the allocated size of string memory in code points (Unicode) or in bytes.

Purpose

Gets the allocated size of string memory in code points (Unicode) or in bytes.

Syntax

sword OCIStringAllocSize (OCIEnv *env,
 OCIError *err,
 const OCIString *vs,
 ub4 *allocsize);

Chapter 29
OCI String Functions

29-132

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

vs (IN)
String whose allocated size in bytes is returned. The vs parameter must be a non-NULL
pointer.

allocsize (OUT)
The allocated size of string memory in bytes is returned.

Comments

The allocated size is greater than or equal to the actual string size.

Related Topics

• OCIStringResize()
Resizes the memory of a given string.

• OCIStringSize()
Gets the size of the given string vs.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.7.2 OCIStringAssign()
Assigns one string to another string.

Purpose

Assigns one string to another string.

Syntax

sword OCIStringAssign (OCIEnv *env,
 OCIError *err,
 const OCIString *rhs,
 OCIString **lhs);

Chapter 29
OCI String Functions

29-133

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment. Can be in UTF-16 format.

lhs (IN/OUT)
Left-hand side (target) of the assignment. Its buffer is in UTF-16 format if rhs is UTF-16.

Comments

Assigns rhs string to lhs string. The lhs string can be resized depending upon the size of the
rhs. The assigned string is NULL-terminated. The length field does not include the extra code
point or byte needed for NULL-termination.

Returns

This function returns an error if the assignment operation runs out of space.

Related Topics

• OCIStringAssignText()
Assigns the source text string to the target string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.7.3 OCIStringAssignText()
Assigns the source text string to the target string.

Purpose

Assigns the source text string to the target string.

Syntax

sword OCIStringAssignText (OCIEnv *env,
 OCIError *err,
 const OraText *rhs,
 ub4 rhs_len,
 OCIString **lhs);

Chapter 29
OCI String Functions

29-134

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, a text or UTF-16 Unicode string.

rhs_len (IN)
Length of the rhs string in bytes.

lhs (IN/OUT)
Left-hand side (target) of the assignment. Its buffer is in Unicode if rhs is in Unicode.

Comments

Assigns rhs string to lhs string. The lhs string may be resized depending upon the size of the
rhs. The assigned string is NULL-terminated. The length field does not include the extra byte or
code point needed for NULL-termination.

Related Topics

• OCIStringAssign()
Assigns one string to another string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.7.4 OCIStringPtr()
Gets a pointer to the text of a given string.

Purpose

Gets a pointer to the text of a given string.

Syntax

text *OCIStringPtr (OCIEnv *env,
 const OCIString *vs);

Chapter 29
OCI String Functions

29-135

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

vs (IN)
Pointer to the OCIString object whose character string is returned. If vs is in UTF-16 format,
the returned buffer is also in UTF-16 format. To determine the encoding of the returned buffer,
check the UTF-16 information in the OCIString vs itself, because it is not guaranteed that a
particular OCIString will have the same setting as env does. Check an object OCI function
that is designed to check member fields in objects.

Comments

None.

Related Topics

• OCIStringAssign()
Assigns one string to another string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.7.5 OCIStringResize()
Resizes the memory of a given string.

Purpose

Resizes the memory of a given string.

Syntax

sword OCIStringResize (OCIEnv *env,
 OCIError *err,
 ub4 new_size,
 OCIString **str);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

Chapter 29
OCI String Functions

29-136

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New memory size of the string in bytes. The new_size parameter must include space for the
NULL character as the string terminator.

str (IN/OUT)
Allocated memory for the string that is freed from the OCI object cache.

Comments

This function resizes the memory of the given variable-length string in the object cache.
Contents of the string are not preserved. This function may allocate the string in a new memory
region, in which case the original memory occupied by the given string is freed. If str is NULL,
this function allocates memory for the string. If new_size is 0, this function frees the memory
occupied by str and a NULL pointer value is returned.

Related Topics

• OCIStringAllocSize()
Gets the allocated size of string memory in code points (Unicode) or in bytes.

• OCIStringSize()
Gets the size of the given string vs.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.7.6 OCIStringSize()
Gets the size of the given string vs.

Purpose

Gets the size of the given string vs.

Syntax

ub4 OCIStringSize (OCIEnv *env,
 const OCIString *vs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

Chapter 29
OCI String Functions

29-137

vs (IN)
String whose size is returned, in number of bytes.

Comments

The returned size does not include an extra byte for NULL termination.

Related Topics

• OCIStringResize()
Resizes the memory of a given string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.8 OCI Table Functions
Lists and describes the OCI table functions.

Table 29-17 describes the OCI table functions that are described in this section.

Table 29-17 Table Functions

Function Purpose

OCITableDelete() Delete element

OCITableExists() Test whether element exists

OCITableFirst() Return first index of table

OCITableLast() Return last index of table

OCITableNext() Return next available index of table

OCITablePrev() Return previous available index of table

OCITableSize() Return current size of table

• OCITableDelete()
Deletes the element at the specified index.

• OCITableKeyDelete()
Deletes a key and the associated element from an associative array collection using a
string key.

• OCITableExists()
Tests whether an element exists at the given index.

• OCITableKeyExists()
Tests whether an element exists in an associative array collection using a string key.

• OCITableFirst()
Returns the index of the first existing element in a given table.

Chapter 29
OCI Table Functions

29-138

• OCITableKeyFirst()
Returns a reference pointer to the first key value in the associative array.

• OCITableLast()
Returns the index of the last existing element of a table.

• OCITableKeyLast()
Returns a pointer reference to the last key value in the associative array.

• OCITableNext()
Returns the index of the next existing element of a table.

• OCITableKeyNext ()
Returns a reference pointer to the next existing key in an associative array collection.

• OCITablePrev()
Returns the index of the previous existing element of a table.

• OCITableSize()
Returns the size of the given table, not including any holes created by deleted elements.

29.8.1 OCITableDelete()
Deletes the element at the specified index.

Purpose

Deletes the element at the specified index.

Syntax

sword OCITableDelete (OCIEnv *env,
 OCIError *err,
 sb4 index,
 OCITable *tbl);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element that must be deleted.

tbl (IN)
Table whose element is deleted.

Comments

This function returns an error if the element at the given index has already been deleted or if
the given index is not valid for the given table.

Chapter 29
OCI Table Functions

29-139

Note:

The position ordinals of the remaining elements of the table are not changed by
OCITableDelete(). The delete operation creates holes in the table.

Returns

An error is also returned if any input parameter is NULL.

Related Topics

• OCITableExists()
Tests whether an element exists at the given index.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.8.2 OCITableKeyDelete()
Deletes a key and the associated element from an associative array collection using a string
key.

Purpose

Deletes a key and the associated element from an associative array collection using a string
key. An error is returned if the element does not exist.

Syntax

sword OCITableKeyDelete (OCIEnv *env,
 OCIError *err,
 CONST void *key,
 ub4 keylen,
 OCIKeyType keytype,
 CONST OCITable *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

Chapter 29
OCI Table Functions

29-140

key (IN)
The non-null key value of the element in the associative array collection.

keylen (IN)
If the keytype is OCI_KEYTYPE_STRING, then the length of the key value is in bytes.

keytype (IN)
The type of the key.

coll (IN)
The pointer to the associative array collection.

29.8.3 OCITableExists()
Tests whether an element exists at the given index.

Purpose

Tests whether an element exists at the given index.

Syntax

sword OCITableExists (OCIEnv *env,
 OCIError *err,
 const OCITable *tbl,
 sb4 index,
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table in which the given index is checked.

index (IN)
Index of the element that is checked for existence.

exists (OUT)
Set to TRUE if the element at the given index exists; otherwise, it is set to FALSE.

Returns

This function returns an error if any input parameter is NULL.

Related Topics

• OCITableDelete()
Deletes the element at the specified index.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 29
OCI Table Functions

29-141

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.8.4 OCITableKeyExists()
Tests whether an element exists in an associative array collection using a string key.

Purpose

Tests whether an element exists in an associative array collection using a string key.

Syntax

sword OCITableKeyExists (OCIEnv *env,
 OCIError *err,
 CONST void *key,
 ub4 keylen,
 OCIKeyType keytype,
 CONST OCITable *coll,
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle.

key (IN)
The non-null key value of the element in the associative array collection.

keylen (IN)
If the keytype is OCI_KEYTYPE_STRING, then the length of the key value is in bytes.

keytype (IN)
The type of the key.

coll (IN)
Pointer to the associative array collection.

exists (OUT)
Set to value TRUE if the element with the given key value exists; otherwise, it is set to value
FALSE.

Chapter 29
OCI Table Functions

29-142

29.8.5 OCITableFirst()
Returns the index of the first existing element in a given table.

Purpose

Returns the index of the first existing element in a given table.

Syntax

sword OCITableFirst (OCIEnv *env,
 OCIError *err,
 const OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
First index of the element that exists in the given table that is returned.

Comments

If OCITableDelete() deletes the first five elements of a table, OCITableFirst() returns the
value 6.

See Also:

OCITableDelete() for information regarding non-data holes (deleted elements) in
tables

Returns

This function returns an error if the table is empty.

Related Topics

• OCITableDelete()
Deletes the element at the specified index.

• OCITableLast()
Returns the index of the last existing element of a table.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 29
OCI Table Functions

29-143

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

29.8.6 OCITableKeyFirst()
Returns a reference pointer to the first key value in the associative array.

Purpose

Returns a reference pointer to the first key value in the associative array, based on the sorting
order.

Syntax

sword OCITableKeyFirst (OCIEnv *env,
 OCIError *err,
 CONST void **key,
 ub4 *keylen,
 OCIKeyType *keytype,
 CONST OCITable *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

key (OUT)
Reference to the key of the current element, the reference must not be modified.

keylen (OUT)
The size of the referenced key string.

keytype (OUT)
The type of the first key.

coll (IN)
The pointer to the associative array collection.

29.8.7 OCITableLast()
Returns the index of the last existing element of a table.

Purpose

Returns the index of the last existing element of a table.

Chapter 29
OCI Table Functions

29-144

Syntax

sword OCITableLast (OCIEnv *env,
 OCIError *err,
 const OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
Index of the last existing element in the table.

Comments

OCITableLast() returns the largest index numbered element in the index by integer collection.

Returns

This function returns an error if the table is empty.

Related Topics

• OCITableFirst()
Returns the index of the first existing element in a given table.

• OCITableNext()
Returns the index of the next existing element of a table.

• OCITablePrev()
Returns the index of the previous existing element of a table.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Table Functions

29-145

29.8.8 OCITableKeyLast()
Returns a pointer reference to the last key value in the associative array.

Purpose

Returns a reference pointer to the last key value in the associative array, based on the sorting
order.

Syntax

sword OCITableKeyLast (OCIEnv *env,
 OCIError *err,
 void **key,
 ub4 *keylen,
 OCIKeyType *keytype,
 CONST OCITable *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in the object mode.

err (IN/OUT)
The OCI error handle.

key (OUT)
Reference to the key of the current element, the reference must not be modified.

keylen (OUT)
Size of the referenced key string.

keytype (OUT)
The type of the last key.

coll (IN)
The pointer to the associative array collection.

29.8.9 OCITableNext()
Returns the index of the next existing element of a table.

Purpose

Returns the index of the next existing element of a table.

Syntax

sword OCITableNext (OCIEnv *env,
 OCIError *err,
 sb4 index,
 const OCITable *tbl,
 sb4 *next_index
 boolean *exists);

Chapter 29
OCI Table Functions

29-146

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for the starting point of the scan.

tbl (IN)
Table to scan.

next_index (OUT)
Index of the next existing element after tbl(index).

exists (OUT)
FALSE if no next index is available; otherwise, TRUE.

Returns

Returns the smallest position j, greater than index, such that exists(j) is TRUE.

Related Topics

• OCITablePrev()
Returns the index of the previous existing element of a table.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

The description of OCITableSize() for information about the existence of non-data
holes (deleted elements) in tables

Chapter 29
OCI Table Functions

29-147

29.8.10 OCITableKeyNext ()
Returns a reference pointer to the next existing key in an associative array collection.

Purpose

Returns a reference pointer to the next existing key in an associative array collection, based on
the sorting order.

Syntax

sword OCITableKeyNext (OCIEnv *env,
 OCIError *err,
 CONST void *key,
 ub4 keylen,
 OCIKeyType keytype,
 CONST OCITable *coll,
 void **next_key,
 ub4 *next_keylen,
 OCIKeyType next_keytype,
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle.

key (IN)
The non-null starting key value. The next key following this key is returned.

keylen (IN)
The length of the starting key value.

keytype (IN)
The type of the key.

coll (IN)
The pointer to the associative array collection.

next_key (OUT)
Reference to the key of the current element, the reference must not be modified.

next_keylen (OUT)
Size of the next_key reference string.

next_keytype (OUT)
The type of the next key.

exists (IN)
The value is FALSE if no next key value is available, else the value is set to TRUE.

Chapter 29
OCI Table Functions

29-148

29.8.11 OCITablePrev()
Returns the index of the previous existing element of a table.

Purpose

Returns the index of the previous existing element of a table.

Syntax

sword OCITablePrev (OCIEnv *env,
 OCIError *err,
 sb4 index,
 const OCITable *tbl,
 sb4 *prev_index
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for the starting point of the scan.

tbl (IN)
Table to scan.

prev_index (OUT)
Index of the previous existing element before tbl(index).

exists (OUT)
FALSE if no previous index is available; otherwise, TRUE.

Returns

Returns the largest position j, less than index, such that exists (j) is TRUE.

Related Topics

• OCITableNext()
Returns the index of the next existing element of a table.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Chapter 29
OCI Table Functions

29-149

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

See Also:

The description of OCITableSize() for information about the existence of non-data
holes (deleted elements) in tables

29.8.12 OCITableSize()
Returns the size of the given table, not including any holes created by deleted elements.

Purpose

Returns the size of the given table, not including any holes created by deleted elements.

Syntax

sword OCITableSize (OCIEnv *env,
 OCIError *err,
 const OCITable *tbl
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate(), OCIEnvNlsCreate(), and OCIInitialize() (deprecated) for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Nested table whose number of elements is returned.

size (OUT)
Current number of elements in the nested table. The count does not include deleted elements.

Comments

The count is decremented when elements are deleted from the nested table. So this count
does not include any holes created by deleting elements. To get the count including the holes
created by the deleted elements, use OCICollSize().

The following code example shows a code fragment where an element is deleted from a
nested table.

Deleting an Element from a Nested table

OCITableSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCITableSize(...);
// 'size' returned is equal to 4

Chapter 29
OCI Table Functions

29-150

To get the count plus the count of deleted elements, use OCICollSize(), as shown in the
following code example. Continuing the previous code example.

Getting a Count of All Elements Including Deleted Elements from a Nested Table

OCICollSize(...)
// 'size' returned is still equal to 5

Returns

This function returns an error if an error occurs during the loading of the nested table into the
object cache, or if any of the input parameters is NULL.

Related Topics

• OCICollSize()
Gets the current size in number of elements of the given collection.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 29
OCI Table Functions

29-151

30
OCI Cartridge Functions

This chapter presents the cartridge functions.

For code examples, see the demonstration programs included with your Oracle Database
installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to External Procedure and Cartridge Services Functions

• Cartridge Services — OCI External Procedures

• Cartridge Services — Memory Services

• Cartridge Services — Maintaining Context

• Cartridge Services — Parameter Manager Interface

• Cartridge Services — File I/O Interface

• Cartridge Services — String Formatting Interface

• Introduction to External Procedure and Cartridge Services Functions
This section introduces the OCI external procedure functions.

• Cartridge Services — OCI External Procedures
Lists and describes cartridge services OCI external procedure functions.

• Cartridge Services — Memory Services
Lists and describes cartridge services memory services functions.

• Cartridge Services — Maintaining Context
Lists and describes cartridge services maintaining context functions.

• Cartridge Services — Parameter Manager Interface
Lists and describes cartridge services parameter manager interface functions.

• Cartridge Services — File I/O Interface
Lists and describes cartridge services file I/O interface functions.

• Cartridge Services — String Formatting Interface
Lists and describes cartridge services string formatting functions.

30.1 Introduction to External Procedure and Cartridge Services
Functions

This section introduces the OCI external procedure functions.

These functions enable users of external procedures to raise errors, allocate some memory,
and get OCI context information.

Then the cartridge services functions are described.

• Conventions for OCI Functions
Describes conventions used in describing each function.

30-1

See Also:

• Oracle Database Development Guide for more information about using these
functions in external procedures

• Oracle Database Data Cartridge Developer's Guide for more information about
using these functions

30.1.1 Conventions for OCI Functions
Describes conventions used in describing each function.

See the Conventions for OCI Functions for the conventions used in describing each function.
The entries for each function may also contain the following information:

• Return Codes

• With_Context Type

Return Codes

Success and error return codes are defined for certain external procedure interface functions.
If a particular interface function returns OCIEXTPROC_SUCCESS or OCIEXTPROC_ERROR, then
applications must use these macros to check for return values.

• OCIEXTPROC_SUCCESS - External Procedure Success Return Code

• OCIEXTPROC_ERROR - External Procedure Failure Return Code

With_Context Type

The C callable interface to PL/SQL external procedures requires the with_context parameter
to be passed. The type of this structure is OCIExtProcContext, which is opaque to the user.

The user can declare the with_context parameter in the application as follows:

OCIExtProcContext *with_context;

30.2 Cartridge Services — OCI External Procedures
Lists and describes cartridge services OCI external procedure functions.

Table 30-1 lists the OCI external procedure functions for C that are described in this section.

Table 30-1 External Procedures Functions

Function Purpose

OCIExtProcAllocCallMemory() Allocate memory for the duration of the
External Procedure

OCIExtProcGetEnv() Get the OCI environment, service context, and
error handles

OCIExtProcRaiseExcp() Raise an Exception to PL/SQL

OCIExtProcRaiseExcpWithMsg() Raise an exception with a message

Chapter 30
Cartridge Services — OCI External Procedures

30-2

• OCIExtProcAllocCallMemory()
Allocates N bytes of memory for the duration of the external procedure.

• OCIExtProcGetEnv()
Gets the OCI environment, service context, and error handles.

• OCIExtProcRaiseExcp()
Raises an Exception to PL/SQL.

• OCIExtProcRaiseExcpWithMsg()
Raises an exception with a message.

30.2.1 OCIExtProcAllocCallMemory()
Allocates N bytes of memory for the duration of the external procedure.

Purpose

Allocates N bytes of memory for the duration of the external procedure.

Syntax

void * OCIExtProcAllocCallMemory (OCIExtProcContext *with_context,
 size_t amount);

Parameters

with_context (IN)
The with_context pointer that is passed to the C external procedure.
With_Context Type — The C callable interface to PL/SQL external procedures requires the
with_context parameter to be passed. The type of this structure is OCIExtProcContext, which
is opaque to the user.
The user can declare the with_context parameter in the application as follows:

OCIExtProcContext *with_context;

amount (IN)
The number of bytes to allocate.

Comments

This call allocates amount bytes of memory for the duration of the call of the external
procedure.

Any memory allocated by this call is freed by PL/SQL upon return from the external procedure.
The application must not use any kind of free() function on memory allocated by
OCIExtProcAllocCallMemory(). Use this function to allocate memory for function returns.

A zero return value should be treated as an error.

Returns

An untyped (opaque) pointer to the allocated memory.

Example

Using OCIExtProcAllocCallMemory() to Allocate 1024 Bytes of Memory

text *ptr = (text *)OCIExtProcAllocCallMemory(wctx, 1024)

Chapter 30
Cartridge Services — OCI External Procedures

30-3

Related Topics

• OCIMemoryAlloc()
Allocates memory of a given size from a given duration.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.2.2 OCIExtProcGetEnv()
Gets the OCI environment, service context, and error handles.

Purpose

Gets the OCI environment, service context, and error handles.

Syntax

sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv **envh,
 OCISvcCtx **svch,
 OCIError **errh);

Parameters

with_context (IN)
The with_context pointer that is passed to the C external procedure.
With_Context Type — The C callable interface to PL/SQL external procedures requires the
with_context parameter to be passed. The type of this structure is OCIExtProcContext, which
is opaque to the user.
The user can declare the with_context parameter in the application as follows:

OCIExtProcContext *with_context;

envh (OUT)
Pointer to a variable to store the OCI environment handle.

svch (OUT)
Pointer to a variable to store the OCI service handle.

errh (OUT)
Pointer to a variable to store the OCI error handle.

Comments

The primary purpose of this function is to allow OCI callbacks to use the database in the same
transaction. The OCI handles obtained by this function should be used in OCI callbacks to the
database. If these handles are obtained through standard OCI calls, then these handles use a
new connection to the database and cannot be used for callbacks in the same transaction. In
one external procedure you can use either callbacks or a new connection, but not both.

Example of a call:

OCIEnv *envh;
OCISvcCtx *svch;
OCIError *errh;
...
OCIExtProcGetEnv(ctx,&envh,&svch,&errh);

Chapter 30
Cartridge Services — OCI External Procedures

30-4

Returns

This function returns OCI_SUCCESS if the call succeeds; otherwise, it returns OCI_ERROR.

Related Topics

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCIArrayDescriptorAlloc()
Allocates an array of descriptors.

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

30.2.3 OCIExtProcRaiseExcp()
Raises an Exception to PL/SQL.

Purpose

Raises an Exception to PL/SQL.

Syntax

size_t OCIExtProcRaiseExcp (OCIExtProcContext *with_context,
 int errnum);

Parameters

with_context (IN)
The with_context pointer that is passed to the C external procedure.
With_Context Type — The C callable interface to PL/SQL external procedures requires the
with_context parameter to be passed. The type of this structure is OCIExtProcContext, which
is opaque to the user.
The user can declare the with_context parameter in the application as follows:

OCIExtProcContext *with_context;

errnum (IN)
Oracle Database error number to signal to PL/SQL. The errnum value must be a positive
number and in the range 1 to 32767.

Comments

Calling this function signals an exception to PL/SQL. After a successful return from this
function, the external procedure must start its exit handling and return to PL/SQL. Once an
exception is signaled to PL/SQL, IN/OUT and OUT arguments, if any, are not processed at all.

Returns

This function returns OCIEXTPROC_SUCCESS if the call succeeds. It returns OCIEXTPROC_ERROR if
the call fails.

Related Topics

• OCIExtProcRaiseExcpWithMsg()
Raises an exception with a message.

Chapter 30
Cartridge Services — OCI External Procedures

30-5

30.2.4 OCIExtProcRaiseExcpWithMsg()
Raises an exception with a message.

Purpose

Raises an exception with a message.

Syntax

size_t OCIExtProcRaiseExcpWithMsg (OCIExtProcContext *with_context,
 int errnum,
 char *errmsg,
 size_t msglen);

Parameters

with_context (IN)
The with_context pointer that is passed to the C external procedure.
With_Context Type — The C callable interface to PL/SQL external procedures requires the
with_context parameter to be passed. The type of this structure is OCIExtProcContext, which
is opaque to the user.
The user can declare the with_context parameter in the application as follows:

OCIExtProcContext *with_context;

errnum (IN)
Oracle Database error number to signal to PL/SQL. The value of errnum must be a positive
number and in the range 1 to 32767

errmsg (IN)
The error message associated with errnum.

msglen (IN)
The length of the error message. Pass zero if errmsg is a NULL-terminated string.

Comments

This call raises an exception to PL/SQL. In addition, it substitutes the following error message
string within the standard Oracle Database error message string.

Returns

This function returns OCIEXTPROC_SUCCESS if the call succeeds. It returns OCIEXTPROC_ERROR if
the call fails.

Related Topics

• OCIExtProcRaiseExcp()
Raises an Exception to PL/SQL.

30.3 Cartridge Services — Memory Services
Lists and describes cartridge services memory services functions.

Table 30-2 lists the memory services functions that are described in this section.

Chapter 30
Cartridge Services — Memory Services

30-6

Table 30-2 Memory Services Functions

Function Purpose

OCIDurationBegin() Start a user duration

OCIDurationEnd() Terminate a user duration

OCIMemoryAlloc() Allocate memory of a given size from a given
duration

OCIMemoryFree() Free a memory chunk

OCIMemoryResize() Resize a memory chunk

• OCIDurationBegin()
Starts a user duration.

• OCIDurationEnd()
Terminates a user duration.

• OCIMemoryAlloc()
Allocates memory of a given size from a given duration.

• OCIMemoryAlloc2()
Allocates memory of a given size from a given duration.

• OCIMemoryFree()
Frees a memory chunk.

• OCIMemoryResize()
Resizes a memory chunk to a new size.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about using
these functions

30.3.1 OCIDurationBegin()
Starts a user duration.

Purpose

Starts a user duration.

Syntax

sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Chapter 30
Cartridge Services — Memory Services

30-7

Parameters

env (IN/OUT)
The OCI environment handle. This should be passed as NULL for cartridge services.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

svc (IN)
The OCI service context handle.

parent (IN)
The duration number of the parent duration. It is one of the following:

• A user duration that was previously created

• OCI_DURATION_STATEMENT
• OCI_DURATION_SESSION

duration (OUT)
An identifier unique to the newly created user duration.

Comments

This function starts a user duration. A user can have multiple active user durations
simultaneously. The user durations do not have to be nested. The duration parameter is used
to return a number that uniquely identifies the duration created by this call.

Note that the environment and service context parameters cannot both be NULL.

Related Topics

• OCIDurationEnd()
Terminates a user duration for a temporary LOB.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.3.2 OCIDurationEnd()
Terminates a user duration.

Purpose

Terminates a user duration.

Syntax

sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 const OCISvcCtx *svc,
 OCIDuration duration);

Parameters

env (IN/OUT)
The OCI environment handle.

Chapter 30
Cartridge Services — Memory Services

30-8

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

svc (IN)
OCI service context (this should be passed as NULL for cartridge services; otherwise, it should
be non-NULL).

duration (IN)
A user duration previously created by OCIDurationBegin().

Comments

This function terminates a user duration.

Note that the environment and service context parameters cannot both be NULL.

30.3.3 OCIMemoryAlloc()
Allocates memory of a given size from a given duration.

Purpose

Allocates memory of a given size from a given duration.

Syntax

sword OCIMemoryAlloc(void *hndl,
 OCIError *err,
 void **mem,
 OCIDuration dur,
 ub4 size,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment handle (OCIEnv *) if dur is OCI_DURATION_PROCESS; otherwise, the user
session handle (OCISession *).

err (IN)
The error handle.

mem (OUT)
Memory allocated.

dur (IN)
A previously created user duration or one of these values:
OCI_DURATION_CALLOUT
OCI_DURATION_STATEMENT
OCI_DURATION_SESSION
OCI_DURATION_PROCESS

size (IN)
Size of memory to be allocated.

Chapter 30
Cartridge Services — Memory Services

30-9

flags (IN)
Set the OCI_MEMORY_CLEARED bit to get memory that has been cleared.

Comments

To allocate memory for the duration of the callout of the agent, that is, external procedure
duration, use OCIExtProcAllocCallMemory() or OCIMemoryAlloc() with dur as
OCI_DURATION_CALLOUT.

Returns

Error code.

Related Topics

• OCIExtProcAllocCallMemory()
Allocates N bytes of memory for the duration of the external procedure.

30.3.4 OCIMemoryAlloc2()
Allocates memory of a given size from a given duration.

Purpose

Allocates memory of a given size from a given duration.

Syntax

sword OCIMemoryAlloc(void *hndl,
 OCIError *err,
 void **mem,
 OCIDuration dur,
 ub4 size,
 ub4 flags
 const OraText *comment);

Parameters

hndl (IN)
The OCI environment handle (OCIEnv *) if dur is OCI_DURATION_PROCESS; otherwise, the user
session handle (OCISession *).

err (IN)
The error handle.

mem (OUT)
Memory allocated.

dur (IN)
A previously created user duration or one of these values:
OCI_DURATION_CALLOUT
OCI_DURATION_STATEMENT
OCI_DURATION_SESSION
OCI_DURATION_PROCESS

Chapter 30
Cartridge Services — Memory Services

30-10

size (IN)
Size of memory to be allocated.

flags (IN)
Set the OCI_MEMORY_CLEARED bit to get memory that has been cleared.

comment(IN)
Comment is used to indicate the function or file that is invoking this function. The comment
also helps to identify memory leaks and identifies the file or function for which the memory is
allocated.

30.3.5 OCIMemoryFree()
Frees a memory chunk.

Purpose

Frees a memory chunk.

Syntax

sword OCIMemoryFree (void *hndl,
 OCIError *err,
 void *mem);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

Returns

Error code.

Related Topics

• OCIMemoryAlloc()
Allocates memory of a given size from a given duration.

30.3.6 OCIMemoryResize()
Resizes a memory chunk to a new size.

Purpose

Resizes a memory chunk to a new size.

Syntax

sword OCIMemoryResize(void *hndl,
 OCIError *err,
 void **mem,

Chapter 30
Cartridge Services — Memory Services

30-11

 ub4 newsize,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

newsize (IN)
Size of memory requested.

flags (IN)
Set the OCI_MEMORY_CLEARED bit to get memory that has been cleared.

Comments

Memory must have been allocated before this function can be called to resize.

Returns

Error code.

Related Topics

• OCIMemoryAlloc()
Allocates memory of a given size from a given duration.

30.4 Cartridge Services — Maintaining Context
Lists and describes cartridge services maintaining context functions.

Table 30-3 lists the maintaining context functions that are described in this section.

Table 30-3 Maintaining Context Functions

Function Purpose

OCIContextClearValue() Remove the value stored in the context

OCIContextGenerateKey() Return a unique 4-byte value each time it is called

OCIContextGetValue() Return the value stored in the context

OCIContextSetValue() Save a value (or address) for a particular duration

• OCIContextClearValue()
Removes the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

• OCIContextGenerateKey()
Returns a unique, 4-byte value each time it is called.

Chapter 30
Cartridge Services — Maintaining Context

30-12

• OCIContextGetValue()
Returns the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

• OCIContextSetValue()
Saves a value (or address) for a particular duration.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about using
these functions

30.4.1 OCIContextClearValue()
Removes the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

Purpose

Removes the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

Syntax

sword OCIContextClearValue(void *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum value is 255 bytes or UB1MAXVAL - 1.

Comments

An error is returned when a nonexistent key is passed.

Returns

• If the operation succeeds, the function returns OCI_SUCCESS.

• If the operation fails, the function returns OCI_ERROR.

Chapter 30
Cartridge Services — Maintaining Context

30-13

30.4.2 OCIContextGenerateKey()
Returns a unique, 4-byte value each time it is called.

Purpose

Returns a unique, 4-byte value each time it is called.

Syntax

sword OCIContextGenerateKey(void *hndl,
 OCIError *err,
 ub4 *key);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

Comments

This value is unique for each session.

Returns

• If the operation succeeds, the function returns OCI_SUCCESS.

• If the operation fails, the function returns OCI_ERROR.

30.4.3 OCIContextGetValue()
Returns the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

Purpose

Returns the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

Syntax

sword OCIContextGetValue(void *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen,
 void **ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

Chapter 30
Cartridge Services — Maintaining Context

30-14

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum value is 255 bytes or UB1MAXVAL - 1.

ctx_value (IN)
Pointer to the value stored in the context (NULL if no value was stored).

Comments

For ctx_value, a pointer to a preallocated pointer for the stored context to be returned is
required.

Returns

• If the operation succeeds, the function returns OCI_SUCCESS.

• If the operation fails, the function returns OCI_ERROR.

30.4.4 OCIContextSetValue()
Saves a value (or address) for a particular duration.

Purpose

Saves a value (or address) for a particular duration.

Syntax

sword OCIContextSetValue(void *hndl,
 OCIError *err,
 OCIDuration duration,
 ub1 *key,
 ub1 keylen,
 void *ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

duration (IN)
One of these values (a previously created user duration):
OCI_DURATION_STATEMENT
OCI_DURATION_SESSION

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum value is 255 bytes or UB1MAXVAL - 1.

Chapter 30
Cartridge Services — Maintaining Context

30-15

ctx_value (IN)
Pointer that is saved in the context.

Comments

The context value being stored must be allocated out of memory of duration greater than or
equal to the duration being passed in. The key being passed in should be unique in this
session. Trying to save a context value under the same key and duration again results in
overwriting the old context value with the new one. Typically, a client allocates a structure,
stores its address in the context using this call, and gets this address in a separate call using
OCIContextGetValue(). The (key, value) association can be explicitly removed by calling
OCIContextClearValue(), or else it goes away at the end of the duration.

Returns

• If the operation succeeds, the function returns OCI_SUCCESS.

• If the operation fails, the function returns OCI_ERROR.

Related Topics

• OCIContextClearValue()
Removes the value that is stored in the context associated with the given key (by calling
OCIContextSetValue()).

30.5 Cartridge Services — Parameter Manager Interface
Lists and describes cartridge services parameter manager interface functions.

Table 30-4 lists the parameter manager interface functions that are described in this section.

Table 30-4 Parameter Manager Interface Functions

Function Purpose

OCIExtractFromFile() Process the keys and their values in the given
file

OCIExtractFromList() Generate a list of values for the parameter
denoted by index in the parameter list

OCIExtractFromStr() Process the keys and the their values in the
given string

OCIExtractInit() Initialize the parameter manager

OCIExtractReset() Reinitialize memory

OCIExtractSetKey() Register information about a key with the
parameter manager

OCIExtractSetNumKeys() Inform the parameter manager of the number
of keys that are to be registered

OCIExtractTerm() Release all dynamically allocated storage

OCIExtractToBool() Get the Boolean value for the specified key

OCIExtractToInt() Get the integer value for the specified key

OCIExtractToList() Generate a list of parameters from the
parameter structures that are stored in
memory

OCIExtractToOCINum() Get the number value for the specified key

Chapter 30
Cartridge Services — Parameter Manager Interface

30-16

Table 30-4 (Cont.) Parameter Manager Interface Functions

Function Purpose

OCIExtractToStr() Get the string value for the specified key

• OCIExtractFromFile()
Processes the keys and their values in the given file.

• OCIExtractFromList()
Generates a list of values for the parameter denoted by index in the parameter list.

• OCIExtractFromStr()
Processes the keys and their values in the given string.

• OCIExtractInit()
Initializes the parameter manager.

• OCIExtractReset()
Frees the memory currently used for parameter storage, key definition storage, and
parameter value lists and reinitializes the structure.

• OCIExtractSetKey()
Registers information about a key with the parameter manager.

• OCIExtractSetNumKeys()
Informs the parameter manager of the number of keys that are to be registered.

• OCIExtractTerm()
Releases all dynamically allocated storage.

• OCIExtractToBool()
Gets the Boolean value for the specified key.

• OCIExtractToInt()
Gets the integer value for the specified key.

• OCIExtractToList()
Generates a list of parameters from the parameter structures that are stored in memory.

• OCIExtractToOCINum()
Gets the OCINumber value for the specified key.

• OCIExtractToStr()
Gets the string value for the specified key.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about using
these functions

30.5.1 OCIExtractFromFile()
Processes the keys and their values in the given file.

Purpose

Processes the keys and their values in the given file.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-17

Syntax

sword OCIExtractFromFile(void *hndl,
 OCIError *err,
 ub4 flag,
 OraText *filename);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:
OCI_EXTRACT_CASE_SENSITIVE
OCI_EXTRACT_UNIQUE_ABBREVS
OCI_EXTRACT_APPEND_VALUES

filename (IN)
A NULL-terminated file name string.

Comments

OCIExtractSetNumKeys() and OCIExtractSetKey() functions must be called to define all of the
keys before this routine is called.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIExtractSetNumKeys()
Informs the parameter manager of the number of keys that are to be registered.

• OCIExtractSetKey()
Registers information about a key with the parameter manager.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.2 OCIExtractFromList()
Generates a list of values for the parameter denoted by index in the parameter list.

Purpose

Generates a list of values for the parameter denoted by index in the parameter list.

Syntax

sword OCIExtractFromList(void *hndl,
 OCIError *err,
 uword index,
 OraText **name,
 ub1 *type,

Chapter 30
Cartridge Services — Parameter Manager Interface

30-18

 uword *numvals,
 void ***values);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

index (IN)
Which parameter to retrieve from the parameter list.

name (OUT)
The name of the key for the current parameter.

type (OUT)
Type of the current parameter:
OCI_EXTRACT_TYPE_STRING
OCI_EXTRACT_TYPE_INTEGER
OCI_EXTRACT_TYPE_OCINUM
OCI_EXTRACT_TYPE_BOOLEAN

numvals (OUT)
Number of values for this parameter.

values (OUT)
The values for this parameter.

Comments

OCIExtractToList() must be called prior to calling this routine to generate the parameter list
from the parameter structures that are stored in memory.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIExtractToList()
Generates a list of parameters from the parameter structures that are stored in memory.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.3 OCIExtractFromStr()
Processes the keys and their values in the given string.

Purpose

Processes the keys and their values in the given string.

Syntax

sword OCIExtractFromStr(void *hndl,
 OCIError *err,

Chapter 30
Cartridge Services — Parameter Manager Interface

30-19

 ub4 flag,
 OraText *input);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. For diagnostic information call OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:
OCI_EXTRACT_CASE_SENSITIVE
OCI_EXTRACT_UNIQUE_ABBREVS
OCI_EXTRACT_APPEND_VALUES

input (IN)
A NULL-terminated input string.

Comments

OCIExtractSetNumKeys() and OCIExtractSetKey() functions must be called to define all of the
keys before this routine is called.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIExtractSetNumKeys()
Informs the parameter manager of the number of keys that are to be registered.

• OCIExtractSetKey()
Registers information about a key with the parameter manager.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.4 OCIExtractInit()
Initializes the parameter manager.

Purpose

Initializes the parameter manager.

Syntax

sword OCIExtractInit(void *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-20

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Comments

This function must be called before calling any other parameter manager routine, and it must
be called only once. The globalization support information is stored inside the parameter
manager context and used in subsequent calls to OCIExtract functions.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.5 OCIExtractReset()
Frees the memory currently used for parameter storage, key definition storage, and parameter
value lists and reinitializes the structure.

Purpose

Frees the memory currently used for parameter storage, key definition storage, and parameter
value lists and reinitializes the structure.

Syntax

sword OCIExtractReset(void *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR,

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.6 OCIExtractSetKey()
Registers information about a key with the parameter manager.

Purpose

Registers information about a key with the parameter manager.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-21

Syntax

sword OCIExtractSetKey(void *hndl,
 OCIError *err,
 const text *name,
 ub1 type,
 ub4 flag,
 const void *defval,
 const sb4 *intrange,
 const text *strlist);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

name (IN)
The name of the key.

type (IN)
The type of the key:
OCI_EXTRACT_TYPE_INTEGER
OCI_EXTRACT_TYPE_OCINUM
OCI_EXTRACT_TYPE_STRING
OCI_EXTRACT_TYPE_BOOLEAN

flag (IN)
Set to OCI_EXTRACT_MULTIPLE if the key can take multiple values or 0 otherwise.

defval (IN)
Set to the default value for the key. It can be NULL if there is no default. A string default must
be a (text*) type, an integer default must be an (sb4*) type, and a Boolean default must be a
(ub1*) type.

intrange (IN)
Starting and ending values for the allowable range of integer values; can be NULL if the key is
not an integer type or if all integer values are acceptable.

strlist (IN)
List of all acceptable text strings for the key ended with 0 (or NULL). Can be NULL if the key is
not a string type or if all text values are acceptable.

Comments

This routine must be called after calling OCIExtractSetNumKeys() and before calling
OCIExtractFromFile() or OCIExtractFromStr().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIExtractSetNumKeys()
Informs the parameter manager of the number of keys that are to be registered.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-22

• OCIExtractFromFile()
Processes the keys and their values in the given file.

• OCIExtractFromStr()
Processes the keys and their values in the given string.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.7 OCIExtractSetNumKeys()
Informs the parameter manager of the number of keys that are to be registered.

Purpose

Informs the parameter manager of the number of keys that are to be registered.

Syntax

sword OCIExtractSetNumKeys(void *hndl,
 CIError *err,
 uword numkeys);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

numkeys (IN)
The number of keys that are to be registered with OCIExtractSetKey().

Comments

This routine must be called prior to the first call of OCIExtractSetKey().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIExtractSetKey()
Registers information about a key with the parameter manager.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.8 OCIExtractTerm()
Releases all dynamically allocated storage.

Purpose

Releases all dynamically allocated storage.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-23

Syntax

sword OCIExtractTerm(void *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Comments

This function may perform other internal bookkeeping functions. It must be called when the
parameter manager is no longer being used, and it must be called only once.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.9 OCIExtractToBool()
Gets the Boolean value for the specified key.

Purpose

The valno'th value (starting with 0) is returned.

Syntax

sword OCIExtractToBool(void *hndl,
 OCIError *err,
 OraText *keyname,
 uword valno,
 ub1 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-24

retval (OUT)
The actual Boolean value.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; OCI_NO_DATA; or OCI_ERROR.

OCI_NO_DATA means that there is no valno'th value for this key.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.10 OCIExtractToInt()
Gets the integer value for the specified key.

Purpose

The valno'th value (starting with 0) is returned.

Syntax

sword OCIExtractToInt(void *hndl,
 OCIError *err,
 OraText *keyname,
 uword valno,
 sb4 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

keyname (IN)
Keyname (IN).

valno (IN)
Which value to get for this key.

retval (OUT)
The actual integer value.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; OCI_NO_DATA; or OCI_ERROR.

OCI_NO_DATA means that there is no valno'th value for this key.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-25

30.5.11 OCIExtractToList()
Generates a list of parameters from the parameter structures that are stored in memory.

Purpose

Must be called before OCIExtractValues() is called.

Syntax

sword OCIExtractToList(void *hndl,
 OCIError *err,
 uword *numkeys);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

numkeys (OUT)
The number of distinct keys stored in memory.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.12 OCIExtractToOCINum()
Gets the OCINumber value for the specified key.

Purpose

The valno'th value (starting with 0) is returned.

Syntax

sword OCIExtractToOCINum(void *hndl,
 OCIError *err,
 OraText *keyname,
 uword valno,
 OCINumber *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-26

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual OCINumber value.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; OCI_NO_DATA; or OCI_ERROR.

OCI_NO_DATA means that there is no valno'th value for this key.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.5.13 OCIExtractToStr()
Gets the string value for the specified key.

Purpose

The valno'th value (starting with 0) is returned.

Syntax

sword OCIExtractToStr(void *hndl,
 OCIError *err,
 OraText *keyname,
 uword valno,
 OraText *retval,
 uword buflen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual NULL-terminated string value.

Chapter 30
Cartridge Services — Parameter Manager Interface

30-27

buflen
The length of the buffer for retval.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; OCI_NO_DATA; or OCI_ERROR.

OCI_NO_DATA means that there is no valno'th value for this key.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6 Cartridge Services — File I/O Interface
Lists and describes cartridge services file I/O interface functions.

Table 30-5 lists the file I/O interface functions that are described in this section.

Table 30-5 File I/O Interface Functions

Function Purpose

OCIFileClose() Close a previously opened file

OCIFileExists() Test to see if the file exists

OCIFileFlush() Write buffered data to a file

OCIFileGetLength() Get the length of a file

OCIFileInit() Initialize the OCIFile package

OCIFileOpen() Open a file

OCIFileRead() Read from a file into a buffer

OCIFileSeek() Change the current position in a file

OCIFileTerm() Terminate the OCIFile package

OCIFileWrite() Write buflen bytes into the file

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about using
these functions

OCIFileObject

The OCIFileObject data structure holds information about the way in which a file should be
opened and the way in which it is accessed after it has been opened. When this structure is
initialized by OCIFileOpen(), it becomes an identifier through which operations can be
performed on that file. It is a necessary parameter to every function that operates on open files.
This data structure is opaque to OCIFile clients. It is initialized by OCIFileOpen() and
terminated by OCIFileClose().

• OCIFileClose()
Closes a previously opened file.

Chapter 30
Cartridge Services — File I/O Interface

30-28

• OCIFileExists()
Tests to see if the file exists.

• OCIFileFlush()
Writes buffered data to a file.

• OCIFileGetLength()
Gets the length of a file.

• OCIFileInit()
Initializes the OCIFile package.

• OCIFileOpen()
Opens a file.

• OCIFileRead()
Reads from a file into a buffer.

• OCIFileSeek()
Changes the current position in a file.

• OCIFileTerm()
Terminates the OCIFile package.

• OCIFileWrite()
Writes buflen bytes into the file.

30.6.1 OCIFileClose()
Closes a previously opened file.

Purpose

Closes a previously opened file.

Syntax

sword OCIFileClose(void *hndl,
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
A pointer to a file identifier to be closed.

Comments

Once this function returns OCI_SUCCESS, the OCIFileObject structure pointed to by filep is
destroyed. Therefore, you should not attempt to access this structure after this function returns
OCI_SUCCESS.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Chapter 30
Cartridge Services — File I/O Interface

30-29

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.2 OCIFileExists()
Tests to see if the file exists.

Purpose

Tests to see if the file exists.

Syntax

sword OCIFileExists(void *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ub1 *flag);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

flag (OUT)
Set to TRUE if the file exists or FALSE if it does not.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.3 OCIFileFlush()
Writes buffered data to a file.

Purpose

Writes buffered data to a file.

Chapter 30
Cartridge Services — File I/O Interface

30-30

Syntax

sword OCIFileFlush(void *hndl
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.4 OCIFileGetLength()
Gets the length of a file.

Purpose

Gets the length of a file.

Syntax

sword OCIFileGetLength(void *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ubig_ora *lenp);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

Chapter 30
Cartridge Services — File I/O Interface

30-31

lenp (OUT)
Set to the length of the file in bytes.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.5 OCIFileInit()
Initializes the OCIFile package.

Purpose

This function must be called before any other OCIFile routine is called.

Syntax

sword OCIFileInit(void *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.6 OCIFileOpen()
Opens a file.

Purpose

Opens a file.

Syntax

sword OCIFileOpen(void *hndl,
 OCIError *err,
 OCIFileObject **filep,
 OraText *filename,
 OraText *path,
 ub4 mode,

Chapter 30
Cartridge Services — File I/O Interface

30-32

 ub4 create,
 ub4 type);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
The file identifier.

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

mode (IN)
The mode in which to open the file. Valid modes are
OCI_FILE_READ_ONLY
OCI_FILE_WRITE_ONLY
OCI_FILE_READ_WRITE

create (IN)
Indicates if the file is to be created if it does not exist. Valid values are:
OCI_FILE_TRUNCATE — Create a file regardless of whether it exists. If the file exists, overwrite
the existing file.
OCI_FILE_EXCL — Fail if the file exists; otherwise, create a file.
OCI_FILE_CREATE — Open the file if it exists, and create it if it does not.
OCI_FILE_APPEND — Set the file pointer to the end of the file prior to writing. This flag can be
used with the logical operator OR with OCI_FILE_CREATE.

type (IN)
File type. Valid values are:
OCI_FILE_TEXT
OCI_FILE_BIN
OCI_FILE_STDIN
OCI_FILE_STDOUT
OCI_FILE_STDERR

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 30
Cartridge Services — File I/O Interface

30-33

30.6.7 OCIFileRead()
Reads from a file into a buffer.

Purpose

Reads from a file into a buffer.

Syntax

sword OCIFileRead(void *hndl,
 OCIError *err,
 OCIFileObject *filep,
 void *bufp,
 ub4 bufl,
 ub4 *bytesread);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp (IN)
The pointer to a buffer into which the data is read. The length of the allocated memory is
assumed to be bufl.

bufl (IN)
The length of the buffer in bytes.

bytesread (OUT)
The number of bytes read.

Comments

As many bytes as possible are read into the user buffer. The read ends either when the user
buffer is full, or when it reaches end-of-file.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 30
Cartridge Services — File I/O Interface

30-34

30.6.8 OCIFileSeek()
Changes the current position in a file.

Purpose

Changes the current position in a file.

Syntax

sword OCIFileSeek(void *hndl,
 OCIError *err,
 OCIFileObject *filep,
 uword origin,
 ubig_ora offset,
 sb1 dir);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

origin(IN)
The starting point from which to seek. Use one of the following values:
OCI_FILE_SEEK_BEGINNING (beginning)
OCI_FILE_SEEK_CURRENT (current position)
OCI_FILE_SEEK_END (end of file)

offset (IN)
The number of bytes from the origin where reading begins.

dir (IN)
The direction to go from the origin.

Note:

The direction can be either OCIFILE_FORWARD or OCIFILE_BACKWARD.

Comments

This function allows a seek past the end of the file. Reading from such a position causes an
end-of-file condition to be reported. Writing to such a position does not work on all file systems.
This is because some systems do not allow files to grow dynamically. They require that files be
preallocated with a fixed size. Note that this function performs a seek to a byte location.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Chapter 30
Cartridge Services — File I/O Interface

30-35

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.9 OCIFileTerm()
Terminates the OCIFile package.

Purpose

This function must be called after the OCIFile package is no longer being used.

Syntax

sword OCIFileTerm(void *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.6.10 OCIFileWrite()
Writes buflen bytes into the file.

Purpose

Writes buflen bytes into the file.

Syntax

sword OCIFileWrite(void *hndl,
 OCIError *err,
 OCIFileObject *filep,
 void *bufp,
 ub4 buflen,
 ub4 *byteswritten);

Parameters

hndl (IN)
The OCI environment or user session handle.

Chapter 30
Cartridge Services — File I/O Interface

30-36

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp(IN)
The pointer to a buffer from which the data is written. The length of the allocated memory is
assumed to be buflen.

buflen (IN)
The length of the buffer in bytes.

byteswritten (OUT)
The number of bytes written.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.7 Cartridge Services — String Formatting Interface
Lists and describes cartridge services string formatting functions.

Table 30-6 lists the string formatting functions that are described in this section.

Table 30-6 String Formatting Functions

Function Purpose

OCIFormatInit() Initialize the OCIFormat package

OCIFormatString() Write a text string into the supplied text buffer

OCIFormatTerm() Terminate the OCIFormat package

• OCIFormatInit()
Initializes the OCIFormat package.

• OCIFormatString()
Writes a text string into the supplied text buffer using the argument list submitted to it and
in accordance with the format string given.

• OCIFormatTerm()
Terminates the OCIFormat package.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about using
these functions

Chapter 30
Cartridge Services — String Formatting Interface

30-37

30.7.1 OCIFormatInit()
Initializes the OCIFormat package.

Purpose

Initializes the OCIFormat package.

Syntax

sword OCIFormatInit(void *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Comments

This routine must be called before calling any other OCIFormat routine, and it must be called
only once.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.7.2 OCIFormatString()
Writes a text string into the supplied text buffer using the argument list submitted to it and in
accordance with the format string given.

Purpose

Writes a text string into the supplied text buffer using the argument list submitted to it and in
accordance with the format string given.

Syntax

sword OCIFormatString(void *hndl,
 OCIError *err,
 OraText *buffer,
 sbig_ora bufferLength,
 sbig_ora *returnLength,
 const OraText *formatString,...);

Chapter 30
Cartridge Services — String Formatting Interface

30-38

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

buffer (OUT)
The buffer that contains the string.

bufferLength (IN)
The length of the buffer in bytes.

returnLength (OUT)
The number of bytes written to the buffer (excluding the terminating NULL).

formatString (IN)
The format string, which can be any combination of literal text and format specifications. A
format specification is delimited by the percent character (%) and is followed by any number
(including none) of optional format modifiers, and terminated by a mandatory format code. If
the format string ends with %, that is, with no format modifiers, or format specifier following it,
then no action is taken. The format modifiers and format codes available are described in
Table 30-7 and Table 30-8.

... (IN)
Variable number of arguments of the form OCIFormat type wrapper(variable) where
variable must be a variable containing the value to be used. No constant values or
expressions are allowed as arguments to the OCIFormat type wrappers; The OCIFormat
type wrappers that are available are listed next. The argument list must be terminated with
OCIFormatEnd.
OCIFormatUb1(ub1 variable);
OCIFormatUb2(ub2 variable);
OCIFormatUb4(ub4 variable);
OCIFormatUword(uword variable);
OCIFormatUbig_ora(ubig_ora variable);
OCIFormatSb1(sb1 variable);
OCIFormatSb2(sb2 variable);
OCIFormatSb4(sb4 variable);
OCIFormatSword(sword variable);
OCIFormatSbig_ora(sbig_ora variable);
OCIFormatEb1(eb1 variable);
OCIFormatEb2(eb2 variable);
OCIFormatEb4(eb4 variable);
OCIFormatEword(eword variable);
OCIFormatChar (text variable);
OCIFormatText(const text *variable);
OCIFormatDouble(double variable);
OCIFormatDvoid(const dvoid *variable);
OCIFormatEnd

Chapter 30
Cartridge Services — String Formatting Interface

30-39

Comments

The first call to this routine must be preceded by a call to the OCIFormatInit() routine that
initializes the OCIFormat package for use. When this routine is no longer needed terminate the
OCIFormat package by a call to the OCIFormatTerm() routine.

Format Modifiers

A format modifier alters or extends the format specification, allowing more specialized output.
The format modifiers, as described in Table 30-7, can be in any order and are all optional.

Table 30-7 Format Modifier Flags

Flag Operation

'-' Left-justify the output in the field.

'+' Always print a sign ('+' or '–') for numeric types.

' ' If a number's sign is not printed, then print a space in the sign position.

'0' Pad numeric output with zeros, not spaces.

• If both the '+' and ' ' flags are used in the same format specification, then the ' ' flag is
ignored.

• If both the '-' and '0' flags are used in the same format specification, then the '-' flag is
ignored.

Alternate output:

• For the octal format code, add a leading zero.

• For the hexadecimal format code, add a leading '0x'.

• For floating-point format codes, the output always has a radix character.

Field Width

<w> where <w> is a number specifying a minimum field width. The converted argument is
printed in a field at least this wide, and wider if necessary. If the converted argument takes up
fewer display positions than the field width, it is padded on the left (or right for left justification)
to make up the field width. The padding character is normally a space, but it is a zero if the
zero padding flag was specified. The special character '*' may be used for <w> and indicates
the current argument is to be used for the field width value; the actual field or precision follows
as the next sequential argument.

Precision

.<p> (a period followed by the number <p>), specifies the maximum number of display
positions to print from a string, or digits after the radix point for a decimal number, or the
minimum number of digits to print for an integer type (leading zeros are added to make up the
difference). The special character '*' may be used for <p>, indicating that the current
argument contains the precision value.

Argument Index

(<n>) where <n> is an integer index into the argument list with the first argument being 1. If no
argument index is specified in a format specification, the first argument is selected. The next
time no argument index is specified in a format specification, the second argument is selected,

Chapter 30
Cartridge Services — String Formatting Interface

30-40

and so on. Format specifications with and without argument indexes can be in any order and
are independent of each other in operation.

For example, the format string "%u %(4)u %u %(2)u %u" selects the first, fourth, second,
second, and third arguments given to OCIFormatString().

Format Codes

A format code specifies how to format an argument that is being written to a string.

Note that these format codes, as described in Table 30-8, can appear in uppercase, which
causes all alphabetic characters in the output to appear in uppercase except for text strings,
which are not converted.

Table 30-8 Format Codes to Specify How to Format an Argument Written to a String

Codes Operation

'c' Single-byte character in the compiler character set

'd' Signed decimal integer

'e' Exponential (scientific) notation of the form [-]<d><r>[<d>...]e+[<d>]<d><d>
where <r> is the radix character for the current language and <d> is any single digit; the
default precision is given by the constant OCIFormatDP. The precision may be optionally
specified as a format modifier. Using a precision of 0 suppresses the radix character; the
exponent is always printed in at least 2 digits, and can take up to 3 (for example, 1e+01,
1e+10, and 1e+100).

'f' Fixed decimal notation of the form [-]<d>[<d>...]<r>[<d>...] where <r> is the
appropriate radix character for the current language and <d> is any single digit; the
precision may be optionally specified as a format modifier. Using a precision of 0
suppresses the radix character. The default precision is given by the constant
OCIFormatDP.

'g' Variable floating-point notation; chooses 'e' or 'f', selecting 'f'' if the number fits in
the specified precision (default precision if unspecified), and choosing 'e' only if
exponential format allows more significant digits to be printed; does not print a radix
character if number has no fractional part

'i' Identical to 'd'
'o' Unsigned octal integer

'p' Operating system-specific pointer printout

Chapter 30
Cartridge Services — String Formatting Interface

30-41

Table 30-8 (Cont.) Format Codes to Specify How to Format an Argument Written to a
String

Codes Operation

's' Prints an argument using the default format code for its type:

ociformatub<n>, ociformatuword, ociformatubig_ora, ociformateb<n>, and
ociformateword.

The format code used is 'u'.

ociformatsb<n>, ociformatsword, and ociformatsbig_ora.

The format code used is 'd'.

ociformatchar
The format code used is 'c'.

ociformattext
Prints text until trailing NULL is found.

ociformatdouble
The format code used is 'g'.

ociformatdvoid
The format code used is 'p'.

' %' - print a '%'.
'u' Unsigned decimal integer

'x' Unsigned hexadecimal integer

Example

Using OCIFormatString() to Format a Date Two Different Ways for Two Countries

/* This example shows the power of arbitrary argument */
/* selection in the context of internationalization. A */
/* date is formatted in two different ways for two different */
/* countries according to the format string, yet the */
/* argument list submitted to OCIFormatString remains */
/* invariant. */

text buffer[255];
ub1 day, month, year;
OCIError *err;
void *hndl;
sbig_ora returnLen;

/* Set the date. */

day = 10;
month = 3;
year = 97;

/* Work out the date in United States style: mm/dd/yy */
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer), &returnLen
 (const text *)"%(2)02u/%(1)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "03/10/97". */

Chapter 30
Cartridge Services — String Formatting Interface

30-42

/* Work out the date in New Zealand style: dd/mm/yy */
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer), &returnLen
 (const text *)"%(1)02u/%(2)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "10/03/97". */

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIFormatInit()
Initializes the OCIFormat package.

• OCIFormatTerm()
Terminates the OCIFormat package.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

30.7.3 OCIFormatTerm()
Terminates the OCIFormat package.

Purpose

Terminates the OCIFormat package.

Syntax

sword OCIFormatTerm(void *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

Comments

This function must be called after the OCIFormat package is no longer being used, and it must
be called only once.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 30
Cartridge Services — String Formatting Interface

30-43

31
OCI Any Type and Data Functions

This chapter describes the OCI Any Type and Data functions.

See Also:

For code examples, see the demonstration programs included with your Oracle
Database installation. For additional information, see OCI Demonstration Programs.

This chapter contains these topics:

• Introduction to Any Type and Data Interfaces

• OCI Type Interface Functions

• OCI Any Data Interface Functions

• OCI Any Data Set Interface Functions

• Introduction to Any Type and Data Interfaces
This section describes the OCI Any Type and Data functions in detail.

• OCI Type Interface Functions

• OCI Any Data Interface Functions
Lists and describes OCI Any Data interface functions.

• OCI Any Data Set Interface Functions
Lists and describes OCI Any Data set interface functions.

31.1 Introduction to Any Type and Data Interfaces
This section describes the OCI Any Type and Data functions in detail.

• Conventions for OCI Functions
Describes the conventions for OCI functions. The entries for each function may also
contain function return values.

See Also:

"AnyType, AnyData, and AnyDataSet Interfaces"

31.1.1 Conventions for OCI Functions
Describes the conventions for OCI functions. The entries for each function may also contain
function return values.

See the Conventions for OCI Functions for the conventions used in describing each function.

31-1

The OCI Any Type and Data functions typically return one of the values described in the
following table.

Table 31-1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded.

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

See Also:

Error Handling in OCI for more information about return codes and error handling

31.2 OCI Type Interface Functions
Table 31-2 lists the Type Interface functions that are described in this section.

Table 31-2 Type Interface Functions

Function Purpose

OCITypeAddAttr() Add an attribute to an object type that was
constructed earlier with typecode
OCI_TYPECODE_OBJECT

OCITypeBeginCreate() Begin the construction process for a transient
type. The type is anonymous (no name).

OCITypeEndCreate() Finish construction of a type description.
Subsequently, only access is allowed.

OCITypeSetBuiltin() Set built-in type information. This call can be
made only if the type has been constructed with a
built-in typecode (OCI_TYPECODE_NUMBER, and
so on).

OCITypeSetCollection() Set collection type information. This call can be
made only if the type has been constructed with a
collection typecode.

• OCITypeAddAttr()
Adds an attribute to an object type that was constructed earlier with typecode
OCI_TYPECODE_OBJECT.

• OCITypeBeginCreate()
Begins the construction process for a transient type. The type is anonymous (no name).

• OCITypeEndCreate()
Finishes construction of a type description. Subsequently, only access is allowed.

• OCITypeSetBuiltin()
Sets built-in type information.

Chapter 31
OCI Type Interface Functions

31-2

• OCITypeSetCollection()
Sets collection type information.

31.2.1 OCITypeAddAttr()
Adds an attribute to an object type that was constructed earlier with typecode
OCI_TYPECODE_OBJECT.

Purpose

Adds an attribute to an object type that was constructed earlier with typecode
OCI_TYPECODE_OBJECT.

Syntax

sword OCITypeAddAttr (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 const text *a_name,
 ub4 a_length,
 OCIParam *attr_info);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

a_name (IN) [optional]
The name of the attribute.

a_length (IN) [optional]
The length of the attribute name, in bytes.

attr_info (IN)
Information about the attribute. It is obtained by allocating an OCIParam parameter handle and
setting type information in the OCIParam using OCIAttrSet() calls.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.2.2 OCITypeBeginCreate()
Begins the construction process for a transient type. The type is anonymous (no name).

Purpose

Begins the construction process for a transient type. The type is anonymous (no name).

Chapter 31
OCI Type Interface Functions

31-3

Syntax

sword OCITypeBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIDuration dur,
 OCIType **type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tc (IN)
The typecode for the type. The typecode could correspond to an object type or a built-in type.
Currently, the permissible values for user defined types are:

• OCI_TYPECODE_OBJECT for an object type (structured)

• OCI_TYPECODE_VARRAY for a VARRAY collection type

• OCI_TYPECODE_TABLE for a nested table collection type

For object types, call OCITypeAddAttr() to add each of the attribute types. For collection types,
call OCITypeSetCollection(). Subsequently, call OCITypeEndCreate() to finish the creation
process.

The permissible values for built-in typecodes are specified in "Typecodes". Additional
information about built-in types (precision, scale for numbers, character set information for
VARCHAR2s, and so on) if any, must be set with a subsequent call to OCITypeSetBuiltin().
Finally, you must use OCITypeEndCreate() to finish the creation process.

dur (IN)
The allocation duration for the type. It is one of these:

• A user duration that was previously created. It can be created by using
OCIDurationBegin().

• A predefined duration, such as OCI_DURATION_SESSION.

type (OUT)
The OCIType (Type Descriptor) that is being constructed.

Comments

To create a persistent named type, use the SQL statement CREATE TYPE. Transient types have
no identity. They are pure values.

Related Topics

• OCITypeAddAttr()
Adds an attribute to an object type that was constructed earlier with typecode
OCI_TYPECODE_OBJECT.

• OCITypeSetCollection()
Sets collection type information.

Chapter 31
OCI Type Interface Functions

31-4

• OCITypeEndCreate()
Finishes construction of a type description. Subsequently, only access is allowed.

• OCITypeSetBuiltin()
Sets built-in type information.

• OCIDurationBegin()
Starts a user duration.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.2.3 OCITypeEndCreate()
Finishes construction of a type description. Subsequently, only access is allowed.

Purpose

Finishes construction of a type description. Subsequently, only access is allowed.

Syntax

sword OCITypeEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.2.4 OCITypeSetBuiltin()
Sets built-in type information.

Purpose

This call can be made only if the type has been constructed with a built-in typecode
(OCI_TYPECODE_NUMBER, and so on).

Syntax

sword OCITypeSetBuiltin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 OCIParam *builtin_info);

Chapter 31
OCI Type Interface Functions

31-5

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

builtin_info (IN)
Provides information about the built-in type (precision, scale, character set, and so on). It is
obtained by allocating an OCIParam parameter handle and setting type information in the
OCIParam using OCIAttrSet() calls.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.2.5 OCITypeSetCollection()
Sets collection type information.

Purpose

This call can be made only if the type has been constructed with a collection typecode.

Syntax

sword OCITypeSetCollection (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 OCIParam *collelem_info,
 ub4 coll_count);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type descriptor that is being constructed.

collelem_info (IN)
collelem_info provides information about the collection element. It is obtained by allocating
an OCIParam parameter handle and setting type information in the OCIParam using
OCIAttrSet() calls.

Chapter 31
OCI Type Interface Functions

31-6

coll_count (IN)
The count of elements in the collection. Pass 0 for a nested table (which is unbounded).

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3 OCI Any Data Interface Functions
Lists and describes OCI Any Data interface functions.

Table 31-3 lists the Any Data Interface functions that are described in this section.

Table 31-3 Any Data Functions

Function Purpose

OCIAnyDataAccess() Retrieve the data value of an OCIAnyData
OCIAnyDataAttrGet() Get the value of the attribute at the current

position in the OCIAnyData
OCIAnyDataAttrSet() Set the attribute at the current position with a

given value

OCIAnyDataBeginCreate() Allocate an OCIAnyData for the given duration
and initialize it with the type information

OCIAnyDataCollAddElem() Add the next collection element to the
collection attribute of the OCIAnyData at the
current attribute position

OCIAnyDataCollGetElem() Access sequentially the elements in the
collection attribute at the current position in the
OCIAnyData

OCIAnyDataConvert() Construct an OCIAnyData with the given data
value of the given type

OCIAnyDataDestroy() Free an AnyData

OCIAnyDataEndCreate() Mark the end of OCIAnyData creation

OCIAnyDataGetCurrAttrNum() Return the current attribute number of the
OCIAnyData

OCIAnyDataGetType() Get the type corresponding to an AnyData
value

OCIAnyDataIsNull() Check if OCIAnyData is NULL
OCIAnyDataTypeCodeToSqlt() Convert the OCITypeCode for an AnyData

value to the SQLT code that corresponds to
the representation of the value as returned by
the OCIAnyData API

• OCIAnyDataAccess()
Retrieve the data value of an OCIAnyData.

• OCIAnyDataAttrGet()
Gets the value of the attribute at the current position in the OCIAnyData.

Chapter 31
OCI Any Data Interface Functions

31-7

• OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

• OCIAnyDataBeginCreate()
Allocates an OCIAnyData for the given duration and initializes it with the type information.

• OCIAnyDataCollAddElem()
Adds the next collection element to the collection attribute of the OCIAnyData at the current
attribute position.

• OCIAnyDataCollGetElem()
Accesses sequentially the elements in the collection attribute at the current position in the
OCIAnyData.

• OCIAnyDataConvert()
Constructs an OCIAnyData with the given data value that is of the given type.

• OCIAnyDataDestroy()
Free an OCIAnyData.

• OCIAnyDataEndCreate()
Marks the end of OCIAnyData creation.

• OCIAnyDataGetCurrAttrNum()
Returns the current attribute number of OCIAnyData.

• OCIAnyDataGetType()
Gets the type corresponding to an OCIAnyData value.

• OCIAnyDataIsNull()
Checks if the content of the type within the OCIAnyData is NULL.

• OCIAnyDataTypeCodeToSqlt()
Converts the OCITypeCode for an AnyData value to the SQLT code that corresponds to the
representation of the value as returned by the OCIAnyData API.

31.3.1 OCIAnyDataAccess()
Retrieve the data value of an OCIAnyData.

Purpose

The data value should be of the type with which the OCIAnyData was initialized. You can use
this call to access an entire OCIAnyData, which can be of type OCI_TYPECODE_OBJECT, any of
the collection types, or any of the built-in types.

Syntax

sword OCIAnyDataAccess (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *inst_type,
 void *null_ind,
 void *data_value,
 ub4 *length);

Parameters

svchp (IN)
The OCI service context.

Chapter 31
OCI Any Data Interface Functions

31-8

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
Initialized pointer to an OCIAnyData.

tc (IN)
Typecode of the data value. This is used for type checking (with the initialization type of the
OCIAnyData).

inst_type (IN)
The OCIType of the data value (if it is not a primitive one). If the tc parameter is any of the
following types, then this parameter should be not NULL.

• OCI_TYPECODE_OBJECT
• OCI_TYPECODE_REF
• OCI_TYPECODE_VARRAY
• OCI_TYPECODE_TABLE
Otherwise, it could be NULL.

null_ind (OUT)
Indicates if the data_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The value returned is OCI_IND_NOTNULL if the value is not NULL, and it
is OCI_IND_NULL for a NULL value. If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to
the indicator struct of the data_value as the argument here. See OCIAnyDataAttrGet() for
details.

data_value (OUT)
The data value (is of the type with which the OCIAnyData was initialized). See
OCIAnyDataAttrGet() for the appropriate C type corresponding to each allowed typecode and
for a description of how memory allocation behavior depends on the value passed for this
parameter.

length (OUT)
Currently, this parameter is ignored. In the future, this may be used for certain typecodes
where the data representation itself does not give the length, in bytes, implicitly.

Related Topics

• OCIAnyDataAttrGet()
Gets the value of the attribute at the current position in the OCIAnyData.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.2 OCIAnyDataAttrGet()
Gets the value of the attribute at the current position in the OCIAnyData.

Purpose

Attribute values can be accessed sequentially.

Chapter 31
OCI Any Data Interface Functions

31-9

Syntax

sword OCIAnyDataAttrGet (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *attr_type,
 void *null_ind,
 void *attr_value,
 ub4 *length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Pointer to initialized type OCIAnyData.

tc (IN)
Typecode of the attribute. Type checking happens based on tc, attr_type, and the type
information in the OCIAnyData.

attr_type (IN) [optional]
The attr_type parameter should give the type description of the referenced type (for
OCI_TYPECODE_REF) or the type description of the collection type (for OCI_TYPECODE_VARRAY,
OCI_TYPECODE_TABLE), or the type description of the object (for OCI_TYPECODE_OBJECT). This
parameter is not required for built-in typecodes.

null_ind (OUT)
Indicates if the attr_value is NULL. Pass (OCIInd *) in null_ind for all typecodes except
OCI_TYPECODE_OBJECT.
If the typecode is OCI_TYPECODE_OBJECT, pass a pointer (void **) in null_ind.
The indicator returned is OCI_IND_NOTNULL if the value is not NULL, and it is OCI_IND_NULL for a
NULL value.

attr_value (IN/OUT)
Value for the attribute.

length (IN/OUT)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for certain
typecodes where the data representation itself does not give the length, in bytes, implicitly.

is_any (IN)
Is attribute to be returned in the form of OCIAnyData?

Comments

You can use this call with an OCIAnyData of typecode OCI_TYPECODE_OBJECT only.

• This call gets the value of the attribute at the current position in the OCIAnyData.

Chapter 31
OCI Any Data Interface Functions

31-10

• The tc parameter must match the type of the attribute at the current position; otherwise, an
error is returned.

• The is_any parameter is applicable only when the typecode of the attribute is one of these
values:

– OCI_TYPECODE_OBJECT
– OCI_TYPECODE_VARRAY
– OCI_TYPECODE_TABLE
If is_any is TRUE, then attr_value is returned in the form of OCIAnyData*.

• You must allocate the memory for the attribute before calling the function. You can allocate
memory through OCIObjectNew(). For built-in types such as NUMBER and VARCHAR, the
attribute can be just a pointer to a stack variable. Table 31-4 lists the available Oracle data
types that can be used as object attribute types and the corresponding types of the
attribute value that should be passed.

Table 31-4 Data Types and Attribute Values

Data Types attr_value

VARCHAR2, VARCHAR, CHAR OCIString **
NUMBER, REAL, INT, FLOAT,
DECIMAL

OCINumber **

DATE OCIDate **
TIMESTAMP OCIDateTime **
TIMESTAMP WITH TIME ZONE OCIDateTime **
TIMESTAMP WITH LOCAL TIME
ZONE

OCIDateTime **

INTERVAL YEAR TO MONTH OCIInterval **
INTERVAL DAY TO SECOND OCIInterval **
BLOB OCILobLocator ** or OCIBlobLocator **
CLOB OCILobLocator ** or OCIClobLocator *
BFILE OCILobLocator **
REF OCIRef **
RAW OCIRaw **
VARRAY OCIArray ** (or OCIAnyData * if is_any is TRUE)

TABLE OCITable ** (or OCIAnyData * if is_any is TRUE)

OBJECT void ** (or OCIAnyData * if is_any is TRUE)

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 31
OCI Any Data Interface Functions

31-11

31.3.3 OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

Purpose

Sets the attribute at the current position with a given value.

Syntax

sword OCIAnyDataAttrSet (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *attr_type,
 void *null_ind,
 void *attr_value,
 ub4 length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

tc (IN)
Typecode of the attribute. Type checking happens based on tc, attr_type, and the type
information in the OCIAnyData.

attr_type (IN) [optional]
The attr_type parameter gives the type description of the referenced type (for
OCI_TYPECODE_REF), the type description of the collection type (for OCI_TYPECODE_VARRAY,
OCI_TYPECODE_TABLE), and the type description of the object (for OCI_TYPECODE_OBJECT). This
parameter is not required for built-in typecodes or if OCI_TYPECODE_NONE is specified.

null_ind (IN)
Indicates if the attr_value is NULL. Pass (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if the value is not NULL, and
it should be OCI_IND_NULL for a NULL value.
If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of the
attr_value as the argument here.

attr_value (IN)
Value for the attribute.

length (IN)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for certain
typecodes where the data representation itself does not give the length implicitly.

Chapter 31
OCI Any Data Interface Functions

31-12

is_any (IN)
Is attribute in the form of OCIAnyData?

Comments

OCIAnyDataBeginCreate() creates an OCIAnyData with an empty skeleton instance. To fill the
attribute values, use OCIAnyDataAttrSet() (for OCI_TYPECODE_OBJECT) or
OCIAnyDataCollAddElem() (for the collection typecodes).

Attribute values must be set in order, from the first attribute to the last. The current attribute
number is remembered as the state maintained inside the OCIAnyData. Piece-wise construction
of embedded attributes and collection elements is not yet supported.

This call sets the attribute at the current position with attr_value. Once piece-wise
construction has started for an OCIAnyData instance, the OCIAnyDataConstruct() calls can no
longer be used.

The tc parameter must match the type of the attribute at the current position. Otherwise, an
error is returned.

If is_any is TRUE, then the attribute must be in the form of OCIAnyData*, and it is copied into the
enclosing OCIAnyData (data) without any conversion.

Table 31-5 lists the available data types that can be used as object attribute types and the
corresponding types of the attribute value that should be passed.

Table 31-5 Data Types and Attribute Values

Data Types attr_value

VARCHAR2, VARCHAR, CHAR OCIString *
NUMBER, REAL, INT, FLOAT,
DECIMAL

OCINumber *

DATE OCIDate *
TIMESTAMP OCIDateTime *
TIMESTAMP WITH TIME ZONE OCIDateTime *
TIMESTAMP WITH LOCAL TIME ZONE OCIDateTime *
INTERVAL YEAR TO MONTH OCIInterval *
INTERVAL DAY TO SECOND OCIInterval *
BLOB OCILobLocator * or OCIBlobLocator *
CLOB OCILobLocator * or OCIClobLocator *
BFILE OCILobLocator *
REF OCIRef *
RAW OCIRaw *
VARRAY OCIArray * (or OCIAnyData * if is_any is TRUE)

TABLE OCITable * (or OCIAnyData * if is_any is TRUE)

OBJECT void * (or OCIAnyData * if is_any is TRUE)

Related Topics

• OCIAnyDataBeginCreate()
Allocates an OCIAnyData for the given duration and initializes it with the type information.

Chapter 31
OCI Any Data Interface Functions

31-13

• OCIAnyDataCollAddElem()
Adds the next collection element to the collection attribute of the OCIAnyData at the current
attribute position.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.4 OCIAnyDataBeginCreate()
Allocates an OCIAnyData for the given duration and initializes it with the type information.

Purpose

Allocates an OCIAnyData for the given duration and initializes it with the type information.

Syntax

sword OCIAnyDataBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIType *type,
 OCIDuration dur,
 OCIAnyData **sdata);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tc (IN)
Typecode corresponding to OCIAnyData. Can be a built-in typecode or a user-defined type's
typecode such as:

• OCI_TYPECODE_OBJECT
• OCI_TYPECODE_REF
• OCI_TYPECODE_VARRAY

type (IN)
The type corresponding to OCIAnyData. If the typecode corresponds to a built-in type
(OCI_TYPECODE_NUMBER, and so on), this parameter can be NULL. It should be non-NULL for
user-defined types (OCI_TYPECODE_OBJECT, OCI_TYPECODE_REF, collection types, and so on).

dur (IN)
Duration for which OCIAnyData is allocated. It is one of these:

• A user duration that was previously created. It can be created by using .

• A predefined duration, such as OCI_DURATION_SESSION.

sdata (OUT)
Initialized OCIAnyData. If (*sdata) is not NULL at the beginning of the call, the memory could
be reused instead of reallocating space for OCIAnyData.

Chapter 31
OCI Any Data Interface Functions

31-14

Therefore, do not pass an uninitialized pointer here.

Comments

OCIAnyDataBeginCreate() creates an OCIAnyData with an empty skeleton instance. To fill in
the attribute values, use OCIAnyDataAttrSet() for OCI_TYPECODE_OBJECT or
OCIAnyDataCollAddElem() for the collection typecodes.

Attribute values must be set in order. They must be set from the first attribute to the last. The
current attribute number is remembered as state maintained inside the OCIAnyData. Piece-wise
construction of embedded attributes and collection elements is not yet supported.

For performance reasons, OCIAnyData ends up pointing to the OCIType parameter passed in.
You must ensure that the OCIType lives longer (has an allocation duration >= the duration of
OCIAnyData, if the OCIType is a transient one, or has an allocation or pin duration >= the
duration of OCIAnyData, if the OCIType is a persistent one).

Related Topics

• OCIDurationBegin()
Starts a user duration.

• OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

• OCIAnyDataCollAddElem()
Adds the next collection element to the collection attribute of the OCIAnyData at the current
attribute position.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.5 OCIAnyDataCollAddElem()
Adds the next collection element to the collection attribute of the OCIAnyData at the current
attribute position.

Purpose

If the OCIAnyData is of a collection type, then there is no notion of attribute position and this call
adds the next collection element.

Syntax

sword OCIAnyDataCollAddElem (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode collelem_tc,
 OCIType *collelem_type,
 void *null_ind,
 void *elem_value,
 ub4 length,
 boolean is_any,
 boolean last_elem);

Parameters

svchp (IN)
The OCI service context.

Chapter 31
OCI Any Data Interface Functions

31-15

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

collelem_tc (IN)
The typecode of the collection element to be added. Type checking happens based on
collelem_tc, collelem_type and the type information in the OCIAnyData.

collelem_type (IN) [optional]
The collelem_type parameter gives the type description of the referenced type (for
OCI_TYPECODE_REF), the type description of the collection type (for
OCI_TYPECODE_NAMEDCOLLECTION), and the type description of the object (for
OCI_TYPECODE_OBJECT).
This parameter is not required for built-in typecodes.

null_ind (IN)
Indicates if the elem_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if the value is not NULL, and
it should be OCI_IND_NULL for a NULL value.
If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of the
elem_value as the argument here.

elem_value (IN)
Value for the collection element.

length (IN)
Length of the collection element.

is_any (IN)
Is the attribute in the form of OCIAnyData?

last_elem (IN)
Is the element being added the last in the collection?

Comments

This call can be invoked for an OCIAnyData of type OCI_TYPECODE_OBJECT or of any of the
collection types. Once piece-wise construction has started for an OCIAnyData instance, the
OCIAnyDataConstruct() calls can no longer be used.

As in OCIAnyDataAttrSet(), is_any is applicable only if the collelem_tc is that of typecode
OCI_TYPECODE_OBJECT or a collection typecode. If is_any is TRUE, the attribute should be in the
form of OCIAnyData *.

If the element being added is the last element in the collection, last_elem should be set to
TRUE.

To add a NULL element, the NULL indicator (null_ind) should be set to OCI_IND_NULL, in which
case all other arguments are ignored. Otherwise, null_ind must be set to OCI_IND_NOTNULL.

See OCIAnyDataAttrSet() for the type of attribute to be passed in for all the possible types of
the collection elements.

Chapter 31
OCI Any Data Interface Functions

31-16

Related Topics

• OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.6 OCIAnyDataCollGetElem()
Accesses sequentially the elements in the collection attribute at the current position in the
OCIAnyData.

Purpose

Accesses sequentially the elements in the collection attribute at the current position in the
OCIAnyData.

Syntax

sword OCIAnyDataCollGetElem (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode collelem_tc,
 OCIType *collelem_type,
 void *null_ind,
 void *collelem_value,
 ub4 *length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

collelem_tc (IN)
The typecode of the collection element to be retrieved. Type checking happens based on
collelem_tc, collelem_type and the type information in the OCIAnyData.

collelem_type (IN) [optional]
The collelem_type parameter gives the type description of the referenced type (for
OCI_TYPECODE_REF), the type description of the collection type (for
OCI_TYPECODE_NAMEDCOLLECTION), and the type description of the object (for
OCI_TYPECODE_OBJECT).
This parameter is not required for built-in typecodes.

null_ind (OUT)
Indicates if the collelem_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if the value is not NULL, and
it should be OCI_IND_NULL for a NULL value.

Chapter 31
OCI Any Data Interface Functions

31-17

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer (void **) to the indicator struct of the
collelem_value as the argument here.

collelem_value (IN/OUT)
Value for the collection element.

length (IN/OUT)
Length of the collection element. Currently ignored. Set to 0 on input.

is_any (IN)
Is attr_value to be returned in the form of OCIAnyData?

Comments

The OCIAnyData data can also correspond to a top-level collection. If the OCIAnyData is of type
OCI_TYPECODE_OBJECT, the attribute at the current position must be a collection of the
appropriate type. Otherwise, an error is returned.

As for OCIAnyDataAttrGet(), the is_any parameter is applicable only if the collelem_tc
typecode is OCI_TYPECODE_OBJECT. If is_any is TRUE, the attr_value is in the form of
OCIAnyData *.

This call returns OCI_NO_DATA when the end of the collection has been reached. It returns
OCI_SUCCESS upon success and OCI_ERROR upon error.

See OCIAnyDataAttrGet() for the type of attribute to be passed in for all the possible types of
the collection elements.

Related Topics

• OCIAnyDataAttrGet()
Gets the value of the attribute at the current position in the OCIAnyData.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.7 OCIAnyDataConvert()
Constructs an OCIAnyData with the given data value that is of the given type.

Purpose

You can use this call to construct an entire OCIAnyData, which could be of type
OCI_TYPECODE_OBJECT, any of the collection types, or any of the built-in types.

Syntax

sword OCIAnyDataConvert (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIType *inst_type,
 OCIDuration dur,
 void *null_ind,
 void *data_value,
 ub4 length,
 OCIAnyData **sdata);

Chapter 31
OCI Any Data Interface Functions

31-18

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tc (IN)
Typecode of the data value. Can be a built-in typecode or a user-defined type's typecode
(such as OCI_TYPECODE_OBJECT, OCI_TYPECODE_REF, or OCI_TYPECODE_VARRAY).
If (*sdata) is not NULL and it represents a skeleton instance returned during the
OCIAnyDataSetAddInstance(), the tc and the inst_type parameters are optional here. This
is because the type information for such a skeleton instance is known. If the tc and inst_type
parameters are provided for this situation, they are used only for type-checking purposes.

inst_type (IN)
Type corresponding to the OCIAnyData. If the typecode corresponds to a built-in type
(OCI_TYPECODE_NUMBER, and so on), this parameter can be NULL. It should not be NULL for user-
defined types (OCI_TYPECODE_OBJECT, OCI_TYPECODE_REF, or collection types).

dur (IN)
Duration for which the OCIAnyData is allocated. It is one of these:

• A user duration that was previously created. It can be created by using
OCIDurationBegin().

• A predefined duration, such as OCI_DURATION_SESSION.

null_ind
Indicates if data_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator is OCI_IND_NOTNULL if the value is not NULL, and it is
OCI_IND_NULL for a NULL value.
If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of the
data_value as the argument here.

data_value (IN)
The data value (should be of the type with which the OCIAnyData was initialized). See
OCIAnyDataAttrSet() for the appropriate C type corresponding to each allowed typecode.

length (IN)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for certain
typecodes where the data representation itself does not give the length implicitly.

sdata (IN/OUT)
Initialized OCIAnyData. If (*sdata) is not NULL at the beginning of the call, the memory could be
reused instead of reallocating space for OCIAnyData.
Therefore, do not pass an uninitialized pointer here.
If (*sdata) represents a skeleton instance returned during an OCIAnyDataSetAddInstance()
call, the tc and inst_type parameters are used for type checking, if necessary.

Comments

For performance reasons, OCIAnyData pointer ends up pointing to the passed in OCIType
parameter. You must ensure that the OCIType lives longer (has an allocation duration >= the

Chapter 31
OCI Any Data Interface Functions

31-19

duration of OCIAnyData, if the OCIType is a transient one, or has an allocation or pin duration >=
the duration of OCIAnyData, if the OCIType is a persistent one).

Related Topics

• OCIAnyDataSetAddInstance()
Adds a new skeleton instance to the OCIAnyDataSet and sets all the attributes of the
instance to NULL.

• OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.8 OCIAnyDataDestroy()
Free an OCIAnyData.

Purpose

Frees an OCIAnyData.

Syntax

sword OCIAnyDataDestroy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Pointer to a type of OCIAnyData to be freed.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.9 OCIAnyDataEndCreate()
Marks the end of OCIAnyData creation.

Purpose

It should be called after initializing all attributes of its instances with suitable values. This call is
valid only if OCIAnyDataBeginCreate() was called earlier for the OCIAnyData.

Syntax

sword OCIAnyDataEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *data);

Chapter 31
OCI Any Data Interface Functions

31-20

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data (IN/OUT)
Initialized OCIAnyData.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.10 OCIAnyDataGetCurrAttrNum()
Returns the current attribute number of OCIAnyData.

Purpose

If OCIAnyData is being constructed, this function refers to the current attribute that is being set.
Otherwise, if OCIAnyData is being accessed, this function refers to the attribute that is being
accessed.

Syntax

sword OCIAnyDataGetCurrAttrNum(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 ub4 *attrnum);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
Initialized OCIAnyData.

attrnum (OUT)
The attribute number.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 31
OCI Any Data Interface Functions

31-21

31.3.11 OCIAnyDataGetType()
Gets the type corresponding to an OCIAnyData value.

Purpose

It returns the actual pointer to the type maintained inside an OCIAnyData. No copying is done
for performance reasons. Do not use this type after the OCIAnyData is freed (or its duration
ends).

Syntax

sword OCIAnyDataGetType(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *data,
 OCITypeCode *tc,
 OCIType **type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data (IN)
Initialized OCIAnyData.

tc (OUT)
The typecode corresponding to the OCIAnyData.

type (OUT)
The type corresponding to the OCIAnyData. This is NULL if the OCIAnyData corresponds to a
built-in type.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.12 OCIAnyDataIsNull()
Checks if the content of the type within the OCIAnyData is NULL.

Purpose

Checks if the content of the type within the OCIAnyData is NULL.

Syntax

sword OCIAnyDataIsNull (OCISvcCtx *svchp,
 OCIError *errhp,
 const OCIAnyData *sdata,
 boolean *isNull) ;

Chapter 31
OCI Any Data Interface Functions

31-22

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
OCIAnyData to be checked.

isNull (IN/OUT)
TRUE if NULL; otherwise, FALSE.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.3.13 OCIAnyDataTypeCodeToSqlt()
Converts the OCITypeCode for an AnyData value to the SQLT code that corresponds to the
representation of the value as returned by the OCIAnyData API.

Purpose

Converts the OCITypeCode for an OCIAnyData value to the SQLT code that corresponds to the
representation of the value as returned by the OCIAnyData API.

Syntax

sword OCIAnyDataTypeCodeToSqlt (OCIError *errhp,
 OCITypeCode tc,
 ub1 *sqltcode,
 ub1 *csfrm) ;

Parameters

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in errhp, and this function returns
OCI_ERROR. Diagnostic information can be obtained by calling OCIErrorGet().

tc (IN)
OCITypeCode corresponding to the AnyData value.

sqltcode (OUT)
SQLT code corresponding to the user format of the typecode.

csfrm (OUT)
Charset form corresponding to the user format of the typecode. Meaningful only for character
types. Returns SQLCS_IMPLICIT or SQLCS_NCHAR (for NCHAR types).

Comments

This function converts OCI_TYPECODE_CHAR and OCI_TYPECODE_VARCHAR2 to SQLT_VST (which
corresponds to the OCIString mapping) with a charset form of SQLCS_IMPLICIT.

Chapter 31
OCI Any Data Interface Functions

31-23

OCI_TYPECODE_NVARCHAR2 also returns SQLT_VST (OCIString mapping is used by the
OCIAnyData API) with a charset form of SQLCS_NCHAR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

• NCHAR Typecodes for OCIAnyData Functions
The function OCIAnyDataTypeCodeToSqlt() converts the OCITypeCode for an OCIAnyData
value to the SQLT code that corresponds to the representation of the value as returned by
the OCIAnyData API.

31.4 OCI Any Data Set Interface Functions
Lists and describes OCI Any Data set interface functions.

Table 31-6 lists the Any Data Set Interface functions that are described in this section.

Table 31-6 Any Data Set Functions

Function Purpose

OCIAnyDataSetAddInstance() Add a new skeleton instance to the
OCIAnyDataSet and set all the attributes of
the instance to NULL

OCIAnyDataSetBeginCreate() Allocate an OCIAnyDataSet for the given
duration and initialize it with the type
information

OCIAnyDataSetDestroy() Free the OCIAnyDataSet
OCIAnyDataSetEndCreate() Mark the end of OCIAnyDataSet creation

OCIAnyDataSetGetCount() Get the number of instances in the
OCIAnyDataSet

OCIAnyDataSetGetInstance() Return the OCIAnyData corresponding to an
instance at the current position and update the
current position

OCIAnyDataSetGetType() Get the type corresponding to an
OCIAnyDataSet

• OCIAnyDataSetAddInstance()
Adds a new skeleton instance to the OCIAnyDataSet and sets all the attributes of the
instance to NULL.

• OCIAnyDataSetBeginCreate()
Allocates an OCIAnyDataSet for the given duration and initializes it with the type
information.

• OCIAnyDataSetDestroy()
Frees the OCIAnyDataSet.

• OCIAnyDataSetEndCreate()
Marks the end of OCIAnyDataSet creation.

• OCIAnyDataSetGetCount()
Gets the number of instances in the OCIAnyDataSet.

Chapter 31
OCI Any Data Set Interface Functions

31-24

• OCIAnyDataSetGetInstance()
Returns the OCIAnyData corresponding to an instance at the current position and updates
the current position.

• OCIAnyDataSetGetType()
Gets the type corresponding to an OCIAnyDataSet.

31.4.1 OCIAnyDataSetAddInstance()
Adds a new skeleton instance to the OCIAnyDataSet and sets all the attributes of the instance
to NULL.

Purpose

Adds a new skeleton instance to the OCIAnyDataSet and sets all the attributes of the instance
to NULL.

Syntax

sword OCIAnyDataSetAddInstance (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCIAnyData **data);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
OCIAnyDataSet to which a new instance is added.

data (IN/OUT)
OCIAnyData corresponding to the newly added instance. If (*data) is NULL, a new OCIAnyData
is allocated for the same duration as the OCIAnyDataSet. If (*data) is not NULL, it is reused.
This OCIAnyData can be subsequently constructed using the OCIAnyDataConvert() call, or it
can be constructed piece-wise using the OCIAnyDataAttrSet() or the
OCIAnyDataCollAddElem() calls.

Comments

This call returns this skeleton instance through the OCIAnyData parameter that can be
constructed subsequently by invoking the OCIAnyData API.

Chapter 31
OCI Any Data Set Interface Functions

31-25

Note:

The old value is not destroyed. You must destroy the old value pointed to by (*data)
and set (*data) to a NULL pointer before beginning to make a sequence of these
calls. No deep copying (of OCIType information or of the data part) is done in the
returned OCIAnyData. This OCIAnyData cannot be used beyond the allocation duration
of the OCIAnyDataSet (it is like a reference into the OCIAnyDataSet). The returned
OCIAnyData can be reused on subsequent calls to this function, to sequentially add
new data instances to the OCIAnyDataSet.

Related Topics

• OCIAnyDataConvert()
Constructs an OCIAnyData with the given data value that is of the given type.

• OCIAnyDataAttrSet()
Sets the attribute at the current position with a given value.

• OCIAnyDataCollAddElem()
Adds the next collection element to the collection attribute of the OCIAnyData at the current
attribute position.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.4.2 OCIAnyDataSetBeginCreate()
Allocates an OCIAnyDataSet for the given duration and initializes it with the type information.

Purpose

The OCIAnyDataSet can hold multiple instances of the given type.

Syntax

sword OCIAnyDataSetBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode typecode,
 const OCIType *type,
 OCIDuration dur,
 OCIAnyDataSet **data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

typecode (IN)
Typecode corresponding to the OCIAnyDataSet.

Chapter 31
OCI Any Data Set Interface Functions

31-26

type (IN)
Type corresponding to the OCIAnyDataSet. If the typecode corresponds to a built-in type, such
as OCI_TYPECODE_NUMBER, this parameter can be NULL. It should be non-NULL for user-defined
types, such as OCI_TYPECODE_OBJECT, OCI_TYPECODE_REF, and collection types.

dur (IN)
Duration for which OCIAnyDataSet is allocated. It is one of these:

• A user duration that was previously created. It can be created by using
OCIDurationBegin().

• A predefined duration, such as OCI_DURATION_SESSION.

data_set (OUT)
Initialized OCIAnyDataSet.

Comments

For performance reasons, the OCIAnyDataSet ends up pointing to the OCIType parameter
passed in. You must ensure that the OCIType lives longer (has an allocation duration >= the
duration of the OCIAnyData if the OCIType is a transient one, or has allocation or pin duration >=
the duration of the OCIAnyData, if the OCIType is a persistent one).

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.4.3 OCIAnyDataSetDestroy()
Frees the OCIAnyDataSet.

Purpose

Frees the OCIAnyDataSet.

Syntax

sword OCIAnyDataSetDestroy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCI_ERROR.

data_set (IN/OUT)
OCIAnyDataSet to be freed.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 31
OCI Any Data Set Interface Functions

31-27

31.4.4 OCIAnyDataSetEndCreate()
Marks the end of OCIAnyDataSet creation.

Purpose

This function should be called after constructing all of its instances.

Syntax

sword OCIAnyDataSetEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCI_ERROR.

data_set (IN/OUT)
Initialized OCIAnyDataSet.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.4.5 OCIAnyDataSetGetCount()
Gets the number of instances in the OCIAnyDataSet.

Purpose

Gets the number of instances in the OCIAnyDataSet.

Syntax

sword OCIAnyDataSetGetCount(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 ub4 *count);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCI_ERROR.

Chapter 31
OCI Any Data Set Interface Functions

31-28

data_set (IN/OUT)
A well-formed OCIAnyDataSet.

count (OUT)
Number of instances in OCIAnyDataSet.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

31.4.6 OCIAnyDataSetGetInstance()
Returns the OCIAnyData corresponding to an instance at the current position and updates the
current position.

Purpose

Returns the OCIAnyData corresponding to an instance at the current position and updates the
current position.

Syntax

sword OCIAnyDataSetGetInstance (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCIAnyData **data);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCI_ERROR.

data_set (IN/OUT)
A well-formed OCIAnyDataSet.

data (IN/OUT)
OCIAnyData corresponding to the instance. If (*data) is NULL, a new OCIAnyData is allocated for
same duration as the OCIAnyDataSet. If (*data) is not NULL, it is reused.

Comments

Only sequential access to the instances in an OCIAnyDataSet is allowed. This call returns the
OCIAnyData corresponding to an instance at the current position and updates the current
position. Subsequently, the OCIAnyData access routines can be used to access the instance.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 31
OCI Any Data Set Interface Functions

31-29

31.4.7 OCIAnyDataSetGetType()
Gets the type corresponding to an OCIAnyDataSet.

Purpose

Gets the type corresponding to an OCIAnyDataSet.

Syntax

sword OCIAnyDataSetGetType (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCITypeCode *tc,
 OCIType **type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err, and this function returns
OCI_ERROR. Obtain diagnostic information by calling OCI_ERROR.

data_set (IN)
Initialized OCIAnyDataSet.

tc (OUT)
The typecode corresponding to the type of the OCIAnyDataSet.

type (OUT)
The type corresponding to the OCIAnyDataSet. This is NULL if the OCIAnyData corresponds to a
built-in type.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 31
OCI Any Data Set Interface Functions

31-30

32
OCI Globalization Support Functions

This chapter describes the OCI globalization support functions.

This chapter contains these topics:

• Introduction to Globalization Support in OCI

• OCI Locale Functions

• OCI Locale-Mapping Function

• OCI String Manipulation Functions

• OCI Character Classification Functions

• OCI Character Set Conversion Functions

• OCI Messaging Functions

• Introduction to Globalization Support in OCI
This section describes the globalization support functions in detail.

• OCI Locale Functions
Lists and describes OCI Locale Functions.

• OCI Locale-Mapping Function
Lists and describes OCI locale-mapping functions.

• OCI String Manipulation Functions
Lists and describes OCI string manipulation functions.

• OCI Character Classification Functions
Lists and describes OCI character classification functions.

• OCI Character Set Conversion Functions
Lists and describes OCI character set conversion functions.

• OCI Messaging Functions
Lists and describes OCI messaging functions.

32.1 Introduction to Globalization Support in OCI
This section describes the globalization support functions in detail.

• Conventions for OCI Functions
Describes the conventions for OCI functions.

See Also:

Oracle Database Globalization Support Guide

32-1

32.1.1 Conventions for OCI Functions
Describes the conventions for OCI functions.

The entries for each function may also contain the following information:

• Returns — The values returned. The standard return values have the following meanings
as described in the following table.

Table 32-1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded.

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

See Also:

• Conventions for OCI Functionsfor the conventions used in describing each
function

• Error Handling in OCI for more information about return codes and error handling

32.2 OCI Locale Functions
Lists and describes OCI Locale Functions.

Table 32-2 lists the OCI locale functions that are described in this section.

An Oracle locale consists of language, territory, and character set definitions. The locale
determines conventions such as day and month names, and date, time, number, and currency
formats. A globalized application obeys a user's locale setting and cultural conventions. For
example, when the locale is set to German, users expect to see day and month names in
German.

Table 32-2 OCI Locale Functions

Function Purpose

OCINlsCharSetIdToName() Return the Oracle Database character set
name from the specified character set ID

OCINlsCharSetNameToId() Return the Oracle Database character set
ID for the specified Oracle Database
character set name

OCINlsEnvironmentVariableGet() Return the character set ID from NLS_LANG
or the national character set ID from
NLS_NCHAR

Chapter 32
OCI Locale Functions

32-2

Table 32-2 (Cont.) OCI Locale Functions

Function Purpose

OCINlsGetInfo() Copy locale information from an OCI
environment or user session handle into an
array pointed to by the destination buffer
within a specified size

OCINlsNumericInfoGet() Copy numeric language information from
the OCI environment or user session
handle into an output number variable

• OCINlsCharSetIdToName()
Returns the Oracle Database character set name from the specified character set ID.

• OCINlsCharSetNameToId()
Returns the Oracle Database character set ID for the specified Oracle Database character
set name.

• OCINlsEnvironmentVariableGet()
Returns the character set ID from NLS_LANG or the national character set ID from
NLS_NCHAR.

• OCINlsGetInfo()
Copy locale information from an OCI environment or user session handle into an array
pointed to by the destination buffer within a specified size.

• OCINlsNumericInfoGet()
Copy numeric language information from the OCI environment or user session handle into
an output number variable.

32.2.1 OCINlsCharSetIdToName()
Returns the Oracle Database character set name from the specified character set ID.

Purpose

Returns the Oracle Database character set name from the specified character set ID.

Syntax

sword OCINlsCharSetIdToName (void *hndl,
 OraText *buf,
 size_t buflen
 ub2 id);

Parameters

hndl (IN/OUT)
OCI environment or user session handle. If the handle is invalid, then the function returns
OCI_INVALID_HANDLE.

buf (OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the parameter
contains a NULL-terminated string for the character set name.

Chapter 32
OCI Locale Functions

32-3

buflen (IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ to guarantee
storage for an Oracle Database character set name. If the size of the destination buffer is
smaller than the length of the character set name, then the function returns OCI_ERROR.

id (IN)
Oracle Database character set ID.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

32.2.2 OCINlsCharSetNameToId()
Returns the Oracle Database character set ID for the specified Oracle Database character set
name.

Purpose

Returns the Oracle Database character set ID for the specified Oracle Database character set
name.

Syntax

ub2 OCINlsCharSetNameToId (void *hndl,
 const OraText *name);

Parameters

hndl (IN/OUT)
OCI environment or user session handle. If the handle is invalid, then the function returns
zero.

name (IN)
Pointer to a NULL-terminated Oracle Database character set name. If the character set name is
invalid, then the function returns zero.

Returns

Character set ID if the specified character set name and the OCI handle are valid. Otherwise, it
returns 0.

32.2.3 OCINlsEnvironmentVariableGet()
Returns the character set ID from NLS_LANG or the national character set ID from NLS_NCHAR.

Purpose

Returns the character set ID from NLS_LANG or the national character set ID from NLS_NCHAR.

Syntax

sword OCINlsEnvironmentVariableGet (void *val,
 size_t size,
 ub2 item,
 ub2 charset,
 size_t *rsize);

Chapter 32
OCI Locale Functions

32-4

Parameters

val (IN/OUT)
Returns a value of a globalization support environment variable, such as the NLS_LANG
character set ID or the NLS_NCHAR character set ID.

size (IN)
Specifies the size of the given output value, which is applicable only to string data. The
maximum length for each piece of information is OCI_NLS_MAXBUFSZ bytes. For numeric data,
this argument is ignored.

item (IN)
Specifies one of these values to get from the globalization support environment variable:

• OCI_NLS_CHARSET_ID: NLS_LANG character set ID in ub2 data type; if NLS_LANG is not set,
the default character set ID is returned (ASCII).

• OCI_NLS_NCHARSET_ID: NLS_NCHAR character set ID in ub2 data type; if NLS_NCHAR is not
set, the value of OCI_NLS_CHARSET_ID is returned instead.

charset (IN)
Specifies the character set ID for retrieved string data. If it is 0, then the NLS_LANG value is
used. OCI_UTF16ID is a valid value for this argument. For numeric data, this argument is
ignored.

rsize (OUT)
The length of the return value in bytes.

Comments

To allow for future enhancements of this function (to retrieve other values from environment
variables) the data type of the output val is a pointer to void. String data is not terminated by
NULL.

Note that the function does not take an environment handle, so the character set ID and the
national character set ID that it returns are the values specified in NLS_LANG and NLS_NCHAR,
instead of the values saved in the OCI environment handle. To get the character set IDs used
by the OCI environment handle, call OCIAttrGet() for OCI_ATTR_ENV_CHARSET_ID and
OCI_ATTR_ENV_NCHARSET_ID, respectively.

Returns

OCI_SUCCESS; or OCI_ERROR.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.2.4 OCINlsGetInfo()
Copy locale information from an OCI environment or user session handle into an array pointed
to by the destination buffer within a specified size.

Purpose

Obtains locale information from an OCI environment or user session handle to an array pointed
to by the destination buffer within a specified size.

