
Oracle® Database
Data Warehousing Guide

23ai
F46734-09
January 2025

Oracle Database Data Warehousing Guide, 23ai

F46734-09

Copyright © 2001, 2025, Oracle and/or its affiliates.

Primary Author: Frederick Kush

Contributors: Hermann Baer, Mark Bauer, Subhransu Basu, Nigel Bayliss, Donna Carver, Maria Colgan, Benoit
Dageville, Luping Ding, Bud Endress, Bruce Golbus, John Haydu, Keith Laker, Paul Lane, Chun-Chieh Lin, William Lee,
George Lumpkin, David McDermid, Alex Melidis, Valarie Moore, Ananth Raghavan, Jack Raitto, Andy Rivenes, Lei
Sheng, Wayne Smith, Sankar Subramanian, Margaret Taft, Murali Thiyagarajan, Jean-Francois Verrier, Andreas Walter,
Andy Witkowski, Min Xiao, Tsae-Feng Yu, Fred Zemke, Mohamed Ziauddin, Frederick Kush, Rachel Voirin

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxv

Documentation Accessibility xxv

Related Documents xxv

Conventions xxv

Part I Data Warehouse - Fundamentals

1 Introduction to Data Warehousing Concepts

1.1 What Is a Data Warehouse? 1-1

1.1.1 Key Characteristics of a Data Warehouse 1-3

1.2 Contrasting OLTP and Data Warehousing Environments 1-3

1.3 Common Data Warehouse Tasks 1-4

1.4 Data Warehouse Architectures 1-5

1.4.1 Data Warehouse Architecture: Basic 1-5

1.4.2 Data Warehouse Architecture: with a Staging Area 1-6

1.4.3 Data Warehouse Architecture: with a Staging Area and Data Marts 1-6

2 Data Warehousing Logical Design

2.1 Logical Versus Physical Design in Data Warehouses 2-1

2.2 Creating a Logical Design 2-1

2.2.1 What is a Schema? 2-2

2.3 About Third Normal Form Schemas 2-2

2.3.1 About Normalization 2-3

2.3.2 Design Concepts for 3NF Schemas 2-4

2.3.2.1 Identifying Candidate Primary Keys 2-4

2.3.2.2 Foreign Key Relationships and Referential Integrity Constraints 2-5

2.3.2.3 Denormalization 2-5

2.4 About Star Schemas 2-5

2.4.1 About Facts and Dimensions in Star Schemas 2-6

2.4.1.1 About Fact Tables in Data Warehouses 2-6

iii

2.4.1.2 About Dimension Tables in Data Warehouses 2-7

2.4.2 Design Concepts in Star Schemas 2-8

2.4.3 About Snowflake Schemas 2-10

2.5 Improved Analytics Using the In-Memory Column Store 2-10

2.5.1 About Improving Query Performance Using In-Memory Expressions 2-11

2.5.2 About Using In-Memory Virtual Columns to Improve Query Performance 2-12

2.5.3 About In-Memory Column Store and Automatic Data Optimization 2-12

2.6 Automatic Big Table Caching to Improve the Performance of In-Memory Parallel
Queries 2-13

3 Data Warehousing Physical Design

3.1 Moving from Logical to Physical Design 3-1

3.2 About Physical Design 3-1

3.2.1 Physical Design Structures 3-2

3.2.1.1 About Tablespaces in Data Warehouses 3-2

3.2.1.2 About Partitioning in Data Warehouses 3-3

3.2.1.3 Index Partitioning in Data Warehouses 3-4

3.2.1.4 About Partitioning for Manageability 3-5

3.2.1.5 About Partitioning for Performance 3-5

3.2.1.6 About Partitioning for Availability 3-6

3.2.2 About Views in Data Warehouses 3-6

3.2.3 About Integrity Constraints in Data Warehouses 3-6

3.2.4 About Indexes and Partitioned Indexes in Data Warehouses 3-7

3.2.5 About Materialized Views in Data Warehouses 3-7

3.2.6 About Dimensions in Data Warehouses 3-7

3.2.6.1 About Dimension Hierarchies 3-8

3.2.6.2 Typical Dimension Hierarchy 3-8

4 Data Warehousing Optimizations and Techniques

4.1 Using Indexes in Data Warehouses 4-1

4.1.1 About Using Bitmap Indexes in Data Warehouses 4-1

4.1.1.1 About Bitmap Indexes and Nulls 4-2

4.1.1.2 About Bitmap Indexes on Partitioned Tables 4-2

4.1.2 Benefits of Indexes for Data Warehousing Applications 4-3

4.1.3 About Cardinality and Bitmap Indexes 4-3

4.1.4 How to Determine Candidates for Using a Bitmap Index 4-5

4.1.5 Using Bitmap Join Indexes in Data Warehouses 4-5

4.1.5.1 Four Join Models for Bitmap Join Indexes in Data Warehouses 4-6

4.1.5.2 Bitmap Join Index Restrictions and Requirements 4-8

4.1.6 Using B-Tree Indexes in Data Warehouses 4-8

iv

4.1.7 Using Index Compression 4-9

4.1.8 Choosing Between Local Indexes and Global Indexes 4-9

4.2 Using Integrity Constraints in a Data Warehouse 4-10

4.2.1 Overview of Constraint States 4-10

4.2.2 Typical Data Warehouse Integrity Constraints 4-11

4.2.2.1 UNIQUE Constraints in a Data Warehouse 4-11

4.2.2.2 FOREIGN KEY Constraints in a Data Warehouse 4-12

4.2.2.3 RELY Constraints in a Data Warehouse 4-13

4.2.2.4 NOT NULL Constraints in a Data Warehouse 4-13

4.2.2.5 Integrity Constraints and Parallelism in a Data Warehouse 4-14

4.2.2.6 Integrity Constraints and Partitioning in a Data Warehouse 4-14

4.2.2.7 View Constraints in a Data Warehouse 4-14

4.3 About Parallel Execution in Data Warehouses 4-14

4.3.1 Why Use Parallel Execution? 4-15

4.3.1.1 When to Implement Parallel Execution 4-16

4.3.1.2 When Not to Implement Parallel Execution 4-16

4.3.2 Automatic Degree of Parallelism and Statement Queuing 4-16

4.3.3 About In-Memory Parallel Execution in Data Warehouses 4-18

4.4 About Optimizing Storage Requirements in Data Warehouses 4-18

4.4.1 Using Data Compression to Improve Storage in Data Warehouses 4-18

4.5 Optimizing Star Queries and 3NF Schemas 4-19

4.5.1 Optimizing Star Queries 4-19

4.5.1.1 Tuning Star Queries 4-20

4.5.2 Using Star Transformation 4-20

4.5.2.1 Star Transformation with a Bitmap Index 4-20

4.5.2.2 Execution Plan for a Star Transformation with a Bitmap Index 4-22

4.5.2.3 Star Transformation with a Bitmap Join Index 4-22

4.5.2.4 Execution Plan for a Star Transformation with a Bitmap Join Index 4-23

4.5.2.5 How Oracle Chooses to Use Star Transformation 4-23

4.5.2.6 Star Transformation Restrictions 4-24

4.5.3 Optimizing Third Normal Form Schemas 4-24

4.5.3.1 3NF Schemas: Partitioning 4-25

4.5.3.2 3NF Schemas: Parallel Query Execution 4-28

4.5.4 Optimizing Star Queries Using VECTOR GROUP BY Aggregation 4-29

4.6 About Approximate Query Processing 4-30

4.6.1 Running Queries Containing Exact Functions Using SQL Functions that Return
Approximate Values 4-31

4.7 About Approximate Top-N Query Processing 4-32

Part II Optimizing Data Warehouses

v

5 Basic Materialized Views

5.1 Overview of Data Warehousing with Materialized Views 5-1

5.1.1 About Materialized Views for Data Warehouses 5-2

5.1.2 About Materialized Views for Distributed Computing 5-2

5.1.3 About Materialized Views for Mobile Computing 5-2

5.1.4 The Need for Materialized Views 5-2

5.1.5 Components of Summary Management 5-4

5.1.6 Data Warehousing Terminology 5-5

5.1.7 About Materialized View Schema Design 5-6

5.1.7.1 Schemas and Dimension Tables 5-6

5.1.7.2 Guidelines for Materialized View Schema Design 5-7

5.1.8 About Loading Data into Data Warehouses 5-8

5.1.9 Overview of Materialized View Management Tasks 5-9

5.2 Types of Materialized Views 5-10

5.2.1 About Materialized Views with Aggregates 5-10

5.2.1.1 Requirements for Using Materialized Views with Aggregates 5-13

5.2.2 About Materialized Views Containing Only Joins 5-13

5.2.2.1 Materialized Join Views FROM Clause Considerations 5-14

5.2.3 About Nested Materialized Views 5-15

5.2.3.1 Why Use Nested Materialized Views? 5-15

5.2.3.2 About Nesting Materialized Views with Joins and Aggregates 5-16

5.2.3.3 Nested Materialized View Usage Guidelines 5-16

5.2.3.4 Restrictions When Using Nested Materialized Views 5-17

5.3 Creating Materialized Views 5-17

5.3.1 Creating Materialized Views with Column Alias Lists 5-19

5.3.2 Creating Materialized Views Based on Hybird Partitioned Tables 5-20

5.3.3 About Materialized Views Names 5-21

5.3.4 About Storage And Table Compression for Materialized Views 5-21

5.3.5 About Build Methods for Materialized Views 5-21

5.3.6 About Enabling Query Rewrite for Materialized Views 5-22

5.3.7 About Query Rewrite Restrictions 5-22

5.3.7.1 About Materialized View Restrictions for Query Rewrite 5-22

5.3.7.2 General Query Rewrite Restrictions 5-23

5.3.8 About Refresh Options for Materialized Views 5-23

5.3.8.1 About Refresh Modes for Materialized Views 5-24

5.3.8.2 About Types of Materialized View Refresh 5-25

5.3.8.3 About Using Trusted Constraints and Materialized View Refresh 5-25

5.3.8.4 General Restrictions on Fast Refresh 5-26

5.3.8.5 Restrictions on Fast Refresh on Materialized Views with Joins Only 5-27

5.3.8.6 Restrictions on Fast Refresh on Materialized Views with Aggregates 5-27

5.3.8.7 Restrictions on Fast Refresh on Materialized Views with UNION ALL 5-29

vi

5.3.8.8 About Achieving Refresh Goals 5-30

5.3.8.9 Refreshing Nested Materialized Views 5-30

5.3.9 ORDER BY Clause in Materialized Views 5-30

5.3.10 Using Oracle Enterprise Manager to Create Materialized Views 5-31

5.3.11 Using Materialized Views with NLS Parameters 5-31

5.3.12 Adding Comments to Materialized Views 5-31

5.4 Creating Materialized View Logs 5-32

5.4.1 Using the FORCE Option With Materialized View Logs 5-33

5.4.2 Purging Materialized View Logs 5-33

5.5 Creating Materialized Views Based on Approximate Queries 5-33

5.6 Creating a Materialized View Containing Bitmap-based COUNT(DISTINCT) Functions 5-34

5.7 Registering Existing Materialized Views 5-35

5.8 Choosing Indexes for Materialized Views 5-36

5.9 Dropping Materialized Views 5-37

5.10 Analyzing Materialized View Capabilities 5-37

5.10.1 Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure 5-38

5.10.1.1 DBMS_MVIEW.EXPLAIN_MVIEW Declarations 5-38

5.10.1.2 Using MV_CAPABILITIES_TABLE 5-39

5.10.1.3 MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details 5-41

5.10.1.4 MV_CAPABILITIES_TABLE Column Details 5-42

6 Advanced Materialized Views

6.1 About Partitioning and Materialized Views 6-1

6.1.1 About Partition Change Tracking 6-1

6.1.1.1 About Partition Key and Partition Change Tracking 6-3

6.1.1.2 About Join Dependent Expression and Partition Change Tracking 6-3

6.1.1.3 About Partition Markers and Partition Change Tracking 6-4

6.1.1.4 About Partial Rewrite in Partition Change Tracking 6-5

6.1.2 Partitioning a Materialized View 6-5

6.1.3 Partitioning a Prebuilt Table 6-6

6.1.3.1 Benefits of Partitioning a Materialized View 6-6

6.1.4 Rolling Materialized Views 6-7

6.1.5 About Automatic Partitioning of Materialized Views 6-7

6.2 About Materialized Views in Analytic Processing Environments 6-7

6.2.1 About Materialized Views and Analytic Views 6-8

6.2.2 About Materialized Views and Hierarchical Cubes 6-8

6.2.3 Benefits of Partitioning Materialized Views 6-9

6.2.4 About Compressing Materialized Views 6-9

6.2.5 About Materialized Views with Set Operators 6-9

6.2.5.1 Examples of Materialized Views Using UNION ALL 6-10

6.3 About Materialized Views and Models 6-11

vii

6.4 About Security Issues with Materialized Views 6-11

6.4.1 Querying Materialized Views with Virtual Private Database (VPD) 6-12

6.4.1.1 Using Query Rewrite with Virtual Private Database 6-12

6.4.1.2 Restrictions with Materialized Views and Virtual Private Database 6-13

6.5 Invalidating Materialized Views 6-13

6.6 Altering Materialized Views 6-14

6.7 Using Real-time Materialized Views 6-14

6.7.1 Overview of Real-time Materialized Views 6-15

6.7.1.1 Restrictions on Using Real-time Materialized Views 6-16

6.7.1.2 About Accessing Real-time Materialized Views 6-16

6.7.2 Creating Real-time Materialized Views 6-17

6.7.3 Converting an Existing Materialized View into a Real-time Materialized View 6-18

6.7.4 Enabling Query Rewrite to Use Real-time Materialized Views 6-19

6.7.5 Using Real-time Materialized Views During Query Rewrite 6-19

6.7.6 Using Real-time Materialized Views for Direct Query Access 6-21

6.7.7 Listing Real-time Materialized Views 6-23

6.7.8 Improving Real-time Materialized Views Performance 6-23

7 Refreshing Materialized Views

7.1 About Refreshing Materialized Views 7-1

7.1.1 About Complete Refresh for Materialized Views 7-3

7.1.2 About Fast Refresh for Materialized Views 7-4

7.1.3 About Partition Change Tracking (PCT) Refresh for Materialized Views 7-4

7.1.4 About Logical Partition Change Tracking (LPCT) Refresh for Materialized Views 7-4

7.1.5 About the Out-of-Place Refresh Option 7-6

7.1.5.1 Types of Out-of-Place Refresh 7-6

7.1.5.2 Restrictions and Considerations with Out-of-Place Refresh 7-7

7.1.6 About ON COMMIT Refresh for Materialized Views 7-7

7.1.7 About ON STATEMENT Refresh for Materialized Views 7-7

7.1.8 About Manual Refresh Using the DBMS_MVIEW Package 7-8

7.1.9 Refreshing Specific Materialized Views with REFRESH 7-9

7.1.10 Refreshing All Materialized Views with REFRESH_ALL_MVIEWS 7-10

7.1.11 Refreshing Dependent Materialized Views with REFRESH_DEPENDENT 7-11

7.1.12 About Using Job Queues for Refresh 7-11

7.1.13 When Fast Refresh is Possible 7-12

7.1.14 Refreshing Materialized Views Based on Approximate Queries 7-12

7.1.15 About Concurrent Refresh of On-Commit Materialized Views 7-13

7.1.16 About Refreshing Dependent Materialized Views During Online Table
Redefinition 7-14

7.1.17 Recommended Initialization Parameters for Parallelism 7-15

7.1.18 Monitoring a Refresh 7-15

viii

7.1.19 Checking the Status of a Materialized View 7-16

7.1.19.1 Examples of Using Views to Determine Freshness 7-17

7.1.20 Scheduling Refresh of Materialized Views 7-18

7.2 Tips for Refreshing Materialized Views 7-19

7.2.1 Tips for Refreshing Materialized Views with Aggregates 7-19

7.2.2 Tips for Refreshing Materialized Views Without Aggregates 7-21

7.2.3 Tips for Refreshing Nested Materialized Views 7-22

7.2.4 Tips for Fast Refresh with UNION ALL 7-23

7.2.5 Tips for Fast Refresh with Commit SCN-Based Materialized View Logs 7-23

7.2.6 Tips After Refreshing Materialized Views 7-24

7.3 Using Materialized Views with Partitioned Tables 7-24

7.3.1 Materialized View Fast Refresh with Partition Change Tracking 7-24

7.3.1.1 PCT Fast Refresh for Materialized Views: Scenario 1 7-24

7.3.1.2 PCT Fast Refresh for Materialized Views: Scenario 2 7-26

7.3.1.3 PCT Fast Refresh for Materialized Views: Scenario 3 7-26

7.4 Refreshing Materialized Views Based on Hybrid Partitioned Tables 7-27

7.5 Using Partitioning to Improve Data Warehouse Refresh 7-28

7.5.1 Data Warehouse Refresh Scenarios 7-31

7.5.2 Scenarios for Using Partitioning for Refreshing Data Warehouses 7-32

7.5.2.1 Partitioning for Refreshing Data Warehouses: Scenario 1 7-32

7.5.2.2 Partitioning for Refreshing Data Warehouses: Scenario 2 7-33

7.6 Optimizing DML Operations During Refresh 7-33

7.6.1 Implementing an Efficient MERGE Operation 7-33

7.6.2 Maintaining Referential Integrity in Data Warehouses 7-36

7.6.3 Purging Data from Data Warehouses 7-36

8 Synchronous Refresh

8.1 About Synchronous Refresh for Materialized Views 8-1

8.1.1 What Is Synchronous Refresh? 8-1

8.1.2 Why Use Synchronous Refresh? 8-2

8.1.3 Registering Tables and Materialized Views for Synchronous Refresh 8-3

8.1.4 Specifying Change Data for Refresh 8-3

8.1.5 Synchronous Refresh Preparation and Execution 8-4

8.1.6 Materialized View Eligibility Rules and Restrictions for Synchronous Refresh 8-4

8.1.6.1 Synchronous Refresh Restrictions: Partitioning 8-5

8.1.6.2 Synchronous Refresh Restrictions: Refresh Options 8-5

8.1.6.3 Synchronous Refresh Restrictions: Constraints 8-5

8.1.6.4 Synchronous Refresh Restrictions: Tables 8-5

8.1.6.5 Synchronous Refresh Restrictions: Materialized Views 8-6

8.1.6.6 Synchronous Refresh Restrictions: Materialized Views with Aggregates 8-6

8.2 Using Synchronous Refresh for Materialized Views 8-6

ix

8.2.1 Synchronous Refresh Step 1: Registration Phase 8-7

8.2.2 Synchronous Refresh Step 2: Synchronous Refresh Phase 8-8

8.2.3 Synchronous Refresh Step 3: The Unregistration Phase 8-8

8.3 Using Synchronous Refresh Groups 8-9

8.3.1 Examples of Common Actions with Synchronous Refresh Groups 8-10

8.3.2 Examples of Working with Multiple Synchronous Refresh Groups 8-11

8.4 Specifying and Preparing Change Data for Synchronous Refresh 8-12

8.4.1 Working with Partition Operations While Capturing Change Data for
Synchronous Refresh 8-12

8.4.2 Working with Staging Logs While Capturing Change Data for Synchronous
Refresh 8-14

8.4.2.1 About the Staging Log Key 8-15

8.4.2.2 About Staging Log Rules 8-15

8.4.2.3 About Columns Being Updated to NULL 8-16

8.4.2.4 Examples of Working with Staging Logs 8-16

8.4.2.5 Error Handling in Preparing Staging Logs 8-18

8.5 Troubleshooting Synchronous Refresh Operations 8-18

8.5.1 Overview of the Status of Refresh Operations 8-19

8.5.2 How PREPARE_REFRESH Sets the STATUS Fields 8-19

8.5.3 Examples of Preparing for Synchronous Refresh Using PREPARE_REFRESH 8-20

8.5.4 How EXECUTE_REFRESH Sets the Status Fields During Synchronous Refresh 8-22

8.5.5 Examples of Executing Synchronous Refresh Using EXECUTE_REFRESH 8-23

8.5.6 Example of EXECUTE_REFRESH with Constraint Violations 8-26

8.6 Performing Synchronous Refresh Eligibility Analysis 8-27

8.6.1 Using SYNCREF_TABLE to Store the Results of Synchronous Refresh Eligibility
Analysis 8-28

8.6.2 Using a VARRAY to Store the Results of Synchronous Refresh Eligibility
Analysis 8-28

8.6.3 Demo Scripts 8-29

8.7 Overview of Synchronous Refresh Security Considerations 8-29

9 Monitoring Materialized View Refresh Operations

9.1 About Materialized View Refresh Statistics 9-1

9.2 Overview of Managing Materialized View Refresh Statistics 9-2

9.3 About Data Dictionary Views that Store Materialized View Refresh Statistics 9-2

9.4 Collecting Materialized View Refresh Statistics 9-4

9.4.1 About Collecting Materialized View Refresh Statistics 9-4

9.4.2 Specifying Default Settings for Collecting Materialized View Refresh Statistics 9-5

9.4.3 Modifying the Collection Level for Materialized View Refresh Statistics 9-5

9.5 Retaining Materialized View Refresh Statistics 9-6

9.5.1 About Retaining Materialized View Refresh Statistics 9-6

9.5.2 Specifying the Default Retention Period for Materialized View Refresh Statistics 9-7

x

9.5.3 Modifying the Retention Period for Materialized View Refresh Statistics 9-7

9.6 Viewing Materialized View Refresh Statistics Settings 9-8

9.7 Purging Materialized View Refresh Statistics 9-9

9.8 Viewing Materialized View Refresh Statistics 9-10

9.8.1 Viewing Basic Refresh Statistics for a Materialized View 9-10

9.8.2 Viewing Detailed Statistics for Each Materialized View Refresh Operation 9-11

9.8.3 Viewing Change Data Statistics During Materialized View Refresh Operations 9-12

9.8.4 Viewing the SQL Statements Associated with A Materialized View Refresh
Operation 9-13

9.9 Analyzing Materialized View Refresh Performance Using Refresh Statistics 9-14

10

Dimensions

10.1 What are Dimensions? 10-1

10.1.1 Requirements for Dimensions in Data Warehouses 10-3

10.2 Creating Dimensions 10-3

10.2.1 Dropping and Creating Attributes with Columns 10-6

10.2.2 Using Multiple Hierarchies While Creating Joins 10-7

10.2.3 Using Normalized Dimension Tables to Create Dimensions 10-8

10.3 Viewing Dimensions 10-8

10.3.1 Viewing Dimensions With Oracle Enterprise Manager 10-8

10.3.2 Viewing Dimensions With the DESCRIBE_DIMENSION Procedure 10-9

10.4 Using Dimensions with Constraints 10-9

10.5 Validating Dimensions 10-10

10.6 Altering Dimensions 10-10

10.7 Deleting Dimensions 10-11

11

Basic Query Rewrite for Materialized Views

11.1 Overview of Query Rewrite 11-1

11.1.1 About Query Rewrite and the Optimizer 11-1

11.1.2 When Does Oracle Rewrite a Query? 11-2

11.2 Ensuring that Query Rewrite Takes Effect 11-2

11.2.1 Enabling Query Rewrite for Materialized Views 11-2

11.2.2 About Initialization Parameters for Query Rewrite 11-3

11.2.3 Controlling Query Rewrite 11-4

11.2.4 About the Accuracy of Query Rewrite 11-4

11.2.5 About Privileges for Enabling Query Rewrite 11-5

11.2.6 Sample Schema and Materialized Views 11-5

11.2.7 How to Verify if Query Rewrite Occurred 11-6

11.3 Example of Query Rewrite 11-7

xi

12

Advanced Query Rewrite for Materialized Views

12.1 How Oracle Rewrites Queries 12-1

12.1.1 About Cost-Based Optimization and Query Rewrite 12-2

12.1.2 General Query Rewrite Methods 12-3

12.1.2.1 When are Constraints and Dimensions Needed for Query Rewrite? 12-4

12.1.3 About Checks Made by Query Rewrite 12-4

12.1.3.1 Join Compatibility Check for Query Rewrite 12-4

12.1.3.2 Data Sufficiency Check for Query Rewrite 12-9

12.1.3.3 Grouping Compatibility Check for Query Rewrite 12-9

12.1.3.4 Aggregate Computability Check for Query Rewrite 12-10

12.1.4 About Query Rewrite Using Dimensions 12-10

12.1.4.1 Benefits of Using Dimensions in a Query Rewrite Environment 12-10

12.1.4.2 How to Define Dimensions for Query Rewrite 12-10

12.2 Types of Query Rewrite 12-12

12.2.1 Query Rewrite Method 1: Text Match Rewrite 12-12

12.2.2 Query Rewrite Method 2: Join Back 12-13

12.2.3 Query Rewrite Method 3: Aggregate Computability 12-15

12.2.4 Query Rewrite Method 4: Aggregate Rollup 12-16

12.2.5 Query Rewrite Method 5: Rollup Using a Dimension 12-16

12.2.6 Query Rewrite Method 6: When Materialized Views Have Only a Subset of
Data 12-17

12.2.6.1 Query Rewrite Definitions When Materialized Views Have Only a Subset
of Data 12-17

12.2.6.2 Selection Categories When Materialized Views Have Only a Subset of
Data 12-18

12.2.6.3 Examples of Query Rewrite Selection 12-19

12.2.6.4 About Handling of the HAVING Clause in Query Rewrite 12-21

12.2.6.5 About Query Rewrite When the Materialized View has an IN-List 12-22

12.2.7 Partition Change Tracking (PCT) Rewrite 12-22

12.2.7.1 PCT Rewrite Based on Range Partitioned Tables 12-23

12.2.7.2 PCT Rewrite Based on Range-List Partitioned Tables 12-24

12.2.7.3 PCT Rewrite Based on List Partitioned Tables 12-26

12.2.7.4 PCT Rewrite and PMARKER 12-28

12.2.7.5 PCT Rewrite Using Rowid as PMARKER 12-29

12.2.8 About Query Rewrite Using Multiple Materialized Views 12-30

12.3 Other Query Rewrite Considerations 12-38

12.3.1 About Query Rewrite Using Nested Materialized Views 12-38

12.3.2 About Query Rewrite in the Presence of Inline Views 12-39

12.3.3 About Query Rewrite Using Remote Tables 12-40

12.3.4 About Query Rewrite in the Presence of Duplicate Tables 12-40

12.3.5 About Query Rewrite Using Date Folding 12-42

12.3.6 About Query Rewrite Using View Constraints 12-43

xii

12.3.6.1 Abut View Constraints Restrictions 12-45

12.3.7 About Query Rewrite in the Presence of Hybrid Partitioned Tables 12-45

12.3.8 Query Rewrite Using Set Operator Materialized Views 12-46

12.3.8.1 UNION ALL Marker and Query Rewrite 12-47

12.3.9 About Query Rewrite in the Presence of Grouping Sets 12-49

12.3.9.1 About Query Rewrite When Using GROUP BY Extensions 12-49

12.3.9.2 Hint for Rewriting Queries with Extended GROUP BY 12-52

12.3.10 Query Rewrite in the Presence of Window Functions 12-52

12.3.11 Query Rewrite and Expression Matching 12-53

12.3.11.1 Query Rewrite Using Partially Stale Materialized Views 12-53

12.3.12 Cursor Sharing and Bind Variables During Query Rewrite 12-56

12.3.13 Handling Expressions in Query Rewrite 12-56

12.4 Advanced Query Rewrite Using Equivalences 12-57

12.5 Creating Result Cache Materialized Views with Equivalences 12-60

12.6 Query Rewrite and Materialized Views Based on Approximate Queries 12-62

12.7 Query Rewrite and Materialized Views Based on Bitmap-based COUNT(DISTINCT)
Functions 12-64

12.8 Verifying that Query Rewrite has Occurred 12-66

12.8.1 Using EXPLAIN PLAN with Query Rewrite 12-66

12.8.2 Using the EXPLAIN_REWRITE Procedure with Query Rewrite 12-67

12.8.2.1 DBMS_MVIEW.EXPLAIN_REWRITE Syntax 12-67

12.8.2.2 Using REWRITE_TABLE to View EXPLAIN_REWRITE Output 12-68

12.8.2.3 Using a Varray to View EXPLAIN_REWRITE Output 12-69

12.8.2.4 EXPLAIN_REWRITE Benefit Statistics 12-70

12.8.2.5 Support for Query Text Larger than 32KB in EXPLAIN_REWRITE 12-71

12.8.2.6 About EXPLAIN_REWRITE and Multiple Materialized Views 12-71

12.8.2.7 About EXPLAIN_REWRITE Output 12-71

12.9 Design Considerations for Improving Query Rewrite Capabilities 12-73

12.9.1 Query Rewrite Considerations: Constraints 12-73

12.9.2 Query Rewrite Considerations: Dimensions 12-73

12.9.3 Query Rewrite Considerations: Outer Joins 12-73

12.9.4 Query Rewrite Considerations: Text Match 12-74

12.9.5 Query Rewrite Considerations: Aggregates 12-74

12.9.6 Query Rewrite Considerations: Grouping Conditions 12-74

12.9.7 Query Rewrite Considerations: Expression Matching 12-74

12.9.8 Query Rewrite Considerations: Date Folding 12-74

12.9.9 Query Rewrite Considerations: Statistics 12-75

12.9.10 Query Rewrite Considerations: Hints 12-75

12.9.10.1 Query Rewrite: REWRITE and NOREWRITE Hints 12-75

12.9.10.2 Query Rewrite: REWRITE_OR_ERROR Hint 12-75

12.9.10.3 Query Rewrite: Multiple Materialized View Rewrite Hints 12-76

12.9.10.4 Query Rewrite: EXPAND_GSET_TO_UNION Hint 12-76

xiii

12.10 About Semi-Join Materialized View Rewrite 12-76

13

Working With Automatic Materialized Views

13.1 Overview of Automatic Materialized Views 13-1

13.2 Workload Information Provided by the Object Activity Tracking System 13-2

13.3 Data Dictionary Views That Provide Information About Automatic Materialized Views
and OATS 13-2

13.4 The DBMS_AUTO_MV Package 13-4

13.5 The DBMS_ACTIVITY Package 13-12

14

Attribute Clustering

14.1 About Attribute Clustering 14-1

14.1.1 Methods of Clustering Data 14-1

14.1.2 Types of Attribute Clustering 14-2

14.1.2.1 Attribute Clustering with Linear Ordering 14-2

14.1.2.2 Attribute Clustering with Interleaved Ordering 14-3

14.1.3 Example: Attribute Clustered Table 14-3

14.1.4 Guidelines for Using Attribute Clustering 14-4

14.1.5 Advantages of Attribute-Clustered Tables 14-4

14.1.6 About Defining Attribute Clustering for Tables 14-5

14.1.7 About Specifying When Attribute Clustering Must be Performed 14-6

14.2 Attribute Clustering Operations 14-6

14.2.1 Privileges for Attribute-Clustered Tables 14-7

14.2.2 Creating Attribute-Clustered Tables with Linear Ordering 14-7

14.2.2.1 Examples of Attribute Clustering with Linear Ordering 14-7

14.2.3 Creating Attribute-Clustered Tables with Interleaved Ordering 14-8

14.2.3.1 Examples of Attribute Clustering with Interleaved Ordering 14-9

14.2.4 Maintaining Attribute Clustering 14-10

14.2.4.1 Adding Attribute Clustering to an Existing Table 14-10

14.2.4.2 Modifying Attribute Clustering Definitions 14-11

14.2.4.3 Dropping Attribute Clustering for an Existing Table 14-11

14.2.4.4 Using Hints to Control Attribute Clustering for DML Operations 14-11

14.2.4.5 Overriding Table-level Settings for Attribute Clustering During DDL
Operations 14-12

14.2.4.6 Clustering Table Data During Online Table Redefinition 14-12

14.3 Viewing Attribute Clustering Information 14-13

14.3.1 Determining if Attribute Clustering is Defined for Tables 14-14

14.3.2 Viewing Attribute-Clustering Information for Tables 14-14

14.3.3 Viewing Information About the Columns on Which Attribute Clustering is
Performed 14-14

xiv

14.3.4 Viewing Information About Dimensions and Joins on Which Attribute Clustering
is Performed 14-15

14.4 About Automatic Data Clustering 14-15

14.4.1 User Controls for Automatic Data Clustering 14-16

15

Using Zone Maps

15.1 About Zone Maps 15-1

15.1.1 Difference Between Zone Maps and Indexes 15-2

15.1.2 Zone Maps and Attribute Clustering 15-2

15.1.3 Types of Zone Maps 15-2

15.1.4 Benefits of Zone Maps 15-2

15.1.5 Scenarios Which Benefit from Zone Maps 15-3

15.1.6 About Maintaining Zone Maps 15-3

15.1.6.1 Operations that Require Zone Map Maintenance 15-4

15.1.6.2 Scenarios in Which Zone Maps are Automatically Refreshed 15-4

15.2 Zone Map Operations 15-5

15.2.1 Privileges Required for Zone Maps 15-5

15.2.2 Creating Zone Maps 15-6

15.2.2.1 Creating Zone Maps with Attribute Clustering 15-6

15.2.2.2 Creating Zone Maps Independent of Attribute Clustering 15-8

15.2.3 About Automatic Zone Maps 15-9

15.2.4 About the DBMS_AUTO_ZONEMAP Package 15-9

15.2.4.1 CONFIGURE Procedure 15-10

15.2.4.2 ACTIVITY_REPORT Function 15-11

15.2.4.3 Viewing Information About Automatic Zone Maps 15-13

15.2.5 Modifying Zone Maps 15-13

15.2.6 Dropping Zone Maps 15-14

15.2.7 Compiling Zone Maps 15-14

15.2.8 Controlling the Use of Zone Maps 15-15

15.2.8.1 Controlling Zone Map Usage for Entire SQL Workloads 15-15

15.2.8.2 Controlling Zone Map Usage for Specific SQL Statements 15-15

15.2.9 Maintaining Zone Maps 15-16

15.2.9.1 Zone Map Maintenance Considerations 15-17

15.3 Refresh and Staleness of Zone Maps 15-18

15.3.1 About Staleness of Zone Maps 15-18

15.3.2 About Refreshing Zone Maps 15-20

15.3.3 Refreshing Zone Maps 15-21

15.3.3.1 Refreshing Zone Maps Using the ALTER MATERIALIZED ZONEMAP
Command 15-21

15.3.3.2 Refreshing Zone Maps Using the DBMS_MVIEW Package 15-22

15.4 Performing Pruning Using Zone Maps 15-22

15.4.1 How Oracle Database Performs Pruning Using Zone Maps 15-22

xv

15.4.1.1 Pruning Tables Using Zone Maps 15-22

15.4.1.2 Pruning Partitioned Tables Using Zone Maps and Attribute Clustering 15-23

15.4.2 Examples: Performing Pruning with Zone Maps and Attribute Clustering 15-24

15.4.2.1 Example: Partitions and Table Scan Pruning 15-25

15.4.2.2 Example: Zone Map Join Pruning 15-26

15.5 Viewing Zone Map Information 15-27

15.5.1 Viewing Details of Zone Maps in the Database 15-27

15.5.2 Viewing the Measures of a Zone Map 15-27

Part III Data Movement/ETL

16

Data Movement/ETL Overview

16.1 Overview of ETL in Data Warehouses 16-1

16.1.1 ETL Basics in Data Warehousing 16-1

16.1.1.1 Extraction of Data in Data Warehouses 16-1

16.1.1.2 Transportation of Data in Data Warehouses 16-2

16.2 ETL Tools for Data Warehouses 16-2

16.2.1 Daily Operations in Data Warehouses 16-2

16.2.2 Evolution of the Data Warehouse 16-2

17

Extraction in Data Warehouses

17.1 Overview of Extraction in Data Warehouses 17-1

17.2 Introduction to Extraction Methods in Data Warehouses 17-1

17.2.1 Logical Extraction Methods 17-2

17.2.2 Physical Extraction Methods 17-2

17.2.3 Change Tracking Methods 17-3

17.3 Data Warehousing Extraction Examples 17-4

17.3.1 Extraction Using Data Files 17-5

17.3.1.1 Extracting into Flat Files Using SQL*Plus 17-5

17.3.1.2 Extracting into Flat Files Using OCI or Pro*C Programs 17-6

17.3.1.3 Exporting into Export Files Using the Export Utility 17-6

17.3.1.4 Extracting into Export Files Using External Tables 17-7

17.3.2 Extraction Through Distributed Operations 17-7

18

Transportation in Data Warehouses

18.1 Overview of Transportation in Data Warehouses 18-1

18.2 Introduction to Transportation Mechanisms in Data Warehouses 18-1

18.2.1 Transportation Using Flat Files 18-1

18.2.2 Transportation Through Distributed Operations 18-2

xvi

18.2.3 Transportation Using Transportable Tablespaces 18-2

18.2.3.1 Using Transportable Tablespaces to Transport Data into Data
Warehouses: Example 18-2

18.2.3.2 Other Uses of Transportable Tablespaces 18-5

19

Loading and Transformation in Data Warehouses

19.1 Overview of Loading and Transformation in Data Warehouses 19-1

19.1.1 Data Warehouses: Transformation Flow 19-1

19.1.1.1 Multistage Data Transformation in Data Warehouses 19-1

19.1.1.2 Pipelined Data Transformation in Data Warehouses 19-2

19.1.1.3 Staging Area in Data Warehouses 19-3

19.1.2 About Batch Updates and Online Table Redefinition 19-3

19.1.3 Overview of Monitoring ETL Operations 19-3

19.2 Loading Mechanisms for Data Warehouses 19-4

19.2.1 Loading a Data Warehouse with SQL*Loader 19-4

19.2.1.1 Using SQL*Loader to Load From an Object Store 19-5

19.2.2 Loading a Data Warehouse with External Tables 19-6

19.2.2.1 Using DBMS_CLOUD to Create External Tables for Object Store Data 19-8

19.2.3 Loading a Data Warehouse with OCI and Direct-Path APIs 19-8

19.2.4 Loading a Data Warehouse with Export/Import 19-8

19.3 Transformation Mechanisms in Data Warehouses 19-9

19.3.1 Transforming Data Using SQL 19-9

19.3.1.1 CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT 19-9

19.3.1.2 Transforming Data Using UPDATE 19-10

19.3.1.3 Transforming Data Using MERGE 19-10

19.3.1.4 Transforming Data Using Multitable INSERT 19-10

19.3.2 Transforming Data Using PL/SQL 19-12

19.3.3 Transforming Data Using Table Functions 19-12

19.3.3.1 What is a Table Function? 19-13

19.4 Error Logging and Handling Mechanisms 19-19

19.4.1 Business Rule Violations 19-19

19.4.2 Data Rule Violations (Data Errors) 19-20

19.4.2.1 Handling Data Errors with SQL 19-20

19.4.2.2 Handling Data Errors in PL/SQL 19-21

19.4.2.3 Handling Data Errors with an Error Logging Table 19-22

19.5 Loading and Transformation Scenarios 19-23

19.5.1 Key Lookup Scenario 19-23

19.5.2 Business Rule Violation Scenario 19-24

19.5.3 Data Error Scenarios 19-25

19.5.4 Pivoting Scenarios 19-27

xvii

Part IV Relational Analytics

20

SQL for Analysis and Reporting

20.1 Overview of SQL for Analysis and Reporting 20-1

20.2 Ranking, Windowing, and Reporting Functions 20-3

20.2.1 Ranking Functions 20-4

20.2.1.1 RANK and DENSE_RANK Functions 20-4

20.2.1.2 APPROX_RANK Function 20-9

20.2.1.3 Bottom N Ranking Functions 20-11

20.2.1.4 CUME_DIST Function 20-11

20.2.1.5 PERCENT_RANK Function 20-12

20.2.1.6 NTILE Function 20-12

20.2.1.7 ROW_NUMBER Function 20-13

20.2.2 Windowing Functions 20-13

20.2.2.1 Examples of Window Clauses 20-15

20.2.2.2 Examples of Windowing Clause Extensions 20-16

20.2.2.3 About Treatment of NULLs as Input to Window Functions 20-17

20.2.2.4 Windowing Functions with Logical Offset 20-17

20.2.2.5 Centered Aggregate Function 20-19

20.2.2.6 Windowing Aggregate Functions in the Presence of Duplicates 20-19

20.2.2.7 Varying Window Size for Each Row 20-20

20.2.2.8 Windowing Aggregate Functions with Physical Offsets 20-21

20.2.2.9 Parallel Partition-Wise Operations with Windowing Functions 20-21

20.2.3 Reporting Functions 20-22

20.2.3.1 RATIO_TO_REPORT Function 20-23

20.2.4 LAG/LEAD Functions 20-24

20.2.4.1 LAG/LEAD Syntax 20-24

20.2.5 FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functions 20-25

20.2.5.1 FIRST_VALUE and LAST_VALUE Functions 20-25

20.2.5.2 NTH_VALUE Function 20-26

20.3 Advanced Aggregates for Analysis 20-27

20.3.1 About Approximate Aggregates 20-28

20.3.2 LISTAGG Function 20-30

20.3.2.1 LISTAGG as Aggregate 20-31

20.3.2.2 LISTAGG as Reporting Aggregate 20-33

20.3.3 FIRST/LAST Functions 20-34

20.3.3.1 FIRST/LAST As Regular Aggregates 20-34

20.3.3.2 FIRST/LAST As Reporting Aggregates 20-35

20.3.4 Inverse Percentile Functions 20-36

20.3.4.1 Normal Aggregate Syntax 20-36

xviii

20.3.4.2 Inverse Percentile Example Basis 20-36

20.3.4.3 As Reporting Aggregates 20-38

20.3.4.4 Restrictions on Inverse Percentile Functions 20-38

20.3.4.5 Using Percentile Functions that Return Approximate Results 20-39

20.3.5 Hypothetical Rank Functions 20-40

20.3.6 Linear Regression Functions 20-41

20.3.6.1 REGR_COUNT Function 20-42

20.3.6.2 REGR_AVGY and REGR_AVGX Functions 20-42

20.3.6.3 REGR_SLOPE and REGR_INTERCEPT Functions 20-42

20.3.6.4 REGR_R2 Function 20-42

20.3.6.5 REGR_SXX, REGR_SYY, and REGR_SXY Functions 20-43

20.3.6.6 Linear Regression Statistics Examples 20-43

20.3.6.7 Sample Linear Regression Calculation 20-43

20.3.7 About Statistical Aggregates 20-44

20.3.7.1 Descriptive Statistics 20-44

20.3.7.2 Hypothesis Testing - Parametric Tests 20-44

20.3.7.3 Crosstab Statistics 20-45

20.3.7.4 Hypothesis Testing - Non-Parametric Tests 20-45

20.3.7.5 Non-Parametric Correlation 20-45

20.3.8 About User-Defined Aggregates 20-46

20.4 Pivoting Operations 20-46

20.4.1 Creating the View Used for Pivoting Examples 20-47

20.4.2 Pivoting Example 20-47

20.4.3 Pivoting on Multiple Columns 20-48

20.4.4 Pivoting: Multiple Aggregates 20-49

20.4.5 Distinguishing PIVOT-Generated Nulls from Nulls in Source Data 20-49

20.4.6 Wildcard and Subquery Pivoting with XML Operations 20-51

20.5 Unpivoting Operations 20-52

20.6 Data Densification for Reporting 20-53

20.6.1 About Partition Join Syntax 20-54

20.6.2 Sample of Sparse Data 20-54

20.6.3 Filling Gaps in Data 20-55

20.6.4 Filling Gaps in Two Dimensions 20-56

20.6.5 Filling Gaps in an Inventory Table 20-57

20.6.6 Computing Data Values to Fill Gaps 20-58

20.7 Time Series Calculations on Densified Data 20-59

20.7.1 Period-to-Period Comparison for One Time Level: Example 20-60

20.7.2 Period-to-Period Comparison for Multiple Time Levels: Example 20-61

20.7.3 Creating a Custom Member in a Dimension: Example 20-65

20.8 Miscellaneous Analysis and Reporting Capabilities 20-66

20.8.1 TIME_BUCKET Function 20-67

20.8.1.1 TIME_BUCKET Syntax 20-67

xix

20.8.1.2 TIME_BUCKET Examples 20-68

20.8.2 WIDTH_BUCKET Function 20-71

20.8.2.1 WIDTH_BUCKET Syntax 20-71

20.8.3 Linear Algebra 20-73

20.8.4 CASE Expressions 20-75

20.8.4.1 Creating Histograms Using CASE Statement 20-76

20.8.5 Frequent Itemsets in SQL Analytics 20-77

20.9 Limiting SQL Rows 20-77

20.9.1 SQL Row Limiting Restrictions and Considerations 20-80

21

SQL for Aggregation in Data Warehouses

21.1 Overview of SQL for Aggregation in Data Warehouses 21-1

21.1.1 About Analyzing Across Multiple Dimensions 21-2

21.1.2 About Optimized Aggregation Performance 21-3

21.1.3 Data Warehousing: An Aggregate Scenario 21-3

21.2 ROLLUP Extension to GROUP BY 21-4

21.2.1 When to Use ROLLUP 21-4

21.2.2 ROLLUP Syntax 21-5

21.2.3 Partial Rollup 21-6

21.3 CUBE Extension to GROUP BY 21-7

21.3.1 When to Use CUBE 21-7

21.3.2 CUBE Syntax 21-7

21.3.3 Partial CUBE 21-8

21.3.4 Calculating Subtotals Without CUBE 21-9

21.4 GROUPING Functions 21-9

21.4.1 GROUPING Function 21-10

21.4.2 When to Use GROUPING 21-12

21.4.3 GROUPING_ID Function 21-12

21.4.4 GROUP_ID Function 21-13

21.5 GROUPING SETS Expression 21-14

21.5.1 GROUPING SETS Syntax 21-15

21.6 About Composite Columns and Grouping 21-15

21.7 Concatenated Groupings and Data Aggregation 21-17

21.7.1 Concatenated Groupings and Hierarchical Data Cubes 21-19

21.8 Considerations when Using Aggregation in Data Warehouses 21-20

21.8.1 Hierarchy Handling in ROLLUP and CUBE 21-20

21.8.2 Column Capacity in ROLLUP and CUBE 21-21

21.8.3 HAVING Clause Used with GROUP BY Extensions 21-21

21.8.4 ORDER BY Clause Used with GROUP BY Extensions 21-21

21.8.5 Using Other Aggregate Functions with ROLLUP and CUBE 21-22

21.8.6 Using In-Memory Aggregation 21-22

xx

21.9 Computation Using the WITH Clause 21-23

21.10 Working with Hierarchical Cubes in SQL 21-24

21.10.1 Specifying Hierarchical Cubes in SQL 21-24

21.10.2 Querying Hierarchical Cubes in SQL 21-24

21.10.2.1 SQL for Creating Materialized Views to Store Hierarchical Cubes 21-26

21.10.2.2 Examples of Hierarchical Cube Materialized Views 21-26

22

SQL for Pattern Matching

22.1 Overview of Pattern Matching in Data Warehouses 22-1

22.1.1 Why Use Pattern Matching? 22-2

22.1.2 How Data is Processed in Pattern Matching 22-5

22.1.3 About Pattern Matching Special Capabilities 22-6

22.2 Basic Topics in Pattern Matching 22-6

22.2.1 Basic Examples of Pattern Matching 22-6

22.2.2 Tasks and Keywords in Pattern Matching 22-10

22.2.3 Pattern Matching Syntax 22-11

22.3 Pattern Matching Details 22-13

22.3.1 PARTITION BY: Logically Dividing the Rows into Groups 22-14

22.3.2 ORDER BY: Logically Ordering the Rows in a Partition 22-14

22.3.3 [ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for
Each Match 22-14

22.3.4 MEASURES: Defining Calculations for Use in the Query 22-15

22.3.5 PATTERN: Defining the Row Pattern to Be Matched 22-15

22.3.5.1 Reluctant Versus Greedy Quantifier 22-16

22.3.5.2 Operator Precedence 22-17

22.3.6 SUBSET: Defining Union Row Pattern Variables 22-17

22.3.7 DEFINE: Defining Primary Pattern Variables 22-18

22.3.8 AFTER MATCH SKIP: Defining Where to Restart the Matching Process After a
Match Is Found 22-20

22.3.9 Expressions in MEASURES and DEFINE 22-21

22.3.9.1 MATCH_NUMBER: Finding Which Rows Are in Which Match 22-22

22.3.9.2 CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows 22-22

22.3.9.3 Row Pattern Column References 22-22

22.3.9.4 Aggregates 22-23

22.3.9.5 Row Pattern Navigation Operations 22-24

22.3.9.6 Running Versus Final Semantics and Keywords 22-26

22.3.10 Row Pattern Output 22-31

22.3.10.1 Correlation Name and Row Pattern Output 22-31

22.4 Advanced Topics in Pattern Matching 22-32

22.4.1 Nesting FIRST and LAST Within PREV and NEXT in Pattern Matching 22-32

22.4.2 Handling Empty Matches or Unmatched Rows in Pattern Matching 22-33

22.4.2.1 Handling Empty Matches in Pattern Matching 22-33

xxi

22.4.2.2 Handling Unmatched Rows in Pattern Matching 22-34

22.4.3 How to Exclude Portions of the Pattern from the Output 22-34

22.4.4 How to Express All Permutations 22-36

22.5 Rules and Restrictions in Pattern Matching 22-36

22.5.1 Input Table Requirements in Pattern Matching 22-36

22.5.2 Prohibited Nesting in the MATCH_RECOGNIZE Clause 22-37

22.5.3 Concatenated MATCH_RECOGNIZE Clause 22-38

22.5.4 Aggregate Restrictions 22-38

22.6 Examples of Pattern Matching 22-38

22.6.1 Pattern Matching Examples: Stock Market 22-38

22.6.2 Pattern Matching Examples: Security Log Analysis 22-47

22.6.3 Pattern Matching Examples: Sessionization 22-50

22.6.4 Pattern Matching Example: Financial Tracking 22-55

22.7 Fuzzy String Matching 22-56

23

SQL for Modeling

23.1 Overview of SQL Modeling in Data Warehouses 23-1

23.1.1 How Data is Processed in a SQL Model 23-3

23.1.2 Why Use SQL Modeling in Data Warehouses? 23-3

23.1.3 About SQL Modeling Capabilities 23-5

23.2 Basic Topics in SQL Modeling 23-7

23.2.1 Base Schema for SQL Modeling Examples 23-8

23.2.2 MODEL Clause Syntax 23-8

23.2.3 Keywords in SQL Modeling 23-10

23.2.3.1 Assigning Values and Null Handling 23-10

23.2.3.2 Calculation Definition 23-11

23.2.4 About Cell Referencing in SQL Modeling 23-11

23.2.4.1 Symbolic Dimension References 23-12

23.2.4.2 Positional Dimension References 23-12

23.2.5 About Rules for SQL Modeling 23-12

23.2.6 Order of Evaluation of SQL Modeling Rules 23-15

23.2.7 Global and Local Keywords for SQL Modeling Rules 23-16

23.2.8 UPDATE, UPSERT, and UPSERT ALL Behavior 23-16

23.2.8.1 UPDATE Behavior 23-16

23.2.8.2 UPSERT Behavior 23-17

23.2.8.3 UPSERT ALL Behavior 23-17

23.2.9 Treatment of NULLs and Missing Cells in SQL Modeling 23-18

23.2.9.1 Distinguishing Missing Cells from NULLs 23-19

23.2.9.2 Use Defaults for Missing Cells and NULLs 23-20

23.2.9.3 Using NULLs in a Cell Reference 23-20

23.2.10 About Reference Models in SQL Modeling 23-21

xxii

23.3 Advanced Topics in SQL Modeling 23-23

23.3.1 FOR Loops in SQL Modeling 23-23

23.3.1.1 Evaluation of Formulas with FOR Loops 23-26

23.3.2 Iterative Models in SQL Modeling 23-28

23.3.3 Rule Dependency in AUTOMATIC ORDER Models 23-29

23.3.4 Ordered Rules in SQL Modeling 23-30

23.3.5 Analytic Functions in SQL Modeling 23-32

23.3.6 Unique Dimensions Versus Unique Single References in SQL Modeling 23-33

23.3.7 Rules and Restrictions when Using SQL for Modeling 23-34

23.4 Performance Considerations with SQL Modeling 23-36

23.4.1 Parallel Execution and SQL Modeling 23-36

23.4.2 Aggregate Computation and SQL Modeling 23-37

23.4.3 Using EXPLAIN PLAN to Understand Model Queries 23-38

23.5 Examples of SQL Modeling 23-39

23.5.1 SQL Modeling Example 1: Calculating Sales Differences 23-40

23.5.2 SQL Modeling Example 2: Calculating Percentage Change 23-40

23.5.3 SQL Modeling Example 3: Calculating Net Present Value 23-40

23.5.4 SQL Modeling Example 4: Calculating Using Simultaneous Equations 23-41

23.5.5 SQL Modeling Example 5: Calculating Using Regression 23-42

23.5.6 SQL Modeling Example 6: Calculating Mortgage Amortization 23-43

24

Advanced Analytical SQL

24.1 Examples of Business Intelligence Queries 24-1

24.1.1 Business Intelligence Query Example 1: Percent Change in Market Share of
Products in a Calculated Set 24-2

24.1.2 Business Intelligence Query Example 2: Sales Projection that Fills in Missing
Data 24-4

24.1.3 Business Intelligence Query Example 3: Customer Analysis by Grouping
Customers into Buckets 24-6

24.1.4 Business Intelligence Query Example 4: Frequent Itemsets 24-8

Part V Analytic Views

25

Overview of Analytic Views

25.1 What Are Analytic Views? 25-1

25.2 New Features for Analytic Views 25-3

25.3 Privileges for Analytic Views 25-4

25.4 Application Programming Interfaces for Analytic Views 25-6

25.5 Compilation States of Analytic Views 25-8

25.6 Validation of Data 25-9

xxiii

25.7 Classifications for Analytic Views 25-9

25.8 Share Analytic Views with Application Containers 25-10

25.9 Alter or Drop an Analytic View Object 25-10

25.10 Data and Scripts for Examples 25-10

25.10.1 About the Data and Scripts for Examples 25-11

25.10.2 Create Attribute Dimension Statements 25-12

25.10.3 Create Hierarchy Statements 25-15

25.10.4 Create Analytic View Statements 25-16

26

Attribute Dimension and Hierarchy Objects

26.1 About Attribute Dimensions and Hierarchies 26-1

26.2 Attributes and Hierarchical Attributes 26-4

26.3 Order Levels 26-7

26.4 Level Keys 26-8

26.5 Determine Attribute Relationships 26-9

27

Analytic View Objects

27.1 About Analytic Views 27-1

27.2 Measures of Analytic Views 27-2

27.3 Create Analytic Views 27-3

27.4 Examples of Calculated Measures 27-6

27.5 Attribute Reporting 27-11

27.6 Analytic View Queries with Filtered Facts and Added Measures 27-15

27.6.1 Analytic View Query with Filtered Facts 27-15

27.6.2 Analytic View Query with Added Measures 27-16

27.6.3 Analytic View Query with Filtered Facts and Multiple Added Measures 27-17

Glossary

Index

xxiv

Preface

This preface contains these topics:

• Audience

• Related Documents

• Documentation Accessibility

• Conventions

Audience
This guide is intended for database administrators, system administrators, and database
application developers who design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts, basic Oracle
server concepts, and the operating system environment under which you are running Oracle.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
Many of the examples in this book use the sample schemas of the seed database, which is
installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for
information on how these schemas were created and how you can use them yourself.

Note that this book is meant as a supplement to standard texts about data warehousing. This
book focuses on Oracle-specific material and does not reproduce in detail material of a general
nature. For additional information, see:

• The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

• Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions
The following text conventions are used in this document:

xxv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

Preface

xxvi

Part I
Data Warehouse - Fundamentals

This section introduces basic data warehousing concepts.

It contains the following chapters:

• Introduction to Data Warehousing Concepts

• Data Warehousing Logical Design

• Data Warehousing Physical Design

• Data Warehousing Optimizations and Techniques

1
Introduction to Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation. It contains:

• What Is a Data Warehouse?

• Contrasting OLTP and Data Warehousing Environments

• Common Data Warehouse Tasks

• Data Warehouse Architectures

1.1 What Is a Data Warehouse?
A data warehouse is a database designed to enable business intelligence activities: it exists
to help users understand and enhance their organization's performance. It is designed for
query and analysis rather than for transaction processing, and usually contains historical data
derived from transaction data, but can include data from other sources. Data warehouses
separate analysis workload from transaction workload and enable an organization to
consolidate data from several sources. This helps in:

• Maintaining historical records

• Analyzing the data to gain a better understanding of the business and to improve the
business

In addition to a relational database, a data warehouse environment can include an extraction,
transportation, transformation, and loading (ETL) solution, statistical analysis, reporting, data
mining capabilities, client analysis tools, and other applications that manage the process of
gathering data, transforming it into useful, actionable information, and delivering it to business
users.

To achieve the goal of enhanced business intelligence, the data warehouse works with data
collected from multiple sources. The source data may come from internally developed
systems, purchased applications, third-party data syndicators and other sources. It may involve
transactions, production, marketing, human resources and more. In today's world of big data,
the data may be many billions of individual clicks on web sites or the massive data streams
from sensors built into complex machinery.

Data warehouses are distinct from online transaction processing (OLTP) systems. With a data
warehouse you separate analysis workload from transaction workload. Thus data warehouses
are very much read-oriented systems. They have a far higher amount of data reading versus
writing and updating. This enables far better analytical performance and avoids impacting your
transaction systems. A data warehouse system can be optimized to consolidate data from
many sources to achieve a key goal: it becomes your organization's "single source of truth".
There is great value in having a consistent source of data that all users can look to; it prevents
many disputes and enhances decision-making efficiency.

A data warehouse usually stores many months or years of data to support historical analysis.
The data in a data warehouse is typically loaded through an extraction, transformation, and
loading (ETL) process from multiple data sources. Modern data warehouses are moving
toward an extract, load, transformation (ELT) architecture in which all or most data
transformation is performed on the database that hosts the data warehouse. It is important to
note that defining the ETL process is a very large part of the design effort of a data warehouse.

1-1

Similarly, the speed and reliability of ETL operations are the foundation of the data warehouse
once it is up and running.

Users of the data warehouse perform data analyses that are often time-related. Examples
include consolidation of last year's sales figures, inventory analysis, and profit by product and
by customer. But time-focused or not, users want to "slice and dice" their data however they
see fit and a well-designed data warehouse will be flexible enough to meet those demands.
Users will sometimes need highly aggregated data, and other times they will need to drill down
to details. More sophisticated analyses include trend analyses and data mining, which use
existing data to forecast trends or predict futures. The data warehouse acts as the underlying
engine used by middleware business intelligence environments that serve reports, dashboards
and other interfaces to end users.

