
Oracle® Database
JSON-Relational Duality Developer's Guide

23ai
F57229-10
January 2025

Oracle Database JSON-Relational Duality Developer's Guide, 23ai

F57229-10

Copyright © 2023, 2025, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Oracle JSON development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xi

Documentation Accessibility xi

Diversity and Inclusion xii

Related Documents xii

Conventions xii

Code Examples xiii

1 Overview of JSON-Relational Duality Views

1.1 Table-Centric Use Case for JSON-Relational Duality 1-3

1.2 Document-Centric Use Case for JSON-Relational Duality 1-6

1.3 Map JSON Documents, Not Programming Objects 1-10

1.4 Duality-View Security: Simple, Centralized, Use-Case-Specific 1-12

1.5 Oracle Database: Converged, Multitenant, Backed By SQL 1-13

2 Introduction To Car-Racing Duality Views Example

2.1 Car-Racing Example, JSON Documents 2-2

2.2 Car-Racing Example, Entity Relationships 2-6

2.3 Car-Racing Example, Tables 2-8

3 Creating Duality Views

3.1 Creating Car-Racing Duality Views Using SQL 3-4

3.2 Creating Car-Racing Duality Views Using GraphQL 3-8

3.3 WHERE Clauses in Duality-View Tables 3-14

4 Updatable JSON-Relational Duality Views

4.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations 4-2

4.2 Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation 4-3

4.3 Database Privileges Needed for Duality-View Updating Operations 4-5

iii

4.4 Rules for Updating Duality Views 4-6

5 Using JSON-Relational Duality Views

5.1 Inserting Documents/Data Into Duality Views 5-3

5.2 Deleting Documents/Data From Duality Views 5-10

5.3 Updating Documents/Data in Duality Views 5-13

5.3.1 Trigger Considerations When Using Duality Views 5-22

5.4 Using Optimistic Concurrency Control With Duality Views 5-23

5.4.1 Using Duality-View Transactions 5-32

5.5 Using the System Change Number (SCN) of a JSON Document 5-36

5.6 Optimization of Operations on Duality-View Documents 5-38

5.7 Obtaining Information About a Duality View 5-40

6 Document-Identifier Field for Duality Views

7 Generated Fields, Hidden Fields

8 Schema Flexibility with JSON Columns in Duality Views

8.1 Embedding Values from JSON Columns into Documents 8-2

8.2 Merging Fields from JSON Flex Columns into Documents 8-4

8.3 When To Use JSON-Type Columns for a Duality View 8-6

8.4 Flex Columns, Beyond the Basics 8-8

9 Migrating From JSON To Duality

9.1 JSON To Duality Migrator Components: Converter and Importer 9-4

9.2 JSON Configuration Fields Specifying Migrator Parameters 9-7

9.3 School Administration Example, Migrator Input Documents 9-10

9.4 Before Using the Converter (1): Create Database Document Sets 9-16

9.5 Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas 9-20

9.6 JSON-To-Duality Converter: What It Does 9-34

9.7 Migrating To Duality, Simplified Recipe 9-35

9.8 Using the Converter, Default Behavior 9-60

9.9 Import After Default Conversion 9-75

9.10 Using the Converter with useFlexFields=false 9-106

9.11 Import After Conversion with useFlexFields=false 9-111

iv

10

GraphQL Language Used for JSON-Relational Duality Views

10.1 Oracle GraphQL Directives for JSON-Relational Duality Views 10-4

10.1.1 Oracle GraphQL Directive @link 10-6

Index

v

List of Examples

2-1 A Team Document 2-3

2-2 A Driver Document 2-3

2-3 A Car-Race Document 2-4

2-4 Creating the Car-Racing Tables 2-10

3-1 Creating Duality View TEAM_DV Using SQL 3-5

3-2 Creating Duality View DRIVER_DV, With Nested Team Information Using SQL 3-5

3-3 Creating Duality View DRIVER_DV, With Unnested Team Information Using SQL 3-6

3-4 Creating Duality View RACE_DV, With Nested Driver Information Using SQL 3-7

3-5 Creating Duality View RACE_DV, With Unnested Driver Information Using SQL 3-7

3-6 Creating Duality View TEAM_DV Using GraphQL 3-12

3-7 Creating Duality View DRIVER_DV Using GraphQL 3-12

3-8 Creating Duality View RACE_DV Using GraphQL 3-13

3-9 WHERE Clause Use in Duality View Definition (SQL) 3-15

3-10 WHERE Clause Use in Duality View Definition (GraphQL) 3-16

5-1 Inserting JSON Documents into Duality Views, Providing Document-Identifier Fields — Using SQL 5-5

5-2 Inserting JSON Documents into Duality Views, Providing Document-Identifier Fields — Using

REST 5-6

5-3 Inserting JSON Data into Tables 5-8

5-4 Inserting a JSON Document into a Duality View Without Providing Document-Identifier Fields

— Using SQL 5-8

5-5 Inserting a JSON Document into a Duality View Without Providing Document-Identifier Fields

— Using REST 5-9

5-6 Deleting a JSON Document from Duality View RACE_DV — Using SQL 5-11

5-7 Deleting a JSON Document from Duality View RACE_DV — Using REST 5-12

5-8 Updating an Entire JSON Document in a Duality View — Using SQL 5-15

5-9 Updating an Entire JSON Document in a Duality View — Using REST 5-16

5-10 Updating Part of a JSON Document in a Duality View 5-17

5-11 Updating Interrelated JSON Documents — Using SQL 5-18

5-12 Updating Interrelated JSON Documents — Using REST 5-19

5-13 Attempting a Disallowed Updating Operation Raises an Error — Using SQL 5-20

5-14 Attempting a Disallowed Updating Operation Raises an Error — Using REST 5-21

5-15 Obtain the Current ETAG Value for a Race Document From Field etag — Using SQL 5-28

5-16 Obtain the Current ETAG Value for a Race Document From Field etag — Using REST 5-28

5-17 Using Function SYS_ROW_ETAG To Optimistically Control Concurrent Table Updates 5-29

5-18 Locking Duality-View Documents For Update 5-34

5-19 Using a Duality-View Transaction To Optimistically Update Two Documents Concurrently 5-34

vi

5-20 Obtain the SCN Recorded When a Document Was Fetched 5-36

5-21 Retrieve a Race Document As Of the Moment Another Race Document Was Retrieved 5-37

5-22 Using DBMS_JSON_SCHEMA.DESCRIBE To Show JSON Schemas Describing Duality Views 5-42

6-1 Document Identifier Field _id With Primary-Key Column Value 6-1

6-2 Document Identifier Field _id With Object Value 6-2

7-1 Fields Generated Using a SQL Query and a SQL Expression 7-2

7-2 Field Generated Using a SQL/JSON Path Expression 7-3

7-3 Fields Generated Using Hidden Fields 7-4

9-1 Student Document Set (Migrator Input) 9-11

9-2 Teacher Document Set (Migrator Input) 9-14

9-3 Course Document Set (Migrator Input) 9-15

9-4 Create an Oracle Document Set (Course) From a JSON Dump File. 9-16

9-5 Create JSON Data Guides For Input Document Sets 9-21

9-6 JSON Data Guide For Input Student Document Set 9-22

9-7 JSON Data Guide For Input Teacher Document Set 9-26

9-8 JSON Data Guide For Input Course Document Set 9-30

9-9 INFER_SCHEMA and GENERATE_SCHEMA with Zero Frequency Thresholds: No Outliers 9-37

9-10 JSON Schema from INFER_SCHEMA for Duality Views with No Outliers 9-37

9-11 Using JSON_TRANSFORM To Edit Inferred JSON Schema 9-44

9-12 DDL Code from GENERATE_SCHEMA for No-Outlier Use Case 9-45

9-13 VALIDATE_SCHEMA_REPORT for No Outlier Use Case 9-49

9-14 Creating Error Logs for No Outlier Use Case 9-49

9-15 Importing Document Sets, for No Outlier Use Case 9-50

9-16 Checking Error Logs from Import, for No Outlier Use Case 9-50

9-17 VALIDATE_IMPORT_REPORT for No Outlier Use Case 9-51

9-18 INFER_SCHEMA and GENERATE_SCHEMA with useFlexFields = true 9-61

9-19 JSON Schema from INFER_SCHEMA for Duality Views: Default Behavior 9-62

9-20 DDL Code from GENERATE_SCHEMA with useFlexFields = true 9-68

9-21 SQL DDL Code For Duality-View Creations with useFlexFields = true 9-73

9-22 VALIDATE_SCHEMA_REPORT for Default Case (useFlexFields = true) 9-74

9-23 Checking Error Logs from Import, for Default Case 9-76

9-24 Student Duality View Document Collection (useFlexFields = true) 9-77

9-25 Teacher Duality View Document Collection (useFlexFields = true) 9-83

9-26 Course Duality View Document Collection (useFlexFields = true) 9-87

9-27 Create JSON Data Guides For Document Collections Supported By Duality Views 9-91

9-28 Student Duality View Data Guide 9-92

9-29 Teacher Duality View Data Guide 9-97

vii

9-30 Course Duality View Data Guide, for Default Case 9-102

9-31 DDL Code from GENERATE_SCHEMA with useFlexFields = false 9-107

9-32 VALIDATE_SCHEMA_REPORT with useFlexFields = false 9-110

9-33 Checking Error Logs from Import, for useFlexFields = false Case 9-112

9-34 VALIDATE_IMPORT_REPORT for useFlexFields = false Case 9-112

9-35 Student Duality View Document Collection (useFlexFields = false) 9-114

9-36 Course Duality View Document Collection (useFlexFields = false) 9-121

9-37 Course Duality View Data Guide, for useFlexFields = false Case 9-126

10-1 Creating Duality View DRIVER_DV1, With Nested Driver Information 10-5

10-2 Creating Table TEAM_W_LEAD With LEAD_DRIVER Column 10-7

10-3 Creating Duality View TEAM_DV2 With LEAD_DRIVER, Showing GraphQL Directive @link 10-8

10-4 Creating Duality View DRIVER_DV2, Showing GraphQL Directive @link 10-9

10-5 Creating Table DRIVER_W_MGR With Column MANAGER_ID 10-10

10-6 Creating Duality View TEAM_DV3 (Drivers with Managers) 10-11

10-7 Creating Duality View DRIVER_DV3 (Drivers with Managers) 10-12

10-8 Creating Duality View DRIVER_MANAGER_DV 10-13

viii

List of Figures

2-1 Car-Racing Example, Directed Entity-Relationship Diagram (1) 2-7

2-2 Car-Racing Example, Directed Entity-Relationship Diagram (2) 2-10

3-1 Car-Racing Example, Table-Dependency Graph 3-9

5-1 Optimistic Concurrency Control Process 5-26

10-1 Car-Racing Example With Team Leader, Table-Dependency Graph 10-7

10-2 Car-Racing Example With Driver Self-Reference, Table-Dependency Graph 10-10

ix

List of Tables

10-1 Scalar Types: Oracle JSON, GraphQL, and SQL 10-2

x

Preface

This manual describes the creation and use of updatable JSON views of relational data stored
in Oracle Database. The view data has a JSON-relational duality: it's organized both
relationally and hierarchically. The manual covers how to create, query, and update such
views, which automatically entails updating the underlying relational data.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents
Oracle and other resources related to this developer’s guide are listed.

• Conventions

• Code Examples
The code examples here are for illustration only, but in many cases you can copy, paste,
and run parts of them in your environment. Unless called out explicitly, the examples do
not depend on each other in any way. In particular, there is no implied sequencing among
them.

Audience
JSON-Relational Duality Developer's Guide is intended mainly for two kinds of developers: (1)
those building applications that directly use data in relational tables, but who also want to make
some of that table data available in the form of JSON document collections, and (1) those
building applications that directly use JSON documents whose content is based on relational
data.

An understanding of both JavaScript Object Language (JSON) and some relational database
concepts is helpful when using this manual. Many examples provided here are in Structured
Query Language (SQL). A working knowledge of SQL is presumed.

Some familiarity with the GraphQL language and REST (REpresentational State Transfer) is
also helpful. Examples of creating JSON-relational duality views are presented using SQL and,
alternatively, a subset of GraphQL. Examples of updating and querying JSON documents that
are supported by duality views are presented using SQL and, alternatively, REST requests.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

xi

https://graphql.org/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
Oracle and other resources related to this developer’s guide are listed.

• Oracle Database JSON Developer’s Guide

• Product page Simple Oracle Document Access (SODA) and book Oracle Database
Introduction to Simple Oracle Document Access (SODA)

• Product page Oracle Database API for MongoDB and book Oracle Database API for
MongoDB

• Product page Oracle REST Data Services (ORDS) and book Oracle REST Data Services
Developer's Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Concepts

• Oracle Database Error Messages Reference. Oracle Database error message
documentation is available only as HTML. If you have access to only printed or PDF
Oracle Database documentation, you can browse the error messages by range. Once you
find the specific range, use the search (find) function of your Web browser to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle Database online
documentation.

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using OTN;
registration is free and can be done at OTN Registration.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Preface

xii

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Code Examples
The code examples here are for illustration only, but in many cases you can copy, paste, and
run parts of them in your environment. Unless called out explicitly, the examples do not depend
on each other in any way. In particular, there is no implied sequencing among them.

• Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

• Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

Pretty Printing of JSON Data
To promote readability, especially of lengthy or complex JSON data, output is sometimes
shown pretty-printed (formatted) in code examples.

Reminder About Case Sensitivity
JSON is case-sensitive. SQL is case-insensitive, but names in SQL code are implicitly
uppercase.

When examining the examples in this book, keep in mind the following:

• SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you
enclose them in double quotation marks (").

• JSON is case-sensitive. You must refer to SQL names in JSON code using the correct
case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double quotation
marks, then you must refer to it in JSON code as "MY_TABLE".

Preface

xiii

1
Overview of JSON-Relational Duality Views

Duality views combine the advantages of using JSON documents with those of the relational
model, while avoiding the limitations of each. JSON-relational duality underpins collections of
documents with relational storage: active, updatable, hierarchical documents are based on a
foundation of normalized relations.

• A single JSON document can represent an application object directly, capturing the
hierarchical relations among its components. A JSON document is standalone: self-
contained and self-describing — no outside references, no need to consult an outside
schema. There's no decomposition, which means that JSON is schema-flexible: you can
easily add and remove fields, and change their type, as required by application changes.

However, relationships among documents are not represented by the documents
themselves; the application must code relationships separately, as part of its logic. In
particular, values that are part of one document cannot be shared by others. This leads to
data duplication across different documents (whether of the same kind or different kinds),
which in turn can introduce inconsistencies when documents are updated.

• The relational model decomposes application objects ("business objects") into normalized
tables, which are explicitly related but whose content is otherwise independent. This
independence allows for flexible and efficient data combination (joining) that is rigorously
correct and reliable.

This avoids inconsistencies and other problems with data duplication, but it burdens
application developers with defining a mapping between their application objects and
relational tables. Application changes can require schema changes to tables, which can
hinder agile development. As a result, developers often prefer to work with document-
centric applications.

A JSON-relational duality view exposes data stored in relational database tables as JSON
documents. The documents are materialized — generated on demand, not stored as such.
Duality views give your data both a conceptual and an operational duality: it's organized both
relationally and hierarchically. You can base different duality views on data that's stored in one
or more of the same tables, providing different JSON hierarchies over the same, shared data.

This means that applications can access (create, query, modify) the same data as a set of
JSON documents or as a set of related tables and columns, and both approaches can be
employed at the same time.

• Document-centric applications can use document APIs, such as Oracle Database API for
MongoDB and Oracle REST Data Services (ORDS), or they can use SQL/JSON1

functions. You can manipulate documents realized by duality views in the ways you're used
to, using your usual drivers, frameworks, tools, and development methods. In particular,
applications can use any programming languages — JSON documents are the lingua
franca.

• Other applications, such as database analytics, reporting, and machine learning, can make
use of the same data directly, relationally (as a set of table rows and columns), using
languages such as SQL, PL/SQL, C, and JavaScript. You need not adapt an existing
database feature or code that makes use of table data to instead use JSON documents.

1 SQL/JSON is specified in ISO/IEC 9075-2:2016, Information technology—Database languages—SQL— Part 2:
Foundation (SQL/Foundation). Oracle SQL/JSON support is closely aligned with the JSON support in this SQL Standard.

1-1

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

A JSON-relational duality view directly defines and reflects the structure of JSON documents of
a given kind (structure and field types). The view is based on underlying database tables,
which it joins automatically to realize documents of that kind.

Columns of SQL data types other than JSON in an underlying table produce scalar JSON
values in the documents supported by the view. Columns of the SQL data type JSON can
produce JSON values of any kind (scalar, object, or array) in the documents, and the JSON
data can be schemaless or JSON Schema-based (to enforce particular document shapes and
field types). See Car-Racing Example, Tables for the column data types allowed in a table
underlying a duality view.

JSON fields produced from an underlying table can be included in any JSON objects in a
duality-view document. When you define the view you specify where to include them, and
whether to do so individually or to nest them in their own object. By default, nested objects are
used.2

Note:

A given column in an underlying table can be used to support fields in different
objects of a document. In that case, the same column value is used in each object:
the data is shared.3

A duality view can be read-only or completely or partially updatable, depending on how you
define it. You can define a duality view and its updatability declaratively (what/where, not how),
using SQL or a subset of the GraphQL language.

When you modify a duality view — to insert, delete, or update JSON documents, the relevant
relational (table) data underlying the view is automatically updated accordingly.

We say that a duality view supports a set of JSON documents of a particular kind (structure
and typing), to indicate both (1) that the documents are generated — not stored as such — and
(2) that updates to the underlying table data are likewise automatically reflected in the
documents.

Even though a set of documents (supported by the same or different duality views) might be
interrelated because of shared data, an application can simply read a document, modify it, and
write it back. The database detects the document changes and makes the necessary
modifications to all underlying table rows. When any of those rows underlie other duality views,
those other views and the documents they support automatically reflect the changes as well.

Conversely, if you modify data in tables that underlie one or more duality views then those
changes are automatically and immediately reflected in the documents supported by those
views.

The data is the same; there are just dual ways to view/access it.

Duality views give you both document advantages and relational advantages:

• Document: Straightforward application development (programming-object mappings,
get/put access, common interchange format)

2 You use keyword UNNEST in the SQL view definition, or directive @unnest in the GraphQL view definition, to include fields
directly. See Creating Duality Views.

3 For a flex column (see Flex Columns, Beyond the Basics), the column value provides field names as well as values. In
that case, both are shared across the different objects supported by the column.

Chapter 1

1-2

https://json-schema.org/
https://graphql.org/

• Relational: Consistency, space efficiency, normalization (flexible data combination/
composition/aggregation)

JSON-relational duality serves a spectrum of users and use cases, from table-centric,
relational-database ones to document-centric, document-database ones.

• Table-Centric Use Case for JSON-Relational Duality
Developers of table-centric database applications can use duality views to interface with,
and leverage, applications that make use of JSON documents. Duality views map
relational table data to documents.

• Document-Centric Use Case for JSON-Relational Duality
Developers of document-centric applications can use duality views to interface with, and
leverage, normalized relational data stored in tables.

• Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON documents
and relational data. That's better than mapping programming objects to relational data.

• Duality-View Security: Simple, Centralized, Use-Case-Specific
Duality views give you better data security. You can control access and operations at any
level.

• Oracle Database: Converged, Multitenant, Backed By SQL
If you use JSON-relational duality views then your application can take advantage of the
benefits of a converged database.

See Also:

• Product page Oracle REST Data Services (ORDS) and book Oracle REST Data
Services Developer's Guide

• Validating JSON Documents with a JSON Schema for information about using
JSON schemas to constrain or validate JSON data

• json-schema.org for information about JSON Schema

1.1 Table-Centric Use Case for JSON-Relational Duality
Developers of table-centric database applications can use duality views to interface with, and
leverage, applications that make use of JSON documents. Duality views map relational table
data to documents.

Table-centric use case: You have, or you will develop, one or more applications that are
table-centric; that is, they primarily use normalized relational data. At the same time, you have
a need to present JSON-document views of some of your table data to (often client)
applications. You sometimes want the views and their documents to be updatable, partially or
wholly.

The other main use case for duality views is described in Document-Centric Use Case for
JSON-Relational Duality: document-centric application development, where developers start
with JSON documents that they want to work with (typically based on application objects), or at
least with a model of those documents. In that context, creating duality views involves these
steps:

Chapter 1
Table-Centric Use Case for JSON-Relational Duality

1-3

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://json-schema.org/

1. Analyzing the existing (or expected) document sets to define normalized entities and
relations that represent the underlying logic of the different kinds of documents. (See Car-
Racing Example, Entity Relationships.)

2. Defining relational tables that can implement those entities. (See Car-Racing Example,
Tables.)

3. Defining different duality views over those tables, to support/generate the different kinds of
documents. (See Creating Duality Views.)

Note:

If you are migrating an existing document-centric application then you can often take
advantage of the JSON-to-duality migrator to considerably automate this process
(steps 1-3). See Migrating From JSON To Duality.

On its own, step 3 represents the table-centric use case for JSON-relational duality: creating
duality views over existing relational data. Instead of starting with one or more sets of
documents, and analyzing them to come up with relational tables to underlie them (steps 1 and
2), you directly define duality views, and the document collections they support, based on
tables that already exist.

It's straightforward to define a duality view that's based on existing relational data, because
that data has already undergone data analysis and factoring (normalization). So it's easy to
adapt or define a document-centric application to reuse existing relational data as a set of
JSON documents. This alone is a considerable advantage of the duality between relational and
JSON data. You can easily make the wide world of existing relational data available as sets of
JSON documents.

We can look at a simple SQL example right away, without explaining everything involved, just
to get an idea of how easy it can be to create and use a duality view.

Assume that we have table department, with deptno as its primary-key column:

CREATE TABLE department
 (deptno NUMBER(2,0),
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 CONSTRAINT pk_dept PRIMARY KEY (deptno));

Here's all we need to do, to create a duality view (department_dv) over that one table. The
view exposes the table data as a collection of JSON documents with fields _id,
departmentName, and location.

CREATE JSON RELATIONAL DUALITY VIEW department_dv AS
 SELECT JSON {'_id' : d.deptno,
 'departmentName' : d.dname,
 'location' : d.loc}
 FROM department d WITH UPDATE INSERT DELETE;

In Creating Duality Views, SQL statement CREATE JSON RELATIONAL DUALITY VIEW is
explained in detail. Suffice it to say here that the syntax for creating the duality view selects the
columns of table department to generate JSON objects as the documents supported by the
view.

Chapter 1
Table-Centric Use Case for JSON-Relational Duality

1-4

Columns deptno, dname, and loc are mapped, for document generation, to document fields
_id, departmentName, and location, respectively.4 The documents supported by the duality
view have a single JSON object, with only those three fields. (The JSON {…} syntax indicates
the object with those fields.)

The annotations WITH UPDATE INSERT DELETE define the duality view as completely updatable:
applications can update, insert, and delete documents, which in turn updates the underlying
tables.

We can immediately query (select) documents from the duality view. Each document looks like
this:

{_id : <department number>,
 departmentName : <department-name string>,
 location : <location string>}

Suppose now that we also have table employees, defined as follows. It has primary-key column
empno; and it has foreign-key column deptno, which references column deptno of table dept.

CREATE TABLE employee
 (empno NUMBER(4,0),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4,0),
 hiredate DATE,
 sal NUMBER(7,2),
 deptno NUMBER(2,0),
 CONSTRAINT pk_emp PRIMARY KEY (empno),
 CONSTRAINT fk_deptno FOREIGN KEY (deptno) REFERENCES department (deptno));

In this case we can define a slightly more complex department duality view,
dept_w_employees_dv, which includes some data for the employees of the department:

CREATE JSON RELATIONAL DUALITY VIEW dept_w_employees_dv AS
 SELECT JSON {'_id' : d.deptno,
 'departmentName' : d.dname,
 'location' : d.loc,
 'employees' :
 [SELECT JSON {'employeeNumber' :e.empno,
 'name' : e.ename}
 FROM employee e
 WHERE e.deptno = d.deptno]}
 FROM department d WITH UPDATE INSERT DELETE;

Here, we see that each department object has also an employees field, whose value is an array
(note the JSON […] syntax) of employee objects (the inner JSON {…} syntax). The values of
the employee-object fields are taken from columns employeeNumber and name of the employee
table.

4 The documents supported by a duality view must include, at top level, document-identifier field _id, which corresponds to
the identifying column(s) of the root table underlying the view. In this case, that's primary-key column deptno.

Chapter 1
Table-Centric Use Case for JSON-Relational Duality

1-5

The tables are joined with the WHERE clause, to produce the employee information in the
documents: the department of each employee listed must have the same number as the
department represented by the document.

A simple query of the view returns documents that look like this:

{_id : <department number>,
 departmentName : <department-name string>,
 location : <location string>
 employees :
 [{employeeNumber : <employee number>,
 name : <employee name>}]}

Related Topics

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations
Keyword UPDATE means that the annotated data can be updated. Keywords INSERT and
DELETE mean that the fields/columns covered by the annotation can be inserted or deleted,
respectively.

1.2 Document-Centric Use Case for JSON-Relational Duality
Developers of document-centric applications can use duality views to interface with, and
leverage, normalized relational data stored in tables.

Document-centric use case:

• You have, or you will develop, one or more applications that are document-centric; that is,
they use JSON documents as their primary data. For the most part, you want your
applications to be able to manipulate (query, update) documents in the ways you're used
to, using your usual drivers, frameworks, tools, development methods, and programming
languages.

• You want the basic structure of the various kinds of JSON documents your application
uses to remain relatively stable.

• Some kinds of JSON documents that you use, although of different overall structure, have
some parts that are the same. These documents, although hierarchical (trees), are
interrelated by some common parts. Separately each is a tree, but together they constitute
a graph.

• You want your applications to be able to take advantage of all of the advanced processing,
high performance, and security features offered by Oracle Database.

In such a case you can benefit from defining and storing your application data using Oracle
Database JSON-relational duality views. You can likely benefit in other cases, as well — for
example, cases where only some of these conditions apply. As a prime motivation behind the
introduction of duality views, this case helps present the various advantages they have to offer.

Shared Data

An important part of the duality-view use case is that there are some parts of different JSON
documents that you want to remain the same. Duplicating data that should always be the same

Chapter 1
Document-Centric Use Case for JSON-Relational Duality

1-6

is not only a waste. It ultimately presents a nightmare for application maintenance and
evolution. It requires your application to keep the common parts synced.

The unspoken problem presented by document-centric applications is that a JSON document
is only hierarchical. And no single hierarchy fits the bill for everything, even for the same
application.

Consider a scheduling application involving students, teachers, and courses. A student
document contains information about the courses the student is enrolled in. A teacher
document contains information about the courses the teacher teaches. A course document
contains information about the students enrolled in the course. The problem is that the same
information is present in multiple kinds of documents, in the same or different forms. And it's
left to applications that use these documents to manage this inherent sharing.

With duality views these parts can be automatically shared, instead of being duplicated. Only
what you want to be shared is shared. An update to such shared data is reflected everywhere
it's used. This gives you the best of both worlds: the world of hierarchical documents and the
world of related and shared data.

There's no reason your application should itself need to manage whatever other constraints
and relations are required among various parts of different documents. Oracle Database can
handle that for you. You can specify that information once and for all, declaratively.

Here's an example of different kinds of JSON documents that share some parts. This example
of car-racing information is used throughout this documentation.

• A driver document records information about a particular race-car driver: driver name;
team name; racing points earned; and a list of races participated in, with the race name
and the driver position.

• A race document records information about a particular race: its name, number of laps,
date, podium standings (top three drivers), and a list of the drivers who participated, with
their positions.

• A team document records information about a racing team: its name, points earned, and a
list of its drivers.

See Also:

Car-Racing Example, JSON Documents

Stable Data Structure and Types

Another important part of the duality-view use case is that the basic structure and field types of
your JSON documents should respect their definitions and remain relatively stable.

Duality views enforce this stability automatically. They do so by being based on normalized
tables, that is, tables whose content is independent of each other (but which may be related to
each other).

You can define just which document parts need to respect your document design in this way,
and which parts need not. Parts that need not have such stable structure and typing can
provide document and application flexibility: their underlying data is of Oracle SQL data type
JSON (native binary JSON).

No restrictions are imposed on these pliable parts by the duality view. (But because they are of
JSON data type they are necessarily well-formed JSON data.) The data isn't structured or typed

Chapter 1
Document-Centric Use Case for JSON-Relational Duality

1-7

according to the tables underlying the duality view. But you can impose any number of
structure or type restrictions on it separately, using JSON Schema (see below).

An example of incorporating stored JSON-type data directly into a duality view, as part of its
definition, is column podium of the race table that underlies part of the race_dv duality view
used in the Formula 1 car-racing example in this documentation.5

Like any other column, a JSON-type column can be shared among duality views, and thus
shared among different kinds of JSON documents. (Column podium is not shared; it is used
only for race documents.) See Schema Flexibility with JSON Columns in Duality Views for
information about storing JSON-type columns in tables that underlie a duality view.

JSON data can be totally schemaless, with structure and typing that's unknown or susceptible
to frequent change. Or you can impose a degree of definition on it by requiring it to conform to
a particular JSON schema. A JSON schema is a JSON document that describes other JSON
documents. Using JSON Schema you can define and control the degree to which your
documents and your application are flexible.

Being based on database tables, duality views themselves of course enforce a particular kind
of structural and typing stability: tables are normalized, and they store a particular number of
columns, which are each of a particular SQL data type. But you can use JSON Schema to
enforce detailed document shape and type integrity in any number of ways on a JSON-type
column — ways that are specific to the JSON language.

Because a duality view definition imposes some structure and field typing on the documents it
supports, it implicitly defines a JSON schema. This schema is a description of the documents
that reflects only what the duality view itself prescribes. It is available in column JSON_SCHEMA of
static dictionary views DBA_JSON_DUALITY_VIEWS, USER_JSON_DUALITY_VIEWS, and
ALL_JSON_DUALITY_VIEWS. You can also see the schema using PL/SQL function
DBMS_JSON_SCHEMA.describe.

Duality views compose separate pieces of data by way of their defined relations. They give you
precise control over data sharing, by basing JSON documents on tables whose data is
separate from but related to that in other tables.

Both normalizing and JSON Schema-constraining make data less flexible, which is sometimes
what you want (stable document shape and field types) and sometimes not what you want.

Oracle Database provides a full spectrum of flexibility and control for the use of JSON
documents. Duality views can incorporate JSON-type columns to provide documents with parts
that are flexible: not normalized and (by default) not JSON Schema-constrained. See Schema
Flexibility with JSON Columns in Duality Views for information about controlling the schema
flexibility of duality views.

Your applications can also use whole JSON documents that are stored as a column of JSON
data type, not generated by a duality view. Applications can interact in exactly the same ways
with data in a JSON column and data in a duality view — in each case you have a set of JSON
documents.

Those ways of interacting with your JSON data include (1) document-store programming using
document APIs such as Oracle Database API for MongoDB and Oracle REST Data Services
(ORDS), and (2) SQL/JSON programming using SQL, PL/SQL, C, or JavaScript.

JSON-relational duality views are special JSON collection views. Ordinary (non-duality) JSON
collection views are not updatable. JSON collection views, along with JSON collection tables
(which are updatable), are JSON collections. You can use a JSON collection directly with a

5 See Example 2-4 and Example 3-5.

Chapter 1
Document-Centric Use Case for JSON-Relational Duality

1-8

https://json-schema.org/
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

document API. In particular, the documents in duality views and the documents in JSON
collection tables can have the same form and are thus be interchangeable.

This means, for example, that you could start developing an application using a JSON
collection table, storing your JSON documents persistently and with no schema, and later,
when your app is stable, switch transparently to using a JSON-relational duality view as the
collection instead. Your application code accessing the collection can remain the same —
same updates, insertions, deletions, and queries. (This assumes that the documents stored in
the collection table have the same shape as those supported by the duality view.)

JSON duality views are listed in these static dictionary views, in order of decreasing specificity
— see *_JSON_COLLECTION_VIEWS, *_JSON_COLLECTIONS, *_VIEWS, and
*_OBJECTS in Oracle Database Reference.

Enforcing structural and type stability means defining what that means for your particular
application. This isn't hard to do. You just need to identify (1) the parts of your different
documents that you want to be truly common, that is, to be shared, (2) what the data types of
those shared parts must be, and (3) what kind of updating, if any, they're allowed. Specifying
this is what it means to define a JSON-relational duality view.

Related Topics

• Schema Flexibility with JSON Columns in Duality Views
Including columns of JSON data type in tables that underlie a duality view lets applications
add and delete fields, and change the types of field values, in the documents supported by
the view. The stored JSON data can be schemaless or JSON Schema-based (to enforce
particular types of values).

• Using JSON-Relational Duality Views
You can insert (create), update, delete, and query documents or parts of documents
supported by a duality view. You can list information about a duality view.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

• Introduction To Car-Racing Duality Views Example
Data for Formula 1 car races is used here to present the features of JSON-relational
duality views. This use-case example starts from an analysis of the kinds of JSON
documents needed. It then defines corresponding entities and their relationships, relational
tables, and duality views built on those tables.

Chapter 1
Document-Centric Use Case for JSON-Relational Duality

1-9

See Also:

• Overview of JSON in Oracle Database in Oracle Database JSON Developer’s
Guide

• JSON Collections in Oracle Database JSON Developer’s Guide

• JSON Schema in Oracle Database JSON Developer’s Guide

• Product page Oracle Database API for MongoDB and book Oracle Database API
for MongoDB.

• Product page Oracle REST Data Services (ORDS) and book Oracle REST Data
Services Developer's Guide

• Using JSON to Implement Flexfields (video, 24 minutes)

1.3 Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON documents and
relational data. That's better than mapping programming objects to relational data.

If you use an object-relational mapper (ORM) or an object-document mapper (ODM), or you're
familiar with their concepts, then this topic might help you better understand the duality-view
approach to handling the "object-relational impedance mismatch" problem.

Duality views could be said to be a kind of ORM: they too map hierarchical object data to/from
relational data. But they're fundamentally different from existing ORM approaches.

Duality views centralize the persistence format of application objects for both server-side and
client-side applications — all clients, regardless of language or framework. The persistence
model presents two aspects for the same data: table and document. Server-side code can
manipulate relational data in tables; client-side code can manipulate a collection (set) of
documents.

Client code need only convert its programming objects to/from JSON, which is familiar and
easy. A duality view automatically persists JSON as relational data. There's no need for any
separate mapper — the duality view is the mapping.

The main points in this regard are these:

• Map JSON documents; don't map programming objects!

With duality views, the only objects you map to relational data are JSON documents. You
could say that a duality view is a document-relational mapping (DRM), or a JSON-
relational mapping (JRM).

A duality view doesn't lock you into using, or adapting to, any particular language (for
mapping or for application programming). It's just JSON documents, all the way down (and
up and around). And it's all relational data — same dual thing!

• Map declaratively!

A duality view is a mapping — there's no need for a mapper. You define duality views as
declarative maps between JSON documents and relational tables. That's all. No
procedural programming.

• Map inside the database!

Chapter 1
Map JSON Documents, Not Programming Objects

1-10

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://youtu.be/vYw9p_4aGJM
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

A duality view is a database object. There's no tool-generated SQL code to tune.
Application operations on documents are optimally executed inside the database.

No separate mapping language or tools, no programming, no deploying, no configuring, no
setting-up anything. Everything about the mapping itself is available to any database
feature and any application — a duality view is just a special kind of database view.

This also means fewer round trips between application and database, supporting read
consistency and providing better performance.

• Define rules for handling parts of documents declaratively, not in application code.

Duality views define which document parts are shared, and whether and how they can be
updated. The same rule validation/enforcement is performed, automatically, regardless of
which application or language requests an update.

• Use any programming language or tool to access and act on your documents — anything
you like. Use the same documents with different applications, in different programming
languages, in different ways,….

• Share the same data in multiple kinds of documents.

Create a new duality view anytime, to combine things from different tables. Consistency is
maintained automatically. No database downtime, no compilation,.... The new view just
works (immediately), and so do already existing views and apps. Duality views are
independent, even when parts of their supported documents are interdependent (shared).

• Use lockless/optimistic concurrency control.

No need to lock data and send multiple SQL statements, to ensure transactional semantics
for what's really a single application operation. (There's no generated SQL to send to the
database.)

A duality view maps parts of one or more tables to JSON documents that the view defines — it
need not map every column of a table. Documents depend directly on the mapping (duality
view), and only indirectly on the underlying tables. This is part of the duality: presenting two
different views — not only views of different things (tables, documents) but typically of
somewhat different content. Content-wise, a document combines subsets of table data.

This separation/abstraction is seen clearly in the fact that not all columns of a table underlying
a duality view need be mapped to its supported documents. But it also means that some
changes to an underlying table, such as the addition of a column, are automatically prevented
from affecting existing documents, simply by the mapping (view definition) not reflecting those
changes. This form of table-level schema evolution requires no changes to existing duality
views, documents, or applications.

On the other hand, if you want to update an application, to reflect some table-level changes,
then you change the view definition to take those changes into account in whatever way you
like. This application behavior change can be limited to documents that are created after the
view-definition change.

Alternatively, you can create a new duality view that directly reflects the changed table
definitions. You can use that view with newer versions of the application while continuing to use
the older view with older versions of the app. This way, you can avoid having to upgrade all
clients at the same time, limiting downtime.

In this case, schema evolution for underlying tables leads to schema evolution for the
supported documents. An example of this might be the deletion of a table column that's
mapped to a document field. This would likely lead to a change in application logic and
document definition.

Chapter 1
Map JSON Documents, Not Programming Objects

1-11

Related Topics

• Duality-View Security: Simple, Centralized, Use-Case-Specific
Duality views give you better data security. You can control access and operations at any
level.

1.4 Duality-View Security: Simple, Centralized, Use-Case-
Specific

Duality views give you better data security. You can control access and operations at any level.

Security control is centralized. Like everything else about duality views, it is defined, verified,
enforced, and audited in the database. This contrasts strongly with trying to secure your data in
each application. You control access to the documents supported by a duality-view the same
way you control access to other database objects: using privileges, grants, and roles.

Duality-view security is use-case-specific. Instead of according broad visibility at the table
level, a duality view exposes only relevant columns of data from its underlying tables. For
example, an application that has access to a teacher view, which contains some student data,
won't have access to private student data, such as social-security number or address.

Beyond exposure/visibility, a duality view can declaratively define which data can be updated,
in which ways. A student view could allow a student name to be changed, while a teacher view
would not allow that. A teacher-facing application could be able to change a course name, but
a student-facing application would not. See Updatable JSON-Relational Duality Views and
Updating Documents/Data in Duality Views.

You can combine the two kinds of security control, to control who/what can do what to which
fields:

• Create similar duality views that expose slightly different sets of columns as document
fields. That is, define views intended for different groups of actors. (The documents
supported by a duality view are not stored as such, so this has no extra cost.)

• Grant privileges and roles, to selectively let different groups of users/apps access different
views.

Contrast this declarative, in-database, field-level access control with having to somehow —
with application code or using an object-relational mapper (ORM) — prevent a user or
application from being able to access and update all data in a given table or set of documents.

The database automatically detects document changes, and updates only the relevant table
rows. And conversely, table updates are automatically reflected in the documents they
underlie. There's no mapping layer outside the database, no ORM intermediary to call upon to
remap anything.

And client applications can use JSON documents directly. There's no need for a mapper to
connect application objects and classes to documents and document types.

Multiple applications can also update documents or their underlying tables concurrently.
Changes to either are transparently and immediately reflected in the other. In particular,
existing SQL tools can update table rows at the same time applications update documents
based on those rows. Document-level consistency, and table row-level consistency, are
guaranteed together.

And this secure concurrency can be lock-free, and thus highly performant. See Using
Optimistic Concurrency Control With Duality Views.

Chapter 1
Duality-View Security: Simple, Centralized, Use-Case-Specific

1-12

Particular Oracle Database security features that you can use JSON-relational duality views
with include Transparent Data Encryption (TDE), Data Redaction, and Virtual Private
Database.

Related Topics

• Map JSON Documents, Not Programming Objects
A JSON-relational duality view declaratively defines a mapping between JSON documents
and relational data. That's better than mapping programming objects to relational data.

1.5 Oracle Database: Converged, Multitenant, Backed By SQL
If you use JSON-relational duality views then your application can take advantage of the
benefits of a converged database.

These benefits include the following:

• Native (binary) support of JavaScript Object Notation (JSON) data. This includes updating,
indexing, declarative querying, generating, and views

• Advanced security, including auditing and fine-grained access control using roles and
grants

• Fully ACID (atomicity, consistency, isolation, durability) transactions across multiple
documents and tables

• Standardized, straightforward JOINs with all sorts of data (including JSON)

• State-of-the-art analytics, machine-learning, and reporting

Oracle Database is a converged, multimodel database. It acts like different kinds of databases
rolled into one, providing synergy across very different features, supporting different workloads
and data models.

Oracle Database is polyglot. You can seamlessly join and manipulate together data of all
kinds, including JSON data, using multiple application languages.

Oracle Database is multitenant. You can have both consolidation and isolation, for different
teams and purposes. You get a single, common approach for security, upgrades, patching, and
maintenance. (If you use an Autonomous Oracle Database, such as Autonomous JSON
Database, then Oracle takes care of all such database administration responsibilities. An
autonomous database is self-managing, self-securing, self-repairing, and serverless. And
there's Always Free access to an autonomous database.)

The standard, declarative language SQL underlies processing on Oracle Database. You might
develop your application using a popular application-development language together with an
API such as Oracle Database API for MongoDB or Oracle REST Data Services (ORDS), but
the power of SQL is behind it all, and that lets your app play well with everything else on
Oracle Database.

Chapter 1
Oracle Database: Converged, Multitenant, Backed By SQL

1-13

https://docs.oracle.com/en/cloud/paas/autonomous-json-database/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-json-database/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/autonomous-always-free.html#GUID-03F9F3E8-8A98-4792-AB9C-F0BACF02DC3E
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

2
Introduction To Car-Racing Duality Views
Example

Data for Formula 1 car races is used here to present the features of JSON-relational duality
views. This use-case example starts from an analysis of the kinds of JSON documents
needed. It then defines corresponding entities and their relationships, relational tables, and
duality views built on those tables.

Note:

An alternative approach to creating duality views is available to migrate an
application that has existing sets of related documents, so that it uses duality views.

For that you can use the JSON-to-duality migrator, which automatically infers and
generates the appropriate duality views. No need to manually analyze the different
kinds of documents to discover implicit entities and relationships, and then define and
populate the relevant duality views and their underlying normalized tables.

The migrator does all of that for you. By default, whatever document parts can be
shared within or across views are shared, and the views are defined for maximum
updatability.

See Migrating From JSON To Duality.

For the car-racing example we suppose a document-centric application that uses three kinds of
JSON documents: driver, race, and team. Each of these kinds shares some data with another
kind. For example:

• A driver document includes, in its information about a driver, identification of the driver's
team and information about the races the driver has participated in.

• A race document includes, in its information about a particular race, information about the
podium standings (first-, second-, and third-place winners), and the results for each driver
in the race. Both of these include driver and team names. The racing data is for a single
season of racing.

• A team document includes, in its information about a team, information about the drivers
on the team.

Operations the application might perform on this data include the following:

• Adding or removing a driver, race, or team to/from the database

• Updating the information for a driver, race, or team

• Adding a driver to a team, removing a driver from a team, or moving a driver from one
team to another

• Adding race results to the driver and race information

2-1

The intention in this example is that all common information be shared, so that, say, the driver
with identification number 302 in the driver duality view is the same as driver number 302 in the
team view.

You specify the sharing of data that's common between two duality views by including the
same data from underlying tables.

When you define a given duality view you can control whether it's possible to insert into, delete
from, or update the documents supported by the view and, overriding those constraints,
whether it's possible to insert, delete, or update a given field in a supported document. By
default, a duality view is read-only: no inserting, deleting, or updating documents.

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships among
them. You define entities that correspond to your application documents in order to help
you determine the tables needed to define the duality views for your application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are modeled as
joins between participating tables. Tables team, driver, and race are used to implement
the duality views that provide and support the team, driver, and race JSON documents
used by the car-racing application.

See Also:

• Working with JSON Relational Duality Views using SQL, a SQL script that mirrors
the examples in this document

• Formula One (Wikipedia)

2.1 Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver document,
and a race document.

A document supported by a duality view always includes, at its top (root) level, a document-
identifier field, _id, which corresponds to (all of) the identifying columns of the root table that
underlies the view. See Document-Identifier Field for Duality Views. (In the car-racing example
the root table of each duality view has a single identifying column, which is a primary-key
column.)

The following naming convention is followed in this documentation:

• The document-identifier field (_id) of each kind of document (team, driver, or race)
corresponds to the root-table identifying columns of the duality view that supports those
documents. For example, field _id of a team document corresponds to identifying
(primary-key) column team_id of table team, which is the root table underlying duality view
team_dv.

• Documents of one kind (e.g. team), supported by one duality view (e.g. team_dv) can
include other fields named ...Id (e.g. driverId), which represent foreign-key references

Chapter 2
Car-Racing Example, JSON Documents

2-2

https://github.com/oracle-samples/oracle-db-examples/blob/main/json-relational-duality/DualityViewTutorial.sql
https://en.wikipedia.org/wiki/Formula_One

to identifying columns in tables underlying other duality views — columns that contain data
that's shared. For example, in a team document, field driverId represents a foreign key
that refers to the document-identifier field (_id) of a driver document.

Note:

Only the application-logic document content, or payload of each document, is shown
here. That is, the documents shown here do not include the automatically generated
and maintained, top-level field _metadata (whose value is an object with fields etag
and asof). However, this document-handling field is always included in documents
supported by a duality view. See Creating Duality Views for information about field
_metadata.

Example 2-1 A Team Document

A team document includes information about the drivers on the team, in addition to information
that's relevant to the team but not necessarily relevant to its drivers.

• Top-level field _id uniquely identifies a team document. It is the document-identifier field.
Column team_id of table team corresponds to this field; it is the table's primary key.

• The team information that's not shared with driver documents is in field _id and top-level
fields name and points.

• The team information that's shared with driver documents is in fields driverId, name, and
points, under field driver. The value of field driverId is that of the document-identifier
field (_id) of a driver document.

{"_id" : 302,
 "name" : "Ferrari",
 "points" : 300,
 "driver" : [{"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 192},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 118}]}

Example 2-2 A Driver Document

A driver document includes identification of the driver's team and information about the races
the driver has participated in, in addition to information that's relevant to the driver but not
necessarily relevant to its team or races.

• Top-level field _id uniquely identifies a driver document. It is the document-identifier field.
Column driver_id of the driver table corresponds to this field; it is that table's primary
key.

• The driver information that's not shared with race or team documents is in fields _id, name,
and points.

• The driver information that's shared with race documents is in field race. The value of field
raceId is that of the document-identifier field (_id) of a race document.

Chapter 2
Car-Racing Example, JSON Documents

2-3

• The driver information that's shared with a team document is in fields such as teamId,
whose value is that of the document-identifier field (_id) of a team document.

Two alternative versions of a driver document are shown, with and without nested team and
race information.

Driver document, with nested team and race information:

Field teamInfo contains the nested team information (fields teamId and name). Field raceInfo
contains the nested race information (fields raceId and name).

{"_id" : 101,
 "name" : "Max Verstappen",
 "points" : 258,
 "teamInfo" : {"teamId" : 301, "name" : "Red Bull"},
 "race" : [{"driverRaceMapId" : 3,
 "raceInfo" : {"raceId" : 201,
 "name" : "Bahrain Grand Prix"},
 "finalPosition" : 19},
 {"driverRaceMapId" : 11,
 "raceInfo" : {"raceId" : 202,
 "name" : "Saudi Arabian Grand Prix"},
 "finalPosition" : 1}]}

Driver document, without nested team and race information:

Fields teamId and team are not nested in a teamInfo object. Fields raceId and name are not
nested in a raceInfo object.

{"_id" : 101,
 "name" : "Max Verstappen",
 "points" : 25,
 "teamId" : 301,
 "team" : "Red Bull",
 "race" : [{"driverRaceMapId" : 3,
 "raceId" : 201,
 "name" : "Bahrain Grand Prix",
 "finalPosition" : 19},
 {"driverRaceMapId" : 11,
 "raceId" : 202,
 "name" : "Saudi Arabian Grand Prix",
 "finalPosition" : 1}]}

Example 2-3 A Car-Race Document

A race document includes, in its information about a particular race, information about the
podium standings (first, second, and third place), and the results for each driver in the race.
The podium standings include the driver and team names. The result for each driver includes
the driver's name.

Both of these include driver and team names.

• Top-level field _id uniquely identifies a race document. It is the document-identifier field.
Column race_id of the race table corresponds to this field; it is that table's primary key.

• The race information that's not shared with driver or team documents is in fields _id, name
(top-level), laps, date, time, and position.

Chapter 2
Car-Racing Example, JSON Documents

2-4

• The race information that's shared with driver documents is in fields such as driverId,
whose value is that of the document-identifier field (_id) of a driver document.

• The race information that's shared with team documents is in field team (under winner,
firstRunnerUp, and secondRunnerUp, which are under podium).

Two alternative versions of a race document are shown, with and without nested driver
information.

Race document, with nested driver information:

{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {"winner" : {"name" : "Charles Leclerc",
 "team" : "Ferrari",
 "time" : "02:00:05.3476"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "team" : "Ferrari",
 "time" : "02:00:15.1356"},
 "secondRunnerUp" : {"name" : "Max Verstappen",
 "team" : "Red Bull",
 "time" : "02:01:01.9253"}},
 "result" : [{"driverRaceMapId" : 3,
 "position" : 1,
 "driverInfo" : {"driverId" : 103,
 "name" : "Charles Leclerc"},
 {"driverRaceMapId" : 4,
 "position" : 2,
 "driverInfo" : {"driverId" : 104,
 "name" : "Carlos Sainz Jr"},
 {"driverRaceMapId" : 9,
 "position" : 3,
 "driverInfo" : {"driverId" : 101,
 "name" : "Max Verstappen"},
 {"driverRaceMapId" : 10,
 "position" : 4,
 "driverInfo" : {"driverId" : 102,
 "name" : "Sergio Perez"}]}

Race document, without nested driver information:

{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {"winner" : {"name" : "Charles Leclerc",
 "team" : "Ferrari",
 "time" : "02:00:05.3476"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "team" : "Ferrari",
 "time" : "02:00:15.1356"},
 "secondRunnerUp" : {"name" : "Max Verstappen",
 "team" : "Red Bull",
 "time" : "02:01:01.9253"}},

Chapter 2
Car-Racing Example, JSON Documents

2-5

 "result" : [{"driverRaceMapId" : 3,
 "position" : 1,
 "driverId" : 103,
 "name" : "Charles Leclerc"},
 {"driverRaceMapId" : 4,
 "position" : 2,
 "driverId" : 104,
 "name" : "Carlos Sainz Jr"},
 {"driverRaceMapId" : 9,
 "position" : 3,
 "driverId" : 101,
 "name" : "Max Verstappen"},
 {"driverRaceMapId" : 10,
 "position" : 4,
 "driverId" : 102,
 "name" : "Sergio Perez"}]}

Related Topics

• Document-Identifier Field for Duality Views
A document supported by a duality view always includes, at its top level, a document-
identifier field, _id, which corresponds to the identifying columns (primary-key columns,
identity columns, or columns with a unique constraint or unique index) of the root table
underlying the view. The field value can take different forms.

2.2 Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships among them.
You define entities that correspond to your application documents in order to help you
determine the tables needed to define the duality views for your application.

From the documents to be used by your application you can establish entities and their
relationships. Each entity corresponds to a document type: driver, race, team.

Unlike the corresponding documents, the entities we use have no content overlap — they're
normalized. The content of an entity (what it represents) is only that which is specific to its
corresponding document type; it doesn't include anything that's also part of another document
type.

• The driver entity represents only the content of a driver document that's not in a race or
team document. It includes only the driver's name and points, corresponding to document
fields name and points.

• The race entity represents only the content of a race document that's not in a driver
document or a team document. It includes only the race's name, number of laps, date, and
podium information, corresponding to document fields name, laps, date, and podium.

• The team entity represents only the content of a team document that's not in a document
or race document. It includes only the team's name and points, corresponding to document
fields name and points.

Two entities are related according to their cardinality. There are three types of such
relationships:1

1 In the notation used here, N does not represent a number; it's simply an abbreviation for "many", or more precisely, "one or
more".

Chapter 2
Car-Racing Example, Entity Relationships

2-6

One-to-one (1:1)
An instance of entity A can only be associated with one instance of entity B. For example, a
driver can only be on one team.

One-to-many (1:N)
An instance of entity A can be associated with one or more instances of entity B. For example,
a team can have many drivers.

Many-to-many (N:N)
An instance of entity A can be associated with one or more instances of entity B, and
conversely. For example, a race can have many drivers, and a driver can participate in many
races.

See Also:

Entity-relationship model

A many-to-one (N:1) relationship is just a one-to-many relationship looked at from the opposite
viewpoint. We use only one-to-many.

See Figure 2-1. An arrow indicates the relationship direction, with the arrowhead pointing to
the second cardinality. For example, the 1:N arrow from entity team to entity driver points
toward driver, to show that one team relates to many drivers.

Figure 2-1 Car-Racing Example, Directed Entity-Relationship Diagram (1)

A driver can only be associated with one team (1:1). A team can be associated with multiple
drivers (1:N). A driver can be associated with multiple races (N:N). A race can be associated
with multiple drivers (N:N).

Related Topics

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are modeled as
joins between participating tables. Tables team, driver, and race are used to implement
the duality views that provide and support the team, driver, and race JSON documents
used by the car-racing application.

See Also:

Database normalization (Wikipedia)

Chapter 2
Car-Racing Example, Entity Relationships

2-7

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Database_normalization

2.3 Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are modeled as joins
between participating tables. Tables team, driver, and race are used to implement the duality
views that provide and support the team, driver, and race JSON documents used by the car-
racing application.

The normalized entities have no content overlap. But we need the database tables that
implement the entities to overlap logically, in the sense of a table referring to some content that
is stored in another table. To realize this we add columns that are linked to other tables using
foreign-key constraints. It is these foreign-key relations among tables that implement their
sharing of common content.