Chapter 32
OCI Locale Functions

32-5

Syntax

sword OCINlsGetInfo (void *hndl,
 OCIError *errhp,
 OraText *buf,
 size_t buflen,
 ub2 item);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle initialized in object mode.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp, and the function returns
a NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet().

buf (OUT)
Pointer to the destination buffer. Returned strings are terminated by a NULL character.

buflen (IN)
The size of the destination buffer. The maximum length for each piece of information is
OCI_NLS_MAXBUFSZ bytes.
OCI_NLS_MAXBUFSIZE: When calling OCINlsGetInfo(), you must allocate the buffer to store the
returned information. The buffer size depends on which item you are querying and what
encoding you are using to store the information. Developers should not need to know how
many bytes it takes to store January in Japanese using JA16SJIS encoding. The
OCI_NLS_MAXBUFSZ attribute guarantees that the buffer is big enough to hold the largest item
returned by OCINlsGetInfo().

item (IN)
Specifies which item in the OCI environment handle to return. It can be one of these values:

OCI_NLS_DAYNAME1: Native name for Monday
OCI_NLS_DAYNAME2: Native name for Tuesday
OCI_NLS_DAYNAME3: Native name for Wednesday
OCI_NLS_DAYNAME4: Native name for Thursday
OCI_NLS_DAYNAME5: Native name for Friday
OCI_NLS_DAYNAME6: Native name for Saturday
OCI_NLS_DAYNAME7: Native name for Sunday
OCI_NLS_ABDAYNAME1: Native abbreviated name for Monday
OCI_NLS_ABDAYNAME2: Native abbreviated name for Tuesday
OCI_NLS_ABDAYNAME3: Native abbreviated name for Wednesday
OCI_NLS_ABDAYNAME4: Native abbreviated name for Thursday
OCI_NLS_ABDAYNAME5: Native abbreviated name for Friday
OCI_NLS_ABDAYNAME6: Native abbreviated name for Saturday
OCI_NLS_ABDAYNAME7: Native abbreviated name for Sunday
OCI_NLS_MONTHNAME1: Native name for January
OCI_NLS_MONTHNAME2: Native name for February
OCI_NLS_MONTHNAME3: Native name for March
OCI_NLS_MONTHNAME4: Native name for April
OCI_NLS_MONTHNAME5: Native name for May

Chapter 32
OCI Locale Functions

32-6

OCI_NLS_MONTHNAME6: Native name for June
OCI_NLS_MONTHNAME7: Native name for July
OCI_NLS_MONTHNAME8: Native name for August
OCI_NLS_MONTHNAME9: Native name for September
OCI_NLS_MONTHNAME10: Native name for October
OCI_NLS_MONTHNAME11: Native name for November
OCI_NLS_MONTHNAME12: Native name for December
OCI_NLS_ABMONTHNAME1: Native abbreviated name for January
OCI_NLS_ABMONTHNAME2: Native abbreviated name for February
OCI_NLS_ABMONTHNAME3: Native abbreviated name for March
OCI_NLS_ABMONTHNAME4: Native abbreviated name for April
OCI_NLS_ABMONTHNAME5: Native abbreviated name for May
OCI_NLS_ABMONTHNAME6: Native abbreviated name for June
OCI_NLS_ABMONTHNAME7: Native abbreviated name for July
OCI_NLS_ABMONTHNAME8: Native abbreviated name for August
OCI_NLS_ABMONTHNAME9: Native abbreviated name for September
OCI_NLS_ABMONTHNAME10: Native abbreviated name for October
OCI_NLS_ABMONTHNAME11: Native abbreviated name for November
OCI_NLS_ABMONTHNAME12: Native abbreviated name for December
OCI_NLS_YES: Native string for affirmative response
OCI_NLS_NO: Native negative response
OCI_NLS_AM: Native equivalent string of AM
OCI_NLS_PM: Native equivalent string of PM
OCI_NLS_AD: Native equivalent string of AD
OCI_NLS_BC: Native equivalent string of BC
OCI_NLS_DECIMAL: Decimal character
OCI_NLS_GROUP: Group separator
OCI_NLS_DEBIT: Native symbol of debit
OCI_NLS_CREDIT: Native symbol of credit
OCI_NLS_DATEFORMAT: Oracle Database date format
OCI_NLS_INT_CURRENCY: International currency symbol
OCI_NLS_DUAL_CURRENCY: Dual currency symbol
OCI_NLS_LOC_CURRENCY: Locale currency symbol
OCI_NLS_LANGUAGE: Language name
OCI_NLS_ABLANGUAGE: Abbreviation for language name
OCI_NLS_TERRITORY: Territory name
OCI_NLS_CHARACTER_SET: Character set name
OCI_NLS_LINGUISTIC_NAME: Linguistic sort name
OCI_NLS_CALENDAR: Calendar name
OCI_NLS_WRITING_DIR: Language writing direction
OCI_NLS_ABTERRITORY: Territory abbreviation
OCI_NLS_DDATEFORMAT: Oracle Database default date format
OCI_NLS_DTIMEFORMAT: Oracle Database default time format
OCI_NLS_SFDATEFORMAT: Local date format
OCI_NLS_SFTIMEFORMAT: Local time format
OCI_NLS_NUMGROUPING: Number grouping fields

Chapter 32
OCI Locale Functions

32-7

OCI_NLS_LISTSEP: List separator
OCI_NLS_MONDECIMAL: Monetary decimal character
OCI_NLS_MONGROUP: Monetary group separator
OCI_NLS_MONGROUPING: Monetary grouping fields
OCI_NLS_INT_CURRENCYSEP: International currency separator

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

32.2.5 OCINlsNumericInfoGet()
Copy numeric language information from the OCI environment or user session handle into an
output number variable.

Purpose

Obtains numeric language information from the OCI environment or user session handle and
puts it into an output number variable.

Syntax

sword OCINlsNumericInfoGet (void *hndl,
 OCIError *errhp,
 sb4 *val,
 ub2 item);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle. If the handle is invalid, it returns
OCI_INVALID_HANDLE.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp, and the function returns
a NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet().

val (OUT)
Pointer to the output number variable. If the function returns OCI_SUCCESS, then the parameter
contains the requested globalization support numeric information.

item (IN)
It specifies which item to get from the OCI environment handle and can be one of following
values:

• OCI_NLS_CHARSET_MAXBYTESZ: Maximum character byte size for OCI environment or
session handle character set

• OCI_NLS_CHARSET_FIXEDWIDTH: Character byte size for fixed-width character set; 0 for
variable-width character set

Chapter 32
OCI Locale Functions

32-8

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

32.3 OCI Locale-Mapping Function
Lists and describes OCI locale-mapping functions.

Table 32-3 lists an OCI locale-mapping function that is described in this section.

The OCI locale-mapping function performs name mapping to and from Oracle Database,
Internet Assigned Numbers Authority (IANA), and International Organization for
Standardization (ISO) names for character set names, language names, and territory names.

Table 32-3 OCI Locale-Mapping Function

Function Purpose

OCINlsNameMap() Map Oracle Database character set names, language names, and territory names
to and from Internet Assigned Numbers Authority (IANA) and International
Organization for Standardization (ISO) names

• OCINlsNameMap()
Maps Oracle Database character set names, language names, and territory names to and
from Internet Assigned Numbers Authority (IANA) and International Organization for
Standardization (ISO) names.

32.3.1 OCINlsNameMap()
Maps Oracle Database character set names, language names, and territory names to and from
Internet Assigned Numbers Authority (IANA) and International Organization for Standardization
(ISO) names.

Purpose

Maps Oracle Database character set names, language names, and territory names to and from
Internet Assigned Numbers Authority (IANA) and International Organization for Standardization
(ISO) names.

Syntax

sword OCINlsNameMap (void *hndl,
 OraText *buf,
 size_t buflen,
 const OraText *srcbuf,
 uword flag);

Chapter 32
OCI Locale-Mapping Function

32-9

Parameters

hndl (IN/OUT)
OCI environment or user session handle. If the handle is invalid, then the function returns
OCI_INVALID_HANDLE.

buf (OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the parameter
contains a NULL-terminated string for the requested name.

buflen (IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ to guarantee
storage of a globalization support name. If the size of the destination buffer is smaller than the
length of the name, then the function returns OCI_ERROR.

srcbuf (IN)
Pointer to a NULL-terminated globalization support name. If it is not a valid name, then the
function returns OCI_ERROR.

flag (IN)
It specifies the direction of the name mapping and can take the following values:

OCI_NLS_CS_IANA_TO_ORA: Map character set name from IANA to Oracle Database
OCI_NLS_CS_ORA_TO_IANA: Map character set name from Oracle Database to IANA
OCI_NLS_LANG_ISO_TO_ORA: Map language name from ISO to Oracle Database
OCI_NLS_LANG_ORA_TO_ISO: Map language name from Oracle Database to ISO
OCI_NLS_LOCALE_A2_ISO_TO_ORA: Map locale name from A2 ISO to Oracle Database
OCI_NLS_LOCALE_ORA_TO_A2_ISO: Map locale name from Oracle Database to A2 ISO
OCI_NLS_TERR_ISO_TO_ORA: Map territory name from ISO to Oracle Database
OCI_NLS_TERR_ORA_TO_ISO: Map territory name from Oracle Database to ISO
OCI_NLS_TERR_ISO3_TO_ORA: Map territory name from 3-letter ISO abbreviation to Oracle
Database
OCI_NLS_TERR_ORA_TO_ISO3: Map territory name from Oracle Database to 3-letter ISO
abbreviation

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

32.4 OCI String Manipulation Functions
Lists and describes OCI string manipulation functions.

Two types of data structures are supported for string manipulation:

• Multibyte strings

• Wide-character strings

Multibyte strings are encoded in native Oracle character sets. Functions that operate on
multibyte strings take the string as a whole unit with the length of the string calculated in bytes.
Wide-character (wchar) string functions provide more flexibility in string manipulation. They
support character-based and string-based operations with the length of the string calculated in
characters.

Chapter 32
OCI String Manipulation Functions

32-10

The wide-character data type is Oracle-specific and should not be confused with the wchar_t
data type defined by the ANSI/ISO C standard. The Oracle wide-character data type is always
4 bytes in all operating systems, whereas the size of wchar_t depends on the implementation
and the operating system. The Oracle wide-character data type normalizes multibyte
characters so that they have a fixed width for easy processing. This guarantees no data loss
for round-trip conversion between the Oracle wide-character set and the native character set.

String manipulation can be classified into the following categories:

• Conversion of strings between multibyte and wide character

• Character classifications

• Case conversion

• Calculations of display length

• General string manipulation, such as comparison, concatenation, and searching

Table 32-4 summarizes the OCI string manipulation functions, which are described in this
section.

Table 32-4 OCI String Manipulation Functions

Function Purpose

OCIMultiByteInSizeToWideChar() Convert part of a multibyte string into the wide-
character string

OCIMultiByteStrCaseConversion() Convert a multibyte string into the specified case
and copies the result into the destination array

OCIMultiByteStrcat() Append a multibyte string to the destination string

OCIMultiByteStrcmp() Compare two multibyte strings by binary,
linguistic, or case-insensitive comparison
methods

OCIMultiByteStrcpy() Copy a multibyte string into the destination array.
It returns the number of bytes copied.

OCIMultiByteStrlen() Return the number of bytes in a multibyte string

OCIMultiByteStrncat() Append, at most, n bytes from a multibyte string
to the destination string

OCIMultiByteStrncmp() Compare two multibyte strings by binary,
linguistic, or case-insensitive comparison
methods. Each string is in the specified length

OCIMultiByteStrncpy() Copy a specified number of bytes of a multibyte
string into the destination array

OCIMultiByteStrnDisplayLength() Return the number of display positions occupied
by the multibyte string within the range of n bytes

OCIMultiByteToWideChar() Convert a NULL-terminated multibyte string into
wide-character format

"OCIWideCharInSizeToMultiByte()" Convert part of a wide-character string to the
multibyte string

OCIWideCharMultiByteLength() Determine the number of bytes required for a
wide character in multibyte encoding

OCIWideCharStrCaseConversion() Convert a wide-character string into the specified
case and copies the result into the destination
array

Chapter 32
OCI String Manipulation Functions

32-11

Table 32-4 (Cont.) OCI String Manipulation Functions

Function Purpose

OCIWideCharStrcat() Append a wide-character string to the destination
string

OCIWideCharStrchr() Search for the first occurrence of a wide
character in a string. Return a point to the wide
character if the search is successful.

OCIWideCharStrcmp() Compare two wide-character strings by binary,
linguistic, or case-insensitive comparison
methods

OCIWideCharStrcpy() Copy a wide-character string into a destination
array. Return the number of characters copied.

OCIWideCharStrlen() Return the number of characters in a wide-
character string

OCIWideCharStrncat() Append, at most, n characters from a wide-
character string to the destination string

OCIWideCharStrncmp() Compare two wide-character strings by binary,
linguistic, or case-insensitive methods. Each
string is a specified length.

OCIWideCharStrncpy() Copy, at most, n characters of a wide-character
string into the destination array

OCIWideCharStrrchr() Search for the last occurrence of a character in a
wide-character string

OCIWideCharToLower() Convert a specified wide character into the
corresponding lowercase character

OCIWideCharToMultiByte() Convert a NULL-terminated wide-character string
into a multibyte string

OCIWideCharToUpper() Convert a specified wide character into the
corresponding uppercase character

• OCIMultiByteInSizeToWideChar()
Converts part of a multibyte string into the wide-character string.

• OCIMultiByteStrCaseConversion()
Converts a multibyte string into the specified case and copies the result into the destination
array.

• OCIMultiByteStrcat()
Appends a multibyte string to the destination string.

• OCIMultiByteStrcmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison
methods.

• OCIMultiByteStrcpy()
Copies a multibyte string into the destination array. It returns the number of bytes copied.

• OCIMultiByteStrlen()
Returns the number of bytes in a multibyte string.

• OCIMultiByteStrncat()
Appends, at most, n bytes from a multibyte string to the destination string.

Chapter 32
OCI String Manipulation Functions

32-12

• OCIMultiByteStrncmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison
methods. Each string is in the specified length.

• OCIMultiByteStrncpy()
Copies a specified number of bytes of a multibyte string into the destination array.

• OCIMultiByteStrnDisplayLength()
Returns the number of display positions occupied by the multibyte string within the range
of n bytes.

• OCIMultiByteToWideChar()
Converts a NULL-terminated multibyte string into wide-character format.

• OCIWideCharInSizeToMultiByte()
Converts part of a wide-character string to the multibyte string.

• OCIWideCharMultiByteLength()
Determines the number of bytes required for a wide character in multibyte encoding.

• OCIWideCharStrCaseConversion()
Converts a wide-character string into the specified case and copies the result into the
destination array.

• OCIWideCharStrcat()
Appends a wide-character string to the destination string.

• OCIWideCharStrchr()
Searches for the first occurrence of a wide character in a string. Returns a point to the wide
character if the search is successful.

• OCIWideCharStrcmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive comparison
methods.

• OCIWideCharStrcpy()
Copies a wide-character string into a destination array. Returns the number of characters
copied.

• OCIWideCharStrlen()
Return the number of characters in a wide-character string.

• OCIWideCharStrncat()
Appends, at most, n characters from a wide-character string to the destination string.

• OCIWideCharStrncmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive methods.
Each string is a specified length.

• OCIWideCharStrncpy()
Copies, at most, n characters of a wide-character string into the destination array.

• OCIWideCharStrrchr()
Searches for the last occurrence of a character in a wide-character string.

• OCIWideCharToLower()
Converts a specified wide character into the corresponding lowercase character.

• OCIWideCharToMultiByte()
Converts a NULL-terminated wide-character string into a multibyte string.

• OCIWideCharToUpper()
Converts a specified wide character into the corresponding uppercase character.

Chapter 32
OCI String Manipulation Functions

32-13

32.4.1 OCIMultiByteInSizeToWideChar()
Converts part of a multibyte string into the wide-character string.

Purpose

Converts part of a multibyte string into the wide-character string.

Syntax

sword OCIMultiByteInSizeToWideChar (void *hndl,
 OCIWchar *dst,
 size_t dstsz,
 const OraText *src,
 size_t srcsz,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of the string.

dst (OUT)
Pointer to a destination buffer for wchar. It can be a NULL pointer when dstsz is zero.

dstsz (IN)
Destination buffer size in number of characters. If it is zero, then this function returns the
number of characters needed for the conversion.

src (IN)
Source string to be converted.

srcsz (IN)
Length of source string in bytes.

rsize (OUT)
Number of characters written into the destination buffer, or number of characters for the
converted string if dstsz is zero. If it is a NULL pointer, then nothing is returned.

Comments

This routine converts part of a multibyte string into the wide-character string. It converts as
many complete characters as it can until it reaches the output buffer size limit or input buffer
size limit or it reaches a NULL terminator in a source string. The output buffer is NULL-terminated
if space permits. If dstsz is zero, then this function returns only the number of characters not
including the ending NULL terminator needed for a converted string. If OCI_UTF16ID is specified
for SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces an error.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIMultiByteToWideChar()
Converts a NULL-terminated multibyte string into wide-character format.

Chapter 32
OCI String Manipulation Functions

32-14

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.2 OCIMultiByteStrCaseConversion()
Converts a multibyte string into the specified case and copies the result into the destination
array.

Purpose

Converts the multibyte string pointed to by srcstr into uppercase or lowercase as specified by
the flag and copies the result into the array pointed to by dststr.

Syntax

size_t OCIMultiByteStrCaseConversion (void *hndl,
 OraText *dststr,
 const OraText *srcstr,
 ub4 flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

dststr (OUT)
Pointer to destination array. The result string is NULL-terminated.

srcstr (IN)
Pointer to source string.

flag (IN)
Specify the case to which to convert:

• OCI_NLS_UPPERCASE: Convert to uppercase.

• OCI_NLS_LOWERCASE: Convert to lowercase.

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic setting in the
locale is used for case conversion.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of bytes in the result string, not including the NULL terminator.

32.4.3 OCIMultiByteStrcat()
Appends a multibyte string to the destination string.

Purpose

Appends a copy of the multibyte string pointed to by srcstr to the end of the string pointed to
by dststr.

Chapter 32
OCI String Manipulation Functions

32-15

Syntax

size_t OCIMultiByteStrcat (void *hndl,
 OraText *dststr,
 const OraText *srcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

dststr (IN/OUT)
Pointer to the destination multibyte string for appending. The output buffer is NULL-terminated.

srcstr (IN)
Pointer to the source string to append.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of bytes in the result string, not including the NULL terminator.

Related Topics

• OCIMultiByteStrncat()
Appends, at most, n bytes from a multibyte string to the destination string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.4 OCIMultiByteStrcmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison methods.

Purpose

Compares two multibyte strings by binary, linguistic, or case-insensitive comparison methods.

Syntax

int OCIMultiByteStrcmp (void *hndl,
 const OraText *str1,
 const OraText *str2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str1 (IN)
Pointer to a NULL-terminated string.

Chapter 32
OCI String Manipulation Functions

32-16

str2 (IN)
Pointer to a NULL-terminated string.

flag (IN)
It is used to decide the comparison method. It can take one of these values:

• OCI_NLS_BINARY: Binary comparison This is the default value.

• OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive comparison. For
example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The return values for the function are:

• 0, if str1 = str2
• Positive, if str1 > str2
• Negative, if str1 < str2
Related Topics

• OCIMultiByteStrncmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison
methods. Each string is in the specified length.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.5 OCIMultiByteStrcpy()
Copies a multibyte string into the destination array. It returns the number of bytes copied.

Purpose

Copies the multibyte string pointed to by srcstr into the array pointed to by dststr.

Syntax

size_t OCIMultiByteStrcpy (void *hndl,
 OraText *dststr,
 const OraText *srcstr);

Parameters

hndl (IN/OUT)
Pointer to the OCI environment or user session handle.

dststr (OUT)
Pointer to the destination buffer. The output buffer is NULL-terminated.

Chapter 32
OCI String Manipulation Functions

32-17

srcstr (IN)
Pointer to the source multibyte string.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of bytes copied, not including the NULL terminator.

Related Topics

• OCIMultiByteStrncpy()
Copies a specified number of bytes of a multibyte string into the destination array.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.6 OCIMultiByteStrlen()
Returns the number of bytes in a multibyte string.

Purpose

Returns the number of bytes in the multibyte string pointed to by str, not including the NULL
terminator.

Syntax

size_t OCIMultiByteStrlen (void *hndl,
 const OraText *str);

Parameters

hndl (IN/OUT)
Pointer to the OCI environment or user session handle.

str (IN)
Pointer to the source multibyte string.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of bytes, not including the NULL terminator.

Related Topics

• OCIWideCharStrlen()
Return the number of characters in a wide-character string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 32
OCI String Manipulation Functions

32-18

32.4.7 OCIMultiByteStrncat()
Appends, at most, n bytes from a multibyte string to the destination string.

Purpose

Appends a specified number of bytes from a multibyte string to a destination string.

Syntax

size_t OCIMultiByteStrncat (void *hndl,
 OraText *dststr,
 const OraText *srcstr,
 size_t n);

Parameters

hndl (IN/OUT)
Pointer to OCI environment or user session handle.

dststr (IN/OUT)
Pointer to the destination multibyte string for appending.

srcstr (IN)
Pointer to the source multibyte string to append.

n (IN)
The number of bytes from srcstr to append.

Comments

This function is similar to OCIMultiByteStrcat(). At most, n bytes from srcstr are appended
to dststr. Note that the NULL terminator in srcstr stops appending, and the function appends
as many character as possible within n bytes. The dststr parameter is NULL-terminated. If
OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of bytes in the result string, not including the NULL terminator.

Related Topics

• OCIMultiByteStrcat()
Appends a multibyte string to the destination string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.8 OCIMultiByteStrncmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison methods.
Each string is in the specified length.

Purpose

Compares two multibyte strings by binary, linguistic, or case-insensitive comparison methods.
A length is specified for each string.

Chapter 32
OCI String Manipulation Functions

32-19

Syntax

int OCIMultiByteStrncmp (void *hndl,
 const OraText *str1,
 size_t len1,
 OraText *str2,
 size_t len2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str1 (IN)
Pointer to the first string.

len1 (IN)
The length of the first string to compare.

str2 (IN)
Pointer to the second string.

len2 (IN)
The length of the second string to compare.

flag (IN)
It is used to decide the comparison method. It can take one of these values:

• OCI_NLS_BINARY: Binary comparison. This is the default value.

• OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive comparison. For
example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

Comments

This function is similar to OCIMultiByteStrcmp(), except that, at most, len1 bytes from str1
and len2 bytes from str2 are compared. The NULL terminator is used in the comparison. If
OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The return values for the function are:

• 0, if str1 = str2
• Positive, if str1 > str2
• Negative, if str1 < str2
Related Topics

• OCIMultiByteStrcpy()
Copies a multibyte string into the destination array. It returns the number of bytes copied.

• OCIMultiByteStrncpy()
Copies a specified number of bytes of a multibyte string into the destination array.

Chapter 32
OCI String Manipulation Functions

32-20

• OCIMultiByteStrcmp()
Compares two multibyte strings by binary, linguistic, or case-insensitive comparison
methods.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.9 OCIMultiByteStrncpy()
Copies a specified number of bytes of a multibyte string into the destination array.

Purpose

Copies a multibyte string into an array.

Syntax

size_t OCIMultiByteStrncpy (void *hndl,
 OraText *dststr,
 const OraText *srcstr,
 size_t n);

Parameters

hndl (IN/OUT)
Pointer to OCI environment or user session handle.

dststr (IN)
Pointer to the source multibyte string.

srcstr (OUT)
Pointer to the destination buffer.

n (IN)
The number of bytes from srcstr to copy.

Comments

This function is similar to OCIMultiByteStrcpy(). At most, n bytes are copied from the array
pointed to by srcstr to the array pointed to by dststr. Note that the NULL terminator in srcstr
stops copying, and the function copies as many characters as possible within n bytes. The
result string is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns

The number of bytes in the resulting string, not including the NULL terminator.

Related Topics

• OCIMultiByteStrcpy()
Copies a multibyte string into the destination array. It returns the number of bytes copied.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 32
OCI String Manipulation Functions

32-21

32.4.10 OCIMultiByteStrnDisplayLength()
Returns the number of display positions occupied by the multibyte string within the range of n
bytes.

Purpose

Returns the number of display positions occupied by the multibyte string within the range of n
bytes.

Syntax

size_t OCIMultiByteStrnDisplayLength (void *hndl,
 const OraText *str1,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str1 (IN)
Pointer to a multibyte string.

n (IN)
The number of bytes to examine.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of display positions.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.11 OCIMultiByteToWideChar()
Converts a NULL-terminated multibyte string into wide-character format.

Purpose

Converts an entire NULL-terminated string into the wide-character string.

Syntax

sword OCIMultiByteToWideChar (void *hndl,
 OCIWchar *dst,
 const OraText *src,
 size_t *rsize);

Chapter 32
OCI String Manipulation Functions

32-22

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of the string.

dst (OUT)
Destination buffer for wchar.

src (IN)
Source string to be converted.

rsize (OUT)
Number of characters converted, including NULL terminator. If it is a NULL pointer, then nothing
is returned.

Comments

The wchar output buffer is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in
the OCIEnvNlsCreate() function, then this function produces an error.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIWideCharToMultiByte()
Converts a NULL-terminated wide-character string into a multibyte string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.12 OCIWideCharInSizeToMultiByte()
Converts part of a wide-character string to the multibyte string.

Purpose

Converts part of a wide-character string to multibyte format.

Syntax

sword OCIWideCharInSizeToMultiByte (void *hndl,
 OraText *dst,
 size_t dstsz,
 const OCIWchar *src,
 size_t srcsz,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of string.

dst (OUT)
Destination buffer for multibyte. It can be a NULL pointer if dstsz is zero.

Chapter 32
OCI String Manipulation Functions

32-23

dstsz (IN)
Destination buffer size in bytes. If it is zero, then the function returns the size in bytes need for
converted string.

src (IN)
Source wchar string to be converted.

srcsz (IN)
Length of source string in characters.

rsize (OUT)
Number of bytes written into destination buffer, or number of bytes needed to store the
converted string if dstsz is zero. If it is a NULL pointer, then nothing is returned.

Comments

Converts part of a wide-character string into the multibyte format. It converts as many complete
characters as it can until it reaches the output buffer size or the input buffer size or until it
reaches a NULL terminator in the source string. The output buffer is NULL-terminated if space
permits. If dstsz is zero, then the function returns the size in bytes, not including the NULL
terminator needed to store the converted string. If OCI_UTF16ID is specified for SQL CHAR data
in the OCIEnvNlsCreate() function, then this function produces an error.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.13 OCIWideCharMultiByteLength()
Determines the number of bytes required for a wide character in multibyte encoding.

Purpose

Determines the number of bytes required for a wide character in multibyte encoding.

Syntax

size_t OCIWideCharMultiByteLength (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar character.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in function, then this function produces an error.

Chapter 32
OCI String Manipulation Functions

32-24

Returns

The number of bytes required for the wide character.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.14 OCIWideCharStrCaseConversion()
Converts a wide-character string into the specified case and copies the result into the
destination array.

Purpose

Converts a wide-character string into a specified case and copies the result into the destination
array.

Syntax

size_t OCIWideCharStrCaseConversion (void *hndl,
 OraText *dststr,
 const OraText *srcstr,
 ub4 flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

dststr (OUT)
Pointer to destination array. The result string is NULL-terminated.

srcstr (IN)
Pointer to source string.

flag (IN)
Specify the case to which to convert:

• OCI_NLS_UPPERCASE: Convert to uppercase.

• OCI_NLS_LOWERCASE: Convert to lowercase.

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic setting in the
locale is used for case conversion.

Comments

Converts the wide-character string pointed to by srcstr into uppercase or lowercase as
specified by the flag and copies the result into the array pointed to by dststr. If OCI_UTF16ID is
specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces an
error.

Returns

The number of bytes in the result string, not including the NULL terminator.

Chapter 32
OCI String Manipulation Functions

32-25

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.15 OCIWideCharStrcat()
Appends a wide-character string to the destination string.

Purpose

Appends the wide-character string pointed to by wsrcstr to the wide-character string pointed
to by wdststr.

Syntax

size_t OCIWideCharStrcat (void *hndl,
 OCIWchar *wdststr,
 const OCIWchar *wsrcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (IN/OUT)
Pointer to the destination wchar string. The output buffer is NULL-terminated.

wsrcstr (IN)
Pointer to the source wide-character string to append.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of characters in the result string, not including the NULL terminator.

Related Topics

• OCIWideCharStrncat()
Appends, at most, n characters from a wide-character string to the destination string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.16 OCIWideCharStrchr()
Searches for the first occurrence of a wide character in a string. Returns a point to the wide
character if the search is successful.

Purpose

Searches for the first occurrence of a specified character in a wide-character string.

Chapter 32
OCI String Manipulation Functions

32-26

Syntax

OCIWchar *OCIWideCharStrchr (void *hndl,
 const OCIWchar *wstr,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the wchar string to search.

wc (IN)
The wchar to search for.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

A wchar pointer if successful; otherwise, a NULL pointer.

Related Topics

• OCIWideCharStrrchr()
Searches for the last occurrence of a character in a wide-character string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.17 OCIWideCharStrcmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive comparison
methods.

Purpose

Compares two wide-character strings by binary (based on wchar encoding value), linguistic, or
case-insensitive comparison methods.

Syntax

int OCIWideCharStrcmp (void *hndl,
 const OCIWchar *wstr1,
 const OCIWchar *wstr2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr1 (IN)
Pointer to a NULL-terminated wchar string.

Chapter 32
OCI String Manipulation Functions

32-27

wstr2 (IN)
Pointer to a NULL-terminated wchar string.

flag (IN)
Used to decide the comparison method. It can take one of these values:

• OCI_NLS_BINARY: Binary comparison. This is the default value.

• OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale definition.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive comparison. For
example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

The UNICODE_BINARY sort method cannot be used with OCIWideCharStrcmp() to perform a
linguistic comparison of supplied wide-character arguments.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The return values for the function are:

• 0, if wstr1 = wstr2
• Positive, if wstr1 > wstr2
• Negative, if wstr1 < wstr2
Related Topics

• OCIWideCharStrncmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive methods.
Each string is a specified length.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.18 OCIWideCharStrcpy()
Copies a wide-character string into a destination array. Returns the number of characters
copied.

Purpose

Copies a wide-character string into an array.

Syntax

size_t OCIWideCharStrcpy (void *hndl,
 OCIWchar *wdststr,
 const OCIWchar *wsrcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

Chapter 32
OCI String Manipulation Functions

32-28

wdststr (OUT)
Pointer to the destination wchar buffer. The result string is NULL-terminated.

wsrcstr (IN)
Pointer to the source wchar string.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

The number of characters copied, not including the NULL terminator.

Related Topics

• OCIWideCharStrncpy()
Copies, at most, n characters of a wide-character string into the destination array.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.19 OCIWideCharStrlen()
Return the number of characters in a wide-character string.

Purpose

Returns the number of characters in a wide-character string.

Syntax

size_t OCIWideCharStrlen (void *hndl,
 const OCIWchar *wstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the source wchar string.

Comments

Returns the number of characters in the wchar string pointed to by wstr, not including the NULL
terminator. If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function,
then this function produces an error.

Returns

The number of characters, not including the NULL terminator.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 32
OCI String Manipulation Functions

32-29

32.4.20 OCIWideCharStrncat()
Appends, at most, n characters from a wide-character string to the destination string.

Purpose

Appends, at most, n characters from a wide-character string to the destination.

Syntax

size_t OCIWideCharStrncat (void *hndl,
 OCIWchar *wdststr,
 const OCIWchar *wsrcstr,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (IN/OUT)
Pointer to the destination wchar string.

wsrcstr (IN)
Pointer to the source wchar string.

n (IN)
Number of characters from wsrcstr to append.

Comments

This function is similar to OCIWideCharStrcat(). At most, n characters from wsrcstr are
appended to wdststr. Note that the NULL terminator in wsrcstr stops appending. The wdststr
parameter is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns

The number of characters in the result string, not including the NULL terminator.

Related Topics

• OCIWideCharStrcat()
Appends a wide-character string to the destination string.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.21 OCIWideCharStrncmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive methods. Each
string is a specified length.

Purpose

Compares two wide-character strings by binary, linguistic, or case-sensitive methods. Each
string has a specified length.

Chapter 32
OCI String Manipulation Functions

32-30

Syntax

int OCIWideCharStrncmp (void *hndl,
 const OCIWchar *wstr1,
 size_t len1,
 const OCIWchar *wstr2,
 size_t len2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr1 (IN)
Pointer to the first wchar string.

len1 (IN)
The length from the first string for comparison.

wstr2 (IN)
Pointer to the second wchar string.

len2 (IN)
The length from the second string for comparison.

flag (IN)
It is used to decide the comparison method. It can take one of these values:

• OCI_NLS_BINARY: For the binary comparison, this is default value.

• OCI_NLS_LINGUISTIC: For the linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive comparison. For
example, use OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

Comments

This function is similar to OCIWideCharStrcmp(). It compares two wide-character strings by
binary, linguistic, or case-insensitive comparison methods. At most, len1 bytes from wstr1 and
len2 bytes from wstr2 are compared. The NULL terminator is used in the comparison. If
OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

The UNICODE_BINARY sort method cannot be used with OCIWideCharStrncmp() to perform a
linguistic comparison of supplied wide-character arguments.

Returns

The return values for the function are:

• 0, if wstr1 = wstr2
• Positive, if wstr1 > wstr2
• Negative, if wstr1 < wstr2

Chapter 32
OCI String Manipulation Functions

32-31

Related Topics

• OCIWideCharStrcmp()
Compares two wide-character strings by binary, linguistic, or case-insensitive comparison
methods.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.22 OCIWideCharStrncpy()
Copies, at most, n characters of a wide-character string into the destination array.

Purpose

Copies, at most, n characters from a wide-character string into a destination.

Syntax

size_t OCIWideCharStrncpy (void *hndl,
 OCIWchar *wdststr,
 const OCIWchar *wsrcstr,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (OUT)
Pointer to the destination wchar buffer.

wsrcstr (IN)
Pointer to the source wchar string.

n (IN)
Number of characters from wsrcstr to copy.

Comments

This function is similar to OCIWideCharStrcpy(), except that, at most, n characters are copied
from the array pointed to by wsrcstr to the array pointed to by wdststr. Note that the NULL
terminator in wdststr stops copying, and the result string is NULL-terminated. If OCI_UTF16ID is
specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces an
error.

Returns

The number of characters copied, not including the NULL terminator.

Related Topics

• OCIWideCharStrcpy()
Copies a wide-character string into a destination array. Returns the number of characters
copied.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

Chapter 32
OCI String Manipulation Functions

32-32

32.4.23 OCIWideCharStrrchr()
Searches for the last occurrence of a character in a wide-character string.

Purpose

Searches for the last occurrence of a character in a wide-character string.

Syntax

OCIWchar *OCIWideCharStrrchr (void *hndl,
 const OCIWchar *wstr,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the wchar string to search in.

wc (IN)
The wchar to search for.

Comments

Searches for the last occurrence of wc in the wchar string pointed to by wstr. If OCI_UTF16ID is
specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces an
error.

Returns

The wchar pointer if successful; otherwise, a NULL pointer.

Related Topics

• OCIWideCharStrchr()
Searches for the first occurrence of a wide character in a string. Returns a point to the wide
character if the search is successful.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.24 OCIWideCharToLower()
Converts a specified wide character into the corresponding lowercase character.

Purpose

Converts the wide-character string specified by wc into the corresponding lowercase character,
if it exists, in the specified locale. If no corresponding lowercase character exists, then it
returns wc itself.

Syntax

OCIWchar OCIWideCharToLower (void *hndl,
 OCIWchar wc);

Chapter 32
OCI String Manipulation Functions

32-33

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for lowercase conversion.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

A wchar.

Related Topics

• OCIWideCharToUpper()
Converts a specified wide character into the corresponding uppercase character.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.25 OCIWideCharToMultiByte()
Converts a NULL-terminated wide-character string into a multibyte string.

Purpose

Converts an entire NULL-terminated wide-character string into a multibyte string.

Syntax

sword OCIWideCharToMultiByte (void *hndl,
 OraText *dst,
 const OCIWchar *src,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of the string.

dst (OUT)
Destination buffer for a multibyte string. The output buffer is NULL-terminated.

src (IN)
Source wchar string to be converted.

rsize (OUT)
Number of bytes written into destination buffer. If it is a NULL pointer, then nothing is returned.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Chapter 32
OCI String Manipulation Functions

32-34

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIMultiByteToWideChar()
Converts a NULL-terminated multibyte string into wide-character format.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.4.26 OCIWideCharToUpper()
Converts a specified wide character into the corresponding uppercase character.

Purpose

Converts the wide-character string specified by wc into the corresponding uppercase character,
if it exists, in the specified locale. If no corresponding uppercase character exists, then it
returns wc itself.

Syntax

OCIWchar OCIWideCharToUpper (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for uppercase conversion.

Comments

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

A wchar.

Related Topics

• OCIWideCharToLower()
Converts a specified wide character into the corresponding lowercase character.

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.5 OCI Character Classification Functions
Lists and describes OCI character classification functions.

Table 32-5 lists the OCI character classification functions that are described in this section.

Chapter 32
OCI Character Classification Functions

32-35

Table 32-5 OCI Character Classification Functions

Function Purpose

OCIWideCharIsAlnum() Test whether the wide character is a letter or a decimal
digit

OCIWideCharIsAlpha() Test whether the wide character is a letter

OCIWideCharIsCntrl() Test whether the wide character is a control character

OCIWideCharIsDigit() Test whether the wide character is a decimal digital
character

OCIWideCharIsGraph() Test whether the wide character is a graph character

OCIWideCharIsLower() Test whether the wide character is a lowercase
character

OCIWideCharIsPrint() Test whether the wide character is a printable character

OCIWideCharIsPunct() Test whether the wide character is a punctuation
character

OCIWideCharIsSingleByte() Test whether the wide character is a single-byte
character when converted to multibyte

OCIWideCharIsSpace() Test whether the wide character is a space character

OCIWideCharIsUpper() Test whether the wide character is an uppercase
character

OCIWideCharIsXdigit() Test whether the wide character is a hexadecimal digit

• OCIWideCharIsAlnum()
Tests whether the wide character is a letter or a decimal digit.

• OCIWideCharIsAlpha()
Tests whether the wide character is a letter.

• OCIWideCharIsCntrl()
Tests whether the wide character is a control character.

• OCIWideCharIsDigit()
Test whether the wide character is a decimal digital character.

• OCIWideCharIsGraph()
Tests whether a wide character is a graph character.

• OCIWideCharIsLower()
Tests whether a wide character is a lowercase letter.

• OCIWideCharIsPrint()
Tests whether a wide character is a printable character.

• OCIWideCharIsPunct()
Tests whether a wide character is a punctuation character.

• OCIWideCharIsSingleByte()
Tests whether a wide character is a single-byte character when converted to multibyte.

• OCIWideCharIsSpace()
Tests whether a wide character is a space character.

• OCIWideCharIsUpper()
Tests whether a wide character is an uppercase letter.

• OCIWideCharIsXdigit()
Tests whether the wide character is a hexadecimal digit.

Chapter 32
OCI Character Classification Functions

32-36

32.5.1 OCIWideCharIsAlnum()
Tests whether the wide character is a letter or a decimal digit.

Purpose

Tests whether a wide character is a letter or a decimal digit.

Syntax

boolean OCIWideCharIsAlnum (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.2 OCIWideCharIsAlpha()
Tests whether the wide character is a letter.

Purpose

Tests whether a wide character is a letter.

Syntax

boolean OCIWideCharIsAlpha (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.3 OCIWideCharIsCntrl()
Tests whether the wide character is a control character.

Purpose

Tests whether a wide character is a control character.

Chapter 32
OCI Character Classification Functions

32-37

Syntax

boolean OCIWideCharIsCntrl (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.4 OCIWideCharIsDigit()
Test whether the wide character is a decimal digital character.

Purpose

Tests whether a wide character is a decimal digit character.

Syntax

boolean OCIWideCharIsDigit (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.5 OCIWideCharIsGraph()
Tests whether a wide character is a graph character.

Purpose

A graph character is a character with a visible representation and normally includes alphabetic
letters, decimal digits, and punctuation.

Syntax

boolean OCIWideCharIsGraph (void *hndl,
 OCIWchar wc);

Chapter 32
OCI Character Classification Functions

32-38

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.6 OCIWideCharIsLower()
Tests whether a wide character is a lowercase letter.

Purpose

Tests whether a wide character is a lowercase letter.

Syntax

boolean OCIWideCharIsLower (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.7 OCIWideCharIsPrint()
Tests whether a wide character is a printable character.

Purpose

Tests whether a wide character is a printable character.

Syntax

boolean OCIWideCharIsPrint (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Chapter 32
OCI Character Classification Functions

32-39

Returns

TRUE or FALSE.

32.5.8 OCIWideCharIsPunct()
Tests whether a wide character is a punctuation character.

Purpose

Tests whether a wide character is a punctuation character.

Syntax

boolean OCIWideCharIsPunct (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.9 OCIWideCharIsSingleByte()
Tests whether a wide character is a single-byte character when converted to multibyte.

Purpose

Tests whether a wide character is a single-byte character when converted to multibyte.

Syntax

boolean OCIWideCharIsSingleByte (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

Chapter 32
OCI Character Classification Functions

32-40

32.5.10 OCIWideCharIsSpace()
Tests whether a wide character is a space character.

Purpose

A space character causes white space only in displayed text (for example, space, tab, carriage
return, new line, vertical tab, or form feed).

Syntax

boolean OCIWideCharIsSpace (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.5.11 OCIWideCharIsUpper()
Tests whether a wide character is an uppercase letter.

Purpose

Tests whether a wide character is an uppercase letter.

Syntax

boolean OCIWideCharIsUpper (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

Chapter 32
OCI Character Classification Functions

32-41

32.5.12 OCIWideCharIsXdigit()
Tests whether the wide character is a hexadecimal digit.

Purpose

Tests whether a wide character is a hexadecimal digit (0 through 9, A through F, a through f).

Syntax

boolean OCIWideCharIsXdigit (void *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
The wchar for testing.

Returns

TRUE or FALSE.

32.6 OCI Character Set Conversion Functions
Lists and describes OCI character set conversion functions.

Conversion between Oracle Database character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no mapping from
Unicode to the Oracle Database character set. Therefore, conversion back to the original
character set is not always possible without data loss.

Table 32-6 lists the OCI character set conversion functions.

Table 32-6 OCI Character Set Conversion Functions

Function Purpose

OCICharSetConversionIsReplacementUsed() Indicate whether replacement
characters were used for characters
that could not be converted in the
last invocation of
OCINlsCharSetConvert() or
OCICharSetToUnicode()

OCICharSetToUnicode() Convert a multibyte string to
Unicode

OCINlsCharSetConvert() Convert a string from one character
set to another

OCIUnicodeToCharSet() Convert a Unicode string into
multibyte

• OCICharSetConversionIsReplacementUsed()
Indicates whether replacement characters were used for characters that could not be
converted in the last invocation of OCINlsCharSetConvert() or OCICharSetToUnicode().

Chapter 32
OCI Character Set Conversion Functions

32-42

• OCICharSetToUnicode()
Converts a multibyte string to Unicode.

• OCINlsCharSetConvert()
Converts a string from one character set to another.

• OCIUnicodeToCharSet()
Converts a Unicode string into multibyte string out to an array.

32.6.1 OCICharSetConversionIsReplacementUsed()
Indicates whether replacement characters were used for characters that could not be
converted in the last invocation of OCINlsCharSetConvert() or OCICharSetToUnicode().

Purpose

Indicates whether the replacement character was used for characters that could not be
converted during the last invocation of OCICharSetToUnicode() or OCINlsCharSetConvert().

Syntax

boolean OCICharSetConversionIsReplacementUsed (void *hndl);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

Comments

Conversion between the Oracle Database character set and Unicode (16-bit, fixed-width
Unicode encoding) is supported. Replacement characters are used if there is no mapping for a
character from Unicode to the Oracle Database character set. Thus, not every character can
make a round-trip conversion to the original character. Data loss occurs with certain
characters.

Returns

The function returns TRUE if the replacement character was used when
OCINlsCharSetConvert() or OCICharSetToUnicode() was last invoked. Otherwise the function
returns FALSE.

Related Topics

• OCINlsCharSetConvert()
Converts a string from one character set to another.

• OCICharSetToUnicode()
Converts a multibyte string to Unicode.

32.6.2 OCICharSetToUnicode()
Converts a multibyte string to Unicode.

Purpose

Converts a multibyte string pointed to by src to Unicode out to the array pointed to by dst.

Chapter 32
OCI Character Set Conversion Functions

32-43

Syntax

sword OCICharSetToUnicode (void *hndl,
 ub2 *dst,
 size_t dstlen,
 const OraText *src,
 size_t srclen,
 size_t *rsize);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

dst (OUT)
Pointer to a destination buffer.

dstlen (IN)
The size of the destination buffer in characters.

src (IN)
Pointer to a multibyte source string.

srclen (IN)
The size of the source string in bytes.

rsize (OUT)
The number of characters converted. If it is a NULL pointer, then nothing is returned.

Comments

The conversion stops when it reaches the source limitation or destination limitation. The
function returns the number of characters converted into a Unicode string. If dstlen is 0, then
the function scans the string, counts the number of characters, and returns the number of
characters out to rsize, but does not convert the string.

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Related Topics

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.6.3 OCINlsCharSetConvert()
Converts a string from one character set to another.

Purpose

Converts a string pointed to by src in the character set specified by srcid to the array pointed
to by dst in the character set specified by dstid. The conversion stops when it reaches the
data size limitation of either the source or the destination. The function returns the number of
bytes converted into the destination buffer.

Chapter 32
OCI Character Set Conversion Functions

32-44

Syntax

sword OCINlsCharSetConvert (void *hndl,
 OCIError *errhp,
 ub2 dstid,
 void *dstp,
 size_t dstlen,
 ub2 srcid,
 const void *srcp,
 size_t srclen,
 size_t *rsize);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

errhp (IN/OUT)
OCI error handle. If there is an error, then it is recorded in errhp and the function returns a
NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet().

dstid (IN)
Character set ID for the destination buffer.

dstp (OUT)
Pointer to the destination buffer.

dstlen (IN)
The maximum size in bytes of the destination buffer.

srcid (IN)
Character set ID for the source buffer.

srcp (IN)
Pointer to the source buffer.

srclen (IN)
The length in bytes of the source buffer.

rsize (OUT)
The number of characters converted. If the pointer is NULL, then nothing is returned.

Comments

Although either the source or the destination character set ID can be specified as OCI_UTF16ID,
the length of the original and the converted data is represented in bytes, rather than number of
characters. Note that the conversion does not stop when it encounters null data. To get the
character set ID from the character set name, use OCINlsCharSetNameToId(). To check if
derived data in the destination buffer contains replacement characters, use
OCICharSetConversionIsReplacementUsed(). The buffers should be aligned with the byte
boundaries appropriate for the character sets. For example, the ub2 data type is necessary to
hold strings in UTF-16.

Returns

OCI_SUCCESS or OCI_ERROR; number of bytes converted.

Chapter 32
OCI Character Set Conversion Functions

32-45

Related Topics

• OCINlsCharSetNameToId()
Returns the Oracle Database character set ID for the specified Oracle Database character
set name.

• OCICharSetConversionIsReplacementUsed()
Indicates whether replacement characters were used for characters that could not be
converted in the last invocation of OCINlsCharSetConvert() or OCICharSetToUnicode().

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

32.6.4 OCIUnicodeToCharSet()
Converts a Unicode string into multibyte string out to an array.

Purpose

Converts a Unicode string to a multibyte string out to an array.

Syntax

sword OCIUnicodeToCharSet (void *hndl,
 OraText *dst,
 size_t dstlen,
 const ub2 *src,
 size_t srclen,
 size_t *rsize);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

dst (OUT)
Pointer to a destination buffer.

dstlen (IN)
The size of the destination buffer in bytes.

src (IN)
Pointer to a Unicode string.

srclen (IN)
The size of the source string in characters.

rsize (OUT)
The number of bytes converted. If it is a NULL pointer, then nothing is returned.

Comments

The conversion stops when it reaches the source limitation or destination limitation. The
function returns the number of bytes converted into a multibyte string. If dstlen is zero, then
the function returns the number of bytes out to rsize without conversion.

If a Unicode character is not convertible for the character set specified in OCI environment or
user session handle, then a replacement character is used. In this case,
OCICharSetConversionIsReplacementUsed() returns TRUE.

Chapter 32
OCI Character Set Conversion Functions

32-46

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then this
function produces an error.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCICharSetConversionIsReplacementUsed()
Indicates whether replacement characters were used for characters that could not be
converted in the last invocation of OCINlsCharSetConvert() or OCICharSetToUnicode().

• OCIEnvNlsCreate()
Creates and initializes an environment handle for OCI functions to work under.

32.7 OCI Messaging Functions
Lists and describes OCI messaging functions.

The user message API provides a simple interface for cartridge developers to retrieve their
own messages and Oracle Database messages.

See Also:

Oracle Database Data Cartridge Developer's Guide

Table 32-7 lists the OCI messaging functions that are described in this section.

Table 32-7 OCI Messaging Functions

Function Purpose

OCIMessageClose() Close a message handle and free any memory
associated with the handle

OCIMessageGet() Retrieve a message. If the buffer is not zero, then
the function copies the message into the buffer

OCIMessageOpen() Open a message handle in a specified language

• OCIMessageClose()
Closes a message handle and frees any memory associated with this handle.

• OCIMessageGet()
Gets a message with the given message number.

• OCIMessageOpen()
Opens a message-handling facility in a specified language.

32.7.1 OCIMessageClose()
Closes a message handle and frees any memory associated with this handle.

Purpose

Closes a message handle and frees any memory associated with this handle.

Chapter 32
OCI Messaging Functions

32-47

Syntax

sword OCIMessageClose (void *hndl,
 OCIError *errhp,
 OCIMsg *msgh);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle for the message language.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp, and the function returns
a NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet().

msgh (IN/OUT)
A pointer to a message handle that was previously opened by OCIMessageOpen().

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIMessageOpen()
Opens a message-handling facility in a specified language.

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

32.7.2 OCIMessageGet()
Gets a message with the given message number.

Purpose

Gets a message with the given message number.

Syntax

OraText *OCIMessageGet (OCIMsg *msgh,
 ub4 msgno,
 OraText *msgbuf,
 size_t buflen);

Parameters

msgh (IN/OUT)
Pointer to a message handle that was previously opened by OCIMessageOpen().

msgno (IN)
The message number.

msgbuf (OUT)
Pointer to a destination buffer for the retrieved message. If buflen is zero, then it can be a
NULL pointer.

Chapter 32
OCI Messaging Functions

32-48

buflen (IN)
The size of the destination buffer.

Comments

If buflen is not zero, then the function copies the message into the buffer pointed to by msgbuf.
If buflen is zero, then the message is copied into a message buffer inside the message handle
pointed to by msgh.

Returns

It returns the pointer to the NULL-terminated message string. If the translated message cannot
be found, then it tries to return the equivalent English message. If the equivalent English
message cannot be found, then it returns a NULL pointer.

Related Topics

• OCIMessageOpen()
Opens a message-handling facility in a specified language.

32.7.3 OCIMessageOpen()
Opens a message-handling facility in a specified language.

Purpose

Opens a message-handling facility in a specified language.

Syntax

sword OCIMessageOpen (void *hndl,
 OCIError *errhp,
 OCIMsg *msghp,
 const OraText *product,
 const OraText *facility,
 OCIDuration dur);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle for the message language.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp, and the function returns
a NULL pointer. Diagnostic information can be obtained by calling OCIErrorGet().

msghp (OUT)
A message handle for return.

product (IN)
A pointer to a product name. The product name is used to locate the directory for messages.
Its location depends on the operating system. For example, in Solaris, the directory of
message files for the rdbms product is $ORACLE_HOME/rdbms.

facility (IN)
A pointer to a facility name in the product. It is used to construct a message file name. A
message file name follows the conversion with facility as prefix. For example, the message

Chapter 32
OCI Messaging Functions

32-49

file name for the img facility in the American language is imgus.msb, where us is the
abbreviation for the American language and msb is the message binary file extension.

dur (IN)
The duration for memory allocation for the return message handle. It can have the following
values:

• OCI_DURATION_PROCESS
• OCI_DURATION_SESSION
• OCI_DURATION_STATEMENT

Comments

OCIMessageOpen() first tries to open the message file corresponding to hndl. If it succeeds,
then it uses that file to initialize a message handle. If it cannot find the message file that
corresponds to the language, then it looks for a primary language file as a fallback. For
example, if the Latin American Spanish file is not found, then it tries to open the Spanish file. If
the fallback fails, then it uses the default message file, whose language is AMERICAN. The
function returns a pointer to a message handle into the msghp parameter.

Returns

OCI_SUCCESS; OCI_INVALID_HANDLE; or OCI_ERROR.

Related Topics

• OCIErrorGet()
Returns an error message and an Oracle Database error code.

Chapter 32
OCI Messaging Functions

32-50

33
OCI XML DB Functions

This chapter describes the OCI XML DB functions.

This chapter contains these topics:

• Introduction to XML DB Support in OCI

• OCI XML DB Functions

• Introduction to XML DB Support in OCI
This chapter describes the XML DB functions in detail.

• OCI XML DB Functions
Lists and describes OCI XML DB Functions.

33.1 Introduction to XML DB Support in OCI
This chapter describes the XML DB functions in detail.

• Conventions for OCI Functions
Describes conventions used in describing each function.

• Returns
Describes the function return values.

See Also:

OCI Support for XML

33.1.1 Conventions for OCI Functions
Describes conventions used in describing each function.

See the Conventions for OCI Functions for the conventions used in describing each function.
The entries for each function may also contain the following information:

33.1.2 Returns
Describes the function return values.

Unless otherwise stated, the function returns the values described in Table 33-1.

Table 33-1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded.

33-1

Table 33-1 (Cont.) Function Return Values

Return Value Meaning

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

See Also:

Error Handling in OCI for more information about return codes and error handling

33.2 OCI XML DB Functions
Lists and describes OCI XML DB Functions.

Table 33-2 lists the OCI XML DB functions that are described in this chapter.

Table 33-2 OCI XML DB Functions

Function Purpose

OCIBinXmlCreateReposCtxFromConn() Create metadata connection context

OCIBinXmlCreateReposCtxFromCPool() Create metadata connection context
connection pool

OCIBinXmlSetFormatPref() Specify that images transferred are in
binary XML format

OCIBinXmlSetReposCtxForConn() Associate data connection with the
metadata connection

OCIXmlDbFreeXmlCtx() Free an XML context

OCIXmlDbInitXmlCtx() Initialize an XML context for XML data
from the database

• OCIBinXmlCreateReposCtxFromConn()
Creates a metadata connection context.

• OCIBinXmlCreateReposCtxFromCPool()
Creates a metadata connection context from the specified connection pool.

• OCIBinXmlSetFormatPref()
Specifies that the images being transferred between client and server for the XML
document be in binary XML format.

• OCIBinXmlSetReposCtxForConn()
Associates the data connection with the metadata connection.

• OCIXmlDbFreeXmlCtx()
Frees an XML context.

• OCIXmlDbInitXmlCtx()
Initializes an XML context.

Chapter 33
OCI XML DB Functions

33-2

33.2.1 OCIBinXmlCreateReposCtxFromConn()
Creates a metadata connection context.

Purpose

Creates a metadata connection context (OCIBinXmlReposCtx) from the specified OCIEnv/
OCISvcCtx dedicated OCI connection. Note that this connection is dedicated to metadata use.

Syntax

sword OCIBinXmlCreateReposCtxFromConn (OCIEnv *env,
 OCISvcCtx *svcctx,
 OCIError *err,
 OCIBinXmlReposCtx **ctx);

Parameters

env (IN)
The environment handle.

svcctx (IN)
The handle to the connection to be used to access the metadata.

err (IN)
The error handle.

ctx (OUT)
The metadata context that is created and returned.

Returns

Returns -1 for error, 0 for success. The err parameter contains more information about the
error.

Related Topics

• OCIBinXmlCreateReposCtxFromCPool()
Creates a metadata connection context from the specified connection pool.

33.2.2 OCIBinXmlCreateReposCtxFromCPool()
Creates a metadata connection context from the specified connection pool.

Purpose

Creates a metadata connection context (OCIBinXmlReposCtx) from the specified connection
pool. A connection from the connection pool is used whenever any information from the token
repository is needed.

Syntax

sword OCIBinXmlCreateReposCtxFromCPool (OCIEnv *env,
 OCICPool *cpool,
 OCIError *err,
 OCIBinXmlReposCtx **ctx);

Chapter 33
OCI XML DB Functions

33-3

Parameters

env (IN)
The environment handle.

cpool (IN)
The handle to the connection to be used to access the metadata.

err (IN)
The error handle.

ctx (OUT)
The metadata context that is created and returned.

Returns

Returns -1 for error, 0 for success. The err parameter contains more information about the
error.

Related Topics

• OCIBinXmlCreateReposCtxFromConn()
Creates a metadata connection context.

33.2.3 OCIBinXmlSetFormatPref()
Specifies that the images being transferred between client and server for the XML document
be in binary XML format.

Purpose

In the future, all communication will be in the binary XML format. Binary XML-aware
applications can set this.

Syntax

sword OCIBinXmlSetFormatPref (xmldomdoc *doc,
 ub4 formattype);

Parameters

doc (IN)
The pointer to the domdoc to which the preference is to be applied.

formattype (IN)
The type of format to be used for pickling. Currently the only values allowed are
OCIXML_FORMATTYPE_TEXT and OCIXML_FORMATTYPE_BINXML.

Returns

Returns -1 for error, 0 for success.

Related Topics

• OCIBinXmlSetReposCtxForConn()
Associates the data connection with the metadata connection.

Chapter 33
OCI XML DB Functions

33-4

33.2.4 OCIBinXmlSetReposCtxForConn()
Associates the data connection with the metadata connection.

Purpose

Note that with a dedicated connection, the environment handle must be the same for the data
connection and for the metadata connection.

Syntax

sword OCIBinXmlSetReposCtxForConn (OCISvcCtx *dataconn,
 OCIBinXmlReposCtx *reposctx);

Parameters

dataconn (IN)
The data connection handle.

reposctx (IN)
The pointer to the metadata connection.

Returns

Returns -1 for error, 0 for success. The err parameter contains more information about the
error.

Related Topics

• OCIBinXmlSetFormatPref()
Specifies that the images being transferred between client and server for the XML
document be in binary XML format.

33.2.5 OCIXmlDbFreeXmlCtx()
Frees an XML context.

Purpose

Frees any allocations made by the call to OCIXmlDbInitXmlCtx().

Syntax

void OCIXmlDbFreeXmlCtx (xmlct *xctx);

Parameters

xctx (IN)
The XML context to terminate.

Comments

See Also:

Using OCI XML DB Functions for a usage example

Chapter 33
OCI XML DB Functions

33-5

Returns

Returns -1 for error, 0 for success.

Related Topics

• OCIXmlDbInitXmlCtx()
Initializes an XML context.

33.2.6 OCIXmlDbInitXmlCtx()
Initializes an XML context.

Purpose

Initializes an XML context for XML data from the database.

Syntax

xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp,
 OCISvcCtx *svchp,
 OCIError *errhp,
 ocixmldbparam *params,
 ub4 num_params);

Parameters

envhp (IN)
The OCI environment handle.

svchp (IN)
The OCI service handle.

errhp (IN)
The OCI error handle.

params (IN)
The optional possible values in this array are pointers to either the OCI duration, in which the
default value is OCI_DURATION_SESSION, or to an error handler that is a user-registered
callback of prototype:

void (*err_handler) (sword errcode, (const OraText *) errmsg);

The two parameters of err_handler are:

errcode (OUT)
A numeric error value.

errmsg (OUT)
The error message text.

num_params (IN)
Number of parameters to be read from params. If the value of num_params exceeds the size of
array params, unexpected behavior results.

Chapter 33
OCI XML DB Functions

33-6

Comments

See Also:

Using OCI XML DB Functions for a usage example

Returns

Returns either:

• A pointer to structure xmlctx, with error handler and callbacks populated with appropriate
values. This is later used for all OCI calls.

• NULL, if no database connection is available.

Related Topics

• OCIXmlDbFreeXmlCtx()
Frees an XML context.

Chapter 33
OCI XML DB Functions

33-7

34
Oracle ODBC Driver

The Oracle ODBC Driver enables ODBC applications on Microsoft Windows, as well as UNIX
platforms like Linux, Solaris, IBM Advanced Interactive eXecutive (AIX), HP-UX Itaniutm, and
IBM Linux on Platform z read and write access to Oracle® databases through the ODBC
interface using Oracle Net Services software.

This chapter is a placeholder to indicate that information about using the Oracle ODBC Driver
can be found in Oracle Database Development Guide and in the Oracle ODBC Help set.

34-1

35
Introduction to the OCI Interface for XStream

This chapter provides an overview of the OCI interface for XStream.

The Oracle Call Interface (OCI) includes an interface for XStream. This chapter provides an
introduction to the OCI interface for XStream.

This chapter contains these topics:

• About the XStream Interface

• Handler and Descriptor Attributes

• About the XStream Interface
Since Oracle Database 11g Release 2, APIs, known as XStream Out and XStream In, are
available.

• Handler and Descriptor Attributes
Describes the attributes for OCI handles and descriptors.

See Also:

• Oracle Database XStream Guide for detailed information about XStream Out
concepts

• Oracle Database XStream Guide for information about configuring XStream Out

• OCI XStream Functions for information about OCI XStream functions

35.1 About the XStream Interface
Since Oracle Database 11g Release 2, APIs, known as XStream Out and XStream In, are
available.

This technology enables high performance, near real-time information-sharing infrastructure
between Oracle databases and non-Oracle databases, non-RDBMS Oracle products, file
systems, third party software applications, and so on. XStream is built on the infrastructure
used by Oracle Streams.

• XStream Out
XStream Out allows a remote client to attach to an outbound server and extract row
changes in the form of logical change records (LCRs).

• XStream In
To replicate non-Oracle data into Oracle databases, use XStream In.

• Position Order and LCR Streams
Each LCR has a position attribute.

35-1

• XStream and Character Sets
For XStream Out, in general, setting the client application character set to the outbound
server database character set is the best practice.

See Also:

OCI XStream functions in OCI XStream Functions

35.1.1 XStream Out
XStream Out allows a remote client to attach to an outbound server and extract row changes in
the form of logical change records (LCRs).

To use XStream Out, a capture process and an outbound server must be created. All data
types supported by Oracle Streams, including LOB, LONG, and XMLType, are supported by
XStream. The capture process and the outbound server need not be on the same database
instance. After the capture process and the outbound server have started, row changes are
captured and sent to the outbound server. An external client application can connect to this
outbound server using OCI. After the connection is established, the client application can loop
while waiting for LCRs from the outbound server. The client application can register a client-
side callback to be invoked each time an LCR is received. At any time, the client application
can detach from the outbound server as needed. Upon restart, the outbound server knows
where in the redo stream to start streaming LCRs to the client application.

See Also:

• Oracle Database XStream Guide for an introduction to XStream Out

35.1.2 XStream In
To replicate non-Oracle data into Oracle databases, use XStream In.

This technology allows a remote client application to attach to an inbound server and send row
and DDL changes in the form of LCRs.

An external client application connects to the inbound server using OCI. After the connection is
established, the client application acts as the capture agent for the inbound server by
streaming LCRs to it. A client application can attach to only one inbound server for each
database connection, and each inbound server only allows one client application to attach to it.

See Also:

XStream In concepts in Oracle Database XStream Guide

Chapter 35
About the XStream Interface

35-2

35.1.3 Position Order and LCR Streams
Each LCR has a position attribute.

The position of an LCR identifies its placement in the stream of LCRs in a transaction.

See Also:

Position order in an LCR in Oracle Database XStream Guide

35.1.4 XStream and Character Sets
For XStream Out, in general, setting the client application character set to the outbound server
database character set is the best practice.

XStream Out implicitly converts character data in LCRs from the outbound server database
character set to the client application character set. XStream In implicitly converts character
data in LCRs from the client application character set to the inbound server database character
set.

To improve performance, complete the following tasks:

• Analyze the LCR data flow from the source to the destination.

• Set the client character set of the OCI client application to the one that minimizes character
conversion, incurs no data loss, and takes advantage of the implicit conversion done by
XStream or the destination.

35.2 Handler and Descriptor Attributes
Describes the attributes for OCI handles and descriptors.

The attributes for OCI handles and descriptors can be read with OCIAttrGet() and modified
with OCIAttrSet().

• Conventions
For each handle type, the attributes that can be read or changed are listed.

• Server Handle Attributes
Lists the server handle attributes.

35.2.1 Conventions
For each handle type, the attributes that can be read or changed are listed.

Each attribute listing includes the following information:

Mode
The following modes are valid:
READ - The attribute can be read using OCIAttrGet().
WRITE - The attribute can be modified using OCIAttrSet().

Chapter 35
Handler and Descriptor Attributes

35-3

READ/WRITE - The attribute can be read using OCIAttrGet(), and it can be modified using
OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Attribute Data Type
This is the data type of the attribute. If necessary, a distinction is made between the data type
for READ and WRITE modes.

35.2.2 Server Handle Attributes
Lists the server handle attributes.

The following server handle attributes are available:

• OCI_ATTR_XSTREAM_ACK_INTERVAL

• OCI_ATTR_XSTREAM_IDLE_TIMEOUT

• OCI_ATTR_XSTREAM_ACK_INTERVAL
Describes the OCI_ATTR_XSTREAM_ACK_INTERVAL server handle attribute.

• OCI_ATTR_XSTREAM_IDLE_TIMEOUT
Describes the OCI_ATTR_XSTREAM_IDLE_TIMEOUT server handle attribute.

35.2.2.1 OCI_ATTR_XSTREAM_ACK_INTERVAL
Describes the OCI_ATTR_XSTREAM_ACK_INTERVAL server handle attribute.

Mode
READ/WRITE

Description
For XStream Out, the ACK interval is the minimum interval in seconds that the outbound
server receives the processed low position from the client application. After each ACK interval,
the outbound server ends any in-progress OCIXStreamOutLCRReceive() or
OCIXStreamOutLCRCallbackReceive() call so that the processed low position cached at the
client application can be sent to the outbound server.
For XStream In, the ACK interval is the minimum interval in seconds that the inbound server
sends the processed low position to the client application. After each ACK interval, any in-
progress OCIXStreamInLCRSend() or OCIXStreamInLCRCallbackSend() call is terminated for
the inbound server to send a new processed low position to the client application.
The default value for OCI_ATTR_XSTREAM_ACK_INTERVAL is 30 seconds. This attribute is
checked only during the OCIXStreamOutAttach() or OCIXStreamInAttach() calls. Thus, it
must be set before invoking these APIs; otherwise, the default value is used.

Attribute Data Type
ub4 */ub4

35.2.2.2 OCI_ATTR_XSTREAM_IDLE_TIMEOUT
Describes the OCI_ATTR_XSTREAM_IDLE_TIMEOUT server handle attribute.

Mode
READ/WRITE

Chapter 35
Handler and Descriptor Attributes

35-4

Description
The idle timeout is the number of seconds of idle the outbound server waits for an LCR before
terminating the OCIXStreamOutLCRReceive() or OCIXStreamOutLCRCallbackReceive() call.
The default for OCI_ATTR_XSTREAM_IDLE_TIMEOUT is one second. This attribute is checked only
during the OCIXStreamOutAttach() or OCIXStreamInAttach() call. Thus, it must be set before
invoking these APIs; otherwise, the default value is used.

Attribute Data Type
ub4 */ub4

Chapter 35
Handler and Descriptor Attributes

35-5

36
OCI XStream Functions

This chapter describes the XStream functions for OCI.

A row logical change record (LCR) is used to encapsulate each row change. It includes the
schema name, table name, DML operation, and the column values. For update operations,
both before and after column values are included. The column data is in the format specified
by the "Program Variable" column in Table 36-3. Character columns are converted to the
client's character set.

A DDL LCR is used to encapsulate each DDL change. It includes the object name, the DDL
text, and the DDL command, for example, ALTER TABLE or TRUNCATE TABLE. See Table A-1 for a
list of DDL command codes.

See Also:

Oracle Database Globalization Support Guide for more information about NLS
settings.

XStream sample programs are found in xstream/oci under the $ORACLE_HOME/demo
directory.

Each LCR also has a transaction ID and position. For transactions captured outside Oracle
databases, any byte-comparable RAW array can be used as the LCR position, if the position of
each LCR in the stream is strictly increasing.

This chapter contains the topic:

• About Using the XStream Interface

• Introduction to XStream Functions

• OCI XStream Functions

• About Using the XStream Interface

• Introduction to XStream Functions
Lists and describes the conventions used to describe the functions.

• OCI XStream Functions
Lists and describes OCI XStream Functions.

36.1 About Using the XStream Interface
Since Oracle Database 11g Release 2, Oracle Streams provides enhanced APIs, known as
eXtended Streams (XStream) Out and XStream In, to enable high performance, near real-time
information-sharing infrastructure between Oracle databases and non-Oracle databases, non-
RDBMS Oracle products, file systems, third party software applications, and so on.

XStream is built on top of Streams infrastructure.

This section includes the following topics:

36-1

• XStream Out

• XStream In

• Security of XStreams

• XStream Out
XStream Out allows a remote client to attach to an outbound server (a Streams apply
process) and extract row changes in the form of Logical Change Records (LCRs).

• XStream In
To replicate non-Oracle data into Oracle databases use XStream In which allows a remote
client to attach to an inbound server (a Streams apply process) and send row and DDL
changes in the form of LCRs.

• Security of XStreams
Describes the security characteristics of XStreams.

See Also:

OCI XStream Functions

36.1.1 XStream Out
XStream Out allows a remote client to attach to an outbound server (a Streams apply process)
and extract row changes in the form of Logical Change Records (LCRs).

To use XStream Out, a capture and an apply process must be created similar to other Streams
setup. All data types supported by Oracle Streams including LOB, LONG, and XMLType are
supported by XStreams. Such an apply process is called an outbound server. The capture and
the outbound server may or may not be on the same database instance. After the capture and
the outbound server have started, row changes will be captured and sent to the outbound
server. An external client can then connect to this outbound server using OCI. After the
connection is established, the client can loop waiting for LCRs from the outbound server. The
client can register a client-side callback to be invoked each time an LCR is received. At
anytime, the client can detach from the outbound server as needed. Upon restart, the
outbound server knows where in the redo stream to start streaming LCRs to the client.

This section includes the following topics:

• LCR Streams

• The Processed Low Position and Restart Considerations

• LCR Streams
Describes characteristics of an LCR stream.

• The Processed Low Position and Restart Considerations
If the outbound server or the client aborts abnormally, the connection between the two is
automatically broken. The client needs to maintain the processed low position to properly
recover after a restart.

Chapter 36
About Using the XStream Interface

36-2

See Also:

• Oracle Database XStream Guide for more details of XStreams concepts

36.1.1.1 LCR Streams
Describes characteristics of an LCR stream.

• An LCR stream must be repeatable.

• An LCR stream must contain a list of assembled and committed transactions.

• LCRs from one transaction are contiguous. There is no interleaving of transactions in the
LCR stream.

• Each transaction within an LCR stream must have an ordered list of LCRs and a
transaction ID.

• The last LCR in each transaction must be a commit LCR.

• Each LCR must have a unique position.

• The position of all LCRs within a single transaction and across transactions must be strictly
increasing.

36.1.1.2 The Processed Low Position and Restart Considerations
If the outbound server or the client aborts abnormally, the connection between the two is
automatically broken. The client needs to maintain the processed low position to properly
recover after a restart.

The processed low position is a position below which all LCRs have been processed by the
client. This position should be maintained by the client while applying each transaction.
Periodically this position is sent to the server while the client executes XStream Out APIs. This
position indicates to the server that the client has processed all LCRs below or equal to this
position; thus, the server can purge redo logs that are no longer needed.

Upon restart, the client must re-attach to the outbound server. During the attach call, the client
can notify the outbound server of the last position received by the client. The outbound server
then sends LCRs with position greater than this last position. If the client does not specify the
last position (that is, a NULL is specified), the outbound server will retrieve the processed low
position from its system tables and derive the starting position to mine the redo logs. It will
send to the client the LCRs with position greater than this processed low position.

36.1.2 XStream In
To replicate non-Oracle data into Oracle databases use XStream In which allows a remote
client to attach to an inbound server (a Streams apply process) and send row and DDL
changes in the form of LCRs.

An external client application connects to the inbound server using OCI. After the connection is
established, the client application acts as the capture agent for the inbound server by
streaming LCRs to it. A client application can attach to only one inbound server per database
connection. Each inbound server only allows one client attaching to it.

XStream In uses the following features of Oracle Streams:

Chapter 36
About Using the XStream Interface

36-3

• High performance processing of DML changes using an apply process and, optionally,
apply process parallelism.

• Apply process features such as SQL generation, conflict detection and resolution, error
handling, and customized processing with apply handlers.

• Streaming network transmission of information with minimal network round trips.

XStream In supports all of the data types that are supported by Oracle Streams, including
LOBs, LONG, LONG RAW, and XMLType. A client application sends LOB and XMLType data to the
inbound server in chunks. Several chunks make up a single column value of LOB or XMLType.

This section includes the following topics:

• Processed Low Position and Restart Ability

• Stream Position

• Processed Low Position and Restart Ability
The processed low position is the position below which the inbound server no longer
requires any LCRs.

• Stream Position
Stream position refers to the position of an LCR in a given LCR stream.

36.1.2.1 Processed Low Position and Restart Ability
The processed low position is the position below which the inbound server no longer requires
any LCRs.

This position corresponds with the oldest SCN for an Oracle Streams apply process that
applies changes captured by a capture process.

The processed low position indicates that the LCRs less than or equal to this position have
been processed by the inbound server. If the client re-attaches to the inbound server, it only
needs to send LCRs greater than the processed low position because the inbound server
discards any LCRs that are less than or equal to the processed low position.

If the client application aborts abnormally, then the connection between the client application
and the inbound server is automatically broken. Upon restart, the client application retrieves
the processed low position from the inbound server and instructs its capture agent to retrieve
changes starting from this processed low position.

To limit the recovery time of a client application using the XStream In interface, the client
application can send activity, such as empty transactions, periodically to the inbound server.
When there are no LCRs to send to the server, the client can send a row LCR with a commit
directive to advance the inbound server's processed low position. This activity acts as an
acknowledgement so that the inbound server's processed low position can be advanced. The
LCR stream sent to an inbound server must follow the LCR stream properties for XStream Out
defined above.

36.1.2.2 Stream Position
Stream position refers to the position of an LCR in a given LCR stream.

For transactions captured outside Oracle databases the stream position must be encoded in
certain format (for example, base-16 encoding) that supports byte comparison. The stream
position is key to the total order of transaction stream sent by clients using the XStream In
interface.

Chapter 36
About Using the XStream Interface

36-4

36.1.3 Security of XStreams
Describes the security characteristics of XStreams.

XStream Out allows regular users to receive LCRs without requiring system level privileges.
System level privileges, such as DBA role, are required to configure XStream Out. The user
who configures XStream Out can specify a regular user as the connect user who can attach to
an outbound server to receive LCRs.

XStream In allows regular users to update tables in its own schema without requiring system
level privileges (for example, DBA) to configure XStream In.

XStream cannot assume that the connected user to the inbound or outbound server is trusted.

OCI clients must connect to an Oracle database prior to attaching to an XStream outbound or
inbound server created on that database. The connected user must be the same as the
connect_user configured for the attached outbound server or the apply_user configured for
the attached inbound server; otherwise, an error is raised.

See Also:

Oracle Database XStream Guide for more about configuring Oracle XStreams

36.2 Introduction to XStream Functions
Lists and describes the conventions used to describe the functions.

These conventions include:

• Conventions for OCI Functions — For each function, the following information is listed:

• Purpose — A brief description of the action performed by the function.

• Syntax — The function declaration.

• Parameters — A description of each of the function's parameters. This includes the
parameter's mode. The mode of a parameter has three possible values, as described in
the following table.

Table 36-1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI.

OUT A parameter that receives data from the OCI on this call.

IN/OUT A parameter that passes data on the call and receives data on the
return from this or a subsequent call.

• Comments — More detailed information about the function (if available), which can include
return values, restrictions on the use of the function, examples, or other information that
can be useful when using the function in an application.

Chapter 36
Introduction to XStream Functions

36-5

36.3 OCI XStream Functions
Lists and describes OCI XStream Functions.

This section and Table 36-2 describe the OCI XStream functions.

Table 36-2 OCI XStream Functions

Function Purpose

LCR Functions To get and set one or more values of an
LCR. Note: These calls do not require a
server round-trip.

OCILCRAttributesGet() Gets extra attribute information in (ROW or
DDL) LCR.

OCILCRAttributesSet() Populates extra attribute information in
ROW or DDL LCR.

OCILCRComparePosition() Compares two position LCRID values.

OCILCRConvertPosition() Converts an LCRID value to the specified
version (1 or 2).

OCILCRFree() Frees the LCR

OCILCRHeaderGet() Returns the common header fields for a
ROW or DDL LCR

OCILCRHeaderSet() Initializes the common header fields for a
ROW or DDL LCR

OCILCRDDLInfoGet() Retrieves specific fields in a DDL LCR

OCILCRDDLInfoSet() Populates DDL-specific fields in a DDL LCR

OCILCRLobInfoGet() Returns the LOB information for a piece-
wise LOB LCR

OCILCRLobInfoSet() Sets the LOB information for a piece-wise
LOB LCR

OCILCRNew() Constructs a new LCR object of the
specified type (row or DDL) for the given
duration

OCILCRRowColumnInfoGet() Returns the column fields in a row LCR

OCILCRRowColumnInfoSet() Populates column fields in a row LCR

OCILCRRowStmtGet() Returns the generated SQL statement for
the row LCR, with values in-lined

OCILCRRowStmtWithBindVarGet() Returns the generated SQL statement,
which uses bind variables for column values

OCILCRSCNsFromPosition() Gets the SCN and commit SCN from a
position value

OCILCRSCNToPosition() Converts SCN to position

OCILCRWhereClauseGet() Gets the WHERE clause statement for the
given row LCR

OCILCRWhereClauseWithBindVarGet() Gets the WHERE clause statement with bind
variables for the given row LCR

XStream In Functions To send an LCR stream to an XStream
inbound server

Chapter 36
OCI XStream Functions

36-6

Table 36-2 (Cont.) OCI XStream Functions

Function Purpose

OCIXStreamInAttach() Attaches to an inbound server

OCIXStreamInChunkSend() Sends chunk data to the inbound server

OCIXStreamInCommit() Commits the given transaction

OCIXStreamInDetach() Detaches from the inbound server

OCIXStreamInErrorGet() Returns the first error encountered by the
inbound server since the attach call

OCIXStreamInFlush() Flushes the network while attaching to an
XStream inbound server

OCIXStreamInLCRCallbackSend() Sends the LCR stream to the attached
inbound server using callbacks

OCIXStreamInLCRSend() Sends the LCR stream to the attached
inbound server using callbacks

OCIXStreamInProcessedLWMGet() Gets the local processed low position

OCIXStreamInSessionSet() Sets session attributes for XStream In
functions

XStream Out Functions To receive an LCR stream from an XStream
outbound server

OCIXStreamOutAttach() Attaches to an outbound server

OCIXStreamOutChunkReceive() Retrieves data of each LOB or LONG or
XMLType column one chunk at a time

OCIXStreamOutDetach() Detaches from the outbound server

OCIXStreamOutLCRCallbackReceive() Gets the LCR XStream from the outbound
server using callbacks

OCIXStreamOutLCRReceive() Receives an LCR stream from an outbound
server without using callbacks

OCIXStreamOutProcessedLWMSet() Updates the local copy of the processed
low-water mark

OCIXStreamOutSessionSet() Sets session attributes for XStream Out
functions

• OCILCRAttributesGet()
Gets extra attribute information in (ROW or DDL) LCR.

• OCILCRAttributesSet()
Populates extra attribute information in ROW or DDL LCR.

• OCILCRComparePosition()
Compares two position LCRID values.

• OCILCRConvertPosition()
Converts an LCRID value to the specified version (1 or 2).

• OCILCRFree()
Frees the LCR.

• OCILCRDDLInfoGet()
Retrieves specific fields in a DDL LCR.

• OCILCRHeaderGet()
Returns the common header fields for ROW or DDL LCR.

Chapter 36
OCI XStream Functions

36-7

• OCILCRRowStmtGet()
Returns the generated SQL statement for the row LCR, with values in-lined.

• OCILCRRowStmtWithBindVarGet()
Returns the generated SQL statement, which uses bind variables for column values.

• OCILCRNew()
Constructs a new Streams LCR object of the specified type (ROW or DDL) for the given
duration.

• OCILCRRowColumnInfoGet()
Returns the column fields in a row LCR.

• OCILCRRowColumnInfoSet()
Populates column fields in a row LCR.

• OCILCRDDLInfoSet()
Populates DDL-specific fields in a DDL LCR.

• OCILCRGetLCRIDVersion()
Determines the LCRID version of a given position.

• OCILCRHeaderSet()
Initializes the common header fields for ROW or DDL LCR.

• OCILCRLobInfoGet()
Returns the LOB information for a piece-wise LOB LCR generated from a DBMS_LOB or
OCILob procedure.

• OCILCRLobInfoSet()
Sets the LOB information for a piece-wise LOB LCR.

• OCILCRSCNsFromPosition()
Returns the SCN and the commit SCN from the position value.

• OCILCRSCNToPosition()
Converts an SCN to a position.

• OCILCRScnToPosition2()
Converts SCN to position (LCRID), which can handle both version 1 and version 2.

• OCILCRWhereClauseGet()
Gets the WHERE clause statement for the given row LCR.

• OCILCRWhereClauseWithBindVarGet()
Gets the WHERE clause statement with bind variables for the given row LCR.

• OCIXStreamInAttach()
Attaches to an inbound server.

• OCIXStreamInDetach()
Detaches from the inbound server.

• OCIXStreamInLCRSend()
Sends an LCR stream from the client to the attached inbound server.

• OCIXStreamInLCRCallbackSend()
Sends an LCR XStream to the attached inbound server.

• OCIXStreamInProcessedLWMGet()
Gets the local processed low position that is cached at the client.

• OCIXStreamInErrorGet()
Returns the first error encountered by the inbound server since attaching to it.

Chapter 36
OCI XStream Functions

36-8

• OCIXStreamInFlush()
Used to flush the network while attaching to an XStream inbound server.

• OCIXStreamInChunkSend()
Sends a chunk to the inbound server.

• OCIXStreamInCommit()
Commits the given transaction.

• OCIXStreamInSessionSet()
Sets session attributes for XStream In functions.

• OCIXStreamOutAttach()
Attaches to an XStream outbound server.

• OCIXStreamOutDetach()
Detaches from the outbound server.

• OCIXStreamOutLCRReceive()
Receives an LCR, including a procedure LCR, from an outbound stream.

• OCIXStreamOutLCRCallbackReceive()
Used to get the LCR stream from the outbound server using callbacks.

• OCIXStreamOutProcessedLWMSet()
Updates the local copy of the processed low position.

• OCIXStreamOutChunkReceive()
Retrieves data of each LOB or LONG or XMLType column one chunk at a time.

• OCIXStreamOutGetNextChunk()
While in the ProcessLCRStream() callback function, retrieves the next chunk in the current
LCR until all chunks are retrieved.

• OCIXStreamOutSessionSet()
Sets session attributes for XStream Out functions.

36.3.1 OCILCRAttributesGet()
Gets extra attribute information in (ROW or DDL) LCR.

Purpose

It gets any extra non-first class attributes that are not populated through OCILCRHeaderGet(),
OCILCRDDLInfoGet(), or OCILCRProcedureInfoGet(), for example, edition name.

Syntax

sword OCILCRAttributesGet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 *num_attrs,
 oratext **attr_names,
 ub2 *attr_namesl,
 ub2 *attr_dtyp,
 void **attr_valuesp,
 OCIInd *attr_indp,
 ub2 *attr_alensp,
 void *lcrp,
 ub2 array_size,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-9

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

num_attrs (OUT)
Number of extra attributes.

attr_names (OUT)
An array of extra attribute name pointers.

attr_namesl (OUT)
An array of extra attribute name lengths.

attr_dtyp (OUT)
An array of extra attribute data types. Valid data types: see Comments.

attr_valuesp (OUT)
An array of extra attribute data value pointers.

attr_indp (OUT)
An indicator array. Each returned element is an OCIInd value (OCI_IND_NULL or
OCI_IND_NOTNULL).

attr_alensp (OUT)
An array of actual extra attribute data lengths. Each element in alensp is the length in bytes.

lcrp (IN)
Pointer to ROW or DDL LCR.

array_size (IN)
Size of the array argument in the other parameters. If array_size is not large enough to
accommodate the number of attributes in the requested attribute list, then OCI_ERROR is
returned. Parameter num_attrs returns the expected size.

mode (IN)
Specify OCI_DEFAULT.

Comments

The valid data types for attr_dtyp are:

SQLT_CHR
SQLT_INT
SQLT_RDD

36.3.2 OCILCRAttributesSet()
Populates extra attribute information in ROW or DDL LCR.

Purpose

It populates any extra non-first class attributes that cannot be set through OCILCRHeaderSet(),
OCILCRDDLInfoSet(), or OCILCRRowColumnInfoSet(), for example, edition name.

Chapter 36
OCI XStream Functions

36-10

Syntax

sword OCILCRAttributesSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 num_attrs,
 oratext **attr_names,
 ub2 *attr_names_lens,
 ub2 *attr_dtyp,
 void **attr_valuesp,
 OCIInd *attr_indp,
 ub2 *attr_alensp,
 void *lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

num_attrs (IN)
Number of extra attributes.

attr_names (IN)
Pointer to an array of extra attribute names. Attribute names must be canonicalized.

attr_names_lens (IN)
Pointer to an array of extra attribute name lengths.

attr_dtyp (IN)
Pointer to an array of extra attribute data types. See valid data types in Comments of
OCILCRRowColumnInfoSet().

attr_valuesp (IN)
Address of an array of extra attribute data values.

attr_indp (IN)
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd values
(OCI_IND_NULL or OCI_IND_NOTNULL).

attr_alensp (IN)
Pointer to an array of actual extra attribute data lengths. Each element in attr_lensp is the
length in bytes.

lcrp (IN/OUT)
Pointer to a ROW or DDL LCR.

mode (IN)
Specify OCI_DEFAULT.

Comments

Valid attributes are:

#define OCI_LCR_ATTR_THREAD_NO "THREAD#"
#define OCI_LCR_ATTR_ROW_ID "ROW_ID"
#define OCI_LCR_ATTR_SESSION_NO "SESSION#"

Chapter 36
OCI XStream Functions

36-11

#define OCI_LCR_ATTR_SERIAL_NO "SERIAL#"
#define OCI_LCR_ATTR_USERNAME "USERNAME"
#define OCI_LCR_ATTR_TX_NAME "TX_NAME"
#define OCI_LCR_ATTR_EDITION_NAME "EDITION_NAME"
#define OCI_LCR_ATTR_MESSAGE_TRACKING_LABEL "MESSAGE_TRACKING_LABEL"
#define OCI_LCR_ATTR_CURRENT_USER "CURRENT_USER"
#define OCI_LCR_ATTR_ROOT_NAME "ROOT_NAME"

Related Topics

• OCILCRRowColumnInfoSet()
Populates column fields in a row LCR.

36.3.3 OCILCRComparePosition()
Compares two position LCRID values.

Purpose

These LCRIDs can have different versions. The provided position must be a valid LCRID for
Oracle Database 21c.

Syntax

sword OCILCRComparePosition(OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position1,
 ub2 position1_len,
 ub1 *position2,
 ub2 position2_len,
 ub4 mode,
 sb2 *result);

Parameters

svchp (IN)
OCI service context.

errhp (IN)
OCI Error handle.

position1 (IN)
The first position value to compare.

position1_len (IN)
The length of position1.

position2 (IN)
The second position value to compare.

position2_len (IN)
The length of position2.

mode (IN)
The mode flags.

Chapter 36
OCI XStream Functions

36-12

result (OUT)
0 if both values are equal.
-1 if position1 is less than position2.
1 if position1 is greater than position2.

Returns

OCI_SUCCESS if the conversion succeeds, OCI_ERROR otherwise.

Usage Notes

Supported modes are:

• 0 - Complete byte comparison.

• 2 - Smaller length is smaller value

36.3.4 OCILCRConvertPosition()
Converts an LCRID value to the specified version (1 or 2).

Purpose

The provided LCRID must be valid for Oracle Database 12c Release 2 (12.2).

Syntax

sword OCILCRConvertPosition(OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *in_position,
 ub2 in_position_len,
 ub1 *out_position,
 ub2 *out_position_len,
 ub1 to_version,
 ub4 mode);

Parameters

svchp (IN)
OCI service context.

errhp (IN)
OCI Error handle.

in_position (IN)
The position value to convert.

in_position_len (IN)
The length of in_position.

out_position (OUT)
The result position value (in the specified version). The memory must be preallocated.

out_position_len (OUT)
The length of out_position.

Chapter 36
OCI XStream Functions

36-13

to_version (IN)
The version to which to convert to. The value 1 should be specified for the original
OCI_LCRID_V1 format. The value 2 should be specified for the OCI_LCRID_V2 format.

#define OCI_LCRID_V1 1
#define OCI_LCRID_V2 2

mode (IN)
The mode flags.

Returns

OCI_SUCCESS if the conversion succeeds.

OCI_SUCCESS if the LCRID is already in the desired version.

OCI_ERROR if the conversion fails.

Usage Notes

None.

36.3.5 OCILCRFree()
Frees the LCR.

Purpose

Frees the LCR.

Syntax

sword OCILCRFree (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

lcrp (IN/OUT)
XStreams LCR pointer.

mode (IN)
Specify OCI_DEFAULT.

36.3.6 OCILCRDDLInfoGet()
Retrieves specific fields in a DDL LCR.

Purpose

Retrieves specific fields in a DDL LCR.

Chapter 36
OCI XStream Functions

36-14

Syntax

sword OCILCRDDLInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **object_type,
 ub2 *object_type_len,
 oratext **ddl_text,
 ub4 *ddl_text_len,
 oratext **logon_user,
 ub2 *logon_user_len,
 oratext **current_schema,
 ub2 *current_schema_len,
 oratext **base_table_owner,
 ub2 *base_table_owner_len,
 oratext **base_table_name,
 ub2 *base_table_name_len,
 oraub8 *flag,
 void *ddl_lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

object_type (OUT)
The type of object on which the DDL statement was executed. (See OCILCRDDLInfoSet().)
Optional. If not NULL, then both object_type and object_type_len arguments must not be
NULL.

object_type_len (OUT)
Length of the object_type string without the NULL terminator.

ddl_text (OUT)
The text of the DDL statement. Optional. If not NULL, then both ddl_text and ddl_text_len
arguments must not be NULL.

ddl_text_len (OUT)
DDL text length in bytes without the NULL terminator.

logon_user (OUT)
Canonicalized (follows a rule or procedure) name of the user whose session executed the
DDL statement. Optional. If not NULL, then both logon_user and logon_user_len arguments
must not be NULL.

logon_user_len (OUT)
Length of the logon_user string without the NULL terminator.

current_schema (OUT)
The canonicalized schema name that is used if no schema is specified explicitly for the
modified database objects in ddl_text. Optional. If not NULL, then both current_schema and
current_schema_len arguments must not be NULL.

Chapter 36
OCI XStream Functions

36-15

current_schema_len (OUT)
Length of the current_schema string without the NULL terminator.

base_table_owner (OUT)
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE), or if the
DDL statement involves a table (such as creating a trigger on a table), then base_table_owner
specifies the canonicalized owner of the table involved. Otherwise, base_table_owner is NULL.
Optional. If not NULL, then both base_table_owner and base_table_owner_len arguments
must not be NULL.

base_table_owner_len (OUT)
Length of the base_table_owner string without the NULL terminator.

base_table_name (OUT)
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE), or if the
DDL statement involves a table (such as creating a trigger on a table), then base_table_name
specifies the canonicalized name of the table involved. Otherwise, base_table_name is NULL.
Optional. If not NULL, then both base_table_name and base_table_name_len arguments must
not be NULL.

base_table_name_len (OUT)
Length of the base_table_name string without the NULL terminator.

flag (OUT)
DDL LCR flag. Optional. Data not returned if argument is NULL. Future extension not used
currently.

ddl_lcrp (IN)
DDL LCR. Cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

Related Topics

• OCILCRDDLInfoSet()
Populates DDL-specific fields in a DDL LCR.

36.3.7 OCILCRHeaderGet()
Returns the common header fields for ROW or DDL LCR.

Purpose

All returned pointers point directly to the corresponding LCR fields.

Syntax

sword OCILCRHeaderGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **src_db_name,
 ub2 *src_db_name_len,
 oratext **cmd_type,
 ub2 *cmd_type_len,
 oratext **owner,
 ub2 *owner_len,
 oratext **oname,
 ub2 *oname_len,

Chapter 36
OCI XStream Functions

36-16

 ub1 **tag,
 ub2 *tag_len,
 oratext **txid,
 ub2 *txid_len,
 OCIDate *src_time,
 ub2 *old_columns,
 ub2 *new_columns,
 ub1 **position,
 ub2 *position_len,
 oraub8 *flag,
 void *lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

src_db_name (OUT)
Canonicalized source database name. Must be non-NULL.

src_db_name_len (OUT)
Length of the src_db_name string in bytes excluding the NULL terminator.

cmd_type (OUT)
For row LCRs: One of the following values:

Note:

The values, #define OCI_LCR_ROW_CMD_ROLLBACK and #define
OCI_LCR_ROW_CMD_START_TX, is functionality that is available starting with Oracle
Database 11g Release 2 (11.2.0.2).

#define OCI_LCR_ROW_CMD_INSERT
#define OCI_LCR_ROW_CMD_DELETE
#define OCI_LCR_ROW_CMD_UPDATE
#define OCI_LCR_ROW_CMD_COMMIT
#define OCI_LCR_ROW_CMD_ROLLBACK
#define OCI_LCR_ROW_CMD_START_TX
#define OCI_LCR_ROW_CMD_LOB_WRITE
#define OCI_LCR_ROW_CMD_LOB_TRIM
#define OCI_LCR_ROW_CMD_LOB_ERASE

For DDL LCRs: One of the command types in OCI_ATTR_SQLFNCODE.

cmd_type_len (OUT)
Length of the cmd_type string in bytes excluding the NULL terminator.

owner (OUT)
Canonicalized table owner name. Must be non-NULL. For procedure LCRs, the package or
procedure owner is returned in owner.

Chapter 36
OCI XStream Functions

36-17

owner_len (OUT)
Length of the owner string in bytes excluding the NULL terminator.

oname (OUT)
Canonicalized table name. Must be non-NULL. For procedure LCRs, the procedure name is
returned in oname.

oname_len (OUT)
Length of the oname string in bytes excluding the NULL terminator.

tag (OUT)
A binary tag that enables tracking of the LCR. For example, you can use this tag to determine
the original source database of the DML statement if apply forwarding is used.

tag_len (OUT)
Number of bytes in the tag.

txid (OUT)
Transaction ID. Must be non-NULL

txid_len (OUT)
Length of the string in bytes excluding the NULL terminator.

src_time (OUT)
The time when the change was generated in the redo log file of the source database.

old_columns (OUT)
Number of columns in the OLD column list. Returns 0 if the input LCR is a DDL LCR. Optional.

new_columns (OUT)
Number of columns in the NEW column list. Returns 0 if the input LCR is a DDL LCR. Optional.

position (OUT)
Position for LCR.

position_len (OUT)
Length of position.

flag (OUT)
LCR flag. Possible flags are listed in Comments.

lcrp (IN)
lcrp cannot be NULL.

mode (IN)
OCILCR_NEW_ONLY_MODE - If this mode is specified, then the new_columns returned is the count
of the columns in the NEW column list only. Otherwise, the new_columns returned is the number
of distinct columns present in either the NEW or the OLD column list of the given row LCR.
OCI_LCR_APPCON_REPLAY - If this mode is specified, then it indicates the LCR is replayed from
the application container sync statement.

Comments

LCR flag.

#define OCI_ROWLCR_HAS_ID_KEY_ONLY /* only has ID key cols */
#define OCI_ROWLCR_SEQ_LCR /* sequence lcr */

Chapter 36
OCI XStream Functions

36-18

OCILCRProcedureInfoGet() can be called to get the package name.

36.3.8 OCILCRRowStmtGet()
Returns the generated SQL statement for the row LCR, with values in-lined.

Purpose

Users must preallocate the memory for sql_stmt, and *sql_stmt_len must be set to the size
of the allocated buffer, when it is passed in. If *sql_stmt_len is not large enough to hold the
generated SQL statement, then an error is raised.

Syntax

sword OCILCRRowStmtGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *row_stmt,
 ub4 *row_stmt_len,
 void *row_lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

row_stmt (IN/OUT)
The generated SQL statement for the row LCR.

row_stmt_len (IN/OUT)
Set to the size of the allocated buffer for row_stmt when passed in; returns the length of
row_stmt.

row_lcrp (IN)
Pointer to row LCR.

mode (IN)
Specify OCI_DEFAULT.

36.3.9 OCILCRRowStmtWithBindVarGet()
Returns the generated SQL statement, which uses bind variables for column values.

Purpose

The values for the bind variables are returned separately in arrays. You must preallocate the
memory for sql_stmt and the arrays, *sql_stmt_len must be set to the size of the allocated
buffer, and array_size must be the length of the arrays. The actual column values in
bind_var_valuesp points to the values inside the LCR, so it is a shallow copy. If array_size is
not large enough to hold all the variables, or if *sql_stmt_len is not large enough to hold the
generated SQL statement, then an error is raised.

Chapter 36
OCI XStream Functions

36-19

Syntax

sword OCILCRRowStmtWithBindVarGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *row_stmt,
 ub4 *row_stmt_len,
 ub2 *num_bind_var,
 ub2 *bind_var_dtyp,
 void **bind_var_valuesp,
 OCIInd *bind_var_indp,
 ub2 *bind_var_alensp,
 ub1 *bind_var_csetidp,
 ub1 *bind_var_csetfp,
 void *row_lcrp,
 oratext **chunk_column_names,
 ub2 *chunk_column_namesl,
 oraub8 *chunk_column_flags,
 ub2 array_size,
 oratext *bind_var_syntax,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

row_stmt (IN/OUT)
The generated SQL statement for the row LCR.

row_stmt_len (IN/OUT)
Set to the size of the allocated buffer for row_stmt when passed in; returns the length of
row_stmt.

num_bind_var (OUT)
The number of bind variables.

bind_var_dtyp (IN/OUT)
Array of data types for the bind variables.

bind_var_valuesp (IN/OUT)
Array of values for the bind variables.

bind_var_indp (IN/OUT)
Array of NULL indicators for the bind variables.

bind_var_alensp (IN/OUT)
Array of lengths for the bind variable values.

bind_var_csetidp (IN/OUT)
Array of character set IDs for the bind variables.

bind_var_csetfp (IN/OUT)
Array of character set forms for the bind variables.

Chapter 36
OCI XStream Functions

36-20

row_lcrp (IN)
Pointer to row LCR.

chunk_column_names (OUT)
Array of LOB column names in LCR.

chunk_column_namesl (OUT)
Array of LOB column name lengths.

chunk_column_flags (OUT)
Array of LOB column flags. Possible flags are listed in Comments.

array_size (IN)
Size of each of the parameter arrays.

bind_var_syntax (IN)
Either (:) (binds are of the form :1, :2, and so on.) or (?) (binds are of the form (?)).

mode (IN)
Specify OCI_DEFAULT.

Comments

The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

36.3.10 OCILCRNew()
Constructs a new Streams LCR object of the specified type (ROW or DDL) for the given
duration.

Purpose

Constructs a new Streams LCR object of the specified type (ROW or DDL) for the given
duration.

Syntax

sword OCILCRNew (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIDuration duration,
 ub1 lcrtype,
 void **lcrp,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-21

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

duration (IN)
Memory for the LCR is allocated for this specified duration.

lcrtype (IN)
LCR type. Values are:

#define OCI_LCR_XROW
#define OCI_LCR_XDDL

lcrp (IN/OUT)
If *lcrp is not NULL, an error is raised.

mode (IN)
Specify OCI_DEFAULT.

Comments

Note:

• After creation, you are not allowed to change the type of the LCR (ROW or DDL) or
duration of the memory allocation.

• Use OCILCRHeaderSet() to populate common header fields for row or DDL LCR.

• After the LCR header is initialized, use OCILCRRowColumnInfoSet() or
OCILCRDDLInfoSet() to populate operation specific elements. Use
OCILCRExtraAttributesSet() to populate extra attribute information.

• Use OCILCRFree() to free the LCR created by this function.

36.3.11 OCILCRRowColumnInfoGet()
Returns the column fields in a row LCR.

Purpose

Returns the column fields in a row LCR.

Syntax

sword OCILCRRowColumnInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 column_value_type,
 ub2 *num_columns,
 oratext **column_names,
 ub2 *column_name_lens,
 ub2 *column_dtyp,
 void **column_valuesp,
 OCIInd *column_indp,
 ub2 *column_alensp,
 ub1 *column_csetfp,
 oraub8 *column_flags,

Chapter 36
OCI XStream Functions

36-22

 ub2 *column_csid,
 void *row_lcrp,
 ub2 array_size,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_value_type (IN)
ROW LCR column value type; either of:

#define OCI_LCR_ROW_COLVAL_OLD
#define OCI_LCR_ROW_COLVAL_NEW

num_columns (OUT)
Number of columns in the specified column array.

column_names (OUT)
An array of column name pointers.

column_name_lens (OUT)
An array of column name lengths.

column_dtyp (OUT)
An array of column data types. Optional. Data is not returned if column_dtyp is NULL.

column_valuesp (OUT)
An array of column data pointers.

column_indp (OUT)
An array of indicators.

column_alensp (OUT)
An array of column lengths. Each returned element is the length in bytes.

column_csetfp (OUT)
An array of character set forms for the columns. Optional. Data is not returned if the argument
is NULL.

column_flags (OUT)
An array of column flags. Optional. Data is not returned if the argument is NULL. See
Comments for the values.

column_csid (OUT)
An array of character set IDs for the columns.

row_lcrp (IN)
row_lcrp cannot be NULL.

array_size (IN)
Size of each of the parameter arrays. An error is returned if array_size is less than the
number of columns in the requested column list. The actual size of the requested column list is
returned through the num_columns parameter.

Chapter 36
OCI XStream Functions

36-23

mode (IN)
OCILCR_NEW_ONLY_MODE - If this mode is specified, then the new_columns returned is the count
of the columns in the NEW column list only. Otherwise, the new_columns returned is the number
of distinct columns present in either the NEW or the OLD column list of the given row LCR.

Comments

• For INSERT, this function must only be called to get the NEW column values.

• For DELETE, this function must only be called to get the OLD column values.

• For UPDATE, this function can be called twice, once to get the NEW column values and
once to get the OLD column values.

• This function must not be called for COMMIT operations.

The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */

#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

Table 36-3 lists the currently supported table column data types. For each data type, it lists the
corresponding LCR column data type, the C program variable type to cast the LCR column
value, and the OCI functions that can manipulate the column values returned from
OCILCRRowColumnInfoGet().

Table 36-3 Table Column Data Types

Table Column
Data Types

LCR Column Data Type Program Variable Conversion Function

VARCHAR,
NVARCHAR2

SQLT_CHR char *

NUMBER SQLT_VNU OCINumber OCINumberToInt()
OCINumberToReal()
OCINumberToText()

DATE SQLT_ODT OCIDate OCIDateToText()
Can access structure directly to get date and
time fields.

RAW SQLT_BIN unsigned char *
CHAR, NCHAR SQL_AFC char *
BINARY_FLOAT SQLT_BFLOAT float

Chapter 36
OCI XStream Functions

36-24

Table 36-3 (Cont.) Table Column Data Types

Table Column
Data Types

LCR Column Data Type Program Variable Conversion Function

BINARY_DOUBLE SQLT_BDOUBLE double
TIMESTAMP SQLT_TIMESTAMP OCIDateTime * OCIDateTimeGetTime()

OCIDateTimeGetDate()
OCIDateTimeGetTimeZoneOffset()
OCIDateTimeToText()

TIMESTAMP WITH
TIME ZONE

SQLT_TIMESTAMP_TZ OCIDateTime * OCIDateTimeGetTime()
OCIDateTimeGetDate()
OCIDateTimeGetTimeZoneOffset()
OCIDateTimeToText()

TIMESTAMP WITH
LOCAL TIME ZONE

SQLT_TIMESTAMP_LTZ OCIDateTime * OCIDateTimeGetTime()
OCIDateTimeGetDate()
OCIDateTimeGetTimeZoneOffset()
OCIDateTimeToText()

INTERVAL YEAR
TO MONTH

SQLT_INTERVAL_YM OCIInterval * OCIIntervalToText()
OCIIntervalGetYearMonth()

INTERVAL DAY TO
SECOND

SQLT_INTERVAL_DS OCIInterval * OCIIntervalToText()
OCIIntervalGetDaySecond()

UROWID SQLT_RDD OCIRowid * OCIRowidToChar()
Call OCIXStreamOutChunkReceive() to
get the column data.

CLOB SQLT_CHR or SQLT_BIN unsigned char *
NCLOB SQLT_BIN unsigned char * Call OCIXStreamOutChunkReceive() to

get the column data.

BLOB SQLT_BIN unsigned char * Call OCIXStreamOutChunkReceive() to
get the column data.

LONG SQLT_CHR char * Call OCIXStreamOutChunkReceive() to
get the column data.

LONG RAW SQLT_BIN unsigned char * Call OCIXStreamOutChunkReceive() to
get the column data.

XMLType SQLT_CHR or SQLT_BIN unsigned char *
JSON SQLT_BIN unsigned char * Call OCIXStreamOutChunkReceive() to

get the column data.

Refer to OCI JSON descriptor functions to
work with Oracle Binary JSON format
(OSON).

See Also:

OCI Json Descriptor Functions

Chapter 36
OCI XStream Functions

36-25

36.3.12 OCILCRRowColumnInfoSet()
Populates column fields in a row LCR.

Purpose

Populates column fields in a row LCR.

Syntax

sword OCILCRRowColumnInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 column_value_type,
 ub2 num_columns,
 oratext **column_names,
 ub2 *column_name_lens,
 ub2 *column_dtyp,
 void **column_valuesp,
 OCIInd *column_indp,
 ub2 *column_alensp,
 ub1 *column_csetfp,
 oraub8 *column_flags,
 ub2 *column_csid,
 void *row_lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_value_type (IN)
ROW LCR Column value types:

#define OCI_LCR_ROW_COLVAL_OLD
#define OCI_LCR_ROW_COLVAL_NEW

num_columns (IN)
Number of columns in each of the array parameters.

column_names (IN)
Pointer to an array of column names. Column names must be canonicalized. Column names
must follow Oracle Database naming conventions and size limitations.

column_name_lens (IN)
Pointer to an array of column name lengths.

column_dtyp (IN)
Pointer to an array of column data types. See Comments for valid data types.

column_valuesp (IN)
Pointer to an array of column data pointers.

Chapter 36
OCI XStream Functions

36-26

column_indp (IN)
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd values
(OCI_IND_NULL or OCI_IND_NOTNULL).

column_alensp (IN)
Pointer to an array of actual column lengths in bytes.

column_csetfp (IN)
Pointer to an array of character set forms for the columns. The default form is
SQLCS_IMPLICIT. Setting this attribute causes the database or national character set to be
used on the client side. Set this attribute to SQLCS_NCHAR for the national character set or
SQLCS_IMPLICIT for the database character set. Pass 0 for non-character columns.

column_flags (IN)
Pointer to an array of column flags. (See Comments for the list of valid LCR column flags.)

column_csid (IN)
Pointer to an array of character set IDs for the columns.

row_lcrp (IN/OUT)
row_lcrp cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

Comments

Note:

• For INSERT, this function must only be called to specify the NEW column values.

• For DELETE, this function must only be called to specify the OLD column values.

• For UPDATE, this function can be called twice, once to specify the NEW column values and
once to specify the OLD column values.

• This function must not be called for COMMIT operations.