Although the discussion above has focused on the term "data warehouse", there are two other
important terms that need to be mentioned. These are the data mart and the operation data
store (ODS).

A data mart serves the same role as a data warehouse, but it is intentionally limited in scope. It
may serve one particular department or line of business. The advantage of a data mart versus
a data warehouse is that it can be created much faster due to its limited coverage. However,
data marts also create problems with inconsistency. It takes tight discipline to keep data and
calculation definitions consistent across data marts. This problem has been widely recognized,
so data marts exist in two styles. Independent data marts are those which are fed directly from
source data. They can turn into islands of inconsistent information. Dependent data marts are
fed from an existing data warehouse. Dependent data marts can avoid the problems of
inconsistency, but they require that an enterprise-level data warehouse already exist.

Operational data stores exist to support daily operations. The ODS data is cleaned and
validated, but it is not historically deep: it may be just the data for the current day. Rather than
support the historically rich queries that a data warehouse can handle, the ODS gives data
warehouses a place to get access to the most current data, which has not yet been loaded into
the data warehouse. The ODS may also be used as a source to load the data warehouse. As
data warehousing loading techniques have become more advanced, data warehouses may
have less need for ODS as a source for loading data. Instead, constant trickle-feed systems
can load the data warehouse in near real time.

A common way of introducing data warehousing is to refer to the characteristics of a data
warehouse as set forth by William Inmon:

• Subject Oriented

• Integrated

• Nonvolatile

• Time Varient

Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more about
your company's sales data, you can build a data warehouse that concentrates on sales. Using
this data warehouse, you can answer questions such as "Who was our best customer for this
item last year?" or "Who is likely to be our best customer next year?" This ability to define a
data warehouse by subject matter, sales in this case, makes the data warehouse subject
oriented.

Integrated

Integration is closely related to subject orientation. Data warehouses must put data from
disparate sources into a consistent format. They must resolve such problems as naming

Chapter 1
What Is a Data Warehouse?

1-2

conflicts and inconsistencies among units of measure. When they achieve this, they are said to
be integrated.

Nonvolatile

Nonvolatile means that, once entered into the data warehouse, data should not change. This is
logical because the purpose of a data warehouse is to enable you to analyze what has
occurred.

Time Varient

A data warehouse's focus on change over time is what is meant by the term time variant. In
order to discover trends and identify hidden patterns and relationships in business, analysts
need large amounts of data. This is very much in contrast to online transaction processing
(OLTP) systems, where performance requirements demand that historical data be moved to an
archive.

1.1.1 Key Characteristics of a Data Warehouse
The key characteristics of a data warehouse are as follows:

• Data is structured for simplicity of access and high-speed query performance.

• End users are time-sensitive and desire speed-of-thought response times.

• Large amounts of historical data are used.

• Queries often retrieve large amounts of data, perhaps many thousands of rows.

• Both predefined and ad hoc queries are common.

• The data load involves multiple sources and transformations.

In general, fast query performance with high data throughput is the key to a successful data
warehouse.

1.2 Contrasting OLTP and Data Warehousing Environments
There are important differences between an OLTP system and a data warehouse. One major
difference between the types of system is that data warehouses are not exclusively in third
normal form (3NF), a type of data normalization common in OLTP environments.

Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

• Workload

Data warehouses are designed to accommodate ad hoc queries and data analysis. You
might not know the workload of your data warehouse in advance, so a data warehouse
should be optimized to perform well for a wide variety of possible query and analytical
operations.

OLTP systems support only predefined operations. Your applications might be specifically
tuned or designed to support only these operations.

• Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or weekly)
using bulk data modification techniques. The end users of a data warehouse do not directly
update the data warehouse except when using analytical tools, such as data mining, to
make predictions with associated probabilities, assign customers to market segments, and
develop customer profiles.

Chapter 1
Contrasting OLTP and Data Warehousing Environments

1-3

In OLTP systems, end users routinely issue individual data modification statements to the
database. The OLTP database is always up to date, and reflects the current state of each
business transaction.

• Schema design

Data warehouses often use partially denormalized schemas to optimize query and
analytical performance.

OLTP systems often use fully normalized schemas to optimize update/insert/delete
performance, and to guarantee data consistency.

• Typical operations

A typical data warehouse query scans thousands or millions of rows. For example, "Find
the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example, "Retrieve the
current order for this customer."

• Historical data

Data warehouses usually store many months or years of data. This is to support historical
analysis and reporting.

OLTP systems usually store data from only a few weeks or months. The OLTP system
stores only historical data as needed to successfully meet the requirements of the current
transaction.

1.3 Common Data Warehouse Tasks
As an Oracle data warehousing administrator or designer, you can expect to be involved in the
following tasks:

• Configuring an Oracle database for use as a data warehouse

• Designing data warehouses

• Performing upgrades of the database and data warehousing software to new releases

• Managing schema objects, such as tables, indexes, and materialized views

• Managing users and security

• Developing routines used for the extraction, transformation, and loading (ETL) processes

• Creating reports based on the data in the data warehouse

• Backing up the data warehouse and performing recovery when necessary

• Monitoring the data warehouse's performance and taking preventive or corrective action as
required

In a small-to-midsize data warehouse environment, you might be the sole person performing
these tasks. In large, enterprise environments, the job is often divided among several DBAs
and designers, each with their own specialty, such as database security or database tuning.

These tasks are illustrated in the following:

• For more information regarding partitioning, see Oracle Database VLDB and Partitioning
Guide.

• For more information regarding database security, see Oracle Database Security Guide.

• For more information regarding database performance, see Oracle Database Performance
Tuning Guide and Oracle Database SQL Tuning Guide.

Chapter 1
Common Data Warehouse Tasks

1-4

• For more information regarding backup and recovery, see Oracle Database Backup and
Recovery User's Guide.

• For more information regarding ODI, see Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

1.4 Data Warehouse Architectures
Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

• Data Warehouse Architecture: Basic

• Data Warehouse Architecture: with a Staging Area

• Data Warehouse Architecture: with a Staging Area and Data Marts

1.4.1 Data Warehouse Architecture: Basic
Figure 1-1 shows a simple architecture for a data warehouse. End users directly access data
derived from several source systems through the data warehouse.

Figure 1-1 Architecture of a Data Warehouse

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining

In Figure 1-1, the metadata and raw data of a traditional OLTP system is present, as is an
additional type of data, summary data. Summaries are a mechanism to pre-compute common
expensive, long-running operations for sub-second data retrieval. For example, a typical data
warehouse query is to retrieve something such as August sales. A summary in an Oracle
database is called a materialized view.

The consolidated storage of the raw data as the center of your data warehousing architecture
is often referred to as an Enterprise Data Warehouse (EDW). An EDW provides a 360-degree
view into the business of an organization by holding all relevant business information in the
most detailed format.

Chapter 1
Data Warehouse Architectures

1-5

1.4.2 Data Warehouse Architecture: with a Staging Area
You must clean and process your operational data before putting it into the warehouse, as
shown in Figure 1-2. You can do this programmatically, although most data warehouses use a
staging area instead. A staging area simplifies data cleansing and consolidation for operational
data coming from multiple source systems, especially for enterprise data warehouses where all
relevant information of an enterprise is consolidated. Figure 1-2 illustrates this typical
architecture.

Figure 1-2 Architecture of a Data Warehouse with a Staging Area

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

1.4.3 Data Warehouse Architecture: with a Staging Area and Data Marts
Although the architecture in Figure 1-2 is quite common, you may want to customize your
warehouse's architecture for different groups within your organization. You can do this by
adding data marts, which are systems designed for a particular line of business. Figure 1-3
illustrates an example where purchasing, sales, and inventories are separated. In this
example, a financial analyst might want to analyze historical data for purchases and sales or
mine historical data to make predictions about customer behavior.

Chapter 1
Data Warehouse Architectures

1-6

Figure 1-3 Architecture of a Data Warehouse with a Staging Area and Data Marts

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Note:

Data marts can be physically instantiated or implemented purely logically though
views. Furthermore, data marts can be co-located with the enterprise data
warehouse or built as separate systems. Building an end-to-end data warehousing
architecture with an enterprise data warehouse and surrounding data marts is not the
focus of this book.

Chapter 1
Data Warehouse Architectures

1-7

2
Data Warehousing Logical Design

This chapter explains how to create a logical design for a data warehousing environment and
includes the following topics:

• Logical Versus Physical Design in Data Warehouses

• Creating a Logical Design

• About Third Normal Form Schemas

• About Star Schemas

• Improved Analytics Using the In-Memory Column Store

• Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries

2.1 Logical Versus Physical Design in Data Warehouses
Your organization has decided to build an enterprise data warehouse. You have defined the
business requirements and agreed upon the scope of your business goals, and created a
conceptual design. Now you need to translate your requirements into a system deliverable. To
do so, you create the logical and physical design for the data warehouse. You then define:

• The specific data content

• Relationships within and between groups of data

• The system environment supporting your data warehouse

• The data transformations required

• The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the logical
design, you look at the logical relationships among the objects. In the physical design, you look
at the most effective way of storing and retrieving the objects as well as handling them from a
transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to perform
analysis and look at aggregated data, rather than at individual transactions. However, end
users might not know what they need until they see it. In addition, a well-planned design allows
for growth and changes as the needs of users change and evolve.

By beginning with the logical design, you focus on the information requirements and save the
implementation details for later.

2.2 Creating a Logical Design
A logical design is conceptual and abstract. You do not deal with the physical implementation
details yet. You deal only with defining the types of information that you need.

One technique you can use to model your organization's logical information requirements is
entity-relationship modeling. Entity-relationship modeling involves identifying the things of
importance (entities), the properties of these things (attributes), and how they are related to
one another (relationships).

2-1

The process of logical design involves arranging data into a series of logical relationships
called entities and attributes. An entity represents a chunk of information. In relational
databases, an entity often maps to a table. An attribute is a component of an entity that helps
define the uniqueness of the entity. In relational databases, an attribute maps to a column.

To ensure that your data is consistent, you must use unique identifiers. A unique identifier is
something you add to tables so that you can differentiate between the same item when it
appears in different places. In a physical design, this is usually a primary key.

Entity-relationship modeling is purely logical and applies to both OLTP and data warehousing
systems. It is also applicable to the various common physical schema modeling techniques
found in data warehousing environments, namely normalized (3NF) schemas in Enterprise
Data Warehousing environments, star or snowflake schemas in data marts, or hybrid schemas
with components of both of these classical modeling techniques.

See Also:

• Oracle Fusion Middleware Developing Integration Projects with Oracle Data
Integrator for more details regarding ODI

2.2.1 What is a Schema?
A schema is a collection of database objects, including tables, views, indexes, and synonyms.
You can arrange schema objects in the schema models designed for data warehousing in a
variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design the data
warehouse schema. You can sometimes get the source model from your company's enterprise
data model and reverse-engineer the logical data model for the data warehouse from this. The
physical implementation of the logical data warehouse model may require some changes to
adapt it to your system parameters—size of computer, number of users, storage capacity, type
of network, and software. A key part of designing the schema is whether to use a third normal
form, star, or snowflake schema, and these are discussed later.

2.3 About Third Normal Form Schemas
Third Normal Form design seeks to minimize data redundancy and avoid anomalies in data
insertion, updates and deletion. 3NF design has a long heritage in online transaction
processing (OLTP) systems. OLTP systems must maximize performance and accuracy when
inserting, updating and deleting data. Transactions must be handled as quickly as possible or
the business may be unable to handle the flow of events, perhaps losing sales or incurring
other costs. Therefore, 3NF designs avoid redundant data manipulation and minimize table
locks, both of which can slow inserts, updates and deletes. 3NF designs also works well to
abstract the data from specific application needs. If new types of data are added to the
environment, you can extend the data model with relative ease and minimal impact to existing
applications. Likewise, if you have completely new types of analyses to perform in your data
warehouse, a well-designed 3NF schema will be able to handle them without requiring
redesigned data structures.3NF designs have great flexibility, but it comes at a cost. 3NF
databases use very many tables and this requires complex queries with many joins. For full
scale enterprise models built in 3NF form, over one thousand tables are commonly
encountered in the schema. With the kinds of queries involved in data warehousing, which will
often need access to many rows from many tables, this design imposes understanding and
performance penalties. It can be complex for query builders, whether they are humans or

Chapter 2
About Third Normal Form Schemas

2-2

business intelligence tools and applications, to choose and join the tables needed for a given
piece of data when there are very large numbers of tables available. Even when the tables are
readily chosen by the query generator, the 3NF schema often requires that a large number of
tables be used in a single query. More tables in a query mean more potential data access
paths, which makes the database query optimizer's job harder. The end result can be slow
query performance.

The issue of slow query performance in a 3NF system is not necessarily limited to the core
queries used to create reports and analyses. It can also show up in the simpler task of users
browsing subsets of data to understand the contents. Similarly, the complexity of a 3NF
schema may impact generating the pick-lists of data used to constrain queries and reports.
Although these may seem relatively minor issues, speedy response time for such processes
makes a big impact on user satisfaction.

Figure 2-1 presents a tiny fragment of a 3NF Schema. Note how order information is broken
into order and order items to avoid redundant data storage. The "crow's feet" markings on the
relationship between tables indicate one-to-many relationships among the entities. Thus, one
order may have multiple order items, a single customer may have many orders, and a single
product may be found in many order items. Although this diagram shows a very small case,
you can see that minimizing data redundancy can lead to many tables in the schema.

Figure 2-1 Fragment of a Third Normal Form Schema

customers orders

order
items

products

See Also:

Design Concepts for 3NF Schemas

2.3.1 About Normalization
Normalization is a data design process that has a high level goal of keeping each fact in just
one place to avoid data redundancy and insert, update, and delete anomalies. There are
multiple levels of normalization, and this section describes the first three of them. Considering
how fundamental the term third normal form (3NF) term is, it only makes sense to see how
3NF is reached.

Consider a situation where you are tracking sales. The core entity you track is sales orders,
where each sales order contains details about each item purchased (referred to as a line item):
its name, price, quantity, and so on. The order also holds the name and address of the
customer and more. Some orders have many different line items, and some orders have just
one.

In first normal form (1NF), there are no repeating groups of data and no duplicate rows. Every
intersection of a row and column (a field) contains just one value, and there are no groups of
columns that contain the same facts. To avoid duplicate rows, there is a primary key. For sales

Chapter 2
About Third Normal Form Schemas

2-3

orders, in first normal form, multiple line items of each sales order in a single field of the table
are not displayed. Also, there will not be multiple columns showing line items.

Then comes second normal form (2NF), where the design is in first normal form and every
non-key column is dependent on the complete primary key. Thus, the line items are broken out
into a table of sales order line items where each row represents one line item of one order. You
can look at the line item table and see that the names of the items sold are not dependent on
the primary key of the line items table: the sales item is its own entity. Therefore, you move the
sales item to its own table showing the item name. Prices charged for each item can vary by
order (for instance, due to discounts) so these remain in the line items table. In the case of
sales order, the name and address of the customer is not dependent on the primary key of the
sales order: customer is its own entity. Thus, you move the customer name and address
columns out into their own table of customer information.

Next is third normal form, where the goal is to ensure that there are no dependencies on non-
key attributes. So the goal is to take columns that do not directly relate to the subject of the row
(the primary key), and put them in their own table. So details about customers, such as
customer name or customer city, should be put in a separate table, and then a customer
foreign key added into the orders table.

Another example of how a 2NF table differs from a 3NF table would be a table of the winners
of tennis tournaments that contained columns of tournament, year, winner, and winner's date of
birth. In this case, the winner's date of birth is vulnerable to inconsistencies, as the same
person could be shown with different dates of birth in different records. The way to avoid this
potential problem is to break the table into one for tournament winners, and another for the
player dates of birth.

2.3.2 Design Concepts for 3NF Schemas
The following section discusses some basic concepts when modeling for a data warehousing
environment using a 3NF schema approach. The intent is not to discuss the theoretical
foundation for 3NF modeling (or even higher levels of normalization), but to highlight some key
components relevant for data warehousing.

Some key 3NF schema design concepts that are relevant to data warehousing are as follows:

• Identifying Candidate Primary Keys

• Foreign Key Relationships and Referential Integrity Constraints

• Denormalization

2.3.2.1 Identifying Candidate Primary Keys
A primary key is an attribute that uniquely identifies a specific record in a table. Primary keys
can be identified through single or multiple columns. It is normally preferred to achieve unique
identification through as little columns as possible - ideally one or two - and to either use a
column that is most likely not going to be updated or even changed in bulk. If your data model
does not lead to a simple unique identification through its attributes, you would require too
many attributes to uniquely identify a single records, or the data is prone to changes, the usage
of a surrogate key is highly recommended.

Specifically, 3NF schemas rely on proper and simple unique identification since queries tend to
have many table joins and all columns necessary to uniquely identify a record are needed as
join condition to avoid row duplication through the join.

Chapter 2
About Third Normal Form Schemas

2-4

2.3.2.2 Foreign Key Relationships and Referential Integrity Constraints
3NF schemas in data warehousing environments often resemble the data model of its OLTP
source systems, in which the logical consistency between data entities is expressed and
enforced through primary key - foreign key relationships, also known as parent-child
relationship. A foreign key resolves a 1-to-many relationship in relational system and ensures
logical consistency: for example, you cannot have an order line item without an order header,
or an employee working for a non-existent department.

While such referential are always enforced in OLTP system, data warehousing systems often
implement them as declarative, non-enforced conditions, relying on the ETL process to ensure
data consistency. Whenever possible, foreign keys and referential integrity constraints should
be defined as non-enforced conditions, since it enables better query optimization and
cardinality estimates.

2.3.2.3 Denormalization
Proper normalized modelling tends to decompose logical entities - such as a customer. a
product, or an order - into many physical tables, making even the retrieval of perceived simple
information requiring to join many tables. While this is not a problem from a query processing
perspective, it can put some unnecessary burden on both the application developer (for writing
code) as well as the database (for joining information that is always used together). It is not
uncommon to see some sensible level of denormalization in 3NF data warehousing models, in
a logical form as views or in a physical form through slightly denormalized tables.

Care has to be taken with the physical denormalization to preserve the subject-neutral shape
and therefore the flexibility of the physical implementation of the 3NF schema.

2.4 About Star Schemas
Star schemas are often found in data warehousing systems with embedded logical or physical
data marts. The term star schema is another way of referring to a "dimensional modeling"
approach to defining your data model. Most descriptions of dimensional modeling use
terminology drawn from the work of Ralph Kimball, the pioneering consultant and writer in this
field. Dimensional modeling creates multiple star schemas, each based on a business process
such as sales tracking or shipments. Each star schema can be considered a data mart, and
perhaps as few as 20 data marts can cover the business intelligence needs of an enterprise.
Compared to 3NF designs, the number of tables involved in dimensional modeling is a tiny
fraction. Many star schemas will have under a dozen tables. The star schemas are knit
together through conformed dimensions and conformed facts. Thus, users are able to get data
from multiple star schemas with minimal effort.

The goal for star schemas is structural simplicity and high performance data retrieval. Because
most queries in the modern era are generated by reporting tools and applications, it's vital to
make the query generation convenient and reliable for the tools and application. In fact, many
business intelligence tools and applications are designed with the expectation that a star
schema representation will be available to them.

Discussions of star schemas are less abstracted from the physical database than 3NF
descriptions. This is due to the pragmatic emphasis of dimensional modeling on the needs of
business intelligence users.

Note how different the dimensional modeling style is from the 3NF approach that minimizes
data redundancy and the risks of update/inset/delete anomalies. The star schema accepts data
redundancy (denormalization) in its dimension tables for the sake of easy user understanding

Chapter 2
About Star Schemas

2-5

and better data retrieval performance. A common criticism of star schemas is that they limit
analysis flexibility compared to 3NF designs. However, a well designed dimensional model can
be extended to enable new types of analysis, and star schemas have been successful for
many years at the largest enterprises.

As noted earlier, the modern approach to data warehousing does not pit star schemas and
3NF against each other. Rather, both techniques are used, with a foundation layer of 3NF - the
Enterprise Data Warehouse of 3NF, acting as the bedrock data, and star schemas as a central
part of an access and performance optimization layer.

See Also:

• About Facts and Dimensions in Star Schemas

• Design Concepts in Star Schemas

2.4.1 About Facts and Dimensions in Star Schemas
Star schemas divide data into facts and dimensions. Facts are the measurements of some
event such as a sale and are typically numbers. Dimensions are the categories you use to
identify facts, such as date, location, and product.

The name "star schema" comes from the fact that the diagrams of the schemas typically show
a central fact table with lines joining it to the dimension tables, so the graphic impression is
similar to a star. Figure 2-2 is a simple example with sales as the fact table and products,
times, customers, and channels as the dimension table.

Figure 2-2 Star Schema

customers

products

Dimension Table Dimension Table

channels

sales
(amount_sold,
quantity_sold)

times

Fact Table

See Also:

• About Fact Tables in Data Warehouses

• About Dimension Tables in Data Warehouses

2.4.1.1 About Fact Tables in Data Warehouses
Fact tables have measurement data. They have many rows but typically not many columns.
Fact tables for a large enterprise can easily hold billions of rows. For many star schemas, the

Chapter 2
About Star Schemas

2-6

fact table will represent well over 90 percent of the total storage space. A fact table has a
composite key made up of the primary keys of the dimension tables of the schema.

A fact table contains either detail-level facts or facts that have been aggregated. Fact tables
that contain aggregated facts are often called summary tables. A fact table usually contains
facts with the same level of aggregation. Though most facts are additive, they can also be
semi-additive or non-additive. Additive facts can be aggregated by simple arithmetical addition.
A common example of this is sales. Non-additive facts cannot be added at all. An example of
this is averages. Semi-additive facts can be aggregated along some of the dimensions and not
along others. An example of this is inventory levels stored in physical warehouses, where you
may be able to add across a dimension of warehouse sites, but you cannot aggregate across
time.

In terms of adding rows to data in a fact table, there are three main approaches:

• Transaction-based

Shows a row for the finest level detail in a transaction. A row is entered only if a transaction
has occurred for a given combination of dimension values. This is the most common type
of fact table.

• Periodic Snapshot

Shows data as of the end of a regular time interval, such as daily or weekly. If a row for the
snapshot exists in a prior period, a row is entered for it in the new period even if no activity
related to it has occurred in the latest interval. This type of fact table is useful in complex
business processes where it is difficult to compute snapshot values from individual
transaction rows.

• Accumulating Snapshot

Shows one row for each occurrence of a short-lived process. The rows contain multiple
dates tracking major milestones of a short-lived process. Unlike the other two types of fact
tables, rows in an accumulating snapshot are updated multiple times as the tracked
process moves forward.

2.4.1.2 About Dimension Tables in Data Warehouses
Dimension tables provide category data to give context to the fact data. For instance, a star
schema for sales data will have dimension tables for product, date, sales location, promotion
and more. Dimension tables act as lookup or reference tables because their information lets
you choose the values used to constrain your queries. The values in many dimension tables
may change infrequently. As an example, a dimension of geographies showing cities may be
fairly static. But when dimension values do change, it is vital to update them fast and reliably.
Of course, there are situations where data warehouse dimension values change frequently.
The customer dimension for an enterprise will certainly be subject to a frequent stream of
updates and deletions.

A key aspect of dimension tables is the hierarchy information they provide. Dimension data
typically has rows for the lowest level of detail plus rows for aggregated dimension values.
These natural rollups or aggregations within a dimension table are called hierarchies and add
great value for analyses. For instance, if you want to calculate the share of sales that a specific
product represents within its specific product category, it is far easier and more reliable to have
a predefined hierarchy for product aggregation than to specify all the elements of the product
category in each query. Because hierarchy information is so valuable, it is common to find
multiple hierarchies reflected in a dimension table.

Dimension tables are usually textual and descriptive, and you will use their values as the row
headers, column headers and page headers of the reports generated by your queries. While
dimension tables have far fewer rows than fact tables, they can be quite wide, with dozens of

Chapter 2
About Star Schemas

2-7

columns. A location dimension table might have columns indicating every level of its rollup
hierarchy, and may show multiple hierarchies reflected in the table. The location dimension
table could have columns for its geographic rollup, such as street address, postal code, city,
state/province, and country. The same table could include a rollup hierarchy set up for the
sales organization, with columns for sales district, sales territory, sales region, and
characteristics.

See Also:

Dimensions for further information regarding dimensions

2.4.2 Design Concepts in Star Schemas
Here we touch on some of the key terms used in star schemas. This is by no means a full set,
but is intended to highlight some of the areas worth your consideration.

Data Grain

One of the most important tasks when designing your model is to consider the level of detail it
will provide, referred to as the grain of the data. Consider a sales schema: will the grain be
very fine, storing every single item purchased by each customer? Or will it be a coarse grain,
storing only the daily totals of sales for each product at each store? In modern data
warehousing there is a strong emphasis on providing the finest grain data possible, because
this allows for maximum analytic power. Dimensional modeling experts generally recommend
that each fact table store just one grain level. Presenting fact data in single-grain tables
supports more reliable querying and table maintenance, because there is no ambiguity about
the scope of any row in a fact table.

Working with Multiple Star Schemas

Because the star schema design approach is intended to chunk data into distinct processes,
you need reliable and performant ways to traverse the schemas when queries span multiple
schemas. One term for this ability is a data warehouse bus architecture. A data warehouse bus
architecture can be achieved with conformed dimensions and conformed facts.

Conformed Dimensions

Conformed dimensions means that dimensions are designed identically across the various star
schemas. Conformed dimensions use the same values, column names and data types
consistently across multiple stars. The conformed dimensions do not have to contain the same
number of rows in each schema's copy of the dimension table, as long as the rows in the
shorter tables are a true subset of the larger tables.

Conformed Facts

If the fact columns in multiple fact tables have exactly the same meaning, then they are
considered conformed facts. Such facts can be used together reliably in calculations even
though they are from different tables. Conformed facts should have the same column names to
indicate their conformed status. Facts that are not conformed should always have different
names to highlight their different meanings.

Chapter 2
About Star Schemas

2-8

Surrogate Keys

Surrogate or artificial keys, usually sequential integers, are recommended for dimension
tables. By using surrogate keys, the data is insulated from operational changes. Also, compact
integer keys may allow for better performance than large and complex alphanumeric keys.

Degenerate Dimensions

Degenerate dimensions are dimension columns in fact tables that do not join to a dimension
table. They are typically items such as order numbers and invoice numbers. You will see them
when the grain of a fact table is at the level of an order line-item or a single transaction.

Junk Dimensions

Junk dimensions are abstract dimension tables used to hold text lookup values for flags and
codes in fact tables. These dimensions are referred to as junk, not because they have low
value, but because they hold an assortment of columns for convenience, analogous to the idea
of a "junk drawer" in your home. The number of distinct values (cardinality) of each column in a
junk dimension table is typically small.

Embedded Hierarchy

Classic dimensional modeling with star schemas advocates that each table contain data at a
single grain. However, there are situations where designers choose to have multiple grains in a
table, and these commonly represent a rollup hierarchy. A single sales fact table, for instance,
might contain both transaction-level data, then a day-level rollup by product, then a month-level
rollup by product. In such cases, the fact table will need to contain a level column indicating the
hierarchy level applying to each row, and queries against the table will need to include a level
predicate.

Factless Fact Tables

Factless fact tables do not contain measures such as sales price or quantity sold. Instead, the
rows of a factless fact table are used to show events not represented by other fact tables.
Another use for factless tables is as a "coverage table" which holds all the possible events that
could have occurred in a given situation, such as all the products that were part of a sales
promotion and might have been sold at the promotional price.

Slowly Changing Dimensions

One of the certainties of data warehousing is that the way data is categorized will change.
Product names and category names will change. Characteristics of a store will change. The
areas included in sales territories will change. The timing and extent of these changes will not
always be predictable. How can these slowly changing dimensions be handled? Star schemas
treat these in three main ways:

• Type 1

The dimension values that change are simply overwritten, with no history kept. This
creates a problem for time-based analyses. Also, it invalidates any existing aggregates that
depended on the old value of the dimension.

• Type 2

When a dimension value changes, a new dimension row showing the new value and
having a new surrogate key is created. You may choose to include date columns in our
dimension showing when the new row is valid and when it is expired. No changes need be
made to the fact table.

• Type 3

Chapter 2
About Star Schemas

2-9

When a dimension value is changed, the prior value is stored in a different column of the
same row. This enables easy query generation if you want to compare results using the
current and prior value of the column.

In practice, Type 2 is the most common treatment for slowly changing dimensions.

2.4.3 About Snowflake Schemas
The snowflake schema is a more complex data warehouse model than a star schema, and is a
type of star schema. It is called a snowflake schema because the diagram of the schema
resembles a snowflake.

Snowflake schemas normalize dimensions to eliminate redundancy. That is, the dimension
data has been grouped into multiple tables instead of one large table. For example, a product
dimension table in a star schema might be normalized into a products table, a
product_category table, and a product_manufacturer table in a snowflake schema. While
this saves space, it increases the number of dimension tables and requires more foreign key
joins. The result is more complex queries and reduced query performance. Figure 2-3 presents
a graphical representation of a snowflake schema.

Figure 2-3 Snowflake Schema

customers

products

channels

sales
(amount_sold,
quantity_sold)

times

suppliers

countries

2.5 Improved Analytics Using the In-Memory Column Store
The In-Memory column store (IM column store) is an optional portion of the system global area
(SGA) that stores copies of tables, table partitions, and other database objects in a
compressed columnar format that is optimized for rapid scans.

Columnar format lends itself easily to vector processing thus making aggregations, joins, and
certain types of data retrieval faster than the traditional on-disk formats. The columnar format
exists only in memory and does not replace the on-disk or buffer cache format. Instead, it
supplements the buffer cache and provides an additional, transaction-consistent, copy of the
table that is independent of the disk format.

Traditional analytics have certain limitations or requirements that need to be managed to obtain
good performance for analytic queries. You need to know user access patterns and then
customize your data structures to provide optimal performance for these access patterns.
Existing indexes, materialized views need to be tuned. Certain data marts and reporting
databases have complex ETL and thus need specialized tuning. Additionally, you need to

Chapter 2
Improved Analytics Using the In-Memory Column Store

2-10

strike a balance between performing analytics on stale data and slowing down OLTP
operations on the production databases.

The Oracle In-Memory Column Store (IM column store) within the Oracle Database provides
improved performance for both ad-hoc queries and analytics on live data. The live
transactional database is used to provide instant answers to queries, thus enabling you to
seamlessly use the same database for OLTP transactions and data warehouse analytics.

The IM column store integrates seamlessly with the Oracle Database and provides the
following benefits in data warehousing environments:

• Improved query performance

– Processing of ad-hoc queries with unanticipated access patterns is faster

IM column store provides fast throughput for analyzing large amounts of data.
Querying a subset of columns in a table provides quick results because only the
columns necessary for the specific data analysis task are scanned.

– Scanning of large number of rows and the application of filters that use operators such
as =,<,>, and IN are faster with the use of SIMD vector processing

– Storing frequently evaluated expressions using IM expressions reduces repeated
computations of the same expressions

– Using IM virtual columns and populating specified virtual columns into the IM column
store avoids repeated evaluation of virtual columns

• Enhanced join performance using bloom filters

Certain types of joins run faster when the tables being joined are stored in the IM column
store. IM column store takes advantage of bloom filters with hash joins that speed up joins
by converting predicates on small dimension tables to filters on a large fact table.

• Efficient aggregation using VECTOR GROUP BY transformation and vector array processing

Queries that aggregate data and join one or more relatively small tables to a larger table,
as often occurs in a star query, run faster. VECTOR GROUP BY will be chosen by the
optimizer based on cost estimates.

• Reduced storage space and significantly less processing overhead because fewer
indexes, materialized views are required when IM column store is used.

See Also:

Oracle Database In-Memory Guide for detailed information about using the IM
column store

2.5.1 About Improving Query Performance Using In-Memory Expressions
When you use the In-Memory Column Store (IM column store), query performance can be
further enhanced by using In-Memory Expressions (IM expressions) for frequently evaluated
expressions.

Most queries in a data warehousing environment involve querying large data sets and are
computationally intensive as they contain complex expressions or calculations. IM expressions
provide enhanced performance for queries that contain frequently evaluated expressions. The
optimizer automatically identifies and records repeatedly used expressions in the Expression

Chapter 2
Improved Analytics Using the In-Memory Column Store

2-11

Statistics Store (ESS). Expressions captured in the ESS are candidates for IM expressions. To
facilitate reuse, IM expressions are materialized and populated into In-Memory Expression
Units (IMEUs) within the IM column store. The database then maintains IM expressions and
ensures that they are consistent with any modifications made to the source columns on which
these expressions are based. Populating IM expressions into the IM column store reduces
repeated computations of the same expressions.

For example, total cost, which is a product of the price and number of units sold, is a candidate
for an IM expression. Without IM expressions, the value of total cost needs to be recomputed
for every query and for every row returned by the query. With IM expressions, this frequently
evaluated expression can be materialized and stored in the IM column store. This eliminates
the need to repeatedly recompute the expression used in the query. Oracle Database rewrites
the queries at runtime to use expression results stored in the IM column store thereby
improving query performance.

The initialization parameter INMEMORY_EXPRESSIONS_USAGE controls which IM expressions must
be populated into the IM column store. Procedures in the DBMS_INMEMORY_ADMIN package
specify when IM expressions are identified, populated, and used.

Related Topics

• Oracle Database In-Memory Guide

2.5.2 About Using In-Memory Virtual Columns to Improve Query
Performance

When you use the In-Memory Column Store (IM column store), In-Memory virtual columns (IM
virtual columns) enable you to avoid repeated evaluations of virtual columns by populating
specified virtual columns into the IM column store.

Virtual columns are user-created, named expressions that Oracle treats like regular columns.
For example, if the SALARY table contains the column monthly_salary, you can define a virtual
column called annual_salary as monthly_salary * 12. IM virtual columns are virtual columns
that can be populated into the IM column store. You can populate all or a subset of the virtual
columns defined in a table into the IM column store. Storing precomputed virtual columns in
the IM column store improves query performance by avoiding repeated evaluations. Virtual
column values can also be scanned and filtered using in-memory techniques such as SIMD
vector processing.

The initialization parameter INMEMORY_VIRTUAL_COLUMNS determines if IM virtual columns must
be created for tables enabled for IM column store.

Related Topics

• Oracle Database In-Memory Guide

2.5.3 About In-Memory Column Store and Automatic Data Optimization
Automatic Data Optimization (ADO) can be used to manage the contents of the In-Memory
Column Store (IM column store).

The performance benefits provided by the IM column store can be optimized by effectively
managing the contents of the IM column store. Objects that benefit most from being stored in
the IM column store must be retained. This requires a constant monitoring of the IM column
store to determine which objects must be retained and which objects must be removed from
the IM column store.

Chapter 2
Improved Analytics Using the In-Memory Column Store

2-12

Automatic Data Optimization (ADO) automates the management of the IM column store
contents. Heat map statistics are gathered for objects in the IM column store and these
statistics are used to determine the least active and the most active objects. You can define
ADO policies to specify when objects are eligible to be moved out of the IM column store.

In data warehousing applications, the frequency with which objects are accessed typically
decreases over time. Therefore, objects are accessed most frequently when they are first
loaded in to the data warehouse and the activity levels decrease subsequently. Data
warehouse performance can be enhanced by defining ADO policies that move objects that are
accessed the least out of the IM column store.

Related Topics

• Oracle Database In-Memory Guide

2.6 Automatic Big Table Caching to Improve the Performance of
In-Memory Parallel Queries

Automatic big table caching enhances the in-memory query capabilities of Oracle Database.
When a table does not fit in memory, the database decides which buffers to cache based on
access patterns. This provides efficient caching for large tables, even if they do not fully fit in
the buffer cache.

An optional section of the buffer cache, called the big table cache, is used to store data for
table scans. The big table cache is integrated with the buffer cache and uses a temperature-
based, object-level replacement algorithm to manage the big table cache contents. This is
different from the access-based, block level LRU algorithm used by the buffer cache.

Note:

The automatic big table caching feature is available starting with Oracle Database
12c Release 1 (12.1.0.2).

Typical data warehousing workloads scan multiple tables. Performance may be impacted if the
combined size of these tables is greater than the combined size of the buffer cache. With
automatic big table caching, the scanned tables are stored in the big table cache instead of the
buffer cache. The temperature-based, object-level replacement algorithm used by the big table
cache can provide enhanced performance for data warehousing workloads by:

• Selectively caching the "hot" objects

Each time an object is accessed, Oracle Database increments the temperature of that
object. An object in the big table cache can be replaced only by another object whose
temperature is higher than its own temperature.

• Avoiding thrashing

Partial objects are cached when objects cannot be fully cached.

In Oracle Real Application Clusters (Oracle RAC) environments, automatic big table caching is
supported only for parallel queries. In single instance environments, this functionality is
supported for both serial and parallel queries.

To use automatic big table caching, you must enable the big table cache. To use automatic big
table caching for serial queries, you must set the DB_BIG_TABLE_CACHE_PERCENT_TARGET

Chapter 2
Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries

2-13

initialization parameter to a nonzero value. To use automatic big table caching for parallel
queries, you must set PARALLEL_DEGREE_POLICY to AUTO or ADAPTIVE and
DB_BIG_TABLE_CACHE_PERCENT_TARGET to a nonzero value.

See Also:

Oracle Database VLDB and Partitioning Guide for more information about the big
table cache and how it can be used

Chapter 2
Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries

2-14

3
Data Warehousing Physical Design

This chapter describes the physical design of a data warehousing environment, and includes
the following topics:

• Moving from Logical to Physical Design

• About Physical Design

3.1 Moving from Logical to Physical Design
Logical design is what you draw with a pen and paper or design with a tool such as Oracle
Designer before building your data warehouse. Physical design is the creation of the database
with SQL statements.

During the physical design process, you convert the data gathered during the logical design
phase into a description of the physical database structure. Physical design decisions are
mainly driven by query performance and database maintenance aspects. For example,
choosing a partitioning strategy that meets common query requirements enables Oracle
Database to take advantage of partition pruning, a way of narrowing a search before
performing it.

See Also:

• Oracle Database VLDB and Partitioning Guide for further information regarding
partitioning

• Oracle Database Concepts for further conceptual material regarding design
matters.

3.2 About Physical Design
During the logical design phase, you defined a model for your data warehouse consisting of
entities, attributes, and relationships. The entities are linked together using relationships.
Attributes are used to describe the entities. The unique identifier (UID) distinguishes between
one instance of an entity and another.

Figure 3-1 illustrates a graphical way of distinguishing between logical and physical designs.

3-1

Figure 3-1 Logical Design Compared with Physical Design

Entities

Unique
Identifiers

Attributes

Relationships

Tables

Physical (as Tablespaces)

Columns

Integrity
Constraints

Indexes

Logical

Materialized
Views

Dimensions

- Primary Key
- Foreign Key
- Not Null

During the physical design process, you translate the expected schemas into actual database
structures. At this time, you must map:

• Entities to tables

• Relationships to foreign key constraints

• Attributes to columns

• Primary unique identifiers to primary key constraints

• Unique identifiers to unique key constraints

3.2.1 Physical Design Structures
To convert your logical design into a physical design, you must create some or all of the
following structures: tablespaces, tables, partitions on tables or index-organized tables,
indexes including partitioned indexes, views, integrity constraints, materialized views, and
dimensions.

3.2.1.1 About Tablespaces in Data Warehouses
A tablespace consists of one or more datafiles, which are physical structures within the
operating system you are using. A datafile is associated with only one tablespace. From a
design perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be separated
from their indexes and small tables should be separated from large tables. Tablespaces should
also represent logical business units if possible. Because a tablespace is the coarsest
granularity for backup and recovery or the transportable tablespaces mechanism, the logical
business design affects availability and maintenance operations.

You can now use ultralarge data files, a significant improvement in very large databases.

Chapter 3
About Physical Design

3-2

3.2.1.2 About Partitioning in Data Warehouses
Oracle partitioning is an extremely important functionality for data warehousing, improving
manageability, performance and availability. This section presents the key concepts and
benefits of partitioning noting special value for data warehousing.

Partitioning allows tables, indexes or index-organized tables to be subdivided into smaller
pieces. Each piece of the database object is called a partition. Each partition has its own
name, and may optionally have its own storage characteristics. From the perspective of a
database administrator, a partitioned object has multiple pieces that can be managed either
collectively or individually. This gives the administrator considerable flexibility in managing a
partitioned object. However, from the perspective of the user, a partitioned table is identical to a
non-partitioned table; no modifications are necessary when accessing a partitioned table using
SQL DML commands.

Database objects - tables, indexes, and index-organized tables - are partitioned using a
partitioning key, a set of columns that determine in which partition a given row will reside. For
example a sales table partitioned on sales date, using a monthly partitioning strategy; the table
appears to any application as a single, normal table. However, the DBA can manage and store
each monthly partition individually, potentially using different storage tiers, applying table
compression to the older data, or store complete ranges of older data in read only tablespaces.

3.2.1.2.1 Basic Partitioning Strategies Used in Data Warehouses
Oracle partitioning offers three fundamental data distribution methods that control how the data
is actually placed into the various individual partitions, namely:

• Range

The data is distributed based on a range of values of the partitioning key (for a date
column as the partitioning key, the 'January-2012' partition contains rows with the
partitioning key values between '01-JAN-2012' and '31-JAN-2012'). The data distribution is
a continuum without any holes and the lower boundary of a range is automatically defined
by the upper boundary of the preceding range.

• List

The data distribution is defined by a list of values of the partitioning key (for a region
column as the partitioning key, the North_America partition may contain values Canada,
USA, and Mexico). A special DEFAULT partition can be defined to catch all values for a
partition key that are not explicitly defined by any of the lists.

• Hash

A hash algorithm is applied to the partitioning key to determine the partition for a given row.
Unlike the other two data distribution methods, hash does not provide any logical mapping
between the data and any partition.

Along with these fundamental approaches Oracle Database provides several more:

• Interval Partitioning

An extension to range partitioning that enhances manageability. Partitions are defined by
an interval, providing equi-width ranges. With the exception of the first partition all
partitions are automatically created on-demand when matching data arrives.

• Partitioning by Reference

Chapter 3
About Physical Design

3-3

Partitioning for a child table is inherited from the parent table through a primary key -
foreign key relationship. Partition maintenance is simplified and partition-wise joins
enabled.

• Virtual column based Partitioning

Defined by one of the above mentioned partition techniques and the partitioning key is
based on a virtual column. Virtual columns are not stored on disk and only exist as
metadata. This approach enables a more flexible and comprehensive match of the
business requirements.

Using the above-mentioned data distribution methods, a table can be partitioned either as
single or composite partitioned table:

• Single (one-level) Partitioning

A table is defined by specifying one of the data distribution methodologies, using one or
more columns as the partitioning key. For example consider a table with a number column
as the partitioning key and two partitions less_than_five_hundred and
less_than_thousand, the less_than_thousand partition contains rows where the following
condition is true: 500 <= Partitioning key <1000.

You can specify range, list, and hash partitioned tables.

• Composite Partitioning

• Combinations of two data distribution methods are used to define a composite partitioned
table. First, the table is partitioned by data distribution method one and then each partition
is further subdivided into subpartitions using a second data distribution method. All sub-
partitions for a given partition together represent a logical subset of the data. For example,
a range-hash composite partitioned table is first range-partitioned, and then each individual
range-partition is further subpartitioned using the hash partitioning technique.

See Also:

• Oracle Database VLDB and Partitioning Guide

• Oracle Database Concepts for more information about Hybrid Columnar
Compression

3.2.1.3 Index Partitioning in Data Warehouses
Irrespective of the chosen index partitioning strategy, an index is either coupled or uncoupled
with the partitioning strategy of the underlying table. The appropriate index partitioning strategy
is chosen based on the business requirements, making partitioning well suited to support any
kind of application. Oracle Database 12c differentiates between three types of partitioned
indexes.

• Local Indexes

A local index is an index on a partitioned table that is coupled with the underlying
partitioned table, 'inheriting' the partitioning strategy from the table. Consequently, each
partition of a local index corresponds to one - and only one - partition of the underlying
table. The coupling enables optimized partition maintenance; for example, when a table
partition is dropped, Oracle Database simply has to drop the corresponding index partition
as well. No costly index maintenance is required. Local indexes are most common in data
warehousing environments.

Chapter 3
About Physical Design

3-4

• Global Partitioned Indexes

A global partitioned index is an index on a partitioned or nonpartitioned table that is
partitioned using a different partitioning-key or partitioning strategy than the table. Global-
partitioned indexes can be partitioned using range or hash partitioning and are uncoupled
from the underlying table. For example, a table could be range-partitioned by month and
have twelve partitions, while an index on that table could be hash-partitioned using a
different partitioning key and have a different number of partitions. Global partitioned
indexes are more common for OLTP than for data warehousing environments.

• Global Non-Partitioned Indexes

A global non-partitioned index is essentially identical to an index on a non-partitioned table.
The index structure is not partitioned and uncoupled from the underlying table. In data
warehousing environments, the most common usage of global non-partitioned indexes is
to enforce primary key constraints.

3.2.1.4 About Partitioning for Manageability
A typical usage of partitioning for manageability is to support a 'rolling window' load process in
a data warehouse. Suppose that a DBA loads new data into a table on a daily basis. That table
could be range partitioned so that each partition contains one day of data. The load process is
simply the addition of a new partition. Adding a single partition is much more efficient than
modifying the entire table, because the DBA does not need to modify any other partitions.
Another advantage of using partitioning is when it is time to remove data. In this situation, an
entire partition can be dropped, which is very efficient and fast, compared to deleting each row
individually.

3.2.1.5 About Partitioning for Performance
By limiting the amount of data to be examined or operated on, partitioning provides a number
of performance benefits. Two features specially worth noting are:

• Partitioning pruning: Partitioning pruning is the simplest and also the most substantial
means to improve performance using partitioning. Partition pruning can often improve
query performance by several orders of magnitude. For example, suppose an application
contains an ORDERS table containing an historical record of orders, and that this table has
been partitioned by day. A query requesting orders for a single week would only access
seven partitions of the ORDERS table. If the table had two years of historical data, this query
would access seven partitions instead of 730 partitions. This query could potentially
execute 100x faster simply because of partition pruning. Partition pruning works with all of
Oracle's other performance features. Oracle Database will utilize partition pruning in
conjunction with any indexing technique, join technique, or parallel access method.

• Partition-wise joins: Partitioning can also improve the performance of multi-table joins, by
using a technique known as partition-wise joins. Partition-wise joins can be applied when
two tables are being joined together, and at least one of these tables is partitioned on the
join key. Partition-wise joins break a large join into smaller joins of 'identical' data sets for
the joined tables. 'Identical' here is defined as covering exactly the same set of partitioning
key values on both sides of the join, thus ensuring that only a join of these 'identical' data
sets will produce a result and that other data sets do not have to be considered. Oracle
Database is using either the fact of already (physical) equi-partitioned tables for the join or
is transparently redistributing ("repartitioning") one table at runtime to create
equipartitioned data sets matching the partitioning of the other table, completing the overall
join in less time. This offers significant performance benefits both for serial and parallel
execution.

Chapter 3
About Physical Design

3-5

3.2.1.6 About Partitioning for Availability
Partitioned database objects provide partition independence. This characteristic of partition
independence can be an important part of a high-availability strategy. For example, if one
partition of a partitioned table is unavailable, all of the other partitions of the table remain online
and available. The application can continue to execute queries and transactions against this
partitioned table, and these database operations will run successfully if they do not need to
access the unavailable partition. The database administrator can specify that each partition be
stored in a separate tablespace; this would allow the administrator to do backup and recovery
operations on an individual partition or sets of partitions (by virtue of the partition-to-tablespace
mapping), independent of the other partitions in the table. Therefore in the event of a disaster,
the database could be recovered with just the partitions comprising the active data, and then
the inactive data in the other partitions could be recovered at a convenient time, thus
decreasing the system down-time.In light of the manageability, performance and availability
benefits, it should be part of every data warehouse.

See Also:

Oracle Database VLDB and Partitioning Guide

3.2.2 About Views in Data Warehouses
A view is a tailored presentation of the data contained in one or more tables or other views. A
view takes the output of a query and treats it as a table. Views do not require any space in the
database.

See Also:

Oracle Database Concepts

3.2.3 About Integrity Constraints in Data Warehouses
Integrity constraints are used to enforce business rules associated with your database and to
prevent having invalid information in the tables. Integrity constraints in data warehousing differ
from constraints in OLTP environments. In OLTP environments, they primarily prevent the
insertion of invalid data into a record, which is not a big problem in data warehousing
environments because accuracy has already been guaranteed. In data warehousing
environments, constraints are only used for query rewrite. NOT NULL constraints are particularly
common in data warehouses. Under some specific circumstances, constraints need space in
the database. These constraints are in the form of the underlying unique index.

See Also:

Oracle Database Concepts

Chapter 3
About Physical Design

3-6

3.2.4 About Indexes and Partitioned Indexes in Data Warehouses
Indexes are optional structures associated with tables or clusters. In addition to the classical B-
tree indexes, bitmap indexes are very common in data warehousing environments. Bitmap
indexes are optimized index structures for set-oriented operations. Additionally, they are
necessary for some optimized data access methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning strategy is
not dependent upon the table structure. Partitioning indexes makes it easier to manage the
data warehouse during refresh and improves query performance.

See Also:

• Index Partitioning in Data Warehouses

• Oracle Database Concepts

3.2.5 About Materialized Views in Data Warehouses
Materialized views are query results that have been stored in advance so long-running
calculations are not necessary when you actually execute your SQL statements. From a
physical design point of view, materialized views resemble tables or partitioned tables and
behave like indexes in that they are used transparently and improve performance.

See Also:

Basic Materialized Views

3.2.6 About Dimensions in Data Warehouses
A dimension is a structure, often composed of one or more hierarchies, that categorizes data.
Dimensional attributes help to describe the dimensional value. They are normally descriptive,
textual values. Several distinct dimensions, combined with facts, enable you to answer
business questions. Commonly used dimensions are customers, products, and time.

A dimension schema object defines hierarchical relationships between columns or column
sets. A hierarchical relationship is a functional dependency from one level of a hierarchy to the
next one. A dimension object is a container of logical relationships and does not require any
space in the database. A typical dimension is city, state (or province), region, and country.

Dimension data is typically collected at the lowest level of detail and then aggregated into
higher level totals that are more useful for analysis. These natural rollups or aggregations
within a dimension table are called hierarchies.

This section contains the following topics:

• About Dimension Hierarchies

• Typical Dimension Hierarchy

Chapter 3
About Physical Design

3-7

3.2.6.1 About Dimension Hierarchies
Hierarchies are logical structures that use ordered levels to organize data. A hierarchy can be
used to define data aggregation. For example, in a time dimension, a hierarchy might
aggregate data from the month level to the quarter level to the year level. A hierarchy can also
be used to define a navigational drill path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it. Data
values at lower levels aggregate into the data values at higher levels. A dimension can be
composed of more than one hierarchy. For example, in the product dimension, there might be
two hierarchies—one for product categories and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use hierarchies
to enable you to drill down into your data to view different levels of granularity. This is one of
the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business structures. For
example, a divisional multilevel sales organization can have complicated structures.

Hierarchies impose a family structure on dimension values. For a particular level value, a value
at the next higher level is its parent, and values at the next lower level are its children. These
familial relationships enable analysts to access data quickly.

See Also:

• About Levels

• About Level Relationships

3.2.6.1.1 About Levels
A level represents a position in a hierarchy. For example, a time dimension might have a
hierarchy that represents data at the month, quarter, and year levels. Levels range from
general to specific, with the root level as the highest or most general level. The levels in a
dimension are organized into one or more hierarchies.

3.2.6.1.2 About Level Relationships
Level relationships specify top-to-bottom ordering of levels from most general (the root) to most
specific information. They define the parent-child relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For example,
the database can aggregate an existing sales revenue on a quarterly base to a yearly
aggregation when the dimensional dependencies between quarter and year are known.

3.2.6.2 Typical Dimension Hierarchy
Figure 3-2 illustrates a dimension hierarchy based on customers.

Chapter 3
About Physical Design

3-8

Figure 3-2 Typical Levels in a Dimension Hierarchy

region

customer

country_name

subregion

Chapter 3
About Physical Design

3-9

4
Data Warehousing Optimizations and
Techniques

The following topics provide information about schemas in a data warehouse:

• Using Indexes in Data Warehouses

• Using Integrity Constraints in a Data Warehouse

• About Parallel Execution in Data Warehouses

• About Optimizing Storage Requirements in Data Warehouses

• Optimizing Star Queries and 3NF Schemas

• About Approximate Query Processing

• About Approximate Top-N Query Processing

4.1 Using Indexes in Data Warehouses
Indexes enable faster retrieval of data stored in data warehouses. This section discusses the
following aspects of using indexes in data warehouses:

• About Using Bitmap Indexes in Data Warehouses

• Benefits of Indexes for Data Warehousing Applications

• About Cardinality and Bitmap Indexes

• How to Determine Candidates for Using a Bitmap Index

• Using Bitmap Join Indexes in Data Warehouses

• Using B-Tree Indexes in Data Warehouses

• Using Index Compression

• Choosing Between Local Indexes and Global Indexes

4.1.1 About Using Bitmap Indexes in Data Warehouses
Bitmap indexes are widely used in data warehousing environments. The environments typically
have large amounts of data and ad hoc queries, but a low level of concurrent DML
transactions. For such applications, bitmap indexing provides:

• Reduced response time for large classes of ad hoc queries.

• Reduced storage requirements compared to other indexing techniques.

• Dramatic performance gains even on hardware with a relatively small number of CPUs or a
small amount of memory.

Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in
terms of disk space because the indexes can be several times larger than the data in the table.
Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

4-1

An index provides pointers to the rows in a table that contain a given key value. A regular index
stores a list of rowids for each key corresponding to the rows with that key value. In a bitmap
index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means that the
row with the corresponding rowid contains the key value. A mapping function converts the bit
position to an actual rowid, so that the bitmap index provides the same functionality as a
regular index. Bitmap indexes store the bitmaps in a compressed way. If the number of distinct
key values is small, bitmap indexes compress better and the space saving benefit compared to
a B-tree index becomes even better.

Bitmap indexes are most effective for queries that contain multiple conditions in the WHERE
clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is
accessed. This improves response time, often dramatically. If you are unsure of which indexes
to create, the SQL Access Advisor can generate recommendations on what to create. As the
bitmaps from bitmap indexes can be combined quickly, it is usually best to use single-column
bitmap indexes.

In addition, you should keep in mind that bitmap indexes are usually easier to destroy and re-
create than to maintain.

4.1.1.1 About Bitmap Indexes and Nulls
Unlike most other types of indexes, bitmap indexes include rows that have NULL values.
Indexing of nulls can be useful for some types of SQL statements, such as queries with the
aggregate function COUNT.

Example 4-1 Bitmap Index

SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status. Note that this query would not be
able to use a B-tree index, because B-tree indexes do not store the NULL values.

SELECT COUNT(*) FROM customers;

Any bitmap index can be used for this query because all table rows are indexed, including
those that have NULL data. If nulls were not indexed, the optimizer would be able to use
indexes only on columns with NOT NULL constraints.

4.1.1.2 About Bitmap Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables but they must be local to the partitioned
table—they cannot be global indexes. A partitioned table can only have global B-tree indexes,
partitioned or nonpartitioned.

See Also:

• Oracle Database SQL Language Reference

• Oracle Database VLDB and Partitioning Guide

Chapter 4
Using Indexes in Data Warehouses

4-2

4.1.2 Benefits of Indexes for Data Warehousing Applications
Bitmap indexes are primarily intended for data warehousing applications where users query
the data rather than update it. They are not suitable for OLTP applications with large numbers
of concurrent transactions modifying the data.

Indexes are more beneficial for high cardinality columns.

See Also:

About Cardinality and Bitmap Indexes

Parallel query and parallel DML work with bitmap indexes. Bitmap indexing also supports
parallel create indexes and concatenated indexes.

4.1.3 About Cardinality and Bitmap Indexes
The advantages of using bitmap indexes are greatest for columns in which the ratio of the
number of distinct values to the number of rows in the table is small. This ratio is referred to as
the degree of cardinality. A gender column, which has only two distinct values (male and
female), is optimal for a bitmap index. However, data warehouse administrators also build
bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values is a
candidate for a bitmap index. A bitmap index on this column can outperform a B-tree index,
particularly when this column is often queried in conjunction with other indexed columns. In
fact, in a typical data warehouse environments, a bitmap index can be considered for any non-
unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with many possible
values, such as customer_name or phone_number. In a data warehouse, B-tree indexes should
be used only for unique columns or other columns with very high cardinalities (that is, columns
that are almost unique). The majority of indexes in a data warehouse should be bitmap
indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve query
performance. AND and OR conditions in the WHERE clause of a query can be resolved quickly by
performing the corresponding Boolean operations directly on the bitmaps before converting the
resulting bitmap to rowids. If the resulting number of rows is small, the query can be answered
quickly without resorting to a full table scan.

The following query output shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL
---------- - -------------------- ---------------------
...
 70 F D: 70,000 - 89,999
 80 F married H: 150,000 - 169,999
 90 M single H: 150,000 - 169,999
 100 F I: 170,000 - 189,999
 110 F married C: 50,000 - 69,999
 120 M single F: 110,000 - 129,999

Chapter 4
Using Indexes in Data Warehouses

4-3

 130 M J: 190,000 - 249,999
 140 M married G: 130,000 - 149,999
...

Because cust_gender, cust_marital_status, and cust_income_level are all low-cardinality
columns (there are only three possible values for marital status, two possible values for
gender, and 12 for income level), bitmap indexes are ideal for these columns. Do not create a
bitmap index on cust_id because this is a unique column. Instead, a unique B-tree index on
this column provides the most efficient representation and retrieval.

Table 4-1 illustrates the bitmap index for the cust_gender column in this example. It consists of
two separate bitmaps, one for gender.

Table 4-1 Sample Bitmap Index

cust_id gender='M' gender='F'

cust_id 70 0 1

cust_id 80 0 1

cust_id 90 1 0

cust_id 100 0 1

cust_id 110 0 1

cust_id 120 1 0

cust_id 130 1 0

cust_id 140 1 0

Each entry (or bit) in the bitmap corresponds to a single row of the customers table. The value
of each bit depends upon the values of the corresponding row in the table. For example, the
bitmap cust_gender='F' contains a one as its first bit because the gender is F in the first row
of the customers table. The bitmap cust_gender='F' has a zero for its third bit because the
gender of the third row is not F.