The tables used to define a duality view must satisfy these requirements (otherwise an error is
raised when you try to create the view):

• For a table underlying a duality view to be updatable indirectly, through the view (that is, by
updating documents supported by the view), the individual rows of the table must be
identifiable.

For this requirement, you define one or more columns, called identifying columns for the
table, which together identify a row. Identifying columns are primary-key columns, columns
with unique constraints, or columns with unique indexes.

Columns with unique constraints and columns with unique indexes are sometimes called
unique-key columns. A unique key or a primary key is thus a set of one or more columns
that uniquely identify a row in a table.

For the root table of a duality view, if one or more unique-key columns are used for this
purpose, then at least one of them must, in addition, be marked NOT NULL. This prevents
any ambiguity that could arise from using a NULLable unique key or a unique key that has
some NULL columns.

The identifying columns for the root table in a duality view correspond to the document-
identifier field, _id, of the JSON documents that the view is designed to support — see
Document-Identifier Field for Duality Views.

• Oracle recommends that you also define an index on each foreign-key column. References
(links) between primary and foreign keys must be defined, but they need not be enforced.

Note:

Primary and unique indexes are generally created implicitly when you define
primary-key and unique-key integrity constraints. But this is not guaranteed, and
indexes can be dropped after their creation. It's up to you to ensure that the
necessary indexes are present. See Creating Indexes in Oracle Database
Administrator’s Guide.

In general, a value in a foreign-key column can be NULL. Besides the above requirements, if
you want a foreign-key column to not be NULLable, then mark it as NOT NULL in the table
definition.

There's only one identifying column for each of the tables used in the car-racing example, and
it is a primary-key column. In this documentation we sometimes speak of primary, foreign, and
unique keys as single-column keys, but keep in mind that they can in general be composite:
composed of multiple columns.

Chapter 2
Car-Racing Example, Tables

2-8

In the car-racing example, entities team, driver, and race are implemented by tables team,
driver, and race, which have the following columns:

• team table:

– team_id — primary key

– name — unique key

– points
• driver table:

– driver_id — primary key

– name — unique key

– points
– team_id — foreign key that links to column team_id of table team

• race table:

– race_id — primary key

– name — unique key (so the table has no duplicate rows: there can't be two races with
the same name)

– laps
– race_date
– podium

The logic of the car-racing application mandates that there be only one team with a given team
name, only one driver with a given driver name, and only one race with a given race name, so
column name of each of these tables is made a unique key. (This in turn means that there is
only one team document with a given name field value, only one driver document with a given
name, and only one race document with a given name.)

Table driver has an additional column, team_id, which is data that's logically shared with table
team (it corresponds to document-identifier field _id of the team document). This sharing is
defined by declaring the column to be a foreign key in table driver, which links to (primary-
key) column team_id of table team. That link implements both the 1:1 relationship from driver to
team and the 1:N relationship from team to driver.

But what about the other sharing: the race information in a driver document that's shared with a
race document, and the information in a race document that's shared with a driver document or
with a team document?

That information sharing corresponds to the many-to-many (N:N) relationships between
entities driver and race. The database doesn't implement N:N relationships directly. Instead,
we need to add another table, called a mapping table (or an associative table), to bridge the
relationship between tables driver and race. A mapping table includes, as foreign keys, the
primary-key columns of the two tables that it associates.

An N:N entity relationship is equivalent to a 1:N relationship followed by a 1:1 relationship. We
use this equivalence to implement an N:N entity relationship using database tables, by adding
mapping table driver_race_map between tables driver and race.

Figure 2-2 is equivalent to Figure 2-1. Intermediate entity d-r-map is added to expand each N:N
relationship to a 1:N relationship followed by a 1:1 relationship.2

Chapter 2
Car-Racing Example, Tables

2-9

Figure 2-2 Car-Racing Example, Directed Entity-Relationship Diagram (2)

Mapping table driver_race_map implements intermediate entity d-r-map. It has the following
columns:

• driver_race_map_id — primary key

• race_id — (1) foreign key that links to primary-key column race_id of table race and (2)
unique key (so the table has no duplicate rows: there can't be two entries for the same
driver for a particular race)

• driver_id — foreign key that links to primary-key column driver_id of table driver
• position
Together with the relations defined by their foreign-key and primary-key links, the car-racing
tables form a dependency graph. This is shown in Figure 3-1.

Example 2-4 Creating the Car-Racing Tables

This example creates each table with a primary-key column, whose values are automatically
generated as a sequence of integers, and a unique-key column, name. This implicitly also
creates unique indexes on the primary-key columns. The example also creates foreign-key
indexes.

Column podium of table race has data type JSON. Its content is flexible: it need not conform to
any particular structure or field types. Alternatively, its content could be made to conform to
(that is, validate against) a particular JSON schema.

CREATE TABLE team
 (team_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 points INTEGER NOT NULL,
 CONSTRAINT team_pk PRIMARY KEY(team_id));

CREATE TABLE driver
 (driver_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 points INTEGER NOT NULL,
 team_id INTEGER,
 CONSTRAINT driver_pk PRIMARY KEY(driver_id),
 CONSTRAINT driver_fk FOREIGN KEY(team_id) REFERENCES team(team_id));

CREATE TABLE race
 (race_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 laps INTEGER NOT NULL,
 race_date DATE,
 podium JSON,
 CONSTRAINT race_pk PRIMARY KEY(race_id));

2 In the notation used here, N does not represent a number; it's simply an abbreviation for "many", or more precisely, "one or
more".

Chapter 2
Car-Racing Example, Tables

2-10

https://json-schema.org/

-- Mapping table, to bridge the tables DRIVER and RACE.
--
CREATE TABLE driver_race_map
 (driver_race_map_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 race_id INTEGER NOT NULL,
 driver_id INTEGER NOT NULL,
 position INTEGER,
 CONSTRAINT driver_race_map_uk UNIQUE (race_id, driver_id),
 CONSTRAINT driver_race_map_pk PRIMARY KEY(driver_race_map_id),
 CONSTRAINT driver_race_map_fk1 FOREIGN KEY(race_id)
 REFERENCES race(race_id),
 CONSTRAINT driver_race_map_fk2 FOREIGN KEY(driver_id)
 REFERENCES driver(driver_id));
-- Create foreign-key indexes
--
CREATE INDEX driver_fk_idx ON driver (team_id);
CREATE INDEX driver_race_map_fk1_idx ON driver_race_map (race_id);
CREATE INDEX driver_race_map_fk2_idx ON driver_race_map (driver_id);

Note:

Primary-key, unique-key, and foreign-key integrity constraints must be defined for the
tables that underlie duality views (or else an error is raised), but they need not be
enforced.

In some cases you might know that the conditions for a given constraint are satisfied,
so you don't need to validate or enforce it. You might nevertheless want the
constraint to be present, to improve query performance. In that case, you can put the
constraint in the RELY state, which asserts that the constraint is believed to be
satisfied. See RELY Constraints in a Data Warehouse in Oracle Database Data
Warehousing Guide.

You can also make a foreign key constraint DEFERRABLE, which means that the
validity check is done at the end of a transaction. See Deferrable Constraints in
Oracle Database Concepts

Note:

The SQL data types allowed for a column in a table underlying a duality view are
BINARY_DOUBLE, BINARY_FLOAT, BLOB, BOOLEAN, CHAR, CLOB, DATE, JSON, INTERVAL DAY
TO SECOND, INTERVAL YEAR TO MONTH, NCHAR, NCLOB, NUMBER, NVARCHAR2, VARCHAR2,
RAW, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and VECTOR. An error is raised if you
specify any other column data type.

Related Topics

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships among
them. You define entities that correspond to your application documents in order to help
you determine the tables needed to define the duality views for your application.

Chapter 2
Car-Racing Example, Tables

2-11

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

See Also:

• JSON Schema in Oracle Database JSON Developer’s Guide

• CREATE TABLE in Oracle Database SQL Language Reference

Chapter 2
Car-Racing Example, Tables

2-12

3
Creating Duality Views

You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to create
JSON-relational duality views. Example team, driver, and race duality views are created to
provide the JSON documents used by a car-racing application.

(To get a quick sense of how easy it can be to create a duality view over existing relational
data, see Table-Centric Use Case for JSON-Relational Duality.)

The views created here are based on the data in the related tables driver, race, and team,
which underlie the views driver_dv, race_dv, and team_dv, respectively, as well as mapping
table driver_race_map, which underlies views driver_dv and race_dv.

A duality view supports JSON documents, each of which has a top-level JSON object. You can
interact with a duality view as if it were a table with a single column of JSON data type.

A duality view and its corresponding top-level JSON object provide a hierarchy of JSON
objects and arrays, which are defined in the view definition using nested SQL subqueries. Data
gathered from a subquery is joined to data gathered from a parent table by a relationship
between the corresponding identifying columns in the subquery's WHERE clause. These columns
can have, but need not have, primary-key and foreign-key constraints.

An identifying column is a primary-key column, an identity column, a column with a unique
constraint, or a column with a unique index.

You can create a read-only, non-duality SQL view using SQL/JSON generation functions
directly (see Read-Only Views Based On JSON Generation in Oracle Database JSON
Developer’s Guide).

A duality view is a JSON generation view that has a limited structure, expressly designed so
that your applications can update the view, and in so doing automatically update the underlying
tables. All duality views share the same limitations that allow for this, even those that are read-
only.

In general, columns from tables underlying a duality view are mapped to fields in the
documents supported by the view; that is, column values are used as field values.

Because a duality view and its supported documents can generally be updated, which updates
data in its underlying tables, each table must have one or more identifying columns, whose
values collectively identify uniquely the table row used to generate the corresponding field
values. All occurrences of a given table in a duality-view definition must use the same set of
identifier columns.

3-1

Note:

For input of data types CLOB and BLOB to SQL/JSON generation functions, an empty
instance is distinguished from SQL NULL. It produces an empty JSON string (""). But
for input of data types VARCHAR2, NVARCHAR2, and RAW, Oracle SQL treats an empty
(zero-length) value as NULL, so do not expect such a value to produce a JSON string.

A column of data in a table underlying a duality view is used as input to SQL/JSON
generation functions to generate the JSON documents supported by the view. An
empty value in the column can thus result in either an empty string or a SQL NULL
value, depending on the data type of the column.

A duality view has only one payload column, named DATA, of JSON data type, which is
generated from underlying table data. Each row of a duality view thus contains a single JSON
object, the top-level object of the view definition. This object acts as a JSON document
supported by the view.

In addition to the payload document content, that is, the application content per se, a
document's top-level object always has the automatically generated and maintained document-
handling field _metadata. Its value is an object with these fields:

• etag — A unique identifier for a specific version of the document, as a string of
hexadecimal characters.

This identifier is constructed as a hash value of the document content (payload), that is, all
document fields except field _metadata. (More precisely, all fields whose underlying
columns are implicitly or explicitly annotated CHECK, meaning that those columns contribute
to the ETAG value.)

This ETAG value lets an application determine whether the content of a particular version
of a document is the same as that of another version. This is used, for example, to
implement optimistic concurrency. See Using Optimistic Concurrency Control With Duality
Views.

• asof — The latest system change number (SCN) for the JSON document, as a JSON
number. This records the last logical point in time at which the document was generated.

The SCN can be used to query other database objects (duality views, tables) at the exact
point in time that a given JSON document was retrieved from the database. This provides
consistency across database reads. See Using the System Change Number (SCN) of a
JSON Document

Besides the payload column DATA, a duality view also contains two hidden columns, which you
can access from SQL:

• ETAG — This 16-byte RAW column holds the ETAG value for the current row of column DATA.
That is, it holds the data used for the document metadata field etag.

• RESID — This variable-length RAW column holds an object identifier that uniquely identifies
the document that is the content of the current row of column DATA. The column value is a
concatenated binary encoding of the identifier columns of the root table.

You create a duality view using SQL DDL statement CREATE JSON RELATIONAL DUALITY VIEW,
whose syntax allows for the optional use of a subset of the GraphQL language.

For convenience, each time you create a duality view a synonym is automatically created for
the view name you provide. If the name you provide is unquoted then the synonym is the same
name, but quoted. If the name you provide is quoted then the synonym is the same name, but

Chapter 3

3-2

https://graphql.org/

unquoted. If the quoted name contains one or more characters that aren't allowed in an
unquoted name then no synonym is created. The creation of a synonym means that the name
of a duality view is, in effect, always case-sensitive regardless of whether it's quoted. See
CREATE SYNONYM in Oracle Database SQL Language Reference.

• Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created using SQL.

• Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created using
GraphQL.

• WHERE Clauses in Duality-View Tables
When creating a JSON-relational duality view, you can use simple tests in WHERE clauses to
not only join underlying tables but to select which table rows are used to generate JSON
data. This allows fine-grained control of the data to be included in a JSON document
supported by a duality view.

Related Topics

• Table-Centric Use Case for JSON-Relational Duality
Developers of table-centric database applications can use duality views to interface with,
and leverage, applications that make use of JSON documents. Duality views map
relational table data to documents.

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

• Car-Racing Example, Entity Relationships
Driver, car-race, and team entities are presented, together with the relationships among
them. You define entities that correspond to your application documents in order to help
you determine the tables needed to define the duality views for your application.

• Car-Racing Example, Tables
Normalized entities are modeled as database tables. Entity relationships are modeled as
joins between participating tables. Tables team, driver, and race are used to implement
the duality views that provide and support the team, driver, and race JSON documents
used by the car-racing application.

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

• Using the System Change Number (SCN) of a JSON Document
A system change number (SCN) is a logical, internal, database time stamp. Metadata
field asof records the SCN for the moment a document was retrieved from the database.
You can use the SCN to ensure consistency when reading other data.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

Chapter 3

3-3

See Also:

• CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

• Generation of JSON Data Using SQL in Oracle Database JSON Developer’s
Guide for information about SQL/JSON functions json_object, json_array, and
json_arrayagg, and the syntax JSON {…} and JSON […]

• JSON Data Type Constructor in Oracle Database JSON Developer’s Guide

• System Change Numbers (SCNs) in Oracle Database Concepts

3.1 Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created using SQL.

The SQL statements here that define the car-racing duality views use a simplified syntax which
makes use of the JSON-type constructor function, JSON, as shorthand for using SQL/JSON
generation functions to construct (generate) JSON objects and arrays. JSON {…} is simple
syntax for using function json_object, and JSON […] is simple syntax for using function
json_array or json_arrayagg.

Occurrences of JSON {…} and JSON […] that are embedded within other such occurrences
can be abbreviated as just {…} and […], it being understood that they are part of an
enclosing JSON generation function.

The arguments to generation function json_object are definitions of individual JSON-object
members: a field name, such as points, followed by a colon (:) or keyword IS, followed by the
defining field value (for example, 110) — 'points' : 110 or 'points' IS 110. Note that the
JSON field names are enclosed with single-quote characters (').

Some of the field values are defined directly as column values from the top-level table for the
view: table driver (alias d) for view driver_dv, table race (alias r) for view race_dv, and table
team (alias t) for view team_dv. For example: 'name' : d.name, for view driver_dv defines the
value of field name as the value of column name of the driver table.

Other field values are defined using a subquery (SELECT ...) that selects data from one of the
other tables. That data is implicitly joined, to form the view data.

Some of the subqueries use the syntax JSON {…}, which defines a JSON object with fields
defined by the definitions enclosed by the braces ({, }). For example, JSON {'_id' :
r.race_id, 'name' : r.name} defines a JSON object with fields _id and name, defined by the
values of columns race_id and name, respectively, from table r (race).

Other subqueries use the syntax JSON […], which defines a JSON array whose elements are
the values that the subquery returns, in the order they are returned. For example, [SELECT
JSON {…} FROM driver WHERE ...] defines a JSON array whose elements are selected from
table driver where the given WHERE condition holds.

Duality views driver_dv and race_dv each nest data from the mapping table
driver_race_map. Two versions of each of these views are defined, one of which includes a
nested object and the other of which, defined using keyword UNNEST, flattens that nested object
to just include its fields directly. For view driver_dv the nested object is the value of field

Chapter 3
Creating Car-Racing Duality Views Using SQL

3-4

teamInfo. For view race_dv the nested object is the value of field driverInfo. (If you like, you
can use keyword NEST to make explicit the default behavior of nesting.)

In most of this documentation, the car-racing examples use the view and document versions
without these nested objects.

Nesting is the default behavior for fields from tables other than the root table. Unnesting is the
default behavior for fields from the root table. You can use keyword NEST if you want to make
the default behavior explicit — see Example 10-1 for an example. Note that you cannot nest
the document identifier field, _id, which corresponds to the identifying columns of the root
table; an error is raised if you try.

Example 3-1 Creating Duality View TEAM_DV Using SQL

This example creates a duality view where the team objects look like this — they contain a field
driver whose value is an array of nested objects that specify the drivers on the team:

{"_id" : 301, "name" : "Red Bull", "points" : 0, "driver" : [...]}

(The view created is the same as that created using GraphQL in Example 3-6.)

CREATE JSON RELATIONAL DUALITY VIEW team_dv AS
 SELECT JSON {'_id' : t.team_id,
 'name' : t.name,
 'points' : t.points,
 'driver' :
 [SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name,
 'points' : d.points WITH NOCHECK}
 FROM driver d WITH INSERT UPDATE
 WHERE d.team_id = t.team_id]}
 FROM team t WITH INSERT UPDATE DELETE;

Example 3-2 Creating Duality View DRIVER_DV, With Nested Team Information Using SQL

This example creates a duality view where the driver objects look like this — they contain a
field teamInfo whose value is a nested object with fields teamId and (team) name:

{"_id" : 101,
 "name" : "Max Verstappen",
 "points" : 0,
 "teamInfo" : {"teamId" : 103, "name" : "Red Bull"},
 "race" : [...]}

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
 SELECT JSON {'_id' : d.driver_id,
 'name' : d.name,
 'points' : d.points,
 'teamInfo' :
 (SELECT JSON {'teamId' : t.team_id,
 'name' : t.name WITH NOCHECK}
 FROM team t WITH NOINSERT NOUPDATE NODELETE
 WHERE t.team_id = d.team_id),
 'race' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,

Chapter 3
Creating Car-Racing Duality Views Using SQL

3-5

 'raceInfo' :
 (SELECT JSON {'raceId' : r.race_id,
 'name' : r.name}
 FROM race r WITH NOINSERT NOUPDATE NODELETE
 WHERE r.race_id = drm.race_id),
 'finalPosition' : drm.position}
 FROM driver_race_map drm WITH INSERT UPDATE NODELETE
 WHERE drm.driver_id = d.driver_id]}
 FROM driver d WITH INSERT UPDATE DELETE;

Example 3-3 Creating Duality View DRIVER_DV, With Unnested Team Information Using SQL

This example creates a duality view where the driver objects look like this — they don't contain
a field teamInfo whose value is a nested object with fields teamId and name. Instead, the data
from table team is incorporated at the top level, with the team name as field team.

{"_id" : 101,
 "name" : "Max Verstappen",
 "points" : 0,
 "teamId" : 103,
 "team" : "Red Bull",
 "race" : [...]}

Instead of using 'teamInfo' : to define top-level field teamInfo with an object value resulting
from the subquery of table team, the view definition precedes that subquery with keyword
UNNEST, and it uses the data from column name as the value of field team. In all other respects,
this view definition is identical to that of Example 3-2.

(The view created is the same as that created using GraphQL in Example 3-7.)

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
 SELECT JSON {'_id' : d.driver_id,
 'name' : d.name,
 'points' : d.points,
 UNNEST
 (SELECT JSON {'teamId' : t.team_id,
 'team' : t.name WITH NOCHECK}
 FROM team t WITH NOINSERT NOUPDATE NODELETE
 WHERE t.team_id = d.team_id),
 'race' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 UNNEST
 (SELECT JSON {'raceId' : r.race_id,
 'name' : r.name}
 FROM race r WITH NOINSERT NOUPDATE NODELETE
 WHERE r.race_id = drm.race_id),
 'finalPosition' : drm.position}
 FROM driver_race_map drm WITH INSERT UPDATE NODELETE
 WHERE drm.driver_id = d.driver_id]}
 FROM driver d WITH INSERT UPDATE DELETE;

Note that if for some reason you wanted fields (other than _id) from the root table, driver, to
be in a nested object, you could do that. For example, this code would nest fields name and

Chapter 3
Creating Car-Racing Duality Views Using SQL

3-6

points in a driverInfo object. You could optionally use keyword NEST before field driverInfo,
to make the default behavior of nesting more explicit.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
 SELECT JSON {'_id' : d.driver_id,
 'driverInfo' : {'name' : d.name,
 'points' : d.points},
 UNNEST (SELECT JSON {...}),
 'race' : ...}
 FROM driver d;

Example 3-4 Creating Duality View RACE_DV, With Nested Driver Information Using SQL

This example creates a duality view where the objects that are the elements of array result
look like this — they contain a field driverInfo whose value is a nested object with fields
driverId and name:

{"driverRaceMapId" : 3,
 "position" : 1,
 "driverInfo" : {"driverId" : 103, "name" : "Charles Leclerc"}}

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 SELECT JSON {'_id' : r.race_id,
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'result' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 'position' : drm.position,
 'driverInfo' :
 (SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name}
 FROM driver d WITH NOINSERT UPDATE NODELETE
 WHERE d.driver_id = drm.driver_id)}
 FROM driver_race_map drm WITH INSERT UPDATE DELETE
 WHERE drm.race_id = r.race_id]}
 FROM race r WITH INSERT UPDATE DELETE;

Example 3-5 Creating Duality View RACE_DV, With Unnested Driver Information Using SQL

This example creates a duality view where the objects that are the elements of array result
look like this — they don't contain a field driverInfo whose value is a nested object with fields
driverId and name:

{"driverId" : 103, "name" : "Charles Leclerc", "position" : 1}

Instead of using 'driverInfo' : to define top-level field driverInfo with an object value
resulting from the subquery of table driver, the view definition precedes that subquery with
keyword UNNEST. In all other respects, this view definition is identical to that of Example 3-4.

Chapter 3
Creating Car-Racing Duality Views Using SQL

3-7

(The view created is the same as that created using GraphQL in Example 3-8.)

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 SELECT JSON {'_id' : r.race_id,
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'result' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 'position' : drm.position,
 UNNEST
 (SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name}
 FROM driver d WITH NOINSERT UPDATE NODELETE
 WHERE d.driver_id = drm.driver_id)}
 FROM driver_race_map drm WITH INSERT UPDATE DELETE
 WHERE drm.race_id = r.race_id]}
 FROM race r WITH INSERT UPDATE DELETE;

See Also:

CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL Language
Reference

3.2 Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created using GraphQL.

GraphQL is an open-source, general query and data-manipulation language that can be used
with various databases. A subset of GraphQL syntax and operations are supported by Oracle
Database for creating JSON-relational duality views. GraphQL Language Used for JSON-
Relational Duality Views describes the supported subset of GraphQL. It introduces syntax and
features that are not covered here.

GraphQL queries and type definitions are expressed as a GraphQL document. The GraphQL
examples shown here, for creating the car-racing duality views, are similar to the SQL
examples. The most obvious difference is just syntactic.

The more important differences are that with a GraphQL definition of a duality view you don't
need to explicitly specify these things:

• Nested scalar subqueries.

• Table links between foreign-key columns and identifying columns, as long as a child table
has only one foreign key to its parent table.1

• The use of SQL/JSON generation functions (or their equivalent syntax abbreviations).

1 The only time you need to explicitly use a foreign-key link in GraphQL is when there is more than one foreign-key relation
between two tables or when a table has a foreign key that references the same table. In such a case, you use an @link
directive to specify the link. See Oracle GraphQL Directives for JSON-Relational Duality Views.

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-8

This information is instead all inferred from the graph/dependency relations that are inherent in
the overall duality-view definitions. The tables underlying a duality view form a directed
dependency graph by virtue of the relations among their identifying columns and foreign-key
columns. A foreign key from one table, T-child, to another table, T-parent, results in a graph
edge (an arrow) directed from node T-child to node T-parent.

You don't need to construct the dependency graph determined by a set of tables; that's done
automatically (implicitly) when you define a duality view. But it can sometimes help to visualize
it.

An edge (arrow) of the graph links a table with a foreign-key column to the table whose
identifying column is the target of that foreign key. For example, an arrow from node (table)
driver to node (table) team indicates that a foreign key of table driver is linked to a primary
key of table team. In Figure 3-1, the arrows are labeled with the foreign and primary keys.

Figure 3-1 Car-Racing Example, Table-Dependency Graph

driver_race_map

race driver

team

team_id (PK)

team_id (FK)

driver_id (PK)

driver_id (FK)race_id (FK)

race_id (PK)

FK: Foreign Key

Legend:

PK: Primary Key

The GraphQL code that defines a JSON-relational duality view takes the form of a GraphQL
query (without the surrounding query { … } code), which specifies the graph structure, based
on the dependency graph, which is used by the view. A GraphQL duality-view definition
specifies, for each underlying table, the columns that are used to generate the JSON fields in
the supported JSON documents.

In GraphQL, a view-defining query is represented by a GraphQL object schema, which, like the
dependency graph on which it's based, is constructed automatically (implicitly). You never
need to construct or see either the dependency graph or the GraphQL object schema that's
used to create a duality view, but it can help to know something about each of them.

A GraphQL object schema is a set of GraphQL object types, which for a duality-view
definition are based on the tables underlying the view.

The GraphQL query syntax for creating a duality view reflects the structure of the table-
dependency graph, and it's based closely on the object-schema syntax. (One difference is that
the names used are compatible with SQL.)

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-9

In an object schema, and thus in the query syntax, each GraphQL object type (mapped from a
table) is named by a GraphQL field (not to be confused with a field in a JSON object). And
each GraphQL field can optionally have an alias.

A GraphQL query describes a graph, where each node specifies a type. The syntax for a node
in the graph is a (GraphQL) field name followed by its object type. If the field has an alias then
that, followed by a colon (:), precedes the field name. An object type is represented by braces
({ ... }) enclosing a subgraph. A field need not be followed by an object type, in which case it is
scalar.

The syntax of GraphQL is different from that of SQL. In particular, the syntax of names
(identifiers) is different. In a GraphQL duality-view definition, any table and column names that
are not allowed directly as GraphQL names are mapped to names that are. But simple, all-
ASCII alphanumeric table and column names, such as those of the car-racing example, can be
used directly in the GraphQL definition of a duality view.

For example:

• driverId : driver_id

Field driver_id preceded by alias driverId .

• driver : driver {driverId : driver_id,
 name : name,
 points : points}

Field driver preceded by alias driver and followed by an object type that has field
driver_id, with alias driverId, and fields name and points, each with an alias named the
same as the field.

• driver {driverId : driver_id,
 name,
 points}

Equivalent to the previous example. Aliases that don't differ from their corresponding field
names can be omitted.

In the object type that corresponds to a table, each column of the table is mapped to a
scalar GraphQL field with the same name as the column.

Note:

In each of those examples, alias driverId would be replaced by alias _id, if used as
a document-identifier field, that is, if driver is the root table and driver_id is its
primary-key column.

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-10

Note:

In GraphQL commas (,) are not syntactically or semantically significant; they're
optional, and are ignored. For readability, in this documentation we use commas
within GraphQL {…}, to better suggest the corresponding JSON objects in the
supported documents.

In a GraphQL definition of a duality view there's no real distinction between a node that
contributes a single object to a generated JSON document and a node that contributes an
array of such objects. You can use just { … } to specify that the node is a GraphQL object
type, but that doesn't imply that only a single JSON object results from it in the supported
JSON documents.

However, to have a GraphQL duality-view definition more closely reflect the JSON documents
that the view is designed to support, you can optionally enclose a node that contributes an
array of objects in brackets ([,]).

For example, you can write [{…},…] instead of just {…},…, to show that this part of a definition
produces an array of driver objects. This convention is followed in this documentation.

Keep in mind that this is only for the sake of human readers of the code; the brackets are
optional, where they make sense. But if you happen to use them where they don't make sense
then a syntax error is raised, to help you see your mistake.

You use the root table of a duality view as the GraphQL root field of the view definition. For
example, for the duality view that defines team documents, you start with table team as the
root: you write team {…}.

Within the { … } following a type name (such as team), which for a duality view definition is a
table name, you specify the columns from that table that are used to create the generated
JSON fields.

You thus use column names as GraphQL field names. By default, these also name the JSON
fields you want generated.

If the name of the JSON field you want is the not same as that of the column (GraphQL field)
that provides its value, you precede the column name with the name of the JSON field you
want, separating the two by a colon (:). That is, you use a GraphQL alias to specify the desired
JSON field name.

For example, driverId : driver_id means generate JSON field driverId from the data in
column driver_id. In GraphQL terms, driverId is an alias for (GraphQL) field driver_id.

• Using driver_id alone means generate JSON field driver_id from the column with that
name.

• Using driverId : driver_id means generate JSON field driverId from the data in
column driver_id. In GraphQL terms, driverId is an alias for the GraphQL field
driver_id.

When constructing a GraphQL query to create a duality view, you add a GraphQL field for each
column in the table-dependency graph that you want to support a JSON field.

In addition, for each table T used in the duality view definition:

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-11

• For each foreign-key link from T to a parent table T-parent, you add a field named T-parent
to the query, to allow navigation from T to T-parent. This link implements a one-to-one
relationship: there is a single parent T-parent.

• For each foreign-key link from a table T-child to T, you add a field named T-child to the
query, to allow navigation from T to T-child. This link implements a one-to-many
relationship: there can be multiple children of type T-child.

Unnesting (flattening) of intermediate objects is the same as for a SQL definition of a duality
view, but instead of SQL keyword UNNEST you use GraphQL directive @unnest. (All of the
GraphQL duality-view definitions shown here use @unnest.)

In GraphQL you can introduce an end-of-line comment with the hash/number-sign character, #:
it and the characters following it on the same line are commented out.

Example 3-6 Creating Duality View TEAM_DV Using GraphQL

This example creates a duality view supporting JSON documents where the team objects look
like this — they contain a field driver whose value is an array of nested objects that specify
the drivers on the team:

{"_id" : 301, "name" : "Red Bull", "points" : 0, "driver" : [...]}

(The view created is the same as that created using SQL in Example 3-1.)

CREATE JSON RELATIONAL DUALITY VIEW team_dv AS
 team @insert @update @delete
 {_id : team_id,
 name : name,
 points : points,
 driver : driver @insert @update
 [{driverId : driver_id,
 name : name,
 points : points @nocheck}]};

Example 3-7 Creating Duality View DRIVER_DV Using GraphQL

This example creates a duality view supporting JSON documents where the driver objects look
like this — they don't contain a field teamInfo whose value is a nested object with fields teamId
and name. Instead, the data from table team is incorporated at the top level, with the team
name as field team.

{"_id" : 101,
 "name" : "Max Verstappen",
 "points" : 0,
 "teamId" : 103,
 "team" : "Red Bull",
 "race" : [...]}

Two versions of the view creation are shown here. For simplicity, a first version has no
annotations declaring updatability or ETAG-calculation exclusion.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
 driver
 {_id : driver_id,

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-12

 name : name,
 points : points,
 team @unnest
 {teamId : team_id,
 team : name},
 race : driver_race_map
 [{driverRaceMapId : driver_race_map_id,
 race @unnest
 {raceId : race_id,
 name : name},
 finalPosition : position}]};

The second version of the view creation has updatability and ETAG @nocheck annotations. (It
creates the same view as that created using SQL in Example 3-3.)

CREATE JSON RELATIONAL DUALITY VIEW driver_dv AS
 driver @insert @update @delete
 {_id : driver_id,
 name : name,
 points : points,
 team @noinsert @noupdate @nodelete
 @unnest
 {teamId : team_id,
 team : name @nocheck},
 race : driver_race_map @insert @update @nodelete
 [{driverRaceMapId : driver_race_map_id,
 race @noinsert @noupdate @nodelete
 @unnest
 {raceId : race_id,
 name : name},
 finalPosition : position}]};

Example 3-8 Creating Duality View RACE_DV Using GraphQL

This example creates a duality view supporting JSON documents where the objects that are
the elements of array result look like this — they don't contain a field driverInfo whose
value is a nested object with fields driverId and name:

{"driverId" : 103, "name" : "Charles Leclerc", "position" : 1}

Two versions of the view creation are shown here. For simplicity, a first version has no
annotations declaring updatability or ETAG-calculation exclusion.

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race
 {_id : race_id,
 name : name,
 laps : laps,
 date : race_date,
 podium : podium,
 result : driver_race_map
 [{driverRaceMapId : driver_race_map_id,
 position : position,
 driver

Chapter 3
Creating Car-Racing Duality Views Using GraphQL

3-13

 @unnest
 {driverId : driver_id,
 name : name}}]};

The second version of the view creation has updatability and ETAG @nocheck annotations. (It
creates the same view as that created using SQL in Example 3-5.)

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race @insert @update @delete
 {_id : race_id,
 name : name,
 laps : laps @noupdate,
 date : race_date,
 podium : podium @nocheck,
 result : driver_race_map @insert @update @delete
 [{driverRaceMapId : driver_race_map_id,
 position : position,
 driver @noinsert @update @nodelete
 @unnest
 {driverId : driver_id,
 name : name}}]};

Related Topics

• Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created using SQL.

• GraphQL Language Used for JSON-Relational Duality Views
GraphQL is an open-source, general query and data-manipulation language that can be
used with various databases. A subset of GraphQL syntax and operations are supported
by Oracle Database for creating JSON-relational duality views.

See Also:

• https://graphql.org/

• GraphQL on Wikipedia

• CREATE JSON RELATIONAL DUALITY VIEW in Oracle Database SQL
Language Reference

3.3 WHERE Clauses in Duality-View Tables
When creating a JSON-relational duality view, you can use simple tests in WHERE clauses to not
only join underlying tables but to select which table rows are used to generate JSON data. This
allows fine-grained control of the data to be included in a JSON document supported by a
duality view.

As one use case, you can create multiple duality views whose supported JSON documents
contain different data, depending on values in discriminating table columns.

For example, using the same underlying table, ORDERS, of purchase orders you could define
duality views open_orders and shipped_orders, with the first view selecting rows with clause

Chapter 3
WHERE Clauses in Duality-View Tables

3-14

https://graphql.org/
https://en.wikipedia.org/wiki/GraphQL

WHERE order_status="open" from the table and the second view selecting rows with WHERE
order_status="shipped".

But note that columns used in the test of a WHERE clause in a duality view need not be used to
populate any fields of the supported JSON documents. For example, the selected purchase-
order documents for views open_orders and shipped_orders need not have any fields that
use values of column order_status.

Each WHERE clause used in a duality-view definition must contain the keywords WITH CHECK
OPTION. This prohibits any changes to the table that would produce rows that are not included
by the WHERE clause test. See CREATE VIEW in Oracle Database SQL Language Reference.

The WHERE clauses you can use in duality-view definitions must be relatively simple — only the
following constructs can be used:

• Direct comparison of column values with values of other columns of the same underlying
table, or with literal values. For example, height > width, height > 3.14. Only ANSI SQL
comparison operators are allowed: =, <>, <, <=, >, >=.

• A (non-aggregation) SQL expression using a column value, or a Boolean combination of
such expressions. For example, upper(department) = 'SALES', salary < 100 and bonus
< 15.

• Use of SQL JSON constructs: functions and conditions such as json_value and
json_exists, as well as simple dot-notation SQL syntax.

In particular, a WHERE clause in a duality-view definition cannot contain the following (otherwise,
an error is raised).

• Use of a PL/SQL subprogram.

• Comparison with the result of a subquery. For example, t.salary > (SELECT max_sal
FROM max_sal_table WHERE jobcode=t.job).

• Reference to a column in an outer query block.

• Use of a bind variable. For example, salary = :var1.

• Use of an aggregation operator. For example, sum(salary) < 100.

• Use of multiple-column operations. For example, salary + bonus < 10000.

• Use of OR between a join condition and another test, in a subquery. Such use would make
the join condition optional. For example, e.deptno=d.deptno OR e.job='MANAGER' — in
this case, e.deptno=d.deptno is the join condition. (However, OR can be used this way in
the top-level/outermost query.)

Example 3-9 WHERE Clause Use in Duality View Definition (SQL)

This example defines duality view race_dv_medal, which is similar to view race_dv
(Example 3-5). It differs in that (1) it uses an additional WHERE-clause test to limit field result to
the first three race positions (first, second, and third place) and (2) it includes only races more
recent than 2019.

CREATE JSON RELATIONAL DUALITY VIEW race_dv_medal AS
 SELECT JSON {'_id' : r.race_id,
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'result' :

Chapter 3
WHERE Clauses in Duality-View Tables

3-15

 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 'position' : drm.position,
 UNNEST
 (SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name}
 FROM driver d WITH NOINSERT UPDATE NODELETE
 WHERE d.driver_id = drm.driver_id)}
 FROM driver_race_map drm WITH INSERT UPDATE DELETE
 WHERE drm.race_id = r.race_id
 AND drm.position <= 3 WITH CHECK OPTION]}
 FROM race r WITH INSERT UPDATE DELETE
 WHERE r.race_date >= to_date('01-JAN-2020') WITH CHECK OPTION;

Example 3-10 WHERE Clause Use in Duality View Definition (GraphQL)

This example defines duality view race_dv_medal using GraphQL. It is equivalent to creating
the view using SQL as in Example 3-9.

The view is similar to view race_dv (Example 3-8). It differs in that (1) it uses an additional
WHERE-clause test to limit field result to the first three race positions (first, second, and third
place) and (2) it includes only races more recent than 2019.

CREATE JSON RELATIONAL DUALITY VIEW race_dv_medal AS
 race @insert @update @delete
 @where (sql: "race_date >= to_date('01-JAN-2020')")
 {_id : race_id,
 name : name,
 laps : laps @noupdate,
 date : race_date,
 podium : podium @nocheck,
 result : driver_race_map @insert @update @delete
 @where (sql: "position <= 3")
 {driverRaceMapId : driver_race_map_id,
 position : position,
 driver @noupdate @nodelete @noinsert
 @unnest
 {driverId : driver_id,
 name : name}}};

Chapter 3
WHERE Clauses in Duality-View Tables

3-16

4
Updatable JSON-Relational Duality Views

Applications can update JSON documents supported by a duality view, if you define the view
as updatable. You can specify which kinds of updating operations (update, insertion, and
deletion) are allowed, for which document fields, how/when, and by whom. You can also
specify which fields participate in ETAG hash values.

A duality view does not, itself, store any data; all of the data that underlies its supported JSON
documents (which are generated) is stored in tables underlying the view. But it's often handy to
think of that table data as being stored in the view. Similarly, for a duality view to be updatable
means that you can update some or all of the data in its tables, and so you can update some
or all of the fields in its supported documents.

An application can update a complete document, replacing the existing document. Or it can
update only particular fields, in place.

An application can optionally cause an update to be performed on a document only if the
document has not been changed from some earlier state — for example, it's unchanged since
it was last retrieved from the database.

An application can optionally cause some actions to be performed automatically after an
update, using database triggers.

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations
Keyword UPDATE means that the annotated data can be updated. Keywords INSERT and
DELETE mean that the fields/columns covered by the annotation can be inserted or deleted,
respectively.

• Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
You declaratively specify the document parts to use for checking the state/version of a
document when performing an updating operation, by annotating the definition of the
duality view that supports such a document.

• Database Privileges Needed for Duality-View Updating Operations
The kinds of operations an application can perform on the data in a given duality view
depend on the database privileges accorded the view owner and the database user
(database schema) with which the application connects to the database.

• Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be respected.

Related Topics

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

4-1

• Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete data from
the tables that underlie a duality view. Examples illustrate these possibilities.

4.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To
Allow/Disallow Updating Operations

Keyword UPDATE means that the annotated data can be updated. Keywords INSERT and DELETE
mean that the fields/columns covered by the annotation can be inserted or deleted,
respectively.

Various updating operations (insert, delete, update) can be allowed on the data of a duality
view. You specify which operations are allowed when you create the view, using table and
column annotations. The operations allowed are based on annotations of its root table and
other tables or their columns, as follows:

• The data of a duality view is insertable or deletable if its root table is annotated with
keyword INSERT or DELETE, respectively.

• A duality view is updatable if any table or column used in its definition is annotated with
keyword UPDATE.

By default, duality views are read-only: no table data used to define a duality view can be
modified through the view. This means that the data of the duality view itself is, by default, not
insertable, deletable, or updatable. The keywords NOUPDATE, NOINSERT, and NODELETE thus
pertain by default for all FROM clauses defining a duality view.

You can specify table-level updatability for a given FROM clause by following the table name with
keyword WITH followed by one or more of the keywords: (NO)UPDATE, (NO)INSERT, and
(NO)DELETE. Table-level updatability defines that of all columns governed by the same FROM
clause, except for any that have overriding column-level (NO)UPDATE annotations. (Column-level
overrides table-level.)

You can specify that a column-level part of a duality view (corresponding to a JSON-document
field) is updatable using annotation WITH after the field–column (key–value) specification,
followed by keyword UPDATE or NOUPDATE. For example, 'name' : r.name WITH UPDATE
specifies that field name and column r.name are updatable, even if table r is declared with
NOUPDATE.

Identifying columns, however, are always read-only, regardless of any annotations. Table-level
annotations have no effect on identifying columns, and applying an UPDATE annotation to an
identifying column raises an error.

Note:

An attempt to update a column annotated with both NOCHECK and NOUPDATE does not
raise an error; the update request is simply ignored. This is to prevent interfering with
possible concurrency.

Updatability annotations are used in Example 3-2 and Example 3-3 as follows:

• None of the fields/columns for table team can be inserted, deleted or updated (WITH
NOINSERT NOUPDATE NODELETE) — team fields _id and name. Similarly, for the fields/

Chapter 4
Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating Operations

4-2

columns for table race: race fields _id and name, hence also raceInfo, can't be inserted,
deleted or updated.

• All of the fields/columns for mapping table driver_race_map can be inserted and updated,
but not deleted (WITH INSERT UPDATE NODELETE) — fields _id and finalPosition.

• All of the fields/columns for table driver can be inserted, updated, and deleted (WITH
INSERT UPDATE DELETE) — driver fields _id, name, and points.

In duality views driver_dv and team_dv there are only table-level updatability annotations (no
column-level annotations). In view race_dv, however, field laps (column laps of table race)
has annotation WITH NOUPDATE, which overrides the table-level updating allowance for columns
of table race — you cannot change the number of laps defined for a given race.

Related Topics

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

• When To Use JSON-Type Columns for a Duality View
Whether to store some of the data underlying a duality view as JSON data type and, if so,
whether to enforce its structure and typing, are design choices to consider when defining a
JSON-relational duality view.

4.2 Annotation (NO)CHECK, To Include/Exclude Fields for ETAG
Calculation

You declaratively specify the document parts to use for checking the state/version of a
document when performing an updating operation, by annotating the definition of the duality
view that supports such a document.

When an application updates a document it often needs to make sure that the version/state of
the document being updated hasn't somehow changed since the document was last retrieved
from the database.

One way to implement this is using optimistic concurrency control, which is lock-free. By
default, every document supported by a duality view records a document-state signature in the
form of an ETAG field, etag. The field value is constructed as a hash value of the document
content and some other information, and it is automatically renewed each time a document is
retrieved.

When your application writes a document that it has updated locally, the database
automatically computes an up-to-date ETAG value for the current state of the stored document,
and it checks this value against the etag value embedded in the document to be updated (sent
by your application).

If the two values don't match then the update operation fails. In that case, your application can
then retrieve the latest version of the document from the database, modify it as needed for the
update (without changing the new value of field etag), and try again to write the (newly
modified) document. See Using Optimistic Concurrency Control With Duality Views.

By default, all fields of a document contribute to the calculation of the value of field etag. To
exclude a given field from participating in this calculation, annotate its column with keyword
NOCHECK (following WITH, just as for the updatability annotations).

Chapter 4
Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation

4-3

In the same way as for updatability annotations, you can specify NOCHECK in a FROM clause, to
have it apply to all columns affected by that clause. In that case, you can use CHECK to
annotate a given column, to exclude it from the effect of the table-level NOCHECK.

Identifying columns, however, always have the default behavior of contributing to ETAG
calculation, regardless of any table-level annotations. To exclude an identifying column from
the ETAG calculation you must give it an explicit column-level annotation of NOCHECK.

In particular, this means that to exclude an entire document from ETAG checking you need to
explicitly annotate each identifying column with NOCHECK, as well as annotating all tables (or all
other columns) with NOCHECK.

Note:

An attempt to update a column annotated with both NOCHECK and NOUPDATE does not
raise an error; the update request is simply ignored. This is to prevent interfering with
possible concurrency.

If an update operation succeeds, then all changes it defines are made, including any changes
for a field that doesn't participate in the ETAG calculation, thus overwriting any changes for that
field that might have been made in the meantime. That is, the field that is not part of the ETAG
calculation is not ignored for the update operation.

For example, field team of view driver_dv is an object with the driver's team information, and
field name of this team object is annotated NOCHECK in the view definition. This means that the
team name doesn't participate in computing an ETAG value for a driver document.

Because the team name doesn't participate in a driver-document ETAG calculation, changes to
the team information in the document are not taken into account. Table team is marked
NOUPDATE in the definition of view driver_dv, so ignoring its team information when updating a
driver document is not a problem.

But suppose table team were instead marked UPDATE. In that case, updating a driver document
could update the driver's team information, which means modifying data in table team.

Suppose also that a driver's team information was changed externally somehow since your
application last read the document for that driver — for example, the team was renamed from
"OLD Team Name" to "NEW Team Name".

Then updating that driver document would not fail because of the team-name conflict (it could
fail for some other reason, of course). The previous change to "NEW Team Name" would simply
be ignored; the team name would be overwritten by the name value specified in the driver-
document update operation (likely "OLD Team Name").

You can avoid this problem (which can only arise if table team is updatable through a driver
document) by simply omitting the team name from the document or document fragment that you
provide in the update operation.

Similarly, field driver of a team document is an array of driver objects, and field points of
those objects is annotated NOCHECK (see Example 3-1), so changes to that field by another
session (from any application) don't prevent updating a team document. (The same caveat,
about a field that's not part of the ETAG calculation not being ignored for the update operation,
applies here.)

Chapter 4
Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation

4-4

A duality view as a whole has its documents ETAG-checked if no column is, in effect,
annotated NOCHECK. If all columns are NOCHECK, then no document field contributes to ETAG
computation. This can improve performance, the improvement being more significant for larger
documents. Use cases where you might want to exclude a duality view from all ETAG checking
include these:

• An application has its own way of controlling concurrency, so it doesn't need a database
ETAG check.

• An application is single-threaded, so no concurrent modifications are possible.

You can use PL/SQL function DBMS_JSON_SCHEMA.describe to see whether a duality view has
its documents ETAG-checked. If so, top-level array field properties contains the element
"check".

Related Topics

• Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be respected.

• When To Use JSON-Type Columns for a Duality View
Whether to store some of the data underlying a duality view as JSON data type and, if so,
whether to enforce its structure and typing, are design choices to consider when defining a
JSON-relational duality view.

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

4.3 Database Privileges Needed for Duality-View Updating
Operations

The kinds of operations an application can perform on the data in a given duality view depend
on the database privileges accorded the view owner and the database user (database
schema) with which the application connects to the database.

You can thus control which applications/users can perform which actions on which duality
views, by granting users the relevant privileges.

An application invokes database operations as a given database user. But updating operations
(including insertions and deletions) on duality views are carried out as the view owner.

To perform the different kinds of operations on duality-view data, a user (or an application
connected as a user) needs to be granted the following privileges on the view:

• To query the data: privilege SELECT WITH GRANT OPTION
• To insert documents (rows): privilege INSERT WITH GRANT OPTION
• To delete documents (rows): privilege DELETE WITH GRANT OPTION
• To update documents (rows): privilege UPDATE WITH GRANT OPTION
In addition, the owner of the view needs the same privileges on each of the relevant tables,
that is, all tables annotated with the corresponding keyword. For example, for insertion the
view owner needs privilege INSERT WITH GRANT OPTION on all tables that are annotated in the
view definition with INSERT.

When an operation is performed on a duality view, the necessary operations on the tables
underlying the view are carried out as the view owner, regardless of which user or application

Chapter 4
Database Privileges Needed for Duality-View Updating Operations

4-5

is accessing the view and requesting the operation. For this reason, those accessing the view
do not, themselves, need privileges on the underlying tables.

See also Updating Rule 1.

4.4 Rules for Updating Duality Views
When updating documents supported by a duality view, some rules must be respected.

1. If a document-updating operation (update, insertion, or deletion) is attempted, and the
required privileges are not granted to the current user or the view owner, then an error is
raised at the time of the attempt. (See Database Privileges Needed for Duality-View
Updating Operations for the relevant privileges.)

2. If an attempted document-updating operation (update, insertion, or deletion) violates any
constraints imposed on any tables underlying the duality view, then an error is raised. This
includes primary-key, unique, NOT NULL, referential-integrity, and check constraints.

3. If a document-updating operation (update, insertion, or deletion) is attempted, and the view
annotations don't allow for that operation, then an error is raised at the time of the attempt.

4. When inserting a document into a duality view, the document must contain all fields that
both (1) contribute to the document's ETAG value and (2) correspond to columns of a (non-
root) table that are marked update-only or read-only in the view definition. In addition, the
corresponding column data must already exist in the table. If these conditions aren't
satisfied then an error is raised.

The values of all fields that correspond to read-only columns also must match the
corresponding column values in the table. Otherwise, an error is raised.

For example, in duality view race_dv the use of the driver table is update-only (annotated
WITH NOINSERT UPDATE NODELETE). When inserting a new race document, the document
must contain the fields that correspond to driver table columns driver_id and name, and
the driver table must already contain data that corresponds to the driver information in
that document.

Similarly, if the driver table were marked read-only in view race_dv (instead of update-
only), then the driver information in the input document would need to be the same as the
existing data in the table.

5. When deleting an object that's linked to its parent with a one-to-many primary-to-foreign-
key relationship, if the object does not have annotation DELETE then it is not cascade-
deleted. Instead, the foreign key in each row of the object is set to NULL (assuming that the
foreign key does not have a non-NULLable constraint).

For example, the driver array in view team_dv is NODELETE (implicitly, since it's not
annotated DELETE). If you delete a team from view team_dv then the corresponding row is
deleted from table team.

But the corresponding rows in the driver table are not deleted. Instead, each such row is
unlinked from the deleted team by setting the value of its foreign key column team_id to
SQL NULL.

Similarly, as a result no driver documents are deleted. But their team information is
removed. For the version of the driver duality view that nests team information, the value of
field teamInfo is set to the empty object ({}). For the version of the driver view that
unnests that team information, each of the team fields, teamId and team, is set to JSON
null.

Chapter 4
Rules for Updating Duality Views

4-6

What would happen if the use of table driver in the definition of duality view team_dv had
the annotation DELETE, allowing deletion? In that case, when deleting a given team all of its
drivers would also be deleted. This would mean both deleting those rows from the driver
table and deleting all corresponding driver documents.

6. In an update operation that replaces a complete document, all fields defined by the view as
contributing to the ETAG value (that is, all fields to which annotation CHECK applies) must
be included in the new (replacement) document. Otherwise, an error is raised.

Note that this rule applies also to the use of Oracle SQL function json_transform when
using operator KEEP or REMOVE. If any field contributing to the ETAG value is removed from
the document then an error is raised.

7. If a duality view has an underlying table with a foreign key that references a primary or
unique key of the same view, then a document-updating operation (update, insertion, or
deletion) cannot change the value of that primary or unique key. An attempt to do so raises
an error.

8. If a document-updating operation (update, insertion, or deletion) involves updating the
same row of an underlying table then it cannot change anything in that row in two different
ways. Otherwise, an error is raised.

For example, this insertion attempt fails because the same row of the driver table (the row
with primary-key driver_id value 105) cannot have its driver name be both "George
Russell" and "Lewis Hamilton".

INSERT INTO team_dv VALUES
 ('{"_id" : 303,
 "name" : "Mercedes",
 "points" : 0,
 "driver" : [{"driverId" : 105,
 "name" : "George Russell",
 "points" : 0},
 {"driverId" : 105,
 "name" : "Lewis Hamilton",
 "points" : 0}]}');

9. If the etag field value embedded in a document sent for an updating operation (update,
insertion, or deletion) doesn't match the current database state then an error is raised.

10. If a document-updating operation (update, insertion, or deletion) affects two or more
documents supported by the same duality view, then all changes to the data of a given row
in an underlying table must be compatible (match). Otherwise, an error is raised. For
example, for each driver this operation tries to set the name of the first race
($.race[0].name) to the driver's name ($.name).

UPDATE driver_dv
 SET data = json_transform(data,
 SET '$.race[0].name' =
 json_value(data, '$.name'));

ERROR at line 1:ORA-42605:
Cannot update JSON Relational Duality View 'DRIVER_DV':
cannot modify the same row of the table 'RACE' more than once.

Chapter 4
Rules for Updating Duality Views

4-7

5
Using JSON-Relational Duality Views

You can insert (create), update, delete, and query documents or parts of documents supported
by a duality view. You can list information about a duality view.

Document-centric applications typically manipulate JSON documents directly, using either
SQL/JSON functions or a client API such as Oracle Database API for MongoDB, Simple
Oracle Document Access (SODA), or Oracle REST Data Services (ORDS). Database
applications and features, such as analytics, reporting, and machine-learning, can manipulate
the same data using SQL, PL/SQL, JavaScript, or C (Oracle Call Interface).

SQL and other database code can also act directly on data in the relational tables that underlie
a duality view, just as it would act on any other relational data. This includes modification
operations. Changes to data in the underlying tables are automatically reflected in the
documents provided by the duality view. Example 5-3 illustrates this.

The opposite is also true, so acting on either the documents or the data underlying them
affects the other automatically. This reflects the duality between JSON documents and
relational data provided by a duality view.

Operations on tables that underlie a document view automatically affect documents supported
by the view, as follows:

• Insertion of a row into the root (top-level) table of a duality view inserts a new document
into the view. For example, inserting a row into the driver table inserts a driver document
into view driver_dv.

However, since table driver provides only part of the data in a driver document, only the
document fields supported by that table are populated; the other fields in the document are
missing or empty.

• Deletion of a row from the root table deletes the corresponding document from the view.

• Updating a row in the root table updates the corresponding document.

As with insertion of a row, only the document fields supported by that table data are
updated; the other fields are not changed.