The following LCR column flags can be combined using the bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */

#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

Valid data types are:

SQLT_AFC SQLT_TIMESTAMP
SQLT_DAT SQLT_TIMESTAMP_TZ

Chapter 36
OCI XStream Functions

36-27

SQLT_BFLOAT SQLT_TIMESTAMP_LTZ
SQLT_BDOUBLE SQLT_INTERVAL_YM
SQLT_NUM SQLT_INTERVAL_DS
SQLT_VCS
SQLT_ODT
SQLT_INT
SQLT_BIN
SQLT_CHR
SQLT_RDD
SQLT_VST
SQLT_INT
SQLT_FLT

36.3.13 OCILCRDDLInfoSet()
Populates DDL-specific fields in a DDL LCR.

Purpose

Populates DDL-specific fields in a DDL LCR.

Syntax

sword OCILCRDDLInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *object_type,
 ub2 object_type_len,
 oratext *ddl_text,
 ub4 ddl_text_len,
 oratext *logon_user,
 ub2 logon_user_len,
 oratext *current_schema,
 ub2 current_schema_len,
 oratext *base_table_owner,
 ub2 base_table_owner_len,
 oratext *base_table_name,
 ub2 base_table_name_len,
 oraub8 flag,
 void *ddl_lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

object_type (IN)
The type of object on which the DDL statement was executed. See Comments for the valid
object types.

object_type_len (IN)
Length of the object_type string without the NULL terminator.

ddl_text (IN)
The text of the DDL statement. This parameter must be set to a non-NULL value. DDL text
must be in Oracle Database DDL format.

Chapter 36
OCI XStream Functions

36-28

ddl_text_len (IN)
DDL text length in bytes without the NULL terminator.

logon_user (IN)
Canonicalized name of the user whose session executed the DDL statement.

logon_user_len (IN)
Length of the logon_user string without the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

current_schema (IN)
The canonicalized schema name that is used if no schema is specified explicitly for the
modified database objects in ddl_text. If a schema is specified in ddl_text that differs from
the one specified for current_schema, then the function uses the schema specified in
ddl_text.
This parameter must be set to a non-NULL value.

current_schema_len (IN)
Length of the current_schema string without the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

base_table_owner (IN)
If the DDL statement is a table-related DDL (such as CREATE TABLE or ALTER TABLE), or if the
DDL statement involves a table (such as creating a trigger on a table), then base_table_owner
specifies the canonicalized owner of the table involved. Otherwise, base_table_owner is NULL.

base_table_owner_len (IN)
Length of the base_table_owner string without the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

base_table_name (IN)
If the DDL statement is a table-related DDL (such as CREATE TABLE or ALTER TABLE), or if the
DDL statement involves a table (such as creating a trigger on a table), then base_table_name
specifies the canonicalized name of the table involved. Otherwise, base_table_name is NULL.

base_table_name_len (IN)
Length of the base_table_name without the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

flag (IN)
DDL LCR flag. (Not currently used; used for future extension.) Specify OCI_DEFAULT.

ddl_lcrp (IN/OUT)
ddl_lcrp cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

Comments

The following are valid object types:

CLUSTER
FUNCTION
INDEX
OUTLINE
PACKAGE
PACKAGE BODY

Chapter 36
OCI XStream Functions

36-29

PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

NULL is also a valid object type. Specify NULL for all object types not listed.

36.3.14 OCILCRGetLCRIDVersion()
Determines the LCRID version of a given position.

Purpose

Determines the LCRID version of a given position.

Syntax

sword OCILCRGetLCRIDVersion(OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position,
 ub2 position_len,
 ub1 *version);

Parameters

svchp (IN)
The OCI service context.

errhp (IN)
The OCI Error handle.

position (IN)
The position.

position_len (IN)
The length of position.

version (OUT)
The LCRID version for the given input position. A value of 1 should be specified for the
original OCI_LCRID_V1 format. A value of 2 should be specified for the OCI_LCRID_V2 format.

#define OCI_LCRID_V1 1
#define OCI_LCRID_V2 2

Returns

OCI_SUCCESS if the LCRID version is valid, OCI_ERROR otherwise.

Usage Notes

None.

Chapter 36
OCI XStream Functions

36-30

36.3.15 OCILCRHeaderSet()
Initializes the common header fields for ROW or DDL LCR.

Purpose

Initializes the common header fields for row or DDL LCR.

Syntax

sword OCILCRHeaderSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *src_db_name,
 ub2 src_db_name_len,
 oratext *cmd_type,
 ub2 cmd_type_len,
 oratext *owner,
 ub2 owner_len,
 oratext *oname,
 ub2 oname_len,
 ub1 *tag,
 ub2 tag_len,
 oratext *txid,
 ub2 txid_len,
 OCIDate *src_time,
 ub1 *position,
 ub2 position_len,
 oraub8 flag,
 void *lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

src_db_name (IN)
Canonicalized source database name. Must be non-NULL.

src_db_name_len (IN)
Length of the src_db_name string in bytes excluding the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

cmd_type (IN)
For row LCRs: One of the following values:

Note:

The values, #define OCI_LCR_ROW_CMD_ROLLBACK and #define
OCI_LCR_ROW_CMD_START_TX, are available starting with Oracle Database 11g
Release 2 (11.2.0.2).

Chapter 36
OCI XStream Functions

36-31

#define OCI_LCR_ROW_CMD_INSERT
#define OCI_LCR_ROW_CMD_DELETE
#define OCI_LCR_ROW_CMD_UPDATE
#define OCI_LCR_ROW_CMD_COMMIT
#define OCI_LCR_ROW_CMD_ROLLBACK
#define OCI_LCR_ROW_CMD_START_TX
#define OCI_LCR_ROW_CMD_LOB_WRITE
#define OCI_LCR_ROW_CMD_LOB_TRIM
#define OCI_LCR_ROW_CMD_LOB_ERASE

For DDL LCRs: One of the command types in OCI_ATTR_SQLFNCODE.

cmd_type_len (IN)
Length of cmd_type.

owner (IN)
Canonicalized table owner name. Owner is not required for COMMIT LCR.

owner_len (IN)
Length of the owner string in bytes excluding the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

oname (IN)
Canonicalized table name. Not required for COMMIT LCR.

oname_len (IN)
Length of the oname string in bytes excluding the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

tag (IN)
A binary tag that enables tracking of the LCR. For example, you can use this tag to determine
the original source database of the DML statement if apply forwarding is used.

tag_len (IN)
Number of bytes in the tag. Cannot exceed 2000 bytes.

txid (IN)
Transaction ID. Must be non-NULL.

txid_len (IN)
Length of the txid string in bytes, excluding the NULL terminator. Must follow Oracle Database
naming conventions and size limitations.

src_time (IN)
The time when the change was generated in the online redo log file of the source database.

position (IN)
Position for LCR. Must be non-NULL and byte-comparable.

position_len (IN)
Length of position. Must be greater than zero.

flag (IN)
LCR flag. Possible flags are listed in Comments.

lcrp (IN/OUT)
lcrp cannot be NULL.

Chapter 36
OCI XStream Functions

36-32

mode (IN)
Specify OCI_DEFAULT.

Comments

Note:

• This function sets all internal fields of the LCR to NULL including extra attributes.

• This function does not deep copy the passed-in values. You must ensure data is valid for
the duration of the LCR.

• For COMMIT LCRs, owner and oname information are not required. Provide valid values for
src_db_name, cmd_type, tag, txid, and position.

• For ROW LCRs, use OCILCRRowColumnInfoSet() to populate row LCR-specific column
information.

• For DDL LCRs, use OCILCRDDLInfoSet() to populate DDL operation specific information.

• For ROW or DDL LCRs, use OCILCRAttributesSet() to populate extra attribute
information.

The following are LCR flags:

#define OCI_ROWLCR_HAS_ID_KEY_ONLY /* only has ID key cols */
#define OCI_ROWLCR_SEQ_LCR /* sequence lcr */

36.3.16 OCILCRLobInfoGet()
Returns the LOB information for a piece-wise LOB LCR generated from a DBMS_LOB or OCILob
procedure.

Purpose

Returns the LOB information for a piece-wise LOB LCR generated from a DBMS_LOB or OCILob
procedure.

Syntax

sword OCILCRLobInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **column_name,
 ub2 *column_name_len,
 ub2 *column_dty,
 oraub8 *column_flag,
 ub4 *offset,
 ub4 *size,
 void *row_lcrp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_name (OUT)
LOB column name.

Chapter 36
OCI XStream Functions

36-33

column_name_len (OUT)
Length of LOB column name.

column_dty (OUT)
Column data type (either SQLT_CHR or SQLT_BIN).

column_flag (OUT)
Column flag. See Comments in OCILCRRowColumnInfoSet().

offset (OUT)
LOB operation offset in code points. Only returned for LOB WRITE and LOB TRIM operations.
This is the same as the offset parameter for OCILobErase() or the offset parameter in
OCILobWrite().

size (OUT)
LOB operation size in code points. Only returned for LOB TRIM and LOB ERASE operations. This
is the same as the new_length parameter in OCILobTrim() or the amtp parameter in
OCILobErase().

row_lcrp (IN)
Pointer to a row LCR.

mode (IN)
Specify OCI_DEFAULT.

Comments

Returns OCI_SUCCESS or OCI_ERROR.

Related Topics

• OCILCRRowColumnInfoSet()
Populates column fields in a row LCR.

36.3.17 OCILCRLobInfoSet()
Sets the LOB information for a piece-wise LOB LCR.

Purpose

This call is valid when the input LCR is a LOB_WRITE, LOB_ERASE, or LOB_TRIM; otherwise, an
error is returned.

Syntax

sword OCILCRLobInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *column_name,
 ub2 column_name_len,
 ub2 column_dty,
 oraub8 column_flag,
 ub4 offset,
 ub4 size,
 void *row_lcrp,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-34

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_name (IN)
LOB column name.

column_name_len (IN)
Length of LOB column name.

column_dty (IN)
Column data type (either SQLT_CHR or SQLT_BIN).

column_flag (IN)
Column flag. See Comments in OCILCRRowColumnInfoSet().

offset (IN)
LOB operation offset in code points. Only required for LOB WRITE and LOB TRIM operations.
This is the same as the soffset parameter for OCILobErase() or the offset parameter in
OCILobWrite().

size (IN)
LOB operation size in code points. Only required for LOB TRIM and LOB ERASE operations.This
is the same as the new_length parameter in OCILobTrim() or the amtp parameter in
OCILobErase().

row_lcrp (IN/OUT)
Pointer to a row LCR.

mode (IN)
Specify OCI_DEFAULT.

Comments

Returns OCI_SUCCESS or OCI_ERROR.

Related Topics

• OCILCRRowColumnInfoSet()
Populates column fields in a row LCR.

36.3.18 OCILCRSCNsFromPosition()
Returns the SCN and the commit SCN from the position value.

Purpose

The input position must be one that is obtained from an XStream outbound server. An error is
returned if the input position does not conform to the expected format.

Syntax

sword OCILCRSCNsFromPosition (OCISvcCtx *svchp,
 OCIError *errhp,

Chapter 36
OCI XStream Functions

36-35

 ub1 *position,
 ub2 position_len,
 OCINumber *scn,
 OCINumber *commit_scn,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

position (IN)
LCR position value.

position_len (IN)
Length of LCR position value.

scn (OUT)
SCN number embedded in the given LCR position.

commit_scn (OUT)
The commit SCN embedded in the given position.

mode (IN)
Mode flags used for future expansion. Specify OCI_DEFAULT.

Comments

This function can handle both version 1 and version 2 position (LCRID) values.

36.3.19 OCILCRSCNToPosition()
Converts an SCN to a position.

Purpose

The generated position can be passed as the last_position to OCIXStreamOutAttach() to
filter the LCRs with commit SCN less than the given SCN and the LCR's SCN less than the
given SCN. Therefore, the first LCR sent by the outbound server is either:

• A commit LCR at the given SCN, or

• The first LCR of the subsequent transaction with commit SCN greater than or equal to the
given SCN.

Syntax

sword OCILCRSCNToPosition (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position,
 ub2 *position_len,
 OCINumber *scn,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-36

Parameters

svchp (IN)
OCI service context.

errhp (IN)
OCI error handle.

position (OUT)
The resulting position. You must preallocate OCI_LCR_MAX_POSITION_LEN bytes.

position_len (OUT)
Length of position.

scn (IN)
The SCN to be stored in position.

mode (IN)
Mode flags (Not currently used; used for future extension).

Comments

Returns OCI_SUCCESS if the conversion succeeds, OCI_ERROR otherwise.

This function will return a version 1 LCRID.

An error will be raised if the SCN value is larger than the maximum value.

36.3.20 OCILCRScnToPosition2()
Converts SCN to position (LCRID), which can handle both version 1 and version 2.

Purpose

Converts SCN to position (LCRID) for either version 1 or version 2.

Syntax

sword OCILCRSCNToPosition2(OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position,
 ub2 *position_len,
 OCINumber *scn,
 ub1 version,
 ub4 mode);

Parameters

svchp (IN)
The OCI service context.

errhp (IN)
The OCI Error handle.

Chapter 36
OCI XStream Functions

36-37

position (OUT)
The result position value (in the specified version) returned. The memory must be
preallocated.

position_len (OUT)
The length of position.

scn (IN)
The SCN value to be stored in position.

version (IN)
The version to which to convert the LCRID value. A value of 1 should be specified for version
1. A value of 2 should be specified for version 2.

#define OCI_LCRID_V1 1
#define OCI_LCRID_V2 2

mode (IN)
The mode flags (Not currently used; used for future extension)..

Returns

OCI_SUCCESS if the conversion is successful, OCI_ERROR otherwise.

Usage Notes

If version 1 is specified, and the SCN value is larger than the maximum value, then an error will
be raised.

The given SCN value is assumed to be the commit SCN value.

36.3.21 OCILCRWhereClauseGet()
Gets the WHERE clause statement for the given row LCR.

Purpose

Gets the WHERE clause statement for the given row LCR.

Syntax

sword OCILCRWhereClauseGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *wc_stmt,
 ub4 *wc_stmt_len,
 void *row_lcrp,
 ub4 mode);

Parameters

svchp (IN/OUT)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

Chapter 36
OCI XStream Functions

36-38

wc_stmt (OUT)
SQL statement equivalent to the LCR.

wc_stmt_len (IN/OUT)
Length of the wc_stmt buffer.

row_lcrp (IN)
Row LCR to be converted to SQL.

mode (IN)
Mode flags used for future expansion. Specify OCI_DEFAULT.

Comments

The WHERE clause generated for an INSERT LCR has all the columns that are being inserted.
This WHERE clause could be used to identify the inserted row after it is inserted, for example,
like "returning ROWID".

INSERT INTO TAB(COL1) VALUES (10) -> WHERE COL1=10

The WHERE clause generated for UPDATE has all the columns in the old column list. However, the
values of the columns are that of the new value if it exists in the new column list of the UPDATE.
If the column does not have a new value, then the old column value is used.

UPDATE TAB SET COL1 = 10 WHERE COL1 = 20 -> WHERE COL1 = 10
UPDATE TAB SET COL2 = 20 WHERE COL1 = 20 -> WHERE COL1 = 20

The WHERE clause for DELETE uses the columns and values from the old column list.

LOB piecewise operations use the new columns and values for generating the WHERE clause.

Returns

OCI_SUCCESS or OCI_ERROR.

36.3.22 OCILCRWhereClauseWithBindVarGet()
Gets the WHERE clause statement with bind variables for the given row LCR.

Purpose

Gets the WHERE clause statement with bind variables for the given row LCR.

Syntax

sword OCILCRWhereClauseWithBindVarGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *wc_stmt,
 ub4 *wc_stmt_len,
 ub2 *num_bind_var,
 ub2 *bind_var_dtyp,
 void **bind_var_valuesp,
 OCIInd *bind_var_indp,
 ub2 *bind_var_alensp,
 ub2 *bind_var_csetidp,
 ub1 *bind_var_csetfp,
 void *row_lcrp,
 ub2 array_size,
 oratext *bind_var_syntax,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-39

Parameters

svchp (IN/OUT)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

wc_stmt (OUT)
SQL statement equivalent to the LCR.

wc_stmt_len (IN/OUT)
Length of the wc_stmt buffer.

num_bind_var (OUT)
Number of bind variables.

bind_var_dtyp (OUT)
Array of data types of bind variables.

bind_var_valuesp (OUT)
Array of values of bind variables.

bind_var_indp (OUT)
Array of NULL indicators of bind variables.

bind_var_alensp (OUT)
Array of lengths of bind values.

bind_var_csetidp (OUT)
Array of char set IDs of binds.

bind_var_csetfp (OUT)
Array of char set forms of binds.

row_lcrp (IN)
Row LCR to be converted to SQL.

array_size (IN)
Size of the array of bind values.

bind_var_syntax (IN)
Native syntax to be used for binds.

mode (IN)
Mode flags for future expansion. Specify OCI_DEFAULT.

Comments

If array_size is not large enough to accommodate the number of columns in the requested
column list, then OCI_ERROR is returned. The expected array_size is returned through the
num_bind_var parameter.

bind_var_syntax for Oracle Database should contain (:). This generates positional binds such
as :1, :2, :3, and so on. For non-Oracle databases input the string that must be used for
binds.

Chapter 36
OCI XStream Functions

36-40

The WHERE clause generated for INSERT LCR has all the columns that are being inserted. This
WHERE clause can identify the inserted row after it is inserted, for example, like "returning
ROWID".

INSERT INTO TAB(COL1) VALUES (10) -> WHERE COL1=10

The WHERE clause generated for UPDATE has all the columns in the old column list. However, the
values of the columns are that of the new column value of the column if it exists in the new
values of the UPDATE. If the column appears only in the old column, then the old column value
is used.

UPDATE TAB SET COL1 = 10 WHERE COL1 = 20 -> WHERE COL1 = 10
UPDATE TAB SET COL2 = 20 WHERE COL1 = 20 -> WHERE COL1 = 20

The WHERE clause for DELETE uses the columns and values from the old column list.

LOB piecewise operations use the new columns and values for generating the WHERE clause.

Returns

OCI_SUCCESS or OCI_ERROR.

36.3.23 OCIXStreamInAttach()
Attaches to an inbound server.

Purpose

The client application must connect to the database using a dedicated connection.

Syntax

sword OCIXStreamInAttach (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *server_name,
 ub2 server_name_len,
 oratext *source_name,
 ub2 source_name_len,
 ub1 *last_position,
 ub2 *last_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

server_name (IN)
XStream inbound server name.

server_name_len (IN)
Length of the XStream inbound server name.

source_name (IN)
Source name to identify the data source.

Chapter 36
OCI XStream Functions

36-41

source_name_len (IN)
Source name length.

last_position (OUT)
Last position received by inbound server. Optional. If specified, then you must preallocate
OCI_LCR_MAX_POSITION_LEN bytes for the return value.

last_position_len (OUT)
Length of last_position. Must be non-NULL if last_position is non-NULL.

mode (IN)
OCIXSTREAM_IN_ATTACH_RESTART_INBOUND - If this mode is specified, then this function can
notify the server to restart the inbound server regardless of whether it is in a disabled or
aborted state. If you do not pass in this mode and the inbound server is in an aborted state
when this call is made, then the function returns an error.

Comments

The name of the inbound server must be provided because multiple inbound servers can be
configured in one Oracle instance. This function returns OCI_ERROR if any error is encountered
while attaching to the inbound server. Only one client can attach to an XStream inbound server
at any time. An error is returned if multiple clients attempt to attach to the same inbound server
or if the same client attempts to attach to multiple inbound servers concurrently.

This function returns the last position received by the inbound server. Having successfully
attached to the server, the client should resume sending LCRs with positions greater than this
last_position since the inbound server discards all LCRs with positions less than or equal to
the last_position.

Returns either OCI_SUCCESS or OCI_ERROR status code.

36.3.24 OCIXStreamInDetach()
Detaches from the inbound server.

Purpose

Detaches from the inbound server.

Syntax

sword OCIXStreamInDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *processed_low_position,
 ub2 *processed_low_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

processed_low_position (OUT)
The server's processed low position.

Chapter 36
OCI XStream Functions

36-42

processed_low_position_len (OUT)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

Comments

You must pass in a preallocated buffer for the position argument. The maximum length of this
buffer is OCI_LCR_MAX_POSITION_LEN. This position is exposed in
DBA_XSTREAM_INBOUND_PROGRESS view

This call returns the server's processed low position. If this function is invoked while a
OCIXStreamInLCRSend() call is in progress, then it immediately terminates that call before
detaching from the inbound server.

Returns either OCI_SUCCESS or OCI_ERROR status code.

36.3.25 OCIXStreamInLCRSend()
Sends an LCR stream from the client to the attached inbound server.

Purpose

To avoid a network round-trip for every OCIXStreamInLCRSend() call, the connection is tied to
this call and terminates the call after an ACK interval since the LCR stream is initiated to the
server.

Syntax

sword OCIXStreamInLCRSend (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub1 lcrtype,
 oraub8 flag,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

lcrp (IN)
Pointer to the new LCR to send. It cannot be NULL.

lcrtype (IN)
LCR type. Either of:

#define OCI_LCR_XROW
#define OCI_LCR_XDDL

flag (IN)
If bit OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then LCR contains more chunk data. You
must call OCIXStreamInChunkSend() before calling OCIXStreamInLCRSend() again.

Chapter 36
OCI XStream Functions

36-43

mode (IN)
Specify OCI_DEFAULT.

Comments

Return codes are:

• OCI_STILL_EXECUTING means that the current call is still in progress. The connection
associated with the specified service context handle is still tied to this call for streaming the
LCRs to the server. An error is returned if you attempt to use the same connection to
execute any OCI calls that require database round-trip, for example, OCIStmtExecute(),
OCIStmtFetch(), OCILobRead(), and so on. OCILCR* calls are local calls; thus, they are
valid while this call is in progress.

• OCI_SUCCESS means the current call is completed. You can execute OCIStmt*, OCILob*,
and so on from the same service context.

• OCI_ERROR means this call encounters some errors. Use OCIErrorGet() to obtain
information about the error.

Related Topics

• Server Handle Attributes
Lists and describes server handle attributes.

36.3.26 OCIXStreamInLCRCallbackSend()
Sends an LCR XStream to the attached inbound server.

Purpose

You must specify a callback to construct each LCR for streaming. If some LCRs contain chunk
data, then a second callback must be provided to create each chunk data.

Syntax

sword OCIXStreamInLCRCallbackSend (
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCICallbackXStreamInLCRCreate createlcr_cb,
 OCICallbackXStreamInChunkCreate createchunk_cb,
 void *usrctxp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

createlcr_cb (IN)
Client callback procedure to be invoked to generate an LCR for streaming. Cannot be NULL.

createchunk_cb (IN)
Client callback procedure to be invoked to create each chunk. Can be NULL if you do not need
to send any LCR with LOB or LONG or XMLType columns. OCI_ERROR is returned if this argument
is NULL and you attempt to send an LCR with additional chunk data.

Chapter 36
OCI XStream Functions

36-44

usrctxp (IN)
User context to pass to both callback functions.

mode (IN)
Specify OCI_DEFAULT fore now.

Comments

Return code: OCI_ERROR or OCI_SUCCESS.

The createlcr_cb argument must be of type OCICallbackXStreamInLCRCreate:

typedef sb4 (*OCICallbackXStreamInLCRCreate)
 void *usrctxp, void **lcrp, ub1 *lcrtyp, oraub8 *flag);

Parameters of OCICallbackXStreamInLCRCreate():

usrctxp (IN/OUT)
Pointer to the user context.

lcrp (OUT)
Pointer to the LCR to be sent.

lcrtyp (OUT)
LCR type (OCI_LCR_XROW or OCI_LCR_XDDL).

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameter to the callback is the user context. The output parameters are the new
LCR, its type, and a flag. If the generated LCR contains additional chunk data, then this flag
must have the OCI_XSTREAM_MORE_ROW_DATA (0x01) bit set. The valid return codes from the
OCICallbackXStreamInLCRCreate() callback function are OCI_CONTINUE or OCI_SUCCESS. This
callback function must return OCI_CONTINUE to continue processing the
OCIXStreamInLCRCallbackSend() call. Any return code other than OCI_CONTINUE signals that
the client wants to terminate the OCIXStreamInLCRCallbackSend() call immediately. In
addition, a NULL LCR returned from the OCICallbackXStreamInLCRCreate() callback function
signals that the client wants to terminate the current call.

The createchunk_cb argument must be of type OCICallbackXStreamInChunkCreate:

typedef sb4 (*OCICallbackXStreamInChunkCreate)
void *usrctxp,
oratext **column_name,
ub2 *column_name_len,
ub2 *column_dty,
oraub8 *column_flag,
ub2 *column_csid,
ub4 *chunk_bytes,
ub1 **chunk_data,
oraub8 *flag);

The input parameters of the createchunk_cb() procedure are the user context and the
information about the chunk.

Parameters of OCICallbackXStreamInChunkCreate():

usrctxp (IN/OUT)
Pointer to the user context.

Chapter 36
OCI XStream Functions

36-45

column_name (OUT)
Column name of the current chunk.

column_name_len (OUT)
Length of the column name.

column_name_dty (OUT)
Chunk data type (SQLT_CHR or SQLT_BIN).

column_flag (OUT)
See Comments in OCIXStreamInChunkSend().

column_csid (OUT)
Column character set ID. Relevant only if the column is an XMLType column (that is,
column_flag has the OCI_LCR_COLUMN_XML_DATA bit set).

chunk_bytes (OUT)
Chunk data length in bytes.

chunk_data (OUT)
Chunk data pointer.

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The OCIXStreamInLCRCallbackSend() function invokes the createlcr_cb() procedure to
obtain each LCR to send to the server. If the return flag from the createlcr_cb() procedure
has the OCI_XSTREAM_MORE_ROW_DATA bit set, then it invokes the createchunk_cb() procedure
to obtain each chunk. It repeatedly calls the createchunk_cb() procedure while the flag
returned from this callback has the OCI_XSTREAM_MORE_ROW_DATA bit set. When this bit is not
set, this function cycles back to invoke the createlcr_cb() procedure to get the next LCR.
This cycle is repeated until the createlcr_cb() procedure returns a NULL LCR or when at the
transaction boundary after an ACK interval has elapsed since the call began.

The valid return codes from the OCICallbackXStreamInChunkCreate() callback function are
OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_CONTINUE to continue
processing the OCIXStreamInLCRCallbackSend() call. Any return code other than
OCI_CONTINUE signals that the client wants to terminate the OCIXStreamInLCRCallbackSend()
call immediately.

Because terminating the current call flushes the network and incurs another network round-trip
in the next call, you must avoid returning a NULL LCR immediately when there is no LCR to
send. Doing this can greatly reduce network throughput and affect performance. During short
idle periods, you can add some delays in the callback procedure instead of returning a NULL
LCR immediately to avoid flushing the network too frequently.

Figure 36-1 shows the execution flow of the OCIXStreamInLCRCallbackSend() function.

Chapter 36
OCI XStream Functions

36-46

Figure 36-1 Execution Flow of the OCIXStreamInLCRCallbackSend() Function

Client Code

1
LCRCallbackSend

(createlcr_ cb,
createchunk_cb)

createlcr_cb

LCR, flag

2Construct LCR

createchunk_cb

flag, col_name, chunk_data

3Construct Chunk

Send to Inbound
Server

LCR is not
NULL

*

LCRCallbackSend

* While OCI_XSTREAM_MORE_ROW_DATA is set

Description of Figure 36-1:

• At 1, the user invokes the OCIXStreamInLCRCallbackSend() providing two callbacks. This
function initiates an LCR inbound stream to the server.

• At 2, this function invokes the createlcr_cb() procedure to get an LCR from the callback
to send to the server. If the return LCR is NULL, then this function exits.

• If the flag from 2 indicates the current LCR has more data (that is, the
OCI_XSTREAM_MORE_ROW_DATA bit is set), then this function proceeds to 3; otherwise, it loops
back to 2 to get the next LCR.

• At 3, this function invokes createchunk_cb() to get the chunk data to send to the server. If
the flag from this callback has the OCI_XSTREAM_MORE_ROW_DATA bit set, then it repeats 3;
otherwise, it loops back to 2 to get the next LCR from the user. If any callback function
returns any values other than OCI_CONTINUE, then the OCIXStreamInLCRCallbackSend()
call terminates.

Following is a sample client pseudocode snippet for callback mode (error checking is not
included for simplicity):

main
{
 /* Attach to inbound server */
 OCIXStreamInAttach();

 /* Get the server's processed low position to determine
 * the position of the first LCR to generate.
 */
 OCIXStreamInProcessedLWMGet(&lwm);

 while (TRUE)
 {
 /* Initiate LCR inbound stream */
 OCIXStreamInLCRCallbackSend(createlcr_cb, createchunk_cb);

 OCIXStreamInProcessedLWMGet(&lwm);

Chapter 36
OCI XStream Functions

36-47

 if (some terminating condition)
 break;
 }
 OCIXStreamInDetach(&lwm);
}

createlcr_cb (IN usrctx, OUT lcr, OUT flag)
{
 if (have more LCRs to send)
 {
 /* construct lcr */
 OCILCRHeaderSet(lcr);
 OCILCRRowColumnInfoSet(lcr);

 if (lcr has LOB | LONG | XMLType)
 Set OCI_XSTREAM_MORE_ROW_DATA flag;

 if (lcr is LOB_ERASE | LOB_TRIM | LOB_WRITE)
 OCILCRLobInfoSet(lcr);
 }
 else if (idle timeout expires)
 {
 lcr = null;
 }
}

createchunk_cb (IN usrctx, OUT chunk, OUT flag)
{
 /* set col_name, col_flag, chunk data, and so on */
 construct_chunk;

 if (last chunk of current column)
 {
 set col_flag |= OCI_LCR_COLUMN_LAST_CHUNK;

 if (last column)
 clear OCI_XSTREAM_MORE_ROW_DATA flag;
 }
}

Related Topics

• OCIXStreamInChunkSend()
Sends a chunk to the inbound server.

36.3.27 OCIXStreamInProcessedLWMGet()
Gets the local processed low position that is cached at the client.

Purpose

This function can be called anytime while the client is attached to an XStream inbound server.
Clients, using the callback mode to stream LCRs to the server (see
OCIXStreamInLCRCallbackSend()), can invoke this function while in the callback procedures.

Syntax

sword OCIXStreamInProcessedLWMGet (OCISvcCtx *svchp,
 OCIError *errhp,

Chapter 36
OCI XStream Functions

36-48

 ub1 *processed_low_position,
 ub2 *processed_low_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

processed_low_position (OUT)
The processed low position maintained at the client.

processed_low_position_len (OUT)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

Comments

After attaching to an XStream inbound server, a local copy of the server's processed low
position (see OCIXStreamOutProcessedLWMSet()) is cached at the client. This local copy is
refreshed with the server's low position when each of the following calls returns OCI_SUCCESS:

• OCIXStreamInAttach()
• OCIXStreamInLCRSend()
• OCIXStreamInLCRCallbackSend()
• OCIXStreamInFlush()
Return code: OCI_ERROR or OCI_SUCCESS.

You must pass in a preallocated buffer for the position argument. The maximum length of this
buffer is OCI_LCR_MAX_POSITION_LEN. This position is exposed in the
DBA_XSTREAM_INBOUND_PROGRESS view.

The client can use this position to periodically purge the logs used to generate the LCRs at or
below this position.

Related Topics

• OCIXStreamInLCRCallbackSend()
Sends an LCR XStream to the attached inbound server.

• OCIXStreamOutProcessedLWMSet()
Updates the local copy of the processed low position.

36.3.28 OCIXStreamInErrorGet()
Returns the first error encountered by the inbound server since attaching to it.

Purpose

Returns the first error encountered by the inbound server since the OCIXStreamInAttach()
call.

Chapter 36
OCI XStream Functions

36-49

Syntax

sword OCIXStreamInErrorGet (OCISvcCtx *svchp,
 OCIError *errhp,
 sb4 *errcodep,
 oratext *msgbuf,
 ub2 msg_bufsize,
 ub2 *msg_len,
 oratext *txn_id,
 ub2 txn_id_bufsize,
 ub2 *txn_id_len);

Parameters

svchp (IN/OUT)
OCI service handle.

errhp (IN/OUT)
Error Handle.

errcodep (OUT)
Error code.

msgbuf (IN/OUT)
Preallocated message buffer.

msg_bufsize (IN)
Message buffer size.

msg_len (OUT)
Length of returned error message.

txn_id (IN/OUT)
Preallocated transaction ID buffer.

txn_id_bufsize (IN)
The transaction ID buffer size.

txn_id_len (OUT)
Length of the returned transaction ID.

Comments

The maximum size for the returned transaction ID is OCI_LCR_MAX_TXID_LEN. If the allocated
buffer for txn_id is too small, then this routine returns ORA-29258. The maximum size for the
returned error msg is OCI_ERROR_MAXMSG_SIZE. If the allocated size for msgbuf is too small,
then the returned message is truncated.

36.3.29 OCIXStreamInFlush()
Used to flush the network while attaching to an XStream inbound server.

Purpose

It terminates any in-progress OCIXStreamInLCRSend() call associated with the specified service
context.

Chapter 36
OCI XStream Functions

36-50

Syntax

sword OCIXStreamInFlush (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

mode (IN)
OCIXSTREAM_IN_FLUSH_WAIT_FOR_COMPLETE - If this mode is specified, then this function
flushes the network, and then waits for all complete and rollback transactions that have been
sent to the inbound server to complete before returning control to the client.

Comments

Return code: OCI_ERROR or OCI_SUCCESS.

Each call incurs a database round-trip to get the server's processed low position, which you
can retrieve afterward using OCIXStreamInProcessedLWMGet(). Call this function only when
there is no LCR to send to the server and the client wants to know the progress of the attached
inbound server.

This call returns OCI_ERROR if it is invoked from the callback functions of
OCIXStreamInLCRCallbackSend().

36.3.30 OCIXStreamInChunkSend()
Sends a chunk to the inbound server.

Purpose

This function is valid during the execution of the OCIXStreamInLCRSend() call.

Syntax

sword OCIXStreamInChunkSend (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *column_name,
 ub2 column_name_len,
 ub2 column_dty,
 oraub8 column_flag,
 ub2 column_csid,
 ub4 chunk_bytes,
 ub1 *chunk_data,
 oraub8 flag,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

Chapter 36
OCI XStream Functions

36-51

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_name (IN)
Name of column associated with the given data. Column name must be canonicalized and
must follow Oracle Database naming convention.

column_name_len (IN)
Length of column name.

column_dty (IN)
LCR chunk data type (must be SQLT_CHR or SQLT_BIN). See Table 36-5.

column_flag (IN)
Column flag. (See Comments for valid column flags.) Must specify
OCI_LCR_COLUMN_LAST_CHUNK for the last chunk of each LOB or LONG or XMLType column.

column_csid (IN)
Column character set ID. This is required only if the column_flag has
OCI_LCR_COLUMN_XML_DATA bit set.

chunk_bytes (IN)
Chunk data length in bytes.

chunk_data (IN)
Pointer to column data chunk. If the column is NCLOB or varying width CLOB, then the input
chunk data must be in AL16UTF16 format. The chunk data must be in the character set defined
in Table 36-5.

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA (0x01) bit is set, then the current row change contains more
data. You must clear this bit when sending the last chunk of the current LCR.

mode (IN)
Specify OCI_DEFAULT.

Comments

You can call OCIXStreamInChunkSend() to send a chunk of large argument data for a
procedure LCR to the XStream Inbound server.

The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */

#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

#define OCI_LCR_COLUMN_32K_DATA /* col contains 32K data */

#define OCI_LCR_COLUMN_OBJECT_DATA /* col contains object data in xml format */

Chapter 36
OCI XStream Functions

36-52

In Streams, LOB, LONG, or XMLType column data can be broken up into multiple chunks. For a
row change containing columns of these data types, its associated LCR only contains data for
the other column types. All LOB, LONG or XMLType columns are either represented in the LCR
as NULL or not included in the LCR as defined in Table 36-4.

OCILCRRowColumnInfoSet() is provided to generate a list of scalar columns in an LCR. For
LOB, LONG, and XMLType columns, OCIXStreamInChunkSend() is provided to set the value of
each chunk in a column. For a large column, this function can be invoked consecutively
multiple times with smaller chunks of data. The XStream inbound server can assemble these
chunks and apply the accumulated change to the designated column.

The LCR of a row change must contain all the scalar columns that can uniquely identify a row
at the apply site. Table 36-4 describes the required column list in each LCR for each DML
operation.

Table 36-4 Required Column List in the First LCR

Command Type of the First
LCR of a Row Change

Columns Required in the First LCR

INSERT The NEW column list must contain all non-NULL scalar columns. All
LOB, XMLType, and LONG columns with chunk data must be included in
this NEW column list. Each must have NULL value and
OCI_LCR_COLUMN_EMPTY_LOB flag specified.

UPDATE The OLD column list must contain the key columns.

The NEW column list must contain all updated scalar columns. All LOB,
XMLType, and LONG columns with chunk data must be included in this
NEW column list. Each must have NULL value and
OCI_LCR_COLUMN_EMPTY_LOB flag specified.

DELETE The OLD column list must contain the key columns.

LOB_WRITE, LOB_TRIM,
LOB_ERASE

The NEW column list must contain the key columns and the modified
LOB column.

After constructing each LCR, you can call OCIXStreamInLCRSend() to send that LCR.
Afterward, OCIXStreamInChunkSend() can be called repeatedly to send the chunk data for
each LOB or LONG or XMLType column in that LCR. Sending the chunk value for different
columns cannot be interleaved. If a column contains multiple chunks, then this function must
be called consecutively using the same column name before proceeding to a new column. The
ordering of the columns is irrelevant.

When invoking this function, you must pass OCI_XSTREAM_MORE_ROW_DATA as the flag argument
if there is more data for the current LCR. When sending the last chunk of the current LCR, then
this flag must be cleared to signal the end of the current LCR.

This function is valid only for INSERT, UPDATE, and LOB_WRITE operations. Multiple LOB, LONG, or
XMLType columns can be specified for INSERT and UPDATE, while only one LOB column is
allowed for LOB_WRITE operation.

The following is a sample client pseudocode snippet for non-callback mode (error checking is
not included for simplicity):

main
{
 /* Attach to inbound server */
 OCIXStreamInAttach();

 /* Get the server's processed low position to determine

Chapter 36
OCI XStream Functions

36-53

 * the position of the first LCR to generate.
 */
 OCIXStreamInProcessedLWMGet(&lwm);

 while (TRUE)
 {
 flag = 0;
 /* construct lcr */
 OCILCRHeaderSet(lcr);
 OCILCRRowColumnInfoSet(lcr);

 if (lcr has LOB | LONG | XMLType columns)
 set OCI_XSTREAM_MORE_ROW_DATA flag;

 status = OCIXStreamInLCRSend(lcr, flag);

 if (status == OCI_STILL_EXECUTING &&
 (OCI_XSTREAM_MORE_ROW_DATA flag set))
 {
 for each LOB/LONG/XMLType column in row change
 {
 for each chunk in column
 {
 /* set col_name, col_flag, chunk data */
 construct chunk;

 if (last chunk of current column)
 col_flag |= OCI_LCR_COLUMN_LAST_CHUNK;

 if (last chunk of last column)
 clear OCI_XSTREAM_MORE_ROW_DATA flag;

 OCIXStreamInChunkSend(chunk, col_flag, flag);
 }
 }
 }
 else if (status == OCI_SUCCESS)
 {
 /* get lwm when SendLCR call ends successfully. */
 OCIXStreamInProcessedLWMGet(&lwm);
 }

 if (some terminating_condition)
 break;
 }

 OCIXStreamInDetach();
}

36.3.31 OCIXStreamInCommit()
Commits the given transaction.

Purpose

This function lets the client notify the inbound server about a transaction that has been
executed by the client rather than by the server. So that if the same transaction is retransmitted
during apply restart, it is ignored by the inbound server. A commit LCR must be supplied for the
inbound server to extract the transaction ID and the position of the commit.

Chapter 36
OCI XStream Functions

36-54

Syntax

sword OCIXStreamInCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub4 mode);

Parameters

svchp (IN/OUT)
OCI service handle.

errhp (IN/OUT)
Error Handle to which errors should be reported.

lcrp (IN)
Pointer to the LCR to send. Must be a commit LCR.

mode (IN)
Mode flags. Not used currently; used for future extension.

Comments

The position of the input LCR must be higher than
DBA_XSTREAM_INBOUND_PROGRESS.APPLIED_HIGH_POSITION, and the LCR's source database
must match DBA_APPLY_PROGRESS.SOURCE_DATABASE of the attached inbound server.

If there is any pre-commit handler defined, it is executed when this commit LCR is executed.

Assume a sample use case in which a situation where the inbound server does not support
certain data types, but the client can do the work directly. The client performs the transaction
changes directly to the database and then invokes the OCIXStreamInCommit() to commit the
transaction by way of the inbound server. Note that the client should not directly commit the
transaction itself. Rather, the transaction changes are committed with this command
(OCIXStreamInCommit()) so that the transaction is atomic. Thus, if the inbound server becomes
disabled during the client transaction, then the entire transaction is correctly rolled back.

36.3.32 OCIXStreamInSessionSet()
Sets session attributes for XStream In functions.

Purpose

Sets session attributes for XStream In functions.

Syntax

sword OCIXStreamInSessionSet(OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *attribute_name,
 ub2 attribute_name_len,
 void *attribute_value,
 ub2 attribute_value_len,
 ub2 attribute_dty,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-55

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

attribute_name (IN)
An attribute name.
Valid values for attribute_name are:

#define OCIXSTREAM_ATTR_ATTACH_TIMEOUT "ATTACH_TIMEOUT_SECS"
#define OCIXSTREAM_ATTR_MAX_ATTACH_RETRIES "MAX_ATTACH_RETRIES"

attribute_name_len (IN)
An attribute name length.
The maximum value for attribute_name_len is OCIXSTREAM_SESSION_SET_MAX_PARAM_LEN:

#define OCIXSTREAM_SESSION_SET_MAX_PARAM_LEN 128

attribute_value (IN)
The attribute value.

attribute_value_len (IN)
The attribute value length.
The maximum value for attribute_value_len is 128.

attribute_dty (IN)
Pointer to an array of attribute data types. The only valid value for attribute_dty is DTYUB2.
An error is returned if you try a data type other than DTYUB2 for ATTACH_TIMEOUT_SECS and
MAX_ATTACH_RETRIES.

mode (IN)
Specify OCI_DEFAULT.

Comments

You must invoke OCIXStreamInSessionSet() before calling OCIXStreamInAttach().

Returns

OCI_SUCCESS if successful, otherwise OCI_ERROR.

36.3.33 OCIXStreamOutAttach()
Attaches to an XStream outbound server.

Purpose

The client application must connect to the database using a dedicated connection.

Syntax

sword OCIXStreamOutAttach (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *server_name,
 ub2 server_name_len,

Chapter 36
OCI XStream Functions

36-56

 ub1 *last_position,
 ub2 last_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

server_name (IN)
XStream outbound server name.

server_name_len (IN)
Length of XStream outbound server name.

last_position (IN)
Position to the last received LCR. Can be NULL.

last_position_len (IN)
Length of last_position.

mode (IN)
OCIXSTREAM_OUT_ATTACH_APP_FREE_LCR - If this mode is specified, then the application is in
charge of freeing the LCRs from the outbound server.
OCIXSTREAM_OUT_ATTACH_APP_CONTAINER - If this mode is specified, then the application is
capturing application container statements (ALTER PLUGGABLE DATABASE
APPLICATIONS LCRs). The XStream application should set this mode option if it is intending
to replicate ALTER PLUGGABLE DATABASE APPLICATIONS LCRs to other application
containers.
OCIXSTREAM_OUT_ATTACH_EXTENDED_TXID - If this mode is specified, then the application is
making a request for extended transaction ID format. The typical transaction ID format is
xidusn.xidslt.xidsqn. The extended transaction ID format is
pdbuid.xidusn.xidslt.xidsqn. Use this mode if the XStream Out server is configured to
capture changes from multiple containers and the source database has local undo mode
enabled.

Comments

The OCIEnv environment handle must be created with OCI_OBJECT mode, and the service
context must be in a connected state to issue this function. This function does not support
nonblocking mode. It returns either the OCI_SUCCESS or OCI_ERROR status code.

The name of the outbound server must be provided because multiple outbound servers can be
configured in one Oracle Database instance. This function returns OCI_ERROR if it encounters
any error while attaching to the outbound server. Only one client can attach to an XStream
outbound server at any time. An error is returned if multiple clients attempt to attach to the
same outbound server or if the same client attempts to attach to multiple outbound servers
using the same service handle.

The last_position parameter is used to establish the starting point of the stream. This call
returns OCI_ERROR if the specified position is non-NULL and less than the server's processed
low position (see OCIXStreamOutProcessedLWMSet()); otherwise, LCRs with positions greater
than the specified last_position are sent to the user.

Chapter 36
OCI XStream Functions

36-57

If the last_position is NULL, then the stream starts from the processed low position
maintained in the server.

Related Topics

• OCIXStreamOutProcessedLWMSet()
Updates the local copy of the processed low position.

36.3.34 OCIXStreamOutDetach()
Detaches from the outbound server.

Purpose

Detaches from the outbound server.

Syntax

sword OCIXStreamOutDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information in case of an
error.

mode (IN)
Specify OCI_DEFAULT.

Comments

This function sends the current local processed low position to the server before detaching
from the outbound server. The outbound server automatically restarts after this call. This
function returns OCI_ERROR if it is invoked while a OCIXStreamOutReceive() call is in progress.

36.3.35 OCIXStreamOutLCRReceive()
Receives an LCR, including a procedure LCR, from an outbound stream.

Purpose

If an LCR is available, then this function immediately returns that LCR. The duration of each
LCR is limited to the interval between two successive OCIXStreamOutLCRReceive() calls.
When there is no LCR available in the stream, this call returns a NULL LCR after an idle
timeout.

Syntax

sword OCIXStreamOutLCRReceive (OCISvcCtx *svchp,
 OCIError *errhp,
 void **lcrp,
 ub1 *lcrtype,
 oraub8 *flag,
 ub1 *fetch_low_position,

Chapter 36
OCI XStream Functions

36-58

 ub2 *fetch_low_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

lcrp (OUT)
Pointer to the LCR received from the stream; can include a procedure LCR. If there is an
available LCR, then this LCR is returned with status code OCI_STILL_EXECUTING. When the
call ends, a NULL LCR is returned with status code OCI_SUCCESS.

lcrtype (OUT)
This value is valid only when lcrp is not NULL.

flag (OUT)
Return flag. If bit OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then this LCR has more data.
You must use OCIXStreamOutReceiveChunk() function to get the remaining data.

fetch_low_position (OUT)
XStream outbound server's fetch low position. This value is returned only when the return
code is OCI_SUCCESS. Optional. If non-NULL, then you must preallocate
OCI_LCR_MAX_POSITION_LEN bytes for the return value.

fetch_low_position_len (OUT)
Length of fetch_low_position.

mode (IN)
Specify OCI_DEFAULT.

Comments

To avoid a network round-trip for every OCIXStreamOutLCRReceive() call, the connection is tied
to this call and allows the server to fill up the network buffer with LCRs so subsequent calls can
quickly receive the LCRs from the network. The server ends each call at the transaction
boundary after an ACK interval elapses since the call began. When there is no LCR in the
stream, the server ends the call after the idle timeout elapses.

Return codes:

• OCI_STILL_EXECUTING means that the current call is still in progress. The connection
associated with the specified service context handle is still tied to this call for streaming the
LCRs from the server. An error is returned if you attempt to use the same connection to
execute any OCI calls that require database round-trip, for example, OCIStmtExecute(),
OCIStmtFetch(), OCILobRead(), and so on. OCILCR* calls do not require round-trips; thus,
they are valid while the call is in progress.

• OCI_SUCCESS means that the current call is completed. You are free to execute OCIStmt*,
OCILob*, and so on from the same service context.

• OCI_ERROR means the current call encounters some errors. Use OCIErrorGet() to obtain
information about the error.

Chapter 36
OCI XStream Functions

36-59

This call always returns a NULL LCR when the return code is OCI_SUCCESS. In addition, it
returns the fetch low position to denote that the outbound server has received all transactions
with commit position lower than or equal to this value.

See Also:

• Server Handle Attributes

• OCIXStreamOutChunkReceive() for non-callback pseudocode in the Comments
section

36.3.36 OCIXStreamOutLCRCallbackReceive()
Used to get the LCR stream from the outbound server using callbacks.

Purpose

You must supply a callback procedure to be invoked for each LCR received. If some LCRs in
the stream may contain LOB or LONG or XMLType columns, then a second callback must be
supplied to process each chunk (see OCIXStreamOutChunkReceive()).

Syntax

sword OCIXStreamOutLCRCallbackReceive (
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCICallbackXStreamOutLCRProcess processlcr_cb,
 OCICallbackXStreamOutChunkProcess processchunk_cb,
 void *usrctxp,
 ub1 *fetch_low_position,
 ub2 *fetch_low_position_len,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

processlcr_cb (IN)
Callback function to process each LCR received by the client. Cannot be NULL.

processchunk_cb (IN)
Callback function to process each chunk in the received LCR. Can be NULL if you do not
expect to receive any LCRs with additional chunk data.

usrctxp (IN)
User context to pass to both callback procedures.

fetch_low_position (OUT)
XStream outbound server's fetch low position (see OCIXStreamOutLCRReceive()). Optional.

Chapter 36
OCI XStream Functions

36-60

fetch_low_position_len (OUT)
Length of fetch_low_position.

mode (IN)
Specify OCI_DEFAULT.

Comments

Return code: OCI_SUCCESS or OCI_ERROR.

The processlcr_cb argument must be of type OCICallbackXStreamOutLCRProcess:

typedef sb4 (*OCICallbackXStreamOutLCRProcess)
 (void *usrctxp, void *lcrp, ub1 lcrtyp, oraub8 flag);

Parameters of OCICallbackXStreamOutLCRProcess():

usrctxp (IN/OUT)
Pointer to the user context.

lcrp (IN)
Pointer to the LCR just received.

lcrtyp (IN)
LCR type (OCI_LCR_XROW or OCI_LCR_XDDL).

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameters of the processlcr_cb() procedure are the user context, the LCR just
received, its type, and a flag to indicate whether the LCR contains more data. If there is an
LCR available, then this callback is invoked immediately. If there is no LCR in the stream, after
an idle timeout, then this call ends with OCI_SUCCESS return code.

You can invoke the callback OCICallbackXStreamOutLCRProcess to process procedure LCRs
as well.

The valid return codes from the OCICallbackXStreamOutLCRProcess() callback function are
OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_CONTINUE to continue
processing the OCIXStreamOutLCRCallbackReceive() call. Any return code other than
OCI_CONTINUE signals that the client wants to terminate OCIXStreamOutLCRCallbackReceive()
immediately.

See Also:

Server Handle Attributes

The processchunk_cb argument must be of type OCICallbackXStreamOutChunkProcess:

typedef sb4 (*OCICallbackXStreamOutChunkProcess)
(void *usrctxp,
oratext *column_name,
ub2 column_name_len,
ub2 column_dty,
oraub8 column_flag,
ub2 column_csid,
ub4 chunk_bytes,

Chapter 36
OCI XStream Functions

36-61

ub1 *chunk_data,
oraub8 flag);

Parameters of OCICallbackXStreamOutChunkProcess():

usrctxp (IN/OUT)
Pointer to the user context.

column_name (IN)
Column name of the current chunk.

column_name_len (IN)
Length of the column name.

column_name_dty (IN)
Chunk data type (SQLT_CHR or SQLT_BIN).

column_flag (IN)
See Comments in OCIXStreamInChunkSend().

column_csid (IN)
Column character set ID. Relevant only if the column is an XMLType column (that is,
column_flag has the OCI_LCR_COLUMN_XML_DATA bit set).

chunk_bytes (IN)
Chunk data length in bytes.

chunk_data (IN)
Chunk data pointer.

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameters of the processchunk_cb() procedure are the user context, the
information about the chunk, and a flag. When the flag argument has the
OCI_XSTREAM_MORE_ROW_DATA (0x01) bit set, then there is more data for the current LCR.

The valid return codes from the OCICallbackXStreamOutChunkProcess() callback function are
OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_CONTINUE to continue
processing the OCIXStreamOutLCRCallbackReceive() call. Any return code other than
OCI_CONTINUE signals that the client wants to terminate OCIXStreamOutLCRCallbackReceive()
immediately.

OCI calls are provided to access each field in the LCR. If the LCR contains only scalar
column(s), then the duration of that LCR is limited only to the processlcr_cb() procedure. If
the LCR contains some chunk data, then the duration of the LCR is extended until all the
chunks have been processed. If you want to access the LCR data at a later time, then a copy
of the LCR must be made before it is freed.

As for OCIXStreamOutLCRReceive(), the server ends each call at the transaction boundary
after each ACK interval since the call began, or after each idle timeout. The default ACK
interval is 30 seconds, and the default idle timeout is one second. See "Server Handle
Attributes" to tune these values. This function also returns the fetch low position when the call
ends.

Figure 36-2 shows the execution flow of the OCIXStreamOutLCRCallbackReceive() function.

Chapter 36
OCI XStream Functions

36-62

Figure 36-2 Execution Flow of the OCIXStreamOutLCRCallbackReceive() Function

Client Code

1
LCRCallbackReceive

(processlcr_ cb,
processchunk_cb)

processlcr_cb

(LCR, flag)

(col_name, chunk)

2Process LCR

processchunk_cb
3Process Chunk

while more
LCRs from
stream

*

LCRCallbackReceive

Receive From �
Outbound Server

* While OCI_XSTREAM_MORE_ROW_DATA is set.

Description of Figure 36-2:

• At 1, the client invokes OCIXStreamOutLCRCallbackReceive() providing two callbacks.
This function initiates an LCR outbound stream from the server.

• At 2, this function receives an LCR from the stream and invokes processlcr_cb()
procedure with the LCR just received. It passes OCI_XSTREAM_MORE_ROW_DATA flag to
processlcr_cb() if the current LCR has additional data.

• If the current LCR has no additional chunk, then this function repeats 2 for the next LCR in
the stream.

• At 3, if the current LCR contains additional chunk data, then this function invokes
processchunk_cb() for each chunk received with the OCI_XSTREAM_MORE_ROW_DATA flag.
This flag is cleared when the callback is invoked on the last chunk of the current LCR.

• If there is more LCR in the stream, then it loops back to 2. This process continues until the
end of the current call, or when there is no LCR in the stream for one second, or if a
callback function returns any value other than OCI_CONTINUE.

Here is sample pseudocode for callback mode:

main
{
 /* Attach to outbound server specifying last position */
 OCIXStreamOutAttach(last_pos);

 /* Update the local processed low position */
 OCIXStreamOutProcessedLWMSet(lwm);

 while (TRUE)
 {
 OCIXStreamOutLCRCallbackReceive(processlcr_cb,
 processchunk_cb, fwm);

 /* Use fetch low position(fwm)
 * to update processed lwm if applied.
 */

 /* Update the local lwm so it is sent to
 * server during next call.

Chapter 36
OCI XStream Functions

36-63

 */
 OCIXStreamOutProcessedLWMSet(lwm);
 if (some terminating_condition)
 break;
 }
 OCIXStreamOutDetach();
}

processlcr_cb (IN lcr, IN flag)
{
 /* Process the LCR just received */
 OCILCRHeaderGet(lcr);
 OCILCRRowColumnInfoGet(lcr);

 if (lcr is LOB_WRITE | LOB_TRIM | LOB_ERASE)
 OCILCRLobInfoGet(lcr);

 if (OCI_XSTREAM_MORE_ROW_DATA flag set)
 prepare_for_chunk_data;
 else
 process_end_of_row;
}

processchunk_cb (IN chunk, IN flag)
{
 process_chunk;

 if (OCI_XSTREAM_MORE_ROW_DATA flag not set)
 process_end_of_row;
}

Related Topics

• OCIXStreamOutChunkReceive()
Retrieves data of each LOB or LONG or XMLType column one chunk at a time.

• OCIXStreamOutLCRReceive()
Receives an LCR, including a procedure LCR, from an outbound stream.

• OCIXStreamInChunkSend()
Sends a chunk to the inbound server.

36.3.37 OCIXStreamOutProcessedLWMSet()
Updates the local copy of the processed low position.

Purpose

This function can be called anytime between OCIXStreamOutAttach() and
OCIXStreamOutDetach() calls. Clients using the callback mechanism to stream LCRs from the
server (see OCIXStreamOutLCRCallbackReceive()), can invoke this function while in the
callback procedures.

Syntax

sword OCIXStreamOutProcessedLWMSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *processed_low_position,
 ub2 processed_low_position_len,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-64

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

processed_low_position (IN)
The processed low position maintained at the client.

processed_low_position_len (IN)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

Comments

The processed low position denotes that all LCRs at or below it have been processed. After
successfully attaching to an XStream outbound server, a local copy of the processed low
position is maintained at the client. Periodically, this position is sent to the server so that
archived redo log files containing already processed transactions can be purged.

Return code: OCI_SUCCESS or OCI_ERROR.

Clients using XStreamOut functions must keep track of the processed low position based on
what they have processed and call this function whenever their processed low position has
changed. This is done so that a more current value is sent to the server during the next update,
which occurs at the beginning of the OCIXStreamOutLCRCallbackReceive() and
OCIXStreamDetach() calls. For an OCIXStreamOutLCRReceive() call, the processed low
position is sent to the server when it initiates a request to start the outbound stream. It is not
sent while the stream is in progress.

You can query the DBA_XSTREAM_OUTBOUND_PROGRESS view to confirm that the processed low
position has been saved in the server.

Related Topics

• OCIXStreamOutLCRCallbackReceive()
Used to get the LCR stream from the outbound server using callbacks.

36.3.38 OCIXStreamOutChunkReceive()
Retrieves data of each LOB or LONG or XMLType column one chunk at a time.

Purpose

Allows the client to retrieve the data of each LOB or LONG or XMLType column one chunk at a
time.

Syntax

sword OCIXStreamOutChunkReceive (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **column_name,
 ub2 *column_name_len,
 ub2 *column_dty,

Chapter 36
OCI XStream Functions

36-65

 oraub8 *column_flag,
 ub2 *column_csid,
 ub4 *chunk_bytes,
 ub1 **chunk_data,
 oraub8 *flag,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

column_name (OUT)
Name of the column that has data.

column_name_len (OUT)
Length of the column name.

column_dty (OUT)
Column chunk data type (either SQLT_CHR or SQLT_BIN).

column_flag (OUT)
Column flag. See Comments for valid flags.

column_csid (OUT)
Column character set ID. This is returned only for XMLType column, that is, column_flag has
OCI_LCR_COLUMN_XML_DATA bit set.

chunk_bytes (OUT)
Number of bytes in the returned chunk.

chunk_data (OUT)
Pointer to the chunk data in the LCR. The client must not deallocate this buffer since the LCR
and its contents are maintained by this function.

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then the current LCR has more chunks coming.

mode (IN)
Specify OCI_DEFAULT.

Comments

In XStream, LOB, LONG, or XMLType column data is broken up into multiple LCRs based on how
they are stored in the online redo log files. Thus, for a row change containing these columns
multiple LCRs may be constructed. The first LCR of a row change contains the column data for
all the scalar columns. All LOB or LONG or XMLType columns in the first LCR are set to NULL
because their data are sent in subsequent LCRs for that row change. These column data are
stored in the LCR as either RAW (SQLT_BIN) or VARCHAR2 (SQLT_CHR) chunks as shown in
Table 36-5.

Chapter 36
OCI XStream Functions

36-66

Table 36-5 Storage of LOB or LONG Data in the LCR

Source Column Data Type XStream LCR Data Type XStream LCR Character Set

BLOB RAW N/A

Fixed-width CLOB VARCHAR2 Client Character Set

Varying-width CLOB RAW AL16UTF16

NCLOB RAW AL16UTF16

XMLType RAW Column csid obtained from the chunk

In XStream, LOB, LONG, or XMLType column data is broken up into multiple chunks based on
how they are stored in the online redo log files. For a row change containing columns of these
data types, its associated LCR only contains data for the other scalar columns. All LOB, LONG,
or XMLType columns are either represented in the LCR as NULL or not included in the LCR. The
actual data for these columns are sent following each LCR as RAW (SQLT_BIN) or VARCHAR2
(SQLT_CHR) chunks as shown in Table 36-5.

The following LCR column flags can be combined using the bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */

#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

#define OCI_LCR_COLUMN_32K_DATA /* col contains 32K data */

#define OCI_LCR_COLUMN_OBJECT_DATA /* col contains object data in xml format */

Return code: OCI_ERROR or OCI_SUCCESS.

This call returns a NULL column name and NULL chunk data if it is invoked when the current
LCR does not contain the LOB, LONG, or XMLType columns. This function is valid only when an
OCIXStreamOutLCRReceive() call is in progress. An error is returned if it is called during other
times.

If the return flag from OCIXStreamOutLCRReceive() has OCI_XSTREAM_MORE_ROW_DATA bit set,
then you must iteratively call OCIXStreamOutChunkReceive() to retrieve all the chunks
belonging to that row change before getting the next row change (that is, before making the
next OCIXStreamOutLCRReceive() call); otherwise, an error is returned.

Here is sample pseudocode for non-callback mode:

main
{
 /* Attach to outbound server specifying last position */
 OCIXStreamOutAttach(last_pos);

 /* Update the local processed low position */

Chapter 36
OCI XStream Functions

36-67

 OCIXStreamOutProcessedLWMSet(lwm);

 while (TRUE)
 {
 status = OCIXStreamOutLCRReceive(lcr, flag, fwm);

 if (status == OCI_STILL_EXECUTING)
 {
 /* Process LCR just received */
 OCILCRHeaderGet(lcr);
 OCILCRRowColumnInfoGet(lcr);

 while (OCI_XSTREAM_MORE_ROW_DATA flag set)
 {
 OCIXStreamReceiveChunk(chunk, flag,);

 process_chunk;
 }
 process_end_of_row;
 }
 else if (status == OCI_SUCCESS)
 {
 /* Use fetch low position(fwm)
 * to update processed lwm if applied.
 */

 /* Update the local lwm so it is sent to
 * server during next call.
 */
 OCIXStreamOutProcessedLWMSet(lwm);

 if (some terminating_condition)
 break;
 }
 }
 OCIXStreamOutDetach();
}

36.3.39 OCIXStreamOutGetNextChunk()
While in the ProcessLCRStream() callback function, retrieves the next chunk in the current LCR
until all chunks are retrieved.

Purpose

While in the ProcessLCRStream() callback function, the client must repeatedly call
OCIXStreamOutGetNextChunk() to retrieve all the chunks in the current LCR (that is, until either
OCI_ERROR or OCI_SUCCESS is returned). If this is not done, an error will be raised when the
callback function ends.

Syntax

sword OCIXStreamOutGetNextChunk (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **column_name,
 ub2 *column_name_len,
 ub2 *column_dty,
 oraub8 *column_flag,
 ub4 *rtn_bytes,
 ub1 **bufp,
 ub4 *op_offset,

Chapter 36
OCI XStream Functions

36-68

 ub4 *op_size,
 ub4 mode);

Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the event of an
error.

column_name (OUT)
Name of LOB column which the data belongs to.

column_name_len (OUT)
Length of column name.

column_dty (OUT)
Column data type (either SQLT_CHR or SQLT_BIN).

column_flag (OUT)
Column flag. Valid values are listed in Comments.

rtn_bytes (OUT)
Number of bytes in returned buffer.

bufp (OUT)
Pointer to the LOB chunk data in the LCR. The client should not de-allocate this buffer since
the LCR and its contents are maintained by the function.

op_offset (OUT)
LOB operation offset. Optional. Data is not returned if the argument is NULL. Relevant only for
LOB_WRITE and LOB_TRIM operation; otherwise, a zero is returned.

op_size (OUT)
LOB operation size. Optional. Data not returned if the argument is NULL. Relevant only for
LOB_TRIM and LOB_ERASE operation; otherwise, a zero is returned.

mode (IN)
Specify OCI_DEFAULT for now.

Comments

The OCIEnv environment handle must be created with OCI_OBJECT mode, and the service
context must be in connected state to issue this function.

In streams, LOB or LONG column data is broken up into multiple LCRs based on how they are
stored in the redo logs. Thus, for a row change containing Re LONG columns, multiple LCRs
can be constructed. The first LCR of a row change contains the column data for all the scalar
columns. All LOB or LONG columns in the first LCR are set to NULL since their data are sent in
subsequent LCRs for that row change. LONG column data is implicitly converted to LOB before
the data is sent to the client. LOB or LONG data is stored in the LCR as RAW (SQLT_BIN) or
VARCHAR2 (SQLT_CHR) as shown in Table 36-5:

The OCIXStreamOutProcessLCRStream() function allows the client to retrieve the data of each
LOB or LONG column one chunk at a time. All the chunks belonging to one column are
returned in a contiguous order. Chunk data from one column is returned entirely before

Chapter 36
OCI XStream Functions

36-69

switching to the next column. There is no fixed ordering on how the columns are returned. The
client should not rely on the ordering of LOB columns but rely on the returned column names.

Invoking OCIXStreamOutGetNextChunk() when the current LCR contains only scalar columns
results in a NULL column name, and no data is returned.

The returned column flag provides more information on each chunk data. For example, the flag
OCI_LCR_COLUMN_LAST_CHUNK is always returned on the last chunk of each column:

The following flags can specify a column property. Multiples of these flags can be combined
using the bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains lob data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty lob */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_OSON_DOC /* column contains a JSON document in OSON format */

During an OCIXStreamOutProcessLCRStream() call, the client provides a callback function that
will be invoked each time an LCR is retrieved. For an LCR containing LOB or LONG columns,
the first LCR of a row change is passed to this callback function. From within this callback
function, the client can repeatedly call OCIXStreamOutGetNextChunk() to retrieve all the chunks
for each LOB or LONG column. When this function returns OCI_SUCCESS, it means the client has
consumed all the data for the current row change.

While in the ProcessLCRStream callback function the client must repeatedly call
OCIXStreamOutGetNextChunk() to retrieve all the chunks in the current LCR (that is, until either
OCI_ERROR or OCI_SUCCESS is returned). If this is not done, an error is raised when the callback
function ends.

This function is valid only during the duration that the ProcessLCRStream callback function is
invoked. An error is raised if it is called during other times.

This function returns the following values:

• OCI_SUCCESS means that all the data for the current LCR has been retrieved. You can
check the returned column and buffer information to access the returned column data.

• OCI_NEED_DATA means there is more data in the stream for the current LCR. You can check
the returned column and buffer information to access the returned column data.

• OCI_ERROR means there is an error. You can use OCIErrorGet() to get the error code.

Following is a sample client code snippet (error checking is not included for simplicity):

main()
{
...
OCIServerAttach(...); /* Connect to Oracle db */
/* Attach to the outbound server named ‘TT1' */
OCIXStreamOutAttach(...,“TT1", 3, hwm, hwm_len, (OCIDate *)0, OCI_DEFAULT);
/*--
Initialize the LWM by querying the client's system tables
or set to zero and let the outbound server determines the LWM.
--*/
Init_lwm(&lwm);
/*---

Chapter 36
OCI XStream Functions

36-70

ProcessLCR_CB is a callback function to process each LCR (see below).
usrctxp is the user context to be passed to the callback function.
--*/
while (OCIXStreamOutProcessLCRStream(..., lwm, lwm_len,(OCIDate *)0,
 ProcessLCR_CB, usrctxp, 0, OCI_DEFAULT) == OCI_SUCCESS)
{
/* Client maintains LWM. */
Maintain_lwm(&lwm);
...
}
/* detach from the outbound server */
OCIXStreamOutDetach(..., lwm, lwm_len, (OCIDate *)0, OCI_DEFAULT);
}
/* Sample callback routine to OCIXStreamOutProcessLCRStream() */
sb4 ProcessLCR_CB (void *ctxp, void *lcrp, ub1 lcrtyp)
{
/* Get header information for current LCR */
status = OCILCRGetHeader(lcrp,...);
if (status != OCI_SUCCESS)
 handle_error();
if (lcrtype == OCI_LCR_XROW)
 {
 if (OCILcrRowGetColumnInfo(lcrp, ...) != OCI_SUCCESS)
 handle_error();
 process_scalar_columns(...);
 do
 {
 status = OCIXStreamOutGetNextChunk(..., &colname, &colnamelen,
 &coldty, &flag, &rtn_bytes,
 bufp, ...);
 if (status == OCI_ERROR)
 handle_error();
 process_lob_chunk(...);
 } while (status == OCI_NEED_DATA);
 if (status == OCI_ERROR)
 handle_error();
 }
return OCI_CONTINUE;
}

36.3.40 OCIXStreamOutSessionSet()
Sets session attributes for XStream Out functions.

Purpose

Sets session attributes for XStream Out functions.

Syntax

sword OCIXStreamOutSessionSet(OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *attribute_name,
 ub2 attribute_name_len,
 void *attribute_value,
 ub2 attribute_value_len,
 ub2 attribute_dty,
 ub4 mode);

Chapter 36
OCI XStream Functions

36-71

Parameters

svchp (IN)
Service handle context.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of an error.

attribute_name (IN)
An attribute name.
Valid values for attribute_name are:

#define OCIXSTREAM_ATTR_ATTACH_TIMEOUT "ATTACH_TIMEOUT_SECS"
#define OCIXSTREAM_ATTR_MAX_ATTACH_RETRIES "MAX_ATTACH_RETRIES"

attribute_name_len (IN)
An attribute name length.
The maximum value for attribute_name_len is OCIXSTREAM_SESSION_SET_MAX_PARAM_LEN:

#define OCIXSTREAM_SESSION_SET_MAX_PARAM_LEN 128

attribute_value (IN)
The attribute value.

attribute_value_len (IN)
The attribute value length.
The maximum value for attribute_value_len is 128.

attribute_dty (IN)
Pointer to an array of attribute data types. The only valid value for attribute_dty is DTYUB2.
An error is returned if you try a data type other than DTYUB2 for ATTACH_TIMEOUT_SECS and
MAX_ATTACH_RETRIES.

mode (IN)
Specify OCI_DEFAULT.

Comments

You must invoke OCIXStreamOutSessionSet() before calling OCIXStreamOutAttach().

Returns

OCI_SUCCESS if successful, otherwise OCI_ERROR.

Chapter 36
OCI XStream Functions

36-72

37
OCI Json Descriptor Functions

This chapter describes the OCIJson Descriptor functions.

This chapter contains these topics:

• Functions for Writing to a JSON Descriptor

• Functions for Reading from a JSON Descriptor

• Functions for Writing to a JSON Descriptor
Lists functions for writing to a JSON descriptor described in this chapter.

• Functions for Reading from a JSON Descriptor
Lists functions for reading from a JSON descriptor .

37.1 Functions for Writing to a JSON Descriptor
Lists functions for writing to a JSON descriptor described in this chapter.

Function Purpose

OCIJsonDomDocSet Deep-copies the JSON DOM Document container
and sets the new JSON DOM document in the
descriptor.

OCIJsonTextBufferParse Parses a JSON text buffer of fixed size in the
descriptor and manifests the binary image in a form
specified by the mode.

OCIJsonTextStreamParse Parses a JSON read orastream of fixed size in the
descriptor and manifests the binary image in a form
specified by the mode.

OCIJsonBinaryBufferLoad Loads a binary image (encoded JSON) from a
buffer into the descriptor.

OCIJsonBinaryStreamLoad Loads a binary image (encoded JSON) from a
stream into the descriptor.

OCIJsonClone Clones the descriptor. Can be used to deep copy a
JSON descriptor from one image form to the other.

• OCIJsonDomDocSet ()
Deep-copies the JSON DOM Document container and sets the new JSON DOM document
in the descriptor.

• OCIJsonTextBufferParse ()
Parses a JSON text buffer of fixed size and writes to the descriptor.

• OCIJsonTextStreamParse ()
Parses textual JSON from a read orastream and writes to the descriptor.

• OCIJsonBinaryBufferLoad ()
Loads a binary image (encoded JSON) from a buffer into the descriptor.

• OCIJsonBinaryStreamLoad ()
Loads a binary image (encoded JSON) from a stream into the descriptor.

37-1

• OCIJsonClone ()
Clones the descriptor and its associated JSON content.

37.1.1 OCIJsonDomDocSet ()
Deep-copies the JSON DOM Document container and sets the new JSON DOM document in
the descriptor.

Purpose

Deep-copies the JSON DOM Document container and sets the new JSON DOM document in
the descriptor.

Syntax

sword OCIJsonDomDocSet (
 void *hndlp,
 OCIJson *jsond,
 JsonDomDoc *jDomDoc,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

hndlp IN An allocated OCI Service Context
handle or working OCI
Environment handle.

jsond IN/OUT An allocated OCI JSON
descriptor.

jDomDoc OUT JSON DOM document container.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet() function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the document is set successfully.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• The properties of the source JSON DOM document are preserved in the descriptor. It is
the responsibility of the user to free the DOM document pointer that is supplied as the
input.

Chapter 37
Functions for Writing to a JSON Descriptor

37-2

• A subsequent read function can be called on this descriptor, only if the write operation
succeeded without errors. The descriptor is not restored to its previous state if the
operation failed.

• If the supplied handle is OCI service context handle, then the function serializes the calls
on that handle.

37.1.2 OCIJsonTextBufferParse ()
Parses a JSON text buffer of fixed size and writes to the descriptor.

Purpose

To parse a JSON text buffer of fixed size and write to the descriptor.

Syntax

sword OCIJsonTextBufferParse (
 void *hndlp,
 OCIJson *jsond,
 void *bufp,
 oraub8 buf_sz,
 ub4 validation,
 ub2 encoding,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

hndlp IN An allocated OCI Service Context
handle or working OCI
Environment handle.

bufp IN Pointer to the input buffer.

buf_sz IN Size of the input buffer, in bytes.

validation IN Parser validation mode. For more
information, refer to "JSON
Validation Constants" section in
"XML C API Reference" guide.

encoding IN Textual character set encoding of
JSON. For more information,
refer to "JSON Encoding
Constants" section in "XML C API
Reference" guide.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet() function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Chapter 37
Functions for Writing to a JSON Descriptor

37-3

Returns

• OCI_SUCCESS, if the buffer contained a valid JSON content.

• OCI_SUCCESS_WITH_INFO, if input textual JSON is NULL.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• Each time a write function is called on a descriptor, any pre-existing populated DOM
container is freed automatically.

• A subsequent read function can be called on this descriptor only if this write function
succeeded without errors.

• If the supplied handle is OCI service context handle, then the function serializes the calls
on that handle.

See Also:

• JSON Validation Constants

• JSON Encoding Constants

37.1.3 OCIJsonTextStreamParse ()
Parses textual JSON from a read orastream and writes to the descriptor.

Purpose

To parses textual JSON from a read orastream and write to the descriptor.

Syntax

sword OCIJsonTextStreamParse (
 void *hndlp,
 OCIJson *jsond,
 orastream *r_stream,
 ub4 validation,
 ub2 encoding,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

hndlp IN An allocated OCI Service Context
handle or working OCI
Environment handle.

Chapter 37
Functions for Writing to a JSON Descriptor

37-4

Parameter Mode Description

jsond IN/OUT An allocated OCI JSON
descriptor.

r_stream IN Pointer to the orastream (read
stream) input. For more
information, refer to "Package
orastream for C APIs" section in
"XML C API Reference" guide.

validation IN Parser validation mode. For more
information, refer to "JSON
Validation Constants" section in
"XML C API Reference" guide.

encoding IN Textual character set encoding of
JSON. For more information,
refer to "JSON Encoding
Constants" section in "XML C API
Reference" guide.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet() function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the read stream contains a valid JSON.

• OCI_SUCCESS_WITH_INFO, if input textual JSON is NULL.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• Each time a parse function is called on a descriptor, any pre-existing populated DOM tree
is freed automatically.

• A subsequent read function can be called on this descriptor only if this write function
succeeded without errors.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
user to close it.

• If the supplied handle is OCI service context handle, then the function serializes the calls
on that handle.

Chapter 37
Functions for Writing to a JSON Descriptor

37-5

See Also:

• Package orastream for C APIs

• JSON Validation Constants

• JSON Encoding Constants

37.1.4 OCIJsonBinaryBufferLoad ()
Loads a binary image (encoded JSON) from a buffer into the descriptor.

Purpose

To load a binary image (encoded JSON) from a buffer into the descriptor.

sword OCIJsonBinaryBufferLoad (
 void *hndlp,
 OCIJson *jsond,
 ub1 *bufp,
 oraub8 buf_sz,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

hndlp IN An allocated OCI Service Context
handle or working OCI
Environment handle.

jsond IN/OUT An allocated OCI JSON
descriptor.

bufp IN Pointer to the input buffer.

buf_sz IN Size of the input buffer, in bytes.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the buffer contained a valid JSON content.

• OCI_SUCCESS_WITH_INFO, if input textual JSON is NULL.

Chapter 37
Functions for Writing to a JSON Descriptor

37-6

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• Each time a write function is called on a descriptor, any pre-existing populated DOM
container is freed automatically.

• A subsequent read function can be called on this descriptor only if this write function
succeeded without errors.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
user to close it.

• If the supplied handle is OCI service context handle, then the function serializes the calls
on that handle.

37.1.5 OCIJsonBinaryStreamLoad ()
Loads a binary image (encoded JSON) from a stream into the descriptor.

Purpose

To load a binary image (encoded JSON) from a stream into the descriptor.

Syntax

sword OCIJsonBinaryStreamLoad (
 void *hndlp,
 OCIJson *jsond,
 orastream *r_stream,
 oraub8 buf_sz,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

hndlp IN An allocated OCI Service Context
handle or working OCI
Environment handle.

jsond IN/OUT An allocated OCI JSON
descriptor.

r_stream IN Pointer to the orastream (read
stream) input. For more
information, refer to "Package
orastream for C APIs" section in
"XML C API Reference" guide.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

Chapter 37
Functions for Writing to a JSON Descriptor

37-7

Parameter Mode Description

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the read stream contained a valid JSON.

• OCI_SUCCESS_WITH_INFO, if input textual JSON is NULL.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• Each time a write function is called on a descriptor, any pre-existing populated DOM
container is freed automatically.

• A subsequent read function can be called on this descriptor only if this write function
succeeded without errors.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
user to close it.

• If the supplied handle is OCI Service context handle, then the function serializes the calls
on that handle.

See Also:

Package orastream for C APIs

37.1.6 OCIJsonClone ()
Clones the descriptor and its associated JSON content.

Purpose

To clone the descriptor and its associated JSON content.

sword OCIJsonClone (
 OCISvcCtx *svchp,
 OCIJson *src_jsond,
 OCIJson *dest_jsond,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

Chapter 37
Functions for Writing to a JSON Descriptor

37-8

Parameter Mode Description

src_jsond IN A valid source JSON Document
descriptor.

dest_jsond IN/OUT Destination locator, allocated and
data copied from the source.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the document was cloned successfully.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• Can be used to deep copy a JSON descriptor from source to destination, altering the
image form to the other.

• Each time a write function is called on a descriptor, any pre-existing populated DOM
container is freed automatically.

• A subsequent read function can be called on this descriptor only if this write function
succeeded without errors.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
user to close it.

• The function serializes the calls on the provided service context handle.

37.2 Functions for Reading from a JSON Descriptor
Lists functions for reading from a JSON descriptor .

Function Purpose

OCIJsonDomDocGet Returns the DOM Document container from a
descriptor and manifests the binary image in a form
specified by the mode.

OCIJsonToTextBuffer Returns the textual string representation of the
JSON content in the descriptor. The textual string is
written to the buffer of the user.

OCIJsonToTextStream Returns the textual string representation of the
JSON content in the descriptor. The textual string is
written to the write stream of the user.

OCIJsonToBinaryBuffer Returns the binary image bytes from a JSON
document descriptor into the buffer of the user.

Chapter 37
Functions for Reading from a JSON Descriptor

37-9

Function Purpose

OCIJsonToBinaryStream Returns the binary image bytes from a JSON
document descriptor into the write-stream of the
user.

OCIJsonBinaryLengthGet Returns the size of the binary representation of
JSON in bytes.

• OCIJsonDomDocGet ()
Returns the DOM Document container from a descriptor similar to the form set in the
descriptor.

• OCIJsonToTextBuffer ()
Returns the textual string representation of the JSON content in the descriptor. The textual
string is written to the buffer of the user.

• OCIJsonToTextStream ()
Returns the textual string representation of the JSON content in the descriptor. The textual
string is written to the write stream of the user.

• OCIJsonToBinaryBuffer ()
Returns the binary image bytes in a JSON document descriptor into the buffer of the user.

• OCIJsonToBinaryStream ()
Returns the binary image bytes in a JSON document descriptor into the writestream of the
user.

• OCIJsonBinaryLengthGet ()
Returns the size of the binary representation of JSON in bytes.

37.2.1 OCIJsonDomDocGet ()
Returns the DOM Document container from a descriptor similar to the form set in the
descriptor.

Purpose

To get the DOM document container from a descriptor similar to the form set in the descriptor.

sword OCIJsonDomDocGet (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 JsonDomDoc **jDomDoc,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN An allocated OCI JSON
descriptor.

Chapter 37
Functions for Reading from a JSON Descriptor

37-10

Parameter Mode Description

jDomDoc OUT JSON DOM document container
pointed to by the JSON
descriptor.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet() function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the document is successfully returned.

• OCI_SUCCESS_WITH_INFO, if the OCIJson descriptor was empty.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• By default, the function returns a document container (JsonDomDoc *) in the mode
specified earlier. If it was never specified earlier, the function returns an immutable DOM.

• The JSON DOM container returned by this function is bound to the descriptor and should
not be explicitly freed by the user. It is automatically freed when the JSON descriptor is
freed.

• The function serializes the calls on the provided service context handle.

37.2.2 OCIJsonToTextBuffer ()
Returns the textual string representation of the JSON content in the descriptor. The textual
string is written to the buffer of the user.

Purpose

To return the textual string representation of the JSON content in the descriptor.

sword OCIJsonToTextBuffer (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 oratext *bufp,
 oraub8 *byte_amtp,
 ub4 wflags,
 OCIError *errhp,
 ub4 mode
);

Chapter 37
Functions for Reading from a JSON Descriptor

37-11

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN An allocated OCI JSON
descriptor.

bufp IN/OUT The pointer to a buffer into which
the textual JSON is read. The
length of the allocated memory is
assumed to be byte_amtp.

byte_amtp IN/OUT • IN - The input size of the
linear buffer.

• OUT - The number of bytes
read into the user buffer.

wflags IN Writer flags for output textual
JSON. For more information,
refer to "JSON Printing
Constants" section in "XML C API
Reference" guide

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ().

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

OCI_SUCCESS, if the textual string was written to the steam successfully.

OCI_SUCCESS_WITH_INFO, if the OCIJson descriptor is empty.

OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary error
information.

Usage Notes

• An error is returned if the input buffer it not big enough to accommodate the textual JSON.
In such a case, the user can use the streaming interface or provide a bigger buffer.

• The textual JSON returned is in AL32UTF8 character set.

• The function serializes the calls on the provided service context handle.

See Also:

JSON Printing Constants

Chapter 37
Functions for Reading from a JSON Descriptor

37-12

37.2.3 OCIJsonToTextStream ()
Returns the textual string representation of the JSON content in the descriptor. The textual
string is written to the write stream of the user.

Purpose

To return the textual string representation of the JSON content in the descriptor.

sword OCIJsonToTextStream (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 orastream *w_stream,
 oraub8 *byte_amtp,
 ub4 wflags,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN An allocated OCI JSON
descriptor.

w_stream IN Pointer to the orastream (write
stream) input. For more
information, refer to "Package
orastream for C APIs" section in
"XML C API Reference" guide.

byte_amtp OUT Total number of bytes
corresponding the textual JSON
written to the stream.

wflags IN Writer flags for output textual
JSON. For more information,
refer to "JSON Printing
Constants" section in "XML C API
Reference" guide.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the textual string was written to the steam successfully.

Chapter 37
Functions for Reading from a JSON Descriptor

37-13

• OCI_SUCCESS_WITH_INFO, if the OCIJson descriptor is empty.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• The textual JSON returned will be in AL32UTF8 character set.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
user to close it.

• The function serializes the calls on the provided service context handle.

See Also:

• Package orastream for C APIs

• JSON Printing Constants

37.2.4 OCIJsonToBinaryBuffer ()
Returns the binary image bytes in a JSON document descriptor into the buffer of the user.

Purpose

To the binary image bytes in a JSON document descriptor into the buffer of the user.

Syntax

sword OCIJsonToBinaryBuffer (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 ub1 *bufp,
 oraub8 *byte_amtp
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN A valid JSON Document
descriptor.

bufp IN/OUT The pointer to a buffer into which
the textual JSON is read. The
length of the allocated memory is
assumed to be byte_amtp.

Chapter 37
Functions for Reading from a JSON Descriptor

37-14

Parameter Mode Description

byte_amtp IN/OUT • IN - The input size of the
linear buffer.

• OUT - The number of bytes
read into the user buffer.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the document image was read successfully.

• OCI_SUCCESS_WITH_INFO, if the OCIJson descriptor was empty.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• An error occurs if the input size buffer is not big enough to accommodate the binary image
size. In that case, the user might use a streaming interface, or find the actual image size
using OCIJsonBinaryLengthGet ()

• If the JSON descriptor holds a mutable DOM, then this function returns the bytes
corresponding to the linear binary representation.

• The function serializes the calls on the service context handle.

37.2.5 OCIJsonToBinaryStream ()
Returns the binary image bytes in a JSON document descriptor into the writestream of the
user.

Purpose

To get the binary image bytes in a JSON document descriptor into the writestream of the user.

Syntax

sword OCIJsonToBinaryStream (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 orastream *w_stream,
 oraub8 *byte_amtp,
 OCIError *errhp,
 ub4 mode
);

Chapter 37
Functions for Reading from a JSON Descriptor

37-15

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN An allocated OCI JSON
descriptor.

w_stream IN Pointer to the orastream (write
stream) input. For more
information, refer to "Package
orastream for C APIs" section in
"XML C API Reference" guide.

byte_amtp OUT Total number of bytes
corresponding to the textual
JSON.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the textual string is written to the stream successfully.

• OCI_SUCCESS_WITH_INFO, if the OCIJson descriptor was empty

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• If the binary image in the JSON descriptor is in the form of a DOM tree, this function writes
the bytes corresponding to the linear representation.

• If the input read stream is not open, it is opened automatically. It is the responsibility of the
to close it.

• The function serializes the calls on the service context handle.

See Also:

Package orastream for C APIs

Chapter 37
Functions for Reading from a JSON Descriptor

37-16

37.2.6 OCIJsonBinaryLengthGet ()
Returns the size of the binary representation of JSON in bytes.

Purpose

To get the size of the binary representation of JSON in bytes.

Syntax

sword OCIJsonBinaryLengthGet (
 OCISvcCtx *svchp,
 OCIJson *jsond,
 oraub8 *byte_amtp,
 OCIError *errhp,
 ub4 mode
);

Parameters

Parameter Mode Description

svchp IN An allocated OCI Service Context
handle.

jsond IN A valid JSON Document
descriptor.

byte_amtp OUT The number of bytes in the JSON
image.

errhp IN/OUT An allocated OCI error handle. If
there is an error, it is recorded in
err parameter and this function
returns OCI_ERROR. Diagnostic
information can be obtained by
calling OCIErrorGet ()
function.

mode IN Specifies the mode of execution.
• OCI_DEFAULT — Is the

default mode.

Returns

• OCI_SUCCESS, if the length of the document image was read successfully.

• OCI_ERROR, in case of an error during execution. OCIError parameter has the necessary
error information.

Usage Notes

• If the binary image in the JSON descriptor is in the form of a DOM tree, this function writes
the bytes corresponding to the linear representation.

• The function serializes the calls on the service context handle

Chapter 37
Functions for Reading from a JSON Descriptor

37-17

38
Support for Vector Data Type in OCI

This section describes the OCI (Oracle Call Interface) API enhancements to fetch and modify
the vector column values. It lists the different C data types that can be used for binding or
defining of the vector columns. It also provides details to access the vector metadata.

Topics:

• OCIVector Descriptor

• Attributes of OCIVector Descriptor

• External VECTOR Data Type and OCI

• Bind or Define Support for VECTOR SQL Data Type

• Binding and Defining OCIVector *

• OCI Vector Support Functions

• OCIDescribeAny Enhancements

• Example Code Snippets for Vectors

• OCIVector Descriptor
This section describes how the OCIVector descriptor is used to represent a VECTOR in
OCI (Oracle Call Interface).

• Attributes of OCIVector Descriptor
This section describes the attributes of OCIVector descriptor.

• External VECTOR Data Type and OCI
This section introduces the Oracle Call Interface(OCI) data type constant for the SQL data
type VECTOR. VECTOR is an Oracle Database recognized datatype.

• Bind or Define Support for VECTOR SQL Data Type

• OCI Vector Support Functions
OCI vector support functions are provided for converting native C array to or from the
OCIVector descriptor. Additionally, char, nchar, varchar2, nvarchar2, CLOB, and NCLOB
external data types can be used in binding or defining of the vector columns.

• Binding and Defining OCIVector *

• OCIDescribeAny Enhancements
This section describes the enhancements included in OCIDescribeAny to provide support
for describe on tables or views with the new VECTOR column type.

• Example Code Snippets for Vectors

38.1 OCIVector Descriptor
This section describes how the OCIVector descriptor is used to represent a VECTOR in OCI
(Oracle Call Interface).

OCIVector descriptor is identified by the descriptor type OCI_DTYPE_VECTOR. The OCIVector
descriptor can be allocated and freed using OCIDescriptorAlloc() and OCIDescriptorFree()

38-1

functions respectively. An instance of OCIVector descriptor can be used to read
(OCIDefine*()) and write (OCIBind*()) VECTOR content from or to the server. The
OCIVectorFromText or OCIVectorFromArray function can also be used to populate the vector
descriptor. The vector data present in the OCIVector descriptor can be fetched using the
OCIVectorToText or OCIVectorToArray function.

OCI Descriptor Description OCI Descriptor Type Constant

OCIVector * VECTOR descriptor OCI_DTYPE_VECTOR

See Also:

Binding and Defining OCIVector *

38.2 Attributes of OCIVector Descriptor
This section describes the attributes of OCIVector descriptor.

OCI_ATTR_VECTOR_DATA_FORMAT

Mode
read-only

Description
This attribute refers to the format in which each dimension of the vector is stored.
The following input formats are supported:

• IEEE FLOAT16
• IEEE FLOAT32
• IEEE FLOAT64
• INT8
The following are the corresponding values of the attribute:

• VECTOR_FORMAT_FLOAT16 (1)
• VECTOR_FORMAT_FLOAT32 (2)
• VECTOR_FORMAT_FLOAT64 (3)
• VECTOR_FORMAT_INT8 (4)

Attribute Data Type
ub1

OCI_ATTR_VECTOR_DIMENSION

Mode
read-only

Description
Dimension of the vector.

Chapter 38
Attributes of OCIVector Descriptor

38-2

Attribute Data Type
ub4

OCI_ATTR_VECTOR_PROPERTY

Mode
read-only

Description
Additional details of the vector. 0x01 bit value represents
OCI_ATTR_VECTOR_COL_PROPERTY_IS_FLEX flag to check if the vector has the flexible
dimensions.

Attribute Data Type
ub4

OCI_ATTR_VECTOR_CHARSET_ID

Mode
read-only

Description
Identity of the character set.

Attribute Data Type
ub2

OCI_ATTR_VECTOR_ERROR_POSITION

Mode
read-only

Description
Position of the error in the input vector data.

Attribute Data Type
ub4

38.3 External VECTOR Data Type and OCI
This section introduces the Oracle Call Interface(OCI) data type constant for the SQL data type
VECTOR. VECTOR is an Oracle Database recognized datatype.

Starting with Oracle Database Release 23ai, the OCI drivers provide support for the VECTOR
data type. In OCI, VECTOR data type is represented using the constant SQLT_VEC. In other
words, a client can write (OCI defines) and read (OCI binds) the VECTOR descriptors using
SQLT_VEC as the data type constant.

See Also:

• Example Code Snippets for Vectors

• Overview of Oracle AI Vector Search

Chapter 38
External VECTOR Data Type and OCI

38-3

External Data type Program Variable SQL Type Constant

VECTOR OCIVector* SQLT_VEC

See Also:

External Data Types

38.4 Bind or Define Support for VECTOR SQL Data Type
To support bind or define for the VECTOR data type, OCI enables the external data type
constant SQLT_VEC (OCIVector*) to set the native representation of the array of double, or float
or integers using OCIVectorFromArray for binding purpose. The OCIVector descriptor has the
canonical representation during define. User can get an array of native representation using
OCIVectorToArray function.

See Also:

Example Code Snippets for Vectors

Oracle database enables implicit conversion from char, nchar, varchar2, nvarchar2, CLOB and
NCLOB to VECTOR data type and vice-versa. Therefore, users can make use of these external
data types. Oracle Database takes care of the implicit conversions for binds and the client
takes care of implicit conversions for defines. For older clients that cannot specify VECTOR as
a bind or define type, the only bind or define type supported is the string type bind or define
that corresponds to char, char varchar2, nvarchar2, CLOB, and NCLOB.

The describe Information for tables with vector column type is exposed through
OCIDescribeAny().

A new external type SQLT_VEC has been introduced for PL/SQL out binds. This external data
type is overloaded to do bind or define for the columns of the VECTOR data type.

See Also:

About Using OCIDescribeAny()

38.5 OCI Vector Support Functions
OCI vector support functions are provided for converting native C array to or from the
OCIVector descriptor. Additionally, char, nchar, varchar2, nvarchar2, CLOB, and NCLOB
external data types can be used in binding or defining of the vector columns.

Chapter 38
Bind or Define Support for VECTOR SQL Data Type

38-4

Table 38-1 OCI Vector Support Functions

Function Purpose

OCIVectorFromText Converts a text representation of a vector to the
vector format.

OCIVectorFromArray Converts an array representation of a vector to the
vector format.

OCIVectorToText Converts a vector to the text format.

OCIVectorToArray Converts a vector to an array format.

• OCIVectorFromText
Converts a text representation of a vector to the vector format.

• OCIVectorFromArray
Converts an array representation of a vector to the vector format.

• OCIVectorToText
Converts a vector to the text format.

• OCIVectorToArray
Converts a vector to an array format.

38.5.1 OCIVectorFromText
Converts a text representation of a vector to the vector format.

Purpose

To convert a text representation of a vector to the vector format. It takes an
OCIVectorDescriptor, error handle, vector format, vector text, text length, and various vector
flags to convert the input text to a vector stored in the descriptor.

Syntax

sword OCIVectorFromText(OCIVector *vectord, OCIError *errhp, ub1 vformat, ub4
vdim
 const OraText *vtext, ub4 vtextlen, ub4 mode);

Parameters

Parameters Purpose

OCIVector *vectord (IN/OUT) Specifies the OCIVector descriptor associated
with the Vector. Stores the vector representation of
the input text.

OCIError *errhp Specifies the error handle passed into handle
errors associated with the conversions.

ub1 vformat Specifies the format of the elements present in the
text (OCI_ATTR_VECTOR_FORMAT_* values).

ub4 vdim Specifies the number of dimensions in the vector
text.

const OraText * vtext Specifies the input text to be converted to Vector.

ub4 vtextlen Specifies the length of input text.

Chapter 38
OCI Vector Support Functions

38-5

Parameters Purpose

ub4 mode Specifies the flags that can be useful in future.
Currently default flag is OCI_DEFAULT.

Returns

OCI_SUCCESS, if it runs successfully.

OCI_ERROR, if an error is returned.

38.5.2 OCIVectorFromArray
Converts an array representation of a vector to the vector format.

Purpose

OCIVectorFromArray function takes OCIVectorDescriptor, error handle, vector format, vector
dimension, vector array and various other vector flags to convert the input array to a vector
stored in the descriptor.

Syntax

sword OCIVectorFromArray(OCIVector *vectord, OCIError *errhp, ub1 vformat,
 ub4 vdim, void *vecarray, ub4 mode);

Table 38-2 Parameters

Parameters Purpose

OCIVector *vectord (IN/OUT) Specifies the OCIVector descriptor that stores the
vector representation of the input text.

OCIError *errhp Specifies the error handle being passed into the
handle errors associated with the conversions.

ub1 vformat Specifies the format of the elements present in the
array (OCI_ATTR_VECTOR_FORMAT_* values).
Uses the value as follows:
• OCI_ATTR_VECTOR_FORMAT_FLEX 0
• OCI_ATTR_VECTOR_FORMAT_FLOAT16 1
• OCI_ATTR_VECTOR_FORMAT_FLOAT32 2
• OCI_ATTR_VECTOR_FORMAT_FLOAT64 3
• OCI_ATTR_VECTOR_FORMAT_INT8 4

ub4 vdim Specifies the number of elements in the array.

void *vecarray Specifies the array to be converted to Vector.

ub4 mode Specifies the flags that can be useful in the future.
Currently default flag is OCI_DEFAULT.

Returns
OCI_SUCCESS, if it runs successfully.

OCI_ERROR, if an error is returned.

Chapter 38
OCI Vector Support Functions

38-6

38.5.3 OCIVectorToText
Converts a vector to the text format.

Purpose

OCIVectorToText function takes OCIVectorDescriptor, error handle, text pointer, text len
pointer, and various other vector flags to convert the vector stored in the descriptor to text
format.

Syntax

sword OCIVectorToText(OCIVector *vectord, OCIError *errhp, text *vtext,
 ub4 *vtextlen, ub4 mode);

Table 38-3 Parameters

Parameter Purpose

OCIVector *vectord Specifies OCIVector descriptor that stores the
Vector representation of the data.

OCIError *errhp Specifies the error handle being passed into the
handle errors associated with the conversions.

OraText *vtext Specifies the pointer to the buffer used for text
representation of the Vector. The caller of this
function must allocate this memory.

Chapter 38
OCI Vector Support Functions

38-7

Table 38-3 (Cont.) Parameters

Parameter Purpose

ub4 *vtextlen Specifies the pointer to the length of the text buffer
that is passed to the function

Note:

If the buffer size is
small, then an error
51810 is returned
and the data is
truncated.

Note:

Error: 51810,
"Insufficient buffer
size for VECTOR to
CHAR or VARCHAR
conversion."
The preceding error
message is returned
as the VECTOR
column cannot be
converted to the
specified CHAR or
VARCHAR format due
to insufficient buffer
size.

To resolve this,
ensure that the
specified CHAR or
VARCHAR buffer size
is sufficient for storing
the converted
VECTOR column
value. Function
LENGTH(FROM_VECT
OR(<vector>)) is
used to determine the
appropriate buffer
size.

ub4 mode Specifies the flags that can be useful in the future.
Currently default flag is OCI_DEFAULT.

Returns

• OCI_SUCCESS, if it runs successfully.

• OCI_ERROR, if an error is returned. OCI_ERROR is returned if the input buffer does not have
enough allocated memory to hold the vector.

Chapter 38
OCI Vector Support Functions

38-8

38.5.4 OCIVectorToArray
Converts a vector to an array format.

Purpose

OCIVectorToArray function takes OCIVectorDescriptor, error handle, vector format, pointer to
vector dimension, pointer to array, and various other vector flags to convert the vector stored in
the descriptor to an array format.

Syntax

sword OCIVectorToArray(OCIVector *vectord, OCIError *errhp, ub1 vformat,
 ub4 *vdim, void *vecarray, ub4 mode);

Table 38-4 Parameters

Parameter Purpose

OCIVector *vectord Specifies the OCIVector descriptor that stores the
Vector representation of the data.

OCIError *errhp Specifie the error handle being passed into the
handle errors associated with the conversions.

ub1 vformat Specifies the format of the vector stored in
descriptor (OCI_ATTR_VECTOR_FORMAT_* values).

ub4 *vdim Specifies the pointer to the number of dimensions
in the array buffer, output value is the actual
number of dimensions in the vector.

void *vecarray Specifies the pointer to the Vector array. The caller
of this function must allocate this memory to
accomodate the number of dimensions of the
vector, which is specified using vdim parameter
multiplied by the size of the vector format which is
specified using vformat parameter.

ub4 mode Specifies the flags that can be useful in the future.
Currently default flag is OCI_DEFAULT.

Returns

• OCI_SUCCESS, if it runs successfully.

• OCI_ERROR, if an error is returned. OCI_ERROR is returned if the input buffer does not have
enough allocated memory to hold the vector.

38.6 Binding and Defining OCIVector *
OCI users can allocate a descriptor of type OCIVector*, assign array of integers, or float, or
double content to it, and then use it to write to the database table columns whose SQL data
type is VECTOR. The input data type for bind and define must be SQLT_VEC.

The OCI application can also bind and define using the following SQL data types:

• SQLT_CHR: Character string

• SQLT_CLOB: Character LOB

Chapter 38
Binding and Defining OCIVector *

38-9

• SQLT_STR: Null-terminated string

• SQLT_LNG: Long character string

• SQLT_LVC: Longer long string

• SQLT_AFC: ANSI fixed character string

• SQLT_AVC: ANSI variable character string

• SQLT_VCS: Variable character string

See Also:

• Overview of Binding in OCI

• OCIBindByPos2()

• OCIDefineByPos2()

38.7 OCIDescribeAny Enhancements
This section describes the enhancements included in OCIDescribeAny to provide support for
describe on tables or views with the new VECTOR column type.

OCI provides the ability to explicitly describe a database object (for example: table) to obtain its
metadata. OCI also implicitly receives metadata of the columns being selected as part of the
response to the query execution. In both explicit and implicit describe cases, the column
metadata is accessed through a parameter handle of type OCIParam * or the Vector descriptor.
The newly introduced OCIParam handle attributes OCI_ATTR_VECTOR_DIMENSION,
OCI_ATTR_VECTOR_DATA_FORMAT, and OCI_ATTR_VECTOR_PROPERTY are used to access the
vector dimension, vector data format, and vector property respectively.

The following call returns the vector dimension for the given column parameter handle, or
returns a 0, if the column has a flexible dimension and is not fixed. The Vector_dimension_len
is not populated as the vector_dimension has a fixed length of ub4.

OCIAttrGet((dvoid*) colParamHandle, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &vector_dimension, (ub4 *) &vector_dimension_len,
 (ub4) OCI_ATTR_VECTOR DIMENSION,
 (OCIError *) errhp)

The following call returns the pointer to the data format of the vector for the given column
parameter handle, or returns 0, if the vector can contain any data format.
Vector_data_format_len is not returned as the vector_data_type has a fixed length of ub1.

OCIAttrGet((dvoid*) colParamHandle, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &vector_data_format, (ub4 *) &vector_data_format_len,
 (ub4) OCI_ATTR_VECTOR_DATA_FORMAT,
 (OCIError *) errhp)

Chapter 38
OCIDescribeAny Enhancements

38-10

The following call returns the property of the vector for the given column parameter handle, or
returns 0, if the column has no properties associated with it. Currently, the only property
implemented is OCI_ATTR_VECTOR_COL_PROPERTY_IS_FLEX.

OCIAttrGet((dvoid*) colParamHandle, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &vector_property, (ub4 *) &vector_property_len,
 (ub4) OCI_ATTR_VECTOR_PROPERTY,
 (OCIError *) errhp)

The attributes OCI_ATTR_VECTOR_DIMENSION, OCI_ATTR_VECTOR_DATA_FORMAT, and
OCI_ATTR_VECTOR_PROPERTY must be honored for base table columns, view columns, and all
elements in a SELECT list that have a vector associated with it.

You can also call OCIAttrGet on the Vector Descriptor to obtain the attributes, as shown in the
following code snippets:

• OCIAttrGet((dvoid *)vectorDescriptor, OCI_DTYPE_VECTOR, (void *)&vectdim,
(ub4*) 0, OCI_ATTR_VECTOR_DIMENSION, (OCIError *)errhp);

• OCIAttrGet((dvoid *)vectorDescriptor, OCI_DTYPE_VECTOR, (void *)&vectformat,
(ub4*) 0, OCI_ATTR_VECTOR_FORMAT, (OCIError *)errhp);

• OCIAttrGet((dvoid *)vectorDescriptor, OCI_DTYPE_VECTOR, (void *)&vectprop,
(ub4*) 0, OCI_ATTR_VECTOR_PROPERTY, (OCIError *)errhp);

38.8 Example Code Snippets for Vectors
SELECT statement

OCIStmt *ociStmt = (OCIStmt *)NULL;
 OCIDefine *defnhp1 = NULL;
 OCIVector *vecp = NULL;
 OraText *selstmt = "SELECT embedding FROM test ORDER BY id";

 sb2 ind1 = 0;

 OCIHandleAlloc(ociEnv, (void*) &ociStmt, OCI_HTYPE_STMT, 0, 0);
 OCIStmtPrepare2(ociSvcCtx, ociStmt, ociError, selstmt,
(ub4)sizeof((selstmt) - 1),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
 OCIDescriptorAlloc(ociEnv, (void**) &vecp, OCI_DTYPE_VECTOR, 0, 0);
 OCIDefineByPos(ociStmt, &defnhp1, ociError,1, &vecp, 0, SQLT_VEC,
&ind1, NULL, 0, OCI_DEFAULT);
 OCIStmtExecute(ociSvcCtx, ociStmt, ociError, 0, 0, 0, 0, OCI_DEFAULT);

INSERT Statement with Literals

OraText *insStmt = "INSERT INTO test VALUES(%d, '[%d.1, %d.2, %d.3]')";

OCIHandleAlloc(ociEnv, (void*) &insStmt, OCI_HTYPE_STMT, 0, 0);
 OCIStmtPrepare2(ociSvcCtx, ociStmt, ociError, insStmt, (ub4)stmtlen,
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
 OCIStmtExecute(ociSvcCtx, ociStmt, ociError, 0, 0, 0, 0, OCI_DEFAULT);

Chapter 38
Example Code Snippets for Vectors

38-11

INSERT Statement with BIND

OCIStmt * ociStmt = (OCIStmt *)NULL;
OCIBind * ociBind1 = (OCIBind *)NULL;
OCIBind * ociBind2 = (OCIBind *)NULL;
OraText *insstmtbnd = "INSERT INTO test VALUES(:1, :2)";
signed int bnd1 = 500;
OCIVector *vecp = NULL;
sb2 ind1 = 0;
sb2 ind2 = 0;
OCIHandleAlloc(ociEnv, (void*) &ociStmt, OCI_HTYPE_STMT, 0, 0);
OCIStmtPrepare2(ociSvcCtx, ociStmt, ociError, insstmtbnd, (ub4)
(sizeof(insstmtbnd) - 1),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDescriptorAlloc(ociEnv, (void**) &vecp, OCI_DTYPE_VECTOR, 0, 0);
OCIBindByPos(ociStmt, &ociBind1, ociError,
 1, &bnd1, sizeof(signed int), SQLT_INT,
 &ind1, NULL, NULL, 0, NULL, OCI_DEFAULT);
OCIBindByPos(ociStmt, &ociBind2, ociError,2, &vecp, 0, SQLT_VEC, &ind2, NULL,
NULL, 0, NULL,
OCI_DEFAULT);

OCIVector API

ub2 vformat = LVECTOR_IEEE_FLOAT32;
ub4 vdim = 3;
float vfarr[3];
ub4 indx;

OCIVectorToText(vecp, ociError, &vtext[0], &vtextl, OCI_DEFAULT);
for (indx=0; indx++; indx < vdim)
 vfarr[idx] = indx + indx * 3.1427;
OCIVectorFromArray(vecp, ociError, vformat, vdim,
 (void *)&vfarr[0], OCI_DEFAULT);

Chapter 38
Example Code Snippets for Vectors

38-12

39
OCI SODA Functions

This chapter describes the OCI SODA functions.