An analyst investigating demographic trends of the company's customers might ask, "How
many of our married customers have an income level of G or H?" This corresponds to the
following query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married'
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Bitmap indexes can efficiently process this query by merely counting the number of ones in the
bitmap illustrated in Figure 4-1. The result set will be found by using bitmap OR merge
operations without the necessity of a conversion to rowids. To identify additional specific
customer attributes that satisfy the criteria, use the resulting bitmap to access the table after a
bitmap to rowid conversion.

Chapter 4
Using Indexes in Data Warehouses

4-4

Figure 4-1 Executing a Query Using Bitmap Indexes

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =

'married'

region =

'central'

region =

'west'

4.1.4 How to Determine Candidates for Using a Bitmap Index
Bitmap indexes should help when either the fact table is queried alone, and there are
predicates on the indexed column, or when the fact table is joined with two or more dimension
tables, and there are indexes on foreign key columns in the fact table, and predicates on
dimension table columns.

A fact table column is a candidate for a bitmap index when the following conditions are met:

• There are 100 or more rows for each distinct value in the indexed column. When this limit
is met, the bitmap index will be much smaller than a regular index, and you will be able to
create the index much faster than a regular index. An example would be one million
distinct values in a multi-billion row table.

And either of the following are true:

• The indexed column will be restricted in queries (referenced in the WHERE clause).

or

• The indexed column is a foreign key for a dimension table. In this case, such an index will
make star transformation more likely.

4.1.5 Using Bitmap Join Indexes in Data Warehouses
In addition to a bitmap index on a single table, you can create a bitmap join index, which is a
bitmap index for the join of two or more tables. In a bitmap join index, the bitmap for the table
to be indexed is built for values coming from the joined tables. In a data warehousing
environment, the join condition is an equi-inner join between the primary key column or
columns of the dimension tables and the foreign key column or columns in the fact table.

A bitmap join index can improve the performance by an order of magnitude. By storing the
result of a join, the join can be avoided completely for SQL statements using a bitmap join
index. Furthermore, because it is most likely to have a much smaller number of distinct values
for a bitmap join index compared to a regular bitmap index on the join column, the bitmaps
compress better, yielding to less space consumption than a regular bitmap index on the join
column.

Bitmap join indexes are much more efficient in storage than materialized join views, an
alternative for materializing joins in advance. This is because the materialized join views do not
compress the rowids of the fact tables.

B-tree and bitmap indexes have different maximum column limitations.

Chapter 4
Using Indexes in Data Warehouses

4-5

See Also:

• Four Join Models for Bitmap Join Indexes in Data Warehouses

• Bitmap Join Index Restrictions and Requirements

• Oracle Database SQL Language Reference for details regarding these limitations

4.1.5.1 Four Join Models for Bitmap Join Indexes in Data Warehouses
The most common usage of a bitmap join index is in star model environments, where a large
table is indexed on columns joined by one or several smaller tables. The large table is referred
to as the fact table and the smaller tables as dimension tables. The following examples
describe the four different join models supported by bitmap join indexes, using the Sales
History (sh) sample schema.

The following exampleshows a bitmap join index where one dimension table column joins one
fact table. Unlike the example in About Cardinality and Bitmap Indexes, where a bitmap index
on the cust_gender column on the customers table was built, you now create a bitmap join
index on the fact table sales for the joined column customers(cust_gender). Table sales
stores cust_id values only:

SELECT time_id, cust_id, amount_sold FROM sales WHERE time_id > '24-DEC-22';

TIME_ID CUST_ID AMOUNT_SOLD
____________ __________ ______________
25-DEC-22 3060 22.37
25-DEC-22 3130 22.37
25-DEC-22 3474 22.37
25-DEC-22 4093 22.37
25-DEC-22 7526 22.37
25-DEC-22 8102 22.37
25-DEC-22 10584 22.37
25-DEC-22 13187 22.37
...

To create such a bitmap join index, column customers(cust_gender) has to be joined with
table sales. The join condition is specified as part of the CREATE statement for the bitmap join
index as follows:

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The following query shows the join result that is used to create the bitmaps that are stored in
the bitmap join index:

SELECT * FROM (
 SELECT sales.time_id, customers.cust_gender, sales.amount_sold
 FROM sales, customers
 WHERE sales.cust_id = customers.cust_id
 ORDER BY sales.time_id DESC
)
WHERE ROWNUM <= 8;

...

Chapter 4
Using Indexes in Data Warehouses

4-6

TIME_ID CUST_GENDER AMOUNT_SOLD
____________ ______________ ______________
31-DEC-22 M 68.57
31-DEC-22 M 44.57
31-DEC-22 F 44.57
31-DEC-22 F 44.57
31-DEC-22 M 44.57
31-DEC-22 M 68.16
31-DEC-22 F 68.16
31-DEC-22 M 68.16

Table 4-2 illustrates the bitmap representation for the bitmap join index in this example.

Table 4-2 Sample Bitmap Join Index

sales record cust_gender='M' cust_gender='F'

sales record 1 1 0

sales record 2 0 1

sales record 3 1 0

sales record 4 1 0

sales record 5 1 0

sales record 6 1 0

sales record 7 1 0

You can create other bitmap join indexes using more than one column or more than one table,
as shown in these examples.

Example 4-2 Bitmap Join Index: Multiple Dimension Columns Join One Fact Table

You can create a bitmap join index on more than one column from a single dimension table, as
in the following example, which uses customers(cust_gender, cust_marital_status) from
the sh schema:

CREATE BITMAP INDEX sales_cust_gender_ms_bjix
ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Example 4-3 Bitmap Join Index: Multiple Dimension Tables Join One Fact Table

You can create a bitmap join index on multiple dimension tables, as in the following, which
uses customers(gender) and products(category):

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Example 4-4 Bitmap Join Index: Snowflake Schema

You can create a bitmap join index on more than one table, in which the indexed column is
joined to the indexed table by using another table. For example, you can build an index on
countries.country_name, even though the countries table is not joined directly to the sales

Chapter 4
Using Indexes in Data Warehouses

4-7

table. Instead, the countries table is joined to the customers table, which is joined to the
sales table. This type of schema is commonly called a snowflake schema.

CREATE BITMAP INDEX sales_co_country_name_bjix
ON sales(countries.country_name)
FROM sales, customers, countries
WHERE sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
LOCAL NOLOGGING COMPUTE STATISTICS;

4.1.5.2 Bitmap Join Index Restrictions and Requirements
Join results must be stored, therefore, bitmap join indexes have the following restrictions:

• Parallel DML is only supported on the fact table. Parallel DML on one of the participating
dimension tables will mark the index as unusable.

• Only one table can be updated concurrently by different transactions when using the
bitmap join index.

• No table can appear twice in the join.

• You cannot create a bitmap join index on a temporary table.

• The columns in the index must all be columns of the dimension tables.

• The dimension table join columns must be either primary key columns or have unique
constraints.

• The dimension table column(s) participating in the join with the fact table must be either the
primary key column(s) or the unique constraint.

• If a dimension table has composite primary key, each column in the primary key must be
part of the join.

• The restrictions for creating a regular bitmap index also apply to a bitmap join index. For
example, you cannot create a bitmap index with the UNIQUE attribute. See Oracle Database
SQL Language Reference for other restrictions.

4.1.6 Using B-Tree Indexes in Data Warehouses
A B-tree index is organized like an upside-down tree. The bottom level of the index holds the
actual data values and pointers to the corresponding rows, much as the index in a book has a
page number associated with each index entry.

In general, use B-tree indexes when you know that your typical query refers to the indexed
column and retrieves a few rows. In these queries, it is faster to find the rows by looking at the
index. However, using the book index analogy, if you plan to look at every single topic in a
book, you might not want to look in the index for the topic and then look up the page. It might
be faster to read through every chapter in the book. Similarly, if you are retrieving most of the
rows in a table, it might not make sense to look up the index to find the table rows. Instead, you
might want to read or scan the table.

B-tree indexes are most commonly used in a data warehouse to enforce unique keys. In many
cases, it may not even be necessary to index these columns in a data warehouse, because the
uniqueness was enforced as part of the preceding ETL processing, and because typical data
warehouse queries may not work better with such indexes. B-tree indexes are more common
in environments using third normal form schemas. In general, bitmap indexes should be more
common than B-tree indexes in most data warehouse environments.

Chapter 4
Using Indexes in Data Warehouses

4-8

B-tree and bitmap indexes have different maximum column limitations. See Oracle Database
SQL Language Reference for these limitations.

4.1.7 Using Index Compression
Bitmap indexes are always stored in a patented, compressed manner without the need of any
user intervention. B-tree indexes, however, can be stored specifically in a compressed manner
to enable huge space savings, storing more keys in each index block, which also leads to less
I/O and better performance.

Key compression lets you compress a B-tree index, which reduces the storage overhead of
repeated values. In the case of a nonunique index, all index columns can be stored in a
compressed format, whereas in the case of a unique index, at least one index column has to
be stored uncompressed. In addition to key compression, OLTP index compression may
provide a higher degree of compression, but is more appropriate for OLTP applications than
data warehousing environments.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If the key is
not defined to have a unique piece, Oracle Database provides one in the form of a rowid
appended to the grouping piece. Key compression is a method of breaking off the grouping
piece and storing it so it can be shared by multiple unique pieces. The cardinality of the chosen
columns to be compressed determines the compression ratio that can be achieved. So, for
example, if a unique index that consists of five columns provides the uniqueness mostly by the
last two columns, it is most optimal to choose the three leading columns to be stored
compressed. If you choose to compress four columns, the repetitiveness will be almost gone,
and the compression ratio will be worse.

Although key compression reduces the storage requirements of an index, it can increase the
CPU time required to reconstruct the key column values during an index scan. It also incurs
some additional storage overhead, because every prefix entry has an overhead of four bytes
associated with it.

See Also:

• Oracle Database Administrator’s Guide for more information regarding key
compression

• Oracle Database Administrator’s Guide for more information regarding OLTP
index compression

4.1.8 Choosing Between Local Indexes and Global Indexes
B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier releases,
Oracle recommended that global indexes not be used in data warehouse environments
because a partition DDL statement (for example, ALTER TABLE ... DROP PARTITION) would
invalidate the entire index, and rebuilding the index is expensive. Global indexes can be
maintained without Oracle marking them as unusable after DDL, which makes global indexes
effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes should be
used when there is a specific requirement which cannot be met by local indexes (for example,
a unique index on a non-partitioning key, or a performance requirement).

Bitmap indexes on partitioned tables are always local.

Chapter 4
Using Indexes in Data Warehouses

4-9

4.2 Using Integrity Constraints in a Data Warehouse
Integrity constraints provide a mechanism for ensuring that data conforms to guidelines
specified by the database administrator.

The most common types of constraints include:

• UNIQUE constraints

To ensure that a given column is unique

• NOT NULL constraints

To ensure that no null values are allowed

• FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

• Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level of data
consistency and correctness, preventing the introduction of dirty data.

• Query optimization

The Oracle Database utilizes constraints when optimizing SQL queries. Although
constraints can be useful in many aspects of query optimization, constraints are
particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is typically
added or modified under controlled circumstances during the extraction, transformation, and
loading (ETL) process. Multiple users normally do not update the data warehouse directly, as
they do in an OLTP system.

See Also:

• Data Movement/ETL Overview

This section contains the following topics:

• Overview of Constraint States

• Typical Data Warehouse Integrity Constraints

4.2.1 Overview of Constraint States
To understand how best to use constraints in a data warehouse, you should first understand
the basic purposes of constraints.

Some of these purposes are:

• Enforcement

In order to use a constraint for enforcement, the constraint must be in the ENABLE state. An
enabled constraint ensures that all data modifications upon a given table (or tables) satisfy

Chapter 4
Using Integrity Constraints in a Data Warehouse

4-10

the conditions of the constraints. Data modification operations which produce data that
violates the constraint fail with a constraint violation error.

• Validation

To use a constraint for validation, the constraint must be in the VALIDATE state. If the
constraint is validated, then all data that currently resides in the table satisfies the
constraint.

Note that validation is independent of enforcement. Although the typical constraint in an
operational system is both enabled and validated, any constraint could be validated but not
enabled or vice versa (enabled but not validated). These latter two cases are useful for
data warehouses.

• Belief

In some cases, you will know that the conditions for a given constraint are true, so you do
not need to validate or enforce the constraint. However, you may wish for the constraint to
be present anyway to improve query optimization and performance. When you use a
constraint in this way, it is called a belief or RELY constraint, and the constraint must be in
the RELY state. The RELY state provides you with a mechanism for telling Oracle that a
given constraint is believed to be true.

Note that the RELY state only affects constraints that have not been validated.

4.2.2 Typical Data Warehouse Integrity Constraints
This section assumes that you are familiar with the typical use of constraints. That is,
constraints that are both enabled and validated. For data warehousing, many users have
discovered that such constraints may be prohibitively costly to build and maintain. The topics
discussed are:

• UNIQUE Constraints in a Data Warehouse

• FOREIGN KEY Constraints in a Data Warehouse

• RELY Constraints in a Data Warehouse

• NOT NULL Constraints in a Data Warehouse

• Integrity Constraints and Parallelism in a Data Warehouse

• Integrity Constraints and Partitioning in a Data Warehouse

• View Constraints in a Data Warehouse

4.2.2.1 UNIQUE Constraints in a Data Warehouse
A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a data warehouse
whose tables can be extremely large, creating a unique index can be costly both in processing
time and in disk space.

Suppose that a data warehouse contains a table sales, which includes a column sales_id.
sales_id uniquely identifies a single sales transaction, and the data warehouse administrator
must ensure that this column is unique within the data warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id);

Chapter 4
Using Integrity Constraints in a Data Warehouse

4-11

By default, this constraint is both enabled and validated. Oracle implicitly creates a unique
index on sales_id to support this constraint. However, this index can be problematic in a data
warehouse for three reasons:

• The unique index can be very large, because the sales table can easily have millions or
even billions of rows.

• The unique index is rarely used for query execution. Most data warehousing queries do not
have predicates on unique keys, so creating this index will probably not improve
performance.

• If sales is partitioned along a column other than sales_id, the unique index must be
global. This can detrimentally affect all maintenance operations on the sales table.

A unique index is required for unique constraints to ensure that each individual row modified in
the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is illustrated in
the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a unique
index is not required. This approach can be advantageous for many data warehousing
environments because the constraint now ensures uniqueness without the cost of a unique
index.

However, there are trade-offs for the data warehouse administrator to consider with DISABLE
VALIDATE constraints. Because this constraint is disabled, no DML statements that modify the
unique column are permitted against the sales table. You can use one of two strategies for
modifying this table in the presence of a constraint:

• Use DDL to add data to this table (such as exchanging partitions). See the example in
Refreshing Materialized Views.

• Before modifying this table, drop the constraint. Then, make all necessary data
modifications. Finally, re-create the disabled constraint. Re-creating the constraint is more
efficient than re-creating an enabled constraint. However, this approach does not
guarantee that data added to the sales table while the constraint has been dropped is
unique.

4.2.2.2 FOREIGN KEY Constraints in a Data Warehouse
In a star schema data warehouse, FOREIGN KEY constraints validate the relationship between
the fact table and the dimension tables. A sample constraint might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE VALIDATE;

However, in some situations, you may choose to use a different state for the FOREIGN KEY
constraints, in particular, the ENABLE NOVALIDATE state. A data warehouse administrator might
use an ENABLE NOVALIDATE constraint when either:

• The tables contain data that currently disobeys the constraint, but the data warehouse
administrator wishes to create a constraint for future enforcement.

• An enforced constraint is required immediately.

Chapter 4
Using Integrity Constraints in a Data Warehouse

4-12

Suppose that the data warehouse loaded new data into the fact tables every day, but refreshed
the dimension tables only on the weekend. During the week, the dimension tables and fact
tables may in fact disobey the FOREIGN KEY constraints. Nevertheless, the data warehouse
administrator might wish to maintain the enforcement of this constraint to prevent any changes
that might affect the FOREIGN KEY constraint outside of the ETL process. Thus, you can create
the FOREIGN KEY constraints every night, after performing the ETL process, as shown in the
following:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the constraint is
believed to be true. Suppose that the ETL process verifies that a FOREIGN KEY constraint is
true. Rather than have the database re-verify this FOREIGN KEY constraint, which would require
time and database resources, the data warehouse administrator could instead create a
FOREIGN KEY constraint using ENABLE NOVALIDATE.

4.2.2.3 RELY Constraints in a Data Warehouse
The ETL process commonly verifies that certain constraints are true. For example, it can
validate all of the foreign keys in the data coming into the fact table. This means that you can
trust it to provide clean data, instead of implementing constraints in the data warehouse. You
create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
RELY DISABLE NOVALIDATE;

This statement assumes that the primary key is in the RELY state. RELY constraints, even
though they are not used for data validation, can:

• Enable more sophisticated query rewrites for materialized views. See Basic Query Rewrite
for Materialized Views for further details.

• Enable other data warehousing tools to retrieve information regarding constraints directly
from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead during DML or
load. Because the constraint is not being validated, no data processing is necessary to create
it.

4.2.2.4 NOT NULL Constraints in a Data Warehouse
When using query rewrite, you should consider whether NOT NULL constraints are required. The
primary situation where you will need to use them is for join back query rewrite.

See Also:

• Advanced Query Rewrite for Materialized Views for further information regarding
NOT NULL constraints when using query rewrite

Chapter 4
Using Integrity Constraints in a Data Warehouse

4-13

4.2.2.5 Integrity Constraints and Parallelism in a Data Warehouse
All constraints can be validated in parallel. When validating constraints on very large tables,
parallelism is often necessary to meet performance goals. The degree of parallelism for a
given constraint operation is determined by the default degree of parallelism of the underlying
table.

4.2.2.6 Integrity Constraints and Partitioning in a Data Warehouse
You can create and maintain constraints before you partition the data. Later chapters discuss
the significance of partitioning for data warehousing. Partitioning can improve constraint
management just as it does to management of many other operations. For example,
Refreshing Materialized Views provides a scenario creating UNIQUE and FOREIGN KEY
constraints on a separate staging table, and these constraints are maintained during the
EXCHANGE PARTITION statement.

For external tables, you can only define RELY constraints in DISABLE mode. This is applicable to
primary key, unique key, and foreign key constraints.

4.2.2.7 View Constraints in a Data Warehouse
You can create constraints on views. The only type of constraint supported on a view is a RELY
constraint.

This type of constraint is useful when queries typically access views instead of base tables,
and the database administrator thus needs to define the data relationships between views
rather than tables.

See Also:

• Basic Materialized Views

• Basic Query Rewrite for Materialized Views

4.3 About Parallel Execution in Data Warehouses
Databases today, irrespective of whether they are data warehouses, operational data stores, or
OLTP systems, contain a large amount of information. However, finding and presenting the
right information in a timely fashion can be a challenge because of the vast quantity of data
involved.

Parallel execution is the capability that addresses this challenge. Using parallel execution (also
called parallelism), terabytes of data can be processed in minutes, not hours or days, simply by
using multiple processes to accomplish a single task. This dramatically reduces response time
for data-intensive operations on large databases typically associated with decision support
systems (DSS) and data warehouses. You can also implement parallel execution on OLTP
system for batch processing or schema maintenance operations such as index creation.
Parallelism is the idea of breaking down a task so that, instead of one process doing all of the
work in a query, many processes do part of the work at the same time. An example of this is
when four processes combine to calculate the total sales for a year, each process handles one

Chapter 4
About Parallel Execution in Data Warehouses

4-14

quarter of the year instead of a single processing handling all four quarters by itself. The
improvement in performance can be quite significant.

Parallel execution improves processing for:

• Queries requiring large table scans, joins, or partitioned index scans

• Creations of large indexes

• Creation of large tables (including materialized views)

• Bulk inserts, updates, merges, and deletes

You can also use parallel execution to access object types within an Oracle database. For
example, you can use parallel execution to access large objects (LOBs).

Large data warehouses should always use parallel execution to achieve good performance.
Specific operations in OLTP applications, such as batch operations, can also significantly
benefit from parallel execution.

This section contains the following topics:

• Why Use Parallel Execution?

• Automatic Degree of Parallelism and Statement Queuing

• About In-Memory Parallel Execution in Data Warehouses

4.3.1 Why Use Parallel Execution?
Imagine that your task is to count the number of cars in a street. There are two ways to do this.
One, you can go through the street by yourself and count the number of cars or you can enlist
a friend and then the two of you can start on opposite ends of the street, count cars until you
meet each other and add the results of both counts to complete the task.

Assuming your friend counts equally fast as you do, you expect to complete the task of
counting all cars in a street in roughly half the time compared to when you perform the job all
by yourself. If this is the case, then your operations scales linearly. That is, twice the number of
resources halves the total processing time.

A database is not very different from the counting cars example. If you allocate twice the
number of resources and achieve a processing time that is half of what it was with the original
amount of resources, then the operation scales linearly. Scaling linearly is the ultimate goal of
parallel processing, both in counting cars as well as in delivering answers from a database
query.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information about using
parallel execution

This following topics provide guidance on the scenarios in which parallel execution is useful:

• When to Implement Parallel Execution

• When Not to Implement Parallel Execution

Chapter 4
About Parallel Execution in Data Warehouses

4-15

4.3.1.1 When to Implement Parallel Execution
Parallel execution benefits systems with all of the following characteristics:

• Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

• Sufficient I/O bandwidth

• Underutilized or intermittently used CPUs (for example, systems where CPU usage is
typically less than 30%)

• Sufficient memory to support additional memory-intensive processes, such as sorts,
hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not significantly
improve performance. In fact, parallel execution may reduce system performance on
overutilized systems or systems with small I/O bandwidth.

The benefits of parallel execution can be seen in DSS and data warehousing environments.
OLTP systems can also benefit from parallel execution during batch processing and during
schema maintenance operations such as creation of indexes. The average simple DML or
SELECT statements, accessing or manipulating small sets of records or even single records,
that characterize OLTP applications would not see any benefit from being executed in parallel.

4.3.1.2 When Not to Implement Parallel Execution
Parallel execution is not normally useful for:

• Environments in which the typical query or transaction is very short (a few seconds or
less). This includes most online transaction systems. Parallel execution is not useful in
these environments because there is a cost associated with coordinating the parallel
execution servers; for short transactions, the cost of this coordination may outweigh the
benefits of parallelism.

• Environments in which the CPU, memory, or I/O resources are heavily utilized, even with
parallel execution. Parallel execution is designed to exploit additional available hardware
resources; if no such resources are available, then parallel execution does not yield any
benefits and indeed may be detrimental to performance.

4.3.2 Automatic Degree of Parallelism and Statement Queuing
As the name implies, automatic degree of parallelism is where Oracle Database determines
the degree of parallelism (DOP) with which to run a statement (DML, DDL, and queries) based
on the execution cost - the resource consumption of CPU, I/O, and memory - as determined by
the Optimizer. That means that the database parses a query, calculates the cost and then
determines a DOP to run with. The cheapest plan may be to run serially, which is also an
option. Figure 4-2 illustrates this decision making process.

Chapter 4
About Parallel Execution in Data Warehouses

4-16

Figure 4-2 Optimizer Calculation: Serial or Parallel?

Statement is hard parsed
and optimizer determines
the execution plan

If estimated time
greater than
threshold

Optimizer determines ideal
Degree of Parallelism

SQL
Statement

If estimated
time less than
threshold

Statement executes
serially

Statement
executes
in parallel

Actual Degree of Parallelism is
calculated to be the lower of
PARALLEL_DEGREE_LIMIT
or the ideal
Degree of Parallelism

Should you choose to use automatic DOP, you may potentially see many more statements
running in parallel, especially if the threshold is relatively low, where low is relative to the
system and not an absolute quantifier.

Because of this expected behavior of more statements running in parallel with automatic DOP,
it becomes more important to manage the utilization of the parallel processes available. That
means that the system must be intelligent about when to run a statement and verify whether
the requested numbers of parallel processes are available. The requested number of
processes in this is the DOP for that statement.

The answer to this workload management question is parallel statement queuing with the
Database Resource Manager. Parallel statement queuing runs a statement when its requested
DOP is available. For example, when a statement requests a DOP of 64, it will not run if there
are only 32 processes currently free to assist this customer, so the statement will be placed
into a queue.

With Database Resource Manager, you can classify statements into workloads through
consumer groups. Each consumer group can then be given the appropriate priority and the
appropriate levels of parallel processes. Each consumer group also has its own queue to
queue parallel statements based on the system load.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information about using
automatic DOP with parallel execution

• Oracle Database Administrator’s Guide for more information about using the
Database Resource Manager

Chapter 4
About Parallel Execution in Data Warehouses

4-17

4.3.3 About In-Memory Parallel Execution in Data Warehouses
Traditionally, parallel processing by-passed the database buffer cache for most operations,
reading data directly from disk (through direct path I/O) into the parallel execution server's
private working space. Only objects smaller than about 2% of DB_CACHE_SIZE would be cached
in the database buffer cache of an instance, and most objects accessed in parallel are larger
than this limit. This behavior meant that parallel processing rarely took advantage of the
available memory other than for its private processing. However, over the last decade,
hardware systems have evolved quite dramatically; the memory capacity on a typical database
server is now in the double or triple digit gigabyte range. This, together with Oracle's
compression technologies and the capability of Oracle Database to exploit the aggregated
database buffer cache of an Oracle Real Application Clusters environment, enables caching of
objects in the terabyte range.

In-memory parallel execution takes advantage of this large aggregated database buffer cache.
Having parallel execution servers accessing objects using the buffer cache enables full parallel
in-memory processing of large volumes of data, leading to performance improvements in
orders of magnitudes.

With in-memory parallel execution, when a SQL statement is issued in parallel, a check is
conducted to determine if the objects accessed by the statement should be cached in the
aggregated buffer cache of the system. In this context, an object can either be a table, index,
or, in the case of partitioned objects, one or multiple partitions.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information about using
in-memory parallel execution

4.4 About Optimizing Storage Requirements in Data Warehouses
You can reduce your storage requirements by compressing data, which is achieved by
eliminating duplicate values in a database block. "Using Data Compression to Improve Storage
in Data Warehouses" describes how you can use compress data.

Database objects that can be compressed include tables and materialized views. For
partitioned tables, you can compress some or all partitions. Compression attributes can be
declared for a tablespace, a table, or a partition of a table. If declared at the tablespace level,
then all tables created in that tablespace are compressed by default. You can alter the
compression attribute for a table (or a partition or tablespace), and the change applies only to
new data going into that table. As a result, a single table or partition may contain some
compressed blocks and some regular blocks. This guarantees that data size will not increase
as a result of compression. In cases where compression could increase the size of a block, it is
not applied to that block.

4.4.1 Using Data Compression to Improve Storage in Data Warehouses
You can compress several partitions or a complete partitioned heap-organized table. You do
this either by defining a complete partitioned table as being compressed, or by defining it on a
per-partition level. Partitions without a specific declaration inherit the attribute from the table
definition or, if nothing is specified on the table level, from the tablespace definition.

Chapter 4
About Optimizing Storage Requirements in Data Warehouses

4-18

The decision about whether or not a partition should be compressed is based on the same
rules as a nonpartitioned table. Because of the ability of range and composite partitioning to
separate data logically into distinct partitions, a partitioned table is an ideal candidate for
compressing parts of the data (partitions) that are mainly read-only. It is, for example, beneficial
in all rolling window operations as a kind of intermediate stage before aging out old data. With
data compression, you can keep more old data online, minimizing the burden of additional
storage use.

You can also change any existing uncompressed table partition later, add new compressed
and uncompressed partitions, or change the compression attribute as part of any partition
maintenance operation that requires data movement, such as MERGE PARTITION, SPLIT
PARTITION, or MOVE PARTITION. The partitions can contain data, or they can be empty.

The access and maintenance of a partially or fully compressed partitioned table are the same
as for a fully uncompressed partitioned table. All rules that apply to fully uncompressed
partitioned tables are also valid for partially or fully compressed partitioned tables.

To use data compression:

The following example creates a range-partitioned table with one compressed partition
costs_old. The compression attribute for the table and all other partitions is inherited from the
tablespace level.

CREATE TABLE costs_demo (
 prod_id NUMBER(6), time_id DATE,
 unit_cost NUMBER(10,2), unit_price NUMBER(10,2))
PARTITION BY RANGE (time_id)
 (PARTITION costs_old
 VALUES LESS THAN (TO_DATE('01-JAN-2003', 'DD-MON-YYYY')) COMPRESS,
 PARTITION costs_q1_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')),
 PARTITION costs_q2_2003
 VALUES LESS THAN (TO_DATE('01-JUN-2003', 'DD-MON-YYYY')),
 PARTITION costs_recent VALUES LESS THAN (MAXVALUE));

4.5 Optimizing Star Queries and 3NF Schemas
Oracle data warehouses can work well with star schemas and third normal form schemas. This
section presents important techniques for optimizing performance in both types of schema. For
conceptual background on star and 3NF schemas, see "About Third Normal Form Schemas".
and "About Star Schemas".

You should consider the following when using star queries:

• Optimizing Star Queries

• Using Star Transformation

• Optimizing Third Normal Form Schemas

• Optimizing Star Queries Using VECTOR GROUP BY Aggregation

4.5.1 Optimizing Star Queries
A star query is a join between a fact table and a number of dimension tables. Each dimension
table is joined to the fact table using a primary key to foreign key join, but the dimension tables
are not joined to each other. The optimizer recognizes star queries and generates efficient
execution plans for them. "Tuning Star Queries" describes how to improve the performance of
star queries.

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-19

4.5.1.1 Tuning Star Queries
To get the best possible performance for star queries, it is important to follow some basic
guidelines:

• A bitmap index should be built on each of the foreign key columns of the fact table or
tables.

• The initialization parameter STAR_TRANSFORMATION_ENABLED should be set to TRUE. This
enables an important optimizer feature for star-queries. It is set to FALSE by default for
backward-compatibility.

When a data warehouse satisfies these conditions, the majority of the star queries running in
the data warehouse uses a query execution strategy known as the star transformation. The
star transformation provides very efficient query performance for star queries.

4.5.2 Using Star Transformation
The star transformation is a powerful optimization technique that relies upon implicitly rewriting
(or transforming) the SQL of the original star query. The end user never needs to know any of
the details about the star transformation. Oracle Database's query optimizer automatically
chooses the star transformation where appropriate.

The star transformation is a query transformation aimed at executing star queries efficiently.
Oracle Database processes a star query using two basic phases. The first phase retrieves
exactly the necessary rows from the fact table (the result set). Because this retrieval utilizes
bitmap indexes, it is very efficient. The second phase joins this result set to the dimension
tables. An example of an end user query is: "What were the sales and profits for the grocery
department of stores in the west and southwest sales districts over the last three quarters?"
This is a simple star query.

This section contains the following topics:

• Star Transformation with a Bitmap Index

• Execution Plan for a Star Transformation with a Bitmap Index

• Star Transformation with a Bitmap Join Index

• Execution Plan for a Star Transformation with a Bitmap Join Index

• How Oracle Chooses to Use Star Transformation

• Star Transformation Restrictions

4.5.2.1 Star Transformation with a Bitmap Index
A prerequisite of the star transformation is that there be a single-column bitmap index on every
join column of the fact table. These join columns include all foreign key columns.

For example, the sales table of the sh sample schema has bitmap indexes on the time_id,
channel_id, cust_id, prod_id, and promo_id columns.

Consider the following star query:

SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-20

AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc in ('Internet','Catalog')
AND t.calendar_quarter_desc IN ('1999-Q1','1999-Q2')
GROUP BY ch.channel_class, c.cust_city, t.calendar_quarter_desc;

This query is processed in two phases. In the first phase, Oracle Database uses the bitmap
indexes on the foreign key columns of the fact table to identify and retrieve only the necessary
rows from the fact table. That is, Oracle Database retrieves the result set from the fact table
using essentially the following query:

SELECT ... FROM sales
WHERE time_id IN
 (SELECT time_id FROM times
 WHERE calendar_quarter_desc IN('1999-Q1','1999-Q2'))
 AND cust_id IN
 (SELECT cust_id FROM customers WHERE cust_state_province='CA')
 AND channel_id IN
 (SELECT channel_id FROM channels WHERE channel_desc IN('Internet','Catalog'));

This is the transformation step of the algorithm, because the original star query has been
transformed into this subquery representation. This method of accessing the fact table
leverages the strengths of bitmap indexes. Intuitively, bitmap indexes provide a set-based
processing scheme within a relational database. Oracle has implemented very fast methods for
doing set operations such as AND (an intersection in standard set-based terminology), OR (a set-
based union), MINUS, and COUNT.

In this star query, a bitmap index on time_id is used to identify the set of all rows in the fact
table corresponding to sales in 1999-Q1. This set is represented as a bitmap (a string of 1's
and 0's that indicates which rows of the fact table are members of the set).

A similar bitmap is retrieved for the fact table rows corresponding to the sale from 1999-Q2.
The bitmap OR operation is used to combine this set of Q1 sales with the set of Q2 sales.

Additional set operations will be done for the customer dimension and the product dimension.
At this point in the star query processing, there are three bitmaps. Each bitmap corresponds to
a separate dimension table, and each bitmap represents the set of rows of the fact table that
satisfy that individual dimension's constraints.

These three bitmaps are combined into a single bitmap using the bitmap AND operation. This
final bitmap represents the set of rows in the fact table that satisfy all of the constraints on the
dimension table. This is the result set, the exact set of rows from the fact table needed to
evaluate the query. Note that none of the actual data in the fact table has been accessed. All of
these operations rely solely on the bitmap indexes and the dimension tables. Because of the
bitmap indexes' compressed data representations, the bitmap set-based operations are
extremely efficient.

Once the result set is identified, the bitmap is used to access the actual data from the sales
table. Only those rows that are required for the end user's query are retrieved from the fact
table. At this point, Oracle Database has effectively joined all of the dimension tables to the fact
table using bitmap indexes. This technique provides excellent performance because Oracle
Database is joining all of the dimension tables to the fact table with one logical join operation,
rather than joining each dimension table to the fact table independently.

The second phase of this query is to join these rows from the fact table (the result set) to the
dimension tables. Oracle uses the most efficient method for accessing and joining the
dimension tables. Many dimension are very small, and table scans are typically the most
efficient access method for these dimension tables. For large dimension tables, table scans
may not be the most efficient access method. In the previous example, a bitmap index on

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-21

product.department can be used to quickly identify all of those products in the grocery
department. Oracle Database's optimizer automatically determines which access method is
most appropriate for a given dimension table, based upon the optimizer's knowledge about the
sizes and data distributions of each dimension table.

The specific join method (as well as indexing method) for each dimension table will likewise be
intelligently determined by the optimizer. A hash join is often the most efficient algorithm for
joining the dimension tables. The final answer is returned to the user once all of the dimension
tables have been joined. The query technique of retrieving only the matching rows from one
table and then joining to another table is commonly known as a semijoin.

4.5.2.2 Execution Plan for a Star Transformation with a Bitmap Index
The following typical execution plan might result from "Star Transformation with a Bitmap
Index":

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ITERATOR
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CUSTOMERS
 BITMAP INDEX RANGE SCAN SALES_CUST_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

In this plan, the fact table is accessed through a bitmap access path based on a bitmap AND, of
three merged bitmaps. The three bitmaps are generated by the BITMAP MERGE row source being
fed bitmaps from row source trees underneath it. Each such row source tree consists of a
BITMAP KEY ITERATION row source which fetches values from the subquery row source tree,
which in this example is a full table access. For each such value, the BITMAP KEY ITERATION
row source retrieves the bitmap from the bitmap index. After the relevant fact table rows have
been retrieved using this access path, they are joined with the dimension tables and temporary
tables to produce the answer to the query.

4.5.2.3 Star Transformation with a Bitmap Join Index
In addition to bitmap indexes, you can use a bitmap join index during star transformations.
Assume you have the following additional index structure:

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-22

CREATE BITMAP INDEX sales_c_state_bjix
ON sales(customers.cust_state_province)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The processing of the same star query using the bitmap join index is similar to the previous
example. The only difference is that Oracle utilizes the join index, instead of a single-table
bitmap index, to access the customer data in the first phase of the star query.

4.5.2.4 Execution Plan for a Star Transformation with a Bitmap Join Index
The following typical execution plan might result from "Execution Plan for a Star
Transformation with a Bitmap Join Index":

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ALL
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX SINGLE VALUE SALES_C_STATE_BJIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

The difference between this plan as compared to the previous one is that the inner part of the
bitmap index scan for the customer dimension has no subselect. This is because the join
predicate information on customer.cust_state_province can be satisfied with the bitmap join
index sales_c_state_bjix.

4.5.2.5 How Oracle Chooses to Use Star Transformation
The optimizer generates and saves the best plan it can produce without the transformation. If
the transformation is enabled, the optimizer then tries to apply it to the query and, if applicable,
generates the best plan using the transformed query. Based on a comparison of the cost
estimates between the best plans for the two versions of the query, the optimizer then decides
whether to use the best plan for the transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it might be
better to use a full table scan and not use the transformations. However, if the constraining
predicates on the dimension tables are sufficiently selective that only a small portion of the fact
table must be retrieved, the plan based on the transformation will probably be superior.

Note that the optimizer generates a subquery for a dimension table only if it decides that it is
reasonable to do so based on a number of criteria. There is no guarantee that subqueries will

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-23

be generated for all dimension tables. The optimizer may also decide, based on the properties
of the tables and the query, that the transformation does not merit being applied to a particular
query. In this case, the best regular plan will be used.

4.5.2.6 Star Transformation Restrictions
Star transformation is not supported for tables with any of the following characteristics:

• Queries with a table hint that is incompatible with a bitmap access path

• Tables with too few bitmap indexes. There must be a bitmap index on a fact table column
for the optimizer to generate a subquery for it.

• Remote fact tables. However, remote dimension tables are allowed in the subqueries that
are generated.

• Anti-joined tables

• Tables that are already used as a dimension table in a subquery

• Tables that are really unmerged views, which are not view partitions

• Tables where the fact table is an unmerged view

• Tables where a partitioned view is used as a fact table

The star transformation may not be chosen by the optimizer for the following cases:

• Tables that have a good single-table access path

• Tables that are too small for the transformation to be worthwhile

In addition, temporary tables will not be used by star transformation under the following
conditions:

• The database is in read-only mode

• The star query is part of a transaction that is in serializable mode

4.5.3 Optimizing Third Normal Form Schemas
Optimizing a third normal form (3NF) schema requires the following:

• Power

Power means that the hardware configuration must be balanced. Many data warehouse
operations are based upon large table scans and other IO-intensive operations, which
perform vast quantities of random IOs. In order to achieve optimal performance the
hardware configuration must be sized end to end to sustain this level of throughput. This
type of hardware configuration is called a balanced system. In a balanced system, all
components - from the CPU to the disks - are orchestrated to work together to guarantee
the maximum possible IO throughput.

• Partitioning

The larger tables should be partitioned using composite partitioning (range-hash or list-
hash). There are three reasons for this:

– Easier manageability of terabytes of data

– Faster accessibility to the necessary data

– Efficient and performant table joins

See 3NF Schemas: Partitioning.

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-24

• Parallel Execution

Parallel Execution enables a database task to be parallelized or divided into smaller units
of work, thus allowing multiple processes to work concurrently. By using parallelism, a
terabyte of data can be scanned and processed in minutes or less, not hours or days.

See 3NF Schemas: Parallel Query Execution.

4.5.3.1 3NF Schemas: Partitioning
Partitioning allows a table, index or index-organized table to be subdivided into smaller pieces.
Each piece of the database object is called a partition. Each partition has its own name, and
may optionally have its own storage characteristics. From the perspective of a database
administrator, a partitioned object has multiple pieces that can be managed either collectively
or individually.

This gives the administrator considerable flexibility in managing partitioned objects. However,
from the perspective of the application, a partitioned table is identical to a non-partitioned table;
no modifications are necessary when accessing a partitioned table using SQL DML
commands. Partitioning can provide tremendous benefits to a wide variety of applications by
improving manageability, availability, and performance.

4.5.3.1.1 Partitioning for Manageability
Range partitioning will help improve the manageability and availability of large volumes of data.
Consider the case where two year's worth of sales data or 100 terabytes (TB) is stored in a
table. At the end of each day a new batch of data needs to be to loaded into the table and the
oldest days worth of data needs to be removed. If the Sales table is ranged partitioned by day
the new data can be loaded using a partition exchange load. This is a sub-second operation
and should have little or no impact to end user queries. In order to remove the oldest day of
data simply issue the following command:

SH@DBM1 > ALTER TABLE SALES DROP PARTITION Sales_Q4_2009;

4.5.3.1.2 Partitioning for Easier Data Access
Range partitioning will also help ensure only the necessary data to answer a query will be
scanned. Let's assume that the business users predominately access the sales data on a
weekly basis, to check total sales per week. Then range partitioning this table by day will
ensure that the data is accessed in the most efficient manner, as only four partitions need to be
scanned to answer the business users query instead of the entire table. The ability to avoid
scanning irrelevant partitions is known as partition pruning.

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-25

Figure 4-3 Partition Pruning

SALES_Q1_2010

SALES_Q3_2008

Sales Table

SALES_Q4_2008

SELECT sum(s.amount_sold)

FROM sales s

WHERE s.time_id BETWEEN

to_date(’01-JAN-2009’,’DD-MON-YYYY’)

AND

to_date(’31-DEC-2009’,’DD-MON-YYYY’);

SALES_Q1_2009

SALES_Q2_2009

SALES_Q3_2009

SALES_Q4_2009

Q What was the total

sales for the year

2009?

Only the 4 relevant
partitions
are accessed

You can define partitions for external tables. External tables are tables that do not reside in the
database and can be in any format for which an access driver is provided. The files for
partitioned external tables can be stored in a file system, in Apache Hive storage, or in a
Hadoop Distributed File System (HDFS).

Partitioning for external tables improves query performance and enables easier data
maintenance. It also enables external tables to take advantage of performance optimizations,
such as partition pruning and partition-wise joins, that are available to partitioned tables stored
in the database. Most partitioning techniques supported for tables in the database, except hash
partitioning, are supported for partitioned external tables. However, Oracle Database cannot
guarantee that the external storage files for partitions contain data that satisfies the partitioning
conditions.

Note that as of Oracle Database 23ai, you can use external table partitioning with folder names
as part of the file paths. External table columns also can return the filename of the source file
for each row.

See Also:

Oracle Database Administrator’s Guide for detailed information about partitioned
external tables

Using SQL*Loader for External Tables with Partition Values in File Paths in the
Oracle Database Utilities Guide.

4.5.3.1.3 Partitioning for Join Performance
Sub-partitioning by hash is used predominately for performance reasons. Oracle uses a linear
hashing algorithm to create sub-partitions. In order to ensure that the data gets evenly
distributed among the hash partitions, it is highly recommended that the number of hash

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-26

partitions is a power of 2 (for example, 2, 4, 8, and so on). Each hash partition should be at
least 16MB in size. Any smaller and they will not have efficient scan rates with parallel query.

One of the main performance benefits of hash partitioning is partition-wise joins. Partition-wise
joins reduce query response time by minimizing the amount of data exchanged among parallel
execution servers when joins execute in parallel. This significantly reduces response time and
improves both CPU and memory resource usage. In a clustered data warehouse, this
significantly reduces response times by limiting the data traffic over the interconnect (IPC),
which is the key to achieving good scalability for massive join operations. Partition-wise joins
can be full or partial, depending on the partitioning scheme of the tables to be joined.

A full partition-wise join divides a join between two large tables into multiple smaller joins. Each
smaller join performs a joins on a pair of partitions, one for each of the tables being joined. For
the optimizer to choose the full partition-wise join method, both tables must be equi-partitioned
on their join keys. That is, they have to be partitioned on the same column with the same
partitioning method. Parallel execution of a full partition-wise join is similar to its serial
execution, except that instead of joining one partition pair at a time, multiple partition pairs are
joined in parallel by multiple parallel query servers. The number of partitions joined in parallel is
determined by the Degree of Parallelism (DOP).

Figure 4-4 Full Partition-Wise Join

Sub part 1

Range partition
May 18th

Sales

Sub part 2

Sub part 3

Sub part 4

Part 1

Hash
Partitioned

Customer

Part 2

Part 3

Part 4

Sub part 1

Sub part 2

Sub part 3

Sub part 4

Part 1

Part 2

Part 3

Part 4

SELECT sum(s.amount_sold)

FROM sales s. customer c

WHERE s.cust_id=c.cust_id

Both tables have the same
degree of parallelism and are
partitioned the same way on
the join colummn (cust_id)

A large join is divided into
multiple smaller joins,

each joins a pair of
partitions in parallel

Figure 4-4 illustrates the parallel execution of a full partition-wise join between two tables,
Sales and Customers. Both tables have the same degree of parallelism and the same number
of partitions. They are range partitioned on a date field and sub-partitioned by hash on the
cust_id field. As illustrated in the picture, each partition pair is read from the database and
joined directly. There is no data redistribution necessary, thus minimizing IPC communication,
especially across nodes. Figure 4-5 below shows the execution plan you would see for this
join.

To ensure that you get optimal performance when executing a partition-wise join in parallel, the
number of partitions in each of the tables should be larger than the degree of parallelism used
for the join. If there are more partitions than parallel servers, each parallel server will be given
one pair of partitions to join, when the parallel server completes that join, it will requests
another pair of partitions to join. This process repeats until all pairs have been processed. This
method enables the load to be balanced dynamically (for example, 128 partitions with a degree
of parallelism of 32).

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-27

What happens if only one of the tables you are joining is partitioned? In this case the optimizer
could pick a partial partition-wise join. Unlike full partition-wise joins, partial partition-wise joins
can be applied if only one table is partitioned on the join key. Hence, partial partition-wise joins
are more common than full partition-wise joins. To execute a partial partition-wise join, Oracle
dynamically repartitions the other table based on the partitioning strategy of the partitioned
table. Once the other table is repartitioned, the execution is similar to a full partition-wise join.
The redistribution operation involves exchanging rows between parallel execution servers. This
operation leads to interconnect traffic in Oracle RAC environments, because data needs to be
repartitioned across node boundaries.

Figure 4-5 Partial Partition-Wise Join

Sub part 1

Range partition
May 18th 2008

Sales

Sub part 2

Sub part 3

Sub part 4

Customer

Sub part 1

Sub part 2

Sub part 3

Sub part 4

Sub part 1

Sub part 2

Sub part 3

Sub part 4

SELECT sum(sales_amount)

FROM

SALES s. CUSTOMER c

WHERE s.cust_id=c.cust_id

Only the Sales table is hash partitioned
on the cust_id column

Rows from customer are dynamically
redistributed on the join key cust_id to

enable partition-wise join

Figure 4-5 illustrates a partial partition-wise join. It uses the same example as in Figure 4-4,
except that the customer table is not partitioned. Before the join operation is executed, the
rows from the customers table are dynamically redistributed on the join key.

4.5.3.2 3NF Schemas: Parallel Query Execution
3NF schemas can leverage parallelism in multiple ways, but here the focus is on one facet of
parallelism that is specially significant to 3NF: SQL parallel execution for large queries. SQL
parallel execution in the Oracle Database is based on the principles of a coordinator (often
called the Query Coordinator or QC) and parallel servers. The QC is the session that initiates
the parallel SQL statement and the parallel servers are the individual sessions that perform
work in parallel. The QC distributes the work to the parallel servers and may have to perform a
minimal mostly logistical - portion of the work that cannot be executed in parallel. For example
a parallel query with a SUM() operation requires adding the individual sub-totals calculated by
each parallel server.

The QC is easily identified in the parallel execution in Figure 4-5 as PX COORDINATOR. The
process acting as the QC of a parallel SQL operation is the actual user session process itself.
The parallel servers are taken from a pool of globally available parallel server processes and
assigned to a given operation. The parallel servers do all the work shown in a parallel plan
BELOW the QC.

By default, the Oracle Database is configured to support parallel execution out-of-the-box and
is controlled by two initialization parameters parallel_max_servers and
parallel_min_servers. While parallel execution provides a very powerful and scalable

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-28

framework to speed up SQL operations, you should not forget to use some common sense
rules; while parallel execution might buy you an additional incremental performance boost, it
requires more resources and might also have side effects on other users or operations on the
same system. Small tables/indexes (up to thousands of records; up to 10s of data blocks)
should never be enabled for parallel execution. Operations that only hit small tables will not
benefit much from executing in parallel, but they will use parallel servers that you will want to
be available for operations accessing large tables. Remember also that once an operation
starts at a certain degree of parallelism (DOP), there is no way to reduce its DOP during the
execution.

The general rules of thumb for determining the appropriate DOP for an object are:

• Objects smaller than 200 MB should not use any parallelism

• Objects between 200 MB and 5GB should use a DOP of 4

• Objects beyond 5GB use a DOP of 32

Needless to say the optimal settings may vary on your system - either in size range or DOP -
and highly depend on your target workload, the business requirements, and your hardware
configuration. Whether or Not to Use Cross Instance Parallel Execution in Oracle RAC
describes parallel execution in Oracle RAC environments.

4.5.3.2.1 Whether or Not to Use Cross Instance Parallel Execution in Oracle RAC
By default, Oracle Database enables inter-node parallel execution (parallel execution of a
single statement involving more than one node). As mentioned earlier, the interconnect in an
Oracle RAC environment must be sized appropriately as inter-node parallel execution may
result in a lot of interconnect traffic. If you are using a relatively weak interconnect in
comparison to the I/O bandwidth from the server to the storage subsystem, you may be better
off restricting parallel execution to a single node or to a limited number of nodes. Inter-node
parallel execution will not scale with an undersized interconnect. From Oracle Database 11g
onwards, it is recommended to use Oracle RAC services to control parallel execution on a
cluster.

4.5.4 Optimizing Star Queries Using VECTOR GROUP BY Aggregation
VECTOR GROUP BY aggregation optimizes queries that aggregate data and join one or more
relatively small tables to a larger table. This transformation can be chosen by the SQL
optimizer based on cost estimates. In the context of data warehousing, VECTOR GROUP BY will
often be chosen for star queries that select data from in-memory columnar tables.

VECTOR GROUP BY aggregation is similar to a bloom filter in that it transforms the join condition
between a small table and a large table into a filter on the larger table. VECTOR GROUP BY
aggregation further enhances query performance by aggregating data during the scan of the
fact table rather than as a separate step following the scan.

See Also:

• Using In-Memory Aggregation

• Oracle Database In-Memory Guide for a detailed VECTOR GROUP BY scenario

Chapter 4
Optimizing Star Queries and 3NF Schemas

4-29

4.6 About Approximate Query Processing
Approximate query processing uses SQL functions to provide real-time responses to
explorative queries where approximations are acceptable. A query containing SQL functions
that return approximate results is referred to as an approximate query.

Business intelligence (BI) applications extensively use aggregate functions, including analytic
functions, to provide answers to common business queries. For some types of queries, when
the data set is extremely large, providing exact answers can be resource intensive. For
example, counting the number of unique customer sessions on a website or establishing the
median house price within each zip code across a state. In certain scenarios, these types of
queries may not require exact answers because you are more interested in approximate trends
or patterns, which can then be used to drive further analysis. Approximate query processing is
primarily used in data discovery applications to return quick answers to explorative queries.
Users typically want to locate interesting data points within large amounts of data and then drill
down to uncover further levels of detail. For explorative queries, quick responses are more
important than exact values.

Oracle provides a set of SQL functions that enable you to obtain approximate results with
negligible deviation from the exact result. There are additional approximate functions that
support materialized view based summary aggregation strategies. The functions that provide
approximate results are as follows:

• APPROX_COUNT_DISTINCT
• APPROX_COUNT_DISTINCT_DETAIL
• APPROX_COUNT_DISTINCT_AGG
• TO_APPROX_COUNT_DISTINCT
• APPROX_MEDIAN
• APPROX_PERCENTILE
• APPROX_PERCENTILE_DETAIL
• APPROX_PERCENTILE_AGG
• TO_APPROX_PERCENTILE
Approximate query processing can be used without any changes to your existing code. When
you set the appropriate initialization parameters, Oracle Database replaces exact functions in
queries with the corresponding SQL functions that return approximate results.

Chapter 4
About Approximate Query Processing

4-30

See Also:

• Running Queries Containing Exact Functions Using SQL Functions that Return
Approximate Values

• Creating Materialized Views Based on Approximate Queries

• Query Rewrite and Materialized Views Based on Approximate Queries

• Refreshing Materialized Views Based on Approximate Queries

• About Approximate Aggregates

• Using Percentile Functions that Return Approximate Results

• Oracle Database SQL Language Reference for information about the SQL
functions

4.6.1 Running Queries Containing Exact Functions Using SQL Functions
that Return Approximate Values

Queries containing exact functions can be run by using the corresponding SQL functions that
return approximate results, without modifying the queries. This enables you to run existing
applications, without modifications, by using the corresponding SQL functions that return
approximate results.

Oracle Database provides the following initialization parameters to indicate that exact functions
must be replaced with the corresponding SQL functions that return approximate results at
runtime: approx_for_aggregation, approx_for_count_distinct, and
approx_for_percentile. You can replace all exact functions at runtime with the corresponding
functions that return approximate results. If you need more fine-grained control over the list of
functions that must be replaced with their corresponding approximate versions, then you can
specify the type of functions that must be replaced at runtime. For example, if a query contains
COUNT(DISTINCT), then setting approx_for_aggregation to TRUE results in this query being run
using APPROX_COUNT_DISTINCT instead of COUNT(DISTINCT).

• To run all queries using the corresponding SQL functions that return approximate results
instead of the specified SQL functions:

Set the approx_for_aggregation initialization parameter to TRUE for the current session or
for the entire database. This parameter acts as an umbrella parameter for enabling the use
of functions that return approximate results. Setting this is equivalent to setting the
APPROX_COUNT_DISTINCT and APPROX_FOR_PERCENTILE parameters.

The following command sets approx_for_aggregation to true for the current session:

alter session set approx_for_aggregation = TRUE;

• To replace only the COUNT(DISTINCT) function in queries with the APPROX_COUNT_DISTINCT
function:

Set the approx_for_count_distinct initialization parameter to TRUE for the current session
or for the entire database.

• To replace percentile functions with the corresponding functions that return approximate
results:

Chapter 4
About Approximate Query Processing

4-31

Set approx_for_percentile to PERCENTILE_CONT, PERCENTILE_DISC, or ALL (replaces all
percentile functions) for the current session or for the entire database. The default value of
this parameter is NONE.

See Also:

– APROX_FOR_AGGREGATION in Oracle Database Reference

– APPROX_FOR_COUNT_DISTINCT in Oracle Database Reference

– APPROX_FOR_PERCENTILE in Oracle Database Reference

4.7 About Approximate Top-N Query Processing
Starting with Oracle Database Release 18c, to obtain top N query results much faster than
traditional queries, the APPROX_COUNT and APPROX_SUM SQL functions can be used with
APPROX_RANK.

APPROX_COUNT

APPROX_COUNT returns the approximate count of an expression. If MAX_ERROR is supplied as the
second argument, then the function returns the maximum error between the actual and
approximate count.

This function must be used with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query must not use any
other aggregation functions.

See Also:

• Oracle Database SQL Language Reference

• APPROX_RANK Function

APPROX_SUM

APPROX_SUM returns the approximate sum of an expression. If MAX_ERROR is supplied as the
second argument, then the function returns the maximum error between the actual and
approximate sum.

This function must be used with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query must not use any
other aggregation functions.

Note:

APPROX_SUM returns an error when the input is a negative number.

Chapter 4
About Approximate Top-N Query Processing

4-32

See Also:

• Oracle Database SQL Language Reference

• APPROX_RANK Function

Chapter 4
About Approximate Top-N Query Processing

4-33

Part II
Optimizing Data Warehouses

This section deals with the physical design of a data warehouse.

It contains the following chapters:

• Basic Materialized Views

• Advanced Materialized Views

• Refreshing Materialized Views

• Synchronous Refresh

• Monitoring Materialized View Refresh Operations

• Dimensions

• Basic Query Rewrite for Materialized Views

• Advanced Query Rewrite for Materialized Views

• Attribute Clustering

• Using Zone Maps

5
Basic Materialized Views

This chapter describes the use of materialized views. It contains the following topics:

• Overview of Data Warehousing with Materialized Views

• Types of Materialized Views

• Creating Materialized Views

• Creating Materialized View Logs

• Creating Materialized Views Based on Approximate Queries

• Registering Existing Materialized Views

• Choosing Indexes for Materialized Views

• Dropping Materialized Views

• Analyzing Materialized View Capabilities

5.1 Overview of Data Warehousing with Materialized Views
Typically, data flows from one or more online transaction processing (OLTP) database into a
data warehouse on a monthly, weekly, or daily basis. The data is normally processed in a
staging file before being added to the data warehouse. Data warehouses commonly range in
size from hundreds of gigabytes to petabytes. Usually, the vast majority of the data is stored in
a few very large fact tables.

One technique employed in data warehouses to improve performance is the creation of
summaries. Summaries are special types of aggregate views that improve query execution
times by precalculating expensive joins and aggregation operations prior to execution and
storing the results in a table in the database. For example, you can create a summary table to
contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a materialized view.
Materialized views can perform a number of roles, such as improving query performance or
providing replicated data.

The database administrator creates one or more materialized views, which are the equivalent
of a summary. The end user queries the tables and views at the detail data level. The query
rewrite mechanism in the Oracle server automatically rewrites the SQL query to use the
summary tables. This mechanism reduces response time for returning results from the query.
Materialized views within the data warehouse are transparent to the end user or to the
database application.

Although materialized views are usually accessed through the query rewrite mechanism, an
end user or database application can construct queries that directly access the materialized
views. However, serious consideration should be given to whether users should be allowed to
do this because any change to the materialized views affects the queries that reference them.

This section contains the following topics:

• About Materialized Views for Data Warehouses

5-1

• About Materialized Views for Distributed Computing

• About Materialized Views for Mobile Computing

• The Need for Materialized Views

• Components of Summary Management

• Data Warehousing Terminology

• About Materialized View Schema Design

• About Loading Data into Data Warehouses

• Overview of Materialized View Management Tasks

5.1.1 About Materialized Views for Data Warehouses
In data warehouses, you can use materialized views to precompute and store aggregated data
such as the sum of sales. Materialized views in these environments are often referred to as
summaries, because they store summarized data. They can also be used to precompute joins
with or without aggregations. A materialized view eliminates the overhead associated with
expensive joins and aggregations for a large or important class of queries.

5.1.2 About Materialized Views for Distributed Computing
In distributed environments, you can use materialized views to replicate data at distributed
sites and to synchronize updates done at those sites with conflict resolution methods. These
replica materialized views provide local access to data that otherwise would have to be
accessed from remote sites. Materialized views are also useful in remote data marts.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide

5.1.3 About Materialized Views for Mobile Computing
You can also use materialized views to download a subset of data from central servers to
mobile clients, with periodic refreshes and updates between clients and the central servers.
This chapter focuses on the use of materialized views in data warehouses.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide

5.1.4 The Need for Materialized Views
You can use materialized views to increase the speed of queries on very large databases.
Queries to large databases often involve joins between tables, aggregations such as SUM, or
both. These operations are expensive in terms of time and processing power. The type of
materialized view you create determines how the materialized view is refreshed and used by
query rewrite.