Note:

An update of documents supported by a JSON-relational duality view, or of the table
data underlying them, is reported by SQL as having updated some rows of data,
even if the content of that data is not changed. This is standard SQL behavior. A
successful update operation is always reported as having updated the rows it targets.
This also reflects the fact that there can be triggers or row-transformation operators
that accompany an update operation and that, themselves, can change the data.

Operations on duality views themselves include creating, dropping (deleting), and listing them,
as well as listing other information about them.

• See Creating Duality Views for examples of creating duality views.

5-1

https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

• You can drop (delete) an existing duality view as you would drop any view, using SQL
command DROP VIEW.

Duality views are independent, though they typically contain documents that have some
shared data. For example, you can drop duality view team_dv without that having any
effect on duality view driver_dv. Duality views do depend on their underlying tables,
however.

Caution:

Do not drop a table that underlies a duality view, as that renders the view
unusable.

• You can use static data dictionary views to obtain information about existing duality views.
See Obtaining Information About a Duality View.

You can of course replicate the tables underlying a JSON-relational duality view. Alternatively
(or additionally), you can use Oracle GoldenGate logical replication to replicate the documents
supported by a duality view to other Oracle databases and to non-Oracle databases, including
document databases and NoSQL key/value databases.

See:

• Replicating Business Objects with Oracle JSON Relation Duality and GoldenGate Data
Streams and Handling Special Data Types - JSON for complete information about Oracle
GoldenGate logical replication of duality views

• ALTER JSON RELATIONAL DUALITY VIEW and CREATE JSON RELATIONAL DUALITY
VIEW in Oracle Database SQL Language Reference for the SQL syntax to enable and
disable logical replication of duality views

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Creating
Duality Views that are defined using UNNEST: Example 3-1, Example 3-3, and
Example 3-5.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

• Inserting Documents/Data Into Duality Views
You can insert a JSON document into a duality view directly, or you can insert data into the
tables that underlie a duality view. Examples illustrate these possibilities.

• Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete data from
the tables that underlie a duality view. Examples illustrate these possibilities.

Chapter 5

5-2

https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/distribute-json-dv-ogg-data-streams.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/distribute-json-dv-ogg-data-streams.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/prepare-oracle-understanding-whats-supported.html#GGABB-GUID-CCFB623B-A3DB-4992-83FA-6C1D53ADD6EB

• Updating Documents/Data in Duality Views
You can update a JSON document in a duality view directly, or you can update data in the
tables that underlie a duality view. You can update a document by replacing it entirely, or
you can update only some of its fields. Examples illustrate these possibilities.

• Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

• Using the System Change Number (SCN) of a JSON Document
A system change number (SCN) is a logical, internal, database time stamp. Metadata
field asof records the SCN for the moment a document was retrieved from the database.
You can use the SCN to ensure consistency when reading other data.

• Optimization of Operations on Duality-View Documents
Operations on documents supported by a duality view — in particular, queries — are
automatically rewritten as operations on the underlying table data. This optimization
includes taking advantage of indexes. Because the underlying data types are fully known,
implicit runtime type conversion can generally be avoided.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

See Also:

• DROP VIEW in Oracle Database SQL Language Reference

• Product page Simple Oracle Document Access (SODA) and book Oracle
Database Introduction to Simple Oracle Document Access (SODA).

• Product page Oracle Database API for MongoDB and book Oracle Database API
for MongoDB.

• Product page Oracle REST Data Services (ORDS) and book Oracle REST Data
Services Developer's Guide

5.1 Inserting Documents/Data Into Duality Views
You can insert a JSON document into a duality view directly, or you can insert data into the
tables that underlie a duality view. Examples illustrate these possibilities.

Chapter 5
Inserting Documents/Data Into Duality Views

5-3

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Creating
Duality Views that are defined using UNNEST: Example 3-1, Example 3-3, and
Example 3-5.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Inserting data (a row) into the root table that underlies one or more duality views creates a new
document that is supported by each of those views. Only the fields of the view that are
provided by that table are present in the document — all other fields are missing.

For example, inserting a row into table race inserts a document into view race_dv (which has
table race as its root table), and that document contains race-specific fields; field result is
missing, because it's derived from tables driver and driver_race_map, not race.

When inserting a document into a duality view, its field values are automatically converted to
the required data types for the corresponding table columns. For example, a JSON field whose
value is a supported ISO 8601 date-time format is automatically converted to a value of SQL
type DATE, if DATE is the type of the corresponding column. If the type of some field cannot be
converted to the required column type then an error is raised.

The value of a field that corresponds to a JSON-type column in an underlying table undergoes
no such type conversion. When inserting a textual JSON document you can use the JSON type
constructor with keyword EXTENDED, together with extended objects to provide JSON-language
scalar values of Oracle-specific types, such as date. For example, you can use a textual field
value such as {"$oracleDate" : "2022-03-27"} to produce a JSON-type date value. (You can
of course use the same technique to convert textual data to a JSON-type that you insert directly
into an underlying table column.)

Tip:

To be confident that a document you insert is similar to, or compatible with, the
existing documents supported by a duality view, use the JSON schema that
describes those documents as a guide when you construct the document. You can
obtain the schema from column JSON_SCHEMA in one of the static dictionary views
*_JSON_DUALITY_VIEWS, or by using PL/SQL function DBMS_JSON_SCHEMA.describe.
See Obtaining Information About a Duality View.

You can omit any fields you don't really care about or for which you don't know an
appropriate value. But to avoid runtime errors it's a good idea to include all fields
included in array "required" of the JSON schema.

Chapter 5
Inserting Documents/Data Into Duality Views

5-4

See Also:

• JSON Data Type Constructor

• Textual JSON Objects That Represent Extended Scalar Values in Oracle
Database JSON Developer’s Guide

Example 5-1 Inserting JSON Documents into Duality Views, Providing Document-Identifier Fields —
Using SQL

This example inserts three documents into view team_dv and three documents into view
race_dv. The document-identifer fields, named _id, are provided explicitly here. Field _id
corresponds to the identifying columns of the duality-view root table.

The values of field date of the race documents here are ISO 8601 date-time strings. They are
automatically converted to SQL DATE values, which are inserted into the underlying race table,
because the column of table race that corresponds to field date has data type DATE.

In this example, only rudimentary, placeholder values are provided for fields/columns points
(value 0) and podium (value {}). These serve to populate the view and its tables initially,
defining the different kinds of races, but without yet recording actual race results.

Because points field/column values for individual drivers are shared between team
documents/tables and driver documents/tables, updating them in one place automatically
updates them in the other. The fields/columns happen to have the same names for these
different views, but that's irrelevant. What matters are the relations among the duality views,
not the field/column names.

Like insertions (and deletions), updates can be performed directly on duality views or on their
underlying tables (see Example 5-3).

The intention in the car-racing example is for points and podium field values to be updated
(replaced) dynamically as the result of car races. That updating is part of the presumed
application logic; that is, we assume here that it's done by the application.

However, see Example 7-2 for an example of declaratively defining, as part of a team duality
view, the team's points as always being the sum of its drivers' points. This obviates the need
for an application to update team points in addition to driver points.

Also assumed as part of the application logic is that a driver's position in a given race
contributes to the accumulated points for that driver — the better a driver's position, the more
points accumulated. That too is assumed here to be taken care of by application code.

-- Insert team documents into TEAM_DV, providing field _id.
INSERT INTO team_dv VALUES ('{"_id" : 301,
 "name" : "Red Bull",
 "points" : 0,
 "driver" : [{"driverId" : 101,
 "name" : "Max Verstappen",
 "points" : 0},
 {"driverId" : 102,
 "name" : "Sergio Perez",
 "points" : 0}]}');

INSERT INTO team_dv VALUES ('{"_id" : 302,
 "name" : "Ferrari",

Chapter 5
Inserting Documents/Data Into Duality Views

5-5

 "points" : 0,
 "driver" : [{"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 0},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 0}]}');

INSERT INTO team_dv VALUES ('{"_id" : 303,
 "name" : "Mercedes",
 "points" : 0,
 "driver" : [{"driverId" : 105,
 "name" : "George Russell",
 "points" : 0},
 {"driverId" : 106,
 "name" : "Lewis Hamilton",
 "points" : 0}]}');

-- Insert race documents into RACE_DV, providing field _id.
INSERT INTO race_dv VALUES ('{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {}}');

INSERT INTO race_dv VALUES ('{"_id" : 202,
 "name" : "Saudi Arabian Grand Prix",
 "laps" : 50,
 "date" : "2022-03-27T00:00:00",
 "podium" : {}}');

INSERT INTO race_dv VALUES ('{"_id" : 203,
 "name" : "Australian Grand Prix",
 "laps" : 58,
 "date" : "2022-04-09T00:00:00",
 "podium" : {}}');

Example 5-2 Inserting JSON Documents into Duality Views, Providing Document-Identifier Fields —
Using REST

This example uses Oracle REST Data Services (ORDS) to do the same thing as Example 5-1.
For brevity it inserts only one document into duality view team_dv and one document into race
view race_dv. The database user (schema) that owns the example duality views is shown here
as user JANUS.

Insert a document into view team_dv:

curl --request POST \
 --url http://localhost:8080/ords/janus/team_dv/ \
 --header 'Content-Type: application/json' \
 --data '{"_id" : 302,
 "name" : "Ferrari",
 "points" : 0,
 "driver" : [{"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 0},

Chapter 5
Inserting Documents/Data Into Duality Views

5-6

 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 0}]}'

Response:

201 Created

{"_id" : 302,
 "_metadata" : {"etag" : "DD9401D853765859714A6B8176BFC564",
 "asof" : "0000000000000000"},
 "name" : "Ferrari",
 "points" : 0,
 "driver" : [{"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 0},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 0}],
 "links" : [{"rel" : "self",
 "href" : "http://localhost:8080/ords/janus/team_dv/302"},
 {"rel" : "describedby",
 "href" :
 "http://localhost:8080/ords/janus/metadata-catalog/team_dv/item"},
 {"rel" : "collection",
 "href" : "http://localhost:8080/ords/janus/team_dv/"}]}

Insert a document into view race_dv:

curl --request POST \
 --url http://localhost:8080/ords/janus/race_dv/ \
 --header 'Content-Type: application/json' \
 --data '{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {}}'

Response:

201 Created
{"_id" : 201,
 "_metadata" : {"etag" : "2E8DC09543DD25DC7D588FB9734D962B",
 "asof" : "0000000000000000"},
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {},
 "result" : [],
 "links" : [{"rel" : "self",
 "href" : "http://localhost:8080/ords/janus/race_dv/201"},
 {"rel" : "describedby",
 "href" :
 "http://localhost:8080/ords/janus/metadata-catalog/race_dv/item"},

Chapter 5
Inserting Documents/Data Into Duality Views

5-7

 {"rel" : "collection",
 "href" : "http://localhost:8080/ords/janus/race_dv/"}]}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

Example 5-3 Inserting JSON Data into Tables

This example shows an alternative to inserting JSON documents into duality views. It inserts
JSON data into tables team and race.

The inserted data corresponds to only part of the associated documents — the part that's
specific to the view type. Each table has columns only for data that's not covered by another
table (the tables are normalized).

Because the table data is normalized, the table-row insertions are reflected everywhere that
data is used, including the documents supported by the views.

Here too, as in Example 5-1, the points of a team and the podium of a race are given
rudimentary (initial) values.

INSERT INTO team VALUES (301, 'Red Bull', 0);
INSERT INTO team VALUES (302, 'Ferrari', 0);

INSERT INTO race
 VALUES (201, 'Bahrain Grand Prix', 57, DATE '2022-03-20', '{}');
INSERT INTO race
 VALUES (202, 'Saudi Arabian Grand Prix', 50, DATE '2022-03-27', '{}');
INSERT INTO race
 VALUES (203, 'Australian Grand Prix', 58, DATE '2022-04-09', '{}');

Example 5-4 Inserting a JSON Document into a Duality View Without Providing Document-Identifier
Fields — Using SQL

This example inserts a driver document into duality view driver_dv, without providing the
document-identifier field (_id). The value of this field is automatically generated (because the
underlying identifying column (a primary-key column in this case) is defined using INTEGER

Chapter 5
Inserting Documents/Data Into Duality Views

5-8

GENERATED BY DEFAULT ON NULL AS IDENTITY). The example then prints that generated field
value.

-- Insert a driver document into DRIVER_DV, without providing a
-- document-identifier field (_id). The field is provided
-- automatically, with a generated, unique numeric value.
-- SQL/JSON function json_value is used to return the value into bind
-- variable DRIVERID.
VAR driverid NUMBER;
INSERT INTO driver_dv dv VALUES ('{"name" : "Liam Lawson",
 "points" : 0,
 "teamId" : 301,
 "team" : "Red Bull",
 "race" : []}')
 RETURNING json_value(DATA, '$._id') INTO :driverid;

SELECT json_serialize(data PRETTY) FROM driver_dv d
 WHERE d.DATA.name = 'Liam Lawson';

{"_id" : 7,
 "_metadata" : {"etag" : "F9D9815DFF27879F61386CFD1622B065",
 "asof" : "00000000000C20CE"},
 "name" : "Liam Lawson",
 "points" : 0,
 "teamId" : 301,
 "team" : "Red Bull",
 "race" : []}

Example 5-5 Inserting a JSON Document into a Duality View Without Providing Document-Identifier
Fields — Using REST

This example uses Oracle REST Data Services (ORDS) to do the same thing as Example 5-4.
The database user (schema) that owns the example duality views is shown here as user
JANUS.

curl --request POST \
 --url http://localhost:8080/ords/janus/driver_dv/ \
 --header 'Content-Type: application/json' \
 --data '{"name" : "Liam Lawson",
 "points" : 0,
 "teamId" : 301,
 "team" : "Red Bull",
 "race" : []}'

Response:

201 Created
{"_id" : 7,
 "_metadata" : {"etag" : "F9EDDA58103C3A601CA3E0F49E1949C6",
 "asof" : "00000000000C20CE"},
 "name" : "Liam Lawson",
 "points" : 0,

Chapter 5
Inserting Documents/Data Into Duality Views

5-9

 "teamId" : 301,
 "team" : "Red Bull",
 "race" : [],
 "links" :
 [{"rel" : "self",
 "href" : "http://localhost:8080/ords/janus/driver_dv/23"},
 {"rel" : "describedby",
 "href" : "http://localhost:8080/ords/janus/metadata-catalog/driver_dv/item"},
 {"rel" : "collection",
 "href" : "http://localhost:8080/ords/janus/driver_dv/"}]}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

5.2 Deleting Documents/Data From Duality Views
You can delete a JSON document from a duality view directly, or you can delete data from the
tables that underlie a duality view. Examples illustrate these possibilities.

Chapter 5
Deleting Documents/Data From Duality Views

5-10

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Creating
Duality Views that are defined using UNNEST: Example 3-1, Example 3-3, and
Example 3-5.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Deleting a row from a table that is the root (top-level) table of one or more duality views deletes
the documents that correspond to that row from those views.

Example 5-6 Deleting a JSON Document from Duality View RACE_DV — Using SQL

This example deletes the race document with _id1 value 202 from the race duality view,
race_dv. (This is one of the documents with race name Saudi Arabian GP.)

The corresponding rows are deleted from underlying tables race and driver_race_map (one
row from each table).

Nothing is deleted from the driver table, however, because in the race_dv definition table
driver is annotated with NODELETE (see Updating Rule 5.) Pretty-printing documents for duality
views race_dv and driver_dv shows the effect of the race-document deletion.

SELECT json_serialize(DATA PRETTY) FROM race_dv;
SELECT json_serialize(DATA PRETTY) FROM driver_dv;

DELETE FROM race_dv dv WHERE dv.DATA."_id".numberOnly() = 202;

SELECT json_serialize(DATA PRETTY) FROM race_dv;
SELECT json_serialize(DATA PRETTY) FROM driver_dv;

The queries before and after the deletion show that only this race document was deleted — no
driver documents were deleted:

{"_id" : 202,
 "_metadata" : {"etag" : "7E056A845212BFDE19E0C0D0CD549EA0",
 "asof" : "00000000000C20B1"},
 "name" : "Saudi Arabian Grand Prix",
 "laps" : 50,
 "date" : "2022-03-27T00:00:00",
 "podium" : {},
 "result" : []}

1 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression, so it must
be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 5
Deleting Documents/Data From Duality Views

5-11

Example 5-7 Deleting a JSON Document from Duality View RACE_DV — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as
Example 5-6. The database user (schema) that owns the example duality views is shown here
as user JANUS.

curl --request GET \
 --url http://localhost:8080/ords/janus/race_dv/
curl --request GET \
 --url http://localhost:8080/ords/janus/driver_dv/

curl --request DELETE \
 --url http://localhost:8080/ords/janus/race_dv/202

Response from DELETE:

200 OK
{"rowsDeleted" : 1}

Using a GET request on each of the duality views, race_dv and driver_dv, both before and
after the deletion shows that only this race document was deleted — no driver documents were
deleted:

{"_id" : 202,
 "_metadata" : {"etag" : "7E056A845212BFDE19E0C0D0CD549EA0",
 "asof" : "00000000000C20B1"},
 "name" : "Saudi Arabian Grand Prix",
 "laps" : 50,
 "date" : "2022-03-27T00:00:00",
 "podium" : {},
 "result" : [],
 "links" : [{"rel" : "self",
 "href" : "http://localhost:8080/ords/janus/race_dv/202"}]}],

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,

Chapter 5
Deleting Documents/Data From Duality Views

5-12

and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

5.3 Updating Documents/Data in Duality Views
You can update a JSON document in a duality view directly, or you can update data in the
tables that underlie a duality view. You can update a document by replacing it entirely, or you
can update only some of its fields. Examples illustrate these possibilities.

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Creating
Duality Views that are defined using UNNEST: Example 3-1, Example 3-3, and
Example 3-5.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Note:

In a general sense, "updating" includes update, insert, and delete operations. This
topic is only about update operations, which modify one or more existing documents
or their underlying tables. Insert and delete operations are covered in topics Inserting
Documents/Data Into Duality Views and Deleting Documents/Data From Duality
Views, respectively.

An update operation on a duality view can update (that is, replace) complete documents, or it
can update the values of one or more fields of existing objects. An update to an array-valued
field can include the insertion or deletion of array elements.

An update operation cannot add or remove members (field–value pairs) of any object that's
explicitly defined by a duality view. For the same reason, an update can't add or remove
objects, other than what the view definition provides for.

Any such update would represent a change in the view definition, which specifies the structure
and typing of the documents it supports. If you need to make this kind of change then you must
redefine the view; you can do that using CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW.

On the other hand, a JSON value defined by an underlying column that's of data type JSON is,
by default, unconstrained — any changes to it are allowed, as long as the resulting JSON is

Chapter 5
Updating Documents/Data in Duality Views

5-13

well-formed. Values that correspond to a JSON-type column in an underlying table are
constrained only by a JSON schema, if any, that applies to that column.

See Also:

JSON Schema in Oracle Database JSON Developer’s Guide

Updating a row of a table that underlies one or more duality views updates all documents
(supported by any duality view) that have data corresponding to (that is, taken from) data in
that table row. (Other data in the updated documents is unchanged.)

Note:

An update of documents supported by a JSON-relational duality view, or of the table
data underlying them, is reported by SQL as having updated some rows of data,
even if the content of that data is not changed. This is standard SQL behavior. A
successful update operation is always reported as having updated the rows it targets.
This also reflects the fact that there can be triggers or row-transformation operators
that accompany an update operation and that, themselves, can change the data.

Note:

In general, if you produce SQL character data of a type other than NVARCHAR2, NCLOB,
and NCHAR from a JSON string, and if the character set of that target data type is not
Unicode-based, then the conversion can undergo a lossy character-set conversion
for characters that can't be represented in the character set of that SQL type.

Tip:

Trying to update a document without first reading it from the database can result in
several problems, including lost writes and runtime errors due to missing or invalid
fields.

When updating, follow these steps:

1. Fetch the document from the database.

2. Make changes to a local copy of the document.

3. Try to save the updated local copy to the database.

4. If the update attempt (step 3) fails because of a concurrent modification or an
ETAG mismatch, then repeat steps 1-3.

See also Using Optimistic Concurrency Control With Duality Views.

Chapter 5
Updating Documents/Data in Duality Views

5-14

Example 5-8 Updating an Entire JSON Document in a Duality View — Using SQL

This example replaces the race document in duality view race_dv whose document identifier
(field, _id) has value 201. (See Example 3-5 for the corresponding definition of duality view
race_dv.)

The example uses SQL operation UPDATE to do this, setting that row of the single JSON column
(DATA) of the view to the new value. It selects and serializes/pretty-prints the document before
and after the update operation using SQL/JSON function json_value and Oracle SQL function
json_serialize, to show the change. The result of serialization is shown only partially here.

The new, replacement JSON document includes the results of the race, which includes the
race date, the podium values (top-three placements), and the result values for each driver.

SELECT json_serialize(DATA PRETTY)
 FROM race_dv WHERE json_value(DATA, '$._id.numberOnly()') = 201;

UPDATE race_dv
 SET DATA = ('{"_id" : 201,
 "_metadata" : {"etag" : "2E8DC09543DD25DC7D588FB9734D962B"},
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {"winner" : {"name" : "Charles Leclerc",
 "time" : "01:37:33.584"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "time" : "01:37:39.182"},
 "secondRunnerUp" : {"name" : "Lewis Hamilton",
 "time" : "01:37:43.259"}},
 "result" : [{"driverRaceMapId" : 3,
 "position" : 1,
 "driverId" : 103,
 "name" : "Charles Leclerc"},
 {"driverRaceMapId" : 4,
 "position" : 2,
 "driverId" : 104,
 "name" : "Carlos Sainz Jr"},
 {"driverRaceMapId" : 9,
 "position" : 3,
 "driverId" : 106,
 "name" : "Lewis Hamilton"},
 {"driverRaceMapId" : 10,
 "position" : 4,
 "driverId" : 105,
 "name" : "George Russell"}]}')
 WHERE json_value(DATA, '$._id.numberOnly()') = 201;

COMMIT;

SELECT json_serialize(DATA PRETTY)
 FROM race_dv WHERE json_value(DATA, '$._id.numberOnly()') = 201;

Chapter 5
Updating Documents/Data in Duality Views

5-15

Example 5-9 Updating an Entire JSON Document in a Duality View — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as
Example 5-8. The database user (schema) that owns the example duality views is shown here
as user JANUS.

curl --request PUT \
 --url http://localhost:8080/ords/janus/race_dv/201 \
 --header 'Content-Type: application/json' \
 --data '{"_id" : 201,
 "_metadata" : {"etag":"2E8DC09543DD25DC7D588FB9734D962B"},
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {"winner" : {"name" : "Charles Leclerc",
 "time" : "01:37:33.584"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "time" : "01:37:39.182"},
 "secondRunnerUp" : {"name" : "Lewis Hamilton",
 "time" : "01:37:43.259"}},
 "result" : [{"driverRaceMapId" : 3,
 "position" : 1,
 "driverId" : 103,
 "name" : "Charles Leclerc"},
 {"driverRaceMapId" : 4,
 "position" : 2,
 "driverId" : 104,
 "name" : "Carlos Sainz Jr"},
 {"driverRaceMapId" : 9,
 "position" : 3,
 "driverId" : 106,
 "name" : "Lewis Hamilton"},
 {"driverRaceMapId" : 10,
 "position" : 4,
 "driverId" : 105,
 "name" : "George Russell"}}]}'

Response:

200 OK
{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {"winner" : {"name": "Charles Leclerc",
 "time": "01:37:33.584"},
 ...},
 "result" : [{"driverRaceMapId" : 3, ...}],
 ...}

Chapter 5
Updating Documents/Data in Duality Views

5-16

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

Example 5-10 Updating Part of a JSON Document in a Duality View

This example replaces the value of field name of each race document in duality view race_dv
whose field name matches the LIKE pattern Bahr%. It uses SQL operation UPDATE and Oracle
SQL function json_transform to do this. The new, replacement document is the same as the
one replaced, except for the value of field name.

Operation SET of function json_transform is used to perform the partial-document update.

The example selects and serializes/pretty-prints the documents before and after the update
operation using SQL/JSON function json_value and Oracle SQL function json_serialize.
The result of serialization is shown only partially here, and in the car-racing example as a
whole there is only one document with the matching race name.

SELECT json_serialize(DATA PRETTY)
 FROM race_dv WHERE json_value(DATA, '$.name') LIKE 'Bahr%';

UPDATE race_dv dv
 SET DATA = json_transform(DATA, SET '$.name' = 'Blue Air Bahrain Grand Prix')
 WHERE dv.DATA.name LIKE 'Bahr%';

COMMIT;

SELECT json_serialize(DATA PRETTY)
 FROM race_dv WHERE json_value(DATA, '$.name') LIKE 'Bahr%';

Note that replacement of the value of an existing field applies also to fields, such as field
podium of view race_dv, which correspond to an underlying table column of data-type JSON.

Chapter 5
Updating Documents/Data in Duality Views

5-17

Note:

Field etag is not passed as input when doing a partial-document update, so no
ETAG-value comparison is performed by the database in such cases. This means
that you cannot use optimistic concurrency control for partial-document updates.

Example 5-11 Updating Interrelated JSON Documents — Using SQL

Driver Charles Leclerc belongs to team Ferrari, and driver George Russell belongs to team
Mercedes. This example swaps these two drivers between the two teams, by updating the
Mercedes and Ferrari team documents.

Because driver information is shared between team documents and driver documents, field
teamID of the driver documents for those two drivers automatically gets updated appropriately
when the team documents are updated.

Alternatively, if it were allowed then we could update the driver documents for the two drivers,
to change the value of teamId. That would simultaneously update the two team documents.
However, the definition of view driver_dv disallows making any changes to fields that are
supported by table team. Trying to do that raises an error, as shown in Example 5-13.

-- Update (replace) entire team documents for teams Mercedes and Ferrari,
-- to swap drivers Charles Leclerc and George Russell between the teams.
-- That is, redefine each team to include the new set of drivers.
UPDATE team_dv dv
 SET DATA = ('{"_id" : 303,
 "_metadata" : {"etag" : "039A7874ACEE6B6709E06E42E4DC6355"},
 "name" : "Mercedes",
 "points" : 40,
 "driver" : [{"driverId" : 106,
 "name" : "Lewis Hamilton",
 "points" : 15},
 {"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 25}]}')
 WHERE dv.DATA.name LIKE 'Mercedes%';

UPDATE team_dv dv
 SET DATA = ('{"_id" : 302,
 "_metadata" : {"etag" : "DA69DD103E8BAE95A0C09811B7EC9628"},
 "name" : "Ferrari",
 "points" : 30,
 "driver" : [{"driverId" : 105,
 "name" : "George Russell",
 "points" : 12},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 18}]}')
 WHERE dv.DATA.name LIKE 'Ferrari%';

COMMIT;

-- Show that the driver documents reflect the change of team
-- membership made by updating the team documents.

Chapter 5
Updating Documents/Data in Duality Views

5-18

SELECT json_serialize(DATA PRETTY) FROM driver_dv dv
 WHERE dv.DATA.name LIKE 'Charles Leclerc%';

SELECT json_serialize(DATA PRETTY) FROM driver_dv dv
 WHERE dv.DATA.name LIKE 'George Russell%';

Example 5-12 Updating Interrelated JSON Documents — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as
Example 5-11. It updates teams Mercedes and Ferrari by doing PUT operations on team_dv/303
and team_dv/302, respectively. The database user (schema) that owns the example duality
views is shown here as user JANUS.

curl --request PUT \
 --url http://localhost:8080/ords/janus/team_dv/303 \
 --header 'Content-Type: application/json' \
 --data '{"_id" : 303,
 "_metadata" : {"etag":"438EDE8A9BA06008C4DE9FA67FD856B4"},
 "name" : "Mercedes",
 "points" : 40,
 "driver" : [{"driverId" : 106,
 "name" : "Lewis Hamilton",
 "points" : 15},
 {"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 25}]}'

You can use GET operations to check that the driver documents reflect the change of team
membership made by updating the team documents. The URLs for this are encoded versions
of these:

• http://localhost:8080/ords/janus/driver_dv/?q={"name":{"$eq":"Charles
Leclerc"}}

• http://localhost:8080/ords/janus/driver_dv/?q={"name":{"$eq":"George
Russell"}}

curl --request GET \
 --url 'http://localhost:8080/ords/janus/driver_dv/?
q=%7B%22name%22%3A%7B%22%24eq%22%3A%22Charles%20Leclerc%22%7D%7D'

Response:

200 OK
{"items" : [{"_id" : 103,
 "name" : "Charles Leclerc",
 "points" : 25,
 "teamId" : 303,

Chapter 5
Updating Documents/Data in Duality Views

5-19

 "team" : "Mercedes",...}],
 ...)

curl --request GET \
 --url 'http://localhost:8080/ords/janus/driver_dv/?
q=%7B%22name%22%3A%7B%22%24eq%22%3A%22George%20Russell%22%7D%7D'

Response:

200 OK
{"items" : [{"_id" : 105,
 "name" : "George Russell",
 "points" : 12,
 "teamId" : 302,
 "team" : "Ferrari",...}],
 ...)

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

Example 5-13 Attempting a Disallowed Updating Operation Raises an Error — Using SQL

This example tries to update a field for which the duality view disallows updating, raising an
error. (Similar behavior occurs when attempting disallowed insert and delete operations.)

Chapter 5
Updating Documents/Data in Duality Views

5-20

The example tries to change the team of driver Charles Leclerc to team Ferrari, using view
driver_dv. This violates the definition of this part of that view, which disallows updates to any
fields whose underlying table is team:

(SELECT JSON {'_id' : t.team_id,
 'team' : t.name WITH NOCHECK}
 FROM team t WITH NOINSERT NOUPDATE NODELETE

UPDATE driver_dv dv
 SET DATA = ('{"_id" : 103,
 "_metadata" : {"etag" : "E3ACA7412C1D8F95D052CD7D6A3E90C9"},
 "name" : "Charles Leclerc",
 "points" : 25,
 "teamId" : 303,
 "team" : "Ferrari",
 "race" : [{"driverRaceMapId" : 3,
 "raceId" : 201,
 "name" : "Bahrain Grand Prix",
 "finalPosition" : 1}]}')
 WHERE dv.DATA."_id" = 103;

UPDATE driver_dv dv
*
ERROR at line 1:
ORA-40940: Cannot update field 'team' corresponding to column 'NAME' of table
'TEAM' in JSON Relational Duality View 'DRIVER_DV': Missing UPDATE annotation
or NOUPDATE annotation specified.

Note that the error message refers to column NAME of table TEAM.

Example 5-14 Attempting a Disallowed Updating Operation Raises an Error — Using
REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as
Example 5-13. The database user (schema) that owns the example duality views is shown
here as user JANUS.

curl --request PUT \
 --url http://localhost:8080/ords/janus/driver_dv/103 \
 --header 'Accept: application/json' \
 --header 'Content-Type: application/json' \
 --data '{"_id" : 103,
 "_metadata" : {"etag":"F7D1270E63DDB44D81DA5C42B1516A00"},
 "name" : "Charles Leclerc",
 "points" : 25,
 "teamId" : 303,
 "team" : "Ferrari",
 "race" : [{"driverRaceMapId" : 3,
 "raceId" : 201,
 "name" : "Bahrain Grand Prix",
 "finalPosition" : 1}]}'

Chapter 5
Updating Documents/Data in Duality Views

5-21

Response:

HTTP/1.1 412 Precondition Failed
{
 "code": "PredconditionFailed",
 "message": "Predcondition Failed",
 "type": "tag:oracle.com,2020:error/PredconditionFailed",
 "instance": "tag:oracle.com,2020:ecid/LVm-2DOIAFUkHzscNzznRg"
}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

• Trigger Considerations When Using Duality Views
Triggers that modify data in tables underlying duality views can be problematic. Oracle
recommends that you avoid using them. If you do use them, here are some things
consider, to avoid problems.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

5.3.1 Trigger Considerations When Using Duality Views
Triggers that modify data in tables underlying duality views can be problematic. Oracle
recommends that you avoid using them. If you do use them, here are some things consider, to
avoid problems.

As a general rule, in a trigger body avoid changing the values of identifying columns and
columns that contribute to the ETAG value of a duality view.

For any trigger that you create on a table underlying a duality view, Oracle recommends the
following. Otherwise, although no error is raised when you create the trigger, an error can be

Chapter 5
Updating Documents/Data in Duality Views

5-22

raised when it is fired. There are two problematic cases to consider. ("firing <DML>" here refers
to a DML statement that results in the trigger being fired.)

• Case 1: The trigger body changes the value of an identifier column (such as a primary-key
column), using correlation name (pseudorecord) :NEW. For example, a trigger body
contains :NEW.zipcode = 94065.

Do not do this unless the firing <DML> sets the column value to NULL. Primary-key values
must never be changed (except from a NULL value).

• Case 2 (rare): The trigger body changes the value of a column in a different table from the
table being updated by the firing <DML>, and that column contributes to the ETAG value of
a duality view — any duality view.

For example:

– The firing <DML> is UPDATE emp SET zipcode = '94065' WHERE emp_id = '40295';.

– The trigger body contains the DML statement UPDATE dept SET budget = 10000
WHERE dept_id = '592';.

– Table dept underlies some duality view, and column dept.budget contributes to the
ETAG value of that duality view.

This is because updating such a column changes the ETAG value of any documents
containing a field corresponding to the column. This interferes with concurrency control,
which uses such values to guard against concurrent modification. An ETAG change from a
trigger is indistinguishable from an ETAG change from another, concurrent session.

See Also:

• DML Triggers in Oracle Database PL/SQL Language Reference

• Correlation Names and Pseudorecords in Oracle Database PL/SQL Language
Reference

• https://github.com/oracle-samples/oracle-db-examples/blob/main/json-relational-
duality/DualityViewTutorial.sql for an example that uses a trigger to update
columns in tables underlying a duality view

5.4 Using Optimistic Concurrency Control With Duality Views
You can use optimistic/lock-free concurrency control with duality views, writing JSON
documents or committing their updates only when other sessions haven't modified them
concurrently.

Optimistic concurrency control at the document level uses embedded ETAG values in field
etag, which is in the object that is the value of field _metadata.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-23

https://github.com/oracle-samples/oracle-db-examples/blob/main/json-relational-duality/DualityViewTutorial.sql
https://github.com/oracle-samples/oracle-db-examples/blob/main/json-relational-duality/DualityViewTutorial.sql

Note:

Unless called out explicitly to be otherwise:

• The examples here do not depend on each other in any way. In particular, there
is no implied sequencing among them.

• Examples here that make use of duality views use the views defined in Creating
Duality Views that are defined using UNNEST: Example 3-1, Example 3-3, and
Example 3-5.

• Examples here that make use of tables use the tables defined in Car-Racing
Example, Tables.

Document-centric applications sometimes use optimistic concurrency control to prevent lost
updates, that is, to manage the problem of multiple database sessions interfering with each
other by modifying data they use commonly.

Optimistic concurrency for documents is based on the idea that, when trying to persist (write) a
modified document, the currently persisted document content is checked against the content to
which the desired modification was applied (locally). That is, the current persistent state/
version of the content is compared with the app's record of the persisted content as last read.

If the two differ, that means that the content last read is stale. The application then retrieves the
last-persisted content, uses that as the new starting point for modification — and tries to write
the newly modified document. Writing succeeds only when the content last read by the app is
the same as the currently persisted content.

This approach generally provides for high levels of concurrency, with advantages for interactive
applications (no human wait time), mobile disconnected apps (write attempts using stale
documents are canceled), and document caching (write attempts using stale caches are
canceled).

The lower the likelihood of concurrent database operations on the same data, the greater the
efficacy of optimistic concurrency. If there is a great deal of contention for the same data then
you might need to use a different concurrency-control technique.

In a nutshell, this is the general technique you use in application code to implement optimistic
concurrency:

1. Read some data to be modified. From that read, record a local representation of the
unmodified state of the data (its persistent, last-committed state).

2. Modify the local copy of the data.

3. Write (persist) the modified data only if the now-current persistent state is the same as the
state that was recorded.

In other words: you ensure that the data is still unmodified, before persisting the modification. If
the data was modified since the last read then you try again, repeating steps 1–3.

For a JSON document supported by a duality view, you do this by checking the document's
etag field, which is in the object that is the value of top-level field _metadata.

The ETAG value in field etag records the document content that you want checked for
optimistic concurrency control.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-24

https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control

By default, it includes all of the document content per se, that is, the document payload. Field
_metadata (whose value includes field etag) is not part of the payload; it is always excluded
from the ETAG calculation.

In addition to field metadata, you can exclude selected payload fields from ETAG calculation —
data whose modification you decide is unimportant to concurrency control. Changes to that
data since it was last read by your app then won't prevent an updating operation. (In relational
terms this is like not locking specific columns within a row that is otherwise locked.)

Document content that corresponds to columns governed by a NOCHECK annotation in a duality-
view definition does not participate in the calculation of the ETAG value of documents
supported by that view. All other content participates in the calculation. The ETAG value is
based only on the underlying table columns that are (implicitly or explicitly) marked CHECK. See
Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation.

Here's an example of a race document, showing field _metadata, with its etag field, followed by
the document payload. See Creating Duality Views for more information about document
metadata.

{"_metadata" : {"etag" : "E43B9872FC26C6BB74922C74F7EF73DC",
 "asof" : "00000000000C20BA"},
 "_id" : 201, "name" : "Bahrain Grand Prix", ...}

Oracle ETAG concurrency control is thus value-based, or content-based. Conflicting updates
are detected by examining, in effect, the content of the data itself.

• Read/get operations automatically update field etag, which records the current persistent
state of the CHECKable document content as an HTTP ETAG hash value.

• Write/put operations automatically reject a document if its etag value doesn't match that of
the current persistent (last-committed) data. That is, Oracle Database raises an error if the
data has been modified since your last read, so your application need only check for a
write error to decide whether to repeat steps 1–3.

Figure 5-1 illustrates the process.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-25

https://en.wikipedia.org/wiki/HTTP_ETag

Figure 5-1 Optimistic Concurrency Control Process

Application Database

2
Change

1
GET

PUT

3

 ifSTOP

ETAG

mismatch

etag:
E43B9....

etag:
E43B9....

Basing concurrency control on the actual persisted data/content is more powerful and more
reliable than using locks or surrogate information such as document version numbers and
timestamps.

Because they are value-based, Oracle ETAGs automatically synchronize updates to data in
different documents. And they automatically ensure consistency between document updates
and direct updates to underlying tables — document APIs and SQL applications can update
the same data concurrently.

Steps 2 (modify locally) and 3 (write) are actually combined. When you provide the modified
document for an update operation you include the ETAG value returned by a read operation,
as the value of modified document's etag field.

An attempted update operation fails if the current content of the document in the database is
different from that etag field value, because it means that something has changed the
document in the database since you last read it. If the operation fails, then you try again: read
again to get the latest ETAG value, then try again to update using that ETAG value in field
etag.

For example, suppose that two different database sessions, S1 and S2, update the same
document, perhaps concurrently, for the race named Bahrain Grand Prix (_id=201), as
follows:

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-26

• Session S1 performs the update of Example 5-8 or Example 5-9, filling in the race results
(fields laps, date, podium and results).

• Session S2 performs the update of Example 5-10, which renames the race to Blue Air
Bahrain Grand Prix.

Each session can use optimistic concurrency for its update operations, to ensure that what it
modifies is the latest document content, by repeating the following two steps until the update
operation (step 2) succeeds, and then COMMIT the change.

1. Read (select) the document. The value of field etag of the retrieved document encodes the
current (CHECKable) content of the document in the database.

Example 5-15 and Example 5-16 illustrate this.

2. Try to update the document, using the modified content but with field etag as retrieved in
step 1.

For session S1, the update operation is Example 5-8 or Example 5-9. For session S2, it is
Example 5-10.

Failure of an update operation because the ETAG value doesn't match the current persistent
(last-committed) state of the document raises an error.

Here is an example of such an error from SQL:

UPDATE race_dv
*
ERROR at line 1:
ORA-42699: Cannot update JSON Relational Duality View 'RACE_DV': The ETAG of
document with ID 'FB03C2030200' in the database did not match the ETAG passed
in.

Here is an example of such an error from REST. The ETAG value provided in the If-Match
header was not the same as what is in the race document.

Response: 412 Precondition Failed

{"code" : "PredconditionFailed",
 "message" : "Predcondition Failed",
 "type" : "tag:oracle.com,2020:error/PredconditionFailed",
 "instance" : "tag:oracle.com,2020:ecid/y2TAT5WW9pLZDNu1icwHKA"}

If multiple operations act concurrently on two documents that have content corresponding to
the same underlying table data, and if that content participates in the ETAG calculation for its
document, then at most one of the operations can succeed. Because of this an error is raised
whenever an attempt to concurrently modify the same underlying data is detected. The error
message tells you that a conflicting operation was detected, and if possible it tells you the
document field for which the conflict was detected.

JSON-relational duality means you can also use ETAGs with table data, for lock-free row
updates using SQL. To do that, use function SYS_ROW_ETAG, to obtain the current state of a
given set of columns in a table row as an ETAG hash value.

Function SYS_ROW_ETAG calculates the ETAG value for a row using only the values of specified
columns in the row: you pass it the names of all columns that you want to be sure no other
session tries to update concurrently. This includes the columns that the current session intends
to update, but also any other columns on whose value that updating operation logically

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-27

depends for your application. (The order in which you pass the columns to SYS_ROW_ETAG as
arguments is irrelevant.)

The example here supposes that two different database sessions, S3 and S4, update the
same race table data, perhaps concurrently, for the race whose _id is 201, as follows:

• Session S3 tries to update column podium, to publish the podium values for the race.

• Session S4 tries to update column name, to rename the race to Blue Air Bahrain Grand
Prix.

Each of the sessions could use optimistic concurrency control to ensure that it updates the
given row without interference. For that, each would (1) obtain the current ETAG value for the
row it wants to update, and then (2) attempt the update, passing that ETAG value. If the
operation failed then it would repeat those steps — it would try again with a fresh ETAG value,
until the update succeeded (at which point it would commit the update).

Example 5-15 Obtain the Current ETAG Value for a Race Document From Field etag — Using SQL

This example selects the document for the race with _id 201. It serializes the native binary
JSON-type data to text, and pretty-prints it. The ETAG value, in field etag of the object that is
the value of top-level field _metadata, encodes the current content of the document.

You use that etag field and its value in the modified document that you provide to an update
operation.

SELECT json_serialize(DATA PRETTY)
 FROM race_dv WHERE json_value(DATA, '$._id.numberOnly()') = 201;

JSON_SERIALIZE(DATAPRETTY)

{
 "_metadata" :
 { "etag" : "E43B9872FC26C6BB74922C74F7EF73DC",
 "asof" : "00000000000C20BA"
 },
 "_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" :
 {
 },
 "result" :
 [
]
}
1 row selected.

Example 5-16 Obtain the Current ETAG Value for a Race Document From Field etag — Using REST

This examples uses Oracle REST Data Services (ORDS) to do the same thing as
Example 5-15. The database user (schema) that owns the example duality views is shown
here as user JANUS.

curl --request GET \
 --url http://localhost:8080/ords/janus/race_dv/201

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-28

Response:

{"_id" : 201,
 "name" : "Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 ...
 "_metadata" : {"etag": "20F7D9F0C69AC5F959DCA819F9116848",
 "asof": "0000000000000000"},
 "links" : [{"rel": "self",
 "href": "http://localhost:8080/ords/janus/race_dv/201"},
 {"rel": "describedby",
 "href": "http://localhost:8080/ords/janus/metadata-catalog/race_dv/item"},
 {"rel": "collection",
 "href": "http://localhost:8080/ords/janus/race_dv/"}]}

Note:

For best performance, configure Oracle REST Data Services (ORDS) to enable the
metadata cache with a timeout of one second:

cache.metadata.enabled = true
cache.metadata.timeout = 1

See Configuring REST-Enabled SQL Service Settings in Oracle REST Data Services
Installation and Configuration Guide.

Example 5-17 Using Function SYS_ROW_ETAG To Optimistically Control Concurrent Table Updates

Two database sessions, S3 and S4, try to update the same row of table race: the row where
column race_id has value 201.

For simplicity, we show optimistic concurrency control only for session S3 here; for session S4
we show just a successful update operation for column name.

In this scenario:

1. Session S3 passes columns name, race_date, and podium to function SYS_ROW_ETAG, under
the assumption that (for whatever reason) while updating column podium, S3 wants to
prevent other sessions from changing any of columns name, race_date, and podium.

2. Session S4 updates column name, and commits that update.

3. S3 tries to update column podium, passing the ETAG value it obtained. Because of S4's
update of the same row, this attempt fails.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-29

4. S3 tries again to update the row, using a fresh ETAG value. This attempt succeeds, and S3
commits the change.

-- S3 gets ETAG based on columns name, race_date, and podium.
SELECT SYS_ROW_ETAG(name, race_date, podium)
 FROM race WHERE race_id = 201;

SYS_ROW_ETAG(NAME,RACE_DATE,PODIUM)

201FC3BA2EA5E94AA7D44D958873039D

-- S4 successfully updates column name of the same row.
UPDATE race SET name = 'Blue Air Bahrain Grand Prix'
 WHERE race_id = 201;

1 row updated.

-- S3 unsuccessfully tries to update column podium.
-- It passes the ETAG value, to ensure it's OK to update.
UPDATE race SET podium =
 '{"winner" : {"name" : "Charles Leclerc",
 "time" : "01:37:33.584"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "time" : "01:37:39.182"},
 "secondRunnerUp" : {"name" : "Lewis Hamilton",
 "time" : "01:37:43.259"}}'
 WHERE race_id = 201

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-30

 AND SYS_ROW_ETAG(name, race_date, podium) =
 '201FC3BA2EA5E94AA7D44D958873039D';

0 rows updated.

-- S4 commits its update.
COMMIT;

Commit complete.

-- S3 gets a fresh ETAG value, and then tries again to update.
SELECT SYS_ROW_ETAG(name, race_date, podium)
 FROM race WHERE race_id = 201;

SYS_ROW_ETAG(NAME,RACE_DATE,PODIUM)

E847D5225C7F7024A25A0B53A275642A

UPDATE race SET podium =
 '{"winner" : {"name" : "Charles Leclerc",
 "time" : "01:37:33.584"},
 "firstRunnerUp" : {"name" : "Carlos Sainz Jr",
 "time" : "01:37:39.182"},
 "secondRunnerUp" : {"name" : "Lewis Hamilton",
 "time" : "01:37:43.259"}}'
 WHERE race_id = 201
 AND SYS_ROW_ETAG(name, race_date, podium) =
 'E847D5225C7F7024A25A0B53A275642A';

1 row updated.

COMMIT;

Commit complete.

-- The data now reflects S4's name update and S3's podium update.
SELECT name, race_date, podium FROM race WHERE race_id = 201;

NAME RACE_DATE PODIUM

Blue Air Bahrain Grand Prix
20-MAR-22
{"winner":{"name":"Charles Leclerc","time":"01:37:33.584"},"firstRunnerUp":{"nam
e":"Carlos Sainz Jr","time":"01:37:39.182"},"secondRunnerUp":{"name":"Lewis Hami

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-31

lton","time":"01:37:43.259"}}

1 row selected.

• Using Duality-View Transactions
You can use a special kind of transaction that's specific to duality views to achieve
optimistic concurrency control over multiple successive updating (DML) operations on
JSON documents. You commit the series of updates only if other sessions have not
modified the same documents concurrently.

Related Topics

• Updatable JSON-Relational Duality Views
Applications can update JSON documents supported by a duality view, if you define the
view as updatable. You can specify which kinds of updating operations (update, insertion,
and deletion) are allowed, for which document fields, how/when, and by whom. You can
also specify which fields participate in ETAG hash values.

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

See Also:

Support for JSON-Relational Duality View in Oracle REST Data Services Developer's
Guide

5.4.1 Using Duality-View Transactions
You can use a special kind of transaction that's specific to duality views to achieve optimistic
concurrency control over multiple successive updating (DML) operations on JSON documents.
You commit the series of updates only if other sessions have not modified the same
documents concurrently.

Using Optimistic Concurrency Control With Duality Views describes the use of document ETAG
values to control concurrency optimistically for a single updating (DML) operation.

But what if you want to perform multiple updates, together as unit, somehow ensuring that
another session doesn't modify the unchanged parts of the updated documents between your
updates, that is, before you commit?

As one way to do that, you can lock one or more documents in one or more duality views, for
the duration of the multiple update operations. You do that by SELECTing FOR UPDATE the
corresponding rows of JSON-type column DATA from the view(s). Example 5-18 illustrates this.
But doing that locks each of the underlying tables, which can be costly.

You can instead perform multiple update operations on duality-view documents optimistically
using a special kind of transaction that's specific to duality views. The effect is as if the
documents (rows of column DATA of the view) are completely locked, but they're not. Locks are
taken only for underlying table rows that get modified; unmodified rows remain unlocked
throughout the transaction. Your changes are committed only if nothing has changed the
documents concurrently.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-32

Another, concurrent session can modify the documents between your updates, but if that
happens before the transaction is committed then the commit operation fails, in which case you
just try again.

A duality-view transaction provides repeatable reads: all reads during a transaction run against
a snapshot of the data that's taken when the transaction begins.

Within your transaction, before its update operations, you check that each of the documents
you intend to update is up-to-date with respect to its currently persisted values in the database.
This validation is called registering the document. Registration of a document verifies that an
ETAG value you obtained by reading the document is up-to-date. If this verification fails then
you roll back the transaction and start over.

To perform a multiple-operation transaction on duality views you use PL/SQL code with these
procedures from package DBMS_JSON_DUALITY:

• begin_transaction — Begin the transaction. This effectively takes a "snapshot" of the
state of the database. All updating operations in the transaction are based on this
snapshot.

• register — Check that the ETAG value of a document as last read matches that of the
document in the database at the start of the transaction; raise an error otherwise. In other
words, ensure that the ETAG value that you're going to use when updating the document is
correct as of the transaction beginning.

If you last read a document and obtained its ETAG value before the transaction began,
then that value isn't necessarily valid for the transaction. The commit operation can't check
for changes that might have occurred before the transaction began. If you last read a
document before the transaction began then call register, to be sure that the ETAG value
you use for the document is valid at the outset.

Procedure register identifies the documents to check using an object identifier (OID),
which you can obtain by querying the duality view's hidden column RESID. As an alternative
to reading a document to obtain its ETAG value you can query the duality view's hidden
column ETAG.

• commit_transaction — Commit the multiple-update transaction. Validate the documents
provided for update against their current state in the database, by comparing the ETAG
values. Raise an error if the ETAG of any of the documents submitted for update has been
changed by a concurrent session during the transaction.

You call the procedures in this order: begin_transaction, register, commit_transaction. Call
register immediately after you call begin_transaction.

The overall approach is the same as that you use with a single update operation, but extended
across multiple operations. You optimistically try to make changes to the documents in the
database, and if some concurrent operation interferes then you start over and try again with a
new transaction.

1. If anything fails (an error is raised) during a transaction then you roll it back (ROLLBACK) and
begin a new transaction, calling begin_transaction again.

In particular, if a document registration fails or the transaction commit fails, then you need
to start over with a new transaction.

2. At the beginning of the new transaction, read the document again, to get its ETAG value as
of the database state when the transaction began, and then call register again.

Repeat steps 1 and 2 until there are no errors.

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-33

Example 5-18 Locking Duality-View Documents For Update

This example locks the Mercedes and Ferrari team rows of the generated JSON-type DATA
column of duality view team_dv until the next COMMIT by the current session.

The FOR UPDATE clause locks the entire row of column DATA, which means it locks an entire
team document. This in turn means that it locks the relevant rows of each underlying table.

SELECT DATA FROM team_dv dv
 WHERE dv.DATA.name LIKE 'Mercedes%'
 FOR UPDATE;

SELECT DATA FROM team_dv dv
 WHERE dv.DATA.name LIKE 'Ferrari%'
 FOR UPDATE;

See Also:

• FOR UPDATE in topic SELECT in Oracle Database SQL Language Reference

• Simulating Current OF Clause with ROWID in Oracle Database PL/SQL
Language Reference for information about SELECT … FOR UPDATE

Example 5-19 Using a Duality-View Transaction To Optimistically Update Two Documents Concurrently

This example uses optimistic concurrency with a duality-view transaction to update the
documents in duality view team_dv for teams Mercedes and Ferrari. It swaps drivers Charles
Leclerc and George Russell between the two teams. After the transaction both team
documents (supported by duality-view team_dv) and driver documents (supported by duality-
view driver_dv) reflect the driver swap.

We read the documents, to obtain their document identifiers (hidden column RESID) and their
current ETAG values. The ETAG values are obtained here as the values of metadata field etag
in the retrieved documents, but we could alternatively have just selected hidden column ETAG.

SELECT RESID, DATA FROM team_dv dv
 WHERE dv.DATA.name LIKE 'Mercedes%';

RESID

DATA

FB03C2040400
{"_id" : 303,
 "_metadata":
 {"etag" : "039A7874ACEE6B6709E06E42E4DC6355",
 "asof" : "00000000001BE239"},

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-34

 "name" : "Mercedes",
 ...}

SELECT RESID, DATA FROM team_dv dv
 WHERE dv.DATA.name LIKE 'Ferrari%';

RESID

DATA

FB03C2040300
{"_id" : 303,
 "_metadata":
 {"etag" : "C5DD30F04DA1A6A390BFAB12B7D4F700",
 "asof" : "00000000001BE239"},
 "name" : "Ferrari",
 ...}

We begin the multiple-update transaction, then register each document to be updated,
ensuring that it hasn't changed since we last read it. The document ID and ETAG values read
above are passed to procedure register.

If an ETAG is out-of-date, because some other session updated a document between our read
and the transaction beginning, then a ROLLBACK is needed, followed by starting over with
begin_transaction (not shown here).

BEGIN
 DBMS_JSON_DUALITY.begin_transaction();
 DBMS_JSON_DUALITY.register('team_dv',
 hextoraw('FB03C2040400'),
 hextoraw('039A7874ACEE6B6709E06E42E4DC6355'));
 DBMS_JSON_DUALITY.register('team_dv',
 hextoraw('FB03C2040300'),
 hextoraw('C5DD30F04DA1A6A390BFAB12B7D4F700'));

Perform the updating (DML) operations: replace the original documents with documents that
have the drivers swapped.