This chapter contains these topics:

• Introduction to OCI SODA Functions

• OCI SODA Functions

• Introduction to OCI SODA Functions
The Simple Oracle Document Access (SODA) for C API is part of Oracle Call Interface
(OCI).

• OCI SODA Functions
The following table lists the OCI SODA functions that are described in this chapter.

39.1 Introduction to OCI SODA Functions
The Simple Oracle Document Access (SODA) for C API is part of Oracle Call Interface (OCI).

SODA for C allows OCI programmers to store and query Javascript Object Notation (JSON)
data and access JSON functionality in the database with abstractions: databases, collections,
and documents. A database contains collections and collections contain documents. The API
provides create, read, update, and delete (CRUD) operations on the document collections.

Conventions for OCI Functions

See Conventions for OCI Functions for the conventions used in describing each function. The
entries for each function may also contain the following information: Returns.

See Also:

• Oracle Database SODA for C Developer's Guide

• Oracle Database JSON Developer’s Guide

39.2 OCI SODA Functions
The following table lists the OCI SODA functions that are described in this chapter.

Table 39-1 OCI SODA Functions

Function Purpose

OCISodaBulkInsert() Inserts a document array into a collection.

OCISodaBulkInsertAndGet() Inserts a document array into a collection and gets
the result document array back.

39-1

Table 39-1 (Cont.) OCI SODA Functions

Function Purpose

OCISodaBulkInsertAndGetWithOpts() Inserts an array of SODA documents with options.

OCISodaBulkInsertAndGetWithCtnt() Inserts a document array into a collection and gets
the result document array back. The input
documents are represented as an array of content
strings and an array of keys.

OCISodaBulkInsertWithCtnt() Inserts an array of documents into a collection. The
documents are represented as an array of content
strings and an array of keys.

OCISodaCollCreate() Creates a new document collection with default
metadata settings.

OCISodaCollCreateWithMetadata() Creates a new document collection with metadata.

OCISodaCollDrop() Drops a collection from the database.

OCISodaCollGetNext() Gets the next collection from the collection cursor.

OCISodaCollList() Lists the collections in the schema associated with
the supplied service context handle parameter.

OCISodaCollOpen() Opens the collection.

OCISodaDataGuideGet() Gets JSON data guide information.

OCISodaDataGuideGetWithOpts() Gets dynamic JSON data guide with operation
options.

OCISodaAsOfTimestampGet() Fetches the database timestamp value as a string.

OCISodaAsOfScnGet() Fetches the database SCN value.

OCISodaDocCount() Counts the number of documents from a collection.

OCISodaDocCountWithFilter() Counts the number of documents in a collection
based on the query-by-example filter document.

OCISodaDocCreate() Creates a document.

OCISodaDocCreateWithKey() Creates a document with document key and
content.

OCISodaDocCreateWithKeyAndMType() Creates a document with document key, content,
and media type.

OCISodaDocGetNext() Gets the next document in the collection.

OCISodaFind() Find documents in a collection.

OCISodaFindOne() Finds a single document in a collection.

OCISodaFindOneWithKey() Finds a single document in a collection given a key.

OCISodaIndexCreate() Creates an index with an index specification.

OCISodaIndexGet() Gets an index specification using its name.

OCISodaIndexList() List indexes on a collection.

OCISodaIndexDrop() Drops an index.

OCISodaInsert() Inserts a document into a collection.

OCISodaInsertAndGet() Inserts a document into a collection and returns a
result document.

OCISodaInsertAndGetWithOpts() Inserts a SODA document with options.

Chapter 39
OCI SODA Functions

39-2

Table 39-1 (Cont.) OCI SODA Functions

Function Purpose

OCISodaInsertAndGetWithCtnt() Inserts a document into a collection and returns a
result document. The input document is
represented as a content string and a key

OCISodaInsertWithCtnt() Inserts a document into a collection. The document
is represented as a content string and a key

OCISodaRemove() Removes matching documents from a collection.

OCISodaRemoveOneWithKey() Removes a document from a collection given a key.

OCISodaReplOne() Replaces a document in a collection.

OCISodaReplOneAndGet() Replaces a document in a collection. Replaces a
document in a collection and returns a result
document.

OCISodaReplOneAndGetWithCtnt() Replaces a document in a collection and returns
the result document. The input document is
represented only by the content string.

OCISodaReplOneAndGetWithKey() Replace a document in a collection given a key and
returns the result document.

OCISodaReplOneWithCtnt() Replaces a document in a collection. The
document is represented only by the content string

OCISodaReplOneWithKey() Replaces a document in a collection given a key.

OCISodaSave() Saves a document into a collection.

OCISodaSaveAndGet() Saves a document into a collection and returns a
result document.

OCISodaSaveAndGetWithOpts() Saves a SODA document with options.

OCISodaSaveWithCtnt() Saves a document into a collection. The input
document is represented as a content string and a
key.

OCISodaSaveAndGetWithCtnt() Saves a document into a collection and returns a
result document. The input document is
represented as a content string and a key

OCISodaCollTruncate() Truncates a SODA document collection.

OCISodaOperKeysSet() Sets the array of keys on Operation Options
Handle.

• OCISodaBulkInsert()
Inserts an array of documents into a collection.

• OCISodaBulkInsertAndGet()
Inserts an array of documents into a collection, and returns an array of result documents
each containing all document components except for the content.

• OCISodaBulkInsertAndGetWithOpts()
Inserts several SODA documents with options.

• OCISodaBulkInsertAndGetWithCtnt()
Inserts an array of documents into a collection using only their contents, and returns an
array of result documents containing all the document components except for the content.

• OCISodaBulkInsertWithCtnt()
Inserts an array of documents into a collection using only their contents.

Chapter 39
OCI SODA Functions

39-3

• OCISodaCollCreate()
Creates a new document collection with default metadata settings.

• OCISodaCollCreateWithMetadata()
Creates a new document collection with metadata.

• OCISodaCollDrop()
Drops a collection from the database.

• OCISodaCollGetNext()
Gets the next collection from the collection cursor.

• OCISodaCollList()
Lists the collections in the schema associated with the supplied service context handle
parameter.

• OCISodaCollOpen()
Opens the collection.

• OCISodaDataGuideGet()
Gets JSON data guide information.

• OCISodaDataGuideGetWithOpts ()
For only the documents selected from your query, a data guide is created dynamically from
scratch. Dataguide enabled JSON search index is not required.

• OCISodaAsOfTimestampGet ()
Fetches the database timestamp value as a string.

• OCISodaAsOfScnGet ()
Fetches the database SCN value.

• OCISodaDocCount()
Counts the number of documents matching the attributes set in the operation options
handle. If the operation options handle has no attributes set, then the function counts all
the documents in the collection.

• OCISodaDocCountWithFilter()
Counts the number of documents matching a filter specification.

• OCISodaDocCreate()
Creates a document.

• OCISodaDocCreateWithKey()
Creates a document with a document key and content.

• OCISodaDocCreateWithKeyAndMType()
Creates a document with a document key, content, and media type.

• OCISodaDocGetNext()
Gets the next document from the cursor.

• OCISodaFind()
Finds the documents in a collection matching the attributes set in operation options input
handle. If no conditions are set, all the documents in the collection are returned.

• OCISodaFindOne()
Finds the document in a collection matching the attributes set in operation options input
handle. If more than one document in the collection matches the attributes set, then the
first document is returned.

• OCISodaFindOneWithKey()
Finds a single document in a collection, given a key.

• OCISodaIndexCreate()
Creates an index with an index specification.

Chapter 39
OCI SODA Functions

39-4

• OCISodaIndexGet()
Gets an index specification using its name.

• OCISodaIndexList()
List indexes on a collection.

• OCISodaIndexDrop()
Drops an index.

• OCISodaInsert()
Inserts a document into a collection.

• OCISodaInsertAndGet()
Inserts a document into a collection, returning a result document containing all document
components except for content.

• OCISodaInsertAndGetWithOpts ()
Inserts a SODA document with options.

• OCISodaInsertAndGetWithCtnt()
Inserts a document into a collection using just the content, returning a result document
containing all document components except for content.

• OCISodaInsertWithCtnt()
Inserts a document into a collection using only the content.

• OCISodaRemove()
Removes the documents matching the attributes set in operation options input handle from
the collection. If no attributes are set, then all the documents in the collection are removed.

• OCISodaRemoveOneWithKey()
Removes a document from a collection given a key.

• OCISodaReplOne()
Replaces a document matching the attributes set in operation options input handle.

• OCISodaReplOneAndGet()
Replaces a document matching the attributes set in operation options input handle, and
returns a result document containing all document components except for the content.

• OCISodaReplOneAndGetWithCtnt()
Replaces the content of the document matching the attributes set in operation options
input handle with new content, and returns a result document containing all document
components except for the content.

• OCISodaReplOneAndGetWithKey()
Replaces a document in a collection given a key and returns a result document containing
all document components except for the content.

• OCISodaReplOneWithCtnt()
Replaces the content of the document matching the attributes set in operation options
input handle with new content.

• OCISodaReplOneWithKey()
Replaces a document in a collection given a key.

• OCISodaSave()
Saves a document into a collection.

• OCISodaSaveAndGet()
Saves a document into a collection, returning a document containing metadata information.

• OCISodaSaveAndGetWithOpts()
Saves a SODA document with options.

Chapter 39
OCI SODA Functions

39-5

• OCISodaSaveWithCtnt()
Saves a document into a collection with its content.

• OCISodaSaveAndGetWithCtnt()
Saves a document into a collection and gets the new document handle.

• OCISodaCollTruncate()
Truncates a SODA document collection.

• OCISodaOperKeysSet()
Sets an array of keys on Operation Options Handle.

39.2.1 OCISodaBulkInsert()
Inserts an array of documents into a collection.

Purpose

To insert an array of documents into a collection.

Note:

OCISodaBulkInsert method must be used only with Oracle Call Interface (OCI) 18.5
release or above.

Syntax

sword OCISodaBulkInsert(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **documentarray,
 ub4 arraylen,
 OCISodaOutputOptions *opoptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle for an existing collection.

documentarray (IN) Array of handles of documents to be inserted into
the collection.

arrarylen (IN) The length of the document handle array supplied
in the documentarray parameter.

opoptns (OUT) Output options handle. Valid attributes are:
• OCI_ATTR_SODA_DOC_COUNT. — The number

of documents inserted.

Note: If an error occurs,
OCI_ATTR_SODA_DOC_COUNT contains the number
of documents inserted before the error occurred.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-6

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document array insertion into the specified collection is successful.

OCI_ERROR, if the document array insertion failed. The OCIError parameter has the necessary
error information.

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C

39.2.2 OCISodaBulkInsertAndGet()
Inserts an array of documents into a collection, and returns an array of result documents each
containing all document components except for the content.

Purpose

To insert an array of documents into a collection, and return an array of result documents, each
containing all document components except for the content. The components generated by
SODA during the insert, such as key (if the collection has auto-assigned keys), last-modified
timestamp, created-on timestamp, and version, are returned with each result document.

Note:

OCISodaBulkInsertAndGet method must be used only with Oracle Call Interface
(OCI) 18.5 release or above.

Syntax

sword OCISodaBulkInsertAndGet(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **documentarray,
 ub4 arraylen,

Chapter 39
OCI SODA Functions

39-7

 OCISodaOutputOptions *opoptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle for an existing collection.

documentarray (IN/OUT) Array of handles of documents to be inserted into
the collection.

Note: Since the result documents are returned
using the same parameter, you need to save a
reference to each input document handle so that
you can free it later along with each result
document handle, using OCIHandleFree()
method. If you do not save a reference to each
input document handle, it is overwritten with a
reference to the result document, and the input
document handle will never be properly freed
(leads to memory leak).

arrarylen (IN) The length of the document handle array supplied
in documentarray parameter.

opoptns (OUT) Output options handle. Valid attributes are:
• OCI_ATTR_SODA_DOC_COUNT:

The number of documents inserted. If an error
occurs, OCI_ATTR_SODA_DOC_COUNT contains
the number of documents inserted before the
occurrence of the error.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document array insertion into the specified collection is successful.

OCI_ERROR, if the document array insertion failed. The OCIError parameter has the necessary
error information.

Usage Notes

None.

Chapter 39
OCI SODA Functions

39-8

Examples

For examples, see Inserting Documents into Collections with SODA for C.

39.2.3 OCISodaBulkInsertAndGetWithOpts()
Inserts several SODA documents with options.

Purpose

To insert several SODA documents with options.

Syntax

sword OCISodaBulkInsertAndGetWithOpts(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc
**documentarray,
 ub4 arraylen,
 OCISodaOperationOptions *oproptns,
 OCISodaOutputOptions *opoptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle in which you want to insert.

documentarray (IN/OUT) The document array to be inserted.

arrarylen (IN) The length of the document array to be inserted.

oproptns (IN) Operation options handle.

opoptns (OUT) Output options handle.

errhp (IN) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the documents were inserted.

Chapter 39
OCI SODA Functions

39-9

39.2.4 OCISodaBulkInsertAndGetWithCtnt()
Inserts an array of documents into a collection using only their contents, and returns an array
of result documents containing all the document components except for the content.

Purpose

To insert an array of documents into a collection using only their contents and returns an array
of result documents, each document containing all document components except for the
content.

Note:

OCISodaBulkInsertAndGetWithCont method must be used only with Oracle Call
Interface (OCI) 18.5 release or above.

Note:

This is a convenience method for inserting JSON documents only without
constructing document handles for them. The more general method is
OCISodaBulkInsertAndGet.

Syntax

sword OCISodaBulkInsertAndGetWithCont(OCISvcCtx *svchp,
 OCISodaColl *collection,
 void **contentStrings,
 ub4
*contentStringLengths,
 OraText **keys,
 ub4 *keyLengths,
 ub4 arrayLength,
 ub4 docFlags,
 OCISodaDoc **documents,
 OCISodaOutputOptions *opoptns,
 OCIError *errhp
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle for an existing collection.

contentStrings (IN) An array of strings that contains the JSON content
for the documents.

Note: This method works only for JSON
documents.

contentStringLengths (IN) An array of content string lengths.

Chapter 39
OCI SODA Functions

39-10

Parameter Description

keys (IN) An array of keys for the inserted documents.
Provide the keys, if the collection has client-
assigned keys. Otherwise, set to null.

keyLengths (IN) An array of key lengths. Needs to be set only if the
collection has client-assigned keys. Otherwise,
must be set to null.

arrayLength (IN) The length of the contentStrings and keys
arrays.

docFlags (IN) The encoding flags used to indicate the encoding
of the supplied document's content. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

documents (OUT) Returns an array of result documents containing all
document components except for the content. Each
result document contains the components such as
key (if the collection has auto-assigned keys), last-
modified timestamp, created-on timestamp, and
version generated by SODA insert command.

opoptns (OUT) Specifies the output options handle. Valid attributes
are:
• OCI_ATTR_SODA_DOC_COUNT. — The number

of documents inserted.

Note: If an error occurs,
OCI_ATTR_SODA_DOC_COUNT contains the number
of documents inserted before the error occurred.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-11

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C.

39.2.5 OCISodaBulkInsertWithCtnt()
Inserts an array of documents into a collection using only their contents.

Purpose

To insert an array of documents into a collection using only their contents.

Note:

OCISodaBulkInsertWithCtnt method must be used only with Oracle Call Interface
(OCI) 18.5 release or above.

Note:

This is a convenience method for inserting JSON documents only without
constructing document handles for them. The more general method is
OCISodaBulkInsert.

Chapter 39
OCI SODA Functions

39-12

Syntax

sword OCISodaBulkInsertWithCtnt(OCISvcCtx *svchp,
 OCISodaColl *collection,
 void **contentStrings,
 ub4 *contentStringLengths,
 OraText **keys,
 ub4 *keyLengths,
 ub4 arrayLength,
 ub4 docFlags,
 OCISodaOutputOptions *opoptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle for an existing collection.

contentStrings (IN) An array of strings that contain the JSON content
for the documents. This method works only for
JSON documents.

contentStringLengths (IN) An array of content string lengths.

keys (IN) An array of keys for the inserted documents.
Provide the keys, if the collection has client-
assigned keys. Otherwise, set to null.

keyLengths (IN) An array of key lengths. Needs to be set only if the
collection has client-assigned keys. Otherwise,
must be set to null.

arrayLength (IN) The length of the contentStrings and keys
arrays.

docFlags (IN) The encoding flags used to create the documents.
Valid flag options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

Chapter 39
OCI SODA Functions

39-13

Parameter Description

opoptns (OUT) Specifies the output options handle. Valid attributes
are:
• OCI_ATTR_SODA_DOC_COUNT. — The number

of documents inserted.

Note: If an error occurs,
OCI_ATTR_SODA_DOC_COUNT contains the number
of documents inserted before the error occurred.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For example, see Inserting Documents into Collections with SODA for C

39.2.6 OCISodaCollCreate()
Creates a new document collection with default metadata settings.

Purpose

Create a new document collection with default metadata settings.

Syntax

sword OCISodaCollCreate(OCISvcCtx *svchp,
 const OraText *collname,
 ub4 collnamelen,
 OCISodaColl **collection,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-14

Parameters

Parameter Description

svchp (IN) The service context handle.

collname (IN) The name of the collection.

collnamelen (IN) The length of the collection name.

collection (OUT) Allocates the collection handle representing the
document collection that was created. Call
OCIHandleFree() to free the collection handle
when it is no longer required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT - When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

• OCI_SODA_COLL_CREATE_MAP - Creates a
new collection mapping to an existing table.
Minimal checking is performed to ensure that
the table has correct shape matching the
default collection metadata. This function
returns an error, if this check fails.

Returns

OCI_SUCCESS, if the collection is successfully created.

OCI_ERROR, if the collection is not created. The OCIError parameter has the necessary error
information.

Usage Notes

• If the collection with the specified name already exists, then this function acts as
OCISodaCollOpen() and opens the existing collection.

• This function, unlike a SQL DDL operation, does not perform a commit operation before or
after it runs. (Unless you specify OCI_SODA_ATOMIC_COMMIT mode, only then is the current
transaction committed after the operation runs).

Examples

Example 39-1 Creating a Collection

for examples, see Creating a Document Collection for SODA with C.

Chapter 39
OCI SODA Functions

39-15

39.2.7 OCISodaCollCreateWithMetadata()
Creates a new document collection with metadata.

Purpose

Create a new document collection with metadata.

Syntax

sword OCISodaCollCreateWithMetadata(OCISvcCtx *svchp,
 const OraText *collname,
 ub4 collnamelen,
 OraText *metadata,
 ub4 metadatalen,
 OCISodaColl **collection,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collname (IN) The name of the collection.

collnamelen (IN) The length of the collection name.

metadata (IN) The JSON string that contains the collection
metadata information. If metadata is NULL, it uses
the default metadata settings to create the
collection.

metadatalen (IN) The length of the metadata JSON string.

collection (OUT) Allocates the collection handle representing the
document collection that was created. Call
OCIHandleFree() to free the collection handle
when it is no longer required.

errhp (IN/OUT) The error handle.

Chapter 39
OCI SODA Functions

39-16

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT - Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT - When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

• OCI_SODA_COLL_CREATE_MAP - Creates a
new collection mapping to an existing table.
Minimal checking is performed to ensure that
the table has correct shape, matching the
specified collection metadata or default
metadata, if metadata parameter is NULL. This
function returns an error, if this check fails.

Returns

OCI_SUCCESS, if the collection is successfully created.

OCI_ERROR, if the collection is not created. The OCIError parameter has the necessary error
information.

Usage Notes

• If the collection with the specified name already exists and that collection has metadata
equivalent to the supplied metadata, then this function acts as OCISodaCollOpen() and
opens the existing collection. If the collection contains metadata that does not match with
the specified collection name, then an error is returned.

• This function, unlike a SQL DDL operation, does not perform a commit operation before or
after it runs. (Unless you specify OCI_SODA_ATOMIC_COMMIT mode, only then is the current
transaction committed after the operation runs).

Examples

For example, see Creating a Document Collection for SODA with C.

39.2.8 OCISodaCollDrop()
Drops a collection from the database.

Purpose

Drop a collection from the database.

Syntax

sword OCISodaCollDrop(OCISvcCtx *svchp,
 OCISodaColl *coll,

Chapter 39
OCI SODA Functions

39-17

 boolean *isDropped,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

coll (IN) The collection to be dropped. If coll no longer
references an existing collection, then no error is
returned, but isDropped is FALSE indicating the
drop operation was not successful after the
invocation of OCISodaCollDrop().

isDropped (OUT) Returns the status of the drop operation: TRUE if
the drop operation is successful, FALSE if the drop
operation is not successful.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

• OCI_SODA_COLL_DROP_PURGE — When this
mode is set, the data table is purged.

• OCI_SODA_COLL_DROP_MAPPED_TABLE—
When this mode is set, the data table is
dropped while dropping a mapped collection.

Returns

OCI_SUCCESS, if dropping the collection is successful.

OCI_ERROR, if dropping the collection failed. The OCIError parameter has the necessary error
information.

Usage Notes

• This function only drops the collection; it does not free the collection handle. Call
OCIHandleFree() to free the collection handle to avoid memory leaks.

• This function, unlike a SQL DDL operation, does not perform a commit operation before or
after it runs. (Unless you specify OCI_SODA_ATOMIC_COMMIT mode, only then is the current
transaction committed after the operation runs).

Examples

For examples, see Dropping a Document Collection with SODA for C.

Chapter 39
OCI SODA Functions

39-18

39.2.9 OCISodaCollGetNext()
Gets the next collection from the collection cursor.

Purpose

Get the next collection from the collection cursor.

Syntax

sword OCISodaCollGetNext(OCISvcCtx *svchp,
 const OCISodaCollCursor *cur,
 OCISodaColl **coll,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

cur (IN) The collection cursor handle remains valid when
allocated by OCISodaCollList(). Call
OCIHandleFree() to free the collection cursor
handle when it is no longer required.

coll (OUT) Allocates the collection handle and returns it to the
next collection to be found. Call OCIHandleFree()
to free the collection handle when it is no longer
required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

Returns

OCI_SUCCESS, if the next collection is returned from the specified cursor.

OCI_ERROR, if there was an error fetching the next collection. The OCIError parameter has the
necessary error information.

Usage Notes

None.

Examples

For examples, see Discovering Existing Collection with SODA for C

Chapter 39
OCI SODA Functions

39-19

39.2.10 OCISodaCollList()
Lists the collections in the schema associated with the supplied service context handle
parameter.

Purpose

List the collections in the schema.

Syntax

sword OCISodaCollList(OCISvcCtx *svchp,
 const OraText *startname,
 ub4 stnamelen,
 OCISodaCollCursor **cur,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

startname (IN) The collection start name. Can be set to NULL and
stnamelen set to the value 0 to return all existing
collections.

stnamelen (IN) The length of the collection start name.

cur (OUT) Allocates the collection cursor handle and returns
it. The collection cursor represents the collection
list. Call OCIHandleFree() to free the collection
cursor handle when it is no longer required.

errhp (IN/OUT) The error handle.

Chapter 39
OCI SODA Functions

39-20

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaCollList() does not
make any changes to the database;
however, you can use this mode to
commit an existing transaction
without performing another round
trip.

Returns

OCI_SUCCESS, if getting a cursor over all collections in the schema is successful.

OCI_ERROR, if getting a cursor over all collections in the schema is not successful. The
OCIError parameter has the necessary error information.

Usage Notes

None.

Examples

For examples, see Discovering Existing Collection with SODA for C.

39.2.11 OCISodaCollOpen()
Opens the collection.

Purpose

Open the collection.

Syntax

sword OCISodaCollOpen(OCISvcCtx *svchp,
 const OraText *collname,
 ub4 collnamelen,
 OCISodaColl **coll,

Chapter 39
OCI SODA Functions

39-21

 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collname (IN) The name assigned to the collection.

collnamelen (IN) The length of the collection name.

coll (OUT) Allocates the collection handle and returns it with
the specified collection name. The function returns
OCI_SUCCESS if there are no errors while trying to
open the collection. If the collection with the
supplied name is not present, that is not
considered an error and returns OCI_SUCCESS, but
the collection-handle pointer returns as NULL. So a
way to check if the collection exists and was
successfully opened, is to check that the coll
(OUT) pointer is not NULL after this function returns
with OCI_SUCCESS. Call OCIHandleFree() to free
the collection handle when it is no longer required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaCollOpen() does not
make any changes to the database;
however, you can use this mode to
commit an existing transaction
without performing another round
trip.

Returns

OCI_SUCCESS, if there were no errors while trying to open the collection.

OCI_ERROR, if errors were encountered while trying to open the collection. The OCIError
parameter has the necessary error information.

Chapter 39
OCI SODA Functions

39-22

Usage Notes

None.

Examples

For examples, see Opening an Existing Document Collection with SODA for C.

39.2.12 OCISodaDataGuideGet()
Gets JSON data guide information.

Purpose

To get the JSON data guide information.

Syntax

sword OCISodaDataGuideGet(OCISvcCtx *svchp,
 const OCISodaColl *collection,
 ub4 docFlags,
 OCISodaDoc **doc,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection(IN) The collection handle.

docFlags (IN) The following flags control the encoding of the
returned document's content. Valid flag options are:
• OCI_DEFAULT — Document content is

returned in the character set defined by the
environment handle (or environment variable
NLS_LANG, if not set for the handle).

• OCI_SODA_AS_AL32UTF8 — Document
content is returned in the character set
AL32UTF8.

doc (OUT) The document handle with content representing the
JSON data guide.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-23

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaDataGuideGet() does
not make any changes to the
database; however, you can use
this mode to commit an existing
transaction without performing
another round trip.

Returns

OCI_SUCCESS, if getting the data guide information of a specified collection is successful.

OCI_ERROR, if getting data guide information results in an error. The OCIError parameter has
the necessary error information.

Usage Notes

None.

Examples

For examples, see Getting a Data Guide for a Collection with SODA for C.

39.2.13 OCISodaDataGuideGetWithOpts ()
For only the documents selected from your query, a data guide is created dynamically from
scratch. Dataguide enabled JSON search index is not required.

Purpose

To get data guide.

Syntax

sword OCISodaDataGuideGetWithOpts(OCISvcCtx *svchp,
 const OCISodaColl *collection,
 OCISodaOperationOptions *optns,

Chapter 39
OCI SODA Functions

39-24

 ub4 format,
 ub4 flags,
 ub4 docFlags,
 OCISodaDoc **doc,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection(IN) The collection handle in which you want to intert.

optns (IN) Operation options handle.

format (IN) OCI SODA DataGuide formats:
• OCI_SODA_DG_FMT_HIERARCHICAL :

Hierarchical data guide is represented in
JSON as an object with nested JSON data in
the same format as defined by the JSON
Schema (version 4, json-schema-core).

• OCI_SODA_DG_FMT_FLAT: A flat data guide is
represented in JSON as an array of objects,
each of which represents the JSON data of a
specific path in the document set.

flags (IN) OCI SODA DataGuide flags:
• OCI_SODA_DATAGUIDE_PRETTY : Use this

flag bit to improve readability of the returned
data guide with appropriate indentation.

• OCI_SODA_DATAGUIDE_GEOJSON : Use this
flag bit for the data guide to auto detect the
GeoJSON type.

• OCI_SODA_DATAGUIDE_GATHER_STATS: Use
this flag bit for the data guide to collect
statistical information.

docflags (IN) Document flags.

doc (OUT) Document.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if data guide is retrieved.

Chapter 39
OCI SODA Functions

39-25

39.2.14 OCISodaAsOfTimestampGet ()
Fetches the database timestamp value as a string.

Purpose

To fetch the database timestamp value as a string.

Syntax

sword OCISodaAsOfTimestampGet(OCISvcCtx *svchp,
 void *tstamp,
 ub4 *tstampLen,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

tstamp (IN/OUT) The Database timestamp value.

tstampLen (OUT) Length of timestamp string.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution.

Returns

OCI_SUCCESS, if the operation is successful.

OCI_ERROR, if getting data guide information results in an error. The OCIError parameter has
the necessary error information.

Usage Notes

The input timestamp buffer (tstamp) is expected to be atleast OCI_SODA_TIMESTAMP_MAXSIZE in
size. If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate() function, then
tstamp is expected to be utext array of OCI_SODA_TIMESTAMP_MAXSIZE size, that is Utext
tstamp[OCI_SODA_TIMESTAMP_MAXSIZE].

39.2.15 OCISodaAsOfScnGet ()
Fetches the database SCN value.

Purpose

To fetch the database SCN value.

Syntax

sword OCISodaAsOfScnGet(OCISvcCtx *svchp,
 ub8 *scn,

Chapter 39
OCI SODA Functions

39-26

 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

scn (OUT) Database SCN value.

errhp (IN) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS if the operation is successful.

39.2.16 OCISodaDocCount()
Counts the number of documents matching the attributes set in the operation options handle. If
the operation options handle has no attributes set, then the function counts all the documents
in the collection.

Purpose

To count the number of documents matching the attributes set in the operation options handle.
If the operation options handle has no attributes set, then the function counts all the documents
in the collection.

Syntax

sword OCISodaDocCount(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 ub8 *numdocs,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

Chapter 39
OCI SODA Functions

39-27

Parameter Description

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle. If skip and limit
attributes are set on the operation options handle,
then an error is returned.

numdocs (OUT) The number of documents in the collection
matching attributes (if any) set on the operation
options handle.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaDocCount() does not
make any changes to the database;
however, you can use this mode to
commit an existing transaction
without performing another round
trip.

Returns

OCI_SUCCESS, if the document count from the specified collection is successful.

OCI_ERROR, if the document count failed due to hard errors. The OCIError parameter has the
necessary error information.

Usage Notes

None.

Examples

For examples, see Counting the Number of Documents Found.

Chapter 39
OCI SODA Functions

39-28

39.2.17 OCISodaDocCountWithFilter()
Counts the number of documents matching a filter specification.

Purpose

To count the number of documents matching a filter specification.

Note:

This is a convenience method for counting documents matching a filter specification.
A more general method for counting documents is OCISodaDocCount() which can
count documents matching a filter specification or other criteria.

Syntax

sword OCISodaDocCountWithFilter(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *filterSpec,
 ub4 filterSpecLen,
 ub8 *numdocs,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

filterSpec (IN) The JSON filter string used to search the
documents in a collection.

filterSpecLen (IN) The length of the filter string.

numdocs (OUT) The number of documents in the collection
matching the filter.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-29

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaDocCountWithFilter()
does not make any changes to the
database; however, you can use
this mode to commit an existing
transaction without performing
another round trip.

Returns

OCI_SUCCESS, if the document count from the specified collection is successful.

OCI_ERROR, if the document count failed due to hard errors. The OCIError parameter has the
necessary error information.

Usage Notes

None.

39.2.18 OCISodaDocCreate()
Creates a document.

Purpose

Create a document.

Syntax

sword OCISodaDocCreate (OCIEnv *envhp,
 const void *content,
 ub4 contentLength,
 ub4 docFlags,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-30

Parameters

Parameter Description

envhp (IN) The environment handle.

content(IN) A string containing the document content.

contentLength (IN) The string length of the content parameter.

docFlags (IN) Used to detect JSON encoding while creating a
document. Valid flag options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

• OCI_SODA_JSON_DESC: Creates a new
document backed by empty OCIJson
descriptor.

See Also:

JSON Data Type Support

document (OUT) Allocates and returns the document handle. Call
OCIHandleFree() to free the document handle
when it is no longer required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

Returns

OCI_SUCCESS, if the document is successfully created.

OCI_ERROR, if the document creation failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Chapter 39
OCI SODA Functions

39-31

Examples

Example 39-2 Creating a Document

For examples, see Creating Documents with SODA for C.

39.2.19 OCISodaDocCreateWithKey()
Creates a document with a document key and content.

Purpose

Create a document with a document key and content.

Syntax

sword OCISodaDocCreateWithKey(OCIEnv *envhp,
 const void *content,
 ub4 contentLength,
 const OraText *key,
 ub4 keylen,
 ub4 docFlags,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

envhp (IN) The environment handle.

content (IN) A string containing the document content.

contentLength (IN) The string length of the content parameter.

key (IN) A string that contains the document key. The key
can be NULL.

For example, in the default case, collection has
auto-generated keys, so you do not want to set the
key on the document (if you do, you get an error
when you pass such a doc to a write operation,
such as insert). You only want to set a non-NULL
key if your collection is configured with client-
assigned keys, which is not the default.

keylen (IN) The length of the key string.

Chapter 39
OCI SODA Functions

39-32

Parameter Description

docFlags (IN) The flags used to create a document. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

• OCI_SODA_JSON_DESC: Creates a new
document backed by empty OCIJson
descriptor.

See Also:

JSON Data Type Support

document (OUT) Allocates and returns the document handle. Call
OCIHandleFree() to free the document handle
when it is no longer required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

Returns

OCI_SUCCESS, if the document is successfully created.

OCI_ERROR, if the document creation failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Creating Documents with SODA for C.

Chapter 39
OCI SODA Functions

39-33

39.2.20 OCISodaDocCreateWithKeyAndMType()
Creates a document with a document key, content, and media type.

Purpose

Create a document with a document key, content, and media type.

Syntax

sword OCISodaDocCreateWithKeyAndMType(OCIEnv *envhp,
 const void *content,
 ub4 contentLength,
 const OraText *key,
 ub4 keylen,
 const OraText *mediaType,
 ub4 mediaTypeLength,
 ub4 docFlags,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

envhp (IN) The environment handle.

content (IN) A string containing the document content.

contentLength (IN) The string length of the content parameter.

key (IN) A string that contains the document key. The key
can be NULL.

For example, in the default case, collection has
auto-generated keys, so you do not want to set the
key on the document (if you do, you get an error
when you pass such a doc to a write operation,
such as insert). You only want to set a non-NULL
key if your collection is configured with client-
assigned keys, which is not the default.

keylen (IN) The length of the key string.

mediaType (IN) A string that contains the document media type. If
no media type value is specified, it defaults to
"application/json". By specifying a value, you
can create non-JSON documents (using a media
type other than "application/json").

mediaTypeLength (IN) The length of the media type string.

Chapter 39
OCI SODA Functions

39-34

Parameter Description

docFlags (IN) The flags used to create the document. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

document (OUT) Allocates and returns the document handle. Call
OCIHandleFree() to free the document handle
when it is no longer required.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

Returns

OCI_SUCCESS, if the document is successfully created.

OCI_ERROR, if the document creation failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Creating Documents with SODA for C.

39.2.21 OCISodaDocGetNext()
Gets the next document from the cursor.

Purpose

To get the next document from the cursor.

Syntax

sword OCISodaDocGetNext(OCISvcCtx *svchp,
 const OCISodaDocCursor *cursor,

Chapter 39
OCI SODA Functions

39-35

 OCISodaDoc **doc,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

cursor (IN) The cursor for the document results.

doc (OUT) The document handle returned by the cursor.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — the default mode meaning

calling this function executes its statement.

Returns

OCI_SUCCESS, if the document is found in the specified collection.

OCI_ERROR, if the document search failed. The OCIError parameter has the necessary error
information.

OCI_NO_DATA, if data not found. (exit criteria).

Usage Notes

None.

Examples

for examples, see Finding Documents in Collections with SODA for C.

39.2.22 OCISodaFind()
Finds the documents in a collection matching the attributes set in operation options input
handle. If no conditions are set, all the documents in the collection are returned.

Purpose

To find the documents in a collection matching the attributes set in operation options input
handle. If no conditions are set, then all the documents in the collection are returned.

Syntax

sword OCISodaFind(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *findOptions,
 ub4 docFlags,
 OCISodaDocCursor **cursor,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-36

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection to search for the documents.

findOptions (IN) The operation options handle with attributes to
drive the find operation. If no attributes are set,
then all the documents in the collection are
returned.

docFlags (IN) The following flags control the encoding of the
returned document's content. Valid flag options are
• OCI_DEFAULT — Document content is

returned in the character set defined by the
environment handle (or environment variable
NLS_LANG, if not set for the handle).

• OCI_SODA_AS_STORED — Document content
is returned in the character set in which the
content was stored in the database. When the
collection is of type JSON (which is the default
in Oracle Database 23ai under compatible
23ai version or higher), use this function to get
back OCISodaDocs backed by OCIJson
descriptor.

• OCI_SODA_AS_AL32UTF8 — Document
content is returned in the character set
AL32UTF8.

cursor (OUT) The cursor for the document results.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaFindOneWithKey() does
not make any changes to the
database; however, you can use
this mode to commit an existing
transaction without performing
another round trip.

Chapter 39
OCI SODA Functions

39-37

Returns

OCI_SUCCESS, if the document is found in the specified collection.

OCI_ERROR, in case of hard errors. The OCIError parameter has the necessary error
information.

OCI_NO_DATA, if data not found. (exit criteria).

Usage Notes

A call to function OCISodaFind(), prefetches multiple documents in order to reduce the number
of required client-database round trips by OCISodaDocGetNext(). You can change the number
of documents used for a prefetch batch by setting attribute OCI_ATTR_SODA_FETCH_ARRAY_SIZE
on the operation handle. The default value of attribute OCI_HTYPE_SODA_OPER_OPTIONS is 100,
which means that the calls to OCISodaDocGetNext() do not make round trips until the internal
prefetch buffers contain 100 documents. The higher the attribute value, the fewer the number
of round trips.

Examples

For examples, see Finding Documents in Collections with SODA for C.

39.2.23 OCISodaFindOne()
Finds the document in a collection matching the attributes set in operation options input
handle. If more than one document in the collection matches the attributes set, then the first
document is returned.

Purpose

To find the document in a collection matching the attributes set in operation options input
handle. If more than one document in the collection matches the attributes set, then the first
document is returned.

Syntax

sword OCISodaFindOne(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *findOptions,
 ub4 docFlags,
 OCISodaDoc **doc,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection to search for the documents.

findOptions (IN) The operation options handle with attributes to
drive the find operation. If more than one document
in the collection matches, then the first matching
document is returned.

Chapter 39
OCI SODA Functions

39-38

Parameter Description

docFlags (IN) The following flags control the encoding of the
returned document's content. Valid flag options are:
• OCI_DEFAULT — Document content is

returned in the character set defined by the
environment handle (or environment variable
NLS_LANG, if not set for the handle).

• OCI_SODA_AS_STORED — Document content
is returned in the character set in which the
content was stored in the database. When the
collection is of type JSON (which is the default
in Oracle Database 23ai under compatible
23ai version or higher), use this function to get
back OCISodaDocs backed by OCIJson
descriptor.

• OCI_SODA_AS_AL32UTF8 —Document
content is returned in the character set
AL32UTF8.

doc (OUT) The document found (returns NULL if no document
is found).

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaFindOneWithKey() does
not make any changes to the
database; however, you can use
this mode to commit an existing
transaction without performing
another round trip.

Returns

OCI_SUCCESS, if the document is found in the specified collection.

OCI_ERROR, if the document search failed. The OCIError parameter has the necessary error
information.

Chapter 39
OCI SODA Functions

39-39

Usage Notes

None.

Examples

For examples, see Finding Documents in Collections with SODA for C.

39.2.24 OCISodaFindOneWithKey()
Finds a single document in a collection, given a key.

Purpose

To find a single document in a collection, given a key.

Note:

This is a convenience method for finding a document by a key. A more general
method is OCISodaFindOne.

Syntax

sword OCISodaFindOneWithKey(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *key,
 ub4 keylen,
 ub4 docFlags,
 OCISodaDoc **doc,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

coll (IN) The collection to search for the document.

key (IN) The key used to identify the document.

keylen (IN) The length of the key.

Chapter 39
OCI SODA Functions

39-40

Parameter Description

docFlags (IN) The following flags control the encoding of the
returned document's content. Valid flag options are:
• OCI_DEFAULT — Document content is

returned in the character set defined by the
environment handle (or environment variable
NLS_LANG, if not set for the handle).

• OCI_SODA_AS_STORED — Document content
is returned in the character set in which the
content was stored in the database. When the
collection is of type JSON (which is the default
in Oracle Database 23ai under compatible
23ai version or higher), use this function to get
back OCISodaDocs backed by OCIJson
descriptor.

• OCI_SODA_AS_AL32UTF8 — Document
content is returned in the character set
AL32UTF8.

doc (OUT) Allocates and returns the document handle if the
document is found in the collection. If the document
is not found in the collection, a NULL document is
returned and the function returns OCI_NO_DATA.
Call OCIHandleFree() to free the collection
handle when the find operation completes.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Note:

OCISodaFindOneWithKey() does
not make any changes to the
database; however, you can use
this mode to commit an existing
transaction without performing
another round trip.

Returns

OCI_SUCCESS, if the document is found in the specified collection.

OCI_NO_DATA, if the document was not found.

Chapter 39
OCI SODA Functions

39-41

OCI_ERROR, if there was an error in trying to find the document. The OCIError parameter has
the necessary error information.

Usage Notes

None.

Examples

For examples, see Finding Documents in Collections with SODA for C

39.2.25 OCISodaIndexCreate()
Creates an index with an index specification.

Purpose

To create an index with an index specification. The following three types of index specifications
can be supplied, B-tree, JSON search index, and spatial.

Syntax

sword OCISodaIndexCreate(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *indexspec,
 ub4 speclen,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The handle for the collection to be indexed.

indexspec (IN) The index specification.

speclen(IN) The index specification length.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT - Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT - When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if index creation on the specified collection is successful.

Chapter 39
OCI SODA Functions

39-42

OCI_ERROR, if index creation results in an error. The OCIError parameter has the necessary
error information.

Usage Notes

This function, unlike a SQL DDL operation, does not perform a commit operation before or
after it runs. (Unless you specify OCI_SODA_ATOMIC_COMMIT mode, only then is the
current transaction committed after the operation runs).

Examples

For examples, see Indexing the Documents in a Collection with SODA for C.

Related Topics

• Overview of SODA Indexing

• SODA Index Specifications (Reference)

39.2.26 OCISodaIndexGet()
Gets an index specification using its name.

Purpose

To an index specification using its name.

Syntax

sword OCISodaIndexGet(OCISvcCtx *svchp,
 const OCISodaColl *collection,
 OraText *indexName,
 ub4 indexNameLen,
 OraText *schemaName,
 ub4 schemaNameLen,
 ub4 flags,
 OCIString **index,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle.

indexName (IN) Name of the index.

indexNameLen (IN) Length of index name string.

schemaName (IN) The Schema name. Setting the value of this
parameter to null indicates that you must look for
the index in the schema of the connected user.

schemaNameLen (IN) Length of the schema name string.

flags (IN) flags

OCIString (OUT) String index specification.

errhp (IN/OUT) Error handle.

Chapter 39
OCI SODA Functions

39-43

Parameter Description

mode (IN) Specifies the mode of execution.

Returns

An OCI error code.

39.2.27 OCISodaIndexList()
List indexes on a collection.

Purpose

To list indexes on a collection.

Syntax

sword OCISodaIndexList(OCISvcCtx *svchp,
 const OCISodaColl *collection,
 ub4 flags,
 OCIColl **indexList,,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

collection (IN) The collection handle.

flags (IN) flags

indexList (OUT) An OCIColl of string index spec pointers.

errhp (IN/OUT) Error handle.

mode (IN) Specifies the mode of execution.

Returns

An OCI error code.

39.2.28 OCISodaIndexDrop()
Drops an index.

Purpose

To drop an index.

Syntax

sword OCISodaIndexDrop(OCISvcCtx *svchp,
 OraText *indexname,
 ub4 indexnamelen,

Chapter 39
OCI SODA Functions

39-44

 boolean *isDropped,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

indexname (IN) The index name.

indexnamelen(IN) The index name length.

isDropped (OUT) Returns the status of the drop operation: TRUE if
the drop operation is successful, FALSE if the index
with the specified name does not exist.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_INDEX_DROP_FORCE - Forces the
index to be dropped. Should only be used for
JSON Search Index or Spatial Index. Not
supported for dropping B-tree indexes.
Note: See DROP INDEX for more information
about FORCE flag.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if dropping an index on specified collection is successful.

OCI_ERROR, if dropping an index results in an error. The OCIError parameter has the necessary
error information.

Usage Notes

This function, unlike a SQL DDL operation, does not perform a commit operation before or
after it runs. (Unless you specify OCI_SODA_ATOMIC_COMMIT mode, only then is the current
transaction committed after the operation runs).

Examples

For example, see Dropping an Index with SODA for C.

Chapter 39
OCI SODA Functions

39-45

Olink:ADSDC-GUID-5F6ED443-F775-4529-BEE9-93D84062D90F__DROPPINGANINDEXWITHSODAFORC-D1C1B14E

39.2.29 OCISodaInsert()
Inserts a document into a collection.

Purpose

Insert a document into a collection.

Syntax

sword OCISodaInsert(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc *document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle for an existing collection.

document (IN) The handle of the document that is to be inserted
into the collection.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C.

Chapter 39
OCI SODA Functions

39-46

39.2.30 OCISodaInsertAndGet()
Inserts a document into a collection, returning a result document containing all document
components except for content.

Purpose

Insert a document into a collection, returning a result document containing all document
components except for content. The components generated by SODA during the insert, such
as key (if the collection has auto-assigned keys), last-modified timestamp, created-on
timestamp, and version, are returned as part of the result document.

Syntax

sword OCISodaInsertAndGet(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle for an existing collection.

Chapter 39
OCI SODA Functions

39-47

Parameter Description

document (IN/OUT) The handle of the document that is to be inserted
into the collection. Returns the result document
through this same parameter as it is an IN/OUT.

Caution:

Because the result
document is returned
using the same
parameter, you need
to save a reference to
the input document
handle so that you
can free it later, along
with the result
document handle,
using
OCIHandleFree(). If
you do not save a
reference to the input
document handle, it is
overwritten with a
reference to the result
document, and the
input document
handle will never be
properly freed (it's a
memory leak).

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Chapter 39
OCI SODA Functions

39-48

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C.

39.2.31 OCISodaInsertAndGetWithOpts ()
Inserts a SODA document with options.

Purpose

To insert a SODA document with options.

Syntax

sword OCISodaInsertAndGetWithOpts(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **document,
 OCISodaOperationOptions *oproptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle in which you want to insert.

document (IN/OUT) Document handle to be inserted and returned.

oproptns (IN) Operation options handle

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document is inserted.

Chapter 39
OCI SODA Functions

39-49

39.2.32 OCISodaInsertAndGetWithCtnt()
Inserts a document into a collection using just the content, returning a result document
containing all document components except for content.

Purpose

Insert a document into a collection using just the content, returning a result document
containing all document components except for content. The components generated by SODA
during the insert, such as key (if the collection has auto-assigned keys), last-modified
timestamp, created-on timestamp, and version, are returned as part of the result document.

Note:

This is a convenience method for inserting a JSON document without constructing a
document handle for them. A more general method is OCISodaInsertAndGet.

Syntax

sword OCISodaInsertAndGetWithCtnt(OCISvcCtx *svchp,
 OCISodaColl *collection,
 const OraText *key,
 ub4 keyLength,
 const void *content,
 ub4 contentLength,
 ub4 docFlags,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle for an existing collection.

key (IN) A string that contains the document key. Must be
NULL if inserting a document into a collection
configured for auto-generated keys.

keyLength (IN) The length of the key string. Must be 0 if inserting a
document into a collection configured for auto-
generated keys.

content (IN) A string containing the JSON content for the
document.

Note: This method works only for JSON
documents.

contentLength (IN) The string length of the content parameter.

Chapter 39
OCI SODA Functions

39-50

Parameter Description

docFlags (IN) The encoding flags used to indicate the encoding
of the supplied document's content. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

document (OUT) Allocates and returns a result document containing
all document components except for content. The
components generated by SODA during the insert,
such as key (if the collection has auto-assigned
keys), last-modified timestamp, created-on
timestamp, and version, are returned as part of the
result document.

If NULL is passed for this parameter, then the result
document is not returned. (In other words, the
function then behaves identically to the
OCISodaInsertWithCtnt() function, which does
not return a result document).

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Chapter 39
OCI SODA Functions

39-51

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C

39.2.33 OCISodaInsertWithCtnt()
Inserts a document into a collection using only the content.

Purpose

Insert a document into a collection using only the content.

Note:

This is a convenience method for inserting a JSON document without constructing a
document handle for them. A more general method is OCISodaInsert.

Syntax

sword OCISodaInsertWithCtnt(OCISvcCtx *svchp,
 OCISodaColl *collection,
 const OraText *key,
 ub4 keyLength,
 const void *content,
 ub4 contentLength,
 ub4 docFlags,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle for an existing collection.

key (IN) A string that contains the document key. Must be
NULL if inserting a document into a collection
configured for auto-generated keys.

keyLength (IN) The length of the key string. Must be 0 if inserting a
document into a collection configured for auto-
generated keys.

content (IN) A string containing the JSON content for the
document.
Note: This method works only for JSON
documents.

contentLength (IN) The length of the document content.

Chapter 39
OCI SODA Functions

39-52

Parameter Description

docFlags (IN) The encoding flags used to indicate the encoding
of the supplied document's content. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Inserting Documents into Collections with SODA for C.

Chapter 39
OCI SODA Functions

39-53

39.2.34 OCISodaRemove()
Removes the documents matching the attributes set in operation options input handle from the
collection. If no attributes are set, then all the documents in the collection are removed.

Purpose

To remove the documents matching the attributes set in operation options input handle from
the collection. If no attributes are set, then all the documents in the collection are removed.

Syntax

sword OCISodaRemove(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 ub8 *removeCount,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle with attributes to
drive the remove operation. If no attributes are set,
all the documents in the collection are removed. If
OCI_ATTR_SODA_SKIP and
OCI_ATTR_SODA_LIMIT attributes are set on the
operation options handle, then they are ignored.
That is, they do not apply to write operations such
as removes.

removeCount (OUT) The number of documents removed.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if one or more documents are removed from the specified collection.

Chapter 39
OCI SODA Functions

39-54

OCI_ERROR, if the document removal failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

For examples, see Removing Documents from a Collection with SODA for C

39.2.35 OCISodaRemoveOneWithKey()
Removes a document from a collection given a key.

Purpose

Remove a document from a collection given a key.

Note:

This is a convenience method for removing a document with a single key. A more
general method is OCISodaRemove.

Syntax

sword OCISodaRemoveOneWithKey(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *key,
 ub4 keylength,
 boolean *isRemoved,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

coll (IN) The collection handle for an existing collection.

key (IN) The key of the document to be removed.

keylength (IN) The length of key of the document to be removed.

isRemoved (OUT) Returns TRUE if a document was found with the
specified key and removed; FALSE if no document
could be found with the specified key.

errhp (IN/OUT) The error handle.

Chapter 39
OCI SODA Functions

39-55

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document with the specified key was not found. OCI_SUCCESS is still
returned (and isRemoved will be set to FALSE). Check that the isRemoved parameter is set to
TRUE to know whether the document has been removed.

OCI_ERROR, if the document removal operation failed during execution due to a SQL error. The
OCIError parameter has the necessary error information.

Usage Notes

None.

Examples

For examples, see Removing Documents from a Collection with SODA for C.

39.2.36 OCISodaReplOne()
Replaces a document matching the attributes set in operation options input handle.

Purpose

To replace a document matching the attributes set in operation options input handle. In order to
uniquely identify the document to be replaced, at least OCI_ATTR_SODA_KEY key must be set in
operation options. Other attributes can also be set.

Syntax

sword OCISodaReplOne(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 OCISodaDoc *document,
 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-56

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle with attributes to
drive the replace operation. At least the key,
OCI_ATTR_SODA_KEY attribute must be set to
uniquely identify the document to be replaced.
Otherwise the operation returns an error. Other
attributes such as OCI_ATTR_SODA_VERSION, and
OCI_ATTR_SODA_FILTER can also be set. If
OCI_ATTR_SODA_SKIP and
OCI_ATTR_SODA_LIMIT attributes are set on the
operation options handle, then they are ignored.
That is, they are not applied to the write operations
such as replace.

document (IN) The document handle to use as the replacement of
the document currently in the collection. Only the
content and media type component from this
handle is used during the replace operation (that is,
this operation replaces the content and media type
of the document in the collection). Other
components, if set on the input document, are
ignored.

isReplaced (OUT) Whether the document is replaced or not. Returns
TRUE if replaced, otherwise it returns FALSE.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT - Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT - When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, document is replaced in the specified collection.

OCI_ERROR, if the document replacment failed. The OCIError parameter has the necessary
error information.

Usage Notes

None.

Chapter 39
OCI SODA Functions

39-57

Examples

For examples, see Replacing Documents in a Collection with SODA for C.

39.2.37 OCISodaReplOneAndGet()
Replaces a document matching the attributes set in operation options input handle, and returns
a result document containing all document components except for the content.

Purpose

To replace a document matching the attributes set in operation options input handle, and
returns the handle to the result document. In order to uniquely identify the document to be
replaced, at least OCI_ATTR_SODA_KEY key must be set in operation options. Other attributes
can also be set.

Syntax

sword OCISodaReplOneAndGet(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 OCISodaDoc **document,
 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle with attributes to
drive the replace operation. At least the key,
OCI_ATTR_SODA_KEY attribute must be set to
uniquely identify the document to be replaced.
Otherwise the operation returns an error. Other
attributes such as OCI_ATTR_SODA_VERSION, and
OCI_ATTR_SODA_FILTER can also be set. If
OCI_ATTR_SODA_SKIP and
OCI_ATTR_SODA_LIMIT attributes are set on the
operation options handle, then they are ignored.
That is, they are not applied to the write operations
such as replace.

Chapter 39
OCI SODA Functions

39-58

Parameter Description

document (IN/OUT) The document handle to use as the replacement of
the document currently in the collection. Only the
content and media type component from this
handle is used during the replace operation (that is,
this operation replaces the content and media type
of the document in the collection). Other
components, if set on the input document, are
ignored. Returns the result document through this
same parameter as it is an IN/OUT.

Caution:

Because the result
document is returned
using the same
parameter, you need
to save a reference to
the input document
handle so that you
can free it later, along
with the result
document handle,
using
OCIHandleFree(). If
you do not save a
reference to the input
document handle, it is
overwritten with a
reference to the result
document, and the
input document
handle will never be
properly freed (it's a
memory leak).

isReplaced (OUT) Whether the document is replaced or not. Returns
TRUE if replaced, otherwise it returns FALSE.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Chapter 39
OCI SODA Functions

39-59

Returns

OCI_SUCCESS, if the document is replaced in the specified collection.

OCI_ERROR, if the document replacement failed due to hard errors. The OCIError parameter
has the necessary error information.

Usage Notes

None.

Examples

For examples, see Replacing Documents in a Collection with SODA for C.

39.2.38 OCISodaReplOneAndGetWithCtnt()
Replaces the content of the document matching the attributes set in operation options input
handle with new content, and returns a result document containing all document components
except for the content.

Purpose

To replace the content of the document matching the attributes set in operation options input
handle with new content, and returns the handle to the result document containing all
components except for the content, including the updated ones, such as the last-modified
timestamp and version. In order to uniquely identify the document to be replaced, at least
OCI_ATTR_SODA_KEY key must be set in operation options. Other attributes can also be set.

Note:

This is a convenience method for replacing a document with a JSON document
without constructing a document handle for the replacement document. A more
general method is OCISodaReplOneAndGet. This method is only for JSON documents.
That is, the supplied replacement document must be a JSON document and the
target document that is being replaced in the collection may or may not be a JSON
document.

Syntax

sword OCISodaReplOneAndGetWithCtnt(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 const void *content,
 ub4 contentLen,
 ub4 docFlags,
 OCISodaDoc **document,
 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-60

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle with attributes to
drive the replace operation. At least the key,
OCI_ATTR_SODA_KEY attribute must be set to
uniquely identify the document to be replaced.
Otherwise the operation returns an error. Other
attributes such as OCI_ATTR_SODA_VERSION, and
OCI_ATTR_SODA_FILTER can also be set. If
OCI_ATTR_SODA_SKIP and
OCI_ATTR_SODA_LIMIT attributes are set on the
operation options handle, then they are ignored.
That is, they are not applied to the write operations
such as replace.

content (IN) A string containing the JSON content of the
document.

Note: This method works only for JSON
documents.

contentLen (IN) The length of the document content.

docFlags (IN) The encoding flags used to indicate the encoding
of the supplied document's content. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

document (OUT) Result document contains all components except
for the content, including the updated ones, such
as the last-modified timestamp and version.

isReplaced (OUT) Whether the document is replaced or not. Returns
TRUE if replaced, otherwise it returns FALSE.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-61

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document is replaced in the specified collection.

OCI_ERROR, if the document replacement failed. The OCIError parameter has the necessary
error information.

Usage Notes

None.

Examples

For examples, see Replacing Documents in a Collection with SODA for C.

39.2.39 OCISodaReplOneAndGetWithKey()
Replaces a document in a collection given a key and returns a result document containing all
document components except for the content.

Purpose

To replace a document in a collection given a key and return the handle to the result document
containing all components except content, including the updated ones, such as the last-
modified timestamp and version.

Note:

This is a convenience method for replacing a document by a key. A more general
method is OCISodaReplOneAndGet.

Syntax

sword OCISodaReplOneAndGetWithKey(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *key,
 ub4 keylength,
 OCISodaDoc **document,

Chapter 39
OCI SODA Functions

39-62

 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

coll (IN) The collection handle for an existing collection.

key (IN) The key used to identify the document.

keylength (IN) The length of the key.

document (IN/OUT) The document handle to use as the replacement of
the document currently in the collection. Only the
content and media type component from this
handle is used during the replace operation (that is,
this operation replaces the content and media type
of the document in the collection). Other
components, if set on the input document, are
ignored. Returns the result document through this
same parameter as it is an IN/OUT.

Caution:

Because the result
document is returned
using the same
parameter, you need
to save a reference to
the input document
handle so that you
can free it later, along
with the result
document handle,
using
OCIHandleFree(). If
you do not save a
reference to the input
document handle, it is
overwritten with a
reference to the result
document, and the
input document
handle will never be
properly freed (it's a
memory leak).

isReplaced (OUT) Returns TRUE if a document was found with the
specified key and replaced; FALSE if no document
could be found with the specified key.

errhp (IN/OUT) The error handle.

Chapter 39
OCI SODA Functions

39-63

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document with the specified key was not found. OCI_SUCCESS is still
returned (and isReplaced will be set to FALSE). Check that the isReplaced parameter is set to
TRUE to know whether the document has been replaced.

OCI_ERROR, if the document replacement operation failed during execution due to a SQL error.
The OCIError parameter has the necessary error information.

Usage Notes

None.

Examples

For examples, see Replacing Documents in a Collection with SODA for C

39.2.40 OCISodaReplOneWithCtnt()
Replaces the content of the document matching the attributes set in operation options input
handle with new content.

Purpose

To replace the content of the document matching the attributes set in operation options input
handle with new content. In order to uniquely identify the document to be replaced, at least
OCI_ATTR_SODA_KEY key must be set in operation options. Other attributes can also be set.

Note:

This is a convenience method for replacing a document with a JSON document
without constructing a document handle for the replacement document. A more
general method is OCISodaReplOne. This method is only for JSON documents. That
is, the supplied replacement document must be a JSON document and the target
document that is being replaced in the collection may or may not be a JSON
document.

Chapter 39
OCI SODA Functions

39-64

Syntax

sword OCISodaReplOneWithCtnt(OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OCISodaOperationOptions *optns,
 const void *content,
 ub4 contentLength,
 ub4 docFlags,
 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context.

coll (IN) The collection handle for an existing collection.

optns (IN) The operation options handle with attributes to
drive the replace operation. At least the key,
OCI_ATTR_SODA_KEY attribute must be set to
uniquely identify the document to be replaced.
Otherwise the operation returns an error. Other
attributes such as OCI_ATTR_SODA_VERSION, and
OCI_ATTR_SODA_FILTER can also be set. If
OCI_ATTR_SODA_SKIP and
OCI_ATTR_SODA_LIMIT attributes are set on the
operation options handle, then they are ignored.
That is, they are not applied to the write operations
such as replace.

content (IN) A string containing the JSON content of the
document.

Note: This method works only for JSON
documents.

contentLength (IN) The length of the document content.

docFlags (IN) The encoding flags used to indicate the encoding
of the supplied document's content. Valid flag
options are:
• OCI_DEFAULT — If you use this parameter

value then you are, in effect, declaring that the
document content is in the character set
defined by the environment handle (or
environment variable NLS_LANG, if not set for
the handle). If that is not the case for a given
document, then the result of trying to write the
document is unpredictable.

• OCI_SODA_DETECT_JSON_ENC —
Automatically detects the encoding of the
document content as either UTF-8, UTF-16
LE, or UTF-16 BE. If you use this parameter
value then you are, in effect, declaring that the
document content is either UTF-8, UTF-16 LE,
or UTF-16 BE. If that is not the case for a
given document, then the result of trying to
write the document is unpredictable.

Chapter 39
OCI SODA Functions

39-65

Parameter Description

isReplaced (OUT) Whether the document is replaced or not. Returns
TRUE if replaced, otherwise it returns FALSE.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document is replaced in the specified collection.

OCI_ERROR, if the document replacement failed. The OCIError parameter has the necessary
error information.

Usage Notes

None.

Examples

For examples, see Replacing Documents in a Collection with SODA for C.

39.2.41 OCISodaReplOneWithKey()
Replaces a document in a collection given a key.

Purpose

To replace a document in a collection given a key.

Note:

This is a convenience method for replacing a document by a key. A more general
method is OCISodaReplOne.

Syntax

sword OCISodaReplOneWithKey (OCISvcCtx *svchp,
 const OCISodaColl *coll,
 const OraText *key,
 ub4 keylength,

Chapter 39
OCI SODA Functions

39-66

 OCISodaDoc *document,
 boolean *isReplaced,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

coll (IN) The collection handle for an existing collection.

key (IN) The key used to identify the document.

keylength (IN) The length of the key.

document (IN) The document handle to use as the replacement of
the document currently in the collection. Only the
content and media type component from this
handle is used during the replace operation (that is,
this operation replaces the content and media type
of the document in the collection). Other
components, if set on the input document, are
ignored.

isReplaced (OUT) Returns TRUE if a document was found with the
specified key and replaced; FALSE if no document
could be found with the specified key.

errhp (IN/OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document with the specified key was not found. OCI_SUCCESS is still
returned (and isReplaced will be set to FALSE). Check that the isReplaced parameter is set to
TRUE to know whether the document has been replaced.

OCI_ERROR, if the document replacement operation failed during execution due to a SQL error.
The OCIError parameter has the necessary error information.

Usage Notes

None.

Examples

For examples, see Replacing Documents in a Collection with SODA for C

Chapter 39
OCI SODA Functions

39-67

39.2.42 OCISodaSave()
Saves a document into a collection.

Purpose

Save a document into a collection.

This function is equivalent to insert function except that if the client-assigned keys are used, or
the document with the specified key already exists in the collection, then it is replaced with the
input document. The key is automatically created, unless this collection is configured with
client-assigned keys and the key is provided in the input document.

Syntax

sword OCISodaSave(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc *document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) An opened collection.

document (IN) The document handle that is used to insert the
content into the collection.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — the default mode meaning

calling this function executes its statement.
• OCI_SODA_ATOMIC_COMMIT - When an

operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document save into the specified collection is successful.

OCI_ERROR, if the document save failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Chapter 39
OCI SODA Functions

39-68

Examples

See the example in OCISodaDocCreateWithKeyAndMType().

39.2.43 OCISodaSaveAndGet()
Saves a document into a collection, returning a document containing metadata information.

Purpose

Save a document into a collection, returning a document containing metadata information,
such as key, version, and timestamp information.

This function is equivalent to insert function except that if the client-assigned keys are used, or
the document with the specified key already exists in the collection, then it is replaced with the
input document. The key is automatically created, unless this collection is configured with
client-assigned keys and the key is provided in the input document.

Syntax

sword OCISodaSaveAndGet(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) An opened collection.

document (IN/OUT) The document structure that is saved into the
collection. If the key parameter in the call to
OCISodaDocCreate() is NULL, then the document
parameter contains the auto-generated key as well
as other information, such as version and creation
timestamp.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — the default mode meaning

calling this function executes its statement.
• OCI_SODA_ATOMIC_COMMIT - When an

operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Chapter 39
OCI SODA Functions

39-69

Returns

OCI_SUCCESS, if the document save into the specified collection is successful.

OCI_ERROR, if the document save failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

See the example in OCISodaDocCreateWithKeyAndMType().

39.2.44 OCISodaSaveAndGetWithOpts()
Saves a SODA document with options.

Purpose

To save a SODA document with options.

Syntax

sword OCISodaSaveAndGetWithOpts(OCISvcCtx *svchp,
 OCISodaColl *collection,
 OCISodaDoc **document,
 OCISodaOperationOptions *oproptns,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle in which you want to insert.

document (IN/OUT) The document handle to be inserted and returned.

oproptns (IN) Operation options handle.

errhp (IN) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

• OCI_SODA_ATOMIC_COMMIT — When an
operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Chapter 39
OCI SODA Functions

39-70

Returns

OCI_SUCCESS, if the document is saved.

39.2.45 OCISodaSaveWithCtnt()
Saves a document into a collection with its content.

Purpose

To save the document which has specified keys.

This function is equivalent to insert function except that if the client-assigned keys are used, or
the document with the specified key already exists in the collection, then it is replaced with the
input document. The key is automatically created, unless this collection is configured with
client-assigned keys and the key is provided in the input document.

Syntax

sword OCISodaSaveWithCtnt(OCISvcCtx *svchp,
 OCISodaColl *collection,
 const OraText *key,
 ub4 keylength,
 const void *content,
 ub4 contentlen,
 ub4 docFlags,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) An opened collection.

key (IN) The specified key of the document to be saved.

keylength(IN) The length of the key.

content (IN) A string that contains content of the document.

contentlen(IN) The length of the content string.

docFlags (IN) The encoding flags used to save the document.
Valid flag options are:
• OCI_DEFAULT — The default value.

• OCI_SODA_DETECT_JSON_ENC — Detect the
JSON encoding.

• OCI_SODA_AS_STORED — Retrieve as stored
in BLOB column.

• OCI_SODA_AS_AL32UTF8 — Retrieve as
UTF-8.

errhp (OUT) The error handle.

Chapter 39
OCI SODA Functions

39-71

Parameter Description

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — the default mode meaning

calling this function executes its statement.
• OCI_SODA_ATOMIC_COMMIT - When an

operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the collection is successfully created.

OCI_ERROR, if the collection is not created. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

See the example in OCISodaDocCreateWithKeyAndMType().

39.2.46 OCISodaSaveAndGetWithCtnt()
Saves a document into a collection and gets the new document handle.

Purpose

Saves the document which has specified keys and new document handle to obtain the saved
documents.

This function is equivalent to insert function except that if the client-assigned keys are used, or
the document with the specified key already exists in the collection, then it is replaced with the
input document. The key is automatically created, unless this collection is configured with
client-assigned keys and the key is provided in the input document.

Syntax

sword OCISodaSaveAndGetWithCont(OCISvcCtx *svchp,
 OCISodaColl *collection,
 const OraText *key,
 ub4 keylength,
 const void *content,
 ub4 contentlen,
 ub4 docFlags,
 OCISodaDoc **document,
 OCIError *errhp,
 ub4 mode);

Chapter 39
OCI SODA Functions

39-72

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) An opened collection.

key (IN) The specified key for the document to be saved.

keylength(IN) The length of the key.

content (IN) A string that contains content of the document.

contentlen(IN) The length of the content string.

docFlags (IN) The encoding flags used to save the document.
Valid flag options are:
• OCI_DEFAULT — The default value.

• OCI_SODA_DETECT_JSON_ENC — Detect the
JSON encoding.

• OCI_SODA_AS_STORED — Retrieve as stored
in BLOB column.

• OCI_SODA_AS_AL32UTF8 — Retrieve as
UTF-8.

document (IN/OUT) The document handle containing metadata of the
saved document.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — the default mode meaning

calling this function executes its statement.
• OCI_SODA_ATOMIC_COMMIT - When an

operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

Returns

OCI_SUCCESS, if the document insertion into the specified collection is successful.

OCI_ERROR, if the document insertion failed. The OCIError parameter has the necessary error
information.

Usage Notes

None.

Examples

See the example in OCISodaDocCreateWithKeyAndMType().

Chapter 39
OCI SODA Functions

39-73

39.2.47 OCISodaCollTruncate()
Truncates a SODA document collection.

Purpose

Truncates the document collection.

sword OCISodaCollTruncate (OCISvcCtx *svchp,
 const OCISodaColl *collection,
 OCIError
*errhp,
 ub4 mode);

Parameters

Parameter Description

svchp (IN) The service context handle.

collection (IN) The collection handle for the collection you want to
truncate.

errhp (OUT) The error handle.

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT
• OCI_SODA_ATOMIC_COMMIT - When an

operation executes in this mode and it
completes successfully, then the current
transaction is committed after completion. This
commits all outstanding changes, not just
changes made by the SODA operation. If the
operation fails, then only changes made for the
SODA operation are rolled back; any
uncommitted changes made prior to invocation
of the SODA operation are not rolled back.

• OCI_SODA_TRUNCATE_REUSE_STORAGE

Returns

An Oracle return error code.

Usage Notes

None.

39.2.48 OCISodaOperKeysSet()
Sets an array of keys on Operation Options Handle.

Purpose

Sets an array of keys on Operation Options Handle. Attributes of the operation options handle
are set with standard OCIAttrSet function. The OCIAttrSet function is not used to set the array
of keys, because both the array of keys and the array of key lengths need to be set.

Chapter 39
OCI SODA Functions

39-74

Note:

If you use function OCIAttrSet() to set attribute OCI_ATTR_SODA_KEY on an
operation-options handle, and you also use function OCISodaOperKeysSet() to set
multiple keys on the same handle, then only the latest of the two settings takes effect.
The effect of the first function invoked is overridden by the effect of the second.

Syntax

sword OCISodaOperKeysSet (const OCISodaOperationOptions *operhp,
 OraText **keysArray,
 ub4 *lengthsArray,
 ub4 count,
 OCIError *errhp,
 ub4 mode);

Parameters

Parameter Description

operhp (IN) Operation options handle

keysArray (IN) Array of oratext* keys

lengthsArray (IN) Array of ub4 lengths corresponding to each key

count (IN) Number of elements in the keys array

errhp (OUT) Error handle

mode (IN) Specifies the mode of execution. Valid modes are:
• OCI_DEFAULT — Is the default mode. It means

execute the operation as is with no special
modes.

Returns

OCI_SUCCESS, if the keys were set successfully.

Usage Notes

None.

Examples

For examples, see Finding Multiple Documents with Specified Document Keys and Removing
Documents from a Collection Using Document Keys.

Chapter 39
OCI SODA Functions

39-75

A
Handle and Descriptor Attributes

This appendix describes the attributes for OCI handles and descriptors.

OCI handles and descriptors can be read with OCIAttrGet(), and modified with OCIAttrSet().

This appendix contains these topics:

• Conventions

• Environment Handle Attributes

• Error Handle Attributes

• Service Context Handle Attributes

• Server Handle Attributes

– Authentication Information Handle Attributes

– User Session Handle Attributes

• Administration Handle Attributes

• Connection Pool Handle Attributes

• Session Pool Handle Attributes

• Transaction Handle Attributes

• Statement Handle Attributes

• Bind Handle Attributes

• Define Handle Attributes

• Describe Handle Attributes

• Parameter Descriptor Attributes

• Shard Instance Descriptor Attributes

• SODA Document Handle Attributes

• SODA Collection Handle Attributes

• SODA Output Options Handle Attributes

• SODA Operation Options Handle Attributes

• LOB Descriptor and LOB Locator Attributes

• JSON Descriptor Attributes

• Complex Object Attributes

– Complex Object Retrieval Handle Attributes

– Complex Object Retrieval Descriptor Attributes

• Database Advanced Queuing Descriptor Attributes

– OCIAQEnqOptions Descriptor Attributes

– OCIAQDeqOptions Descriptor Attributes

A-1

– OCIAQMsgProperties Descriptor Attributes

– OCIAQAgent Descriptor Attributes

– OCIServerDNs Descriptor Attributes

• Subscription Handle Attributes

– Continuous Query Notification Attributes

– Continuous Query Notification Descriptor Attributes

– Notification Descriptor Attributes

– Invalidated Query Attributes

• Direct Path Loading Handle Attributes

– Direct Path Context Handle (OCIDirPathCtx) Attributes

– Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes

– Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes

– Direct Path Stream Handle (OCIDirPathStream) Attributes

– Direct Path Column Parameter Attributes

• Process Handle Attributes

• Event Handle Attributes

• Conventions
For each handle type, the attributes that can be read or changed are listed.

• DDL Event Descriptor Attributes
Lists and describes a DDL event.

• Environment Handle Attributes
Lists and describes environment handle attributes.

• Error Handle Attributes
Lists and describes error handle attributes.

• Service Context Handle Attributes
Lists and describes service context handle attributes.

• Server Handle Attributes
Lists and describes server handle attributes.

• Administration Handle Attributes
Lists and describes administration handle attributes.

• Connection Pool Handle Attributes
Lists and describes connection pool handle attributes.

• Transaction Handle Attributes
Lists and describes transaction handle attributes.

• Statement Handle Attributes
Lists and describes statement handle attributes.

• Bind Handle Attributes
Lists and describes bind handle attributes.

• Define Handle Attributes
Lists and describes define handle attributes.

• Describe Handle Attributes
Lists and describes describe handle attributes.

Appendix A

A-2

• Parameter Descriptor Attributes
Lists and describes parameter descriptor attributes.

• Shard Instance Descriptor Attributes
Lists and describes shard instance descriptor attributes.

• SODA Document Handle Attributes

• SODA Collection Handle Attributes
Lists and describes the OCI SODA collection handle attributes.

• SODA Output Options Handle Attributes
Lists and describes the OCI SODA Output Options handle attributes. This handle is used
to return the number of documents processed by a bulk operation. Currently, it is returned
only by bulk insert methods.

• SODA Operation Options Handle Attributes
Lists and describes the OCI SODA Operation Options handle attributes.

• LOB Descriptor and LOB Locator Attributes
Lists and describes LOB locator attributes.

• JSON Descriptor Attributes
This section describes the JSON attributes.

• Complex Object Attributes
Lists and describes complex object attributes.

• Database Advanced Queuing Descriptor Attributes
Lists and describes Database Advanced Queuing descriptor attributes

• Subscription Handle Attributes
Lists and describes subscription handle attributes.

• Direct Path Loading Handle Attributes
Lists and describes direct path loading handle attributes.

• Process Handle Attributes
Lists and describes process handle attributes.

• Event Handle Attributes
Lists and describes event handle attributes.

A.1 Conventions
For each handle type, the attributes that can be read or changed are listed.

Each attribute listing includes the following information:

Mode
The following modes are valid:
READ - The attribute can be read using OCIAttrGet().
WRITE - The attribute can be modified using OCIAttrSet().
READ/WRITE - The attribute can be read using OCIAttrGet(), and it can be modified using
OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Appendix A
Conventions

A-3

Attribute Data Type
This is the data type of the attribute. If necessary, a distinction is made between the data type
for READ and WRITE modes.

Valid Values
In some cases, only certain values are allowed, and they are listed here.

Example
In some cases an example is included.

A.2 DDL Event Descriptor Attributes
Lists and describes a DDL event.

The following attributes are used for a DDL event.

OCI_ATTR_DDL_EVENT_OBJECT_TYPE

Mode
READ

Description
The type of table related DDL.

• OCI_DDL_TABLE: Table DDL

• OCI_DDL_INDEX: Index DDL over registered table

Attribute Data Type
ub4 *

OCI_ATTR_DDL_EVENT_OBJECT_OWNER

Mode
READ

Description
The table owner name. It is case sensitive but unquoted.

Attribute Data Type
Oratext *

OCI_ATTR_DDL_EVENT_OBJECT_NAME

Mode
READ

Description
The table name. It is case sensitive but unquoted.

Attribute Data Type
Oratext *

OCI_ATTR_DDL_EVENT_OPERATION

Mode
READ

Appendix A
DDL Event Descriptor Attributes

A-4

Description
Flags describing the operations on the table. Possible values are:

• OCI_DDL_CREATE
• OCI_DDL_ALTER
• OCI_DDL_DROP
• OCI_DDL_RENAME
• OCI_DDL_TRUNCATE
• OCI_DDL_FLASHBACK
• OCI_DDL_PMOP

Attribute Data Type
ub4 *

OCI_ATTR_DDL_EVENT_CSCN

Mode
READ

Description
Commit SCN of Table DDL change.

Attribute Data Type
ub8 *

OCI_ATTR_DDL_EVENT_TIME

Mode
READ

Description
UTC Timestamp of Table DDL change.

Attribute Data Type
OCIDateTime *

OCI_ATTR_DDL_EVENT_DBNAME

Mode
READ

Description
Database name

Attribute Data Type
Oratext *

A.3 Environment Handle Attributes
Lists and describes environment handle attributes.

The following attributes are used for the environment handle.

Appendix A
Environment Handle Attributes

A-5

OCI_ATTR_SUPPRESS_ERROR_URL

Mode
WRITE

Description
This attribute must to be set to TRUE to disable the Oracle error help URL from getting
appended into the error message returned by OCIErrorGet() function. To re-enable the
Oracle error help URL in the error message, this attribute must be set to FALSE.

Attribute Data Type
Boolean *

See Also:

OCIErrorGet()

OCI_ATTR_ALLOC_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for allocation durations for the
application associated with the environment handle.

Attribute Data Type
OCIDuration */OCIDuration

OCI_ATTR_BIND_DN

Mode
READ/WRITE

Description
The login name (DN) to use when connecting to the LDAP server.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_CACHE_ARRAYFLUSH

Mode
READ/WRITE

Description
When this attribute is set to TRUE, during OCICacheFlush() the objects that belong to the same
table are flushed, which can considerably improve performance. An attribute value of TRUE
should only be used when the order in which the objects are flushed is not important. When
the attribute value is set to TRUE, it is not guaranteed that the order in which the objects are
marked dirty is preserved.

Appendix A
Environment Handle Attributes

A-6

See Also:

Object Cache Parameters and About Flushing Changes to the Server

Attribute Data Type
boolean */boolean

OCI_ATTR_CACHE_MAX_SIZE

Mode
READ/WRITE

Description
Sets the maximum size (high watermark) for the client-side object cache as a percentage of
the optimal size. Usually you can set the value at 10%, the default, of the optimal size,
OCI_ATTR_CACHE_OPT_SIZE. Setting this attribute to 0 results in a value of 10 being used. The
object cache uses the maximum and optimal values for freeing unused memory in the object
cache.

See Also:

Object Cache Parameters

Attribute Data Type
ub4 */ub4

OCI_ATTR_CACHE_OPT_SIZE

Mode
READ/WRITE

Description
Sets the optimal size for the client-side object cache in bytes. The default value is 8
megabytes (MB). Setting this attribute to 0 results in a value of 8 MB being used.

See Also:

Object Cache Parameters

Attribute Data Type
ub4 */ub4

OCI_ATTR_ENV_CHARSET_ID

Mode
READ

Description
Local (client-side) character set ID. Users can update this setting only after creating the
environment handle but before calling any other OCI functions. This restriction ensures the

Appendix A
Environment Handle Attributes

A-7

consistency among data and metadata in the same environment handle. When character set
ID is UTF-16, an attempt to get this attribute is invalid.

Attribute Data Type
ub2 *

OCI_ATTR_ENV_NCHARSET_ID

Mode
READ

Description
Local (client-side) national character set ID. Users can update this setting only after creating
the environment handle but before calling any other OCI functions. This restriction ensures the
consistency among data and metadata in the same environment handle. When character set
ID is UTF-16, an attempt to get this attribute is invalid.

Attribute Data Type
ub2 *

OCI_ATTR_ENV_NLS_LANGUAGE

Mode
READ/WRITE

Description
The name of the language used for the database sessions created from the current
environment handle. While getting this value, users should pass an allocated buffer, which will
be filled with the language name.

Attribute Data Type
oratext ** or oratext *

OCI_ATTR_ENV_NLS_TERRITORY

Mode
READ/WRITE

Description
The name of the territory used for the database sessions created from the current
environment handle. While getting this value, users should pass an allocated buffer, which will
be filled with the territory name.

Attribute Data Type
oratext ** or oratext *

OCI_ATTR_ENV_UTF16

Mode
READ

Description
Encoding method is UTF-16. The value 1 means that the environment handle is created when
the encoding method is UTF-16, whereas 0 means that it is not. This attribute value can only
be set by the call to OCIEnvCreate() and cannot be changed later.

Appendix A
Environment Handle Attributes

A-8

Attribute Data Type
ub1 *

OCI_ATTR_EVTCBK

Mode
WRITE

Description
This attribute registers an event callback function.

See Also:

HA Event Notification

Attribute Data Type
OCIEventCallback

OCI_ATTR_EVTCTX

Mode
WRITE

Description
This attribute registers a context passed to an event callback.

See Also:

HA Event Notification

Attribute Data Type
void *

OCI_ATTR_HEAPALLOC

Mode
READ

Description
The current size of the memory allocated from the environment handle. This may help you
track where memory is being used most in an application.

Attribute Data Type
ub4 *

OCI_ATTR_LDAP_AUTH

Mode
READ/WRITE

Description
The authentication mode. The following are the valid values:
0x0: No authentication; anonymous bind.

Appendix A
Environment Handle Attributes

A-9

0x1: Simple authentication; user name and password authentication.
0x5: SSL connection with no authentication.
0x6: SSL: only server authentication required.
0x7: SSL: both server authentication and client authentication are required.
0x8: Authentication method is determined at run time.

Attribute Data Type
ub2 */ub2

OCI_ATTR_LDAP_CRED

Mode
READ/WRITE

Description
If the authentication method is "simple authentication" (user name and password
authentication), then this attribute holds the password to use when connecting to the LDAP
server.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_LDAP_CTX

Mode
READ/WRITE

Description
The administrative context of the client. This is usually the root of the Oracle Database LDAP
schema in the LDAP server.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_LDAP_HOST

Mode
READ/WRITE

Description
The name of the host on which the LDAP server runs.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_LDAP_PORT

Mode
READ/WRITE

Description
The port on which the LDAP server is listening.

Attribute Data Type
ub2 */ub2

Appendix A
Environment Handle Attributes

A-10

OCI_ATTR_SODA_METADATA_CACHE

Mode
READ/WRITE

Description
By default, SODA metadata caching is not enabled. If this attribute value is set to TRUE, then it
turns on caching of collection descriptors. If the value is set to FALSE, then it disables and
purges any pre-existing collection descriptor cache entries.

Attribute Data Type
boolean */boolean

OCI_ATTR_OBJECT

Mode
READ

Description
Returns TRUE if the environment was initialized in object mode.

Attribute Data Type
boolean *

OCI_ATTR_PINOPTION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_PIN_DEFAULT for the application associated with the
environment handle.
For example, if OCI_ATTR_PINOPTION is set to OCI_PIN_RECENT, and OCIObjectPin() is called
with the pin_option parameter set to OCI_PIN_DEFAULT, the object is pinned in
OCI_PIN_RECENT mode.

Attribute Data Type
OCIPinOpt */OCIPinOpt

OCI_ATTR_OBJECT_NEWNOTNULL

Mode
READ/WRITE

Description
When this attribute is set to TRUE, newly created objects have non-NULL attributes.

See Also:

About Creating Objects

Attribute Data Type
boolean */boolean

Appendix A
Environment Handle Attributes

A-11

OCI_ATTR_OBJECT_DETECTCHANGE

Mode
READ/WRITE

Description
When this attribute is set to TRUE, applications receive an ORA-08179 error when attempting
to flush an object that has been modified in the server by another committed transaction.

See Also:

About Implementing Optimistic Locking

Attribute Data Type
boolean */boolean

OCI_ATTR_PIN_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for pin durations for the application
associated with the environment handle.

Attribute Data Type
OCIDuration */OCIDuration

OCI_ATTR_SHARED_HEAPALLOC

Mode
READ

Description
Returns the size of the memory currently allocated from the shared pool. This attribute works
on any environment handle, but the process must be initialized in shared mode to return a
meaningful value. This attribute is read as follows:

ub4 heapsz = 0;
OCIAttrGet((void *)envhp, (ub4)OCI_HTYPE_ENV,
 (void *) &heapsz, (ub4 *) 0,
 (ub4)OCI_ATTR_SHARED_HEAPALLOC, errhp);

Attribute Data Type
ub4 *

OCI_ATTR_SUBSCR_PORTNO

Mode
READ/WRITE

Description
The client port used to receive notifications. It is set on the client's environment handle.

Appendix A
Environment Handle Attributes

A-12

Attribute Data Type
ub4 *

OCI_ATTR_WALL_LOC

Mode
READ/WRITE

Description
If the authentication method is SSL authentication, this attribute contains the location of the
client wallet.

Attribute Data Type
oratext **/oratext *

A.4 Error Handle Attributes
Lists and describes error handle attributes.

The following attributes are used for the error handle.

OCI_ATTR_DML_ROW_OFFSET

Mode
READ

Description
Returns the offset (into the DML array) at which the error occurred.

Attribute Data Type
ub4 *

OCI_ATTR_ERROR_IS_RECOVERABLE

Mode
READ

Description
This attribute is set to TRUE if the error in the error handle is recoverable. If the error is not
recoverable, it is set to FALSE.

Attribute Data Type
Boolean *

A.5 Service Context Handle Attributes
Lists and describes service context handle attributes.

The following attributes are used for service context handle.

OCI_ATTR_CALL_TIMEOUT

Mode
READ/WRITE

Appendix A
Error Handle Attributes

A-13

Description
A database round-trip call using the service context times out within the specified time in milli-
seconds, if not completed. When the call times out, a network timeout error is returned. This
attribute can be set dynamically. Setting this value stays effective for all subsequent round-trip
calls executed using the same service context until a different value is set. To remove the
timeout, the value must be set to 0.
This is a client-only change. So, for using this feature, you must use a release 18c client. This
feature is database version agnostic, that is, you can use this feature with any supported
version of the database.
Timeout values set in different places are effective according to the following order of
precedence (where 1 is the highest precedence):

1. Call timeout set on the OCI handle using OCIAttrSet().

2. Timeout set with the OCI attributes, OCI_ATTR_SEND_TIMEOUT and
OCI_ATTR_RECEIVE_TIMEOUT.

3. Timeout set in the sqlnet.ora file with the parameters, SQLNET.RECV_TIMEOUT and
SQLNET.SEND_TIMEOUT.

Error returned to the application:

ORA-03156 "OCI call timed out"

The Call timeout is on each individual round-trip between OCI and Oracle Database. Each
OCI method or operation may require zero or more round-trips to Oracle Database. The
timeout value applies to each round-trip individually, not to the sum of all round-trips. Time
spent processing in OCI before or after the completion of each round-trip is not counted.

• If the time from the start of any round-trip to the completion of the same round-trip
exceeds the timeout value, then the operation is halted and an Oracle error is returned.

• In the case where an OCI operation requires more than one round-trip and each round-trip
takes less than the timeout value, then no timeout occurs, even if the sum of all round-trip
calls exceeds the timeout value.

• If no round-trip is required, the operation will never be interrupted.

After a timeout occurs, OCI attempts to clean up the internal connection state. The cleanup is
allowed to take another timeout value. If the cleanup was successful, an ORA-3156 will be
returned and the application can continue to use the connection.
For small values of the timeout value, the connection cleanup may not complete successfully
within the additional timeout period. In this case an ORA-3113 is returned, and the following
OCI call using the same connection gets an ORA-3114 and the connection will no longer be
usable. It should be released.
Alternatively, the OCI_ATTR_BREAK_ON_NET_TIMEOUT attribute can additionally be set to FALSE.
This setting drops the connection, eliminating calls to OCIBreak() and OCIReset() when a
timeout occurs.

Note:

When call timeout is set, then ora-12161 may be returned while reading a large
amount of data. This error must be treated as ora-3136.

Attribute Data Type
ub4*/ub4

Appendix A
Service Context Handle Attributes

A-14

Example

static void func1()
{
sword status = 0;
 OCIStmt *stmthp = (OCIStmt *)0;
 OraText *sqlStmt = (OraText *)"SELECT EMPNO FROM SCOTT.EMP";
 ub4 set_timeout= 200; /* in milliseconds */
 ub4 get_timeout = 0;

 Checkerr (errhp, \
 OCIStmtPrepare2 ((OCISvcCtx *)svchp, (OCIStmt **)&stmthp, \
 (OCIError *)errhp, (OraText *)sqlStmt, (ub4)strlen((char *)sqlStmt), \
 (OraText *)NULL, (ub4) 0, (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT), \
 (OraText *)"OCIStmtPrepare2");

 /* Set the call Timeout (in milliseconds) */
 Checkerr (errhp,
 OCIAttrSet(svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) &set_timeout, (ub4) 0,
 (ub4) OCI_ATTR_CALL_TIMEOUT, errhp),
 "OCIAttrSet OCI_ATTR_CALL_TIMEOUT");

 if ((status = OCIStmtExecute ((OCISvcCtx *)svchp, \
 (OCIStmt *)stmthp, (OCIError *)errhp, (ub4)1, (ub4)0, \
 (OCISnapshot *)0, (OCISnapshot *)0, (ub4)OCI_DEFAULT)) \
 != OCI_SUCCESS)
 {
 printf ("OCIStmtExecute Failed with timeout: %dms\n", set_timeout);
 Checkerr (errhp, status,(OraText *)"OCIStmtExecute");
 }

 /* Get the call Timeout (in milliseconds) */
 Checkerr (errhp,
 OCIAttrGet(svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) &get_timeout, (ub4) 0,
 (ub4) OCI_ATTR_CALL_TIMEOUT, errhp),
 "OCIAttrGet OCI_ATTR_CALL_TIMEOUT");

 Checkerr (errhp, \
 OCIStmtRelease ((OCIStmt *)stmthp, (OCIError *)errhp,(dvoid *)NULL, \
 0, OCI_DEFAULT), (oratext *)"StmtRelease");
} /* End of func1 */

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the service context.

Attribute Data Type
OCIEnv **

Appendix A
Service Context Handle Attributes

A-15

OCI_ATTR_INSTNAME

See the OCI_ATTR_INSTNAME attribute in Shard Instance Descriptor Attributes for more
information about its use on the service context.

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7 mode (for
example, through an OCISvcCtxToLda() call). A nonzero (TRUE) return value indicates that the
application is currently running in Oracle release 8 mode, a zero (false) return value indicates
that the application is currently running in Oracle release 7 mode.

Attribute Data Type
ub1 *

Example
The following code sample shows how this attribute is used:

in_v8_mode = 0;
OCIAttrGet ((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (ub1 *)&in_v8_mode,
 (ub4) 0, OCI_ATTR_IN_V8_MODE, errhp);
if (in_v8_mode)
 fprintf (stdout, "In V8 mode\n");
else
 fprintf (stdout, "In V7 mode\n");

OCI_ATTR_MAX_CHARSET_RATIO

Mode
READ

Description
Returns the maximum character set expansion ratio from server to client character set. Using
these attributes is useful in scenarios where there are different character sets between server
and client. This is useful to allocate optimal memory of buffers before conversion so that when
data is returned from the database, sufficient space can be allocated to hold it.

Attribute Data Type
ub4 *

Example

size_t cratio;
OCIAttrGet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (size_t *)&cratio, (ub4) 0,
OCI_ATTR_MAX_CHARSET_RATIO, errhp);
printf("Conversion ratio from server to client character set is %d\n",
cratio);

OCI_ATTR_MAX_NCHARSET_RATIO

Mode
READ

Appendix A
Service Context Handle Attributes

A-16

Description
Returns the maximum character set expansion ratio from server to client national character
set. Using these attributes is useful in scenarios where there are different national character
sets between server and client. This is useful to allocate optimal memory of buffers before
conversion so that when data is returned from the database, sufficient space can be allocated
to hold it.

Attribute Data Type
ub4 *

Example

size_t cratio;
OCIAttrGet((void *)svchp, (ub4)OCI_HTYPE_SVCCTX, (size_t *)&cratio, (ub4) 0,
OCI_ATTR_MAX_NCHARSET_RATIO, errhp);
printf("Conversion ratio from server to client ncharset is %d\n", cratio);

OCI_ATTR_SERVER

Mode
READ/WRITE

Description
When read, returns the pointer to the server context attribute of the service context.
When changed, sets the server context attribute of the service context.

Attribute Data Type
OCIServer ** / OCIServer *

OCI_ATTR_SESSION

Mode
READ/WRITE

Description
When read, returns the pointer to the authentication context attribute of the service context.
When changed, sets the authentication context attribute of the service context.

Attribute Data Type
OCISession **/ OCISession *

OCI_ATTR_STMTCACHE_CBK

Mode
READ/WRITE

Description
Used to get and set the application's callback function on the OCISvcCtx handle. This function,
if registered on OCISvcCtx, is called when a statement in the statement cache belonging to
this service context is purged or when the session is ended.
The callback function must be of this prototype:

sword (*OCICallbackStmtCache)(void *ctx, OCIStmt *stmt, ub4 mode)

ctx: IN argument. This is the same as the context the application has set on the current
statement handle.

Appendix A
Service Context Handle Attributes

A-17

stmt: IN argument. This is the statement handle that is being purged from the cache.
mode: IN argument. This is the mode in which the callback function is being called. Currently
only one value is supported, OCI_CBK_STMTCACHE_STMTPURGE, which means the callback is
being called during purging of the current statement.

Attribute Data Type
sword (*OCICallbackStmtCache)(void *ctx, OCIStmt *stmt, ub4 mode)

OCI_ATTR_STMTCACHESIZE

Mode
READ/WRITE

Description
The default value of the statement cache size is 20 statements, for a statement cache-enabled
session. The user can increase or decrease this value by setting this attribute on the service
context handle. This attribute can also be used to enable or disable statement caching for the
session, pooled or nonpooled. Statement caching can be enabled by setting the attribute to a
nonzero size and disabled by setting it to zero.

Attribute Data Type
ub4 */ ub4

OCI_ATTR_TRANS

Mode
READ/WRITE

Description
When read, returns the pointer to the transaction context attribute of the service context.
When changed, sets the transaction context attribute of the service context.

Attribute Data Type
OCITrans ** / OCITrans *

OCI_ATTR_VARTYPE_MAXLEN_COMPAT

Mode
READ

Description
Returns OCI_ATTR_MAXLEN_COMPAT_EXTENDED if the init.ora parameter max_string_size =
extended or returns OCI_ATTR_MAXLEN_COMPAT_STANDARD if the init.ora parameter
max_string_size = standard.

Attribute Data Type
ub1 *

OCI_ATTR_SESSGET_FLAGS

Mode
READ

Description
Specifies the type of connection returned by OCISessionGet.

Appendix A
Service Context Handle Attributes

A-18

Attribute Data Type
ub4

Example

ub4 sessgetFlags =
0;

if (!(lstat = OCISessionGet(envhp, errhp2, &svchp, authp,(OraText
*)poolName,
 (ub4)poolNameLen, NULL, 0, NULL, NULL, NULL,

OCI_SESSGET_SPOOL)))

{
 checkerr(errhp2, OCIAttrGet(svchp,
OCI_HTYPE_SVCCTX,

 (dvoid *) &sessgetFlags, NULL, OCI_ATTR_SESSGET_FLAGS, errhp2));
 if (sessgetFlags &
OCI_SESSGET_FLAGS_NEW)

{

 printf("Yes, it's new
connection\n");

 }
}

Valid Flags
Following flags are set:

• OCI_SESSGET_FLAGS_NEW: A new connection is created and this is not an existing
connection from the pool.

• OCI_SESSGET_FLAGS_POOLED_SERVER: Connection is to a Database Resident Connection
Pool.

• OCI_SESSGET_FLAGS_RAC_DATA_AFFN: Connection is to a RAC Affinity Enabled Database.

• OCI_SESSGET_FLAGS_SHARD: Connection is to a sharded database.

A.6 Server Handle Attributes
Lists and describes server handle attributes.

The following attributes are used for the server handle.

Appendix A
Server Handle Attributes

A-19

See Also:

The following event handle attributes are also available for the server handle:

• OCI_ATTR_DBDOMAIN

• OCI_ATTR_DBNAME

• OCI_ATTR_INSTNAME

• OCI_ATTR_INSTSTARTTIME

• OCI_ATTR_SERVICENAME

OCIXStreamOutLCRReceive() for more information about using the following
attributes

OCI_ATTR_ACCESS_BANNER

Mode
READ

Description
Displays an unauthorized access banner from a file.

Attribute Data Type
oratext **

OCI_ATTR_BREAK_ON_NET_TIMEOUT

Mode
READ/WRITE

Description
This attribute determines whether OCI sends a break after a network time out or not.

Attribute Data Type
ub1 *

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the server context.

Attribute Data Type
OCIEnv **

OCI_ATTR_EXTERNAL_NAME

Mode
READ/WRITE

Appendix A
Server Handle Attributes

A-20

Description
The external name is the user-friendly global name stored in sys.props$.value$, where name
= 'GLOBAL_DB_NAME'. It is not guaranteed to be unique unless all databases register their
names with a network directory service.
Database names can be exchanged with the server for distributed transaction coordination.
Server database names can only be accessed only if the database is open at the time the
OCISessionBegin() call is issued.

Attribute Data Type
oratext **/ oratext *

OCI_ATTR_FOCBK

Mode
READ/WRITE

Description
Sets the failover callback to the callback definition structure of type OCIFocbkStruct as part of
failover callback registration and unregistration on the server context handle.

See Also:

Transparent Application Failover in OCI

Attribute Data Type
OCIFocbkStruct *

OCI_ATTR_INTERNAL_NAME

Mode
READ/WRITE

Description
Sets the client database name that is recorded when performing global transactions. The DBA
can use the name to track transactions that may be pending in a prepared state due to
failures.

Attribute Data Type
oratext ** / oratext *

OCI_ATTR_INSTNAME

See the OCI_ATTR_INSTNAME attribute in Shard Instance Descriptor Attributes for more
information about its use as a server handle attribute.

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7 mode (for
example, through an OCISvcCtxToLda() call). A nonzero (TRUE) return value indicates that the

Appendix A
Server Handle Attributes

A-21

application is currently running in Oracle release 8 mode, a zero (FALSE) return value indicates
that the application is currently running in Oracle release 7 mode.

Attribute Data Type
ub1 *

OCI_ATTR_NONBLOCKING_MODE

Mode
READ/WRITE

Description
This attribute determines the blocking mode. When read, the attribute value returns TRUE if the
server context is in nonblocking mode. When set, it toggles the nonblocking mode attribute.
You must set this attribute only after OCISessionBegin() or OCILogon2() has been called.
Otherwise, an error is returned.

Attribute Data Type
ub1 */ub1

See Also:

Nonblocking Mode in OCI

OCI_ATTR_RECEIVE_TIMEOUT

Mode
READ/WRITE

Description
Time specified in milliseconds that a client waits for response data from the database server.
When set to a value of zero, the timeout functionality is disabled and the client may wait a long
period of time for a response from a database server.
The semantics of this attribute is the same as that of SQLNET.RECV_TIMEOUT that can be
specified in the sqlnet.ora file. When set on the server handle, the value overrides the one
specified in the sqlnet.ora file.

Attribute Data Type
ub4*/ub4

OCI_ATTR_SEND_TIMEOUT

Mode
READ/WRITE

Description
Time specified in milliseconds that a client waits to complete send operations to the database
server. When set to a value of zero, the timeout functionality is disabled and the client may
wait a long period of time to complete sending the data to the database server.
The semantics of this attribute is the same as that of SQLNET.SEND_TIMEOUT that can be
specified in the sqlnet.ora file. When set on the server handle, the value overrides the one
specified in the sqlnet.ora file.

Appendix A
Server Handle Attributes

A-22

Attribute Data Type
ub4*/ub4

OCI_ATTR_SERVER_GROUP

Mode
READ/WRITE

Description
An alphanumeric string not exceeding 30 characters specifying the server group. This attribute
can only be set after calling OCIServerAttach().

See Also:

Password and Session Management

Attribute Data Type
oratext **/oratext *

OCI_ATTR_SERVER_STATUS

Mode
READ

Description
Returns the current status of the connection by doing a light weight connection health check.
Values are:

• OCI_SERVER_NORMAL - The connection is alive.

• OCI_SERVER_NOT_CONNECTED - The connection has been terminated.

Attribute Data Type
ub4 *

Example
The following code sample shows how this parameter is used:

ub4 serverStatus = 0
OCIAttrGet((void *)srvhp, OCI_HTYPE_SERVER,
 (void *)&serverStatus, (ub4 *)0, OCI_ATTR_SERVER_STATUS, errhp);
if (serverStatus == OCI_SERVER_NORMAL)
 printf("Connection is up.\n");
else if (serverStatus == OCI_SERVER_NOT_CONNECTED)
 printf("Connection is down.\n");

OCI_ATTR_TAF_ENABLED

Mode
READ

Description
Set to TRUE if the server handle is TAF-enabled and FALSE if not.

Appendix A
Server Handle Attributes

A-23

See Also:

Custom Pooling: Tagged Server Handles

Attribute Data Type
boolean *

OCI_ATTR_USER_MEMORY

Mode
READ

Description
If the handle was allocated with extra memory, this attribute returns a pointer to the user
memory. A NULL pointer is returned for those handles not allocated with extra memory.

See Also:

Custom Pooling: Tagged Server Handles

Attribute Data Type
void *

OCI_ATTR_SERVER_TYPE

Mode
READ

Description
Enables you to determine the type of the server application to which it is connected to.
Supported values are:

• OCI_SERVER_TYPE_NONE: Not connected

• OCI_SERVER_TYPE_DEDICATED: Connected to dedicated server

• OCI_SERVER_TYPE_SHARED: Connected to shared server

• OCI_SERVER_TYPE_POOLED: Connected to pooled server

When connected to CMAN Supported values are:

• OCI_SERVER_TYPE_DEDICATED: without PRCP

• OCI_SERVER_TYPE_POOLED: with PRCP enabled

Attribute Data Type
ub1 serverType

Appendix A
Server Handle Attributes

A-24

Example
The following code sample shows how this attribute is used:

OCIAttrGet((void *) svchp,(ub4) OCI_HTYPE_SVCCTX,
 (void *)&servertype, (ub4 *) NULL,
 (ub4) OCI_ATTR_SERVER_TYPE, errhp);

• Authentication Information Handle Attributes
Lists and describes authentication information handle attributes.

• User Session Handle Attributes
Lists and describes user session handle attributes.

A.6.1 Authentication Information Handle Attributes
Lists and describes authentication information handle attributes.

These attributes also apply to the user session handle.

See Also:

User Session Handle Attributes

OCI_ATTR_IAM_PRIVKEY

Mode
WRITE

Description
This attribute specifies the private key value to be used for the connection creation when using
IAM-based token authentication. It can be set on both authentication handles (OCIAuthInfo)
and user session handles (OCISession). Authentication handle is used while creating session
pool and user handle is used while creating standalone session.

Attribute Data type
oratext *

Example Usage

 1`
OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) privKeyBuf, (ub4) privKeyLength,
 OCI_ATTR_IAM_PRIVKEY, errhp);

OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_AUTHINFO,

Appendix A
Server Handle Attributes

A-25

 (dvoid *) privKeyBuf, (ub4) privKeyLength,
 OCI_ATTR_IAM_PRIVKEY, errhp);

OCI_ATTR_TOKEN

Mode
WRITE

Description
This attribute specifies the DB token value to be used for the connection creation. It can be set
on both authentication (OCIAuthInfo) and user session (OCISession) handles.
OCI_ATTR_IAM_TOKEN attribute is deprecated.
Through this attriute, IAM token or Azure AD Access token can be provided.

Note:

Two types of DB tokens are supported:

• IAM Token: Both OCI_ATTR_TOKEN and OCI_ATTR_IAM_PRIVKEY attributes must to
be provided.

• Azure OAuth2 Token: Both OCI_ATTR_TOKEN and OCI_ATTR_TOKEN_ISBEARER =
TRUE must be provided.

Maximum size of the token supported is 16k.