Chapter 5
Overview of Data Warehousing with Materialized Views

5-2

Materialized views improve query performance by precalculating expensive join and
aggregation operations on the database prior to execution and storing the results in the
database. The query optimizer automatically recognizes when an existing materialized view
can and should be used to satisfy a request. It then transparently rewrites the request to use
the materialized view. Queries go directly to the materialized view and not to the underlying
detail tables. In general, rewriting queries to use materialized views rather than detail tables
improves response time. Figure 5-1 illustrates how query rewrite works.

Figure 5-1 Transparent Query Rewrite

StrategyGenerate Plan
Strategy

Query is
rewritten

User enters
query

Compare plan cost
and pick the best

StrategyGenerate Plan

StrategyQuery Results

Oracle

When using query rewrite, create materialized views that satisfy the largest number of queries.
For example, if you identify 20 queries that are commonly applied to the detail or fact tables,
then you might be able to satisfy them with five or six well-written materialized views. A
materialized view definition can include any number of aggregations (AVG, BIT_AND_AGG,
BIT_OR_AGG, BIT_XOR_AGG, COUNT(x), COUNT(*), COUNT(DISTINCT x), KURTOSIS_POP,
KURTOSIS_SAMP, MAX, MIN, SKEWNESS_POP, SKEWNESS_SAMP, STDDEV, SUM, and VARIANCE). It can
also include any number of joins. If you are unsure of which materialized views to create,
Oracle Database provides the SQL Access Advisor, which is a set of advisory procedures in
the DBMS_ADVISOR package to help in designing and evaluating materialized views for query
rewrite.

If a materialized view is to be used by query rewrite, it must be stored in the same database as
the detail tables on which it depends. A materialized view can be partitioned, and you can
define a materialized view on a partitioned table. You can also define one or more indexes on
the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT statement.
However, it is recommended that you try to avoid writing SQL statements that directly
reference the materialized view, because then it is difficult to change them without affecting the
application. Instead, let query rewrite transparently rewrite your query to use the materialized
view.

Note that the techniques shown in this chapter illustrate how to use materialized views in data
warehouses. Materialized views can also be used by Oracle Replication.

Chapter 5
Overview of Data Warehousing with Materialized Views

5-3

5.1.5 Components of Summary Management
Summary management consists of:

• Mechanisms to define materialized views and dimensions.

• A refresh mechanism to ensure that all materialized views contain the latest data.

• A query rewrite capability to transparently rewrite a query to use a materialized view.

• The SQL Access Advisor, which recommends materialized views, partitions, and indexes
to create.

• The TUNE_MVIEW package, which shows you how to make your materialized view fast
refreshable and use general query rewrite.

The use of summary management features imposes no schema restrictions, and can enable
some existing DSS database applications to improve performance without the need to
redesign the database or the application.

Figure 5-2 illustrates the use of summary management in the warehousing cycle. After the data
has been transformed, staged, and loaded into the detail data in the warehouse, you can
invoke the summary management process. First, use the SQL Access Advisor to plan how you
will use materialized views. Then, create materialized views and design how queries will be
rewritten. If you are having problems trying to get your materialized views to work then use
TUNE_MVIEW to obtain an optimized materialized view.

Chapter 5
Overview of Data Warehousing with Materialized Views

5-4

Figure 5-2 Overview of Summary Management

Operational
Databases

Extraction of
Incremental
Detail Data

Incremental
Load and Refresh

Data
Transformations

Staging
file

Detail

Data Warehouse

Summary

Query
Rewrite

Extract
Program

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Workload
Statistics

MDDB
Data Mart

Summary
Management

Understanding the summary management process during the earliest stages of data
warehouse design can yield large dividends later in the form of higher performance, lower
summary administration costs, and reduced storage requirements.

5.1.6 Data Warehousing Terminology
Some basic data warehousing terms are defined as follows:

• Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and products.
Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a periodic
schedule. They are used in long-running decision support queries to aggregate the data
returned from the query into appropriate levels of the dimension hierarchy.

• Hierarchies describe the business relationships and common access patterns in the
database. An analysis of the dimensions, combined with an understanding of the typical
work load, can be used to create materialized views. See Dimensions for more information.

• Fact tables describe the business transactions of an enterprise.

Chapter 5
Overview of Data Warehousing with Materialized Views

5-5

The vast majority of data in a data warehouse is stored in a few very large fact tables that
are updated periodically with data from one or more operational OLTP databases.

Fact tables include facts (also called measures) such as sales, units, and inventory.

– A simple measure is a numeric or character column of one table such as fact.sales.

– A computed measure is an expression involving measures of one table, for example,
fact.revenues - fact.expenses.

– A multitable measure is a computed measure defined on multiple tables, for example,
fact_a.revenues - fact_b.expenses.

Fact tables also contain one or more foreign keys that organize the business transactions
by the relevant business entities such as time, product, and market. In most cases, these
foreign keys are non-null, form a unique compound key of the fact table, and each foreign
key joins with exactly one row of a dimension table.

• A materialized view is a precomputed table comprising aggregated and joined data from
fact and possibly from dimension tables.

5.1.7 About Materialized View Schema Design
Summary management can perform many useful functions, including query rewrite and
materialized view refresh, even if your data warehouse design does not follow these
guidelines. However, you realize significantly greater query execution performance and
materialized view refresh performance benefits and you require fewer materialized views if
your schema design complies with these guidelines.

A materialized view definition includes any number of aggregates, as well as any number of
joins. In several ways, a materialized view behaves like an index:

• The purpose of a materialized view is to increase query execution performance.

• The existence of a materialized view is transparent to SQL applications, so that a database
administrator can create or drop materialized views at any time without affecting the
validity of SQL applications.

• A materialized view consumes storage space.

• The contents of the materialized view must be updated when the underlying detail tables
are modified.

This section contains the following topics:

• Schemas and Dimension Tables

• Guidelines for Materialized View Schema Design

5.1.7.1 Schemas and Dimension Tables
In the case of normalized or partially normalized dimension tables (a dimension that is stored
in multiple tables), identify how these tables are joined. Note whether the joins between the
dimension tables can guarantee that each child-side row joins with one and only one parent-
side row. In the case of denormalized dimensions, determine whether the child-side columns
uniquely determine the parent-side (or attribute) columns. These relationships can be enabled
with constraints, using the NOVALIDATE and RELY options if the relationships represented by the
constraints are guaranteed by other means. Note that if the joins between fact and dimension
tables do not support the parent-child relationship described previously, you still gain significant
performance advantages from defining the dimension with the CREATE DIMENSION statement.

Chapter 5
Overview of Data Warehousing with Materialized Views

5-6

Another alternative, subject to some restrictions, is to use outer joins in the materialized view
definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these relationships.
Incorrect results can be returned from queries otherwise.

5.1.7.2 Guidelines for Materialized View Schema Design
Before starting to define and use the various components of summary management, you
should review your schema design to abide by the following guidelines wherever possible.
Guidelines 1 and 2 are more important than guideline 3. If your schema design does not follow
guidelines 1 and 2, it does not then matter whether it follows guideline 3. Guidelines 1, 2, and 3
affect both query rewrite performance and materialized view refresh performance.

Dimensions Guideline 1

Dimensions should either be denormalized (each dimension contained in one table) or the
joins between tables in a normalized or partially normalized dimension should guarantee that
each child-side row joins with exactly one parent-side row.

You can enforce this condition by adding FOREIGN KEY and NOT NULL constraints on the child-
side join keys and PRIMARY KEY constraints on the parent-side join keys.

Dimensions Guideline 2

If dimensions are denormalized or partially denormalized, hierarchical integrity must be
maintained between the key columns of the dimension table. Each child key value must
uniquely identify its parent key value, even if the dimension table is denormalized. Hierarchical
integrity in a denormalized dimension can be verified by calling the VALIDATE_DIMENSION
procedure of the DBMS_DIMENSION package.

Dimensions Guideline 3

Fact and dimension tables should similarly guarantee that each fact table row joins with exactly
one dimension table row. This condition must be declared, and optionally enforced, by adding
FOREIGN KEY and NOT NULL constraints on the fact key column(s) and PRIMARY KEY constraints
on the dimension key column(s), or by using outer joins. In a data warehouse, constraints are
typically enabled with the NOVALIDATE and RELY clauses to avoid constraint enforcement
performance overhead.

Dimensions Guideline 4

After each load and before refreshing your materialized view, use the VALIDATE_DIMENSION
procedure of the DBMS_DIMENSION package to incrementally verify dimensional integrity.

Incremental Loads Guideline

Incremental loads of your detail data should be done using the SQL*Loader direct-path option,
or any bulk loader utility that uses Oracle's direct-path interface. This includes INSERT ... AS
SELECT with the APPEND or PARALLEL hints, where the hints cause the direct loader log to be
used during the insert.

Partitions Guideline

Range/composite partition your tables by a monotonically increasing time column if possible
(preferably of type DATE).

Chapter 5
Overview of Data Warehousing with Materialized Views

5-7

Time Dimensions Guideline

If a time dimension appears in the materialized view as a time column, partition and index the
materialized view in the same manner as you have the fact tables.

If you are concerned with the time required to enable constraints and whether any constraints
might be violated, then use the ENABLE NOVALIDATE with the RELY clause to turn on constraint
checking without validating any of the existing constraints. The risk with this approach is that
incorrect query results could occur if any constraints are broken. Therefore, as the designer,
you must determine how clean the data is and whether the risk of incorrect results is too great.

See Also:

• "Types of Materialized Views"

• "Creating Dimensions" for details on the benefits of maintaining a child-side row
join with a parent-side row

• Oracle Database SQL Language Reference

5.1.8 About Loading Data into Data Warehouses
A popular and efficient way to load data into a data warehouse or data mart is to use a CREATE
TABLE AS SELECT or INSERT AS SELECT statement, loading external data using external tables.
This allows massively parallel, complex data loading using the power of SQL inside the
database, avoiding any unnecessary staging.

Alternative ways are to load data using SQL*Loader with the DIRECT or PARALLEL option, Data
Pump, or to use another loader tool that uses the Oracle direct-path API.

Loading strategies can be classified as one-phase or two-phase. In one-phase loading, data is
loaded directly into the target table, quality assurance tests are performed, and errors are
resolved by performing DML operations prior to refreshing materialized views. If a large
number of deletions are possible, then storage utilization can be adversely affected, but
temporary space requirements and load time are minimized.

In a two-phase loading process:

• Data is first loaded into a temporary table in the warehouse.

• Quality assurance procedures are applied to the data.

• Referential integrity constraints on the target table are disabled, and the local index in the
target partition is marked unusable.

• The data is copied from the temporary area into the appropriate partition of the target table
using INSERT AS SELECT with the PARALLEL or APPEND hint. The temporary table is then
dropped. Alternatively, if the target table is partitioned, you can create a new (empty)
partition in the target table and use ALTER TABLE ... EXCHANGE PARTITION to incorporate
the temporary table into the target table. See Oracle Database SQL Language Reference
for more information.

• The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail data, the
database can be opened for operation, if desired. You can disable query rewrite at the system

Chapter 5
Overview of Data Warehousing with Materialized Views

5-8

level by issuing an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE statement until all the
materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED, access to the materialized view can
be allowed at the session level to any users who do not require the materialized views to
reflect the data from the latest load by issuing an ALTER SESSION SET QUERY_REWRITE_ENABLED
= TRUE statement. This scenario does not apply when QUERY_REWRITE_INTEGRITY is either
ENFORCED or TRUSTED because the system ensures in these modes that only materialized views
with updated data participate in a query rewrite.

See Also:

Oracle Database Utilities for the restrictions and considerations when using
SQL*Loader with the DIRECT or PARALLEL keywords

5.1.9 Overview of Materialized View Management Tasks
The motivation for using materialized views is to improve performance, but the overhead
associated with materialized view management can become a significant system management
problem. When reviewing or evaluating some of the necessary materialized view management
activities, consider some of the following:

• Identifying what materialized views to create initially.

• Indexing the materialized views.

• Ensuring that all materialized views and materialized view indexes are refreshed properly
each time the database is updated.

• Checking which materialized views have been used.

• Determining how effective each materialized view has been on workload performance.

• Measuring the space being used by materialized views.

• Determining which new materialized views should be created.

• Determining which existing materialized views should be dropped.

• Archiving old detail and materialized view data that is no longer useful.

After the initial effort of creating and populating the data warehouse or data mart, the major
administration overhead is the update process, which involves:

• Periodic extraction of incremental changes from the operational systems.

• Transforming the data.

• Verifying that the incremental changes are correct, consistent, and complete.

• Bulk-loading the data into the warehouse.

• Refreshing indexes and materialized views so that they are consistent with the detail data.

The update process must generally be performed within a limited period of time known as the
update window. The update window depends on the update frequency (such as daily or
weekly) and the nature of the business. For a daily update frequency, an update window of two
to six hours might be typical.

You need to know your update window for the following activities:

Chapter 5
Overview of Data Warehousing with Materialized Views

5-9

• Loading the detail data

• Updating or rebuilding the indexes on the detail data

• Performing quality assurance tests on the data

• Refreshing the materialized views

• Updating the indexes on the materialized views

5.2 Types of Materialized Views
The SELECT clause in the materialized view creation statement defines the data that the
materialized view is to contain. Only a few restrictions limit what can be specified. Any number
of tables can be joined together. Besides tables, other elements such as views, inline views
(subqueries in the FROM clause of a SELECT statement), subqueries, and materialized views can
all be joined or referenced in the SELECT clause. You cannot, however, define a materialized
view with a subquery in the SELECT list of the defining query. You can, however, include
subqueries elsewhere in the defining query, such as in the WHERE clause.

The types of materialized views are:

• About Materialized Views with Aggregates

• About Materialized Views Containing Only Joins

• About Nested Materialized Views

5.2.1 About Materialized Views with Aggregates
In data warehouses, materialized views normally contain aggregates as shown in Example 5-1.
For fast refresh to be possible, the SELECT list must contain all of the GROUP BY columns (if
present), and there must be a COUNT(*) and a COUNT(column) on any aggregated columns.
Also, materialized view logs must be present on all tables referenced in the query that defines
the materialized view. The valid aggregate functions are: AVG, BIT_AND_AGG, BIT_OR_AGG,
BIT_XOR_AGG, COUNT(x), COUNT(*), COUNT(x), KURTOSIS_POP, KURTOSIS_SAMP, MAX, MIN,
SKEWNESS_POP, SKEWNESS_SAMP, STDDEV, SUM, and VARIANCE, and the expression to be
aggregated can be any SQL value expression. See "Restrictions on Fast Refresh on
Materialized Views with Aggregates".

See Also:

"Requirements for Using Materialized Views with Aggregates"

Fast refresh for a materialized view containing joins and aggregates is possible after any type
of DML to the base tables (direct load or conventional INSERT, UPDATE, or DELETE). It can be
defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH ON COMMIT materialized view is
refreshed automatically when a transaction that does DML to one of the materialized view's
detail tables commits. The time taken to complete the commit may be slightly longer than usual
when this method is chosen. This is because the refresh operation is performed as part of the
commit process. Therefore, this method may not be suitable if many users are concurrently
changing the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that materialized view
logs are only created because this materialized view is fast refreshed.

Chapter 5
Types of Materialized Views

5-10

Example 5-1 Creating a Materialized View (Total Number and Value of Sales)

CREATE MATERIALIZED VIEW LOG ON products
WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcat_desc,
prod_category, prod_cat_desc, prod_weight_class, prod_unit_of_measure,
 prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales,
COUNT(*) AS cnt, COUNT(s.amount_sold) AS cnt_amt
FROM sales s join products p
ON (s.prod_id = p.prod_id) GROUP BY p.prod_name;

Note:

As of Oracle Database 23ai, materialized views support full rewrite capabilities for
SQL statements using ANSI join syntax and for materialized view definitions using
ANSI join syntax. You can use either ANSI or Oracle syntax in your MV definition and
your SQL statements. Any SQL statement will be rewritten as much as possible,
independent of the chosen join syntax in either the MV or the SQL statement. In the
above example, the join in the CREATE MATERIALIZED VIEW statement is expressed in
ANSI syntax:

FROM sales s join products p
ON (s.prod_id = p.prod_id) GROUP BY p.prod_name

Oracle syntax is also valid:

FROM sales s, products p
WHERE s.prod_id = p.prod_id GROUP BY p.prod_name

This example creates a materialized view product_sales_mv that computes total number and
value of sales for a product. It is derived by joining the tables sales and products on the
column prod_id. The materialized view is populated with data immediately because the build
method is immediate and it is available for use by query rewrite. In this example, the default
refresh method is FAST, which is allowed because the appropriate materialized view logs have
been created on tables products and sales.

You can achieve better fast refresh performance for local materialized views if you use a
materialized view log that contains a WITH COMMIT SCN clause. An example is the following:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID(prod_id, cust_id, time_id),
 COMMIT SCN INCLUDING NEW VALUES;

Chapter 5
Types of Materialized Views

5-11

Example 5-2 Creating a Materialized View (Computed Sum of Sales)

CREATE MATERIALIZED VIEW product_sales_mv_agg
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_name;

Using ANSI join syntax to illustrate the same example, the equivalent materialized view would
look like this:

CREATE MATERIALIZED VIEW product_sales_mv_agg
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sales s join products p on (s.prod_id = p.prod_id)
GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes the sum of sales
by prod_name. It is derived by joining the tables sales and products on the column prod_id.
The materialized view does not initially contain any data, because the build method is
DEFERRED. A complete refresh is required for the first refresh of a build deferred materialized
view. When it is refreshed and once populated, this materialized view can be used by query
rewrite.

Example 5-3 Creating a Materialized View (Aggregates on a Single Table)

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales
PARALLEL
BUILD IMMEDIATE
REFRESH FAST ON COMMIT AS
SELECT s.prod_id, s.time_id, COUNT(*) AS count_grp,
 SUM(s.amount_sold) AS sum_dollar_sales,
 COUNT(s.amount_sold) AS count_dollar_sales,
 SUM(s.quantity_sold) AS sum_quantity_sales,
 COUNT(s.quantity_sold) AS count_quantity_sales
FROM sales s
GROUP BY s.prod_id, s.time_id;

This example creates a materialized view that contains aggregates on a single table. Because
the materialized view log has been created with all referenced columns in the materialized
view's defining query, the materialized view is fast refreshable. If DML is applied against the
sales table, then the changes are reflected in the materialized view when the commit is issued.

See Also:

Oracle Database SQL Language Reference for syntax of the CREATE MATERIALIZED
VIEW and CREATE MATERIALIZED VIEW LOG statements

Chapter 5
Types of Materialized Views

5-12

5.2.1.1 Requirements for Using Materialized Views with Aggregates
Table 5-1 illustrates the aggregate requirements for materialized views. If aggregate X is
present, aggregate Y is required and aggregate Z is optional.

Table 5-1 Requirements for Materialized Views with Aggregates

X Y Z

BIT_AND_AGG - -

BIT_OR_AGG - -

BIT_XOR_AGG - -

COUNT(expr) - -

MIN(expr) - -

MAX(expr) - -

SUM(expr) COUNT(expr) -

SUM(col), col has NOT
NULL constraint

- -

AVG(expr) COUNT(expr) SUM(expr)
STDDEV(expr) COUNT(expr) SUM(expr) SUM(expr * expr)
VARIANCE(expr) COUNT(expr) SUM(expr) SUM(expr * expr)
KURTOSIS_POP(expr)
KURTOSIS_SAMP(expr)

COUNT(expr) SUM(expr) SUM(expr^2) COUNT(expr^2)
SUM(expr^3) COUNT(expr^3)

SKEWNESS_POP(expr)
SKEWNESS_SAMP(expr)

COUNT(expr) SUM(expr)
VARIANCE(expr) COUNT(*)

SUM(expr^2) COUNT(expr^2)

Note that COUNT(*) must always be present to guarantee all types of fast refresh. Otherwise,
you may be limited to fast refresh after inserts only. Oracle recommends that you include the
optional aggregates in column Z in the materialized view in order to obtain the most efficient
and accurate fast refresh of the aggregates.

5.2.2 About Materialized Views Containing Only Joins
Some materialized views contain only joins and no aggregates , such as in Materialized Join
Views FROM Clause Considerations, where a materialized view is created that joins the sales
table to the times and customers tables. The advantage of creating this type of materialized
view is that expensive joins are precalculated.

Note:

As of Oracle Database 23ai, ANSI and Oracle join syntax are interchangeable. Both
are fully supported.

Chapter 5
Types of Materialized Views

5-13

See Also:

"Materialized Join Views FROM Clause Considerations"

Fast refresh for a materialized view containing only joins is possible after any type of DML to
the base tables (direct-path or conventional INSERT, UPDATE, or DELETE).

A materialized view containing only joins can be defined to be refreshed ON COMMIT or ON
DEMAND. If it is ON COMMIT, the refresh is performed at commit time of the transaction that does
DML on the materialized view's detail table.

If you specify REFRESH FAST, Oracle Database performs further verification of the query
definition to ensure that fast refresh can be performed if any of the detail tables change. These
additional checks are:

• A materialized view log must be present for each detail table unless the table supports
partition change tracking (PCT). Also, when a materialized view log is required, the ROWID
column must be present in each materialized view log.

• The rowids of all the detail tables must appear in the SELECT list of the materialized view
query definition.

If some of these restrictions are not met, you can create the materialized view as REFRESH
FORCE to take advantage of fast refresh when it is possible. If one of the tables did not meet all
of the criteria, but the other tables did, the materialized view would still be fast refreshable with
respect to the other tables for which all the criteria are met.

To achieve an optimally efficient refresh, you should ensure that the defining query does not
use an outer join that behaves like an inner join. If the defining query contains such a join,
consider rewriting the defining query to contain an inner join.

See Also:

• "Restrictions on Fast Refresh on Materialized Views with Joins Only" for more
information regarding the conditions that cause refresh performance to degrade.

• "About Partition Change Tracking (PCT) Refresh for Materialized Views"

5.2.2.1 Materialized Join Views FROM Clause Considerations
If the materialized view contains only joins, the ROWID columns for each table (and each
instance of a table that occurs multiple times in the FROM list) must be present in the SELECT list
of the materialized view.

If the materialized view has remote tables in the FROM clause, all tables in the FROM clause must
be located on that same site in order to perform incremental (fast) refresh for the materialized
view. Further, ON COMMIT refresh is not supported for materialized view with remote tables.
Except for SCN-based materialized view logs, materialized view logs must be present on the
remote site for each detail table of the materialized view and ROWID columns must be present in
the SELECT list of the materialized view, as shown in the following example.

Chapter 5
Types of Materialized Views

5-14

Example 5-4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW detail_sales_mv
PARALLEL BUILD IMMEDIATE
REFRESH FAST AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "customers_rid",
 c.cust_id, c.cust_last_name, s.amount_sold, s.quantity_sold, s.time_id
FROM sales s, times t, customers c
WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Alternatively, if the previous example did not include the columns times_rid and
customers_rid, and if the refresh method was REFRESH FORCE, then this materialized view
would be fast refreshable only if the sales table was updated but not if the tables times or
customers were updated. Also note that this version uses ANSI join syntax. Both ANSI join and
Oracle join syntax are equally supported.

CREATE MATERIALIZED VIEW detail_sales_mv2
PARALLEL
BUILD IMMEDIATE
REFRESH FORCE AS
SELECT s.rowid "sales_rid", c.cust_id, c.cust_last_name, s.amount_sold, s.quantity_sold,
s.time_id
FROM sales s
 RIGHT OUTER JOIN times t ON t.time_id = s.time_id
 RIGHT OUTER JOIN customers c ON c.cust_id = s.cust_id;

5.2.3 About Nested Materialized Views
A nested materialized view is a materialized view whose definition is based on another
materialized view. A nested materialized view can reference other relations in the database in
addition to referencing materialized views.

This section contains the following topics:

• Why Use Nested Materialized Views?

• About Nesting Materialized Views with Joins and Aggregates

• Nested Materialized View Usage Guidelines

• Restrictions When Using Nested Materialized Views

5.2.3.1 Why Use Nested Materialized Views?
In a data warehouse, you typically create many aggregate views on a single join (for example,
rollups along different dimensions). Incrementally maintaining these distinct materialized
aggregate views can take a long time, because the underlying join has to be performed many
times.

Using nested materialized views, you can create multiple single-table materialized views based
on a joins-only materialized view and the join is performed just once. In addition, optimizations
can be performed for this class of single-table aggregate materialized view and thus refresh is
very efficient.

Example 5-5 Nested Materialized View

You can create a nested materialized view on materialized views, but all parent and base
materialized views must contain joins or aggregates. If the defining queries for a materialized

Chapter 5
Types of Materialized Views

5-15

view do not contain joins or aggregates, it cannot be nested. All the underlying objects
(materialized views or tables) on which the materialized view is defined must have a
materialized view log. All the underlying objects are treated as if they were tables. In addition,
you can use all the existing options for materialized views.

Using the tables and their columns from the sh sample schema, the following materialized
views illustrate how nested materialized views can be created.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;

/*create materialized view join_sales_cust_time as fast refreshable at
 COMMIT time */
CREATE MATERIALIZED VIEW join_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,
 t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid
FROM sales s, customers c, times t
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

To create a nested materialized view on the table join_sales_cust_time, you would have to
create a materialized view log on the table. Because this will be a single-table aggregate
materialized view on join_sales_cust_time, you must log all the necessary columns and use
the INCLUDING NEW VALUES clause.

/* create materialized view log on join_sales_cust_time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust_time
WITH ROWID (cust_last_name, day_number_in_week, amount_sold)
INCLUDING NEW VALUES;

/* create the single-table aggregate materialized view sum_sales_cust_time
on join_sales_cust_time as fast refreshable at COMMIT time */
CREATE MATERIALIZED VIEW sum_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT COUNT(*) cnt_all, SUM(amount_sold) sum_sales, COUNT(amount_sold)
 cnt_sales, cust_last_name, day_number_in_week
FROM join_sales_cust_time
GROUP BY cust_last_name, day_number_in_week;

5.2.3.2 About Nesting Materialized Views with Joins and Aggregates
Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_MVIEW to
identify those types of materialized views. You can refresh a tree of nested materialized views
in the appropriate dependency order by specifying the nested = TRUE parameter with the
DBMS_MVIEW.REFRESH parameter. For example, if you call DBMS_MVIEW.REFRESH
('SUM_SALES_CUST_TIME', nested => TRUE), the REFRESH procedure will first refresh the
join_sales_cust_time materialized view, and then refresh the sum_sales_cust_time
materialized view.

5.2.3.3 Nested Materialized View Usage Guidelines
You should keep the following in mind when deciding whether to use nested materialized
views:

• If you want to use fast refresh, you should fast refresh all the materialized views along any
chain.

Chapter 5
Types of Materialized Views

5-16

• If you want the highest level materialized view to be fresh with respect to the detail tables,
you must ensure that all materialized views in a tree are refreshed in the correct
dependency order before refreshing the highest-level. You can automatically refresh
intermediate materialized views in a nested hierarchy using the nested = TRUE parameter,
as described in "About Nesting Materialized Views with Joins and Aggregates". If you do
not specify nested = TRUE and the materialized views under the highest-level materialized
view are stale, refreshing only the highest-level will succeed, but makes it fresh only with
respect to its underlying materialized view, not the detail tables at the base of the tree.

• When refreshing materialized views, you must ensure that all materialized views in a tree
are refreshed. If you only refresh the highest-level materialized view, the materialized
views under it will be stale and you must explicitly refresh them. If you use the REFRESH
procedure with the nested parameter value set to TRUE, only specified materialized views
and their child materialized views in the tree are refreshed, and not their top-level
materialized views. Use the REFRESH_DEPENDENT procedure with the nested parameter
value set to TRUE if you want to ensure that all materialized views in a tree are refreshed.

• If complete refresh is the only refresh option supported for a particular nested materialized
view, then a complete refresh is performed even when a fast refresh is specified.

• Freshness of a materialized view is calculated relative to the objects directly referenced by
the materialized view. When a materialized view references another materialized view, the
freshness of the topmost materialized view is calculated relative to changes in the
materialized view it directly references, not relative to changes in the tables referenced by
the materialized view it references.

5.2.3.4 Restrictions When Using Nested Materialized Views
You cannot create both a materialized view and a prebuilt materialized view on the same table.
For example, If you have a table costs with a materialized view cost_mv based on it, you
cannot then create a prebuilt materialized view on table costs. The result would make cost_mv
a nested materialized view and this method of conversion is not supported.

5.3 Creating Materialized Views
A materialized view can be created with the CREATE MATERIALIZED VIEW statement.

It is not uncommon in a data warehouse to have already created summary or aggregation
tables, and you might not wish to repeat this work by building a new materialized view. In this
case, the table that already exists in the database can be registered as a prebuilt materialized
view. This technique is described in "Registering Existing Materialized Views".

Once you have selected the materialized views you want to create, follow these steps for each
materialized view.

1. Design the materialized view. Existing user-defined materialized views do not require this
step.

If the materialized view contains many rows, then, if appropriate, the materialized view
should be partitioned (if possible) and should match the partitioning of the largest or most
frequently updated detail or fact table (if possible). Refresh performance benefits from
partitioning, because it can take advantage of parallel DML capabilities and possible PCT-
based refresh.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally, populate the
materialized view.

Chapter 5
Creating Materialized Views

5-17

If a user-defined materialized view already exists, then use the ON PREBUILT TABLE clause
in the CREATE MATERIALIZED VIEW statement. Otherwise, use the BUILD IMMEDIATE clause to
populate the materialized view immediately, or the BUILD DEFERRED clause to populate the
materialized view later. A BUILD DEFERRED materialized view is disabled for use by query
rewrite until the first COMPLETE REFRESH, after which it is automatically enabled, provided the
ENABLE QUERY REWRITE clause has been specified.

Example 5-6 Creating a Materialized View

This example illustrates creating a materialized view called cust_sales_mv.

CREATE MATERIALIZED VIEW cust_sales_mv
PARALLEL
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE AS
SELECT c.cust_last_name, SUM(amount_sold) AS sum_amount_sold
FROM customers c, sales s WHERE s.cust_id = c.cust_id
GROUP BY c.cust_last_name;

Note:

Both Oracle join syntax (shown above) and ANSI join syntax are supported. Below is
the same example rewritten to use ANSI join syntax.

CREATE MATERIALIZED VIEW cust_sales_mv
PARALLEL
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE AS
SELECT c.cust_last_name, SUM(amount_sold) AS sum_amount_sold
FROM customers c
JOIN sales s ON s.cust_id = c.cust_id
GROUP BY c.cust_last_name;

Example 5-7 Creating a Materialized View with JSON Columns

This example creates a materialized view based on a table purchase_order that contains a
column of data type JSON.

CREATE MATERIALIZED VIEW po_mv
BUILD IMMEDIATE
REFRESH FAST ON STATEMENT WITH ROWID
AS
SELECT o.rowid AS id, v.*
FROM purchase_order o,
 JSON_TABLE(o.c FORMAT json, '$' error on error null on empty
 COLUMNS
 (
 poNum varchar2(10) PATH '$.poNum',
 poDate varchar2(12) PATH '$.poDate',
 NESTED PATH '$.items[*]'
 COLUMNS
 (
 item_seq for ordinality,
 itemName varchar2(10) PATH '$.itemName',
 itemPrice number PATH '$.itemPrice',

Chapter 5
Creating Materialized Views

5-18

 itemQuantity varchar2(10) PATH '$.itemQuantity'
)
)
) v;

See Also:

Oracle Database SQL Language Referencefor descriptions of the SQL statements
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, and DROP MATERIALIZED VIEW

5.3.1 Creating Materialized Views with Column Alias Lists
Currently, when a materialized view is created, if its defining query contains same-name
columns in the SELECT list, the name conflicts need to be resolved by specifying unique aliases
for those columns. Otherwise, the CREATE MATERIALIZED VIEW statement fails with the error
messages of columns ambiguously defined. However, the standard method of attaching
aliases in the SELECT clause for name resolution restricts the use of the full text match query
rewrite and it will occur only when the text of the materialized view's defining query and the text
of user input query are identical. Thus, if the user specifies select aliases in the materialized
view's defining query while there is no alias in the query, the full text match comparison fails.
This is particularly a problem for queries from Discoverer, which makes extensive use of
column aliases.

The following is an example of the problem. sales_mv is created with column aliases in the
SELECT clause but the input query Q1 does not have the aliases. The full text match rewrite
fails. The materialized view is as follows:

CREATE MATERIALIZED VIEW sales_mv
ENABLE QUERY REWRITE AS
SELECT s.time_id sales_tid, c.time_id costs_tid
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Input query statement Q1 is as follows:

SELECT s.time_id, c1.time_id
FROM sales s, products p, costs c1
WHERE s.prod_id = p.prod_id AND c1.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Even though the materialized view's defining query is almost identical and logically equivalent
to the user's input query, query rewrite does not happen because of the failure of full text match
that is the only rewrite possibility for some queries (for example, a subquery in the WHERE
clause).

You can add a column alias list to a CREATE MATERIALIZED VIEW statement. The column alias
list explicitly resolves any column name conflict without attaching aliases in the SELECT clause
of the materialized view. The syntax of the materialized view column alias list is illustrated in
the following example:

CREATE MATERIALIZED VIEW sales_mv (sales_tid, costs_tid)
ENABLE QUERY REWRITE AS
SELECT s.time_id, c.time_id
FROM sales s, products p, costs c

Chapter 5
Creating Materialized Views

5-19

WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

In this example, the defining query of sales_mv now matches exactly with the user query Q1, so
full text match rewrite takes place.

Note that when aliases are specified in both the SELECT clause and the new alias list clause,
the alias list clause supersedes the ones in the SELECT clause.

5.3.2 Creating Materialized Views Based on Hybird Partitioned Tables
Use the CREATE MATERIALIZED VIEW statement to create a materialized view that is based on a
hybrid partitioned table.

In a hybrid partitioned table, some partitions are stored in database segments, whereas other
partitions are stored externally. If a materialized view that is based on a hybrid partitioned table
includes the partition key or partition marker in its SELECT statement, it meets the requirements
for PCT refresh.

To create a materialized view based on a hybrid partitioned table:

1. Create a hybrid partitioned table.

The following command creates a hybrid partitioned table named hybrid_sales.

CREATE TABLE hybrid_sales(time_id date, customer number, price number, …)
…
PARTITION BY RANGE (time_id)
(
 PARTITION century_19 VALUES LESS THAN (TO_DATE('01-01-1900', 'DD-MM-
YYYY'))
 EXTERNAL LOCATION (data_dir1:'sales_1.csv'),
 PARTITION century_20 VALUES LESS THAN (TO_DATE('01-01-2000', 'DD-MM-
YYYY'))
 EXTERNAL DEFAULT DIRECTORY data_dir2 LOCATION ('sales_2.csv'),
 PARTITION year_2000 VALUES LESS THAN (TO_DATE('01-01-2001', 'DD-MM-
YYYY')),
 PARTITION year_2001 VALUES LESS THAN (TO_DATE('01-01-2002’, 'DD-MM-
YYYY'))
);

2. Create a materialized view that is based on the hybrid partitioned table.

The following command creates a materialized view named hypt_mv that is based on the
hybrid partitioned table hybrid_sales:

CREATE MATERIALIZED VIEW HyPT_MV
REFRESH FAST ON DEMAND AS
SELECT time_id, customer_no, sum(price) as total_price
FROM hybrid_sales
GROUP BY time_id, customer_no;

Assume that there is a corresponding materialized view log on the table hybrid_sales.

Chapter 5
Creating Materialized Views

5-20

5.3.3 About Materialized Views Names
The name of a materialized view must conform to standard Oracle naming conventions.
However, if the materialized view is based on a user-defined prebuilt table, then the name of
the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you might consider extending
this naming scheme to the materialized views so that they are easily identifiable. For example,
instead of naming the materialized view sum_of_sales, it could be called sum_of_sales_mv to
denote that this is a materialized view and not a table or view.

5.3.4 About Storage And Table Compression for Materialized Views
Unless the materialized view is based on a user-defined prebuilt table, it requires and occupies
storage space inside the database. Therefore, the storage needs for the materialized view
should be specified in terms of the tablespace where it is to reside and the size of the extents.

If you do not know how much space the materialized view requires, then the
DBMS_MVIEW.ESTIMATE_MVIEW_SIZE package can estimate the number of bytes required to
store this uncompressed materialized view. This information can then assist the design team in
determining the tablespace in which the materialized view should reside.

You should use table compression with highly redundant data, such as tables with many
foreign keys. This is particularly useful for materialized views created with the ROLLUP clause.
Table compression reduces disk use and memory use (specifically, the buffer cache), often
leading to a better scaleup for read-only operations. Table compression can also speed up
query execution at the expense of update cost.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information about table
compression

• Oracle Database Administrator’s Guide for more information about table
compression

• Oracle Database SQL Language Reference for a complete description of
STORAGE semantics

5.3.5 About Build Methods for Materialized Views
Two build methods are available for creating the materialized view, as shown in Table 5-2. If
you select BUILD IMMEDIATE, the materialized view definition is added to the schema objects in
the data dictionary, and then the fact or detail tables are scanned according to the SELECT
expression and the results are stored in the materialized view. Depending on the size of the
tables to be scanned, this build process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the materialized
view without data, thereby enabling it to be populated at a later date using the
DBMS_MVIEW.REFRESH package.

Chapter 5
Creating Materialized Views

5-21

See Also:

Refreshing Materialized Views

Table 5-2 Build Methods

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data.

BUILD DEFERRED Create the materialized view definition but do not populate it with data.

5.3.6 About Enabling Query Rewrite for Materialized Views
Before creating a materialized view, you can verify what types of query rewrite are possible by
calling the procedure DBMS_MVIEW.EXPLAIN_MVIEW, or use DBMS_ADVISOR.TUNE_MVIEW to
optimize the materialized view so that many types of query rewrite are possible. Once the
materialized view has been created, you can use DBMS_MVIEW.EXPLAIN_REWRITE to find out if
(or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the query
rewrite facility. Even though query rewrite is enabled by default, you also must specify the
ENABLE QUERY REWRITE clause if the materialized view is to be considered available for rewriting
queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the materialized view is
created, the materialized view can subsequently be enabled for query rewrite with the ALTER
MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query rewrite until it is
populated with data through a complete refresh.

5.3.7 About Query Rewrite Restrictions
Query rewrite is not possible with all materialized views. If query rewrite is not occurring when
expected, DBMS_MVIEW.EXPLAIN_REWRITE can help provide reasons why a specific query is not
eligible for rewrite. If this shows that not all types of query rewrite are possible, use the
procedure DBMS_ADVISOR.TUNE_MVIEW to see if the materialized view can be defined differently
so that query rewrite is possible. Also, check to see if your materialized view satisfies all of the
following conditions:

• About Materialized View Restrictions for Query Rewrite

• General Query Rewrite Restrictions

5.3.7.1 About Materialized View Restrictions for Query Rewrite
You should keep in mind the following restrictions:

• The defining query of the materialized view cannot contain any non-repeatable
expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

• The query cannot contain any references to LONG or LONG RAW data types or object REFs.

Chapter 5
Creating Materialized Views

5-22

• If the materialized view was registered as PREBUILT, the precision of the columns must
agree with the precision of the corresponding SELECT expressions unless overridden by the
WITH REDUCED PRECISION clause.

• The defining query cannot contain any references to objects or XMLTYPEs.

• A materialized view is a noneditioned object and cannot depend on editioned objects
unless it mentions an evaluation edition in which names of editioned objects are to be
resolved.

• A materialized view may only be eligible for query rewrite in a specific range of editions.
The query_rewrite_clause in the CREATE or ALTER MATERIALIZED VIEW statement lets you
specify the range of editions in which a materialized view is eligible for query rewrite.

See Also:

• Advanced Query Rewrite for Materialized Views

• Oracle Database SQL Language Reference

5.3.7.2 General Query Rewrite Restrictions
You should keep in mind the following restrictions:

• A query can reference both local and remote tables. Such a query can be rewritten as long
as an eligible materialized view referencing the same tables is available locally.

• Neither the detail tables nor the materialized view can be owned by SYS.

• If a column or expression is present in the GROUP BY clause of the materialized view, it must
also be present in the SELECT list.

• Aggregate functions must occur only as the outermost part of the expression. That is,
aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

• CONNECT BY clauses are not allowed.

See Also:

• Advanced Query Rewrite for Materialized Views

• Oracle Database SQL Language Reference

5.3.8 About Refresh Options for Materialized Views
When you define a materialized view, you can specify three refresh options: how to refresh,
what type of refresh, and can trusted constraints be used. If unspecified, the defaults are
assumed as ON DEMAND, FORCE, and ENFORCED constraints respectively.

Chapter 5
Creating Materialized Views

5-23

Note:

As of Oracle Database 23ai, refresh support for JSON table materialized views
includes the ability to fast refresh more types of materialized views of JSON tables,
as well as Query Rewrite support for these materialized views. Performance for
JSON table materialized views is improved through fast refresh of both single-table
and multi-table MJVs and MAVs (Materialized Aggregate Views), as well as fast
refresh of sub-query materialized views that generates JSON data. In previous
releases, materialized view support on JSON data is limited to MJVs (Materialized
View Join Views) on a single table only. In addition, Query Rewrite support for JSON
table materialized views as of Oracle Database 23ai provides query performance that
is generally an order of magnitude faster than in previous releases.

5.3.8.1 About Refresh Modes for Materialized Views
The refresh execution modes are ON COMMIT , ON DEMAND, and ON STATEMENT. Depending on
the materialized view you create, some options may not be available. Table 5-3 describes the
refresh modes.

Table 5-3 Refresh Modes

Refresh Mode Description

ON COMMIT Refresh occurs automatically when a transaction that modified one of the
materialized view's detail tables commits. This can be specified as long as the
materialized view is fast refreshable (in other words, not complex). The ON COMMIT
privilege is necessary to use this mode.

ON DEMAND Refresh occurs when a user manually executes one of the available refresh
procedures contained in the DBMS_MVIEW package (REFRESH,
REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).

ON STATEMENT Refresh occurs automatically, without the need to commit the transaction, when a
DML operation is performed on any of the materialized view’s base tables. This
method does not require the creation of materialized view logs on materialized
view’s base tables. This mode can be used as long as the materialized view is fast
refreshable.

When using the ON STATEMENT or ON COMMIT method, the time to complete a DML or commit
may be slightly longer than usual. This is because the refresh operation is performed as part of
the DML (for ON STATEMENT refresh) or as part of the commit (for ON COMMIT refresh).
Therefore, these methods may not be suitable if many users are concurrently changing the
tables upon which the materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced by a
materialized view concurrently with the refresh of that materialized view, and that materialized
view includes joins and aggregation, Oracle recommends you use ON COMMIT fast refresh
rather than ON DEMAND fast refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at DML or commit time, you must explicitly invoke the
refresh procedure using the DBMS_MVIEW package after addressing the errors specified in the
trace files. Until this is done, the materialized view will no longer be refreshed automatically at
commit time.

Chapter 5
Creating Materialized Views

5-24

5.3.8.2 About Types of Materialized View Refresh
You can specify how you want your materialized views to be refreshed from the detail tables by
selecting one of four options: COMPLETE, FAST, FORCE, and NEVER. Table 5-4 describes the
refresh options.

Table 5-4 Refresh Options

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view's defining query.

FAST Applies incremental changes to refresh the materialized view using the information
logged in the materialized view logs, or from a SQL*Loader direct-path or a
partition maintenance operation.

FORCE Applies FAST refresh if possible; otherwise, it applies COMPLETE refresh.

NEVER Indicates that the materialized view will not be refreshed with refresh mechanisms.

Whether the fast refresh option is available depends upon the type of materialized view. You
can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine whether fast refresh is
possible.

5.3.8.3 About Using Trusted Constraints and Materialized View Refresh
You can also specify if it is acceptable to use trusted constraints and
QUERY_REWRITE_INTEGRITY = TRUSTED during refresh. Any nonvalidated RELY constraint is a
trusted constraint. For example, nonvalidated foreign key/primary key relationships, functional
dependencies defined in dimensions or a materialized view in the UNKNOWN state. If query
rewrite is enabled during refresh, these can improve the performance of refresh by enabling
more performant query rewrites. Any materialized view that can use TRUSTED constraints for
refresh is left in a state of trusted freshness (the UNKNOWN state) after refresh.

This is reflected in the column STALENESS in the view USER_MVIEWS. The column
UNKNOWN_TRUSTED_FD in the same view is also set to Y, which means yes.

You can define this property of the materialized view either during create time by specifying
REFRESH USING TRUSTED [ENFORCED] CONSTRAINTS or by using ALTER MATERIALIZED VIEW
DDL.

Table 5-5 Constraints

Constraints to
Use

Description

TRUSTED
CONSTRAINTS

Refresh can use trusted constraints and QUERY_REWRITE_INTEGRITY = TRUSTED
during refresh.This allows use of non-validated RELY constraints and rewrite
against materialized views in UNKNOWN or FRESH state during refresh.

The USING TRUSTED CONSTRAINTS clause enables you to create a materialized
view on top of a table that has a non-NULL Virtual Private Database (VPD) policy
on it. In this case, ensure that the materialized view behaves correctly. Materialized
view results are computed based on the rows and columns filtered by VPD policy.
Therefore, you must coordinate the materialized view definition with the VPD policy
to ensure the correct results. Without the USING TRUSTED CONSTRAINTS clause,
any VPD policy on a base table will prevent a materialized view from being created.

Chapter 5
Creating Materialized Views

5-25

Table 5-5 (Cont.) Constraints

Constraints to
Use

Description

ENFORCED
CONSTRAINTS

Refresh can use validated constraints and QUERY_REWRITE_INTEGRITY =
ENFORCED during refresh. This allows use of only validated, enforced constraints
and rewrite against materialized views in FRESH state during refresh.

The fast refresh of a materialized view is optimized using the available primary and foreign key
constraints on the join columns. This foreign key/primary key optimization can significantly
improve refresh performance. For example, for a materialized view that contains a join
between a fact table and a dimension table, if only new rows were inserted into the dimension
table with no change to the fact table since the last refresh, then there will be nothing to refresh
for this materialized view. The reason is that, because of the primary key constraint on the join
column(s) of the dimension table and foreign key constraint on the join column(s) of the fact
table, the new rows inserted into the dimension table will not join with any fact table rows, thus
there is nothing to refresh. Another example of this refresh optimization is when both the fact
and dimension tables have inserts since the last refresh. In this case, Oracle Database will
only perform a join of delta fact table with the dimension table. Without the foreign key/primary
key optimization, two joins during the refresh would be required, a join of delta fact with the
dimension table, plus a join of delta dimension with an image of the fact table from before the
inserts.

Note that this optimized fast refresh using primary and foreign key constraints on the join
columns is available with and without constraint enforcement. In the first case, primary and
foreign key constraints are enforced by the Oracle Database. This, however, incurs the cost of
constraint maintenance. In the second case, the application guarantees primary and foreign
key relationships so the constraints are declared RELY NOVALIDATE and the materialized view is
defined with the REFRESH FAST USING TRUSTED CONSTRAINTS option.

5.3.8.4 General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

• The materialized view must not contain references to non-repeating expressions like
SYSDATE and ROWNUM.

• The materialized view must not contain references to RAW or LONG RAW data types.

• It cannot contain a SELECT list subquery.

• It cannot contain analytic functions (for example, RANK) in the SELECT clause.

• It cannot reference a table on which an XMLIndex index is defined.

• It cannot contain a MODEL clause.

• It cannot contain a HAVING clause with a subquery.

• It cannot contain nested queries that have ANY, ALL, or NOT EXISTS.

• It cannot contain a [START WITH …] CONNECT BY clause.

• It cannot contain multiple detail tables at different sites.

• ON COMMIT materialized views cannot have remote detail tables.

• Nested materialized views must have a join or aggregate.

Chapter 5
Creating Materialized Views

5-26

• Materialized join views and materialized aggregate views with a GROUP BY clause cannot
select from an index-organized table.

• It cannot be based on a remote view. Only complete refresh and force refresh is supported
for materialized views based on remote views.

If fast refresh is required, then create the materialized view based on the remote table on
which the remote view is based.

5.3.8.5 Restrictions on Fast Refresh on Materialized Views with Joins Only
Defining queries for materialized views with joins only and no aggregates have the following
restrictions on fast refresh:

• All restrictions from "General Restrictions on Fast Refresh".

• They cannot have GROUP BY clauses or aggregates.

• Rowids of all the tables in the FROM list must appear in the SELECT list of the query.

• Materialized view logs must exist with rowids for all the base tables in the FROM list of the
query.

• You cannot create a fast refreshable materialized view from multiple tables with simple
joins that include an object type column in the SELECT statement.

Also, the refresh method you choose will not be optimally efficient if:

• The defining query uses an outer join that behaves like an inner join. If the defining query
contains such a join, consider rewriting the defining query to contain an inner join.

• The SELECT list of the materialized view contains expressions on columns from multiple
tables.

5.3.8.6 Restrictions on Fast Refresh on Materialized Views with Aggregates
Defining queries for materialized views with aggregates or joins have the following restrictions
on fast refresh:

• All restrictions from "General Restrictions on Fast Refresh".

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views, however the
following restrictions apply:

• All tables in the materialized view must have materialized view logs, and the materialized
view logs must:

– Contain all columns from the table referenced in the materialized view.

– Specify with ROWID and INCLUDING NEW VALUES.

– Specify the SEQUENCE clause if the table is expected to have a mix of inserts/direct-
loads, deletes, and updates.

• Only AVG, BIT_AND_AGG, BIT_OR_AGG, BIT_XOR_AGG, COUNT, KURTOSIS_POP, KURTOSIS_SAMP,
MIN, MAX, SKEWNESS_POP, SKEWNESS_SAMP, STDDEV, SUM, and VARIANCE are supported for fast
refresh.

• You must specify COUNT(*).

• Aggregate functions must occur only as the outermost part of the expression. That is,
aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

Chapter 5
Creating Materialized Views

5-27

• For each aggregate such as AVG(expr), the corresponding COUNT(expr) must be present.
Oracle recommends that you specify SUM(expr).

• If you specify VARIANCE(expr) or STDDEV(expr), you must also specify COUNT(expr) and
SUM(expr). Oracle recommends that you specify SUM(expr *expr).

• If you specify KURTOSIS_POP, KURTOSIS_SAMP, SKEWNESS_POP, or SKEWNESS_SAMP, you must
also specify COUNT(expr) and SUM(expr). For SKEWNESS_POP, and SKEWNESS_SAMP, you
must also specify VARIANCE(expr) and COUNT(*).

• The SELECT column in the defining query cannot be a complex expression with columns
from multiple base tables. A possible workaround to this is to use a nested materialized
view.

• The SELECT list must contain all GROUP BY columns.

• The materialized view is not based on one or more remote tables.

• If you use a CHAR data type in the filter columns of a materialized view log, the character
sets of the primary site and the materialized view must be the same.

• If the materialized view has one of the following, then fast refresh is supported only on
conventional DML inserts and direct loads.

– Materialized views with MIN or MAX aggregates

– Materialized views which have SUM(expr) but no COUNT(expr)
– Materialized views without COUNT(*)
Such a materialized view is called an insert-only materialized view.

• A materialized view with MAX or MIN is fast refreshable after delete or mixed DML
statements if it does not have a WHERE clause.

The max/min fast refresh after delete or mixed DML does not have the same behavior as
the insert-only case. It deletes and recomputes the max/min values for the affected groups.
You need to be aware of its performance impact.

• Materialized views with named views or subqueries in the FROM clause can be fast
refreshed provided the views can be completely merged. For information on which views
will merge, see Oracle Database SQL Language Reference.

• If there are no outer joins, you may have arbitrary selections and joins in the WHERE clause.

• Materialized aggregate views with outer joins are fast refreshable after conventional DML
and direct loads, provided only the outer table has been modified. Also, unique constraints
must exist on the join columns of the inner join table. If there are outer joins, all the joins
must be connected by ANDs and must use the equality (=) operator.

• For materialized views with CUBE, ROLLUP, grouping sets, or concatenation of them, the
following restrictions apply:

– The SELECT list should contain grouping distinguisher that can either be a GROUPING_ID
function on all GROUP BY expressions or GROUPING functions one for each GROUP BY
expression. For example, if the GROUP BY clause of the materialized view is "GROUP BY
CUBE(a, b)", then the SELECT list should contain either "GROUPING_ID(a, b)" or
"GROUPING(a) AND GROUPING(b)" for the materialized view to be fast refreshable.

– GROUP BY should not result in any duplicate groupings. For example, "GROUP BY a,
ROLLUP(a, b)" is not fast refreshable because it results in duplicate groupings "(a),
(a, b), AND (a)".

Chapter 5
Creating Materialized Views

5-28

See Also:

Requirements for Using Materialized Views with Aggregates

5.3.8.7 Restrictions on Fast Refresh on Materialized Views with UNION ALL
Materialized views with the UNION ALL set operator support the REFRESH FAST option if the
following conditions are satisfied:

• The defining query must have the UNION ALL operator at the top level.

The UNION ALL operator cannot be embedded inside a subquery, with one exception: The
UNION ALL can be in a subquery in the FROM clause provided the defining query is of the
form SELECT * FROM (view or subquery with UNION ALL) as in the following example:

CREATE VIEW view_with_unionall AS
(SELECT c.rowid crid, c.cust_id, 2 umarker
 FROM customers c WHERE c.cust_last_name = 'Smith'
 UNION ALL
 SELECT c.rowid crid, c.cust_id, 3 umarker
 FROM customers c WHERE c.cust_last_name = 'Jones');

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND AS
SELECT * FROM view_with_unionall;

Note that the view view_with_unionall satisfies the requirements for fast refresh.

• Each query block in the UNION ALL query must satisfy the requirements of a fast
refreshable materialized view with aggregates or a fast refreshable materialized view with
joins.

The appropriate materialized view logs must be created on the tables as required for the
corresponding type of fast refreshable materialized view.

Note that the Oracle Database also allows the special case of a single table materialized
view with joins only provided the ROWID column has been included in the SELECT list and in
the materialized view log. This is shown in the defining query of the view
view_with_unionall.

• The SELECT list of each query must include a UNION ALL marker, and the UNION ALL column
must have a distinct constant numeric or string value in each UNION ALL branch. Further,
the marker column must appear in the same ordinal position in the SELECT list of each
query block. See "UNION ALL Marker and Query Rewrite" for more information regarding
UNION ALL markers.

• Some features such as outer joins, insert-only aggregate materialized view queries and
remote tables are not supported for materialized views with UNION ALL. Note, however, that
materialized views used in replication, which do not contain joins or aggregates, can be
fast refreshed when UNION ALL or remote tables are used.

• The compatibility initialization parameter must be set to 9.2.0 or higher to create a fast
refreshable materialized view with UNION ALL.

Chapter 5
Creating Materialized Views

5-29

5.3.8.8 About Achieving Refresh Goals
In addition to the EXPLAIN_MVIEW procedure, which is discussed throughout this chapter, you
can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a CREATE MATERIALIZED VIEW
statement to achieve REFRESH FAST and ENABLE QUERY REWRITE goals.

See Refreshing Materialized Views on Prebuilt Tables.

5.3.8.8.1 Refreshing Materialized Views on Prebuilt Tables
For materialized views created with the prebuilt option, the index I_snap$ is not created by
default. This index helps fast refresh performance, and a description of how to create this index
is illustrated in "Choosing Indexes for Materialized Views".

5.3.8.9 Refreshing Nested Materialized Views
A nested materialized view is considered to be fresh as long as its data is synchronized with
the data in its detail tables, even if some of its detail tables could be stale materialized views.

You can refresh nested materialized views in two ways: DBMS_MVIEW.REFRESH with the nested
flag set to TRUE and REFRESH_DEPENDENT with the nested flag set to TRUE on the base tables. If
you use DBMS_MVIEW.REFRESH, the entire materialized view chain is refreshed and the coverage
starting from the specified materialized view in top-down fashion. That is, the specified
materialized view and all its child materialized views in the dependency hierarchy are refreshed
in order. With DBMS_MVIEW.REFRESH_DEPENDENT, the entire chain is refreshed from the bottom
up. That is, all the parent materialized views in the dependency hierarchy starting from the
specified table are refreshed in order.

Example 5-8 Example of Refreshing a Nested Materialized View

The following statement shows an example of refreshing a nested materialized view:

DBMS_MVIEW.REFRESH('SALES_MV,COST_MV', nested => TRUE);

This statement will first refresh all child materialized views of sales_mv and cost_mv based on
the dependency analysis and then refresh the two specified materialized views.

You can query the STALE_SINCE column in the *_MVIEWS views to find out when a materialized
view became stale.

5.3.9 ORDER BY Clause in Materialized Views
An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It is used only
during the initial creation of the materialized view. It is not used during a full refresh or a fast
refresh.

To improve the performance of queries against large materialized views, store the rows in the
materialized view in the order specified in the ORDER BY clause. This initial ordering provides
physical clustering of the data. If indexes are built on the columns by which the materialized
view is ordered, accessing the rows of the materialized view using the index often reduces the
time for disk I/O due to the physical clustering.

The ORDER BY clause is not considered part of the materialized view definition. As a result, there
is no difference in the manner in which Oracle Database detects the various types of
materialized views (for example, materialized join views with no aggregates). For the same

Chapter 5
Creating Materialized Views

5-30

reason, query rewrite is not affected by the ORDER BY clause. This feature is similar to the
CREATE TABLE ... ORDER BY capability.

5.3.10 Using Oracle Enterprise Manager to Create Materialized Views
A materialized view can also be created using Enterprise Manager by selecting the
materialized view object type. There is no difference in the information required if this approach
is used.

5.3.11 Using Materialized Views with NLS Parameters
When using certain materialized views, you must ensure that your NLS parameters are the
same as when you created the materialized view. Materialized views with this restriction are as
follows:

• Expressions that may return different values, depending on NLS parameter settings. For
example, (date > "01/02/03") or (rate <= "2.150") are NLS parameter dependent
expressions.

• Equijoins where one side of the join is character data. The result of this equijoin depends
on collation and this can change on a session basis, giving an incorrect result in the case
of query rewrite or an inconsistent materialized view after a refresh operation.

• Expressions that generate internal conversion to character data in the SELECT list of a
materialized view, or inside an aggregate of a materialized aggregate view. This restriction
does not apply to expressions that involve only numeric data, for example, a+b where a
and b are numeric fields.