 UPDATE team_dv dv
 SET DATA = ('{"_id" : 303,
 "name" : "Mercedes",
 "points" : 40,
 "driver" : [{"driverId" : 106,
 "name" : "Lewis Hamilton",
 "points" : 15},
 {"driverId" : 103,
 "name" : "Charles Leclerc",
 "points" : 25}]}')
 WHERE dv.DATA.name LIKE 'Mercedes%';

 UPDATE team_dv dv
 SET DATA = ('{"_id" : 302,
 "name" : "Ferrari",

Chapter 5
Using Optimistic Concurrency Control With Duality Views

5-35

 "points" : 30,
 "driver" : [{"driverId" : 105,
 "name" : "George Russell",
 "points" : 12},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "points" : 18}]}')
 WHERE dv.DATA.name LIKE 'Ferrari%';

Commit the transaction.

 DBMS_JSON_DUALITY.commit_transaction();
END;

See Also:

• BEGIN_TRANSACTION Procedure in Oracle Database PL/SQL Packages and
Types Reference for information about procedure
DBMS_JSON_DUALITY.begin_transaction

• COMMIT_TRANSACTION Procedure in Oracle Database PL/SQL Packages and
Types Reference for information about procedure
DBMS_JSON_DUALITY.commit_transaction

• REGISTER Procedure in Oracle Database PL/SQL Packages and Types
Reference for information about procedure DBMS_JSON_DUALITY.register

5.5 Using the System Change Number (SCN) of a JSON
Document

A system change number (SCN) is a logical, internal, database time stamp. Metadata field
asof records the SCN for the moment a document was retrieved from the database. You can
use the SCN to ensure consistency when reading other data.

SCNs order events that occur within the database, which is necessary to satisfy the ACID
(atomicity, consistency, isolation, and durability) properties of a transaction.

Example 5-20 Obtain the SCN Recorded When a Document Was Fetched

This example fetches from the race duality view, race_dv, a serialized representation of the
race document identified by _id value 201.2 The SCN is the value of field asof, which is in the
object that is the value of field _metadata. It records the moment when the document is
fetched.

SELECT json_serialize(DATA PRETTY) FROM race_dv rdv
 WHERE rdv.DATA."_id" = 201;

2 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression, so it must
be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 5
Using the System Change Number (SCN) of a JSON Document

5-36

Result:

JSON_SERIALIZE(DATAPRETTY)

{"_id" : 201,
 "_metadata" :
 {
 "etag" : "F6906A8F7A131C127FAEF32CA43AF97A",
 "asof" : "00000000000C4175"
 },
 "name" : "Blue Air Bahrain Grand Prix",
 "laps" : 57,
 "date" : "2022-03-20T00:00:00",
 "podium" : {...},
 "result" : [{...}]
}

1 row selected.

Example 5-21 Retrieve a Race Document As Of the Moment Another Race Document
Was Retrieved

This example fetches the race document identified by raceId value 203 in the state that
corresponds to the SCN of race document 201 (see Example 5-20).

SELECT json_serialize(DATA PRETTY) FROM race_dv
 AS OF SCN to_number('00000000000C4175', 'XXXXXXXXXXXXXXXX')
 WHERE json_value(DATA, '$._id') = 203;

Result:

JSON_SERIALIZE(DATAPRETTY)

{"_id" : 203,
 "_metadata" :
 {
 "etag" : "EA6E1194C012970CA07116EE1EF167E8",
 "asof" : "00000000000C4175"
 },

 "name" : "Australian Grand Prix",
 "laps" : 58,
 "date" : "2022-04-09T00:00:00",
 "podium" : {...},
 "result" : [{...}]
}

1 row selected.

Chapter 5
Using the System Change Number (SCN) of a JSON Document

5-37

Related Topics

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

See Also:

• System Change Numbers in Oracle Database Concepts

• Introduction to Transactions in Oracle Database Concepts

5.6 Optimization of Operations on Duality-View Documents
Operations on documents supported by a duality view — in particular, queries — are
automatically rewritten as operations on the underlying table data. This optimization includes
taking advantage of indexes. Because the underlying data types are fully known, implicit
runtime type conversion can generally be avoided.

Querying a duality view — that is, querying its supported JSON documents — is similar to
querying a table or view that has a single column, named DATA, of JSON data type. (You can
also query a duality view's hidden columns, ETAG and RESID — see Creating Duality Views.)

For queries that use values from JSON documents in a filter predicate (using SQL/JSON
condition json_exists) or in the SELECT list (using SQL/JSON function json_value), the
construction of intermediate JSON objects (for JSON-type column DATA) from underlying
relational data is costly and unnecessary. When possible, such queries are optimized
(automatically rewritten) to directly access the data stored in the underlying columns.

This avoidance of document construction greatly improves performance. The querying
effectively takes place on table data, not JSON documents. Documents are constructed only
when actually needed for the query result.

Some queries cannot be rewritten, however, for reasons including these:

• A query path expression contains a descendant path step (..), which descends recursively
into the objects or arrays that match the step immediately preceding it (or into the context
item if there is no preceding step).

• A filter expression in a query applies to only some array elements, not to all ([*]). For
example, [3] applies to only the fourth array element; [last] applies only to the last
element.

• A query path expression includes a negated filter expression. See Negation in Path
Expressions in Oracle Database JSON Developer’s Guide.

For duality-view queries using SQL/JSON functions json_value, json_query, and
json_exists, if you set parameter JSON_EXPRESSION_CHECK to ON then if a query cannot be
automatically rewritten an error is raised that provides the reason for this.

JSON_EXPRESSION_CHECK can also be useful to point out simple typographical mistakes. It
detects and reports JSON field name mismatches in SQL/JSON path expressions or dot-
notation syntax.

Chapter 5
Optimization of Operations on Duality-View Documents

5-38

You can set parameter JSON_EXPRESSION_CHECK using (1) the database initialization file
(init.ora), (2) an ALTER SESSION or ALTER SYSTEM statement, or (3) a SQL query hint (/*+
opt_param('json_expression_check', 'on') */, to turn it on). See
JSON_EXPRESSION_CHECK in Oracle Database Reference.

In some cases your code might explicitly call for type conversion, and in that case rewrite
optimization might not be optimal, incurring some unnecessary runtime overhead. This can be
the case for SQL/JSON function json_value, for example. By default, its SQL return type is
VARCHAR2. If the value is intended to be used for an underlying table column of type NUMBER, for
example, then unnecessary runtime type conversion can occur.

For this reason, for best performance Oracle recommends as a general guideline that you use
a RETURNING clause or a type-conversion SQL/JSON item method, to indicate that a document
field value doesn't require runtime type conversion. Specify the same type for it as that used in
the corresponding underlying column.

For example, field _id in a race document corresponds to column race_id in the underlying
race table, and that column has SQL type NUMBER. When using json_value to select or test
field _id you therefore want to ensure that it returns a NUMBER value.

The second of the following two queries generally outperforms the first, because the first
returns VARCHAR2 values from json_value, which are then transformed at run time, to NUMBER
and DATE values. The second uses type-conversion SQL/JSON item method numberOnly()
and a RETURNING DATE clause, to indicate to the query compiler that the SQL types to be used
are NUMBER and DATE. (Using a type-conversion item method is equivalent to using the
corresponding RETURNING type.)

SELECT json_value(DATA, '$.laps'),
 json_value(DATA, '$.date')
 FROM race_dv
 WHERE json_value(DATA, '$._id') = 201;

SELECT json_value(DATA, '$.laps.numberOnly()'),
 json_value(DATA, '$.date' RETURNING DATE)
 FROM race_dv
 WHERE json_value(DATA, '$._id.numberOnly()') = 201;

The same general guideline applies to the use of the simple dot-notation syntax. Automatic
optimization typically takes place when dot-notation syntax is used in a WHERE clause: the data
targeted by the dot-notation expression is type-cast to the type of the value with which the
targeted data is being compared. But in some cases it's not possible to infer the relevant type
at query-compilation time — for example when the value to compare is taken from a SQL/
JSON variable (e.g. $a) whose type is not known until run time. Add the relevant item method
to make the expected typing clear at query-compile time.

The second of the following two queries follows the guideline. It generally outperforms the first
one, because the SELECT and ORDER BY clauses use item methods numberOnly() and
dateOnly() to specify the appropriate data types.3

SELECT t.DATA.laps, t.DATA."date"
 FROM race_dv t

3 This example uses SQL simple dot notation. The occurrence of _id is not within a SQL/JSON path expression, so it must
be enclosed in double-quote characters ("), because of the underscore character (_).

Chapter 5
Optimization of Operations on Duality-View Documents

5-39

 WHERE t.DATA."_id" = 201
 ORDER BY t.DATA."date";

SELECT t.DATA.laps.numberOnly(), t.DATA."date".dateOnly()
 FROM race_dv t
 WHERE t.DATA."_id".numberOnly() = 201
 ORDER BY t.DATA."date".dateOnly();

See Also:

• Item Method Data-Type Conversion in Oracle Database JSON Developer’s
Guide

• Item Methods and JSON_VALUE RETURNING Clause in Oracle Database
JSON Developer’s Guide

5.7 Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and key-
column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-language
types of the JSON documents it supports.

Static Dictionary Views For JSON Duality Views

You can obtain information about existing duality views by checking static data dictionary views
DBA_JSON_DUALITY_VIEWS, USER_JSON_DUALITY_VIEWS, and ALL_JSON_DUALITY_VIEWS.4 Each of
these dictionary views includes the following for each duality view:

• The view name and owner

• Name of the JSON-type column

• The root table name and owner

• Whether each of the operations insert, delete, and update is allowed on the view

• Whether the view is read-only

• The JSON schema that describes the JSON column

• Whether the view is valid

• Whether the view is enabled for logical replication.

You can list the tables that underlie duality views, using dictionary views
DBA_JSON_DUALITY_VIEW_TABS, USER_JSON_DUALITY_VIEW_TABS, and
ALL_JSON_DUALITY_VIEW_TABS. Each of these dictionary views includes the following for a
duality view:

• The view name and owner

• The table name and owner

4 You can also use PL/SQL function DBMS_JSON_SCHEMA.describe to obtain a duality-view description.

Chapter 5
Obtaining Information About a Duality View

5-40

• Whether each of the operations insert, delete, and update is allowed on the table

• Whether the table is read-only

• Whether the table has a flex column

• Whether the table is the root table of the view

• A number that identifies the table in the duality view

• a number that identifies the parent table in the view

• The relationship of the table to its parent table: whether it is nested within its parent, or it is
the target of an outer or an inner join

You can list the columns of the tables that underlie duality views, using dictionary views
DBA_JSON_DUALITY_VIEW_TAB_COLS, USER_JSON_DUALITY_VIEW_TAB_COLS, and
ALL_JSON_DUALITY_VIEW_TAB_COLS. Each of these dictionary views includes the view and table
names and owners, whether the table is the root table, a number that identifies the table in the
view, and the following information about each column in the table:

• The column name, data type, and maximum number of characters (for a character data
type)

• The JSON key name

• Whether each of the operations insert, delete, and update is allowed on the column

• Whether the column is read-only

• Whether the column is a flex column

• Whether the column is generated.

• Whether the column is hidden.

• The position of the column in an identifying-columns specification (if it is an identifying
column)

• The position of the column in an ETAG specification (if relevant)

• The position of the column in an ORDER BY clause of a call to function json_arrayagg (or
equivalent) in the duality-view definition (if relevant)

You can list the links associated with duality views, using dictionary views
DBA_JSON_DUALITY_VIEW_LINKS, USER_JSON_DUALITY_VIEW_LINKS, and
ALL_JSON_DUALITY_VIEW_LINKS. Links are from identifying columns to other columns. Each of
these dictionary views includes the following for each link:

• The name and owner of the view

• The name and owner of the parent table of the link

• The name and owner of the child table of the link

• The names of the columns on the from and to ends of the link

• The join type of the link: nested or outer

• The name of the JSON key associated with the link

See Also:

Static Data Dictionary Views in Oracle Database Reference

Chapter 5
Obtaining Information About a Duality View

5-41

JSON Description of a JSON-Relational Duality View

A JSON schema specifies the structure and JSON-language types of JSON data. It can serve
as a summary description of an existing set of JSON documents, or it can serve as a
specification of what is expected or allowed for a set of JSON documents. The former use case
is that of a schema obtained from a JSON data guide. The latter use case includes the case
of a JSON schema that describes the documents supported by a duality view.

You can use PL/SQL function DBMS_JSON_SCHEMA.describe to obtain a JSON schema that
describes the JSON documents supported by a duality view. (This same document is available
in column JSON_SCHEMA of static dictionary views DBA_JSON_DUALITY_VIEWS,
USER_JSON_DUALITY_VIEWS, and ALL_JSON_DUALITY_VIEWS — see Static Dictionary Views For
JSON Duality Views.)

This JSON schema includes three kinds of information:

1. Information about the duality view that supports the documents.

This includes the database schema (user) that owns the view (field dbObject) and the
allowed operations on the view (field dbObjectProperties).

2. Information about the columns of the tables that underlie the duality view.

This includes domain names (field dbDomain), fields corresponding to identifying columns
(field dbPrimaryKey), fields corresponding to foreign-key columns (field dbForeignKey),
whether flex columns exist (field additionalProperties), and column data-type
restrictions (for example, field maxLength for strings and field sqlPrecision for numbers).

3. Information about the allowed structure and JSON-language typing of the documents.

This information can be used to validate data to be added to, or changed in, the view. It's
available as the value of top-level schema-field properties, and it can be used as a JSON
schema in its own right.

Example 5-22 uses DBMS_JSON_SCHEMA.describe to describe each of the duality views of the
car-racing example: driver_dv, race_dv, and team_dv.

Example 5-22 Using DBMS_JSON_SCHEMA.DESCRIBE To Show JSON Schemas Describing Duality
Views

This example shows, for each car-racing duality view, a JSON schema that describes the
JSON documents supported by the view.

The value of top-level JSON-schema field properties is itself a JSON schema that can be
used to validate data to be added to, or changed in, the view. The other top-level properties
describe the duality view that supports the documents.

The database schema/user that created, and thus owns, each view is indicated with a
placeholder value here (shown in italics). This is reflected in the value of field dbObject,
which for a duality view is the view name qualified by the database-schema name of the view
owner. For example, assuming that database user/schema team_dv_owner created duality view
team_dv, the value of field dbObject for that view is team_dv_owner.team_dv.

(Of course, these duality views could be created, and thus owned, by the same database user/
schema. But they need not be.)

Array field dbObjectProperties specifies the allowed operations on the duality view itself:

• check means that at least one field in each document is marked CHECK, and thus
contributes to ETAG computation.

Chapter 5
Obtaining Information About a Duality View

5-42

• delete means you can delete existing documents from the view.

• insert means you can insert documents into the view.

• update means you can update existing documents in the view.

Field type specifies a standard JSON-language nonscalar type: object or array. Both fields
type and extendedType are used to specify scalar JSON-language types.

Native binary JSON data (OSON format) extends the JSON language by adding scalar types,
such as date, that correspond to SQL data types and are not part of the JSON standard. These
Oracle-specific scalar types are always specified with extendedType.

Field items specifies the element type for an array value. The fields of each JSON object in a
supported document are listed under schema field properties for that object. All document
fields are underlined here.

(All you need to create the JSON schema is function DBMS_JSON_SCHEMA.describe. It's use
here is wrapped with SQL/JSON function json_serialize just to pass keyword PRETTY, which
causes the output to be pretty-printed.)

-- Duality View TEAM_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('TEAM_DV') PRETTY)
 AS team_dv_json_schema;

TEAM_DV_JSON_SCHEMA

{"title" : "TEAM_DV",
 "dbObject" : "TEAM_DV_OWNER.TEAM_DV",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "type" : "object",
 "properties" : {"_id" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "_metadata" : {"etag" : {"extendedType" : "string",
 "maxLength" : 200},
 "asof" : {"extendedType" : "string",
 "maxLength" : 20}},
 "dbPrimaryKey" : ["_id"],
 "name" : {"extendedType" : "string",
 "maxLength" : 255,
 "dbFieldProperties" : ["update",
 "check"]},
 "points" : {"extendedType" : "number",
 "sqlScale" : 0,
 "dbFieldProperties" : ["update",
 "check"]},
 "driver" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "properties" :
 {"dbPrimaryKey" : ["driverId"],
 "name :

Chapter 5
Obtaining Information About a Duality View

5-43

 {"extendedType" : "string",
 "maxLength" : 255,
 "dbFieldProperties" : ["update", "check"]},
 "points" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "dbFieldProperties" : ["update"]},
 "driverId" : {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]}},
 "required" : ["name",
 "points",
 "driverId"],
 "additionalProperties" : false}}},
 "required" : ["name", "points", "_id"],
 "additionalProperties" : false}

1 row selected.

-- Duality View DRIVER_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('DRIVER_DV') PRETTY)
 AS driver_dv_json_schema;

DRIVER_DV_JSON_SCHEMA

{"title" : "DRIVER_DV",
 "dbObject" : "DRIVER_DV_OWNER.DRIVER_DV",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "type" : "object",
 "properties" : {"_id" : {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "_metadata" : {"etag" : {"extendedType" : "string",
 "maxLength" : 200},
 "asof" : {"extendedType" : "string",
 "maxLength" : 20}},
 "dbPrimaryKey" : ["_id"],
 "name" : {"extendedType" : "string",
 "maxLength" : 255,
 "dbFieldProperties" : ["update", "check"]},
 "points" : {"extendedType" : "number",
 "sqlScale" : 0,
 "dbFieldProperties" : ["update", "check"]},
 "team" : {"extendedType" : "string",
 "maxLength" : 255},
 "teamId" : {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "race" : {"type" : "array",
 "items" :

Chapter 5
Obtaining Information About a Duality View

5-44

 {"type" : "object",
 "properties" :
 {"dbPrimaryKey" : ["driverRaceMapId"],
 "finalPosition" :
 {"extendedType" : ["number",
 "null"],
 "sqlScale" : 0,
 "dbFieldProperties" : ["update",
 "check"]},
 "driverRaceMapId" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "name" :
 {"extendedType" : "string",
 "maxLength" : 255,
 "dbFieldProperties" : ["check"]},
 "raceId" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"] }},
 "required" :
 ["driverRaceMapId", "name", "raceId"],
 "additionalProperties" : false}}},
 "required" : ["name", "points", "_id", "team", "teamId"],
 "additionalProperties" : false}
1 row selected.

-- Duality View RACE_DV
SELECT json_serialize(DBMS_JSON_SCHEMA.describe('RACE_DV') PRETTY)
 AS race_dv_json_schema;

RACE_DV_JSON_SCHEMA

{"title" : "RACE_DV",
 "dbObject" : "RACE_DV_OWNER.RACE_DV",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "type" : "object",
 "properties" : {"_id" : {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "_metadata" : {"etag" : {"extendedType" : "string",
 "maxLength" : 200},
 "asof" : {"extendedType" : "string",
 "maxLength" : 20}},
 "dbPrimaryKey" : ["_id"],
 "laps" : {"extendedType" : "number",
 "sqlScale" : 0,
 "dbFieldProperties" : ["check"]},
 "name" : {"extendedType" : "string",

Chapter 5
Obtaining Information About a Duality View

5-45

 "maxLength" : 255,
 "dbFieldProperties" : ["update", "check"]},
 "podium" : {"dbFieldProperties" : ["update"]},
 "date" : {"extendedType" : "date",
 "dbFieldProperties" : ["update", "check"]},
 "result" : {"type" : "array",
 "items" :
 {"type" : "object",
 "properties" :
 {"dbPrimaryKey" : ["driverRaceMapId"],
 "position" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "dbFieldProperties" : ["update",
 "check"]},
 "driverRaceMapId" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]},
 "name" :
 {"extendedType" : "string",
 "maxLength" : 255,
 "dbFieldProperties" : ["update",
 "check"]},
 "driverId" :
 {"extendedType" : "number",
 "sqlScale" : 0,
 "generated" : true,
 "dbFieldProperties" : ["check"]}},
 "required" : ["driverRaceMapId",
 "name",
 "driverId"],
 "additionalProperties" : false}}},
 "required" : ["laps", "name", "_id"],
 "additionalProperties" : false}
1 row selected.

Related Topics

• Creating Duality Views
You use SQL with (1) SQL/JSON generation-function queries or (2) GraphQL queries to
create JSON-relational duality views. Example team, driver, and race duality views are
created to provide the JSON documents used by a car-racing application.

• Before Using the Converter (1): Create Database Document Sets
Before using the JSON-to-duality converter you need to create JSON-type document sets in
Oracle Database from the original external document sets. The input to the converter for
each set of documents is an Oracle Database table with a single column of JSON data type.

Chapter 5
Obtaining Information About a Duality View

5-46

See Also:

• JSON Schemas Generated with DBMS_JSON_SCHEMA.DESCRIBE in Oracle
Database JSON Developer’s Guide

• JSON Schema

• JSON Data Guide in Oracle Database JSON Developer’s Guide

• ALL_JSON_DUALITY_VIEWS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_TABS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_TAB_COLS in Oracle Database Reference

• ALL_JSON_DUALITY_VIEW_LINKS in Oracle Database Reference

Chapter 5
Obtaining Information About a Duality View

5-47

https://json-schema.org/

6
Document-Identifier Field for Duality Views

A document supported by a duality view always includes, at its top level, a document-
identifier field, _id, which corresponds to the identifying columns (primary-key columns,
identity columns, or columns with a unique constraint or unique index) of the root table
underlying the view. The field value can take different forms.

(An identity column is one whose numeric value is generated automatically and uniquely for
each table row. You declare it using keywords GENERATED BY DEFAULT ON NULL AS IDENTITY.)

Often there is only one such identifying column and it is often a primary-key column. If there is
more than one primary-key column then we sometimes speak of the primary key being
composite.

• If there is only one identifying column then you use that as the value of field _id when you
define the duality view.

• Alternatively, you can use an object as the value of field _id. The members of the object
specify fields whose values are the identifying columns. An error is raised if there is not a
field for each of the identifying columns.

If there is only one identifying column, you can nevertheless use an object value for _id;
doing so lets you provide a meaningful field name.

Note:

A duality view must have an _id field at its top level, to uniquely identify a given row
of its root table, and thus the corresponding document.

In order to replicate a duality view, you also need to ensure that each document
subobject1 has a top-level field whose value is the identifying columns for that table.
That is, the columns corresponding to such a table row-identifier field need to
uniquely identify a row of the table that underlies that subobject.

Just as for a document-identifer field, the columns corresponding to a row-identifer
field can be primary-key columns, identity columns, or columns with a unique
constraint or unique index, for their table.

A document-identifier field must be named _id. A row-identifier field can have any
name, but if its name is _id then it's up to you to ensure that the corresponding
columns uniquely identify a table row.

Example 6-1 Document Identifier Field _id With Primary-Key Column Value

For duality view race_dv, the value of a single primary-key column, race_id, is used as the
value of field _id. A document supported by the view would look like this: {"_id" : 1,…}.

1 This of course doesn't apply to document subobjects that are explicitly present a JSON-type column that's embedded in
the document.

6-1

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race {_id : race_id
 name : name
 laps : laps @NOUPDATE
 date : race_date
 podium : podium @NOCHECK,
 result : ...};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 SELECT JSON {'_id' : r.race_id,
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'result' : ...}
 FROM race;

Example 6-2 Document Identifier Field _id With Object Value

For duality view race_dv, the value of field _id is an object with a single member, which maps
the single primary-key column, race_id, to a meaningful field name, raceId. A document
supported by the view would look like this: {"_id" : {"raceId" : 1},...}.

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race {_id @nest {race_id}
 name : name
 laps : laps @NOUPDATE
 date : race_date
 podium : podium @NOCHECK,
 result : ...};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 SELECT JSON {'_id' : {'raceId' : r.race_id},
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'result' : ...}
 FROM race;

An alternative car-racing design might instead use a race table that has multiple identifying
columns, race_id and date, which together identify a row. In that case, a document supported
by the view would look like this: {"_id" : {"raceId" : 1, "date" :
"2022-03-20T00:00:00"},...}.

Chapter 6

6-2

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 race {_id @nest {raceId: race_id, date: race_date}
 name : name
 laps : laps @NOUPDATE
 podium : podium @NOCHECK,
 result : ...};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv AS
 SELECT JSON {'_id' : {'raceId' : r.race_id, 'date' : r.race_date},
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'podium' : r.podium WITH NOCHECK,
 'result' : ...}
 FROM race;

Related Topics

• Car-Racing Example, JSON Documents
The car-racing example has three kinds of documents: a team document, a driver
document, and a race document.

See Also:

Mongo DB API Collections Supported by JSON-Relational Duality Views

in Oracle Database API for MongoDB

Chapter 6

6-3

7
Generated Fields, Hidden Fields

Instead of mapping a JSON field directly to a relational column, a duality view can generate the
field using a SQL/JSON path expression, a SQL expression, or a SQL query. Generated fields
and fields mapped to columns can be hidden, that is, not shown in documents supported by
the view.

The computation of a generated field value can use the values of other fields defined by the
view, including other generated fields, whether those fields are hidden or present in the
supported documents.

This use of an expression or a query to generate a field value is sometimes called inline
augmentation: when a document that's supported by a duality view is read, it is augmented by
adding generated fields. It's inline in the sense that the definition of the augmentation is part of
the duality-view definition/creation code (DDL).

Generated fields are read-only; they're ignored when a document is written. They cannot have
any annotation, including CHECK (they don't contribute to the calculation of the value of field
etag).

Note:

Mapping the same column to fields in different duality views makes their supported
documents share the same data in those fields. Using generated fields you can share
data between different duality views in another way. A field in one view need not have
exactly the same value as a field in another view, but it can nevertheless have its
value determined by the value of that other field.

A field's value in one kind of document can be declaratively defined as a function of
the values of fields in any number of other kinds of document. This kind of sharing is
one-way, since generated fields are read-only.

This is another way that duality views provide a declarative alternative, to let you
incorporate business logic into the definition of application data itself, instead
requiring it to be implemented with application code.

See, for example, Example 7-2. There, the points field of team documents is
completely defined by the points field of the documents for the team's drivers: the
team points are the sum of the driver points.

Note:

If the name of a hidden field conflicts with the name of a field stored in a flex column
for the same table, then, in documents supported by the duality view the field is
absent from the JSON object that corresponds to that table.

In SQL, you specify a generated field by immediately following the field name and colon (:)
with keyword GENERATED, followed by keyword USING and one of the following:

7-1

• Keyword PATH followed by a SQL/JSON path expression

• A SQL expression

• A SQL query, enclosed in parentheses: (…).

In GraphQL, you specify a generated field using directive @generated, passing it argument
path or sql, with value a path expression (for path) and a SQL expression or query (for sql).

If you specify a path expression, the JSON data targeted (matched) by the expression can be
located anywhere in a document supported by the duality view. That is, the scope of the path
expression is the entire document.

In particular, the path expression can refer to document fields that are generated. It can even
use generated fields to locate the targeted data, provided the generation of those fields is
defined prior to the lexical occurrence of the path expression in the view-creation code.

If the path expression computes any values using other field values (which it typically does),
then any fields used in those computations can be hidden. The path expression can thus refer
to hidden fields. That is, the scope of the path expression is the generated document before
any fields are hidden.

If you specify a SQL expression or query, then it must refer only to SQL data in (1) columns of
a table that underlies the JSON object to which the field belongs, (2) columns of any outer
tables, or (3) columns that are not mapped to any fields supported by the duality view.

That is, the scope of the SQL expression or query is the SQL expression or query itself and
any query that contains it (lexically). Columns of tables in subqueries are not visible. In terms
of the JSON data produced, the scope is the JSON object that the generated field belongs to,
and any JSON data that contains that object.

For example, in Example 7-1, generated field onPodium is defined using a SQL expression that
refers to column position of table driver_race_map, which underlies the JSON object to
which field onPodium belongs.

You can use the value of a hidden field in one or more expressions or queries to compute the
value of other fields (which themselves can be either hidden or present in the supported
documents). You specify that a field is hidden using keyword HIDDEN after the column name
mapped to it or the GENERATED USING clause that generates it.

Example 7-1 Fields Generated Using a SQL Query and a SQL Expression

This example defines duality view race_dv_sql_gen. The definition is the same as that for view
race_dv in Example 3-5, but with two additional, generated fields:

• fastestTime — Fastest time for the race. Uses SQL-query field generation.

• onPodium — Whether the race result for a given driver places the driver on the podium.
Uses SQL-expression field generation.

The fastestTime value is computed by applying SQL aggregate function min to the race times
of the drivers on the podium. These are obtained from field time of object field winner of JSON-
type column podium of the race table: podium.winner.time.

The onPodium value is computed from the value of column position of table driver_race_map.
If that column value is 1, 2, or 3 then the value of field onPodium is "YES"; otherwise it is "NO".
This logic is realized by evaluating a SQL CASE expression.

Chapter 7

7-2

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv_sql_gen AS
 race
 {_id : race_id
 name : name
 laps : laps @NOUPDATE
 podium : podium @NOCHECK
 fastestTime @generated (sql : "SELECT min(rt.podium.winner.time) FROM race rt")
 result : driver_race_map @insert @update @delete @link (to : ["RACE_ID"])
 {driverRaceMapId : driver_race_map_id
 onPodium @generated (sql : "(CASE WHEN position BETWEEN 1 AND 3
 THEN 'YES'
 ELSE 'NO'
 END)")
 driver @unnest @update @noinsert @nodelete
 {driverId : driver_id
 name : name}}};

(This definition uses GraphQL directive @link with argument to, to specify, for the nested
object that's the value of field result, to use foreign-key column race_id of table
driver_race_map, which links to primary-key column race_id of table race. See Oracle
GraphQL Directive @link.)

SQL:

CREATE JSON RELATIONAL DUALITY VIEW race_dv_sql_gen AS
 SELECT JSON {'_id' : r.race_id,
 'name' : r.name,
 'laps' : r.laps WITH NOUPDATE,
 'date' : r.race_date,
 'podium' : r.podium WITH NOCHECK,
 'fastestTime' : GENERATED USING
 (SELECT min(rt.podium.winner.time) FROM race rt),
 'result' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 'position' : drm.position,
 'onPodium' : GENERATED USING
 (CASE WHEN position BETWEEN 1 AND 3
 THEN 'YES'
 ELSE 'NO'
 END),
 UNNEST (SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name}
 FROM driver d WITH NOINSERT UPDATE NODELETE
 WHERE d.driver_id = drm.driver_id)}
 FROM driver_race_map drm WITH INSERT UPDATE DELETE
 WHERE drm.race_id = r.race_id]}
 FROM race r WITH INSERT UPDATE DELETE;

Example 7-2 Field Generated Using a SQL/JSON Path Expression

This example defines duality view team_dv_path_gen. The definition is the same as that for
view team_dv in Example 3-1, except that the points for the team are not stored in the team
table. They are calculated by summing the points for the drivers on the team.

Chapter 7

7-3

SQL/JSON path expression $.driver.points.sum() realizes this. It applies aggregate item
method sum() to the values in column points of table driver.

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW team_dv_path_gen AS
 team @insert @update @delete
 {_id : team_id
 name : name
 points @generated (path : "$.driver.points.sum()")
 driver @insert @update @link (to : ["TEAM_ID"])
 {driverId : driver_id
 name : name
 points : points @nocheck}};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW team_dv_path_gen AS
 SELECT JSON {'_id' : t.team_id,
 'name' : t.name,
 'points' : GENERATED USING PATH '$.driver.points.sum()',
 'driver' :
 [SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name,
 'points' : d.points WITH NOCHECK}
 FROM driver d WITH INSERT UPDATE
 WHERE d.team_id = t.team_id]}
 FROM team t WITH INSERT UPDATE DELETE;

Previously in this documentation we've assumed that the points field for a driver and the
points field for a team were both updated by application code. But the team points are
entirely defined by the driver points values. It makes sense to consolidate this logic (functional
dependence) in the team duality view itself, expressing it declaratively (team's points = sum of
its drivers' points).

Note:

Generated fields are read-only. This means that if top-level field points of team
documents is generated then the (top-level) points fields of team documents that
you insert or update are ignored. Those team field values are instead computed from
the points values of the inserted or updated documents. See Example 5-11 and
Example 5-19 for examples of such updates.

Example 7-3 Fields Generated Using Hidden Fields

This example defines duality view emp_dv_gen using employees table emp.

• It defines hidden fields wage and tips using columns emp.wage and emp.tips, respectively.

• It generates field totalComp using a SQL expression that sums the values of columns
emp.wage and emp.tips.

Chapter 7

7-4

• It generates Boolean field highTips using a SQL/JSON path expression that compares the
values of fields tips and wage.

CREATE TABLE emp(empno NUMBER PRIMARY KEY,
 first VARCHAR2(100),
 last VARCHAR2(100),
 wage NUMBER,
 tips NUMBER);

INSERT INTO emp VALUES (1, 'Jane', 'Doe', 1000, 2000);

GraphQL:

CREATE JSON RELATIONAL DUALITY VIEW emp_dv_gen AS
 emp
 {_id : empno
 wage : wage @hidden
 tips : tips @hidden
 totalComp @generated (sql : "wage + tips")
 highTips @generated (path : "$.tips > $.wage")};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW emp_dv_gen AS
 SELECT JSON {'_id' : EMPNO,
 'wage' : e.wage HIDDEN,
 'tips' : e.tips HIDDEN,
 'totalComp' : GENERATED USING (e.wage + e.tips),
 'highTips' : GENERATED USING PATH '$.tips > $.wage'}
 FROM emp e;

SELECT data FROM emp_dv_gen;

Query result (pretty-printed here for clarity):

{"_id" : 1,
 "totalComp" : 3000,
 "highTips" : true,
 "_metadata" : {"etag" : "B8CA77231CA578A6137788C83BC0F410",
 "asof" : "000025B864BC59AB"}}

Related Topics

• Creating Car-Racing Duality Views Using SQL
Team, driver, and race duality views for the car-racing application are created using SQL.

Chapter 7

7-5

8
Schema Flexibility with JSON Columns in
Duality Views

Including columns of JSON data type in tables that underlie a duality view lets applications add
and delete fields, and change the types of field values, in the documents supported by the
view. The stored JSON data can be schemaless or JSON Schema-based (to enforce particular
types of values).

When schemaless, the values such fields can be of any JSON-language type (scalar, object,
array). This is in contrast to the fields generated from scalar SQL columns, which are always of
a predefined type (and are always present in the documents).

When you define a duality view, you can declaratively choose the kind and degree of schema
flexibility you want, for particular document parts or whole documents.

The values of a JSON column can either be embedded in documents supported by a duality
view, as the values of fields declared in the view definition, or merged into an existing
document object by simply including them in the object when a document is inserted or
updated.

Embedding values from a JSON-type column into a document is the same as embedding values
from a column of another type, except that there's no conversion from SQL type to JSON. The
value of a field embedded from a JSON-type column can be of any JSON-language type, and its
type can be constrained to conform to a JSON schema.

Fields that are merged into a document aren't mapped to individual columns. Instead, for a
given table they're all implicitly mapped to the same JSON-type object column, called a flex
column. A flex column thus has data type JSON (OBJECT), and no field is mapped to it in the
view definition.

A table underlying a duality view can have both a flex column and nonflex JSON-type columns.
Fields stored in the flex column are merged into the document object produced by the table,
and fields stored in the nonflex columns are embedded into that object.

• Embedding Values from JSON Columns into Documents
The value of a field mapped to a JSON-type column underlying a duality view is embedded,
as is, in documents supported by the view. There's no conversion from a SQL value — it's
already a JSON value (of any JSON-language type: object, array, string, number,…, by
default).

• Merging Fields from JSON Flex Columns into Documents
A duality-view flex column stores (in an underlying table) JSON objects whose fields aren't
predefined: they're not mapped individually to specific underlying columns. Unrecognized
fields of an object in a document you insert or update are automatically added to the flex
column for that object's underlying table.

• When To Use JSON-Type Columns for a Duality View
Whether to store some of the data underlying a duality view as JSON data type and, if so,
whether to enforce its structure and typing, are design choices to consider when defining a
JSON-relational duality view.

8-1

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

Related Topics

• Document-Centric Use Case for JSON-Relational Duality
Developers of document-centric applications can use duality views to interface with, and
leverage, normalized relational data stored in tables.

8.1 Embedding Values from JSON Columns into Documents
The value of a field mapped to a JSON-type column underlying a duality view is embedded, as
is, in documents supported by the view. There's no conversion from a SQL value — it's already
a JSON value (of any JSON-language type: object, array, string, number,…, by default).

Consider table person, with three relational columns and a JSON-type column, extras, whose
values must be JSON objects:1

CREATE TABLE person (
 pid NUMBER PRIMARY KEY,
 first VARCHAR2(20),
 last VARCHAR2(20),
 extras JSON (OBJECT));

Duality view person_embed_dv includes all of the columns of table person. Here is the view
definition, in GraphQL and SQL:2

GraphQL:

CREATE JSON DUALITY VIEW person_embed_dv AS
 person @update @insert @delete
 {_id : pid,
 firstName : first,
 lastName : last,
 moreInfo : extras};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW person_embed_dv AS
 SELECT JSON {'_id' : p.pid,
 'firstName' : p.first,
 'lastName' : p.last,
 'moreInfo' : p.extras}
 FROM person p WITH UPDATE INSERT DELETE;

1 This differs from the definition in Merging Fields from JSON Flex Columns into Documents, in that column extras is not
labeled as a flex column.

2 This differs from the duality-view definition in Merging Fields from JSON Flex Columns into Documents, in that (1) column
extras is mapped to a field (moreInfo) and (2) it is not labeled as a flex column.

Chapter 8
Embedding Values from JSON Columns into Documents

8-2

An insertion into table person must provide a JSON object as the column value, as in this
example:

INSERT INTO person VALUES (1,
 'Jane',
 'Doe',
 '{"middleName" : "X",
 "nickName" : "Anon X"}');

Looking at table person shows that column extras contains the JSON object with fields
middleName and nickName:

SELECT p.* FROM person p;

PID FIRST LAST EXTRAS
--- ----- ---- ------
 1 Jane Doe {"middleName":"X","nickName":"Anon X"}

Selecting the resulting document from the view shows that the object was embedded as is, s
the value of field moreInfo:

SELECT pdv.data FROM person_embed_dv pdv
 WHERE pdv.data."_id" = 1;

{"_id":1,"firstName":"Jane","lastName":"Doe",
 "moreInfo":{"middleName":"X","nickName":"Anon X"}}

Similarly, when inserting a document into the view, the value of field moreInfo must be an
object, because that field is mapped in the view definition to column person.extras, which has
type JSON (OBJECT).

Embedding a JSON object is just one possibility. The natural schema flexibility of JSON data
means that if the data type of column person.extras were just JSON, instead of JSON(OBJECT),
then the value of field moreInfo could be any JSON value — not necessarily an object.

It's also possible to use other JSON-type specifications, to get other degrees of flexibility:
JSON(SCALAR), JSON(ARRAY), JSON(SCALAR, ARRAY), etc. For example, the JSON-type modifier
(OBJECT, ARRAY) requires nonscalar values (objects or arrays), and modifier (OBJECT, SCALAR
DATE) allows only objects or JSON dates. See Creating Tables With JSON Columns in Oracle
Database JSON Developer’s Guide.

And you can use JSON Schema to obtain the fullest possible range of flexibilities. See
Validating JSON Data with a JSON Schema in Oracle Database JSON Developer’s Guide. By
applying a JSON schema to a JSON-type column underlying a duality view, you change the
logical structure of the data, and thus the structure of the documents supported by the view.
You remove some schema flexibility, but you don't change the storage structure (tables).

Chapter 8
Embedding Values from JSON Columns into Documents

8-3

8.2 Merging Fields from JSON Flex Columns into Documents
A duality-view flex column stores (in an underlying table) JSON objects whose fields aren't
predefined: they're not mapped individually to specific underlying columns. Unrecognized fields
of an object in a document you insert or update are automatically added to the flex column for
that object's underlying table.

You can thus add fields to the document object produced by a duality view with a flex column
underlying that object, without redefining the duality view. This provides another kind of
schema flexibility to a duality view, and to the documents it supports. If a given underlying table
has no column identified in the view as flex, then new fields are not automatically added to the
object produced by that table. Add flex columns where you want this particular kind of flexibility.

Note that it's technically incorrect to speak of a flex column of a table. A flex column is a
duality-view column that's designated as flex — flex for the view.

Consider table person, with three relational columns and a JSON-type column, extras, whose
values must be JSON objects.

CREATE TABLE person (
 pid NUMBER PRIMARY KEY,
 first VARCHAR2(20),
 last VARCHAR2(20),
 extras JSON (OBJECT));

Duality view person_merge_dv maps each of the columns of table person except column
extras to a document field. It declares column extras as a flex column. Here is the view
definition, in GraphQL and SQL:3

GraphQL:

CREATE JSON DUALITY VIEW person_merge_dv AS
 person @update @insert @delete
 {_id : pid,
 firstName : first,
 lastName : last,
 extras @flex};

SQL:

CREATE JSON RELATIONAL DUALITY VIEW person_merge_dv AS
 SELECT JSON {'_id' : p.pid,
 'firstName' : p.first,
 'lastName' : p.last,
 p.extras AS FLEX COLUMN}
 FROM person p WITH UPDATE INSERT DELETE;

When inserting a document into view person_merge_dv, any fields unrecognized for the object
produced by table person (in this case field nickName) are added to flex column

3 This differs from the duality-view definition in Embedding Values from JSON Columns into Documents, in that (1) column
extras is labeled as a flex column and (2) it is not mapped to a field.

Chapter 8
Merging Fields from JSON Flex Columns into Documents

8-4

person.extras. The object produced by table person is the top-level object of the document;
field nickName is added to that object.

INSERT INTO person_merge_dv VALUES ('{"_id" : 2,
 "firstName" : "John",
 "nickName" : "Anon Y",
 "lastName" : "Doe"}');

Selecting the inserted document shows that the fields stored in the flex column's object, as well
as the fields explicitly mapped to other columns, are present in the same object. Field
nickName has been merged from the object in the flex column into the object produced by the
flex column's table, person.

SELECT pdv.data FROM person_merge_dv pdv
 WHERE pdv.data."_id" = 2;

{"_id":2,"firstName":"John","lastName":"Doe","nickName":"Anon Y"}

Querying table person shows that field nickName was included in the JSON object that is
stored in flex column extras. (We assume here that table person is empty before the
document insertion into view person_merge_dv — but see below.)

SELECT p.* FROM person p;

PID FIRST LAST EXTRAS
--- ----- ---- ------
 2 John Doe {"nickName":"Anon Y"}

Note that if column person.extras is shared with another duality view then changes to its
content are reflected in both views. This may or may not be what you want; just be aware of it.

For example, table person is defined here the same as in Embedding Values from JSON
Columns into Documents. Given that Embedding Values from JSON Columns into Documents
inserts object {"middleName":"X", "nickName":"Anon X"} into the same column,
person.extras, that insertion plus the above insertion into duality view person_merge_dv result
in both objects being present in the table:

SELECT p.* FROM person p;

PID FIRST LAST EXTRAS
--- ----- ---- ------
 1 Jane Doe {"middleName":"X","nickName":"Anon X"}

 2 John Doe {"nickName":"Anon Y"}

Chapter 8
Merging Fields from JSON Flex Columns into Documents

8-5

Both duality views use the data for Jane Doe and John Doe, but they use the objects in column
extras differently. View person_embed_dv embeds them as the values of field moreInfo; view
person_merge_dv merges their fields at the top level.

SELECT pdv.data FROM person_embed_dv pdv;

{"_id":1,"firstName":"Jane","lastName":"Doe",
 "moreInfo":{"middleName":"X","nickName":"Anon X"}}
{"_id":2,"firstName":"John","lastName":"Doe",
 "moreInfo":{"nickName":"Anon Y"}}

SELECT pdv.data FROM person_merge_dv pdv;

{"_id":1,"firstName":"Jane","lastName":"Doe",
 "middleName":"X","nickName":"Anon X"}
{"_id":2,"firstName":"John","lastName":"Doe",
 "nickName":"Anon Y"}

Different views can present the same information in different forms. This is as true of duality
views as it is of non-duality views.

Note:

Remember that a flex column in a table is only a duality-view construct — for the
table itself, "flex column" has no meaning or behavior. The same table can have
different columns that are used as flex columns in different duality views or even at
different locations in the same duality view. Don't share a column (of any type) in
different places unless you really want its content to be shared there.

8.3 When To Use JSON-Type Columns for a Duality View
Whether to store some of the data underlying a duality view as JSON data type and, if so,
whether to enforce its structure and typing, are design choices to consider when defining a
JSON-relational duality view.

By storing some JSON data that contributes to the JSON documents supported by (generated
by) a duality view, you can choose the granularity and complexity of the building blocks that
define the view. Put differently, you can choose the degree of normalization you want for the
underlying data. Different choices involve different tradeoffs.

When the table data underlying a duality view is completely normalized, in which case the table
columns contain only values of scalar SQL data types, the structure of the documents
supported by the view, and the types of its fields, are fixed and strictly defined using relational
constructs.

Although normalization reduces schema flexibility, complete normalization gives you the most
flexibility in terms of combining data from multiple tables to support different kinds of duality
view (more generally, in terms of combining some table data with other table data, outside of
any use for duality views).

Chapter 8
When To Use JSON-Type Columns for a Duality View

8-6

And in an important particular use case, complete normalization lets you access the data in
existing relational tables from a document-centric application, as JSON documents.

On the other hand, the greater the degree of normalization, the more tables you have, which
means more decomposition when inserting or updating JSON data and more joining
(recomposition) when querying it. If an application typically accesses complex objects as a
whole, then greater normalization can thus negatively impact performance.

Like any other column in a table underlying a duality view, a JSON-type column can be shared
among different duality views, and thus its values can be shared in their different resulting
(generated) JSON documents.

By default, a JSON value is free-form: its structure and typing are not defined by, or forced to
conform to, any given pattern/schema. In this case, applications can easily change the shape
and types of the values as needed — schema flexibility.

You can, however, impose typing and structure on the data in a JSON-type column, using JSON
Schema. JSON Schema gives you a full spectrum of control:

1. From fields whose values are completely undefined to fields whose values are strictly
defined.

2. From scalar JSON values to large, complex JSON objects and arrays.

3. From simple type definitions to combinations of JSON-language types. For example:

• A value that satisfies anyOf, allOf, or oneOf a set of JSON schemas

• A value that does not satisfy a given JSON schema

Note:

Using, in a duality-view definition, a JSON-type column that's constrained by a JSON
schema to hold only data of a particular JSON scalar type (date, string, etc.) that
corresponds to a SQL scalar type (DATE, VARCHAR2, etc.) has the same effect on the
JSON documents supported by the view as using a column of the corresponding
SQL scalar type.

However, code that acts directly on such stored JSON-type data won't necessarily
recognize and take into account this correspondence. The SQL type of the data is,
after all, JSON, not DATE, VARCHAR2, etc. To extract a JSON scalar value as a value of
a SQL scalar data type, code needs to use SQL/JSON function json_value. See
SQL/JSON Function JSON_VALUE in Oracle Database JSON Developer’s Guide.

Let's summarize some of the tradeoffs between using SQL scalar columns and JSON-type
columns in a table underlying a duality view:

1. Flexibility of combination. For the finest-grain combination, use completely normalized
tables, whose columns are all SQL scalars.

2. Flexibility of document type and structure. For maximum flexibility of JSON field values at
any given time, and thus also for changes over time (evolution), use JSON-type columns
with no JSON-schema constraints.

3. Granularity of field definition. The finest granularity requires a column for each JSON field,
regardless of where the field is located in documents supported by the duality view. (The
field value could nevertheless be a JSON object or array, if the column is JSON-type.)

Chapter 8
When To Use JSON-Type Columns for a Duality View

8-7

If it makes sense for your application to share some complex JSON data among different kinds
of documents, and if you expect to have no need for combining only parts of that complex data
with other documents or, as SQL scalars, with relational data, then consider using JSON data
type for the columns underlying that complex data.

In other words, in such a use case consider sharing JSON documents, instead of sharing the
scalar values that constitute them. In still other words, consider using more complex
ingredients in your duality-view recipe.

Note that the granularity of column data — how complex the data in it can be — also
determines the granularity of updating operations and ETAG-checking (for optimistic
concurrency control). The smallest unit for such operations is an individual column underlying a
duality view; it's impossible to annotate individual fields inside a JSON-type column.

Update operations can selectively apply to particular fields contained in the data of a given
JSON-type column, but control of which update operations can be used with a given view is
defined at the level of an underlying column or whole table — nothing smaller. So if you need
finer grain updating or ETAG-checking then you need to break out the relevant parts of the
JSON data into their own JSON-type columns.

See Also:

• Validating JSON Documents with a JSON Schema for information about using
JSON schemas to constrain or validate JSON data

• json-schema.org for information about JSON Schema

8.4 Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them; field-
name conflicts; gotchas.

Any tables underlying a duality view can have any number of JSON-type columns. At most one
JSON column per table can be designated as a flex column at each position where that table is
used in the view definition. If a given table is used only at one place in a view definition (a
typical case) then only one flex column for the table can be used. If the same table is used in N
different places in a view definition, then up to N different flex columns for the table can be
designated at those places.

You can designate the same flex column to provide the fields for different places of the same
document. Those different places share all of the fields stored in that flex column. Updates to
any of the places must concord, by not providing different new fields or different values for the
same field.

Note:

The same general behavior holds for a nonflex column: if used to support fields in
multiple places of a document then all of those places share the same data. In the
nonflex case only the field values must be the same; the field names can be different
in different places.

Chapter 8
Flex Columns, Beyond the Basics

8-8

https://json-schema.org/

In a given duality-view definition, you can't use the same JSON column as a flex column in one
document place and as a nonflex column in another place. An error is raised if you try to do
this.

In any table, a JSON column generally provides for flexible data: by default, its typing and
structure are not constrained/specified in any way (for example, by a JSON schema).

The particularity of a JSON column that's designated as a flex column for a duality view is
this:

• The column value must be a JSON object or SQL NULL.

This means that it must be declared as type JSON (OBJECT), not just JSON. Otherwise, an
error is raised when you try to use that column in a duality-view definition.

(This restriction doesn't apply to a nonflex JSON-type column; its value can be any JSON
value: scalar, array, or object.)

• On read, the object stored in a flex column is unnested: its fields are unpacked into the
resulting document object.

That is, the stored object is not included as such, as the value of some field in the object
produced by the flex column's table. Instead, each of the stored object's fields is included
in that document object.

(Any value — object, array, or scalar — in a nonflex JSON-type column is just included as
is; an object is not unnested, unless unnesting is explicitly specified in the duality-view
definition. See Creating Duality Views.)

For example, if the object in a given row of the flex column for table tab1 has fields foo
and bar then, in the duality-view document that corresponds to that row, the object
produced from tab1 also contains those fields, foo and bar.

• On write, the fields from the document object are packed back into the stored object, and
any fields not supported by other columns are automatically added to the flex column. That
is, an unrecognized field "overflows" into the object in the JSON flex column.

For example, if a new field toto is added to a document object corresponding to a table
that has a flex column, then on insertion of the document if field toto isn't already
supported by the table then field toto is added to the flex-column's object.

Note:

To require a nonflex JSON-type column to hold only object values (or SQL NULL) you
can define it using the modified data type JSON (OBJECT), or you can use a JSON-
Schema VALIDATE check constraint of {"type":"object"}. See Validating JSON
Data with a JSON Schema in Oracle Database JSON Developer’s Guide.

More generally, you can require a nonflex JSON-type column to hold only scalar,
object, or array JSON values, or any combination of those. And you can restrict
scalar values to be of a specific type, such as a string or a date. For example, if the
column type is JSON (OBJECT, SCALAR DATE) then it allows only values that are
objects or dates.

A column designated as flex for a duality view is such (is flex) only for the view. For the table
that it belongs to, it's just an ordinary JSON-type column, except that the value in each row must
be a single JSON object or SQL NULL.

Chapter 8
Flex Columns, Beyond the Basics

8-9

Different duality views can thus define different flex columns (that is, with different names) for
the same table, each view's flex column suiting that view's own purposes, providing fields for
the documents that only it supports.

Note:

If for some reason you actually want two or more duality views to share a flex
column, then just give the flex column the same name when defining each view. This
might sometimes be what you want, but be aware of the consequence.

Unlike nonflex columns, which are dedicated to individual fields that are specified
explicitly in a view's definition, a flex column holds the data for multiple fields that are
unknown to the view definition. A flex column is essentially a free pass for
unrecognized incoming fields at certain locations in a document (that's its purpose:
provide flexibility).

On write, an unrecognized field is stored in a flex column (of the table relevant to the
field's location in the document). If two views with the same underlying table share a
flex column there, then incoming fields unrecognized by either view get stored in that
column, and on read those fields are exposed in the documents for both views.

Because a flex column's object is unnested on read, adding its fields to those produced by the
other columns in the table, and because a JSON column is by default schemaless, changes to
flex-column data can change the structure of the resulting document object, as well as the
types of some of its fields.

In effect, the typing and structure of a duality view's supported documents can change/evolve
at any level, by providing a flex column for the table supporting the JSON object at that level.
(Otherwise, to allow evolution of typing and structure for the values of particular JSON fields,
you can map nonflex JSON-type columns to those fields.)

You can change the typing and structure of a duality view's documents by modifying flex-
column data directly, through the column's table. More importantly, you can do so simply by
inserting or updating documents with fields that don't correspond to underlying relational
columns. Any such fields are automatically added to the corresponding flex columns.
Applications are thus free to create documents with any fields they like, in any objects whose
underlying tables have a flex column.

However, be aware that unnesting the object from a flex column can lead to name conflicts
between its fields and those derived from the other columns of the same table. Such conflicts
cannot arise for JSON columns that don't serve as flex columns.

For this reason, if you don't need to unnest a stored JSON object — if it's sufficient to just
include the whole object as the value of a field — then don't designate its column as flex. Use a
flex column where you need to be able to add fields to a document object that's otherwise
supported by relational columns.

The value of any row of a flex column must be a JSON object or the SQL value NULL.