See Also:

• Authenticating and Authorizing IAM Users for Oracle DBaaS Databases

• Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Databases

Attribute Data Type
oratext *

Example Usage

OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) tokenBuf, (ub4) tokenLength,
 OCI_ATTR_TOKEN, errhp);

OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_AUTHINFO,
 (dvoid *) tokenBuf, (ub4) tokenLength,
 OCI_ATTR_TOKEN, errhp);

Appendix A
Server Handle Attributes

A-26

OCI_ATTR_TOKEN_CBK

Mode
WRITE

Description
This OCIAuthInfo handle attribute enables an application to register a callback function that
can renew an expired token. The callback function must be implemented by the application.
During session pool expansion, if the token provided by the application during pool creation
has expired, then the OCI driver invokes this application registered callback to renew the
expired token (and private key for IAM token). The callback function needs to use the
OCIAttrSet() function on the supplied authentication handle to set the renewed DB token
(and private key for IAM token). This enables the session pool to continue creating new
sessions successfully. Before the pool is created, the application must set the callback
function pointer as an attribute on the OCIAuthInfo handle of the session pool.
OCI_ATTR_IAM_CBK attribute is deprecated. Oracle recommends that this token callback should
avoid blocking calls.

Note:

This attribute can be used for both IAM token and Azure AD OAuth2 token.

Attribute Data type
sword (*OCICallbackSetToken)(void *ctx, OCIAuthInfo *authp, ub4 mode);
Where:

• ctx: IN argument, is an opaque context that the application has set on the same
authentication handle.

• authp: IN argument, is the session pool’s authentication handle that OCI passes to the
callback, so that the application can set the latest DB token and private key attributes.

• mode: IN argument: Currently OCI_DEFAULT is passed to the callback, indicating this
callback is being called as the DB token (or private key for IAM token) has expired and
new values need to be provided.

Note:

This attribute can be used for both IAM and OAuth2 tokens.

Returns
OCI_SUCCESS if the DB token settings succeed. Otherwise, it should return OCI_ERROR.

Example Usage

OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_AUTHINFO,
 (dvoid *) appCbkFnPtr,
 (ub4) 0, OCI_ATTR_TOKEN_CBK, errhp);

Appendix A
Server Handle Attributes

A-27

Sample Callback code that the application needs to write:

sword *callback_fn(void *ctx, OCIAuthInfo *authp, ub4 mode)
{
 OCIError *ehp;
 sword status=OCI_SUCCESS;
 /* Code to procure the renewed token */
 …
 /* Set the renewed token value and key value on the auth handle */
 /* Use a pre-allocated error handle exclusively for these calls */
 status = OCIAttrSet((dvoid *) authp, (ub4)
OCI_HTYPE_AUTHINFO,
 (dvoid *) newtokenBuf, (ub4)
newtokenLength,
 OCI_ATTR_TOKEN, ehp);
 if (!status)
 status = OCIAttrSet((dvoid *) authp, (ub4)
OCI_HTYPE_AUTHINFO,
 (dvoid *) newprivKeyBuf, (ub4)
newprivKeyLength,
 OCI_ATTR_IAM_PRIVKEY, ehp);
 return status;
}

OCI_ATTR_TOKEN_CBKCTX

Mode
WRITE

Description
This attribute specifies the opaque context pointer to be passed into the token refreshing
callback when it is called by OCI. A pre allocated error handle exclusively for this purpose
could be embedded in this context. OCI_ATTR_TOKEN_CBKCTX attribute is deprecated.

Attribute Data type
void *

Example Usage

OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_AUTHINFO,
 (dvoid *) appCbkCtx, (ub4) 0, OCI_ATTR_TOKEN_CBKCTX, errhp);
 (dvoid *) appCbkCtx, (ub4) 0, OCI_ATTR_TOKEN_CBKCTX, errhp);

OCI_ATTR_TOKEN_ISBEARER

Mode
Write

Description
This attribute determines if the token set using OCI_ATTR_TOKEN is an IAM or a Bearer token.
By default, IAM is the default authentication and so, the value of this attribute is set to

Appendix A
Server Handle Attributes

A-28

false.The value of this attribute must be set to true, if the value of OCI_ATTR_TOKEN attribute
is set to Azure AD Access token.
If the value of this attribute is set to true, then it implies that the token is a bearer token.

Attribute Data Type
boolean

Example Usage

boolean isBearerToken = TRUE;
OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &isBearerToken, (ub4)0,
 OCI_ATTR_TOKEN_ISBEARER, errhp);

OCI_ATTR_FIXUP_CALLBACK

Mode
READ/WRITE

Description
Specifies on the authentication handle attribute the callback passed to OCISessionGet() for
applications not using an OCISessionPool or using custom pools. For applications using
OCISessionPool, this attribute must be set on the authentication handle, which in turn must be
set on the session pool handle as the attribute OCI_ATTR_SPOOL_AUTH.

See Also:

• Session Pool Handle Attributes for more information

• PL/SQL Callback for Session State Fix Up for more information

Attribute Data Type
oratext * to be provided in the format schma.package.callback_function

See Also:

Identity and Access Management (IAM) Token-Based Authentication

A.6.2 User Session Handle Attributes
Lists and describes user session handle attributes.

The following user session handle attributes also apply to the authentication information
handle.

OCI_ATTR_ACTION

Mode
WRITE

Appendix A
Server Handle Attributes

A-29

Description
The name of the current action within the current module. Can be set to NULL. When the
current action terminates, set this attribute again with the name of the next action, or NULL if
there is no next action. Can be up to 32 bytes long.

Attribute Data Type
oratext *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(void *)"insert into employees",
 (ub4)strlen("insert into employees"), OCI_ATTR_ACTION, error_handle);

OCI_ATTR_APPCTX_ATTR

Note:

This attribute is not supported with database resident connection pooling.

Mode
WRITE

Description
Specifies an attribute name of the externally initialized context.

See Also:

Session Handle Attributes Used to Set an Externally Initialized Context

Attribute Data Type
oratext *

OCI_ATTR_APPCTX_LIST

Note:

This attribute is not supported with database resident connection pooling.

Mode
READ

Description
Gets the application context list descriptor for the session.

Attribute Data Type
OCIParam **

Appendix A
Server Handle Attributes

A-30

OCI_ATTR_APPCTX_NAME

Note:

This attribute is not supported with database resident connection pooling.

Mode
WRITE

See Also:

Session Handle Attributes Used to Set an Externally Initialized Context

Description
Specifies the namespace of the externally initialized context.

Attribute Data Type
oratext *

OCI_ATTR_APPCTX_SIZE

Note:

This attribute is not supported with database resident connection pooling.

Mode
WRITE

Description
Initializes the externally initialized context array size with the number of attributes.

Attribute Data Type
ub4

OCI_ATTR_APPCTX_VALUE

Note:

This attribute is not supported with database resident connection pooling.

Mode
WRITE

Description
Specifies a value of the externally initialized context.

Appendix A
Server Handle Attributes

A-31

Attribute Data Type
oratext *

See Also:

Session Handle Attributes Used to Set an Externally Initialized Context

OCI_ATTR_AUDIT_BANNER

Mode
READ

Description
Displays a user actions auditing banner from a file.

Attribute Data Type
oratext **

OCI_ATTR_AUTOTUNING_ENABLED

Mode
READ

Description
Checks if the client session has OCI auto tuning enabled on OCI client statement caching.

Attribute Data Type
ub4 *

OCI_ATTR_CALL_TIME

Mode
READ

Description
Returns the server-side time for the preceding call in microseconds.

Attribute Data Type
ub8 *

OCI_ATTR_CERTIFICATE

Mode
WRITE

Description
Specifies the certificate of the client for use in proxy authentication. Certificate-based proxy
authentication using OCI_ATTR_CERTIFICATE will not be supported in future Oracle Database
releases. Use OCI_ATTR_DISTINGUISHED_NAME or OCI_ATTR_USERNAME attribute instead.

Attribute Data Type
ub1 *

Appendix A
Server Handle Attributes

A-32

OCI_ATTR_CLIENT_IDENTIFIER

Mode
WRITE

Description
Specifies the user identifier in the session handle. Can be up to 64 bytes long. The value is
automatically truncated if the supplied input is more than 64 bytes. It can contain the user
name, but do not include the password for security reasons. The first character of the identifier
should not be ':'. If it is, the behavior is unspecified.

Attribute Data Type
oratext *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(void *)"janedoe",
 (ub4)strlen("janedoe"), OCI_ATTR_CLIENT_IDENTIFIER,
 error_handle);

OCI_ATTR_CLIENT_INFO

Mode
WRITE

Description
Stores additional client application information. Can also be set by the
DBMS_APPLICATION_INFO package. It is stored in the V$SESSION view. Can be up to 64 bytes
long.

Attribute Data Type
oratext *

OCI_ATTR_COLLECT_CALL_TIME

Mode
READ/WRITE

Description
When set to TRUE, causes the server to measure call time, in milliseconds, for each
subsequent OCI call.

Attribute Data Type
boolean */boolean

OCI_ATTR_CONNECTION_CLASS

Mode
READ/WRITE

Description
This attribute of OCIAuthInfo handle explicitly names the connection class (a string of up to
128 characters) for a database resident connection pool.

Appendix A
Server Handle Attributes

A-33

See Also:

POOL_CONNECTION_CLASS Parameter

Attribute Data Type
oratext **/oratext *

OCI_ATTR_CURRENT_SCHEMA

Mode
READ/WRITE

Description
Calling OCIAttrSet() with this attribute has the same effect as the SQL command ALTER
SESSION SET CURRENT_SCHEMA, if the schema name and the session exist. The schema is
altered on the next OCI call that does a round-trip to the server, avoiding an extra round-trip. If
the new schema name does not exist, the same error is returned as the error returned from
ALTER SESSION SET CURRENT_SCHEMA. The new schema name is placed before database
objects in DML or DDL commands that you then enter.
When a client using this attribute communicates with a server that has a software release
earlier than Oracle Database 10g Release 2, the OCIAttrSet() call is ignored. This attribute is
also readable by OCIAttrGet().

Attribute Data Type
oratext */oratext *

Example
text schema[] = "hr";
err = OCIAttrSet((void) mysessp, OCI_HTYPE_SESSION, (void *)schema,
 (ub4)strlen((char *)schema), OCI_ATTR_CURRENT_SCHEMA, (OCIError *)myerrhp);

OCI_ATTR_DBOP

Mode
Write

Description
The name of the database operation set by the client application to be monitored in the
database. When you want to end monitoring the current running database operation, set the
value to NULL. Can be up to 30 bytes long.

See Also:

Attributes for End-to-End Application Tracing
Oracle Database SQL Tuning Guide
Oracle Database 2 Day + Performance Tuning Guide

Attribute Data Type
oratext *

Appendix A
Server Handle Attributes

A-34

Example
(void) OCIAttrSet((dvoid *) sess1, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) dbopname, (ub4) strlen((char *)dbopname),
 (ub4) OCI_ATTR_DBOP, errhp);

OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE

Mode
READ/WRITE

Description
Allows the user to enable prefetching for all the LOB locators fetched in the session. Specifies
the default prefetch buffer size for each LOB locator.

Attribute Data Type
ub4 */ub4

OCI_ATTR_DISTINGUISHED_NAME

Mode
WRITE

Description
Specifies the distinguished name of the client for use in proxy authentication.

Attribute Data Type
oratext *

OCI_ATTR_DRIVER_NAME

Mode
READ/WRITE

Description
Specifies the name of the driver layer using OCI, such as JDBC, ODBC, PHP, SQL*Plus, and
so on. Names starting with "ORA$" are reserved also. A future application can choose its own
name and set it as an aid to fault diagnosability. Set this attribute before executing
OCISessionBegin(). Pass an array containing up to 9 single-byte characters, including the null
terminator. This data is not validated and is passed directly to the server to be displayed in a
V$SESSION_CONNECT_INFO or GV$SESSION_CONNECT_INFO view. OCI accepts driver names of up
to 30 characters, which are displayed in these views. For older databases, only the first 8
characters are displayed.

Attribute Data Type
oratext **/oratext *

Example
...
oratext client_driver[9];
...
checkerr(errhp, OCIAttrSet(authp, OCI_HTYPE_SESSION,
 client_driver, (ub4)(strlen(client_driver)),
 OCI_ATTR_DRIVER_NAME, errhp));

checkerr(errhp, OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, OCI_DEFAULT);
...

Appendix A
Server Handle Attributes

A-35

OCI_ATTR_EDITION

Mode
READ/WRITE

Description
Specifies the edition to be used for this session. If a value for this attribute has not been set
explicitly, then the value in the environment variable ORA_EDITION is returned.

Attribute Data Type
oratext *

OCI_ATTR_INITIAL_CLIENT_ROLES

Mode
WRITE

Description
Specifies the role or roles that the client is to initially possess when the application server
connects to an Oracle database on its behalf.

Attribute Data Type
oratext **.

OCI_ATTR_LTXID

Mode
READ

Description
This attribute is defined for the session handle and is used to override the default LTXID
(logical transaction ID). Applications that associate the logical session with the web user may
want to explicitly attach the LTXID to a physical session and explicitly detach the LTXID when
the request is complete.
In READ mode, this attribute is used to retrieve the LTXID embedded in the OCISession handle.

Attribute Data Type
ub1 * (with length; value is copied; is really a ub1 array)

OCI_ATTR_MAX_OPEN_CURSORS

Mode
READ

Description
The maximum number of SQL statements that can be opened in one session. On the server's
parameter file, this value is set using the parameter open_cursors. The OCI user should leave
some threshold and not reach this limit because the server can also open internal statements
(cursors) as part of processing user calls. Applications can use this attribute to limit the
number of statement handles opened on a given session. This attribute returns a proper value
only when connected to a 12.1 server or later.
If the cursors in the server session exceed the open cursor setting, then the server returns an
error to the client saying that the value for max cursors is exceeded.
Also, note that this value should only be looked at from the session handle after an
OCISessionGet() or equivalent login call has been done.

Appendix A
Server Handle Attributes

A-36

Attribute Data Type
ub4 *

Example
OCIAttrGet((void *)usrhp, OCI_HTYPE_SESSION,
 (void *)&ub4localvariable, (ub4 *)0, OCI_ATTR_MAX_OPEN_CURSORS, errhp);

OCI_ATTR_MIGSESSION

Mode
READ/WRITE

Description
Specifies the session identified for the session handle. Allows you to clone a session from one
environment to another, in the same process or between processes. These processes can be
on the same system or different systems. For a session to be cloned, the session must be
authenticated as migratable.

See Also:

Password and Session Management

Attribute Data Type
ub1 *

Example
The following code sample shows how this attribute is used:

OCIAttrSet ((void *) authp, (ub4)OCI_HTYPE_SESSION, (void *) mig_session,
 (ub4) sz, (ub4)OCI_ATTR_MIGSESSION, errhp);

OCI_ATTR_MODULE

Mode
WRITE

Description
The name of the current module running in the client application. When the current module
terminates, call with the name of the new module, or use NULL if there is no new module. Can
be up to 48 bytes long.

Attribute Data Type
oratext *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(void *)"add_employee",
 (ub4)strlen("add_employee"), OCI_ATTR_MODULE, error_handle);

OCI_ATTR_ORA_DEBUG_JDWP

Mode
WRITE

Appendix A
Server Handle Attributes

A-37

Description
Specifies the external debugger's location the database session is to connect to after logon.
This allows the user to initiate debugging of the database application.
The format of the attribute is a list of parameter names and values separated by semi-colons.
The parameters will be passed to the DBMS_ DEBUG_JDWP_CUSTOM.CONNECT_DEBUGGER package
API to connect the database session to the debugger. The parameter name can be a quoted
or unquoted PL/SQL identifier. The parameter value is a character string, either quoted by
single-quotes, or unquoted, which is terminated by a semi-colon. To escape a single quote in a
quoted string, use two consecutive single quotes. No space is allowed anywhere between the
parameter names and their values.
The attribute should contain at least the host and port parameters that specify the Internet
Protocol dotted address or host name of the computer the debugger is running, and the TCP
port number the debugger is listening to for debug connections.

Attribute Data Type
oratext *

Example
OCIAttrSet(session,
 OCI_HTYPE_SESSION,
 (void *)"janedoe",
 (ub4)strlen("janedoe"),
 OCI_ATTR_CLIENT_IDENTIFIER,
 error_handle);

OCI_ATTR_PING_INTERVAL

Mode
READ/WRITE

Attribute Data Type
sb2

Handles Supported
Service Context and Session Pool Handle

Description
The OCIRequestBegin() and OCISessionGet() functions checks the value of this attribute to
determine if the session health must be validated with an implicit round trip using OCIPing()
before returning a session to the application. This validation can alleviate connectivity
problems with sessions that have been idle for some time. If session validation is desired, then
use this attribute to set the frequency (in seconds) of validation. The default ping interval is 60
seconds. This attribute is set on the service context passed to OCIRequestBegin() and is set
on the session pool handle for OCISessionGet() calls.
Valid values are:

• OCI_PING_ALWAYS: The fuctions OCIRequestBegin() or OCISessionGet() always perform
an implicit OCIPing(). This is equivalent to a ping interval of zero.

• OCI_PING_NEVER: The functions OCIRequestBegin() or OCISessionGet() never performs
an implicit OCIPing(). This is equivalent to ping interval of -1.

• Non-zero positive integer, with a maximum value of 3600 seconds.

When OCIRequestBegin() and OCISessionGet() is called to return a pooled connection, and
the connection has been idle in the pool (not “checked out” to the application by
OCIRequestBegin() and OCISessionGet()) for the specified OCI_ATTR_PING_INTERVAL, then an
internal “ping” is performed first. If the ping detects the connection is invalid, then OCI client

Appendix A
Server Handle Attributes

A-38

internally drops the unusable connection and obtains another from the pool. This second
connection may also need a ping. This ping-and-release process may be repeated until:

• an existing connection that does not qualify for pinging is obtained. The
OCIRequestBegin() and OCISessionGet() calls return this to the application. Note that
since a ping may not have been performed, the connection is not guaranteed to be usable.

• a new, usable connection is opened. This is returned to the application.

• a number of unsuccessful attempts to find a valid connection have been made, after which
an error is returned to the application.

OCI_ATTR_PASSWORD

Mode
WRITE

Description
Specifies a password to use for authentication.

Attribute Data Type
oratext *

OCI_ATTR_PROXY_CLIENT

Mode
WRITE

Description
Specifies the target user name for access through a proxy.

Attribute Data Type
oratext *

OCI_ATTR_PROXY_CREDENTIALS

Mode
WRITE

Description
Specifies that the credentials of the application server are to be used for proxy authentication.

Attribute Data Type
OCISession

OCI_ATTR_PURITY

Mode
READ/WRITE

Description
An attribute of the OCIAuthInfo handle for database resident connection pooling. Values are
OCI_ATTR_PURITY_NEW, the application requires a session not tainted with any prior session
state; or OCI_ATTR_PURITY_SELF, the session can have been used before. If the application
does not specify the purity when invoking OCISessionGet(), then the purity value
OCI_ATTR_PURITY_DEFAULT is assumed. This later translates to either OCI_ATTR_PURITY_NEW or
OCI_ATTR_PURITY_SELF depending upon whether the application logic is set up to use a new
session or to reuse a pooled session.

Appendix A
Server Handle Attributes

A-39

Note:

POOL_PURITY Parameter

Attribute Data Type
ub4 */ub4

OCI_ATTR_SESSSTATE_CONSISTENCY

Mode
READ/WRITE

Attribute Data Type
ub4

Handles Supported
Service Context Handle

Description
Session state stable (SSS) cursors, are typically long-running cursors that stay open outside
of transactional work. This support increases TAC protection coverage for applications with
SSS cursors because it establishes implicit request boundaries more often, even when such
cursors are open. A session state stable (SSS) cursor can remain valid for the entire duration
of an explicit request, and can be replayed separately from the main request.
This attribute must be set after authentication is complete, the server is attached with the
session, and the server handles have been set in the service context. The default value is
inherited from the value of the service parameter SESSION_STATE_CONSISTENCY at the time of
authentication. If an application sets a value on the service context after authentication, then
that value overrides the value inherited from the service parameter. An override is detected
when a cursor is parsed by the call to OCIStmtPrepare2(). If the statement is a SELECT (not
SELECT for UPDATE), then it is designated as a session state stable cursor. If
OCI_ATTR_SESSSTATE_CONSISTENCY is set to OCI_SESSSTATECONS_HYBRID, then the session is
connected to a failover type AUTO service, the session has no active transactions and the
session state is no server restorable and not unrestorable. Otherwise, the internal analysis for
detecting the session state cursors is done for failover type AUTO.

Write Values Supported
OCI_SESSSTATECONS_AUTO: Internal analysis detects session state stable cursors.
OCI_SESSSTATECONS_HYBRID: Cursors (SELECT and not SELECT for UPDATE) are always classified
as session state stable if failover type is AUTO, no transaction is in progress at execute time
and session state is no server restorable and not unrestorable. No internal analysis is done.

Read Values Supported
OCI_SESSSTATECONS_AUTO
OCI_SESSSTATECONS_HYBRID
OCI_SESSSTATECONS_DYNAMIC
OCIP_SESSSTATECONS_STATIC: Deprecated Starting Oracle Database Release 23ai.

Errors

• If the FAILOVER_TYPE for the session is not AUTO, then it is an error to set this attribute.

• It is an error to set this attribute to DYNAMIC or STATIC or other values.

• It is an error to set or get this attribute before the session handle is authenticated and the
srvhp is attached and both of them are set in the service context.

Appendix A
Server Handle Attributes

A-40

• It is an error to set or get this attribute when failover is not enabled.

Example

The following example integrates a session state stable cursor with OCIRequestBegin () and
OCIRequestEnd () calls. If the service context has been idle for two minutes or more, then
OCIRequestBegin() validates the session before starting a database request:

/* Get connection (service context) from a custom pool */
 /* Update the ping interval to 2 minutes */
 sb2 pingInterval = 120;
 ub4 sessState = OCI_SESSSTATECONS_HYBRID;
 OCIAttrSet(. . svchp, &pingInterval, (sb2 *)0,
OCI_ATTR_PING_INTERVAL, . . .);
 OCIRequestBegin(svchp, errhp, OCI_DEFAULT);
 OCIAttrGet(. . . OCI_ATTR_SESSGET_FLAGS, . . .);
 if (flagsValue == OCI_SESSGET_FLAGS_NEW)
 applySessionUpdates(svchp, errhp);
 OCIAttrSet(. . . OCI_ATTR_MODULE, . . .); /* set module to “Weekly order
job” */
 /* Ensure the “orders” cursor is classified as session state stable */
 OCIAttrSet(... &sessState, (ub4 *)0,
OCI_ATTR_SESSSTATE_CONSISTENCY, . . .);
 /* parse and execute a session state stable cursor;
 which gets the orders from last week updated by the logged on user */
 OCIStmtPrepare2(svchp, &stmhp,
 SELECT order_id FROM orders WHERE order_date > sysdate–7 AND
 updated_by = SYS_CONTEXT(‘USERENV’,’SESSION_USER’)
 ORDER BY order_id);
 OCIStmtExecute(svchp, stmhp, . . .)

 while (TRUE)
 {
 status = OCIStmtFetch(stmhp, . . .); /* order_id cursor stays open after
COMMIT */
 if (status == OCI_NO_DATA || status == OCI_ERROR)
 break;
 OCIAttrSet(. . . OCI_ATTR_ACTION, . . .); /* set action for the
order txn */
 OCIStmtExecute(. . ., “ALTER SESSION SET CURRENT_SCHEMA= “, . . .);
 [Perform transactional work for one order]
 COMMIT; /* this commit does not disable
replay */
 }
 OCIRequestEnd(svchp, errhp, OCI_DEFAULT);
 /* Return connection (service context) to custom pool */

• The weekly order_id cursor is opened before any transactional work is done and therefore
remains open across the transactional work for each individual order.

• The reference to SYS_CONTEXT in the order_id cursor prevents identifying the cursor as
session state stable by default.

• The SESSION_USER is known to be stable for the life of the cursor, so the service context
attribute OCI_ATTR_SESSSTATE_CONSISTENCY is set to OCI_SESSSTATECONS_HYBRID, before
the SELECT statement is parsed. Since the order_id cursor is identified as stable session

Appendix A
Server Handle Attributes

A-41

state, an implicit request boundary is possible after each commit so that replay does not
disable.

OCI_ATTR_SESSION_STATE

Mode
READ/WRITE

Description
Specifies the current state of the database session. Set to OCI_SESSION_STATEFUL if the
session is required to perform a database task. If the application is no longer dependent on
the current session for subsequent database activity, set to OCI_SESSION_STATELESS. This
attribute is currently applicable only when connected to a Database Resident Connection
Pool. It should be used if the application does custom session pooling and does not use
OCISessionPool().

Attribute Data Type
ub1 */ ub1

OCI_ATTR_SHARDING_KEY

Mode
WRITE

Description
For the shard and chunk, specifies the sharding key for the connection request from an OCI
session pool or standalone connection.
The OCIShardingKey * supplied to OCIAttrSet() needs to be created with
OCIDescriptorAlloc() specifying the sharding descriptor and then using as many calls as is
needed to OCIShardingKeyColumnAdd() to create the compound sharding key. See
OCIShardingKeyColumnAdd() for more information and an example.
For custom pools, this attribute associates a sharding key to a given connection.

Attribute Data Type
OCIShardingKey *

Example

/* Allocate the super sharding key descriptor. */
OCIDescriptorAlloc(envhp,(dvoid **)&shardKey,
 OCI_DTYPE_SHARDING_KEY, 0,(dvoid **)0)))
text *name = “KK”;
text *gname = “GOLD”;
int empid = 150;

/* Add all the columns of the key to form the final shard key. */
OCIShardingKeyColumnAdd(shardKey,(ub1*)&empid, sizeof(empid),
 SQLT_INT, errhp, OCI_DEFAULT);
OCIShardingKeyColumnAdd(shardKey, name, strlen(name),
 SQLT_CHAR, errhp, OCI_DEFAULT));

OCIShardingKey *shardKey;
OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,

Appendix A
Server Handle Attributes

A-42

 shardKey, sizeof(shardKey),
 OCI_ATTR_SHARDING_KEY, errhp);

OCI_ATTR_SHARDING_KEY_B64

Mode
WRITE

Description
Gets the base64 representation of sharding key and super sharding key values for diagnostic
purposes.

Attribute Data Type
Oratext *

Example

char * skeyValue;
ub4 skeyValueLen;
OCIAttrGet((dvoid *) OCIShardingKey,
 (ub4) OCI_DTYPE_SHARDING_KEY,
 (dvoid *) &skeyValue,
 (ub4 *) &skeyValueLen,
 OCI_ATTR_SHARDING_KEY_B64,
 (OCIError *) errhp);

OCI_ATTR_SUPER_SHARDING_KEY

Mode
WRITE

Description
For the shard and group of chunks, specifies the super sharding key for the connection
request from an OCI session pool or standalone connection.
The OCIShardingKey * supplied to OCIAttrSet() needs to be created with
OCIDescriptorAlloc() specifying the sharding descriptor and then using as many calls as is
needed to OCIShardingKeyColumnAdd() to create the compound shard key. See
OCIShardingKeyColumnAdd() for more information and an example.
For custom pools, this attribute associates a shard group key to a given connection.

Attribute Data Type
OCIShardingKey *

Example

/* Allocate the sharding key descriptor. */
OCIDescriptorAlloc(envhp,(dvoid **)&shardGroupKey,
 OCI_DTYPE_SHARDING_KEY, 0, (dvoid **)0));

/* Add the column of the key to form the final super sharding key. */
OCIShardingKeyColumnAdd(shardGroupKey, errhp, gname, strlen(gname),
 SQLT_CHAR, OCI_DEFAULT));

OCIShardingKey *shardGroupKey;

Appendix A
Server Handle Attributes

A-43

OCIAttrSet(authp, OCI_HTYPE_AUTHINFO,
 shardGroupKey, sizeof(shardGroupKey),
 OCI_ATTR_SUPER_SHARDING_KEY, errhp));

OCI_ATTR_TRANS_PROFILE_FOREIGN

Mode
READ

Description
Specifies whether a SQL translation profile for translation of foreign SQL syntax is set in the
current session or not.

Attribute Data Type
boolean

Example
status = OCIAttrGet(authp,
 OCI_HTYPE_SESSION,
 (void *)&foreign_sql_syntax,
 (ub4 *)NULL,
 OCI_ATTR_TRANS_PROFILE_FOREIGN,
 errhp);

OCI_ATTR_TRANSACTION_IN_PROGRESS

Mode
READ

Description
If TRUE, then the referenced session has a currently active transaction.
If FALSE, then the referenced session does not have a currently active transaction.

Attribute Data Type
boolean *

Example
{ boolean txnInProgress;

 OCIAttrGet(usrhp, OCI_HTYPE_SESSION,
 &txnInProgress, (ub4 *)0,
 OCI_ATTR_TRANSACTION_IN_PROGRESS,
 errhp);
}

OCI_ATTR_USERNAME

Mode
READ/WRITE

Description
Specifies a user name to use for authentication.

Attribute Data Type
oratext **/oratext *

Appendix A
Server Handle Attributes

A-44

A.7 Administration Handle Attributes
Lists and describes administration handle attributes.

The following attributes are used for the administration handle.

OCI_ATTR_ADMIN_PFILE

Mode
READ/WRITE

Description
Set this attribute before a call to OCIDBStartup() to specify the location of the client-side
parameter file that is used to start the database. If this attribute is not set, then the server-side
parameter file is used. If the server-side parameter file does not exist, an error is returned.

Attribute Data Type
oratext */oratext *

A.8 Connection Pool Handle Attributes
Lists and describes connection pool handle attributes.

The following attributes are used for the connection pool handle.

OCI_ATTR_CONN_TIMEOUT

Note:

Shrinkage of the pool only occurs when there is a network round-trip. If there are no
operations, then the connections remain active.

Mode
READ/WRITE

Description
Connections idle for more than this time value (in seconds) are terminated to maintain an
optimum number of open connections. This attribute can be set dynamically. If this attribute is
not set, the connections are never timed out.

Attribute Data Type
ub4 */ub4

OCI_ATTR_CONN_NOWAIT

Mode
READ/WRITE

Description
This attribute determines if retrial for a connection must be performed when all connections in
the pool are found to be busy and the number of connections has reached the maximum.

Appendix A
Administration Handle Attributes

A-45

If this attribute is set, an error is thrown when all the connections are busy and no more
connections can be opened. Otherwise, the call waits until it gets a connection.
When read, the attribute value is returned as TRUE if it has been set.

Attribute Data Type
ub1 */ub1

OCI_ATTR_CONN_BUSY_COUNT

Mode
READ

Description
Returns the number of busy connections.

Attribute Data Type
ub4 *

OCI_ATTR_CONN_OPEN_COUNT

Mode
READ

Description
Returns the number of open connections.

Attribute Data Type
ub4 *

OCI_ATTR_CONN_MIN

Mode
READ

Description
Returns the number of minimum connections.

Attribute Data Type
ub4 *

OCI_ATTR_CONN_MAX

Mode
READ

Description
Returns the number of maximum connections.

Attribute Data Type
ub4 *

OCI_ATTR_CONN_INCR

Mode
READ

Description
Returns the connection increment parameter.

Appendix A
Connection Pool Handle Attributes

A-46

Attribute Data Type
ub4 *

• Session Pool Handle Attributes
Lists and describes session pool handle attributes.

A.8.1 Session Pool Handle Attributes
Lists and describes session pool handle attributes.

The following attributes are used for the session pool handle.

OCI_ATTR_SPOOL_AUTH

Mode
WRITE

Description
To make pre-session creation attributes effective on the sessions being retrieved from the
session pool, this attribute can be set on the session pool handle. Currently only the following
attributes can be set on this OCIAuthInfo handle:
OCI_ATTR_DRIVER_NAME
OCI_ATTR_EDITION
OCI_ATTR_FIXUP_CALLBACK
If any other attributes are set on the OCIAuthInfo handle and the OCIAuthInfo handle is set
on the session pool handle, an error results. Moreover, the OCIAuthInfo handle should be set
on the session pool handle only before calling OCISessionPoolCreate() with the session pool
handle. Setting it after OCISessionPoolCreate() results in an error.

Attribute Data Type
OCIAuthInfo *

OCI_ATTR_SPOOL_REQ_COUNT

Mode
READ

Description
Returns the number of times the OCISessionGet() function is called on the pool

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_WAIT_TOTAL_COUNT

Mode
Read

Description
Returns the total number of accumulated client requests that had to wait due to the non-
availability of free server connections.

Attribute Data Type
ub4 *

Appendix A
Connection Pool Handle Attributes

A-47

OCI_ATTR_SPOOL_WAIT_COUNT

Mode
Read

Description
Returns the number of active client requests that are currently waiting due to the non-
availability of free server connections.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_HIT_COUNT

Mode
Read

Description
Returns the total number of times client requests are found that match the requests in the pool
out of all the client requests.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_HISTMAX_COUNT

Mode
Read

Description
Returns the maximum size that the pool has ever reached.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_BUSY_COUNT

Mode
READ

Description
Returns the number of busy sessions checked out from the pool.

Attribute Data Type
ub4 *

OCI_ATTR_FOCBK

Mode
READ/WRITE

Description
On OCIAttrSet(), defines a TAF callback and context to be associated with each session in
the OCI session pool.
On OCIAttrGet(), populates the OCIFocbkStruct with the TAF callback and context defined
for the session pool.

Appendix A
Connection Pool Handle Attributes

A-48

Note:

• This attribute is already supported for handles of type OCIServer and OCICPool.

• A TAF callback set on the server handle will override the callback set on the
session pool.

Attribute Data Type
OCIFocbkStruct *

OCI_ATTR_SPOOL_GETMODE

Mode
READ/WRITE

Description
This attribute determines the behavior of the session pool when all sessions in the pool are
found to be busy and the number of sessions has reached the maximum or the pool must
create new connections. Values are:

• OCI_SPOOL_ATTRVAL_WAIT - The thread waits and blocks until a session is freed or a new
one is created. This is the default value.

• OCI_SPOOL_ATTRVAL_TIMEDWAIT - Keep trying internally for a free session until the time out
set by OCI_ATTR_SPOOL_WAIT_TIMEOUT expires.

• OCI_SPOOL_ATTRVAL_NOWAIT - An error is returned if there are no free connections or if the
pool must create a new connection.

• OCI_SPOOL_ATTRVAL_FORCEGET - A new session is created even though all the sessions
are busy and the maximum number of sessions has been reached. OCISessionGet()
returns a warning. In this case, if new sessions are created that have exceeded the
maximum, OCISessionGet() returns a warning.

Note that if this value is set, it is possible that there can be an attempt to create more
sessions than can be supported by the instance of the Oracle database. In this case, the
server returns the following error:

ORA 00018 - Maximum number of sessions exceeded

In this case, the error is propagated to the session pool user.

When read, the appropriate attribute value is returned.

Attribute Data Type
ub1 */ ub1

OCI_ATTR_SPOOL_INCR

Mode
READ

Description
Returns the session increment parameter.

Attribute Data Type
ub4 *

Appendix A
Connection Pool Handle Attributes

A-49

OCI_ATTR_SPOOL_MAX

Mode
READ

Description
Returns the number of maximum sessions.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_MAX_LIFETIME_SESSION

Mode
READ/WRITE

Description
This attribute sets the lifetime (in seconds) for all the sessions in the pool. Sessions in the pool
are terminated when they have reached their lifetime. In the case when
OCI_ATTR_SPOOL_TIMEOUT is also set, the session will be terminated if either the idle time out
happens or the max lifetime setting is exceeded.

Attribute Data Type
ub4 */ ub4

OCI_ATTR_SPOOL_MAX_USE_SESSION

Mode
WRITE

Description
Sets the maximum number of times one session can be checked out of the session pool, after
which the session is automatically destroyed. The default value is 0, which means there is no
limit. This value can also be set in the oraaccess.xml client-side configuration file under the
<session_pool> section as <max_use_session>.

Attribute Data Type
ub4

OCI_ATTR_SPOOL_MIN

Mode
READ

Description
Returns the number of minimum sessions.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_OPEN_COUNT

Mode
READ

Appendix A
Connection Pool Handle Attributes

A-50

Description
Returns the number of open sessions.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_STMTCACHESIZE

Mode
READ/WRITE

Description
Sets the default statement cache size to this value for each of the sessions in a session pool.
The statement cache size for a particular session in the pool can, at any time, be overridden
by using OCI_ATTR_STMTCACHESIZE on that session.

See Also:

Statement Caching in OCI

Attribute Data Type
ub4 */ ub4

OCI_ATTR_SPOOL_TIMEOUT

Mode
READ/WRITE

Description
The sessions idle for more than this time (in seconds) are terminated periodically to maintain
an optimum number of open sessions. This attribute can be set dynamically. If this attribute is
not set, the least recently used sessions may be timed out if and when space in the pool is
required. OCI only checks for timed out sessions when it releases one back to the pool. See
OCI_ATTR_SPOOL_MAX_LIFETIME_SESSION for more information.

Attribute Data Type
ub4 */ ub4

OCI_ATTR_SPOOL_WAIT_TIMEOUT

Mode
READ/WRITE

Description
This is the time out (in milliseconds) applied for the OCISessionGet() call while waiting for a
free session, when the OCI_ATTR_SPOOL_GETMODE property is set to
OCI_SPOOL_ATTRVAL_TIMEDWAIT. This is also applicable in case of sharding, where the
OCISessionGet() call waits for a free session to an instance with writable chunks.

Attribute Data Type
ub4 */ ub4

Appendix A
Connection Pool Handle Attributes

A-51

OCI_ATTR_SPOOL_MAX_PER_SHARD

Mode
READ/WRITE

Description
Sets the maximum number of sessions per shard. This attribute is set to ensure that the pool
is balanced towards each shard.
If you want the value of this attribute to be considered while OCISessionPoolCreate method is
getting executed, then you need to set the value of this attribute before you call the
OCISessionPoolCreate method. If you set the value later, then the session pool will re-adjust
to maintain the limit.

Attribute Data Type
ub4 *

OCI_ATTR_SPOOL_DRAIN_TIMEOUT

Mode
Read/Write

Description
Sets or reads a timeout interval value before the session pool is destroyed in OCI_SPD_DRAIN
mode for OCISessionPoolDestroy. Default value is 120 seconds.
This attribute can be set using the OCIAttrSet() function on the session pool handle.

Attribute Data Type
ub4 */ ub4

A.9 Transaction Handle Attributes
Lists and describes transaction handle attributes.

The following attributes are used for the transaction handle.

OCI_ATTR_TRANS_NAME

Mode
READ/WRITE

Description
Can be used to establish or read a text string that identifies a transaction. This is an
alternative to using the XID to identify the transaction. The oratext string can be up to 64 bytes
long.

Attribute Data Type
oratext ** (READ) / oratext * (WRITE)

OCI_ATTR_TRANS_TIMEOUT

Mode
READ/WRITE

Description
Can set or read a timeout interval value used at prepare time.

Appendix A
Transaction Handle Attributes

A-52

Attribute Data Type
ub4 * (READ) / ub4 (WRITE)

OCI_ATTR_XID

Mode
READ/WRITE

Description
Can set or read an XID that identifies a transaction.

Attribute Data Type
XID ** (READ) / XID * (WRITE)

A.10 Statement Handle Attributes
Lists and describes statement handle attributes.

The following attributes are used for the statement handle.

OCI_ATTR_BIND_COUNT

Mode
READ

Description
Returns the number of bind positions on the statement handle.

Attribute Data Type
ub4 *

Example
OCIHandleAlloc(env,(void **) &pStatement, OCI_HTYPE_STMT, (size_t)0, (void **)0);
OCIStmtPrepare (pStatement, err, pszQuery, (ub4)strlen(pszQuery),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIAttrGet(pStatement, OCI_HTYPE_STMT, &iNbParameters, NULL, OCI_ATTR_BIND_COUNT,
 err);

OCI_ATTR_CHNF_REGHANDLE

Mode
WRITE

Description
When this attribute is set to the appropriate subscription handle, execution of the query also
creates the registration of the query for continuous query notification.

See Also:

Continuous Query Notification Attributes

Attribute Data Type
OCISubscription *

Appendix A
Statement Handle Attributes

A-53

Example
/* Associate the statement with the subscription handle */
OCIAttrSet (stmthp, OCI_HTYPE_STMT, subscrhp, 0,
 OCI_ATTR_CHNF_REGHANDLE, errhp);

OCI_ATTR_CQ_QUERYID

Mode
READ

Description
Obtains the query ID of a registered query after registration is made by the call to
OCIStmtExecute().

Attribute Data Type
ub8 *

OCI_ATTR_CURRENT_POSITION

Mode
READ

Description
Indicates the current position in the result set. This attribute can only be retrieved. It cannot be
set.

Attribute Data Type
ub4 *

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the statement.

Attribute Data Type
OCIEnv **

OCI_ATTR_FETCH_ROWID

Mode
READ/WRITE

Description
Specifies that the ROWIDs are fetched after doing a define at position 0, and a SELECT...FOR
UPDATE statement.

See Also:

Implicit Fetching of ROWIDs

Attribute Data Type
boolean */boolean

Appendix A
Statement Handle Attributes

A-54

OCI_ATTR_IMPLICIT_RESULT_COUNT

Mode
READ

Description
Returns the total number of implicit results available on the top-level OCI statement handle.

Attribute Data Type
ub4 *

OCI_ATTR_NUM_DML_ERRORS

Mode
READ

Description
Returns the number of errors in the DML operation.

Attribute Data Type
ub4 *

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
Gets the number of columns in the select-list for the statement associated with the statement
handle.

Attribute Data Type
ub4 *

Example
...
int i = 0;
ub4 parmcnt = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) 0; /* column handle */

/* Describe of a select-list */
OraText *sqlstmt = (OraText *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
 (OCISnapshot *)0, (OCISnapshot *)0, OCI_DESCRIBE_ONLY));

/* Get the number of columns in the select list */
checkerr(errhp, OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, (void *)&parmcnt,
 (ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

/* Go through the column list and retrieve the data type of each column. You
 start from pos = 1 */

Appendix A
Statement Handle Attributes

A-55

for (i = 1; i <= parmcnt; i++)
{
 /* Get parameter for column i */
 checkerr(errhp, OCIParamGet((void *)stmthp, OCI_HTYPE_STMT, errhp,
 (void **)&colhd, i));

 /* Get data-type of column i */
 type = 0;
 checkerr(errhp, OCIAttrGet((void *)colhd, OCI_DTYPE_PARAM,
 (void *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));

}
...

OCI_ATTR_PARSE_ERROR_OFFSET

Mode
READ

Description
Returns the parse error offset for a statement.

Attribute Data Type
ub2 *

OCI_ATTR_PREFETCH_MEMORY

Mode
WRITE

Description
Sets the memory level for top-level rows to be prefetched. Rows up to the specified top-level
row count are fetched if the memory level occupies no more than the specified memory usage
limit. The default value is 0, which means that memory size is not included in computing the
number of rows to prefetch.

Attribute Data Type
ub4 *

OCI_ATTR_PREFETCH_ROWS

Mode
WRITE

Description
Sets the number of top-level rows to be prefetched. The default value is 1 row.

Attribute Data Type
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Appendix A
Statement Handle Attributes

A-56

Description
Returns the number of rows processed so far after SELECT statements. For INSERT, UPDATE,
and DELETE statements, it is the number of rows processed by the most recent statement. The
default value is 1.
For nonscrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows fetched into user
buffers with the OCIStmtFetch2() calls issued since this statement handle was executed.
Because they are forward sequential only, this also represents the highest row number seen
by the application.
For scrollable cursors, OCI_ATTR_ROW_COUNT represents the maximum (absolute) row number
fetched into the user buffers. Because the application can arbitrarily position the fetches, this
need not be the total number of rows fetched into the user's buffers since the (scrollable)
statement was executed.
Beginning with Oracle Database Release 12.1, using the attribute OCI_ATTR_UB8_ROW_COUNT is
preferred to using the attribute OCI_ATTR_ROW_COUNT if row count values can exceed the value
of UB4MAXVAL for an OCI application. If the row count exceeds the value of UB4MAXVAL and the
application uses the attribute OCI_ATTR_ROW_COUNT, a call using OCIAttrGet() will return an
error.

Attribute Data Type
ub4 *

OCI_ATTR_DML_ROW_COUNT_ARRAY

Mode
READ

Description
Returns an array of row counts affected by each iteration of an array DML statement. The row
count for iteration i can be obtained by looking up array[i-1].
Without OCI_BATCH_ERRORS mode, OCIStmtExecute() stops execution with the first erroneous
iteration. In such a scenario, the array returned by the OCI_ATTR_DML_ROW_COUNT_ARRAY
attribute only contains valid row counts up to and including the last successful iteration. When
OCI_RETURN_ROW_COUNT_ARRAY mode is used in conjunction with OCI_BATCH_ERRORS mode, the
returned row-count array contains the actual number of rows affected per successful iteration
and 0 for iterations that resulted in errors.
This attribute works only when the statement is executed in mode
OCI_RETURN_ROW_COUNT_ARRAY at the time of using OCIStmtExecute().
Use this attribute only after an array DML operation and while using
OCI_RETURN_ROW_COUNT_ARRAY mode in OCIStmtExecute().
Any attempt to query this attribute after any other operation (other than an array DML) or
without passing this mode will result in an OCI_ERROR (ORA-24349).

Attribute Data Type
ub8 *

Example
int deptarray[]={10,20,30};
int iters = 3;
ub8 *rowcounts;
ub4 rowCountArraySize;
/*Statement prepare */
text *updatesal = (text *)"UPDATE EMP set sal = sal+100 where deptno = :dept"
OCIStmtPrepare2 ((OCISvcCtx *)svchp,(OCIStmt **)&stmthp,
(OCIError *)errhp, (text *)updatesal, (ub4)sizeof(updatesal)-1,
(oratext *)NULL, (ub4) 0, (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

Appendix A
Statement Handle Attributes

A-57

/*Array bind*/
OCIBindByPos (stmthp, &bndhp, errhp, 1, deptarray, sizeof(deptarray[0]),
 SQLT_INT, (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT);
/* Pass new MODE for Array DML rowcounts; also, if an error occurred for any iteration
and you want to get the number of rows updated for the rest of the iterations.*/
OCIStmtExecute(svchp, stmthp, errhp, iters, (ub4) 0, 0, 0, OCI_BATCH_ERRORS |
OCI_RETURN_ROWCOUNT_ARRAY);
OCIAttrGet (stmthp, (ub4) OCI_HTYPE_STMT,
 (ub8 *)&rowcounts, &rowCountArraySize,
 OCI_ATTR_DML_ROW_COUNT_ARRAY, errhp);

OCI_ATTR_ROWID

Mode
READ

Description
Returns the ROWID descriptor allocated with OCIDescriptorAlloc().

• If multiple rows are affected, the last rowid is returned.

• If no rows are affected and if this is the first statement executed, then the rowid containing
zeros is returned.

• If no rows are affected but if the rows were affected by a previous statement execution,
then the last rowid of the last statement executed is returned.

See Also:

Positioned Updates and Deletes and ROWID Descriptor

Attribute Data Type
OCIRowid *

OCI_ATTR_ROWS_FETCHED

Mode
READ

Description
Indicates the number of rows that were successfully fetched into the user's buffers in the last
fetch or execute with nonzero iterations. It can be used for both scrollable and nonscrollable
statement handles.

Attribute Data Type
ub4 *

Example
ub4 rows;
ub4 sizep = sizeof(ub4);
OCIAttrGet((void *) stmhp, (ub4) OCI_HTYPE_STMT,
 (void *)& rows, (ub4 *) &sizep, (ub4)OCI_ATTR_ROWS_FETCHED,
 errhp);

Appendix A
Statement Handle Attributes

A-58

OCI_ATTR_SQL_ID

Mode
READ

Dexcription
Gets the SQL_ID for a specific SQL statement from the server and makes it available on the
client in a statement handle.

Attribute Data Type
ub4 *

Example
In an OCIStmtPrepare2(), specify OCI_PREP2_GET_SQL_ID as the mode. This
OCI_PREP2_GET_SQL_ID mode should be ORed with any other mode. For example:

OCIStmtPrepare2((dvoid *)ctxptr->svchp, &stmthp,
 (dvoid *)ctxptr->errhp,
 insStmt, sizeof(insStmt),
 (const oratext *)0, (ub4)0,
 OCI_NTV_SYNTAX,
 OCI_DEFAULT | OCI_PREP2_GET_SQL_ID);

You can do a bind or define operation and then execute on the statement.
The following code example shows how to obtain the SQL_ID.

 ub4 sqlidLen;
 oratext *sqlid;
 OCIAttrGet(stmthp, OCI_HTYPE_STMT,
 &sqlid, (ub4 *)&sqlidLen,
 OCI_ATTR_SQL_ID,
 ctxptr->errhp);

OCI_ATTR_SQLFNCODE

Mode
READ

Description
Returns the function code of the SQL command associated with the statement.

Attribute Data Type
ub2 *

Notes
Table A-1 lists the SQL command codes.

Table A-1 Function Code of the SQL Command Associated with the SQL Statement

Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement

01 CREATE TABLE 43 DROP EXTERNAL DATABASE 85 TRUNCATE TABLE

02 SET ROLE 44 CREATE DATABASE 86 TRUNCATE CLUSTER

03 INSERT 45 ALTER DATABASE 87 CREATE BITMAPFILE

Appendix A
Statement Handle Attributes

A-59

Table A-1 (Cont.) Function Code of the SQL Command Associated with the SQL Statement

Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement

04 SELECT 46 CREATE ROLLBACK
SEGMENT

88 ALTER VIEW

05 UPDATE 47 ALTER ROLLBACK SEGMENT 89 DROP BITMAPFILE

06 DROP ROLE 48 DROP ROLLBACK SEGMENT 90 SET CONSTRAINTS

07 DROP VIEW 49 CREATE TABLESPACE 91 CREATE FUNCTION

08 DROP TABLE 50 ALTER TABLESPACE 92 ALTER FUNCTION

09 DELETE 51 DROP TABLESPACE 93 DROP FUNCTION

10 CREATE VIEW 52 ALTER SESSION 94 CREATE PACKAGE

11 DROP USER 53 ALTER USER 95 ALTER PACKAGE

12 CREATE ROLE 54 COMMIT (WORK) 96 DROP PACKAGE

13 CREATE SEQUENCE 55 ROLLBACK 97 CREATE PACKAGE BODY

14 ALTER SEQUENCE 56 SAVEPOINT 98 ALTER PACKAGE BODY

15 (NOT USED) 57 CREATE CONTROL FILE 99 DROP PACKAGE BODY

16 DROP SEQUENCE 58 ALTER TRACING 157 CREATE DIRECTORY

17 CREATE SCHEMA 59 CREATE TRIGGER 158 DROP DIRECTORY

18 CREATE CLUSTER 60 ALTER TRIGGER 159 CREATE LIBRARY

19 CREATE USER 61 DROP TRIGGER 160 CREATE JAVA

20 CREATE INDEX 62 ANALYZE TABLE 161 ALTER JAVA

21 DROP INDEX 63 ANALYZE INDEX 162 DROP JAVA

22 DROP CLUSTER 64 ANALYZE CLUSTER 163 CREATE OPERATOR

23 VALIDATE INDEX 65 CREATE PROFILE 164 CREATE INDEXTYPE

24 CREATE PROCEDURE 66 DROP PROFILE 165 DROP INDEXTYPE

25 ALTER PROCEDURE 67 ALTER PROFILE 166 ALTER INDEXTYPE

26 ALTER TABLE 68 DROP PROCEDURE 167 DROP OPERATOR

27 EXPLAIN 69 (NOT USED) 168 ASSOCIATE STATISTICS

28 GRANT 70 ALTER RESOURCE COST 169 DISASSOCIATE STATISTICS

29 REVOKE 71 CREATE SNAPSHOT LOG 170 CALL METHOD

30 CREATE SYNONYM 72 ALTER SNAPSHOT LOG 171 CREATE SUMMARY

31 DROP SYNONYM 73 DROP SNAPSHOT LOG 172 ALTER SUMMARY

32 ALTER SYSTEM SWITCH LOG 74 CREATE SNAPSHOT 173 DROP SUMMARY

33 SET TRANSACTION 75 ALTER SNAPSHOT 174 CREATE DIMENSION

34 PL/SQL EXECUTE 76 DROP SNAPSHOT 175 ALTER DIMENSION

35 LOCK 77 CREATE TYPE 176 DROP DIMENSION

36 NOOP 78 DROP TYPE 177 CREATE CONTEXT

37 RENAME 79 ALTER ROLE 178 DROP CONTEXT

38 COMMENT 80 ALTER TYPE 179 ALTER OUTLINE

39 AUDIT 81 CREATE TYPE BODY 180 CREATE OUTLINE

40 NO AUDIT 82 ALTER TYPE BODY 181 DROP OUTLINE

Appendix A
Statement Handle Attributes

A-60

Table A-1 (Cont.) Function Code of the SQL Command Associated with the SQL Statement

Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement Funct
ion
Code

SQL Statement

41 ALTER INDEX 83 DROP TYPE BODY 182 UPDATE INDEXES

42 CREATE EXTERNAL
DATABASE

84 DROP LIBRARY 183 ALTER OPERATOR

OCI_ATTR_STATEMENT

Mode
READ

Description
Returns the text of the SQL statement prepared in a statement handle. In UTF-16 mode, the
returned statement is in UTF-16 encoding. The length is always in bytes.

Attribute Data Type
oratext *

OCI_ATTR_STMTCACHE_CBKCTX

Mode
READ/WRITE

Description
Used to get and set the application's opaque context on the statement handle. This context
can be of any type that the application defines. It is primarily used for encompassing the bind
and define buffer addresses.

Attribute Data Type
void *

OCI_ATTR_STMT_IS_RETURNING

Mode
READ

Description
Determines whether the given SQL Statement has a RETURNING INTO clause.

Attribute Data Type
ub1

Example

returning_into_clause = OCIAttrGet (stmthp, OCI_HTYPE_STMT,
(ub1*)&isReturning, NULL, OCI_ATTR_STMT_IS_RETURNING, errhp);

OCI_ATTR_STMT_STATE

Mode
READ

Appendix A
Statement Handle Attributes

A-61

Description
Returns the fetch state of that statement. This attribute can be used by the caller to determine
if the session can be used in another service context or if it is still needed in the current set of
data access calls. Basically, if you are in the middle of a fetch-execute cycle, then you do not
want to release the session handle for another statement execution. Valid values are:

• OCI_STMT_STATE_INITIALIZED
• OCI_STMT_STATE_EXECUTED
• OCI_STMT_STATE_END_OF_FETCH

Attribute Data Type
ub4 *

OCI_ATTR_STMT_TYPE

Mode
READ

Description
The type of statement associated with the handle. Valid values are:

• OCI_STMT_SELECT
• OCI_STMT_UPDATE
• OCI_STMT_DELETE
• OCI_STMT_INSERT
• OCI_STMT_CREATE
• OCI_STMT_DROP
• OCI_STMT_ALTER
• OCI_STMT_BEGIN (PL/SQL statement)

• OCI_STMT_DECLARE (PL/SQL statement)

• OCI_STMT_CALL (PL/SQL statement)

• OCI_STMT_MERGE (PL/SQL statement)

Attribute Data Type
ub2 *

OCI_ATTR_UB8_ROW_COUNT (Recommended over OCI_ATTR_ROW_COUNT)

Mode
READ

Description
For SELECT statements, returns the cumulative number of rows fetched from a result set. For
INSERT, UPDATE, and DELETE statements, this attribute returns the number of rows processed
by the statement. The default value is 1.
For non-scrollable cursors, OCI_ATTR_UB8_ROW_COUNT is the total number of rows fetched into
user buffers with the OCIStmtFrtch() or OCIStmtFetch2() calls issued since this statement
handle was executed. For these non-scrollable cursors, this also represents the highest row
number seen by the application.

Appendix A
Statement Handle Attributes

A-62

If using the attribute OCI_ATTR_ROW_COUNT and the row count returned is larger than
UB4MAXVAL, then one or both of the following errors may be returned:

ORA-03148. OCI_ATTR_ROW_COUNT cannot see row counts larger than UB4MAXVAL

Attribute Data Type
ub8 *

A.11 Bind Handle Attributes
Lists and describes bind handle attributes.

The following attributes are used for the bind handle.

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
Sets the number of characters in character type data.

See Also:

Buffer Expansion During OCI Binding

Attribute Data Type
ub4 *

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
Character set form of the bind handle. The default form is SQLCS_IMPLICIT. Setting this
attribute causes the bind handle to use the database or national character set on the client
side. Set this attribute to SQLCS_NCHAR for the national character set or SQLCS_IMPLICIT for the
database character set.

Attribute Data Type
ub1 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID of the bind handle. If the character set of the input data is UTF-16, the user
must set the character set ID to OCI_UTF16ID (replaces the deprecated OCI_UC2SID, which is
retained for backward compatibility). The bind value buffer is assumed to be a utext buffer, so
length semantics for input length pointers and return values changes to character semantics

Appendix A
Bind Handle Attributes

A-63

(number of utexts). However, the size of the bind value buffer in the preceding OCIBind call
must be stated in bytes.
If OCI_ATTR_CHARSET_FORM is set, then OCI_ATTR_CHARSET_ID should be set only afterward.
Setting OCI_ATTR_CHARSET_ID before setting OCI_ATTR_CHARSET_FORM causes unexpected
results.

See Also:

Character Conversion in OCI Binding and Defining

Attribute Data Type
ub2 *

OCI_ATTR_COLLATION_ID

Mode
READ/WRITE

Description
Sets the derived collation of a placeholder expression corresponding to this bind handle in a
SQL statement. The attribute is relevant only for bind variables with character data types.
You can set the OCI_ATTR_COLLATION_ID attribute on a bind variable handle to any of the
supported collation IDs. Collation IDs of both named collations and pseudo-collations are
allowed. The attribute value is passed to the server with other bind information and the
corresponding bind variable reference, formally known as SQL placeholder expression,
assumes the provided collation at the coercibility level 0. If the attribute value is
OCI_COLLATION_NONE (the default value), the collation of the bind variable is USING_NLS_COMP
at the coercibility level 4.
OCI does not check whether the collation is valid for a given data type of a bind variable. If
OCI_ATTR_COLLATION_ID is set for a non-character data type variable, it is ignored by the
server.
Collation of bind variables is currently ignored in PL/SQL expressions. For forward
compatibility reasons, the OCI_ATTR_COLLATION_ID attribute should not be set for bind
variables passed to an anonymous PL/SQL block, unless the variables are referenced
exclusively in SQL statements.

Note:

You can use the SQL built-in functions NLS_COLLATION_ID and NLS_COLLATION_NAME
to map between values of the attribute, which are collation IDs, and collation names
used in SQL syntax.

Appendix A
Bind Handle Attributes

A-64

See Also:

• Column Attributes

• Oracle Database Globalization Support Guide for information on how this set
collation influences query processing

Attribute Data Type
ub4 *

OCI_ATTR_MAXCHAR_SIZE

Mode
WRITE

Description
Sets the number of characters that an application reserves on the server to store the data
being bound.

See Also:

About Using the OCI_ATTR_MAXCHAR_SIZE Attribute

Attribute Data Type
sb4 *

OCI_ATTR_MAXDATA_SIZE

Mode
READ/WRITE

Description
Sets the maximum number of bytes allowed in the buffer on the server side to accommodate
client-side bind data after character set conversions.

See Also:

About Using the OCI_ATTR_MAXDATA_SIZE Attribute

Attribute Data Type
sb4 *

OCI_ATTR_PDPRC

Mode
WRITE

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be equal to
2*(value_sz-1). For SQLT_SLS values, the precision should be equal to (value_sz-1).

Appendix A
Bind Handle Attributes

A-65

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC attribute should be
set first, followed by OCI_ATTR_PDSCL. If either of these values must be changed, first perform
a rebind/redefine operation, and then reset the two attributes in order.

Attribute Data Type
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.
After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC attribute should be
set first, followed by OCI_ATTR_PDSCL. If either of these values must be changed, first perform
a rebind/redefine operation, and then reset the two attributes in order.

Attribute Data Type
sb2 *

OCI_ATTR_ROWS_RETURNED

Mode
READ

Description
This attribute returns the number of rows that will be returned in the current iteration when you
are in the OUT callback function for binding a DML statement with a RETURNING clause.

Attribute Data Type
ub4 *

A.12 Define Handle Attributes
Lists and describes define handle attributes.

The following attributes are used for the define handle.

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
This attribute is deprecated.
Sets the number of characters in character type data. This specifies the number of characters
desired in the define buffer. The define buffer length as specified in the define call must be
greater than number of characters.

Attribute Data Type
ub4 *

Appendix A
Define Handle Attributes

A-66

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
The character set form of the define handle. The default form is SQLCS_IMPLICIT. Setting this
attribute causes the define handle to use the database or national character set on the client
side. Set this attribute to SQLCS_NCHAR for the national character set or SQLCS_IMPLICIT for the
database character set.

Attribute Data Type
ub1 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
The character set ID of the define handle. If the character set of the output data should be
UTF-16, the user must set the character set IDOTT to OCI_UTF16ID. The define value buffer is
assumed to be a utext buffer, so length semantics for indicators and return values changes to
character semantics (number of utexts). However, the size of the define value buffer in the
preceding OCIDefine call must be stated in bytes.
If OCI_ATTR_CHARSET_FORM is set, then OCI_ATTR_CHARSET_ID should be set only afterward.
Setting OCI_ATTR_CHARSET_ID before setting OCI_ATTR_CHARSET_FORM causes unexpected
results.

See Also:

Character Conversion in OCI Binding and Defining

Attribute Data Type
ub2 *

OCI_ATTR_LOBPREFETCH_LENGTH

Mode
READ/WRITE

Description
Specifies if the LOB length and the chunk size for the LOB locators should be prefetched
along with the descriptor if the column is a LOB column. Setting it to TRUE will enable the
prefetching and this attribute setting is also required for prefetching the LOB data using the
attribute OCI_ATTR_LOBPREFETCH_SIZE.

Attribute Data Type
boolean */boolean

Appendix A
Define Handle Attributes

A-67

OCI_ATTR_LOBPREFETCH_SIZE

Mode
READ/WRITE

Description
Overrides the default cache buffer size for the LOB locators to be fetched from a particular
column along with the descriptor. This requires the attribute OCI_ATTR_LOBPREFETCH_LENGTH to
be set to TRUE.

Attribute Data Type
ub4 */ub4

OCI_ATTR_MAXCHAR_SIZE

Mode
WRITE

Description
Specifies the maximum number of characters that the client application allows in the define
buffer.

See Also:

About Using the OCI_ATTR_MAXCHAR_SIZE Attribute

Attribute Data Type
sb4 *

OCI_ATTR_PDPRC

Mode
WRITE

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be equal to
2*(value_sz-1). For SQLT_SLS values, the precision should be equal to (value_sz-1).
After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC attribute should be
set first, followed by OCI_ATTR_PDSCL. If either of these values must be changed, first perform
a rebind/redefine operation, and then reset the two attributes in order.

Attribute Data Type
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.
After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC attribute should be
set first, followed by OCI_ATTR_PDSCL. If either of these values must be changed, first perform
a rebind/redefine operation, and then reset the two attributes in order.

Appendix A
Define Handle Attributes

A-68

Attribute Data Type
sb2 *

A.13 Describe Handle Attributes
Lists and describes describe handle attributes.

The following attributes are used for the describe handle.

OCI_ATTR_PARAM

Mode
READ

Description
Points to the root of the description. Used for subsequent calls to OCIAttrGet() and
OCIParamGet().

Attribute Data Type
ub4 *

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
Returns the number of parameters in the describe handle. When the describe handle is a
description of the select list, this refers to the number of columns in the select list.

Attribute Data Type
ub4 *

OCI_ATTR_SHOW_INVISIBLE_COLUMNS

Mode
WRITE

Description
This attribute requests OCIDescribeAny() to also get the metadata for invisible columns. You
can use OCIAttrGet() to determine whether a column is invisible or not.

Attribute Data Type
boolean *

Example
boolean showInvisibleCols = TRUE;
ub1 colInvisible[MAX_COLS];
OCIAttrSet(descHandle, OCI_HTYPE_DESCRIBE, &showInvisibleCols, 0,
 OCI_ATTR_SHOW_INVISIBLE_COLUMNS, errHandle);
if (rc = OCIDescribeAny(svcHandle, errHandle, (dvoid*)table,
 strlen(table), OCI_OTYPE_NAME, 1,
 OCI_PTYPE_TABLE, descHandle))
{
 OCIHandleFree(descHandle, OCI_HTYPE_DESCRIBE);
 return OCI_ERROR;

Appendix A
Describe Handle Attributes

A-69

}

/* Get the number of columns. */

OCIAttrGet(parHandle, OCI_DTYPE_PARAM, &nCols, 0,
 OCI_ATTR_NUM_COLS, errHandle);

/* Get the column list. */

OCIAttrGet(parHandle, OCI_DTYPE_PARAM, &lstHandle, 0,
 OCI_ATTR_LIST_COLUMNS, errHandle);

/* Loop through the columns. */
for (i = 1; i <= nCols; i++)
{
 OCIParamGet(lstHandle, OCI_DTYPE_PARAM, errHandle,
 (dvoid*)&colHandle, i);
 OCIAttrGet(colHandle, OCI_DTYPE_PARAM, &colName[i-1], &len,
 OCI_ATTR_NAME, errHandle);
 OCIAttrGet(colHandle, OCI_DTYPE_PARAM, &(colType[i-1]), 0,
 OCI_ATTR_DATA_TYPE, errHandle);
 OCIAttrGet(colHandle, OCI_DTYPE_PARAM, &colInvisible[i-1], 0,
 OCI_ATTR_SHOW_INVISIBLE_COLUMNS, errHandle);
 if (colInvisible & OCI_ATTR_SHOW_INVISIBLE_COLUMNS)
 printf("Column is invisible\n");
}

A.14 Parameter Descriptor Attributes
Lists and describes parameter descriptor attributes.

The following attributes are used for the parameter descriptor.

See Also:

Describing Schema Metadata for a detailed list of parameter descriptor attributes.

A.15 Shard Instance Descriptor Attributes
Lists and describes shard instance descriptor attributes.

This descriptor is returned by OCIShardInstancesGet() used only by custom pools, which
essentially contains the instance name where the data matching the provided sharding key
resides, and an indication if that shard is writable on that instance.

The following attributes are used for the shard instance descriptor.

OCI_ATTR_INSTNAME

Mode
READ

Appendix A
Parameter Descriptor Attributes

A-70

Description
This attribute can be used to find the shard instance name out of a shard instance descriptor
that is filed by an OCIShardInstancesGet() call. This attribute can also be used on the service
context to return the shard instance name for a given connection. When called as an event
handle attribute, OCIAttrGet() retrieves the name of the instance that has been affected by
this event. This is also a server handle attribute.

Attribute Data Type
oratext **

Example

 OCIAttrGet(shardInstance,
 (ub4) OCI_DTYPE_SHARD_INST,(dvoid *)&iName, (ub4 *)&iNameLen,
 OCI_ATTR_INSTNAME, (OCIError *)errhp);

OCI_ATTR_SHARD_HAS_WRITABLECHUNK

Mode
READ

Description
Returns TRUE if the shard instance has writable chunks. For custom pool implementations, this
helps the pool to determine if a connection to that particular shard instance can be dispensed.
If the application can work with read only shards instead of writable chunks, the pool can
dispense it; otherwise, it can implement a retrial logic to try OCIShardInstancesGet() until it
returns shard instance information having writable chunks. This feature is helpful during chunk
migrations.

Attribute Data Type
boolean *

A.16 SODA Document Handle Attributes
The OCISodaDoc document handle has the following attributes. The key, last-modified time
stamp, creation time stamp, version, content, and media type attributes represent document
components. JSON charset ID is a read-only character set ID set by SODA. Detect JSON
Encoding is a flag for working with Unicode encoding JSON content.

The following attributes are document components:

• Key — OCI_ATTR_SODA_KEY
• Last-modified time stamp — OCI_ATTR_SODA_LASTMOD_TIMESTAMP
• Creation time stamp — OCI_ATTR_SODA_CREATE_TIMESTAMP
• Version — OCI_ATTR_SODA_VERSION
• Content — OCI_ATTR_SODA_CONTENT
• Media type ("application/json" for JSON documents) — OCI_ATTR_SODA_MEDIA_TYPE
The following attributes are not document components, but instead used to describe other
characteristics of the document:

• JSON character set ID — OCI_ATTR_SODA_JSON_CHARSET_ID
• Detect JSON encoding — OCI_ATTR_SODA_DETECT_JSON_ENC

Appendix A
SODA Document Handle Attributes

A-71

OCI_ATTR_SODA_KEY

Mode
READ/WRITE

Description
The unique key for the document.

Attribute Data Type
oratext *

OCI_ATTR_SODA_LASTMOD_TIMESTAMP

Mode
READ

Description
The last-modified time stamp for the document in ISO format. The value is NULL if the
metadata of the collection does not support it.

Attribute Data Type
oratext *

OCI_ATTR_SODA_CREATE_TIMESTAMP

Mode
READ

Description
The creation time stamp for the document in ISO format. The value is NULL if the metadata of
the collection does not support it.

Attribute Data Type
oratext *

OCI_ATTR_SODA_VERSION

Mode
READ

Description
The document version. The value is NULL if the metadata of the collection does not support it.

Attribute Data Type
oratext *

OCI_ATTR_SODA_CONTENT

Mode
READ/WRITE

Description
The document content. Note that for OCISodaInsertAndGet(),
OCISodaInsertAndGetWithCtnt(), and OCISodaReplOneAndGetWithKey(), these functions
return the handle to the result document containing all components except the content, so this
attribute is not needed for these calls.

Appendix A
SODA Document Handle Attributes

A-72

Attribute Data Type
oratext *

OCI_ATTR_SODA_JSON_CHARSET_ID

Mode
READ

Description
The character set ID of the document's content. This could potentially be different from the
local (client-side) character set ID.

Attribute Data Type
ub2

OCI_ATTR_SODA_DETECT_JSON_ENC

Mode
READ/WRITE

Description
Returns TRUE if the document is in detect encoding mode.

Attribute Data Type
boolean

OCI_ATTR_SODA_MEDIA_TYPE

Mode
READ/WRITE

Description
The media type for the document.

Attribute Data Type
oratext *

OCI_ATTR_SODA_JSON_DESC

Mode
Read/Write

Description
By default the value is set to false.

• If the value is set to true, then it would cause a new empty JSON descriptor to be
allocated and assigned OCI_ATTR_SODA_CONTENT attribute. If at the time of setting
OCI_ATTR_SODA_JSON_DESC value to true, then OCI_ATTR_SODA_CONTENT is already set to a
JSON descriptor or a byte array, those would get deallocated first.

• If the value is set to false, then it would cause the JSON descriptor to be deallocated.

Note:

To populate the empty OCIJson, refer to JSON Data Type Support section.

Appendix A
SODA Document Handle Attributes

A-73

Attribute Data Type
boolean

OCI_ATTR_SODA_NATIVE

Mode
Read/Write

Description
Indicates if the collection is native or not native.

A.17 SODA Collection Handle Attributes
Lists and describes the OCI SODA collection handle attributes.

Collection is composed of multiple components. OCI_ATTR_SODA_DESCRIPTOR is a special case.
When you pass OCI_ATTR_SODA_DESCRIPTOR to OCIAttrGet(), you get metadata for the
collection in one chunk, in JSON form. In addition, OCI_ATTR_SODA_COLL_NAME, the collection
name, is not part of collection metadata (it is not a collection metadata component). It is stored
separately in SODA, so it is also a special case. If you use OCI_ATTR_SODA_DESCRIPTOR to fetch
collection metadata in JSON, the collection name is not included.

The rest of these attributes fetch individual metadata components. They are provided for
convenience (alternatively, you could get collection metadata using
OCI_ATTR_SODA_DESCRIPTOR. That metadata contains all of the components, but it is in JSON
form, so your application might need to parse the JSON to retrieve values of specific
components). All of these attributes are READ only and allow you to examine the metadata for
your existing collection.

See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA) for
reference information about these SODA collection metadata components. All the
metadata components that correspond to these collection handle attributes (except
for OCI_ATTR_SODA_DESCRIPTOR and OCI_ATTR_SODA_COLL_NAME), are described in this
chapter.

The following is a list of all collection attributes followed by descriptions of each.

• Collection Name — OCI_ATTR_SODA_COLL_NAME
• Descriptor — OCI_ATTR_SODA_DESCRIPTOR
• Schema — OCI_ATTR_SODA_SCHEMA
• Table Name — OCI_ATTR_SODA_TABLE_NAME
• View Name — OCI_ATTR_SODA_VIEW_NAME
• Key Column Name — OCI_ATTR_SODA_KEY_COL_NAME
• Key Column SQL Type — OCI_ATTR_SODA_KEY_SQL_TYPE
• Key Column Max Length — OCI_ATTR_SODA_KEY_MAX_LEN
• Key Column Assignment Method — OCI_ATTR_SODA_KEY_ASSIGN_METHOD

Appendix A
SODA Collection Handle Attributes

A-74

• Key Column Sequence Name — OCI_ATTR_SODA_KEY_SEQ_NAME
• Content Column Name — OCI_ATTR_SODA_CTNT_COL_NAME
• Content Column SQL Type — OCI_ATTR_SODA_CTNT_SQL_TYPE
• Content Column Max Length — OCI_ATTR_SODA_CTNT_MAX_LEN
• Content Column JSON Validation — OCI_ATTR_SODA_CTNT_VALIDATION
• Content Column SecureFiles LOB Compression — OCI_ATTR_SODA_CTNT_COMPRESS
• Content Column SecureFiles LOB Cache — OCI_ATTR_SODA_CTNT_CACHE
• Content Column SecureFiles LOB Encryption — OCI_ATTR_SODA_CTNT_ENCRYPT
• Version Column Name — OCI_ATTR_SODA_VERSION_COL_NAME
• Version Generation Method — OCI_ATTR_SODA_VERSION_METHOD
• Last-Modified Time Stamp Column Name — OCI_ATTR_SODA_MODTIME_COL_NAME
• Last-Modified Column Index Name — OCI_ATTR_SODA_MODTIME_INDEX
• Creation Time Stamp Column Name — OCI_ATTR_SODA_CRTIME_COL_NAME
• Media Type Column Name — OCI_ATTR_SODA_MTYPE_COL_NAME
• Read Only — OCI_ATTR_SODA_READONLY

OCI_ATTR_SODA_COLL_NAME

Mode
READ

Description
Specifies the name of the collection.

Attribute Data Type
oratext *

OCI_ATTR_SODA_METADATA_CACHE

Mode
READ/WRITE

Description
If the value of this attribute is set to TRUE, then it turns on caching of collection descriptors. If
the value is set to FALSE, then it disables and opurges any pre-existing collection descriptor.

Attribute Data Type
boolean */ Boolean

OCI_ATTR_SODA_DESCRIPTOR

Mode
READ

Description
Specifies the descriptor to which the collection is mapped.

Attribute Data Type
oratext *

Appendix A
SODA Collection Handle Attributes

A-75

OCI_ATTR_SODA_SCHEMA

Mode
READ

Description
Specifies the name of the Oracle Database schema that owns the table or view to which the
collection is mapped.

Attribute Data Type
oratext *

OCI_ATTR_SODA_TABLE_NAME

Mode
READ

Description
Specifies the name of the table to which the collection is mapped.

Attribute Data Type
oratext *

OCI_ATTR_SODA_VIEW_NAME

Mode
READ

Description
Specifies the name of the view to which the collection is mapped.

Attribute Data Type
oratext *

OCI_ATTR_SODA_KEY_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the document key.

Attribute Data Type
oratext *

OCI_ATTR_SODA_KEY_SQL_TYPE

Mode
READ

Description
Specifies the SQL data type of the column that stores the document key. Valid values include:

• SQLT_CHR for VARCHAR2
• SLQT_BIN for RAW

Appendix A
SODA Collection Handle Attributes

A-76

• SQLT_NUM for NUMBER

Attribute Data Type
ub1

OCI_ATTR_SODA_KEY_MAX_LEN

Mode
READ

Description
Specifies the maximum length of the key column in bytes. This component applies only to
keys of type VARCHAR2. At least 32 bytes if key assignment method is UUID or GUID. See
OCI_ATTR_SODA_KEY_ASSIGN_METHOD.

See Also:

OCI_ATTR_SODA_KEY_SQL_TYPE

Attribute Data Type
ub4

OCI_ATTR_SODA_KEY_ASSIGN_METHOD

Mode
READ

Description
Specifies the OCI value for the corresponding value for this component method used to assign
keys to objects that are inserted into the collection. UUID, GUID, SEQUENCE, and CLIENT are the
corresponding valid values for this component, as it would appear in the JSON metadata. The
valid values for this attribute include:

• OCI_SODA_KEY_METHOD_UUID for UUID, which is the corresponding value for this
component, as it would appear in the JSON metadata.

• OCI_SODA_KEY_METHOD_GUID for GUID, which is the corresponding value for this
component, as it would appear in the JSON metadata.

• OCI_SODA_KEY_METHOD_SEQUENCE for SEQUENCE, which is the corresponding value for this
component, as it would appear in the JSON metadata.

• OCI_SODA_KEY_METHOD_CLIENT for CLIENT, which is the corresponding value for this
component, as it would appear in the JSON metadata.

See Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information about key assignment methods for the collection metadata component Key
Column Assignment Method.

Attribute Data Type
ub1

OCI_ATTR_SODA_KEY_SEQ_NAME

Mode
READ

Appendix A
SODA Collection Handle Attributes

A-77

Description
Specifies the name of the database sequence that generates keys for documents that are
inserted into a collection if the key assignment method is SEQUENCE.

Note:

If you drop a collection using SODA for OCI, the sequence used for key generation
is not dropped. This is because it might not have been created using SODA for OCI.
To drop the sequence, use SQL command DROP SEQUENCE, after first dropping the
collection.

See Also:

• OCI_ATTR_SODA_KEY_ASSIGN_METHOD

• Oracle Database SQL Language Reference for information about DROP
SEQUENCE

• Oracle Database Concepts

Attribute Data Type
oratext *

OCI_ATTR_SODA_CTNT_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the document content.

Attribute Data Type
oratext *

OCI_ATTR_SODA_CTNT_SQL_TYPE

Mode
READ

Description
Specifies the SQL data type of the column that stores the document content. Valid values
include:

• SQLT_CHR for VARCHAR2
• SQLT_CLOB for CLOB,

• SQLT_BLOB for BLOB
• SQLT_JSON for JSON

Attribute Data Type
ub1

Appendix A
SODA Collection Handle Attributes

A-78

OCI_ATTR_SODA_CTNT_MAX_LEN

Mode
READ

Description
Specifies the maximum length of the content column in bytes. This component applies only to
content of type VARCHAR2. The default value is 4000 bytes.

See Also:

• OCI_ATTR_SODA_CTNT_SQL_TYPE

• Oracle Database SQL Language Reference for information about extended data
types

Attribute Data Type
ub4

OCI_ATTR_SODA_CTNT_VALIDATION

Mode
READ

Description
Specifies the OCI value for the corresponding syntax to which JSON content must conform.
The valid values for this attribute include:

• OCI_SODA_JSON_VALIDATION_STRICT for STRICT, which is the corresponding value as it
appears in the JSON collection metadata.

See Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information about the STRICT syntax.

• OCI_SODA_JSON_VALIDATION_LAX for LAX, which is the corresponding value as it appears in
the JSON collection metadata.

See Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information about the LAX syntax.

• OCI_SODA_JSON_VALIDATION_STD for STANDARD, which is the corresponding value as it
appears in the JSON collection metadata.

See Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information about the STANDARD syntax.

Attribute Data Type
ub4

OCI_ATTR_SODA_CTNT_COMPRESS

Mode
READ

Appendix A
SODA Collection Handle Attributes

A-79

Description
Specifies the OCI value for the corresponding value for the SecureFiles LOB compression
setting as it appears in the JSON collection metadata. The valid values for this attribute
include:

• OCI_SODA_LOB_COMPRESS_NONE for NONE, which is the corresponding value as it appears in
the JSON collection metadata.

• OCI_SODA_LOB_COMPRESS_HIGH for HIGH, which is the corresponding value as it appears in
the JSON collection metadata.

• OCI_SODA_LOB_COMPRESS_MEDIUM for MEDIUM, which is the corresponding value as it
appears in the JSON collection metadata.

• OCI_SODA_LOB_COMPRESS_LOW for LOW, which is the corresponding value as it appears in
the JSON collection metadata.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

Attribute Data Type
ub1

OCI_ATTR_SODA_CTNT_CACHE

Mode
READ

Description
Specifies the SecureFiles LOB cache setting.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

Attribute Data Type
boolean

Appendix A
SODA Collection Handle Attributes

A-80

Note:

Deprecated algorithms include MD4, MD5, DES, and RC4-related algorithms.
Removing older, less secure cryptography algorithms prevents accidental use of
these APIs. To meet your security requirements, Oracle recommends that you use
more modern cryptography algorithms such as AES. While 3DES is not deprecated
at this time, AES provides stronger protection.

As a consequence of this deprecation, Oracle recommends that you review your
network encryption configuration to see if you have specified use of any of the
deprecated algorithms. If any are found, then switch to using a more modern cipher,
such as AES.

OCI_ATTR_SODA_CTNT_ENCRYPT

Mode
READ

Description
Specifies the OCI value for the corresponding value for the SecureFiles LOB encryption
setting as it appears in the JSON collection metadata. The valid values for this attribute
include:

• OCI_SODA_LOB_ENCRYPT_NONE for NONE, which is the corresponding value as it appears in
the JSON collection metadata.

• OCI_SODA_LOB_ENCRYPT_3DES168 for 3DES168, which is the corresponding value as it
appears in the JSON collection metadata.

• OCI_SODA_LOB_ENCRYPT_AES128 for AES128, which is the corresponding value as it appears
in the JSON collection metadata.

• OCI_SODA_LOB_ENCRYPT_AES192 for AES192, which is the corresponding value as it appears
in the JSON collection metadata.

• OCI_SODA_LOB_ENCRYPT_AES256 for AES256, which is the corresponding value as it appears
in the JSON collection metadata.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

Attribute Data Type
ub1

OCI_ATTR_SODA_VERSION_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the document version.

Appendix A
SODA Collection Handle Attributes

A-81

Attribute Data Type
oratext *

OCI_ATTR_SODA_VERSION_METHOD

Mode
READ

Description
Specifies the OCI value for the corresponding method used to compute version values for
objects when they are inserted into a collection or replaced as it appears in the JSON
collection metadata. The valid values for this attribute include:

• OCI_SODA_VERSION_UUID for UUID, which is the corresponding value as it appears in the
JSON collection metadata

• OCI_SODA_VERSION_TIMESTAMP for TIMESTAMP, which is the corresponding value as it
appears in the JSON collection metadata

• OCI_SODA_VERSION_MD5 for MD5, which is the corresponding value as it appears in the
JSON collection metadata

• OCI_SODA_VERSION_SHA256 for SHA256, which is the corresponding value as it appears in
the JSON collection metadata

• OCI_SODA_VERSION_SEQUENTIAL for SEQUENTIAL, which is the corresponding value as it
appears in the JSON collection metadata

• OCI_SODA_VERSION_NONE for NONE, which is the corresponding value as it appears in the
JSON collection metadata

See Oracle Database Introduction to Simple Oracle Document Access (SODA) for more
information about version generation methods for the collection metadata component Version
Column Generation Method.

Attribute Data Type
ub1

OCI_ATTR_SODA_MODTIME_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the last-modified time stamp of the document.

Attribute Data Type
oratext *

OCI_ATTR_SODA_MODTIME_INDEX

Mode
READ

Description
Specifies the name of the index on the last-modified column.

Attribute Data Type
oratext *

Appendix A
SODA Collection Handle Attributes

A-82

OCI_ATTR_SODA_CRTIME_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the creation time stamp of the document.

Attribute Data Type
oratext *

OCI_ATTR_SODA_MTYPE_COL_NAME

Mode
READ

Description
Specifies the name of the column that stores the media type of the document. A media type
column is needed if the collection is to be heterogeneous, that is, it can store documents other
than JSON.

Attribute Data Type
oratext *

OCI_ATTR_SODA_READONLY

Mode
READ

Description
Specifies whether the collection is read-only.

Attribute Data Type
boolean

A.18 SODA Output Options Handle Attributes
Lists and describes the OCI SODA Output Options handle attributes. This handle is used to
return the number of documents processed by a bulk operation. Currently, it is returned only by
bulk insert methods.

OCI_ATTR_SODA_DOC_COUNT

Mode
READ

Description
Number of documents processed successfully by the statement.

Attribute Data Type
ub8 *

Appendix A
SODA Output Options Handle Attributes

A-83

A.19 SODA Operation Options Handle Attributes
Lists and describes the OCI SODA Operation Options handle attributes.

Operation options handle is used to drive read and write SODA operations. The attributes that
can be set on operation options handle represent the conditions of the operation. After the
attributes are set, the operation options handle is passed to SODA functions perform the actual
read or write operations such as finds, replaces, removes, and so on.
The attributes listed in this section can be set on the OCISodaOperationOptions handle using
the standard OCIAttrSet methods. However, if you want to set an array of keys on the
OCISodaOperationOptions handle, then you must use OCISodaOperKeysSet() method.

OCI_ATTR_SODA_KEY

Mode
READ/WRITE

Description
Key to be used for the operation.

Note:

If you use function OCIAttrSet() to set attribute OCI_ATTR_SODA_KEY on an
operation-options handle, and you also use function OCISodaOperKeysSet() to set
multiple keys on the same handle, then only the latest of the two settings takes
effect. The effect of the first function invoked is overridden by the effect of the
second.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_SODA_SAMPLE_PCT

Mode
READ/WRITE

Description
The percentage of the total documents or block count to be included in the sample. The value
must be in the range .000001 to 100 (but not including 100) . This percentage indicates the
probability of each row, or each cluster of rows in the case of block sampling, selected as part
of the sample. It does not mean that the database retrieves exactly the percentage of
documents in the collection.

Attribute Data Type
double */double

OCI_ATTR_SODA_SAMPLE_SEED

Mode
READ/WRITE

Appendix A
SODA Operation Options Handle Attributes

A-84

Description
Specify this attribute to instruct the database to attempt to return the same sample from one
execution to the next. The seed value must be an integer between -1 and 4294967295 . If you
set this attribute to -1, then the resulting sample changes from one execution to the next.

Attribute Data Type
sb8 */ sb8

OCI_ATTR_SODA_SAMPLE_METHOD

Mode
READ/WRITE

Description
The sampling method to be used.

Attribute Data Type
ub1 */ ub1

Note:

• OCI_ATTR_SODA_SAMPLE_METHOD attribute accepts the following values:

– OCI_SODA_SAMPLE_METHOD_ROW
– OCI_SODA_SAMPLE_METHOD_BLOCK

• If you set the value of OCI_ATTR_SODA_SAMPLE_SEED or
OCI_ATTR_SODA_SAMPLE_METHOD attribute without setting the value of
OCI_ATTR_SODA_SAMPLE_PCT attribute, then an error is returned.

OCI_ATTR_SODA_VERSION

Mode
READ/WRITE

Description
Version to be used for the operation.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_SODA_FILTER

Mode
READ/WRITE

Description
Filter to be used for the operation.

Attribute Data Type
oratext **/oratext *

Appendix A
SODA Operation Options Handle Attributes

A-85

OCI_ATTR_SODA_SKIP

Mode
READ/WRITE

Description
Number of document results to skip.

Attribute Data Type
ub4 */ub4

OCI_ATTR_SODA_LIMIT

Mode
READ/WRITE

Description
Number of documents to limit in the operation results.

Attribute Data Type
ub4 */ub4

OCI_ATTR_SODA_FETCH_ARRAY_SIZE

Mode
READ/WRITE

Description
Starting with Oracle Database Release 21c, a new SODA attribute,
OCI_ATTR_SODA_FETCH_ARRAY_SIZE is introduced. The OCI_ATTR_SODA_FETCH_ARRAY_SIZE
attribute can be set on the operation handle, this value indicates the number of documents to
be prefetched during a call to OCISodaFind(). Subsequent calls to OCISodaDocGetNext() does
not make round trips until there are documents in the internal prefetch buffers. This attribute
can be set to improve the performance of fetches by reducing the network round trips.

Note:

The default value for this attribute is set to 100, and can be overridden by calling
OCIAttrSet() on the operation handle.

Attribute Data Type
ub4 */ub4

Following example code snippet shows the usage of this attribute:

ub4 pfchsz = 125;
OCIAttrSet(opr, OCI_HTYPE_SODA_OPER_OPTIONS, &pfchsz, 0,
 OCI_ATTR_SODA_FETCH_ARRAY_SIZE, errhp);

OCI_ATTR_SODA_AS_OF_SCN

Mode
READ/WRITE

Appendix A
SODA Operation Options Handle Attributes

A-86

Description
Oracle Database release 19.11 introduces OCI_ATTR_SODA_AS_OF_SCN attribute. The System
Change Number (SCN) can be used as the flashback parameter for the operation.

Attribute Data Type
ub8 */ub8

OCI_ATTR_SODA_AS_OF_TSTAMP

Mode
READ/WRITE

Description
Oracle Database release 19.11 introduces OCI_ATTR_SODA_AS_OF_TSTAMP attribute. The
timestamp value can be used as the flashback parameter for the operation.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_SODA_LOCK

Mode
READ/WRITE

Description
Oracle Database release 19.11 introduces OCI_ATTR_SODA_LOCK attribute . When this attribute
is set, the rows are fetched for updation. The lock is released with a subsequent commit or
rollback.

Attribute Data Type
boolean */boolean

OCI_ATTR_SODA_HINT

Mode
READ/WRITE

Description
Oracle Database release 19.11 introduces OCI_ATTR_SODA_HINT attribute. If this value is set,
then the value of that attribute is pasted into the hint section of the underlying SQL
statements.
Oracle Database release 19.11 introduces OCISodaInsertAndGetWithOpts,
OCISodaBulkInsertAndGetWithOpts, and OCISodaSaveAndGetWithOpts new variants of the
existing functions in order for the inserts and saves to accept hints, These variants take the
OCISodaOperationOptions handle, and thus allow the passing of hints (they ignore all the
other attributes that can be set on this handle).
The string value for key "hint" uses the SQL hint syntax (that is, the hint text, without the
enclosing SQL comment syntax /*+...*/). Use only hint MONITOR (turn on monitoring) or
NO_MONITOR (turn off monitoring). You can use this to pass any SQL hints, but MONITOR
and NO_MONITOR are the useful ones for SODA, and an inappropriate hint can cause the
optimizer to produce a suboptimal query plan.

Attribute Data Type
oratext **/oratext *

Appendix A
SODA Operation Options Handle Attributes

A-87

See Also:

• OCISodaDataGuideGetWithOpts ()

• OCISodaBulkInsertAndGetWithOpts()

• OCISodaInsertAndGetWithOpts ()

• OCISodaSaveAndGetWithOpts()

• Finding Documents in Collections with SODA for C

• Removing Documents from a Collection with SODA for C

• Replacing Documents in a Collection with SODA for C

A.20 LOB Descriptor and LOB Locator Attributes
Lists and describes LOB locator attributes.

The following attributes are used for the parameter descriptor.

OCI_ATTR_LOBEMPTY

Mode
WRITE

Description
Sets the internal LOB locator to empty. The locator can then be used as a bind variable for an
INSERT or UPDATE statement to initialize the LOB to empty. Once the LOB is empty,
OCILobWrite2() or OCILobWrite() (deprecated) can be called to populate the LOB with data.
This attribute is only valid for internal LOBs (that is, BLOB, CLOB, NCLOB).
Applications should pass the address of a ub4 that has a value of 0; for example, declare the
following:

ub4 lobEmpty = 0

Then they should pass the address: &lobEmpty.

Attribute Data Type
ub4 *

OCI_ATTR_LOB_REMOTE

Mode
READ

Description
Determines whether the LOB locator belongs to a local database table or a remote database
table. The value TRUE indicates that the LOB locator is from a remote database table. The
application must fetch the LOB descriptor from the database before using this attribute.
Only the server can set this value. If an application tries to set this attribute, then an
ORA-24315 error is raised.

Attribute Data Type
boolean

Appendix A
LOB Descriptor and LOB Locator Attributes

A-88

OCI_ATTR_LOB_TYPE

Mode
READ

Description
Gets the LOB type from the LOB descriptor.

Attribute Data Type
ub2

A.21 JSON Descriptor Attributes
This section describes the JSON attributes.

You can get and set the following JSON attribute on the JSON descriptor, using the
OCIAttrGet () and OCIAttrSet() respectively:

OCI_ATTR_JSON_DOM_MUTABLE

Mode
READ/WRITE

Description
If this attribute is set to TRUE, then the underlying DOM is rendered as a mutable DOM. If it is
set to FALSE, then it renders immutable DOM.

Attribute Data Type
boolean * / boolean

Usage Notes
By default, this property is set to FALSE.

Related Topics

• OCIAttrSet()
Sets the value of an attribute of a handle or a descriptor.

• OCIAttrGet()
Gets the value of an attribute of a handle.

A.22 Complex Object Attributes
Lists and describes complex object attributes.

The following attributes are used for complex objects.

• Complex Object Retrieval Handle Attributes
Lists and describes complex object retrieval handle attributes.

• Complex Object Retrieval Descriptor Attributes
Lists and describes complex object retrieval descriptor attributes.

Appendix A
JSON Descriptor Attributes

A-89

See Also:

Complex Object Retrieval

A.22.1 Complex Object Retrieval Handle Attributes
Lists and describes complex object retrieval handle attributes.

The following attributes are used for the complex object retrieval handle.

OCI_ATTR_COMPLEXOBJECT_LEVEL

Mode
WRITE

Description
The depth level for complex object retrieval.

Attribute Data Type
ub4 *

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE

Mode
WRITE

Description
Whether to fetch collection attributes in an object type out-of-line.

Attribute Data Type
ub1 *

A.22.2 Complex Object Retrieval Descriptor Attributes
Lists and describes complex object retrieval descriptor attributes.

The following attributes are used for the complex object retrieval descriptor.

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

Mode
WRITE

Description
A type of REF to follow for complex object retrieval.

Attribute Data Type
void *

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL

Mode
WRITE

Appendix A
Complex Object Attributes

A-90

Description
Depth level for the following REFs of type OCI_ATTR_COMPLEXOBJECTCOMP_TYPE.

Attribute Data Type
ub4 *

A.23 Database Advanced Queuing Descriptor Attributes
Lists and describes Database Advanced Queuing descriptor attributes

The following attributes are used for the database advanced queuing descriptor.

• OCIAQEnqOptions Descriptor Attributes
Lists and describes OCIAQEnqOptions descriptor attributes.

• OCIAQDeqOptions Descriptor Attributes
Lists and describes OCIAQDeqOptions descriptor attributes.

• OCIAQMsgProperties Descriptor Attributes
Lists and describes OCIAQMsgProperties descriptor attributes.

• OCIAQAgent Descriptor Attributes
Lists and describes OCIAQAgent descriptor attributes.

• OCIServerDNs Descriptor Attributes
Lists and describes OCIServerDNs descriptor attributes.

See Also:

Oracle Database Advanced Queuing User's Guide

A.23.1 OCIAQEnqOptions Descriptor Attributes
Lists and describes OCIAQEnqOptions descriptor attributes.

The following attributes are properties of the OCIAQEnqOptions descriptor.

OCI_ATTR_MSG_DELIVERY_MODE

Mode
WRITE

Description
The enqueue call can enqueue a persistent or buffered message into a queue, by setting the
OCI_ATTR_MSG_DELIVERY_MODE attribute in the OCIAQEnqOptions descriptor to
OCI_MSG_PERSISTENT or OCI_MSG_BUFFERED, respectively. The default value for this attribute is
OCI_MSG_PERSISTENT.

Attribute Data Type
ub2

Appendix A
Database Advanced Queuing Descriptor Attributes

A-91

OCI_ATTR_RELATIVE_MSGID

Mode
READ/WRITE

Description
This feature is deprecated and may be removed in a future release.
Specifies the message identifier of the message that is referenced in the sequence deviation
operation. This value is valid if and only if OCI_ENQ_BEFORE is specified in
OCI_ATTR_SEQUENCE_DIVISION. This value is ignored if the sequence deviation is not specified.

Attribute Data Type
OCIRaw *

OCI_ATTR_SEQUENCE_DEVIATION

Mode
READ/WRITE

Description
This feature is deprecated for new applications, but it is retained for compatibility.
It specifies whether the message being enqueued should be dequeued before other
messages in the queue.

Attribute Data Type
ub4

Valid Values
The only valid values are:

• OCI_ENQ_BEFORE - The message is enqueued ahead of the message specified by
OCI_ATTR_RELATIVE_MSGID.

• OCI_ENQ_TOP - The message is enqueued ahead of any other messages.

OCI_ATTR_TRANSFORMATION

Mode
READ/WRITE

Description
The name of the transformation that must be applied before the message is enqueued into the
database. The transformation must be created using DBMS_TRANSFORM.

Attribute Data Type
oratext *

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies the transactional behavior of the enqueue request.

Attribute Data Type
ub4

Appendix A
Database Advanced Queuing Descriptor Attributes

A-92

Valid Values
The only valid values are:

• OCI_ENQ_ON_COMMIT - The enqueue is part of the current transaction. The operation is
complete when the transaction commits. This is the default case.

• OCI_ENQ_IMMEDIATE - The enqueue is not part of the current transaction. The operation
constitutes a transaction of its own.

A.23.2 OCIAQDeqOptions Descriptor Attributes
Lists and describes OCIAQDeqOptions descriptor attributes.

The following attributes are properties of the OCIAQDeqOptions descriptor.

OCI_ATTR_CONSUMER_NAME

Mode
READ/WRITE

Description
Name of the consumer. Only those messages matching the consumer name are accessed. If
a queue is not set up for multiple consumers, this field should be set to null.

Attribute Data Type
oratext *

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the correlation identifier of the message to be dequeued. Special pattern-matching
characters, such as the percent sign (%) and the underscore (_), can be used. If multiple
messages satisfy the pattern, the order of dequeuing is undetermined.

Attribute Data Type
oratext *

OCI_ATTR_DEQ_MODE

Mode
READ/WRITE

Description
Specifies the locking behavior associated with the dequeue.

Attribute Data Type
ub4

Valid Values
The only valid values are:

• OCI_DEQ_BROWSE - Read the message without acquiring any lock on the message. This is
equivalent to a SELECT statement.

Appendix A
Database Advanced Queuing Descriptor Attributes

A-93

• OCI_DEQ_LOCKED - Read and obtain a write lock on the message. The lock lasts for the
duration of the transaction. This is equivalent to a SELECT FOR UPDATE statement.

• OCI_DEQ_REMOVE - Read the message and update or delete it. This is the default. The
message can be retained in the queue table based on the retention properties.

• OCI_DEQ_REMOVE_NODATA - Confirm receipt of the message, but do not deliver the actual
message content.

OCI_ATTR_DEQ_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message to be dequeued.

Attribute Data Type
OCIRaw *

OCI_ATTR_DEQCOND

Mode
READ/WRITE

Description
This attribute is a Boolean expression similar to the WHERE clause of a SQL query. This
Boolean expression can include conditions on message properties, user data properties
(object payloads only), and PL/SQL or SQL functions.
To specify dequeue conditions on a message payload (object payload), use attributes of the
object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to
indicate the specific column of the queue table that stores the payload.
The attribute cannot exceed 4000 characters. If multiple messages satisfy the dequeue
condition, then the order of dequeuing is indeterminate, and the sort order of the queue is not
honored.

Attribute Data Type
oratext *

Example
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
 (dvoid *)"tab.priority between 2 and 4" ,
 strlen("tab.priority between 2 and 4"),
 OCI_ATTR_DEQCOND, errhp));

OCI_ATTR_MSG_DELIVERY_MODE

Mode
WRITE

Description
You can specify the dequeue call to dequeue persistent, buffered, or both kinds of messages
from a queue, by setting the OCI_ATTR_MSG_DELIVERY_MODE attribute in the OCIAQDeqOptions
descriptor to OCI_MSG_PERSISTENT, OCI_MSG_BUFFERED, or OCI_MSG_PERSISTENT_OR_BUFFERED,
respectively. The default value for this attribute is OCI_MSG_PERSISTENT.

Appendix A
Database Advanced Queuing Descriptor Attributes

A-94

Attribute Data Type
ub2

OCI_ATTR_NAVIGATION

Mode
READ/WRITE

Description
Specifies the position of the message that is retrieved. First, the position is determined.
Second, the search criterion is applied. Finally, the message is retrieved.

Attribute Data Type
ub4

Valid Values
The only valid values are:

• OCI_DEQ_FIRST_MSG - Retrieves the first available message that matches the search
criteria. This resets the position to the beginning of the queue.

• OCI_DEQ_NEXT_MSG - Retrieves the next available message that matches the search
criteria. If the previous message belongs to a message group, AQ retrieves the next
available message that matches the search criteria and belongs to the message group.
This is the default.

• OCI_DEQ_NEXT_TRANSACTION - Skips the remainder of the current transaction group (if any)
and retrieves the first message of the next transaction group. This option can only be used
if message grouping is enabled for the current queue.

• OCI_DEQ_FIRST_MSG_MULTI_GROUP - Indicates that a call to OCIAQDeqArray() resets the
position to the beginning of the queue and dequeue messages (possibly across different
transaction groups) that are available and match the search criteria, until reaching the
iters limit. To distinguish between transaction groups, a new message property,
OCI_ATTR_TRANSACTION_NO, is defined. All messages belonging to the same transaction
group have the same value for this message property.

• OCI_DEQ_NEXT_MSG_MULTI_GROUP - Indicates that a call to OCIAQDeqArray() dequeues the
next set of messages (possibly across different transaction groups) that are available and
match the search criteria, until reaching the iters limit. To distinguish between transaction
groups, a new message property, OCI_ATTR_TRANSACTION_NO, is defined. All messages
belonging to the same transaction group have the same value for this message property.

OCI_ATTR_TRANSFORMATION

Mode
READ/WRITE

Description
The name of the transformation that must be applied after the message is dequeued but
before returning it to the dequeuing application. The transformation must be created using
DBMS_TRANSFORM.

Attribute Data Type
oratext *

Appendix A
Database Advanced Queuing Descriptor Attributes

A-95

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies whether the new message is dequeued as part of the current transaction. The
visibility parameter is ignored when using the BROWSE mode.

Attribute Data Type
ub4

Valid Values
The only valid values are:

• OCI_DEQ_ON_COMMIT - The dequeue is part of the current transaction. This is the default.

• OCI_DEQ_IMMEDIATE - The dequeued message is not part of the current transaction. It
constitutes a transaction on its own.

OCI_ATTR_WAIT

Mode
READ/WRITE

Description
Specifies the wait time if no message is currently available that matches the search criteria.
This parameter is ignored if messages in the same group are being dequeued.

Attribute Data Type
ub4

Valid Values
Any ub4 value is valid, but the following predefined constants are provided:

• OCI_DEQ_WAIT_FOREVER - Wait forever. This is the default.

• OCI_DEQ_NO_WAIT - Do not wait.

Note:

If the OCI_DEQ_NO_WAIT option is used to poll a queue, then messages are not
dequeued after polling an empty queue. Use the OCI_DEQ_FIRST_MSG option instead
of the default OCI_DEQ_NEXT_MSG setting of OCI_ATTR_NAVIGATION. You can also use
a nonzero wait setting (1 is suggested) of OCI_ATTR_WAIT for the dequeue.

A.23.3 OCIAQMsgProperties Descriptor Attributes
Lists and describes OCIAQMsgProperties descriptor attributes.

The following attributes are properties of the OCIAQMsgProperties descriptor.

Appendix A
Database Advanced Queuing Descriptor Attributes

A-96

OCI_ATTR_ATTEMPTS

Mode
READ

Description
Specifies the number of attempts that have been made to dequeue the message. This
parameter cannot be set at enqueue time.

Attribute Data Type
sb4

Valid Values
Any sb4 value is valid.

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the identification supplied by the producer for a message at enqueuing.

Attribute Data Type
oratext *

Valid Values
Any string up to 128 bytes is valid.

OCI_ATTR_DELAY

Mode
READ/WRITE

Description
Specifies the number of seconds to delay the enqueued message. The delay represents the
number of seconds after which a message is available for dequeuing. Dequeuing by message
ID (msgid) overrides the delay specification. A message enqueued with delay set is in the
WAITING state; when the delay expires the messages goes to the READY state. DELAY
processing requires the queue monitor to be started. Note that the delay is set by the producer
who enqueues the message.

Attribute Data Type
sb4

Valid Values
Any sb4 value is valid, but the following predefined constant is available:

OCI_MSG_NO_DELAY - Indicates that the message is available for immediate dequeuing.

OCI_ATTR_ENQ_TIME

Mode
READ

Appendix A
Database Advanced Queuing Descriptor Attributes

A-97

Description
Specifies the time that the message was enqueued. This value is determined by the system
and cannot be set by the user.

Attribute Data Type
OCIDate

OCI_ATTR_EXCEPTION_QUEUE

Mode
READ/WRITE

Description
Specifies the name of the queue to which the message is moved if it cannot be processed
successfully. Messages are moved in two cases: If the number of unsuccessful dequeue
attempts has exceeded max_retries; or if the message has expired. All messages in the
exception queue are in the EXPIRED state.
The default is the exception queue associated with the queue table. If the exception queue
specified does not exist at the time of the move, the message is moved to the default
exception queue associated with the queue table, and a warning is logged in the alert file. If
the default exception queue is used, the parameter returns a NULL value at dequeue time.
This attribute must refer to a valid queue name.

Attribute Data Type
oratext *

OCI_ATTR_EXPIRATION

Mode
READ/WRITE

Description
Specifies the expiration of the message. It determines, in seconds, how long the message is
available for dequeuing. This parameter is an offset from the delay. Expiration processing
requires the queue monitor to be running.
While waiting for expiration, the message remains in the READY state. If the message is not
dequeued before it expires, it is moved to the exception queue in the EXPIRED state.

Attribute Data Type
sb4

Valid Values
Any sb4 value is valid, but the following predefined constant is available:

OCI_MSG_NO_EXPIRATION - The message never expires.