5.3.12 Adding Comments to Materialized Views
You can add comments to materialized views.

Example: Adding Comments to a Materialized View

The following statement adds a comment to data dictionary views for an existing materialized
view:

COMMENT ON MATERIALIZED VIEW sales_mv IS 'sales materialized view';

To view the comment after the preceding statement execution, you can query the catalog
views, {USER, DBA} ALL_MVIEW_COMMENTS. For example, consider the following example:

SELECT MVIEW_NAME, COMMENTS
FROM USER_MVIEW_COMMENTS WHERE MVIEW_NAME = 'SALES_MV';

The output will resemble the following:

MVIEW_NAME COMMENTS
----------- -----------------------
SALES_MV sales materialized view

Note: If the compatibility is set to 10.0.1 or higher, COMMENT ON TABLE will not be allowed for the
materialized view container table. The following error message will be thrown if it is issued.

ORA-12098: cannot comment on the materialized view.

In the case of a prebuilt table, if it has an existing comment, the comment will be inherited by
the materialized view after it has been created. The existing comment will be prefixed with

Chapter 5
Creating Materialized Views

5-31

'(from table)'. For example, table sales_summary was created to contain sales summary
information. An existing comment 'Sales summary data' was associated with the table. A
materialized view of the same name is created to use the prebuilt table as its container table.
After the materialized view creation, the comment becomes '(from table) Sales summary
data'.

However, if the prebuilt table, sales_summary, does not have any comment, the following
comment is added: 'Sales summary data'. Then, if you drop the materialized view, the
comment will be passed to the prebuilt table with the comment: '(from materialized view)
Sales summary data'.

5.4 Creating Materialized View Logs
Materialized view logs are required if you want to use fast refresh, with the exception of
partition change tracking refresh. That is, if a detail table supports partition change tracking for
a materialized view, the materialized view log on that detail table is not required in order to do
fast refresh on that materialized view. As a general rule, though, you should create
materialized view logs if you want to use fast refresh. Materialized view logs are defined using
a CREATE MATERIALIZED VIEW LOG statement on the base table that is to be changed. They are
not created on the materialized view unless there is another materialized view on top of that
materialized view, which is the case with nested materialized views. For fast refresh of
materialized views, the definition of the materialized view logs must normally specify the ROWID
clause. In addition, for aggregate materialized views, it must also contain every column in the
table referenced in the materialized view, the INCLUDING NEW VALUES clause and the SEQUENCE
clause. You can typically achieve better fast refresh performance of local materialized views
containing aggregates or joins by using a WITH COMMIT SCN clause.

An example of a materialized view log is shown as follows where one is created on the table
sales:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Alternatively, you could create a commit SCN-based materialized view log as follows:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCE be included in your materialized view log
statement unless you are sure that you will never perform a mixed DML operation (a
combination of INSERT, UPDATE, or DELETE operations on multiple tables). The SEQUENCE column
is required in the materialized view log to support fast refresh with a combination of INSERT,
UPDATE, or DELETE statements on multiple tables. You can, however, add the SEQUENCE number
to the materialized view log after it has been created.

The boundary of a mixed DML operation is determined by whether the materialized view is ON
COMMIT or ON DEMAND.

• For ON COMMIT, the mixed DML statements occur within the same transaction because the
refresh of the materialized view will occur upon commit of this transaction.

• For ON DEMAND, the mixed DML statements occur between refreshes. The following
example of a materialized view log illustrates where one is created on the table sales that
includes the SEQUENCE keyword:

Chapter 5
Creating Materialized View Logs

5-32

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold) INCLUDING NEW VALUES;

This section contains the following topics:

• Using the FORCE Option With Materialized View Logs

• Purging Materialized View Logs

5.4.1 Using the FORCE Option With Materialized View Logs
If you specify FORCE and any items specified with the ADD clause have already been specified
for the materialized view log, Oracle does not return an error, but silently ignores the existing
elements and adds to the materialized view log any items that do not already exist in the log.
For example, if you used a filter column such as cust_id and this column already existed,
Oracle Database ignores the redundancy and does not return an error.

5.4.2 Purging Materialized View Logs
Purging materialized view logs can be done during the materialized view refresh process or
deferred until later, thus improving refresh performance time. You can choose different options
for when the purge will occur, using a PURGE clause, as in the following:

CREATE MATERIALIZED VIEW LOG ON sales
PURGE START WITH sysdate NEXT sysdate+1
WITH ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

You can also query USER_MVIEW_LOGS for purge information, as in the following:

SELECT PURGE_DEFERRED, PURGE_INTERVAL, LAST_PURGE_DATE, LAST_PURGE_STATUS
FROM USER_MVIEW_LOGS
WHERE LOG_OWNER "SH" AND PRIMARY = 'SALES';

In addition to setting the purge when creating a materialized view log, you can also modify an
existing materialized view log by issuing a statement resembling the following:

ALTER MATERIALIZED VIEW LOG ON sales PURGE IMMEDIATE;

See Also:

Oracle Database SQL Language Reference for more information regarding
materialized view log syntax

5.5 Creating Materialized Views Based on Approximate Queries
A materialized view based on approximate queries uses SQL functions that return approximate
functions in its defining query.

You can compute summary and aggregate approximations and store these results in
materialized views for further analysis or querying. The summary approximation, which
computes approximate aggregates for all dimensions within a group of rows, can be used to
perform detailed aggregation. You can further aggregate the summary data to obtain aggregate

Chapter 5
Creating Materialized Views Based on Approximate Queries

5-33

approximations that can be used for high-level analysis so that the Oracle Database does not
scan the base tables again to compute higher-level aggregates. Oracle Database does not
scan the base tables again to compute higher-level aggregates. It just uses the existing
aggregated results to compute the higher-level aggregates. For example, you can create a
summary approximation that stores the approximate number of products sold within each state
and within each country. This aggregate approximation is then used to return the approximate
distinct number of products within each country.

To create a materialized view containing SQL functions that return approximate results:

• Run the CREATE MATERIALIZED VIEW statement, with the defining query containing the
appropriate functions

For example, use the APPROX_PERCENTILE function in the defining query of the materialized
view.

Example 5-9 Creating a Materialized View Based on Approximate Queries

The following example creates a materialized view that stores the approximate number of
distinct products that are sold on each day.

CREATE MATERIALIZED VIEW approx_count_distinct_pdt_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_year, t.calendar_month_number, t.day_number_in_month,
approx_count_distinct(prod_id) daily_detail
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_year, t.calendar_month_number, t.day_number_in_month;

See Also:

• Refreshing Materialized Views Based on Approximate Queries

• Using Percentile Functions that Return Approximate Results

5.6 Creating a Materialized View Containing Bitmap-based
COUNT(DISTINCT) Functions

Materialized views based on COUNT(DISTINCT) functions can provide enhanced performance
by using bitmap-based operations on integer columns.

Starting with Oracle Database Release 19c, you can create materialized views based on SQL
aggregate functions that use bitmap representation to express the computation of
COUNT(DISTINCT) operations. These functions include BITMAP_BUCKET_NUMBER,
BITMAP_BIT_POSITION and BITMAP_CONSTRUCT_AGG.

To create a materialized view based on bitmaps:

1. Ensure that materialized view logs exist for the tables on which the materialized view will
be based.

2. Use the CREATE MATERIALIZED VIEW command to create the materialized view.

Chapter 5
Creating a Materialized View Containing Bitmap-based COUNT(DISTINCT) Functions

5-34

The following example creates a materialized view based on the SH.SALES table and
containing non-additive facts.

SQL> create materialized view mv_sales as
 2 select PROMO_ID,
 3 BITMAP_BUCKET_NUMBER(PROD_ID) bm_bktno,
 4 BITMAP_CONSTRUCT_AGG(BITMAP_BIT_POSITION(PROD_ID),'RAW') bm_details
 5 from sales
 6 group by PROMO_ID,BITMAP_BUCKET_NUMBER(PROD_ID);

Materialized view created.

Related Topics

• Query Rewrite and Materialized Views Based on Bitmap-based COUNT(DISTINCT)
Functions
Queries that contain COUNT(DISTINCT) operations on integer columns can be rewritten to
use materialized views that contain bitmap-based functions.

5.7 Registering Existing Materialized Views
Some data warehouses have implemented materialized views in ordinary user tables. Although
this solution provides the performance benefits of materialized views, it does not:

• Provide query rewrite to all SQL applications.

• Enable materialized views defined in one application to be transparently accessed in
another application.

• Generally support fast parallel or fast materialized view refresh.

Because of these limitations, and because existing materialized views can be extremely large
and expensive to rebuild, you should register your existing materialized view tables whenever
possible. You can register a user-defined materialized view with the CREATE MATERIALIZED
VIEW ... ON PREBUILT TABLE statement. Once registered, the materialized view can be used for
query rewrites or maintained by one of the refresh methods, or both.

The contents of the table must reflect the materialization of the defining query at the time you
register it as a materialized view, and each column in the defining query must correspond to a
column in the table that has a matching data type. However, you can specify WITH REDUCED
PRECISION to allow the precision of columns in the defining query to be different from that of the
table columns.

The table and the materialized view must have the same name, but the table retains its identity
as a table and can contain columns that are not referenced in the defining query of the
materialized view. These extra columns are known as unmanaged columns. If rows are
inserted during a refresh operation, each unmanaged column of the row is set to its default
value. Therefore, the unmanaged columns cannot have NOT NULL constraints unless they also
have default values.

Materialized views based on prebuilt tables are eligible for selection by query rewrite provided
the parameter QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED or TRUSTED.

Chapter 5
Registering Existing Materialized Views

5-35

See Also:

Basic Query Rewrite for Materialized Views for details about integrity levels

When you drop a materialized view that was created on a prebuilt table, the table still exists—
only the materialized view is dropped.

The following example illustrates the two steps required to register a user-defined table. First,
the table is created, then the materialized view is defined using exactly the same name as the
table. This materialized view sum_sales_tab_mv is eligible for use in query rewrite.

CREATE TABLE sum_sales_tab
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8M) AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

CREATE MATERIALIZED VIEW sum_sales_tab_mv
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

You could have compressed this table to save space.

In some cases, user-defined materialized views are refreshed on a schedule that is longer than
the update cycle. For example, a monthly materialized view might be updated only at the end
of each month, and the materialized view values always refer to complete time periods.
Reports written directly against these materialized views implicitly select only data that is not in
the current (incomplete) time period. If a user-defined materialized view already contains a
time dimension:

• It should be registered and then fast refreshed each update cycle.

• You can create a view that selects the complete time period of interest.

• The reports should be modified to refer to the view instead of referring directly to the user-
defined materialized view.

If the user-defined materialized view does not contain a time dimension, then you should
create a new materialized view that does include the time dimension (if possible). Also, in this
case, the view should aggregate over the time column in the new materialized view.

5.8 Choosing Indexes for Materialized Views
The two most common operations on a materialized view are query execution and fast refresh,
and each operation has different performance requirements. Query execution might need to
access any subset of the materialized view key columns, and might need to join and aggregate
over a subset of those columns. Consequently, query execution usually performs best if a
single-column bitmap index is defined on each materialized view key column.

In the case of materialized views containing only joins using fast refresh, Oracle recommends
that indexes be created on the columns that contain the rowids to improve the performance of
the refresh operation.

Chapter 5
Choosing Indexes for Materialized Views

5-36

If a materialized view using aggregates is fast refreshable, then an index appropriate for the
fast refresh procedure is created unless USING NO INDEX is specified in the CREATE
MATERIALIZED VIEW statement.

If the materialized view is partitioned, then, after doing a partition maintenance operation on
the materialized view, the indexes become unusable, and they need to be rebuilt for fast
refresh to work.

If you create a materialized view with the prebuilt option, the I_snap$ index is not automatically
created. This index significantly improves fast refresh performance, and you can create it
manually by issuing a statement such as the following:

CREATE UNIQUE INDEX <OWNER>."I_SNAP$_<MVIEW_NAME>" ON <OWNER>.<MVIEW_NAME>
 (SYS_OP_MAP_NONNULL("LOG_DATE"))
 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DE
FAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE <TABLESPACE_NAME>;

See Also:

Oracle Database SQL Tuning Guide for information on using the SQL Access Advisor
to determine what indexes are appropriate for your materialized view

5.9 Dropping Materialized Views
Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For example, consider
the following statement:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv. If the materialized view was prebuilt
on a table, then the table is not dropped, but it can no longer be maintained with the refresh
mechanism or used by query rewrite. Alternatively, you can drop a materialized view using
Oracle Enterprise Manager.

5.10 Analyzing Materialized View Capabilities
You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible with a
materialized view or potential materialized view. In particular, this procedure enables you to
determine:

• If a materialized view is fast refreshable

• What types of query rewrite you can perform with this materialized view

• Whether partition change tracking refresh is possible

Using this procedure is straightforward and described in "Using the
DBMS_MVIEW.EXPLAIN_MVIEW Procedure". You simply call DBMS_MVIEW.EXPLAIN_MVIEW,
passing in as a single parameter the schema and materialized view name for an existing
materialized view. Alternatively, you can specify the SELECT string for a potential materialized
view or the complete CREATE MATERIALIZED VIEW statement. The materialized view or potential

Chapter 5
Dropping Materialized Views

5-37

materialized view is then analyzed and the results are written into either a table called
MV_CAPABILITIES_TABLE, which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW except when you
are placing the results in MSG_ARRAY. The script is found in the admin directory. It is to create the
MV_CAPABILITIES_TABLE in the current schema. An explanation of the various capabilities is in
Table 5-6, and all the possible messages are listed in Table 5-7.

5.10.1 Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
The EXPLAIN_MVIEW procedure has the following parameters:

• stmt_id
An optional parameter. A client-supplied unique identifier to associate output rows with
specific invocations of EXPLAIN_MVIEW.

• mv
The name of an existing materialized view or the query definition or the entire CREATE
MATERIALIZED VIEW statement of a potential materialized view you want to analyze.

• msg-array
The PL/SQL VARRAY that receives the output.

EXPLAIN_MVIEW analyzes the specified materialized view in terms of its refresh and rewrite
capabilities and inserts its results (in the form of multiple rows) into MV_CAPABILITIES_TABLE or
MSG_ARRAY.

See Also:

Oracle Database PL/SQL Packages and Types Reference for further information
about the DBMS_MVIEW package

This section contains the following topics:

• DBMS_MVIEW.EXPLAIN_MVIEW Declarations

• Using MV_CAPABILITIES_TABLE

• MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details

• MV_CAPABILITIES_TABLE Column Details

5.10.1.1 DBMS_MVIEW.EXPLAIN_MVIEW Declarations
The following PL/SQL declarations that are made for you in the DBMS_MVIEW package show the
order and data types of these parameters for explaining an existing materialized view and a
potential materialized view with output to a table and to a VARRAY.

Explain an existing or potential materialized view with output to MV_CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 stmt_id IN VARCHAR2:= NULL);

Explain an existing or potential materialized view with output to a VARRAY:

Chapter 5
Analyzing Materialized View Capabilities

5-38

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

5.10.1.2 Using MV_CAPABILITIES_TABLE
One of the simplest ways to use DBMS_MVIEW.EXPLAIN_MVIEW is with the
MV_CAPABILITIES_TABLE, which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:
 -- REWRITE
 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at least full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast
 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated
 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 -- See Table 5-6
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000), -- Owner.table.column, alias name, and so on
 -- related to this message. The specific
 -- meaning of this column depends on the
 -- NSGNO column. See the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details.
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 MSGNO INTEGER, -- When available, QSM message # explaining
 -- why disabled or more details when

Chapter 5
Analyzing Materialized View Capabilities

5-39

 -- enabled.
 MSGTXT VARCHAR(2000), -- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

You can use the utlxmv.sql script found in the admin directory to create
MV_CAPABILITIES_TABLE.

See Also:

• Refreshing Materialized Views for further details about partition change tracking

• Advanced Query Rewrite for Materialized Views for further details about partition
change tracking

Example 5-10 DBMS_MVIEW.EXPLAIN_MVIEW

First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEW on a potential
materialized view using its SELECT statement or the complete CREATE MATERIALIZED VIEW
statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEW with the materialized view to explain. You need to use the
SEQ column in an ORDER BY clause so the rows will display in a logical order. If a capability is not
possible, N will appear in the P column and an explanation in the MSGTXT column. If a capability
is not possible for multiple reasons, a row is displayed for each reason.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECT capability_name, possible, SUBSTR(related_text,1,8)
 AS rel_text, SUBSTR(msgtxt,1,60) AS msgtxt
FROM MV_CAPABILITIES_TABLE
ORDER BY seq;

CAPABILITY_NAME P REL_TEXT MSGTXT
--------------- - -------- ------
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST_AFTER_ONETAB_DML N DOLLARS SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why

Chapter 5
Analyzing Materialized View Capabilities

5-40

 REFRESH_FAST_AFTER_INSERT is disabled
REFRESH_FAST_AFTER_ONETAB_DML N COUNT(*) is not present in the select list
REFRESH_FAST_AFTER_ONETAB_DML N SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ANY_DML N see the reason why
 REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
 tables in the materialized view
REWRITE_FULL_TEXT_MATCH Y
REWRITE_PARTIAL_TEXT_MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

5.10.1.3 MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
Table 5-6 lists explanations for values in the CAPABILITY_NAME column.

Table 5-6 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

PCT If this capability is possible, partition change tracking is possible on at least one detail relation. If
this capability is not possible, partition change tracking is not possible with any detail relation
referenced by the materialized view.

REFRESH_COMPLETE If this capability is possible, complete refresh of the materialized view is possible.

REFRESH_FAST If this capability is possible, fast refresh is possible at least under certain circumstances.

REWRITE If this capability is possible, at least full text match query rewrite is possible. If this capability is not
possible, no form of query rewrite is possible.

PCT_TABLE If this capability is possible, it is possible with respect to a particular partitioned table in the top
level FROM list. When possible, partition change tracking (PCT) applies to the partitioned table
named in the RELATED_TEXT column.

PCT is needed to support fast refresh after partition maintenance operations on the table named
in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the
RELATED_TEXT column when fast refresh from a materialized view log is not possible.

PCT is also needed to support query rewrite in the presence of partial staleness of the
materialized view with regard to the table named in the RELATED_TEXT column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT column. In this
case, fast refresh is not possible after partition maintenance operations on the table named in the
RELATED_TEXT column. In addition, PCT-based refresh of updates to the table named in the
RELATED_TEXT column is not possible. Finally, query rewrite cannot be supported in the presence
of partial staleness of the materialized view with regard to the table named in the RELATED_TEXT
column.

PCT_TABLE_REWRITE If this capability is possible, it is possible with respect to a particular partitioned table in the top
level FROM list. When possible, PCT applies to the partitioned table named in the RELATED_TEXT
column.

This capability is needed to support query rewrite against this materialized view in partial stale
state with regard to the table named in the RELATED_TEXT column.

When disabled, query rewrite cannot be supported if this materialized view is in partial stale state
with regard to the table named in the RELATED_TEXT column.

REFRESH_FAST_AFTER_
INSERT

If this capability is possible, fast refresh from a materialized view log is possible at least in the
case where the updates are restricted to INSERT operations; complete refresh is also possible. If
this capability is not possible, no form of fast refresh from a materialized view log is possible.

Chapter 5
Analyzing Materialized View Capabilities

5-41

Table 5-6 (Cont.) CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

REFRESH_FAST_AFTER_
ONETAB_DML

If this capability is possible, fast refresh from a materialized view log is possible regardless of the
type of update operation, provided all update operations are performed on a single table. If this
capability is not possible, fast refresh from a materialized view log may not be possible when the
update operations are performed on multiple tables.

REFRESH_FAST_AFTER_
ANY_DML

If this capability is possible, fast refresh from a materialized view log is possible regardless of the
type of update operation or the number of tables updated. If this capability is not possible, fast
refresh from a materialized view log may not be possible when the update operations (other than
INSERT) affect multiple tables.

REFRESH_FAST_PCT If this capability is possible, fast refresh using PCT is possible. Generally, this means that refresh
is possible after partition maintenance operations on those detail tables where PCT is indicated
as possible.

REWRITE_FULL_TEXT_M
ATCH

If this capability is possible, full text match query rewrite is possible. If this capability is not
possible, full text match query rewrite is not possible.

REWRITE_PARTIAL_
TEXT_MATCH

If this capability is possible, at least full and partial text match query rewrite are possible. If this
capability is not possible, at least partial text match query rewrite and general query rewrite are
not possible.

REWRITE_GENERAL If this capability is possible, all query rewrite capabilities are possible, including general query
rewrite and full and partial text match query rewrite. If this capability is not possible, at least
general query rewrite is not possible.

REWRITE_PCT If this capability is possible, query rewrite can use a partially stale materialized view even in
QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. When this capability is not
possible, query rewrite can use a partially stale materialized view only in
QUERY_REWRITE_INTEGRITY = STALE_TOLERATED mode.

5.10.1.4 MV_CAPABILITIES_TABLE Column Details
Table 5-7 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

Table 5-7 MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

NULL NULL For PCT capability only: [owner.]name of
the table upon which PCT is enabled

2066 This statement resulted in an Oracle
error

Oracle error number
that occurred

2067 No partition key or PMARKER or join
dependent expression in SELECT list

[owner.]name of relation for which PCT is
not supported

2068 Relation is not partitioned [owner.]name of relation for which PCT is
not supported

2069 PCT not supported with multicolumn
partition key

[owner.]name of relation for which PCT is
not supported

2070 PCT not supported with this type of
partitioning

[owner.]name of relation for which PCT is
not supported

2071 Internal error: undefined PCT failure
code

The unrecognized
numeric PCT failure
code

[owner.]name of relation for which PCT is
not supported

Chapter 5
Analyzing Materialized View Capabilities

5-42

Table 5-7 (Cont.) MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

2072 Requirements not satisfied for fast
refresh of nested materialized view

2077 Materialized view log is newer than last
full refresh

[owner.]table_name of table upon which
the materialized view log is needed

2078 Materialized view log must have new
values

[owner.]table_name of table upon which
the materialized view log is needed

2079 Materialized view log must have ROWID [owner.]table_name of table upon which
the materialized view log is needed

2080 Materialized view log must have
primary key

[owner.]table_name of table upon which
the materialized view log is needed

2081 Materialized view log does not have all
necessary columns

[owner.]table_name of table upon which
the materialized view log is needed

2082 Problem with materialized view log [owner.]table_name of table upon which
the materialized view log is needed

2099 Materialized view references a remote
table or view in the FROM list

Offset from the SELECT
keyword to the table or
view in question

[owner.]name of the table or view in
question

2126 Multiple primary sites Name of the first different node, or NULL if
the first different node is local

2129 Join or filter condition(s) are complex [owner.]name of the table involved with
the join or filter condition (or NULL when not
available)

2130 Expression not supported for fast
refresh

Offset from the SELECT
keyword to the
expression in question

The alias name in the SELECT list of the
expression in question

2150 SELECT lists must be identical across
the UNION operator

Offset from the SELECT
keyword to the first
different select item in
the SELECT list

The alias name of the first different select
item in the SELECT list

2182 PCT is enabled through a join
dependency

[owner.]name of relation for which
PCT_TABLE_REWRITE is not enabled

2183 Expression to enable PCT not in
PARTITION BY of analytic function or
model

The unrecognized
numeric PCT failure
code

[owner.]name of relation for which PCT is
not enabled

2184 Expression to enable PCT cannot be
rolled up

[owner.]name of relation for which PCT is
not enabled

2185 No partition key or PMARKER in the
SELECT list

[owner.]name of relation for which
PCT_TABLE_REWRITE is not enabled

2186 GROUP OUTER JOIN is present

2187 Materialized view on external table

Chapter 5
Analyzing Materialized View Capabilities

5-43

6
Advanced Materialized Views

This chapter discusses advanced topics in using materialized views. It contains the following
topics:

• About Partitioning and Materialized Views

• About Materialized Views in Analytic Processing Environments

• About Materialized Views and Models

• About Security Issues with Materialized Views

• Invalidating Materialized Views

• Altering Materialized Views

• Using Real-time Materialized Views

6.1 About Partitioning and Materialized Views
Because of the large volume of data held in a data warehouse, partitioning is an extremely
useful option when designing a database. Partitioning the fact tables improves scalability,
simplifies system administration, and makes it possible to define local indexes that can be
efficiently rebuilt. Partitioning the fact tables also improves the opportunity of fast refreshing the
materialized view because this may enable partition change tracking (PCT) refresh on the
materialized view. Partitioning a materialized view also has benefits for refresh, because the
refresh procedure can then use parallel DML in more scenarios and PCT-based refresh can
use truncate partition to efficiently maintain the materialized view.

See Also:

Oracle Database VLDB and Partitioning Guide for further details about partitioning

This section contains the following topics:

• About Partition Change Tracking

• Partitioning a Materialized View

• Partitioning a Prebuilt Table

• Rolling Materialized Views

6.1.1 About Partition Change Tracking
It is possible and advantageous to track freshness to a finer grain than the entire materialized
view. You can achieve this through partition change tracking (PCT), which is a method to
identify which rows in a materialized view are affected by a certain detail table partition. When
one or more of the detail tables are partitioned, it may be possible to identify the specific rows
in the materialized view that correspond to a modified detail partition(s); those rows become
stale when a partition is modified while all other rows remain fresh.

6-1

You can use PCT to identify which materialized view rows correspond to a particular partition.
PCT is also used to support fast refresh after partition maintenance operations on detail tables.
For instance, if a detail table partition is truncated or dropped, the affected rows in the
materialized view are identified and deleted.

Identifying which materialized view rows are fresh or stale, rather than considering the entire
materialized view as stale, allows query rewrite to use those rows that are fresh while in
QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. Several views, such as
DBA_MVIEW_DETAIL_PARTITION, detail which partitions are stale or fresh. Oracle does not
rewrite against partial stale materialized views if partition change tracking on the changed table
is enabled by the presence of join dependent expressions in the materialized view.

See Also:

"About Join Dependent Expression and Partition Change Tracking" for more
information

Note that, while partition change tracking tracks the staleness on a partition and subpartition
level (for composite partitioned tables), the level of granularity for PCT refresh is only the top-
level partitioning strategy. Consequently, any change to data in one of the subpartitions of a
composite partitioned-table will only mark the single impacted subpartition as stale and have
the rest of the table available for rewrite, but the PCT refresh will refresh the whole partition
that contains the impacted subpartition.

To support PCT, a materialized view must satisfy the following requirements:

• At least one of the detail tables referenced by the materialized view must be partitioned.

• Partitioned tables must use either range, list or composite partitioning with range or list as
the top-level partitioning strategy.

• The top level partition key must consist of only a single column.

• The materialized view must contain either the partition key column or a partition marker or
ROWID or join dependent expression of the detail table.

• If you use a GROUP BY clause, the partition key column or the partition marker or ROWID or
join dependent expression must be present in the GROUP BY clause.

• If you use an analytic window function or the MODEL clause, the partition key column or the
partition marker or ROWID or join dependent expression must be present in their respective
PARTITION BY subclauses.

• Data modifications can only occur on the partitioned table. If PCT refresh is being done for
a table which has join dependent expression in the materialized view, then data
modifications should not have occurred in any of the join dependent tables.

• The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

PCT is not supported for a materialized view that refers to views, remote tables, or outer joins.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details regarding the
DBMS_MVIEW.PMARKER function and partition markers

Chapter 6
About Partitioning and Materialized Views

6-2

This section contains the following topics:

• About Partition Key and Partition Change Tracking

• About Join Dependent Expression and Partition Change Tracking

• About Partition Markers and Partition Change Tracking

• About Partial Rewrite in Partition Change Tracking

6.1.1.1 About Partition Key and Partition Change Tracking
Partition change tracking requires sufficient information in the materialized view to be able to
correlate a detail row in the source partitioned detail table to the corresponding materialized
view row. This can be accomplished by including the detail table partition key columns in the
SELECT list and, if GROUP BY is used, in the GROUP BY list.

Consider an example of a materialized view storing daily customer sales. The following
example uses the sh sample schema and the three detail tables sales, products, and times to
create the materialized view. sales table is partitioned by time_id column and products is
partitioned by the prod_id column. times is not a partitioned table.

Example 6-1 Materialized View with Partition Key

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID
 (prod_id, time_id, quantity_sold, amount_sold) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID
 (prod_id, prod_name, prod_desc) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID
 (time_id, calendar_month_name, calendar_year) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW cust_dly_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY s.time_id, p.prod_id, p.prod_name;

For cust_dly_sales_mv, PCT is enabled on the sales table because the partitioning key
column time_id is in the materialized view.

6.1.1.2 About Join Dependent Expression and Partition Change Tracking
An expression consisting of columns from tables directly or indirectly joined through equijoins
to the partitioned detail table on the partitioning key and which is either a dimensional attribute
or a dimension hierarchical parent of the joining key is called a join dependent expression. The
set of tables in the path to detail table are called join dependent tables. Consider the following:

SELECT s.time_id, t.calendar_month_name
FROM sales s, times t WHERE s.time_id = t.time_id;

In this query, times table is a join dependent table because it is joined to sales table on the
partitioning key column time_id. Moreover, calendar_month_name is a dimension hierarchical
attribute of times.time_id, because calendar_month_name is an attribute of times.mon_id and
times.mon_id is a dimension hierarchical parent of times.time_id. Hence, the expression
calendar_month_name from times tables is a join dependent expression. Let's consider another
example:

Chapter 6
About Partitioning and Materialized Views

6-3

SELECT s.time_id, y.calendar_year_name
FROM sales s, times_d d, times_m m, times_y y
WHERE s.time_id = d.time_id AND d.day_id = m.day_id AND m.mon_id = y.mon_id;

Here, times table is denormalized into times_d, times_m and times_y tables. The expression
calendar_year_name from times_y table is a join dependent expression and the tables
times_d, times_m and times_y are join dependent tables. This is because times_y table is
joined indirectly through times_m and times_d tables to sales table on its partitioning key
column time_id.

This lets users create materialized views containing aggregates on some level higher than the
partitioning key of the detail table. Consider the following example of materialized view storing
monthly customer sales.

Example 6-2 Creating a Materialized View: Join Dependent Expression

Assuming the presence of materialized view logs defined earlier, the materialized view can be
created using the following DDL:

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_name, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, p.prod_id, p.prod_name;

Here, you can correlate a detail table row to its corresponding materialized view row using the
join dependent table times and the relationship that times.calendar_month_name is a
dimensional attribute determined by times.time_id. This enables partition change tracking on
sales table. In addition to this, PCT is enabled on products table because of presence of its
partitioning key column prod_id in the materialized view.

6.1.1.3 About Partition Markers and Partition Change Tracking
The DBMS_MVIEW.PMARKER function is designed to significantly reduce the cardinality (the ratio
of distinct values to the number of table rows) of the materialized view (see Example 6-3 for an
example). The function returns a partition identifier that uniquely identifies the partition or
subpartition for a specified row within a specified partitioned table. Therefore, the
DBMS_MVIEW.PMARKER function is used instead of the partition key column in the SELECT and
GROUP BY clauses.

Unlike the general case of a PL/SQL function in a materialized view, use of the
DBMS_MVIEW.PMARKER does not prevent rewrite with that materialized view even when the
rewrite mode is QUERY_REWRITE_INTEGRITY = ENFORCED.

As an example of using the PMARKER function, consider calculating a typical number, such as
revenue generated by a product category during a given year. If there were 1000 different
products sold each month, it would result in 12,000 rows in the materialized view.

Example 6-3 Using Partition Markers in a Materialized View

Consider an example of a materialized view storing the yearly sales revenue for each product
category. With approximately hundreds of different products in each product category, including
the partitioning key column prod_id of the products table in the materialized view would
substantially increase the cardinality. Instead, this materialized view uses the

Chapter 6
About Partitioning and Materialized Views

6-4

DBMS_MVIEW.PMARKER function, which increases the cardinality of materialized view by a factor
of the number of partitions in the products table.

CREATE MATERIALIZED VIEW prod_yr_sales_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(p.rowid), p.prod_category, t.calendar_year, COUNT(*),
 SUM(s.amount_sold), SUM(s.quantity_sold),
 COUNT(s.amount_sold), COUNT(s.quantity_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY DBMS_MVIEW.PMARKER (p.rowid), p.prod_category, t.calendar_year;

prod_yr_sales_mv includes the DBMS_MVIEW.PMARKER function on the products table in its
SELECT list. This enables partition change tracking on products table with significantly less
cardinality impact than grouping by the partition key column prod_id. In this example, the
desired level of aggregation for the prod_yr_sales_mv is to group by
products.prod_category. Using the DBMS_MVIEW.PMARKER function, the materialized view
cardinality is increased only by a factor of the number of partitions in the products table. This
would generally be significantly less than the cardinality impact of including the partition key
columns.

Note that partition change tracking is enabled on sales table because of presence of join
dependent expression calendar_year in the SELECT list.

6.1.1.4 About Partial Rewrite in Partition Change Tracking
A subsequent INSERT statement adds a new row to the sales_part3 partition of table sales. At
this point, because cust_dly_sales_mv has PCT available on table sales using a partition key,
Oracle can identify the stale rows in the materialized view cust_dly_sales_mv corresponding
to sales_part3 partition (The other rows are unchanged in their freshness state). Query
rewrite cannot identify the fresh portion of materialized views cust_mth_sales_mv and
prod_yr_sales_mv because PCT is available on table sales using join dependent expressions.
Query rewrite can determine the fresh portion of a materialized view on changes to a detail
table only if PCT is available on the detail table using a partition key or partition marker.

6.1.2 Partitioning a Materialized View
Partitioning a materialized view involves defining the materialized view with the standard
Oracle partitioning clauses, as illustrated in the following example. This statement creates a
materialized view called part_sales_mv, which uses three partitions, can be fast refreshed,
and is eligible for query rewrite:

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))

Chapter 6
About Partitioning and Materialized Views

6-5

 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT s.cust_id, s.time_id,
 SUM(s.amount_sold) AS sum_dol_sales, SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;

6.1.3 Partitioning a Prebuilt Table
Alternatively, a materialized view can be registered to a partitioned prebuilt table. "Benefits of
Partitioning a Materialized View" describes the benefits of partitioning a prebuilt table. The
following example illustrates this:

CREATE TABLE part_sales_tab_mv(time_id, cust_id, sum_dollar_sales, sum_unit_sale)
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf2,
PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf3) AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

CREATE MATERIALIZED VIEW part_sales_tab_mv
ON PREBUILT TABLE
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

In this example, the table part_sales_tab_mv has been partitioned over three months and then
the materialized view was registered to use the prebuilt table. This materialized view is eligible
for query rewrite because the ENABLE QUERY REWRITE clause has been included.

6.1.3.1 Benefits of Partitioning a Materialized View
When a materialized view is partitioned on the partitioning key column or join dependent
expressions of the detail table, it is more efficient to use a TRUNCATE PARTITION statement to
remove one or more partitions of the materialized view during refresh and then repopulate the
partition with new data. Oracle Database uses this variant of fast refresh (called PCT refresh)
with partition truncation if the following conditions are satisfied in addition to other conditions
described in "About Partition Change Tracking".

• The materialized view is partitioned on the partitioning key column or join dependent
expressions of the detail table.

Chapter 6
About Partitioning and Materialized Views

6-6

• If PCT is enabled using either the partitioning key column or join expressions, the
materialized view should be range or list partitioned.

• PCT refresh is nonatomic.

6.1.4 Rolling Materialized Views
When a data warehouse or data mart contains a time dimension, it is often desirable to archive
the oldest information and then reuse the storage for new information. This is called the rolling
window scenario. If the fact tables or materialized views include a time dimension and are
horizontally partitioned by the time attribute, then management of rolling materialized views
can be reduced to a few fast partition maintenance operations provided the unit of data that is
rolled out equals, or is at least aligned with, the range partitions.

If you plan to have rolling materialized views in your data warehouse, you should determine
how frequently you plan to perform partition maintenance operations, and you should plan to
partition fact tables and materialized views to reduce the amount of system administration
overhead required when old data is aged out. An additional consideration is that you might
want to use data compression on your infrequently updated partitions.

You are not restricted to using range partitions. For example, a composite partition using both a
time value and a key value could result in a good partition solution for your data.

See Also:

Refreshing Materialized Views for further details regarding CONSIDER FRESH and for
details regarding compression

6.1.5 About Automatic Partitioning of Materialized Views
Automatic materialized views support automatic partitioning.

Note the following:

• An automatic materialize view is automatically partitioned only if the underlying fact table is
partitioned.

• Only only list partitioning is used in automatic partitioning.

See Also:

The Database Licensing Information User Manual for availability details.

6.2 About Materialized Views in Analytic Processing
Environments

This section discusses the concepts used by analytic SQL and how relational databases can
handle these types of queries. It also illustrates the best approach for creating materialized
views using a common scenario.

Chapter 6
About Materialized Views in Analytic Processing Environments

6-7

The following topics contain additional information about materialized views in different
environments:

• About Materialized Views and Analytic Views

• About Materialized Views and Hierarchical Cubes

• Benefits of Partitioning Materialized Views

• About Compressing Materialized Views

• About Materialized Views with Set Operators

6.2.1 About Materialized Views and Analytic Views
Creating a materialized view over queries of an analytic view or a hierarchy is not supported.

6.2.2 About Materialized Views and Hierarchical Cubes
While data warehouse environments typically view data in the form of a star schema, for
analytical SQL queries, data is held in the form of a hierarchical cube. A hierarchical cube
includes the data aggregated along the rollup hierarchy of each of its dimensions and these
aggregations are combined across dimensions. It includes the typical set of aggregations
needed for business intelligence queries.

Example 6-4 Hierarchical Cube

Consider a sales data set with two dimensions, each of which has a four-level hierarchy:

• Time, which contains (all times), year, quarter, and month.

• Product, which contains (all products), division, brand, and item.

This means there are 16 aggregate groups in the hierarchical cube. This is because the four
levels of time are multiplied by four levels of product to produce the cube. Table 6-1 shows the
four levels of each dimension.

Table 6-1 ROLLUP By Time and Product

ROLLUP By Time ROLLUP By Product

year, quarter, month division, brand, item

year, quarter division, brand

year division

all times all products

Note that as you increase the number of dimensions and levels, the number of groups to
calculate increases dramatically. This example involves 16 groups, but if you were to add just
two more dimensions with the same number of levels, you would have 4 x 4 x 4 x 4 = 256
different groups. Also, consider that a similar increase in groups occurs if you have multiple
hierarchies in your dimensions. For example, the time dimension might have an additional
hierarchy of fiscal month rolling up to fiscal quarter and then fiscal year. Handling the explosion
of groups has historically been the major challenge in data storage for online analytical
processing systems.

Typical online analytical queries slice and dice different parts of the cube comparing
aggregations from one level to aggregation from another level. For instance, a query might find
sales of the grocery division for the month of January, 2002 and compare them with total sales
of the grocery division for all of 2001.

Chapter 6
About Materialized Views in Analytic Processing Environments

6-8

6.2.3 Benefits of Partitioning Materialized Views
Materialized views with multiple aggregate groups give their best performance for refresh and
query rewrite when partitioned appropriately.

PCT refresh in a rolling window scenario requires partitioning at the top level on some level
from the time dimension. And, partition pruning for queries rewritten against this materialized
view requires partitioning on GROUPING_ID column. Hence, the most effective partitioning
scheme for these materialized views is to use composite partitioning (range-list on (time,
GROUPING_ID) columns). By partitioning the materialized views this way, you enable:

• PCT refresh, thereby improving refresh performance.

• Partition pruning: only relevant aggregate groups are accessed, thereby greatly reducing
the query processing cost.

If you do not want to use PCT refresh, you can just partition by list on GROUPING_ID column.

6.2.4 About Compressing Materialized Views
You should consider data compression when using highly redundant data, such as tables with
many foreign keys. In particular, materialized views created with the ROLLUP clause are likely
candidates.

See Also:

• Oracle Database SQL Language Reference for data compression syntax and
restrictions

• "About Storage And Table Compression for Materialized Views" for details
regarding compression

6.2.5 About Materialized Views with Set Operators
Oracle Database provides support for materialized views whose defining query involves set
operators. Materialized views with set operators can now be created enabled for query rewrite.
You can refresh the materialized view using either ON COMMIT or ON DEMAND refresh.

Fast refresh is supported if the defining query has the UNION ALL operator at the top level and
each query block in the UNION ALL, meets the requirements of a materialized view with
aggregates or materialized view with joins only. Further, the materialized view must include a
constant column (known as a UNION ALL marker) that has a distinct value in each query block,
which, in the following example, is columns 1 marker and 2 marker.

See Also:

"Restrictions on Fast Refresh on Materialized Views with UNION ALL" for detailed
restrictions on fast refresh for materialized views with UNION ALL.

Chapter 6
About Materialized Views in Analytic Processing Environments

6-9

6.2.5.1 Examples of Materialized Views Using UNION ALL
The following examples illustrate creation of fast refreshable materialized views involving UNION
ALL.

Example 6-5 Materialized View Using UNION ALL with Two Join Views

To create a UNION ALL materialized view with two join views, the materialized view logs must
have the rowid column and, in the following example, the UNION ALL marker is the columns, 1
marker and 2 marker.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;

CREATE MATERIALIZED VIEW unionall_sales_cust_joins_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE AS
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Smith')
UNION ALL
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 2 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Example 6-6 Materialized View Using UNION ALL with Joins and Aggregates

The following example shows a UNION ALL of a materialized view with joins and a materialized
view with aggregates. A couple of things can be noted in this example. Nulls or constants can
be used to ensure that the data types of the corresponding SELECT list columns match. Also,
the UNION ALL marker column can be a string literal, which is 'Year' umarker, 'Quarter'
umarker, or 'Daily' umarker in the following example:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, SEQUENCE
(amount_sold, time_id)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON times WITH ROWID, SEQUENCE
 (time_id, fiscal_year, fiscal_quarter_number, day_number_in_week)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW unionall_sales_mix_mv
REFRESH FAST ON DEMAND AS
(SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.fiscal_year)
UNION ALL
(SELECT 'Quarter' umarker, NULL, NULL, t.fiscal_quarter_number,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
FROM sales s, times t
WHERE s.time_id = t.time_id and t.fiscal_year = 2001
GROUP BY t.fiscal_quarter_number)
UNION ALL
(SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2, t.day_number_in_week,
 s.amount_sold amt, 1, 1
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.time_id between '01-Jan-01' AND '01-Dec-31');

Chapter 6
About Materialized Views in Analytic Processing Environments

6-10

6.3 About Materialized Views and Models
Models, which provide array-based computations in SQL, can be used in materialized views.
Because the MODEL clause calculations can be expensive, you may want to use two separate
materialized views: one for the model calculations and one for the SELECT ... GROUP BY query.
For example, instead of using one, long materialized view, you could create the following
materialized views:

CREATE MATERIALIZED VIEW my_groupby_mv
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT country_name country, prod_name prod, calendar_year year,
 SUM(amount_sold) sale, COUNT(amount_sold) cnt, COUNT(*) cntstr
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year;

CREATE MATERIALIZED VIEW my_model_mv
ENABLE QUERY REWRITE AS
SELECT country, prod, year, sale, cnt
FROM my_groupby_mv
MODEL PARTITION BY(country) DIMENSION BY(prod, year)
 MEASURES(sale s) IGNORE NAV
(s['Shorts', 2000] = 0.2 * AVG(s)[CV(), year BETWEEN 1996 AND 1999],
s['Kids Pajama', 2000] = 0.5 * AVG(s)[CV(), year BETWEEN 1995 AND 1999],
s['Boys Pajama', 2000] = 0.6 * AVG(s)[CV(), year BETWEEN 1994 AND 1999],
...
<hundreds of other update rules>);

By using two materialized views, you can incrementally maintain the materialized view
my_groupby_mv. The materialized view my_model_mv is on a much smaller data set because it is
built on my_groupby_mv and can be maintained by a complete refresh.

Materialized views with models can use complete refresh or PCT refresh only, and are
available for partial text query rewrite only.

See Also:

SQL for Modeling for further details about model calculations

6.4 About Security Issues with Materialized Views
To create a materialized view in your own schema, you must have the CREATE MATERIALIZED
VIEW privilege and the SELECT or READ privilege to any tables referenced that are in another
schema. To create a materialized view in another schema, you must have the CREATE ANY
MATERIALIZED VIEW privilege and the owner of the materialized view needs SELECT or READ
privileges to the tables referenced if they are from another schema. Moreover, if you enable
query rewrite on a materialized view that references tables outside your schema, you must
have the GLOBAL QUERY REWRITE privilege or the QUERY REWRITE object privilege on each table
outside your schema.

Chapter 6
About Materialized Views and Models

6-11

If the materialized view is on a prebuilt container, the creator, if different from the owner, must
have the READ WITH GRANT or SELECT WITH GRANT privilege on the container table.

If you continue to get a privilege error while trying to create a materialized view and you believe
that all the required privileges have been granted, then the problem is most likely due to a
privilege not being granted explicitly and trying to inherit the privilege from a role instead. The
owner of the materialized view must have explicitly been granted SELECT or READ access to the
referenced tables if the tables are in a different schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then the owner of
the materialized view requires an additional privilege if any of the tables in the defining query
are outside the owner's schema. In that case, the owner requires the ON COMMIT REFRESH
system privilege or the ON COMMIT REFRESH object privilege on each table outside the owner's
schema.

See Also:

Querying Materialized Views with Virtual Private Database (VPD)

6.4.1 Querying Materialized Views with Virtual Private Database (VPD)
For all security concerns, a materialized view serves as a view that happens to be materialized
when you are directly querying the materialized view. When creating a view or materialized
view, the owner must have the necessary permissions to access the underlying base relations
of the view or materialized view that they are creating. With these permissions, the owner can
publish a view or materialized view that other users can access, assuming they have been
granted access to the view or materialized view.

Using materialized views with Virtual Private Database is similar. When you create a
materialized view, there must not be any VPD policies in effect against the base relations of the
materialized view for the owner of the materialized view. If any VPD policies exist, then you
must use the USING TRUSTED CONSTRAINTS clause when creating the materialized view. The
owner of the materialized view may establish a VPD policy on the new materialized view.
Users who access the materialized view are subject to the VPD policy on the materialized
view. However, they are not additionally subject to the VPD policies of the underlying base
relations of the materialized view, because security processing of the underlying base relations
is performed against the owner of the materialized view.

This section contains the following topics:

• Using Query Rewrite with Virtual Private Database

• Restrictions with Materialized Views and Virtual Private Database

6.4.1.1 Using Query Rewrite with Virtual Private Database
When you access a materialized view using query rewrite, the materialized view serves as an
access structure much like an index. As such, the security implications for materialized views
accessed in this way are much the same as for indexes: all security checks are performed
against the relations specified in the request query. The index or materialized view is used to
speed the performance of accessing the data, not provide any additional security checks.
Thus, the presence of the index or materialized view presents no additional security checking.

This holds true when you are accessing a materialized view using query rewrite in the
presence of VPD. The request query is subject to any VPD policies that are present against

Chapter 6
About Security Issues with Materialized Views

6-12

the relations specified in the query. Query rewrite may rewrite the query to use a materialize
view instead of accessing the detail relations, but only if it can guarantee to deliver exactly the
same rows as if the rewrite had not occurred. Specifically, query rewrite must retain and
respect any VPD policies against the relations specified in the request query. However, any
VPD policies against the materialized view itself do not have effect when the materialized view
is accessed using query rewrite. This is because the data is already protected by the VPD
policies against the relations in the request query.

6.4.1.2 Restrictions with Materialized Views and Virtual Private Database
Query rewrite does not use its full and partial text match modes with request queries that
include relations with active VPD policies, but it does use general rewrite methods. This is
because VPD transparently transforms the request query to affect the VPD policy. If query
rewrite were to perform a text match transformation against a request query with a VPD policy,
the effect would be to negate the VPD policy.

In addition, when you create or refresh a materialized view, the owner of the materialized view
must not have any active VPD policies in effect against the base relations of the materialized
view, or an error is returned. The materialized view owner must either have no such VPD
policies, or any such policy must return NULL. This is because VPD would transparently modify
the defining query of the materialized view such that the set of rows contained by the
materialized view would not match the set of rows indicated by the materialized view definition.

One way to work around this restriction yet still create a materialized view containing the
desired VPD-specified subset of rows is to create the materialized view in a user account that
has no active VPD policies against the detail relations of the materialized view. In addition, you
can include a predicate in the WHERE clause of the materialized view that embodies the effect of
the VPD policy. When query rewrite attempts to rewrite a request query that has that VPD
policy, it matches up the VPD-generated predicate on the request query with the predicate you
directly specify when you create the materialized view.

6.5 Invalidating Materialized Views
Dependencies related to materialized views are automatically maintained to ensure correct
operation. When a materialized view is created, the materialized view depends on the detail
tables referenced in its definition. Any DML operation, such as an INSERT, or DELETE, UPDATE,
or DDL operation on any dependency in the materialized view will cause it to become invalid.
To revalidate a materialized view, use the ALTER MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many cases, the
materialized view will be successfully and transparently revalidated. However, if a column has
been dropped in a table referenced by a materialized view or the owner of the materialized
view did not have one of the query rewrite privileges and that privilege has now been granted
to the owner, you should use the following statement to revalidate the materialized view:

ALTER MATERIALIZED VIEW mview_name COMPILE;

The state of a materialized view can be checked by querying the data dictionary views
USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of the values FRESH, STALE,
UNUSABLE, UNKNOWN, UNDEFINED, or NEEDS_COMPILE to indicate whether the materialized view
can be used. The state is maintained automatically. However, if the staleness of a materialized
view is marked as NEEDS_COMPILE, you could issue an ALTER MATERIALIZED VIEW ... COMPILE
statement to validate the materialized view and get the correct staleness state. If the state of a
materialized view is UNUSABLE, you must perform a complete refresh to bring the materialized
view back to the FRESH state. If the materialized view is based on a prebuilt table that you never
refresh, you must drop and re-create the materialized view. The staleness of remote

Chapter 6
Invalidating Materialized Views

6-13

materialized views is not tracked. Thus, if you use remote materialized views for rewrite, they
are considered to be trusted.

6.6 Altering Materialized Views
The following modifications can be made to a materialized view:

• Change its refresh option (FAST/FORCE/COMPLETE/NEVER).

• Change its refresh mode (ON COMMIT/ON DEMAND).

• Recompile it.

• Enable or disable its use for query rewrite.

• Consider it fresh.

• Partition maintenance operations.

• Enable on-query computation

All other changes are achieved by dropping and then re-creating the materialized view. The
success of a modification operation depends on whether the requirement for the change is
satisfied. For example, a fast refresh succeeds if materialized view logs exist on all the base
tables.

The COMPILE clause of the ALTER MATERIALIZED VIEW statement can be used when the
materialized view has been invalidated. This compile process is quick, and allows the
materialized view to be used by query rewrite again.

See Also:

• Oracle Database SQL Language Reference for further information about the
ALTER MATERIALIZED VIEW statement

• "Invalidating Materialized Views"

6.7 Using Real-time Materialized Views
Real-time materialized views provide fresh data to user queries even when the materialized
view is marked as stale.

Chapter 6
Altering Materialized Views

6-14

See Also:

• Overview of Real-time Materialized Views

• Creating Real-time Materialized Views

• Converting an Existing Materialized View into a Real-time Materialized View

• Enabling Query Rewrite to Use Real-time Materialized Views

• Using Real-time Materialized Views During Query Rewrite

• Using Real-time Materialized Views for Direct Query Access

• Listing Real-time Materialized Views

• Improving Real-time Materialized Views Performance

6.7.1 Overview of Real-time Materialized Views
A real-time materialized view is a type of materialized view that provides fresh data to user
queries even when the materialized view is not in sync with its base tables because of data
changes.

Unless a SQL session is set to stale tolerated mode, a materialized view that is marked stale
cannot be used for query rewrite. Organizations that require real-time data typically use the ON
COMMIT refresh mode to ensure that the materialized view is updated with changes made to the
base tables. However, when DML changes to the base tables are huge and very frequent, this
mode may result in resource contention and reduced refresh performance. Real-time
materialized views provide a lightweight solution for obtaining fresh data from stale
materialized views by recomputing the data on the fly.

Real-time materialized views can use any available out-of-place refresh method including log-
based or PCT based refresh. They can be used either with on demand or scheduled automatic
refresh, but not with automatic refresh specified using the ON COMMIT clause.

Advantages of Real-time Materialized Views

• Provides improved availability for materialized views

• Provides fresh data for user queries that access a materialized view that may be stale

How Do Real-time Materialized Views Work?

Real-time materialized views use a technique called on-query computation to provide fresh
data with stale materialized views. When a query accesses a real-time materialized view,
Oracle Database first checks if the real-time materialized view is marked as stale. If it is not
stale, then the required data is provided using the real-time materialized view as it is. If the
real-time materialized view is marked as stale, then the on-query computation technique is
used to generate the fresh data and return the correct query result.

Real-time materialized views use a technique that is similar log-based refresh to provide fresh
data with stale materialized view. They combine the existing data with the changes that are
recorded in change logs to obtain the latest data. However, unlike log-based refresh, real-time
materialized views do not use the materialized view logs to update the data in the real-time
materialized view. Instead, when a query accesses a stale real-time materialized view, the data
that is recomputed using on-query computation is used directly to answer the query.

Chapter 6
Using Real-time Materialized Views

6-15

A real-time materialized view is created by using the ON QUERY COMPUTATION clause in the
materialized view definition.

6.7.1.1 Restrictions on Using Real-time Materialized Views
Using real-time materialized views is subject to certain restrictions.

• Real-time materialized views cannot be used when:

– one or more materialized view logs created on the base tables are either unusable or
nonexistent.

– out-of-place, log-based or PCT refresh is not feasible for the change scenarios.

– automatic refresh is specified using the ON COMMIT clause.

• If a real-time materialized view is a nested materialized view that is defined on top of one
or more base materialized views, then query rewrite occurs only if all the base materialized
views are fresh. If one or more base materialized views are stale, then query rewrite is not
performed using this real-time materialized view.

The cursors of queries that directly access real-time materialized views are not shared.

6.7.1.2 About Accessing Real-time Materialized Views
As with materialized views, multiple methods exist to access data stored in real-time
materialized views.

Data stored in real-time materialized views can be accessed in one of the following ways:

• Query rewrite

A user query that is similar to the real-time materialized view definition is rewritten to use
the real-time materialized view.

• Direct access of real-time materialized views

A user query directly references the real-time materialized view by using its name.

In both scenarios, the content of a real-time materialized view can be accessed as stale data
or can trigger an on-query computation of the correct result. Whether or not on-query
computation is triggered depends on the environment and the actual SQL statement.

The output of the EXPLAIN PLAN statement contains messages indicating if on-query
computation was used for a particular user query.

See Also:

• Using Real-time Materialized Views for Direct Query Access

• Using Real-time Materialized Views During Query Rewrite

Chapter 6
Using Real-time Materialized Views

6-16

6.7.2 Creating Real-time Materialized Views
To create a real-time materialized view, use the ON QUERY COMPUTATION clause in the CREATE
MATERIALIZED VIEW statement.

You can create real-time materialized views even if they are not applicable for on-query
computation for all change scenarios. The minimum requirement to create a real-time
materialized view is that it supports out-of-place refresh for INSERT operations. If other change
scenarios, such as mixed DML operations, are encountered, then on-query computation may
not be feasible for all types of real-time materialized views.

Real-time materialized view must use an out-of-place log-based refresh mechanism (including
PCT refresh). The ON COMMIT refresh mode cannot be used for real-time materialized views.

To create a real-time materialized view:

1. Ensure that materialized view logs exist on all the base tables of the real-time materialized
view.

2. Create materialized view logs for all the tables on which the real-time materialized view is
based.

3. Create the real-time materialized view by including the ENABLE ON QUERY COMPUTATION
clause in the CREATE MATERIALIZED VIEW statement.

Example 6-7 Creating a Real-time Materialized View

This example creates a real-time materialized view called SUM_SALES_RTMV which is based on
data aggregated from the SALES and PRODUCTS tables in the SH schema. Before you create the
real-time materialized view ensure that the required prerequisites are met.

1. Create materialized view logs on the base tables SALES and PRODUCTS.

The following command creates a materialized view log on the SALES table:

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

The following command creates a materialized view log on the PRODUCTS table.

CREATE MATERIALIZED VIEW LOG ON products
WITH ROWID
(prod_id, prod_name, prod_category, prod_subcategory)
INCLUDING NEW VALUES;

2. Create a real-time materialized view by including the ON QUERY COMPUTATION clause in the
CREATE MATERIALIZED VIEW statement. The fast refresh method is used for this real-time
materialized view and the ENABLE QUERY REWRITE clause indicates that query rewrite must
be enabled.

CREATE MATERIALIZED VIEW sum_sales_rtmv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
ENABLE ON QUERY COMPUTATION
AS

Chapter 6
Using Real-time Materialized Views

6-17

SELECT prod_name, SUM(quantity_sold) AS sum_qty, COUNT(quantity_sold) AS
cnt_qty, SUM(amount_sold) AS sum_amt,
 COUNT(amount_sold) AS cnt_amt, COUNT(*) AS cnt_star
FROM sales, products
WHERE sales.prod_id = products.prod_id
GROUP BY prod_name;

After the SUM_SALES_RTMV real-time materialized view is created, assume that the following
query is run.

SELECT prod_name, SUM(quantity_sold), SUM(amount_sold)
FROM sales, products
WHERE sales.prod_id = products.prod_id
GROUP BY prod_name;

If SUM_SALES_RTMV is not stale, then the query result is returned using the data stored in this
real-time materialized view. However, if SUM_SALES_RTMV is stale and the cost of rewriting the
query using the materialized view with on-query computation is lower than the base table
access, then the query is answered by combining the delta changes in the materialized view
logs on the SALES and PRODUCTS tables with the data in the real-time materialized view
SUM_SALES_RTMV.

6.7.3 Converting an Existing Materialized View into a Real-time Materialized
View

If the prerequisites for a real-time materialized view are met, then an existing materialized view
can be converted into a real-time materialized view by altering its definition and enabling on-
query computation.

To convert a materialized view into a real-time materialized view:

• Modify the materialized view definition and enable on-query computation by using the ON
QUERY COMPUTATION clause in the ALTER MATERIALIZED VIEW statement.

You can convert a real-time materialized view into a regular materialized view by disabling on-
query computation using the DISABLE ON QUERY COMPUTATION clause in the ALTER
MATERIALIZED VIEW statement.

Example 6-8 Converting a Materialized View into a Real-time Materialized View

The materialized view SALES_RTMV is based on the SALES, TIMES, and PRODUCTS tables and
uses fast refresh. Materialized view logs exist on all three base tables. You want to modify this
materialized view and convert it into a real-time materialized view.