SQL NULL and an empty object ({}) behave the same, except that they typically represent
different contributions to the document ETAG value. (You can annotate a flex column with
NOCHECK to remove its data from ETAG calculation. You can also use column annotation
[NO]UPDATE, [NO]CHECK on a flex column.)

Chapter 8
Flex Columns, Beyond the Basics

8-10

In a duality-view definition you designate a JSON-type column as being a flex column for the
view by following the column name in the view definition with keywords AS FLEX in SQL or with
annotation @flex in GraphQL.

For example, in this GraphQL definition of duality view dv1, column t1_json_col of table
table1 is designated as a flex column. The fields of its object value are included in the
resulting document as siblings of field1 and field2. (JSON objects have undefined field
order, so the order in which a table's columns are specified in a duality-view definition doesn't
matter.)

CREATE JSON RELATIONAL DUALITY VIEW dv1 AS
 table1 @insert @update @delete
 {_id : id_col,
 t1_field1 : col_1,
 t1_json_col @flex,
 t1_field2 : col_2};

When a table underlies multiple duality views, those views can of course use some or all of the
same columns from the table. A given column from such a shared table can be designated as
flex, or not, for any number of those views.

The fact that a column is used in a duality view as a flex column means that if any change is
made directly to the column value by updating its table then the column value must still be a
JSON object (or SQL NULL).

It also means that if the same column is used in a table that underlies another duality view, and
it's not designated as a flex column for that view, then for that view the JSON fields produced
by the column are not unpacked in the resulting documents; in that view the JSON object with
those fields is included as such. In other words, designation as a flex column is view-specific.

You can tell whether a given table underlying a duality view has a flex column by checking
BOOLEAN column HAS_FLEX_COL in static dictionary views *_JSON_DUALITY_VIEW_TABS. You can
tell whether a given column in an underlying table is a flex column by checking BOOLEAN column
IS_FLEX_COL in static dictionary views *_JSON_DUALITY_VIEW_TAB_COLS. See
ALL_JSON_DUALITY_VIEW_TABS and ALL_JSON_DUALITY_VIEW_TAB_COLS in Oracle
Database Reference.

The data in both flex and nonflex JSON columns in a table underlying a duality view can be
schemaless, and it is so by default.

But you can apply JSON schemas to any JSON-type columns used anywhere in a duality-view
definition, to remove their flexibility ("lock" them). You can also impose a JSON schema on the
documents generated/supported by a duality view.

Because the fields of an object in a flex column are unpacked into the resulting document, if
you apply a JSON schema to a flex column the effect is similar to having added a separate
column for each of that object's fields to the flex column's table using DML.

Whether a JSON-type column underlying a duality view is a flex column or not, by applying a
JSON schema to it you change the logical structure of the data, and thus the structure of the
documents supported by the view. You remove some schema flexibility, but you don't change
the storage structure (tables).

Chapter 8
Flex Columns, Beyond the Basics

8-11

See Also:

Using JSON to Implement Flexfields (video, 24 minutes)

Field Naming Conflicts Produced By Flex Columns

Because fields in a flex column are unpacked into an object that also has fields provided
otherwise, field name conflicts can arise. There are multiple ways this can happen, including
these:

• A table underlying a duality view gets redefined, adding a new column. The duality view
gets redefined, giving the JSON field that corresponds to the new column the same name
as a field already present in the flex column for the same table.

Problem: The field name associated with a nonflex column would be the same as a field in
the flex-column data.

• A flex column is updated directly (that is, not by updating documents supported by the
view), adding a field that has the same name as a field that corresponds in the view
definition to another column of the same underlying table.

Problem: The field name associated with a nonflex column is also used in the flex-column
data.

• Two duality views, dv1 and dv2, share an underlying table, using the same column, jcol,
as flex. Only dv1 uses nonflex column, foocol from the table, naming its associated field
foo.

Data is inserted into dv1, populating column foocol. This can happen by inserting a row
into the table or by inserting a document with field foo into dv1.

A JSON row with field foo is added to the flex column, by inserting a document into dv2.

Problem: View dv2 has no problem. But for view dv1 field-name foo is associated with a
nonflex column and is also used in the flex-column data.

It's not feasible for the database to prevent such conflicts from arising, but you can specify the
behavior you prefer for handling them when they detected during a read (select, get, JSON
generation) operation. (All such conflicts are detected during a read.)

You do this using the following keywords at the end of a flex-column declaration. Note that in
all cases that don't raise an error, any field names in conflict are read from nonflex columns —
that is, priority is always given to nonflex columns.

Chapter 8
Flex Columns, Beyond the Basics

8-12

https://youtu.be/vYw9p_4aGJM

GraphQL SQL Behavior

(conflict: KEEP_NESTED) KEEP [NESTED] ON [NAME] CONFLICT
(Keywords NESTED and NAME are optional.)

Any field names in conflict are
read from nonflex columns. Field
_nameConflicts (a reserved
name) is added, with value an
object whose members are the
conflicting names and their
values, taken from the flex
column.

This is the default behavior.

For example, if for a given
document nonflex field quantity
has value 100, and the flex-
column data has field quantity
with value "314", then nonflex
field quantity would keep its
value 100, and field
_nameConflicts would be
created or modified to include the
member "quantity":314.

(conflict: ARRAY) ARRAY ON [NAME] CONFLICT
(Keyword NAME is optional.)

Any field names in conflict are
read from nonflex columns. The
value of each name that has a
conflict is changed in its nonflex
column to be an array whose
elements are the values: one
from the nonflex column and one
from the flex-column data, in that
order.

For example, if for a given
document nonflex field quantity
has value 100, and the flex-
column data has field quantity
with value "314", then nonflex
field quantity would have its
value changed to the array
[100,314].

(conflict: IGNORE) IGNORE ON [NAME] CONFLICT
(Keyword NAME is optional.)

Any field names in conflict are
read from nonflex columns. The
same names are ignored from
the flex column.

(conflict: ERROR) ERROR ON [NAME] CONFLICT
(Keyword NAME is optional.)

An error is raised.

For example, this GraphQL flex declaration defines column extras as a flex column, and it
specifies that any conflicts that might arise from its field names are handled by simply ignoring
the problematic fields from the flex column data:

extras: JSON @flex (conflict: IGNORE)

Chapter 8
Flex Columns, Beyond the Basics

8-13

Note:

IGNORE ON CONFLICT and ARRAY ON CONFLICT are incompatible with ETAG-checking.
An error is raised if you try to create a duality view with a flex column that is ETAG-
checked and has either of these on-conflict declarations.

Note:

If the name of a hidden field conflicts with the name of a field stored in a flex column
for the same table, then, in documents supported by the duality view the field is
absent from the JSON object that corresponds to that table.

Related Topics

• Document-Centric Use Case for JSON-Relational Duality
Developers of document-centric applications can use duality views to interface with, and
leverage, normalized relational data stored in tables.

• Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations
Keyword UPDATE means that the annotated data can be updated. Keywords INSERT and
DELETE mean that the fields/columns covered by the annotation can be inserted or deleted,
respectively.

• Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
You declaratively specify the document parts to use for checking the state/version of a
document when performing an updating operation, by annotating the definition of the
duality view that supports such a document.

Chapter 8
Flex Columns, Beyond the Basics

8-14

9
Migrating From JSON To Duality

The JSON-To-Duality Migrator can migrate one or more existing sets of JSON documents to
JSON-relational duality views. Its PL/SQL subprograms generate the views based on inferred
implicit document-content relations. By default, document parts that can be shared are shared,
and the views are defined for maximum updatability.

Migration requires no supervision, but you should of course check the resulting duality views
and their supported documents to verify their adequacy to your needs. You can modify the
migration behavior to change the result.

There are two main use cases1 for the JSON-to-duality migrator:

• Migrate an existing application and its sets of JSON documents from a document database
to Oracle Database.

• Create a new application, based on knowledge of the different kinds of JSON documents it
will use (their structure and typing). The migrator can simplify this job, by automatically
creating the necessary duality views.

Migration of existing stored document sets to document collections supported by duality views
consists of the following operations. You use the converter for steps 3-8, and the importer for
steps 9-13. Steps 1-2 are preliminary. Steps are 2, 4, 7, 10, and 13 are optional.

1. Create JSON-type document sets in Oracle Database from the original external document
sets.

The input to the converter for each set of documents is an Oracle Database table with a
single column of JSON data type. You can export JSON document sets from a document
database and import them into JSON-type columns.

2. Optionally create JSON data guides that are JSON schemas that describe the input
document sets.

These can be useful for later comparison with parts of the JSON schema inferred by the
converter or with the completed document collections resulting from migration.

3. Infer database objects needed to support the input documents: relational tables, indexes,
and duality views.

This step first validates the existing input data, checking whether the document sets can in
fact be converted to duality-view support.

The tables constitute a normalized relational schema. Normalization is both across and
within document sets: equivalent data in different document sets is shared, by storing it in
the same table.

4. Optionally modify/edit the inferred JSON schema.

5. Create database objects needed to support the input data:

a. Generate SQL data definition language (DDL) scripts that create the database objects
(duality views and their underlying tables and indexes).

b. Optionally modify/edit the DDL scripts.

1 The migrator doesn't help with the third main use case of duality views: Reusing existing relational data (tables) for use in
JSON documents.

9-1

c. Run the scripts to create the database objects.

6. Validate created database objects (the duality views and their underlying relational
schema). That is, validate the input documents against the database objects, to see which,
if any, documents aren't supported by the duality views, and why.

7. Optionally refine/fix (modify/edit) input documents or DDL scripts.

a. Optionally modify/edit some input documents that are erroneous (outliers you don't
want to keep as is, or conflicting data between different documents), so they fit the
created database objects.

b. Optionally modify/edit the DDL scripts, to change the conversion behavior or the
names of the views, tables, or indexes to be created.

8. Repeat steps 3-9, until the document sets to be imported and the (unpopulated) duality
views fit together as desired.

9. Import the document sets into the duality views. Check for any errors logged.

10. Optionally refine/fix (modify/edit) input documents or DDL scripts, to fix import errors.

11. Repeat steps 9-10 (or 3-10), as needed, to fix logged import errors, until all documents are
successfully imported.

12. Validate import: Check for any problems, with the successfully imported documents.

13. Optionally refine/fix (modify/edit) input documents or DDL scripts to resolve import
validation problems.

14. Repeat steps 9-13 (or 3-13), as needed, to fix import problems.

To illustrate the use of the JSON-to-duality migrator we employ three small sets of documents
that could be used by a school-administration application: student, teacher, and course
documents. (A real application would of course likely have many more documents in its
document sets, and the documents might be complex.) The pre-existing input document sets
are shown in Example 9-1, Example 9-2, and Example 9-3.

Each of the document sets is loaded into a JSON-type column, data, of a temporary transfer
table from a document-database dump file of documents of a given kind (e.g. student
documents). The transfer-table names have suffix _tab (e.g., student_tab for student
documents). Column data is the only column in a transfer table.

The migrator creates the corresponding duality views (e.g. view student for student
documents) and populates them with the data from the transfer tables of stored documents.
Once this is done, and you've verified the adequacy of the duality views, the transfer tables are
no longer needed; you can drop them. The document sets are then no longer stored as such;
their now-normalized data is stored in the tables underlying the duality views.

Chapter 9

9-2

Note:

There's no guarantee that migration to duality views preserves all pre-existing
application data completely. In the process of normalization some data may be
transformed, cast to different data types, or truncated to respect maximum size limits.
Input data that doesn't conform to the destination relational schema might then be
rejected during import.

You need to check that all data has been successfully imported, by running migrator
verification tests and examining error logs.

You can ensure that your imported data is valid by comparing the documents in an
input document set with those supported by the corresponding duality view, checking
that the duality-view documents contain only the expected fields, and that no fields
are missing or modified in unacceptable ways.

• JSON To Duality Migrator Components: Converter and Importer
The JSON To Dualicy Migrator has two components: the converter and the importer. Their
PL/SQL subprograms are described.

• JSON Configuration Fields Specifying Migrator Parameters
You configure JSON-to-duality migration by passing a migrator configuration object as
argument to PL/SQL DBMS_JSON_DUALITY subprograms infer_schema,
infer_and_generate_schema, and import_all. The supported fields of such an object are
described.

• School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality
migrator input for the school-administration example. In a typical migration scenario each
might be received in the form of a JSON dump file from another database.

• Before Using the Converter (1): Create Database Document Sets
Before using the JSON-to-duality converter you need to create JSON-type document sets in
Oracle Database from the original external document sets. The input to the converter for
each set of documents is an Oracle Database table with a single column of JSON data type.

• Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas
A data-guide JSON schema provides frequency information about the fields in a document
set, in addition to structure and type information. You can use such schemas to get an idea
how migration might proceed, and you can compare them with other JSON schemas as a
shortcut for comparing document sets.

• JSON-To-Duality Converter: What It Does
The converter infers the inherent structure and typing of one or more sets of stored
documents, as a JSON schema. Using the schema, the converter generates DDL code to
create the database objects needed to support the document sets: duality views and their
underlying tables and indexes.

• Migrating To Duality, Simplified Recipe
By ignoring whether an input field occurs rarely, or with a rarely used type, it's easier to
migrate to JSON-relational duality. Handling such outlier cases can complicate the
migration process.

• Using the Converter, Default Behavior
Use of the JSON-to-duality converter with its default configuration-field values (except for
minFieldFrequency and minTypeFrequency) is illustrated. In particular, configuration field

Chapter 9

9-3

useFlexFields is true. The database objects needed to support the document sets are
inferred, and the SQL DDL code to construct them is generated.

• Import After Default Conversion
After default conversion (except for minFieldFrequency and minTypeFrequency), in
particular with useFlexFields:true), almost all documents from the student, teacher, and
course input document sets are successfully imported, but some fields are not exactly as
they were in the original, input documents.

• Using the Converter with useFlexFields=false
Use of the JSON-to-duality converter with useFlexFields = false is illustrated. Otherwise
the configuration is default (except for minFieldFrequency and minTypeFrequency). The
database objects needed to support the document sets are inferred, and the SQL DDL
code to construct them is generated.

• Import After Conversion with useFlexFields=false
After trying to import, error-log tables are created and queried to show import errors and
imported documents.

9.1 JSON To Duality Migrator Components: Converter and
Importer

The JSON To Dualicy Migrator has two components: the converter and the importer. Their
PL/SQL subprograms are described.

• Converter: Create the database objects needed to support the original JSON documents:
duality views and their underlying tables and indexes.

• Importer: Import Oracle Database JSON-type document sets that correspond to the original
external documents into the duality views created by the converter.

The converter is composed of these PL/SQL functions in package DBMS_JSON_DUALITY:

• infer_schema infers a JSON schema that represents all of the input document sets.

– Input: A JSON object whose members specify configuration parameters for the
inference operation — see JSON Configuration Fields Specifying Migrator Parameters.

– Output: a JSON Schema document that specifies the inferred relational schema. If no
such schema can be found then an error is raised saying that the converter can't
create duality views that correspond to the input document sets.

• generate_schema produces the DDL code to create the required database objects for each
duality view.

– Input: the JSON schema returned by function infer_schema.

– Output: DDL scripts to create the needed database objects.

• infer_and_generate_schema performs both operations.

– Input: same as infer_schema.

– Output: same as generate_schema.

• validate_schema_report checks the adequacy of the database objects to be created by
the DDL code generated by function generate_schema. It reports on the validity of the input
JSON documents according to the duality views to be created, identifying documents that
can't be supported, with reasons why not. These are the documents that fail validation
against a JSON schema for the duality views.

Chapter 9
JSON To Duality Migrator Components: Converter and Importer

9-4

https://json-schema.org

– Input:

* table_owner_name: The name of the database schema (user) that owns table
table_name.

* table_name: The name of an input table of JSON documents.

* view_owner_name: The name of the database schema (user) that owns view
view_name.

* view_name: The name of the corresponding duality view to be created by the DDL
code generated by generate_schema.

– Output: A table of validation failures for input JSON documents, one row per failed
document (no rows means that all documents are valid). A row has CLOB columns DATA
(the invalid document) and ERRORS (a JSON array of errors, with the same format as
field errors of function DBMS_JSON_SCHEMA.validate_report).

The importer is composed of these PL/SQL subprograms in package DBMS_JSON_DUALITY:

• Procedure import_all populates all duality views created by the converter with the
documents from the corresponding input document sets (more precisely, with the relational
data needed to support such documents). In an error-log table it reports an error for each
document that couldn't be imported. (Only the first such error encountered per document is
reported.)

– Input: A JSON object whose members specify configuration parameters for the import
operation — see JSON Configuration Fields Specifying Migrator Parameters.

– Output: (1) Duality views with their underlying tables filled with the relational data that
supports the same documents. (2) Error-log tables that report any documents that
could not be imported.

• Procedure import populates a single duality view with the documents from the
corresponding input document set. Its error logging is the same as that of procedure
import_all.

– Input: (1) An Oracle Database JSON document set, that is, a table with a single JSON-
type column containing documents of a given kind. (2) The name of a duality view to
populate. (3, optional) Name of the table owner. (4, optional) Name of the view owner.
(5, optional) Name of the owner of the error log table. (6, optional) Name of the error
log table. (7, optional) Reject limit value, whose meaning is the same as configuration
field rejectLimit: the maximum number of errors that can be logged (importing is
ended when this limit is exceeded).

– Output: (1) A duality view with its underlying tables filled with the relational data that
supports the same documents. (2) An error-log table that reports any documents that
could not be imported.

Chapter 9
JSON To Duality Migrator Components: Converter and Importer

9-5

Tip:

In general, use procedure import_all, not procedure import. Perform a single-
view import only when it's unlikely to interfere with the data in other duality
views.

Using import to import multiple single views separately can be problematic
because of view interdependencies. For example:

– You can't use import to populate view student before view teacher,
because root table student_root has foreign key column advisor_id, which
requires the corresponding teacher data to already exist.

– On the other hand, you can't use import to populate view teacher before
view student, because teacher documents have a dormId field in their
embedded student objects, and the corresponding column, dorm_id, is a
foreign key from table student_root to table student_dormitory. This
requires that table student_dormitory be populated before view teacher.
And that table can only be populated by importing existing student
documents.

• Function validate_import_report reports successfully imported JSON documents that
are invalid.

Each row in the output table corresponds to a validation failure for a JSON document that
was imported (no rows means all documents are valid). A row has CLOB columns DATA (the
invalid document) and ERRORS (a JSON array of errors, each having the format of a JSON
Patch document that compares an input document and the corresponding imported
document in the duality view). See JavaScript Object Notation (JSON) Patch, IETF
RFC6902 for the error format.

– table_owner_name: The name of the database schema (user) that owns table
table_name.

– table_name: The name of an input table of JSON documents.

– view_owner_name: The name of the database schema (user) that owns view
view_name.

– view_name: The name of the corresponding duality view to be populated with the
documents in table table_name.

Note that import error logging reports only on a document that couldn't be imported, and import
validation reports only on documents that were successfully imported (but that are problematic
in some way).

Chapter 9
JSON To Duality Migrator Components: Converter and Importer

9-6

https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/rfc6902

See Also:

• DBMS_JSON_DUALITY in Oracle Database PL/SQL Packages and Types
Reference for information about subprograms generate_schema,
infer_schema, , import, import_all, infer_and_generate_schema,
validate_import_report, and validate_schema_report

• VALIDATE_REPORT Function in Oracle Database PL/SQL Packages and Types
Reference for information about function DBMS_JSON_SCHEMA.validate_report.

9.2 JSON Configuration Fields Specifying Migrator Parameters
You configure JSON-to-duality migration by passing a migrator configuration object as
argument to PL/SQL DBMS_JSON_DUALITY subprograms infer_schema,
infer_and_generate_schema, and import_all. The supported fields of such an object are
described.

Note:

You might want to skim this topic on a first reading, and refer back to it later. The
information is presented here to give you an idea of what's available.

Procedure import_all is the only subprogram that uses configuration fields errorLog,
errorLogSchema, and rejectLimit. Functions infer_schema and infer_and_generate_schema
are the only subprograms that use configuration fields ingestLimit, minFieldFrequency,
minTypeFrequency, normalize, outputFormat, softnessThreshold, tablespace,
updatability, and useFlexFields.

The configuration fields actually used by the various DBMS_JSON_DUALITY migrator
subprograms are thus different, but there is some overlap. You can pass any of the
configuration fields to any of these subprograms; fields that aren't used are ignored. In
particular, this means that you can pass a common configuration document to any of these
subprograms.

Instead of accepting a JSON configuration object, PL/SQL subprograms import,
validate_schema_report, and validate_import_report accept specific non-JSON arguments
that act the same as, or similarly to, the use of some of the configuration fields. The parameter
names are similar to the field names, and the field descriptions here generally apply to the
corresponding parameters as well. For example, parameter table_name of function
validate_import_report corresponds to configuration field tableName.

These are the migrator configuration fields. All of them except tableNames are optional. The
use of any fields other than those listed raises an error.

• errorLog (Optional) — A string that names the single error log to use, or an array of strings
that name the error logs to use, one for each duality view.

Field errorLog is used only for procedure import_all.

Chapter 9
JSON Configuration Fields Specifying Migrator Parameters

9-7

• errorLogSchema (Optional) — A string that names the database schema (user) that owns
the error log(s). If you don't specify an error-log owner in errorLogSchema, then the name
of the currently connected user is used.

Field errorLogSchema is used only for procedure import_all.

• ingestLimit (Optional) — The maximum number of documents to be analyzed in each
document set. No error is raised if the limit is exceeded; the additional documents are
simply not examined.

The default value is 100,000.

Field ingestLimit is used only for functions infer_schema and
infer_schema_and_generate.

• minFieldFrequency (Optional) — The minimum frequency for a field not to be considered
an outlier (high-entropy).

A field is an occurrence outlier for a given document set if it occurs in less than
minFieldFrequency percent of the documents. A value of zero (0) percent means that no
fields are considered as outliers.

For example, in the input course documents, if a value of 25 is used for
minFieldFrequency then field Notes is an occurrence outlier because it occurs in less than
25% of the documents in the course document set.

The default minFieldFrequency value is 5, meaning that a field that occurs in less than 5%
of an input document-set's documents is considered high-entropy.

The converter does not map an occurrence-outlier field to any underlying column. When
there are flex columns, the importer puts all fields (such as occurrence-outlier fields) that
are not mapped to columns into the flex columns corresponding to the field locations.

Note:

In the student-teacher-course examples presented in this documentation, which
involve very few documents in each document set, we use 25 as the
minFieldFrequency value, in order to demonstrate the determination and
handling of occurrence outliers.

• minTypeFrequency (Optional) — The minimum frequency for the type of a field's value not
to be considered an outlier (high-entropy).

A field is an type-occurrence outlier, or type outlier, for a given document set if any of its
values occurs with a given type in less than minTypeFrequency percent of the documents.
A value of zero (0) percent means that no fields are considered as outliers.

For example, in the input course documents, if a value of 15 is used for minTypeFrequency
then student field age is a type outlier because it has a string value in 10% (less than 15%)
of the documents. (It has a number value in the other documents.)

The default minTypeFrequency value is 5, meaning that a field has a given type in less than
5% of an input document-set's documents is considered an outlier.

The importer tries to convert a value of rare type to the common type for the field. For
example, if the common type for a length field is number then a length occurrence with a
value of "42" is converted to the number 42. If the conversion attempt fails then an error is
logged for that occurrence.

Chapter 9
JSON Configuration Fields Specifying Migrator Parameters

9-8

Note:

In the examples presented here, which involve very few documents in each
document set, we use 15 as the minTypeFrequency value, in order to
demonstrate the determination and handling of type outliers.

• normalize (Optional) — A Boolean value (true/false) that indicates whether the converter
should try to normalize the relational tables it infers. A false value means that each object
in a document supported by a duality view has its own underlying table, that is, a table
that's not shared with any other duality view.

The default value is true.

Field normalize is used only for functions infer_schema and infer_schema_and_generate.

• outputFormat (Optional) — A string whose value defines the format of the output data
definition language (DDL) script.

The default value is "executable", which means you can execute the DDL script directly: it
uses PL/SQL EXECUTE IMMEDIATE. The other possible value is "standalone", which means
you can use the DDL script in a SQL script that you run separately.

Field outputFormat is used only for functions infer_schema and
infer_schema_and_generate.

If the generated DDL is larger than 32K bytes then you must use "standalone; otherwise,
an error is raised when EXECUTE IMMEDIATE is invoked. An "executable" DDL script can
be too large if the input data sets are themselves very large or if they have many levels of
nested values.

• rejectLimit (Optional) — The maximum number of errors that can be logged. If this limit
is exceeded then the import operation is canceled (fails) and is rolled back, so no error
logs are available. By default there is no limit.

Field rejectLimit is used only for procedure import_all.

• softnessThreshold (Optional) — The minimum cleanliness level allowed for input data.
The default value is 99, meaning that at least 99% of the input documents must not have
missing or incorrect information.

Field softnessThreshold is used only for functions infer_schema and
infer_schema_and_generate.

• sourceSchema (Optional) — A string whose value is the name of the database schema
(user) that owns the input tables (tableNames).

If not provided then the database schema used to identify the input tables is the one that's
current when the DDL is generated (not when it is executed).

• tableNames (Required) — An array of strings naming the Oracle Database transfer tables
that correspond to the original external document sets. Each table must have a JSON-type
column (it need not be named data), which stores the documents of a given document set.

If field viewNames is provided then its array length must be the same as that of field
tableNames; otherwise, an error is raised (not logged).

• tablespace (Optional) — A string whose value is the name of the tablespace to use for all
of the tables underlying the duality views.

Chapter 9
JSON Configuration Fields Specifying Migrator Parameters

9-9

If not provided then no tablespace is specified in the output DDL. This means that the
tablespace used is the one that's current at the time the DDL code is executed (not when it
is generated).

Field tablespace is used only for functions infer_schema and
infer_schema_and_generate.

• targetSchema (Optional) — A string whose value is the name of the database schema
(user) that will own the output database views (viewNames).

If not provided then no database schema is specified in the output DDL; the names of the
database objects to be created are unqualified. This means that the schema used is the
one that's current at the time the DDL code is executed (not when it is generated).

• updatability (Optional) — A Boolean value determining whether the duality views to be
generated are to be updatable (true) or not (false). When true, annotations (see
Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating
Operations) are set for maximum updatability of each view. When false all of the views
created are read-only.

The default value is true.

Field updatability is used only for functions infer_schema and
infer_schema_and_generate.

• useFlexFields (Optional) — A Boolean value determining whether flex columns are to be
added to the tables underlying the duality views. Flex columns are used at application
runtime to store unrecognized fields in an incoming document to be inserted or updated.

If useFlexFields is true, then for each duality view <view-name>, a flex column named
ora$<view-name>_flex is added to each table that directly underlies the top-level fields of
an object in the supported documents. (The fields stored in a given flex column are
unnested to that object.)

The default value is true.

Field useFlexFields is used only by converter functions infer_schema and
infer_schema_and_generate.

The importer doesn't use field useFlexFields. But when flex columns have been created
by the converter, the importer puts all fields that are not mapped to columns into flex
columns corresponding to the field locations. For example, occurrence-outlier fields are
handled this way. If there are no flex columns then the importer reports an error for an
unmapped field.

• viewNames (Optional) — An array of strings naming the duality views to be created, one for
each document set.

If not provided then the tableNames with _duality appended are used as the view names.
For example the name of the view corresponding to the documents in table foo defaults to
foo_duality.

If field viewNames is provided then its array length must be the same as that of field
tableNames; otherwise, an error is raised (not logged).

9.3 School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality migrator
input for the school-administration example. In a typical migration scenario each might be
received in the form of a JSON dump file from another database.

Chapter 9
School Administration Example, Migrator Input Documents

9-10

Note:

The document sets in the examples here are very small. In order to demonstrate the
handling of outlier (high-entropy) fields, in examples here we use large values for
migrator configuration fields minFieldFrequency (value 25) and minTypeFrequency
(value 15), instead of the default value of 5.

A field is an occurrence outlier for a given document set if it occurs in less than
minFieldFrequency percent of the documents.

A field is a type outlier for a given document set if any of its values occurs with a
given type in less than minTypeFrequency percent of the documents.

• An occurrence-outlier field (a field that occurs rarely) is not mapped by the
converter to any underlying column. If the converter produces flex columns
(configuration field useFlexFields = true, the default value), then the importer
places an unmapped field in a flex column of a table underlying the duality view.
If there are no flex columns then the importer reports an unmapped field in an
import error log, and the field is not supported in the duality view.

• A type-outlier field (a field whose value is rarely of a different type than usual) is
handled differently. Import tries to convert any values of a rare type to the
expected type for the field. Unsuccessful conversion is reported in an import error
log, and the field is not used in the duality view.

See JSON Configuration Fields Specifying Migrator Parameters for information about
configuration fields minFieldFrequency, minTypeFrequency, and useFlexFields.

Example 9-1 Student Document Set (Migrator Input)

These are the student documents that we assume comprise an existing external document set
that serves as input to the JSON-to-duality migrator.

{"studentId" : 1,
 "name" : "Donald P.",
 "age" : 20,
 "advisorId" : 102,
 "courses" : [{"courseNumber" : "CS101",
 "name" : "Algorithms",
 "avgGrade" : 75},
 {"courseNumber" : "CS102",
 "name" : "Data Structures",
 "avgGrade" : "TBD"},
 {"courseNumber" : "MATH101",
 "name" : "Algebra",
 "avgGrade" : 90}],
 "dormitory" : {"dormId" : 201, "dormName" : "ABC"}}

{"studentId" : 2,
 "name" : "Elena H.",
 "age" : 21,
 "advisorId" : 103,
 "courses" : [{"courseNumber" : "CS101",
 "name" : "Algorithms",
 "avgGrade" : 75},

Chapter 9
School Administration Example, Migrator Input Documents

9-11

 {"courseNumber" : "CS102",
 "name" : "Data Structures",
 "avgGrade" : "TBD"},
 {"courseNumber" : "MATH102",
 "name" : "Calculus",
 "avgGrade" : 95}],
 "dormitory" : {"dormId" : 202, "dormName" : "XYZ"}}

{"studentId" : 3,
 "name" : "Francis K.",
 "age" : 20,
 "advisorId" : 103,
 "courses" : [{"courseNumber" : "MATH103",
 "name" : "Advanced Algebra",
 "avgGrade" : 82}],
 "dormitory" : {"dormId" : 204, "dormName" : "QWE"}}

{"studentId" : 4,
 "name" : "Georgia D.",
 "age" : 19,
 "advisorId" : 101,
 "courses" : [{"courseNumber" : "CS101",
 "name" : "Algorithms",
 "avgGrade" : 75},
 {"courseNumber" : "MATH102",
 "name" : "Calculus",
 "avgGrade" : 95},
 {"courseNumber" : "MATH103",
 "name" : "Advanced Algebra",
 "avgGrade" : 82}],
 "dormitory" : {"dormId" : 203, "dormName" : "LMN"}}

{"studentId" : 5,
 "name" : "Hye E.",
 "age" : 21,
 "advisorId" : 103,
 "courses" : [{"courseNumber" : "CS102",
 "name" : "Data Structures",
 "avgGrade" : "TBD"},
 {"courseNumber" : "MATH101",
 "name" : "Algebra",
 "avgGrade" : 90}],
 "dormitory" : {"dormId" : 201, "dormName" : "ABC"}}

{"studentId" : 6,
 "name" : "Ileana D.",
 "age" : 21,
 "advisorId" : 102,
 "courses" : [{"courseNumber" : "MATH103",
 "name" : "Advanced Algebra",
 "avgGrade" : 82}],
 "dormitory" : {"dormId" : 205, "dormName" : "GHI"}}

{"studentId" : 7,
 "name" : "Jatin S.",
 "age" : 20,

Chapter 9
School Administration Example, Migrator Input Documents

9-12

 "advisorId" : 101,
 "courses" : [{"courseNumber" : "CS101",
 "name" : "Algorithms",
 "avgGrade" : 75},
 {"courseNumber" : "CS102",
 "name" : "Data Structures",
 "avgGrade" : "TBD"}],
 "dormitory" : {"dormId" : 204, "dormName" : "QWE"}}

{"studentId" : 8,
 "name" : "Katie H.",
 "age" : 21,
 "advisorId" : 102,
 "courses" : [{"courseNumber" : "CS102",
 "name" : "Data Structures",
 "avgGrade" : "TBD"},
 {"courseNumber" : "MATH103",
 "name" : "Advanced Algebra",
 "avgGrade" : 82}],
 "dormitory" : {"dormId" : 205, "dormName" : "GHI"}}

{"studentId" : 9,
 "name" : "Luis F.",
 "age" : "Nineteen",
 "advisorId" : 101,
 "courses" : [{"courseNumber" : "CS101",
 "name" : "Algorithms",
 "avgGrade" : 75},
 {"courseNumber" : "MATH102",
 "name" : "Calculus",
 "avgGrade" : 95},
 {"courseNumber" : "MATH103",
 "name" : "Advanced Algebra",
 "avgGrade" : 82}],
 "dormitory" : {"dormId" : 201, "dormName" : "ABC"}}

{"studentId" : 10,
 "name" : "Ming L.",
 "age" : 20,
 "advisorId" : 101,
 "courses" : [{"courseNumber" : "MATH102",
 "name" : "Calculus",
 "avgGrade" : 95}],
 "dormitory" : {"dormId" : 202, "dormName" : "XYZ"}}

Notice these two fields, in particular:

• Field age is of a mixed type: number and string. In one of the ten documents (10%) its
value is a string ("Nineteen"); in the others (90%) the value is a number.

• Field avgGrade is of a mixed type: number and string. In all ten documents (100%) at least
one of its occurrences has a number value. In five of the ten documents (50%) at least one
of its occurrences has a string value ("TBD").

You might want to consider field age to be a type outlier, because you consider that you
normally expect its value to be a number but the field occurs rarely with a string value. The

Chapter 9
School Administration Example, Migrator Input Documents

9-13

migrator lets you decide the occurrence frequencies to consider "rare", and thus handle such
fields specially (with configuration fields minFieldFrequency and minTypeFrequency).

Example 9-2 Teacher Document Set (Migrator Input)

These are the teacher documents that we assume comprise an existing external document set
that serves as input to the JSON-to-duality migrator.

{"_id" : 101,
 "name" : "Abdul J.",
 "phoneNumber" : ["222-555-011", "222-555-012"],
 "salary" : 200000,
 "department" : "Mathematics",
 "coursesTaught" : [{"courseId" : "MATH101",
 "name" : "Algebra",
 "classType" : "Online"},
 {"courseId" : "MATH102",
 "name" : "Calculus",
 "classType" : "In-person"}],
 "studentsAdvised" : [{"studentId" : 4, "name" : "Georgia D.", "dormId" : 203},
 {"studentId" : 7, "name" : "Jatin S.", "dormId" : 204},
 {"studentId" : 9, "name" : "Luis F.", "dormId" : 201},
 {"studentId" : 10, "name" : "Ming L.", "dormId" : 202}]}

{"_id" : 102,
 "name" : "Betty Z.",
 "phoneNumber" : "222-555-022",
 "salary" : 300000,
 "department" : "Computer Science",
 "coursesTaught" : [{"courseId" : "CS101",
 "name" : "Algorithms",
 "classType" : "Online"},
 {"courseId" : "CS102",
 "name" : "Data Structures",
 "classType" : "In-person"}],
 "studentsAdvised" : [{"studentId" : 1, "name" : "Donald P.", "dormId" : 201},
 {"studentId" : 6, "name" : "Ileana D.", "dormId" : 205},
 {"studentId" : 8, "name" : "Katie H.", "dormId" : 205}]}

{"_id" : 103,
 "name" : "Colin J.",
 "phoneNumber" : ["222-555-023"],
 "salary" : 220000,
 "department" : "Mathematics",
 "coursesTaught" : [{"courseId" : "MATH103",
 "name" : "Advanced Algebra",
 "classType" : "Online"}],
 "studentsAdvised" : [{"studentId" : 2, "name" : "Elena H.", "dormId" : 202},
 {"studentId" : 3, "name" : "Francis K.", "dormId" : 204},
 {"studentId" : 5, "name" : "Hye E.", "dormId" : 201}]}

{"_id" : 104,
 "name" : "Natalie C.",
 "phoneNumber" : "222-555-044",
 "salary" : 180000,
 "department" : "Computer Science",

Chapter 9
School Administration Example, Migrator Input Documents

9-14

 "coursesTaught" : [],
 "studentsAdvised" : []}

Field phoneNumber is of a mixed type: string and array (array of strings). In two of the four
documents (50%) its value is a string; in the other two the value is an array of strings.

(Fields coursesTaught and studentsAdvised each have one occurrence whose value is the
empty array.)

Example 9-3 Course Document Set (Migrator Input)

These are the course documents that we assume comprise an existing external document set
that serves as input to the JSON-to-duality migrator.

{"courseId" : "MATH101",
 "name" : "Algebra",
 "creditHours" : 3,
 "students" : [{"studentId" : 1, "name" : "Donald P."},
 {"studentId" : 5, "name" : "Hye E."}],
 "teacher" : {"teacherId" : 104, "name" : "Abdul J."},
 "Notes" : "Prerequisite for Advanced Algebra"}
{"courseId" : "MATH102",
 "name" : "Calculus",
 "creditHours" : 4,
 "students" : [{"studentId" : 2, "name" : "Elena H."},
 {"studentId" : 4, "name" : "Georgia D."},
 {"studentId" : 9, "name" : "Luis F."},
 {"studentId" : 10, "name" : "Ming L."}],
 "teacher" : {"teacherId" : 101, "name" : "Abdul J."}}

{"courseId" : "CS101",
 "name" : "Algorithms",
 "creditHours" : 5,
 "students" : [{"studentId" : 1, "name" : "Donald P."},
 {"studentId" : 2, "name" : "Elena H."},
 {"studentId" : 4, "name" : "Georgia D."},
 {"studentId" : 7, "name" : "Jatin S."},
 {"studentId" : 9, "name" : "Luis F."}],
 "teacher" : {"teacherId" : 102, "name" : "Betty Z."}}

{"courseId" : "CS102",
 "name" : "Data Structures",
 "creditHours" : 3,
 "students" : [{"studentId" : 1, "name" : "Donald P."},
 {"studentId" : 2, "name" : "Elena H."},
 {"studentId" : 5, "name" : "Hye E."},
 {"studentId" : 7, "name" : "Jatin S."},
 {"studentId" : 8, "name" : "Katie H."}],
 "teacher" : {"teacherId" : 102, "name" : "Betty Z."}}

{"courseId" : "MATH103",
 "name" : "Advanced Algebra",
 "creditHours" : "3",
 "students" : [{"studentId" : 3, "name" : "Francis K."},
 {"studentId" : 4, "name" : "Georgia D."},
 {"studentId" : 6, "name" : "Ileana D."},

Chapter 9
School Administration Example, Migrator Input Documents

9-15

 {"studentId" : 8, "name" : "Katie H."},
 {"studentId" : 9, "name" : "Luis F."}],
 "teacher" : {"teacherId" : 103, "name" : "Colin J."}}

Notice these two fields, in particular:

• Field Notes occurs in only one course document (one out of five, 20%).

• Field creditHours is of a mixed type: number and string. In one of the five documents
(20%) its value is a string; in the others (80%) the value is a number.

You might want to consider field Notes to be an occurrence outlier, because you consider 20%
occurrence to be rare, and you might want to consider field creditHours to be a type outlier,
because it occurs rarely (20%) with a string value. The migrator lets you decide the occurrence
frequencies to consider "rare", and thus handle such fields specially (with configuration fields
minFieldFrequency and minTypeFrequency).

Related Topics

• Schema Flexibility with JSON Columns in Duality Views
Including columns of JSON data type in tables that underlie a duality view lets applications
add and delete fields, and change the types of field values, in the documents supported by
the view. The stored JSON data can be schemaless or JSON Schema-based (to enforce
particular types of values).

9.4 Before Using the Converter (1): Create Database Document
Sets

Before using the JSON-to-duality converter you need to create JSON-type document sets in
Oracle Database from the original external document sets. The input to the converter for each
set of documents is an Oracle Database table with a single column of JSON data type.

You can export JSON document sets from a document database and import them into JSON-
type columns using various tools provided by Oracle and document databases. (MongoDB
command-line tools mongoexport and mongoimport provide one way to do this.)

We assume that each of the student, teacher, and course document sets has been thus loaded
into a JSON-type column, data, of a temporary transfer table (e.g. course_tab for course
documents) from a document-database dump file of documents of the given kind (e.g. course
documents). This is shown in Example 9-4.

Example 9-4 Create an Oracle Document Set (Course) From a JSON Dump File.

This example creates an Oracle Database external table, dataset_course, from a JSON dump
file of a set of course documents, course.json. It then creates temporary transfer table
course_tab with JSON-type column data. Finally, it imports the course documents into
temporary transfer table course_tab, which can be used as input to the JSON-relational
converter.

The documents in course_tab.data are those shown in Example 9-3.

Chapter 9
Before Using the Converter (1): Create Database Document Sets

9-16

(Similarly student and teacher document sets are loaded into transfer tables student_tab and
teacher_tab from external tables dataset_student and dataset_teacher created from dump
files student.json and teacher.json, respectively.)

CREATE TABLE dataset_course (data JSON)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 ACCESS PARAMETERS (com.oracle.bigdata.fileformat = jsondoc)
 LOCATION (data_dir:'course.json'))
 PARALLEL
 REJECT LIMIT UNLIMITED;

CREATE TABLE course_tab AS SELECT * FROM dataset_course;
SELECT json_serialize(data PRETTY) FROM course_tab;

JSON_SERIALIZE(DATAPRETTY)

{
 "courseId" : "MATH101",
 "name" : "Algebra",
 "creditHours" : 3,
 "students" :
 [
 {
 "studentId" : 1,
 "name" : "Donald P."
 },
 {
 "studentId" : 5,
 "name" : "Hye E."
 }
],
 "teacher" :
 {
 "teacherId" : 101,
 "name" : "Abdul J."
 },
 "Notes" : "Prerequisite for Advanced Algebra"
}

{
 "courseId" : "MATH102",
 "name" : "Calculus",
 "creditHours" : 4,
 "students" :
 [
 {
 "studentId" : 2,
 "name" : "Elena H."
 },
 {
 "studentId" : 4,
 "name" : "Georgia D."
 },

Chapter 9
Before Using the Converter (1): Create Database Document Sets

9-17

 {
 "studentId" : 9,
 "name" : "Luis F."
 },
 {
 "studentId" : 10,
 "name" : "Ming L."
 }
],
 "teacher" :
 {
 "teacherId" : 101,
 "name" : "Abdul J."
 }
}

{
 "courseId" : "CS101",
 "name" : "Algorithms",
 "creditHours" : 5,
 "students" :
 [
 {
 "studentId" : 1,
 "name" : "Donald P."
 },
 {
 "studentId" : 2,
 "name" : "Elena H."
 },
 {
 "studentId" : 4,
 "name" : "Georgia D."
 },
 {
 "studentId" : 7,
 "name" : "Jatin S."
 },
 {
 "studentId" : 9,
 "name" : "Luis F."
 }
],
 "teacher" :
 {
 "teacherId" : 102,
 "name" : "Betty Z."
 }
}

{
 "courseId" : "CS102",
 "name" : "Data Structures",
 "creditHours" : 3,
 "students" :
 [

Chapter 9
Before Using the Converter (1): Create Database Document Sets

9-18

 {
 "studentId" : 1,
 "name" : "Donald P."
 },
 {
 "studentId" : 2,
 "name" : "Elena H."
 },
 {
 "studentId" : 5,
 "name" : "Hye E."
 },
 {
 "studentId" : 7,
 "name" : "Jatin S."
 },
 {
 "studentId" : 8,
 "name" : "Katie H."
 }
],
 "teacher" :
 {
 "teacherId" : 102,
 "name" : "Betty Z."
 }
}

{
 "courseId" : "MATH103",
 "name" : "Advanced Algebra",
 "creditHours" : "3",
 "students" :
 [
 {
 "studentId" : 3,
 "name" : "Francis K."
 },
 {
 "studentId" : 4,
 "name" : "Georgia D."
 },
 {
 "studentId" : 6,
 "name" : "Ileana D."
 },
 {
 "studentId" : 8,
 "name" : "Katie H."
 },
 {
 "studentId" : 9,
 "name" : "Luis F."
 }
],
 "teacher" :

Chapter 9
Before Using the Converter (1): Create Database Document Sets

9-19

 {
 "teacherId" : 103,
 "name" : "Colin J."
 }
}

Note:

Oracle Database supports the use of textual JSON objects that represent
nonstandard-type scalar JSON values. For example, the extended object
{"$numberDecimal" : 31} represents a JSON scalar value of the nonstandard type
decimal number, and when interpreted as such it is replaced by a decimal number in
Oracle's native binary JSON format, OSON.

Some non-Oracle databases also use such extended objects. If such an external
extended object is a format recognized by Oracle then, when the JSON data is
loaded (ingested), the extended object is replaced by the corresponding Oracle
scalar JSON value. If the format isn't supported by Oracle then the extended object is
retained as such, that is, as an object.

See Textual JSON Objects That Represent Extended Scalar Values in Oracle
Database JSON Developer’s Guide for information about Oracle support for
extended objects.

See Also:

• Migrate Application Data from MongoDB to Oracle Database in Oracle Database
API for MongoDB for information about using commands mongoexport and
mongoimport to migrate

• Loading External JSON Data in Oracle Database JSON Developer’s Guide for
loading data from a document-database dumpfile into Oracle Database

9.5 Before Using the Converter (2): Optionally Create Data-
Guide JSON Schemas

A data-guide JSON schema provides frequency information about the fields in a document set,
in addition to structure and type information. You can use such schemas to get an idea how
migration might proceed, and you can compare them with other JSON schemas as a shortcut
for comparing document sets.

A JSON data guide created using keyword FORMAT_SCHEMA is a special kind of JSON schema
that includes not only the usual document structure and type information but also statistical
information about the specific content; in particular, for each field, in what percentage of
documents it occurs, in what percentage of documents it has values of which types, and the
range of values for each type.

Creating data-guide JSON schemas for your input document sets is optional2, and you can
create them at any time (as long as you still have the transfer tables of input documents). But

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-20

https://json-schema.org/

it's a good idea to create them before starting to convert your input document sets, in particular
because they can help guide how you configure the converter.

Example 9-5 Create JSON Data Guides For Input Document Sets

This example uses Oracle SQL function json_dataguide to create data guides for the input
student, teacher, and course document sets. These are JSON schemas that can be used to
validate their documents.

Parameter DBMS_JSON.FORMAT_SCHEMA ensures that the data guide is usable for validating.
Parameter DBMS_JSON.PRETTY pretty-prints the result. Parameter DBMS_JSON.GATHER_STATS
provides the data guide with statistical fields such as o:frequency, which specifies the
percentage of documents in which a given field occurs or has a given type of value.

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM student_tab;

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM teacher_tab;

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM course_tab;

See Also:

• JSON_DATAGUIDE in Oracle Database SQL Language Reference

• DBMS_JSON Constants in Oracle Database PL/SQL Packages and Types
Reference for information about constants DBMS_JSON.FORMAT_SCHEMA,
DBMS_JSON.GATHER_STATS, and DBMS_JSON.PRETTY

The resulting data guides are shown in Example 9-6, Example 9-7, and Example 9-8, which
describe the documents in JSON-type column data of tables student_tab, teacher_tab, and
course_tab, respectively.

Comparing JSON schemas can serve as a useful proxy for comparing entire document sets —
in particular, migration input document sets versus output document collections supported by
duality views (proposed during migration or fully created).

• As the first conversion step, PL/SQL function DBMS_JSON_DUALITY.infer_schema produces
a JSON schema that describes the entire proposed relational schema for a migration, that
is, the proposed duality views plus their underlying tables.

The JSON schema produced by function infer_schema is not a data-guide JSON schema
— there are no duality views yet, so there are no supported document collections from

2 Transfer tables for your input document sets are all you need, to use the JSON-To-Duality converter.

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-21

which statistical information can be gathered. But it does specify the structure and typing of
the document sets that could result from a migration.

You can use the view parts of this JSON schema to compare against JSON schemas for
input document sets (in a transfer table).

For example, instead of comparing the individual input documents in table course_tab with
the individual documents to be supported by the (inferred) course duality view, you can
compare the data-guide JSON schema from Example 9-8 with the COURSE duality-view part
of the JSON schema inferred by infer_schema — see Example 9-10. When you do that,
you can ignore fields that are relevant to only one or the other kind of JSON schema, e.g.,
fields named with prefix "o:" (for Oracle) and fields named with prefix "db" (for database).

• Similarly, comparing a JSON schema for an input document set against a JSON schema
for the created and populated duality view that replaces it after migration can highlight
differences. For example, you can compare the data-guide JSON schema for the course
input table (Example 9-8) against a data-guide JSON schema for the course duality view. A
data-guide schema serves as a shortcut (proxy) for comparing the documents supported
by a duality view with the corresponding input documents.

Example 9-6 JSON Data Guide For Input Student Document Set

This data guide summarizes the input set of student documents stored in transfer table
student_tab.

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "properties" :
 {
 "age" :
 {
 "oneOf" :
 [
 {
 "type" : "number",
 "o:preferred_column_name" : "age",
 "o:frequency" : 90,
 "o:low_value" : 19,
 "o:high_value" : 21,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "maximum" : 21,
 "minimum" : 19
 },
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "age",
 "o:frequency" : 10,
 "o:low_value" : "Nineteen",
 "o:high_value" : "Nineteen",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-22

 "o:sample_size" : 10,
 "maxLength" : 8,
 "minLength" : 8
 }
]
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 10,
 "minLength" : 6
 },
 "courses" :
 {
 "type" : "array",
 "o:preferred_column_name" : "courses",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 7
 },
 "avgGrade" :
 {
 "oneOf" :
 [
 {
 "type" : "number",
 "o:preferred_column_name" : "avgGrade",
 "o:frequency" : 100,

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-23

 "o:low_value" : 75,
 "o:high_value" : 95,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 95,
 "minimum" : 75
 },
 {
 "type" : "string",
 "o:length" : 4,
 "o:preferred_column_name" : "avgGrade",
 "o:frequency" : 50,
 "o:low_value" : "TBD",
 "o:high_value" : "TBD",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "maxLength" : 3,
 "minLength" : 3
 }
]
 },
 "courseNumber" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseNumber",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 }
 }
 }
 },
 "advisorId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "advisorId",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 103,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 103,
 "minimum" : 101
 },

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-24

 "dormitory" :
 {
 "type" : "object",
 "o:preferred_column_name" : "dormitory",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "properties" :
 {
 "dormId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "dormId",
 "o:frequency" : 100,
 "o:low_value" : 201,
 "o:high_value" : 205,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 205,
 "minimum" : 201
 },
 "dormName" :
 {
 "type" : "string",
 "o:length" : 4,
 "o:preferred_column_name" : "dormName",
 "o:frequency" : 100,
 "o:low_value" : "ABC",
 "o:high_value" : "XYZ",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 3,
 "minLength" : 3
 }
 }
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-25

 }
}

Field age has a type that is either (1) a number, with o:frequency 90, or (2) a string, with
o:frequency 10. This means that a numeric age appears in 90% of the documents, and a
string grade appears in 10% of the documents. Field age is thus a mixed-type field.

Similarly, field avgGrade is a mixed-type field, with a numeric grade in 100% of the documents,
and a string grade in 50% of the documents.

Converter configuration fields minFieldFrequency and minTypeFrequency test the percentage
of documents where a field, or a field of a given type, respectively, is present across the
document set.

All of the fields in the student documents are present in 100% of the documents, so none of
them can be occurrence outliers, regardless of the value of minFieldFrequency.

If the converter is used with a value of 15 for configuration field minTypeFrequency then field
age will be considered a type-occurence outlier, because it occurs with a string value in only
10% of the student documents (10 < 15). Field avgGrade will not be considered a type-
occurrence outlier, because neither of its types is used in less than 15% of the student
documents.

As a type-occurrence outlier, field age would be mapped by the converter to a column with SQL
type NUMBER (JSON number type being dominant for the field). Then the importer would try, and
fail, to convert the string value "Nineteen" to a number, and would log an error for the
document where age is "Nineteen".

A field that doesn't occur rarely but has a type that occurs rarely is not removed from the data.

Because there is no SQL data type of number-or-string, non-outlier mixed-type field avgGrade
will be mapped by the converter to a JSON-type column, and it will apply a JSON schema to
that column as a validating check constraint, to require the value to always be either a string or
a number.

Example 9-7 JSON Data Guide For Input Teacher Document Set

This data guide summarizes the input set of teacher documents stored in transfer table
teacher_tab.

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "properties" :
 {
 "_id" :
 {
 "type" : "number",
 "o:preferred_column_name" : "_id",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 104,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-26

 "o:sample_size" : 4,
 "required" : true,
 "maximum" : 104,
 "minimum" : 101
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Abdul J.",
 "o:high_value" : "Natalie C.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "maxLength" : 10,
 "minLength" : 8
 },
 "salary" :
 {
 "type" : "number",
 "o:preferred_column_name" : "salary",
 "o:frequency" : 100,
 "o:low_value" : 180000,
 "o:high_value" : 300000,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "maximum" : 300000,
 "minimum" : 180000
 },
 "department" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "department",
 "o:frequency" : 100,
 "o:low_value" : "Computer Science",
 "o:high_value" : "Mathematics",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 11
 },
 "phoneNumber" :
 {
 "oneOf" :
 [
 {
 "type" : "string",
 "o:length" : 16,

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-27

 "o:preferred_column_name" : "phoneNumber",
 "o:frequency" : 50,
 "o:low_value" : "222-555-022",
 "o:high_value" : "222-555-044",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maxLength" : 11,
 "minLength" : 11
 },
 {
 "type" : "array",
 "o:preferred_column_name" : "phoneNumber",
 "o:frequency" : 50,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "items" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "scalar_string",
 "o:frequency" : 50,
 "o:low_value" : "222-555-011",
 "o:high_value" : "222-555-023",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maxLength" : 11,
 "minLength" : 11
 }
 }
]
 },
 "coursesTaught" :
 {
 "type" : "array",
 "o:preferred_column_name" : "coursesTaught",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 75,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-28

 "maxLength" : 16,
 "minLength" : 7
 },
 "courseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseId",
 "o:frequency" : 75,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maxLength" : 7,
 "minLength" : 5
 },
 "classType" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "classType",
 "o:frequency" : 75,
 "o:low_value" : "In-person",
 "o:high_value" : "Online",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maxLength" : 9,
 "minLength" : 6
 }
 }
 }
 },
 "studentsAdvised" :
 {
 "type" : "array",
 "o:preferred_column_name" : "studentsAdvised",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 75,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-29

 "o:sample_size" : 4,
 "maxLength" : 10,
 "minLength" : 6
 },
 "dormId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "dormId",
 "o:frequency" : 75,
 "o:low_value" : 201,
 "o:high_value" : 205,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maximum" : 205,
 "minimum" : 201
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 75,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 4,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 }
 }
}

Field phoneNumber has a type that is either (1) a string or (2) an array of strings. Each of
those types occurs in 50% (o:frequency = 50) of the teacher documents. It is thus a mixed-
type field. If the converter is used with a minTypeFrequency value of 15 then it will not be
considered a type-occurrence outlier.