OCI_ATTR_MSG_DELIVERY_MODE

Mode
READ

Description
After a dequeue call, the OCI client can read the OCI_ATTR_MSG_DELIVERY_MODE attribute in the
OCIAQMsgProperties descriptor to determine whether a persistent or buffered message was
dequeued. The value of the attribute is OCI_MSG_PERSISTENT for persistent messages and
OCI_MSG_BUFFERED for buffered messages.

Appendix A
Database Advanced Queuing Descriptor Attributes

A-98

Attribute Data Type
ub2

OCI_ATTR_MSG_STATE

Mode
READ

Description
Specifies the state of the message at the time of the dequeue. This parameter cannot be set
at enqueue time.

Attribute Data Type
ub4

Valid Values
Only the following values are returned:

• OCI_MSG_WAITING - The message delay has not yet been reached.

• OCI_MSG_READY - The message is ready to be processed.

• OCI_MSG_PROCESSED - The message has been processed and is retained.

• OCI_MSG_EXPIRED - The message has been moved to the exception queue.

OCI_ATTR_ORIGINAL_MSGID

Mode
READ/WRITE

Description
The ID of the message in the last queue that generated this message. When a message is
propagated from one queue to another, this attribute identifies the ID of the queue from which
it was last propagated. When a message has been propagated through multiple queues, this
attribute identifies the ID of the message in the last queue that generated this message, not
the first queue.

Attribute Data Type
OCIRaw *

OCI_ATTR_PRIORITY

Mode
READ/WRITE

Description
Specifies the priority of the message. A smaller number indicates a higher priority. The priority
can be any number, including negative numbers.
The default value is zero.

Attribute Data Type
sb4

OCI_ATTR_RECIPIENT_LIST

Mode
WRITE

Appendix A
Database Advanced Queuing Descriptor Attributes

A-99

Description
This parameter is only valid for queues that allow multiple consumers. The default recipients
are the queue subscribers. This parameter is not returned to a consumer at dequeue time.

Attribute Data Type
OCIAQAgent **

OCI_ATTR_SENDER_ID

Mode
READ/WRITE

Description
Identifies the original sender of a message.

Attribute Data Type
OCIAgent *

OCI_ATTR_TRANSACTION_NO

Mode
READ

Description
For transaction-grouped queues, this identifies the transaction group of the message. This
attribute is populated after a successful OCIAQDeqArray() call. All messages in a group have
the same value for this attribute. This attribute cannot be used by the OCIAQEnqArray() call to
set the transaction group for an enqueued message.

Attribute Data Type
oratext *

A.23.4 OCIAQAgent Descriptor Attributes
Lists and describes OCIAQAgent descriptor attributes.

The following attributes are properties of the OCIAQAgent descriptor.

OCI_ATTR_AGENT_ADDRESS

Mode
READ/WRITE

Description
Protocol-specific address of the recipient. If the protocol is 0 (default), the address is of the
form [schema.]queue[@dblink].

Attribute Data Type
oratext *

Valid Values
Can be any string up to 128 bytes.

OCI_ATTR_AGENT_NAME

Mode
READ/WRITE

Appendix A
Database Advanced Queuing Descriptor Attributes

A-100

Description
Name of a producer or consumer of a message.

Attribute Data Type
oratext *

Valid Values
Can be any Oracle Database identifier, up to 30 bytes.

OCI_ATTR_AGENT_PROTOCOL

Mode
READ/WRITE

Description
Protocol to interpret the address and propagate the message. The default (and currently the
only supported) value is 0.

Attribute Data Type
ub1

Valid Values
The only valid value is zero, which is also the default.

A.23.5 OCIServerDNs Descriptor Attributes
Lists and describes OCIServerDNs descriptor attributes.

The following attributes are properties of the OCIServerDNs descriptor.

OCI_ATTR_DN_COUNT

Mode
READ

Description
The number of database servers in the descriptor.

Attribute Data Type
ub2

OCI_ATTR_SERVER_DN

Mode
READ/WRITE

Description
For read mode, this attribute returns the list of Oracle Database distinguished names that are
already inserted into the descriptor.
For write mode, this attribute takes the distinguished name of an Oracle Database.

Attribute Data Type
oratext **/oratext *

Appendix A
Database Advanced Queuing Descriptor Attributes

A-101

A.24 Subscription Handle Attributes
Lists and describes subscription handle attributes.

The following attributes are used for the subscription handle.

See Also:

• Publish-Subscribe Notification in OCI

• About Continuous Query Notification

OCI_ATTR_SUBSCR_CQ_QOSFLAGS

Mode
WRITE

Description
The following new QoS is added for DDL notification:
OCI_SUBSCR_CQ_QOS_DDL_NTFN

Attribute Data Type
ub4 *

OCI_ATTR_SERVER_DNS

Mode
READ/WRITE

Description
The distinguished names of the Oracle database that the client is interested in for the
registration.

Attribute Data Type
OCIServerDNs *

OCI_ATTR_SUBSCR_CALLBACK

Mode
READ/WRITE

Description
Subscription callback. If the attribute OCI_ATTR_SUBSCR_RECPTPROTO is set to
OCI_SUBSCR_PROTO_OCI or is left not set, then this attribute must be set before the subscription
handle can be passed into the registration call OCISubscriptionRegister().

Attribute Data Type
ub4 (void *, OCISubscription *, void *, ub4, void *, ub4)

OCI_ATTR_SUBSCR_CQ_QOSFLAGS

Mode
WRITE

Appendix A
Subscription Handle Attributes

A-102

Description
Sets QOS (quality of service flags) specific to continuous query (CQ) notifications. For the
possible values you can pass, see the section on using OCI subscription handle attributes for
CQN in Oracle Database Development Guide.

Attribute Data Type
ub4 *

OCI_ATTR_SUBSCR_CTX

Mode
READ/WRITE

Description
Context that the client wants to get passed to the user callback denoted by
OCI_ATTR_SUBSCR_CALLBACK when it gets invoked by the system. If the attribute
OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_OCI or is left not set, then this
attribute must be set before the subscription handle can be passed into the registration call
OCI Subscription Register().

Attribute Data Type
void *

OCI_ATTR_SUBSCR_HOSTADDR

Mode
READ/WRITE

Description
Before registering for notification using OCISubscriptionRegister(), specify the client IP (in
either IPv4 or IPv6 format) of the listening endpoint of the OCI notification client to which the
notification is sent. Enter either IPv4 addresses in dotted decimal format, for example,
192.0.2.34, or IPv6 addresses in hexadecimal format, for example,
2001:0db8:0000:0000:0217:f2ff:fe4b:4ced.

See Also:

Oracle Database Net Services Administrator's Guide for more information about the
IPv6 format for IP addresses

Attribute Data Type
text *

Example
/* Set notification client address*/
text ipaddr[16] = "192.0.2.34";
(void) OCIAttrSet((dvoid *) envhp, (ub4) OCI_HTYPE_ENV,
 (dvoid *) ipaddr, (ub4) strlen(ipaddr),
 (ub4) OCI_ATTR_SUBSCR_HOSTADDR, errhp);

OCI_ATTR_SUBSCR_IPADDR

Mode
READ/WRITE

Appendix A
Subscription Handle Attributes

A-103

Description
The client IP address (IPv4 or IPv6) on which an OCI client registered for notification listens,
to receive notifications. For example, IPv4 address in dotted decimal format such as
192.1.2.34 or IPv6 address in hexadecimal format such as
2001:0db8:0000:0000:0217:f2ff:fe4b:4ced.

See Also:

Oracle Database Net Services Administrator's Guide for more information about the
IPv6 format for IP addresses

Attribute Data Type
oratext *

OCI_ATTR_SUBSCR_NAME

Mode
READ/WRITE

Description
Subscription name. All subscriptions are identified by a subscription name. A subscription
name consists of a sequence of bytes of specified length. The length in bytes of the name
must be specified as it is not assumed that the name is NULL-terminated. This is important
because the name could contain multibyte characters.
Clients can set the subscription name attribute of a subscription handle using an
OCIAttrSet() call and by specifying a handle type of OCI_HTYPE_SUBSCR and an attribute type
of OCI_ATTR_SUBSCR_NAME.
All of the subscription callbacks need a subscription handle with the OCI_ATTR_SUBSCR_NAME
and OCI_ATTR_SUBSCR_NAMESPACE attributes set. If the attributes are not set, an error is
returned. The subscription name that is set for the subscription handle must be consistent with
its namespace.

Attribute Data Type
oratext *

OCI_ATTR_SUBSCR_NAMESPACE

Mode
READ/WRITE

Description
Namespace in which the subscription handle is used. The valid values for this attribute are
OCI_SUBSCR_NAMESPACE_AQ, OCI_SUBSCR_NAMESPACE_DBCHANGE, and
OCI_SUBSCR_NAMESPACE_ANONYMOUS.
The subscription name that is set for the subscription handle must be consistent with its
namespace.

Attribute Data Type
ub4 *

OCI_ATTR_SUBSCR_NTFN_GROUPING_CLASS

Mode
READ/WRITE

Appendix A
Subscription Handle Attributes

A-104

Description
Notification grouping class. If set to 0 (the default) all other notification grouping attributes
must be 0. It is implemented for time in the latest release and is the only current criterion for
grouping. Can be set to OCI_SUBSCR_NTFN_GROUPING_CLASS_TIME.

Note:

OCI_OBJECT mode is required when using grouping notifications.

Attribute Data Type
ub1 *

OCI_ATTR_SUBSCR_NTFN_GROUPING_REPEAT_COUNT

Mode
READ/WRITE

Description
How many times to do the grouping. Notification repeat count. Positive integer. Can be set to
OCI_NTFN_GROUPING_FOREVER to send grouping notifications forever.

Attribute Data Type
sb4 *

OCI_ATTR_SUBSCR_NTFN_GROUPING_START_TIME

Mode
READ/WRITE

Description
The time grouping starts. Set to a valid TIMESTAMP WITH TIME ZONE. The default is the current
TIMESTAMP WITH TIME ZONE.

Attribute Data Type
OCIDateTime */OCIDateTime **

OCI_ATTR_SUBSCR_NTFN_GROUPING_TYPE

Mode
READ/WRITE

Description
The format of the grouping notification: whether a summary of all events in the group or just
the last event in the group. Use OCIAttrSet() to set to one of the following notification
grouping types: OCI_SUBSCR_NTFN_TYPE_SUMMARY or OCI_SUBSCR_NTFN_TYPE_LAST. Summary
of notifications is the default. The other choice is the last notification.

Attribute Data Type
ub1 *

OCI_ATTR_SUBSCR_NTFN_GROUPING_VALUE

Mode
READ/WRITE

Appendix A
Subscription Handle Attributes

A-105

Description
Specifies the value for the grouping class. For time, this is the time-period of grouping
notifications specified in seconds, that is, the time after which grouping notification is sent
periodically until OCI_ATTR_SUBSCR_NTFN_GROUPING_REPEAT_COUNT is exhausted.

Attribute Data Type
ub4 *

OCI_ATTR_SUBSCR_PAYLOAD

Mode
READ/WRITE

Description
Buffer that corresponds to the payload that must be sent along with the notification. The length
of the buffer can also be specified in the same set attribute call. This attribute must be set
before a post can be performed on a subscription. For the current release, only an untyped
(ub1 *) payload is supported.

Attribute Data Type
ub1 *

OCI_ATTR_SUBSCR_QOSFLAGS

Mode
READ/WRITE

Description
Quality of service levels of the server. The possible settings are:

• OCI_SUBSCR_QOS_RELIABLE - Reliable. If the database fails, it does not lose notification.
Not supported for nonpersistent queues or buffered messaging.

• OCI_SUBSCR_QOS_PURGE_ON_NTFN - Once received, purge notification and remove
subscription.

• OCI_SUBSCR_QOS_PAYLOAD - Payload notification.

Attribute Data Type
ub4 *

OCI_ATTR_SUBSCR_RECPT

Mode
READ/WRITE

Description
The name of the recipient of the notification when the attribute OCI_ATTR_SUBSCR_RECPTPROTO
is set to OCI_SUBSCR_PROTO_MAIL, OCI_SUBSCR_PROTO_HTTP, or OCI_SUBSCR_PROTO_SERVER.
For OCI_SUBSCR_PROTO_HTTP, OCI_ATTR_SUBSCR_RECPT denotes the HTTP URL (for example,
http://www.oracle.com:80) to which notification is sent. The validity of the HTTP URL is never
checked by the database.
For OCI_SUBSCR_PROTO_MAIL, OCI_ATTR_SUBSCR_RECPT denotes the email address (for
example, xyz@oracle.com) to which the notification is sent. The validity of the email address
is never checked by the database system.
For OCI_SUBSCR_PROTO_SERVER, OCI_ATTR_SUBSCR_RECPT denotes the database procedure (for
example: schema.procedure) that is invoked when there is a notification. The subscriber must
have appropriate permissions on the procedure for it to be executed.

Appendix A
Subscription Handle Attributes

A-106

See Also:

Notification Procedure for information about procedure definition

Attribute Data Type
oratext *

OCI_ATTR_SUBSCR_RECPTPRES

Mode
READ/WRITE

Description
The presentation with which the client wants to receive the notification. The valid values for
this are OCI_SUBSCR_PRES_DEFAULT and OCI_SUBSCR_PRES_XML.
If not set, this attribute defaults to OCI_SUBSCR_PRES_DEFAULT.
For event notification in XML presentation, set this attribute to OCI_SUBSCR_PRES_XML. XML
presentation is limited to 2000 bytes. Otherwise, leave it unset or set it to
OCI_SUBSCR_PRES_DEFAULT.

Attribute Data Type
ub4

OCI_ATTR_SUBSCR_RECPTPROTO

Mode
READ/WRITE

Description
The protocol with which the client wants to receive the notification. The valid values for this
are:

• OCI_SUBSCR_PROTO_OCI
• OCI_SUBSCR_PROTO_MAIL
• OCI_SUBSCR_PROTO_SERVER
• OCI_SUBSCR_PROTO_HTTP
If an OCI client wants to receive the event notification, then you should set this attribute to
OCI_SUBSCR_PROTO_OCI.
If you want an email to be sent on event notification, then set this attribute to
OCI_SUBSCR_PROTO_MAIL. If you want a PL/SQL procedure to be invoked in the database on
event notification, then set this attribute to OCI_SUBSCR_PROTO_SERVER. If you want an HTTP
URL to be posted to on event notification, then set this attribute to OCI_SUBSCR_PROTO_HTTP.
If not set, this attribute defaults to OCI_SUBSCR_PROTO_OCI.
For OCI_SUBSCR_PROTO_OCI, the attributes OCI_ATTR_SUBSCR_CALLBACK and
OCI_ATTR_SUBSCR_CTX must be set before the subscription handle can be passed into the
registration call OCISubscriptionRegister().
For OCI_SUBSCR_PROTO_MAIL, OCI_SUBSCR_PROTO_SERVER, and OCI_SUBSCR_PROTO_HTTP, the
attribute OCI_ATTR_SUBSCR_RECPT must be set before the subscription handle can be passed
into the registration call OCISubscriptionRegister().

Attribute Data Type
ub4 *

Appendix A
Subscription Handle Attributes

A-107

OCI_ATTR_SUBSCR_TIMEOUT

Mode
READ/WRITE

Description
Registration timeout interval in seconds. If 0 or not specified, then the registration is active
until the subscription is explicitly unregistered.

Attribute Data Type
ub4 *

• Continuous Query Notification Attributes
Lists and describes continuous query notification attributes.

• Continuous Query Notification Descriptor Attributes
Lists and describes continuous query notification descriptor attributes.

• Notification Descriptor Attributes
Lists and describes notification descriptor attributes.

• Invalidated Query Attributes
Lists and describes invalidated query attributes.

A.24.1 Continuous Query Notification Attributes
Lists and describes continuous query notification attributes.

The following attributes are used for continuous query notification.

OCI_ATTR_CHNF_CHANGELAG

Mode
WRITE

Description
The number of transactions that the client is to lag in continuous query notifications.

Attribute Data Type
ub4 *

OCI_ATTR_CHNF_OPERATIONS

Mode
WRITE

Description
Used to filter notifications based on operation type.

See Also:

About Continuous Query Notification for details about the flag values

Attribute Data Type
ub4 *

Appendix A
Subscription Handle Attributes

A-108

OCI_ATTR_CHNF_ROWIDS

Mode
WRITE

Description
If TRUE, the continuous query notification message includes row-level details, such as
operation type and ROWID. The default is FALSE.

Attribute Data Type
boolean *

OCI_ATTR_CHNF_TABLENAMES

Mode
READ

Description
Attributes provided to retrieve the list of table names that were registered. These attributes are
available from the subscription handle after the query is executed.

Attribute Data Type
OCIColl **

A.24.2 Continuous Query Notification Descriptor Attributes
Lists and describes continuous query notification descriptor attributes.

The following attributes are used for the continuous query notification descriptor.

OCI_ATTR_CHDES_DBNAME

Mode
READ

Description
Name of the database.

Attribute Data Type
oratext **

OCI_ATTR_CHDES_NFTYPE

Mode
READ

Description
Flags describing the notification type.

See Also:

About Continuous Query Notification for the flag values

Appendix A
Subscription Handle Attributes

A-109

Attribute Data Type
ub4 *

OCI_ATTR_CHDES_ROW_OPFLAGS

Mode
READ

Description
Operation type: INSERT, UPDATE, DELETE, or OTHER.

Attribute Data Type
ub4 *

OCI_ATTR_CHDES_ROW_ROWID

Mode
READ

Description
String representation of a ROWID.

Attribute Data Type
oratext **

OCI_ATTR_CHDES_TABLE_CHANGES

Mode
READ

Description
A collection type describing operations on tables. Each element of the collection is a table
continuous query descriptors (OCITableChangeDesc *) of type OCI_DTYPE_TABLE_CHDES that
has the attributes that begin with OCI_ATTR_CHDES_TABLE. See the following entries.

Attribute Data Type
OCIColl **

OCI_ATTR_CHDES_TABLE_NAME

Mode
READ

Description
Schema and table name. HR.EMPLOYEES, for example.

Attribute Data Type
oratext **

OCI_ATTR_CHDES_TABLE_OPFLAGS

Mode
READ

Description
Flags describing the operations on the table.

Appendix A
Subscription Handle Attributes

A-110

Attribute Data Type
ub4 *

See Also:

Oracle Database Development Guide for information about the flag values for the
OCI_DTYPETABLE_CHDES continuous query notification descriptor

OCI_ATTR_CHDES_TABLE_ROW_CHANGES

Mode
READ

Description
An embedded collection describing the changes to the rows of the table. Each element of the
collection is a row continuous query descriptor (OCIRowChangeDesc *) of type
OCI_DTYPE_ROW_CHDES that has the attributes OCI_ATTR_CHDES_ROW_OPFLAGS and
OCI_ATTR_CHDES_ROW_ROWID.

Attribute Data Type
OCIColl **

OCI_ATTR_CHDES_XID

Mode
READ

Description
The transaction ID of the message.

Attribute Data Type
OCIRaw *

See Also:

Oracle Database Development Guide for more information.

A.24.3 Notification Descriptor Attributes
Lists and describes notification descriptor attributes.

The following are attributes of the descriptor OCI_DTYPE_AQNFY.

OCI_ATTR_AQ_NTFN_GROUPING_COUNT

Mode
READ

Description
For AQ namespace. Count of notifications received in the group.

Appendix A
Subscription Handle Attributes

A-111

Attribute Data Type
ub4 *

OCI_ATTR_AQ_NTFN_GROUPING_ MSGID_ARRAY

Mode
READ

Description
For AQ namespace. The group: an OCI Collection of message IDs.

Attribute Data Type
OCIColl **

OCI_ATTR_CONSUMER_NAME

Mode
READ

Description
Consumer name of the notification.

Attribute Data Type
oratext *

OCI_ATTR_MSG_PROP

Mode
READ

Description
Message properties.

Attribute Data Type
OCIAQMsgProperties **

OCI_ATTR_NFY_FLAGS

Mode
READ

Description
0 = regular, 1 = timeout notification, 2 = grouping notification.

Attribute Data Type
ub4 *

OCI_ATTR_NFY_MSGID

Mode
READ

Description
Message ID.

Attribute Data Type
OCIRaw *

Appendix A
Subscription Handle Attributes

A-112

OCI_ATTR_QUEUE_NAME

Mode
READ

Description
The queue name of the notification.

Attribute Data Type
oratext *

A.24.4 Invalidated Query Attributes
Lists and describes invalidated query attributes.

This section describes OCI_DTYPE_CQDES attributes.

See Also:

Oracle Database Development Guide for more information about the
OCI_DTYPE_CQDES continuous query notification descriptor

OCI_ATTR_CQDES_OPERATION

Mode
READ

Description
The operation that occurred on the query. It can be one of two values:
OCI_EVENT_QUERYCHANGE (query result set change) or OCI_EVENT_DEREG (query unregistered).

Attribute Data Type
ub4 *

OCI_ATTR_CQDES_QUERYID

Mode
READ

Description
Query ID of the query that was invalidated.

Attribute Data Type
ub8 *

OCI_ATTR_CQDES_TABLE_CHANGES

Mode
READ

Appendix A
Subscription Handle Attributes

A-113

Description
A collection of table continuous query descriptors describing DML or DDL operations on tables
that caused the query result set change. Each element of the collection is of type
OCI_DTYPE_TABLE_CHDES.

Attribute Data Type
OCIColl *

A.25 Direct Path Loading Handle Attributes
Lists and describes direct path loading handle attributes.

The following attributes are used for the direct path loading handle.

• Direct Path Context Handle (OCIDirPathCtx) Attributes
Lists and describes direct path context handle (OCIDirPathCtx) attributes.

• Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
Lists and describes direct path function context handle (OCIDirPathFuncCtx) attributes.

• Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes
Lists and describes direct path function column array handle (OCIDirPathColArray)
attributes.

• Direct Path Stream Handle (OCIDirPathStream) Attributes
Lists and describes direct path stream handle (OCIDirPathStream) attributes.

• Direct Path Column Parameter Attributes
Describes how direct path column parameter attributes are used.

See Also:

Direct Path Loading Overview and Direct Path Loading of Object Types for
information about direct path loading and allocating the direct path handles

A.25.1 Direct Path Context Handle (OCIDirPathCtx) Attributes
Lists and describes direct path context handle (OCIDirPathCtx) attributes.

The following attributes are used for the direct path context handle.

OCI_ATTR_BUF_SIZE

Mode
READ/WRITE

Description
Sets the size of the stream transfer buffer. Default value is 64 KB.

Attribute Data Type
ub4 */ub4 *

Appendix A
Direct Path Loading Handle Attributes

A-114

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Default character set ID for the character data. Note that the character set ID can be
overridden at the column level. If the character set ID is not specified at the column level or
the table level, then the Global support environment setting is used.

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Default date format string for SQLT_CHR to DTYDAT conversions. Note that the date format string
can be overridden at the column level. If date format string is not specified at the column level
or the table level, then the Global Support environment setting is used.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_DIRPATH_DCACHE_DISABLE

Mode
READ/WRITE

Description
Setting this attribute to 1 indicates that the date cache is to be disabled if exceeded. The
default value is 0, which means that lookups in the cache continue on cache overflow.

See Also:

About Using a Date Cache in Direct Path Loading of Dates in OCI for a complete
description of this attribute and of the four following attributes

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_DCACHE_HITS

Mode
READ

Description
Queries the number of date cache hits.

Attribute Data Type
ub4 *

Appendix A
Direct Path Loading Handle Attributes

A-115

OCI_ATTR_DIRPATH_DCACHE_MISSES

Mode
READ

Description
Queries the current number of date cache misses.

Attribute Data Type
ub4 *

OCI_ATTR_DIRPATH_DCACHE_NUM

Mode
READ

Description
Queries the current number of entries in a date cache.

Attribute Data Type
ub4 *

OCI_ATTR_DIRPATH_DCACHE_SIZE

Mode
READ/WRITE

Description
Sets the date cache size (in elements) for a table. To disable the date cache, set this to 0,
which is the default value.

Attribute Data Type
ub4 */ub4 *

OCI_ATTR_DIRPATH_DEF_EXP_CACHE_SIZE

Mode
READ/WRITE

Description
Specifies the number of default expressions that are evaluated at a time. The default is 100.
For default expressions that must be evaluated for every row, increasing this value may
improve performance.
Valid values: UB4

Attribute Data Type
ub4 */ub4 *

Example

 ub4 default_cache = 200;

 OCIAttrSet ((void *)dpctx,
 (ub4)OCI_HTYPE_DIRPATH_CTX,

Appendix A
Direct Path Loading Handle Attributes

A-116

 (void *)&default_cache,
 (ub4)0, (ub4)OCI_ATTR_DIRPATH_DEF_EXP_CACHE_SIZE,
errhp);

OCI_ATTR_DIRPATH_DEFAULTS

Mode
Read/Write

Description
Specifies how the direct path API handles default expressions for columns that are not
explicitly being loaded.
Valid values are:

• OCI_DIRPATH_DEFAULTS_DEFAULT
Evaluate once, unless a sequence is involved, then evaluate every row.

Error if an unsupported default value is seen. This is the default.

• OCI_DIRPATH_DEFAULTS_EVALUATE_ONCE
Evaluate once, at the start of the load. Error if an unsupported default value is seen.

• OCI_DIRPATH_DEFAULTS_EVALUATE_EVERY_ROW
Evaluate every row. Error if an unsupported default value is seen.

• OCI_DIRPATH_DEFAULTS_IGNORE
Ignore all defaults, load NULLs.

• OCI_DIRPATH_DEFAULTS_IGNORE_UNSUPPORTED_EVALUATE_ONCE
Ignore unsupported defaults, load NULLS, evaluate supported once.

• OCI_DIRPATH_DEFAULTS_IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW
Ignore unsupported defaults, load NULLS, evaluate supported every row.

Attribute Data Type
ub1 */ub1 *

Example

 ub1 dirpath_handling = OCI_DIRPATH_DEFAULTS_EVALUATE_EVERY_ROW;

 OCIAttrSet ((void *)dpctx,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (void *)&dirpath_handling,
 (ub4)0, (ub4)OCI_ATTR_DIRPATH_DEFAULTS, errhp);

OCI_ATTR_DIRPATH_FLAGS

Mode
READ/WRITE

Description
Flags used to control behavior of the load.
OCI_DIRPATH_FLAGS_VLDT 0x01 – validate format for Oracle NUMBER and DATE data when the
stream is parsed on the server. The default value is to not set this flag because it is an

Appendix A
Direct Path Loading Handle Attributes

A-117

expensive operation. It can be used when you suspect that there is a problem with
OCIDirPath generating invalid internal representation of dates and numbers.

Example

ub4 dirpath_flags = OCI_ATTR_DIRPATH_FLAGS_VLDT;

OCIAttrSet ((void *)dpctx,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (void *)&dirpath_flags,
 (ub4)0, (ub4)OCI_ATTR_DIRPATH_FLAGS, errhp);

Attribute Data Type
ub4 */ub4 *

OCI_ATTR_DIRPATH_INDEX_MAINT_METHOD

Mode
READ/WRITE

Description
Performs index row insertion on a per-row basis.
Valid value is:
OCI_DIRPATH_INDEX_MAINT_SINGLE_ROW

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_MODE

Mode
READ/WRITE

Description
Mode of the direct path context:

• OCI_DIRPATH_LOAD - Load operation (default)

• OCI_DIRPATH_CONVERT - Convert-only operation

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_NO_INDEX_ERRORS

Mode
READ/WRITE

Description
When OCI_ATTR_DIRPATH_NO_INDEX_ERRORS is 1, indexes are not set as unusable at any time
during the load. If any index errors are detected, the load is aborted. That is, no rows are
loaded, and the indexes are left as is. The default is 0.

Attribute Data Type
ub1 */ub1 *

Appendix A
Direct Path Loading Handle Attributes

A-118

OCI_ATTR_DIRPATH_NOLOG

Mode
READ/WRITE

Description
The NOLOG attribute of each segment determines whether image redo or invalidation redo is
generated:

• 0 - Use the attribute of the segment being loaded.

• 1 - No logging. Overrides DDL statement, if necessary.

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_OBJ_CONSTR

Mode
READ/WRITE

Description
Indicates the object type of a substitutable object table:

OraText *obj_type; /* stores an object type name */
OCIAttrSet((void *)dpctx,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (void *) obj_type,
 (ub4)strlen((const char *) obj_type),
 (ub4)OCI_ATTR_DIRPATH_OBJ_CONSTR, errhp);

Attribute Data Type
oratext **/oratext *

OCI_ATTR_DIRPATH_PARALLEL

Mode
READ/WRITE

Description
Setting this value to 1 allows multiple load sessions to load the same segment concurrently.
The default is 0 (not parallel).

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_PGA_LIM

Mode
READ/WRITE

Description
The current partition loading memory limit. Once this limit is reached, some partition loading
will be delayed to save memory. The value is in KB.

Attribute Data Type
ub4 */ub4 *

Appendix A
Direct Path Loading Handle Attributes

A-119

OCI_ATTR_DIRPATH_REJECT_ROWS_REPCH

Mode
READ/WRITE

Description
If set to 1, any rows with character conversions that use the replacement character will be
rejected.

• 0 - Allow use of the replacement character in conversions.

• 1 - Reject rows if the replacement character was used during conversion.

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_SKIPINDEX_METHOD

Mode
READ/WRITE

Description
Indicates how the handling of unusable indexes is performed.
Valid values are:

• OCI_DIRPATH_INDEX_MAINT_SKIP_UNUSABLE (skip unusable indexes)

• OCI_DIRPATH_INDEX_MAINT_DONT_SKIP_UNUSABLE (do not skip unusable indexes)

• OCI_DIRPATH_INDEX_MAINT_SKIP_ALL (skip all index maintenance)

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_SPILL_PASSES

Mode
READ

Description
The number of passes required to load all partitions. If the direct path PGA limit is exceeded,
this will likely be greater than one. Increasing the PGA limit, using the attribute
OCI_ATTR_DIRPATH_PGA_LIM, can decrease the number of passes, but can also exceed
available memory.

Attribute Data Type
ub4 *

OCI_ATTR_LIST_COLUMNS

Mode
READ

Description
Returns the handle to the parameter descriptor for the column list associated with the direct
path context. The column list parameter descriptor can be retrieved after the number of
columns is set with the OCI_ATTR_NUM_COLS attribute.

Appendix A
Direct Path Loading Handle Attributes

A-120

See Also:

"About Accessing Column Parameter Attributes"

Attribute Data Type
OCIParam* *

OCI_ATTR_NAME

Mode
READ/WRITE

Description
Name of the table to be loaded into.

Attribute Data Type
oratext**/oratext *

OCI_ATTR_NUM_COLS

Mode
READ/WRITE

Description
Number of columns being loaded in the table.

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ/WRITE

Description
Read: The number of rows loaded so far.
Write: The number of rows to be allocated for the direct path and the direct path function
column arrays.

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_SCHEMA_NAME

Mode
READ/WRITE

Description
Name of the schema where the table being loaded resides. If not specified, the schema
defaults to that of the connected user.

Attribute Data Type
oratext **/oratext *

Appendix A
Direct Path Loading Handle Attributes

A-121

OCI_ATTR_SUB_NAME

Mode
READ/WRITE

Description
Name of the partition or subpartition to be loaded. If not specified, the entire table is loaded.
The name must be a valid partition or subpartition name that belongs to the table.

Attribute Data Type
oratext **/oratext *

A.25.2 Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
Lists and describes direct path function context handle (OCIDirPathFuncCtx) attributes.

For further explanations of these attributes, see Direct Path Function Context and Attributes.

OCI_ATTR_DIRPATH_EXPR_TYPE

Mode
READ/WRITE

Description
Indicates the type of expression specified in OCI_ATTR_NAME in the function context of a
nonscalar column.
Valid values are:

• OCI_DIRPATH_EXPR_OBJ_CONSTR (the object type name of a column object)

• OCI_DIRPATH_EXPR_REF_TBLNAME (table name of a reference object)

• OCI_DIRPATH_EXPR_SQL (a SQL string to derive the column value)

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_LIST_COLUMNS

Mode
READ

Description
Returns the handle to the parameter descriptor for the column list associated with the direct
path function context. The column list parameter descriptor can be retrieved after the number
of columns (number of attributes or arguments associated with the nonscalar column) is set
with the OCI_ATTR_NUM_COLS attribute.

See Also:

About Accessing Column Parameter Attributes

Attribute Data Type
OCIParam**

Appendix A
Direct Path Loading Handle Attributes

A-122

OCI_ATTR_NAME

Mode
READ/WRITE

Description
The object type name if the function context is describing a column object, a SQL function if
the function context is describing a SQL string, or a reference table name if the function
context is describing a REF column.

Attribute Data Type
oratext **/oratext *

OCI_ATTR_NUM_COLS

Mode
READ/WRITE

Description
The number of the object attributes to load if the column is a column object, or the number of
arguments to process if the column is a SQL string or a REF column. This parameter must be
set before the column list can be retrieved.

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ

Description
The number of rows loaded so far.

Attribute Data Type
ub4 *

A.25.3 Direct Path Function Column Array Handle (OCIDirPathColArray)
Attributes

Lists and describes direct path function column array handle (OCIDirPathColArray) attributes.

The following attributes are used for the direct path function column array handle.

OCI_ATTR_COL_COUNT

Mode
READ

Description
Last column of the last row processed.

Attribute Data Type
ub2 *

Appendix A
Direct Path Loading Handle Attributes

A-123

OCI_ATTR_NUM_COLS

Mode
READ

Description
Column dimension of the column array.

Attribute Data Type
ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ

Description
Row dimension of the column array.

Attribute Data Type
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Number of rows successfully converted in the last call to OCIDirPathColArrayToStream().

Attribute Data Type
ub4 *

A.25.4 Direct Path Stream Handle (OCIDirPathStream) Attributes
Lists and describes direct path stream handle (OCIDirPathStream) attributes.

The following attributes are used for the direct path stream handle.

OCI_ATTR_BUF_ADDR

Mode
READ

Description
Buffer address of the beginning of the stream data.

Attribute Data Type
ub1 **

OCI_ATTR_BUF_SIZE

Mode
READ

Appendix A
Direct Path Loading Handle Attributes

A-124

Description
Size of the stream data in bytes.

Attribute Data Type
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Number of rows successfully loaded by the last OCIDirPathLoadStream() call.

Attribute Data Type
ub4 *

OCI_ATTR_STREAM_OFFSET

Mode
READ

Description
Offset into the stream buffer of the last processed row.

Attribute Data Type
ub4 *

A.25.5 Direct Path Column Parameter Attributes
Describes how direct path column parameter attributes are used.

The application specifies which columns are to be loaded, and the external format of the data
by setting attributes on each column parameter descriptor. The column parameter descriptors
are obtained as parameters of the column parameter list by OCIParamGet(). The column
parameter list of the table is obtained from the OCI_ATTR_LIST_COLUMNS attribute of the direct
path context. If a column is nonscalar, then its column parameter list is obtained from the
OCI_ATTR_LIST_COLUMNS attribute of its direct path function context.

Note that all parameters are 1-based.

• About Accessing Column Parameter Attributes
Lists and describes direct path column parameter attributes.

A.25.5.1 About Accessing Column Parameter Attributes
Lists and describes direct path column parameter attributes.

The following code example illustrates the use of the direct path column parameter attributes
for scalar columns. Before the attributes are accessed, you must first set the number of
columns to be loaded and get the column parameter list from the OCI_ATTR_LIST_COLUMNS
attribute.

Appendix A
Direct Path Loading Handle Attributes

A-125

See Also:

Direct Path Load Examples for Scalar Columns for the data structures defined in the
listings

...
 /* set number of columns to be loaded */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (void *)&tblp->ncol_tbl,
 (ub4)0, (ub4)OCI_ATTR_NUM_COLS, ctlp->errhp_ctl));

 /* get the column parameter list */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet((void *)dpctx, OCI_HTYPE_DIRPATH_CTX,
 (void *)&ctlp->colLstDesc_ctl, (ub4 *)0,
 OCI_ATTR_LIST_COLUMNS, ctlp->errhp_ctl));

Now you can set the parameter attributes.

 /* set the attributes of each column by getting a parameter handle on each
 * column, then setting attributes on the parameter handle for the column.
 * Note that positions within a column list descriptor are 1-based. */

 for (i = 0, pos = 1, colp = tblp->col_tbl, fldp = tblp->fld_tbl;
 i < tblp->ncol_tbl;
 i++, pos++, colp++, fldp++)
 {
 /* get parameter handle on the column */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIParamGet((const void *)ctlp->colLstDesc_ctl,
 (ub4)OCI_DTYPE_PARAM, ctlp->errhp_ctl,
 (void **)&colDesc, pos));

 colp->id_col = i; /* position in column array */

 /* set external attributes on the column */
 /* column name */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)colp->name_col,
 (ub4)strlen((const char *)colp->name_col),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));

 /* column type */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)&colp->exttyp_col, (ub4)0,
 (ub4)OCI_ATTR_DATA_TYPE, ctlp->errhp_ctl));

 /* max data size */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)&fldp->maxlen_fld, (ub4)0,
 (ub4)OCI_ATTR_DATA_SIZE, ctlp->errhp_ctl));

 if (colp->datemask_col) /* set column (input field) date mask */
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,

Appendix A
Direct Path Loading Handle Attributes

A-126

 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)colp->datemask_col,
 (ub4)strlen((const char *)colp->datemask_col),
 (ub4)OCI_ATTR_DATEFORMAT, ctlp->errhp_ctl));
 }
 if (colp->prec_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)&colp->prec_col, (ub4)0,
 (ub4)OCI_ATTR_PRECISION, ctlp->errhp_ctl));
 }
 if (colp->scale_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)&colp->scale_col, (ub4)0,
 (ub4)OCI_ATTR_SCALE, ctlp->errhp_ctl));
 }
 if (colp->csid_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((void *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (void *)&colp->csid_col, (ub4)0,
 (ub4)OCI_ATTR_CHARSET_ID, ctlp->errhp_ctl));
 }
 /* free the parameter handle to the column descriptor */
 OCI_CHECK((void *)0, 0, ociret, ctlp,
 OCIDescriptorFree((void *)colDesc, OCI_DTYPE_PARAM));
 }
...

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID for character column. If not set, the character set ID defaults to the character
set ID set in the direct path context.

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_DATA_SIZE

Mode
READ/WRITE

Description
Maximum size in bytes of the external data for the column. This can affect conversion buffer
sizes.

Attribute Data Type
ub4 */ub4 *

Appendix A
Direct Path Loading Handle Attributes

A-127

OCI_ATTR_DATA_TYPE

Mode
READ/WRITE

Description
Returns or sets the external data type of the column. Valid data types are:

• SQLT_CHR
• SQLT_DATE
• SQLT_TIMESTAMP
• SQLT_TIMESTAMP_TZ
• SQLT_TIMESTAMP_LTZ
• SQLT_INTERVAL_YM
• SQLT_INTERVAL_DS
• SQLT_CLOB
• SQLT_BLOB
• SQLT_INT
• SQLT_UIN
• SQLT_FLT
• SQLT_PDN
• SQLT_BIN
• SQLT_NUM
• SQLT_NTY
• SQLT_REF
• SQLT_VST
• SQLT_VNU

Attribute Data Type
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Date conversion mask for the column. If not set, the date format defaults to the date
conversion mask set in the direct path context.

Attribute Data Type
oratext **/oratext *

Appendix A
Direct Path Loading Handle Attributes

A-128

OCI_ATTR_DIRPATH_OID

Mode
READ/WRITE

Description
Indicates that the column to load into is an object table's object ID column.

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_DIRPATH_SID

Mode
READ/WRITE

Description
Indicates that the column to load into is a nested table's setid column.

Attribute Data Type
ub1 */ub1 *

OCI_ATTR_NAME

Mode
READ/WRITE

Description
Returns or sets the name of the column that is being loaded. Initialize both the column name
and the column name length to 0 before calling OCIAttrGet().

Attribute Data Type
oratext **/oratext *

OCI_ATTR_PRECISION

Mode
READ/WRITE

Description
Returns or sets the precision.

Attribute Data Type
ub1 */ub1 * for explicit describes
sb2 */sb2 * for implicit describes

OCI_ATTR_SCALE

Mode
READ/WRITE

Description
Returns or sets the scale (number of digits to the right of the decimal point) for conversions
from packed and zoned decimal input data types.

Attribute Data Type
sb1 */sb1 *

Appendix A
Direct Path Loading Handle Attributes

A-129

A.26 Process Handle Attributes
Lists and describes process handle attributes.

The parameters for the shared system can be set and read using the OCIAttrSet() and
OCIAttrGet() calls. The handle type to be used is the process handle OCI_HTYPE_PROC.

The OCI_ATTR_MEMPOOL_APPNAME, OCI_ATTR_MEMPOOL_HOMENAME, and
OCI_ATTR_MEMPOOL_INSTNAME attributes specify the application, home, and instance names that
can be used together to map the process to the right shared pool area. If these attributes are
not provided, internal default values are used. The following are valid settings of the attributes
for specific behaviors:

• Instance name, application name (unqualified): This allows only executables with a specific
name to attach to the same shared subsystem. For example, this allows an OCI
application named Office to connect to the same shared subsystem regardless of the
directory Office resides in.

• Instance name, home name: This allows a set of executables in a specific home directory
to attach to the same instance of the shared subsystem. For example, this allows all OCI
applications residing in the ORACLE_HOME directory to use the same shared subsystem.

• Instance name, home name, application name (unqualified): This allows only a specific
executable to attach to a shared subsystem. For example, this allows one application
named Office in the ORACLE_HOME directory to attach to a given shared subsystem.

See Also:

OCI_ATTR_SHARED_HEAPALLOC

OCI_ATTR_MEMPOOL_APPNAME

Mode
READ/WRITE

Description
Executable name or fully qualified path name of the executable.

Attribute Data Type
oratext *

OCI_ATTR_MEMPOOL_HOMENAME

Mode
READ/WRITE

Description
Directory name where the executables that use the same shared subsystem instance are
located.

Attribute Data Type
oratext *

Appendix A
Process Handle Attributes

A-130

OCI_ATTR_MEMPOOL_INSTNAME

Mode
READ/WRITE

Description
Any user-defined name to identify an instance of the shared subsystem.

Attribute Data Type
oratext *

OCI_ATTR_MEMPOOL_SIZE

Mode
READ/WRITE

Description
Size of the shared pool in bytes. This attribute is set as follows:

ub4 plsz = 1000000;
OCIAttrSet((void *)0, (ub4) OCI_HTYPE_PROC,
 (void *)&plsz, (ub4) 0, (ub4) OCI_ATTR_POOL_SIZE, 0);

Attribute Data Type
ub4 *

OCI_ATTR_PROC_MODE

Mode
READ

Description
Returns all the currently set process modes. The value read contains the OR'ed value of all
the currently set OCI process modes. To determine if a specific mode is set, the value should
be AND'ed with that mode. For example:

ub4 mode;
boolean is_shared;

OCIAttrGet((void *)0, (ub4)OCI_HTYPE_PROC,
 (void *) &mode, (ub4 *) 0,
 (ub4)OCI_ATTR_PROC_MODE, 0);

is_shared = mode & OCI_SHARED;

Attribute Data Type
ub4 *

A.27 Event Handle Attributes
Lists and describes event handle attributes.

The OCIEvent handle encapsulates the attributes from the event payload. This handle is
implicitly allocated before the event callback is called.

The event callback obtains the attributes of an event using OCIAttrGet() with the following
attributes.

Appendix A
Event Handle Attributes

A-131

See Also:

HA Event Notification

OCI_ATTR_DBDOMAIN

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the name of the database domain that
has been affected by this event. This is also a server handle attribute.

Attribute Data Type
oratext **

OCI_ATTR_DBNAME

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the name of the database that has
been affected by this event. This is also a server handle attribute.

Attribute Data Type
oratext **

OCI_ATTR_EVENTTYPE

Mode
READ

Description
The type of event that occurred, OCI_EVENTTYPE_HA.

Attribute Data Type
ub4 *

OCI_ATTR_HA_SOURCE

Mode
READ

Description
If the event type is OCI_EVENTTYPE_HA, get the source of the event with this attribute. Valid
values are:

• OCI_HA_SOURCE_DATABASE
• OCI_HA_SOURCE_NODE
• OCI_HA_SOURCE_INSTANCE
• OCI_HA_SOURCE_SERVICE

Appendix A
Event Handle Attributes

A-132

• OCI_HA_SOURCE_SERVICE_MEMBER
• OCI_HA_SOURCE_ASM_INSTANCE
• OCI_HA_SOURCE_SERVICE_PRECONNECT

Attribute Data Type
ub4 *

OCI_ATTR_HA_SRVFIRST

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the first server handle in the list of
server handles affected by an Oracle Real Application Clusters (Oracle RAC) HA DOWN
event.

Attribute Data Type
OCIServer **

OCI_ATTR_HA_SRVNEXT

Mode
READ

Description
When called with this attribute OCIAttrGet() retrieves the next server handle in the list of
server handles affected by an Oracle RAC HA DOWN event.

Attribute Data Type
OCIServer **

OCI_ATTR_HA_STATUS

Mode
READ

Description
Valid value is OCI_HA_STATUS_DOWN. Only DOWN events are subscribed to currently.

Attribute Data Type
ub4 *

OCI_ATTR_HA_TIMESTAMP

Mode
READ

Description
The time that the HA event occurred.

Attribute Data Type
OCIDateTime **

Appendix A
Event Handle Attributes

A-133

OCI_ATTR_HOSTNAME

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the name of the host that has been
affected by this event.

Attribute Data Type
oratext **

OCI_ATTR_INSTNAME

Mode
READ

Description
When called as an event handle attribute, OCIAttrGet() retrieves the name of the instance
that has been affected by this event. This is also a server handle attribute. This attribute can
also be used on service context to return the shard instance name for a given connection. This
attribute can be used to find the shard instance name out of a shard instance descriptor that is
filed by an OCIShardInstancesGet() call.

Attribute Data Type
oratext **

Example
The following example shows for a given connection (svchp) how to get the shard instance
name.

Oratext instanceName [OCI_INSTNAME_MAXLEN];
ub4 instanceNameLen;
 OCIATTRGet(svchp,
 OCI_HTYPE_SVCCTX,
 instanceName,
 (ub4 *) &instanceNameLen,
 OCI_ATTR_INSTNAME,
 errhp);

OCI_ATTR_INSTSTARTTIME

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the start time of the instance that has
been affected by this event. This is also a server handle attribute.

Attribute Data Type
OCIDateTime **

Appendix A
Event Handle Attributes

A-134

OCI_ATTR_SERVICENAME

Mode
READ

Description
When called with this attribute, OCIAttrGet() retrieves the name of the service that has been
affected by this event. The name length is ub4 *. This is also a server handle attribute.

Attribute Data Type
oratext **

Appendix A
Event Handle Attributes

A-135

B
OCI Demonstration Programs

Lists example programs with sample code demonstrating the allocation and use of OCI
handles.

Oracle provides code examples illustrating the use of OCI calls. These programs are provided
for demonstration purposes, and are not guaranteed to run on all operating systems.

You must install the demonstration programs as described in Oracle Database Examples
Installation Guide. The location, names, and availability of the programs may vary on different
operating systems. On a Linux or UNIX workstation, the programs are installed in
the $ORACLE_HOME/rdbms/demo directory. For Windows systems, see Getting Started with OCI
for Windows.

OCI header files that are required for OCI client application development on Linux or UNIX
platforms are in the $ORACLE_HOME/rdbms/public directory. The demo_rdbms.mk file is in
the $ORACLE_HOME/rdbms/demo directory and serves as an example makefile. On Windows
systems, make.bat is the analogous file in the samples directory. There are instructions in the
makefiles.

Unless you significantly modify the demo_rdbms.mk file, you are not affected by changes you
make as long the demo_rdbms.mk file includes the $ORACLE_HOME/rdbms/public directory.
Ensure that your highly customized makefiles have the $ORACLE_HOME/rdbms/public directory
in the INCLUDE path.

Development of new makefiles to build an OCI application or an external procedure should
consist of the customizing of the makefile provided by adding your own macros to the link line.
However, Oracle requires that you keep the macros provided in the demo makefile, as it results
in easier maintenance of your own makefiles.

When a specific header or SQL file is required by the application, these files are also included
as specified in the demonstration program file. Review the information in the comments at the
beginning of the demonstration programs for setups and hints on running the programs.

Table B-1 lists the important demonstration programs and the OCI features that they illustrate.
Look for related files with the .sql extension.

Table B-1 OCI Demonstration Programs

Program Name Features Illustrated

cdemo81.c Using basic SQL processing with release 8 functionality

cdemo82.c Performing basic processing of user-defined objects

cdemocor.c Using complex object retrieval (COR) to improve performance

cdemodr1.c
cdemodr2.c
cdemodr3.c

Using INSERT, UPDATE, and DELETE statements, with RETURNING clause
used with basic data types, LOBs and REFs

cdemodsa.c Describing information about a table

cdemodsc.c Describing information about an object type

cdemofo.c Registering and operating application failover callbacks

B-1

Table B-1 (Cont.) OCI Demonstration Programs

Program Name Features Illustrated

cdemolb.c Creating and inserting LOB data and then reading, writing, coping,
appending, and trimming the data

cdemolb2.c Writing and reading of CLOB and BLOB columns with stream mode and
callback functions

cdemolbs.c Writing and reading to LOBs with the LOB buffering system

cdemobj.c Pinning and navigation of REF object

cdemocoll.c Inserting and selecting of nested table and varray

cdemorid.c Using INSERT, UPDATE, DELETE statements and fetches to get multiple
rowids in one round-trip

cdemoses.c Using session switching and migration

cdemothr.c Using the OCIThread package

cdemosyev.c Registering predefined subscriptions and specifying a callback function to be
invoked for client notifications (for more information about Advanced
Queuing, see Oracle Database Advanced Queuing User's Guide)

ociaqdemo00.c
ociaqdemo01.c
ociaqdemo02.c
ociaqarrayenq.c
ociaqarraydeq.c

Database Advanced Queuing. Enqueues 100 messages

Dequeues messages by blocking

Listens for multiple agents

Array enqueue of 10 messages

Array dequeue of 10 messages

cdemodp.c,
cdemodp_lip.c

Loading data with the direct path load functions

cdemdpco.c
cdemdpno.c
cdemdpin.c
cdemdpit.c
cdemdpro.c
cdemdpss.c

Loading a column object with the direct path load functions

Loading a nested column object with the direct path load functions

Loading derived type (inheritance) - direct path

Loading an object table with inheritance - direct path

Loading a reference with the direct path load functions

Loading SQL strings with the direct path load functions

cdemoucb.c,
cdemoucbl.c

Using static and dynamic user callbacks

cdemoupk.c,
cdemoup1.c,
cdemoup2.c

Using dynamic user callbacks with multiple packages

cdemodt.c Datetime and interval example. Demonstrates IN and OUT binds with
PL/SQL procedure or function

cdemosc.c Scrollable cursor

cdemol2l.c Accesses LOBs using the LONG API (Data Interface)

cdemoin1.c Inheritance demo that modifies an inherited type in a table and displays a
record from the table

cdemoin2.c Inheritance demo to do attribute substitutability

cdemoin3.c Inheritance demo that describes an object, inherited types, object tables,
and a sub-table

cdemoanydata1.c Anydata demo. Inserts and selects rows to and from anydata table

Appendix B

B-2

Table B-1 (Cont.) OCI Demonstration Programs

Program Name Features Illustrated

cdemoanydata2.c Anydata demo. Creates a type piecewise using OCITypeBeginCreate()
and then describes the new type created

cdemoqc.c Query caching using SQL hints

cdemoqc2.c Query caching using SQL hints and table annotation

cdemosp.c Session pooling

cdemocp.c Connection pooling

cdemocpproxy.c Connection pooling with proxy functionality

cdemostc.c Statement caching

cdemouni.c Program for OCI UTF16 API

nchdemo1.c Shows NCHAR implicit conversion feature and code point feature

Appendix B

B-3

C
OCI Function Server Round-Trips

This appendix provides information about server round-trips incurred during various OCI calls.

This information can help developers to determine the most efficient way to accomplish a
particular task in an application. A server round-trip is defined as the trip from the client to the
server and back to the client.

When using client-side SQL, OCI provides:

• Enhanced array data manipulation language (DML) capability for arrays

• Ability to associate a commit request with a run to reduce round-trips

• Optimization for queries using transparent prefetch buffers to reduce round-trips

As is often the case, there are tradeoffs. For example, for queries the trade off is often
arraysize and prefetch size versus the number of underlying fetches.

See Also:

• Using SQL Statements in OCI for an overview and more specific information on
tips to reduce server round-trips

• OCI Array Interface to significantly reduce round-trips to the database when you
are updating or inserting a large volume of data

• About Setting Prefetch Count to minimize server round-trips

.

This appendix contains these topics:

• Relational Function Round-Trips

• LOB Function Round-Trips

• JSON Function Round-Trips

• Object and Cache Function Round-Trips

• Describe Operation Round-Trips

• Data Type Mapping and Manipulation Function Round-Trips

• Any Type and Data Function Round-Trips

• Other Local Functions

• Relational Function Round-Trips
Describes for each OCI relational function the number of server round-trips.

• LOB Function Round-Trips
Describes for each OCI LOB function the number of server round-trips.

• JSON Function Round-Trips
Describes for each OCI JSON function the number of server round-trips.

C-1

• Object and Cache Function Round-Trips
Describes for each OCI object and cache function the number of server round-trips.

• Describe Operation Round-Trips
Describes for each OCI operation function the number of server round-trips.

• Data Type Mapping and Manipulation Function Round-Trips
Describes for each OCI data type mapping and manipulation function the number of server
round-trips.

• Any Type and Data Function Round-Trips
Describes for each OCI Any Type and Data function the number of server round-trips.

• Other Local Functions
Describes for each OCI other local function the number of server round-trips.

C.1 Relational Function Round-Trips
Describes for each OCI relational function the number of server round-trips.

Table C-1 lists the number of server round-trips required by each OCI relational function.

Table C-1 Server Round-Trips for Relational Operations

Function Number of Server Round-Trips

OCIBreak() 1

OCIDBShutdown() 1

OCIDBStartup() 1

OCIEnvCreate() 0

OCIEnvInit() 0

OCIErrorGet() 0

OCIInitialize() 0

OCILdaToSvcCtx() 0

OCILogoff() 1

OCILogon() 1

OCILogon2() Connection pool or session pool: same as
OCISessionGet()

Normal: 2 (depends on authentication and
TAF situation)

OCIPasswordChange() 1

OCIPing() 1

OCIReset() 0

OCIServerAttach() 1

OCIServerDetach() 1

OCIServerVersion() 1

OCISessionBegin() 1

OCISessionEnd() 1

Appendix C
Relational Function Round-Trips

C-2

Table C-1 (Cont.) Server Round-Trips for Relational Operations

Function Number of Server Round-Trips

OCISessionGet() Session pool: 0 - increment of logins.
Connection pool: 1 to (1+ (increment *
logins)). Depends on cache hit: one for the
user session, optional increment for primary
sessions.

Normal: 1 login

OCISessionPoolCreate() sessMin * logins

OCISessionPoolDestroy() Sessions in cache * logoffs

OCISessionRelease() Session pooling: 0, except when explicit
session destroys flag set

Normal: 1 login

OCIStmtExecute() 1

OCIStmtFetch() 0 or 1

OCIStmtFetch2() 0 in prefetch, otherwise 1

OCIStmtGetPieceInfo() 1

OCIStmtPrepare() 0

OCIStmtPrepare2() 0

OCIStmtSetPieceInfo() 0

OCISvcCtxToLda() 0

OCITerminate() 1

OCITransCommit() 1

OCITransDetach() 1

OCITransForget() 1

OCITransPrepare() 1

OCItransRollback() 1

OCITransStart() 1

OCIUserCallbackGet() 0

OCIUserCallbackRegister() 0

C.2 LOB Function Round-Trips
Describes for each OCI LOB function the number of server round-trips.

Table C-2 lists the server round-trips incurred by the OCILob calls.

Note:

To minimize the number of round-trips, you can use the data interface for LOBs. You
can bind or define character data for a CLOB column or RAW data for a BLOB column.

Appendix C
LOB Function Round-Trips

C-3

For calls whose number of round-trips is "0 or 1," if LOB buffering is on, and the request can be
satisfied in the client, no round-trips are incurred.

Table C-2 Server Round-Trips for OCILob Calls

Function Number of Server Round-Trips

OCILobAppend() 1

OCILobArrayRead() 1

OCILobArraywrite() 1

OCILobAssign() 0

OCILobCharSetForm() 0

OCILobCharSetId() 0

OCILobClose() 1

OCILobCopy() 1

OCILobCopy2() 1

OCILobCreateTemporary() 1

OCILobErase() 1

OCILobErase2() 1

OCILobFileClose() 1

OCILobFileCloseAll() 1

OCILobFileExists() 1

OCILobFileGetName() 0

OCILobFileIsOpen() 1

OCILobFileOpen() 1

OCILobFileSetName() 0

OCILobFreeTemporary() 1

OCILobGetChunkSize() 1

OCILobGetLength() 1

OCILobGetLength2() 1

OCILobGetStorageLimit() 1

OCILobIsEqual() 0

OCILobIsOpen() 1

OCILobIsTemporary() 0

OCILobLoadFromFile() 1

OCILobLoadFromFile2() 1

OCILobLocatorAssign() 1 round-trip if either the source or the destination locator
refers to a temporary LOB

OCILobLocatorIsInit() 0

OCILobOpen() 1

OCILobRead() 0 or 1

OCILobRead2() 0 or 1

OCILobTrim() 1

Appendix C
LOB Function Round-Trips

C-4

Table C-2 (Cont.) Server Round-Trips for OCILob Calls

Function Number of Server Round-Trips

OCILobTrim2() 1

OCILobWrite() 0 or 1

OCILobWrite2() 0 or 1

OCILobWriteAppend() 0 or 1

OCILobWriteAppend2() 0 or 1

See Also:

• About Binding and Defining LOB Data for usage and examples for both INSERT
and UPDATE statements

• About Defining LOB Data
for usage and examples of SELECT statements

C.3 JSON Function Round-Trips
Describes for each OCI JSON function the number of server round-trips.

Table C-3 Server Round-Trips for OCIJSON Calls

Function Number of Server Round-Trips

OCIJsonDomDocGet 0 or 1

OCIJsonDomDocSet 0

OCIJsonTextBufferParse 0

OCIJsonTextStreamParse 0

OCIJsonBinaryBufferLoad 0

OCIJsonBinaryStreamLoad 0

OCIJsonToTextBuffer 0 or 1

OCIJsonToTextStream 0 or 1

OCIJsonClone 0 or 1

OCIJsonToBinaryBuffer 0 or 1

OCIJsonToBinaryStream 0 or 1

OCIJsonBinaryLengthGet 0 or 1

Appendix C
JSON Function Round-Trips

C-5

C.4 Object and Cache Function Round-Trips
Describes for each OCI object and cache function the number of server round-trips.

Table C-4 lists the number of server round-trips required for the object and cache functions.
These values assume the cache is in a warm state, meaning that the type descriptor objects
required by the application have been loaded.

Table C-4 Server Round-Trips for Object and Cache Functions

Function Number of Server Round-Trips

OCICacheFlush() 1

OCICacheFree() 0

OCICacheRefresh() 1

OCICacheUnmark() 0

OCICacheUnpin() 0

OCIObjectArrayPin() 1

OCIObjectCopy() 0

OCIObjectExists() 0

OCIObjectFlush() 1

OCIObjectFree() 0

OCIObjectGetInd() 0

OCIObjectGetObjectRef() 0

OCIObjectGetTypeRef() 0

OCIObjectIsDirty() 0

OCIObjectIsLocked() 0

OCIObjectLock() 1

OCIObjectMarkDelete() 0

OCIObjectMarkDeleteByRef() 0

OCIObjectMarkUpdate() 0

OCIObjectNew() 0

OCIObjectPin() 1; 0 if the desired object is already in cache

OCIObjectPinCountReset() 0

OCIObjectPinTable() 1

OCIObjectRefresh() 1

OCIObjectUnmark() 0

OCIObjectUnmarkByRef() 0

OCIObjectUnpin() 0

Appendix C
Object and Cache Function Round-Trips

C-6

C.5 Describe Operation Round-Trips
Describes for each OCI operation function the number of server round-trips.

Table C-5 lists the number of server round-trips required by OCIDescribeAny(), OCIAttrGet(),
and OCIParamGet().

Table C-5 Server Round-Trips for Describe Operations

Function Number of Server Round-Trips

OCIAttrGet() 2 round-trips to describe a type if the type objects are not in the object
cache

1 round-trip for each collection element, or each type attribute, method,
or method argument descriptor. 1 more round-trip if using
OCI_ATTR_TYPE_NAME, or OCI_ATTR_SCHEMA_NAME on the collection
element, type attribute, or method argument.

0 if all the type objects to be described are already in the object cache
following the first OCIAttrGet() call.

OCIDescribeAny() 1 round-trip to get the REF of the type descriptor object

OCIParamGet() 0

C.6 Data Type Mapping and Manipulation Function Round-Trips
Describes for each OCI data type mapping and manipulation function the number of server
round-trips.

Table C-6 lists the number of round-trips for the data type mapping and manipulation functions.
The asterisks in the table indicate that all functions with a particular prefix incur the same
number of server round-trips. For example, OCINumberAdd(), OCINumberPower(), and
OCINumberFromText() all incur zero server round-trips.

Table C-6 Server Round-Trips for Data Type Manipulation Functions

Function Number of Server Round-Trips

OCIColl*() 0; 1 if the collection is not loaded in the cache

OCIDate*() 0

OCIIter*() 0; 1 if the collection is not loaded in the cache

OCINumber*() 0

OCIRaw*() 0

OCIRef*() 0

OCIString*() 0

OCITable*() 0; 1 if the nested table is not loaded in the cache

Appendix C
Describe Operation Round-Trips

C-7

C.7 Any Type and Data Function Round-Trips
Describes for each OCI Any Type and Data function the number of server round-trips.

Table C-7 lists the number of server round-trips required by Any Type and Data functions. The
functions not listed do not generate any round-trips.

Table C-7 Server Round-Trips for Any Type and Data Functions

Function Number of Server Round-Trips

OCIAnyDataAttrGet() 0; 1 if the type information is not loaded in the cache

OCIAnyDataAttrSet() 0; 1 if the type information is not loaded in the cache

OCIAnyDataCollGetElem() 0; 1 if the type information is not loaded in the cache

C.8 Other Local Functions
Describes for each OCI other local function the number of server round-trips.

Table C-8 lists the functions that are local and do not require a server round-trip.

Table C-8 Locally Processed Functions

Local Function Name Notes

OCIAttrGet() When describing an object type, this call makes one
round-trip to fetch the type descriptor object.

OCIAttrSet()

OCIBindArrayOfStruct()

OCIDefineArrayOfStruct()

OCIBindByName()

OCIBindByPos()

OCIBindDynamic()

OCIBindObject()

OCIDefineByPos()

OCIDefineDynamic()

OCIDefineObject()

OCIDescriptorAlloc()

OCIDescriptorFree()

OCIEnvCreate()

OCIEnvInit()

OCIErrorGet()

OCIHandleAlloc()

OCIHandleFree()

OCILdaToSvcCtx()

OCIStmtGetBindInfo()

Appendix C
Any Type and Data Function Round-Trips

C-8

Table C-8 (Cont.) Locally Processed Functions

Local Function Name Notes

OCIStmtPrepare()

OCIStmtRelease()
OCIStmtPrepare2()
OCISvcCtxToLda()

Appendix C
Other Local Functions

C-9

D
Getting Started with OCI for Windows

How to get started with OCI for Windows.

This appendix describes only the features of OCI that apply to the Windows 2003, Windows
2000, and Windows XP operating systems. Windows NT is no longer supported.

This chapter contains these topics:

• What Is Included in the OCI Package for Windows?

• Oracle Directory Structure for Windows

• Sample OCI Programs for Windows

• About Compiling OCI Applications for Windows

• About Linking OCI Applications for Windows

• About Running OCI Applications for Windows

• Oracle XA Library

• About Using the Object Type Translator for Windows

• What Is Included in the OCI Package for Windows?
The OCI for Windows package includes the additional libraries required for linking your
OCI programs.

• Oracle Directory Structure for Windows
OCI is included in the default Oracle Database installation.

• Sample OCI Programs for Windows
Where sample program files and corresponding project files are copied when you install
OCI.

• About Compiling OCI Applications for Windows
When you compile an OCI application, you must include the appropriate OCI header files.

• About Linking OCI Applications for Windows
The OCI calls are implemented in dynamic-link libraries (DLLs) that Oracle provides.

• About Running OCI Applications for Windows
What’s needed to tun an OCI applications for Windows.

• Oracle XA Library

• About Using the Object Type Translator for Windows
To take advantage of objects, run the Object Type Translator (OTT) against the database
to generate a header file that includes the C structs.

D.1 What Is Included in the OCI Package for Windows?
The OCI for Windows package includes the additional libraries required for linking your OCI
programs.

The Oracle Call Interface for Windows package includes:

• Oracle Call Interface (OCI)

D-1

• Required Support Files (RSFs)

• Oracle Universal Installer

• Header files for compiling OCI applications

• Library files for linking OCI applications

• Sample programs for demonstrating how to build OCI applications

D.2 Oracle Directory Structure for Windows
OCI is included in the default Oracle Database installation.

When you install Oracle Database, Oracle Universal Installer creates the OCI files in the oci,
bin, and precomp directories under the ORACLE_BASE\ORACLE_HOME directory. These files
include the library files needed to link and run OCI applications, and link with other Oracle for
Microsoft Windows products, such as Oracle Forms.

The ORACLE_BASE\ORACLE_HOME directory contains the following directories described in
Table D-1 that are relevant to OCI.

Table D-1 ORACLE_HOME Directories and Contents

Directory Name Contents

\bin Executable and help files

\oci Oracle Call Interface directory for Windows files

\oci\include Header files, such as oci.h and ociap.h
\oci\samples Sample programs

\precomp\admin\ottcfg.cfg Object Type Translator utility and default configuration file

D.3 Sample OCI Programs for Windows
Where sample program files and corresponding project files are copied when you install OCI.

When OCI is installed, a set of sample programs and their corresponding project files are
copied to the ORACLE_BASE\ORACLE_HOME\oci\samples subdirectory. Oracle recommends that
you build and run these sample programs to verify that OCI has been successfully installed
and to familiarize yourself with the steps involved in developing OCI applications.

To build a sample, run a batch file(make.bat)at the command prompt. For example, to build
the cdemo1.c sample, enter the following command in the directory samples:

C:> make cdemo1

After you finish using these sample programs, you can delete them if you choose.

The ociucb.c program should be compiled using ociucb.bat. This batch file creates a DLL
and places it in the ORACLE_BASE\ORACLE_HOME\bin directory. To load user callback functions,
set the environment registry variable ORA_OCI_UCBPKG to OCIUCB.

D.4 About Compiling OCI Applications for Windows
When you compile an OCI application, you must include the appropriate OCI header files.

Appendix D
Oracle Directory Structure for Windows

D-2

The header files are located in the \ORACLE_BASE\ORACLE_HOME\oci\include directory.

For Microsoft Visual C++, specify \ORACLE_BASE\ORACLE_HOME\oci\lib\msvc in the libraries
section of the Option dialog box. For the Borland compiler, specify
\ORACLE_BASE\ORACLE_HOME\oci\lib\bc.

For example, if you are using Microsoft Visual C++ 8.0, you must put in the appropriate path,
\oracle\db_1\oci\include, in the Directories page of the Options dialog in the Tools menu.

Note:

The only Microsoft Visual C++ releases supported for the current OCI release are 7.1
or later.

See Also:

Your compiler's documentation for specific information about compiling your
application and special compiler options

D.5 About Linking OCI Applications for Windows
The OCI calls are implemented in dynamic-link libraries (DLLs) that Oracle provides.

The DLLs are located in the ORACLE_BASE\ORACLE_HOME\bin directory and are part of the
Required Support Files (RSFs).

Oracle only provides the oci.lib import library for use with the Microsoft compiler. Borland
compiler is also supported by Oracle for use with OCI. Oracle recommends that applications
must always link with oci.lib to avoid relinking or compilation with every release.

When using oci.lib with the Microsoft compiler, you do not have to indicate any special link
options.

This section includes the following topics:

• oci.lib

• Client DLL Loading When Using Load Library()

• oci.lib
Why you need applications linked with oci.lib.

• Client DLL Loading When Using Load Library()
How directories are searched when using the LoadLibrary.

D.5.1 oci.lib
Why you need applications linked with oci.lib.

Oracle recommends that applications be linked with oci.lib, which takes care of loading the
correct versions of the Oracle DLLs.

Appendix D
About Linking OCI Applications for Windows

D-3

D.5.2 Client DLL Loading When Using Load Library()
How directories are searched when using the LoadLibrary.

The following directories are searched in this order by the LoadLibrary() function for client
DLL loading:

• Directory from which the application is loaded or the directory where oci.dll is located

• Current directory

• Windows:

– The 32-bit Windows system directory (system32). Use the GetWindowsDirectory()
function of the Windows API to obtain the path of this directory.

– The 16-bit Windows directory (system). There is no Win32 function that obtains the
path of this directory, but it is searched.

• Directories that are listed in the PATH environment variable

D.6 About Running OCI Applications for Windows
What’s needed to tun an OCI applications for Windows.

To run an OCI application, ensure that the entire corresponding set of Required Support Files
(RSFs) is installed on the computer that is running your OCI application.

D.7 Oracle XA Library
The XA application programming interface (API) is typically used to enable an Oracle
Database to interact with a transaction processing (TP) monitor, such as:

• Oracle Tuxedo

• IBM Transarc Encina

• IBM CICS

You can also use TP monitor statements in your client programs. The use of the XA API is
supported from OCI.

The Oracle XA Library is automatically installed as part of Oracle Database Enterprise Edition.
Table D-2 lists the components created in your Oracle home directory. The oci.lib import
library contains the XA exports.

Table D-2 Oracle XA Components

Component Location

xa.h ORACLE_BASE\ORACLE_HOME\oci\include

This section includes the following topics:

• About Compiling and Linking an OCI Program with the Oracle XA Library

• About Using XA Dynamic Registration

• XA and TP Monitor Information

Appendix D
About Running OCI Applications for Windows

D-4

• About Compiling and Linking an OCI Program with the Oracle XA Library
How to compile and link an OCI program with the Oracle XA Library.

• About Using XA Dynamic Registration
The database supports the use of XA dynamic registration.

• XA and TP Monitor Information
See the Distributed TP: The XA Specification and other specific TP monitor and XA
information.

D.7.1 About Compiling and Linking an OCI Program with the Oracle XA
Library

How to compile and link an OCI program with the Oracle XA Library.

To compile and link an OCI program with the Oracle XA Library:

1. Compile program.c by using Microsoft Visual C++ or the Borland compiler, making sure to
include ORACLE_BASE\ORACLE_HOME\rdbms\xa in your path.

2. Link program.obj with the libraries shown in Table D-3:

Table D-3 Link Libraries

Library Location

oraxa12.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa
oci.lib ORACLE_BASE\ORACLE_HOME\oci\lib\msvc or,

ORACLE_BASE\ORACLE_HOME\oci\lib\bc

3. Run program.exe.

D.7.2 About Using XA Dynamic Registration
The database supports the use of XA dynamic registration.

XA dynamic registration improves the performance of applications interacting with XA-
compliant TP monitors. For TP monitors to use XA dynamic registration with an Oracle
Database on Windows, you must add either an environmental variable or a registry variable to
the Windows systems on which your TP monitor is running. See either of the following sections
for instructions:

• Adding an Environmental Variable for the Current Session

• About Adding a Registry Variable for All Sessions

• Adding a Registry Variable:

• Adding an Environmental Variable for the Current Session
Adding an environmental variable at the command prompt affects only the current session.

• About Adding a Registry Variable for All Sessions
Adding a registry variable affects all sessions on your Windows system.

• Adding a Registry Variable:
To add a registry variable for the TP monitor provided by your vendor, follow these steps.

Appendix D
Oracle XA Library

D-5

D.7.2.1 Adding an Environmental Variable for the Current Session
Adding an environmental variable at the command prompt affects only the current session.

To Add an Environmental Variable:

From the computer where your TP monitor is installed, enter the following at the command
prompt:

C:\> set ORA_XA_REG_DLL = vendor.dll

In this example, vendor.dll is the TP monitor DLL provided by your vendor.

D.7.2.2 About Adding a Registry Variable for All Sessions
Adding a registry variable affects all sessions on your Windows system.

This is useful for computers where only one TP monitor is running.

D.7.2.3 Adding a Registry Variable:
To add a registry variable for the TP monitor provided by your vendor, follow these steps.

1. Go to the computer where your TP monitor is installed.

2. Enter the following at the command prompt:

C:\> regedt32

The Registry Editor window appears.

3. Go to HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEID.

4. Select the Add Value in the Edit menu. The Add Value dialog box appears.

5. Enter ORA_XA_REG_DLL in the Value Name text box.

6. Select REG_EXPAND_SZ from the Datatype list.

7. Click OK. The String Editor dialog box appears.

8. Enter vendor.dll in the String field, where vendor.dll is the TP monitor DLL provided by
your vendor.

9. Click OK. The Registry Editor adds the parameter.

10. Select Exit from the Registry menu.

The registry exits.

D.7.3 XA and TP Monitor Information
See the Distributed TP: The XA Specification and other specific TP monitor and XA
information.

Distributed TP: The XA Specification (C193) published by the Open Group at the web site:
Distributed TP: The XA Specification

Appendix D
Oracle XA Library

D-6

See Also:

• Oracle Database Development Guide, the topic about developing applications
with Oracle XA, for more information about the Oracle XA Library and using XA
dynamic registration

D.8 About Using the Object Type Translator for Windows
To take advantage of objects, run the Object Type Translator (OTT) against the database to
generate a header file that includes the C structs.

For example, if a PERSON type has been created in the database, OTT can generate a C struct
with elements corresponding to the attributes of PERSON. In addition, a null indicator struct is
created that represents null information for an instance of the C struct.

The intype file tells OTT which object types should be translated. This file also controls the
naming of the generated structs.

Note:

The INTYPE File Assistant is not available, starting with Oracle Database 10g
Release 1.

Note that the CASE specification inside the intype files, such as CASE=LOWER, applies only to C
identifiers that are not specifically listed, either through a TYPE or TRANSLATE statement in the
intype file. It is important to provide the type name with the appropriate cases, such as TYPE
Person and Type PeRsOn, in the intype file.

OTT on Windows can be invoked from the command line. A configuration file can also be
named on the command line. For Windows, the configuration file is ottcfg.cfg, located in
ORACLE_BASE\ORACLE_HOME\precomp\admin.

Appendix D
About Using the Object Type Translator for Windows

D-7

E
Deprecated OCI Features and Functions

Deprecated OCI features and functions are those that may become obsolete in a future
release. Replacement OCI functions are mentioned where applicable.

Beginning with Oracle Database release 18c, version 18.1, the result set descriptor
OCI_DTYPE_RSET.

OCI release 7.3 API beginning with Oracle Database 12c Release 1 (12.1).

Table E-1 lists the OCI functions that were deprecated in releases previous to Oracle 11g R2
(11.2) unless otherwise noted. In a future release, these functions may become obsolete.

Table E-1 Deprecated OCI Functions

Function Group Deprecated Functions

Initialize OCIEnvInit(), OCIInitialize()

Statement OCIStmtFetch()

Beginning with Oracle Database 12c Release 2 (12.2): OCIStmtPrepare()

Lob OCILobCopy(), OCILobErase(), OCILobGetLength(), OCILobLoadFromFile(),
OCILobRead(), OCILobTrim(), OCILobWrite(), OCILobWriteAppend()

Database
Advanced
Queuing functions

OCIAQListen()

This section includes the following topics:

• Deprecated Initialize Functions

• Deprecated Statement Functions

• Deprecated Lob Functions

• Deprecated Database Advanced Queuing Functions

• Deprecated Initialize Functions
Describes the deprecated initialize functions.

• Deprecated Statement Functions
Describes the deprecated statement functions.

• Deprecated Lob Functions
Describes the deprecated LOB functions.

• Deprecated Database Advanced Queuing Functions
Describes deprecated Oracle Database Advanced Queuing functions.

E.1 Deprecated Initialize Functions
Describes the deprecated initialize functions.

Table E-2 lists the deprecated Initialize functions that are described in this section.

E-1

Table E-2 Deprecated Initialize Functions

Function Purpose

OCIEnvInit() Initialize an environment handle.

OCIInitialize() Initialize OCI process environment.

• OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

E.1.1 OCIEnvInit()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Allocates and initializes an OCI environment handle. This function is deprecated.

Syntax

sword OCIEnvInit (OCIEnv **envhpp,
 ub4 mode,
 size_t xtramemsz,
 void **usrmempp);

Parameters

envhpp (OUT)
A pointer to a handle to the environment.

mode (IN)
Specifies initialization of an environment mode. Valid modes are:

• OCI_DEFAULT
• OCI_ENV_NO_UCB
In OCI_DEFAULT mode, the OCI library always mutexes handles.

The OCI_ENV_NO_UCB mode is used to suppress the calling of the dynamic callback routine
OCIEnvCallback() at environment initialization time. The default behavior is to allow such a
call to be made.

See Also:

Dynamic Callback Registrations

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the environment.

Appendix E
Deprecated Initialize Functions

E-2

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the user for
the duration of the environment.

Comments

Note:

Use OCIEnvCreate() instead of the OCIInitialize() and OCIEnvInit() calls.
OCIInitialize() and OCIEnvInit() calls are supported for backward compatibility.

This call allocates and initializes an OCI environment handle. No changes are made to an
initialized handle. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is returned, you can use the
environment handle to obtain Oracle-specific errors and diagnostics.

This call is processed locally, without a server round-trip.

The environment handle can be freed using OCIHandleFree().

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIHandleFree()
Explicitly deallocates a handle

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared
memory.

See Also:

User Memory Allocation for more information about the xtramemsz parameter and
user memory allocation

E.1.2 OCIInitialize()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Initializes the OCI process environment. This function is deprecated.

Syntax

sword OCIInitialize (ub4 mode,
 const void *ctxp,
 const void *(*malocfp)
 (void *ctxp,
 size_t size),

Appendix E
Deprecated Initialize Functions

E-3

 const void *(*ralocfp)
 (void *ctxp,
 void *memptr,
 size_t newsize),
 const void (*mfreefp)
 (void *ctxp,
 void *memptr));

Parameters

mode (IN)
Specifies initialization of the mode. The valid modes are:

• OCI_DEFAULT - Default mode.

• OCI_THREADED - Threaded environment. In this mode, internal data structures not exposed
to the user are protected from concurrent accesses by multiple threads.

• OCI_OBJECT - Uses object features.

• OCI_EVENTS - Uses publish-subscribe notifications.

ctxp (IN)
User-defined context for the memory callback routines.

malocfp (IN)
User-defined memory allocation function. If mode is OCI_THREADED, this memory allocation
routine must be thread-safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory allocation function.

size (IN)
Size of memory to be allocated by the user-defined memory allocation function.

ralocfp (IN)
User-defined memory reallocation function. If mode is OCI_THREADED, this memory allocation
routine must be thread-safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory reallocation function.

memptr (IN/OUT)
Pointer to memory block.

newsize (IN)
New size of memory to be allocated.

mfreefp (IN)
User-defined memory free function. If mode is OCI_THREADED, this memory free routine must be
thread-safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory free function.

memptr (IN/OUT)
Pointer to memory to be freed.

Appendix E
Deprecated Initialize Functions

E-4

Comments

Note:

Use OCIEnvCreate() instead of the deprecated OCIInitialize() call. The
OCIInitialize() call is supported for backward compatibility.

This call initializes the OCI process environment. OCIInitialize() must be invoked before
any other OCI call.

This function provides the ability for the application to define its own memory management
functions through callbacks. If the application has defined such functions (that is, memory
allocation, memory reallocation, memory free), they should be registered using the callback
parameters in this function.

These memory callbacks are optional. If the application passes NULL values for the memory
callbacks in this function, the default process memory allocation mechanism is used.

See Also:

• Overview of OCI Multithreaded Development for information about using the OCI
to write multithreaded applications

• OCI Object-Relational Programming for information about OCI programming with
objects

Example

The following statement shows an example of how to call OCIInitialize() in both threaded
and object mode, with no user-defined memory functions:

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (void *)0,
 (void * (*)()) 0, (void * (*)()) 0, (void (*)()) 0);

Related Topics

• OCIHandleAlloc()
Returns a pointer to an allocated and initialized handle.

• OCIHandleFree()
Explicitly deallocates a handle

• OCIEnvCreate()
Creates and initializes an environment handle for OCI functions to work under.

• OCITerminate()
Detaches the process from the shared memory subsystem and releases the shared
memory.

E.2 Deprecated Statement Functions
Describes the deprecated statement functions.

Appendix E
Deprecated Statement Functions

E-5

Table E-3 lists the deprecated Statement functions that are described in this section.

Table E-3 Deprecated Statement Functions

Function Purpose

OCIStmtFetch() Fetch rows from a query.

OCIStmtPrepare() Prepares a SQL or PL/SQL statement for execution.

• OCIStmtFetch()
This function was deprecated in a release previous to Oracle 11g R2 (11.2).

• OCIStmtPrepare()
This function was deprecated beginning with Oracle Database 12c Release 2 (12.2).

E.2.1 OCIStmtFetch()
This function was deprecated in a release previous to Oracle 11g R2 (11.2).

Purpose

Fetches rows from a query. This function is deprecated. Use OCIStmtFetch2().

Syntax

sword OCIStmtFetch (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 ub4 mode);

Parameters

stmtp (IN)
A statement (application request) handle.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
Before release 9.0, the only acceptable value is OCI_FETCH_NEXT, which is also the default
value.

mode (IN)
Pass as OCI_DEFAULT.

Comments

The fetch call is a local call, if prefetched rows suffice. However, this is transparent to the
application.

If LOB columns are being read, LOB locators are fetched for subsequent LOB operations to be
performed on these locators. Prefetching is turned off if LONG columns are involved.

Appendix E
Deprecated Statement Functions

E-6

This function can return OCI_NO_DATA on EOF and OCI_SUCCESS_WITH_INFO when one of these
errors occurs:

• ORA-24344 - Success with compilation error

• ORA-24345 - A truncation or NULL fetch error occurred

• ORA-24347 - Warning of a NULL column in an aggregate function

If you call OCIStmtFetch() with the nrows parameter set to 0, this cancels the cursor.

Use OCI_ATTR_ROWS_FETCHED to find the number of rows that were successfully fetched into the
user's buffers in the last fetch call.

Related Topics

• OCIStmtFetch2()
Fetches a row from the (scrollable) result set.

E.2.2 OCIStmtPrepare()
This function was deprecated beginning with Oracle Database 12c Release 2 (12.2).

Purpose

Prepares a SQL or PL/SQL statement for execution. This function is deprecated. Use
OCIStmtPrepare2().

Syntax

sword OCIStmtPrepare (OCIStmt *stmtp,
 OCIError *errhp,
 const OraText *stmt,
 ub4 stmt_len,
 ub4 language,
 ub4 mode);

Parameters

stmtp (IN)
A statement handle associated with the statement to be executed. By default, it contains the
encoding setting in the environment handle from which it is derived. A statement can be
prepared in UTF-16 encoding only in a UTF-16 environment.

errhp (IN)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

stmt (IN)
SQL or PL/SQL statement to be executed. Must be a NULL-terminated string. That is, the
ending character is a number of NULL bytes, depending on the encoding. The statement must
be in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().
Always cast the parameter to (text *). After a statement has been prepared in UTF-16, the
character set for the bind and define buffers default to UTF-16.

stmt_len (IN)
Length of the statement in characters or in number of bytes, depending on the encoding. Must
not be zero.

Appendix E
Deprecated Statement Functions

E-7

language (IN)
Specifies V7, or native syntax. Possible values are as follows:

• OCI_V7_SYNTAX - V7 ORACLE parsing syntax.

• OCI_NTV_SYNTAX - Syntax depends upon the version of the server.

OCI_FOREIGN_SYNTAX - Specifies the statement to be translated according to the SQL
translation profile set in the session.

mode (IN)
Similar to the mode in the OCIEnvCreate() call, but this one has higher priority because it can
override the "naturally" inherited mode setting.
The possible values are OCI_DEFAULT (default mode) or OCI_PREP2_IMPL_RESULTS_CLIENT.
The mode should be passed as OCI_PREP2_IMPL_RESULTS_CLIENT when this call is made in an
external procedure and implicit results need to be processed. See OCI Support for Implicit
Results for more details. The statement handle stmtp uses whatever is specified by its parent
environment handle.

Comments

An OCI application uses this call to prepare a SQL or PL/SQL statement for execution. The
OCIStmtPrepare() call defines an application request.

The mode parameter determines whether the statement content is encoded as UTF-16 or not.
The statement length is in number of code points or in number of bytes, depending on the
encoding.

Although the statement handle inherits the encoding setting from the parent environment
handle, the mode for this call can also change the encoding setting for the statement handle
itself.

Data values for this statement initialized in subsequent bind calls are stored in a bind handle
that uses settings in this statement handle as the default.

This call does not create an association between this statement handle and any particular
server.

Before reexecuting a DDL statement, call this function a second time.

This call does not support Application Continuity and if this call is used, it returns the following
error: Error - ORA-25412: transaction replay disabled by call to OCIStmtPrepare.
Use the OCIStmtPrepare2() call to support the use of Application Continuity in an HA
infrastructure.

Related Topics

• OCIStmtPrepare2()
Prepares a SQL or PL/SQL statement for execution.

See Also:

About Preparing Statements for more information about using this call

Appendix E
Deprecated Statement Functions

E-8

E.3 Deprecated Lob Functions
Describes the deprecated LOB functions.

Table E-4 lists the deprecated LOB functions that are described in this section.

Beginning with Oracle Database 12c Release 2 (12.2), most LOB functions including some
deprecated LOB functions as indicated in the following table support Application Continuity
(see When Application Continuity in OCI Can Fail Over for a complete list).

Table E-4 Deprecated LOB Functions

Function Purpose

OCILobCopy() Copy all or part of one LOB to
another. Supports Application
Continuity.

OCILobErase() Erase a portion of a LOB. Supports
Application Continuity.

OCILobGetLength() Get length of a LOB.

OCILobLoadFromFile() Load a LOB from a BFILE.
Supports Application Continuity.

OCILobRead() Read a portion of a LOB. Supports
Application Continuity.

OCILobTrim() Truncate a LOB. Supports
Application Continuity.

OCILobWrite() Write into a LOB. Supports
Application Continuity.

OCILobWriteAppend() Write data beginning at the end of a
LOB.

• OCILobCopy()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobErase()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobGetLength()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobLoadFromFile()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobRead()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobTrim()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Appendix E
Deprecated Lob Functions

E-9

• OCILobWrite()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

• OCILobWriteAppend()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

E.3.1 OCILobCopy()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Copies all or a portion of a LOB value into another LOB value. This function is deprecated. Use
OCILobCopy2().

Syntax

sword OCILobCopy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

Related Topics

• OCILobCopy2()
Copies all or a portion of a LOB value into another LOB value.

E.3.2 OCILobErase()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Erases a specified portion of the internal LOB data starting at a specified offset. This function is
deprecated. Use OCILobErase2().

Syntax

sword OCILobErase (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amount,
 ub4 offset);

Parameters

Related Topics

• OCILobErase2()
Erases a specified portion of the internal LOB data starting at a specified offset.

Appendix E
Deprecated Lob Functions

E-10

E.3.3 OCILobGetLength()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Gets the length of a LOB. This function is deprecated. Use OCILobGetLength2().

Syntax

sword OCILobGetLength (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *lenp);

Parameters

Related Topics

• OCILobGetLength2()
Gets the length of a LOB. This function must be used for LOBs of size greater than 4 GB.

E.3.4 OCILobLoadFromFile()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Loads and copies all or a portion of the file into an internal LOB. This function is deprecated.
Use OCILobLoadFromFile2().

Syntax

sword OCILobLoadFromFile (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

Related Topics

• OCILobLoadFromFile2()
Loads and copies all or a portion of the file into an internal LOB. This function must be
used for LOBs of size greater than 4 GB.

E.3.5 OCILobRead()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function is
deprecated. Use OCILobRead2().

Appendix E
Deprecated Lob Functions

E-11

Syntax

sword OCILobRead (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 void *bufp,
 ub4 bufl,
 void *ctxp,
 OCICallbackLobRead (cbfp)
 (void *ctxp,
 const void *bufp,
 ub4 len,
 ub1 piece
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

locp (IN)
A LOB or BFILE locator that uniquely references the LOB or BFILE. This locator must have
been a locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in Table E-5.

Table E-5 Characters or Bytes in amtp for OCILobRead()

LOB or BFILE Input Output with Fixed-Width
Client-Side Character Set

Output with Varying-Width
Client-Side Character Set

BLOBs and BFILEs bytes bytes bytes

CLOBs and NCLOBs characters characters bytes 1

1 The input amount refers to the number of characters to be read from the server-side CLOB or NCLOB. The output
amount indicates how many bytes were read into the buffer bufp.

The parameter amtp is the total amount of data read if:

• Data is not read in streamed mode (only one piece is read and there is no polling or
callback)

• Data is read in streamed mode with a callback

The parameter amtp is the length of the last piece read if the data is read in streamed mode
using polling.

If the amount to be read is larger than the buffer length, it is assumed that the LOB is being
read in a streamed mode from the input offset until the end of the LOB, or until the specified

Appendix E
Deprecated Lob Functions

E-12

number of bytes have been read, whichever comes first. On input, if this value is 0, then the
data is read in streamed mode from the input offset until the end of the LOB.

The streamed mode (implemented with either polling or callbacks) reads the LOB value
sequentially from the input offset.

If the data is read in pieces, the amtp parameter always contains the length of the piece just
read.

If a callback function is defined, then this callback function is invoked each time bufl bytes are
read off the pipe. Each piece is written into bufp.

If the callback function is not defined, then the OCI_NEED_DATA error code is returned. The
application must call OCILobRead() over and over again to read more pieces of the LOB until
the OCI_NEED_DATA error code is not returned. The buffer pointer and the length can be
different in each call if the pieces are being read into different sizes and locations.

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For character LOBs
(CLOBs, NCLOBs) it is the number of characters from the beginning of the LOB, for binary LOBs
or BFILEs it is the number of bytes. The first position is 1.
If you use streaming (by polling or a callback), specify the offset in the first call; in subsequent
polling calls, the offset parameter is ignored. When you use a callback, there is no offset
parameter.

bufp (IN/OUT)
The pointer to a buffer into which the piece is read. The length of the allocated memory is
assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value differs from the amtp value for CLOBs and for
NCLOBs (csfrm=SQLCS_NCHAR) when the amtp parameter is specified in terms of characters, and
the bufl parameter is specified in terms of bytes.

ctxp (IN)
The context pointer for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA is returned for each piece.
The callback function must return OCI_CONTINUE for the read to continue. If any other error
code is returned, the LOB read is terminated.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

len (IN)
The length in bytes of the current piece in bufp.

piece (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE, or OCI_LAST_PIECE.

Appendix E
Deprecated Lob Functions

E-13

csid (IN)
The character set ID of the buffer data. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm. It is never assumed to be the
server's character set, unless the server and client have the same settings.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT. If csfrm is not specified, the default is assumed.

Comments

Reads a portion of a LOB or BFILE as specified by the call into a buffer. It is an error to try to
read from a NULL LOB or BFILE.

Note:

When you read or write LOBs, specify a character set form (csfrm) that matches the
form of the locator itself.

For BFILEs, the operating system file must exist on the server, and it must have been opened
by OCILobFileOpen() or OCILobOpen() using the input locator. Oracle Database must have
permission to read the operating system file, and the user must have read permission on the
directory object.

When you use the polling mode for OCILobRead(), the first call must specify values for offset
and amtp, but on subsequent polling calls to OCILobRead(), you need not specify these values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Note:

To terminate an OCILobRead() operation and free the statement handle, use the
OCIBreak() call.

The following apply to client-side varying-width character sets for CLOBs and NCLOBs:

• When you use polling mode, be sure to specify the amtp and offset parameters only in the
first call to OCILobRead(). On subsequent polling calls, these parameters are ignored.

• When you use callbacks, the len parameter, which is input to the callback, indicates how
many bytes are filled in the buffer. Check the len parameter during your callback
processing because the entire buffer cannot be filled with data.

The following applies to client-side fixed-width character sets and server-side varying-width
character sets for CLOBs and NCLOBs:

Appendix E
Deprecated Lob Functions

E-14

• When reading a CLOB or NCLOB value, look at the amtp parameter after every call to
OCILobRead() to see how much of the buffer is filled. When the return value is in
characters (as when the client-side character set is fixed-width), then convert this value to
bytes and determine how much of the buffer is filled. When you use callbacks, always
check the len parameter to see how much of the buffer is filled. This value is always in
bytes.

To read data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

Related Topics

• OCILobRead2()
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This function
must be used for LOBs of size greater than 4 GB.

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information
about Unicode format

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
description of BFILEs

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

• Polling Mode Operations in OCI

E.3.6 OCILobTrim()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Truncates the LOB value to a shorter length. This function is deprecated. Use OCILobTrim2().

Syntax

sword OCILobTrim (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 newlen);

Parameters

Related Topics

• OCILobTrim2()
Truncates the LOB value to a shorter length. This function must be used for LOBs of size
greater than 4 GB.

Appendix E
Deprecated Lob Functions

E-15

E.3.7 OCILobWrite()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Writes a buffer into a LOB. This function is deprecated. Use OCILobWrite2().

Syntax

sword OCILobWrite (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 void *bufp,
 ub4 buflen,
 ub1 piece,
 void *ctxp,
 OCICallbackLobWrite (cbfp)
 (
 void *ctxp,
 void *bufp,
 ub4 *lenp,
 ub1 *piecep
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must have been a
locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in Table E-6.

Table E-6 Characters or Bytes in amtp for OCILobWrite()

LOB or BFILE Input with Fixed-Width
Client-Side Character Set

Input with Varying-Width
Client-Side Character Set

Output

BLOBs and BFILEs bytes bytes bytes

CLOBs and NCLOBs characters bytes 1 characters

1 The input amount refers to the number of bytes of data that the user wants to write into the LOB and not the number
of bytes in the bufp, which is specified by buflen. If data is written in pieces, the amount of bytes to write may be
larger than the buflen. The output amount refers to the number of characters written into the server-side CLOB or
NCLOB.

Appendix E
Deprecated Lob Functions

E-16

This should always be a non-NULL pointer. If you want to specify write-until-end-of-file, then you
must declare a variable, set it equal to zero, and pass its address for this parameter.

If the amount is specified on input, and the data is written in pieces, the parameter amtp
contains the total length of the pieces written at the end of the call (last piece written) and is
undefined in between. Note that it is different from the piecewise read case. An error is
returned if that amount is not sent to the server.

If amtp is zero, then streaming mode is assumed, and data is written until the user specifies
OCI_LAST_PIECE.

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For character LOBs, it
is the number of characters from the beginning of the LOB; for binary LOBs, it is the number of
bytes. The first position is 1.
If you use streaming (by polling or a callback), specify the offset in the first call; in subsequent
polling calls, the offset parameter is ignored. When you use a callback, there is no offset
parameter.

bufp (IN)
The pointer to a buffer from which the piece is written. The length of the data in the buffer is
assumed to be the value passed in buflen. Even if the data is being written in pieces using
the polling method, bufp must contain the first piece of the LOB when this call is invoked. If a
callback is provided, bufp must not be used to provide data or an error results.

buflen (IN)
The length, in bytes, of the data in the buffer. This value differs from the amtp value for CLOBs
and NCLOBs when the amtp parameter is specified in terms of characters, and the buflen
parameter is specified in terms of bytes.

Note:

This parameter assumes an 8-bit byte. If your operating system uses a longer byte,
you must adjust the value of buflen accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating that the buffer is written in a single piece. The following other
values are also possible for piecewise or callback mode: OCI_FIRST_PIECE, OCI_NEXT_PIECE,
and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece in a piecewise write. If this is
NULL, the standard polling method is used.
The callback function must return OCI_CONTINUE for the write to continue. If any other error
code is returned, the LOB write is terminated. The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

Appendix E
Deprecated Lob Functions

E-17

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input to the
OCILobWrite() routine.

lenp (IN/OUT)
The length (in bytes) of the data in the buffer (IN), and the length (in bytes) of the current piece
in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the data in the buffer. If this value is 0, then csid is set to the client's
NLS_LANG or NLS_CHAR value, depending on the value of csfrm.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent with the
type of the LOB.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments

Writes a buffer into an internal LOB as specified. If LOB data exists, it is overwritten with the
data stored in the buffer. The buffer can be written to the LOB in a single piece with this call, or
it can be provided piecewise using callbacks or a standard polling method.

Note:

When you read or write LOBs, specify a character set form (csfrm) that matches the
form of the locator itself.

When you use the polling mode for OCILobWrite(), the first call must specify values for offset
and amtp, but on subsequent polling calls to OCILobWrite(), you need not specify these
values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be provided through
callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function is invoked to
get the next piece after a piece is written to the pipe. Each piece is written from bufp. If no
callback function is defined, then OCILobWrite() returns the OCI_NEED_DATA error code. The
application must call OCILobWrite() again to write more pieces of the LOB. In this mode, the
buffer pointer and the length can be different in each call if the pieces are of different sizes and
from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of whether the
polling or callback method is used.

If the amount of data passed to Oracle Database (through either input mechanism) is less than
the amount specified by the amtp parameter, an ORA-22993 error is returned.

Appendix E
Deprecated Lob Functions

E-18

This function is valid for internal LOBs only. BFILEs are not allowed, because they are read-
only. If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes and the output
amount is in characters for CLOBs and NCLOBs. The input amount refers to the number of bytes
of data that the user wants to write into the LOB and not the number of bytes in the bufp, which
is specified by buflen. If data is written in pieces, the amount of bytes to write may be larger
than the buflen. The output amount refers to the number of characters written into the server-
side CLOB or NCLOB.

To write data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the csid parameter
is set, it overrides the NLS_LANG environment variable.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit or roll back your
transaction. When an internal LOB is closed, it updates the functional and domain indexes on
the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobWrite2()
Writes a buffer into a LOB. This function must be used for LOBs of size greater than 4 GB.

See Also:

• PL/SQL REF CURSORs and Nested Tables in OCI for additional information
about Unicode format

• The demonstration programs included with your Oracle Database installation for
a code sample showing the use of LOB reads and writes.

• OCI Demonstration Programs

• Runtime Data Allocation and Piecewise Operations in OCI for general
information about piecewise OCI operations

• Polling Mode Operations in OCI

E.3.8 OCILobWriteAppend()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Writes data starting at the end of a LOB. This function is deprecated. Use
OCILobWriteAppend2().

Appendix E
Deprecated Lob Functions

E-19

Syntax

sword OCILobWriteAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 void *bufp,
 ub4 buflen,
 ub1 piece,
 void *ctxp,
 OCICallbackLobWrite (cbfp)
 (
 void *ctxp,
 void *bufp,
 ub4 *lenp,
 ub1 *piecep
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

locp (IN/OUT)
An internal LOB locator that uniquely references a LOB.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in Table E-7.

Table E-7 Characters or Bytes in amtp for OCILobWriteAppend()

LOB or BFILE Input with Fixed-Width
Client-Side Character Set

Input with Varying-Width
Client-Side Character Set

Output

BLOBs and BFILEs bytes bytes bytes

CLOBs and NCLOBs characters bytes 1 characters

1 The input amount refers to the number of bytes of data that the user wants to write into the LOB and not the number
of bytes in the bufp, which is specified by buflen. If data is written in pieces, the amount of bytes to write may
be larger than the buflen. The output amount refers to the number of characters written into the server-side CLOB
or NCLOB.

If the amount is specified on input, and the data is written in pieces, the parameter amtp
contains the total length of the pieces written at the end of the call (last piece written) and is
undefined in between. (Note it is different from the piecewise read case). An error is returned if
that amount is not sent to the server. If amtp is zero, then streaming mode is assumed, and
data is written until the user specifies OCI_LAST_PIECE.

If the client-side character set is varying-width, then the input amount is in bytes, not
characters, for CLOBs or NCLOBs.

Appendix E
Deprecated Lob Functions

E-20

bufp (IN)
The pointer to a buffer from which the piece is written. The length of the data in the buffer is
assumed to be the value passed in buflen. Even if the data is being written in pieces, bufp
must contain the first piece of the LOB when this call is invoked. If a callback is provided, bufp
must not be used to provide data or an error results.

buflen (IN)
The length, in bytes, of the data in the buffer. Note that this parameter assumes an 8-bit byte.
If your operating system uses a longer byte, the value of buflen must be adjusted accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating that the buffer is written in a single piece. The following other
values are also possible for piecewise or callback mode: OCI_FIRST_PIECE, OCI_NEXT_PIECE,
and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that can be registered to be called for each piece in a piecewise write. If this is
NULL, the standard polling method is used. The callback function must return OCI_CONTINUE for
the write to continue. If any other error code is returned, the LOB write is terminated. The
callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN/OUT)
The length (in bytes) of the data in the buffer (IN), and the length (in bytes) of the current piece
in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data.
The csfrm parameter has two possible nonzero values:

• SQLCS_IMPLICIT - Database character set ID

• SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments

The buffer can be written to the LOB in a single piece with this call, or it can be provided
piecewise using callbacks or a standard polling method. If the value of the piece parameter is
OCI_FIRST_PIECE, data must be provided through callbacks or polling. If a callback function is
defined in the cbfp parameter, then this callback function is invoked to get the next piece after

Appendix E
Deprecated Lob Functions

E-21

a piece is written to the pipe. Each piece is written from bufp. If no callback function is defined,
then OCILobWriteAppend() returns the OCI_NEED_DATA error code.

The application must call OCILobWriteAppend() again to write more pieces of the LOB. In this
mode, the buffer pointer and the length can be different in each call if the pieces are of different
sizes and from different locations. A piece value of OCI_LAST_PIECE terminates the piecewise
write.

OCILobWriteAppend() is not supported if LOB buffering is enabled.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes, not
characters, for CLOBs or NCLOBs.

It is not mandatory that you wrap this LOB operation inside the open or close calls. If you did
not open the LOB before performing this operation, then the functional and domain indexes on
the LOB column are updated during this call. However, if you did open the LOB before
performing this operation, then you must close it before you commit or roll back your
transaction. When an internal LOB is closed, it updates the functional and domain indexes on
the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the functional and
domain indexes are updated each time you write to the LOB. This can adversely affect
performance. If you have functional or domain indexes, Oracle recommends that you enclose
write operations to the LOB within the open or close statements.

Related Topics

• OCILobWriteAppend2()
Writes data starting at the end of a LOB. This function must be used for LOBs of size
greater than 4 GB.

See Also:

About Improving LOB Read/Write Performance

E.4 Deprecated Database Advanced Queuing Functions
Describes deprecated Oracle Database Advanced Queuing functions.

Table E-8 lists the deprecated Database Advanced Queuing functions that are described in this
section.

Table E-8 Deprecated Database Advanced Queuing Functions

Function Purpose

OCIAQListen() Listen on one or more queues on behalf of a list of agents.

• OCIAQListen()
This function was deprecated in a release previous to Oracle Database 11g Release 2
(11.2).

Appendix E
Deprecated Database Advanced Queuing Functions

E-22

E.4.1 OCIAQListen()
This function was deprecated in a release previous to Oracle Database 11g Release 2 (11.2).

Purpose

Listens on one or more queues on behalf of a list of agents. This function is deprecated.
UseOCIAQListen2().

Syntax

sword OCIAQListen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAQAgent **agent_list,
 ub4 num_agents,
 sb4 wait,
 OCIAQAgent **agent,
 ub4 flags);

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information when there is an
error.

agent_list (IN)
List of agents for which to monitor messages.

num_agents (IN)
Number of agents in the agent list.

wait (IN)
Timeout interval for the listen call.

agent (OUT)
Agent for which there is a message. OCIAgent is an OCI descriptor.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments

This is a blocking call that returns when there is a message ready for consumption for an agent
in the list. If there are no messages found when the wait time expires, an error is returned.

Related Topics

• OCIAQListen2()
Listens on one or more queues on behalf of a list of agents.

Appendix E
Deprecated Database Advanced Queuing Functions

E-23

F
Multithreaded extproc Agent

What is the multithreaded extproc agent?

This appendix explains what the multithreaded extproc agent is, how it contributes to the
overall efficiency of a distributed database system, and how to administer it.

This section includes the following topics:

• Why Use the Multithreaded extproc Agent?

• Multithreaded extproc Agent Architecture

• Administering the Multithreaded extproc Agent

• Why Use the Multithreaded extproc Agent?
This section explains how the multithreaded extproc agent contributes to the efficiency of
external procedures.

• Multithreaded extproc Agent Architecture

• Administering the Multithreaded extproc Agent
One multithreaded extproc agent must be started for each system identifier (SID) before
attempting to connect to the external procedure.

F.1 Why Use the Multithreaded extproc Agent?
This section explains how the multithreaded extproc agent contributes to the efficiency of
external procedures.

This section includes the following topics:

• The Challenge of Dedicated Agent Architecture

• The Advantage of Multithreading

• The Challenge of Dedicated Agent Architecture
By default, an extproc agent is started for each user session and the extproc agent
process terminates only when the user session ends.

• The Advantage of Multithreading
The Oracle Database shared server architecture assumes that even when several
thousand user sessions are open, only a small percentage of these connections are active
at any given time.

F.1.1 The Challenge of Dedicated Agent Architecture
By default, an extproc agent is started for each user session and the extproc agent process
terminates only when the user session ends.

This architecture can consume an unnecessarily large amount of system resources. For
example, suppose that several thousand user sessions simultaneously spawn extproc agent
processes. Because an extproc agent process is started for each session, several thousand
extproc agent processes run concurrently. The extproc agent processes operate regardless

F-1

of whether each individual extproc agent process is active at the moment. Thus extproc agent
processes and open connections can consume a disproportionate amount of system
resources. When sessions connect to Oracle Database, this problem is addressed by starting
the server in shared server mode. Shared server mode allows database connections to be
shared by a small number of server processes.