1. Modify the materialized view definition and include the ON QUERY COMPUTATION clause to
change it into a real-time materialized view.

ALTER MATERIALIZED VIEW sales_rtmv ENABLE ON QUERY COMPUTATION;

2. Query the DBA_MVIEWS view to determine if on-query computation is enabled for
SALES_RTMV.

SELECT mview_name, on_query_computation
FROM dba_mviews
WHERE mview_name = 'SALES_RTMV';

Chapter 6
Using Real-time Materialized Views

6-18

6.7.4 Enabling Query Rewrite to Use Real-time Materialized Views
For the query rewrite mechanism to rewrite a user query to use real-time materialized views,
query rewrite must be enabled for the real-time materialized view.

You can enable query rewrite for a real-time materialized view either at creation time or
subsequently, by modifying the definition of the real-time materialized view. The ENABLE QUERY
REWRITE clause is used to enable query rewrite.

To enable query rewrite for an existing real-time materialized view:

• Run the ALTER MATERIALIZED VIEW command and include the ENABLE QUERY REWRITE
clause.

Example 6-9 Enabling Query Rewrite for Real-time Materialized Views

The real-time materialized view my_rtmv uses the fast refresh mechanism. You want to modify
the definition of this real-time materialized view and specify that the query rewrite mechanism
must consider this real-time materialized view while rewriting queries.

The following command enables query rewrite for my_rtmv:

ALTER MATERIALIZED VIEW my_rtmv ENABLE QUERY REWRITE;

6.7.5 Using Real-time Materialized Views During Query Rewrite
Query rewrite can use a real-time materialized view to provide results to user queries, even if
the real-time materialized view is stale, if query rewrite is enabled for the real-time materialized
view. A nested real-time materialized view is eligible for query rewrite only if all its base real-
time materialized views are fresh.

When a user query is run, query rewrite first checks if a fresh materialized view is available to
provide the required data. If a suitable materialized view does not exist, then query rewrite
looks for a real-time materialized view that can be used to rewrite the user query. A fresh
materialized view is preferred over a real-time materialized view because some overhead is
incurred in computing fresh data for real-time materialized view. Next, the cost based optimizer
determines the cost of the SQL query with on-query computation and then decides if the real-
time materialized view will be used to answer this user query.

If the QUERY_REWRITE_INTEGRITY mode of the current SQL session is set to STALE_TOLERATED,
then on-query computation will not be used during query rewrite. The STALE_TOLERATED rewrite
mode indicates that fresh results are not required to satisfy a query, so on-query computation is
not necessary.

For query rewrite to use a real-time materialized view:

1. Ensure that QUERY_REWRITE_INTEGRITY is set to either ENFORCED or TRUSTED mode.
QUERY_REWRITE_INTEGRITY mode should not be set to STALE_TOLERATED mode.

2. Run a user query that matches the SQL query that was used to define the real-time
materialized view.

Any query that can be rewritten to take advantage of a real-time materialized view will use
the real-time materialized view with on-query computation.

Use EXPLAIN PLAN to verify that the query was rewritten using the real-time materialized
view.

Chapter 6
Using Real-time Materialized Views

6-19

Example 6-10 Using Real-time Materialized Views During Query Rewrite

This example creates a real-time materialized view with query rewrite enabled and then
demonstrates that it was used by query rewrite to provide data for a user query.

1. Create a materialized view log on the SALES table, which is the base table for the real-time
materialized view being created.

2. Create a real-time materialized view mav_sum_sales with query rewrite enabled.

CREATE MATERIALIZED VIEW mav_sum_sales
REFRESH FAST ON DEMAND
ENABLE ON QUERY COMPUTATION
ENABLE QUERY REWRITE
AS
SELECT prod_id, sum(quantity_sold) as sum_qty, count(quantity_sold) as
cnt_qty,
 sum(amount_sold) sum_amt, count(amount_sold) cnt_amt, count(*) as
cnt_star
FROM sales
GROUP BY prod_id;

3. Run the following query:

SELECT prod_id, sum(quantity_sold), sum(amount_sold)
FROM sales
WHERE prod_id < 1000
GROUP BY prod_id;

Observe that the query is similar to the one used to define the real-time materialized view
mav_sum_sales. Because no other materialized view with a definition that is similar to the
query exists, query rewrite can use the mav_sum_sales real-time materialized view to
determine the query result. You can verify that query rewrite has taken place by checking
the SQL cursor cache (for example, with DBMS_XPLAN), using SQL Monitor, or using
EXPLAIN PLAN.

The internally rewritten query that uses mav_sum_sales is analogous to the following
statement:

SELECT prod_id, sum_qty, sum_amt
FROM mav_sum_sales
WHERE prod_id < 1000;

4. Verify that the real-time materialized view was used to provide the query result. Use the
EXPLAIN PLAN statement to view the execution plan for the query.

The following execution plan shows direct access to the real-time materialized view. If the
materialized view is stale, then the execution plan will become more complex and include
access to other objects (for example, the materialized view logs), depending on the
outstanding DML operations.

EXPLAIN PLAN for SELECT prod_id, sum(quantity_sold), sum(amount_sold) FROM
sales WHERE prod_id < 1000 GROUP BY prod_id;
SELECT plan_table_output FROM
table(dbms_xplan.display('plan_table',null,'serial'));

PLAN_TABLE_OUTPUT

Chapter 6
Using Real-time Materialized Views

6-20

Plan hash value: 13616844

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU) | Time |

| 0 | SELECT STATEMENT | | 92 | 3588 | 3
(0) | 00:00:01 |
| *1 | MAT_VIEW ACCESS FULL | MAV_SUM_SALES | 92 | 3588 | 3
(0) | 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter("PROD_ID"<1000)

Note

 - dynamic statistics used: dynamic sampling (level=2)

17 rows selected.

6.7.6 Using Real-time Materialized Views for Direct Query Access
You can access a real-time materialized view directly by referencing the name of the real-time
materialized view in a query.

If the real-time materialized view specified in a user query is fresh, then the required data is
directly fetched from the real-time materialized view. If the real-time materialized view is stale,
then you must use the FRESH_MV hint to perform on-query computation and obtain fresh data.
Oracle Database does not automatically perform on-query computation for a real-time
materialized view that is accessed directly in a user query.

To obtain fresh data from a stale real-time materialized view when directly accessing the real-
time materialized view:

• Use the FRESH_MV hint in the user query to indicate that on-query computation must be
performed.

Example 6-11 Creating a Real-Time Materialized View and Using it in Queries

This example creates a real-time materialized view MY_RTMV that is based on the SALES_NEW
table. The SALES_NEW table is created as a copy of the SH.SALES table. A row is inserted into
the base table after the real-time materialized view is created. Next the fresh_mv hint is used
to access fresh data from the real-time materialized view by using the materialized view name
in a user query.

1. Create a materialized view log on the base table sales_new.

Materialized view logs on the base table are mandatory for creating real-time materialized
views.

CREATE MATERIALIZED VIEW LOG on sales_new
WITH sequence, ROWID (prod_id, cust_id, time_id, channel_id, promo_id,

Chapter 6
Using Real-time Materialized Views

6-21

quantity_sold, amount_sold)
INCLUDING NEW VALUES;

2. Create a real-time materialized view called my_rtmv with sales_new as the base table.

The ON QUERY COMPUTATION clause indicates that a real-time materialized view is created.
The refresh mode specified is log-based fast refresh. Query rewrite is enabled for the real-
time materialized view.

CREATE MATERIALIZED VIEW my_rtmv
REFRESH FAST
ENABLE ON QUERY COMPUTATION
ENABLE QUERY REWRITE
AS
SELECT prod_id, cust_id, channel_id, sum(quantity_sold) sum_q,
count(quantity_sold) cnt_q, avg(quantity_sold) avg_q,
 sum(amount_sold) sum_a, count(amount_sold) cnt_a, avg(amount_sold)
avg_a
FROM sales_new
GROUP BY prod_id, cust_id, channel_id;

3. Insert a row into sales_new, the base table of the real-time materialized view and commit
this change.

INSERT INTO sales_new (prod_id, cust_id, time_id, channel_id, promo_id,
quantity_sold, amount_sold)
 VALUES (116,100450, sysdate,9,9999,10,350);

COMMIT;

4. Query the real-time materialized view directly to display data for the row that was added to
the real-time materialized view’s base table in the previous step.

SELECT * from my_rtmv
WHERE prod_id = 116 AND cust_id=100450 AND channel_id = 9;

PROD_ID CUST_ID CHANNEL_ID SUM_Q CNT_Q AVG_Q SUM_A
CNT_A AVG_A
------- ------- ---------- ----- ----- ----- -----
----- ------
116 100450 9 1 1 1 11.99
1 11.99

Note that the query result does not display the updated value for this data. This is because
the real-time materialized view has not yet been refreshed with the changes made to its
base table.

5. Include the FRESH_MV hint while querying the real-time materialized view to display the row
updated in the base table.

SELECT /*+ fresh_mv */ * FROM my_rtmv
WHERE prod_id = 116 AND cust_id=100450 AND channel_id = 9;

PROD_ID CUST_ID CHANNEL_ID SUM_Q CNT_Q AVG_Q SUM_A CNT_A
AVG_A

Chapter 6
Using Real-time Materialized Views

6-22

------- ------- ---------- ----- ----- ----- ----- -----

116 100450 9 11 2 5.5 361.99 2
180.995

Notice that this time the updated row is displayed. This is because the FRESH_MV hint
triggers on-query computation for the real-time materialized view and recomputed the fresh
data.

6.7.7 Listing Real-time Materialized Views
The ON_QUERY_COMPUTATION column in the data dictionary views ALL_MVIEWS, DBA_MVIEWS, and
USER_MVIEWS indicates if a materialized view is a real-time materialized view.

A value of Y in the ON_QUERY_COMPUTATION column indicates a real-time materialized view.

To list all real-time materialized views in your user schema:

• Query the USER_MVIEWS view and display details of the materialized view with the
ON_QUERY_COMPUTATION column set to Y.

Example 6-12 Listing Real-time Materialized Views in the Current User’s Schema

SELECT owner, mview_name, rewrite_enabled, staleness
FROM user_mviews
WHERE on_query_computation = 'Y';

OWNER MVIEW_NAME REWRITE_ENABLED STALENESS
------ ------------ ------------------- ------------
SH SALES_RTMV N FRESH
SH MAV_SUM_SALES Y FRESH
SH MY_SUM_SALES_RTMV Y FRESH
SH NEW_SALES_RTMV Y STALE

6.7.8 Improving Real-time Materialized Views Performance
To obtain better performance for user queries that use a real-time materialized view, you can
follow certain guidelines.

Use the following guidelines with real-time materialized views:

• Frequently refresh real-time materialized views to enhance the performance of queries that
may use these real-time materialized views.

Since real-time materialized views work by combining the delta changes to the base tables
with the existing materialized view data, query response time is enhanced when the delta
changes to be computed are small. With more outstanding DML operations, on-query
computation can become more complex (and expensive), up to the point where direct base
table access can become more efficient (in case of query rewrite).

• Collect statistics for the base tables, the real-time materialized view, and the materialized
view logs to enable the optimizer to accurately determine the cost of a query.

For query rewrite, the cost-based rewrite mechanism uses the optimizer to determine
whether the rewritten query should be used. The optimizer uses statistics to determine the
cost.

Chapter 6
Using Real-time Materialized Views

6-23

7
Refreshing Materialized Views

This chapter discusses how to refresh materialized views, which is a key element in
maintaining good performance and consistent data when working with materialized views in a
data warehousing environment.

This chapter includes the following sections:

• About Refreshing Materialized Views

• Tips for Refreshing Materialized Views

• Using Materialized Views with Partitioned Tables

• Using Partitioning to Improve Data Warehouse Refresh

• Optimizing DML Operations During Refresh

7.1 About Refreshing Materialized Views
The database maintains data in materialized views by refreshing them after changes to the
base tables.

Performing a refresh operation requires temporary space to rebuild the indexes and can
require additional space for performing the refresh operation itself. Some sites might prefer not
to refresh all of their materialized views at the same time: as soon as some underlying detail
data has been updated, all materialized views using this data become stale. Therefore, if you
defer refreshing your materialized views, you can either rely on your chosen rewrite integrity
level to determine whether or not a stale materialized view can be used for query rewrite, or
you can temporarily disable query rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED =
FALSE statement. After refreshing the materialized views, you can re-enable query rewrite as
the default for all sessions in the current database instance by specifying ALTER SYSTEM SET
QUERY_REWRITE_ENABLED as TRUE. Refreshing a materialized view automatically updates all of
its indexes. In the case of full refresh, this requires temporary sort space to rebuild all indexes
during refresh. This is because the full refresh truncates or deletes the table before inserting
the new full data volume. If insufficient temporary space is available to rebuild the indexes,
then you must explicitly drop each index or mark it UNUSABLE prior to performing the refresh
operation.

About Types of Refresh for Materialized Views

There are three incremental refresh methods:

• log-based refresh

• partition change tracking (PCT) refresh

• logical partition change tracking (LPCT) refresh

When there have been Partition Maintenance Operations (PMOPS) on the base tables, PCT is
the only incremental refresh method that can be used.

The incremental refresh is commonly called FAST refresh because it usually performs faster
than the complete refresh.

7-1

A complete refresh occurs when the materialized view is initially created when it is defined as
BUILD IMMEDIATE, unless the materialized view references a prebuilt table or is defined as
BUILD DEFERRED. Users can perform a complete refresh at any time after the materialized view
is created. The complete refresh involves executing the query that defines the materialized
view. This process can be slow, especially if the database must read and process huge
amounts of data.

An incremental refresh eliminates the need to rebuild materialized views from scratch. Thus,
processing only the changes can result in a very fast refresh time. Materialized views can be
refreshed either on demand or at regular time intervals. Alternatively, materialized views in the
same database as their base tables can be refreshed whenever a transaction commits its
changes to the base tables.

For materialized views that use the log-based fast refresh method, a materialized view log
and/or a direct loader log keep a record of changes to the base tables. A materialized view log
is a schema object that records changes to a base table so that a materialized view defined on
the base table can be refreshed incrementally. Each materialized view log is associated with a
single base table. The materialized view log resides in the same database and schema as its
base table.

LPCT is similar to PCT, although LPCT requires a logical partitioning scheme rather than a
physical partitioning on the base table. As in the case of a PCT enabled materialized view, an
LPCT enabled materialized view does not require a materialized view log for refresh
operations. A base table on which a materialized view is defined is logically partitioned using
key ranges. Because there is no physical partitioning on the table using the LPCT partitioning
key, the table rows belonging to an LPCT key range are not segregated into separate physical
partitions. The base table can be physically non-partitioned, or physically partitioned on a key
that is different from the logical partition key.

The PCT refresh method can be used if the modified base tables are partitioned and the
modified base table partitions can be used to identify the affected partitions or portions of data
in the materialized view. This method removes all data in the affected materialized view
partitions or affected portions of data and recompute them from scratch.

Note that if a table is already physically partitioned, LPCT cannot be defined on the same
physical partitioning key. Furthermore, any PMOPS on a table requires full refresh before
LPCT refresh can be used again.

About Refresh Modes for Materialized Views

When creating a materialized view, you have the option of specifying whether the refresh
occurs ON DEMAND or ON COMMIT.

If you anticipate performing insert, update or delete operations on tables referenced by a
materialized view concurrently with the refresh of that materialized view, and that materialized
view includes joins and aggregation, Oracle recommends you use ON COMMIT fast refresh rather
than ON DEMAND fast refresh.

In the case of ON COMMIT, the materialized view is changed every time a transaction commits,
thus ensuring that the materialized view always contains the latest data. Alternatively, you can
control the time when refresh of the materialized views occurs by specifying ON DEMAND. In the
case of ON DEMAND materialized views, the refresh can be performed with refresh methods
provided in either the DBMS_SYNC_REFRESH or the DBMS_MVIEW packages:

• The DBMS_SYNC_REFRESH package contains the APIs for synchronous refresh. For details,
see Synchronous Refresh.

Chapter 7
About Refreshing Materialized Views

7-2

• The DBMS_MVIEW package contains the APIs whose usage is described in this chapter.
There are three basic types of refresh operations: complete refresh, fast refresh, and
partition change tracking (PCT) refresh.

The DBMS_MVIEW package contains three APIs for performing refresh operations:

• DBMS_MVIEW.REFRESH
Refresh one or more materialized views.

• DBMS_MVIEW.REFRESH_ALL_MVIEWS
Refresh all materialized views.

• DBMS_MVIEW.REFRESH_DEPENDENT
Refresh all materialized views that depend on a specified primary table or materialized
view or list of primary tables or materialized views.

How to Refresh Materialized Views?

For each of these refresh options, you have two techniques for how the refresh is performed,
namely in-place refresh and out-of-place refresh. The in-place refresh executes the refresh
statements directly on the materialized view. The out-of-place refresh creates one or more
outside tables and executes the refresh statements on the outside tables and then switches
the materialized view or affected materialized view partitions with the outside tables. Both in-
place refresh and out-of-place refresh achieve good performance in certain refresh scenarios.
However, the out-of-place refresh enables high materialized view availability during refresh,
especially when refresh statements take a long time to finish.

The out-of-place mechanism, called synchronous refresh, targets the common usage scenario
in the data warehouse where both fact tables and their materialized views are partitioned in the
same way or their partitions are related by a functional dependency.

The refresh approach enables you to keep a set of tables and the materialized views defined
on them to be always in sync. In this refresh method, the user does not directly modify the
contents of the base tables but must use the APIs provided by the synchronous refresh
package that will apply these changes to the base tables and materialized views at the same
time to ensure their consistency. The synchronous refresh method is well-suited for data
warehouses, where the loading of incremental data is tightly controlled and occurs at periodic
intervals.

See Also:

• About the Out-of-Place Refresh Option

7.1.1 About Complete Refresh for Materialized Views
A complete refresh occurs when the materialized view is initially defined as BUILD IMMEDIATE,
unless the materialized view references a prebuilt table. For materialized views using BUILD
DEFERRED, a complete refresh must be requested before it can be used for the first time. A
complete refresh may be requested at any time during the life of any materialized view. The
refresh involves reading the detail tables to compute the results for the materialized view. This
can be a very time-consuming process, especially if there are huge amounts of data to be read
and processed. Therefore, you should always consider the time required to process a
complete refresh before requesting it.

Chapter 7
About Refreshing Materialized Views

7-3

There are, however, cases when the only refresh method available for an already built
materialized view is complete refresh because the materialized view does not satisfy the
conditions specified in the following section for a fast refresh.

7.1.2 About Fast Refresh for Materialized Views
Most data warehouses have periodic incremental updates to their detail data. As described in
"About Materialized View Schema Design", you can use the SQL*Loader or any bulk load utility
to perform incremental loads of detail data. Fast refresh of your materialized views is usually
efficient, because instead of having to recompute the entire materialized view, the changes are
applied to the existing data. Thus, processing only the changes can result in a very fast refresh
time.

7.1.3 About Partition Change Tracking (PCT) Refresh for Materialized Views
Partition Change Tracking is the capability to leverage the knowledge about changes within
individual partitions on a table contained in a materialized view for a potentially more efficient
materialized refresh of the materialized view.

When there have been some partition maintenance operations on the detail tables, Partition
Change Tracking is the only method of fast refresh that can be used. PCT-based refresh on a
materialized view is enabled only if all the conditions described in "About Partition Change
Tracking" are satisfied.

In the absence of partition maintenance operations on detail tables, when you request a FAST
method (method => 'F') of refresh through procedures in DBMS_MVIEW package, Oracle uses a
heuristic rule to try log-based rule fast refresh before choosing PCT refresh. Similarly, when
you request a FORCE method (method => '?'), Oracle chooses the refresh method based on
the following order: log-based fast refresh, PCT refresh, LPCT refresh, and complete refresh.
Alternatively, you can request the PCT method (method => 'P'), and Oracle uses the PCT
method provided all PCT requirements are satisfied.

Oracle can use TRUNCATE PARTITION on a materialized view if it satisfies the conditions in
"Benefits of Partitioning a Materialized View" and hence, make the PCT refresh process more
efficient.

See Also:

• "About Partition Change Tracking" for more information regarding partition
change tracking

7.1.4 About Logical Partition Change Tracking (LPCT) Refresh for
Materialized Views

Logical Partition Change Tracking is the capability to leverage the knowledge about changes
within individual logical partitions on a table contained in a materialized view for a potentially
more efficient materialized refresh of the materialized view. Unlike Partition Change Tracking
which relies on the physical partitioning of tables, you define the logical partitions of your tables
independently of any existing or non-existing partitioning schema of a table.

With LPCT, materialized view staleness can be tracked at the granularity of the logical
partitions, and consequently the Query Rewrite engine can use the data in fresh logical

Chapter 7
About Refreshing Materialized Views

7-4

partitions of the materialized view, even if some parts of the materialized may be stale. As a
result, the materialized views becomes more usable. In many real-world applications, this
results in significant improvement to query performance due to the fine-grained query rewrite.
LPCT can perform refresh operations targeted at stale logical partitions only, which avoids
complete re-loading the data.

Without LPCT, a materialized view on a non-partitioned table is either completely stale or
completely fresh. When a materialized view is determined to be stale, it cannot be used for
query rewrites even though the data needed by the query may be fresh.

The LPCT tracking mechanism records and consolidates the change statistics based on given
LPCT key. Adjacent change data is grouped into a logical partition. During refresh, instead of
using materialized view log, LPCT looks at the changes in the logical partitions. These are
limited to a single column and RANGE or INTERVAL logical partitions. LPCT does not enforce
partitioning of the base table. It tracks changes within defined RANGE or INTERVAL partitions
in new dictionary tables. The syntax for refreshing a materialized view using LPCT refresh is as
follows.

execute DBMS_MVIEW.REFRESH(<mview_name>,'L');

Unlike PCT, which must be specified at table creation, LPCT can be created, modified, or
dropped on the base table at any time, independent of table creation. The base table can be
partitioned or non-partitioned, which makes it more adaptable than PCT. Because the LPCT
framework requires metadata only and no changes to the base table, it costs less physical
overhead than PCT. LPCT can be combined with PCT to identify more fine-grained stale
ranges and allow for more query rewrites and faster materialized view refresh. If a base table is
both physically partitioned and also has an LPCT defined on a different partitioning key, then
any dependent materialized views can be refreshed using a combined LPCT and PCT
methods by specifying the 'L' option in the call to DBMS_MVIEW.REFRESH().

In tracking, LPCT is more lightweight than a materialized view log because it does not log each
modified row on base table. Since it does not need to scan the entire materialized view log and
join with base table for fresh data, an LPCT refresh outperforms log-based fast refresh,
especially if modified rows are relatively large.

Logical Partition Change Tracking (LPCT) outperforms log-based refresh when modified rows
are relatively large. An LPCT refresh can be combined with log-based refresh to improve the
efficiency even more by targeting at more precise rows.

See Also:

• "About Partition Change Tracking" for more information regarding partition
change tracking

• USER_MVIEW_DETAIL_LOGICAL_PARTITION in the Oracle Database Reference for
views to identify staleness corresponding to the logical partitions of base tables.
Also see the corresponding descriptions of
ALL_MVIEW_DETAIL_LOGICAL_PARTITION and
DBA_MVIEW_DETAIL_LOGICAL_PARTITION.

• See DBMS_MVIEW in the PL/SQL Packaging and Types Reference for details on
how to use the DBMS_MVIEW package with logical partitions.

Chapter 7
About Refreshing Materialized Views

7-5

7.1.5 About the Out-of-Place Refresh Option
Beginning with Oracle Database 12c Release 1, a new refresh option is available to improve
materialized view refresh performance and availability. This refresh option is called out-of-place
refresh because it uses outside tables during refresh as opposed to the existing "in-place"
refresh that directly applies changes to the materialized view container table. The out-of-place
refresh option works with all existing refresh methods, such as FAST ('F'), COMPLETE ('C'), PCT
('P'), and FORCE ('?'). Out-of-place refresh is particularly effective when handling situations
with large amounts of data changes, where conventional DML statements do not scale well. It
also enables you to achieve a very high degree of availability because the materialized views
that are being refreshed can be used for direct access and query rewrite during the execution
of refresh statements. In addition, it helps to avoid potential problems such as materialized
view container tables becoming fragmented over time or intermediate refresh results being
seen.

In out-of-place refresh, the entire or affected portions of a materialized view are computed into
one or more outside tables. For partitioned materialized views, if partition level change tracking
is possible, and there are local indexes defined on the materialized view, the out-of-place
method also builds the same local indexes on the outside tables. This refresh process is
completed by either switching between the materialized view and the outside table or partition
exchange between the affected partitions and the outside tables. Note that query rewrite is not
supported during the switching or partition exchange operation. During refresh, the outside
table is populated by direct load, which is efficient.

This section contains the following topics:

• Types of Out-of-Place Refresh

• Restrictions and Considerations with Out-of-Place Refresh

7.1.5.1 Types of Out-of-Place Refresh
There are three types of out-of-place refresh:

• out-of-place fast refresh

This offers better availability than in-place fast refresh. It also offers better performance
when changes affect a large part of the materialized view.

• out-of-place PCT refresh

This offers better availability than in-place PCT refresh. There are two different approaches
for partitioned and non-partitioned materialized views. If truncation and direct load are not
feasible, you should use out-of-place refresh when the changes are relatively large. If
truncation and direct load are feasible, in-place refresh is preferable in terms of
performance. In terms of availability, out-of-place refresh is always preferable.

• out-of-place complete refresh

This offers better availability than in-place complete refresh.

Using the refresh interface in the DBMS_MVIEW package, with method = ? and out_of_place =
true, out-of-place fast refresh are attempted first, then out-of-place PCT refresh, and finally
out-of-place complete refresh. An example is the following:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', method => '?',
 atomic_refresh => FALSE, out_of_place => TRUE);

Chapter 7
About Refreshing Materialized Views

7-6

7.1.5.2 Restrictions and Considerations with Out-of-Place Refresh
Out-of-place refresh has all the restrictions that apply when using the corresponding in-place
refresh. In addition, it has the following restrictions:

• Only materialized join views and materialized aggregate views are allowed

• No ON COMMIT refresh is permitted

• No remote materialized views, cube materialized views, object materialized views are
permitted

• No LOB columns are permitted

• Not permitted if materialized view logs, triggers, or constraints (except NOT NULL) are
defined on the materialized view

• Not permitted if the materialized view contains the CLUSTERING clause

• Not permitted if the materialized view has security policy defined on it.

• Not applied to complete refresh within a CREATE or ALTER MATERIALIZED VIEW session or an
ALTER TABLE session

• Atomic mode is not permitted. If you specify atomic_refresh as TRUE and out_of_place
as TRUE, an error is displayed

For out-of-place PCT refresh, there is the following restriction:

• No UNION ALL or grouping sets are permitted

For out-of-place fast refresh, there are the following restrictions:

• No UNION ALL, grouping sets or outer joins are permitted

• Not allowed for materialized join views when more than one base table is modified with
mixed DML statements

Out-of-place refresh requires additional storage for the outside table and the indexes for the
duration of the refresh. Thus, you must have enough available tablespace or auto extend
turned on.

The partition exchange in out-of-place PCT refresh impacts the global index on the
materialized view. Therefore, if there are global indexes defined on the materialized view
container table, Oracle disables the global indexes before doing the partition exchange and
rebuild the global indexes after the partition exchange. This rebuilding is additional overhead.

7.1.6 About ON COMMIT Refresh for Materialized Views
A materialized view can be refreshed automatically using the ON COMMIT method. Therefore,
whenever a transaction commits which has updated the tables on which a materialized view is
defined, those changes are automatically reflected in the materialized view. The advantage of
using this approach is you never have to remember to refresh the materialized view. The only
disadvantage is the time required to complete the commit will be slightly longer because of the
extra processing involved. However, in a data warehouse, this should not be an issue because
there is unlikely to be concurrent processes trying to update the same table.

7.1.7 About ON STATEMENT Refresh for Materialized Views
A materialized view that uses the ON STATEMENT refresh mode is automatically refreshed every
time a DML operation is performed on any of the materialized view’s base tables.

Chapter 7
About Refreshing Materialized Views

7-7

With the ON STATEMENT refresh mode, any changes to the base tables are immediately
reflected in the materialized view. There is no need to commit the transaction or maintain
materialized view logs on the base tables. If the DML statements are subsequently rolled back,
then the corresponding changes made to the materialized view are also rolled back.

To use the ON STATEMENT refresh mode, a materialized view must be fast refreshable. An index
is automatically created on ROWID column of the fact table to improve fast refresh performance.

The advantage of the ON STATEMENT refresh mode is that the materialized view is always
synchronized with the data in the base tables, without the overhead of maintaining materialized
view logs. However, this mode may increase the time taken to perform a DML operation
because the materialized view is being refreshed as part of the DML operation.

See Also:

Oracle Database SQL Language Reference for the ON STATEMENT clause restrictions

Example 7-1 Creating a Materialized View with ON STATEMENT Refresh

This example creates a materialized view sales_mv_onstat that uses the ON STATEMENT
refresh mode and is based on the sh.sales, sh.customers, and sh.products tables. The
materialized view is automatically refreshed when a DML operation is performed on any of the
base tables. No commit is required after the DML operation to refresh the materialized view.

CREATE MATERIALIZED VIEW sales_mv_onstat
REFRESH FAST ON STATEMENT USING TRUSTED CONSTRAINT
AS
SELECT s.rowid sales_rid, c.cust_first_name first_name, c.cust_last_name
last_name,
 p.prod_name prod_name,
 s.quantity_sold quantity_sold, s.amount_sold amount_sold
FROM sh.sales s, sh.customers c, sh.products p
WHERE s.cust_id = c.cust_id and s.prod_id = p.prod_id;

7.1.8 About Manual Refresh Using the DBMS_MVIEW Package
When a materialized view is refreshed ON DEMAND, one of four refresh methods can be specified
as shown in the following table. You can define a default option during the creation of the
materialized view. Table 7-1 details the refresh options.

Table 7-1 ON DEMAND Refresh Methods

Refresh
Option

Parameter Description

COMPLETE C Refreshes by recalculating the defining query of the materialized
view.

FAST F Refreshes by incrementally applying changes to the materialized
view.

For local materialized views, it chooses the refresh method which is
estimated by optimizer to be most efficient. The refresh methods
considered are log-based FAST and FAST_PCT.

Chapter 7
About Refreshing Materialized Views

7-8

Table 7-1 (Cont.) ON DEMAND Refresh Methods

Refresh
Option

Parameter Description

FAST_PCT P Refreshes by recomputing the rows in the materialized view affected
by changed physical partitions in the detail tables.

LPCT L Refreshes by recomputing the rows in the materialized view affected
by changed logical partitions in the detail tables.

FORCE ? Attempts a fast refresh. If that is not possible, it does a complete
refresh.

For local materialized views, it chooses the refresh method which is
estimated by optimizer to be most efficient. The refresh methods
considered are log based FAST, FAST_PCT, FAST_LPCT, and
COMPLETE.

Three refresh procedures are available in the DBMS_MVIEW package for performing ON DEMAND
refresh. Each has its own unique set of parameters.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the DBMS_MVIEW package

7.1.9 Refreshing Specific Materialized Views with REFRESH
Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized views. Some
parameters are used only for replication, so they are not mentioned here. The required
parameters to use this procedure are:

• The comma-delimited list of materialized views to refresh

• The refresh method: F-Fast, P-Fast_PCT, L-FAST_LPCT, ?-Force, C-Complete

• The rollback segment to use

• Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is set to
the number of refreshes that failed, and a generic error message indicates that failures
occurred. The alert log for the instance gives details of refresh errors. If set to FALSE, which
is the default, then refresh stops after it encounters the first error, and any remaining
materialized views in the list are not refreshed.

• The following four parameters are used by the replication process. For warehouse refresh,
set them to FALSE, 0,0,0.

• Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then each of
the materialized views is refreshed non-atomically in separate transactions. If set to FALSE,
Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized
views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite
if the rewrite integrity mode is set to stale_tolerated. Atomic refresh cannot be
guaranteed when refresh is performed on nested views.

Chapter 7
About Refreshing Materialized Views

7-9

• Whether to use out-of-place refresh

This parameter works with all existing refresh methods (F, P, C, ?). So, for example, if you
specify F and out_of_place = true, then an out-of-place fast refresh is attempted.
Similarly, if you specify P and out_of_place = true, then out-of-place PCT refresh is
attempted.

For example, to perform a fast refresh on the materialized view cal_month_sales_mv, the
DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', 'F', '', TRUE, FALSE, 0,0,0,
 FALSE, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all have to use
the same refresh method. To give them different refresh methods, specify multiple method
codes in the same order as the list of materialized views (without commas). For example, the
following specifies that cal_month_sales_mv be completely refreshed and
fweek_pscat_sales_mv receive a fast refresh:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
 TRUE, FALSE, 0,0,0, FALSE, FALSE);

If the refresh method is not specified, the default refresh method as specified in the
materialized view definition is used.

7.1.10 Refreshing All Materialized Views with REFRESH_ALL_MVIEWS
An alternative to specifying the materialized views to refresh is to use the procedure
DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all materialized views. If any of
the materialized views fails to refresh, then the number of failures is reported.

The parameters for this procedure are:

• The number of failures (this is an OUT variable)

• The refresh method: F-Fast, P-Fast_PCT, L-FAST_ LPCT, ?-Force, C-Complete

• Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is set to
the number of refreshes that failed, and a generic error message indicates that failures
occurred. The alert log for the instance gives details of refresh errors. If set to FALSE, the
default, then refresh stops after it encounters the first error, and any remaining materialized
views in the list is not refreshed.

• Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then each of
the materialized views is refreshed non-atomically in separate transactions. If set to FALSE,
Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized
views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite
if the rewrite integrity mode is set to stale_tolerated. Atomic refresh cannot be
guaranteed when refresh is performed on nested views.

• Whether to use out-of-place refresh

This parameter works with all existing refresh method (F, P, C, ?). So, for example, if you
specify F and out_of_place = true, then an out-of-place fast refresh is attempted.
Similarly, if you specify P and out_of_place = true, then out-of-place PCT refresh is
attempted.

Chapter 7
About Refreshing Materialized Views

7-10

An example of refreshing all materialized views is the following:

DBMS_MVIEW.REFRESH_ALL_MVIEWS(failures,'C','', TRUE, FALSE, FALSE);

7.1.11 Refreshing Dependent Materialized Views with
REFRESH_DEPENDENT

The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those materialized views
that depend on a specific table or list of tables. For example, suppose the changes have been
received for the orders table but not for customer payments. The refresh dependent procedure
can be called to refresh only those materialized views that reference the orders table.

The parameters for this procedure are:

• The number of failures (this is an OUT variable)

• The dependent table

• The refresh method: F-Fast, P-Fast_PCT, L-FAST_LPCT, ?-Force, C-Complete

• The rollback segment to use

• Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is set to
the number of refreshes that failed, and a generic error message indicates that failures
occurred. The alert log for the instance gives details of refresh errors. If set to FALSE, the
default, then refresh stops after it encounters the first error, and any remaining materialized
views in the list are not refreshed.

• Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then each of
the materialized views is refreshed non-atomically in separate transactions. If set to FALSE,
Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized
views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite
if the rewrite integrity mode is set to stale_tolerated. Atomic refresh cannot be
guaranteed when refresh is performed on nested views.

• Whether it is nested or not

If set to TRUE, refresh all the dependent materialized views of the specified set of tables
based on a dependency order to ensure the materialized views are truly fresh with respect
to the underlying base tables.

• Whether to use out-of-place refresh

This parameter works with all existing refresh methods (F, P, C, ?). So, for example, if you
specify F and out_of_place = true, then an out-of-place fast refresh is attempted.
Similarly, if you specify P and out_of_place = true, then out-of-place PCT refresh is
attempted.

To perform a full refresh on all materialized views that reference the customers table, specify:

DBMS_MVIEW.REFRESH_DEPENDENT(failures, 'CUSTOMERS', 'C', '', FALSE, FALSE, FALSE);

7.1.12 About Using Job Queues for Refresh
Job queues can be used to refresh multiple materialized views in parallel. If queues are not
available, fast refresh sequentially refreshes each view in the foreground process. To make
queues available, you must set the JOB_QUEUE_PROCESSES parameter. This parameter defines

Chapter 7
About Refreshing Materialized Views

7-11

the number of background job queue processes and determines how many materialized views
can be refreshed concurrently. Oracle tries to balance the number of concurrent refreshes with
the degree of parallelism of each refresh. The order in which the materialized views are
refreshed is determined by dependencies imposed by nested materialized views and potential
for efficient refresh by using query rewrite against other materialized views (See "Scheduling
Refresh of Materialized Views" for details). This parameter is only effective when
atomic_refresh is set to FALSE.

If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the instance is shut
down, any refresh jobs that were executing in job queue processes are requeued and continue
running. To remove these jobs, use the DBMS_JOB.REMOVE procedure.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_JOB package

7.1.13 When Fast Refresh is Possible
Not all materialized views may be fast refreshable. Therefore, use the package
DBMS_MVIEW.EXPLAIN_MVIEW to determine what refresh methods are available for a materialized
view.

If you are not sure how to make a materialized view fast refreshable, you can use the
DBMS_ADVISOR.TUNE_MVIEW procedure, which provides a script containing the statements
required to create a fast refreshable materialized view.

See Also:

• Oracle Database SQL Tuning Guide

• Basic Materialized Views for further information about the DBMS_MVIEW package

7.1.14 Refreshing Materialized Views Based on Approximate Queries
Oracle Database performs fast refresh for materialized views that are defined using
approximate queries.

Approximate queries contain SQL functions that return approximate results. Refreshing
materialized views containing approximate queries depends on the DML operation that is
performed on the base tables of the materialized view.

• For insert operations, fast refresh is used for materialized views containing detailed
percentiles.

• For delete operations or any DML operation that leads to deletion (such as UPDATE or
MERGE), fast refresh is used for materialized views containing approximate aggregations
only if the materialized view does not contain a WHERE clause.

Materialized view logs must exist on all base tables of a materialized view that needs to be fast
refreshed.

Chapter 7
About Refreshing Materialized Views

7-12

• To refresh a materialized view that is based on an approximate query:

Run the DBMS_REFRESH.REFRESH procedure to perform a fast refresh of the materialized
view

Example 7-2 Refreshing Materialized Views Based on Approximate Queries

The following example performs a fast refresh of the materialized view percentile_per_pdt
that is based on an approximate query.

exec DBMS_MVIEW.REFRESH('percentile_per_pdt', method => 'F');

See Also:

• About Approximate Query Processing

• Creating Materialized Views Based on Approximate Queries

• Query Rewrite and Materialized Views Based on Approximate Queries

7.1.15 About Concurrent Refresh of On-Commit Materialized Views
As of Oracle Database 23ai, on-commit materialized views can be refreshed concurrently.

Concurrent materialized view refresh means that multiple sessions are able to refresh the
same on-commit atomic materialized view at the same time.

When concurrent refresh is enabled, multiple sessions which perform DML on a base table can
refresh the materialized view concurrently. There is no limit on the number of concurrent
sessions.

When concurrent refresh is disabled, materialized view refreshes are serialized. In this case,
multiple sessions cannot concurrently refresh a materialized view. Only one refresh session at
a time is able to update the materialized view. Other refreshes are blocked until the current
session is completed. Then the next session is allowed to continue.

Best Use Cases for Concurrent On-Commit Materialized View Refresh

This capability is useful when you perform on-commit materialized view refreshes in OLTP and
also in cases which many concurrent DML transactions update the fact table only.

Enabling Concurrent On-Commit Materialized View Refresh

Concurrent materialized view refresh is disabled by default. You can enable or disable
concurrent refresh in a CREATE MATERIALIZED VIEW or ALTER MATERIALIZED VIEW statement:

{ ENABLE | DISABLE } CONCURRENT REFRESH

For example:

CREATE MATERIALIZED VIEW "T1"."MV1" ("C1", "C2")
 SEGMENT CREATION DEFERRED
 REFRESH FAST ON COMMIT
 WITH PRIMARY KEY USING DEFAULT LOCAL ROLLBACK SEGMENT
 USING ENFORCED CONSTRAINTS DISABLE ON QUERY COMPUTATION DISABLE QUERY

Chapter 7
About Refreshing Materialized Views

7-13

REWRITE
ENABLE CONCURRENT REFRESH
 AS SELECT "TB1"."C1" "C1","TB1"."C2" "C2" FROM "TB1" "TB1

Conditions that Allow Concurrent On-Commit Materialized View Refresh

The following conditions determine if concurrent refresh can proceed.

• Concurrent refresh is enabled. (Note only on-commit refresh materialized views can be
enabled.)

• All concurrent DML sessions update the same base table.

• The materialized view rows updated in different refresh sessions do not overlap.

Limitations

You cannot enable concurrent refresh for on-commit fast refresh of materialized view DDLs.
Only on-commit materialized views can enable concurrent refresh.

How to Determine if an On-Commit Materialized View has Concurrent Refresh Enabled

You can check the view ALL_MVIEWS to see all of the properties of a materialzed view,
including whether nor not concurrent refresh is enabled.

See Also:

The CREATE MATERIALIZED VIEW statement description in the Oracle Database
SQL Language Reference shows { ENABLE | DISABLE } CONCURRENT REFRESH
in its full context.

See DBMS_MVIEW_REFRESH and other APIs related to refresh of materialized views in the
Database PL/SQL Packages and Types Reference .

7.1.16 About Refreshing Dependent Materialized Views During Online Table
Redefinition

While redefining a table online using the DBMS_REDEFINITION package, you can perform
incremental refresh of fast refreshable materialized views that are dependent on the table
being redefined.

Prior to Oracle Database 12c Release 2 (12.2), to refresh dependent materialized views on
tables undergoing redefinition, you must execute complete refresh manually after the
redefinition process completes.

To incrementally refresh dependent materialized views during online table redefinition, set the
refresh_dep_mviews parameter in the DBMS_REDEFINITON.REDEF_TABLE procedure to Y .
Dependent materialized views can be refreshed during online table redefinition only if the
materialized view is fast refreshable and is not a ROWID-based materialized view or materialized
join view. Materialized views that do not follow these restrictions are not refreshed.

Consider the table my_sales that has the following dependent materialized views:

• my_sales_pk_mv: fast refreshable primary key-based materialized view

• my_sales_rid_mv: fast refreshable ROWID-based materialized view

Chapter 7
About Refreshing Materialized Views

7-14

• my_sales_mjv: fast refreshable materialized join view

• my_sales_mav: fast refreshable materialized aggregate view

• my_sales_rmv: only fully-refreshable materialized view

When you run the following command, fast refresh is performed only for the my_sales_pk_mv
and my_sales_mav materialized views:

DBMS_REDEFINITION.REDEF_TABLE(
uname => 'SH',
tname => 'MY_SALES',
table_compression_type => 'ROW STORE COMPRESS ADVANCED',
refresh_dep_mviews => 'Y');

See Also:

Oracle Database Administrator’s Guide

7.1.17 Recommended Initialization Parameters for Parallelism
The following initialization parameters need to be set properly for parallelism to be effective:

• PARALLEL_MAX_SERVERS should be set high enough to take care of parallelism. You must
consider the number of child processes needed for the refresh statement. For example,
with a degree of parallelism of eight, you need 16 child processes.

• PGA_AGGREGATE_TARGET should be set for the instance to manage the memory usage for
sorts and joins automatically. If the memory parameters are set manually, SORT_AREA_SIZE
should be less than HASH_AREA_SIZE.

• OPTIMIZER_MODE should equal all_rows.

Remember to analyze all tables and indexes for better optimization.

See Also:

Oracle Database VLDB and Partitioning Guide

7.1.18 Monitoring a Refresh
While a job is running, you can query the V$SESSION_LONGOPS view to tell you the progress of
each materialized view being refreshed.

SELECT * FROM V$SESSION_LONGOPS;

To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

Chapter 7
About Refreshing Materialized Views

7-15

7.1.19 Checking the Status of a Materialized View
These are views that enable you to verify the status of table partitions and determine which
ranges of materialized view data are fresh or stale:

• *_MVIEWS
To determine partition change tracking (PCT) information for the materialized view.

• *_MVIEW_DETAIL_RELATIONS
To display partition information for the detail table a materialized view is based on.

• *_MVIEW_DETAIL_PARTITION
To determine which partitions are fresh. (Physical partitions only.)

• *_MVIEW_DETAIL_SUBPARTITION
To determine which subpartitions are fresh. (Physical partitions only.)

• *_MVIEW_DETAIL_LOGICAL_PARTITIONS
To determine logical partition change tracking (LPCT) information for the materialized view.

Determining the Freshness of Physical Partitions

You can check freshness of physical partitions using Partition Change Tracking (PCT). Here's
an instance where there is a stale partition.

Query USER_MVIEW_DETAIL_PARTITION to access PCT freshness information for partitions, as
shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME,
 DETAIL_PARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_PARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_PARTITION_NAME DETAIL_PARTITION_POSITION FRESHNESS
---------- -------------- --------------------- ------------------------- ---------
 MV1 T1 P1 1 FRESH
 MV1 T1 P2 2 FRESH
 MV1 T1 P3 3 STALE
 MV1 T1 P4 4 FRESH

Determining the Freshness of Logical Partitions

Use Logical Partition Change Tracking (LPCT) to determine the staleness/freshness of logical
partitions.

In this example, the logical partitions are LP1, LP2, LP3, and LP4. Assume that LP3 is stale.

Chapter 7
About Refreshing Materialized Views

7-16

Note:

Logical partitioning does not support subpartitions.

You can query DBA_MVIEW_DETAIL_LOGICAL_PARTITION to determine freshness of logical
partitions.

SQL> SELECT MVIEW_NAME, DETAILOBJ_NAME, LPARTNAME, LPART#, FRESHNESS \
FROM DBA_MVIEW_DETAIL_LOGICAL_PARTITION WHERE MVIEW_NAME = 'MV1' ORDER BY
1,2,3,4;

MVIEW_NAME DETAILOBJ_NAME LPARTNAME LPART# FRESHNESS
----------------------------------–---
 MV1 SALES LP1 1 FRESH
 MV1 SALES LP2 2 FRESH
 MV1 SALES LP3 3 STALE
 MV1 SALES LP4 4 FRESH

See Also:

Examples of Using Views to Determine Freshness for more details and examples.

7.1.19.1 Examples of Using Views to Determine Freshness
Below are some examples that show how to view partition freshness information for
materialized views and their detail tables.

Example 7-3 Verifying the PCT Status of a Materialized View

Query USER_MVIEWS to access PCT information about the materialized view, as shown in the
following:

SELECT MVIEW_NAME, NUM_PCT_TABLES, NUM_FRESH_PCT_REGIONS,
 NUM_STALE_PCT_REGIONS
FROM USER_MVIEWS
WHERE MVIEW_NAME = MV1;

Chapter 7
About Refreshing Materialized Views

7-17

MVIEW_NAME NUM_PCT_TABLES NUM_FRESH_PCT_REGIONS NUM_STALE_PCT_REGIONS
---------- -------------- --------------------- ---------------------
 MV1 1 9 3

Example 7-4 Verifying the PCT Status in a Materialized View's Detail Table

Query USER_MVIEW_DETAIL_RELATIONS to access PCT detail table information, as shown in the
following:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAILOBJ_PCT,
 NUM_FRESH_PCT_PARTITIONS, NUM_STALE_PCT_PARTITIONS
FROM USER_MVIEW_DETAIL_RELATIONS
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_OBJ_PCT NUM_FRESH_PCT_PARTITIONS NUM_STALE_PCT_PARTITIONS
---------- -------------- -------------- ------------------------ ------------------------
 MV1 T1 Y 3 1

Example 7-5 Verifying Which Subpartitions are Fresh

Query USER_MVIEW_DETAIL_SUBPARTITION to access PCT freshness information for
subpartitions, as shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME, DETAIL_SUBPARTITION_NAME,
 DETAIL_SUBPARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_SUBPARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ DETAIL_PARTITION DETAIL_SUBPARTITION_NAME DETAIL_SUBPARTITION_POS FRESHNESS
---------- --------- ---------------- ------------------------ ----------------------- ---------
 MV1 T1 P1 SP1 1 FRESH
 MV1 T1 P1 SP2 1 FRESH
 MV1 T1 P1 SP3 1 FRESH
 MV1 T1 P2 SP1 1 FRESH
 MV1 T1 P2 SP2 1 FRESH
 MV1 T1 P2 SP3 1 FRESH
 MV1 T1 P3 SP1 1 STALE
 MV1 T1 P3 SP2 1 STALE
 MV1 T1 P3 SP3 1 STALE
 MV1 T1 P4 SP1 1 FRESH
 MV1 T1 P4 SP2 1 FRESH
 MV1 T1 P4 SP3 1 FRESH

7.1.20 Scheduling Refresh of Materialized Views
Very often you have multiple materialized views in the database. Some of these can be
computed by rewriting against others. This is very common in data warehousing environment
where you may have nested materialized views or materialized views at different levels of
some hierarchy.

In such cases, you should create the materialized views as BUILD DEFERRED, and then issue
one of the refresh procedures in DBMS_MVIEW package to refresh all the materialized views.
Oracle Database computes the dependencies and refreshes the materialized views in the right
order. Consider the example of a complete hierarchical cube described in "Examples of
Hierarchical Cube Materialized Views". Suppose all the materialized views have been created
as BUILD DEFERRED. Creating the materialized views as BUILD DEFERRED only creates the

Chapter 7
About Refreshing Materialized Views

7-18

metadata for all the materialized views. And, then, you can just call one of the refresh
procedures in DBMS_MVIEW package to refresh all the materialized views in the right order:

DECLARE numerrs PLS_INTEGER;
BEGIN DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures => numerrs, list=>'SALES', method => 'C');
DBMS_OUTPUT.PUT_LINE('There were ' || numerrs || ' errors during refresh');
END;
/

The procedure refreshes the materialized views in the order of their dependencies (first
sales_hierarchical_mon_cube_mv, followed by sales_hierarchical_qtr_cube_mv, then,
sales_hierarchical_yr_cube_mv and finally, sales_hierarchical_all_cube_mv). Each of
these materialized views gets rewritten against the one prior to it in the list).

The same kind of rewrite can also be used while doing PCT refresh. PCT refresh recomputes
rows in a materialized view corresponding to changed rows in the detail tables. And, if there
are other fresh materialized views available at the time of refresh, it can go directly against
them as opposed to going against the detail tables.

Hence, it is always beneficial to pass a list of materialized views to any of the refresh
procedures in DBMS_MVIEW package (irrespective of the method specified) and let the procedure
figure out the order of doing refresh on materialized views.

7.2 Tips for Refreshing Materialized Views
This section contains the following topics with tips on refreshing materialized views:

• Tips for Refreshing Materialized Views with Aggregates

• Tips for Refreshing Materialized Views Without Aggregates

• Tips for Refreshing Nested Materialized Views

• Tips for Fast Refresh with UNION ALL

• Tips for Fast Refresh with Commit SCN-Based Materialized View Logs

• Tips After Refreshing Materialized Views

7.2.1 Tips for Refreshing Materialized Views with Aggregates
Following are some guidelines for using the refresh mechanism for materialized views with
aggregates.

• For fast refresh, create materialized view logs on all detail tables involved in a materialized
view with the ROWID, SEQUENCE and INCLUDING NEW VALUES clauses.

Include all columns from the table likely to be used in materialized views in the materialized
view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the materialized
view log. If it can be determined that only inserts or deletes will occur on all the detail
tables, then the materialized view log does not require the SEQUENCE clause. However, if
updates to multiple tables are likely or required or if the specific update scenarios are
unknown, make sure the SEQUENCE clause is included.

• Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the APPEND hint for
loads). Starting in Oracle Database 12c, the database automatically gathers table statistics
as part of a bulk-load operation (CTAS and IAS) similar to how statistics are gathered

Chapter 7
Tips for Refreshing Materialized Views

7-19

when an index is created. By gathering statistics during the data load, you avoid additional
scan operations and provide the necessary statistics as soon as the data becomes
available to the users.

This is a lot more efficient than conventional insert. During loading, disable all constraints
and re-enable when finished loading. Note that materialized view logs are required
regardless of whether you use direct load or conventional DML.

Try to optimize the sequence of conventional mixed DML operations, direct-path INSERT
and the fast refresh of materialized views. You can use fast refresh with a mixture of
conventional DML and direct loads. Fast refresh can perform significant optimizations if it
finds that only direct loads have occurred, as illustrated in the following:

1. Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */) into the detail table

2. Refresh materialized view

3. Conventional mixed DML

4. Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and DELETE) to the
detail tables. However, fast refresh is able to perform significant optimizations in its
processing if it detects that only inserts or deletes have been done to the tables, such as:

– DML INSERT or DELETE to the detail table

– Refresh materialized views

– DML update to the detail table

– Refresh materialized view

Even more optimal is the separation of INSERT and DELETE.

If possible, refresh should be performed after each type of data change (as shown earlier)
rather than issuing only one refresh at the end. If that is not possible, restrict the
conventional DML to the table to inserts only, to get much better refresh performance.
Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML done in the
committed transaction. Therefore, do not perform direct-path INSERT and DML to other
tables in the same transaction, as Oracle may not be able to optimize the refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the end of each
transaction, it may not be possible to isolate the DML statements, in which case keeping
the transactions short will help. However, if you plan to make numerous modifications to
the detail table, it may be better to perform them in one transaction, so that refresh of the
materialized view is performed just once at commit time rather than after each update.

• Oracle recommends partitioning the tables because it enables you to use:

– Parallel DML

For large loads or refresh, enabling parallel DML helps shorten the length of time for
the operation.

– Partition change tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance operations on
the detail tables. "About Partition Change Tracking" for details on enabling PCT for
materialized views.

• Partitioning the materialized view also helps refresh performance as refresh can update
the materialized view using parallel DML. For example, assume that the detail tables and

Chapter 7
Tips for Refreshing Materialized Views

7-20

materialized view are partitioned and have a parallel clause. The following sequence would
enable Oracle to parallelize the refresh of the materialized view.

1. Bulk load into the detail table.

2. Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML statement.

3. Refresh the materialized view.

• For refresh using DBMS_MVIEW.REFRESH, set the parameter atomic_refresh to FALSE.

– For COMPLETE refresh, this causes a TRUNCATE to delete existing rows in the
materialized view, which is faster than a delete.

– For PCT refresh, if the materialized view is partitioned appropriately, this uses TRUNCATE
PARTITION to delete rows in the affected partitions of the materialized view, which is
faster than a delete.

– For FAST or FORCE refresh, if COMPLETE or PCT refresh is chosen, this is able to use the
TRUNCATE optimizations described earlier.

• When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set atomic to FALSE.
Otherwise, JOB_QUEUES is not used. Set the number of job queue processes greater than
the number of processors.

If job queues are enabled and there are many materialized views to refresh, it is faster to
refresh all of them in a single command than to call them individually.

• Use REFRESH FORCE to ensure refreshing a materialized view so that it can definitely be
used for query rewrite. The best refresh method is chosen. If a fast refresh cannot be
done, a complete refresh is performed.

• Refresh all the materialized views in a single procedure call. This gives Oracle an
opportunity to schedule refresh of all the materialized views in the right order taking into
account dependencies imposed by nested materialized views and potential for efficient
refresh by using query rewrite against other materialized views.

7.2.2 Tips for Refreshing Materialized Views Without Aggregates
If a materialized view contains joins but no aggregates, then having an index on each of the
join column rowids in the detail table enhances refresh performance greatly, because this type
of materialized view tends to be much larger than materialized views containing aggregates.
For example, consider the following materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv BUILD IMMEDIATE AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
 c.cust_state_province, t.week_ending_day, s.amount_sold
FROM sales s, times t, customers c
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

Indexes should be created on columns sales_rid, times_rid and cust_rid. Partitioning is
highly recommended, as is enabling parallel DML in the session before invoking refresh,
because it greatly enhances refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the detail
table. It is recommended that the same procedure be applied to this type of materialized view
as for a single table aggregate. That is, perform one type of change (direct-path INSERT or
DML) and then refresh the materialized view. This is because Oracle Database can perform
significant optimizations if it detects that only one type of change has been done.

Chapter 7
Tips for Refreshing Materialized Views

7-21

Also, Oracle recommends that the refresh be invoked after each table is loaded, rather than
load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the committed
transaction. Oracle therefore recommends that you do not perform direct-path and
conventional DML to other tables in the same transaction because Oracle may not be able to
optimize the refresh phase. For example, the following is not recommended:

1. Direct load new data into the fact table

2. DML into the store table

3. Commit

Also, try not to mix different types of conventional DML statements if possible. This would
again prevent using various optimizations during fast refresh. For example, try to avoid the
following:

1. Insert into the fact table

2. Delete from the fact table

3. Commit

If many updates are needed, try to group them all into one transaction because refresh is
performed just once at commit time, rather than after each update.

In a data warehousing environment, assuming that the materialized view has a parallel clause,
the following sequence of steps is recommended:

1. Bulk load into the fact table

2. Enable parallel DML

3. An ALTER SESSION ENABLE PARALLEL DML statement

4. Refresh the materialized view

7.2.3 Tips for Refreshing Nested Materialized Views
All underlying objects are treated as ordinary tables when refreshing materialized views. If the
ON COMMIT refresh option is specified, then all the materialized views are refreshed in the
appropriate order at commit time. In other words, Oracle builds a partially ordered set of
materialized views and refreshes them such that, after the successful completion of the
refresh, all the materialized views are fresh. The status of the materialized views can be
checked by querying the appropriate USER_, DBA_, or ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of whether the
refresh method is FAST, FORCE, or COMPLETE), you must refresh them in the correct order (taking
into account the dependencies between the materialized views) because the nested
materialized view are refreshed with respect to the current contents of the other materialized
views (whether fresh or not). This can be achieved by invoking the refresh procedure against
the materialized view at the top of the nested hierarchy and specifying the nested parameter
as TRUE.

If a refresh fails during commit time, the list of materialized views that has not been refreshed
is written to the alert log, and you must manually refresh them along with all their dependent
materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use on regular
materialized views.

These procedures have the following behavior when used with nested materialized views:

Chapter 7
Tips for Refreshing Materialized Views

7-22

• If REFRESH is applied to a materialized view my_mv that is built on other materialized views,
then my_mv is refreshed with respect to the current contents of the other materialized views
(that is, the other materialized views are not made fresh first) unless you specify nested =>
TRUE.

• If REFRESH_DEPENDENT is applied to materialized view my_mv, then only materialized views
that directly depend on my_mv are refreshed (that is, a materialized view that depends on a
materialized view that depends on my_mv will not be refreshed) unless you specify nested
=> TRUE.