Because there is no SQL data type of string-or-array-of-strings, (non-outlier) mixed-type field
phoneNumber will be mapped by the converter to a JSON-type column, and it will apply a JSON
schema to that column as a validating check constraint, to require the value to always be either
a string or an array of strings.

Example 9-8 JSON Data Guide For Input Course Document Set

This data guide summarizes the input set of course documents stored in transfer table
course_tab.

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-30

 "required" : true,
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 7
 },
 "Notes" :
 {
 "type" : "string",
 "o:length" : 64,
 "o:preferred_column_name" : "Notes",
 "o:frequency" : 20,
 "o:low_value" : "Prerequisite for Advanced Algebra",
 "o:high_value" : "Prerequisite for Advanced Algebra",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "maxLength" : 33,
 "minLength" : 33
 },
 "teacher" :
 {
 "type" : "object",
 "o:preferred_column_name" : "teacher",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Abdul J.",
 "o:high_value" : "Colin J.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 8,
 "minLength" : 8

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-31

 },
 "teacherId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "teacherId",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 103,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 103,
 "minimum" : 101
 }
 }
 },
 "courseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "students" :
 {
 "type" : "array",
 "o:preferred_column_name" : "students",
 "o:frequency" : 100,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-32

 "maxLength" : 10,
 "minLength" : 6
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 },
 "creditHours" :
 {
 "oneOf" :
 [
 {
 "type" : "number",
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 80,
 "o:low_value" : 3,
 "o:high_value" : 5,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "maximum" : 5,
 "minimum" : 3
 },
 {
 "type" : "string",
 "o:length" : 1,
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 20,
 "o:low_value" : "3",
 "o:high_value" : "3",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2024-12-30T18:12:41",
 "o:sample_size" : 5,
 "maxLength" : 1,
 "minLength" : 1
 }
]
 }
 }
}

Chapter 9
Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas

9-33

Field Notes occurs in only 20% of the documents (field o:frequency is 20). If the converter is
used with a value of 25 for configuration field minFieldFrequency then field Notes is
considered an occurrence outlier, and the converter will not map it to any column.

However, if configuration field useFlexFields is true (the default) then the converter creates
flex columns, and when flex columns exist the importer places all unmapped fields into flex
columns. In that default (useFlexFields = true) case, field Notes will therefore be supported
(by a flex column) after migration. If the converter is used with useFlexFields = false then the
importer will log an error for rare field Notes.

Field creditHours has a type that is either (1) a number, with o:frequency = 80, or (2) a
string, with o:frequency = 20. It is thus a mixed-type field. If the converter is used with a
minTypeFrequency value of 15 then it will not be considered a type-occurrence outlier.

Because there is no SQL data type of number-or-string, (non-outlier) mixed-type field
creditHours will be mapped by the converter to a JSON-type column, and it will apply a JSON
schema to that column as a validating check constraint, to require the value to always be either
a string or a number.

Related Topics

• Schema Flexibility with JSON Columns in Duality Views
Including columns of JSON data type in tables that underlie a duality view lets applications
add and delete fields, and change the types of field values, in the documents supported by
the view. The stored JSON data can be schemaless or JSON Schema-based (to enforce
particular types of values).

See Also:

• Validating JSON Documents with a JSON Schema in Oracle Database JSON
Developer’s Guide for information about using JSON schemas to constrain or
validate JSON data

• JSON Data Guide in Oracle Database JSON Developer’s Guide

• JSON_DATAGUIDE in Oracle Database SQL Language Reference

• json-schema.org for information about JSON Schema

9.6 JSON-To-Duality Converter: What It Does
The converter infers the inherent structure and typing of one or more sets of stored documents,
as a JSON schema. Using the schema, the converter generates DDL code to create the
database objects needed to support the document sets: duality views and their underlying
tables and indexes.

The JSON schema inferred from the input document sets includes a relational schema that
represents the relations (tables, columns, and key constraints) that implicitly underlie the data
in the JSON documents.

The generated DDL code creates the appropriate duality views; their underlying tables;
primary, unique, and foreign key constraints; indexes; and default values — everything needed
to support the original document sets.

Chapter 9
JSON-To-Duality Converter: What It Does

9-34

https://json-schema.org/

In some cases the converter creates fields and columns for a duality view definition that are not
in the original document set.

• Document-identifer field _id is generated for each document, if it is not already present in
the input documents.

A duality view must have a top-level _id field (the document identifier), which corresponds
to the identifying column(s) of the view's root table (primary-key columns, identity columns,
or columns with a unique constraint or unique index). If a document input to the converter
already has a top-level _id field, then its associated columns are in the root table and are
chosen as the table's identifying columns.

• Document-handling field _metadata is generated and maintained for each document, to
record its content-hash version (ETAG) and its latest system change number (SCN). This
field is not part of the document content per se (payload) .

• Other generated field and column names always have the prefix ora$.

A duality view definition needs explicit fields for the identifying columns of each of its
underlying tables, and this is another case where new fields are sometimes added.

This is the case for views course and student, which use an underlying mapping table,
map_table_course_root_to_student_root, which has two identifying columns, map_course_id
and map_student_id. These have foreign-key references to the identifying columns, course_id
and student_id, of the course and student tables, course_root and student_root.

At the place where the mapping table is used in the view definitions, each of its identifying
columns (map_course_id and map_student_id) must be present, with a field assigned to it.
These fields are present in the documents supported by the view. The converter uses prefix
ora$ for their names, with the remainder taken from the column names (converted to
camelCase, without underscore separators): ora$mapCourseId and ora$mapStudentId.

When configuration field useFlexFields is true, the converter adds flex columns to the tables
underlying the duality views it creates. Each flex column is named ora$<view-name>_flex,
where <view-name> is the name of the duality view where it is defined — see Example 9-20.
(You might mistake this for a field name in the view definition, but it's a column name; the name
does not appear in the documents supported by the view.)

For descriptions of the PL/SQL subprograms comprising the converter, see Migrating From
JSON To Duality

Related Topics

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

• Migrating To Duality, Simplified Recipe
By ignoring whether an input field occurs rarely, or with a rarely used type, it's easier to
migrate to JSON-relational duality. Handling such outlier cases can complicate the
migration process.

9.7 Migrating To Duality, Simplified Recipe
By ignoring whether an input field occurs rarely, or with a rarely used type, it's easier to migrate
to JSON-relational duality. Handling such outlier cases can complicate the migration process.

But handling such cases can allow finer-degree normalization, and it can help find anomalies in
your data that could represent bugs. This topic is about the simpler approach. Subsequent
topics go into details that help you better understand and configure the migrator.

Chapter 9
Migrating To Duality, Simplified Recipe

9-35

By default, the converter treats fields that occur in less than 5% of the documents of a
document set as occurrence outliers, and field occurrences that have a given type in less
than 5% of the documents as type-occurrence outliers, or type outliers. You can change the
values of these thresholds using configuration fields minFieldFrequency and
minTypeFrequency, respectively.

To show the reporting and handling of outliers, in the student-teacher-course example we
generally use 25% for minFieldFrequency and 15% for minTypeFrequency, because the
document sets are small. But for the simplified recipe used in this topic we set both of them to
zero percent, so no fields are considered outliers.

Besides setting these two thresholds to zero, the default behavior of the migrator is what's
illustrated here. This simplified recipe — default behavior except no outliers — isn't a bad way
to begin whenever you migrate an application. And in many cases it will also be just what you
need in the end.

By setting the minimum frequency thresholds to zero percent we configure the converter to
accept as much as possible of the input data to be migrated, as is, at the possible cost of
sacrificing maximal normalization. Our input student-teacher-course data contains some fields
that we might ultimately want to treat as outliers, but there's no attempt in this topic to deal with
them specially.

The fields that we normally treat as outliers in the rest of the migrator documentation are
handled in these ways in this topic:

• The Notes occurrence in the course document for MATH101 (Algebra) isn't removed, even
though it occurs in only one (20%) of the documents.

• The age occurrence with string value "Nineteen", in the student document for Luis F.,
isn't converted to the number 19 so that its type agrees with the age occurrences
(numbers) in the other nine documents (90%). Nor is a schema-inference validation error
reported for this occurrence.

Instead, such input data, which could otherwise be considered problematic, is simply kept as
is.

It's important to point out that outlier fields are not the only problems that migration might
uncover. Even using the simplified recipe presented here it's possible that the importer can
raise errors. A good example of that is two document sets that contradict each other, making it
impossible to reconcile them without fixing the input data — for example, a course document
says that Natalie C. teaches course MATH101 and a teacher document says that Abdul J.
teaches it. (The migrator can help you discover some data coherency problems such as this,
even if you're not migrating any data!)

Only you know, for your application, whether any particular data is an anomaly, according to
your use of it. For example, only you know whether a rare type for a field, such as the single
occurrence of string "Nineteen" for a student age field (whose value is usually a number), is
normal or abnormal. Wanting maximum respect of your input data is the use case explored
here with the simplified recipe. This is also an approach you might want to use generally, as a
first step in migrating document sets, because it can quickly show you most of what's what.

The starting point for the migration is the three input document sets stored in Oracle Database
transfer tables, as covered in Before Using the Converter (1): Create Database Document
Sets. The input documents are shown both there and (more compactly) in School
Administration Example, Migrator Input Documents.

We first use PL/SQL function DBMS_JSON_DUALITY.infer_schema, followed by function
DBMS_JSON_DUALITY.generate_schema, to produce the SQL data-definition (DDL) code that
creates (1) the duality views, (2) their underlying tables, (3) foreign-key constraints and indexes

Chapter 9
Migrating To Duality, Simplified Recipe

9-36

on the tables, and (4) triggers to create document-identifier fields _id for duality views where it
doesn't already exist for the document set. The DDL code also adds top-level document-
identifier field _id, since the input data doesn't already have it.

We then execute that generated DDL code, creating those database objects.

Example 9-9 INFER_SCHEMA and GENERATE_SCHEMA with Zero Frequency
Thresholds: No Outliers

In this example, PL/SQL function DBMS_JSON_DUALITY.infer_schema returns the JSON
schema representing the inferred duality views and their underlying tables and indexes in
JSON-type variable er_schema, which is passed to PL/SQL function
DBMS_JSON_DUALITY.generate_schema. The output from generate_schema, SQL DDL code to
create those database objects, is invoked using EXECUTE IMMEDIATE.

Configuration fields minFieldFrequency and minTypeFrequency are both set to zero for the
schema inference by function infer_schema. This means that no fields in the input JSON data
are to be considered outliers.

DECLARE
 er_schema JSON;
 schema_sql CLOB;
BEGIN
 er_schema :=
 DBMS_JSON_DUALITY.infer_schema(
 JSON('{"tableNames" : ["STUDENT_TAB",
 "TEACHER_TAB",
 "COURSE_TAB"],
 "viewNames" : ["STUDENT",
 "TEACHER",
 "COURSE"],
 "minFieldFrequency" : 0,
 "minTypeFrequency" : 0}'));
 schema_sql := DBMS_JSON_DUALITY.generate_schema(er_schema);
 EXECUTE IMMEDIATE schema_sql;
END;
/

Function infer_schema produces a JSON schema that describes the duality views and their
tables. In this case, the schema shows that all of the input-data fields will be supported by the
duality views.

Example 9-10 JSON Schema from INFER_SCHEMA for Duality Views with No Outliers

{"tables" :
 [{"title" : "map_course_root_to_student_root",
 "dbObject" : "map_course_root_to_student_root",
 "type" : "object",
 "dbObjectType" : "table",
 "dbMapTable" : true,
 "properties" : {"map_course_id" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : false},
 "map_student_id" : {"sqlType" : "number",
 "nullable" : false}},
 "required" : ["map_course_id", "map_student_id"],

Chapter 9
Migrating To Duality, Simplified Recipe

9-37

 "dbPrimaryKey" : ["map_course_id",
 "map_student_id"],
 "dbForeignKey" : [{"map_course_id" : {"dbObject" : "course_root",
 "dbColumn" : "course_id"}},
 {"map_student_id" : {"dbObject" : "student_root",
 "dbColumn" : "student_id"}}]},
 {"title" : "teacher_root",
 "dbObject" : "teacher_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"_id" : {"sqlType" : "number", "nullable" : false},
 "name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "salary" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false},
 "department" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "phone_number" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false}},
 "required" : ["_id"],
 "dbPrimaryKey" : ["_id"]},
 {"title" : "course_root",
 "dbObject" : "course_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "notes" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "course_id" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : false},
 "credit_hours" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false},
 "class_type" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "avg_grade" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false},
 "_id_teacher_root" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false}},
 "required" : ["course_id"],

Chapter 9
Migrating To Duality, Simplified Recipe

9-38

 "dbPrimaryKey" : ["course_id"],
 "dbForeignKey" : [{"_id_teacher_root" : {"dbObject" : "teacher_root",
 "dbColumn" : "_id"}}]},
 {"title" : "student_root",
 "dbObject" : "student_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"age" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false},
 "name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "advisor_id" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false},
 "student_id" : {"sqlType" : "number",
 "nullable" : false},
 "dorm_id" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false}},
 "required" : ["student_id"],
 "dbPrimaryKey" : ["student_id"],
 "dbForeignKey" : [{"advisor_id" : {"dbObject" : "teacher_root",
 "dbColumn" : "_id"}},
 {"dorm_id" : {"dbObject" : "student_dormitory",
 "dbColumn" : "dorm_id"}}]},
 {"title" : "student_dormitory",
 "dbObject" : "student_dormitory",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : { "dorm_id" : {"sqlType" : "number",
 "nullable" : false},
 "dorm_name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false}},
 "required" : ["dorm_id"],
 "dbPrimaryKey" : ["dorm_id"]}],
 "views" : [{"title" : "STUDENT",
 "dbObject" : "STUDENT",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "student_root",
 "type" : "object",
 "properties" :
 {"_id" : {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"},
 "dbPrimaryKey" : ["_id"],
 "age" : {"type" : ["number",
 "string",
 "null"],

Chapter 9
Migrating To Duality, Simplified Recipe

9-39

 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "age"},
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "courses" :
 {"type" : "array",
 "items" : {"type" : "object",
 "dbMappedTableObject" : "course_root",
 "properties" :
 {"dbPrimaryKey" : ["ora$mapCourseId",
 "ora$mapStudentId"],
 "ora$mapCourseId" :
 {"type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "ora$mapStudentId" :
 {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"] },
 "name" :
 {"type" : ["string",
 "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "avgGrade" :
 {"type" : ["number",
 "string",
 "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "avg_grade"},
 "courseNumber" :
 {"type" : "string",
 "maxLength" : 64,
 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"}},
 "required" : ["ora$mapCourseId",
 "ora$mapStudentId",
 "courseNumber"]}},
 "advisorId" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "advisor_id"},
 "dormitory" : {"type" : "object",
 "dbMappedTableObject" : "student_dormitory",
 "properties" :
 {"dormId" :
 {"type" : "number",

Chapter 9
Migrating To Duality, Simplified Recipe

9-40

 "dbFieldProperties" : ["check"],
 "dbObject" : "student_dormitory",
 "dbColumn" : "dorm_id"},
 "dormName" :
 {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_dormitory",
 "dbColumn" : "dorm_name"}},
 "required" : ["dormId"]},
 "studentId" : {"dbFieldProperties" : ["computed"]}}},
 {"title" : "COURSE",
 "dbObject" : "COURSE",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "course_root",
 "type" : "object",
 "properties" :
 {"_id" : { "type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"},
 "dbPrimaryKey" : ["_id"],
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "Notes" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "notes"},
 "teacher" :
 {"type" : "object",
 "dbMappedTableObject" : "teacher_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "name"},
 "teacherId" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "_id"}},
 "required" : ["teacherId"]},
 "courseId" : {"dbFieldProperties" : ["computed"]},
 "students" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "student_root",
 "properties" :

Chapter 9
Migrating To Duality, Simplified Recipe

9-41

 {"dbPrimaryKey" : ["ora$mapCourseId",
 "ora$mapStudentId"],
 "ora$mapCourseId" : {"type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "ora$mapStudentId" : {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "name" :
 {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "studentId" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"}},
 "required" : ["ora$mapCourseId",
 "ora$mapStudentId",
 "studentId"]}},
 "creditHours" :
 {"type" : ["number", "string", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "credit_hours"}}},
 {"title" : "TEACHER",
 "dbObject" : "TEACHER",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "teacher_root",
 "type" : "object",
 "properties" :
 {"_id" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "_id"},
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "name"},
 "salary" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "salary"},
 "department" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "department"},
 "phoneNumber" :
 {"type" : ["string", "array", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",

Chapter 9
Migrating To Duality, Simplified Recipe

9-42

 "dbColumn" : "phone_number"},
 "coursesTaught" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "course_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "courseId" : {"type" : "string",
 "maxLength" : 64,
 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"},
 "classType" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "class_type"}},
 "required" : ["courseId"]}},
 "studentsAdvised" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "student_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "dormId" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "dorm_id"},
 "studentId" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"}},
 "required" : ["studentId"]}}}}],
 "configOptions" : {"outputFormat" : "executable",
 "useFlexFields" : true}}

General observations:

• There are two parts to the schema: (1) a specification of the tables underlying the duality
views (field tables) and (2) a specification of the duality views themselves (field views).

• The SQL data types of columns in the tables are specified by field sqlType. For example,
column department has SQL type VARCHAR2 because the value of document field
department is always a JSON string.

• JSON data type is used for columns phone_number, credit_hours, avg_grade, and age,
because the corresponding fields (phoneNumber, creditHours, avgGrade, and age) in the

Chapter 9
Migrating To Duality, Simplified Recipe

9-43

input documents have mixed type. There's no single SQL scalar type that can be used for
such a field.

• Table map_course_root_to_student_root is a mapping table between tables course_root
and student_root.

• All of the columns except3 identifying columns (primary-key columns in the example data)
are flagged with nullable = true, which means that their values can be (SQL) NULL. Fields
corresponding to nullable columns (1) need not be present in a given document, and (2)
when present, can have (JSON) null values.

There's a lot more information in that schema. Let's just point out some of it for now, using the
schema of the student view and its documents as an example.

• For document-identifier field _id, schema field dbAssigned tells us that _id is added
automatically to the documents for each duality view — it isn't present in the input data.
And schema field dbColumn tells us that the _id value is stored in column student_id.

• Elsewhere, schema field dbAssigned tells us that fields ora$mapCourseId and
ora$mapStudentId are also added automatically to the student documents.

• The (singleton array) value of schema field dbPrimaryKey tells us that document field _id
corresponds to the only identifying (primary key) column of the duality view; field _id is the
document identifier.

• In the input student documents, field studentId is the document identifier. That top-level
field is supported by the student duality view, but its value is generated by the view, not
stored. The string "computed" in the array value of schema field dbFieldProperties tells
us this. (Its value is in fact taken from the _id value in column student_id.)

• Schema field dbMappedTableObject tells us that (1) table student_root is the root table
underlying the student view, (2) table course_root underlies the array value of field
courses, table student_dormitory underlies the fields in the object value of field
dormitory.

Function generate_schema accepts as input a JSON schema such as the one produced by
function infer_schema. In particular, this means that you can edit the JSON schema that
infer_schema produces, to influence what generate_schema does. You can do this by hand-
editing or by using SQL/JSON function json_transform. Example 9-11 illustrates this.

Example 9-11 Using JSON_TRANSFORM To Edit Inferred JSON Schema

As one example of modifying the JSON schema returned by
DBMS_JSON_DUALITY.infer_schema, we change the maxLength value for a column from 64 to
100.

We assume here that the value of PL/SQL variable er_schema is the schema returned by
DBMS_JSON_DUALITY.infer_schema, as in Example 9-9. This json_transform code changes
that schema, to maximum length of the name field of a student document to 100, saving the
transformed value back into variable er_schema. The updated variable can then be passed to
DBMS_JSON_DUALITY.generate_schema.

SELECT json_transform(
 er_schema,
 SET '$.tables[3].properties.name.maxLength' = 100)
 INTO er_schema FROM dual;

3 Primary-key column values cannot be NULL.

Chapter 9
Migrating To Duality, Simplified Recipe

9-44

The left-hand side of this SET operation is a SQL/JSON path expression. The schema
specifying table student_root is the fourth4 entry in array tables of the overall JSON schema.
Top-level field name for student documents is specified as a child of schema field properties,
and field maxLength is a child of field name. (See Oracle SQL Function JSON_TRANSFORM in
Oracle Database JSON Developer’s Guide.)

Example 9-12 shows the DDL code produced by function generate_schema in Example 9-9,
which indicates that all of the input-data fields are supported.

Example 9-12 DDL Code from GENERATE_SCHEMA for No-Outlier Use Case

Function DBMS_JSON_DUALITY.generate_schema, produces the generated DDL code shown
here if passed the JSON schema in Example 9-10, which is returned by function infer_schema
(Example 9-9) as input.

(If instead it were passed the schema resulting from the modification in Example 9-11 then the
only change here would be that column student_root.name would have a maxLength of 100
instead of 64.)

Because the value of configuration field outputFormat is "executable" (by default), the
generated DDL code uses EXECUTE IMMEDIATE for its statements.

The triggers created by the DDL code add top-level field _id to each document of a view,
giving it the value of the corresponding primary-key field in each case. For example, for a
student document it gives the added _id field the value of input field studentId.

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE student_dormitory(
 dorm_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 dorm_name varchar2(64),
 ora$student_flex JSON(Object),
 PRIMARY KEY(dorm_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE map_course_root_to_student_root(
 map_course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 map_student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 ora$student_flex JSON(Object),
 ora$course_flex JSON(Object),
 PRIMARY KEY(map_course_id,map_student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE student_root(
 age json VALIDATE ''{"oneOf" : [{ "type" :"number"},
{ "type" :"string"}]}'',
 name varchar2(64),
 dorm_id number,
 advisor_id number,
 student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 ora$student_flex JSON(Object),
 ora$teacher_flex JSON(Object),
 PRIMARY KEY(student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE teacher_root(

4 JSON array indexing is zero-based.

Chapter 9
Migrating To Duality, Simplified Recipe

9-45

 "_id" number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name varchar2(64),
 salary number,
 department varchar2(64),
 phone_number json VALIDATE ''{"oneOf" : [{ "type" :"string"},
{ "type" :"array"}]}'',
 ora$course_flex JSON(Object),
 ora$teacher_flex JSON(Object),
 PRIMARY KEY("_id")
)';

EXECUTE IMMEDIATE 'CREATE TABLE course_root(
 name varchar2(64),
 notes varchar2(64),
 avg_grade json VALIDATE ''{"oneOf" : [{ "type" :"number"},
{ "type" :"string"}]}'',
 course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 class_type varchar2(64),
 credit_hours json VALIDATE ''{"oneOf" : [{ "type" :"number"},
{ "type" :"string"}]}'',
 "_id_teacher_root" number,
 ora$course_flex JSON(Object),
 ora$teacher_flex JSON(Object),
 PRIMARY KEY(course_id)
)';

EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_course_root FOREIGN KEY
(map_course_id) REFERENCES course_root(course_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_student_root FOREIGN KEY
(map_student_id) REFERENCES student_root(student_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_teacher_root FOREIGN KEY (advisor_id)
REFERENCES teacher_root("_id") DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_student_dormitory FOREIGN KEY (dorm_id)
REFERENCES student_dormitory(dorm_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE course_root
ADD CONSTRAINT fk_course_root_to_teacher_root FOREIGN KEY
("_id_teacher_root") REFERENCES teacher_root("_id") DEFERRABLE';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_map_course_root_to_student_root_to_course_root_index ON
map_course_root_to_student_root(map_course_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_map_course_root_to_student_root_to_student_root_index ON
map_course_root_to_student_root(map_student_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_student_root_to_teacher_root_index ON student_root(advisor_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_student_root_to_student_dormitory_index ON student_root(dorm_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_course_root_to_teacher_root_index ON course_root("_id_teacher_root")';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS
student_root @insert @update @delete

Chapter 9
Migrating To Duality, Simplified Recipe

9-46

{
 _id : student_id
 age
 name
 courses: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 ora$student_flex @flex
 course_root @unnest @insert @update @object
 {
 name
 avgGrade: avg_grade
 courseNumber: course_id
 }
 }
 advisorId:advisor_id
 dormitory: student_dormitory @insert @update @object
 {
 dormId: dorm_id
 dormName: dorm_name
 ora$student_flex @flex
 }
 studentId @generated (path: "$._id")
 ora$student_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS
course_root @insert @update @delete
{
 _id : course_id
 name
 Notes: notes
 teacher: teacher_root @insert @update @object
 {
 name
 teacherId: "_id"
 ora$course_flex @flex
 }
 courseId @generated (path: "$._id")
 students: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 ora$course_flex @flex
 student_root @unnest @insert @update @object
 {
 name
 studentId: student_id
 }
 }
 creditHours: credit_hours
 ora$course_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS

Chapter 9
Migrating To Duality, Simplified Recipe

9-47

teacher_root @insert @update @delete
{
 "_id"
 name
 salary
 department
 phoneNumber: phone_number
 coursesTaught: course_root @insert @update @delete @array
 {
 name
 courseId: course_id
 classType: class_type
 ora$teacher_flex @flex
 }
 studentsAdvised: student_root @insert @update @delete @array
 {
 name
 dormId:dorm_id
 studentId: student_id
 ora$teacher_flex @flex
 }
 ora$teacher_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_STUDENT
 BEFORE INSERT
 ON STUDENT
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''studentId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_COURSE
 BEFORE INSERT
 ON COURSE
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''courseId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';
END;

Chapter 9
Migrating To Duality, Simplified Recipe

9-48

After executing the DDL code the conversion is complete, but we need to validate it, using
PL/SQL function DBMS_JSON_DUALITY.validate_schema_report. That shows no errors (no
rows selected) for each duality view, which means there are no validation failures — the
duality views and the relational schema they represent are good.

Example 9-13 VALIDATE_SCHEMA_REPORT for No Outlier Use Case

SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');

no rows selected

SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'COURSE_TAB',
 view_name => 'COURSE');

no rows selected

SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'STUDENT_TAB',
 view_name => 'STUDENT');

no rows selected

The duality views are still empty, not yet populated with the input data. We next (1) create error
logs for the views and then (2) import the data from the temporary transfer tables, *_TAB into
the views, using procedure import_all.

Example 9-14 Creating Error Logs for No Outlier Use Case

BEGIN
DBMS_ERRLOG.create_error_log(dml_table_name => 'COURSE',
 err_log_table_name => 'COURSE_ERR_LOG',
 skip_unsupported => TRUE);
DBMS_ERRLOG.create_error_log(dml_table_name => 'TEACHER',
 err_log_table_name => 'TEACHER_ERR_LOG',
 skip_unsupported => TRUE);
DBMS_ERRLOG.create_error_log(dml_table_name => 'STUDENT',
 err_log_table_name => 'STUDENT_ERR_LOG',
 skip_unsupported => TRUE);
END;
/

Error logging only reports documents that can't be imported (and only the first such error
encountered in a given document is reported).

Chapter 9
Migrating To Duality, Simplified Recipe

9-49

Example 9-15 Importing Document Sets, for No Outlier Use Case

BEGIN
DBMS_JSON_DUALITY.import_all(
 JSON('{"tableNames" : ["STUDENT_TAB",
 "TEACHER_TAB",
 "COURSE_TAB"],
 "viewNames" : ["STUDENT",
 "TEACHER",
 "COURSE"],
 "errorLog" : ["STUDENT_ERR_LOG",
 "TEACHER_ERR_LOG",
 "COURSE_ERR_LOG"]}'));
END;
/

Import done; the duality views are populated.

Example 9-16 Checking Error Logs from Import, for No Outlier Use Case

The error logs are empty, showing that there are no import errors — there are no documents
that didn't get imported.

SELECT ora_err_number$, ora_err_mesg$, ora_err_tag$ FROM student_err_log;

no rows selected

SELECT ora_err_number$, ora_err_mesg$, ora_err_tag$ FROM teacher_err_log;

no rows selected

SELECT ora_err_number$, ora_err_mesg$, ora_err_tag$ FROM course_err_log;

no rows selected

We next use DBMS_JSON_DUALITY.validate_import_report to report on any problems with
documents that have been imported successfully. In this case, nothing is reported (no rows
selected), which means that there are no such problems.

Chapter 9
Migrating To Duality, Simplified Recipe

9-50

Example 9-17 VALIDATE_IMPORT_REPORT for No Outlier Use Case

SELECT * FROM DBMS_JSON_DUALITY.validate_import_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');

no rows selected

SELECT * FROM DBMS_JSON_DUALITY.validate_import_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');

no rows selected

SELECT * FROM DBMS_JSON_DUALITY.validate_import_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');

no rows selected

Note:

An example of a problem that could be reported by validate_import_report is a
contradiction between documents that were successfully imported. For example, if a
course document says that the teacher of the MATH101 course (Algebra) is Natalie
C. and a teacher document says that the teacher of that course is Abdul J., those
documents are incompatible. The import validation report would provide a JSON
Patch recipe that reconciles the problem by altering documents, for example by
removing MATH101 from the teacher document for Abdul J., and adding it to the
teacher document for Natalie C. That particular reconciliation might or might not be
the one you want; a better data correction might be to instead change the course
document for MATH101 to show Abdul J. as the teacher. Only you know which
content corrections are the most appropriate.

You can pretty-print the document collections supported by the resulting duality views using
SQL function json_serialize, like this:

SELECT json_serialize(data PRETTY) FROM student;

Comparing the documents supported by the duality views with the original documents in
School Administration Example, Migrator Input Documents or in the temporary transfer tables
shows that the data is the same, except for the addition of the following:

• Document-identifier field _id, whose value corresponds to the identifying column(s) of the
root table underlying the view. (The value is typically the same as an input-data identifier
field; for example, for student documents field _id has the same value as field studentId.)
See Document-Identifier Field for Duality Views.

Chapter 9
Migrating To Duality, Simplified Recipe

9-51

• Document-handling field _metadata. See Creating Duality Views.

• Fields, such as ora$mapCourseId, named for identifying columns of the mapping table. See
JSON-To-Duality Converter: What It Does.

These differences are expected. See JSON-To-Duality Converter: What It Does.

Here's a document supported by the student duality view:

{"_id" : 1,
 "_metadata" : {"etag" : "39BA872C7E20186761BDD47B8AF40E3D",
 "asof" : "000000000043EF3F"},
 "age" : 20,
 "name" : "Donald P.",
 "courses" : [{"ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"},
 {"ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"},
 {"ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"}],
 "advisorId" : 102,
 "dormitory" : {"dormId" : 201, "dormName" : "ABC"},
 "studentId" : 1}

SELECT json_serialize(data PRETTY) FROM student;

JSON_SERIALIZE(DATAPRETTY)

{
 "_id" : 1,
 "_metadata" :
 {
 "etag" : "39BA872C7E20186761BDD47B8AF40E3D",
 "asof" : "0000000000461E3D"
 },
 "age" : 20,
 "name" : "Donald P.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },

Chapter 9
Migrating To Duality, Simplified Recipe

9-52

 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 1
}

{
 "_id" : 2,
 "_metadata" :
 {
 "etag" : "65B5DD1BE7B819306F2735F325E26400",
 "asof" : "0000000000461E3D"
 },
 "age" : 21,
 "name" : "Elena H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 2,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 2,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 2,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }

Chapter 9
Migrating To Duality, Simplified Recipe

9-53

],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },
 "studentId" : 2
}

{
 "_id" : 3,
 "_metadata" :
 {
 "etag" : "E5AE58B21076D06FBA05010F0E1BEF21",
 "asof" : "0000000000461E3D"
 },
 "age" : 20,
 "name" : "Francis K.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 3,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 3
}

{
 "_id" : 4,
 "_metadata" :
 {
 "etag" : "D3B57FC478449FA24E123432C9D38673",
 "asof" : "0000000000461E3D"
 },
 "age" : 19,
 "name" : "Georgia D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 4,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },

Chapter 9
Migrating To Duality, Simplified Recipe

9-54

 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 4,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 4,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 203,
 "dormName" : "LMN"
 },
 "studentId" : 4
}

{
 "_id" : 5,
 "_metadata" :
 {
 "etag" : "3FA71878EA5F02343CD62BC97F4C078E",
 "asof" : "0000000000461E3D"
 },
 "age" : 21,
 "name" : "Hye E.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 5,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 5,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },

Chapter 9
Migrating To Duality, Simplified Recipe

9-55

 "studentId" : 5
}

{
 "_id" : 6,
 "_metadata" :
 {
 "etag" : "6F06B3DFCAEB4CF71669FDA9263B3236",
 "asof" : "0000000000461E3D"
 },
 "age" : 21,
 "name" : "Ileana D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 6,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 6
}

{
 "_id" : 7,
 "_metadata" :
 {
 "etag" : "6A44A0B63DEC99978D98813B9D7C1D07",
 "asof" : "0000000000461E3D"
 },
 "age" : 20,
 "name" : "Jatin S.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 7,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 7,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 }

Chapter 9
Migrating To Duality, Simplified Recipe

9-56

],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 7
}

{
 "_id" : 8,
 "_metadata" :
 {
 "etag" : "0B254C00DBCAA2E59DE30377138BD004",
 "asof" : "0000000000461E3D"
 },
 "age" : 21,
 "name" : "Katie H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 8,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 8,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 8
}

{
 "_id" : 9,
 "_metadata" :
 {
 "etag" : "32D58F0278F226E26A5D4039A01D1288",
 "asof" : "0000000000461E3D"
 },
 "age" : "Nineteen",
 "name" : "Luis F.",
 "courses" :
 [

Chapter 9
Migrating To Duality, Simplified Recipe

9-57

 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 9,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 9,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 9,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 9
}

{
 "_id" : 10,
 "_metadata" :
 {
 "etag" : "979816C4FD15DC805007B9FF7D822168",
 "asof" : "0000000000461E3D"
 },
 "age" : 20,
 "name" : "Ming L.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 10,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },

Chapter 9
Migrating To Duality, Simplified Recipe

9-58

 "studentId" : 10
}

10 rows selected.

You can also create data-guide JSON schemas that describe the document sets supported by
the duality views, for comparison with those for the input document sets. Creating them is
identical to creating the data guides for the input tables (Example 9-5), except that the input
data is selected from duality views student, teacher, and course, instead of from input
transfer tables student_tab, teacher_tab, and course_tab.

The schemas are identical for each kind of documents (input and view-supported), except for
the following:

• Document-identifier and document-handling fields _id and _metadata are added to the
duality-view schemas.

• Fields such as ora$mapCourseId and ora$mapStudentId are added to the duality-view
schemas. These identify columns of the mapping table.

• Dates in field o:last_analyzed differ. These just record when the data guide was created.

Except for field o:last_analyzed, these are the same differences noted above as existing
between the (1) the original input documents and the transfer-table documents, on the one
hand, and (2) the documents supported by the duality views, on the other hand. This points to
a general tip:

Tip:

You can compare JSON schemas that model document sets as a shortcut for
comparing the document sets. Of course, JSON schemas don't contain all of the
information in the documents they describe, but they can highlight structure and
typing differences, and thus serve as a proxy that gives you a good 50,000-foot view.

Related Topics

• JSON-To-Duality Converter: What It Does
The converter infers the inherent structure and typing of one or more sets of stored
documents, as a JSON schema. Using the schema, the converter generates DDL code to
create the database objects needed to support the document sets: duality views and their
underlying tables and indexes.

Chapter 9
Migrating To Duality, Simplified Recipe

9-59

See Also:

• Oracle SQL Function JSON_TRANSFORM in Oracle Database JSON
Developer’s Guide

• DBMS_JSON_DUALITY in Oracle Database PL/SQL Packages and Types
Reference for information about subprograms generate_schema,
infer_schema, , , import_all, validate_import_report, and
validate_schema_report

• VALIDATE_REPORT Function in Oracle Database PL/SQL Packages and Types
Reference for information about function DBMS_JSON_SCHEMA.validate_report.

• DBMS_ERRLOG in Oracle Database PL/SQL Packages and Types Reference
for information about procedure DBMS_ERRLOG.create_error_log

9.8 Using the Converter, Default Behavior
Use of the JSON-to-duality converter with its default configuration-field values (except for
minFieldFrequency and minTypeFrequency) is illustrated. In particular, configuration field
useFlexFields is true. The database objects needed to support the document sets are
inferred, and the SQL DDL code to construct them is generated.

Unlike the case in Migrating To Duality, Simplified Recipe, here we look at the effect of nonzero
(and non-default) values of minFieldFrequency and minTypeFrequency, 25 and 15,
respectively. The input document sets are the same (student_tab, teacher_tab, and
course_tab), as are the names of the duality views generated (student, teacher, and course).

Here we again use the value of configuration field useFlexFields, true, which means the
tables underlying duality views have flex columns. This allows the views to support some
scalar fields whose values don't consistently correspond to single SQL scalar data types.

Chapter 9
Using the Converter, Default Behavior

9-60

Note:

The document sets in the examples here are very small. In order to demonstrate the
handling of outlier (high-entropy) fields, in examples here we use large values for
migrator configuration fields minFieldFrequency (value 25) and minTypeFrequency
(value 15), instead of the default value of 5.

A field is an occurrence outlier for a given document set if it occurs in less than
minFieldFrequency percent of the documents.

A field is a type outlier for a given document set if any of its values occurs with a
given type in less than minTypeFrequency percent of the documents.

• An occurrence-outlier field (a field that occurs rarely) is not mapped by the
converter to any underlying column. If the converter produces flex columns
(configuration field useFlexFields = true, the default value), then the importer
places an unmapped field in a flex column of a table underlying the duality view.
If there are no flex columns then the importer reports an unmapped field in an
import error log, and the field is not supported in the duality view.

• A type-outlier field (a field whose value is rarely of a different type than usual) is
handled differently. Import tries to convert any values of a rare type to the
expected type for the field. Unsuccessful conversion is reported in an import error
log, and the field is not used in the duality view.

See JSON Configuration Fields Specifying Migrator Parameters for information about
configuration fields minFieldFrequency, minTypeFrequency, and useFlexFields.

Example 9-18 INFER_SCHEMA and GENERATE_SCHEMA with useFlexFields = true

The code here to infer and generate the schema is the same as that in Example 9-9, except
that (1) the configuration-fields input argument to infer_schema includes values for
minFieldFrequency (25) and minTypeFrequency (15) that suit our small document sets. The
value of useFlexFields is true, the default value, so this gives us a good idea of the default
converter behavior.

See JSON Configuration Fields Specifying Migrator Parameters for the default behavior of
other configuration fields.

DECLARE
 er_schema JSON;
 schema_sql CLOB;
BEGIN
 er_schema :=
 DBMS_JSON_DUALITY.infer_schema(
 JSON('{"tableNames" : ["STUDENT_TAB",
 "TEACHER_TAB",
 "COURSE_TAB"],
 "viewNames" : ["STUDENT",
 "TEACHER",
 "COURSE"],
 "minFieldFrequency" : 25,
 "minTypeFrequency" : 15}'));
 schema_sql := DBMS_JSON_DUALITY.generate_schema(er_schema);
 EXECUTE IMMEDIATE schema_sql;

Chapter 9
Using the Converter, Default Behavior

9-61

END;
/

Example 9-19 shows the JSON schema returned by function
DBMS_JSON_DUALITY.infer_schema.

Example 9-19 JSON Schema from INFER_SCHEMA for Duality Views: Default Behavior

{"tables" :
 [{"title" : "map_course_root_to_student_root",
 "dbObject" : "map_course_root_to_student_root",
 "type" : "object",
 "dbObjectType" : "table",
 "dbMapTable" : true,
 "properties" : {"map_course_id" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : false},
 "map_student_id" : {"sqlType" : "number",
 "nullable" : false}},
 "required" : ["map_course_id", "map_student_id"],
 "dbPrimaryKey" : ["map_course_id",
 "map_student_id"],
 "dbForeignKey" : [{"map_course_id" : {"dbObject" : "course_root",
 "dbColumn" : "course_id"}},
 {"map_student_id" : {"dbObject" : "student_root",
 "dbColumn" : "student_id"}}]},
 {"title" : "teacher_root",
 "dbObject" : "teacher_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"_id" : {"sqlType" : "number", "nullable" : false},
 "name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "salary" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false},
 "department" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "phone_number" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false}},
 "required" : ["_id"],
 "dbPrimaryKey" : ["_id"]},
 {"title" : "course_root",
 "dbObject" : "course_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "course_id" : {"sqlType" : "varchar2",

Chapter 9
Using the Converter, Default Behavior

9-62

 "maxLength" : 64,
 "nullable" : false},
 "credit_hours" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false},
 "class_type" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "avg_grade" : {"sqlType" : "json",
 "nullable" : true,
 "unique" : false},
 "_id_teacher_root" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false}},
 "required" : ["course_id"],
 "dbPrimaryKey" : ["course_id"],
 "dbForeignKey" : [{"_id_teacher_root" : {"dbObject" : "teacher_root",
 "dbColumn" : "_id"}}]},
 {"title" : "student_root",
 "dbObject" : "student_root",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : {"age" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false},
 "name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false},
 "advisor_id" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false},
 "student_id" : {"sqlType" : "number",
 "nullable" : false},
 "dorm_id" : {"sqlType" : "number",
 "nullable" : true,
 "unique" : false}},
 "required" : ["student_id"],
 "dbPrimaryKey" : ["student_id"],
 "dbForeignKey" : [{"advisor_id" : {"dbObject" : "teacher_root",
 "dbColumn" : "_id"}},
 {"dorm_id" : {"dbObject" : "student_dormitory",
 "dbColumn" : "dorm_id"}}]},
 {"title" : "student_dormitory",
 "dbObject" : "student_dormitory",
 "type" : "object",
 "dbObjectType" : "table",
 "properties" : { "dorm_id" : {"sqlType" : "number",
 "nullable" : false},
 "dorm_name" : {"sqlType" : "varchar2",
 "maxLength" : 64,
 "nullable" : true,
 "unique" : false}},
 "required" : ["dorm_id"],
 "dbPrimaryKey" : ["dorm_id"]}],

Chapter 9
Using the Converter, Default Behavior

9-63

 "views" : [{"title" : "STUDENT",
 "dbObject" : "STUDENT",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "student_root",
 "type" : "object",
 "properties" :
 {"_id" : {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"},
 "dbPrimaryKey" : ["_id"],
 "age" : {"type" : ["number",
 "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "age"},
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "courses" :
 {"type" : "array",
 "items" : {"type" : "object",
 "dbMappedTableObject" : "course_root",
 "properties" :
 {"dbPrimaryKey" : ["ora$mapCourseId",
 "ora$mapStudentId"],
 "ora$mapCourseId" :
 {"type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "ora$mapStudentId" :
 {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"] },
 "name" :
 {"type" : ["string",
 "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "avgGrade" :
 {"type" : ["number",
 "string",
 "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "avg_grade"},
 "courseNumber" :
 {"type" : "string",
 "maxLength" : 64,

Chapter 9
Using the Converter, Default Behavior

9-64

 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"}},
 "required" : ["ora$mapCourseId",
 "ora$mapStudentId",
 "courseNumber"]}},
 "advisorId" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "advisor_id"},
 "dormitory" : {"type" : "object",
 "dbMappedTableObject" : "student_dormitory",
 "properties" :
 {"dormId" :
 {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_dormitory",
 "dbColumn" : "dorm_id"},
 "dormName" :
 {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_dormitory",
 "dbColumn" : "dorm_name"}},
 "required" : ["dormId"]},
 "studentId" : {"dbFieldProperties" : ["computed"]}}},
 {"title" : "COURSE",
 "dbObject" : "COURSE",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "course_root",
 "type" : "object",
 "properties" :
 {"_id" : { "type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"},
 "dbPrimaryKey" : ["_id"],
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "teacher" :
 {"type" : "object",
 "dbMappedTableObject" : "teacher_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "name"},
 "teacherId" : {"type" : "number",
 "dbFieldProperties" : ["check"],

Chapter 9
Using the Converter, Default Behavior

9-65

 "dbObject" : "teacher_root",
 "dbColumn" : "_id"}},
 "required" : ["teacherId"]},
 "courseId" : {"dbFieldProperties" : ["computed"]},
 "students" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "student_root",
 "properties" :
 {"dbPrimaryKey" : ["ora$mapCourseId",
 "ora$mapStudentId"],
 "ora$mapCourseId" : {"type" : "string",
 "maxLength" : 64,
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "ora$mapStudentId" : {"type" : "number",
 "dbAssigned" : true,
 "dbFieldProperties" : ["check"]},
 "name" :
 {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "studentId" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"}},
 "required" : ["ora$mapCourseId",
 "ora$mapStudentId",
 "studentId"]}},
 "creditHours" :
 {"type" : ["number", "string", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "credit_hours"}}},
 {"title" : "TEACHER",
 "dbObject" : "TEACHER",
 "dbObjectType" : "dualityView",
 "dbObjectProperties" : ["insert", "update", "delete", "check"],
 "dbMappedTableObject" : "teacher_root",
 "type" : "object",
 "properties" :
 {"_id" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "_id"},
 "name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "name"},
 "salary" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",

Chapter 9
Using the Converter, Default Behavior

9-66

 "dbColumn" : "salary"},
 "department" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "department"},
 "phoneNumber" :
 {"type" : ["string", "array", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "teacher_root",
 "dbColumn" : "phone_number"},
 "coursesTaught" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "course_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "name"},
 "courseId" : {"type" : "string",
 "maxLength" : 64,
 "dbFieldProperties" : ["check"],
 "dbObject" : "course_root",
 "dbColumn" : "course_id"},
 "classType" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "course_root",
 "dbColumn" : "class_type"}},
 "required" : ["courseId"]}},
 "studentsAdvised" :
 {"type" : "array",
 "items" :
 {"type" : "object",
 "dbMappedTableObject" : "student_root",
 "properties" :
 {"name" : {"type" : ["string", "null"],
 "maxLength" : 64,
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "name"},
 "dormId" : {"type" : ["number", "null"],
 "dbFieldProperties" : ["update", "check"],
 "dbObject" : "student_root",
 "dbColumn" : "dorm_id"},
 "studentId" : {"type" : "number",
 "dbFieldProperties" : ["check"],
 "dbObject" : "student_root",
 "dbColumn" : "student_id"}},
 "required" : ["studentId"]}}}}],
 "configOptions" : {"outputFormat" : "executable",
 "useFlexFields" : true}}

Chapter 9
Using the Converter, Default Behavior

9-67

The differences here from the schema inferred when minFieldFrequency and
minTypeFrequency are zero (see Example 9-10) are these:5

• For the student table and view, column and field age have type number.

• For the course table and view, column notes and field Notes are absent.

In the schema inferred when minFieldFrequency and minTypeFrequency are zero, the notes
column and field are present, the age column has type json, and the age field has type number-
or-string.

So even before generating DDL code to create the duality views and their tables, you can see
from the output of infer_schema some of what to expect for those two outlier fields. If you
recall that there is a student document with age = "Nineteen" then you already know that, on
import, that document won't have an age field.

Example 9-20 shows the DDL code produced by generate_schema.

Example 9-20 DDL Code from GENERATE_SCHEMA with useFlexFields = true

Function DBMS_JSON_DUALITY.generate_schema, produces the generated DDL code shown
here if passed the JSON schema in Example 9-19, which is returned by function infer_schema
(Example 9-18) as input.

Differences from Example 9-12:

• Column student_root.age has type number here, not number-or-string.

• There is no column course_root.notes to support field Notes. (Instead, the importer will
place field Notes in flex column course_root.ora$course_flex.)

The duality-view definitions here use GraphQL syntax. Equivalent SQL duality-view definitions
are shown in Example 9-21.

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE student_dormitory(
 dorm_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 dorm_name varchar2(64),
 ora$student_flex JSON(Object),
 PRIMARY KEY(dorm_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE map_course_root_to_student_root(
 map_course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 map_student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 ora$student_flex JSON(Object),
 ora$course_flex JSON(Object),
 PRIMARY KEY(map_course_id,map_student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE student_root(
 age number,
 name varchar2(64),
 dorm_id number,
 advisor_id number,
 student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 ora$student_flex JSON(Object),

5 All of these fields also have type null, which is generally the case for fields that don't correspond to identifying columns.

Chapter 9
Using the Converter, Default Behavior

9-68

 ora$teacher_flex JSON(Object),
 PRIMARY KEY(student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE teacher_root(
 "_id" number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name varchar2(64),
 salary number,
 department varchar2(64),
 phone_number json VALIDATE ''{"oneOf" : [{ "type" :"string"},
{ "type" :"array"}]}'',
 ora$teacher_flex JSON(Object),
 ora$course_flex JSON(Object),
 PRIMARY KEY("_id")
)';

EXECUTE IMMEDIATE 'CREATE TABLE course_root(
 name varchar2(64),
 avg_grade json VALIDATE ''{"oneOf" : [{ "type" :"number"},
{ "type" :"string"}]}'',
 course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 class_type varchar2(64),
 credit_hours json VALIDATE ''{"oneOf" : [{ "type" :"number"},
{ "type" :"string"}]}'',
 "_id_teacher_root" number,
 ora$teacher_flex JSON(Object),
 ora$course_flex JSON(Object),
 PRIMARY KEY(course_id)
)';

EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_course_root
 FOREIGN KEY (map_course_id) REFERENCES course_root(course_id) DEFERRABLE';

EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_student_root
 FOREIGN KEY (map_student_id) REFERENCES student_root(student_id)
DEFERRABLE';

EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_teacher_root
 FOREIGN KEY (advisor_id) REFERENCES teacher_root("_id") DEFERRABLE';

EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_student_dormitory
 FOREIGN KEY (dorm_id) REFERENCES student_dormitory(dorm_id) DEFERRABLE';

EXECUTE IMMEDIATE 'ALTER TABLE course_root
ADD CONSTRAINT fk_course_root_to_teacher_root
 FOREIGN KEY ("_id_teacher_root") REFERENCES teacher_root("_id") DEFERRABLE';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
 fk_map_course_root_to_student_root_to_course_root_index
 ON map_course_root_to_student_root(map_course_id)';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS

Chapter 9
Using the Converter, Default Behavior

9-69

 fk_map_course_root_to_student_root_to_student_root_index
 ON map_course_root_to_student_root(map_student_id)';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
 fk_student_root_to_teacher_root_index
 ON student_root(advisor_id)';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
 fk_student_root_to_student_dormitory_index
 ON student_root(dorm_id)';

EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
 fk_course_root_to_teacher_root_index
 ON course_root("_id_teacher_root")';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS
student_root @insert @update @delete
{
 _id : student_id
 age
 name
 courses: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 ora$student_flex @flex
 course_root @unnest @insert @update @object
 {
 name
 avgGrade: avg_grade
 courseNumber: course_id
 }
 }
 advisorId:advisor_id
 dormitory: student_dormitory @insert @update @object
 {
 dormId: dorm_id
 dormName: dorm_name
 ora$student_flex @flex
 }
 studentId @generated (path: "$._id")
 ora$student_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS
teacher_root @insert @update @delete
{
 "_id"
 name
 salary
 department
 phoneNumber: phone_number
 coursesTaught: course_root @insert @update @delete @array
 {
 name
 courseId: course_id

Chapter 9
Using the Converter, Default Behavior

9-70

 classType: class_type
 ora$teacher_flex @flex
 }
 studentsAdvised: student_root @insert @update @delete @array
 {
 name
 dormId:dorm_id
 studentId: student_id
 ora$teacher_flex @flex
 }
 ora$teacher_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS
course_root @insert @update @delete
{
 _id : course_id
 name
 teacher: teacher_root @insert @update @object
 {
 name
 teacherId: "_id"
 ora$course_flex @flex
 }
 courseId @generated (path: "$._id")
 students: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 ora$course_flex @flex
 student_root @unnest @insert @update @object
 {
 name
 studentId: student_id
 }
 }
 creditHours: credit_hours
 ora$course_flex @flex
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_STUDENT
 BEFORE INSERT
 ON STUDENT
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''studentId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_COURSE

Chapter 9
Using the Converter, Default Behavior

9-71

 BEFORE INSERT
 ON COURSE
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''courseId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';
END;

Besides creating the duality views and their underlying tables, the DDL code does the following
as part of the default behavior:

• For each duality view <view-name>, each table that directly underlies the top-level fields of
an object in the supported documents has a flex column named ora$<view-name>_flex
(because useFlexFields was implicitly true for the DDL generation).

• Tables student_root and teacher_root have primary-key columns student_id and _id,
respectively.

• Table course_root has primary-key column course_id. Its column _id_teacher_root is a
foreign key to column _id of table teacher_root, which is the primary key of that table.
Table course_root has an index on its foreign-key column, _id_teacher_root.

• Table map_course_root_to_student_root is a mapping table between tables course_root
and student_root.

– Its primary key is a composite of its columns map_course_id and map_student_id.

– Its columns map_course_id and map_student_id are foreign keys to columns
course_id and student_id in tables course_root and student_root, respectively,
which are the primary-key columns of those tables.

– It has indexes on its two foreign-key columns.

• Views course and student each have a field (courseId and studentId, respectively)
whose value is not stored but is generated from the value of the view's field _id.

This is because a duality view must have an _id field, which corresponds to the identifying
columns of the root table that underlies it, but documents from the existing app instead
have a courseId or studentId field. In views course and student those fields are always
generated from field _id, so inserting a document stores their values in field _id instead.
(See Document-Identifier Field for Duality Views.)