F.1.2 The Advantage of Multithreading
The Oracle Database shared server architecture assumes that even when several thousand
user sessions are open, only a small percentage of these connections are active at any given
time.

In shared server mode, there is a pool of shared server processes. User sessions connect to
dispatcher processes that place the requested tasks in a queue. The tasks are picked up by
the first available shared server processes. The number of shared server processes is usually
less that the number of user sessions.

The multithreaded extproc agent provides similar functionality for connections to external
procedures. The multithreaded extproc agent architecture uses a pool of shared agent
threads. The tasks requested by the user sessions are put in a queue and are picked up by the
first available multithreaded extproc agent thread. Because only a small percentage of user
connections are active at a given moment, using a multithreaded extproc architecture allows
more efficient use of system resources.

F.2 Multithreaded extproc Agent Architecture
One multithreaded extproc agent must be started for each system identifier (SID) before
attempting to connect to the external procedure. This is done using the agent control utility
agtctl. This utility is also used to configure the agent and to shut down the agent.

Each Oracle Net listener that is running on a system listens for incoming connection requests
for a set of SIDs. If the SID in an incoming Oracle Net connect string is an SID for which the
listener is listening, then that listener processes the connection. Further, if a multithreaded
extproc agent was started for the SID, then the listener passes the request to that extproc
agent.

In the architecture for multithreaded extproc agents, each incoming connection request is
processed by different kinds of threads:

• A single monitor thread. The monitor thread is responsible for:

– Maintaining communication with the listener

– Monitoring the load on the process

– Starting and stopping threads when required

• Several dispatcher threads. The dispatcher threads are responsible for:

– Handling communication with the Oracle Database

– Passing task requests to the task threads

• Several task threads. The task threads handle requests from the Oracle Database
processes.

Figure F-1 illustrates the architecture of the multithreaded extproc agent. User sessions 1 and
2 issue requests for callouts to functions in some DLLs. These requests get serviced through
heterogeneous services to the multithreaded extproc agent. These requests get handled by
the agent's dispatcher threads, which then pass them on to the task threads. The task thread

Appendix F
Multithreaded extproc Agent Architecture

F-2

that is actually handling a request is responsible for loading the respective DLL and calling the
function therein.

• All requests from a user session get handled by the same dispatcher thread. For example,
dispatcher 1 handles communication with user session 1, and dispatcher 2 handles
communication with user session 2. This is the case for the lifetime of the session.

• The individual requests can be serviced by different task threads. For example, task
thread 1 can handle the request from user session 1, and later handle the request from
user session 2.

See Also:

Oracle Database Administrator’s Guide. for details on managing processes for
external procedures

Figure F-1 Multithreaded extproc Agent Architecture

HS

Dispatcher
Thread 1

Task
Thread 2

Oracle
Server

User-Session
1

HS

Dispatcher
Thread 2

Task
Thread 3

Oracle
Server

User-Session
2

Agent
Process

Task
Thread 1

DLLs

These three thread types roughly correspond to the Oracle Database multithreaded server
PMON, dispatcher, and shared server processes, respectively.

Note:

All requests from a user session go through the same dispatcher thread, but can be
serviced by different task threads. Also, several task threads can use the same
connection to the external procedure.

Appendix F
Multithreaded extproc Agent Architecture

F-3

These topics explain each type of thread in more detail:

• Monitor Thread

• Dispatcher Threads

• Task Threads

See Also:

Administering the Multithreaded extproc Agent for more information about
starting and stopping the multithreaded exproc agent by using the agent control
utility agtctl

• Monitor Thread
When the agent control utility agtctl starts a multithreaded extproc agent for a SID,
agtctl creates the monitor thread.

• Dispatcher Threads
How are dispatcher threads used?

• Task Threads
How are task threads used?

F.2.1 Monitor Thread
When the agent control utility agtctl starts a multithreaded extproc agent for a SID, agtctl
creates the monitor thread.

The monitor thread performs these functions:

• Creates the dispatcher and task threads.

• Registers the dispatcher threads with all the listeners that are handling connections to this
extproc agent. While the dispatcher for this SID is running, the listener does not start a
process when it gets an incoming connection. Instead, the listener gives the connection to
this same dispatcher.

• Monitors the other threads and sends load information about the dispatcher threads to all
the listener processes handling connections to this extproc agent, enabling listeners to
give incoming connections to the least loaded dispatcher.

• Continues to monitor each of the threads it has created.

F.2.2 Dispatcher Threads
How are dispatcher threads used?

Dispatcher threads perform these functions:

• Accept incoming connections and task requests from Oracle Database servers.

• Place incoming requests on a queue for a task thread to pick up.

• Send results of a request back to the server that issued the request.

Appendix F
Multithreaded extproc Agent Architecture

F-4

Note:

After a user session establishes a connection with a dispatcher, all requests from
that user session go to the same dispatcher until the end of the user session.

F.2.3 Task Threads
How are task threads used?

Task threads perform these functions:

• Pick up requests from a queue.

• Perform the necessary operations.

• Place the results on a queue for a dispatcher to pick up.

F.3 Administering the Multithreaded extproc Agent
One multithreaded extproc agent must be started for each system identifier (SID) before
attempting to connect to the external procedure.

A multithreaded extproc agent is started, stopped, and configured by an agent control utility
called agtctl, which works like lsnrctl. However, unlike lsnrctl, which reads a configuration
file (listener.ora), agtctl takes configuration information from the command line and writes it
to a control file.

Before starting agtctl, ensure that Oracle Listener is running. Then use the agtctl commands
to set the agtctl configuration parameters (if you do not want their default values) and to start
agtctl, as in Example F-1.

You can use agtctl commands in either single-line command mode or shell mode.

Topics:

• Agent Control Utility (agtctl) Commands

• About Using agtctl in Single-Line Command Mode

• Using Shell Mode Commands

• Configuration Parameters for Multithreaded extproc Agent Control

Example F-1 Setting Configuration Parameters and Starting agtctl

agtctl set max_dispatchers 2 ep_agt1
agtctl set tcp_dispatchers 1 ep_agt1
agtctl set max_task_threads 2 ep_agt1
agtctl set max_sessions 5 ep_agt1
agtctl unset listener_address ep_agt1
agtctl set listener_address "(address=(protocol=ipc)(key=extproc))" ep_agt1
agtctl startup extproc ep_agt1

• Agent Control Utility (agtctl) Commands
What are the Agent Control Utility commands and what are they used for?

• About Using agtctl in Single-Line Command Mode
This section describes the use of agtctl commands.

Appendix F
Administering the Multithreaded extproc Agent

F-5

• Using Shell Mode Commands
When issuing the AGTCTL> command, it results in the prompt AGTCTL>.

• Configuration Parameters for Multithreaded extproc Agent Control
What do the configuration parameters for multithreaded extproc agent control do?

F.3.1 Agent Control Utility (agtctl) Commands
What are the Agent Control Utility commands and what are they used for?

You can start and stop agtctl and create and maintain its control file by using the commands
shown in Table F-1.

Table F-1 Agent Control Utility (agtctl) Commands

Command Description

startup Starts a multithreaded extproc agent

shutdown Stops a multithreaded extproc agent

set Sets a configuration parameter for a multithreaded extproc agent

unset Causes a parameter to revert to its default value

show Displays the value of a configuration parameter

delete Deletes the entry for a particular SID from the control file

exit Exits shell mode

help Lists available commands

These commands can be issued in one of two ways:

• You can issue commands from the UNIX or DOS shell. This mode is called single-line
command mode.

• You can enter agtctl and an AGTCTL> prompt appears. You then can enter commands
from within the agtctl shell. This mode is called shell mode.

The syntax and parameters for agtctl commands depend on the mode in which they are
issued.

Note:

• All commands are case-sensitive.

• The agtctl utility puts its control file in the directory specified by either one of two
environment variables, AGTCTL_ADMIN or TNS_ADMIN. Ensure that at least one of
these environment variables is set and that it specifies a directory to which the
agent has access.

• If the multithreaded extproc agent requires that an environment variable be set,
or if the ENVS parameter was used when configuring the listener.ora entry for
the agent working in dedicated mode, then all required environment variables
must be set in the UNIX or DOS shell that runs the agtctl utility.

Appendix F
Administering the Multithreaded extproc Agent

F-6

F.3.2 About Using agtctl in Single-Line Command Mode
This section describes the use of agtctl commands.

They are presented in single-line command mode.

This section includes the following topics:

• Setting Configuration Parameters for a Multithreaded extproc Agent

• Starting a Multithreaded extproc Agent

• Shutting Down a Multithreaded extproc Agent

• Examining the Value of Configuration Parameters

• Resetting a Configuration Parameter to Its Default Value

• Deleting an Entry for a Specific SID from the Control File

• Requesting Help

• Setting Configuration Parameters for a Multithreaded extproc Agent
Set the configuration parameters for a multithreaded extproc agent before you start the
agent.

• Starting a Multithreaded extproc Agent
Use the startup command to start a multithreaded extproc agent.

• Shutting Down a Multithreaded extproc Agent
Use the shutdown command to stop a multithreaded extproc agent.

• Examining the Value of Configuration Parameters
To examine the value of a configuration parameter, use the show command.

• Resetting a Configuration Parameter to Its Default Value
You can reset a configuration parameter to its default value using the unset command.

• Deleting an Entry for a Specific SID from the Control File
The delete command deletes the entry for the specified SID from the control file.

• Requesting Help
Use the help command to view a list of available commands for agtctl or to see the
syntax for a particular command.

F.3.2.1 Setting Configuration Parameters for a Multithreaded extproc Agent
Set the configuration parameters for a multithreaded extproc agent before you start the agent.

If a configuration parameter is not specifically set, a default value is used. Configuration
parameters and their default values are shown in Table F-2.

Use the set command to set multithreaded extproc agent configuration parameters.

Syntax

agtctl set parameter parameter_value agent_sid

parameter is the parameter that you are setting.

parameter_value is the value being assigned to that parameter.

Appendix F
Administering the Multithreaded extproc Agent

F-7

agent_sid is the SID that this agent services. This must be specified for single-line command
mode.

Example

agtctl set max_dispatchers 5 salesDB

F.3.2.2 Starting a Multithreaded extproc Agent
Use the startup command to start a multithreaded extproc agent.

Syntax

agtctl startup extproc agent_sid

agent_sid is the SID that this multithreaded extproc agent services. This must be specified for
single-line command mode.

Example

agtctl startup extproc salesDB

F.3.2.3 Shutting Down a Multithreaded extproc Agent
Use the shutdown command to stop a multithreaded extproc agent.

There are three forms of shutdown:

• Normal (default)

agtctl asks the multithreaded extproc agent to terminate itself gracefully. All sessions
complete their current operations and then shut down.

• Immediate

agtctl tells the multithreaded extproc agent to terminate immediately. The agent exits
immediately regardless of the state of current sessions.

• Abort

Without talking to the multithreaded extproc agent, agtctl issues a system call to stop it.

Syntax

agtctl shutdown [immediate|abort] agent_sid

agent_sid is the SID that the multithreaded extproc agent services. It must be specified for
single-line command mode.

Example

agtctl shutdown immediate salesDB

F.3.2.4 Examining the Value of Configuration Parameters
To examine the value of a configuration parameter, use the show command.

Syntax

agtctl show parameter agent_sid

Appendix F
Administering the Multithreaded extproc Agent

F-8

parameter is the parameter that you are examining.

agent_sid is the SID that this multithreaded extproc agent services. This must be specified for
single-line command mode.

Example

agtctl show max_dispatchers salesDB

F.3.2.5 Resetting a Configuration Parameter to Its Default Value
You can reset a configuration parameter to its default value using the unset command.

Syntax

agtctl unset parameter agent_sid

parameter is the parameter that you are resetting (or changing).

agent_sid is the SID that this multithreaded extproc agent services. It must be specified for
single-line command mode.

Example

agtctl unset max_dispatchers salesDB

F.3.2.6 Deleting an Entry for a Specific SID from the Control File
The delete command deletes the entry for the specified SID from the control file.

Syntax

agtctl delete agent_sid

agent_sid is the SID entry to delete.

Example

agtctl delete salesDB

F.3.2.7 Requesting Help
Use the help command to view a list of available commands for agtctl or to see the syntax for
a particular command.

Syntax

agtctl help [command]

command is the name of the command whose syntax you want to view. The default is all agtctl
commands.

Example

agtctl help set

Appendix F
Administering the Multithreaded extproc Agent

F-9

F.3.3 Using Shell Mode Commands
When issuing the AGTCTL> command, it results in the prompt AGTCTL>.

In shell mode, start agtctl by entering:

agtctl

Thereafter, because you are issuing commands from within the agtctl shell, you need not
prefix the command string with agtctl.

Set the name of the agent SID by entering:

AGTCTL> set agent_sid agent_sid

All subsequent commands are assumed to be for the specified SID until the agent_sid value is
changed. Unlike single-line command mode, you do not specify agent_sid in the command
string.

You can set the language for error messages as follows:

AGTCTL> set language language

The commands themselves are the same as those for the single-line command mode. To exit
shell mode, enter exit.

The following examples use shell mode commands:

• Example: Setting a Configuration Parameter

• Example: Starting a Multithreaded extproc Agent

• Example: Setting a Configuration Parameter
How to set the value for the shutdown_address configuration parameter.

• Example: Starting a Multithreaded extproc Agent
How to start a multithreaded extproc agent.

F.3.3.1 Example: Setting a Configuration Parameter
How to set the value for the shutdown_address configuration parameter.

This example sets a value for the shutdown_address configuration parameter.

AGTCTL> set shutdown_address (address=(protocol=ipc)(key=oraDBsalesDB))

F.3.3.2 Example: Starting a Multithreaded extproc Agent
How to start a multithreaded extproc agent.

This example starts a multithreaded extproc agent.

AGTCTL> startup extproc

F.3.4 Configuration Parameters for Multithreaded extproc Agent Control
What do the configuration parameters for multithreaded extproc agent control do?

Table F-2 describes and gives the defaults of the configuration parameters for the agent control
utility.

Appendix F
Administering the Multithreaded extproc Agent

F-10

Table F-2 Configuration Parameters for agtctl

Parameter Description Default Value

max_dispatchers Maximum number of
dispatchers

1

tcp_dispatchers Number of dispatchers
listening on TCP (the rest are
using IPC)

0

max_task_threads Maximum number of task
threads

2

max_sessions Maximum number of sessions
for each task thread

5

listener_address Address on which the listener
is listening (needed for
registration)

(ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=PNPKEY))
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listener_sid))
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521)))

Note: listener_sid is the IPC key of the address,
on the Oracle Database, on which the listener is
listening.

shutdown_address Address the agent uses to
communicate with the listener.
This is the address on which
the agent listens for all
communication, including
shutdown messages from
agtctl.

(ADDRESS=
 (PROTOCOL=IPC)
 (KEY=listener_sid || agent_sid))
(ADDRESS=
 (PROTOCOL=TCP)
 (HOST=127.0.0.1)
 (PORT=1521))

Notes:

• agent_sid is the SID of the multithreaded
extproc agent.

• || indicates that listener_sid and agent_sid
are concatenated into one string.

max_dispatchers, tcp_dispatchers, max_task_threads, and max_sessions

To improve performance, you might need to change the values of some or all of the
parameters max_dispatchers, tcp_dispatchers, max_task_threads, and max_sessions.

You can calculate the optimum values of max_dispatchers, tcp_dispatchers,
max_task_threads with these formulas:

max_dispatchers = CEIL(x/y)
tcp_dispatchers = CEIL(x_tcpip/y)
max_task_threads = CEIL(x/max_sessions)

Where:

Appendix F
Administering the Multithreaded extproc Agent

F-11

• CEIL is a SQL function that returns the smallest integer greater than or equal to its
argument.

• x is the maximum number of sessions that can be connected to extproc concurrently.

• y is the maximum number of connections that the system can support for each dispatcher.

• x_tcpip is the maximum number of sessions that can be connected to extproc
concurrently by TCP/IP.

(x - x_tcpip is the maximum number of sessions that can be connected to extproc
concurrently by IPC.)

There is no formula for computing the optimum value of max_sessions, which affects
max_task_threads.

You must fine-tune these parameter settings, based on the capability of your hardware, and
ensure that the concurrent threads do not exhaust your operating system.

The value of max_dispatchers must be at least 1 (which is the default).

Example

Suppose:

• The maximum number of sessions that can be connected to extproc concurrently (x) is
650.

• The maximum number of sessions that can be connected to extproc concurrently by
TCP/IP (x_tcpip) is 400.

(The maximum number of sessions that can be connected to extproc concurrently by IPC
is 650-400=250.)

• The maximum number of connections that the system can support for each dispatcher (y)
is 100.

• The maximum number of sessions for each task thread (max_sessions) is 20.

The optimum values for these parameters are:

max_dispatchers = CEIL(650/100) = CEIL(6.5) = 7
tcp_dispatchers = CEIL(400/100) = CEIL(4) = 4
max_task_threads = CEIL(650/20) = CEIL(32.5) = 33

That is, optimally:

• The maximum number of dispatchers is seven.

• Four of the seven dispatchers are listening on TCP/IP, and the remaining three are
listening on IPC.

• The maximum number of task threads is 33.

listener_address and shutdown_address

The values of the configuration parameters listener_address and shutdown_address are
specified with ADDRESS, as shown in both Table F-2 and Example F-1. Within ADDRESS, you can
specify the parameter HOST, which can be either an IPv6 or IPv4 address or a host name. If
HOST is a host name, then these values of the optional ADDRESS parameter IP are relevant:

Appendix F
Administering the Multithreaded extproc Agent

F-12

IP Value Meaning

FIRST Listen on the first IP address returned by the DNS resolution of the host name.

V4_ONLY Listen only on the IPv4 interfaces in the system.

V6_ONLY Listen only on the IPv6 interfaces in the system.

For example, this value of listener_address or shutdown_address restricts it to IPv6
interfaces:

"(ADDRESS=(PROTOCOL=tcp)(HOST=sales)(PORT=1521)(IP=V6_ONLY))"

See Also:

Oracle Database Net Services Administrator's Guide for detailed information about
IPv6 support in Oracle Database

Appendix F
Administering the Multithreaded extproc Agent

F-13

Index

Numerics
64-bit integer support, 4-15

A
administration handle, 15-1

attributes, A-45
description, 15-1

ADR, 2-29
ADR base location, 2-29
ADR, controlling creation, 2-32
ADRCI command-line tool, 2-31
ADT

See object type
advanced queuing

agent descriptor, 3-13
dequeue options descriptor, 3-13
descriptor, 3-18
enqueue options descriptor, 3-13
listen options descriptor, 3-13
message properties descriptor, 3-13
notification descriptor, 3-13

advantages
OCI, 1-5

Agent Control Utility (agtctl)
commands

in shell mode, F-10
in single-line mode, F-7
list of, F-6

extproc administration and, F-5
extproc architecture and, F-2

allocation duration
example, 21-17
of objects, 21-17

ALTER SESSION SET CONTAINER, 16-2, 16-3
enhancements on OCI calls with, 16-2
restrictions on OCI calls with, 16-3

ALTER SESSION SWITCH CONTAINER
SWITCH SERVICE

restrictions on OCI calls with, 16-5
alternatives to OCI

OCCI, 1-6
ODPI-C, 1-6
Pro*C/C++, 1-6

ANSI DATE descriptor, 3-13

AnyData, 19-28
AnyDataSet, 19-28
AnyType, 19-28
application context, 9-31
Application Continuity, 11-25

constructs not supported, 11-28
failed replay, 11-27
following a recoverable error, 11-26
successful replay criteria, 11-26
successful replay side effects to be aware of,

11-29
supported OCI functions for fail over, 11-29
what disables it in OCI, 11-27
when it is most effective, 11-28

application initialization, 3-21
AQ

See Oracle Database Advanced Queuing.
argument attributes, 7-21
arrays

binds, 19-38
defines, 19-41
DML, maximum rows, 6-5
skip parameter for, 6-30

arrays of structures, 6-28
indicator variables, 6-31
OCI calls used, 6-30
skip parameters, 6-29

atomic NULLs, 18-29
attribute descriptor object, 19-27
attributes

administration handle, A-45
authentication handle, A-25
authentication information handle, A-29
bind handle, A-63
complex object retrieval (COR) descriptor,

A-90
complex object retrieval (COR) handle, A-90
connection pool handle, A-45
continuous query notification, A-108
continuous query notification descriptor,

A-109
define handle, A-66

description, A-66
describe handle, A-69
direct path loading

column array handle, A-123

Index-1

attributes (continued)
direct path loading (continued)
column parameter, A-125
context handle, A-114
function context handle, A-122
handle, A-114
stream handle, A-124

environment handle, A-5
error handle, A-13
event handle, A-131
LOB locator, A-88
notification descriptor, A-111
OCIAQAgent descriptor, A-100
OCIAQDeqOptions descriptor, A-93
OCIAQEnqOptions descriptor, A-91
OCIAQMsgProperties descriptor, A-96
OCIServerDNs descriptor, A-101
of handles, 3-12
of objects, 18-18
of parameter descriptors, 7-5
of parameters, 7-5
parameter descriptor, A-70
process handle, A-130
server handle, A-19
service context handle, A-13
session pool handle, A-47
Shard Instance Descriptor, A-70
statement handle, A-53
subscription handle, A-102
transaction handle, A-52
user session handle, A-29

authentication
by Distinguished Name, 9-19
by X.509 Certificate, 9-20
management, 9-13

authentication handle
attributes, A-25

authentication information handle, 3-4
authorize functions, 26-8
auto_tune, 14-15
auto-tuning

client session features
comparison of auto-tuning parameters,

14-17
enabling and disabling, 14-19
usage examples of client attributes, 14-18

OCI client attributes, 14-14
OCI client session features

benefits of, 14-13
OCI client statement cache, 14-12

Automatic Diagnostic Repository (ADR), 2-29

B
BASICFILE parameter, 8-29
batch error mode, 5-9

batch jobs, authenticating users in, 9-15
BFILE

data type, 4-27
BFILE data type locator descriptor, 3-13
BINARY_DOUBLE data type, 4-7
BINARY_FLOAT data type, 4-7
bind and define in statement caching, 14-5
bind functions, 26-71
bind handle

attributes, A-63
description, 3-9

bind operations, 5-6, 6-2, 19-35
associations made, 6-2
example, 6-7
initializing variables, 6-2
LOBs, 6-11
named data types, 19-36
named versus positional, 6-4
OCI array interface, 6-5
OCI_DATA_AT_EXEC mode, 6-13
PL/SQL, 6-6
positional versus named, 6-4
REF CURSOR variables, 6-14
REFs, 19-37
steps used, 6-7

bind placeholders, 5-7
binding

arrays, 19-38
buffer expansion, 6-45
multiple buffers, 6-31
OCINumber, 19-43
PL/SQL placeholders, 3-40
summary, 6-10

BLOB data type, 4-28
blocking modes, 3-38
branches

detaching, 9-7
preparing multiple, 9-9
resuming, 9-7

buffer expansion during binding, 6-45
buffered messaging, 12-29
building OCI applications, B-1

C
C data types

manipulating with OCI, 19-5
cache functions

server round-trips, C-6
cache, client result, 14-12
callbacks

dynamic registrations, 13-7
for LOB operations, 8-16
for reading LOBs, 8-16
for writing LOBs, 8-18
from external procedures, 13-12

Index

Index-2

callbacks (continued)
LOB streaming interface, 8-16
parameter modes, 26-111
registration for transparent application

failover, 11-11
restrictions, 13-9
user-defined functions, 13-1

canceling a cursor, 27-6
canceling OCI calls, 3-35
cartridge functions, 30-1
CASE OTT parameter, 25-31
CDBs

enhancements on OCI API calls with, 16-2
restrictions on OCI API calls with, 16-2

change notification descriptor, 3-13
CHAR

external data type, 4-22
character set conversion of Unicode, 3-48
character set form, 6-40
character set ID, 6-40

Unicode, A-63, A-66
character sets

OCI SODA client, 39-1
XStream OCI interface, 35-3

character-length semantics, 6-45–6-47, 7-27
CHARZ

external data type, 4-24
checkerr() listing, 27-161
client and server interoperability, 2-26
client auto-tuning

comparison of auto-tuning parameters, 14-17
OCI client attributes, 14-14
session features

benefits of, 14-13
enabling and disabling, 14-19

usage examples of client attributes, 14-18
client result cache, 14-12
client statement cache auto-tuning

OCI client session feature, 14-12
CLIENTCONTEXT namespace, 9-32
CLOB

data type, 4-28
code

example programs, B-1
list of demonstration programs, B-1

CODE OTT parameter, 25-29
coding guidelines

reserved words, 3-37
coherency

of object cache, 21-4
collections

attributes, 7-15
data manipulation functions, 19-20
describing, 7-1
description, 19-19
functions for manipulating, 19-20

collections (continued)
multilevel, 19-24
scanning functions, 19-21

column objects
direct path loading of, 20-19

columns
attributes, 7-5, 7-17

commit, 3-27
in object applications, 21-16
one-phase for global transactions, 9-8
two-phase for global transactions, 9-8

compatibility
of releases in OCI, 2-25

compiling
OCI application, D-2
OCI with Oracle XA, D-5
XA Library, D-4

complex object descriptor, 3-13
complex object retrieval, 18-21

descriptor attributes, A-90
handle, 3-10
handle attributes, A-90
implementing, 18-24
navigational prefetching, 18-25

complex object retrieval (COR) descriptor, 3-17
CONFIG OTT parameter, 25-30
connect functions, 26-8
connection, 3-21
connection mode

nonblocking, 3-38
connection pool handle

attributes, A-45
description, 3-11
initializing, 10-20

connection pooling, 10-16, 10-25
code example, 10-25
creating, 10-20
database resident, 10-13

connection pools and TAF, 10-19
consistency

of object cache, 21-4
continuous query notification, 12-1

attributes, A-108
descriptor attributes, A-109

copying
objects, 18-32

COR
See complex object retrieval

creating
objects, 18-32

cursor cancellation, 27-6
custom pools, 17-6

Index

Index-3

D
data cartridges

OCI functions, 3-1, 30-1
data definition language, 1-9

SQL statements, 1-9
data manipulation language, 1-10

SQL statements, 1-10
data structures, 3-3

See also descriptors
data types

ANSI DATE, 4-30
BFILE, 4-27
binding and defining, 19-42
BLOBs (binary large objects), 4-28
CLOB, 4-28
conversions, 4-32
direct path loading, 20-3, A-125
external, 4-3, 4-8
FILE, 4-27
for piecewise operations, 6-53
internal, 4-4
internal codes, 4-4
INTERVAL DAY TO SECOND, 4-31
INTERVAL YEAR TO MONTH, 4-31
manipulating with OCI, 19-5
mapping and manipulation functions, C-7
mapping from Oracle to C, 19-3
mapping, Oracle methodology, 19-4
mapping, OTT utility, 25-10
NCLOB, 4-28
Oracle, 4-1
TIMESTAMP, 4-30
TIMESTAMP WITH LOCAL TIME ZONE, 4-30
TIMESTAMP WITH TIME ZONE, 4-30

database connection
for object applications, 18-11

database resident connection pooling, 10-13
database type attributes

type OCI_PTYPE_DATABASE, 7-23
databases

attributes, 7-23
describing, 7-1
shutting down, 15-1
starting up, 15-1

DATE
external data type, 4-20

date cache, 20-15
date descriptor, 3-17
DATE, ANSI

data type, 4-30
datetime

avoiding unexpected results, 4-31
datetime and date

migration rules, 4-36
datetime descriptor, 3-17

DDL
See data definition language

DEDUPLICATE, 8-29
default file name extensions

OTT utility, 25-38
default name mapping

OTT utility, 25-38
define

arrays, 19-41
return and error codes, 3-29

define functions, 26-71
define handle

attributes, A-66
description, 3-9

define operations, 5-16, 6-14, 19-38
example, 6-15
LOBs, 6-17
named data types, 19-39
piecewise fetch, 6-19
PL/SQL output variables, 6-19
REFs, 19-39
steps used, 6-15

defining
multiple buffers, 6-31
OCINumber, 19-43

deletes
positioned, 3-36

demonstration files location, 2-2
demonstration programs, B-1, D-2

list, B-1
describe

explicit, 5-12, 5-15
explicit and implicit, 7-5
implicit, 5-12, 5-13
of collections, 7-1
of databases, 7-1
of packages, 7-1
of schemas, 7-1
of sequences, 7-1
of stored functions, 7-1
of stored procedures, 7-1
of synonyms, 7-1
of tables, 7-1
of types, 7-1
of views, 7-1
select list, 5-12

describe functions, 26-71
describe handle

attributes, A-69
description, 3-10

describe operation
server round-trips, C-7

describing the stored procedure
example, 7-32

Index

Index-4

descriptor, 3-13
advanced queuing

agent, 3-13
dequeue options, 3-13
enqueue options, 3-13
listen options, 3-13
message properties, 3-13
notification, 3-13

allocating, 3-20
ANSI DATE, 3-13
BFILE data type locator, 3-13
change notification, 3-13
complex object, 3-13
complex object retrieval, 3-17
distinguished names of the database servers

in a registration request, 3-13
functions, 26-59
INTERVAL DAY TO SECOND, 3-13
INTERVAL YEAR TO MONTH, 3-13
LOB data type locator, 3-13
objects, 19-27
parameter, 3-16
read-only parameter, 3-13
result set, 3-13
row change, 3-13
ROWID, 3-13, 3-17
shard key and shard group key, 3-13
snapshot, 3-13, 3-15
table change, 3-13
TIMESTAMP, 3-13
TIMESTAMP WITH LOCAL TIME ZONE, 3-13
TIMESTAMP WITH TIME ZONE, 3-13
user callback, 3-13

detaching branches, 9-7
DIAG_ADR_ENABLED sqlnet.ora parameter,

2-32
DIAG_DDE_ENABLED sqlnet.ora parameter,

2-32
DIAG_RESTRICTED, 2-32
DIAG_SIGHANDLER_ENABLED, 2-32
direct path loading, 20-1

attribute
OCI_ATTR_DIRPATH_NO_INDEX_ERRORS,

20-39
column array handle attributes, A-123
column parameter attributes, A-125
context handle attributes, A-114
data types of columns, 20-3, A-125
direct path column array handle, 20-7
direct path context handle, 20-5
direct path function context, 20-6
direct path stream handle, 20-7
example, 20-10
function context handle attributes, A-122
functions, 20-8, 27-98
handle attributes, A-114

direct path loading (continued)
handles, 3-11, 20-4
in pieces, 20-34
limitations, 20-9
of date columns, 20-15
stream handle attributes, A-124

directory structures, D-2
dispatcher thread, F-2
distinguished names of the database servers in a

registration request descriptor, 3-13
DML

See data manipulation language
DRCP (database resident connection pooling),

10-13
duration

example, 21-17
of objects, 21-17

dynamic registration
Oracle XA Library, D-5

dynamically linked applications, 2-26

E
edition-based redefinition, 9-34
editions, 9-34
embedded objects

fetching, 18-16
embedded SQL, 1-12

mixing with OCI calls, 1-12
empty LOB, inserting, 8-21
enable, 14-15
enhanced DML array

feature, 5-9
enhancements

on OCI API calls with CDBs in general, 16-2
on OCI calls with ALTER SESSION SET

CONTAINER, 16-2
environment handle

attributes, A-5
description, 3-7

environment handle attribute, 3-44
error checking example, 27-161
error codes

define calls, 3-29
navigational functions, 28-5

error handle
attributes, A-13
description, 3-7

errors
handling, 3-28
handling in object applications, 18-36

ERRTYPE OTT parameter, 25-30
evaluation context

attributes, 7-25
evaluation context attributes, 7-25
event handle attributes, A-131

Index

Index-5

example
demonstration programs, B-1

executing SQL statements, 5-7
execution

against multiple servers, 5-5
modes, 5-9
snapshots, 5-8

explicit describe, 5-12, 7-28
extensions

OTT utility default file name, 25-38
external data types, 4-3, 4-8

CHAR, 4-22
CHARZ, 4-24
conversions, 4-32
DATE, 4-20
FLOAT, 4-18
INTEGER, 4-17
LOB, 4-26
LONG, 4-19
LONG RAW, 4-22
LONG VARCHAR, 4-22
LONG VARRAW, 4-22
named data types, 4-24
NUMBER, 4-14
RAW, 4-21
REF, 4-25
ROWID, 4-25
SQLT_BLOB, 4-26
SQLT_CLOB, 4-26
SQLT_NCLOB, 4-26
SQLT_NTY, 4-24
SQLT_REF, 4-25
STRING, 4-18
UNSIGNED, 4-22
VARCHAR, 4-20
VARCHAR2, 4-12
VARNUM, 4-19
VARRAW, 4-21

external procedure functions
return codes, 30-2
with_context type, 30-2

external procedures
OCI callbacks, 13-12

externally initialized context, 9-24
extproc agent, F-1

F
failover

callback example, 11-12
failover callbacks, 11-7

structure and parameters, 11-10
fault diagnosability, 2-29

read or write client driver layer name, A-29
featureRelease, client library version, 27-160

fetch
piecewise, 6-52, 6-59

fetch operation, 5-16
LOB data, 5-17
setting prefetch count, 5-18

FILE
associating with operating system file, 8-4
data type, 4-27

FLOAT
external data type, 4-18

flushing, 21-12
object changes, 18-15
objects, 21-12

freeing
objects, 18-32, 21-10

functions
attributes, 7-10

G
generic documentation references

compiling and linking OCI application, D-2,
D-3

demonstration programs, D-2
invoking OTT from the command line, D-7
XA linking file names, D-4

global transactions, 9-4
globalization support, 3-41

byte order is native to machine
on which the application is running, 3-46

OCI functions, 3-1
GTRID

See transaction identifier

H
HA event notification, 11-2
handle attributes, 3-12

SODA collection, A-74
SODA document, A-71

handle functions, 26-59
handle type constants, 3-4
handles, 3-3, 3-4

administration handle, 15-1, A-45
advantages of, 3-6
allocating, 3-6, 3-20
bind handle, 3-9, A-63
C data types, 3-4
child freed when parent freed, 3-6
complex object retrieval handle, 3-10, A-90
connection pool handle, 3-11, 10-20, A-45
define handle, 3-9, A-66
describe handle, 3-10, A-69
direct path loading, 3-11
environment handle, 3-7, A-5
error handle, 3-7, A-13

Index

Index-6

handles (continued)
freeing, 3-6
process attributes, A-130
server handle, 3-7, A-19
service context handle, 3-7, A-13
statement handle, 3-9, A-53
subscription, 3-11, 12-5
transaction handle, 3-7, A-52
types, 3-4
user session handle, 3-7, A-29

header files
location of, 1-23, 2-2, D-2
oratypes.h, 4-41

HFILE OTT parameter, 25-30

I
implicit describe, 7-28
implicit results

OCI support for, 14-9
inbound servers

OCI interface, 35-2
indicator variables, 3-34

arrays of structures, 6-31
for named data types, 3-33, 3-35
for REFs, 3-33, 3-35
named data type defines, 19-40
PL/SQL OUT binds, 19-40
REF defines, 19-40
with named data type bind, 19-37
with REF bind, 19-37

init.ora security parameters, 9-35
INITFILE OTT parameter, 25-29
INITFUNC OTT parameter, 25-30
initialize

all buffers, 6-6
functions, 26-8

inserting an empty LOB, 8-21
inserts

piecewise, 6-52, 6-54
INTEGER external data type, 4-17
interacting with Oracle Database, D-4
internal codes for data types, 4-4
internal data types, 4-4

conversions, 4-32
INTERVAL DAY TO SECOND data type, 4-31
INTERVAL DAY TO SECOND descriptor, 3-13
interval descriptor, 3-17
INTERVAL YEAR TO MONTH data type, 4-31
INTERVAL YEAR TO MONTH descriptor, 3-13
intype file

providing when running OTT utility, 25-8
structure of, 25-33

INTYPE File Assistant, D-7
INTYPE OTT parameter, 25-28

IP address
IPv4, A-102
IPv6, A-102

IPv6 addressing, 12-5, A-102

J
JSON functions

server round-trips, C-5

K
KEEP_DUPLICATES, 8-29
key words, 3-37

L
LCR column flags, 36-21, 36-22, 36-27, 36-51,

36-65
LDAP registration of publish-subscribe

notification, 12-9
libraries

oci.lib, D-3
linking

OCI application, D-3
OCI with Oracle XA, D-5
XA Library, D-4

list attributes
type OCI_PTYPE_LIST, 7-22

lists
attributes, 7-22

lmsgen utility, 3-50
LoadLibrary, D-4
LOB and LONG bind restrictions, 6-20
LOB data length, 6-21
LOB data type locator descriptor, 3-13
LOB functions, 27-17

server round-trips, C-3
LOB locator, 3-15

attributes, A-88
LOBs

amount and offset parameters, 27-17
attributes of transient objects, 8-6
binding, 6-11
callbacks, 8-16
character sets, 27-17
creating, 8-3
creating temporary, 8-21
defining, 6-17
duration of temporary, 8-21
example of temporary, 8-23
external data types, 4-26
failover does not work, 11-13
fetching data, 5-17
fixed-width character sets, 27-17
freeing temporary, 8-21

Index

Index-7

LOBs (continued)
greater than 4 GB, 8-7
locator, 3-15
modifying, 8-3
OCI functions, 8-11
prefetching, 8-26
size maximum, 8-7
temporary, 8-19
varying-width character sets, 27-17

locator, 3-13
for LOB data type, 3-15

locking, 21-15
objects, 21-15
optimistic model, 21-15

logical transaction ID (LTXID)
Transaction Guard, 11-17

LONG
external data type, 4-19

LONG RAW
external data type, 4-22

LONG VARCHAR
external data type, 4-22

LONG VARRAW
external data type, 4-22

M
makefiles, 2-2, B-1
marking objects, 21-11
memory_target, 14-16
meta-attributes

of objects, 18-18
of persistent objects, 18-18
of transient objects, 18-21

method descriptor object, 19-27
method results

type OCI_PTYPE_TYPE_RESULT, 7-21
migration

session, 9-13, 26-41
miscellaneous functions, 27-155
mode

agtctl command, F-5
monitor thread, F-2
multi-property tags, 10-3

PL/SQL fix-up callback example, 10-5
multiple servers

executing statement against, 5-5
multithreaded development

basic concepts, 9-37
multithreaded extproc agent, F-1
multithreading, 9-37
mutexes, 9-37

N
name-value pair attributes

type OCI_PTYPE_NAME_VALUE, 7-26
named data types

binding, 19-36
binding and defining, 19-42
defining, 19-39
definition, 4-24
external data types, 4-24
indicator variables, 3-35
indicator variables for, 3-33

native double, 4-32
native float, 4-32
navigation, 21-19
navigational functions

error codes, 28-5
return values, 28-4
terminology, 28-3

NCHAR
issues, 6-39

NCLOB
data type, 4-28

nested table
direct path loading of, 20-18
element ordering, 19-23
functions for manipulating, 19-22

new release, relinking, 2-26
NLS_LANG, 3-43
NLS_NCHAR, 3-43
NOCOMPRESS, 8-29
non-deferred linkage no longer supported, 9-37
nonblocking mode, 3-38
nonfinal object tables

direct path loading of, 20-33
notification descriptor attributes, A-111
NULL indicator

setting for an object attribute, 18-29
NULL indicator struct, 18-29

generated by OTT, 18-9
nullness

of objects, 18-29
NULLs

atomic, 18-29
inserting, 3-34
inserting into database, 3-33
inserting using indicator variables, 3-33

NUMBER
external data type, 4-14

O
object applications

commit, 21-16
database connection, 18-11
rollback, 21-16

Index

Index-8

object cache, 21-1
coherency, 21-4
consistency, 21-4
initializing, 18-10
loading objects, 21-7
memory parameters, 21-5
operations on, 21-6
removing objects, 21-7
setting the size of, 21-5

object functions
server round-trips, C-6

object identifiers, 18-4, 18-34, 18-35
for persistent objects, 18-4

object references, 18-11, 18-34
See also REFs

object run-time environment
initializing, 18-10

object tables
direct path loading of, 20-32

object type, 18-9
representing in C applications, 18-9

Object Type Translator utility
See OTT utility

object view, 18-18
objects

accessing with OCI, 25-21
allocation duration, 21-17
array pin, 18-14
attributes, 18-18

manipulating, 18-14
client-side cache, 21-1
copying, 18-32
creating, 18-32
duration, 21-17
flushing, 21-12
flushing changes, 18-15
freeing, 18-32, 21-10
lifetime, 28-2
LOB attributes of transient objects, 8-6
locking, 21-15
manipulating with OCI, 25-21
marking, 18-15, 21-11
memory layout of instance, 21-19
memory management, 21-1
meta-attributes, 18-18
navigation, 21-19

simple, 21-19
NCHAR and NVARCHAR2 attribute of, 19-3
NULL values, 18-29
OCI object application structure, 18-3
persistent, 18-4, 18-5
pin count, 18-29
pin duration, 21-17
pinning, 18-12, 21-8
refreshing, 21-13
secondary memory, 21-19

objects (continued)
terminology, 18-4, 28-2
top-level memory, 21-19
transient, 18-4, 18-6
types, 18-4, 28-2
unmarking, 21-11
unpinning, 21-9
use with OCI, 18-1

OCCI
alternative to OCI, 1-6

OCI, 1-5
aborting calls, 3-35
accessing and manipulating objects, 25-21
advantages, 1-5
object support, 1-13
Oracle XA Library, D-5
overview, 1-5
parts of, 1-5
sample programs, D-2

OCI applications, 3-2
compiling, 1-6, D-2
general structure, 3-2
initialization example, 3-25
linking, 1-6, D-3
running, D-4
steps, 3-18
structure, 3-2
structure using objects, 18-3
terminating, 3-27
using the OTT utility with, 25-20
with objects

initializing, 18-10
OCI demonstration programs

demo subdirectory, 2-3
OCI environment

initializing for objects, 18-10
OCI functions

canceling calls, 3-35
data cartridges, 3-1
globalization, 3-1
obsolescent, 2-27
return codes, 3-28, 3-30

OCI handle types, 3-4
OCI interface

XStream, 35-1
OCI navigational functions, 21-22

flush functions, 21-23
mark functions, 21-24
meta-attribute accessor functions, 21-24
miscellaneous functions, 21-24
naming scheme, 21-22
pin/unpin/free functions, 21-23

OCI process
initializing for objects, 18-10

OCI program
See OCI applications

Index

Index-9

OCI relational functions
connect, authorize, and initialize, 26-8
guide to reference entries, 30-2
Oracle Database Advanced Queuing and

publish-subscribe, 27-81
Oracle Streams Advanced Queuing and

publish-subscribe, E-22
OCI session pool, 17-5
OCI session pool configuration

using oraaccess.xml, 2-23
OCI SODA functions, 39-1
OCI support for implicit results, 14-9
OCI_ATTR_ACCESS_BANNER, 9-36

server handle attribute, A-19
OCI_ATTR_ACTION, 9-28

user session handle attribute, A-29
OCI_ATTR_ADMIN_PFILE

administration handle attribute, A-45
OCI_ATTR_AGENT_ADDRESS

OCIAQAgent descriptor attribute, A-100
OCI_ATTR_AGENT_NAME

OCIAQAgent descriptor attribute, A-100
OCI_ATTR_AGENT_PROTOCOL

OCIAQAgent descriptor attribute, A-100
OCI_ATTR_ALLOC_DURATION

environment handle attribute, A-5
OCI_ATTR_APPCTX_ATTR, 9-26

user session handle attribute, A-29
OCI_ATTR_APPCTX_LIST, 9-26

user session handle attribute, A-29
OCI_ATTR_APPCTX_NAME, 9-26

user session handle attribute, A-29
OCI_ATTR_APPCTX_SIZE, 9-26, 26-46

user session handle attribute, A-29
OCI_ATTR_APPCTX_VALUE, 9-26

user session handle attribute, A-29
OCI_ATTR_AQ_NTFN_GROUPING_

MSGID_ARRAY
notification descriptor attribute, A-111

OCI_ATTR_AQ_NTFN_GROUPING_COUNT
notification descriptor attribute, A-111

OCI_ATTR_ATTEMPTS
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_AUDIT_BANNER

user session handle attribute, A-29
OCI_ATTR_AUTOCOMMIT_DDL

attribute, 7-23
OCI_ATTR_AUTOTUNING_ENABLED

user session handle attribute, A-29
OCI_ATTR_BIND_COUNT

statement handle attribute, A-53
OCI_ATTR_BIND_DN

environment handle attribute, A-5
OCI_ATTR_BREAK_ON_NET_TIMEOUT

server handle attribute, A-19

OCI_ATTR_BUF_ADDR
direct path loading stream handle attribute,

A-124
OCI_ATTR_BUF_SIZE

direct path loading
context handle attribute, A-114
stream handle attribute, A-124

OCI_ATTR_CACHE
attribute, 7-16

OCI_ATTR_CACHE_ARRAYFLUSH, 21-12
environment handle attribute, A-5

OCI_ATTR_CACHE_MAX_SIZE, 21-5
environment handle attribute, A-5

OCI_ATTR_CACHE_OPT_SIZE, 21-5
environment handle attribute, A-5

OCI_ATTR_CALL_TIME, 9-28
user session handle attribute, A-29

OCI_ATTR_CALL_TIMEOUT
service contect handle attribute, A-13

OCI_ATTR_CATALOG_LOCATION
attribute, 7-23

OCI_ATTR_CERTIFICATE, 9-20, 26-46
user session handle attribute, A-29

OCI_ATTR_CHAR_COUNT
bind handle attribute, A-63
define handle attribute, A-66

OCI_ATTR_CHAR_SIZE, 7-17
attribute, 7-27, 7-28

OCI_ATTR_CHAR_USED, 7-17
attribute, 7-27

OCI_ATTR_CHARSET_FORM, 6-41
attribute, 7-13, 7-15, 7-17, 7-21
bind handle attribute, A-63
define handle attribute, A-66

OCI_ATTR_CHARSET_ID
attribute, 7-13, 7-15, 7-17, 7-21, 7-23
bind handle attribute, A-63
define handle attribute, A-66
direct path loading

column parameter attribute, A-125
context handle attribute, A-114

OCI_ATTR_CHDES_DBNAME
continuous query notification descriptor

attribute, A-109
OCI_ATTR_CHDES_NFTYPE

continuous query notification descriptor
attribute, A-109

OCI_ATTR_CHDES_ROW_OPFLAGS
continuous query notification descriptor

attribute, A-109
OCI_ATTR_CHDES_ROW_ROWID

continuous query notification descriptor
attribute, A-109

OCI_ATTR_CHDES_TABLE_CHANGES
continuous query notification descriptor

attribute, A-109

Index

Index-10

OCI_ATTR_CHDES_TABLE_NAME
continuous query notification descriptor

attribute, A-109
OCI_ATTR_CHDES_TABLE_OPFLAGS

continuous query notification descriptor
attribute, A-109

OCI_ATTR_CHDES_TABLE_ROW_CHANGES
continuous query notification descriptor

attribute, A-109
OCI_ATTR_CHNF_CHANGELAG

continuous query notification attribute, A-108
OCI_ATTR_CHNF_OPERATIONS

continuous query notification attribute, A-108
OCI_ATTR_CHNF_REGHANDLE

statement handle attribute, A-53
OCI_ATTR_CHNF_ROWIDS

continuous query notification attribute, A-108
OCI_ATTR_CHNF_TABLENAMES

continuous query notification attribute, A-108
OCI_ATTR_CLIENT_IDENTIFIER, 9-21

user session handle attribute, A-29
OCI_ATTR_CLIENT_INFO, 9-28, 26-46

user session handle attribute, A-29
OCI_ATTR_CLUSTERED

attribute, 7-10
OCI_ATTR_COL_COUNT

direct path loading column array handle
attribute, A-123

OCI_ATTR_COL_PROPERTIES, 7-17
OCI_ATTR_COLLATION_ID, 7-17

bind handle attribute, A-63
OCI_ATTR_COLLECT_CALL_TIME, 9-28

user session handle attribute, A-29
OCI_ATTR_COLLECTION_ELEMENT

attribute, 7-11
OCI_ATTR_COLLECTION_TYPECODE

attribute, 7-11
OCI_ATTR_COMMENT

attribute, 7-24, 7-25
OCI_ATTR_COMPLEXOBJECT_

COLL_OUTOFLINE
COR handle attribute, A-90

OCI_ATTR_COMPLEXOBJECT_LEVEL
COR handle attribute, A-90

OCI_ATTR_COMPLEXOBJECTCOMP
_TYPE_LEVEL

COR descriptor attribute, A-90
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

COR descriptor attribute, A-90
OCI_ATTR_CONDITION

attribute, 7-24
OCI_ATTR_CONN_BUSY_COUNT

connection pool handle attribute, A-45
OCI_ATTR_CONN_INCR

connection pool handle attribute, A-45

OCI_ATTR_CONN_MAX
connection pool handle attribute, A-45

OCI_ATTR_CONN_MIN
connection pool handle attribute, A-45

OCI_ATTR_CONN_NOWAIT
connection pool handle attribute, A-45

OCI_ATTR_CONN_OPEN_COUNT
connection pool handle attribute, A-45

OCI_ATTR_CONN_TIMEOUT
connection pool handle attribute, A-45

OCI_ATTR_CONNECTION_CLASS
user session handle attribute, A-29

OCI_ATTR_CONSUMER_NAME, A-93
notification descriptor attribute, A-111

OCI_ATTR_CORRELATION
OCIAQDeqOptions descriptor attribute, A-93
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_CQ_QUERYID

statement handle attribute, A-53
OCI_ATTR_CQDES_OPERATION

direct path loading handle attribute, A-113
OCI_ATTR_CQDES_QUERYID

direct path loading handle attribute, A-113
OCI_ATTR_CQDES_TABLE_CHANGES

direct path loading handle attribute, A-113
OCI_ATTR_CURRENT_POSITION

attribute, 5-19
statement handle attribute, A-53

OCI_ATTR_CURRENT_SCHEMA, 16-3, 26-46
user session handle attribute, A-29

OCI_ATTR_CURSOR_COMMIT_ BEHAVIOR
attribute, 7-23

OCI_ATTR_DATA_SIZE, 7-27
attribute, 7-13, 7-15, 7-17, 7-21, 7-28
direct path loading column parameter

attribute, A-125
OCI_ATTR_DATA_TYPE

attribute, 7-4, 7-13, 7-15, 7-17, 7-21
direct path loading column parameter

attribute, A-125
OCI_ATTR_DATEFORMAT

direct path loading
column parameter attribute, A-125
context handle attribute, A-114

OCI_ATTR_DBDOMAIN
event handle attribute, A-131

OCI_ATTR_DBNAME
event handle attribute, A-131

OCI_ATTR_DBOP, 9-28, 26-46
user session handle attribute, A-29

OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE
user session handle attribute, A-29

OCI_ATTR_DELAY
OCIAQMsgProperties descriptor attribute,

A-96

Index

Index-11

OCI_ATTR_DEQ_MODE
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_DEQ_MSGID
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_DEQCOND
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_DESC_PUBLIC, 26-115
OCI_ATTR_DIRPATH_DCACHE_DISABLE,

20-16
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_DCACHE_HITS, 20-16

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_DCACHE_MISSES, 20-16
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_DCACHE_NUM, 20-16

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_DCACHE_SIZE, 20-16
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_DEF_EXP_CACHE_SIZE

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_DEFAULTS
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_EXPR_TYPE

direct path function context handle attribute,
A-122

function context attribute, 20-38
OCI_ATTR_DIRPATH_FLAGS

direct path loading context handle attribute,
20-17, A-114

OCI_ATTR_DIRPATH_INDEX_MAINT_METHOD
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_MODE

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_NO_INDEX_ERRORS,
20-39

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_NOLOG
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_OBJ_CONSTR, 20-37

direct path context attribute, 20-36
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_OID

direct path loading column parameter
attribute, A-125

OCI_ATTR_DIRPATH_PARALLEL, 20-1
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_PGA_LIM

direct path loading context handle attribute,
A-114

OCI_ATTR_DIRPATH_REJECT_ROWS_REPCH
direct path loading context handle attribute,

A-114
OCI_ATTR_DIRPATH_SID

column array attribute, 20-43
direct path loading column parameter

attribute, A-125
OCI_ATTR_DIRPATH_SKIPINDEX_METHOD

direct path loading context handle attribute,
A-114

OCI_ATTR_DISTINGUISHED_NAME, 9-19
user session handle attribute, A-29

OCI_ATTR_DML_ROW_COUNT_ARRAY
statement handle attribute, A-53

OCI_ATTR_DML_ROW_OFFSET
error handle attribute, A-13

OCI_ATTR_DN_COUNT
OCIServerDNs descriptor attribute, A-101

OCI_ATTR_DRIVER_NAME, 26-46
user session handle attribute, A-29

OCI_ATTR_DURATION
attribute, 7-9

OCI_ATTR_EDITION, 16-3
user session handle attribute, A-29

OCI_ATTR_ENCAPSULATION
attribute, 7-14

OCI_ATTR_ENQ_TIME
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_ENV

server handle attribute, A-19
service context handle attribute, A-13
statement handle attribute, A-53

OCI_ATTR_ENV_CHARSET_ID
environment handle attribute, A-5

OCI_ATTR_ENV_NCHARSET_ID, 3-43
environment handle attribute, A-5

OCI_ATTR_ENV_NLS_LANGUAGE
environment handle attribute, 3-44, A-5

OCI_ATTR_ENV_NLS_TERRITORY, 3-44
environment handle attribute, A-5

OCI_ATTR_ENV_UTF16
environment handle attribute, A-5

OCI_ATTR_EVAL_CONTEXT_NAME
attribute, 7-24, 7-25

OCI_ATTR_EVAL_CONTEXT_OWNER
attribute, 7-24, 7-25

OCI_ATTR_EVALUATION_FUNCTION
attribute, 7-25

Index

Index-12

OCI_ATTR_EVENTTYPE
event handle attribute, A-131

OCI_ATTR_EVTCBK, 11-4
environment handle attribute, A-5

OCI_ATTR_EVTCTX, 11-4
environment handle attribute, A-5

OCI_ATTR_EXCEPTION_QUEUE
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_EXPIRATION

OCIAQMsgProperties descriptor attribute,
A-96

OCI_ATTR_EXTERNAL_NAME, 9-7
server handle attribute, A-19

OCI_ATTR_FETCH_ROWID
statement handle attribute, A-53

OCI_ATTR_FIXUP_CALLBACK
authentication handle attribute, 10-5, A-25

OCI_ATTR_FOCBK
server handle attribute, A-19
session pool handle attribute, A-47

OCI_ATTR_FSPRECISION
attribute, 7-13

OCI_ATTR_HA_SOURCE
event handle attribute, A-131

OCI_ATTR_HA_SRVFIRST
event handle attribute, A-131

OCI_ATTR_HA_SRVNEXT, 11-4
event handle attribute, A-131

OCI_ATTR_HA_STATUS
event handle attribute, A-131

OCI_ATTR_HA_TIMESTAMP
event handle attribute, A-131

OCI_ATTR_HAS_DEFAULT
attribute, 7-21

OCI_ATTR_HAS_FILE
attribute, 7-11

OCI_ATTR_HAS_LOB
attribute, 7-11

OCI_ATTR_HAS_NESTED_TABLE
attribute, 7-11

OCI_ATTR_HEAPALLOC
environment handle attribute, A-5

OCI_ATTR_HOSTNAME
event handle attribute, A-131

OCI_ATTR_HW_MARK
attribute, 7-16

OCI_ATTR_IMPLICIT_RSET_COUNT, A-53
OCI_ATTR_IN_V8_MODE

server handle attribute, A-19
service context handle attribute, A-13

OCI_ATTR_INCR
attribute, 7-16

OCI_ATTR_INDEX_ONLY
attribute, 7-10

OCI_ATTR_INITIAL_CLIENT_ROLES, 9-20, 16-3
user session handle attribute, A-29

OCI_ATTR_INSTNAME, 17-6
event handle attribute, A-131
server handle attribute, A-19
service context handle attribute, A-13
shard instance descriptor attribute, A-70

OCI_ATTR_INSTSTARTTIME
event handle attribute, A-131

OCI_ATTR_INTERNAL_NAME
server handle attribute, A-19

OCI_ATTR_IOMODE
attribute, 7-21

OCI_ATTR_IS_CONSTRUCTOR
attribute, 7-14

OCI_ATTR_IS_DESTRUCTOR
attribute, 7-14

OCI_ATTR_IS_FINAL_METHOD
attribute, 7-14

OCI_ATTR_IS_FINAL_TYPE
attribute, 7-11

OCI_ATTR_IS_INCOMPLETE_TYPE
attribute, 7-11

OCI_ATTR_IS_INSTANTIABLE_METHOD
attribute, 7-14

OCI_ATTR_IS_INSTANTIABLE_TYPE
attribute, 7-11

OCI_ATTR_IS_INVOKER_RIGHTS
attribute, 7-10, 7-11

OCI_ATTR_IS_MAP
attribute, 7-14

OCI_ATTR_IS_NULL
attribute, 7-17, 7-21

OCI_ATTR_IS_OPERATOR
attribute, 7-14

OCI_ATTR_IS_ORDER
attribute, 7-14

OCI_ATTR_IS_OVERRIDING_METHOD
attribute, 7-14

OCI_ATTR_IS_PREDEFINED_TYPE
attribute, 7-11

OCI_ATTR_IS_RECOVERABLE, A-13
OCI_ATTR_IS_RNDS

attribute, 7-14
OCI_ATTR_IS_RNPS

attribute, 7-14
OCI_ATTR_IS_SELFISH

attribute, 7-14
OCI_ATTR_IS_SUBTYPE

attribute, 7-11
OCI_ATTR_IS_SYSTEM_GENERATED_TYPE

attribute, 7-11
OCI_ATTR_IS_SYSTEM_TYPE

attribute, 7-11
OCI_ATTR_IS_TEMPORARY

attribute, 7-9

Index

Index-13

OCI_ATTR_IS_TRANSIENT_TYPE
attribute, 7-11

OCI_ATTR_IS_WNDS
attribute, 7-14

OCI_ATTR_IS_WNPS
attribute, 7-14

OCI_ATTR_LDAP_AUTH
environment handle attribute, A-5

OCI_ATTR_LDAP_CRED
environment handle attribute, A-5

OCI_ATTR_LDAP_CTX
environment handle attribute, A-5

OCI_ATTR_LDAP_HOST
environment handle attribute, A-5

OCI_ATTR_LDAP_PORT
environment handle attribute, A-5

OCI_ATTR_LEVEL
attribute, 7-21

OCI_ATTR_LFPRECISION
attribute, 7-13

OCI_ATTR_LINK
attribute, 7-16, 7-21

OCI_ATTR_LIST_ACTION_CONTEXT
attribute, 7-24

OCI_ATTR_LIST_ARGUMENTS
attribute, 7-5, 7-10, 7-14

OCI_ATTR_LIST_COLUMNS
attribute, 7-9
direct path loading

context handle attribute, A-114
function context handle attribute, A-122

OCI_ATTR_LIST_OBJECTS
attribute, 7-23

OCI_ATTR_LIST_RULES
attribute, 7-25

OCI_ATTR_LIST_SCHEMAS
attribute, 7-23

OCI_ATTR_LIST_SUBPROGRAMS
attribute, 7-10

OCI_ATTR_LIST_TABLE_ALIASES
attribute, 7-25

OCI_ATTR_LIST_TYPE
attribute, 7-22

OCI_ATTR_LIST_TYPE_ATTRS
attribute, 7-11

OCI_ATTR_LIST_TYPE_METHODS
attribute, 7-11

OCI_ATTR_LIST_VARIABLE_TYPES
attribute, 7-25

OCI_ATTR_LOB_REMOTE
LOB locator attribute, A-88

OCI_ATTR_LOB_TYPE
LOB descriptor attribute, A-88

OCI_ATTR_LOBEMPTY
LOB locator attribute, A-88

OCI_ATTR_LOBPREFETCH_LENGTH, 8-26
define handle attribute, A-66

OCI_ATTR_LOBPREFETCH_SIZE
define handle attribute, A-66

OCI_ATTR_LOCKING_MODE
attribute, 7-23

OCI_ATTR_LTXID, A-29
OCI_ATTR_MAP_METHOD

attribute, 7-11
OCI_ATTR_MAX

attribute, 7-16
OCI_ATTR_MAX_CATALOG_ NAMELEN

attribute, 7-23
OCI_ATTR_MAX_CHARSET_RATIO

service context handle attribute, A-13
OCI_ATTR_MAX_COLUMN_ NAMELEN

attribute, 7-23
OCI_ATTR_MAX_NCHARSET_RATIO

service context handle attribute, A-13
OCI_ATTR_MAX_OPEN_CURSORS, 16-3, A-29
OCI_ATTR_MAX_PROC_LEN

attribute, 7-23
OCI_ATTR_MAXCHAR_SIZE

attribute, 6-43, 6-44
bind handle attribute, A-63
define handle attribute, A-66

OCI_ATTR_MAXDATA_SIZE
attribute, 6-43
bind handle attribute, A-63
use with binding, 6-43

OCI_ATTR_MEMPOOL_APPNAME
process handle attribute, A-130

OCI_ATTR_MEMPOOL_HOMENAME
process handle attribute, A-130

OCI_ATTR_MEMPOOL_INSTNAME
process handle attribute, A-130

OCI_ATTR_MEMPOOL_SIZE
process handle attribute, A-130

OCI_ATTR_MIGSESSION
user session handle attribute, A-29

OCI_ATTR_MIN
attribute, 7-16

OCI_ATTR_MODULE, 9-28
user session handle attribute, A-29

OCI_ATTR_MSG_DELIVERY_MODE, 27-82,
27-84

OCIAQDeqOptions descriptor attribute, A-93
OCIAQEnqOptions descriptor attribute, A-91
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_MSG_PROP

notification descriptor attribute, A-111
OCI_ATTR_MSG_STATE

OCIAQMsgProperties descriptor attribute,
A-96

Index

Index-14

OCI_ATTR_NAME
attribute, 7-10, 7-11, 7-13–7-17, 7-21, 7-26
column array attribute, 20-42
direct path loading

column parameter attribute, A-125
context handle attribute, A-114
function context attribute, 20-37
function context handle attribute, A-122

OCI_ATTR_NAVIGATION
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_NCHARSET_ID
attribute, 7-23

OCI_ATTR_NFY_FLAGS
notification descriptor attribute, A-111

OCI_ATTR_NFY_MSGID
notification descriptor attribute, A-111

OCI_ATTR_NONBLOCKING_MODE
server handle attribute, 3-40, A-19

OCI_ATTR_NOWAIT_SUPPORT
attribute, 7-23

OCI_ATTR_NUM_COLS
attribute, 7-9
direct path loading

column array handle attribute, A-123
function context attribute, 20-39
function context handle attribute, A-122

direct path loading context handle attribute,
A-114

OCI_ATTR_NUM_DML_ERRORS
statement handle attribute, A-53

OCI_ATTR_NUM_ELEMS
attribute, 7-15

OCI_ATTR_NUM_HANDLES attribute, 7-22
OCI_ATTR_NUM_ROWS

attribute, 20-44
direct path loading

column array handle attribute, A-123
context handle attribute, A-114
function context handle attribute, A-122

function context attribute, 20-40
OCI_ATTR_NUM_TYPE_ATTRS

attribute, 7-11
OCI_ATTR_NUM_TYPE_METHODS

attribute, 7-11
OCI_ATTR_OBJ_ID

attribute, 7-5
OCI_ATTR_OBJ_NAME

attribute, 7-5
OCI_ATTR_OBJ_SCHEMA

attribute, 7-5
OCI_ATTR_OBJECT

environment handle attribute, A-5
OCI_ATTR_OBJECT_DETECTCHANGE

environment handle attribute, 21-15, A-5
OCI_ATTR_OBJECT_NEWNOTNULL, 28-37

environment handle attribute, A-5

OCI_ATTR_OBJID
attribute, 7-9, 7-16

OCI_ATTR_ORA_DBUG_JDWP
user session handle attribute, A-29

OCI_ATTR_ORDER
attribute, 7-16

OCI_ATTR_ORDER_METHOD
attribute, 7-11

OCI_ATTR_ORIGINAL_MSGID
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_PARAM

describe handle attribute, A-69
use when an attribute is itself a descriptor,

26-62
OCI_ATTR_PARAM_COUNT

describe handle attribute, A-69
statement handle attribute, A-53

OCI_ATTR_PARSE_ERROR_OFFSET statement
handle attribute, A-53

OCI_ATTR_PARTITIONED
attribute, 7-10

OCI_ATTR_PASSWORD, 9-22
user session handle attribute, A-29

OCI_ATTR_PDPRC
bind handle attribute, A-63
define handle attribute, A-66

OCI_ATTR_PDSCL
bind handle attribute, A-63
define handle attribute, A-66

OCI_ATTR_PIN_DURATION
environment handle attribute, A-5

OCI_ATTR_PINOPTION
environment handle attribute, A-5

OCI_ATTR_POSITION
attribute, 7-21

OCI_ATTR_PRECISION
attribute, 7-5, 7-13, 7-15, 7-17, 7-21
direct path loading column parameter

attribute, A-125
OCI_ATTR_PREFETCH_MEMORY

statement handle attribute, A-53
OCI_ATTR_PREFETCH_ROWS

statement handle attribute, A-53
OCI_ATTR_PRIORITY

OCIAQMsgProperties descriptor attribute,
A-96

OCI_ATTR_PROC_MODE
process handle attribute, A-130

OCI_ATTR_PROXY_CLIENT
user session handle attribute, A-29

OCI_ATTR_PROXY_CREDENTIALS, 9-19
user session handle attribute, A-29

OCI_ATTR_PTYPE
attribute, 7-5
possible values of, 7-5

Index

Index-15

OCI_ATTR_PURITY, 26-46
user session handle attribute, A-29

OCI_ATTR_QUEUE_NAME
notification descriptor attribute, A-111

OCI_ATTR_RADIX
attribute, 7-21

OCI_ATTR_RDBA
attribute, 7-10

OCI_ATTR_RECEIVE_TIMEOUT
server handle attribute, A-19

OCI_ATTR_RECIPIENT_LIST
OCIAQMsgProperties descriptor attribute,

A-96
OCI_ATTR_REF_TDO

attribute, 7-9, 7-11, 7-13, 7-15, 7-17, 7-21
OCI_ATTR_RELATIVE_MSGID

OCIAQEnqOptions descriptor attribute, A-91
OCI_ATTR_ROW_COUNT, 5-19

direct path loading
column array handle attribute, A-123
stream handle attribute, A-124

statement handle attribute, A-53
OCI_ATTR_ROWID

statement handle attribute, A-53
OCI_ATTR_ROWS_FETCHED, 5-19

statement handle attribute, A-53
OCI_ATTR_ROWS_RETURNED

bind handle attribute, A-63
use with callbacks, 6-39

OCI_ATTR_SAVEPOINT_SUPPORT
attribute, 7-23

OCI_ATTR_SCALE
attribute, 7-13, 7-15, 7-17, 7-21
direct path loading column parameter

attribute, A-125
OCI_ATTR_SCHEMA_NAME

attribute, 7-11, 7-13, 7-15–7-17, 7-21
direct path loading context handle attribute,

A-114
OCI_ATTR_SEND_TIMEOUT

server handle attribute, A-19
OCI_ATTR_SENDER_ID

OCIAQMsgProperties descriptor attribute,
A-96

OCI_ATTR_SEQ
attributes, 7-16

OCI_ATTR_SEQUENCE enqueue option, 12-24
OCI_ATTR_SEQUENCE_DEVIATION

OCIAQEnqOptions descriptor attribute, A-91
OCI_ATTR_SERVER

service context handle attribute, A-13
OCI_ATTR_SERVER_DN

OCIServerDNs descriptor attribute, A-101
OCI_ATTR_SERVER_DNS

subscription handle attribute, A-102

OCI_ATTR_SERVER_GROUP, 9-16
server handle attribute, A-19

OCI_ATTR_SERVER_STATUS, 3-28
server handle attribute, A-19

OCI_ATTR_SERVICENAME
event handle attribute, A-131

OCI_ATTR_SESSION
service context handle attribute, A-13

OCI_ATTR_SESSION_STATE
user session handle attribute, A-29

OCI_ATTR_SHARD_HAS_WRITABLECHUNK
shard instance descriptor attribute, A-70

OCI_ATTR_SHARDING_KEY, 17-1, 17-5, 17-6
service context handle attribute, A-29

OCI_ATTR_SHARDING_KEY_64
service context handle attribute, A-29

OCI_ATTR_SHARED_HEAPALLOC
environment handle attribute, A-5

OCI_ATTR_SHOW_INVISIBLE_COLUMNS, A-69
attribute, 7-38

OCI_ATTR_SODA_COLL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CONTENT
SODA document handle attributes, A-71

OCI_ATTR_SODA_CREATE_TIMESTAMP
SODA document handle attributes, A-71

OCI_ATTR_SODA_CRTIME_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_CACHE
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_COMPRESS
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_ENCRYPT
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_MAX_LEN
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_SQL_TYPE
SODA collection handle attribute, A-74

OCI_ATTR_SODA_CTNT_VALIDATION
SODA collection handle attribute, A-74

OCI_ATTR_SODA_DESCRIPTOR
SODA collection handle attribute, A-74

OCI_ATTR_SODA_DETECT_JSON_ENC
SODA document handle attributes, A-71

OCI_ATTR_SODA_JSON_CHARSET_ID
SODA document handle attributes, A-71

OCI_ATTR_SODA_KEY
SODA document handle attributes, A-71

OCI_ATTR_SODA_KEY_ASSIGN_METHOD
SODA collection handle attribute, A-74

OCI_ATTR_SODA_KEY_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_KEY_MAX_LEN
SODA collection handle attribute, A-74

Index

Index-16

OCI_ATTR_SODA_KEY_SEQ_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_KEY_SQL_TYPE
SODA collection handle attribute, A-74

OCI_ATTR_SODA_LASTMOD_TIMESTAMP
SODA document handle attributes, A-71

OCI_ATTR_SODA_MEDIA_TYPE
SODA document handle attributes, A-71

OCI_ATTR_SODA_MODTIME_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_MODTIME_INDEX
SODA collection handle attribute, A-74

OCI_ATTR_SODA_MTYPE_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_READONLY
SODA collection handle attribute, A-74

OCI_ATTR_SODA_SCHEMA
SODA collection handle attribute, A-74

OCI_ATTR_SODA_TABLE_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_VERSION
SODA document handle attributes, A-71

OCI_ATTR_SODA_VERSION_COL_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SODA_VERSION_METHOD
SODA collection handle attribute, A-74

OCI_ATTR_SODA_VIEW_NAME
SODA collection handle attribute, A-74

OCI_ATTR_SPOOL_AUTH
session pool handle attribute, 10-5, A-47

OCI_ATTR_SPOOL_BUSY_COUNT
session pool handle attribute, A-47

OCI_ATTR_SPOOL_GETMODE
session pool handle attribute, A-47

OCI_ATTR_SPOOL_INCR
session pool handle attribute, A-47

OCI_ATTR_SPOOL_MAX
session pool handle attribute, A-47

OCI_ATTR_SPOOL_MAX_LIFETIME_SESSION
session pool handle attribute, A-47

OCI_ATTR_SPOOL_MAX_USE_SESSION
session pool handle attribute, A-47

OCI_ATTR_SPOOL_MIN
session pool handle attribute, A-47

OCI_ATTR_SPOOL_OPEN_COUNT
session pool handle attribute, A-47

OCI_ATTR_SPOOL_STMTCACHESIZE
session pool handle attribute, A-47

OCI_ATTR_SPOOL_TIMEOUT
session pool handle attribute, A-47

OCI_ATTR_SPOOL_WAIT_TIMEOUT
session pool handle attribute, A-47

OCI_ATTR_SQL_ID
statement handle attribute, A-53

OCI_ATTR_SQLFNCODE
statement handle attribute, A-53

OCI_ATTR_STATEMENT
statement handle attribute, A-53

OCI_ATTR_STMT_STATE
statement handle attribute, A-53

OCI_ATTR_STMT_TYPE
statement handle attribute, A-53

OCI_ATTR_STMTCACHE_CBK
service context handle attribute, A-13

OCI_ATTR_STMTCACHE_CBKCTX
statement handle attribute, A-53

OCI_ATTR_STMTCACHESIZE, 14-4, 26-41
service context handle attribute, A-13

OCI_ATTR_STREAM_OFFSET
direct path loading stream handle attribute,

A-124
OCI_ATTR_SUB_NAME

attribute, 7-21
direct path loading context handle attribute,

A-114
OCI_ATTR_SUBSCR_CALLBACK

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_CQ_QOSFLAGS

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_CTX

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_HOSTADDR

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_IPADDR

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NAME

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NAMESPACE, 12-5, 12-9

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NTFN_GROUPING_CLAS

S, A-102
OCI_ATTR_SUBSCR_NTFN_GROUPING_REPEAT_COUNT

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NTFN_GROUPING_START_TIME

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NTFN_GROUPING_TYPE

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_NTFN_GROUPING_VALUE

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_PAYLOAD

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_PORTNO

environment handle attribute, A-5
OCI_ATTR_SUBSCR_QOSFLAGS

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_RECPT

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_RECPTPRES

subscription handle attribute, A-102
OCI_ATTR_SUBSCR_RECPTPROTO

subscription handle attribute, A-102

Index

Index-17

OCI_ATTR_SUBSCR_SERVER_DN
descriptor handle, 12-9

OCI_ATTR_SUBSCR_TIMEOUT
subscription handle attribute, A-102

OCI_ATTR_SUPER_SHARDING_KEY, 17-1,
17-6

service context handle attribute, A-29
OCI_ATTR_SUPER_SHARDINGING_KEY, 17-5
OCI_ATTR_SUPERTYPE_NAME

attribute, 7-11
OCI_ATTR_SUPERTYPE_SCHEMA_NAME

attribute, 7-11
OCI_ATTR_TABLE_NAME

attribute, 7-26
OCI_ATTR_TABLESPACE

attribute, 7-10
OCI_ATTR_TAF_ENABLED

server handle attribute, A-19
OCI_ATTR_TIMESTAMP

attribute, 7-5
OCI_ATTR_TRANS

service context handle attribute, A-13
OCI_ATTR_TRANS_NAME, 9-5

transaction handle attribute, A-52
OCI_ATTR_TRANS_PROFILE_FOREIGN

user session handle attribute, A-29
OCI_ATTR_TRANS_TIMEOUT

transaction handle attribute, A-52
OCI_ATTR_TRANSACTION_IN_PROGRESS

user session handle attribute, A-29
OCI_ATTR_TRANSACTION_NO

OCIAQMsgProperties descriptor attribute,
A-96

OCI_ATTR_TRANSFORMATION (dequeue)
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_TRANSFORMATION (enqueue)
OCIAQEnqOptions descriptor attribute, A-91

OCI_ATTR_TYPE_NAME
attribute, 7-13, 7-15, 7-17, 7-21

OCI_ATTR_TYPECODE
attribute, 7-4, 7-11, 7-13, 7-15, 7-21

OCI_ATTR_UB8_ROW_COUNT, 5-19
statement handle attribute, A-53

OCI_ATTR_USER_MEMORY, 11-5
server handle attribute, A-19

OCI_ATTR_USERNAME
OCIAuthInfo handle attributes, A-29
user session handle attribute, A-29

OCI_ATTR_VALUE
attribute, 7-26

OCI_ATTR_VARTYPE_MAXLEN_COMPAT
service context handle attribute, A-13

OCI_ATTR_VERSION
attribute, 7-23

OCI_ATTR_VISIBILITY
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_VISIBILITY (continued)
OCIAQEnqOptions descriptor attribute, A-91

OCI_ATTR_WAIT
OCIAQDeqOptions descriptor attribute, A-93

OCI_ATTR_WALL_LOC
environment handle attribute, A-5

OCI_ATTR_XID, 9-5
transaction handle attribute, A-52

OCI_ATTR_XSTREAM_ACK_INTERVAL, 35-4
OCI_ATTR_XSTREAM_IDLE_TIMEOUT, 35-4
OCI_BIND_SOFT, 26-74, 26-80, 26-85, 26-90
OCI_CONTINUE, 3-29
OCI_CPOOL_REINITIALIZE, 26-12
OCI_CRED_EXT, 26-41
OCI_CRED_PROXY, 9-19
OCI_CRED_RDBMS, 9-19, 26-41
OCI_DATA_AT_EXEC, 26-74, 26-80, 26-85,

26-90
OCI_DEFAULT, 9-39, 26-12, 26-21
OCI_DEFAULT mode for OCIDefineByPos(),

26-102
OCI_DEFAULT mode for OCIDefineByPos2(),

26-107
OCI_DEFINE_SOFT, 26-102, 26-107
OCI_DESCRIBE_ONLY, 27-3
OCI_DIRPATH_COL_ERROR, 20-22
OCI_DIRPATH_DATASAVE_FINISH, 27-106
OCI_DIRPATH_DATASAVE_SAVEONLY, 27-106
OCI_DIRPATH_EXPR_OBJ_CONSTR, 20-38
OCI_DIRPATH_EXPR_REF_TBLNAME, 20-26,

20-38
OCI_DIRPATH_EXPR_SQL, 20-38
OCI_DIRPATH_OID column array attribute, 20-43
OCI_DTYPE_AQAGENT, 3-13
OCI_DTYPE_AQDEQ_OPTIONS, 3-13
OCI_DTYPE_AQENQ_OPTIONS, 3-13
OCI_DTYPE_AQMSG_PROPERTIES, 3-13
OCI_DTYPE_AQNFY, 3-13
OCI_DTYPE_CHDES, 3-13
OCI_DTYPE_COMPLEXOBJECTCOMP, 3-13
OCI_DTYPE_DATE, 3-13
OCI_DTYPE_FILE, 3-13
OCI_DTYPE_INTERVAL_DS, 3-13
OCI_DTYPE_INTERVAL_YM, 3-13
OCI_DTYPE_LOB, 3-13
OCI_DTYPE_PARAM, 3-13, 26-62, 26-69

when used, 26-62
OCI_DTYPE_ROWID, 3-13
OCI_DTYPE_SHARD_KEY, 3-13
OCI_DTYPE_SNAP, 3-13
OCI_DTYPE_SRVDN, 3-13
OCI_DTYPE_TIMESTAMP, 3-13
OCI_DTYPE_TIMESTAMP_LTZ, 3-13
OCI_DTYPE_TIMESTAMP_TZ, 3-13
OCI_DURATION_DEFAULT, 28-48

Index

Index-18

OCI_DURATION_SESSION, 21-8, 27-21, 30-7,
31-3, 31-14, 31-19, 31-26

OCI_DURATION_STATEMENT, 27-21, 30-7,
31-3, 31-14, 31-18, 31-26

OCI_DURATION_TRANS, 7-9, 21-8
possible value of OCI_ATTR_DURATION, 7-9

OCI_DYNAMIC_FETCH, 26-102, 26-107
OCI_ENV_NO_MUTEX, 9-39
OCI_ERROR, 3-28, 9-8
OCI_EVENTS, 26-21

mode for receiving notifications, 12-5
OCI_FOREIGN_SYNTAX, 27-13, E-7
OCI_HTYPE_ADMIN, 3-4, 15-1
OCI_HTYPE_AUTHINFO, 3-4, 10-7
OCI_HTYPE_BIND, 3-4
OCI_HTYPE_COMPLEXOBJECT, 3-4
OCI_HTYPE_COR, 26-69
OCI_HTYPE_CPOOL, 3-4, 10-20
OCI_HTYPE_DEFINE, 3-4
OCI_HTYPE_DESCRIBE, 3-4
OCI_HTYPE_DIRPATH_COLUMN_ARRAY, 3-4
OCI_HTYPE_DIRPATH_CTX, 3-4
OCI_HTYPE_DIRPATH_FN_COL_ARRAY,

20-21, 20-40
OCI_HTYPE_DIRPATH_FN_CTX, 3-4
OCI_HTYPE_DIRPATH_STREAM, 3-4
OCI_HTYPE_ENV, 3-4
OCI_HTYPE_ERROR, 3-4
OCI_HTYPE_PROC, 3-4
OCI_HTYPE_SERVER, 3-4
OCI_HTYPE_SESSION, 3-4
OCI_HTYPE_SODA_COLLECTION, 3-4
OCI_HTYPE_SODA_CURSOR, 3-4
OCI_HTYPE_SODA_DOCUMENT, 3-4
OCI_HTYPE_SPOOL, 3-4
OCI_HTYPE_STMT, 3-4, 26-62, 26-69
OCI_HTYPE_SUBSCRIPTION, 3-4
OCI_HTYPE_SVCCTX, 3-4
OCI_HTYPE_TRANS, 3-4
OCI_IND_NULL, 18-29
OCI_INVALID_HANDLE, 3-28
OCI_IOV, 6-31, 26-102, 26-107
OCI_LOCK_NONE, 21-14
OCI_LOCK_X, 21-14
OCI_LOCK_X_NOWAIT, 21-14

parameter usage, 21-15
OCI_LOGON2_STMTCACHE, 14-3
OCI_LTYPE_ARG_FUNC list attribute, 7-22
OCI_LTYPE_ARG_PROC list attribute, 7-22
OCI_LTYPE_DB_SCH list attribute, 7-22
OCI_LTYPE_SCH_OBJ list attribute, 7-22
OCI_LTYPE_SUBPRG list attribute, 7-22
OCI_LTYPE_TYPE_ARG_FUNC list attribute,

7-22
OCI_LTYPE_TYPE_ARG_PROC list attribute,

7-22

OCI_LTYPE_TYPE_ATTR list attribute, 7-22
OCI_LTYPE_TYPE_METHOD list attribute, 7-22
OCI_MIGRATE

OCISessionBegin() mode, 9-13, 26-41
OCI_NEED_DATA, 3-29
OCI_NEW_LENGTH_SEMANTICS, 26-18
OCI_NO_DATA, 3-28
OCI_NO_UCB, 26-21
OCI_OBJECT, 26-21
OCI_PIN_ANY, 21-8
OCI_PIN_LATEST, 21-8
OCI_PIN_RECENT, 21-8
OCI_PREP2_IMPL_RESULTS_CLIENT, E-7
OCI_PTYPE_ARG

attributes, 7-21
possible value of OCI_ATTR_PTYPE, 7-5

OCI_PTYPE_COL
attributes, 7-17

OCI_PTYPE_COLL
attributes, 7-15

OCI_PTYPE_DATABASE
attributes, 7-23

OCI_PTYPE_EVALUATION CONTEXT
attributes, 7-25

OCI_PTYPE_FUNC
attributes, 7-10
possible value of OCI_ATTR_PTYPE, 7-5

OCI_PTYPE_LIST
attributes, 7-22

OCI_PTYPE_NAME_VALUE
attributes, 7-26

OCI_PTYPE_PKG
attributes, 7-10

OCI_PTYPE_PROC
attributes, 7-10

OCI_PTYPE_RULE_SET
attributes, 7-25

OCI_PTYPE_RULES
attributes, 7-24

OCI_PTYPE_SCHEMA
attributes, 7-23

OCI_PTYPE_SYN
attributes, 7-16

OCI_PTYPE_TABLE
attributes, 7-9

OCI_PTYPE_TABLE_ALIAS
attributes, 7-26

OCI_PTYPE_TYPE
attributes, 7-11

OCI_PTYPE_TYPE_ATTR
attributes, 7-13

OCI_PTYPE_TYPE_COLL
possible value of OCI_ATTR_PTYPE, 7-5

OCI_PTYPE_TYPE_FUNC
attributes, 7-14

OCI_PTYPE_TYPE_METHOD, 7-14

Index

Index-19

OCI_PTYPE_TYPE_PROC
attributes, 7-14

OCI_PTYPE_UNK
possible value of OCI_ATTR_PTYPE, 7-5

OCI_PTYPE_VARIABLE_TYPE
attributes, 7-26

OCI_PTYPE_VIEW
attributes, 7-9
possible value of OCI_ATTR_PTYPE, 7-5

OCI_ROWCBK_DONE, 3-29
OCI_SESSGET_CUSTOM_POOL mode,

OCISessionGet(), 17-6
OCI_SESSRLS_RETAG, 26-57
OCI_STILL_EXECUTING, 3-29
OCI_SUBSCR_NAMESPACE_ANONYMOUS,

A-102
OCI_SUBSCR_PROTO_HTTP, A-102
OCI_SUBSCR_PROTO_MAIL, A-102
OCI_SUBSCR_PROTO_OCI, A-102
OCI_SUBSCR_PROTO_SERVER, A-102
OCI_SUBSCR_QOS_PURGE_ON_NTFN, 12-10
OCI_SUBSCR_QOS_RELIABLE, 12-10
OCI_SUCCESS, 3-28, 9-8
OCI_SUCCESS_WITH_INFO, 3-28
OCI_SUPPRESS_NLS_VALIDATION, 26-18,

26-21
OCI_SYSASM

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSBKP

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSDBA

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSDGD

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSKMT

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSOPER

OCISessionBegin() mode, 9-13, 26-41
OCI_SYSRAC

OCISessionBegin() mode, 9-13, 26-41
OCI_THREADED, 9-39, 26-21
OCI_TRANS_LOOSE, 9-6
OCI_TRANS_NEW, 9-10
OCI_TRANS_READONLY, 9-11
OCI_TRANS_RESUME, 9-11
OCI_TRANS_SERIALIZABLE, 9-4
OCI_TRANS_TWOPHASE, 9-11
OCI_TYPECODE, 7-4

values, 4-38, 4-40
OCI_TYPECODE_ITABLE

possible value of
OCI_ATTR_COLLECTION_TYPECODE,
7-11

OCI_TYPECODE_NCHAR, 19-34
OCI_UTF16ID, 3-43
oci.lib, D-3

OCIAnyDataAccess(), 31-8
OCIAnyDataAttrGet(), 31-9
OCIAnyDataAttrSet(), 31-12
OCIAnyDataBeginCreate(), 31-14
OCIAnyDataCollAddElem(), 31-15
OCIAnyDataCollGetElem(), 31-17
OCIAnyDataConvert(), 31-18
OCIAnyDataDestroy(), 31-20
OCIAnyDataEndCreate(), 31-20
OCIAnyDataGetCurrAttrNum(), 31-21
OCIAnyDataGetType(), 31-22
OCIAnyDataIsNull(), 31-22
OCIAnyDataSetAddInstance(), 31-25
OCIAnyDataSetBeginCreate(), 31-26
OCIAnyDataSetDestroy(), 31-27
OCIAnyDataSetEndCreate(), 31-28
OCIAnyDataSetGetCount(), 31-28
OCIAnyDataSetGetInstance(), 31-29
OCIAnyDataSetGetType(), 31-30
OCIAnyDataTypeCodeToSqlt(), 19-34, 31-23
OCIAppCtxClearAll(), 26-10
OCIAppCtxSet(), 26-11
OCIAQAgent

descriptor attributes, A-100
OCIAQDeq(), 27-82
OCIAQDeqArray(), 27-84
OCIAQDeqOptions

descriptor attributes, A-93
OCIAQEnq(), 27-86
OCIAQEnqArray(), 27-88
OCIAQEnqOptions

descriptor attributes, A-91
OCIAQListen(), E-23
OCIAQListen2(), 27-90
OCIAQMsgProperties

descriptor attributes, A-96
OCIArray, 19-19

binding and defining, 19-19, 19-42
OCIArray manipulation

code example, 19-21
OCIArrayDescriptorAlloc(), 26-60
OCIArrayDescriptorFree(), 26-61
OCIAttrGet(), 16-3, 26-62

used for describing, 5-13
OCIAttrSet(), 26-64
OCIAuthInfo definition, 10-7
OCIBindArrayOfStruct(), 26-73
OCIBindByName(), 26-74
OCIBindByName2(), 26-80
OCIBindByPos(), 26-85
OCIBindByPos2(), 26-90
OCIBindDynamic(), 26-95
OCIBindObject(), 26-98
OCIBinXmlCreateReposCtxFromConn(), 33-3
OCIBinXmlCreateReposCtxFromCPool(), 33-3
OCIBinXmlSetFormatPref(), 24-6, 33-4

Index

Index-20

OCIBinXmlSetReposCtxForConn(), 33-5
OCIBreak(), 27-159

use of, 3-35, 3-40
OCICacheFlush(), 28-7
OCICacheFree(), 28-43
OCICacheRefresh(), 28-9
OCICacheUnmark(), 28-14
OCICacheUnpin(), 28-44
OCICharSetConversionIsReplacementUsed(),

32-43
OCICharSetToUnicode(), 32-43
OCIClientVersion(), 27-160
OCIColl, 19-19

binding and defining, 19-19
OCICollAppend(), 29-5
OCICollAssign(), 29-6
OCICollAssignElem(), 29-7
OCICollGetElem(), 29-9
OCICollGetElemArray(), 29-13
OCICollIsLocator(), 29-15
OCICollMax(), 29-16
OCICollSize(), 29-17
OCICollTrim(), 29-18
OCIComplexObject

use of, 18-24
OCIComplexObjectComp

use of, 18-24
OCIConnectionPoolCreate(), 26-12
OCIConnectionPoolDestroy(), 26-14
OCIContextClearValue(), 30-13
OCIContextGenerateKey(), 30-14
OCIContextGetValue(), 30-14
OCIContextSetValue(), 30-15
OCIDate, 19-6

binding and defining, 19-6, 19-42
manipulation usage example, 19-7

OCIDateAddDays(), 29-32
OCIDateAddDaysSeconds(), 29-35
OCIDateAddMonths(), 29-33
OCIDateAssign(), 29-34
OCIDateCheck(), 29-35
OCIDateCompare(), 29-36
OCIDateDaysBetween(), 29-37
OCIDateDaysSecondsBetween(), 29-38
OCIDateFromText(), 29-39
OCIDateGetDate(), 29-40
OCIDateGetTime(), 29-41
OCIDateLastDay(), 29-41
OCIDateNextDay(), 29-42
OCIDateSetDate(), 29-43
OCIDateSetTime(), 29-44
OCIDateSysDate(), 29-44
OCIDateTimeAssign(), 29-45
OCIDateTimeCheck(), 29-46
OCIDateTimeCompare(), 29-47
OCIDateTimeConstruct(), 29-48

OCIDateTimeConvert(), 29-50
OCIDateTimeFromArray(), 29-51
OCIDateTimeFromText(), 29-52
OCIDateTimeGetDate(), 29-53
OCIDateTimeGetTime(), 29-54
OCIDateTimeGetTimeZoneName(), 29-55
OCIDateTimeGetTimeZoneOffset(), 29-56
OCIDateTimeIntervalAdd(), 29-57
OCIDateTimeIntervalSub(), 29-58
OCIDateTimeSubtract(), 29-58
OCIDateTimeSysTimeStamp(), 29-59
OCIDateTimeToArray(), 29-60
OCIDateTimeToText(), 29-61
OCIDateToText(), 29-62
OCIDateZoneToZone(), 29-64
OCIDBShutdown(), 26-15
OCIDBStartup(), 26-16
OCIDefineArrayOfStruct(), 26-101
OCIDefineByPos(), 26-102
OCIDefineByPos2(), 26-107
OCIDefineDynamic(), 26-111
OCIDefineObject(), 26-114
OCIDescribeAny(), 26-115

limitations, 7-3
overview, 7-1
usage examples, 7-29

OCIDescriptorAlloc(), 26-65
OCIDescriptorFree(), 26-66
OCIDirPathAbort(), 27-99
OCIDirPathColArrayEntryGet(), 27-100
OCIDirPathColArrayEntrySet(), 27-101
OCIDirPathColArrayReset(), 27-103
OCIDirPathColArrayRowGet(), 27-103
OCIDirPathColArrayToStream(), 27-104
OCIDirPathDataSave(), 27-106
OCIDirPathFinish(), 27-107
OCIDirPathFlushRow(), 27-108
OCIDirPathLoadStream(), 27-109
OCIDirPathPrepare(), 27-110
OCIDirPathStreamReset(), 27-111
OCIDuration

use of, 21-8
OCIDurationBegin(), 27-21, 30-7
OCIDurationEnd(), 27-22, 30-8
OCIEnvCreate(), 26-18
OCIEnvInit(), E-2
OCIEnvNlsCreate(), 3-43, 26-21
OCIErrorGet(), 27-161
OCIEvent handle, 11-4
OCIExtProcAllocCallMemory(), 30-3
OCIExtProcGetEnv(), 30-4
OCIExtProcRaiseExcp(), 30-5
OCIExtProcRaiseExcpWithMsg(), 30-6
OCIExtractFromFile(), 30-17
OCIExtractFromList(), 30-18
OCIExtractFromStr(), 30-19

Index

Index-21

OCIExtractInit(), 30-20
OCIExtractReset(), 30-21
OCIExtractSetKey(), 30-21
OCIExtractSetNumKeys(), 30-23
OCIExtractTerm(), 30-23
OCIExtractToBool(), 30-24
OCIExtractToInt(), 30-25
OCIExtractToList(), 30-26
OCIExtractToOCINum(), 30-26
OCIExtractToStr(), 30-27
OCIFileClose(), 30-29
OCIFileExists(), 30-30
OCIFileFlush(), 30-30
OCIFileGetLength(), 30-31
OCIFileInit(), 30-32
OCIFileObject data structure, 30-28
OCIFileOpen(), 30-32
OCIFileRead(), 30-34
OCIFileSeek(), 30-35
OCIFileTerm(), 30-36
OCIFileWrite(), 30-36
OCIFormatInit(), 30-38
OCIFormatString(), 30-38
OCIFormatTerm(), 30-43
OCIHandleAlloc(), 26-67
OCIHandleFree(), 26-68
OCIInd

use of, 18-29
OCIInitialize(), E-3
OCIIntervalAdd(), 29-65
OCIIntervalAssign(), 29-66
OCIIntervalCheck(), 29-66
OCIIntervalCompare(), 29-68
OCIIntervalDivide(), 29-69
OCIIntervalFromNumber(), 29-69
OCIIntervalFromText(), 29-70
OCIIntervalFromTZ(), 29-71
OCIIntervalGetDaySecond(), 29-72
OCIIntervalGetYearMonth(), 29-73
OCIIntervalMultiply(), 29-74
OCIIntervalSetDaySecond(), 29-75
OCIIntervalSetYearMonth(), 29-76
OCIIntervalSubtract(), 29-77
OCIIntervalToNumber(), 29-78
OCIIntervalToText(), 29-78
OCIIOV struct, 6-31
OCIIter, 19-19

binding and defining, 19-19
usage example, 19-21

OCIIterCreate(), 29-19
OCIIterDelete(), 29-20
OCIIterGetCurrent(), 29-22
OCIIterInit(), 29-24
OCIIterNext(), 29-25
OCIIterPrev(), 29-26
OCIJsonBinaryBufferLoad (), 37-6

OCIJsonBinaryLengthGet (), 37-17
OCIJsonBinaryStreamLoad (), 37-7
OCIJsonClone (), 37-8
OCIJsonDomDocGet (), 37-10
OCIJsonDomDocSet (), 37-2
OCIJsonTextBufferParse (), 37-3
OCIJsonTextStreamParse (), 37-4
OCIJsonToBinaryBuffer (), 37-14
OCIJsonToBinaryStream(), 37-15
OCIJsonToTextBuffer (), 37-11
OCIJsonToTextStream (), 37-13
OCILCRAttributesGet(), 36-9
OCILCRAttributesSet(), 36-10
OCILCRComparePosition(), 36-12
OCILCRConvertPosition(), 36-13
OCILCRDDLInfoGet(), 36-14
OCILCRDDLInfoSet(), 36-28
OCILCRFree(), 36-14
OCILCRGetLCRIDVersion(), 36-30
OCILCRHeaderGet(), 36-16
OCILCRHeaderSet(), 36-31
OCILCRLobInfoGet(), 36-33
OCILCRLobInfoSet(), 36-34
OCILCRNew(), 36-21
OCILCRNumberFromPosition(), 36-35
OCILCRRowColumnInfoGet(), 36-22
OCILCRRowColumnInfoSet(), 36-26
OCILCRRowStmtGet(), 36-19
OCILCRRowStmtWithBindVarGet(), 36-19
OCILCRSCNToPosition(), 36-36
OCILCRScnToPosition2(), 36-37
OCILCRWhereClauseGet(), 36-38
OCILCRWhereClauseWithBindVarGet(), 36-39
OCILdaToSvcCtx(), 27-165
OCILobAppend(), 27-23
OCILobArrayRead(), 8-26, 27-24
OCILobArrayWrite(), 27-28
OCILobAssign(), 27-32
OCILobCharSetForm(), 27-34
OCILobCharSetId(), 27-35
OCILobClose(), 27-36
OCILobCopy(), E-10
OCILobCopy2(), 27-37
OCILobCreateTemporary(), 27-39
OCILobErase(), E-10
OCILobErase2(), 27-40
OCILobFileClose(), 27-42
OCILobFileCloseAll(), 27-43
OCILobFileExists(), 27-44
OCILobFileGetName(), 27-45
OCILobFileIsOpen(), 27-46
OCILobFileOpen(), 27-47
OCILobFileSetName(), 27-49
OCILobFreeTemporary(), 27-50
OCILobGetChunkSize(), 27-51
OCILobGetContentType(), 27-52

Index

Index-22

OCILobGetLength(), E-11
OCILobGetLength2(), 27-53
OCILobGetOptions(), 27-55
OCILobGetStorageLimit(), 27-56
OCILobIsEqual(), 27-57
OCILobIsOpen(), 27-58
OCILobIsTemporary(), 27-59
OCILobLoadFromFile(), E-11
OCILobLoadFromFile2(), 27-60
OCILobLocatorAssign(), 27-61
OCILobLocatorIsInit(), 27-63
OCILobOpen(), 27-64
OCILobRead(), E-11
OCILobRead2(), 27-66
OCILobSetContentType(), 27-70
OCILobSetOptions(), 27-71
OCILobTrim(), E-15
OCILobTrim2(), 27-72
OCILobWrite(), E-16
OCILobWrite2(), 27-74
OCILobWriteAppend(), E-19
OCILobWriteAppend2(), 27-78
OCILockOpt

possible values, 28-22, 28-48
OCILogoff(), 26-27
OCILogon(), 26-28

using, 3-21
OCILogon2(), 26-29
OCIMemoryAlloc(), 30-9
OCIMemoryFree(), 30-11
OCIMemoryResize(), 30-11
OCIMessageClose(), 32-47
OCIMessageGet(), 32-48
OCIMessageOpen(), 32-49
OCIMultiByteInSizeToWideChar(), 32-14
OCIMultiByteStrCaseConversion(), 32-15
OCIMultiByteStrcat(), 32-15
OCIMultiByteStrcmp(), 32-16
OCIMultiByteStrcpy(), 32-17
OCIMultiByteStrlen(), 32-18
OCIMultiByteStrncat(), 32-19
OCIMultiByteStrncmp(), 32-19
OCIMultiByteStrncpy(), 32-21
OCIMultiByteStrnDisplayLength(), 32-22
OCIMultiByteToWideChar(), 32-22
OCINlsCharSetConvert(), 32-44
OCINlsCharSetIdToName(), 32-3
OCINlsCharSetNameTold(), 32-4
OCINlsEnvironmentVariableGet(), 32-4
OCINlsGetInfo(), 32-5
OCINlsNameMap(), 32-9
OCINlsNumericInfoGet(), 32-8
OCINumber, 19-13

bind example, 19-43
binding and defining, 19-13, 19-42
define example, 19-43

OCINumber (continued)
usage examples, 19-13

OCINumberAbs(), 29-83
OCINumberAdd(), 29-84
OCINumberArcCos(), 29-85
OCINumberArcSin(), 29-85
OCINumberArcTan(), 29-86
OCINumberArcTan2(), 29-87
OCINumberAssign(), 29-87
OCINumberCeil(), 29-88
OCINumberCmp(), 29-89
OCINumberCos(), 29-90
OCINumberDec(), 29-90
OCINumberDiv(), 29-91
OCINumberExp(), 29-92
OCINumberFloor(), 29-92
OCINumberFromInt(), 29-93
OCINumberFromReal(), 29-94
OCINumberFromText(), 29-95
OCINumberHypCos(), 29-96
OCINumberHypSin(), 29-97
OCINumberHypTan(), 29-97
OCINumberInc(), 29-98
OCINumberIntPower(), 29-99
OCINumberIsInt(), 29-100
OCINumberIsZero(), 29-100
OCINumberLn(), 29-101
OCINumberLog(), 29-102
OCINumberMod(), 29-103
OCINumberMul(), 29-103
OCINumberNeg(), 29-104
OCINumberPower(), 29-105
OCINumberPrec(), 29-106
OCINumberRound(), 29-106
OCINumberSetPi(), 29-107
OCINumberSetZero(), 29-108
OCINumberShift(), 29-108
OCINumberSign(), 29-109
OCINumberSin(), 29-110
OCINumberSqrt(), 29-110
OCINumberSub(), 29-111
OCINumberTan(), 29-112
OCINumberToInt(), 29-113
OCINumberToReal(), 29-114
OCINumberToRealArray(), 29-114
OCINumberToText(), 29-115
OCINumberTrunc(), 29-117
OCIObjectArrayPin(), 28-45
OCIObjectCopy(), 28-28
OCIObjectExists(), 28-21
OCIObjectFlush(), 28-10
OCIObjectFree(), 28-47
OCIObjectGetAttr(), 28-30
OCIObjectGetInd(), 28-32

example of use, 18-29
OCIObjectGetObjectRef(), 28-33

Index

Index-23

OCIObjectGetProperty(), 28-22
OCIObjectGetTypeRef(), 28-34
OCIObjectIsDirty(), 28-25
OCIObjectIsLocked(), 28-26
OCIObjectLifetime

possible values, 28-22
OCIObjectLock(), 28-35
OCIObjectLockNoWait(), 28-36
OCIObjectMarkDelete(), 28-15
OCIObjectMarkDeleteByRef(), 28-16
OCIObjectMarkStatus

possible values, 28-22
OCIObjectMarkUpdate(), 28-17
OCIObjectNew(), 28-37
OCIObjectPin(), 28-48
OCIObjectPinCountReset(), 28-51
OCIObjectPinTable(), 28-52
OCIObjectRefresh(), 28-11
OCIObjectSetAttr(), 28-41
OCIObjectUnmark(), 28-18
OCIObjectUnmarkByRef(), 28-19
OCIObjectUnpin(), 28-54
OCIParamGet(), 26-69

used for describing, 5-13
OCIParamSet(), 26-70
OCIPasswordChange(), 27-166
OCIPing(), 27-169
OCIPinOpt

use of, 21-8
OCIRaw, 19-17

binding and defining, 19-17, 19-42
manipulation usage example, 19-18

OCIRawAllocSize(), 29-118
OCIRawAssignBytes(), 29-119
OCIRawAssignRaw(), 29-120
OCIRawPtr(), 29-121
OCIRawResize(), 29-122
OCIRawSize(), 29-123
OCIRef, 19-25

binding and defining, 19-25
usage example, 19-26

OCIRefAssign(), 29-124
OCIRefClear(), 29-125
OCIRefFromHex(), 29-126
OCIRefHexSize(), 29-127
OCIRefIsEqual(), 29-128
OCIRefIsNull(), 29-129
OCIRefToHex(), 29-130
OCIRequestEnd(), 26-38
OCIReset(), 27-170

use of, 3-40
OCIRowid ROWID descriptor, 3-17
OCIRowidToChar(), 27-170
OCIServerAttach(), 26-38

shadow processes, 26-38
OCIServerDataLengthGet(), 26-120

OCIServerDetach(), 26-40
OCIServerDNs descriptor attributes, A-101
OCIServerRelease(), 27-171
OCIServerRelease2(), 27-172
OCIServerVersion(), 27-174
OCISessionBegin(), 9-13, 26-41
OCISessionEnd(), 26-45
OCISessionGet(), 26-46
OCISessionPoolCreate(), 26-52
OCISessionPoolDestroy(), 26-56
OCISessionRelease(), 26-57
OCIShardingKeyColumnAdd(), 27-150
OCIShardingkeyReset(), 27-152
OCIShardingKeyReset(), 17-1
OCIShardInstancesGet(), 17-6, 27-153
OCISodaAsOfScnGet (), 39-26
OCISodaAsOfTimestampGet (), 39-26
OCISodaBulkInsert(), 39-6
OCISodaBulkInsertAndGet(), 39-7
OCISodaBulkInsertAndGetWithCont(), 39-10
OCISodaBulkInsertAndGetWithOpts(), 39-9
OCISodaBulkInsertWithCtnt(), 39-12
OCISodaCollCreate(), 39-14
OCISodaCollCreateWithMetadata(), 39-16
OCISodaCollDrop(), 39-17
OCISodaCollList(), 39-20
OCISodaCollOpen(), 39-21
OCISodaCollTruncate(), 39-74
OCISodaDataGuideGet(), 39-23
OCISodaDataGuideGetWithOpts(), 39-24
OCISodaDocCount(), 39-27
OCISodaDocCountWithFilter(), 39-29
OCISodaDocCreate(), 39-30
OCISodaDocCreateWithKey(), 39-32
OCISodaDocCreateWithKeyAndMType(), 39-34
OCISodaDocGetNext(), 39-35
OCISodaFind(), 39-36
OCISodaFindOne(), 39-38
OCISodaFindOneWithKey(), 39-40
OCISodaIndexCreate(), 39-42
OCISodaIndexDrop(), 39-44
OCISodaIndexGet(), 39-43
OCISodaIndexList(), 39-44
OCISodaInsert(), 39-46
OCISodaInsertAndGet(), 39-47
OCISodaInsertAndGetWithCtnt(), 39-50
OCISodaInsertAndGetWithOpts(), 39-49
OCISodaInsertWithCtnt(), 39-52
OCISodaRemove(), 39-54
OCISodaRemoveOneWithKey(), 39-55
OCISodaReplOne(), 39-56
OCISodaReplOneAndGet(), 39-58
OCISodaReplOneAndGetWithCtnt(), 39-60
OCISodaReplOneAndGetWithKey(), 39-62
OCISodaReplOneWithCont(), 39-64
OCISodaReplOneWithKey(), 39-66