• If REFRESH_ALL_MVIEWS is used, the order in which the materialized views are refreshed is
guaranteed to respect the dependencies between nested materialized views.

• GET_MV_DEPENDENCIES provides a list of the immediate (or direct) materialized view
dependencies for an object.

7.2.4 Tips for Fast Refresh with UNION ALL
You can use fast refresh for materialized views that use the UNION ALL operator by providing a
maintenance column in the definition of the materialized view. For example, a materialized
view with a UNION ALL operator can be made fast refreshable as follows:

CREATE MATERIALIZED VIEW fast_rf_union_all_mv AS
SELECT x.rowid AS r1, y.rowid AS r2, a, b, c, 1 AS marker
FROM x, y WHERE x.a = y.b
UNION ALL
SELECT p.rowid, r.rowid, a, c, d, 2 AS marker
FROM p, r WHERE p.a = r.y;

The form of a maintenance marker column, column MARKER in the example, must be
numeric_or_string_literal AS column_alias, where each UNION ALL member has a distinct
value for numeric_or_string_literal.

7.2.5 Tips for Fast Refresh with Commit SCN-Based Materialized View Logs
You can often improve fast refresh performance by ensuring that your materialized view logs
on the base table contain a WITH COMMIT SCN clause, often significantly. By optimizing
materialized view log processing WITH COMMIT SCN, the fast refresh process can save time. The
following example illustrates how to use this clause:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

The materialized view refresh automatically uses the commit SCN-based materialized view log
to save refresh time.

Note that only new materialized view logs can take advantage of COMMIT SCN. Existing
materialized view logs cannot be altered to add COMMIT SCN unless they are dropped and
recreated.

When a materialized view is created on both base tables with timestamp-based materialized
view logs and base tables with commit SCN-based materialized view logs, an error
(ORA-32414) is raised stating that materialized view logs are not compatible with each other
for fast refresh.

Chapter 7
Tips for Refreshing Materialized Views

7-23

7.2.6 Tips After Refreshing Materialized Views
After you have performed a load or incremental load and rebuilt the detail table indexes, you
must re-enable integrity constraints (if any) and refresh the materialized views and materialized
view indexes that are derived from that detail data. In a data warehouse environment,
referential integrity constraints are normally enabled with the NOVALIDATE or RELY options. An
important decision to make before performing a refresh operation is whether the refresh needs
to be recoverable. Because materialized view data is redundant and can always be
reconstructed from the detail tables, it might be preferable to disable logging on the
materialized view. To disable logging and run incremental refresh non-recoverably, use the
ALTER MATERIALIZED VIEW ... NOLOGGING statement prior to refreshing.

If the materialized view is being refreshed using the ON COMMIT method, then, following refresh
operations, consult the alert log alert_SID.log and the trace file ora_SID_number.trc to
check that no errors have occurred.

7.3 Using Materialized Views with Partitioned Tables
A major maintenance component of a data warehouse is synchronizing (refreshing) the
materialized views when the detail data changes. Partitioning the underlying detail tables can
reduce the amount of time taken to perform the refresh task. This is possible because
partitioning enables refresh to use parallel DML to update the materialized view. Also, it
enables the use of partition change tracking.

"Materialized View Fast Refresh with Partition Change Tracking" provides additional
information about PCT refresh.

7.3.1 Materialized View Fast Refresh with Partition Change Tracking
In a data warehouse, changes to the detail tables can often entail partition maintenance
operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To maintain the materialized
view after such operations used to require manual maintenance (see also CONSIDER FRESH) or
complete refresh. You now have the option of using an addition to fast refresh known as
partition change tracking (PCT) refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the
materialized view itself has no bearing on this feature. If PCT refresh is possible, it occurs
automatically and no user intervention is required in order for it to occur. See "About Partition
Change Tracking" for PCT requirements.

The following examples illustrate the use of this feature:

• PCT Fast Refresh for Materialized Views: Scenario 1

• PCT Fast Refresh for Materialized Views: Scenario 2

• PCT Fast Refresh for Materialized Views: Scenario 3

7.3.1.1 PCT Fast Refresh for Materialized Views: Scenario 1
In this scenario, assume sales is a partitioned table using the time_id column and products is
partitioned by the prod_category column. The table times is not a partitioned table.

1. Create the materialized view. The following materialized view satisfies requirements for
PCT.

Chapter 7
Using Materialized Views with Partitioned Tables

7-24

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

2. Run the DBMS_MVIEW.EXPLAIN_MVIEW procedure to determine which tables allow PCT
refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
----------------- --------------- -------- ------------ ----------------
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES_MV PCT_TABLE N PRODUCTS no partition key
 or PMARKER
 in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not
 partitionedtable

As can be seen from the partial sample output from EXPLAIN_MVIEW, any partition
maintenance operation performed on the sales table allows PCT fast refresh. However,
PCT is not possible after partition maintenance operations or updates to the products
table as there is insufficient information contained in cust_mth_sales_mv for PCT refresh to
be possible. Note that the times table is not partitioned and hence can never allow for PCT
refresh. Oracle Database applies PCT refresh if it can determine that the materialized view
has sufficient information to support PCT for all the updated tables. You can verify which
partitions are fresh and stale with views such as DBA_MVIEWS and
DBA_MVIEW_DETAIL_PARTITION.

See "Analyzing Materialized View Capabilities" for information on how to use this
procedure and also some details regarding PCT-related views.

3. Suppose at some later point, a SPLIT operation of one partition in the sales table becomes
necessary.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTITION month3_1 TABLESPACE summ,
 PARTITION month3 TABLESPACE summ);

4. Insert some data into the sales table.

5. Fast refresh cust_mth_sales_mv using the DBMS_MVIEW.REFRESH procedure.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);

Fast refresh automatically performs a PCT refresh as it is the only fast refresh possible in this
scenario. However, fast refresh will not occur if a partition maintenance operation occurs when
any update has taken place to a table on which PCT is not enabled. This is shown in "PCT
Fast Refresh for Materialized Views: Scenario 2".

"PCT Fast Refresh for Materialized Views: Scenario 1" would also be appropriate if the
materialized view was created using the PMARKER clause as illustrated in the following:

CREATE MATERIALIZED VIEW cust_sales_marker_mv
BUILD IMMEDIATE

Chapter 7
Using Materialized Views with Partitioned Tables

7-25

REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) s_marker, SUM(s.quantity_sold),
 SUM(s.amount_sold), p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_name, t.calendar_month_name;

7.3.1.2 PCT Fast Refresh for Materialized Views: Scenario 2
In this scenario, the first three steps are the same as in "PCT Fast Refresh for Materialized
Views: Scenario 1". Then, the SPLIT partition operation to the sales table is performed, but
before the materialized view refresh occurs, records are inserted into the times table.

1. The same as in "PCT Fast Refresh for Materialized Views: Scenario 1".

2. The same as in "PCT Fast Refresh for Materialized Views: Scenario 1".

3. The same as in "PCT Fast Refresh for Materialized Views: Scenario 1".

4. After issuing the same SPLIT operation, as shown in "PCT Fast Refresh for Materialized
Views: Scenario 1", some data is inserted into the times table.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTIITION month3_1 TABLESPACE summ,
 PARTITION month3 TABLESPACE summ);

5. Refresh cust_mth_sales_mv.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '', TRUE, FALSE, 0, 0, 0, FALSE, FALSE);
ORA-12052: cannot fast refresh materialized view SH.CUST_MTH_SALES_MV

The materialized view is not fast refreshable because DML has occurred to a table on which
PCT fast refresh is not possible. To avoid this occurring, Oracle recommends performing a fast
refresh immediately after any partition maintenance operation on detail tables for which
partition tracking fast refresh is available.

If the situation in "PCT Fast Refresh for Materialized Views: Scenario 2" occurs, there are two
possibilities; perform a complete refresh or switch to the CONSIDER FRESH option outlined in the
following, if suitable. However, it should be noted that CONSIDER FRESH and partition change
tracking fast refresh are not compatible. Once the ALTER MATERIALIZED VIEW
cust_mth_sales_mv CONSIDER FRESH statement has been issued, PCT refresh is no longer be
applied to this materialized view, until a complete refresh is done. Moreover, you should not
use CONSIDER FRESH unless you have taken manual action to ensure that the materialized view
is indeed fresh.

A common situation in a data warehouse is the use of rolling windows of data. In this case, the
detail table and the materialized view may contain say the last 12 months of data. Every
month, new data for a month is added to the table and the oldest month is deleted (or maybe
archived). PCT refresh provides a very efficient mechanism to maintain the materialized view in
this case.

7.3.1.3 PCT Fast Refresh for Materialized Views: Scenario 3
1. The new data is usually added to the detail table by adding a new partition and exchanging

it with a table containing the new data.

Chapter 7
Using Materialized Views with Partitioned Tables

7-26

ALTER TABLE sales ADD PARTITION month_new ...
ALTER TABLE sales EXCHANGE PARTITION month_new month_new_table

2. Next, the oldest partition is dropped or truncated.

ALTER TABLE sales DROP PARTITION month_oldest;
3. Now, if the materialized view satisfies all conditions for PCT refresh.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F', '', TRUE, FALSE, 0, 0, 0,
FALSE, FALSE);

Fast refresh will automatically detect that PCT is available and perform a PCT refresh.

7.4 Refreshing Materialized Views Based on Hybrid Partitioned
Tables

You can use the complete, fast, or PCT refresh methods to refresh a materialized view that is
based on a hybrid partitioned table.

Because Oracle Database has no control over how data is maintained in the external source,
data in the external partitions is not guaranteed to be fresh and its freshness is marked as
UNKNOWN. Data from external partitions can be used only in trusted integrity mode or stale-
tolerated mode.

Refreshing data that originates from external partitions can be an expensive and often
unnecessary (when source data is unchanged) operation. You can skip refreshing materialized
view data that corresponds to external partitions by using the skip_ext_data attribute in the
DBMS_MVIEW.REFRESH procedure. When you set this attribute to TRUE, the materialized view
data corresponding to external partitions is not recomputed and remains in trusted mode with
the state UNKNOWN. By default, skip_ext_data is FALSE.

Note:

If the hybrid partitioned table on which a materialized view is based is not PCT-
enabled, then COMPLETE and FORCE are the only refresh methods supported. FAST
refresh is not supported.

Example 7-6 Refreshing a Materialized View that is Based on a Hybrid Partitioned
Table

Assume that the internal partition, year_2020, in the materialized view named hypt_mv is stale.
This materialized view is based on a hybrid partitioned table. Querying the catalog view
USER_MVIEW_DETAIL_PARTITION displays the following:

SELECT mview_name, detail_partition_name, freshness, last_refresh_time
 FROM USER_MVIEW_DETAIL_PARTITION;

MVIEW_NAME DETAIL_PARTITION_NAME FRESHNESS LAST_REFRESH_TIME
---------- --------------------- --------- -----------------
HyPT_MV century_19 UNKNOWN 2018-10-31 20:48:00.20
HyPT_MV century_20 UNKNOWN 2018-10-31
20:48:00.20

Chapter 7
Refreshing Materialized Views Based on Hybrid Partitioned Tables

7-27

HyPT_MV year_2020 STALE 2018-10-31 20:48:00.20
HyPT_MV year_2021 FRESH 2021-10-31
20:48:00.20

Use the following command to perform a fast refresh of the materialized view:

DBMS_MVIEW.REFERSH('HyPT_MV', 'F', skip_ext_data => false);

Querying the catalog view USER_MVIEW_DETAIL_PARTITION after the refresh, displays the
following:

SELECT mview_name, detail_partition_name, freshness, last_refresh_time
 FROM USER_MVIEW_DETAIL_PARTITION;

MVIEW_NAME DETAIL_PARTITION_NAME FRESHNESS LAST_REFRESH_TIME
---------- --------------------- --------- -----------------
HyPT_MV century_19 UNKNOWN 2018-10-31 20:48:00.20
HyPT_MV century_20 UNKNOWN 2018-10-31 20:48:00.20
HyPT_MV year_2020 FRESH 2021-10-31 21:32:17.00
HyPT_MV year_2021 FRESH 2021-10-31 20:48:00.20

Note that only the internal partition, year_2020, was refreshed. The partition, year_2021, was
not refreshed as it was already fresh. When skip_ext_data is set to FALSE, a full refresh of
the external partitions and a fast refresh of the internal partitions is performed.

7.5 Using Partitioning to Improve Data Warehouse Refresh
ETL (Extraction, Transformation and Loading) is done on a scheduled basis to reflect changes
made to the original source system. During this step, you physically insert the new, clean data
into the production data warehouse schema, and take all of the other steps necessary (such as
building indexes, validating constraints, taking backups) to make this new data available to the
end users. Once all of this data has been loaded into the data warehouse, the materialized
views have to be updated to reflect the latest data.

The partitioning scheme of the data warehouse is often crucial in determining the efficiency of
refresh operations in the data warehouse load process. In fact, the load process is often the
primary consideration in choosing the partitioning scheme of data warehouse tables and
indexes.

The partitioning scheme of the largest data warehouse tables (for example, the fact table in a
star schema) should be based upon the loading paradigm of the data warehouse.

Most data warehouses are loaded with new data on a regular schedule. For example, every
night, week, or month, new data is brought into the data warehouse. The data being loaded at
the end of the week or month typically corresponds to the transactions for the week or month.
In this very common scenario, the data warehouse is being loaded by time. This suggests that
the data warehouse tables should be partitioned on a date column. In our data warehouse
example, suppose the new data is loaded into the sales table every month. Furthermore, the
sales table has been partitioned by month. These steps show how the load process proceeds
to add the data for a new month (January 2001) to the table sales.

Chapter 7
Using Partitioning to Improve Data Warehouse Refresh

7-28

1. Place the new data into a separate table, sales_01_2001. This data can be directly loaded
into sales_01_2001 from outside the data warehouse, or this data can be the result of
previous data transformation operations that have already occurred in the data warehouse.
sales_01_2001 has the exact same columns, data types, and so forth, as the sales table.
Gather statistics on the sales_01_2001 table.

2. Create indexes and add constraints on sales_01_2001. Again, the indexes and constraints
on sales_01_2001 should be identical to the indexes and constraints on sales. Indexes
can be built in parallel and should use the NOLOGGING and the COMPUTE STATISTICS options.
For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
 ON sales_01_2001(customer_id)
 TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;

Apply all constraints to the sales_01_2001 table that are present on the sales table. This
includes referential integrity constraints. A typical constraint would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
 REFERENCES customer(customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with a global
index structure, ensure that the constraint on sales_pk_jan01 is validated without the
creation of an index structure, as in the following:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLE clause would cause the creation of a unique
index, which does not match a local index structure of the partitioned table. You must not
have any index structure built on the nonpartitioned table to be exchanged for existing
global indexes of the partitioned table. The exchange command would fail.

3. Add the sales_01_2001 table to the sales table.

In order to add this new data to the sales table, you must do two things. First, you must
add a new partition to the sales table. You use an ALTER TABLE ... ADD PARTITION
statement. This adds an empty partition to the sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, you can add our newly created table to this partition using the EXCHANGE PARTITION
operation. This exchanges the new, empty partition with the newly loaded table.

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation preserves the indexes and constraints that were already present
on the sales_01_2001 table. For unique constraints (such as the unique constraint on
sales_transaction_id), you can use the UPDATE GLOBAL INDEXES clause, as shown
previously. This automatically maintains your global index structures as part of the partition
maintenance operation and keep them accessible throughout the whole process. If there
were only foreign-key constraints, the exchange operation would be instantaneous.

Note that, if you use synchronous refresh, instead of performing Step 3, you must register
the sales_01_2001 table using the DBMS_SYNC_REFRESH.REGISTER_PARTITION_OPERATION
package. See Synchronous Refresh for more information.

Chapter 7
Using Partitioning to Improve Data Warehouse Refresh

7-29

The benefits of this partitioning technique are significant. First, the new data is loaded with
minimal resource utilization. The new data is loaded into an entirely separate table, and the
index processing and constraint processing are applied only to the new partition. If the sales
table was 50 GB and had 12 partitions, then a new month's worth of data contains
approximately four GB. Only the new month's worth of data must be indexed. None of the
indexes on the remaining 46 GB of data must be modified at all. This partitioning scheme
additionally ensures that the load processing time is directly proportional to the amount of new
data being loaded, not to the total size of the sales table.

Second, the new data is loaded with minimal impact on concurrent queries. All of the
operations associated with data loading are occurring on a separate sales_01_2001 table.
Therefore, none of the existing data or indexes of the sales table is affected during this data
refresh process. The sales table and its indexes remain entirely untouched throughout this
refresh process.

Third, in case of the existence of any global indexes, those are incrementally maintained as
part of the exchange command. This maintenance does not affect the availability of the
existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data warehouse
administrator exchanges the sales_01_2001 table into the sales table, end users cannot see
the new data. Once the exchange has occurred, then any end user query accessing the sales
table is immediately able to see the sales_01_2001 data.

Partitioning is useful not only for adding new data but also for removing and archiving data.
Many data warehouses maintain a rolling window of data. For example, the data warehouse
stores the most recent 36 months of sales data. Just as a new partition can be added to the
sales table (as described earlier), an old partition can be quickly (and independently) removed
from the sales table. These two benefits (reduced resources utilization and minimal end-user
impact) are just as pertinent to removing a partition as they are to adding a partition.

Removing data from a partitioned table does not necessarily mean that the old data is
physically deleted from the database. There are two alternatives for removing old data from a
partitioned table. First, you can physically delete all data from the database by dropping the
partition containing the old data, thus freeing the allocated space:

ALTER TABLE sales DROP PARTITION sales_01_1998;

Also, you can exchange the old partition with an empty table of the same structure; this empty
table is created equivalent to steps 1 and 2 described in the load process. Assuming the new
empty table stub is named sales_archive_01_1998, the following SQL statement empties
partition sales_01_1998:

ALTER TABLE sales EXCHANGE PARTITION sales_01_1998
WITH TABLE sales_archive_01_1998 INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Note that the old data is still existent as the exchanged, nonpartitioned table
sales_archive_01_1998.

If the partitioned table was setup in a way that every partition is stored in a separate
tablespace, you can archive (or transport) this table using Oracle Database's transportable
tablespace framework before dropping the actual data (the tablespace).

In some situations, you might not want to drop the old data immediately, but keep it as part of
the partitioned table; although the data is no longer of main interest, there are still potential
queries accessing this old, read-only data. You can use Oracle's data compression to minimize
the space usage of the old data. You also assume that at least one compressed partition is
already part of the partitioned table.

Chapter 7
Using Partitioning to Improve Data Warehouse Refresh

7-30

See Also:

• "Transportation Using Transportable Tablespaces" for further details regarding
transportable tablespaces

• Oracle Database Administrator’s Guide for more information regarding table
compression

• Oracle Database VLDB and Partitioning Guide for more information regarding
partitioning and table compression

7.5.1 Data Warehouse Refresh Scenarios
A typical scenario might not only need to compress old data, but also to merge several old
partitions to reflect the granularity for a later backup of several merged partitions. Let us
assume that a backup (partition) granularity is on a quarterly base for any quarter, where the
oldest month is more than 36 months behind the most recent month. In this case, you are
therefore compressing and merging sales_01_1998, sales_02_1998, and sales_03_1998 into a
new, compressed partition sales_q1_1998.

1. Create the new merged partition in parallel in another tablespace. The partition is
compressed as part of the MERGE operation:

ALTER TABLE sales MERGE PARTITIONS sales_01_1998, sales_02_1998, sales_03_1998
 INTO PARTITION sales_q1_1998 TABLESPACE archive_q1_1998
COMPRESS UPDATE GLOBAL INDEXES PARALLEL 4;

2. The partition MERGE operation invalidates the local indexes for the new merged partition.
You therefore have to rebuild them:

ALTER TABLE sales MODIFY PARTITION sales_q1_1998
REBUILD UNUSABLE LOCAL INDEXES;

Alternatively, you can choose to create the new compressed table outside the partitioned table
and exchange it back. The performance and the temporary space consumption is identical for
both methods:

1. Create an intermediate table to hold the new merged information. The following statement
inherits all NOT NULL constraints from the original table by default:

CREATE TABLE sales_q1_1998_out TABLESPACE archive_q1_1998
NOLOGGING COMPRESS PARALLEL 4 AS SELECT * FROM sales
WHERE time_id >= TO_DATE('01-JAN-1998','dd-mon-yyyy')
 AND time_id < TO_DATE('01-APR-1998','dd-mon-yyyy');

2. Create the equivalent index structure for table sales_q1_1998_out than for the existing
table sales.

3. Prepare the existing table sales for the exchange with the new compressed table
sales_q1_1998_out. Because the table to be exchanged contains data actually covered in
three partitions, you have to create one matching partition, having the range boundaries
you are looking for. You simply have to drop two of the existing partitions. Note that you
have to drop the lower two partitions sales_01_1998 and sales_02_1998; the lower
boundary of a range partition is always defined by the upper (exclusive) boundary of the
previous partition:

ALTER TABLE sales DROP PARTITION sales_01_1998;
ALTER TABLE sales DROP PARTITION sales_02_1998;

Chapter 7
Using Partitioning to Improve Data Warehouse Refresh

7-31

4. You can now exchange table sales_q1_1998_out with partition sales_03_1998. Unlike
what the name of the partition suggests, its boundaries cover Q1-1998.

ALTER TABLE sales EXCHANGE PARTITION sales_03_1998
WITH TABLE sales_q1_1998_out INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Both methods apply to slightly different business scenarios: Using the MERGE PARTITION
approach invalidates the local index structures for the affected partition, but it keeps all data
accessible all the time. Any attempt to access the affected partition through one of the
unusable index structures raises an error. The limited availability time is approximately the time
for re-creating the local bitmap index structures. In most cases, this can be neglected, because
this part of the partitioned table should not be accessed too often.

The CTAS approach, however, minimizes unavailability of any index structures close to zero,
but there is a specific time window, where the partitioned table does not have all the data,
because you dropped two partitions. The limited availability time is approximately the time for
exchanging the table. Depending on the existence and number of global indexes, this time
window varies. Without any existing global indexes, this time window is a matter of a fraction to
few seconds.

These examples are a simplification of the data warehouse rolling window load scenario. Real-
world data warehouse refresh characteristics are always more complex. However, the
advantages of this rolling window approach are not diminished in more complex scenarios.

Note that before you add single or multiple compressed partitions to a partitioned table for the
first time, all local bitmap indexes must be either dropped or marked unusable. After the first
compressed partition is added, no additional actions are necessary for all subsequent
operations involving compressed partitions. It is irrelevant how the compressed partitions are
added to the partitioned table.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information regarding
partitioning and table compression

• Oracle Database Administrator's Guide for further details about partitioning and
table compression.

7.5.2 Scenarios for Using Partitioning for Refreshing Data Warehouses
This section describes the following two typical scenarios where partitioning is used with
refresh:

• Partitioning for Refreshing Data Warehouses: Scenario 1

• Partitioning for Refreshing Data Warehouses: Scenario 2

7.5.2.1 Partitioning for Refreshing Data Warehouses: Scenario 1
Data is loaded daily. However, the data warehouse contains two years of data, so that
partitioning by day might not be desired.

The solution is to partition by week or month (as appropriate). Use INSERT to add the new data
to an existing partition. The INSERT operation only affects a single partition, so the benefits

Chapter 7
Using Partitioning to Improve Data Warehouse Refresh

7-32

described previously remain intact. The INSERT operation could occur while the partition
remains a part of the table. Inserts into a single partition can be parallelized:

INSERT /*+ APPEND*/ INTO sales PARTITION (sales_01_2001)
SELECT * FROM new_sales;

The indexes of this sales partition is maintained in parallel as well. An alternative is to use the
EXCHANGE operation. You can do this by exchanging the sales_01_2001 partition of the sales
table and then using an INSERT operation. You might prefer this technique when dropping and
rebuilding indexes is more efficient than maintaining them.

7.5.2.2 Partitioning for Refreshing Data Warehouses: Scenario 2
New data feeds, although consisting primarily of data for the most recent day, week, and
month, also contain some data from previous time periods.

Solution 1

Use parallel SQL operations (such as CREATE TABLE ... AS SELECT) to separate the new data
from the data in previous time periods. Process the old data separately using other techniques.

New data feeds are not solely time based. You can also feed new data into a data warehouse
with data from multiple operational systems on a business need basis. For example, the sales
data from direct channels may come into the data warehouse separately from the data from
indirect channels. For business reasons, it may furthermore make sense to keep the direct and
indirect data in separate partitions.

Solution 2

Oracle supports composite range-list partitioning. The primary partitioning strategy of the sales
table could be range partitioning based on time_id as shown in the example. However, the
subpartitioning is a list based on the channel attribute. Each subpartition can now be loaded
independently of each other (for each distinct channel) and added in a rolling window operation
as discussed before. The partitioning strategy addresses the business needs in the most
optimal manner.

7.6 Optimizing DML Operations During Refresh
You can optimize DML performance through the following techniques:

• Implementing an Efficient MERGE Operation

• Maintaining Referential Integrity in Data Warehouses

• Purging Data from Data Warehouses

7.6.1 Implementing an Efficient MERGE Operation
Commonly, the data that is extracted from a source system is not simply a list of new records
that needs to be inserted into the data warehouse. Instead, this new data set is a combination
of new records as well as modified records. For example, suppose that most of data extracted
from the OLTP systems will be new sales transactions. These records are inserted into the
warehouse's sales table, but some records may reflect modifications of previous transactions,
such as returned merchandise or transactions that were incomplete or incorrect when initially
loaded into the data warehouse. These records require updates to the sales table.

Chapter 7
Optimizing DML Operations During Refresh

7-33

As a typical scenario, suppose that there is a table called new_sales that contains both inserts
and updates that are applied to the sales table. When designing the entire data warehouse
load process, it was determined that the new_sales table would contain records with the
following semantics:

• If a given sales_transaction_id of a record in new_sales already exists in sales, then
update the sales table by adding the sales_dollar_amount and sales_quantity_sold
values from the new_sales table to the existing row in the sales table.

• Otherwise, insert the entire new record from the new_sales table into the sales table.

This UPDATE-ELSE-INSERT operation is often called a merge. A merge can be executed using
one SQL statement.

Example 7-7 MERGE Operation

MERGE INTO sales s USING new_sales n
ON (s.sales_transaction_id = n.sales_transaction_id)
WHEN MATCHED THEN
UPDATE SET s.sales_quantity_sold = s.sales_quantity_sold + n.sales_quantity_sold,
 s.sales_dollar_amount = s.sales_dollar_amount + n.sales_dollar_amount
WHEN NOT MATCHED THEN INSERT (sales_transaction_id, sales_quantity_sold,
sales_dollar_amount)
VALUES (n.sales_transcation_id, n.sales_quantity_sold, n.sales_dollar_amount);

In addition to using the MERGE statement for unconditional UPDATE ELSE INSERT functionality into
a target table, you can also use it to:

• Perform an UPDATE only or INSERT only statement.

• Apply additional WHERE conditions for the UPDATE or INSERT portion of the MERGE statement.

• The UPDATE operation can even delete rows if a specific condition yields true.

Example 7-8 Omitting the INSERT Clause

In some data warehouse applications, it is not allowed to add new rows to historical
information, but only to update them. It may also happen that you do not want to update but
only insert new information. The following example demonstrates INSERT-only with UPDATE-only
functionality:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products D1 -- Destination table 1
ON (D1.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET D1.PROD_STATUS = S.PROD_NEW_STATUS

Example 7-9 Omitting the UPDATE Clause

The following statement illustrates an example of omitting an UPDATE:

MERGE USING New_Product S -- Source/Delta table
INTO Products D2 -- Destination table 2
ON (D2.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

When the INSERT clause is omitted, Oracle Database performs a regular join of the source and
the target tables. When the UPDATE clause is omitted, Oracle Database performs an antijoin of
the source and the target tables. This makes the join between the source and target table more
efficient.

Chapter 7
Optimizing DML Operations During Refresh

7-34

Example 7-10 Skipping the UPDATE Clause

In some situations, you may want to skip the UPDATE operation when merging a given row into
the table. In this case, you can use an optional WHERE clause in the UPDATE clause of the MERGE.
As a result, the UPDATE operation only executes when a given condition is true. The following
statement illustrates an example of skipping the UPDATE operation:

MERGE
USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN
UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional UPDATE

This shows how the UPDATE operation would be skipped if the condition P.PROD_STATUS <>
"OBSOLETE" is not true. The condition predicate can refer to both the target and the source
table.

Example 7-11 Conditional Inserts with MERGE Statements

You may want to skip the INSERT operation when merging a given row into the table. So an
optional WHERE clause is added to the INSERT clause of the MERGE. As a result, the INSERT
operation only executes when a given condition is true. The following statement offers an
example:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_STATUS, PROD_LIST_PRICE) -- insert if not join
VALUES (S.PROD_ID, S.PROD_NEW_STATUS, S.PROD_NEW_PRICE)
WHERE S.PROD_STATUS <> "OBSOLETE"; -- Conditional INSERT

This example shows that the INSERT operation would be skipped if the condition
S.PROD_STATUS <> "OBSOLETE" is not true, and INSERT only occurs if the condition is true. The
condition predicate can refer to the source table only. The condition predicate can only refer to
the source table.

Example 7-12 Using the DELETE Clause with MERGE Statements

You may want to cleanse tables while populating or updating them. To do this, you may want to
consider using the DELETE clause in a MERGE statement, as in the following example:

MERGE USING Product_Changes S
INTO Products D ON (D.PROD_ID = S.PROD_ID)
WHEN MATCHED THEN
UPDATE SET D.PROD_LIST_PRICE =S.PROD_NEW_PRICE, D.PROD_STATUS = S.PROD_NEWSTATUS
DELETE WHERE (D.PROD_STATUS = "OBSOLETE")
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_LIST_PRICE, PROD_STATUS)
VALUES (S.PROD_ID, S.PROD_NEW_PRICE, S.PROD_NEW_STATUS);

Thus when a row is updated in products, Oracle checks the delete condition D.PROD_STATUS =
"OBSOLETE", and deletes the row if the condition yields true.

Chapter 7
Optimizing DML Operations During Refresh

7-35

The DELETE operation is not as same as that of a complete DELETE statement. Only the rows
from the destination of the MERGE can be deleted. The only rows that are affected by the DELETE
are the ones that are updated by this MERGE statement. Thus, although a given row of the
destination table meets the delete condition, if it does not join under the ON clause condition, it
is not deleted.

Example 7-13 Unconditional Inserts with MERGE Statements

You may want to insert all of the source rows into a table. In this case, the join between the
source and target table can be avoided. By identifying special constant join conditions that
always result to FALSE, for example, 1=0, such MERGE statements are optimized and the join
condition are suppressed.

MERGE USING New_Product S -- Source/Delta table
INTO Products P -- Destination table 1
ON (1 = 0) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

7.6.2 Maintaining Referential Integrity in Data Warehouses
In some data warehousing environments, you might want to insert new data into tables in order
to guarantee referential integrity. For example, a data warehouse may derive sales from an
operational system that retrieves data directly from cash registers. sales is refreshed nightly.
However, the data for the product dimension table may be derived from a separate operational
system. The product dimension table may only be refreshed once for each week, because the
product table changes relatively slowly. If a new product was introduced on Monday, then it is
possible for that product's product_id to appear in the sales data of the data warehouse
before that product_id has been inserted into the data warehouses product table.

Although the sales transactions of the new product may be valid, this sales data do not satisfy
the referential integrity constraint between the product dimension table and the sales fact
table. Rather than disallow the new sales transactions, you might choose to insert the sales
transactions into the sales table. However, you might also wish to maintain the referential
integrity relationship between the sales and product tables. This can be accomplished by
inserting new rows into the product table as placeholders for the unknown products.

As in previous examples, assume that the new data for the sales table is staged in a separate
table, new_sales. Using a single INSERT statement (which can be parallelized), the product
table can be altered to reflect the new products:

INSERT INTO product
 (SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
 FROM new_sales WHERE sales_product_id NOT IN
 (SELECT product_id FROM product));

7.6.3 Purging Data from Data Warehouses
Occasionally, it is necessary to remove large amounts of data from a data warehouse. A very
common scenario is the rolling window discussed previously, in which older data is rolled out of
the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse. Suppose
that a retail company has previously sold products from XYZ Software, and that XYZ Software
has subsequently gone out of business. The business users of the warehouse may decide that
they are no longer interested in seeing any data related to XYZ Software, so this data should
be deleted.

Chapter 7
Optimizing DML Operations During Refresh

7-36

One approach to removing a large volume of data is to use parallel delete as shown in the
following statement:

DELETE FROM sales WHERE sales_product_id IN (SELECT product_id
 FROM product WHERE product_category = 'XYZ Software');

This SQL statement spawns one parallel process for each partition. This approach is much
more efficient than a series of DELETE statements, and none of the data in the sales table
needs to be moved. However, this approach also has some disadvantages. When removing a
large percentage of rows, the DELETE statement leaves many empty row-slots in the existing
partitions. If new data is being loaded using a rolling window technique (or is being loaded
using direct-path INSERT or load), then this storage space is not reclaimed. Moreover, even
though the DELETE statement is parallelized, there might be more efficient methods. An
alternative method is to re-create the entire sales table, keeping the data for all product
categories except XYZ Software.

CREATE TABLE sales2 AS SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software'
NOLOGGING PARALLEL (DEGREE 8)
#PARTITION ... ; #create indexes, constraints, and so on
DROP TABLE SALES;
RENAME SALES2 TO SALES;

This approach may be more efficient than a parallel delete. However, it is also costly in terms
of the amount of disk space, because the sales table must effectively be instantiated twice.

An alternative method to utilize less space is to re-create the sales table one partition at a
time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;
INSERT INTO sales_temp
SELECT * FROM sales PARTITION (sales_99jan), product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software';
<create appropriate indexes and constraints on sales_temp>
ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

Chapter 7
Optimizing DML Operations During Refresh

7-37

8
Synchronous Refresh

This chapter describes a method to synchronize changes to the tables and materialized views
in a data warehouse. This method is based on synchronizing updates to tables and
materialized views, and is called synchronous refresh.

This chapter includes the following sections:

• About Synchronous Refresh for Materialized Views

• Using Synchronous Refresh for Materialized Views

• Using Synchronous Refresh Groups

• Specifying and Preparing Change Data for Synchronous Refresh

• Troubleshooting Synchronous Refresh Operations

• Performing Synchronous Refresh Eligibility Analysis

• Overview of Synchronous Refresh Security Considerations

8.1 About Synchronous Refresh for Materialized Views
Synchronous refresh is a refresh method introduced in Oracle Database 12c Release 1 that
enables you to keep a set of tables and the materialized views defined on them to be always in
sync. It is well-suited for data warehouses, where the loading of incremental data is tightly
controlled and occurs at periodic intervals.

In most data warehouses, the fact tables are partitioned along the time dimension and, very
often, the incremental data load consists mainly of changes to recent time periods.
Synchronous refresh exploits these characteristics to greatly improve refresh performance and
throughput. This results in fast query performance for both planned and ad hoc queries, which
is key to a successful data warehouse.

This section describes the main requirements and basic concepts of synchronous refresh, and
includes the following:

• What Is Synchronous Refresh?

• Why Use Synchronous Refresh?

• Registering Tables and Materialized Views for Synchronous Refresh

• Specifying Change Data for Refresh

• Synchronous Refresh Preparation and Execution

• Materialized View Eligibility Rules and Restrictions for Synchronous Refresh

8.1.1 What Is Synchronous Refresh?
Synchronous refresh is a new approach for maintaining tables and materialized views in a data
warehouse where tables and materialized views are refreshed at the same time. In traditional
refresh methods, the changes are applied to the base tables and the materialized views are
refreshed separately with one of the following refresh methods:

8-1

• Log-based incremental (fast) refresh using materialized view logs if such logs are available

• PCT refresh if it is applicable

• Complete refresh

Synchronous refresh combines some elements of log-based incremental (fast) refresh and
PCT refresh methods, but it is applicable only to ON DEMAND materialized views, unlike the other
two methods. There are three major differences between it and the other refresh methods:

• Synchronous refresh requires you to register the tables and materialized views.

• Synchronous refresh requires you to specify changes to the data according to some
formally specified rules.

• Synchronous refresh works by dividing the refresh operation into two steps: preparation
and execution. This approach provides some important advantages over the other
methods, such as better performance and more control.

Synchronous refresh APIs are defined in a new package called DBMS_SYNC_REFRESH. For more
information about this package, see Oracle Database PL/SQL Packages and Types Reference.

8.1.2 Why Use Synchronous Refresh?
Synchronous refresh offers the following advantages over traditional types of methods used to
refresh materialized views in a data warehouse:

• It coordinates the loading of the changes into the base tables with the extremely efficient
refresh of the dependent materialized views themselves.

• It decreases the time materialized views are not available to be used by the Optimizer to
rewrite queries.

• It is well-suited for a wide class of materialized views (materialized aggregate views and
materialized join views) commonly used in data warehouses. It does require the
materialized views be partitioned as well as the fact tables, and if materialized views are
not currently partitioned, they can be efficiently partitioned to take advantage of
synchronous refresh.

• It fully exploits partitioning and the nature of the data warehouse load cycle to guarantee
synchronization between the materialized view and the base table throughout the refresh
procedure.

• In a typical data warehouse, data preparation consists of extracting the data from one or
more sources, cleansing, and formatting it for consistency, and transforming into the data
warehouse schema. The data preparation area is called the staging area and the base
tables in a data warehouse are loaded from the tables in the staging area. The
synchronous refresh method fits into this model because it allows you to load change data
into the staging logs.

• The staging logs play the same role as materialized view logs in the conventional fast
refresh method. There is, however, an important difference. In the conventional fast refresh
method, the base table is first updated and the changes are then applied from the
materialized view log to the materialized views. But in the synchronous refresh method, the
changes from the staging log are applied to refresh the materialized views while also being
applied to the base tables.

• Most materialized views in a data warehouse typically employ a star or snowflake schema
with fact and dimension tables joined in a foreign key to primary key relationship. The
synchronous refresh method can handle both schemas in all possible change data load
scenarios, ranging from rows being added to only the fact table, to arbitrary changes to the
fact and dimension tables.

Chapter 8
About Synchronous Refresh for Materialized Views

8-2

• Instead of providing the change load data in the staging logs, you have a choice of directly
providing the change data in the form of outside tables containing the data to be
exchanged with the affected partition in the base table. This capability is provided by the
REGISTER_PARTITION_OPERATION procedure in the DBMS_SYNC_REFRESH package.

8.1.3 Registering Tables and Materialized Views for Synchronous Refresh
Before actually performing synchronous refresh, you must register the appropriate tables and
materialized views. Synchronous refresh provides these methods to register tables and
materialized views:

• Tables are registered with synchronous refresh by creating a staging log on them. A
staging log is created with the CREATE MATERIALIZED VIEW LOG statement whose syntax has
been extended in this release to create staging logs as well as the familiar materialized
view logs used for the traditional incremental refresh. After you create a staging log on a
table, it is deemed to be registered with synchronous refresh and can be modified only by
using the synchronous refresh procedures. In other words, a table with a staging log
defined on it is registered with synchronous refresh and cannot be modified directly by the
user.

• Materialized views are registered with synchronous refresh using the REGISTER_MVIEWS
procedure in the DBMS_SYNC_REFRESH package. The REGISTER_MVIEWS procedure implicitly
creates groups of related objects called sync refresh groups. A sync refresh group
consists of all related materialized views and tables that must be refreshed together as a
single entity because they are dependent on one another.

See Also:

• Oracle Database SQL Language Reference for more information about the
CREATE MATERIALIZED VIEW LOG statement

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SYNC_REFRESH package

8.1.4 Specifying Change Data for Refresh
In the other refresh methods, you can directly modify the base tables of the materialized view,
and the issue of specifying change data does not arise. But with synchronous refresh, you are
required to specify and prepare the change data according to certain formally specified rules
and using APIs provided by the DBMS_SYNC_REFRESH package.

There are two ways to specify the change data:

• Provide the change data in an outside table and register it with the
REGISTER_PARTITION_OPERATION procedure.

See "Working with Partition Operations While Capturing Change Data for Synchronous
Refresh" for more details.

• Provide the change data by in staging logs and process them with the
PREPARE_STAGING_LOG procedure. The format of the staging logs and rules for populating
are described in "Working with Staging Logs While Capturing Change Data for
Synchronous Refresh". You are required to run the PREPARE_STAGING_LOG procedure for
every table before performing the refresh operation on that table.

Chapter 8
About Synchronous Refresh for Materialized Views

8-3

8.1.5 Synchronous Refresh Preparation and Execution
After preparing the change data, you can perform the actual refresh operation. Synchronous
refresh takes a new approach to refresh execution. It works by dividing the refresh operation
into two steps: preparation and execution. This is one of the main differences between it and
the other refresh methods and provides some important benefits.

The preparation step determines the mapping between the fact table partitions and the
materialized view partitions. This step computes the new tables corresponding only to the
partitions of the fact table that have been changed by the incremental change data load. After
these tables, called outside tables, have been computed, the actual execution of the refresh
operation takes place in the execution step, which consists of just exchanging the outside
tables with the corresponding partitions in the fact table or materialized view.

By dividing the refresh execution step into two phases and providing separate procedures for
them, synchronous refresh not only provides you control over the refresh execution process,
but also improves overall system performance. It does this by minimizing the time the
materialized views are not available for use by direct access or the Optimizer because they are
modified by the refresh process. During the preparation phase, the materialized view and its
tables are not modified because at this time all the refresh changes are recorded in the outside
table. Consequently, the materialized view is available to any query that needs to read them. It
is only during execution that the tables and materialized views are modified. Execution
performance is mainly affected by the number of changes to the dimension tables; if this
number is small, then the performance should be very good because the exchange partition
operations are themselves very fast.

The DBMS_SYNC_REFRESH package provides the PREPARE_REFRESH and EXECUTE_REFRESH
procedures to perform these two steps.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

8.1.6 Materialized View Eligibility Rules and Restrictions for Synchronous
Refresh

The primary requirement for a materialized view to be eligible for synchronous refresh is that
the materialized view must be partitioned with a key that can be derived from the partition key
of its fact table. The following sections describe the other requirements for eligibility for
synchronous refresh.

This section contains the following topics:

• Synchronous Refresh Restrictions: Partitioning

• Synchronous Refresh Restrictions: Refresh Options

• Synchronous Refresh Restrictions: Constraints

• Synchronous Refresh Restrictions: Tables

• Synchronous Refresh Restrictions: Materialized Views

• Synchronous Refresh Restrictions: Materialized Views with Aggregates

Chapter 8
About Synchronous Refresh for Materialized Views

8-4

8.1.6.1 Synchronous Refresh Restrictions: Partitioning
There are two key requirements to use synchronous refresh:

• The materialized view must be partitioned along the same dimension as the fact table.

• The partition key of the fact table should functionally determine the partition key of the
materialized view.

The term functionally determine means the partition key of the materialized view can be
derived from the partition key of the fact table based on a foreign key constraint relationship.
This condition is satisfied if the partition key of the materialized view is the same as that for the
fact table or related by joins from the fact table to the dimension table as in a star or snowflake
schema. For example, if the fact table is partitioned by a date column, such as TIME_KEY, the
materialized view can be partitioned by TIME_KEY, MONTH, or YEAR.

Synchronous refresh supports two types of partitioning on fact tables and materialized views:
range partitioning and composite partitioning, when the top-level partitioning type is range.

8.1.6.2 Synchronous Refresh Restrictions: Refresh Options
When you define a materialized view, you can specify three refresh options: how to refresh;
whether trusted constraints can be used; and what type of refresh is to be performed. If
unspecified, the defaults are assumed to be ON DEMAND, ENFORCED constraints, and FORCE
respectively. Synchronous refresh requires that the first two of these options must have the
values ON DEMAND and TRUSTED constraints respectively. Synchronous refresh does not require
the type of refresh to have any specific value, so it can be FAST, FORCE, or COMPLETE.

8.1.6.3 Synchronous Refresh Restrictions: Constraints
The relationships between the fact and dimension tables are declared by foreign and primary
key constraints on the tables. Synchronous refresh trusts these constraints to perform the
refresh, and requires that USING TRUSTED CONSTRAINTS must be specified in the materialized
view definition. This allows using nonvalidated RELY constraints and rewriting against
materialized views in an UNKNOWN or FRESH state during refresh.

When a table is registered for synchronous refresh, its constraints might be in a VALIDATE or
NOVALIDATE state. If the table is a dimension table, synchronous refresh will retain this state
during the refresh execution process.

However, if the table is a fact table, synchronous refresh marks the constraints NOVALIDATE
state during refresh execution. This avoids the need for validating the constraint on existing
data during a partition exchange that is the basis of the synchronous refresh method, and
improves the performance of refresh execution.

Because the constraints on the fact table are not enforced by synchronous refresh, it is you
who must verify the integrity and consistently of the data provided.

8.1.6.4 Synchronous Refresh Restrictions: Tables
To be eligible for synchronous refresh, a table must satisfy the following conditions:

• The table cannot have VPD or triggers defined on it.

• The table cannot have any RAW type.

• The table cannot be remote.

Chapter 8
About Synchronous Refresh for Materialized Views

8-5

• The staging log key of each table registered for synchronous refresh should satisfy the
requirements described in "About the Staging Log Key".

8.1.6.5 Synchronous Refresh Restrictions: Materialized Views
There are some other restrictions that are specific to materialized views registered for
synchronous refresh:

• The ROWID column cannot be used to define the query. It is not relevant because it uses
partition exchange, which replaces the original partition with the outside table. Hence, the
defining query should not include any ROWID columns.

• Synchronous refresh does not support nested materialized views, UNION ALL materialized
views, subqueries, or complex queries in the materialized view definition. The defining
query must conform to the star or snowflake schema.

• These SQL constructs are also not supported: analytic window functions (such as RANK),
the MODEL clause, and the CONNECT BY clause.

• Synchronous refresh is not supported for a materialized view that refers to views, remote
tables, or outer joins.

• The materialized view must not contain references to nonrepeating expressions like
SYSDATE and ROWNUM.

In general, most restrictions that apply to PCT-refresh, fast refresh, and general query rewrite
also apply to synchronous refresh. Those restrictions are available at:

• "About Materialized View Restrictions for Query Rewrite"

• "General Query Rewrite Restrictions"

• "General Restrictions on Fast Refresh"

8.1.6.6 Synchronous Refresh Restrictions: Materialized Views with Aggregates
For materialized views with aggregates, synchronous refresh shares these restrictions with fast
refresh:

• Only AVG, BIT_AND_AGG, BIT_OR_AGG, BIT_XOR_AGG, COUNT, KURTOSIS_POP, KURTOSIS_SAMP,
MIN, MAX, STDDEV, SUM, SKEWNESS_POP, SKEWNESS_SAMP, and VARIANCE are supported.

• You must specify COUNT(*).

• Aggregate functions must occur only as the outermost part of the expression. That is,
aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

• For each aggregate, such as AVG(expr), the corresponding COUNT(expr) must be present.
Oracle recommends that you specify SUM(expr).

• If you specify VARIANCE(expr) or STDDEV(expr), you must also specify COUNT(expr) and
SUM(expr). Oracle recommends that you specify SUM(expr *expr).

• If you specify KURTOSIS_POP, KURTOSIS_SAMP, SKEWNESS_POP, or SKEWNESS_SAMP, you must
also specify COUNT(expr) and SUM(expr). For SKEWNESS_POP and SKEWNESS_SAMP, you must
also specify VARIANCE(expr) and COUNT(*).

8.2 Using Synchronous Refresh for Materialized Views
Synchronous refresh differs from the other refresh methods in a number of ways. One is that
the API for synchronous refresh is contained in a new package called DBMS_SYNC_REFRESH,

Chapter 8
Using Synchronous Refresh for Materialized Views

8-6

whereas other refresh methods are declared in the DBMS_MVIEW package. Another difference is
that after objects are registered with synchronous refresh, and, once registered, the other
refresh methods cannot be used with them.

The operations associated with synchronous refresh can be divided into the following three
broad phases:

• Synchronous Refresh Step 1: Registration Phase

• Synchronous Refresh Step 2: Synchronous Refresh Phase

• Synchronous Refresh Step 3: The Unregistration Phase

8.2.1 Synchronous Refresh Step 1: Registration Phase
In this phase (Figure 8-1), you register the objects for use with synchronous refresh. The two
steps in this phase are registration of tables first and then materialized views. You register the
tables (by creating staging logs) and materialized views (with the REGISTER_MVIEWS procedure).
The staging logs are created with the CREATE MATERIALIZED LOG … FOR SYNCHRONOUS REFRESH
statement. If a table already has a regular materialized view log, the ALTER MATERIALIZED LOG …
FOR SYNCHRONOUS REFRESH statement can be used to convert it to a staging log.

Figure 8-1 Registration Phase

Setup
Phase

Register
Materialized Views

Register
Tables

You can create a staging log with a statement, as show in Example 8-1.

Example 8-1 Registering Tables

CREATE MATERIALIZED VIEW LOG ON fact
FOR SYNCHRONOUS REFRESH USING st_fact;

If a table has a materialized view log, you can alter it to a staging log with a statement, such as
the following:

ALTER MATERIALIZED VIEW LOG ON fact
FOR SYNCHRONOUS REFRESH USING st_fact;

You can register a materialized view with a statement, as shown in Example 8-2.

Example 8-2 Registering Materialized Views

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('MV1');

You can register multiple materialized views at one time:

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('mv2, mv2_year, mv1_halfmonth');

Chapter 8
Using Synchronous Refresh for Materialized Views

8-7

8.2.2 Synchronous Refresh Step 2: Synchronous Refresh Phase
Figure 8-2 shows the synchronous refresh phase. This phase can be used repeatedly to
perform synchronous refresh. The three main steps in this phase are:

1. Prepare the change data for the refresh operation. You can provide the change data in a
table and register it with the REGISTER_PARTITION_OPERATION procedure or provide the
data by populating the staging logs. The staging logs must be processed with the
PREPARE_STAGING_LOG procedure before proceeding to the next step.

An example is Example 8-12.

2. Perform the first step of the refresh operation (PREPARE_REFRESH). This can potentially be a
long-running operation because it prepares and loads the outside tables.

An example is Example 8-16.

3. Perform the second and last step of the refresh operation (EXECUTE_REFRESH). This usually
runs very fast because it usually consists of a series of partition-exchange operations.

An example is Example 8-20.

In Figure 8-2, solid arrows show the standard control flow and dashed arrows are used for
error-handling cases. If either of the refresh operations (PREPARE_REFRESH or EXECUTE_REFRESH)
raises user errors, you use an ABORT_REFRESH procedure to restore tables and materialized
views to the state that existed before the refresh operation, fix the problem, and retry the
refresh operation starting from the beginning.

Figure 8-2 Refresh Phase

Synchronous
Refresh Phase

Prepare Refresh

Prepare Change Data Abort Refresh

Execute Refresh

8.2.3 Synchronous Refresh Step 3: The Unregistration Phase
If you choose to stop using synchronous refresh, then you must unregister the materialized
views as shown in Figure 8-3. The materialized views are first unregistered with the
UNREGISTER_MVIEWS procedure. The tables are then unregistered by either dropping their
staging logs or altering the staging logs to ordinary logs. Note that if the staging logs are
converted to be ordinary materialized view logs with an ALTER MATERIALIZED LOG … FOR FAST
REFRESH statement, then the materialized views can be maintained with standard fast-refresh
methods.

Chapter 8
Using Synchronous Refresh for Materialized Views

8-8

Figure 8-3 Unregistration Phase

Unregistration
Phase

Unregister
Tables

Unregister
Materialized Views

Example 8-3 illustrates how to unregister the single materialized view MV1.

Example 8-3 Unregister Materialized Views

EXECUTE DBMS_SYNC_REFRESH.UNREGISTER_MVIEWS('MV1');

You can unregister multiple materialized views at one time:

EXECUTE DBMS_SYNC_REFRESH.UNREGISTER_MVIEWS('mv2, mv2_year, mv1_halfmonth');

You can verify to see that a materialized view has been unregistered by querying the
DBA_SR_OBJ_ALL view.

Example 8-4 illustrates how to drop the staging log.

Example 8-4 Unregister Tables

DROP MATERIALIZED VIEW LOG ON fact;

Or you can alter the table to a materialized view log:

ALTER MATERIALIZED VIEW LOG ON fact
FOR FAST REFRESH;

You can verify to see that a table has been unregistered by querying the DBA_SR_OBJ_ALL view.

8.3 Using Synchronous Refresh Groups
The distinguishing feature of synchronous refresh is that changes to a table and its
materialized views are loaded and refreshed together, hence the name synchronous refresh.
For tables and materialized views to be maintained by synchronous refresh, the objects must
be registered. Tables are registered for synchronous refresh when staging logs are created on
them, and materialized views are registered using the REGISTER_MVIEWS procedure.

Synchronous refresh supports the refresh of materialized views built on multiple tables, with
changes in one or more of them. Tables that are related by constraints must all necessarily be
refreshed together to ensure data integrity. Furthermore, it is possible that some of the tables
registered for synchronous refresh have several materialized views built on top of them, in
which case, all those materialized views must also be refreshed together.

Instead of having you keep track of these dependencies, and issue the refresh commands on
the right set of tables, Oracle Database automatically generates the minimal sets of tables and
materialized views that must necessarily be refreshed together. These sets are termed
synchronous refresh groups or just sync refresh groups. Each sync refresh group is identified
by a GROUP_ID.value.

Chapter 8
Using Synchronous Refresh Groups

8-9

The three procedures related to performing synchronous refresh (PREPARE_REFRESH,
EXECUTE_REFRESH and ABORT_REFRESH) take as input either a single group ID or a list of group
IDs identifying the sync refresh groups.

Each table or materialized view registered for synchronous refresh is assigned a GROUP_ID
value, which may change over time, if the dependencies among them change. This happens
when you issue the REGISTER_MVIEWS and UNREGISTER_MVIEWS procedures. The examples that
follow show the sync refresh groups in a number of scenarios.

Because the GROUP_ID value can change with time, Oracle recommends the actual GROUP_ID
value not be used when invoking the synchronous refresh procedures, but that the function
DBMS_SYNC_REFRESH.GET_GROUP_ID be used instead. This function takes a materialized view
name as input and returns the materialized view's GROUP_ID value.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about how
to use the DBMS_SYNC_REFRESH.REGISTER_MVIEWS procedure

This section contains the following topics:

• Examples of Common Actions with Synchronous Refresh Groups

• Examples of Working with Multiple Synchronous Refresh Groups

8.3.1 Examples of Common Actions with Synchronous Refresh Groups
The synchronous refresh demo scripts in the rdbms/demo directory enable you to view typical
operations that you are likely to perform. The main script is syncref_run.sql, and its log is
syncref_run.log. Example 8-5, Example 8-6, and Example 8-7 below illustrate the different
contexts in which the GET_GROUP_ID function can be used.

Example 8-5 Display the Objects Registered in a Group

This example illustrates how to display the objects registered in a group after registering them.

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('MV1');
SELECT NAME, TYPE, STAGING_LOG_NAME FROM USER_SR_OBJ
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STAGING_LOG_NAME
---------- ---------- ----------------
MV1 MVIEW
FACT TABLE ST_FACT
STORE TABLE ST_STORE
TIME TABLE ST_TIME

Example 8-6 Invoke Refresh Operations

This example illustrates how to invoke refresh operations.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS

Chapter 8
Using Synchronous Refresh Groups

8-10

WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

Example 8-7 Verify the Status of Objects Registered in a Group

This example illustrates how to verify the status of objects registered in a group after an
EXECUTE_REFRESH operation.

SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE COMPLETE
TIME TABLE COMPLETE

8.3.2 Examples of Working with Multiple Synchronous Refresh Groups
You can work with multiple refresh groups at one time with the following APIs:

• GET_GROUP_ID_LIST
Takes a list of materialized views as input and returns their group IDs in a list.

• GET_ALL_GROUP_IDS
Returns the group IDs of all groups in the system in a list.

• The prepare refresh procedures (PREPARE_REFRESH, EXECUTE_REFRESH, and
ABORT_REFRESH) can work multiple groups. Their overloaded versions accept lists of group
IDs at a time.

Example 8-8 Prepare Sync Refresh Groups

This example illustrates how to prepare the sync refresh groups of MV1, MV2, and MV3.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(
 DBMS_SYNC_REFRESH.GET_GROUP_ID_LIST('MV1, MV2, MV3'));

Note that it is not necessary that these three materialized views be all in different groups. It is
possible that two of the materialized views are in one group, and third in another; or even that
all three materialized views are in the same group. Because PREPARE_REFRESH is overloaded to
accept either a group ID or a list of group IDs, the above call will work in all cases.

Example 8-9 Execute Sync Refresh Groups

This example illustrates how to prepare and execute the refresh of all sync refresh groups in
the system.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(
 DBMS_SYNC_REFRESH.GET_ALL_GROUP_IDS);

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(
 DBMS_SYNC_REFRESH.GET_ALL_GROUP_IDS);

Chapter 8
Using Synchronous Refresh Groups

8-11

8.4 Specifying and Preparing Change Data for Synchronous
Refresh

Synchronous refresh requires you to specify and prepare the change data that serves as the
input to the PREPARE_REFRESH and EXECUTE_REFRESH procedures. There are two methods for
specifying the change data:

• Provide the change data in an outside table and register it with the
REGISTER_PARTITION_OPERATION procedure as described in Working with Partition
Operations While Capturing Change Data for Synchronous Refresh.

• Provide the change data by in staging logs and process them with the
PREPARE_STAGING_LOG procedure as described in Working with Staging Logs While
Capturing Change Data for Synchronous Refresh.

Some important points about change data are:

• The two methods are not mutually exclusive and can be employed at the same time, even
on the same table, but there cannot be any conflicts in the changes specified. For instance,
you can use the staging log to specify the change in a partition with a small number of
changes, but if another partition has extensive changes, you can provide the changes for
that partition in an outside table.

• For dimension tables, you can use only the staging logs to provide changes.

• Synchronous refresh can handle arbitrary combinations of changes in fact and dimension
tables, but it is optimized for the most common data warehouse usage scenarios, where
the bulk of the changes are made to only a few partitions of the fact table.

• Synchronous refresh places no restrictions on the use of nondestructive partition
maintenance operations (PMOPS), such as add partition, used commonly in data
warehouses. The use of such PMOPS is not directly related to the method used to specify
change data.

• Synchronous refresh requires that all staging logs in the group must be prepared, even if
the staging log has no changes registered in it.