• Views course and student each have a before-insert trigger (insert_trigger_course and
insert_trigger_student, respectively) that stores the value of an incoming courseId or
studentId field, respectively, in field _id. If the incoming document has no field _id at its
top level yet, then the trigger (1) adds it and (2) gives it the value of field courseId or
studentId. (Importing uses INSERT operations, and these triggers fire just before such
operations.)

Chapter 9
Using the Converter, Default Behavior

9-72

Example 9-21 SQL DDL Code For Duality-View Creations with useFlexFields = true

For information, in case SQL is more familiar to you than GraphQL, this SQL DDL code is
equivalent to the GraphQL duality-view creation code shown in Example 9-20.

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS
 SELECT JSON {'_id' : s.student_id,
 'age' : s.age,
 'name' : s.name,
 'courses' :
 [SELECT JSON {'ora$mapCourseId' : m.map_course_id,
 'ora$mapStudentId' : m.map_student_id,
 m.ora$student_flex AS FLEX,
 UNNEST
 (SELECT JSON {'name' : c.name,
 'avgGrade' : c.avg_grade,
 'courseNumber' : c.course_id}
 FROM course_root c WITH INSERT UPDATE
 WHERE c.course_id = m.map_course_id)}
 FROM map_course_root_to_student_root m WITH INSERT UPDATE DELETE
 WHERE s.student_id = m.map_student_id],
 'advisorId' : s.advisor_id,
 'dormitory' :
 (SELECT JSON{'dormId' : sd.dorm_id,
 'dormName' : sd.dorm_name,
 sd.ora$student_flex AS FLEX}
 FROM student_dormitory sd WITH INSERT UPDATE
 WHERE s.dorm_id = sd.dorm_id),
 'studentId' IS GENERATED USING PATH '$._id',
 s.ora$student_flex AS FLEX
 RETURNING JSON}
 FROM student_root s WITH INSERT UPDATE DELETE;

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS
 SELECT JSON {'_id' : t."_id",
 'name' : t.name,
 'salary' : t.salary,
 'department' : t.department,
 'coursesTaught' :
 [SELECT JSON {'name' : c.name,
 'courseId' : c.course_id,
 'classType' : c.class_type,
 c.ora$teacher_flex AS FLEX}
 FROM course_root c WITH INSERT UPDATE DELETE
 WHERE c."_id_teacher_root" = t."_id"],
 'studentsAdvised' :
 [SELECT JSON {'name' : s.name,
 'dormId' : s.dorm_id,
 'studentId' : s.student_id,
 s.ora$teacher_flex AS FLEX}
 FROM student_root s WITH INSERT UPDATE DELETE
 WHERE s.advisor_id = t."_id"],
 t.ora$teacher_flex AS FLEX
 RETURNING JSON}
 FROM teacher_root t WITH INSERT UPDATE DELETE;

Chapter 9
Using the Converter, Default Behavior

9-73

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS
 SELECT JSON {'_id' : c.course_id,
 'name' : c.name,
 'teacher' :
 (SELECT JSON {'name' : t.name,
 'teacherId' : t."_id",
 t.ora$course_flex AS FLEX}
 FROM teacher_root t WITH INSERT UPDATE
 WHERE t."_id" = c."_id_teacher_root"),
 'courseId' IS GENERATED USING PATH '$._id',
 'students' :
 [SELECT JSON {'ora$mapCourseId' : m.map_course_id,
 'ora$mapStudentId' : m.map_student_id,
 m.ora$course_flex AS FLEX,
 UNNEST
 (SELECT JSON {'name' : s.name,
 'studentId' : s.student_id}
 FROM student_root s WITH INSERT UPDATE
 WHERE s.student_id = m.map_student_id)}
 FROM map_course_root_to_student_root m WITH INSERT UPDATE DELETE
 WHERE c.course_id = m.map_course_id],
 'creditHours' : c.credit_hours,
 c.ora$course_flex AS FLEX
 RETURNING JSON}
 FROM course_root c WITH INSERT UPDATE DELETE;

When you generate the DDL code and then execute it, the duality views and their underlying
tables are created.

After executing the DDL code, you run converter function
DBMS_JSON_DUALITY.validate_schema_report for each kind (student, teacher, course) of input
table and duality view, to validate the conversion.

Example 9-22 VALIDATE_SCHEMA_REPORT for Default Case (useFlexFields = true)

SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'STUDENT_TAB',
 view_name => 'STUDENT');
SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');
SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'COURSE_TAB',
 view_name => 'COURSE');

For the student data, an error is reported for the string value ("Nineteen") of field age in the
document for student Luis F. (studentId = 9) — only a numeric or null value is allowed.

Function validate_schema_report places the anomalous input document in column DATA of its
output, and it places an entry in column ERRORS of the same report row:

DATA

{"studentId":9,"name":"Luis F.","age":"Nineteen","advisorId":101,"courses":[{"co
urseNumber":"CS101","name":"Algorithms","avgGrade":75},{"courseNumber":"MATH102"

Chapter 9
Using the Converter, Default Behavior

9-74

,"name":"Calculus","avgGrade":95},{"courseNumber":"MATH103","name":"Advanced Alg
ebra","avgGrade":82}],"dormitory":{"dormId":201,"dormName":"ABC"}}

ERRORS

[{"schemaPath":"$","instancePath":"$","code":"JZN-00501","error":"JSON schema va
lidation failed"},{"schemaPath":"$.properties","instancePath":"$","code":"JZN-00
514","error":"invalid properties: 'age'"},{"schemaPath":"$.properties.age.type",
"instancePath":"$.age","code":"JZN-00504","error":"invalid type found, actual: s
tring, expected one of: number, null"},{"schemaPath":"$.properties.age.extendedT
ype","instancePath":"$.age","code":"JZN-00504","error":"invalid type found, actu
al: string, expected one of: number, null"}]

For that document, the importer will try, and fail, to convert the string value of "Nineteen" in the
input data to a number. It will log that type failure as an error. If the input string value were
instead "19" then the importer would be able to convert the value to the number 19 and store it
as such.

There are no errors reported for the teacher data.

No errors are reported for the course data either. In particular, there is no error for occurrence-
outlier field Notes of the Algebra course (MATH101). This is because useFlexFields is true
creates flex columns to the underlying tables. As it does with all input fields that aren't mapped
to columns, the importer will place field Notes in a flex column, so it will be supported by the
course duality view.

At this point, before importing you could choose to change the age field in the student input
document for Luis J., to give a number value of 19 instead of the string value "Nineteen".
Besides fixing problematic data, before importing you might sometimes want to modify/edit the
DDL scripts, to change the conversion behavior or the names of the views, tables, or indexes
to be created.

• DBMS_JSON_DUALITY in Oracle Database PL/SQL Packages and Types Reference for
information about subprograms generate_schema, infer_schema, and
validate_import_report

• VALIDATE_REPORT Function in Oracle Database PL/SQL Packages and Types
Reference for information about function DBMS_JSON_SCHEMA.validate_report

Related Topics

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

• Obtaining Information About a Duality View
You can obtain information about a duality view, its underlying tables, their columns, and
key-column links, using static data dictionary views. You can also obtain a JSON-schema
description of a duality view, which includes a description of the structure and JSON-
language types of the JSON documents it supports.

9.9 Import After Default Conversion
After default conversion (except for minFieldFrequency and minTypeFrequency), in particular
with useFlexFields:true), almost all documents from the student, teacher, and course input

Chapter 9
Import After Default Conversion

9-75

document sets are successfully imported, but some fields are not exactly as they were in the
original, input documents.

The process of creating error logs and importing the input document sets (in tables
student_tab, teacher_tab, and course_tab) into the duality views created in Using the
Converter, Default Behavior is exactly the same as in the simplified recipe case: see
Example 9-14 and Example 9-15. Checking the error logs for the default case tells a different
story.

Example 9-23 Checking Error Logs from Import, for Default Case

There are no errors logged for import into duality views teacher and course. But unlike the
simplified recipe case (Example 9-16), import into the student view logs an error for the type-
occurrence outlier for field age with value "Nineteen".

SELECT ora_err_number$, ora_err_mesg$, ora_err_tag$
 FROM student_err_log;

ORA_ERR_NUMBER$

ORA_ERR_MESG$

ORA_ERR_TAG$

42555

ORA-42555: Cannot insert into JSON Relational Duality View 'STUDENT': The
input JSON document is invalid.

JZN-00671: value of field 'age' can not be converted to a number

Import Error

Select the culprit student document from the input student table:

SELECT * FROM "JANUS".student_tab
 WHERE ROWID IN (SELECT ora_err_rowid$ FROM student_err_log);

DATA

{"studentId":9,"name":"Luis F.","age":"Nineteen","advisorId":101,"courses":[{"co
urseNumber":"CS101","name":"Algorithms","avgGrade":75},{"courseNumber":"MATH102"
,"name":"Calculus","avgGrade":95},{"courseNumber":"MATH103","name":"Advanced Alg
ebra","avgGrade":82}],"dormitory":{"dormId":201,"dormName":"ABC"}}

Unlike what happens in the simplified migration case (see Example 9-17), validating the import
using DBMS_JSON_DUALITY.validate_import_report reports an error for the documents that
have been imported successfully: the student document for Luis F. has a null value for its age
field, corresponding to the input string value "Nineteen".

Example 9-24, Example 9-25, and Example 9-26 show the document collections supported by
the duality views, that is, the result of importing.

Chapter 9
Import After Default Conversion

9-76

Example 9-24 Student Duality View Document Collection (useFlexFields = true)

Compare this with the input student document set, Example 9-1, which (with conversion using
minFieldFrequency = 25 and minTypeFrequency = 15) has only one outlier field: age (with a
type-occurrence frequency of 10%).

These are the only differences (ignoring field order, which is irrelevant):

• Document identifier field _id and document-state field _metadata have been added. (Every
document supported by a duality view has these fields.)

• Fields ora$mapCourseId and ora$mapStudentId have been added. These correspond to
the identifying columns (primary-key columns in this case) for underlying mapping table
map_table_course_root_to_student_root. Their values are the same as the values of
fields courseNumber and studentId, respectively.

• Even though the document for student Luis F. (studentId = 9) failed import into the student
duality view (because field age has the string value "Nineteen", and its 10% occurrence is
a type-occurrence outlier), that document is nevertheless present in the duality view. When
we import documents into the course and teacher duality views, a row is added to table
student_root that has 9 as the value for column student_root.student_id, because
studentId with value 9 is present in both input tables course_tab and teacher_tab.

The age field value for that student document for Luis F. is null, however (not "Nineteen"
and not 19). No age field exists in either of the course or teacher input document sets, so
importing their student data for Luis F. into the course and teacher views stores NULL in the
age column in table student_root. And that NULL column value maps to JSON null in the
student documents.

There are no other differences. In particular, mixed-type field avgGrade is unchanged from the
input data, as it is not an outlier: each of its types occurs in more than 15% of the documents.

{
 "_id" : 1,
 "_metadata" :
 {
 "etag" : "4F39C8B86F4295AD2958B18A77B0AACC",
 "asof" : "0000000000423804"
 },
 "age" : 20,
 "name" : "Donald P.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {

Chapter 9
Import After Default Conversion

9-77

 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 1
}

{
 "_id" : 2,
 "_metadata" :
 {
 "etag" : "758A4F3E6EF3152A4FA0892AB38635D4",
 "asof" : "0000000000423804"
 },
 "age" : 21,
 "name" : "Elena H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 2,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 2,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 2,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },
 "studentId" : 2

Chapter 9
Import After Default Conversion

9-78

}

{
 "_id" : 3,
 "_metadata" :
 {
 "etag" : "06905F120EF74124C5985354BBCE5CC1",
 "asof" : "0000000000423804"
 },
 "age" : 20,
 "name" : "Francis K.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 3,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 3
}

{
 "_id" : 4,
 "_metadata" :
 {
 "etag" : "50847D1AB63537118A6133A4CC1B8708",
 "asof" : "0000000000423804"
 },
 "age" : 19,
 "name" : "Georgia D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 4,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 4,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {

Chapter 9
Import After Default Conversion

9-79

 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 4,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 203,
 "dormName" : "LMN"
 },
 "studentId" : 4
}

{
 "_id" : 5,
 "_metadata" :
 {
 "etag" : "FD6E27A868C56D1EF9C7AEB3F08C7F9B",
 "asof" : "0000000000423804"
 },
 "age" : 21,
 "name" : "Hye E.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 5,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 5,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 5
}

{
 "_id" : 6,
 "_metadata" :
 {
 "etag" : "2BDA7862330B0687F22F830F3E314E34",

Chapter 9
Import After Default Conversion

9-80

 "asof" : "0000000000423804"
 },
 "age" : 21,
 "name" : "Ileana D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 6,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 6
}

{
 "_id" : 7,
 "_metadata" :
 {
 "etag" : "F1EF0CCD54EDFA78D2263D7E742D6CE8",
 "asof" : "0000000000423804"
 },
 "age" : 20,
 "name" : "Jatin S.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 7,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 7,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 7

Chapter 9
Import After Default Conversion

9-81

}

{
 "_id" : 8,
 "_metadata" :
 {
 "etag" : "9A25A267BC08858E0F754E0C00B32F9E",
 "asof" : "0000000000423804"
 },
 "age" : 21,
 "name" : "Katie H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 8,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 8,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 8
}

{
 "_id" : 10,
 "_metadata" :
 {
 "etag" : "94376DA05B92E47718AF70A31FBE56E7",
 "asof" : "0000000000423804"
 },
 "age" : 20,
 "name" : "Ming L.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 10,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }
],

Chapter 9
Import After Default Conversion

9-82

 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },
 "studentId" : 10
}

{
 "_id" : 9,
 "_metadata" :
 {
 "etag" : "579824C71904C46901BBA605E8539943",
 "asof" : "0000000000423804"
 },
 "age" : null,
 "name" : "Luis F.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 9,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 9,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 9,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 9
}

Example 9-25 Teacher Duality View Document Collection (useFlexFields = true)

Compare this with the input teacher document set, Example 9-2, which had no outliers.

Chapter 9
Import After Default Conversion

9-83

The only difference (ignoring field order, which is irrelevant) is that document identifier field _id
and document-state field _metadata have been added. (Every document supported by a duality
view has these fields.)

Field phoneNumber is of mixed type: 50% string and 50% array of strings. (Because it's of mixed
type and is not a type-occurrence outlier, it's stored in its own JSON-type column.)

{
 "_id" : 101,
 "_metadata" :
 {
 "etag" : "F919587CCFAD69F2208B0CDDC80BFAB8",
 "asof" : "000000000042348C"
 },
 "name" : "Abdul J.",
 "salary" : 200000,
 "department" : "Mathematics",
 "phoneNumber" :
 [
 "222-555-011",
 "222-555-012"
],
 "coursesTaught" :
 [
 {
 "name" : "Algebra",
 "courseId" : "MATH101",
 "classType" : "Online"
 },
 {
 "name" : "Calculus",
 "courseId" : "MATH102",
 "classType" : "In-person"
 }
],
 "studentsAdvised" :
 [
 {
 "name" : "Georgia D.",
 "dormId" : 203,
 "studentId" : 4
 },
 {
 "name" : "Jatin S.",
 "dormId" : 204,
 "studentId" : 7
 },
 {
 "name" : "Luis F.",
 "dormId" : 201,
 "studentId" : 9
 },
 {
 "name" : "Ming L.",
 "dormId" : 202,
 "studentId" : 10

Chapter 9
Import After Default Conversion

9-84

 }
]
}

{
 "_id" : 102,
 "_metadata" :
 {
 "etag" : "657E2A688F0A086D948A557ABB1FE3BC",
 "asof" : "000000000042348C"
 },
 "name" : "Betty Z.",
 "salary" : 300000,
 "department" : "Computer Science",
 "phoneNumber" : "222-555-022",
 "coursesTaught" :
 [
 {
 "name" : "Algorithms",
 "courseId" : "CS101",
 "classType" : "Online"
 },
 {
 "name" : "Data Structures",
 "courseId" : "CS102",
 "classType" : "In-person"
 }
],
 "studentsAdvised" :
 [
 {
 "name" : "Donald P.",
 "dormId" : 201,
 "studentId" : 1
 },
 {
 "name" : "Ileana D.",
 "dormId" : 205,
 "studentId" : 6
 },
 {
 "name" : "Katie H.",
 "dormId" : 205,
 "studentId" : 8
 }
]
}

{
 "_id" : 103,
 "_metadata" :
 {
 "etag" : "1F2DB9CBCD6F7E5E558785D78CA7D116",
 "asof" : "000000000042348C"
 },
 "name" : "Colin J.",

Chapter 9
Import After Default Conversion

9-85

 "salary" : 220000,
 "department" : "Mathematics",
 "phoneNumber" :
 [
 "222-555-023"
],
 "coursesTaught" :
 [
 {
 "name" : "Advanced Algebra",
 "courseId" : "MATH103",
 "classType" : "Online"
 }
],
 "studentsAdvised" :
 [
 {
 "name" : "Elena H.",
 "dormId" : 202,
 "studentId" : 2
 },
 {
 "name" : "Francis K.",
 "dormId" : 204,
 "studentId" : 3
 },
 {
 "name" : "Hye E.",
 "dormId" : 201,
 "studentId" : 5
 }
]
}

{
 "_id" : 104,
 "_metadata" :
 {
 "etag" : "D4D644FB68590D5A00EC53778F0E7226",
 "asof" : "000000000042348C"
 },
 "name" : "Natalie C.",
 "salary" : 180000,
 "department" : "Computer Science",
 "phoneNumber" : "222-555-044",
 "coursesTaught" :
 [
],
 "studentsAdvised" :
 [
]
}

Chapter 9
Import After Default Conversion

9-86

Example 9-26 Course Duality View Document Collection (useFlexFields = true)

Compare this with the input course document set, Example 9-3, which (with conversion using
minFieldFrequency = 25 and minTypeFrequency = 15) has only one outlier field: Notes (with a
field occurrence frequency of 20%).

Field Notes is nevertheless present in the duality-view document for course MATH101, because
conversion was done with useFlexFields = true, which means the converter created flex
columns in the duality views — the importer stored field Notes in a flex column.

The only other difference from the input documents (ignoring field order, which is irrelevant) is
that document identifier field _id and document-state field _metadata have been added. Every
document supported by a duality view has these fields.

Note that there's no difference for field creditHours. It's of mixed type, number-or-string (that
is, the value can be a number or a string). And even though only one document (for course
MATH103) uses a string value, the field is not a type-occurrence outlier because a string occurs
in one of the five documents (20%), which is greater than minTypeFrequency = 15.

Note too that field _id has a string value, such as "MATH101", because it is mapped to input
field courseId. A document-identifier field need not be a number; its value just needs to
uniquely identify a document.

{
 "_id" : "CS101",
 "_metadata" :
 {
 "etag" : "FE5B789404D0B9945EB69D7036759CF2",
 "asof" : "0000000000423494"
 },
 "name" : "Algorithms",
 "teacher" :
 {
 "name" : "Betty Z.",
 "teacherId" : 102
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",
 "studentId" : 4
 },
 {

Chapter 9
Import After Default Conversion

9-87

 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 7,
 "name" : "Jatin S.",
 "studentId" : 7
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 }
],
 "creditHours" : 5,
 "courseId" : "CS101"
}

{
 "_id" : "CS102",
 "_metadata" :
 {
 "etag" : "D2A2D30D1998AAABC4D6EC5FDAFB2472",
 "asof" : "0000000000423494"
 },
 "name" : "Data Structures",
 "teacher" :
 {
 "name" : "Betty Z.",
 "teacherId" : 102
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 5,
 "name" : "Hye E.",
 "studentId" : 5
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 7,
 "name" : "Jatin S.",
 "studentId" : 7
 },
 {

Chapter 9
Import After Default Conversion

9-88

 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 8,
 "name" : "Katie H.",
 "studentId" : 8
 }
],
 "creditHours" : 3,
 "courseId" : "CS102"
}

{
 "_id" : "MATH101",
 "_metadata" :
 {
 "etag" : "3509714A03884A40BC1EBE0952E3F5CE",
 "asof" : "0000000000423494"
 },
 "name" : "Algebra",
 "teacher" :
 {
 "name" : "Abdul J.",
 "teacherId" : 101
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 5,
 "name" : "Hye E.",
 "studentId" : 5
 }
],
 "creditHours" : 3,
 "Notes" : "Prerequisite for Advanced Algebra",
 "courseId" : "MATH101"
}

{
 "_id" : "MATH102",
 "_metadata" :
 {
 "etag" : "3193D7B3FC1EC95210D4ABF12DF1558E",
 "asof" : "0000000000423494"
 },
 "name" : "Calculus",
 "teacher" :
 {
 "name" : "Abdul J.",
 "teacherId" : 101
 },

Chapter 9
Import After Default Conversion

9-89

 "students" :
 [
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",
 "studentId" : 4
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 10,
 "name" : "Ming L.",
 "studentId" : 10
 }
],
 "creditHours" : 4,
 "courseId" : "MATH102"
}

{
 "_id" : "MATH103",
 "_metadata" :
 {
 "etag" : "8AC5912C1CB56D431FF4F979EB121E60",
 "asof" : "0000000000423494"
 },
 "name" : "Advanced Algebra",
 "teacher" :
 {
 "name" : "Colin J.",
 "teacherId" : 103
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 3,
 "name" : "Francis K.",
 "studentId" : 3
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",

Chapter 9
Import After Default Conversion

9-90

 "studentId" : 4
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 6,
 "name" : "Ileana D.",
 "studentId" : 6
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 8,
 "name" : "Katie H.",
 "studentId" : 8
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 }
],
 "creditHours" : "3",
 "courseId" : "MATH103"
}

Example 9-27 creates data-guide JSON schemas for each of the duality views, that is, for the
document sets supported by the views. You can compare the schema for each duality view
with a data-guide JSON schema that describes the corresponding input document set (see
Example 9-5).

A data-guide schema serves as a shortcut (proxy) for comparing the documents supported by
a duality view with the corresponding input documents. Such comparison can help decide how
you might want to (1) change some of the documents, (2) change some of the configuration
fields used to infer and generate the database objects, or (3) change the definition of a duality
view or table.

It's important to note that comparing JSON schemas between input and output database
objects (input transfer table and output duality view) is not the same as comparing the input
and output documents. Comparing schemas can suggest things you might want to change, but
it isn't a complete substitute for comparing documents. After you import the original documents
into the duality views you can and should compare documents.

Example 9-27 Create JSON Data Guides For Document Collections Supported By
Duality Views

This code is identical to the data-guide JSON schema creation code in Example 9-5, except
that the data guides here are created on duality views, not input tables.

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM student;

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM teacher;

Chapter 9
Import After Default Conversion

9-91

SELECT json_dataguide(data,
 DBMS_JSON.FORMAT_SCHEMA,
 DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS)
 FROM course;

Example 9-28 Student Duality View Data Guide

This data guide JSON schema summarizes the collection of student documents supported by
duality view student.

The differences from the data guide for the student input documents, in Example 9-6 reflect the
differences between the two sets of student documents (see Example 9-24).

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "properties" :
 {
 "_id" :
 {
 "type" : "number",
 "o:preferred_column_name" : "_id",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 },
 "age" :
 {
 "oneOf" :
 [
 {
 "type" : "null",
 "o:preferred_column_name" : "age",
 "o:frequency" : 10,
 "o:low_value" : null,
 "o:high_value" : null,
 "o:num_nulls" : 1,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10
 },
 {
 "type" : "number",
 "o:preferred_column_name" : "age",
 "o:frequency" : 90,
 "o:low_value" : 19,
 "o:high_value" : 21,

Chapter 9
Import After Default Conversion

9-92

 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "maximum" : 21,
 "minimum" : 19
 }
]
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 10,
 "minLength" : 6
 },
 "courses" :
 {
 "type" : "array",
 "o:preferred_column_name" : "courses",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 7
 },
 "avgGrade" :
 {
 "oneOf" :
 [
 {
 "type" : "number",

Chapter 9
Import After Default Conversion

9-93

 "o:preferred_column_name" : "avgGrade",
 "o:frequency" : 100,
 "o:low_value" : 75,
 "o:high_value" : 95,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 95,
 "minimum" : 75
 },
 {
 "type" : "string",
 "o:length" : 4,
 "o:preferred_column_name" : "avgGrade",
 "o:frequency" : 50,
 "o:low_value" : "TBD",
 "o:high_value" : "TBD",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "maxLength" : 3,
 "minLength" : 3
 }
]
 },
 "courseNumber" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseNumber",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "ora$mapCourseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "ora$mapCourseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },

Chapter 9
Import After Default Conversion

9-94

 "ora$mapStudentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "ora$mapStudentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 },
 "_metadata" :
 {
 "type" : "object",
 "o:preferred_column_name" : "_metadata",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "properties" :
 {
 "asof" :
 {
 "type" : "binary",
 "o:length" : 8,
 "o:preferred_column_name" : "asof",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true
 },
 "etag" :
 {
 "type" : "binary",
 "o:length" : 16,
 "o:preferred_column_name" : "etag",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true
 }
 }
 },
 "advisorId" :

Chapter 9
Import After Default Conversion

9-95

 {
 "type" : "number",
 "o:preferred_column_name" : "advisorId",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 103,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 103,
 "minimum" : 101
 },
 "dormitory" :
 {
 "type" : "object",
 "o:preferred_column_name" : "dormitory",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "properties" :
 {
 "dormId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "dormId",
 "o:frequency" : 100,
 "o:low_value" : 201,
 "o:high_value" : 205,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 205,
 "minimum" : 201
 },
 "dormName" :
 {
 "type" : "string",
 "o:length" : 4,
 "o:preferred_column_name" : "dormName",
 "o:frequency" : 100,
 "o:low_value" : "ABC",
 "o:high_value" : "XYZ",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maxLength" : 3,
 "minLength" : 3
 }
 }
 },
 "studentId" :
 {

Chapter 9
Import After Default Conversion

9-96

 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 10,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }
 }
}

Example 9-29 Teacher Duality View Data Guide

This data guide JSON schema summarizes the collection of teacher documents supported by
duality view teacher.

The differences from the data guide for the teacher input documents, in Example 9-7 reflect the
differences between the two sets of teacher documents (see Example 9-25).

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "properties" :
 {
 "_id" :
 {
 "type" : "number",
 "o:preferred_column_name" : "_id",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 104,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "maximum" : 104,
 "minimum" : 101
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Abdul J.",
 "o:high_value" : "Natalie C.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,

Chapter 9
Import After Default Conversion

9-97

 "required" : true,
 "maxLength" : 10,
 "minLength" : 8
 },
 "salary" :
 {
 "type" : "number",
 "o:preferred_column_name" : "salary",
 "o:frequency" : 100,
 "o:low_value" : 180000,
 "o:high_value" : 300000,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "maximum" : 300000,
 "minimum" : 180000
 },
 "_metadata" :
 {
 "type" : "object",
 "o:preferred_column_name" : "_metadata",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "properties" :
 {
 "asof" :
 {
 "type" : "binary",
 "o:length" : 8,
 "o:preferred_column_name" : "asof",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true
 },
 "etag" :
 {
 "type" : "binary",
 "o:length" : 16,
 "o:preferred_column_name" : "etag",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true
 }
 }
 },

Chapter 9
Import After Default Conversion

9-98

 "department" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "department",
 "o:frequency" : 100,
 "o:low_value" : "Computer Science",
 "o:high_value" : "Mathematics",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 11
 },
 "phoneNumber" :
 {
 "oneOf" :
 [
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "phoneNumber",
 "o:frequency" : 50,
 "o:low_value" : "222-555-022",
 "o:high_value" : "222-555-044",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 11,
 "minLength" : 11
 },
 {
 "type" : "array",
 "o:preferred_column_name" : "phoneNumber",
 "o:frequency" : 50,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "items" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "scalar_string",
 "o:frequency" : 50,
 "o:low_value" : "222-555-011",
 "o:high_value" : "222-555-023",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 11,
 "minLength" : 11
 }
 }
]
 },
 "coursesTaught" :

Chapter 9
Import After Default Conversion

9-99

 {
 "type" : "array",
 "o:preferred_column_name" : "coursesTaught",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 75,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 16,
 "minLength" : 7
 },
 "courseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseId",
 "o:frequency" : 75,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 7,
 "minLength" : 5
 },
 "classType" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "classType",
 "o:frequency" : 75,
 "o:low_value" : "In-person",
 "o:high_value" : "Online",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 9,
 "minLength" : 6
 }
 }
 }
 },

Chapter 9
Import After Default Conversion

9-100

 "studentsAdvised" :
 {
 "type" : "array",
 "o:preferred_column_name" : "studentsAdvised",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 75,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maxLength" : 10,
 "minLength" : 6
 },
 "dormId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "dormId",
 "o:frequency" : 75,
 "o:low_value" : 201,
 "o:high_value" : 205,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maximum" : 205,
 "minimum" : 201
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 75,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 4,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 }

Chapter 9
Import After Default Conversion

9-101

 }
}

Example 9-30 Course Duality View Data Guide, for Default Case

This data guide JSON schema summarizes the collection of course documents supported by
duality view course, for the conversion case where useFlexFields is true.

The differences from the data guide for the course input documents, in Example 9-8 reflect the
differences between the two sets of course documents (see Example 9-26).

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "_id" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "_id",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 7
 },
 "Notes" :
 {
 "type" : "string",
 "o:length" : 64,
 "o:preferred_column_name" : "Notes",
 "o:frequency" : 20,
 "o:low_value" : "Prerequisite for Advanced Algebra",

Chapter 9
Import After Default Conversion

9-102

 "o:high_value" : "Prerequisite for Advanced Algebra",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "maxLength" : 33,
 "minLength" : 33
 },
 "teacher" :
 {
 "type" : "object",
 "o:preferred_column_name" : "teacher",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Abdul J.",
 "o:high_value" : "Colin J.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 8,
 "minLength" : 8
 },
 "teacherId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "teacherId",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 103,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 103,
 "minimum" : 101
 }
 }
 },
 "courseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",

Chapter 9
Import After Default Conversion

9-103

 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "students" :
 {
 "type" : "array",
 "o:preferred_column_name" : "students",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 10,
 "minLength" : 6
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 },
 "ora$mapCourseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "ora$mapCourseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",

Chapter 9
Import After Default Conversion

9-104

 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "ora$mapStudentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "ora$mapStudentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 },
 "_metadata" :
 {
 "type" : "object",
 "o:preferred_column_name" : "_metadata",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "asof" :
 {
 "type" : "binary",
 "o:length" : 8,
 "o:preferred_column_name" : "asof",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true
 },
 "etag" :
 {
 "type" : "binary",
 "o:length" : 16,
 "o:preferred_column_name" : "etag",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,

Chapter 9
Import After Default Conversion

9-105

 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "required" : true
 }
 }
 },
 "creditHours" :
 {
 "oneOf" :
 [
 {
 "type" : "number",
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 80,
 "o:low_value" : 3,
 "o:high_value" : 5,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "maximum" : 5,
 "minimum" : 3
 },
 {
 "type" : "string",
 "o:length" : 1,
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 20,
 "o:low_value" : "3",
 "o:high_value" : "3",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-10T17:29:04",
 "o:sample_size" : 5,
 "maxLength" : 1,
 "minLength" : 1
 }
]
 }
 }
}

You can also use DBMS_JSON_SCHEMA.describe to create a JSON schema that shows different
information about the duality views. See Example 5-22.

Related Topics

• School Administration Example, Migrator Input Documents
Existing student, teacher, and course document sets comprise the JSON-to-duality
migrator input for the school-administration example. In a typical migration scenario each
might be received in the form of a JSON dump file from another database.

9.10 Using the Converter with useFlexFields=false
Use of the JSON-to-duality converter with useFlexFields = false is illustrated. Otherwise the
configuration is default (except for minFieldFrequency and minTypeFrequency). The database

Chapter 9
Using the Converter with useFlexFields=false

9-106

objects needed to support the document sets are inferred, and the SQL DDL code to construct
them is generated.

We pass useFlexFields with a false value to DBMS_JSON_DUALITY.infer_schema. Otherwise,
that call is the same as in Example 9-18. And the JSON schema returned by infer_schema is
the same for both true and false useFlexFields.

The call to DBMS_JSON_DUALITY.generate_schema is also the same. The only differences in the
generated DDL code are these:

• The tables underlying the duality views have no flex columns when useFlexFields is
false.

• The duality views don't refer to flex columns when useFlexFields is false.

Example 9-31 DDL Code from GENERATE_SCHEMA with useFlexFields = false

Function DBMS_JSON_DUALITY.generate_schema, produces the generated DDL code shown
here if passed the JSON schema produced by function infer_schema with useFlexFields =
false.

The only difference in this DDL code from that generated with useFlexFields = true is that
here there are no flex columns in the underlying tables and no references to flex columns in
the duality views.

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE student_dormitory(
 dorm_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 dorm_name varchar2(64),
 PRIMARY KEY(dorm_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE map_course_root_to_student_root(
 map_course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 map_student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 PRIMARY KEY(map_course_id,map_student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE student_root(
 age number,
 name varchar2(64),
 dorm_id number,
 advisor_id number,
 student_id number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 PRIMARY KEY(student_id)
)';

EXECUTE IMMEDIATE 'CREATE TABLE teacher_root(
 "_id" number GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name varchar2(64),
 salary number,
 department varchar2(64),
 phone_number json VALIDATE ''{"oneOf" : [{ "type" :"string"},
 { "type" :"array"}]}'',
 PRIMARY KEY("_id")
)';

EXECUTE IMMEDIATE 'CREATE TABLE course_root(

Chapter 9
Using the Converter with useFlexFields=false

9-107

 name varchar2(64),
 avg_grade json VALIDATE ''{"oneOf" : [{ "type" :"number"},
 { "type" :"string"}]}'',
 course_id varchar2(64) DEFAULT ON NULL SYS_GUID(),
 class_type varchar2(64),
 credit_hours json VALIDATE ''{"oneOf" : [{ "type" :"number"},
 { "type" :"string"}]}'',
 "_id_teacher_root" number,
 PRIMARY KEY(course_id)
)';

EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_course_root FOREIGN KEY
(map_course_id) REFERENCES course_root(course_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE map_course_root_to_student_root
ADD CONSTRAINT fk_map_course_root_to_student_root_to_student_root FOREIGN KEY
(map_student_id) REFERENCES student_root(student_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_student_dormitory FOREIGN KEY (dorm_id)
REFERENCES student_dormitory(dorm_id) DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE student_root
ADD CONSTRAINT fk_student_root_to_teacher_root FOREIGN KEY (advisor_id)
REFERENCES teacher_root("_id") DEFERRABLE';
EXECUTE IMMEDIATE 'ALTER TABLE course_root
ADD CONSTRAINT fk_course_root_to_teacher_root FOREIGN KEY
("_id_teacher_root") REFERENCES teacher_root("_id") DEFERRABLE';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_map_course_root_to_student_root_to_course_root_index ON
map_course_root_to_student_root(map_course_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_map_course_root_to_student_root_to_student_root_index ON
map_course_root_to_student_root(map_student_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_student_root_to_student_dormitory_index ON student_root(dorm_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_student_root_to_teacher_root_index ON student_root(advisor_id)';
EXECUTE IMMEDIATE 'CREATE INDEX IF NOT EXISTS
fk_course_root_to_teacher_root_index ON course_root("_id_teacher_root")';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW STUDENT AS
student_root @insert @update @delete
{
 _id : student_id
 age
 name
 courses: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 course_root @unnest @insert @update @object
 {
 name
 avgGrade: avg_grade
 courseNumber: course_id
 }
 }

Chapter 9
Using the Converter with useFlexFields=false

9-108

 advisorId:advisor_id
 dormitory: student_dormitory @insert @update @object
 {
 dormId: dorm_id
 dormName: dorm_name
 }
 studentId @generated (path: "$._id")
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW TEACHER AS
teacher_root @insert @update @delete
{
 "_id"
 name
 salary
 department
 phoneNumber: phone_number
 coursesTaught: course_root @insert @update @delete @array
 {
 name
 courseId: course_id
 classType: class_type
 }
 studentsAdvised: student_root @insert @update @delete @array
 {
 name
 dormId:dorm_id
 studentId: student_id
 }
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW COURSE AS
course_root @insert @update @delete
{
 _id : course_id
 name
 teacher: teacher_root @insert @update @object
 {
 name
 teacherId: "_id"
 }
 courseId @generated (path: "$._id")
 students: map_course_root_to_student_root @insert @update @delete @array
 {
 ora$mapCourseId: map_course_id
 ora$mapStudentId: map_student_id
 student_root @unnest @insert @update @object
 {
 name
 studentId: student_id
 }
 }
 creditHours: credit_hours
}';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_STUDENT

Chapter 9
Using the Converter with useFlexFields=false

9-109

 BEFORE INSERT
 ON STUDENT
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''studentId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';

EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER INSERT_TRIGGER_COURSE
 BEFORE INSERT
 ON COURSE
 FOR EACH ROW
DECLARE
 inp_jsonobj json_object_t;
BEGIN
 inp_jsonobj := json_object_t(:new.data);
 IF NOT inp_jsonobj.has(''_id'')
 THEN
 inp_jsonobj.put(''_id'', inp_jsonobj.get(''courseId''));
 :new.data := inp_jsonobj.to_json;
 END IF;
END;';
END;

Example 9-32 shows that rare field Notes is an outlier for the course document set.

With no flex columns created by the converter, errors will be logged during import for any fields
that are unmapped by the converter (for example, fields that can't be stored in a simple SQL
scalar column). When useFlexFields is true (the default value) unmapped field Notes is
retained in course documents, by being stored in a flex field. But with useFlexFields false
field Notes is logged during import as an error.

When you generate the DDL code and then execute it, the duality views and their underlying
tables are created.

After executing the DDL code, you run converter function
DBMS_JSON_DUALITY.validate_schema_report for each kind (student, teacher, course) of input
table and duality view, to validate the conversion.

Example 9-32 VALIDATE_SCHEMA_REPORT with useFlexFields = false

This code is the same as that in Example 9-22.

SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'STUDENT_TAB',
 view_name => 'STUDENT');
SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(
 table_name => 'TEACHER_TAB',
 view_name => 'TEACHER');
SELECT * FROM DBMS_JSON_DUALITY.validate_schema_report(

Chapter 9
Using the Converter with useFlexFields=false

9-110

 table_name => 'COURSE_TAB',
 view_name => 'COURSE');

The error reported for the student table and view is the same as in Example 9-22 (string value
of "Nineteen" for field age).

There are no errors reported for the teacher table and view (just as in the useFlexFields =
true case).

Instead of no errors reported for the course table and view (as in the useFlexFields = true
case), however, an error is reported for field occurrence-outlier field Notes in the
useFlexFields = false case. This is because in the default case that field is stored in a flex
column.

DATA

{"courseId":"MATH101","name":"Algebra","creditHours":3,"students":[{"studentId":
1,"name":"Donald P."},{"studentId":5,"name":"Hye E."}],"teacher":{"teacherId":10
1,"name":"Abdul J."},"Notes":"Prerequisite for Advanced Algebra"}

ERRORS

[{"schemaPath":"$","instancePath":"$","code":"JZN-00501","error":"JSON schema va
lidation failed"},{"schemaPath":"$.additionalProperties","instancePath":"$","cod
e":"JZN-00518","error":"invalid additional properties: 'Notes'"},{"schemaPath":
"$.additionalProperties","instancePath":"$.Notes","code":"JZN-00502","error":"JS
ON boolean schema was false"}]

Just as for the useFlexFields = true case, before importing you could choose to change the
age field in the student input document for Luis J., to give a number value of 19 instead of the
string value "Nineteen". And you might want to remove field Notes from the data or relax
(lower) the value of minTypeFrequency to allow its inclusion.

• DBMS_JSON_DUALITY in Oracle Database PL/SQL Packages and Types Reference for
information about subprograms generate_schema, infer_schema, and
validate_import_report

• VALIDATE_REPORT Function in Oracle Database PL/SQL Packages and Types
Reference for information about function DBMS_JSON_SCHEMA.validate_report

9.11 Import After Conversion with useFlexFields=false
After trying to import, error-log tables are created and queried to show import errors and
imported documents.

The process of creating error logs and importing the input document sets (in tables
student_tab, teacher_tab, and course_tab) into the duality views created in Using the
Converter with useFlexFields=false is exactly the same as in the simplified recipe case: see
Example 9-14 and Example 9-15. But checking the error logs for the default case tells a
different story.

Chapter 9
Import After Conversion with useFlexFields=false

9-111

Example 9-33 Checking Error Logs from Import, for useFlexFields = false Case

Like the default case (see Example 9-23) import into the student duality view logs an error for
the type-occurrence outlier for field age with value "Nineteen", and no error is logged for the
teacher view.

But unlike the default case, import also logs an error for the missing Notes field. Field Notes is
not mapped to any column, and since there are no flex columns, the field is not supported by
the duality view.

ORA_ERR_NUMBER$

ORA_ERR_MESG$

ORA_ERR_TAG$

42555

ORA-42555: Cannot insert into JSON Relational Duality View 'COURSE': The input JSON document
is invalid.
JZN-00651: field 'Notes' is unknown or undefined

Import Error

Select that culprit course document from the input course table:

SELECT * FROM "JANUS".course_tab
 WHERE ROWID IN (SELECT ora_err_rowid$ FROM course_err_log);

DATA

{"courseId":"MATH101","name":"Algebra","creditHours":3,"students":[{"studentId":
1,"name":"Donald P."},{"studentId":5,"name":"Hye E."}],"teacher":{"teacherId":10
1,"name":"Abdul J."},"Notes":"Prerequisite for Advanced Algebra"}

We next use DBMS_JSON_DUALITY.validate_import_report to report on any problems with
documents that have been imported successfully. Unlike the default case and the simplified
recipe case, for the conversion with useFlexFields = false, there are validation problems for
imported student and course documents. (There are no validation problems for imported
teacher documents.)

Example 9-34 VALIDATE_IMPORT_REPORT for useFlexFields = false Case

There are no validation problems for imported teacher documents.

Chapter 9
Import After Conversion with useFlexFields=false

9-112

For imported student data, the problematic document with age having a string value is
reported.

SELECT * FROM DBMS_JSON_DUALITY.validate_import_report(
 table_name => 'STUDENT_TAB',
 view_name => 'STUDENT');

DATA

{"studentId":9,"name":"Luis F.","age":"Nineteen","advisorId":101,"courses":[{"co
urseNumber":"CS101","name":"Algorithms","avgGrade":75},{"courseNumber":"MATH102"
,"name":"Calculus","avgGrade":95},{"courseNumber":"MATH103","name":"Advanced Alg
ebra","avgGrade":82}],"dormitory":{"dormId":201,"dormName":"ABC"}}

ERRORS

[{"op":"replace","path":"/age","value":null}]

PL/SQL function DBMS_JSON_DUALITY.validate_import_report uses JSON Patch output to
locate and the problematic fields and specify an editing operation you can perform on the input
data to resolve the problem.

• Field path specifies the location — the syntax of its value is that of JSON Pointer, not that
of a SQL/JSON path expression. In this case, the path value /age targets the age field at
the top level of the document.

• Field op specifies the editing operation. For the problematic student document, the
operation is to replace the value of its top-level field age with JSON null. (That may or
may not be the resolution you want.)

The problematic student document fails to import into the student duality view. However, it is
still "supported" by that view. It is present in the view because importing to views course and
teacher causes a row to be added to underlying table student_root for that document (with
student_id = 9).

The value of field age in that document has value (JSON) null, however, because there's no
field in the other two document sets that maps to column student_root.age, so that the value
of that column is SQL NULL. And that NULL column value maps to JSON null in the student
documents.

For imported course data, the problematic document containing field Notes is reported.

SELECT * FROM DBMS_JSON_DUALITY.validate_import_report(
 table_name => 'COURSE_TAB',
 view_name => 'COURSE');

DATA

{"courseId":"MATH101","name":"Algebra","creditHours":3,"students":[{"studentId":
[{"op":"remove","path":"/Notes"},{"op":"remove","path":"/creditHours"}]

Chapter 9
Import After Conversion with useFlexFields=false

9-113

https://www.rfc-editor.org/rfc/rfc6902
https://www.rfc-editor.org/rfc/rfc6901

1,"name":"Donald P."},{"studentId":5,"name":"Hye E."}],"teacher":{"teacherId":10
1,"name":"Abdul J."},"Notes":"Prerequisite for Advanced Algebra"}

ERRORS

[{"op":"remove","path":"/Notes"},{"op":"remove","path":"/creditHours"}]

The problematic course document fails to import into the course duality view.

For that document there are two error operations reported: remove its top-level fields Notes
and creditHours. (This may or may not be the resolution you want.)

Import of the problematic course document fails because of its field Notes, which was pruned
because, as an occurrence outlier it wasn't mapped to any column. And as an unmapped field
the importer can't store it in a flex column because there are no flex columns (the input data
was converted with useFlexFields = false).

But the course view's underlying table course_root anyway gets a row that corresponds to
that problematic document (where field courseId has value MATH101), because of importing the
student and teacher data, that is, populating the student and teacher views. Importing to
those views populates columns course_id and name of table course_root, which are used by
student and teacher documents. It does not, however, populate field Notes or creditHours.

Example 9-35 and Example 9-36 show the student and course document collections supported
by the duality views, that is, the result of importing into those views, respectively.

The teacher duality-view collection is the same as for conversion with useFlexFields = true
— see Example 9-25.

Example 9-35 Student Duality View Document Collection (useFlexFields = false)

Compare this with the input student document set, Example 9-1, which (with conversion using
minFieldFrequency = 25 and minTypeFrequency = 15) has only one outlier field: age (with a
type-occurrence frequency of 10%).

These are the only differences (ignoring field order, which is irrelevant):

• Document identifier field _id and document-state field _metadata have been added. (Every
document supported by a duality view has these fields.)

• Fields ora$mapCourseId and ora$mapStudentId have been added. These correspond to
the identifying columns (primary-key columns in this case) for underlying mapping table
map_table_course_root_to_student_root. Their values are the same as the values of
fields courseNumber and studentId, respectively.

• Even though the document for student Luis F. (studentId = 9) failed import into the
student duality view (because field age has the string value "Nineteen", and its 10%
occurrence is a type-occurrence outlier), that document is nevertheless present in the
duality view. When we import documents into the course and teacher duality views, a row
is added to table student_root that has 9 as the value for column
student_root.student_id, because studentId with value 9 is present in both input tables
course_tab and teacher_tab.

The age field value for that student document for Luis F. is (JSON) null, however (not
"Nineteen" and not 19). No age field exists in either of the course or teacher input
document sets, so importing their student data for Luis F. into the course and teacher

Chapter 9
Import After Conversion with useFlexFields=false

9-114

views stores SQL NULL in the age column in table student_root. And that NULL column
value maps to JSON null in the student documents.

There are no other differences. In particular, mixed-type field avgGrade is unchanged from the
input data, as it is not an outlier: each of its types occurs in more than 15% of the documents.

{
 "_id" : 1,
 "_metadata" :
 {
 "etag" : "4F39C8B86F4295AD2958B18A77B0AACC",
 "asof" : "00000000004DB839"
 },
 "age" : 20,
 "name" : "Donald P.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 1
}

{
 "_id" : 2,
 "_metadata" :
 {
 "etag" : "758A4F3E6EF3152A4FA0892AB38635D4",
 "asof" : "00000000004DB839"
 },
 "age" : 21,

Chapter 9
Import After Conversion with useFlexFields=false

9-115

 "name" : "Elena H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 2,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 2,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 2,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },
 "studentId" : 2
}

{
 "_id" : 3,
 "_metadata" :
 {
 "etag" : "06905F120EF74124C5985354BBCE5CC1",
 "asof" : "00000000004DB839"
 },
 "age" : 20,
 "name" : "Francis K.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 3,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {

Chapter 9
Import After Conversion with useFlexFields=false

9-116

 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 3
}

{
 "_id" : 4,
 "_metadata" :
 {
 "etag" : "50847D1AB63537118A6133A4CC1B8708",
 "asof" : "00000000004DB839"
 },
 "age" : 19,
 "name" : "Georgia D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 4,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 4,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 4,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 203,
 "dormName" : "LMN"
 },
 "studentId" : 4
}

{
 "_id" : 5,
 "_metadata" :
 {
 "etag" : "FD6E27A868C56D1EF9C7AEB3F08C7F9B",
 "asof" : "00000000004DB839"
 },
 "age" : 21,

Chapter 9
Import After Conversion with useFlexFields=false

9-117

 "name" : "Hye E.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 5,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 5,
 "name" : "Algebra",
 "avgGrade" : 90,
 "courseNumber" : "MATH101"
 }
],
 "advisorId" : 103,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 5
}

{
 "_id" : 6,
 "_metadata" :
 {
 "etag" : "2BDA7862330B0687F22F830F3E314E34",
 "asof" : "00000000004DB839"
 },
 "age" : 21,
 "name" : "Ileana D.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 6,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 6
}

{

Chapter 9
Import After Conversion with useFlexFields=false

9-118

 "_id" : 7,
 "_metadata" :
 {
 "etag" : "F1EF0CCD54EDFA78D2263D7E742D6CE8",
 "asof" : "00000000004DB839"
 },
 "age" : 20,
 "name" : "Jatin S.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 7,
 "name" : "Algorithms",
 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 7,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 204,
 "dormName" : "QWE"
 },
 "studentId" : 7
}

{
 "_id" : 8,
 "_metadata" :
 {
 "etag" : "9A25A267BC08858E0F754E0C00B32F9E",
 "asof" : "00000000004DB839"
 },
 "age" : 21,
 "name" : "Katie H.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 8,
 "name" : "Data Structures",
 "avgGrade" : "TBD",
 "courseNumber" : "CS102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 8,
 "name" : "Advanced Algebra",

Chapter 9
Import After Conversion with useFlexFields=false

9-119

 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 102,
 "dormitory" :
 {
 "dormId" : 205,
 "dormName" : "GHI"
 },
 "studentId" : 8
}

{
 "_id" : 10,
 "_metadata" :
 {
 "etag" : "94376DA05B92E47718AF70A31FBE56E7",
 "asof" : "00000000004DB839"
 },
 "age" : 20,
 "name" : "Ming L.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 10,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 202,
 "dormName" : "XYZ"
 },
 "studentId" : 10
}

{
 "_id" : 9,
 "_metadata" :
 {
 "etag" : "579824C71904C46901BBA605E8539943",
 "asof" : "00000000004DB839"
 },
 "age" : null,
 "name" : "Luis F.",
 "courses" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 9,
 "name" : "Algorithms",

Chapter 9
Import After Conversion with useFlexFields=false

9-120

 "avgGrade" : 75,
 "courseNumber" : "CS101"
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 9,
 "name" : "Calculus",
 "avgGrade" : 95,
 "courseNumber" : "MATH102"
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 9,
 "name" : "Advanced Algebra",
 "avgGrade" : 82,
 "courseNumber" : "MATH103"
 }
],
 "advisorId" : 101,
 "dormitory" :
 {
 "dormId" : 201,
 "dormName" : "ABC"
 },
 "studentId" : 9
}

Example 9-36 Course Duality View Document Collection (useFlexFields = false)

Compare this with the input course document set, Example 9-3, which (with conversion using
minFieldFrequency = 25 and minTypeFrequency = 15) has only one outlier field: Notes (with an
occurrence frequency of 20%).

These are the only differences (ignoring field order, which is irrelevant):

• Document identifier field _id and document-state field _metadata have been added. (Every
document supported by a duality view has these fields.)

• Fields ora$mapCourseId and ora$mapStudentId have been added. These correspond to
the identifying columns (primary-key columns in this case) for underlying mapping table
map_table_course_root_to_student_root. Their values are the same as the values of
fields courseNumber and studentId, respectively.

• Even though the document with courseId = "MATH101") failed import into the course
duality view (because field Notes occurs in only 20% of the documents and is thus an
occurrence outlier), that document is present in the duality view, but without field Notes (it
was not mapped to any column by the converter, and there is no flex column in which to
store its value because useFlexFields was false) and without field creditHours.

The problematic document is supported by the view, because when we import documents
into the student and teacher duality views, a row is added to table course_root that has
"MATH101" as the value for column course_root.course_id. This is because column
course_id with value "MATH101" is present in both input tables student_tab and
teacher_tab.

Because the course document with field Notes failed to import, that input document's field
creditHours is also missing from the document supported by the view. Field creditHours

Chapter 9
Import After Conversion with useFlexFields=false

9-121

isn't provided for that document by importing any documents into the student or teacher
view. Only table course_tab contains column credit_hours.

{
 "_id" : "CS101",
 "_metadata" :
 {
 "etag" : "7600B24570B58297702B95B8DE4F1B00",
 "asof" : "00000000004DB847"
 },
 "name" : "Algorithms",
 "teacher" :
 {
 "name" : "Betty Z.",
 "teacherId" : 102
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",
 "studentId" : 4
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 7,
 "name" : "Jatin S.",
 "studentId" : 7
 },
 {
 "ora$mapCourseId" : "CS101",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 }
],
 "creditHours" : 5,
 "courseId" : "CS101"
}

{
 "_id" : "CS102",
 "_metadata" :

Chapter 9
Import After Conversion with useFlexFields=false

9-122

 {
 "etag" : "C3813410219036CF0E210FFCE3917FEB",
 "asof" : "00000000004DB847"
 },
 "name" : "Data Structures",
 "teacher" :
 {
 "name" : "Betty Z.",
 "teacherId" : 102
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 5,
 "name" : "Hye E.",
 "studentId" : 5
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 7,
 "name" : "Jatin S.",
 "studentId" : 7
 },
 {
 "ora$mapCourseId" : "CS102",
 "ora$mapStudentId" : 8,
 "name" : "Katie H.",
 "studentId" : 8
 }
],
 "creditHours" : 3,
 "courseId" : "CS102"
}

{
 "_id" : "MATH101",
 "_metadata" :
 {
 "etag" : "5E24FBF3B13A297A89FE1D4C68C705BE",
 "asof" : "00000000004DB847"
 },
 "name" : "Algebra",
 "teacher" :

Chapter 9
Import After Conversion with useFlexFields=false

9-123

 {
 "name" : "Abdul J.",
 "teacherId" : 101
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 1,
 "name" : "Donald P.",
 "studentId" : 1
 },
 {
 "ora$mapCourseId" : "MATH101",
 "ora$mapStudentId" : 5,
 "name" : "Hye E.",
 "studentId" : 5
 }
],
 "courseId" : "MATH101"
}

{
 "_id" : "MATH102",
 "_metadata" :
 {
 "etag" : "4B55E2EF38E6DDAF6777251168DD07A5",
 "asof" : "00000000004DB847"
 },
 "name" : "Calculus",
 "teacher" :
 {
 "name" : "Abdul J.",
 "teacherId" : 101
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 2,
 "name" : "Elena H.",
 "studentId" : 2
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",
 "studentId" : 4
 },
 {
 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 },
 {

Chapter 9
Import After Conversion with useFlexFields=false

9-124

 "ora$mapCourseId" : "MATH102",
 "ora$mapStudentId" : 10,
 "name" : "Ming L.",
 "studentId" : 10
 }
],
 "creditHours" : 4,
 "courseId" : "MATH102"
}

{
 "_id" : "MATH103",
 "_metadata" :
 {
 "etag" : "C59E6274FE813279ECC28C73CA4AB121",
 "asof" : "00000000004DB847"
 },
 "name" : "Advanced Algebra",
 "teacher" :
 {
 "name" : "Colin J.",
 "teacherId" : 103
 },
 "students" :
 [
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 3,
 "name" : "Francis K.",
 "studentId" : 3
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 4,
 "name" : "Georgia D.",
 "studentId" : 4
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 6,
 "name" : "Ileana D.",
 "studentId" : 6
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 8,
 "name" : "Katie H.",
 "studentId" : 8
 },
 {
 "ora$mapCourseId" : "MATH103",
 "ora$mapStudentId" : 9,
 "name" : "Luis F.",
 "studentId" : 9
 }
],

Chapter 9
Import After Conversion with useFlexFields=false

9-125

 "creditHours" : "3",
 "courseId" : "MATH103"
}

Creating data-guide JSON schemas for the duality views is identical to doing so for the
useFlexFields = true case. — see Example 9-27. And the resulting data guides for the
student and teacher views are the same as for that case — see Example 9-28 and
Example 9-29.