Index

Index-24

OCISodaSave(), 39-68
OCISodaSaveAndGet(), 39-69
OCISodaSaveAndGetWithCtnt(), 39-72
OCISodaSaveAndGetWithOpts(), 39-70
OCISodaSaveWithCtnt(), 39-71
OCIStmtExecute(), 27-3

prefetch during, 5-7
use of iters parameter, 5-7

OCIStmtFetch(), 16-3, E-6
OCIStmtFetch2(), 16-3, 27-6
OCIStmtGetBindInfo(), 26-118
OCIStmtGetNextResult (), 27-8
OCIStmtGetPieceInfo(), 27-9
OCIStmtPlaceholderSubstitute(), 27-10
OCIStmtPrepare(), E-7
OCIStmtPrepare2(), 27-13

preparing SQL statements, 5-4
OCIStmtRelease(), 27-15
OCIStmtSetPieceInfo(), 27-15
OCIString, 19-15

binding and defining, 19-15, 19-42
manipulation usage example, 19-16

OCIStringAllocSize(), 29-132
OCIStringAssign(), 29-133
OCIStringAssignText(), 29-134
OCIStringPtr(), 29-135
OCIStringResize(), 29-136
OCIStringSize(), 29-137
OCISubscriptionDisable(), 27-91
OCISubscriptionEnable(), 27-92
OCISubscriptionPost(), 27-93
OCISubscriptionRegister(), 16-3, 27-95
OCISubscriptionUnRegister(), 16-3, 27-97
OCISvcCtxToLda(), 27-175
OCITable, 19-19

binding and defining, 19-19, 19-42
OCITableDelete(), 29-139
OCITableExists(), 29-141
OCITableFirst(), 29-143
OCITableLast(), 29-144
OCITableNext(), 29-146
OCITablePrev(), 29-149
OCITableSize(), 29-150
OCITerminate(), 26-58
OCIThread package, 9-41
OCIThreadClose(), 27-114
OCIThreadCreate(), 27-114
OCIThreadHandleGet(), 27-116
OCIThreadHndDestroy(), 27-116
OCIThreadHndInit(), 27-117
OCIThreadIdDestroy(), 27-118
OCIThreadIdGet(), 27-119
OCIThreadIdInit(), 27-120
OCIThreadIdNull(), 27-121
OCIThreadIdSame(), 27-122
OCIThreadIdSet(), 27-123

OCIThreadIdSetNull(), 27-124
OCIThreadInit(), 27-124
OCIThreadIsMulti(), 27-125
OCIThreadJoin(), 27-126
OCIThreadKeyDestroy(), 27-127
OCIThreadKeyGet(), 27-127
OCIThreadKeyInit(), 27-128
OCIThreadKeySet(), 27-129
OCIThreadMutexAcquire(), 27-130
OCIThreadMutexDestroy(), 27-131
OCIThreadMutexInit(), 27-132
OCIThreadMutexRelease(), 27-133
OCIThreadProcessInit(), 27-133
OCIThreadTerm(), 27-134
OCITransCommit(), 16-3, 27-144
OCITransDetach(), 16-3, 27-142
OCITransForget(), 16-3, 27-147
OCITransMultiPrepare(), 16-3, 27-148
OCITransPrepare(), 16-3, 27-149
OCITransRollback(), 16-3, 27-146
OCITransStart(), 16-3, 27-136
OCIType

description, 19-27
OCITypeAddAttr(), 31-3
OCITypeArrayByFullName(), 28-58
OCITypeArrayByName(), 28-56
OCITypeArrayByRef(), 28-61
OCITypeBeginCreate(), 31-3
OCITypeByName(), 28-65
OCITypeByRef(), 28-68
OCITypeCode, 4-38
OCITypeElem

description, 19-27
OCITypeEndCreate(), 31-5
OCITypeMethod

description, 19-27
OCITypePackage(), 28-69
OCITypeSetBuiltin(), 31-5
OCITypeSetCollection(), 31-6
OCIUnicodeToCharSet(), 32-46
OCIUserCallbackGet(), 27-176
OCIUserCallbackRegister(), 27-177
OCIWchar data type, 3-46
OCIWideCharInSizeToMultiByte(), 32-23
OCIWideCharIsAlnum(), 32-37
OCIWideCharIsAlpha(), 32-37
OCIWideCharIsCntrl(), 32-37
OCIWideCharIsDigit(), 32-38
OCIWideCharIsGraph(), 32-38
OCIWideCharIsLower(), 32-39
OCIWideCharIsPrint(), 32-39
OCIWideCharIsPunct(), 32-40
OCIWideCharIsSingleByte(), 32-40
OCIWideCharIsSpace(), 32-41
OCIWideCharIsUpper(), 32-41
OCIWideCharIsXdigit(), 32-42

Index

Index-25

OCIWideCharMultiByteLength(), 32-24
OCIWideCharStrCaseConversion(), 32-25
OCIWideCharStrcat(), 32-26
OCIWideCharStrchr(), 32-26
OCIWideCharStrcmp(), 32-27
OCIWideCharStrcpy(), 32-28
OCIWideCharStrlen(), 32-29
OCIWideCharStrncat(), 32-30
OCIWideCharStrncmp(), 32-30
OCIWideCharStrncpy(), 32-32
OCIWideCharStrrchr(), 32-33
OCIWideCharToLower(), 32-33
OCIWideCharToMultiByte(), 32-34
OCIWideCharToUpper(), 32-35
ocixmldb.h header file, 24-2
OCIXmlDbFreeXmlCtx(), 33-5
OCIXmlDbInitXmlCtx(), 33-6
OCIXStreamInAttach(), 36-41
OCIXStreamInChunkSend(), 36-51
OCIXStreamInCommit(), 36-54
OCIXStreamInDetach(), 36-42
OCIXStreamInErrorGet(), 36-49
OCIXStreamInFlush(), 36-50
OCIXStreamInLCRCallbackSend(), 36-44
OCIXStreamInLCRSend(), 36-43
OCIXStreamInProcessedLWMGet(), 36-48
OCIXStreamInSessionSet(), 36-55
OCIXStreamOutAttach(), 36-56
OCIXStreamOutChunkReceive(), 36-65
OCIXStreamOutDetach(), 36-58
OCIXStreamOutGetNextChunk(), 36-68
OCIXStreamOutLCRCallbackReceive(), 36-60
OCIXStreamOutLCRReceive(), 36-58
OCIXStreamOutProcessedLWMSet(), 36-64
OCIXStreamOutSessionSet(), 36-71
ODPI-C

alternative to OCI, 1-6
for Oracle Database drivers, 1-6
for user applications, 1-6

OID
See object identifiers

opaque, definition of, 1-5
optimistic locking

implementing, 21-15
ORA_NCHAR_LITERAL_REPLACE, 26-18
ORA-25219 error during enqueue, 12-24
Oracle Call Interface

See OCI
Oracle Connection Manager in Traffic Director

Mode, 10-13
Oracle data types, 4-1

mapping to C, 19-3
Oracle Database, D-4
Oracle Database Advanced Queuing

dequeue function, 27-82
description, 12-22

Oracle Database Advanced Queuing (continued)
descriptor attributes, A-91
enqueue function, 27-86
functions, 27-81, E-22
OCI and, 12-22
OCI versus PL/SQL, 12-24
publish-subscribe notification in OCI, 12-2

Oracle directory structure, 2-3
Oracle ODBC Driver

for user ODBC applications, 1-6
Oracle RAC, 11-1
Oracle Real Application Clusters, 11-1
Oracle Streams Advanced Queuing

OCI descriptors for, 12-24
OCI functions for, 12-23

Oracle XA Library
additional documentation, D-6
compiling and linking an OCI program, D-5
dynamic registration, D-5

Oracle XML DB OCI functions, 24-1, 33-2
oratypes.h

as parameter source in OCI, 4-41
contents, 4-41
definitions in, 4-41

ORE
See object runtime environment

OTT
See OTT utility

OTT parameters, 25-25, 25-26
CASE, 25-31
CODE, 25-29
CONFIG, 25-30
ERRTYPE, 25-30
HFILE, 25-30
INITFILE, 25-29
INITFUNC, 25-30
INTYPE, 25-28
OUTTYPE, 25-29
SCHEMA_NAMES, 25-31
TRANSITIVE, 25-32
URL, 25-32
USERID, 25-28
where they appear, 25-32

OTT utility, 18-9
command line, 25-5, D-7
command-line syntax, 25-25
creating types in the database, 25-4
data type mappings, 25-10
initialization function

calling, 25-22
tasks of, 25-24

intype file, 25-33
outtype file, 25-19
overview, 25-1
parameters, 25-26

See OTT parameters, 25-26

Index

Index-26

OTT utility (continued)
providing an intype file, 25-8
reference, 25-24
restriction, 25-39
sample output, 18-9
use with OCI, 18-9
using, 25-1

outbound servers
OCI interface, 35-2

outtype file, 25-33
when running OTT utility, 25-19

OUTTYPE OTT parameter, 25-29

P
packages

attributes, 7-10
describing, 7-1

parameter descriptor, 3-16
attributes, 7-5, A-70
object, 19-27

parameters
attributes, 7-5
buffer lengths, 26-3
modes, 26-2
passing strings, 3-33
string length, 26-3

password management, 9-12, 9-14
persistent objects, 18-5

meta-attributes, 18-18
piecewise

binds and defines for LOBs, 6-61
fetch, 6-59

piecewise operations, 6-54
fetch, 6-52, 6-60
in PL/SQL, 6-57
insert, 6-52
update, 6-52
valid data types, 6-53

pin count, 18-29
pin duration

example, 21-17
of objects, 21-17

pinning objects, 21-8
PL/SQL, 1-11

binding and defining nested tables, 6-50
binding and defining REF CURSORS, 6-50
binding placeholders, 3-40
defining output variables, 6-19
piecewise operations, 6-57
uses in OCI applications, 3-40
using in OCI applications, 3-40
using in OCI programs, 6-8

PL/SQL Callback
for session state fix up, 10-5

placeholders
rules, 5-7

pluggable databases
OCI support for, 16-1

polling mode, 3-38
positioned deletes, 3-36
positioned updates, 3-36
prefetching

during OCIStmtExecute(), 5-7
LOBs, 8-26
OCI_ATTR_DEFAULT_LOBPREFETCH_SIZE,

8-26
setting prefetch memory size, 5-18
setting row count, 5-18

Pro*C/C++
alternative to OCI, 1-6

procedures
attributes, 7-10

process
handle attributes, A-130

proxy access, 3-22
proxy authentication, 3-22, 9-22
publish-subscribe

_SYSTEM_TRIG_ENABLED parameter,
12-15

COMPATIBLE parameter, 12-5
example, 12-15
functions, 12-4, 27-81, E-22
handle attributes, 12-5, A-102
LDAP registration, 12-9
notification callback, 12-12
notification in OCI, 12-2
subscription handle, 12-5

Q
query, 5-16

explicit describe, 5-15
See also SQL query

R
ram_threshold, 14-16
RAW

external data type, 4-21
read-only parameter descriptor, 3-13
REF

external data type, 4-25
REF columns

direct path loading of, 20-26
REF CURSOR variables

binding and defining, 6-50
references to objects

See REFs
refreshing, 21-13

objects, 21-13

Index

Index-27

REFs, 18-11
binding, 19-37
CURSOR variables, binding, 6-14
defining, 19-39
external data type, 4-25
indicator variables for, 3-33, 3-35
retrieving from server, 18-11

registering
user callbacks, 13-2

registry
REGEDT32, D-6

relational functions, C-8
server round-trips, C-2

relinking, need for, 2-26
required support files, D-1
reserved namespaces, 3-37
reserved words, 3-37
restrictions

on OCI API calls with CDBs in general, 16-2
on OCI calls with ALTER SESSION SET

CONTAINER, 16-3
on OCI calls with ALTER SESSION SWITCH

CONTAINER SWITCH SERVICE,
16-5

result cache, 14-12
result set, 5-19
result set descriptor, 3-13
resuming branches, 9-7
retrieving attributes of an object type

example, 7-34
retrieving column data types for a table

example, 7-31
retrieving the collection element’s data type of a

named collection type
example, 7-36

return values
navigational functions, 28-4

RETURNING clause
binding with, 6-36
error handling, 6-37
initializing variables, 6-36
using with OCI, 6-34
with REFs, 6-37

rollback, 3-27
in object applications, 21-16

row change descriptor, 3-13
ROWID

external data type, 4-25
implicit fetching, 14-6
logical, 4-7
OCIRowid descriptor, 3-17
Universal ROWID, 4-7
used for positioned updates and deletes, 3-36

ROWID descriptor, 3-13
RSFs, D-1

rule sets
attributes, 7-25

type OCI_PTYPE_RULE_SET, 7-25
rules

attributes, 7-24
type OCI_PTYPE_RULE, 7-24

running OCI application, D-4

S
sample programs, B-1, D-2
samples directory, D-2
sb1

definition, 4-41
sb2

definition, 4-41
sb4

definition, 4-41
scatter/gather for binds/defines, 6-31
schema type attributes

type OCI_PTYPE_SCHEMA, 7-23
SCHEMA_NAMES OTT parameter, 25-31

usage, 25-36
schemas

attributes, 7-23–7-26
describing, 7-1

scripts
authenticating users in, 9-15

scrollable cursor
example, 5-21
in OCI, 5-19
increasing performance, 5-20

secondary memory
of object, 21-19

SECUREFILE parameter, 8-29
SecureFiles, 8-29

OCILobGetContentType(), 27-52
OCILobSetContentType(), 27-70

SecureFiles LOBs, 8-29
security

init.ora parameters, 9-35
OCI enhancements, 9-35

select list
describing, 5-12
implicit describe, 5-12

sequences
attributes, 7-16
describing, 7-1

server handle
attributes, A-19
description, 3-7
setting in service context, 3-7

server round-trips
cache functions, C-6
data type mapping and manipulation

functions, C-7

Index

Index-28

server round-trips (continued)
definition of, C-1
describe operation, C-7
JSON functions, C-5
LOB functions, C-3
object functions, C-6
relational functions, C-8

service context handle
attributes, A-13
description, 3-7
elements of, 3-7

session creation, 3-21
session management, 9-12, 9-16
session migration, 9-13, 26-41
session pool handle

attributes, A-47
session pooling, 10-1, 10-25

example, 10-13
functionality, 10-2
runtime connection load balancing, 11-1
tagging, 10-1

shard, 17-1
Shard Instance Descriptor

attributes, A-70
shard key or group key descriptor, 3-13
sharding functions, 27-150
sharding key, 17-1
shutting down databases, 15-1
signal handler, 9-37
skip parameters

for arrays of structures, 6-29
for standard arrays, 6-30

snapshot descriptor, 3-13, 3-15
snapshots

executing against, 5-8
SODA collection handle attributes, A-74
SODA document handle attributes, A-71
SODA OCI client

character sets, 39-1
specifying a sharding key, 17-5
specifying a super sharding key, 17-5
SQL query, 5-16

binding placeholders
See bind operations, 5-16

defining output variables, 5-16, 6-14, 19-38
See define operations, 5-16

fetching results, 5-16
statement type, 1-10

SQL statements, 1-8
binding placeholders in, 5-6, 6-2, 19-35
determining type prepared, 5-4
executing, 5-7
preparing for execution, 5-4
processing, 5-1
types

control statements, 1-9

SQL statements (continued)
types (continued)
data definition language, 1-9
data manipulation language, 1-10
embedded SQL, 1-12
PL/SQL, 1-11
queries, 1-10

SQLCS_IMPLICIT, 6-41, 27-24, 27-28, 27-34,
27-39, 27-74, 27-78, E-11, E-16, E-19

SQLCS_NCHAR, 27-28, 27-34, 27-39, 27-66,
27-74, E-16, E-19

sqlnet.ora, controlling ADR, 2-32
SQLT typecodes, 4-40
SQLT_BDOUBLE, 4-32
SQLT_BFLOAT, 4-32
SQLT_CHR, A-114
SQLT_IBDOUBLE, 4-7, 7-17
SQLT_IBFLOAT, 4-7, 7-17
SQLT_NTY

bind example, 19-48
define example, 19-49
description, 4-24
preallocating object memory, 19-40

SQLT_REF
definition, 4-25
description, 4-25

starting up databases, 15-1
stateful sessions, 10-18
stateless sessions, 10-18
statement caching, 14-1

code example, 14-6
statement handle

attributes, A-53
description, 3-9

statement_cache, 14-14
statically linked applications, 2-26
stored functions

describing, 7-1
stored procedures

describing, 7-1
STRING

external data type, 4-18
strings

passing as parameters, 3-33
structures

arrays of, 6-28
subprogram attributes, 7-10
subscription handle, 3-11

attributes, A-102
super sharding key, 17-1
supporting UTF-16 Unicode in OCI, 3-43, 3-44,

3-46, 3-48
sword

definition in oratypes.h file, 4-41
synonyms

attributes, 7-16

Index

Index-29

synonyms (continued)
describing, 7-1

T
table alias

attributes
type OCI_PTYPE_TABLE_ALIAS, 7-26

table change descriptor, 3-13
tables

attributes, 7-9
describing, 7-1
limitations on OCIDescribeAny() and

OCIStmtExecute(), 7-3
TAF (transparent application failover)

callback registration, 11-11
callbacks, 11-7
connections enabled by, 11-7
in connection pools, 10-19
OCI callbacks, 11-7

TAF failover callback
structure and parameters, 11-9

tagging
custom pooling, 11-5
session pooling, 10-1, 26-46, 26-57

task thread, F-2
TDO

definition, 19-36
description, 19-27
in the object cache, 21-25
obtaining, 19-27

terminology
navigational functions, 28-3
used in this manual, 1-12

thread
dispatcher, F-2
monitor, F-2
task, F-2

thread handle description, 3-10, 9-47
thread management functions, 27-112
thread safety, 9-37

advantages of, 9-38
basic concepts, 9-37
implementing with OCI, 9-39
mixing 7.x and 8.0 calls, 9-40
required OCI calls, 9-39
three-tier architectures, 9-39

threads package, 9-41
three-tier architectures

thread safety, 9-39
time zone files differ on client and server, 2-6
TIMESTAMP data type, 4-30
TIMESTAMP descriptor, 3-13
TIMESTAMP WITH LOCAL TIME ZONE data

type, 4-30

TIMESTAMP WITH LOCAL TIME ZONE
descriptor, 3-13

TIMESTAMP WITH TIME ZONE data type, 4-30
TIMESTAMP WITH TIME ZONE descriptor, 3-13
TimesTen In-Memory Database access from OCI,

1-5, 14-1
TNS_ADMIN, 2-4
top-level memory

of object, 21-19
Transaction Guard

logical transaction ID (LTXID), 11-17
transaction handle

attributes, A-52
description, 3-7

transaction identifier, 9-5
transaction processing monitor, D-4

additional documentation, D-6
types, D-4

transactional complexity
levels in OCI, 9-2

transactions
committing, 3-27
functions, 27-135
global, 9-4

branch states, 9-7
branches, 9-6
one-phase commit, 9-8
transactions identifier, 9-5
two-phase commit, 9-8

global examples, 9-9
initialization parameters, 9-9
local, 9-3
OCI functions for

transactions, 9-2
read-only, 9-4
rolling back, 3-27
serializable, 9-4

transient objects, 18-6
LOBs

attributes, 8-6
meta-attributes, 18-21

TRANSITIVE OTT parameter, 25-8, 25-13, 25-32
transparent application failover

See TAF
type attributes

attributes, 7-13
type descriptor object, 18-9, 19-27
type evolution, 18-42

object cache, 21-25
type functions

attributes, 7-14
type inheritance

OTT utility support, 25-16
type method attributes, 7-14
type procedures

attributes, 7-14

Index

Index-30

type reference, 18-34
typecodes, 4-38
types

attributes, 7-11
describing, 7-1

U
ub1

definition, 4-41
ub2

definition, 4-41
UB2MAXVAL, 26-90
ub4

definition, 4-41
UB4MAXVAL, 5-19
Unicode

character set ID, A-63, A-66
data buffer alignment, 3-48
OCILobRead(), E-11
OCILobWrite(), 27-28, 27-74, E-16

Universal ROWID, 4-7
unmarking objects, 21-11
unpinning objects, 18-29, 21-9
UNSIGNED

external data type, 4-22
updates

piecewise, 6-52, 6-54
positioned, 3-36

upgrading OCI, 2-25
URL OTT parameter, 25-32
UROWID

Universal ROWID, 4-7
user callback descriptor, 3-13
user memory

allocating, 3-18
user session handle

attributes, A-29
description, 3-7
setting in service context, 3-7

user-defined callback functions, 13-1
registering, 13-2

USERID OTT parameter, 25-28
using an explicit describe on a named collection

type
example, 7-36

using an explicit describe on a named object type
example, 7-34

using an explicit describe to retrieve column data
types for a table

example, 7-31
utext

Unicode data type, 6-42, 6-49
UTF-16 data, sample code, 6-49

V
validating format for

Oracle NUMBER and DATE data, 20-17
values, 18-4

in object applications, 18-6
VARCHAR

external data type, 4-20
VARCHAR2

external data type, 4-12
variable type attributes

type OCI_PTYPE_VARIABLE_TYPE, 7-26
VARNUM

external data type, 4-19
VARRAW

external data type, 4-21
varrays, 4-24

as objects, 18-1
C mapping, 25-12
define calls, 19-39
iterator, 29-19
NULLs, 18-29
or collection Iterator example, 19-21
scan, 29-24

version compatibility, 2-26
views

attributes, 7-9
describing, 7-1

W
wchar_t data type, 3-46, 6-49, 32-10
with_context

argument to external procedure functions,
30-2

X
XA Library

compiling and linking an OCI program, D-5
functions, D-4
OCI support, 1-23
overview, D-4

XA specification, 9-5
xa.h header, 1-23
XID

See transaction identifier
XML DB functions, 24-2, 33-2
XML support in OCI, 24-1, 33-1
XStream

OCI interface, 35-1
character sets, 35-3
functions, 36-1
handler and descriptor attributes, 35-3
XStream In, 35-2
XStream Out, 35-2

Index

Index-31

xtramem_sz parameter
using, 3-18

xtramem_sz parameter (continued)

Index

Index-32

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 OCI: Introduction
	1.1 Changes in This Release for Oracle Call Interface Developer's Guide
	1.2 Overview of OCI
	1.3 Building an OCI Application
	1.4 Alternatives to OCI
	1.5 SQL Statements
	1.5.1 Data Definition Language
	1.5.2 Control Statements
	1.5.3 Data Manipulation Language
	1.5.4 Queries
	1.5.5 PL/SQL
	1.5.6 Embedded SQL
	1.5.7 Special OCI Terms for SQL

	1.6 Procedural and Nonprocedural Elements
	1.7 Object Support
	1.7.1 Client-Side Object Cache
	1.7.2 Associative and Navigational Interfaces
	1.7.3 OCI Runtime Environment for Objects
	1.7.4 Type Management: Mapping and Manipulation Functions
	1.7.5 Object Type Translator

	1.8 Simple Oracle Document Access (SODA)
	1.9 Encapsulated Interfaces
	1.10 User Authentication and Password Management
	1.10.1 Identity and Access Management (IAM) Token-Based Authentication
	1.10.1.1 Standalone User Session
	1.10.1.1.1 Providing the DB Token Programmatically
	1.10.1.1.2 Providing the DB Token in a File

	1.10.1.2 Session Pool
	1.10.1.2.1 Providing the DB Token Programmatically
	1.10.1.2.2 Providing the DB Token in a File

	1.11 Features to Improve Application Performance and Scalability
	1.12 Oracle Database Advanced Queuing
	1.13 XA Library Support
	1.14 Annotations Support in OCI
	1.14.1 Annotations Support for Objects

	1.15 Oracle Instant Client and Oracle Instant client Basic Light

	2 Building and Configuring OCI Applications
	2.1 Header File and Makefile Locations
	2.2 Building an OCI Application on Linux and UNIX
	2.2.1 Oracle Directory Structure
	2.2.2 Demonstration OCI Programs

	2.3 Building an Application on Windows
	2.4 Database Connection Strings
	2.4.1 Examples of Oracle Database Connection String Connect Identifiers

	2.5 Client and Server Operating with Different Versions of Time Zone Files
	2.6 OCI Support for Centralized Configuration Store
	2.6.1 User Credentials
	2.6.1.1 OCISessionBegin()
	2.6.1.2 OCISessionGet()
	2.6.1.3 OCISessionPoolCreate()
	2.6.1.4 Credentials Precedence
	2.6.1.4.1 OCI_ATTR_SERVER_FLAGS

	2.6.1.5 Restrictions

	2.6.2 Application Attributes
	2.6.2.1 Precedence

	2.7 OCI Client-Side Deployment Parameters Using oraaccess.xml
	2.7.1 About oraaccess.xml
	2.7.2 About Client-Side Deployment Parameters Specified in oraaccess.xml
	2.7.3 High Level Structure of oraaccess.xml
	2.7.4 About Specifying Global Parameters in oraaccess.xml
	2.7.5 About Specifying Defaults for Connection Parameters
	2.7.6 Overriding Connection Parameters at the Connection-String Level
	2.7.7 About OCI Session Pool Configuration in oraaccess.xml
	2.7.8 File (oraaccess.xml) Properties

	2.8 About Compatibility and Upgrading
	2.8.1 Oracle Client and Server Cross Version Compatibility
	2.8.2 Version Compatibility of Statically Linked and Dynamically Linked Applications
	2.8.3 Unsupported OCI Routines

	2.9 Fault Diagnosability in OCI
	2.9.1 About Fault Diagnosability in OCI
	2.9.2 ADR Base Location
	2.9.3 Using ADRCI
	2.9.4 Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora

	3 OCI Programming Basics
	3.1 Overview of OCI Program Programming
	3.2 OCI Data Structures
	3.2.1 Handles
	3.2.1.1 About Allocating and Freeing Handles
	3.2.1.2 Environment Handle
	3.2.1.3 Error Handle
	3.2.1.4 Service Context Handle and Associated Handles
	3.2.1.5 Statement, Bind, and Define Handles
	3.2.1.6 Describe Handle
	3.2.1.7 Complex Object Retrieval Handle
	3.2.1.8 Thread Handle
	3.2.1.9 Subscription Handle
	3.2.1.10 Direct Path Handles
	3.2.1.11 Connection Pool Handle
	3.2.1.12 Handle Attributes

	3.2.2 OCI Descriptors
	3.2.2.1 Snapshot Descriptor
	3.2.2.2 LOB and BFILE Locators
	3.2.2.3 Parameter Descriptor
	3.2.2.4 ROWID Descriptor
	3.2.2.5 Date, Datetime, and Interval Descriptors
	3.2.2.6 Complex Object Descriptor
	3.2.2.7 Advanced Queuing Descriptors
	3.2.2.8 User Memory Allocation

	3.3 OCI Programming Steps
	3.3.1 OCI Environment Initialization
	3.3.1.1 About Creating the OCI Environment
	3.3.1.2 About Allocating Handles and Descriptors
	3.3.1.3 Application Initialization, Connection, and Session Creation
	3.3.1.3.1 Single User, Single Connection
	3.3.1.3.2 Client Access Through a Proxy
	3.3.1.3.3 Nonproxy Multiple Sessions or Connections

	3.3.2 About Processing SQL Statements in OCI
	3.3.3 Commit or Roll Back Operations
	3.3.4 About Terminating the Application
	3.3.5 Error Handling in OCI
	3.3.5.1 Return and Error Codes for Data
	3.3.5.2 Functions Returning Other Values

	3.4 Additional Coding Guidelines
	3.4.1 Operating System Considerations
	3.4.2 Parameter Types
	3.4.2.1 Address Parameters
	3.4.2.2 Integer Parameters
	3.4.2.3 Character String Parameters

	3.4.3 Inserting Nulls into a Column
	3.4.4 Indicator Variables
	3.4.4.1 Input
	3.4.4.2 Output
	3.4.4.3 Indicator Variables for Named Data Types and REFs

	3.4.5 About Canceling Calls
	3.4.6 Positioned Updates and Deletes
	3.4.7 Reserved Words
	3.4.7.1 Oracle Reserved Namespaces

	3.4.8 Polling Mode Operations in OCI
	3.4.9 Nonblocking Mode in OCI
	3.4.10 Setting Blocking Modes
	3.4.11 Canceling a Nonblocking Call

	3.5 About Using PL/SQL in an OCI Program
	3.6 OCI Globalization Support
	3.6.1 Client Character Set Control from OCI
	3.6.2 Character Control and OCI Interfaces
	3.6.3 Character-Length Semantics in OCI
	3.6.4 Character Set Support in OCI
	3.6.5 Controlling Language and Territory in OCI
	3.6.6 Other OCI Globalization Support Functions
	3.6.7 About Getting Locale Information in OCI
	3.6.8 About OCI and the BOM (Byte Order Mark)
	3.6.9 About Manipulating Strings in OCI
	3.6.10 About Converting Character Sets in OCI
	3.6.11 OCI Messaging Functions
	3.6.12 lmsgen Utility
	3.6.12.1 Guidelines for Text Message Files
	3.6.12.2 An Example of Creating a Binary Message File from a Text Message File

	4 Data Types
	4.1 Oracle Data Types
	4.1.1 About Using External Data Type Codes

	4.2 Internal Data Types
	4.2.1 LONG, RAW, LONG RAW, VARCHAR2
	4.2.2 Character Strings and Byte Arrays
	4.2.3 UROWID
	4.2.4 BINARY_FLOAT and BINARY_DOUBLE
	4.2.5 JSON

	4.3 External Data Types
	4.3.1 BOOLEAN
	4.3.2 VARCHAR2
	4.3.2.1 Input
	4.3.2.2 Output

	4.3.3 NUMBER
	4.3.4 64-Bit Integer Host Data Type
	4.3.4.1 OCI Bind and Define for 64-Bit Integers
	4.3.4.2 Support for OUT Bind DML Returning Statements

	4.3.5 INTEGER
	4.3.6 FLOAT
	4.3.7 STRING
	4.3.7.1 Input
	4.3.7.2 Output

	4.3.8 VARNUM
	4.3.9 LONG
	4.3.10 VARCHAR
	4.3.11 DATE
	4.3.12 RAW
	4.3.13 VARRAW
	4.3.14 LONG RAW
	4.3.15 UNSIGNED
	4.3.16 LONG VARCHAR
	4.3.17 LONG VARRAW
	4.3.18 CHAR
	4.3.18.1 Input
	4.3.18.2 Output

	4.3.19 CHARZ
	4.3.20 Named Data Types: Object, VARRAY, Nested Table
	4.3.21 REF
	4.3.22 ROWID Descriptor
	4.3.23 LOB Descriptor
	4.3.23.1 BFILE
	4.3.23.2 BLOB
	4.3.23.3 CLOB
	4.3.23.4 NCLOB

	4.3.24 JSON Descriptor
	4.3.25 Datetime and Interval Data Type Descriptors
	4.3.25.1 ANSI DATE
	4.3.25.2 TIMESTAMP
	4.3.25.3 TIMESTAMP WITH TIME ZONE
	4.3.25.4 TIMESTAMP WITH LOCAL TIME ZONE
	4.3.25.5 INTERVAL YEAR TO MONTH
	4.3.25.6 INTERVAL DAY TO SECOND
	4.3.25.7 About Avoiding Unexpected Results Using Datetime

	4.3.26 Native Float and Native Double
	4.3.27 C Object-Relational Data Type Mappings

	4.4 Data Conversions
	4.4.1 Data Conversions for LOB Data Type Descriptors
	4.4.2 Data Conversions for JSON Data Type
	4.4.3 Data Conversions for Datetime and Interval Data Types
	4.4.3.1 Assignment Notes
	4.4.3.2 Data Conversion Notes for Datetime and Interval Types

	4.4.4 Datetime and Date Upgrading Rules
	4.4.4.1 Pre-9.0 Client with 9.0 or Later Server
	4.4.4.2 Pre-9.0 Server with 9.0 or Later Client

	4.4.5 Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

	4.5 Typecodes
	4.5.1 Relationship Between SQLT and OCI_TYPECODE Values

	4.6 Definitions in oratypes.h

	5 Using SQL Statements in OCI
	5.1 Overview of SQL Statement Processing
	5.2 About Preparing Statements
	5.2.1 About Using Prepared Statements on Multiple Servers

	5.3 About Binding Placeholders in OCI
	5.3.1 Rules for Placeholders

	5.4 About Executing Statements
	5.4.1 Execution Snapshots
	5.4.2 Execution Modes of OCIStmtExecute()
	5.4.2.1 Using Batch Error Mode
	5.4.2.2 Example of Batch Error Mode

	5.5 About Describing Select-List Items
	5.5.1 Implicit Describe
	5.5.2 Explicit Describe of Queries

	5.6 About Defining Output Variables in OCI
	5.7 About Fetching Results
	5.7.1 About Fetching LOB Data
	5.7.2 About Setting Prefetch Count

	5.8 About Using Scrollable Cursors in OCI
	5.8.1 About Increasing Scrollable Cursor Performance
	5.8.2 Example of Access on a Scrollable Cursor
	5.8.3 Support for JSON and Vector Data Types with Scrollable Cursors

	6 Binding and Defining in OCI
	6.1 Overview of Binding in OCI
	6.1.1 Named Binds and Positional Binds
	6.1.2 OCI Array Interface
	6.1.3 About Binding Placeholders in PL/SQL
	6.1.4 Steps Used in OCI Binding
	6.1.5 PL/SQL Block in an OCI Program

	6.2 Advanced Bind Operations in OCI
	6.2.1 About Binding LOBs
	6.2.1.1 Binding LOB Locators
	6.2.1.1.1 Restrictions on Binding LOB Locators

	6.2.2 About Binding in OCI_DATA_AT_EXEC Mode
	6.2.3 About Binding REF CURSOR Variables

	6.3 Overview of Defining in OCI
	6.3.1 Steps Used in OCI Defining

	6.4 Advanced Define Operations in OCI
	6.4.1 About Defining LOB Output Variables
	6.4.1.1 About Defining LOB Locators
	6.4.1.2 About Defining LOB Data

	6.4.2 About Defining PL/SQL Output Variables
	6.4.3 About Defining for a Piecewise Fetch

	6.5 About Binding and Defining LOB Data
	6.5.1 Restrictions on Binding LOB Data
	6.5.2 Getting the LOB Length when Selecting LOB Data
	6.5.3 Examples of Binding LOB Data

	6.6 About Binding and Defining JSON Data
	6.6.1 Using JSON Descriptor Interface (SQLT_JSON)
	6.6.2 Using LOB Locator Interface
	6.6.2.1 Fetching JSON as LOBs

	6.6.3 Using Data Interface (Other SQL data types)
	6.6.3.1 Binds
	6.6.3.2 Defines

	6.7 About Array Binds and Defines with JSON Data
	6.8 About Binding and Defining Arrays of Structures in OCI
	6.8.1 Skip Parameters
	6.8.1.1 Skip Parameters for Standard Arrays

	6.8.2 OCI Calls Used with Arrays of Structures
	6.8.3 Arrays of Structures and Indicator Variables

	6.9 About Binding and Defining Multiple Buffers
	6.10 DML with a RETURNING Clause in OCI
	6.10.1 About Using DML with a RETURNING Clause to Combine Two SQL Statements
	6.10.2 About Binding RETURNING...INTO Variables
	6.10.3 OCI Error Handling
	6.10.4 DML with RETURNING REF...INTO Clause in OCI
	6.10.4.1 Binding the Output Variable

	6.10.5 Additional Notes About OCI Callbacks
	6.10.6 Array Interface for DML RETURNING Statements in OCI

	6.11 Character Conversion in OCI Binding and Defining
	6.11.1 About Choosing a Character Set
	6.11.1.1 Character Set Form and ID
	6.11.1.2 Implicit Conversion Between CHAR and NCHAR

	6.11.2 About Setting Client Character Sets in OCI
	6.11.3 About Binding Variables in OCI
	6.11.3.1 About Using the OCI_ATTR_MAXDATA_SIZE Attribute
	6.11.3.2 About Using the OCI_ATTR_MAXCHAR_SIZE Attribute
	6.11.3.3 Buffer Expansion During OCI Binding
	6.11.3.3.1 IN Binds
	6.11.3.3.2 Dynamic SQL
	6.11.3.3.3 Buffer Expansion During Inserts

	6.11.3.4 Constraint Checking During Defining
	6.11.3.4.1 Dynamic SQL Selects
	6.11.3.4.2 Return Lengths

	6.11.3.5 General Compatibility Issues for Character-Length Semantics in OCI
	6.11.3.5.1 Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE
	6.11.3.5.2 Code Example for UTF-16 Binding and Defining

	6.12 PL/SQL REF CURSORs and Nested Tables in OCI
	6.13 Natively Describe and Bind All PL/SQL Types Including Package Types
	6.14 Runtime Data Allocation and Piecewise Operations in OCI
	6.14.1 Valid Data Types for Piecewise Operations
	6.14.2 Types of Piecewise Operations
	6.14.3 About Providing INSERT or UPDATE Data at Runtime
	6.14.3.1 Performing a Piecewise Insert or Update

	6.14.4 Piecewise Operations with PL/SQL
	6.14.5 PL/SQL Indexed Table Binding Support
	6.14.5.1 Restrictions for PL/SQL Indexed Table Binding Interface

	6.14.6 About Providing FETCH Information at Run Time
	6.14.6.1 Performing a Piecewise Fetch

	6.14.7 Piecewise Binds and Defines for LOBs

	7 Describing Schema Metadata
	7.1 About Using OCIDescribeAny()
	7.1.1 Limitations on OCIDescribeAny()
	7.1.2 Notes on Types and Attributes
	7.1.2.1 Data Type Codes
	7.1.2.2 About Describing Types
	7.1.2.3 Implicit and Explicit Describe Operations
	7.1.2.4 OCI_ATTR_LIST_ARGUMENTS Attribute

	7.2 Parameter Attributes
	7.2.1 Table or View Parameters
	7.2.2 Procedure, Function, and Subprogram Attributes
	7.2.3 Package Attributes
	7.2.4 Type Attributes
	7.2.5 Type Attribute Attributes
	7.2.6 Type Method Attributes
	7.2.7 Collection Attributes
	7.2.8 Synonym Attributes
	7.2.9 Sequence Attributes
	7.2.10 Column Attributes
	7.2.11 Argument and Result Attributes
	7.2.12 List Attributes
	7.2.13 Schema Attributes
	7.2.14 Database Attributes
	7.2.15 Rule Attributes
	7.2.16 Rule Set Attributes
	7.2.17 Evaluation Context Attributes
	7.2.18 Table Alias Attributes
	7.2.19 Variable Type Attributes
	7.2.20 Name Value Attributes

	7.3 Character-Length Semantics Support in Describe Operations
	7.3.1 Implicit Describing
	7.3.2 Explicit Describing
	7.3.2.1 Client and Server Compatibility Issues for Describing

	7.4 Examples Using OCIDescribeAny()
	7.4.1 Describing with Boolean Data Type Columns
	7.4.2 Retrieving Column Data Types for a Table
	7.4.3 Describing the Stored Procedure
	7.4.4 Retrieving Attributes of an Object Type
	7.4.5 Retrieving the Collection Element's Data Type of a Named Collection Type
	7.4.6 Describing with Character-Length Semantics
	7.4.7 Describing Each Column to Know Whether It Is an Invisible Column

	8 LOB and BFILE Operations
	8.1 About Using OCI Functions for LOBs
	8.1.1 LOB Performance Guidelines

	8.2 About Creating and Modifying Persistent LOBs
	8.3 About Associating a BFILE in a Table with an Operating System File
	8.4 LOB Attributes of an Object
	8.4.1 Writing to a LOB Attribute of an Object
	8.4.2 Transient Objects with LOB Attributes

	8.5 Array Interface for LOBs
	8.6 About Using LOBs of Size Greater than 4 GB
	8.6.1 Functions to Use for the Increased LOB Sizes
	8.6.2 Compatibility and Migration

	8.7 LOB and BFILE Functions in OCI
	8.7.1 About Improving LOB Read/Write Performance
	8.7.1.1 About Using Data Interface for LOBs
	8.7.1.2 About Using OCILobGetChunkSize()
	8.7.1.3 About Using OCILobWriteAppend2()
	8.7.1.4 About Using OCILobArrayRead() and OCILobArrayWrite()

	8.7.2 Functions for Opening and Closing LOBs
	8.7.2.1 Restrictions on Opening and Closing LOBs

	8.7.3 LOB Read and Write Callbacks
	8.7.3.1 Callback Interface for Streaming
	8.7.3.2 Reading LOBs by Using Callbacks
	8.7.3.3 Writing LOBs by Using Callbacks

	8.8 Temporary LOB Support
	8.8.1 Creating and Freeing Temporary LOBs
	8.8.2 Temporary LOB Durations
	8.8.3 About Freeing Temporary LOBs
	8.8.4 Take Care When Assigning Pointers
	8.8.5 Temporary LOB Example

	8.9 Prefetching of LOB Data, Length, and Chunk Size
	8.10 Options of SecureFiles LOBs

	9 Managing Scalable Platforms
	9.1 OCI Support for Transactions
	9.2 Levels of Transactional Complexity
	9.2.1 Simple Local Transactions
	9.2.2 Serializable or Read-Only Local Transactions
	9.2.3 Global Transactions
	9.2.3.1 Transaction Identifiers
	9.2.3.2 Attribute OCI_ATTR_TRANS_NAME
	9.2.3.3 Transaction Branches
	9.2.3.4 Branch States
	9.2.3.5 Detaching and Resuming Branches
	9.2.3.6 About Setting the Client Database Name
	9.2.3.7 One-Phase Commit Versus Two-Phase Commit
	9.2.3.8 Preparing Multiple Branches in a Single Message

	9.2.4 Transaction Examples
	9.2.5 Initialization Parameters
	9.2.5.1 Showing Update Successfully, One-Phase Commit
	9.2.5.2 Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase Commit
	9.2.5.3 Showing a Read-Only Update Fails
	9.2.5.4 Showing Starting a Read-Only Transaction, Select, and Commit

	9.3 Password and Session Management
	9.3.1 OCI Authentication Management
	9.3.2 OCI Password Management
	9.3.2.1 Gradual Database Password Rollover

	9.3.3 Secure External Password Store
	9.3.4 OCI Session Management

	9.4 Middle-Tier Applications in OCI
	9.4.1 OCI Attributes for Middle-Tier Applications
	9.4.1.1 OCI_CRED_PROXY
	9.4.1.2 OCI_ATTR_PROXY_CREDENTIALS
	9.4.1.3 OCI_ATTR_DISTINGUISHED_NAME
	9.4.1.4 OCI_ATTR_CERTIFICATE
	9.4.1.5 OCI_ATTR_INITIAL_CLIENT_ROLES
	9.4.1.6 OCI_ATTR_CLIENT_IDENTIFIER
	9.4.1.7 OCI_ATTR_PASSWORD

	9.5 Externally Initialized Context in OCI
	9.5.1 Externally Initialized Context Attributes in OCI
	9.5.1.1 OCI_ATTR_APPCTX_SIZE
	9.5.1.2 OCI_ATTR_APPCTX_LIST
	9.5.1.3 Session Handle Attributes Used to Set an Externally Initialized Context

	9.5.2 End-to-End Application Tracing
	9.5.2.1 OCI_ATTR_COLLECT_CALL_TIME
	9.5.2.2 OCI_ATTR_CALL_TIME
	9.5.2.3 Attributes for End-to-End Application Tracing

	9.5.3 Using OCISessionBegin() with an Externally Initialized Context

	9.6 Client Application Context
	9.6.1 Using Multiple SET Operations
	9.6.2 Using CLEAR-ALL Operations Between SET Operations
	9.6.3 Network Transport and PL/SQL on Client Namespace

	9.7 Using Edition-Based Redefinition
	9.8 OCI Security Enhancements
	9.8.1 Controlling the Database Version Banner Displayed
	9.8.2 Banners for Unauthorized Access and User Actions Auditing
	9.8.3 Non-Deferred Linkage

	9.9 Overview of OCI Multithreaded Development
	9.9.1 Advantages of OCI Thread Safety
	9.9.2 OCI Thread Safety and Three-Tier Architectures
	9.9.3 About Implementing Thread Safety
	9.9.3.1 About Polling Mode Operations and Thread Safety
	9.9.3.2 Mixing 7.x and Later Release OCI Calls

	9.10 OCIThread Package
	9.10.1 Initialization and Termination
	9.10.1.1 OCIThread Context

	9.10.2 Passive Threading Primitives
	9.10.2.1 OCIThreadMutex
	9.10.2.2 OCIThreadKey
	9.10.2.3 OCIThreadKeyDestFunc
	9.10.2.4 OCIThreadId

	9.10.3 Active Threading Primitives
	9.10.3.1 OCIThreadHandle

	10 Session Pooling and Connection Pooling in OCI
	10.1 Session Pooling in OCI
	10.1.1 Functionality of OCI Session Pooling
	10.1.2 Homogeneous and Heterogeneous Session Pools
	10.1.3 About Using Tags in Session Pools
	10.1.3.1 Multi-Property Tags
	10.1.3.1.1 PL/SQL Callback for Session State Fix Up

	10.1.4 OCI Handles for Session Pooling
	10.1.4.1 OCISPool
	10.1.4.2 OCIAuthInfo

	10.1.5 Using OCI Session Pooling
	10.1.6 OCI Calls for Session Pooling
	10.1.6.1 Allocate the Pool Handle
	10.1.6.2 Create the Pool Session
	10.1.6.3 Log On to the Database
	10.1.6.4 Log Off from the Database
	10.1.6.5 Destroy the Session Pool
	10.1.6.6 Free the Pool Handle

	10.1.7 Example of OCI Session Pooling

	10.2 Database Resident Connection Pooling
	10.3 About Using Oracle Connection Manager in Traffic Director Mode
	10.4 Connection Pooling in OCI
	10.4.1 OCI Connection Pooling Concepts
	10.4.1.1 Similarities and Differences from a Shared Server
	10.4.1.2 Stateless Sessions Versus Stateful Sessions
	10.4.1.3 Multiple Connection Pools
	10.4.1.4 Transparent Application Failover

	10.4.2 Using OCI Calls for Connection Pooling
	10.4.2.1 Allocate the Pool Handle
	10.4.2.2 Create the Connection Pool
	10.4.2.3 Log On to the Database
	10.4.2.4 Deal with SGA Limitations in Connection Pooling
	10.4.2.5 Log Off from the Database
	10.4.2.6 Destroy the Connection Pool
	10.4.2.7 Free the Pool Handle

	10.4.3 Examples of OCI Connection Pooling

	10.5 When to Use Connection Pooling, Session Pooling, or Neither
	10.5.1 Functions for Session Creation
	10.5.2 About Choosing Between Different Types of OCI Sessions

	11 High Availability in OCI
	11.1 Runtime Connection Load Balancing
	11.2 HA Event Notification
	11.2.1 OCIEvent Handle
	11.2.2 OCI Failover for Connection and Session Pools
	11.2.3 OCI Failover for Independent Connections
	11.2.4 Event Callback
	11.2.5 Custom Pooling: Tagged Server Handles
	11.2.6 About Determining Transparent Application Failover (TAF) Capabilities

	11.3 Transparent Application Failover in OCI
	11.3.1 About Configuring Transparent Application Failover
	11.3.2 Transparent Application Failover Callbacks in OCI
	11.3.3 Transparent Application Failover Callback Structure and Parameters
	11.3.4 Failover Callback Structure and Parameters
	11.3.5 Failover Callback Registration
	11.3.6 Failover Callback Example
	11.3.7 Handling OCI_FO_ERROR
	11.3.8 TAF Support for IAM Based Token Authentication in OCI
	11.3.8.1 Providing the DB Token Programmatically
	11.3.8.2 Providing the DB Token in a File

	11.4 OCI and Transaction Guard
	11.4.1 Developing Applications that Use Transaction Guard
	11.4.1.1 Typical Transaction Guard Usage
	11.4.1.2 Transaction Guard Examples

	11.5 OCI and Application Continuity
	11.5.1 About Added Support for Application Continuity
	11.5.2 What Happens Following a Recoverable Error
	11.5.3 Criteria for Successful Replay
	11.5.4 What Factors Disable Application Continuity in OCI
	11.5.5 Failed Replay
	11.5.6 When Is Application Continuity Most Effective
	11.5.6.1 Application Continuity in OCI Does Not Support These Constructs
	11.5.6.2 Possible Side Effects of Application Continuity

	11.5.7 When Application Continuity in OCI Can Fail Over

	11.6 Support for Transparent Application Continuity
	11.6.1 Service Attributes and Supported Values

	12 Notification Methods and Database Advanced Queuing
	12.1 About Continuous Query Notification
	12.2 Publish-Subscribe Notification in OCI
	12.2.1 Publish-Subscribe Registration Functions in OCI
	12.2.1.1 Publish-Subscribe Register Directly to the Database
	12.2.1.2 Open Registration for Publish-Subscribe
	12.2.1.3 Using OCI to Open Register with LDAP
	12.2.1.4 Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number
	12.2.1.5 OCI Functions Used to Manage Publish-Subscribe Notification

	12.2.2 Notification Callback in OCI
	12.2.3 Notification Procedure
	12.2.4 Publish-Subscribe Direct Registration Example
	12.2.5 Publish-Subscribe LDAP Registration Example

	12.3 OCI and Database Advanced Queuing
	12.3.1 OCI Database Advanced Queuing Functions
	12.3.2 OCI Database Advanced Queuing Descriptors
	12.3.3 Database Advanced Queuing in OCI Versus PL/SQL
	12.3.4 Using Buffered Messaging

	13 User-Defined Callback Functions in OCI
	13.1 About Registering User Callbacks in OCI
	13.1.1 OCIUserCallbackRegister
	13.1.2 User Callback Function
	13.1.3 User Callback Control Flow
	13.1.4 User Callback for OCIErrorGet()
	13.1.5 Errors from Entry Callbacks
	13.1.6 Dynamic Callback Registrations
	13.1.7 About Loading Multiple Packages
	13.1.8 Package Format
	13.1.9 User Callback Chaining
	13.1.10 About Accessing Other Data Sources Through OCI
	13.1.11 Restrictions on Callback Functions
	13.1.12 Example of OCI Callbacks

	13.2 OCI Callbacks from External Procedures

	14 Performance Topics
	14.1 Statement Caching in OCI
	14.1.1 Statement Caching Without Session Pooling in OCI
	14.1.2 Statement Caching with Session Pooling in OCI
	14.1.3 Rules for Statement Caching in OCI
	14.1.4 Bind and Define Optimization in Statement Caching
	14.1.5 OCI Statement Caching Code Example

	14.2 Implicit Fetching of ROWIDs
	14.2.1 About Implicit Fetching of ROWIDs
	14.2.2 Example of Implicit Fetching of ROWIDs

	14.3 OCI Support for Implicit Results
	14.4 Client Result Cache
	14.5 Client Statement Cache Auto-Tuning
	14.5.1 About Auto-Tuning Client Statement Cache
	14.5.2 Benefit of Auto-Tuning Client Statement Cache
	14.5.3 Client Statement Cache Auto-Tuning Parameters
	14.5.3.1 <statement_cache>
	14.5.3.2 <auto_tune>
	14.5.3.2.1 <enable>true</enable>
	14.5.3.2.2 <ram_threshold>
	14.5.3.2.3 <memory_target>

	14.5.3.3 Comparison of the Connection Specific Auto-Tuning Parameters

	14.5.4 Usage Examples of Client Statement Cache Auto Tuning
	14.5.5 Enabling and Disabling OCI Client Auto-Tuning
	14.5.6 Usage Guidelines for Auto-Tuning Client Statement Cache

	15 Database Startup and Shutdown
	15.1 About OCI Database Startup and Shutdown
	15.2 Examples of Startup and Shutdown in OCI

	16 Support for Pluggable Databases
	16.1 Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in General
	16.2 OCI Enhancements for ALTER SESSION SET CONTAINER
	16.3 Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in General
	16.4 Restrictions on OCI Calls with ALTER SESSION SET CONTAINER
	16.5 Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH SERVICE

	17 OCI Interface for Using Shards
	17.1 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from an OCI Session Pool
	17.2 About Specifying a Sharding Key and Super Sharding Key for Getting a Connection from a Custom Pool

	18 OCI Object-Relational Programming
	18.1 OCI Object Overview
	18.2 About Working with Objects in OCI
	18.2.1 Basic Object Program Structure
	18.2.2 Persistent Objects, Transient Objects, and Values
	18.2.2.1 Persistent Objects
	18.2.2.2 Transient Objects
	18.2.2.3 Values

	18.3 About Developing an OCI Object Application
	18.3.1 About Representing Objects in C Applications
	18.3.2 About Initializing the Environment and the Object Cache
	18.3.3 About Making Database Connections
	18.3.4 Retrieving an Object Reference from the Server
	18.3.5 Pinning an Object
	18.3.5.1 Array Pin

	18.3.6 Manipulating Object Attributes
	18.3.7 About Marking Objects and Flushing Changes
	18.3.8 Fetching Embedded Objects
	18.3.9 Object Meta-Attributes
	18.3.9.1 Persistent Object Meta-Attributes
	18.3.9.2 Additional Attribute Functions
	18.3.9.3 Transient Object Meta-Attributes

	18.3.10 Complex Object Retrieval
	18.3.10.1 About Prefetching Objects
	18.3.10.2 About Implementing Complex Object Retrieval in OCI

	18.3.11 COR Prefetching
	18.3.11.1 COR Interface
	18.3.11.2 Example of COR

	18.3.12 OCI Versus SQL Access to Objects
	18.3.13 Pin Count and Unpinning
	18.3.14 NULL Indicator Structure
	18.3.15 About Creating Objects
	18.3.15.1 Attribute Values of New Objects

	18.3.16 About Freeing and Copying Objects
	18.3.17 Object Reference and Type Reference
	18.3.18 Create Objects Based on Object Views and Object Tables with Primary-Key-Based OIDs
	18.3.19 Error Handling in Object Applications

	18.4 About Type Inheritance
	18.4.1 Substitutability
	18.4.2 NOT INSTANTIABLE Types and Methods
	18.4.3 OCI Support for Type Inheritance
	18.4.3.1 OCIDescribeAny()
	18.4.3.2 Bind and Define Functions
	18.4.3.3 OCIObjectGetTypeRef()
	18.4.3.4 OCIObjectCopy()
	18.4.3.5 OCICollAssignElem()
	18.4.3.6 OCICollAppend()
	18.4.3.7 OCICollGetElem()

	18.4.4 OTT Support for Type Inheritance

	18.5 About Type Evolution

	19 Object-Relational Data Types in OCI
	19.1 Overview of OCI Functions for Objects
	19.2 About Mapping Oracle Data Types to C
	19.2.1 OCI Type Mapping Methodology

	19.3 About Manipulating C Data Types with OCI
	19.3.1 Precision of Oracle Number Operations

	19.4 Date (OCIDate)
	19.4.1 Date Example

	19.5 Datetime and Interval (OCIDateTime, OCIInterval)
	19.5.1 About Datetime Functions
	19.5.2 Datetime Example
	19.5.3 About Interval Functions

	19.6 Number (OCINumber)
	19.6.1 OCINumber Examples

	19.7 Fixed or Variable-Length String (OCIString)
	19.7.1 About String Functions
	19.7.2 String Example

	19.8 Raw (OCIRaw)
	19.8.1 About Raw Functions
	19.8.2 Raw Example

	19.9 Collections (OCITable, OCIArray, OCIColl, OCIIter)
	19.9.1 Generic Collection Functions
	19.9.2 About Collection Data Manipulation Functions
	19.9.3 About Collection Scanning Functions
	19.9.4 Varray/Collection Iterator Example
	19.9.5 About Nested Table Manipulation Functions
	19.9.5.1 Nested Table Element Ordering

	19.9.6 Nested Table Locators

	19.10 About Multilevel Collection Types
	19.10.1 Multilevel Collection Type Example

	19.11 REF (OCIRef)
	19.11.1 About REF Manipulation Functions
	19.11.2 REF Example

	19.12 Object Type Information Storage and Access
	19.12.1 Descriptor Objects

	19.13 AnyType, AnyData, and AnyDataSet Interfaces
	19.13.1 About Type Interfaces
	19.13.1.1 About Creating a Parameter Descriptor for OCIType Calls
	19.13.1.2 About Obtaining the OCIType for Persistent Types
	19.13.1.3 Type Access Calls
	19.13.1.4 Extensions to OCIDescribeAny()

	19.13.2 About OCIAnyData Interfaces
	19.13.3 NCHAR Typecodes for OCIAnyData Functions
	19.13.4 About OCIAnyDataSet Interfaces

	19.14 About Binding Named Data Types
	19.14.1 Named Data Type Binds
	19.14.2 About Binding REFs
	19.14.3 Information for Named Data Type and REF Binds
	19.14.4 Information Regarding Array Binds

	19.15 About Defining Named Data Types
	19.15.1 About Defining Named Data Type Output Variables
	19.15.2 About Defining REF Output Variables
	19.15.3 Information for Named Data Type and REF Defines, and PL/SQL OUT Binds
	19.15.3.1 Information About Array Defines

	19.16 About Binding and Defining Oracle C Data Types
	19.16.1 Bind and Define Examples
	19.16.2 Salary Update Examples
	19.16.2.1 Method 1 - Fetch, Convert, Assign
	19.16.2.2 Method 2 - Fetch and Assign
	19.16.2.3 Method 3 - Direct Fetch
	19.16.2.4 Summary and Notes

	19.17 SQLT_NTY Bind and Define Examples
	19.17.1 SQLT_NTY Bind Example
	19.17.2 SQLT_NTY Define Example

	20 Direct Path Load Interface
	20.1 Direct Path Loading Overview
	20.1.1 Data Types Supported for Direct Path Loading
	20.1.2 Direct Path Handles
	20.1.2.1 Direct Path Context
	20.1.2.2 OCI Direct Path Function Context
	20.1.2.3 Direct Path Column Array and Direct Path Function Column Array
	20.1.2.4 Direct Path Stream

	20.1.3 About Direct Path Interface Functions
	20.1.4 Limitations and Restrictions of the Direct Path Load Interface
	20.1.5 Direct Path Load Examples for Scalar Columns
	20.1.5.1 Data Structures Used in Direct Path Loading Example
	20.1.5.2 Outline of an Example of a Direct Path Load for Scalar Columns

	20.1.6 About Using a Date Cache in Direct Path Loading of Dates in OCI
	20.1.6.1 OCI_ATTR_DIRPATH_DCACHE_SIZE
	20.1.6.2 OCI_ATTR_DIRPATH_DCACHE_NUM
	20.1.6.3 OCI_ATTR_DIRPATH_DCACHE_MISSES
	20.1.6.4 OCI_ATTR_DIRPATH_DCACHE_HITS
	20.1.6.5 OCI_ATTR_DIRPATH_DCACHE_DISABLE

	20.1.7 About Validating Format for Oracle NUMBER and DATE Data

	20.2 Direct Path Loading of Object Types
	20.2.1 Direct Path Loading of Nested Tables
	20.2.1.1 Describing a Nested Table Column and Its Nested Table

	20.2.2 Direct Path Loading of Column Objects
	20.2.2.1 Describing a Column Object
	20.2.2.2 Allocating the Array Column for the Column Object
	20.2.2.3 Loading Column Object Data into the Column Array
	20.2.2.4 OCI_DIRPATH_COL_ERROR

	20.2.3 Direct Path Loading of SQL String Columns
	20.2.3.1 Describing a SQL String Column
	20.2.3.2 Allocating the Column Array for SQL String Columns
	20.2.3.3 Loading the SQL String Data into the Column Array

	20.2.4 Direct Path Loading of REF Columns
	20.2.4.1 Describing the REF Column
	20.2.4.2 Allocating the Column Array for a REF Column
	20.2.4.3 Loading the REF Data into the Column Array

	20.2.5 Direct Path Loading of NOT FINAL Object and REF Columns
	20.2.5.1 Inheritance Hierarchy
	20.2.5.2 About Describing a Fixed, Derived Type to Be Loaded
	20.2.5.3 About Allocating the Column Array
	20.2.5.4 About Loading the Data into the Column Array

	20.2.6 Direct Path Loading of Object Tables
	20.2.7 Direct Path Loading a NOT FINAL Object Table

	20.3 Direct Path Loading in Pieces
	20.3.1 Loading Object Types in Pieces

	20.4 Direct Path Context Handles and Attributes for Object Types
	20.4.1 Direct Path Context Attributes
	20.4.1.1 OCI_ATTR_DIRPATH_OBJ_CONSTR

	20.4.2 Direct Path Function Context and Attributes
	20.4.2.1 OCI_ATTR_DIRPATH_OBJ_CONSTR
	20.4.2.2 OCI_ATTR_NAME
	20.4.2.3 OCI_ATTR_DIRPATH_EXPR_TYPE
	20.4.2.4 OCI_ATTR_DIRPATH_NO_INDEX_ERRORS
	20.4.2.5 OCI_ATTR_NUM_COLS
	20.4.2.6 OCI_ATTR_NUM_ROWS

	20.4.3 Direct Path Column Parameter Attributes
	20.4.3.1 OCI_ATTR_NAME
	20.4.3.2 OCI_ATTR_DIRPATH_SID
	20.4.3.3 OCI_ATTR_DIRPATH_OID

	20.4.4 Direct Path Function Column Array Handle for Nonscalar Columns
	20.4.4.1 OCI_ATTR_NUM_ROWS Attribute

	21 Object Advanced Topics in OCI
	21.1 Object Cache and Memory Management
	21.1.1 Cache Consistency and Coherency
	21.1.2 Object Cache Parameters
	21.1.3 Object Cache Operations
	21.1.3.1 About Pinning and Unpinning
	21.1.3.2 About Freeing
	21.1.3.3 About Marking and Unmarking
	21.1.3.4 About Flushing
	21.1.3.5 About Refreshing

	21.1.4 About Loading and Removing Object Copies
	21.1.4.1 About Pinning an Object Copy
	21.1.4.2 About Unpinning an Object Copy
	21.1.4.3 About Freeing an Object Copy

	21.1.5 About Making Changes to Object Copies
	21.1.5.1 About Marking an Object Copy
	21.1.5.2 About Unmarking an Object Copy

	21.1.6 About Synchronizing Object Copies with the Server
	21.1.6.1 About Flushing Changes to the Server
	21.1.6.2 About Refreshing an Object Copy

	21.1.7 Object Locking
	21.1.7.1 Lock Options
	21.1.7.2 About Locking Objects for Update
	21.1.7.3 About Locking with the NOWAIT Option
	21.1.7.4 About Implementing Optimistic Locking

	21.1.8 Commit and Rollback in Object Applications
	21.1.9 Object Duration
	21.1.9.1 Durations Example

	21.1.10 Memory Layout of an Instance

	21.2 Object Navigation
	21.2.1 Simple Object Navigation

	21.3 OCI Navigational Functions
	21.3.1 About Pin/Unpin/Free Functions
	21.3.2 About Flush and Refresh Functions
	21.3.3 About Mark and Unmark Functions
	21.3.4 About Object Meta-Attribute Accessor Functions
	21.3.5 About Other Functions

	21.4 Type Evolution and the Object Cache

	22 OCI Pipelining
	22.1 Blocking and Non-Blocking Concepts
	22.2 Introduction to OCI Pipelining
	22.2.1 Enabling OCI Pipelining

	22.3 Modes of Pipeline Operation
	22.4 OCIPipelineOperation
	22.5 The Life Cycle of the OCI Pipeline Handle
	22.5.1 Status of the Pipeline Operation

	22.6 OCI Pipeline Attributes
	22.7 OCI Functions that Support Pipelining
	22.8 When to Use Pipelining Functionality

	23 OCI Support for JSON
	23.1 JSON Data Type Support
	23.1.1 OCI Representation for JSON

	23.2 Compatibility with Client Libraries Prior to Release 21c
	23.3 Mutable and Immutable DOM
	23.3.1 Manifesting JSON as a Mutable DOM
	23.3.2 Manifesting JSON as an Immutable DOM

	23.4 Calling Sequence for Writing and Reading JSON Data
	23.5 JSON DOM Operations
	23.5.1 Scalar Types Mapping
	23.5.2 Reading JSON DOM Scalar Nodes
	23.5.3 Building a JSON DOM
	23.5.3.1 JSON Scalar Types and Scalar Constructors
	23.5.3.2 Building a DOM Using Scalar Nodes

	23.6 Multithreading Using JSON Descriptor
	23.7 Handling Character Sets
	23.8 OCI Interface for Schema Validation
	23.9 Attribute to Check if Column has JSON Schema Constraint

	24 OCI Support for XML
	24.1 XML Context
	24.2 XML Data on the Server
	24.3 Using OCI XML DB Functions
	24.4 OCI Client Access to Binary XML
	24.4.1 Accessing XML Data from an OCI Application
	24.4.2 Repository Context
	24.4.3 Create Repository Context from a Dedicated OCI Connection
	24.4.4 Create Repository Context from a Connection Pool
	24.4.5 About Associating Repository Context with a Data Connection
	24.4.6 About Setting XMLType Encoding Format Preference
	24.4.7 Example of Using a Connection Pool

	25 Using the Object Type Translator with OCI
	25.1 What Is the Object Type Translator?
	25.1.1 About Creating Types in the Database
	25.1.2 About Invoking OTT
	25.1.2.1 Command Line
	25.1.2.2 Configuration File
	25.1.2.3 INTYPE File

	25.2 OTT Command Line
	25.2.1 OTT Command-Line Invocation Example
	25.2.1.1 OTT
	25.2.1.2 USERID
	25.2.1.3 INTYPE
	25.2.1.4 OUTTYPE
	25.2.1.5 CODE
	25.2.1.6 HFILE
	25.2.1.7 INITFILE

	25.3 Intype File
	25.4 OTT Data Type Mappings
	25.4.1 About Mapping Object Data Types to C
	25.4.2 OTT Type Mapping Example
	25.4.3 Null Indicator Structs
	25.4.4 OTT Support for Type Inheritance
	25.4.4.1 Substitutable Object Attributes

	25.5 Outtype File
	25.6 About Using OTT with OCI Applications
	25.6.1 About Accessing and Manipulating Objects with OCI
	25.6.2 Calling the Initialization Function
	25.6.3 Tasks of the Initialization Function

	25.7 OTT Reference
	25.7.1 OTT Command-Line Syntax
	25.7.2 OTT Parameters
	25.7.2.1 USERID
	25.7.2.2 INTYPE
	25.7.2.3 OUTTYPE
	25.7.2.4 CODE
	25.7.2.5 INITFILE
	25.7.2.6 INITFUNC
	25.7.2.7 HFILE
	25.7.2.8 CONFIG
	25.7.2.9 ERRTYPE
	25.7.2.10 CASE
	25.7.2.11 SCHEMA_NAMES
	25.7.2.12 TRANSITIVE
	25.7.2.13 URL

	25.7.3 Where OTT Parameters Can Appear
	25.7.4 Structure of the Intype File
	25.7.4.1 Intype File Type Specifications

	25.7.5 Nested Included File Generation
	25.7.6 SCHEMA_NAMES Usage
	25.7.6.1 Example: Schema_Names Usage

	25.7.7 Default Name Mapping
	25.7.8 OTT Restriction on File Name Comparison
	25.7.9 OTT Command on Microsoft Windows

	26 Oracle Database Access C API
	26.1 Introduction to the Relational Functions
	26.1.1 Conventions for OCI Functions
	26.1.2 Purpose
	26.1.3 Syntax
	26.1.4 Parameters
	26.1.5 Comments
	26.1.6 Returns
	26.1.7 Example
	26.1.8 Related Functions
	26.1.9 About Calling OCI Functions
	26.1.10 Server Round-Trips for LOB Functions

	26.2 OCI Pipelining Functions
	26.2.1 OCIPipelineBegin()
	26.2.1.1 Callback and Context

	26.2.2 OCIPipelineProcess()
	26.2.3 OCIPipelineEnd()

	26.3 Connect, Authorize, and Initialize Functions
	26.3.1 OCIAppCtxClearAll()
	26.3.2 OCIAppCtxSet()
	26.3.3 OCIConnectionPoolCreate()
	26.3.4 OCIConnectionPoolDestroy()
	26.3.5 OCIDBShutdown()
	26.3.6 OCIDBStartup()
	26.3.7 OCIEnvCreate()
	26.3.8 OCIEnvNlsCreate()
	26.3.9 OCIInputValidate()
	26.3.10 OCILogoff()
	26.3.11 OCILogon()
	26.3.12 OCILogon2()
	26.3.13 OCIDdlEventRegister()
	26.3.14 OCIDdlEventUnregister()
	26.3.15 OCIRequestBegin()
	26.3.16 OCIRequestEnd()
	26.3.17 OCIRequestDisableReplay()
	26.3.18 OCIServerAttach()
	26.3.19 OCIServerDetach()
	26.3.20 OCISessionBegin()
	26.3.21 OCISessionEnd()
	26.3.22 OCISessionGet()
	26.3.23 OCISessionPoolCreate()
	26.3.24 OCISessionPoolDestroy()
	26.3.25 OCISessionRelease()
	26.3.26 OCITerminate()

	26.4 Handle and Descriptor Functions
	26.4.1 OCIArrayDescriptorAlloc()
	26.4.2 OCIArrayDescriptorFree()
	26.4.3 OCIAttrGet()
	26.4.4 OCIAttrSet()
	26.4.5 OCIDescriptorAlloc()
	26.4.6 OCIDescriptorFree()
	26.4.7 OCIHandleAlloc()
	26.4.8 OCIHandleFree()
	26.4.9 OCIParamGet()
	26.4.10 OCIParamSet()

	26.5 Bind, Define, and Describe Functions
	26.5.1 OCIBindArrayOfStruct()
	26.5.2 OCIBindByName()
	26.5.3 OCIBindByName2()
	26.5.4 OCIBindByPos()
	26.5.5 OCIBindByPos2()
	26.5.6 OCIBindDynamic()
	26.5.7 OCIBindObject()
	26.5.8 OCIDefineArrayOfStruct()
	26.5.9 OCIDefineByPos()
	26.5.10 OCIDefineByPos2()
	26.5.11 OCIDefineDynamic()
	26.5.12 OCIDefineObject()
	26.5.13 OCIDescribeAny()
	26.5.14 OCIStmtGetBindInfo()
	26.5.15 OCIServerDataLengthGet()

	27 More Oracle Database Access C API
	27.1 Introduction to the Relational Functions
	27.1.1 Conventions for OCI Functions

	27.2 Statement Functions
	27.2.1 OCIStmtExecute()
	27.2.2 OCIStmtFetch2()
	27.2.3 OCIStmtGetNextResult()
	27.2.4 OCIStmtGetPieceInfo()
	27.2.5 OCIStmtPlaceholderSubstitute()
	27.2.6 OCIStmtPrepare2()
	27.2.7 OCIStmtRelease()
	27.2.8 OCIStmtSetPieceInfo()

	27.3 LOB Functions
	27.3.1 OCIDurationBegin()
	27.3.2 OCIDurationEnd()
	27.3.3 OCILobAppend()
	27.3.4 OCILobArrayRead()
	27.3.5 OCILobArrayWrite()
	27.3.6 OCILobAssign()
	27.3.7 OCILobCharSetForm()
	27.3.8 OCILobCharSetId()
	27.3.9 OCILobClose()
	27.3.10 OCILobCopy2()
	27.3.11 OCILobCreateTemporary()
	27.3.12 OCILobErase2()
	27.3.13 OCILobFileClose()
	27.3.14 OCILobFileCloseAll()
	27.3.15 OCILobFileExists()
	27.3.16 OCILobFileGetName()
	27.3.17 OCILobFileIsOpen()
	27.3.18 OCILobFileOpen()
	27.3.19 OCILobFileSetName()
	27.3.20 OCILobFreeTemporary()
	27.3.21 OCILobGetChunkSize()
	27.3.22 OCILobGetContentType()
	27.3.23 OCILobGetLength2()
	27.3.24 OCILobGetOptions()
	27.3.25 OCILobGetStorageLimit()
	27.3.26 OCILobIsEqual()
	27.3.27 OCILobIsOpen()
	27.3.28 OCILobIsTemporary()
	27.3.29 OCILobLoadFromFile2()
	27.3.30 OCILobLocatorAssign()
	27.3.31 OCILobLocatorIsInit()
	27.3.32 OCILobOpen()
	27.3.33 OCILobRead2()
	27.3.34 OCILobSetContentType()
	27.3.35 OCILobSetOptions()
	27.3.36 OCILobTrim2()
	27.3.37 OCILobWrite2()
	27.3.38 OCILobWriteAppend2()

	27.4 Database Advanced Queuing and Publish-Subscribe Functions
	27.4.1 OCIAQDeq()
	27.4.2 OCIAQDeqArray()
	27.4.3 OCIAQEnq()
	27.4.4 OCIAQEnqArray()
	27.4.5 OCIAQListen2()
	27.4.6 OCISubscriptionDisable()
	27.4.7 OCISubscriptionEnable()
	27.4.8 OCISubscriptionPost()
	27.4.9 OCISubscriptionRegister()
	27.4.10 OCISubscriptionUnRegister()

	27.5 Direct Path Loading Functions
	27.5.1 OCIDirPathAbort()
	27.5.2 OCIDirPathColArrayEntryGet()
	27.5.3 OCIDirPathColArrayEntrySet()
	27.5.4 OCIDirPathColArrayReset()
	27.5.5 OCIDirPathColArrayRowGet()
	27.5.6 OCIDirPathColArrayToStream()
	27.5.7 OCIDirPathDataSave()
	27.5.8 OCIDirPathFinish()
	27.5.9 OCIDirPathFlushRow()
	27.5.10 OCIDirPathLoadStream()
	27.5.11 OCIDirPathPrepare()
	27.5.12 OCIDirPathStreamReset()

	27.6 Thread Management Functions
	27.6.1 OCIThreadClose()
	27.6.2 OCIThreadCreate()
	27.6.3 OCIThreadHandleGet()
	27.6.4 OCIThreadHndDestroy()
	27.6.5 OCIThreadHndInit()
	27.6.6 OCIThreadIdDestroy()
	27.6.7 OCIThreadIdGet()
	27.6.8 OCIThreadIdInit()
	27.6.9 OCIThreadIdNull()
	27.6.10 OCIThreadIdSame()
	27.6.11 OCIThreadIdSet()
	27.6.12 OCIThreadIdSetNull()
	27.6.13 OCIThreadInit()
	27.6.14 OCIThreadIsMulti()
	27.6.15 OCIThreadJoin()
	27.6.16 OCIThreadKeyDestroy()
	27.6.17 OCIThreadKeyGet()
	27.6.18 OCIThreadKeyInit()
	27.6.19 OCIThreadKeySet()
	27.6.20 OCIThreadMutexAcquire()
	27.6.21 OCIThreadMutexDestroy()
	27.6.22 OCIThreadMutexInit()
	27.6.23 OCIThreadMutexRelease()
	27.6.24 OCIThreadProcessInit()
	27.6.25 OCIThreadTerm()

	27.7 Transaction Functions
	27.7.1 OCITransStart()
	27.7.2 OCITransDetach()
	27.7.3 OCITransCommit()
	27.7.4 OCITransRollback()
	27.7.5 OCITransForget()
	27.7.6 OCITransMultiPrepare()
	27.7.7 OCITransPrepare()

	27.8 Sharding Functions
	27.8.1 OCIShardingKeyColumnAdd()
	27.8.2 OCIShardingKeyReset()
	27.8.3 OCIShardInstancesGet()

	27.9 Miscellaneous Functions
	27.9.1 OCITraceEventSet()
	27.9.2 OCITraceEventReset()
	27.9.3 OCITraceWriteMessage()
	27.9.4 OCIBreak()
	27.9.5 OCIClientVersion()
	27.9.6 OCIErrorGet()
	27.9.7 OCILdaToSvcCtx()
	27.9.8 OCIPasswordChange()
	27.9.9 OCIPing()
	27.9.10 OCIReset()
	27.9.11 OCIRowidToChar()
	27.9.12 OCIServerRelease()
	27.9.13 OCIServerRelease2()
	27.9.14 OCIServerVersion()
	27.9.15 OCISvcCtxToLda()
	27.9.16 OCIUserCallbackGet()
	27.9.17 OCIUserCallbackRegister()

	28 OCI Navigational and Type Functions
	28.1 Introduction to the Navigational and Type Functions
	28.1.1 Object Types and Lifetimes
	28.1.2 Terminology
	28.1.3 Conventions for OCI Functions
	28.1.4 Return Values
	28.1.5 Navigational Function Return Values
	28.1.6 Server Round-Trips for Cache and Object Functions
	28.1.7 Navigational Function Error Codes

	28.2 OCI Flush or Refresh Functions
	28.2.1 OCICacheFlush()
	28.2.2 OCICacheRefresh()
	28.2.3 OCIObjectFlush()
	28.2.4 OCIObjectRefresh()

	28.3 OCI Mark or Unmark Object and Cache Functions
	28.3.1 OCICacheUnmark()
	28.3.2 OCIObjectMarkDelete()
	28.3.3 OCIObjectMarkDeleteByRef()
	28.3.4 OCIObjectMarkUpdate()
	28.3.5 OCIObjectUnmark()
	28.3.6 OCIObjectUnmarkByRef()

	28.4 OCI Get Object Status Functions
	28.4.1 OCIObjectExists()
	28.4.2 OCIObjectGetProperty()
	28.4.3 OCIObjectIsDirty()
	28.4.4 OCIObjectIsLocked()

	28.5 OCI Miscellaneous Object Functions
	28.5.1 OCIObjectCopy()
	28.5.2 OCIObjectGetAttr()
	28.5.3 OCIObjectGetInd()
	28.5.4 OCIObjectGetObjectRef()
	28.5.5 OCIObjectGetTypeRef()
	28.5.6 OCIObjectLock()
	28.5.7 OCIObjectLockNoWait()
	28.5.8 OCIObjectNew()
	28.5.9 OCIObjectSetAttr()

	28.6 OCI Pin, Unpin, and Free Functions
	28.6.1 OCICacheFree()
	28.6.2 OCICacheUnpin()
	28.6.3 OCIObjectArrayPin()
	28.6.4 OCIObjectFree()
	28.6.5 OCIObjectPin()
	28.6.6 OCIObjectPinCountReset()
	28.6.7 OCIObjectPinTable()
	28.6.8 OCIObjectUnpin()

	28.7 OCI Type Information Accessor Functions
	28.7.1 OCITypeArrayByName()
	28.7.2 OCITypeArrayByFullName()
	28.7.3 OCITypeArrayByRef()
	28.7.4 OCITypeByFullName()
	28.7.5 OCITypeByName()
	28.7.6 OCITypeByRef()
	28.7.7 OCITypePackage()

	29 OCI Data Type Mapping and Manipulation Functions
	29.1 Introduction to Data Type Mapping and Manipulation Functions
	29.1.1 Conventions for OCI Functions
	29.1.2 Returns
	29.1.3 Data Type Mapping and Manipulation Function Return Values
	29.1.4 Functions Returning Other Values
	29.1.5 Server Round-Trips for Data Type Mapping and Manipulation Functions
	29.1.6 Examples

	29.2 OCI Collection and Iterator Functions
	29.2.1 OCICollAppend()
	29.2.2 OCICollAssign()
	29.2.3 OCICollAssignElem()
	29.2.4 OCICollKeyAssignElem()
	29.2.5 OCICollGetElem()
	29.2.6 OCICollKeyGetElem()
	29.2.7 OCICollGetElemArray()
	29.2.8 OCICollIsLocator()
	29.2.9 OCICollMax()
	29.2.10 OCICollSize()
	29.2.11 OCICollTrim()
	29.2.12 OCIIterCreate()
	29.2.13 OCIIterDelete()
	29.2.14 OCIIterGetCurrent()
	29.2.15 OCIIterKeyGetCurrent()
	29.2.16 OCIIterInit()
	29.2.17 OCIIterNext()
	29.2.18 OCIIterPrev()

	29.3 OCI Date, Datetime, and Interval Functions
	29.3.1 OCIDateAddDays()
	29.3.2 OCIDateAddMonths()
	29.3.3 OCIDateAssign()
	29.3.4 OCIDateAddDaysSeconds()
	29.3.5 OCIDateCheck()
	29.3.6 OCIDateCompare()
	29.3.7 OCIDateDaysBetween()
	29.3.8 OCIDateDaysSecondsBetween()
	29.3.9 OCIDateFromText()
	29.3.10 OCIDateGetDate()
	29.3.11 OCIDateGetTime()
	29.3.12 OCIDateLastDay()
	29.3.13 OCIDateNextDay()
	29.3.14 OCIDateSetDate()
	29.3.15 OCIDateSetTime()
	29.3.16 OCIDateSysDate()
	29.3.17 OCIDateTimeAssign()
	29.3.18 OCIDateTimeCheck()
	29.3.19 OCIDateTimeCompare()
	29.3.20 OCIDateTimeConstruct()
	29.3.21 OCIDateTimeConvert()
	29.3.22 OCIDateTimeFromArray()
	29.3.23 OCIDateTimeFromText()
	29.3.24 OCIDateTimeGetDate()
	29.3.25 OCIDateTimeGetTime()
	29.3.26 OCIDateTimeGetTimeZoneName()
	29.3.27 OCIDateTimeGetTimeZoneOffset()
	29.3.28 OCIDateTimeIntervalAdd()
	29.3.29 OCIDateTimeIntervalSub()
	29.3.30 OCIDateTimeSubtract()
	29.3.31 OCIDateTimeSysTimeStamp()
	29.3.32 OCIDateTimeToArray()
	29.3.33 OCIDateTimeToText()
	29.3.34 OCIDateToText()
	29.3.35 OCIDateZoneToZone()
	29.3.36 OCIIntervalAdd()
	29.3.37 OCIIntervalAssign()
	29.3.38 OCIIntervalCheck()
	29.3.39 OCIIntervalCompare()
	29.3.40 OCIIntervalDivide()
	29.3.41 OCIIntervalFromNumber()
	29.3.42 OCIIntervalFromText()
	29.3.43 OCIIntervalFromTZ()
	29.3.44 OCIIntervalGetDaySecond()
	29.3.45 OCIIntervalGetYearMonth()
	29.3.46 OCIIntervalMultiply()
	29.3.47 OCIIntervalSetDaySecond()
	29.3.48 OCIIntervalSetYearMonth()
	29.3.49 OCIIntervalSubtract()
	29.3.50 OCIIntervalToNumber()
	29.3.51 OCIIntervalToText()

	29.4 OCI NUMBER Functions
	29.4.1 OCINumberAbs()
	29.4.2 OCINumberAdd()
	29.4.3 OCINumberArcCos()
	29.4.4 OCINumberArcSin()
	29.4.5 OCINumberArcTan()
	29.4.6 OCINumberArcTan2()
	29.4.7 OCINumberAssign()
	29.4.8 OCINumberCeil()
	29.4.9 OCINumberCmp()
	29.4.10 OCINumberCos()
	29.4.11 OCINumberDec()
	29.4.12 OCINumberDiv()
	29.4.13 OCINumberExp()
	29.4.14 OCINumberFloor()
	29.4.15 OCINumberFromInt()
	29.4.16 OCINumberFromReal()
	29.4.17 OCINumberFromText()
	29.4.18 OCINumberHypCos()
	29.4.19 OCINumberHypSin()
	29.4.20 OCINumberHypTan()
	29.4.21 OCINumberInc()
	29.4.22 OCINumberIntPower()
	29.4.23 OCINumberIsInt()
	29.4.24 OCINumberIsZero()
	29.4.25 OCINumberLn()
	29.4.26 OCINumberLog()
	29.4.27 OCINumberMod()
	29.4.28 OCINumberMul()
	29.4.29 OCINumberNeg()
	29.4.30 OCINumberPower()
	29.4.31 OCINumberPrec()
	29.4.32 OCINumberRound()
	29.4.33 OCINumberSetPi()
	29.4.34 OCINumberSetZero()
	29.4.35 OCINumberShift()
	29.4.36 OCINumberSign()
	29.4.37 OCINumberSin()
	29.4.38 OCINumberSqrt()
	29.4.39 OCINumberSub()
	29.4.40 OCINumberTan()
	29.4.41 OCINumberToInt()
	29.4.42 OCINumberToReal()
	29.4.43 OCINumberToRealArray()
	29.4.44 OCINumberToText()
	29.4.45 OCINumberTrunc()

	29.5 OCI Raw Functions
	29.5.1 OCIRawAllocSize()
	29.5.2 OCIRawAssignBytes()
	29.5.3 OCIRawAssignRaw()
	29.5.4 OCIRawPtr()
	29.5.5 OCIRawResize()
	29.5.6 OCIRawSize()

	29.6 OCI REF Functions
	29.6.1 OCIRefAssign()
	29.6.2 OCIRefClear()
	29.6.3 OCIRefFromHex()
	29.6.4 OCIRefHexSize()
	29.6.5 OCIRefIsEqual()
	29.6.6 OCIRefIsNull()
	29.6.7 OCIRefToHex()

	29.7 OCI String Functions
	29.7.1 OCIStringAllocSize()
	29.7.2 OCIStringAssign()
	29.7.3 OCIStringAssignText()
	29.7.4 OCIStringPtr()
	29.7.5 OCIStringResize()
	29.7.6 OCIStringSize()

	29.8 OCI Table Functions
	29.8.1 OCITableDelete()
	29.8.2 OCITableKeyDelete()
	29.8.3 OCITableExists()
	29.8.4 OCITableKeyExists()
	29.8.5 OCITableFirst()
	29.8.6 OCITableKeyFirst()
	29.8.7 OCITableLast()
	29.8.8 OCITableKeyLast()
	29.8.9 OCITableNext()
	29.8.10 OCITableKeyNext ()
	29.8.11 OCITablePrev()
	29.8.12 OCITableSize()

	30 OCI Cartridge Functions
	30.1 Introduction to External Procedure and Cartridge Services Functions
	30.1.1 Conventions for OCI Functions

	30.2 Cartridge Services — OCI External Procedures
	30.2.1 OCIExtProcAllocCallMemory()
	30.2.2 OCIExtProcGetEnv()
	30.2.3 OCIExtProcRaiseExcp()
	30.2.4 OCIExtProcRaiseExcpWithMsg()

	30.3 Cartridge Services — Memory Services
	30.3.1 OCIDurationBegin()
	30.3.2 OCIDurationEnd()
	30.3.3 OCIMemoryAlloc()
	30.3.4 OCIMemoryAlloc2()
	30.3.5 OCIMemoryFree()
	30.3.6 OCIMemoryResize()

	30.4 Cartridge Services — Maintaining Context
	30.4.1 OCIContextClearValue()
	30.4.2 OCIContextGenerateKey()
	30.4.3 OCIContextGetValue()
	30.4.4 OCIContextSetValue()

	30.5 Cartridge Services — Parameter Manager Interface
	30.5.1 OCIExtractFromFile()
	30.5.2 OCIExtractFromList()
	30.5.3 OCIExtractFromStr()
	30.5.4 OCIExtractInit()
	30.5.5 OCIExtractReset()
	30.5.6 OCIExtractSetKey()
	30.5.7 OCIExtractSetNumKeys()
	30.5.8 OCIExtractTerm()
	30.5.9 OCIExtractToBool()
	30.5.10 OCIExtractToInt()
	30.5.11 OCIExtractToList()
	30.5.12 OCIExtractToOCINum()
	30.5.13 OCIExtractToStr()

	30.6 Cartridge Services — File I/O Interface
	30.6.1 OCIFileClose()
	30.6.2 OCIFileExists()
	30.6.3 OCIFileFlush()
	30.6.4 OCIFileGetLength()
	30.6.5 OCIFileInit()
	30.6.6 OCIFileOpen()
	30.6.7 OCIFileRead()
	30.6.8 OCIFileSeek()
	30.6.9 OCIFileTerm()
	30.6.10 OCIFileWrite()

	30.7 Cartridge Services — String Formatting Interface
	30.7.1 OCIFormatInit()
	30.7.2 OCIFormatString()
	30.7.3 OCIFormatTerm()

	31 OCI Any Type and Data Functions
	31.1 Introduction to Any Type and Data Interfaces
	31.1.1 Conventions for OCI Functions

	31.2 OCI Type Interface Functions
	31.2.1 OCITypeAddAttr()
	31.2.2 OCITypeBeginCreate()
	31.2.3 OCITypeEndCreate()
	31.2.4 OCITypeSetBuiltin()
	31.2.5 OCITypeSetCollection()

	31.3 OCI Any Data Interface Functions
	31.3.1 OCIAnyDataAccess()
	31.3.2 OCIAnyDataAttrGet()
	31.3.3 OCIAnyDataAttrSet()
	31.3.4 OCIAnyDataBeginCreate()
	31.3.5 OCIAnyDataCollAddElem()
	31.3.6 OCIAnyDataCollGetElem()
	31.3.7 OCIAnyDataConvert()
	31.3.8 OCIAnyDataDestroy()
	31.3.9 OCIAnyDataEndCreate()
	31.3.10 OCIAnyDataGetCurrAttrNum()
	31.3.11 OCIAnyDataGetType()
	31.3.12 OCIAnyDataIsNull()
	31.3.13 OCIAnyDataTypeCodeToSqlt()

	31.4 OCI Any Data Set Interface Functions
	31.4.1 OCIAnyDataSetAddInstance()
	31.4.2 OCIAnyDataSetBeginCreate()
	31.4.3 OCIAnyDataSetDestroy()
	31.4.4 OCIAnyDataSetEndCreate()
	31.4.5 OCIAnyDataSetGetCount()
	31.4.6 OCIAnyDataSetGetInstance()
	31.4.7 OCIAnyDataSetGetType()

	32 OCI Globalization Support Functions
	32.1 Introduction to Globalization Support in OCI
	32.1.1 Conventions for OCI Functions

	32.2 OCI Locale Functions
	32.2.1 OCINlsCharSetIdToName()
	32.2.2 OCINlsCharSetNameToId()
	32.2.3 OCINlsEnvironmentVariableGet()
	32.2.4 OCINlsGetInfo()
	32.2.5 OCINlsNumericInfoGet()

	32.3 OCI Locale-Mapping Function
	32.3.1 OCINlsNameMap()

	32.4 OCI String Manipulation Functions
	32.4.1 OCIMultiByteInSizeToWideChar()
	32.4.2 OCIMultiByteStrCaseConversion()
	32.4.3 OCIMultiByteStrcat()
	32.4.4 OCIMultiByteStrcmp()
	32.4.5 OCIMultiByteStrcpy()
	32.4.6 OCIMultiByteStrlen()
	32.4.7 OCIMultiByteStrncat()
	32.4.8 OCIMultiByteStrncmp()
	32.4.9 OCIMultiByteStrncpy()
	32.4.10 OCIMultiByteStrnDisplayLength()
	32.4.11 OCIMultiByteToWideChar()
	32.4.12 OCIWideCharInSizeToMultiByte()
	32.4.13 OCIWideCharMultiByteLength()
	32.4.14 OCIWideCharStrCaseConversion()
	32.4.15 OCIWideCharStrcat()
	32.4.16 OCIWideCharStrchr()
	32.4.17 OCIWideCharStrcmp()
	32.4.18 OCIWideCharStrcpy()
	32.4.19 OCIWideCharStrlen()
	32.4.20 OCIWideCharStrncat()
	32.4.21 OCIWideCharStrncmp()
	32.4.22 OCIWideCharStrncpy()
	32.4.23 OCIWideCharStrrchr()
	32.4.24 OCIWideCharToLower()
	32.4.25 OCIWideCharToMultiByte()
	32.4.26 OCIWideCharToUpper()

	32.5 OCI Character Classification Functions
	32.5.1 OCIWideCharIsAlnum()
	32.5.2 OCIWideCharIsAlpha()
	32.5.3 OCIWideCharIsCntrl()
	32.5.4 OCIWideCharIsDigit()
	32.5.5 OCIWideCharIsGraph()
	32.5.6 OCIWideCharIsLower()
	32.5.7 OCIWideCharIsPrint()
	32.5.8 OCIWideCharIsPunct()
	32.5.9 OCIWideCharIsSingleByte()
	32.5.10 OCIWideCharIsSpace()
	32.5.11 OCIWideCharIsUpper()
	32.5.12 OCIWideCharIsXdigit()

	32.6 OCI Character Set Conversion Functions
	32.6.1 OCICharSetConversionIsReplacementUsed()
	32.6.2 OCICharSetToUnicode()
	32.6.3 OCINlsCharSetConvert()
	32.6.4 OCIUnicodeToCharSet()

	32.7 OCI Messaging Functions
	32.7.1 OCIMessageClose()
	32.7.2 OCIMessageGet()
	32.7.3 OCIMessageOpen()

	33 OCI XML DB Functions
	33.1 Introduction to XML DB Support in OCI
	33.1.1 Conventions for OCI Functions
	33.1.2 Returns

	33.2 OCI XML DB Functions
	33.2.1 OCIBinXmlCreateReposCtxFromConn()
	33.2.2 OCIBinXmlCreateReposCtxFromCPool()
	33.2.3 OCIBinXmlSetFormatPref()
	33.2.4 OCIBinXmlSetReposCtxForConn()
	33.2.5 OCIXmlDbFreeXmlCtx()
	33.2.6 OCIXmlDbInitXmlCtx()

	34 Oracle ODBC Driver
	35 Introduction to the OCI Interface for XStream
	35.1 About the XStream Interface
	35.1.1 XStream Out
	35.1.2 XStream In
	35.1.3 Position Order and LCR Streams
	35.1.4 XStream and Character Sets

	35.2 Handler and Descriptor Attributes
	35.2.1 Conventions
	35.2.2 Server Handle Attributes
	35.2.2.1 OCI_ATTR_XSTREAM_ACK_INTERVAL
	35.2.2.2 OCI_ATTR_XSTREAM_IDLE_TIMEOUT

	36 OCI XStream Functions
	36.1 About Using the XStream Interface
	36.1.1 XStream Out
	36.1.1.1 LCR Streams
	36.1.1.2 The Processed Low Position and Restart Considerations

	36.1.2 XStream In
	36.1.2.1 Processed Low Position and Restart Ability
	36.1.2.2 Stream Position

	36.1.3 Security of XStreams

	36.2 Introduction to XStream Functions
	36.3 OCI XStream Functions
	36.3.1 OCILCRAttributesGet()
	36.3.2 OCILCRAttributesSet()
	36.3.3 OCILCRComparePosition()
	36.3.4 OCILCRConvertPosition()
	36.3.5 OCILCRFree()
	36.3.6 OCILCRDDLInfoGet()
	36.3.7 OCILCRHeaderGet()
	36.3.8 OCILCRRowStmtGet()
	36.3.9 OCILCRRowStmtWithBindVarGet()
	36.3.10 OCILCRNew()
	36.3.11 OCILCRRowColumnInfoGet()
	36.3.12 OCILCRRowColumnInfoSet()
	36.3.13 OCILCRDDLInfoSet()
	36.3.14 OCILCRGetLCRIDVersion()
	36.3.15 OCILCRHeaderSet()
	36.3.16 OCILCRLobInfoGet()
	36.3.17 OCILCRLobInfoSet()
	36.3.18 OCILCRSCNsFromPosition()
	36.3.19 OCILCRSCNToPosition()
	36.3.20 OCILCRScnToPosition2()
	36.3.21 OCILCRWhereClauseGet()
	36.3.22 OCILCRWhereClauseWithBindVarGet()
	36.3.23 OCIXStreamInAttach()
	36.3.24 OCIXStreamInDetach()
	36.3.25 OCIXStreamInLCRSend()
	36.3.26 OCIXStreamInLCRCallbackSend()
	36.3.27 OCIXStreamInProcessedLWMGet()
	36.3.28 OCIXStreamInErrorGet()
	36.3.29 OCIXStreamInFlush()
	36.3.30 OCIXStreamInChunkSend()
	36.3.31 OCIXStreamInCommit()
	36.3.32 OCIXStreamInSessionSet()
	36.3.33 OCIXStreamOutAttach()
	36.3.34 OCIXStreamOutDetach()
	36.3.35 OCIXStreamOutLCRReceive()
	36.3.36 OCIXStreamOutLCRCallbackReceive()
	36.3.37 OCIXStreamOutProcessedLWMSet()
	36.3.38 OCIXStreamOutChunkReceive()
	36.3.39 OCIXStreamOutGetNextChunk()
	36.3.40 OCIXStreamOutSessionSet()

	37 OCI Json Descriptor Functions
	37.1 Functions for Writing to a JSON Descriptor
	37.1.1 OCIJsonDomDocSet ()
	37.1.2 OCIJsonTextBufferParse ()
	37.1.3 OCIJsonTextStreamParse ()
	37.1.4 OCIJsonBinaryBufferLoad ()
	37.1.5 OCIJsonBinaryStreamLoad ()
	37.1.6 OCIJsonClone ()

	37.2 Functions for Reading from a JSON Descriptor
	37.2.1 OCIJsonDomDocGet ()
	37.2.2 OCIJsonToTextBuffer ()
	37.2.3 OCIJsonToTextStream ()
	37.2.4 OCIJsonToBinaryBuffer ()
	37.2.5 OCIJsonToBinaryStream ()
	37.2.6 OCIJsonBinaryLengthGet ()

	38 Support for Vector Data Type in OCI
	38.1 OCIVector Descriptor
	38.2 Attributes of OCIVector Descriptor
	38.3 External VECTOR Data Type and OCI
	38.4 Bind or Define Support for VECTOR SQL Data Type
	38.5 OCI Vector Support Functions
	38.5.1 OCIVectorFromText
	38.5.2 OCIVectorFromArray
	38.5.3 OCIVectorToText
	38.5.4 OCIVectorToArray

	38.6 Binding and Defining OCIVector *
	38.7 OCIDescribeAny Enhancements
	38.8 Example Code Snippets for Vectors

	39 OCI SODA Functions
	39.1 Introduction to OCI SODA Functions
	39.2 OCI SODA Functions
	39.2.1 OCISodaBulkInsert()
	39.2.2 OCISodaBulkInsertAndGet()
	39.2.3 OCISodaBulkInsertAndGetWithOpts()
	39.2.4 OCISodaBulkInsertAndGetWithCtnt()
	39.2.5 OCISodaBulkInsertWithCtnt()
	39.2.6 OCISodaCollCreate()
	39.2.7 OCISodaCollCreateWithMetadata()
	39.2.8 OCISodaCollDrop()
	39.2.9 OCISodaCollGetNext()
	39.2.10 OCISodaCollList()
	39.2.11 OCISodaCollOpen()
	39.2.12 OCISodaDataGuideGet()
	39.2.13 OCISodaDataGuideGetWithOpts ()
	39.2.14 OCISodaAsOfTimestampGet ()
	39.2.15 OCISodaAsOfScnGet ()
	39.2.16 OCISodaDocCount()
	39.2.17 OCISodaDocCountWithFilter()
	39.2.18 OCISodaDocCreate()
	39.2.19 OCISodaDocCreateWithKey()
	39.2.20 OCISodaDocCreateWithKeyAndMType()
	39.2.21 OCISodaDocGetNext()
	39.2.22 OCISodaFind()
	39.2.23 OCISodaFindOne()
	39.2.24 OCISodaFindOneWithKey()
	39.2.25 OCISodaIndexCreate()
	39.2.26 OCISodaIndexGet()
	39.2.27 OCISodaIndexList()
	39.2.28 OCISodaIndexDrop()
	39.2.29 OCISodaInsert()
	39.2.30 OCISodaInsertAndGet()
	39.2.31 OCISodaInsertAndGetWithOpts ()
	39.2.32 OCISodaInsertAndGetWithCtnt()
	39.2.33 OCISodaInsertWithCtnt()
	39.2.34 OCISodaRemove()
	39.2.35 OCISodaRemoveOneWithKey()
	39.2.36 OCISodaReplOne()
	39.2.37 OCISodaReplOneAndGet()
	39.2.38 OCISodaReplOneAndGetWithCtnt()
	39.2.39 OCISodaReplOneAndGetWithKey()
	39.2.40 OCISodaReplOneWithCtnt()
	39.2.41 OCISodaReplOneWithKey()
	39.2.42 OCISodaSave()
	39.2.43 OCISodaSaveAndGet()
	39.2.44 OCISodaSaveAndGetWithOpts()
	39.2.45 OCISodaSaveWithCtnt()
	39.2.46 OCISodaSaveAndGetWithCtnt()
	39.2.47 OCISodaCollTruncate()
	39.2.48 OCISodaOperKeysSet()

	A Handle and Descriptor Attributes
	A.1 Conventions
	A.2 DDL Event Descriptor Attributes
	A.3 Environment Handle Attributes
	A.4 Error Handle Attributes
	A.5 Service Context Handle Attributes
	A.6 Server Handle Attributes
	A.6.1 Authentication Information Handle Attributes
	A.6.2 User Session Handle Attributes

	A.7 Administration Handle Attributes
	A.8 Connection Pool Handle Attributes
	A.8.1 Session Pool Handle Attributes

	A.9 Transaction Handle Attributes
	A.10 Statement Handle Attributes
	A.11 Bind Handle Attributes
	A.12 Define Handle Attributes
	A.13 Describe Handle Attributes
	A.14 Parameter Descriptor Attributes
	A.15 Shard Instance Descriptor Attributes
	A.16 SODA Document Handle Attributes
	A.17 SODA Collection Handle Attributes
	A.18 SODA Output Options Handle Attributes
	A.19 SODA Operation Options Handle Attributes
	A.20 LOB Descriptor and LOB Locator Attributes
	A.21 JSON Descriptor Attributes
	A.22 Complex Object Attributes
	A.22.1 Complex Object Retrieval Handle Attributes
	A.22.2 Complex Object Retrieval Descriptor Attributes

	A.23 Database Advanced Queuing Descriptor Attributes
	A.23.1 OCIAQEnqOptions Descriptor Attributes
	A.23.2 OCIAQDeqOptions Descriptor Attributes
	A.23.3 OCIAQMsgProperties Descriptor Attributes
	A.23.4 OCIAQAgent Descriptor Attributes
	A.23.5 OCIServerDNs Descriptor Attributes

	A.24 Subscription Handle Attributes
	A.24.1 Continuous Query Notification Attributes
	A.24.2 Continuous Query Notification Descriptor Attributes
	A.24.3 Notification Descriptor Attributes
	A.24.4 Invalidated Query Attributes

	A.25 Direct Path Loading Handle Attributes
	A.25.1 Direct Path Context Handle (OCIDirPathCtx) Attributes
	A.25.2 Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
	A.25.3 Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes
	A.25.4 Direct Path Stream Handle (OCIDirPathStream) Attributes
	A.25.5 Direct Path Column Parameter Attributes
	A.25.5.1 About Accessing Column Parameter Attributes

	A.26 Process Handle Attributes
	A.27 Event Handle Attributes

	B OCI Demonstration Programs
	C OCI Function Server Round-Trips
	C.1 Relational Function Round-Trips
	C.2 LOB Function Round-Trips
	C.3 JSON Function Round-Trips
	C.4 Object and Cache Function Round-Trips
	C.5 Describe Operation Round-Trips
	C.6 Data Type Mapping and Manipulation Function Round-Trips
	C.7 Any Type and Data Function Round-Trips
	C.8 Other Local Functions

	D Getting Started with OCI for Windows
	D.1 What Is Included in the OCI Package for Windows?
	D.2 Oracle Directory Structure for Windows
	D.3 Sample OCI Programs for Windows
	D.4 About Compiling OCI Applications for Windows
	D.5 About Linking OCI Applications for Windows
	D.5.1 oci.lib
	D.5.2 Client DLL Loading When Using Load Library()

	D.6 About Running OCI Applications for Windows
	D.7 Oracle XA Library
	D.7.1 About Compiling and Linking an OCI Program with the Oracle XA Library
	D.7.2 About Using XA Dynamic Registration
	D.7.2.1 Adding an Environmental Variable for the Current Session
	D.7.2.2 About Adding a Registry Variable for All Sessions
	D.7.2.3 Adding a Registry Variable:

	D.7.3 XA and TP Monitor Information

	D.8 About Using the Object Type Translator for Windows

	E Deprecated OCI Features and Functions
	E.1 Deprecated Initialize Functions
	E.1.1 OCIEnvInit()
	E.1.2 OCIInitialize()

	E.2 Deprecated Statement Functions
	E.2.1 OCIStmtFetch()
	E.2.2 OCIStmtPrepare()

	E.3 Deprecated Lob Functions
	E.3.1 OCILobCopy()
	E.3.2 OCILobErase()
	E.3.3 OCILobGetLength()
	E.3.4 OCILobLoadFromFile()
	E.3.5 OCILobRead()
	E.3.6 OCILobTrim()
	E.3.7 OCILobWrite()
	E.3.8 OCILobWriteAppend()

	E.4 Deprecated Database Advanced Queuing Functions
	E.4.1 OCIAQListen()

	F Multithreaded extproc Agent
	F.1 Why Use the Multithreaded extproc Agent?
	F.1.1 The Challenge of Dedicated Agent Architecture
	F.1.2 The Advantage of Multithreading

	F.2 Multithreaded extproc Agent Architecture
	F.2.1 Monitor Thread
	F.2.2 Dispatcher Threads
	F.2.3 Task Threads

	F.3 Administering the Multithreaded extproc Agent
	F.3.1 Agent Control Utility (agtctl) Commands
	F.3.2 About Using agtctl in Single-Line Command Mode
	F.3.2.1 Setting Configuration Parameters for a Multithreaded extproc Agent
	F.3.2.2 Starting a Multithreaded extproc Agent
	F.3.2.3 Shutting Down a Multithreaded extproc Agent
	F.3.2.4 Examining the Value of Configuration Parameters
	F.3.2.5 Resetting a Configuration Parameter to Its Default Value
	F.3.2.6 Deleting an Entry for a Specific SID from the Control File
	F.3.2.7 Requesting Help

	F.3.3 Using Shell Mode Commands
	F.3.3.1 Example: Setting a Configuration Parameter
	F.3.3.2 Example: Starting a Multithreaded extproc Agent

	F.3.4 Configuration Parameters for Multithreaded extproc Agent Control

	Index