But the data guide created for the course view is not the same:

Example 9-37 Course Duality View Data Guide, for useFlexFields = false Case

This data guide JSON schema summarizes the collection of course documents supported by
duality view course, for the conversion case where useFlexFields is false. It is identical to
the data guide for the conversion case where useFlexFields is true, except that it is missing
the Notes field.

{
 "type" : "object",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "_id" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "_id",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Advanced Algebra",
 "o:high_value" : "Data Structures",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 16,
 "minLength" : 7
 },

Chapter 9
Import After Conversion with useFlexFields=false

9-126

 "teacher" :
 {
 "type" : "object",
 "o:preferred_column_name" : "teacher",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Abdul J.",
 "o:high_value" : "Colin J.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 8,
 "minLength" : 8
 },
 "teacherId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "teacherId",
 "o:frequency" : 100,
 "o:low_value" : 101,
 "o:high_value" : 103,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 103,
 "minimum" : 101
 }
 }
 },
 "courseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "courseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },

Chapter 9
Import After Conversion with useFlexFields=false

9-127

 "students" :
 {
 "type" : "array",
 "o:preferred_column_name" : "students",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "items" :
 {
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "o:length" : 16,
 "o:preferred_column_name" : "name",
 "o:frequency" : 100,
 "o:low_value" : "Donald P.",
 "o:high_value" : "Ming L.",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 10,
 "minLength" : 6
 },
 "studentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "studentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 },
 "ora$mapCourseId" :
 {
 "type" : "string",
 "o:length" : 8,
 "o:preferred_column_name" : "ora$mapCourseId",
 "o:frequency" : 100,
 "o:low_value" : "CS101",
 "o:high_value" : "MATH103",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maxLength" : 7,
 "minLength" : 5
 },

Chapter 9
Import After Conversion with useFlexFields=false

9-128

 "ora$mapStudentId" :
 {
 "type" : "number",
 "o:preferred_column_name" : "ora$mapStudentId",
 "o:frequency" : 100,
 "o:low_value" : 1,
 "o:high_value" : 10,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "maximum" : 10,
 "minimum" : 1
 }
 }
 }
 },
 "_metadata" :
 {
 "type" : "object",
 "o:preferred_column_name" : "_metadata",
 "o:frequency" : 100,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true,
 "properties" :
 {
 "asof" :
 {
 "type" : "binary",
 "o:length" : 8,
 "o:preferred_column_name" : "asof",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true
 },
 "etag" :
 {
 "type" : "binary",
 "o:length" : 16,
 "o:preferred_column_name" : "etag",
 "o:frequency" : 100,
 "o:low_value" : "",
 "o:high_value" : "",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "required" : true
 }
 }
 },
 "creditHours" :

Chapter 9
Import After Conversion with useFlexFields=false

9-129

 {
 "oneOf" :
 [
 {
 "type" : "number",
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 60,
 "o:low_value" : 3,
 "o:high_value" : 5,
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "maximum" : 5,
 "minimum" : 3
 },
 {
 "type" : "string",
 "o:length" : 1,
 "o:preferred_column_name" : "creditHours",
 "o:frequency" : 20,
 "o:low_value" : "3",
 "o:high_value" : "3",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:19:03",
 "o:sample_size" : 5,
 "maxLength" : 1,
 "minLength" : 1
 }
]
 }
 }
}

This is the missing Notes entry (from the useFlexFields = true case):

"Notes" : {"type" : "string",
 "o:length" : 64,
 "o:preferred_column_name" : "Notes",
 "o:frequency" : 20,
 "o:low_value" : "Prerequisite for Advanced Algebra",
 "o:high_value" : "Prerequisite for Advanced Algebra",
 "o:num_nulls" : 0,
 "o:last_analyzed" : "2025-01-15T21:11:48",
 "o:sample_size" : 5,
 "maxLength" : 33,
 "minLength" : 33}

Chapter 9
Import After Conversion with useFlexFields=false

9-130

See Also:

• DBMS_JSON_DUALITY in Oracle Database PL/SQL Packages and Types
Reference for information about function validate_import_report

• JSON Patch and JSON Pointer for information about the error content reported
by DBMS_JSON_DUALITY.validate_import_report

Chapter 9
Import After Conversion with useFlexFields=false

9-131

https://www.rfc-editor.org/rfc/rfc6902
https://www.rfc-editor.org/rfc/rfc6901

10
GraphQL Language Used for JSON-Relational
Duality Views

GraphQL is an open-source, general query and data-manipulation language that can be used
with various databases. A subset of GraphQL syntax and operations are supported by Oracle
Database for creating JSON-relational duality views.

This chapter describes this supported subset of GraphQL. It introduces syntax and features
that are not covered in Creating Car-Racing Duality Views Using GraphQL, which presents
some simple examples of creating duality views using GraphQL.

The Oracle syntax supported for creating duality views with GraphQL is a proper subset of
GraphQL as specified in Sections B.1, B.2, and B.3 of the GraphQL specification (October
2021), except that user-supplied names must follow satisfy some Oracle-specific rules
specified here.

The Oracle GraphQL syntax also provides some additional, optional features that facilitate use
with JSON-relational duality views. If you need to use GraphQL programmatically, and you
want to stick with the standard GraphQL syntax, you can do that. If you don't have that need
then you might find the optional syntax features convenient.

For readers familiar with GraphQL, the supported subset of the language does not include
these standard GraphQL constructs:

• Mutations and subscriptions. Queries are the only supported operations.

• Inline fragments. Only a predefined FragmentSpread syntax is supported.

• Type definitions (types interface, union, enum, and input object, as well as type
extensions). Only GraphQL Object and Scalar type definitions are supported.

• Variable definitions.

Using GraphQL to define a duality view has some advantages over using SQL to do so. These
are covered in Creating Car-Racing Duality Views Using GraphQL. In sum, the GraphQL
syntax is simpler and less verbose. Having to describe the form of supported documents and
their parts using explicit joins between results of JSON-generation subqueries can be a bother
and error prone.

Oracle GraphQL support for duality views includes these syntax extensions and simplifications:

1. Scalar Types

Oracle Database supports additional GraphQL scalar types, which correspond to Oracle
JSON-language scalar types and to SQL scalar types. See Oracle GraphQL Scalar Types.

2. Implicit GraphQL Field Aliasing

A GraphQL field name can be preceded by an alias and a colon (:). Unaliased GraphQL
field names in a duality-view definition are automatically taken as aliases to the actual
GraphQL field names. In effect, this is a shorthand convenience for providing case-
sensitive matching that corresponds to field names in the documents supported by the
duality view. See Implicit GraphQL Field Aliasing.

3. GraphQL Directives For Duality Views

10-1

Oracle GraphQL provides directives (@link, @[un]nest, @flex, @generated, and @hidden),
which specify particular handling when defining duality views. See Oracle GraphQL
Directives for JSON-Relational Duality Views.

4. GraphQL Names in Duality-View Definitions

If the table and column names you use in a duality-view definition are directly usable as
standard GraphQL field names then they are used as is. This is the case, for instance in
the car-racing duality views.

More generally, a duality-view definition specifies a mapping between (1) JSON field
names, (2) GraphQL type and field names, and (3) SQL table and column names. The first
two are case-sensitive, whereas unquoted SQL names are case-insensitive. Additionally,
the characters allowed in names differ between GraphQL and SQL.

For these reasons, Oracle relaxes and extends the unquoted GraphQL names allowed in
duality-view definitions.

See Names Used in GraphQL Duality-View Definitions.

Oracle GraphQL Scalar Types

Table 10-1 lists the Oracle-supported GraphQL scalar types that correspond to Oracle JSON
scalar types and to Oracle SQL scalar types. It lists both standard GraphQL types and custom,
Oracle-specific GraphQL types.

Table 10-1 Scalar Types: Oracle JSON, GraphQL, and SQL

Oracle JSON-Language Scalar
Type

GraphQL Scalar Type SQL Scalar Type

binary Binary (Oracle-specific) RAW or BINARY
date Date (Oracle-specific) DATE
day-second interval DaysecondInterval (Oracle-

specific)
INTERVAL DAY TO SECOND

double Float (standard GraphQL) BINARY_DOUBLE
float Float (standard GraphQL) BINARY_FLOAT
timestamp Timestamp (Oracle-specific) TIMESTAMP
vector Vector (Oracle-specific) VECTOR
timestamp with time zone TimestampWithTimezone

(Oracle-specific)
TIMESTAMP WITH TIME ZONE

year-month interval YearmonthInterval (Oracle-
specific)

INTERVAL YEAR TO MONTH

Implicit GraphQL Field Aliasing

The body of a duality view definition is a GraphQL query. If a GraphQL field name is used in
that query with no alias then it is matched case-insensitively to pick up the actual GraphQL
field name. In a standard GraphQL query, such matching is case-sensitive.

This convenience feature essentially provides the unaliased field with an alias that has the
lettercase shown in the view definition; that is, it's taken case-sensitively. The alias
corresponds directly with the JSON field name used in supported documents. The actual
GraphQL field name is derived from a SQL table or column name.

For example, if a GraphQL field name is defined as myfield (lowercase), and a duality view-
creation query uses myField then the queried field is implicitly treated as if it were written

Chapter 10

10-2

myField : myfield, and a JSON document supported by the view would have a JSON field
named myField.

Names Used in GraphQL Duality-View Definitions

Oracle relaxes and extends the unquoted GraphQL names allowed in duality-view definitions.
This is done to facilitate (1) specifying the field names of the JSON documents supported by a
duality view and (2) the use of SQL identifier syntax (used for tables and columns) in GraphQL
names.

If none of the names you use in a GraphQL duality-view definition contain the period (dot)
character, (.) or need to be quoted, then the corresponding GraphQL schema is fully compliant
with the GraphQL standard. In this case, it should work with all existing GraphQL tools.

Otherwise (the more typical case), it is not fully standard-compliant. It can be used to create a
JSON-relational duality view, but it might not work correctly with some GraphQL tools.

Standard GraphQL names are restricted in these ways:

• They can only contain alphanumerical ASCII characters and underscore (_) characters.

• They cannot start with two underscore characters: __.

SQL names, if quoted, can contain any characters except double-quote (") (also called
quotation mark, code point 34) and null (code point 0). Unquoted SQL names can contain
alphanumeric characters (ASCII or not), underscores (_), number signs (#), and dollar signs
($). A fully qualified table name contains a period (dot) character (.), separating the database
schema (user) name from the table name.

The following rules apply to GraphQL names allowed in duality-view definitions. The last of
these rules applies to fully qualified SQL table names, that is, to names of the form <schema
name>.<table name>, which is composed of three parts: a database schema (user) name, a
period (dot) character (.), and a database table name. The other rules apply to SQL names
that don't contain a dot.

• The GraphQL name that corresponds to a quoted SQL name (identifier) is the same
quoted name.

For example, "this name" is the same for SQL and GraphQL.

• The GraphQL name that corresponds to an unquoted SQL name that is composed of only
ASCII alphanumeric or underscore (_) characters is the same as the SQL name, except
that:

– A GraphQL field name is lowercase.

For example, GraphQL field name MY_NAME corresponds to SQL name my_name.

– A GraphQL type name is capitalized.

For example, GraphQL type name My_name corresponds to SQL name MY_NAME.

• The GraphQL name that corresponds to an unquoted SQL name that has one or more
non-ASCII alphanumeric characters, number sign (#) characters, or dollar sign ($)
characters is the same name, but uppercased and quoted. (In Oracle SQL, such a name is
treated case-insensitively, whether quoted or not.)

For example, GraphQL name "MY#NAME$4" corresponds to SQL name my#name$4
• The GraphQL name that corresponds to a fully qualified SQL table name, which has the

form <schema name>.<table name>, is the concatenation of (1) the GraphQL name
corresponding to <schema name>, (2) the period (dot) character (.), and (3) the GraphQL

Chapter 10

10-3

name corresponding to <table name>. Note that the dot is not quoted in the GraphQL
name.

Examples for fully qualified SQL names:

– GraphQL name My_schema.Mytable corresponds to SQL name MY_SCHEMA.MYTABLE.

– GraphQL name "mySchema".Mytable corresponds to SQL name "mySchema".mytable.

– GraphQL name "mySchema"."my table" corresponds to SQL name "mySchema"."my
table".

– GraphQL name "Schema#3.Table$4" corresponds to SQL name SCHEMA#3.TABLE$4.

• Oracle GraphQL Directives for JSON-Relational Duality Views
GraphQL directives are annotations that specify additional information or particular
behavior for a GraphQL schema. All of the Oracle GraphQL directives for defining duality
views apply to GraphQL fields.

Related Topics

• Creating Car-Racing Duality Views Using GraphQL
Team, driver, and race duality views for the car-racing application are created using
GraphQL.

• Flex Columns, Beyond the Basics
All about duality-view flex columns: rules of the road; when, where, and why to use them;
field-name conflicts; gotchas.

See Also:

Graph QL

10.1 Oracle GraphQL Directives for JSON-Relational Duality
Views

GraphQL directives are annotations that specify additional information or particular behavior for
a GraphQL schema. All of the Oracle GraphQL directives for defining duality views apply to
GraphQL fields.

A GraphQL directive is a name with prefix @, followed in some cases by arguments.

Oracle GraphQL for defining duality views provides the following directives:

• Directive @flex designates a JSON-type column as being a flex column for the duality view.
Use of this directive is covered in Flex Columns, Beyond the Basics.

• Directives @nest and @unnest specify nesting and unnesting (flattening) of intermediate
objects in a duality-view definition. They correspond to SQL keywords NEST and UNNEST,
respectively.

Restrictions (an error is raised if not respected):

– You cannot nest fields that correspond to identifying columns of the root table (primary-
key columns, identity columns, or columns with a unique constraint or unique index).

– You cannot unnest a field that has an alias.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-4

https://spec.graphql.org/October2021/

Example 10-1 illustrates the use of @nest. See Creating Car-Racing Duality Views Using
GraphQL for examples that use @unnest.

• Directive @link disambiguates multiple foreign-key links between columns. See Oracle
GraphQL Directive @link.

• Directive @generated specifies a JSON field that's generated. Generated fields augment
the documents supported by a duality view. They are not mapped to individual underlying
columns, and are thus read-only.

Directive @generated takes optional argument path or sql, with an value that's used to
calculate the JSON field value. The path value is a SQL/JSON path expression. The sql
value is a SQL expression or query. See Generated Fields, Hidden Fields.

• Directive @hidden specifies a JSON field that's hidden; it is not present in any document
supported by the duality view. Directive @hidden takes no arguments. See Generated
Fields, Hidden Fields.

• Directives @[no]update, @[no]insert, and @[no]delete serve as duality-view updating
annotations. They correspond to SQL annotation keywords [NO]UPDATE, [NO]INSERT, and
[NO]DELETE, which are described in Annotations (NO)UPDATE, (NO)INSERT,
(NO)DELETE, To Allow/Disallow Updating Operations.

• Directives @[no]check determine which duality-view parts contribute to optimistic
concurrency control. They correspond to SQL annotation keywords [NO]CHECK, which are
described in described in Creating Car-Racing Duality Views Using GraphQL.

Example 10-1 Creating Duality View DRIVER_DV1, With Nested Driver Information

This example creates duality view driver_dv1, which is the same as view driver_dv defined
with GraphQL in Example 3-7 and defined with SQL in Example 3-3, except that fields name
and points from columns of table driver are nested in a subobject that's the value of field
driverInfo.1 The specification of field driverInfo is the only difference between the definition
of view driver_dv1 and that of the original view, driver_dv.

The corresponding GraphQL and SQL definitions of driver_dv1 are shown.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv1 AS
 driver
 {_id : driver_id,
 driverInfo : driver @nest {team : name,
 points : points},
 team @unnest {teamId : team_id,
 name : name},
 race : driver_race_map
 [{driverRaceMapId : driver_race_map_id,
 race @unnest {raceId : race_id,
 name : name},
 finalPosition : position}]};

Here is the corresponding SQL definition:

CREATE JSON RELATIONAL DUALITY VIEW driver_dv1 AS
 SELECT JSON {'_id' : d.driver_id,
 'driverInfo' : {'name' : d.name,
 'points' : d.points},

1 Updating and ETAG-checking annotations are not shown here.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-5

 UNNEST
 (SELECT JSON {'teamId' : t.team_id,
 'team' : t.name}
 FROM team t
 WHERE t.team_id = d.team_id),
 'race' :
 [SELECT JSON {'driverRaceMapId' : drm.driver_race_map_id,
 UNNEST
 (SELECT JSON {'raceId' : r.race_id,
 'name' : r.name}
 FROM race r
 WHERE r.race_id = drm.race_id),
 'finalPosition' : drm.position}
 FROM driver_race_map drm
 WHERE drm.driver_id = d.driver_id]}
 FROM driver d;

Table driver is the root table of the view, so its fields are all unnested in the view by default,
requiring the use of @nest in GraphQL to nest them.

(Fields from non-root tables are nested by default, requiring the explicit use of @unnest
(keyword UNNEST in SQL) to unnest them. This is the case for team fields teamId and name as
well as race fields raceId and name.)

• Oracle GraphQL Directive @link
GraphQL directive @link disambiguates multiple foreign-key links between columns in
tables underlying a duality view.

Related Topics

• Generated Fields, Hidden Fields
Instead of mapping a JSON field directly to a relational column, a duality view can
generate the field using a SQL/JSON path expression, a SQL expression, or a SQL query.
Generated fields and fields mapped to columns can be hidden, that is, not shown in
documents supported by the view.

10.1.1 Oracle GraphQL Directive @link
GraphQL directive @link disambiguates multiple foreign-key links between columns in tables
underlying a duality view.

Directive @link specifies a link, or join, between columns of the tables underlying a duality
view. Usually the columns are for different tables, but columns of the same table can also be
linked, in which case the foreign key is said to be self-referencing.

The fact that in general you need not explicitly specify foreign-key links is an advantage that
GraphQL presents over SQL for duality-view definition — it's less verbose, as such links are
generally inferred by the underlying table-dependency graph.

The only time you need to explicitly use a foreign-key link in GraphQL is when either (1) there
is more than one foreign-key relation between two tables or (2) a table has a foreign key that
references the same table, or both. In such a case, you use an @link directive to specify a
particular link: the foreign key and the link direction.

An @link directive requires a single argument, named to or from, which specifies, for a duality-
view field whose value is a nested object, whether to use (1) a foreign key of the table whose

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-6

columns define the nested object's fields — the to direction or (2) a foreign key of the table
whose columns define the nesting/enclosing object's fields — the from direction.

The value of a to or from argument is a GraphQL list of strings, where each string names a
single foreign-key column (for example, to : ["FKCOL"]). A GraphQL list of more than one
string represents a compound foreign key, for example, to : ["FKCOL1", "FKCOL2"]). (A
GraphQL list corresponds to a JSON array. Commas are optional in GraphQL.)

@link Directive to Identify Different Foreign-Key Relations Between Tables

The first use case for @link directives, disambiguating multiple foreign-key relations between
different tables, is illustrated by duality views team_dv2 and driver_dv2.

The team_w_lead table definition in Example 10-2 has a foreign-key link from column
lead_driver to driver table column driver_id. And the driver table definition there has a
foreign-key link from its column team_id to the team_w_lead table's primary-key column,
team_id.

The table-dependency graph in Figure 10-1 shows these two dependencies. It's the same as
the graph in Figure 3-1, except that it includes the added link from table team_w_lead's foreign-
key column lead_driver to primary-key column driver_id of table driver.

The corresponding team duality-view definitions are in Example 10-3 and Example 10-4.

Figure 10-1 Car-Racing Example With Team Leader, Table-Dependency Graph

driver_race_map

race driver

team_w_lead

team_id (PK)lead_driver (FK)

team_id (FK)driver_id (PK)

driver_id (PK)

driver_id (FK)race_id (FK)

race_id (PK)

FK: Foreign Key

Legend:

PK: Primary Key

Example 10-2 Creating Table TEAM_W_LEAD With LEAD_DRIVER Column

This example creates table team_w_lead, which is the same as table team in Example 2-4,
except that it has the additional column lead_driver, which is a foreign key to column
driver_id of table driver.

CREATE TABLE team_w_lead
 (team_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 lead_driver INTEGER,

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-7

 points INTEGER NOT NULL,
 CONSTRAINT team_pk PRIMARY KEY(team_id),
 CONSTRAINT lead_fk FOREIGN KEY(lead_driver) REFERENCES driver(driver_id));

Table driver, in turn, has foreign-key column team_id, which references column team_id of
the team table. For the examples here, we assume that table driver has the same definition
as in Example 2-4, except that its foreign key refers to table team_w_lead, not to the table team
of Example 2-4. In other words, we use this driver table definition here:

CREATE TABLE driver
 (driver_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 points INTEGER NOT NULL,
 team_id INTEGER,
 CONSTRAINT driver_pk PRIMARY KEY(driver_id),
 CONSTRAINT driver_fk FOREIGN KEY(team_id) REFERENCES team_w_lead(team_id));

Because there are two foreign-key links between tables team_w_lead and driver, the team
and driver duality views that make use of these tables need to use directive @link, as shown in
Example 10-3 and Example 10-4.

Example 10-3 Creating Duality View TEAM_DV2 With LEAD_DRIVER, Showing
GraphQL Directive @link

This example is similar to Example 3-6, but it uses table team_w_lead, defined in
Example 10-2, which has foreign-key column lead_driver. Because there are two foreign-key
relations between tables team_w_lead and driver it's necessary to use directive @link to
specify which foreign key is used where.

The value of top-level JSON field leadDriver is a driver object provided by foreign-key column
lead_driver of table team_w_lead. The value of top-level field driver is a JSON array of driver
objects provided by foreign-key column team_id of table driver.

The @link argument for field leadDriver uses from because its value, lead_driver, is the
foreign-key column in table team_w_lead, which underlies the outer/nesting object. This is a
one-to-one join.

The @link argument for field driver uses to because its value, team_id, is the foreign-key
column in table driver, which underlies the inner/nested object. This is a one-to-many join.

CREATE JSON RELATIONAL DUALITY VIEW team_dv2 AS
 team_w_lead
 {_id : team_id,
 name : name,
 points : points,
 leadDriver : driver @link (from : ["LEAD_DRIVER"])
 {driverId : driver_id,
 name : name,
 points : points},
 driver : driver @link (to : ["TEAM_ID"])
 [{driverId : driver_id,

2 We assume the definition of table driver given in Example 10-2.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-8

 name : name,
 points : points}]};

Example 10-4 Creating Duality View DRIVER_DV2, Showing GraphQL Directive @link

This example is similar to Example 3-7, but it uses table team_w_lead, defined in
Example 10-2, which has foreign-key column lead_driver. Because there are two foreign-key
relations between tables team_w_lead and driver2 it's necessary to use directive @link to
specify which foreign key is used where.

The @link argument for field team uses from because its value, team_id, is the foreign-key
column in table driver, which underlies the outer/nesting object.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv2 AS
 driver
 {_id : driver_id
 name : name
 points : points
 team_w_lead
 @link (from: ["TEAM_ID"])
 @unnest
 {teamId : team_id,
 team : name}
 race : driver_race_map
 [{driverRaceMapId : driver_race_map_id,
 race @unnest
 {raceId : race_id,
 name : name}
 finalPosition : position}]};

@link Directive to Identify a Foreign-Key Relation That References the Same Table

The second use case for @link directives, identifying a self-referencing foreign key, from a
given table to itself, is illustrated by duality views team_dv3, driver_dv3, and
driver_manager_dv.3

The driver_w_mgr table definition in Example 10-5 has a foreign-key link from column
manager_id to column driver_id of the same table, driver_w_mgr.4

The table-dependency graph in Figure 10-2 shows this self-referential table dependency. It's a
simplified version of the graph in Figure 3-1 (no race table or driver_race map mapping table),
but it includes the added link from table driver_w_mgr's foreign-key column manager_id to
primary-key column driver_id of the same table.

3 The data used here to illustrate this use case is fictional.
4 There might not be a real-world use case for a race-car driver's manager who is also a driver. The ability to identify a

foreign-key link from a table to itself is definitely useful, however.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-9

Figure 10-2 Car-Racing Example With Driver Self-Reference, Table-Dependency Graph

team

team_id (PK)

team_id (FK)

driver_id (PK)

manager_id (FK)FK: Foreign Key

Legend:

PK: Primary Key

driver_w_mgr

The team_dv3 and driver_dv3 duality-view definitions are in Example 10-6 and Example 10-7,
respectively. Concerning the use of @link, the salient differences from the original car-racing
views, team_dv and driver_dv, are these:

• The information in array driver of view team_dv3 identifies each driver's manager, in field
managerId.

• View driver_dv3 includes the identifier of the driver's manager, in field boss.

The third duality view here, driver_manager_dv contains information for the manager as a
driver (fields name and points), and it includes information for the drivers who report to the
manager (array reports). Its definition is in Example 10-8.

Example 10-5 Creating Table DRIVER_W_MGR With Column MANAGER_ID

This example creates table driver_w_mgr, which is the same as table driver in Example 2-4,
except that it has the additional column manager_id, which is a foreign key to column
driver_id of the same table (driver_w_mgr).

CREATE TABLE driver_w_mgr
 (driver_id INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 name VARCHAR2(255) NOT NULL UNIQUE,
 points INTEGER NOT NULL,
 team_id INTEGER,
 manager_id INTEGER,
 CONSTRAINT driver_pk PRIMARY KEY(driver_id),
 CONSTRAINT driver_fk1 FOREIGN KEY(manager_id) REFERENCES driver_w_mgr(driver_id),
 CONSTRAINT driver_fk2 FOREIGN KEY(team_id) REFERENCES team(team_id));

Because foreign-key column manager_id references the same table, driver_w_mgr, the driver
duality view (driver_dv3) and the manager duality view (driver_manager_dv) that make use of
this table need to use directive @link, as shown in Example 10-7 and Example 10-8,
respectively.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-10

Example 10-6 Creating Duality View TEAM_DV3 (Drivers with Managers)

The definition of duality view team_dv3 is the same as that of duality view team_dv in
Example 3-6, except that it uses table driver_w_mgr instead of table driver, and the driver
information in array driver includes field managerId, whose value is the identifier of the driver's
manager (from column manager_id of table driver_w_mgr).

CREATE JSON RELATIONAL DUALITY VIEW team_dv3 AS
 team @insert @update @delete
 {_id : team_id,
 name : name,
 points : points,
 driver : driver_w_mgr @insert @update
 [{driverId : driver_id,
 name : name,
 managerId : manager_id,
 points : points @nocheck}]};

This is the equivalent SQL definition of the view:

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW team_dv3 AS
 SELECT JSON {'_id' : t.team_id,
 'name' : t.name,
 'points' : t.points,
 'driver' :
 [SELECT JSON {'driverId' : d.driver_id,
 'name' : d.name,
 'managerId' : d.manager_id,
 'points' : d.points WITH NOCHECK}
 FROM driver_w_mgr d WITH INSERT UPDATE
 WHERE d.team_id = t.team_id]}
 FROM team t WITH INSERT UPDATE DELETE;

Three team documents are inserted into view team_dv3. Each driver object in array driver has
a managerId field, whose value is either the identifier of the driver's manager or null, which
indicates that the driver has no manager (the driver is a manager). In this use case all drivers
on a team have the same manager (who is also on the team).

INSERT INTO team_dv3 VALUES ('{"_id" : 301,
 "name" : "Red Bull",
 "points" : 0,
 "driver" : [{"driverId" : 101,
 "name" : "Max Verstappen",
 "managerId" : null,
 "points" : 0},
 {"driverId" : 102,
 "name" : "Sergio Perez",
 "managerId" : 101,
 "points" : 0}]}');

INSERT INTO team_dv3 VALUES ('{"_id" : 302,
 "name" : "Ferrari",
 "points" : 0,
 "driver" : [{"driverId" : 103,

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-11

 "name" : "Charles Leclerc",
 "managerId" : null,
 "points" : 0},
 {"driverId" : 104,
 "name" : "Carlos Sainz Jr",
 "managerId" : 103,
 "points" : 0}]}');

INSERT INTO team_dv3 VALUES ('{"_id" : 303,
 "name" : "Mercedes",
 "points" : 0,
 "driver" : [{"driverId" : 105,
 "name" : "George Russell",
 "managerId" : null,
 "points" : 0},
 {"driverId" : 106,
 "name" : "Lewis Hamilton",
 "managerId" : 105,
 "points" : 0},
 {"driverId" : 107,
 "name" : "Liam Lawson",
 "managerId" : 105,
 "points" : 0}]}');

Example 10-7 Creating Duality View DRIVER_DV3 (Drivers with Managers)

This example is a simplified version of the view defined in Example 3-7. It includes neither the
team nor the race information for a driver. Instead it includes the identifier of the driver's
manager, in field boss.

It uses table driver_w_mgr, defined in Example 10-5, to obtain that manager information using
foreign-key column manager_id. Because that foreign-key relation references the same table,
driver_w_mgr, it's necessary to use directive @link to specify the foreign key.

The @link argument for field boss uses from because its value, ["MANAGER_ID"], names the
foreign-key column in table driver_w_mgr, which underlies the outer/nesting object. This is a
one-to-one join.

CREATE JSON RELATIONAL DUALITY VIEW driver_dv3 AS
 driver_w_mgr @insert @update @delete
 {_id : driver_id,
 name : name,
 points : points @nocheck,
 boss : driver_w_mgr @link (from : ["MANAGER_ID"])
 {driverId : driver_id,
 name : name}};

This is the equivalent SQL definition of the view, which makes the join explicit:

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW driver_dv3 AS
 SELECT JSON {'_id' : d1.driver_id,
 'name' : d1.name,
 'points' : d1.points WITH NOCHECK,
 'boss' : (SELECT JSON {'driverId' : d2.driver_id,
 'name' : d2.name,

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-12

 'points' : d2.points WITH NOCHECK}
 FROM driver_w_mgr d2
 WHERE d1.manager_id = d2.driver_id)}
 FROM driver_w_mgr d1 WITH INSERT UPDATE DELETE;

This query selects the document for driver 106 (Lewis Hamilton):

SELECT json_serialize(DATA PRETTY)
 FROM driver_dv3 v WHERE v.data."_id" = 106;

It shows that the driver, Lewis Hamilton, has manager George Russell. The driver-to-boss
relation is one-to-one.

JSON_SERIALIZE(DATAPRETTY)

{
 "_id" : 106,
 "_metadata" :
 {
 "etag" : "998443C3E7762F0EB88CB90899E3ECD1",
 "asof" : "0000000000000000"
 },
 "name" : "Lewis Hamilton",
 "points" : 0,
 "boss" :
 {
 "driverId" : 105,
 "name" : "George Russell",
 "points" : 0
 }
}

1 row selected.

Example 10-8 Creating Duality View DRIVER_MANAGER_DV

This duality view provides information about a driver who manages other drivers. Fields _id,
name, and points contain information about the manager. Field reports is an array of the
drivers reporting to the manager: their IDs, names and points.

The @link argument for field reports uses to because its value, ["MANAGER_ID"], names the
foreign-key column in table driver_manager_dv, which underlies the inner/nested object. This
is a one-to-many join.

CREATE JSON RELATIONAL DUALITY VIEW driver_manager_dv AS
 driver_w_mgr @insert @update @delete
 {_id : driver_id,
 name : name,
 points : points @nocheck,
 reports : driver_w_mgr @link (to : ["MANAGER_ID"])
 [{driverId : driver_id,
 name : name,
 points : points @nocheck}]};

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-13

This is the equivalent SQL definition of the view, which makes the join explicit:

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW driver_manager_dv AS
 SELECT JSON {'_id' : d1.driver_id,
 'name' : d1.name,
 'points' : d1.points WITH NOCHECK,
 'reports' : [SELECT JSON {'driverId' : d2.driver_id,
 'name' : d2.name,
 'points' : d2.points WITH NOCHECK}
 FROM driver_w_mgr d2
 WHERE d1.driver_id = d2.manager_id]}
 FROM driver_w_mgr d1 WITH INSERT UPDATE DELETE;

This query selects the document for driver (manager) 105 (George Russell):

SELECT json_serialize(DATA PRETTY)
 FROM driver_manager_dv v WHERE v.data."_id" = 105;

It shows that the manager, George Russell, has two drivers reporting to him, Lewis Hamilton
and Liam Lawson. The manager-to-reports relation is one-to-many.

JSON_SERIALIZE(DATAPRETTY)

{
 "_id" : 105,
 "_metadata" :
 {
 "etag" : "7D91177F7213E086ADD149C2193182FD",
 "asof" : "0000000000000000"
 },
 "name" : "George Russell",
 "points" : 0,
 "reports" :
 [
 {
 "driverId" : 106,
 "name" : "Lewis Hamilton",
 "points" : 0
 },
 {
 "driverId" : 107,
 "name" : "Liam Lawson",
 "points" : 0
 }
]
}

1 row selected.

Chapter 10
Oracle GraphQL Directives for JSON-Relational Duality Views

10-14

Index

Symbols
_id field, document-identifier, 6-1
_id field, row-identifier, 6-1
_metadata field, for document handling, 3-1, 5-23
_nameConflicts field, for flex-column conflicts, 8-8
@delete annotation (GraphQL), 3-8
@flex annotation, 8-8
@flex GraphQL directive, 10-4
@generated GraphQL directive, 10-4
@hidden GraphQL directive, 10-4
@insert annotation (GraphQL), 3-8
@link GraphQL directive, 3-8, 10-4, 10-6
@nest GraphQL directive, 10-4
@unnest GraphQL directive, 3-8, 10-4
@update annotation (GraphQL), 3-8

Numerics
1:1 entity relationships, 2-6
1:N entity relationships, 2-6

A
ALL_JSON_DUALITY_VIEW_TAB_COLS view,

5-40
ALL_JSON_DUALITY_VIEW_TABS view, 5-40
ALL_JSON_DUALITY_VIEWS view, 5-40
annotations

@delete (GraphQL), 3-8
@flex (GraphQL), 8-8
@insert (GraphQL), 3-8
@update (GraphQL), 3-8
AS FLEX (SQL), 8-8
ETAG, 4-2, 8-6, 8-8
updatability, 4-2, 8-6, 8-8

application migration to using duality views, 9-1
AS FLEX annotation, 8-8
asof field, system change number (SCN), 3-1

ensuring read consistency, 5-36
associative table

See mapping table
automatic generation of duality views, 9-1

B
bracket, optional GraphQL syntax for duality view

defintion, 3-8
bridge table

See mapping table

C
car-racing example, 2-1

creating duality views with GraphQL, 3-8
creating duality views with SQL, 3-4
creating tables, 2-8
duality views, 3-1
entity relationships, 2-6

case-sensitivity
JSON and SQL, xiii

CHECK annotation (ETAG calculation), 4-3
column types in tables underlying duality views,

2-8
columns (hidden) for duality-view, ETAG and

object ID, 3-1
comment, GraphQL, 3-8
comparing JSON schemas of input and duality-

view document sets, 9-20
student-teacher-course example, 9-60

complex or simple underlying data, 8-6
composite primary and foreign keys, definition,

2-8
concurrency, controlling, 5-23, 5-32
configuration fields, JSON-To-Duality Migrator,

9-7
content-based ETAG concurrency control,

definition, 5-23
converged database, definition, 1-13
converter, JSON-to-duality, 9-34

default behavior, 9-60
use with useFlexFields false, 9-106

course documents
output from JSON-to-duality migrator, 9-75

course, student, and teacher documents
input to JSON-to-duality migrator, 9-10
output from JSON-to-duality migrator, 9-75

CREATE JSON RELATIONAL DUALITY VIEW,
3-1

WHERE clause, 3-14

Index-1

create_error_log procedure, DBMS_ERRLOG
PL/SQL package, 9-4

creating duality views, 3-1
over existing relational data, 1-3

D
d-r-map entity, 2-8
data guide for a document set, 9-20
DATA JSON-type column for duality-view

documents, 3-1
DATA payload JSON-type column supported/

generated by a duality view, 3-1, 5-38
data types of columns in tables underlying duality

views, 2-8
DBA_JSON_DUALITY_VIEW_TAB_COLS view,

5-40
DBA_JSON_DUALITY_VIEW_TABS view, 5-40
DBA_JSON_DUALITY_VIEWS view, 5-40
DBMS_ERRLOG.create_error_log PL/SQL

procedure, 9-4
DBMS_JSON_DUALITY.begin_transaction

PL/SQL procedure, 5-32
DBMS_JSON_DUALITY.commit_transaction

PL/SQL procedure, 5-32
DBMS_JSON_DUALITY.generate_schema

PL/SQL function, 9-4
DBMS_JSON_DUALITY.import PL/SQL

procedure, 9-4
DBMS_JSON_DUALITY.import_all PL/SQL

procedure, 9-4
DBMS_JSON_DUALITY.infer_and_generate_sch

ema PL/SQL function, 9-4
DBMS_JSON_DUALITY.infer_schema PL/SQL

function, 9-4
DBMS_JSON_DUALITY.register PL/SQL

procedure, 5-32
DBMS_JSON_DUALITY.validate_import_report

PL/SQL function, 9-4
DBMS_JSON_DUALITY.validate_schema_report

PL/SQL function, 9-4
DBMS_JSON_SCHEMA.describe PL/SQL

function, 1-6, 5-40
DELETE annotation, 4-2
deleting documents, 5-10
describe PL/SQL function, package

DBMS_JSON_SCHEMA, 1-6, 5-40
dictionary views, 1-6
directives, GraphQL

See GraphQL directives
document

deleting, 5-10
inserting, 5-3
optimizing operations, 5-38
querying, 5-38
updating, 5-13

document key
definition, 3-1

document migration to duality views, 9-1
document-centric use of duality views, 1-6
document-handling field, _metadata, 3-1, 5-23
document-identifer field, _id, 6-1
document-identifier field, car-racing example, 2-2
document-relational mapping (DRM), definition,

1-10
document-version identifier (ETAG value), 3-1
document-version identifier (ETAG)

controlling concurrency, 5-23
document/table duality, definition, 1-1, 1-10
documents supported by a duality view, definition,

1-1
documents, car-racing example, 2-2
driver and race mapping table, 2-8
driver document, 2-2
driver duality view, 3-1

creating with GraphQL, 3-8
creating with SQL, 3-4
JSON schema, 5-40

driver entity, 2-6
driver table, 2-8
driver_race_map table, 2-8
duality view, 1-1

creation, 3-1
definition, 1-1, 1-6
JSON schema, 5-40
motivation, 1-6
overview, 1-1
privileges needed for updating, 4-5
rules for updating, 4-6

duality view operations, 5-1
duality views for car-racing example, 3-1

creating with GraphQL, 3-8
creating with SQL, 3-4

duality, document/table, 1-10
definition, 1-1

dump file from a document database, loading
documents from, 9-16

E
embedding JSON-column values in documents,

8-1, 8-2
entity relationships, 2-6
error logs, importing, 9-111
ETAG document-version identifier

controlling concurrency, 5-23
not used for partial updates, 5-13

etag field, version identifier, 3-1
controlling concurrency, 5-23

ETAG hash-value participation, defining, 4-3
ETAG hidden duality-view column for ETAG value,

3-1, 5-32

Index

Index-2

ETAG table-row value, 5-23
ETAG value, document-version identifier, 3-1
evolution, schema, 8-8
existing relational data as starting point, 1-3
exporting JSON document sets from a document

database, 9-16
extended object for nonstandard JSON scalars,

handling when inserted, 9-16

F
fields, 3-1

_id, document-identifier, 6-1
_id, row-identifier, 6-1
_metadata, for document handling, 3-1, 5-23
_nameConflicts for flex-column conflicts, 8-8
asof, system change number (SCN), 3-1

ensuring read consistency, 5-36
etag, version identifier, 3-1

controlling concurrency, 5-23
flex column

definition, 8-4
details, 8-8
in student-teacher-course example, 9-60

flex-column, field-naming conflicts, 8-8
flexibility, schema, 8-2, 8-4, 8-6, 8-8
foreign key, definition, 2-8
Formula 1 example, 2-1
frequencies of fields used in a document set, 9-20
function SYS_ROW_ETAG, optimistic

concurrency control, 5-23

G
generate_schema function

DBMS_JSON_DUALITY PL/SQL package,
9-4

generated JSON fields, 7-1
generation functions, SQL/JSON, 3-1
GraphQL

comment, 3-8
creating car-racing duality views, 3-8
creating duality views, 10-1
optional bracket syntax for duality view

defintion, 3-8
GraphQL directives, 10-4

@flex, 10-4
@generated, 10-4
@hidden, 10-4
@link, 3-8, 10-4, 10-6
@nest, 10-4
@unnest, 3-8, 10-4

H
hidden duality-view columns for ETAG and object

ID, 3-1
hidden JSON fields, 7-1

I
identifying column, definition, 2-8
identity column, definition, 6-1
import procedure, DBMS_JSON_DUALITY

PL/SQL package, 9-4
import_all procedure, DBMS_JSON_DUALITY

PL/SQL package, 9-4
importing JSON document sets from a document

database into JSON-type columns, 9-16
indentifying column, definition, 2-2, 3-1
infer_and_generate_schema function

DBMS_JSON_DUALITY PL/SQL package,
9-4

infer_and_generate_schema function,
DBMS_JSON_DUALITY PL/SQL
package, 9-34

infer_schema function
DBMS_JSON_DUALITY PL/SQL package,

9-4
infer_schema function, DBMS_JSON_DUALITY

PL/SQL package, 9-34
inline augmentation, 7-1
INSERT annotation, 4-2
inserting documents, 5-3
item methods, used to optimize operations, 5-38

J
JSON configuration fields, JSON-To-Duality

Migrator, 9-7
JSON data guide for a document set, 9-20
JSON data type columns in duality-view tables,

1-1, 1-6, 8-1, 8-2, 8-6, 8-8
JSON documents, car-racing example, 2-2
JSON schema

use to validate JSON-column data, 1-6, 2-8,
8-2, 8-6, 8-8

JSON Schema, 1-6, 5-13, 8-2, 8-6, 8-8
description of duality view, 5-40

JSON schema, use to validate JSON-column
data, 5-13

JSON schemas for input and duality-view
document sets, 9-20

JSON type modifiers, 8-2
OBJECT, 8-8

JSON_SCHEMA column, dictionary views for
duality views, 1-6, 5-40

json_transform SQL function, 5-13

Index

Index-3

json_value RETURNING clause, used to optimize
operations, 5-38

JSON-relational duality view
definition, 1-1, 1-6
JSON schema, 5-40
motivation, 1-6
overview, 1-1

JSON-relational duality views for car-racing
example, 3-1

creating with GraphQL, 3-8
creating with SQL, 3-4

JSON-relational mapping (JRM), definition, 1-10
JSON-to-duality converter, 9-34

default behavior, 9-60
ora$ prefix for fields and columns, 9-34
use of transfer tables, 9-16
use with useFlexFields false, 9-106

JSON-To-Duality Migrator, 9-1
configuration fields, 9-7
simple, low-configuration use case, 9-35

JSON-type column DATA, for duality-view
documents, 3-1

JSON-type payload column DATA, supported/
generated by a duality view, 3-1, 5-38

L
loading documents from a document-database

dump file, 9-16
lock-free (optimistic) concurrency control, 5-23

definition and overview, 4-3
duality-view transactions, 5-32

M
many-to-many entity relationships, 2-6

using mapping tables, 2-8
many-to-one entity relationships, 2-6
mapping objects/documents to relational, 1-10
mapping table for tables driver and race, 2-8
mapping table, definition, 2-8
merging flex-column fields into documents, 8-1,

8-4, 8-8
migration of document sets to duality views, 9-1
MongoDB API, compatible document-identifier

field _id, 6-1
multitenant database, definition, 1-13

N
N:N entity relationships, 2-6

using mapping tables, 2-8
naming conflicts, flex column, 8-8
NEST SQL keyword, 3-4
NOCHECK annotation (ETAG calculation), 4-3
NODELETE annotation, 4-2

NOINSERT annotation, 4-2
normalization, degree/granularity, 8-6
normalized data, definition, 1-6
normalized entity, definition, 2-6
NOUPDATE annotation, 4-2

O
object-document mapping (ODM), 1-10
object-relational mapping (ORM), 1-10
ODM (object-document mapping), 1-10
one-to-one entity relationships, 2-6
operations on duality views, 5-1
operations on tables underlying duality views, 5-1
optimistic (lock-free) concurrency control, 5-23

definition and overview, 4-3
duality-view transactions, 5-32

optimization of document operations, 5-38
ora$ prefix for fields and columns, JSON-to-

duality converter, 9-34
Oracle Database API for MongoDB, compatible

document-identifier field _id, 6-1
Oracle REST Data Services (ORDS)

deleting documents using REST, 5-10
inserting documents using REST, 5-3
updating documents using REST, 5-13

Oracle SQL function json_transform, 5-13
ORM (object-relational mapping), 1-10

P
payload JSON-type column DATA, supported/

generated by a duality view, 3-1, 5-38
payload of a JSON document, definition, 2-2, 3-1,

5-23
PL/SQL subprograms

DBMS_ERRLOG.create_error_log, 9-4
DBMS_JSON_DUALITY.begin_transaction, 5-32
DBMS_JSON_DUALITY.commit_transaction, 5-32
DBMS_JSON_DUALITY.generate_schema, 9-4
DBMS_JSON_DUALITY.import, 9-4
DBMS_JSON_DUALITY.import_all, 9-4
DBMS_JSON_DUALITY.infer_and_generate_schema,

9-4
DBMS_JSON_DUALITY.infer_schema, 9-4
DBMS_JSON_DUALITY.register, 5-32
DBMS_JSON_DUALITY.validate_import_report, 9-4
DBMS_JSON_DUALITY.validate_schema_report, 9-4

polyglot database, definition, 1-13
predefined fields for duality views

See fields
pretty-printing

in book examples, xiii
primary key, definition, 2-8
privileges needed for operations on duality-view

data, 4-5

Index

Index-4

Q
querying a duality view, 5-38

R
race and driver mapping table, 2-8
race document, 2-2
race duality view, 3-1

creating with GraphQL, 3-8
creating with SQL, 3-4
JSON schema, 5-40

race entity, 2-6
race table, 2-8
read consistency, ensuring, 5-36
relational data as starting point, 1-3
relational mapping from objects/documents, 1-10
RESID hidden duality-view column for document

identifier, 3-1, 5-32
REST

deleting documents using, 5-10
inserting documents using, 5-3
updating documents using, 5-13

reusing existing relational data, for JSON
documents, 1-3

row-identifer field, _id, 6-1
rules for updating duality views, 4-6

S
schema evolution, 8-8
schema flexibility, 8-2, 8-4, 8-6, 8-8
schema, JSON

description of duality view, 5-40
use to validate JSON-column data, 1-6, 2-8,

5-13, 8-2, 8-6, 8-8
school-administration documents

input to JSON-to-duality migrator, 9-10
output from JSON-to-duality migrator, 9-75

SCN
See system change number

secondary key, 2-8
security, 1-12
sharing JSON data among documents, 1-6, 8-1

foreign keys, 2-8
SQL function json_transform, 5-13
SQL/JSON function json_value, RETURNING

clause, used to optimize operations, 5-38
SQL/JSON generation functions, 3-1
SQL/JSON item methods, used to optimize

operations, 5-38
static dictionary views for duality views, 5-40
storing JSON data in underlying tables, 8-1, 8-2,

8-6
student documents

output from JSON-to-duality migrator, 9-75

student, teacher, and course documents
input to JSON-to-duality migrator, 9-10
output from JSON-to-duality migrator, 9-75

support of documents by a duality view, definition,
1-1

SYS_ROW_ETAG function, optimistic
concurrency control, 5-23

system change number (SCN) field, asof, 3-1
ensuring read consistency, 5-36

T
table operations, effect on supported documents,

5-1
table-centric use of duality views, 1-3
tables

car-racing example, 2-8
deleting data, 5-10
inserting data, 5-3
updating data, 5-13

tables underlying duality views, column types, 2-8
teacher documents

output from JSON-to-duality migrator, 9-75
teacher, course, and student documents

input to JSON-to-duality migrator, 9-10
output from JSON-to-duality migrator, 9-75

team document, 2-2
team duality view, 3-1

creating with GraphQL, 3-8
creating with SQL, 3-4
JSON schema, 5-40

team entity, 2-6
team table, 2-8
transactions for duality views, 5-32
transfer tables, use with JSON-to-duality

converter, 9-16
triggers, guidelines, 5-22
type-conversion item methods, used to optimize

operations, 5-38
types of columns in tables underlying duality

views, 2-8

U
unique key, definition, 2-8
UNNEST SQL keyword, 3-4
updatability, defining, 4-2
UPDATE annotation, 4-2
updating documents, 5-13
updating duality views

privileges needed, 4-5
rules, 4-6

USER_JSON_DUALITY_VIEW_TAB_COLS view,
5-40

USER_JSON_DUALITY_VIEW_TABS view, 5-40
USER_JSON_DUALITY_VIEWS view, 5-40

Index

Index-5

V
validate_import_report function

DBMS_JSON_DUALITY PL/SQL package,
9-4

validate_schema_report function
DBMS_JSON_DUALITY PL/SQL package,

9-4
value-based ETAG concurrency control, definition,

5-23

version-identifier field, etag, 3-1
controlling concurrency, 5-23

view, duality
See duality view

views for JSON data, dictionary, 1-6
views, static dictionary, 5-40

W
WHERE clauses, duality-view tables, 3-14

Index

Index-6

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions
	Code Examples
	Pretty Printing of JSON Data
	Reminder About Case Sensitivity

	1 Overview of JSON-Relational Duality Views
	1.1 Table-Centric Use Case for JSON-Relational Duality
	1.2 Document-Centric Use Case for JSON-Relational Duality
	1.3 Map JSON Documents, Not Programming Objects
	1.4 Duality-View Security: Simple, Centralized, Use-Case-Specific
	1.5 Oracle Database: Converged, Multitenant, Backed By SQL

	2 Introduction To Car-Racing Duality Views Example
	2.1 Car-Racing Example, JSON Documents
	2.2 Car-Racing Example, Entity Relationships
	2.3 Car-Racing Example, Tables

	3 Creating Duality Views
	3.1 Creating Car-Racing Duality Views Using SQL
	3.2 Creating Car-Racing Duality Views Using GraphQL
	3.3 WHERE Clauses in Duality-View Tables

	4 Updatable JSON-Relational Duality Views
	4.1 Annotations (NO)UPDATE, (NO)INSERT, (NO)DELETE, To Allow/Disallow Updating Operations
	4.2 Annotation (NO)CHECK, To Include/Exclude Fields for ETAG Calculation
	4.3 Database Privileges Needed for Duality-View Updating Operations
	4.4 Rules for Updating Duality Views

	5 Using JSON-Relational Duality Views
	5.1 Inserting Documents/Data Into Duality Views
	5.2 Deleting Documents/Data From Duality Views
	5.3 Updating Documents/Data in Duality Views
	5.3.1 Trigger Considerations When Using Duality Views

	5.4 Using Optimistic Concurrency Control With Duality Views
	5.4.1 Using Duality-View Transactions

	5.5 Using the System Change Number (SCN) of a JSON Document
	5.6 Optimization of Operations on Duality-View Documents
	5.7 Obtaining Information About a Duality View

	6 Document-Identifier Field for Duality Views
	7 Generated Fields, Hidden Fields
	8 Schema Flexibility with JSON Columns in Duality Views
	8.1 Embedding Values from JSON Columns into Documents
	8.2 Merging Fields from JSON Flex Columns into Documents
	8.3 When To Use JSON-Type Columns for a Duality View
	8.4 Flex Columns, Beyond the Basics

	9 Migrating From JSON To Duality
	9.1 JSON To Duality Migrator Components: Converter and Importer
	9.2 JSON Configuration Fields Specifying Migrator Parameters
	9.3 School Administration Example, Migrator Input Documents
	9.4 Before Using the Converter (1): Create Database Document Sets
	9.5 Before Using the Converter (2): Optionally Create Data-Guide JSON Schemas
	9.6 JSON-To-Duality Converter: What It Does
	9.7 Migrating To Duality, Simplified Recipe
	9.8 Using the Converter, Default Behavior
	9.9 Import After Default Conversion
	9.10 Using the Converter with useFlexFields=false
	9.11 Import After Conversion with useFlexFields=false

	10 GraphQL Language Used for JSON-Relational Duality Views
	10.1 Oracle GraphQL Directives for JSON-Relational Duality Views
	10.1.1 Oracle GraphQL Directive @link

	Index