8.4.1 Working with Partition Operations While Capturing Change Data for
Synchronous Refresh

Using the REGISTER_PARTITION_OPERATION procedure, you can provide the change data
directly. This method is applicable only to fact tables. For each fact table partition that is
changed, you must provide an outside table containing the data for that partition. The
synchronous refresh demo (syncref_run.sql and syncref_run.log) contains an example.
The steps are:

1. Create an outside table for the partition that it is intended to replace. It must have the same
constraints as the fact table, and can be created in any desired tablespace.

CREATE TABLE fact_ot_fp3(
 time_key DATE NOT NULL REFERENCES time(time_key),
 store_key INTEGER NOT NULL REFERENCES store(store_key),
 dollar_sales NUMBER (6,2),
 unit_sales INTEGER)
 tablespace syncref_fp3_tbs;

2. Insert the data for this partition into the outside table.

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-12

3. Register this table for partition exchange.

begin
 DBMS_SYNC_REFRESH.REGISTER_PARTITION_OPERATION(
 partition_op => 'EXCHANGE',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP3',
 outside_partn_table_schema => 'SYNCREF_USER',
 outside_partn_table_name => 'FACT_OT_FP3');
 end;
 /
/

When you register the outside table and execute the refresh, Oracle Database performs the
following operation at EXECUTE_REFRESH time:

ALTER TABLE FACT EXCHANGE PARTITION fp3 WITH TABLE fact_ot_fp3
INCLUDING INDEXES WITHOUT VALIDATION;

However, you are not allowed to issue the above statement directly on your own. If you do,
Oracle Database will give this error:

ORA-31908: Cannot modify the contents of a table with a staging log.

Besides the EXCHANGE operation, the two other partition operations that can be registered with
the REGISTER_PARTITION_OPERATION procedure are DROP and TRUNCATE.

Example 8-10 Registering a DROP Operation

This example illustrates how to specify the drop of the first partition (FP1), by using the
following statement.

begin
 DBMS_SYNC_REFRESH.REGISTER_PARTITION_OPERATION(
 partition_op => 'DROP',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP1');
end;
/

If you wanted to truncate the partition instead, you could specify TRUNCATE instead of DROP for
the partition_op parameter.

The three partition operations (EXCHANGE, DROP, and TRUNCATE) are called destructive PMOPS
because they modify the contents of the table. The following partition operations are not
destructive, and can be performed directly on a table registered with synchronous refresh:

• ADD PARTITION
• SPLIT PARTITION
• MERGE PARTITIONS
• MOVE PARTITION
• RENAME PARTITION
In data warehouses, these partition operations are commonly used to manage the large
volumes of data, and synchronous refresh places no restrictions on their usage. Oracle
Database requires only that these operations be performed before the PREPARE_REFRESH
command is issued. This is because the PREPARE_REFRESH procedure computes the mapping

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-13

between the fact table partitions and the materialized view partitions, and if any partition-
maintenance is done between the PREPARE_REFRESH and EXECUTE_REFRESH procedures, Oracle
Database will detect this at EXECUTE_REFRESH and show an error.

You can use the USER_SR_PARTN_OPS catalog view to display the registered partition operations.

SELECT TABLE_NAME, PARTITION_OP, PARTITION_NAME,
 OUTSIDE_TABLE_SCHEMA ot_schema, OUTSIDE_TABLE_NAME ot_name
FROM USER_SR_PARTN_OPS
ORDER BY TABLE_NAME;

TABLE_NAME PARTITION_ PARTITION_NAME OT_SCHEMA OT_NAME
---------- ---------- --------------- --------------- --------------------
FACT EXCHANGE FP3 SYNCREF_USER FACT_OT_FP3

1 row selected.

These partition operations are consumed by the synchronous refresh operation and are
automatically unregistered by the EXECUTE_REFRESH procedure. So if you query
USER_SR_PARTN_OPS after EXECUTE_REFRESH, it will show no rows.

After registering a partition, if you find you made a mistake or change your mind, you can undo
it with the UNREGISTER_PARTITION_OPERATION command:

begin
 DBMS_SYNC_REFRESH.UNREGISTER_PARTITION_OPERATION(
 partition_op => 'EXCHANGE',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP3');
end;
/

8.4.2 Working with Staging Logs While Capturing Change Data for
Synchronous Refresh

In synchronous refresh, staging logs play a role similar to materialized view logs in incremental
refresh. They are created with a DDL statement and can be altered to a materialized view log.
Unlike materialized view logs, however, you are responsible for loading changes into the
staging logs in a specified format. Each row in the staging log must have a key to identify it
uniquely; this key is called the staging log key, and is defined in "About the Staging Log Key".

You are responsible for populating the staging log, which will consist of all the columns in the
base table and an additional control column DMLTYPE$$ of type CHAR(2). This must have the
value 'I' to denote the row is being inserted, 'D' for delete, and 'UN' and 'UO' for the new
and old values of the row being updated, respectively. The last two must occur in pairs.

The staging log is validated by the PREPARE_STAGING_LOG procedure and consumed by the
synchronous refresh operations (PREPARE_REFRESH and EXECUTE_REFRESH). During validation by
PREPARE_STAGING_LOG, if errors are detected, they will be captured in an exceptions table. You
can query the view USER_SR_STLOG_EXCEPTIONS to get details on the exceptions.

Synchronous refresh requires that, before calling PREPARE_REFRESH for sync refresh groups, the
staging logs of all tables in the group must be processed with PREPARE_STAGING_LOG. This is
necessary even if a table has no change data and its staging log is empty.

This section contains the following topics:

• About the Staging Log Key

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-14

• About Staging Log Rules

• About Columns Being Updated to NULL

• Examples of Working with Staging Logs

• Error Handling in Preparing Staging Logs

8.4.2.1 About the Staging Log Key
In order to create a staging log on a base table, the base table must have a key. If the table
has a primary key, the primary key is deemed to be staging log key on the table's staging log.
Note that every dimension table has a primary key.

With fact tables, it is less common for them to have a primary key. If a table does not have a
primary key, the columns that are the foreign keys of its dimension tables constitute its staging
log key.

The key of a staging log can be described as:

• The primary key of the base table. If a fact table has a primary key, it is sometimes called a
surrogate key.

• The set of foreign keys for a fact table. This applies if the fact table does not have a
primary key. This assumption is common in data warehouses, though it is not enforced.

The rules for loading staging logs are described in "About Staging Log Rules".

The PREPARE_STAGING_LOG procedure verifies that each key value is specified at most once.
When populating the staging log, it is your responsibility to consolidate the changes if a row
with the same key value is changed more than once. This process is known as change
consolidation. When doing the change consolidation, you must:

• Consolidate a delete-insert of the same row into an update operation with rows 'UO' and
'UN'.

• Consolidate multiple updates into a single update.

• Prevent null changes such as an insert-update-delete of the same row from appearing in
the staging log.

• Consolidate an insert followed by multiple updates into a single insert.

8.4.2.2 About Staging Log Rules
Every row should contain non-null values for all the columns comprising the primary key. You
are required to consolidate all the changes so that each key in the staging log can be specified
only for one type of operation.

For the rows being inserted (DMLTYPE$$ is 'I'), all columns in the staging log must be supplied
with valid values, conforming to any constraint on the corresponding columns in the base table.
Keys of rows being inserted must not exist in the base table.

For the rows being deleted (DMLTYPE$$ is 'D'), the non-key column values are optional.
Similarly, for the rows specifying the old values of the columns being updated (DMLTYPE$$ is
'UO'), the non-key column values are optional; an important exception is the column whose
values are being updated to NULL, as explained subsequently.

For the rows specifying the new values of the columns being updated (DMLTYPE$$ is 'UN'), the
non-key column values are optional except for the values of the columns that were changed.

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-15

8.4.2.3 About Columns Being Updated to NULL
If a column is being updated to NULL, its old value must be specified. Otherwise, Oracle
Database may not be able to distinguish this from a column whose value is being left
unchanged in the update.

For example, let table T1 have three columns c1, c2, and c3. Let there be a row with (c1, c2,
c3) = (1, 5, 10), and you supply the following information in the staging log:

DMLTYPE$$ C1 C2 C3

UO 1 NULL NULL

UN 1 NULL 11

The result would be that the new row could be (1, 5, 11) or (1, NULL, 11) without having
specified the old value. However, with that specification, it is clear the new row is (1, 5, 11). If
you want to specify NULL for c2, you should specify the old value in the UO row as follows:

DMLTYPE$$ C1 C2 C3

UO 1 5 NULL

UN 1 NULL 11

Because the old value of c2 is 5, (the correct previously updated value for the column), its new
value, will be NULL and the new row is (1, NULL, 11).

8.4.2.4 Examples of Working with Staging Logs
This section illustrates examples of working with staging logs.

The PREPARE_STAGING_LOG procedure has an optional third parameter called PSL_MODE. This
allows you to specify whether any or all of the three types of DML statements specified in the
staging log can be treated as trusted, and not be subject to verification by the
PREPARE_STAGING_LOG procedure, as shown in Example 8-11.

Example 8-11 Specifying Trusted DML Statements

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store',
 DBMS_SYNC_REFRESH.INSERT_TRUSTED +
 DBMS_SYNC_REFRESH.DELETE_TRUSTED);

This call will skip verification of INSERT and DELETE DML statements in the staging log of STORE
but will verify UPDATE DML statements.

Example 8-12 Preparing Staging Logs

This example is taken from the demo syncref_run.sql. It shows that the user has provided
values for all columns for the delete and update operations. This is recommended if these
values are available.

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('I', 5, 5, 'Store 5', '03060');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('I', 6, 6, 'Store 6', '03062');

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-16

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, 4, 'Store 4', '03062');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, 4, 'Stor4NewNam', '03062');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, 3, 'Store 3', '03060');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

-- display initial contents of st_store

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM st_store
ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ---------- -------
D 3 3 Store 3 03060
UO 4 4 Store 4 03062
UN 4 4 Stor4NewNam 03062
I 5 5 Store 5 03060
I 5 5 Store 6 03062

5 rows selected.

Example 8-13 Filling in Missing Values for Deleting and Updating Records

This example shows that if you do not supply all the values for the delete and update
operations, then when you run the PREPARE_STAGING_LOG procedure, Oracle Database will fill in
missing values.

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, NULL, NULL, NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, NULL, NULL, NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, NULL, NULL, '03063');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM ST_STORE ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ----------- ---------
D 3 3 Store 3 03060
UO 4 4 Store 4 03062
UN 4 4 Store 4 03063

Example 8-14 Updating a Column to NULL

This example illustrates how to update a column to NULL. If you want to update a column value
to NULL, then you must provide its old value in the UO record.

In this example, your goal is to change the zipcode of store 4 to 03063 and its name to NULL.
You can supply the old zipcode value, but you must supply the old value of store_name in the
'UO' row, or else store_name will be unchanged.

Chapter 8
Specifying and Preparing Change Data for Synchronous Refresh

8-17

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, NULL, 'Store 4', NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, NULL, NULL, '03063');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM st_store ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ----------- --------
UO 4 4 Store 4 03062
UN 4 4 03063

Example 8-15 Displaying Staging Log Statistics

This example illustrates how to use the USER_SR_STLOG_STATS catalog view to display the
staging log statistics.

SELECT TABLE_NAME, STAGING_LOG_NAME, NUM_INSERTS, NUM_DELETE, NUM_UPDATES
FROM USER_SR_STLOG_STATS
ORDER BY TABLE_NAME;

TABLE_NAME STAGING_LOG_NAME NUM_INSERTS NUM_DELETES NUM_UPDATES
---------- ---------------- ----------- ----------- -----------
FACT ST_FACT 4 1 1
STORE ST_STORE 2 1 1
TIME ST_TIME 1 0 0

3 rows selected.

If you use the same query at the end of the EXECUTE_REFRESH procedure, then you will get no
rows, indicating the change data has all been consumed by synchronous refresh.

8.4.2.5 Error Handling in Preparing Staging Logs
When a table is processed by the PREPARE_STAGING_LOG procedure, it will detect and report
errors in the specification of change data that relates only to that table. For example, it will
verify that keys of rows being inserted do not already exist in the base table and that keys of
rows being deleted or updated do exist. However, the PREPARE_STAGING_LOG procedure cannot
detect errors related to the referential integrity constraints on the table; that is, it cannot detect
errors if there are inconsistencies in the specification of change data that involves more than
one table. Such errors will be detected at the time of the EXECUTE_REFRESH procedure.

8.5 Troubleshooting Synchronous Refresh Operations
This section describes how to monitor the status of the two synchronous refresh procedures,
PREPARE_REFRESH and EXECUTE_REFRESH and how to troubleshoot errors that may occur. To be
successful in using synchronous refresh, you should be aware of the different types of errors
that can arise and how to deal with them.

One of the most likely sources of errors is from incorrect preparation of the change data. These
errors will present themselves as referential constraint violations when the EXECUTE_REFRESH
procedure is run. In such cases, the status of the group is set to ABORT. It is important to learn
to recognize these errors and address them.

The topics covered in this section are:

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-18

• Overview of the Status of Refresh Operations

• How PREPARE_REFRESH Sets the STATUS Fields

• Examples of Preparing for Synchronous Refresh Using PREPARE_REFRESH

• How EXECUTE_REFRESH Sets the Status Fields During Synchronous Refresh

• Examples of Executing Synchronous Refresh Using EXECUTE_REFRESH

• Example of EXECUTE_REFRESH with Constraint Violations

8.5.1 Overview of the Status of Refresh Operations
The DBMS_SYNC_REFRESH package provides three procedures to control the refresh execution
process. You initiate synchronous refresh with the PREPARE_REFRESH procedure, which plans
the entire refresh operation and does the bulk of the computational work for refresh, followed
by the EXECUTE_REFRESH procedure, which carries out the refresh. The third procedure provided
is ABORT_REFRESH, which is used to recover from errors if either of these procedures fails.

The USER_SR_GRP_STATUS and USER_SR_OBJ_STATUS catalog views contain all the information
on the status of these refresh operations for current groups:

• The USER_SR_GRP_STATUS view shows the status of the group as a whole.

– The OPERATION field indicates the current refresh procedure run on the group: PREPARE
or EXECUTE.

– The STATUS field indicates the status of the operation - RUNNING, COMPLETE, ERROR-SOFT,
ERROR-HARD, ABORT, PARTIAL. These are explained in detail later.

– The group is identified by its group ID.

• The USER_SR_OBJ_STATUS view shows the status of each individual object.

– The object is identified by its owner, name, and type (TABLE or MVIEW) and group ID.

– The STATUS field, which may be NOT PROCESSED, ABORT, or COMPLETE. These are
explained in detail later.

8.5.2 How PREPARE_REFRESH Sets the STATUS Fields
When you launch a new PREPARE_REFRESH job, the group's STATUS is set to RUNNING and the
STATUS of the objects in the group is set to NOT PROCESSED. When the PREPARE_REFRESH job
finishes, the status of the objects remains unchanged, but the group's status is changed to one
of following three values:

• COMPLETE if the job completed successfully.

• ERROR_SOFT if the job encountered the ORA-01536: space quota exceeded for tablespace
'%s' error.

• ERROR_HARD otherwise (that is, if the job encountered any error other than ORA-01536).

Some points to keep in mind when using the PREPARE_REFRESH procedure:

• The NOT PROCESSED status of the objects in the group signifies that the data of the objects
has not been modified by the PREPARE_REFRESH job. The data modification will occur only in
the EXECUTE_REFRESH step, at which time the status will be changed as appropriate. This is
described later.

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-19

• If the STATUS is ERROR_SOFT, you can fix the ORA-01536 error by increasing the space
quota for the specified tablespace, and resume PREPARE_REFRESH. Alternatively, you can
choose to terminate the refresh with ABORT_REFRESH.

• If the STATUS value is ERROR_HARD, then your only option is to terminate the refresh with
ABORT_REFRESH.

• If the STATUS value after the PREPARE_REFRESH procedure finishes is RUNNING, then an error
has occurred. Contact Oracle Support Services for assistance.

• A STATUS value of ERROR_HARD might be related to running out of resources because the
PREPARE_REFRESH procedure can be resource-intensive. If you are not able to identify the
problem, then contact Oracle Support Services for assistance. But if you can identify the
problem and fix it, then you might be able to continue using synchronous refresh, by first
running ABORT_REFRESH and then the PREPARE_REFRESH procedure.

• Remember that you can launch a new PREPARE_REFRESH job only when the previous
refresh operation on the group (if any) has either completed execution successfully or has
terminated.

• If the STATUS value of the PREPARE_REFRESH procedure at the end is not COMPLETE, you
cannot proceed to the EXECUTE_REFRESH step. If you are unable to get PREPARE_REFRESH to
work correctly, then you can proceed to the unregistration phase, and maintain the objects
in the groups with other refresh methods.

8.5.3 Examples of Preparing for Synchronous Refresh Using
PREPARE_REFRESH

This section offers examples of common cases when preparing a refresh.

Example 8-16 PREPARE_REFRESH Succeeds with Status COMPLETE

This example shows a PREPARE_REFRESH procedure completing successfully.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE COMPLETE

Example 8-17 PREPARE_REFRESH Fails with Status ERROR_SOFT

This example shows a PREPARE_REFRESH procedure encountering ORA-01536.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')); END;

*
ERROR at line 1:
ORA-01536: space quota exceeded for tablespace 'DUMMY_TS'
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 429
ORA-06512: at line 1PL/SQL procedure successfully completed.

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-20

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE ERROR_SOFT

Example 8-18 Resume of PREPARE_REFRESH Succeeds

This example is a continuation of Example 8-17. After the ORA-01536 error is raised, increase
the tablespace for DUMMY_TS and rerun the PREPARE_REFRESH procedure, which now completes
successfully. Note that the PREPARE_REFRESH procedure will resume processing from the place
where it stopped. Also note the usage of the PREPARE_REFRESH procedure is no different from
normal, and does not require any parameters or settings to indicate the procedure is being
resumed.

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE COMPLETE

Example 8-19 Terminate PREPARE_REFRESH

This example assumes the PREPARE_REFRESH procedure has failed and the STATUS value is
ERROR_HARD. You then run the ABORT_REFRESH procedure to terminate the prepare job. Note that
the STATUS value has changed from ERROR_HARD to ABORT at the end.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE ERROR_HARD

EXECUTE DBMS_SYNC_REFRESH.ABORT_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE ABORT

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-21

8.5.4 How EXECUTE_REFRESH Sets the Status Fields During
Synchronous Refresh

The EXECUTE_REFRESH procedure divides the group of objects in the sync refresh group into
subgroups, each of which is refreshed atomically. The first subgroup consists of the base
tables. Each materialized view in the sync refresh group is placed in a separate subgroup and
refreshed atomically.

In the case of the EXECUTE_REFRESH procedure, the possible end states of the STATUS field are:
COMPLETE, PARTIAL, and ABORT:

• STATUS = COMPLETE
This state is reached if the base tables and all the materialized views refresh successfully.

• STATUS = ABORT
This state indicates the refresh of the base tables subgroup has failed; the data in the
tables and materialized views is consistent but unchanged. If this happens, then there
should be an error associated with the failure. If it is a user error, such as a constraint
violation, then you can fix the problem and retry the synchronous refresh operation from
the beginning (that is, PREPARE_STAGING_LOG for each table in the group PREPARE_REFRESH
and EXECUTE_REFRESH.). If it is not a user error, then you should contact Oracle Support
Services.

• STATUS = PARTIAL
If all the base tables refresh successfully and some, but not all, materialized views refresh
successfully, then this state is reached. The data in the tables and materialized views that
have refreshed successfully are consistent with one another; the other materialized views
are stale and need complete refresh. If this happens, there should be an error associated
with the failure. Most likely this is not a user error, but an Oracle error that you should
report to Oracle Support Services. You have two choices in this state:

– Retry execution of the EXECUTE_REFRESH procedure. In such a case, EXECUTE_REFRESH
will retry the refresh of the failed materialized views with another refresh method like
PCT-refresh or COMPLETE refresh. If all materialized views succeed, then the status will
be set to COMPLETE. Otherwise, the status will remain at PARTIAL.

– Invoke the ABORT_REFRESH procedure to terminate the materialized views. This will roll
back changes to all materialized views and base tables. They will all have the same
data as in the original state before any of the changes in the staging logs or registered
partition operations has been applied to them.

In the case of errors in the EXECUTE_REFRESH procedure, the following fields in the
USER_SR_GRP_STATUS view are also useful:

• NUM_MVS_COMPLETED, which contains the number of materialized views that completed the
refresh operation successfully.

• NUM_MVS_ABORTED, which contains the number of materialized views that terminated.

• ERROR and ERROR_MESSAGE, which records the error encountered in the operation.

At the end of the EXECUTE_REFRESH, procedure, the statuses of the objects in the group are
marked as follows in the USER_SR_OBJ_STATUS view:

• The status of an object is set to COMPLETE if the changes were applied to it successfully.

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-22

• The status of an object is set to ABORT if the changes were not applied successfully. In this
case, the object will be in the same state as it was before the refresh operation. The ERROR
and ERROR_MESSAGE fields record the error encountered in the operation.

• The status of an object remains NOT PROCESSED if no changes were applied to it.

8.5.5 Examples of Executing Synchronous Refresh Using
EXECUTE_REFRESH

This section provides examples of common cases when executing a refresh.

Example 8-20 EXECUTE_REFRESH Completes Successfully

Example 8-20 shows an EXECUTE_REFRESH procedure completing successfully.

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
EXECUTE COMPLETE

Example 8-21 EXECUTE_REFRESH Succeeds Partially

Example 8-21 shows an EXECUTE_REFRESH procedure succeeding partially. In this example, the
EXECUTE_REFRESH procedure fails after refreshing the base tables but before completing the
refresh of all the materialized views. The resulting status of the group is PARTIAL and the
QSM-03280 error message is thrown.

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')); END;

*
ERROR at line 1:
ORA-31928: Synchronous refresh error
QSM-03280: One or more materialized views failed to refresh successfully.
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 446
ORA-06512: at line 1

Check the status of the group itself after the EXECUTE_REFRESH.procedure. Note that the
operation field is set to EXECUTE and the status is PARTIAL.

SELECT OPERATION, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- -------------
EXECUTE PARTIAL

By querying the USER_SR_GRP_STATUS view, you find the number of materialized views that
have terminated is 1 and the failed materialized view is MV1.

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-23

If you examine the status of objects in the group, because STORE and TIME are unchanged,
then their status is NOT PROCESSED.

SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW ABORT
MV1_HALFMONTH MVIEW COMPLETE
MV2 MVIEW COMPLETE
MV2_YEAR MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 3 1

At this point, you can attempt to run the EXECUTE_REFRESH procedure once more. If the retry
succeeds and the failed materialized views succeed, then the group status will be set to
COMPLETE. Otherwise, the status will remain at PARTIAL. This is shown in Example 8-22. You
can also terminate the refresh procedure and return to the original state. This is shown in
Example 8-23.

Example 8-22 Retrying a Refresh After a PARTIAL Status

Example 8-22 illustrates a continuation of Example 8-21. You retry the EXECUTE_REFRESH
procedure and it succeeds:

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

--Check the status of the group itself after the EXECUTE_REFRESH operation;
--note that the operation field is set to EXECUTE and status is COMPLETE.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ---------
EXECUTE COMPLETE

By querying the USER_SR_GRP_STATUS view, you find the number of materialized views that
have terminated is 0 and the status of MV1 is COMPLETE. If you examine the status of objects in
the group, because STORE and TIME are unchanged, then their status is NOT PROCESSED.

SELECT NAME, TYPE, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-24

---------------- ---------- ----------------
MV1 MVIEW COMPLETE
MV1_HALFMONTH MVIEW COMPLETE
MV2 MVIEW COMPLETE
MV2_YEAR MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 4 0

You can examine the tables and materialized views to verify that the changes in the change
data have been applied to them correctly, and the materialized views and tables are consistent
with one another.

Example 8-23 Terminating a Refresh with a PARTIAL Status

Example 8-23 illustrates terminating a refresh procedure that is in a PARTIAL state.

EXECUTE DBMS_SYNC_REFRESH.ABORT_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

Check the status of the group itself after the ABORT_REFRESH procedure; note that the operation
field is set to EXECUTE and status is ABORT.

SELECT OPERATION, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
---------- -------
EXECUTE ABORT

By querying the USER_SR_GRP_STATUS view, you see that all the materialized views have
terminated, and the fact table as well. Check the status of objects in the group; because STORE
and TIME are unchanged, their status is NOT PROCESSED.

SELECT NAME, TYPE, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW ABORT
MV1_HALFMONTH MVIEW ABORT
MV2 MVIEW ABORT
MV2_YEAR MVIEW ABORT
FACT TABLE ABORT
STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-25

FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 0 4

You can examine the tables and materialized views to verify that they are all in the original
state and no changes from the change data have been applied to them.

8.5.6 Example of EXECUTE_REFRESH with Constraint Violations
In the synchronous refresh method, change data is loaded into the tables and materialized
views at the same time to keep them synchronized. In the other refresh methods, change data
is loaded into tables first, and any constraints that are enabled are checked at that time. In the
synchronous refresh method, the outside table is prepared using trusted data from the user,
and constraint validation is turned off to save execution time. The following example shows a
constraint violation that is caught by the EXECUTE_REFRESH procedure. In such cases, the final
status of the EXECUTE_REFRESH procedure will be ABORT. You will have to identify and fix the
problem in the change data and begin the synchronous refresh phase all over.

Example 8-24 Child Key Constraint Violation

In Example 8-24, assume the same tables as in the file syncref_run.sql in the rdbms/demo
directory are used and populated with the same data. In particular, the table STORE has four
rows with the primary key STORE_KEY having the values 1 through 4, and the FACT table has
rows referencing all four stores, including store 3.

To demonstrate a parent-key constraint violation, populate the staging log of STORE with the
delete of the row having the STORE_KEY of 3. There are no other changes to the other tables.
When the EXECUTE_REFRESH procedure runs, it fails with the ORA-02292 error as shown.

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, 3, 'Store 3', '03060');

-- Prepare the staging logs
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'fact');
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'time');
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

-- Prepare the refresh
EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

-- Execute the refresh
EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')); END;

*
ERROR at line 1:
ORA-02292: integrity constraint (SYNCREF_USER.SYS_C0031765) violated - child record found
ORA-06512: at line 1
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 446
ORA-06512: at line 1

Examine the status of the group itself after the EXECUTE_REFRESH procedure. Note that the
operation field is set to EXECUTE and the status is ABORT.

Chapter 8
Troubleshooting Synchronous Refresh Operations

8-26

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
---------- --------------
EXECUTE ABORT

If you check the contents of the base tables and of MV1, then you will find there is no change,
and they all have the original values.

8.6 Performing Synchronous Refresh Eligibility Analysis
The CAN_SYNCREF_TABLE function tells you whether a table and its dependent materialized
views are eligible for synchronous refresh. It provides an explanation of its analysis. If the table
and views are not eligible, you can examine the reasons and take appropriate action if
possible. To be eligible for synchronous refresh, a table must satisfy the various criteria
described earlier.

You can invoke CAN_SYNCREF_TABLE function in two ways:

• Use a table to store the output of the CAN_SYNCREF_TABLE function

The following shows the basic syntax for using an output table:

can_syncref_table(schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 statement_id IN VARCHAR2)

• Use a VARRAY to store the output of the CAN_SYNCREF_TABLE function

To direct the output of the CAN_SYNCREF_TABLE function to a VARRAY instead of a table, call
the procedure as follows:

can_syncref_table(schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 output_array IN OUT Sys.CanSyncRefTypeArray)

You can create an output table called SYNCREF_TABLE by executing the utlcsrt.sql script.

Table 8-1 CAN_SYNCREF_TABLE

Parameter Description

schema_name Name of the schema of the base table.

base_table_name Name of the base table.

statement_id A string (VARCHAR2(30) to identify the rows pertaining to a call of the
CAN_SYNCREF_TABLE function when the output is directed to a table named
SYNCREF_TABLE in the user's schema.

output_array The output array into which CAN_SYNCREF_TABLE records the information on
the eligibility of the base table and its dependent materialized views for
synchronous refresh.

Chapter 8
Performing Synchronous Refresh Eligibility Analysis

8-27

Note:

Only one statement_id or output_array parameter need be provided to the
CAN_SYNCREF_TABLE function.

8.6.1 Using SYNCREF_TABLE to Store the Results of Synchronous
Refresh Eligibility Analysis

The output of the CAN_SYNCREF_TABLE function can be directed to a table named
SYNCREF_TABLE. You are responsible for creating SYNCREF_TABLE; it can be dropped when it is
no longer needed. The format of SYNCREF_TABLE is as follows:

CREATE TABLE SYNCREF_TABLE(
 statement_id VARCHAR2(30),
 schema_name VARCHAR2(30),
 table_name VARCHAR2(30),
 mv_schema_name VARCHAR2(30),
 mv_name VARCHAR2(30),
 eligible VARCHAR2(1), -- 'Y' , 'N'
 seq_num NUMBER,
 msg_number NUMBER,
 message VARCHAR2(4000)
);

You must provide a different statement_id parameter for each invocation of this procedure on
the same table. If not, an error will be thrown. The statement_id, schema_name, and
table_name fields identify the results for a given table and statement_id.

Each row contains information on the eligibility of either the table or its dependent materialized
view. The CAN_SYNCREF_TABLE function guarantees that each row has values for both
mv_schema_name and mv_name that are either NULL or non-NULL. These rows have the following
semantics:

• If the mv_schema_name value is NULL and mv_name is NULL, then the ELIGIBLE field describes
whether the table is eligible for synchronous refresh; if the table is not eligible, the
MSG_NUMBER and MESSAGE fields provide the reason for this.

• If the mv_schema_name value is NOT NULL and mv_name is NOT NULL, then the ELIGIBLE field
describes whether the materialized view is eligible for synchronous refresh; if the
materialized view is not eligible, the MSG_NUMBER and MESSAGE fields provide the reason for
this.

You must provide a different statement_id parameter for each invocation of this procedure on
the same table, or else an error will be thrown. The statement_id, schema_name, and
table_name fields identify the results for a given table and statement_id.

8.6.2 Using a VARRAY to Store the Results of Synchronous Refresh
Eligibility Analysis

You can save the output of the CAN_SYNCREF_TABLE function in a PL/SQL VARRAY. The elements
of this array are of type CanSyncRefMessage, which is predefined in the SYS schema as shown
in the following example:

Chapter 8
Performing Synchronous Refresh Eligibility Analysis

8-28

TYPE CanSyncRefMessage IS OBJECT (
 schema_name VARCHAR2(30),
 table_name VARCHAR2(30),
 mv_schema_name VARCHAR2(30),
 mv_name VARCHAR2(30),
 eligible VARCHAR2(1), -- 'Y' , 'N'
 seq_num NUMBER,
 msg_number NUMBER,
 message VARCHAR2(4000)
);

The array type, CanSyncRefArrayType, which is a VARRAY of CanSyncRefMessage objects, is
predefined in the SYS schema as follows:

TYPE CanSyncRefArrayType AS VARRAY(256) OF CanSyncRefMessage;

Each CanSyncRefMessage record provides a message concerning the eligibility of the base
table or a dependent materialized view for synchronous refresh. The semantics of the fields is
the same as that of the corresponding fields in SYNCREF_TABLE. However, SYNCREF_TABLE has a
statement_id field that is absent in CanSyncRefMessage because no statement_id is supplied
(because it is not required) when the CAN_SYNCREF_TABLE procedure is called with a VARRAY
parameter.

The default size limit for CanSyncRefArrayType is 256 elements. If you need more than 256
elements, then connect as SYS and redefine CanSyncRefArray. The following commands, when
connected as the SYS user, redefine CanSyncRefArray and set the limit to 2048 elements:

CREATE OR REPLACE TYPE CanSyncRefArrayType AS VARRAY(2048) OF SYS.CanSyncRefMessage;
/
GRANT EXECUTE ON SYS.CanSyncRefMessage TO PUBLIC;

CREATE OR REPLACE PUBLIC SYNONYM CanSyncRefMessage FOR SYS.CanSyncRefMessage;
/
GRANT EXECUTE ON SYS.CanSyncRefArrayType TO PUBLIC;

CREATE OR REPLACE PUBLIC SYNONYM CanSyncRefArrayType FOR SYS.CanSyncRefArrayType;
/

8.6.3 Demo Scripts
The synchronous refresh demo scripts in the rdbms/demo directory contain examples of the
most common scenarios of the various synchronous refresh operations, including
CAN_SYNCREF_API. The main script is syncref_run.sql and its log is syncref_run.log. The file
syncref_cst.sql defines two procedures DO_CST and DO_CST_ARR, which simplify the usage of
the CAN_SYNCREF_TABLE function and display the information on the screen in a convenient
format. This format is documented in the syncref_cst.sql file.

8.7 Overview of Synchronous Refresh Security Considerations
The execute privilege on the DBMS_SYNC_REFRESH package is granted to PUBLIC, so all users
can execute the procedures in that package to perform synchronous refresh on objects owned
by them. The database administrator can perform synchronous refresh operation on all tables
and materialized views in the database.

In general, if a user without the DBA privilege wants to use synchronous refresh on another
user's table, they must have complete privileges to read from and write to that table; that is, the
user must have the SELECT, INSERT, UPDATE, and DELETE privileges on that table or materialized

Chapter 8
Overview of Synchronous Refresh Security Considerations

8-29

view. The user can have the READ privilege instead of the SELECT privilege. A couple of
exceptions occur in the following:

• PURGE_REFRESH_STATS and ALTER_REFRESH_STATS_RETENTION functions

These two functions implement the purge policy and can be used to change the default
retention period. These functions can be executed only by the database administrator.

• The CAN_SYNCREF_TABLE function

This is an advisory function that examines the eligibility for synchronous refresh of all the
materialized views associated with a specified table. Hence, this function requires the READ
or SELECT privilege on all materialized views associated with the specified table.

Chapter 8
Overview of Synchronous Refresh Security Considerations

8-30

9
Monitoring Materialized View Refresh
Operations

This chapter describes how to use refresh statistics to monitor the performance of materialized
view refresh operations.

This chapter contains the following topics:

• About Materialized View Refresh Statistics

• Overview of Managing Materialized View Refresh Statistics

• About Data Dictionary Views that Store Materialized View Refresh Statistics

• Collecting Materialized View Refresh Statistics

• Retaining Materialized View Refresh Statistics

• Viewing Materialized View Refresh Statistics Settings

• Purging Materialized View Refresh Statistics

• Viewing Materialized View Refresh Statistics

• Analyzing Materialized View Refresh Performance Using Refresh Statistics

9.1 About Materialized View Refresh Statistics
Oracle Database collects and stores statistics about materialized view refresh operations.
These statistics are accessible using data dictionary views.

Statistics for both current and historical materialized view refresh operations are stored in the
database. Historical materialized view refresh statistics enable you to understand and analyze
materialized view refresh performance over time in your database. Refresh statistics can be
collected at varying levels of granularity.

Maintaining materialized view refresh statistics provides the following:

• Reporting capabilities for materialized view refresh operations

– Display both current and historical statistics for materialized view refresh operations

– Display statistics on actual refresh execution times

– Track the performance of materialized view refresh over time using statistics on actual
refresh execution times

• Diagnostic capabilities for materialized view refresh performance

Detailed current and historical statistics can be used to quickly analyze the performance of
materialized view refresh operations. For example, if a materialized view takes a long time
to refresh, you can use refresh statistics to determine if the slowdown is due to increased
system load or vastly varying change data.

9-1

9.2 Overview of Managing Materialized View Refresh Statistics
Oracle Database manages the collection and retention of materialized view refresh statistics
based on the defined database settings. By default, the database collects and stores basic
statistics about materialized view refresh operations for the entire database.

Managing materialized view refresh statistics comprises of the defining policies that control the
following:

• Level of details for materialized view refresh statistics

• Retention period of materialized view refresh statistics

Use the following techniques to define policies that manage materialized view refresh statistics:

• Define default settings that are applicable to the entire database

The DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT procedure defines default settings that
manage the collection and retention of materialized view refresh statistics for the entire
database.

• Define collection and retention policies for individual materialized views

Note:

The DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure provides more fine-
grained control over materialized view refresh statistics by managing the
collection and retention of statistics at the level in individual materialized views.
Settings made at the materialized view level override the database-level settings.

However, the view DBA_MVREF_RUN_STAT provides a record for each refresh group
and does not provide details for individual materialized views.

See Also:

• Collecting Materialized View Refresh Statistics

• Retaining Materialized View Refresh Statistics

9.3 About Data Dictionary Views that Store Materialized View
Refresh Statistics

Oracle Database stores materialized view refresh statistics in the data dictionary. Setting the
collection level for materialized view refresh controls the detail level of refresh statistics
collected.

Each materialized view refresh operation is identified using a unique refresh ID. A single
refresh operation could refresh multiple materialized views. For example, when the
REFRESH_DEPENDENT procedure is used to refresh a single materialized view, all materialized
views that are dependent on the specified materialized view are also refreshed as part of the

Chapter 9
Overview of Managing Materialized View Refresh Statistics

9-2

same refresh operation. Thus, all the materialized views refreshed as part of this operation will
have the same refresh ID.

Table 9-1 Data Dictionary Views that Store Materialized View Refresh Statistics

View Name Description

DBA_MVREF_STATS Stores basic statistics for a materialized view refresh such
as the refresh ID and basic timing statistics for the refresh
operation.

This view contains the following information about each
materialized view for which refresh statistics are collected:

• name of the materialized view
• refresh method used
• number of rows in the materialized view at the

beginning and end of the refresh operation
• number of steps used to refresh the materialized view

Note:

This is view populated for
fast refresh of materialized
views with aggregates or
joins only. It is not populated
for other types of
materialized view refreshes.

DBA_MVREF_RUN_STATS Stores detailed information about each materialized view
refresh operation including the following:

• parameters specified when running the refresh
operation such as list of materialized views, refresh
method, purge option, and so on.

• number of materialized views refreshed in the refresh
operation.

• detailed timing statistics for the refresh operation
including start time, end time, and elapsed time.

DBA_MVREF_CHANGE_STATS Contains change data load information for the base tables
associated with a materialized view refresh operation.

The details include base table names, materialized view
names, number of rows inserted, number of rows updated,
number of rows deleted, number of direct-load inserts,
PMOPs details, and number of rows at the beginning of the
refresh operation.

DBA_MVREF_STMT_STATS Contains information related to each refresh statement that
is part of a single materialized view refresh operation.

This includes information such as materialized view name,
refresh ID, the refresh statement, SQLID of the refresh
statement, and execution plan of the statement.

See Also:

Oracle Database Reference

Chapter 9
About Data Dictionary Views that Store Materialized View Refresh Statistics

9-3

9.4 Collecting Materialized View Refresh Statistics
Oracle Database collects basic statistics about materialized view refresh operations. These
statistics are stored in the data dictionary and can be used to analyze the performance of
materialized view refresh operations.

See Also:

• About Collecting Materialized View Refresh Statistics

• Specifying Default Settings for Collecting Materialized View Refresh Statistics

• Modifying the Collection Level for Materialized View Refresh Statistics

9.4.1 About Collecting Materialized View Refresh Statistics
By default, Oracle Database collects basic refresh statistics for all materialized views refresh
operations.

Oracle Database enables you to control the granularity and level at which materialized view
refresh statistics are collected. Statistics can be collected for all materialized views in the
database or for a specific set of materialized views. If you are interested in monitoring only
some materialized views in the database, then you can collect statistics at the materialized
view level. Collecting refresh statistics for a selected set of materialized views is useful
because refresh patterns of materialized views can vary widely.

The collection level defines the amount of statistics that the database collects for materialized
view refresh operations. You can either collect basic statistics or more detailed information
such as the parameters used and the SQL statements run during the materialized view refresh
operation.

Use the procedures in the DBMS_MVIEW_STATS package to set the COLLECTION_LEVEL parameter,
which specifies the collection level for materialized view refresh statistics. The values that can
be set for the COLLECTION_LEVEL parameter are:

• NONE

No statistics are collected for materialized view refresh operations.

• TYPICAL

Only basic refresh statistics are collected for materialized view refresh operations. This is
the default setting.

• ADVANCED

Detailed statistics, including the parameters used in the refresh operation and the SQL
statements that are run, are collected for materialized view refresh operations.

Chapter 9
Collecting Materialized View Refresh Statistics

9-4

9.4.2 Specifying Default Settings for Collecting Materialized View Refresh
Statistics

The DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT procedure enables you to set defaults for
managing the collection of materialized view refresh statistics at the database level.

You can override the system defaults by specifying different settings at the individual
materialized view level. Materialized views for which the default settings are not overridden will
use the system default settings.

By default, Oracle Database does not collect basic statistics about materialized view refresh
operations. You can change the default setting or disable statistics collection by modifying the
statistics collection level.

To set the default collection level for materialized view refresh statistics at the database level:

• Run the DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT procedure and set the
COLLECTION_LEVEL parameter.

Example 9-1 Setting Materialized View Refresh Statistics Collection Level for the
Database

This example sets the default collection level for materialized view refresh statistics to
ADVANCED indicating that detailed statistics about materialized view refresh operations will be
collected and stored.

DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT ('COLLECTION_LEVEL','ADVANCED');

Example 9-2 Disabling Statistics Collection for Materialized View Refresh

This example sets the default collection level for materialized view refresh statistics to NONE
thereby disabling statistics collection.

DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT ('COLLECTION_LEVEL','NONE');

See Also:

Oracle Database PL/SQL Packages and Types Reference

9.4.3 Modifying the Collection Level for Materialized View Refresh Statistics
You can modify the settings that manage the collection of materialized view refresh statistics by
using the DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure.

You can modify the statistics collection behavior either for the entire database or for one or
more materialized views. The new collection settings override the default settings made at the
database level or previous settings made for the specified materialized views. For example, the
system default for COLLECTION_LEVEL is set to TYPICAL for the database. You then use the
DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure to modify the collection level for the
materialized views MV1 and MV2 to ADVANCED. The remaining materialized views in the
database will continue to use the TYPICAL collection level.

Chapter 9
Collecting Materialized View Refresh Statistics

9-5

To modify the collection level for materialized view refresh statistics, either at the database
level or materialized view level:

• Run the DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure and set the
COLLECTION_LEVEL parameter to the required value

Example 9-3 Setting the Materialized View Statistics Collection Level for the Entire
Database

The following example modifies the collection level for materialized view refresh statistics at
the database level to TYPICAL. Specifying NULL instead of one or more materialized view
names indicates that this setting is for the entire database.

DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS (NULL, 'TYPICAL');

Example 9-4 Setting the Materialized View Statistics Collection Level for Multiple
Materialized Views

This example sets the collection level for the materialized views SALES_2013_MV and
SALES_2014_MV in the SH schema to ADVANCED. The retention period is set to 60 days. This
setting overrides any default settings that may have been specified at the database level.

DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS ('SH.SALES_2013_MV,
SH.SALES_2014_MV','ADVANCED',60);

See Also:

Oracle Database PL/SQL Packages and Types Reference

9.5 Retaining Materialized View Refresh Statistics
Oracle Database stores the collected materialized view refresh statistics for a period of time
specified by the retention period.

See Also:

• About Retaining Materialized View Refresh Statistics

• Specifying the Default Retention Period for Materialized View Refresh Statistics

• Modifying the Retention Period for Materialized View Refresh Statistics

9.5.1 About Retaining Materialized View Refresh Statistics
The retention period defines the duration, in days, for which materialized view refresh statistics
are stored in the data dictionary. Collected statistics are automatically purged after the
retention period is reached.

The retention period for materialized view refresh statistics can be set either at the database
level or the materialized view level. The RETENTION_PERIOD parameter in

Chapter 9
Retaining Materialized View Refresh Statistics

9-6

DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT or DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS
enables you to specify the duration for which materialized view refresh statistics must be
retained in the data dictionary.

9.5.2 Specifying the Default Retention Period for Materialized View Refresh
Statistics

The DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT procedure sets defaults for managing the
retention of materialized view refresh statistics at the database level.

By default, Oracle Database retains materialized view refresh statistics for 365 days from the
date of collection. After the retention period is reached, the statistics are purged from the data
dictionary. You can override the system default setting by specifying different settings at the
individual materialized view level. Materialized views for which the default settings are not
overridden will continue to use the system default settings.

You can specify that refresh statistics must never be purged from the database by setting the
retention period to -1.

To specify a new default retention period for the entire database:

• Set the RETENTION_PERIOD parameter of the DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT
procedure to the required number of days

Example 9-5 Setting the Retention Period for Materialized View Refresh Statistics

This example sets the default retention period for materialized view refresh statistics for the
entire database to 60 days.

DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT ('RETENTION_PERIOD',60);

Example 9-6 Preventing the Purging of Materialized View Refresh Statistics

This example sets the retention period for materialized view refresh statistics to -1 thereby
ensuring that refresh statistics are not automatically purged when the default retention period is
reached. When you use this setting, refresh statistics will need to be explicitly purged from the
data dictionary using the DBMS_MVIEW_STATS.PURGE_REFRESH_STATS procedure.

DBMS_MVIEW_STATS.SET_SYSTEM_DEFAULT ('RETENTION_PERIOD',–1);

See Also:

Oracle Database PL/SQL Packages and Types Reference

9.5.3 Modifying the Retention Period for Materialized View Refresh Statistics
The DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure enables you to modify the
retention period set for materialized view refresh statistics.

You can modify the retention period either for the entire database or for one or more
materialized views. When you modify the retention period only for specific materialized views,
the remaining materialized views in the database continue to use their existing retention
period.

Chapter 9
Retaining Materialized View Refresh Statistics

9-7

Suppose that your system default setting is to collect basic materialized view refresh statistics
and retain them for 60 days. However, for a particular set of materialized views, you want to
collect detailed statistics and retain these statistics for 45 days. In this case, for the specific set
of materialized views, you set COLLECTION_LEVEL to ADVANCED and RETENTION_PERIOD to 45.

To modify the retention period for materialized view refresh statistics either at the database
level to materialized view level:

• Run the DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS procedure and set the
RETENTION_PERIOD parameter to the required value

Example 9-7 Using Default Materialized View Refresh Statistics Settings for Retention
Period

This example sets the collection level for the materialized view SALES_MV in the SH schema to
TYPICAL. Since NULL is used for the retention period, the system-wide default setting for
retention period is used for this materialized view.

DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS ('SH.SALES_MV','TYPICAL',NULL);

Example 9-8 Setting the Retention Period for a Materialized View

This example sets the collection level for the SH.SALES_MV to ADVANCED and the retention
period to 45 days. This overrides the existing retention period set for this materialized view.

DBMS_MVIEW_STATS.SET_MVREF_STATS_PARAMS ('SH.SALES_MV','ADVANCED',45);

See Also:

Oracle Database PL/SQL Packages and Types Reference

9.6 Viewing Materialized View Refresh Statistics Settings
Data dictionary views store both the default settings and materialized view-specific settings
that manage materialized view refresh statistics.

To view the database-level default settings for collecting and retaining materialized view
refresh statistics:

• Query the parameter_name and value columns in the DBA_MVREF_STATS_SYS_DEFAULTS
view

To view the collection and retention settings for refresh statistics of one or more materialized
views:

• Query the parameter_name and value columns in the DBA_MVREF_STATS_PARAMS view by
filtering data using the mv_owner and mv_name columns

Chapter 9
Viewing Materialized View Refresh Statistics Settings

9-8

Example 9-9 Displaying the Database-level Default Settings for Managing Materialized
View Refresh Statistics

The following query displays the database level default settings for managing materialized view
refresh statistics:

SELECT parameter_name, value from DBA_MVREF_STATS_SYS_DEFAULTS;

PARAMETER_NAME VALUE
___________________ ________
COLLECTION_LEVEL NONE
RETENTION_PERIOD 31

Example 9-10 Displaying the Refresh Statistics Settings for a Set of Materialized Views

The following query displays the refresh statistics settings for all the materialized view owned
by the SH schema:

SELECT mv_name,collection_level,retention_period
FROM DBA_MVREF_STATS_PARAMS
WHERE mv_owner = 'SH';
MV_NAME COLLECTION_LEVEL RETENTION_PERIOD
________________________________ ___________________ ___________________
SUM_SALES_PSCAT_WEEK_MV NONE 31
SUM_SALES_PROD_WEEK_MV NONE 31
SUM_SALES_PSCAT_MONTH_CITY_MV NONE 31
CAL_MONTH_SALES_MV NONE 31
JOIN_SALES_TIME_PRODUCT_MV NONE 31
FWEEK_PSCAT_SALES_MV NONE 31
JOIN_SALES_TIME_PRODUCT_OJ_MV NONE 31

9.7 Purging Materialized View Refresh Statistics
The DBMS_MVIEW_STATS.PURGE_REFRESH_STATS procedure enables you to explicitly purge
materialized view refresh statistics that are older than a specified period from the data
dictionary.

By default, materialized view refresh statistics are removed from the data dictionary after the
specified retention period. Depending on your settings, the purging may be performed for the
entire database or for a set of specified materialized views. You can use the
DBMS_MVIEW_STATS.PURGE_REFRESH_STATS procedure to explicitly purge refresh statistics that
are older than a specified time without altering the set retention period. Explicit purging of
refresh statistics overrides the current setting for retention period but does not alter the setting.

To purge materialized view refresh statistics stored in the database:

• Run the DBMS_MVIEW_STATS.PURGE_REFRESH_STATS procedure.

Specify the materialized views for which statistics must be purged and the duration beyond
which statistics must be purged.

Example 9-11 Purging Refresh Statistics for a Materialized View

Assume that the retention period for refresh statistics of the materialized view SALES_MV is 60
days. At any given time, the refresh statistics for the previous 60 days are available. However,
because of space constraints, you want to purge the statistics for the last 30 days. Use the
DBMS_MVIEW_STATS.PURGE_REFRESH_STATS procedure to do this.

Chapter 9
Purging Materialized View Refresh Statistics

9-9

Note that the retention period set for SALES_MV remains unaltered. The purge is a one-time
operation.

DBMS_MVIEW_STATS.PURGE_REFRESH_STATS (’SH.SALES_MV’,30);

Example 9-12 Purging Refresh Statistics for All Materialized Views

This example purges materialized view refresh statistics that are older than 20 days for all
materialized views in the database. Specifying NULL instead of one or more materialized views
indicates that this setting is for the entire database.

DBMS_MVIEW_STATS.PURGE_REFRESH_STATS (NULL,20);

See Also:

Oracle Database PL/SQL Packages and Types Reference

9.8 Viewing Materialized View Refresh Statistics
You can view both current and historical statistics for materialized view refresh operations by
querying the data dictionary views that store refresh statistics.

Depending on the collection level setting, materialized view refresh statistics are stored in one
or more of the following views: DBA_MVREFS_STATS, DBA_MVREF_RUN_STATS,
DBA_MVREF_CHANGE_STATS, and DBA_MVREF_STMT_STATS. There are corresponding USER_
versions for all these views. The views contain a REFRESH_ID column that can be used to join
one or more views, when required.

See Also:

• Viewing Basic Refresh Statistics for a Materialized View

• Viewing Detailed Statistics for Each Materialized View Refresh Operation

• Viewing Change Data Statistics During Materialized View Refresh Operations

• Viewing the SQL Statements Associated with A Materialized View Refresh
Operation

9.8.1 Viewing Basic Refresh Statistics for a Materialized View
Use the DBA_MVREF_STATS view to display basic statistics about materialized view refresh
operations.

Each materialized view refresh operation is identified using a unique refresh ID. The
DBA_MVREF_STATS view stores the refresh ID, refresh method, names of materialized views
refreshed, basic execution times, and the number of steps in the refresh operation.

To view basic refresh statistics for materialized view refresh operations:

Chapter 9
Viewing Materialized View Refresh Statistics

9-10

• Query the DBA_MVREF_STATS view with list of required columns and use conditions to filter
the required data

Example 9-13 Displaying Basic Statistics for a Materialized View Refresh Operation

The following query displays some refresh statistics for refresh operations on the
SH.NEW_SALES_RTMV materialized view. Information includes the refresh method, refresh time,
number of rows in the materialized view at the start of the refresh operation, and number of
rows at the end of the refresh operation.

SELECT refresh_id, refresh_method, elapsed_time, initial_num_rows,
final_num_rows
FROM dba_mvref_stats
WHERE mv_name = 'NEW_SALES_RTMV' and mv_owner = 'SH';

REFRESH_ID REFRESH_METHOD ELAPSED_TIME INITIAL_NUM_ROWS
FINAL_NUM_ROWS
---------- -------------- ------------- ----------------

49 FAST 0 766 788
61 FAST 1 788 788
81 FAST 1 788 798

3 rows selected.

Example 9-14 Displaying Materialized Views Based on their Refresh Times

The following example displays the names of materialized views whose refresh operations took
more than 10 minutes. Since elapsed_time is specified in seconds, we use 600 in the query.

SELECT mv_owner, mv_name, refresh_method
FROM dba_mvref_stats
WHERE elapsed_time > 600;

9.8.2 Viewing Detailed Statistics for Each Materialized View Refresh
Operation

The DBA_MVREF_RUN_STATS view stores detailed statistics about materialized view refresh
operation. When a refresh operation affects multiple materialized views, detailed statistics are
available for all affected materialized views.

Materialized views can be refreshed using one of the following procedures in the DBMS_MVIEW
package: REFRESH, REFRESH_DEPENDENT, or REFRESH_ALL. Each procedure contains different
parameters that specify how the refresh must be performed. The DBA_MVREF_RUN_STATS view
contains information about the parameters specified for the refresh operation, the number of
materialized views refreshed, execution times, and log purge time.

To view detailed refresh statistics for materialized view refresh operations:

• Query the DBA_MVREF_RUN_STATS view with the list of required columns and use conditions
to filter the required data

Chapter 9
Viewing Materialized View Refresh Statistics

9-11

Example 9-15 Listing All Materialized Views Refreshed in a Single Refresh Operation

The following example displays the materialized views and refresh times for materialized views
that were refreshed as part of the specified refresh ID.

SELECT mviews, elapsed_time, complete_stats_available
FROM dba_mvref_run_stats
WHERE refresh_id = 100;

MVIEWS ELAPSED_TIME COMPLETE_STATS_AVAIALBE
-------- ------------ -------------------------
"SH"."SALES_RTMV" 1 Y

Example 9-16 Viewing the Parameters Specified During a Materialized View Refresh
Operation

The following example displays the list of refreshed materialized views and some of the
parameters specified during the refresh operation for refresh ID 81.

SELECT mviews, refresh_after_errors, purge_option, parallelism, nested
FROM dba_mvref_run_stats
WHERE run_owner = 'SH' and refresh_id=81;

MVIEWS R PURGE_OPTION PARALLELISM NESTED
------ - ------------ ------------ -------
"SH"."SALES_RTMV" N 1 0 N

Example 9-17 Displaying Detailed Statistics for a Materialized View Refresh Operation

The following example displays detailed statistics for the refresh operation with refresh ID 156.
The details include the number of materialized views refreshed, the owner and names of
materialized views, and the time taken for the refresh.

SELECT num_mvs, mv_owner, mv_name, r.elapsed_time
FROM dba_mvref_stats s, dba_mvref_run_stats r
WHERE s.refresh_id = r.refresh_id and refresh_id = 156;

NUM_MVS MV_OWNER MV_NAME ELAPSED_TIME
-------- -------- -------- -----------
1 SH SALES_RTMV 5

See Also:

Oracle Database Reference

9.8.3 Viewing Change Data Statistics During Materialized View Refresh
Operations

The DBA_MVREF_CHANGE_STATS view stores detailed change data statistics for materialized view
refresh operations. This includes the base tables that were refreshed, the number of rows

Chapter 9
Viewing Materialized View Refresh Statistics

9-12

inserted, number of rows updated, number of rows deleted, and partition maintenance
operations (PMOPs) details.

You can join the DBA_MVREF_CHANGE_STATS view with other views that contain materialized view
refresh statistics to provide more complete statistics.

To view detailed change data statistics for materialized view refresh operations:

• Query the DBA_MVREF_CHANGE_STATS view with the list of required columns and use
conditions to filter the required data

Example 9-18 Determining if a Refresh Operation Resulted in PMOPs

The following example displays the base table names and PMOP details for the refresh
operation with refresh ID 1876. The query output contains one record for each base table of
the materialized view.

SELECT tbl_name, mv_name, pmops_occurred, pmop_details
FROM dba_mvref_change_stats
WHERE refresh_id =1876;

TBL_NAME MV_NAME PMOPS_OCCURRED PMOP_DETAILS
--------- -------- -------------- ------------
MY_SALES SALES_RTMV N

Example 9-19 Displaying the Number of Rows Modified During a Refresh Operation

This example displays the following details about each base table in a refresh operation on the
SH.MY_SALES materialized view: number of rows in the tables, number of rows inserted, number
of rows updates, number of rows deleted, number of direct load inserts, and details of PMOP
operations.

SELECT tbl_name, num_rows, num_rows_ins, num_rows_upd, num_rows_del,
num_rows_dl_ins, pmops_occurred, pmop_details
FROM dba_mvref_change_stats
WHERE mv_name = 'MY_SALES' and mv_owner = 'SH';

See Also:

Oracle Database Reference

9.8.4 Viewing the SQL Statements Associated with A Materialized View
Refresh Operation

Query the DBA_MVREF_STMT_STATS view to display information about all the SQL statements
used in a materialized view refresh operation.

Each refresh operation can consist of multiple steps, each of which is performed using a SQL
statement. For each step in a refresh operation, you can view the step number and the SQL
statement.

To view the SQL statements associated with materialized view refresh operations:

Chapter 9
Viewing Materialized View Refresh Statistics

9-13

• Query the DBA_MVREF_STMT_STATS view with the list of required columns and use conditions
to filter the required data

Example 9-20 Displaying SQL Statements for Each Step in a Refresh Operation

The following example displays the materialized view names, SQL statements used to refresh
the materialized view, and execution time for the materialized view refresh operation with
refresh ID is 1278.

SELECT mv_name, step, stmt, execution_time
FROM dba_mvref_stmt_stats
WHERE refresh_id = 1278;

Example 9-21 Displaying Refresh Statements Used in the Current Refresh of an
Materialized View

This example displays the individual SQL statements that are used to the refresh the MY_SALES
materialized view. A single refresh operation may consist of multiple steps, each of which
executes a SQL statement. The details displayed in this example include the step number,
SQL ID of the SQL statement, the SQL statement that is executed, and the execution time for
the SQL statement.

SELECT step, sqlid, stmt, execution_time
FROM DBA_MVREF_STATS M, DBA_MVREF_STMT_STATS S
WHERE M.refresh_id = S.refresh_id and M.mv_name = 'MY_SALES'
ORDER BY step;

See Also:

Oracle Database Reference

9.9 Analyzing Materialized View Refresh Performance Using
Refresh Statistics

Materialized view refresh statistics that are stored in data dictionary views can be used to
analyze the refresh performance of materialized views.

Refresh statistics provide detailed information that enables you to understand and analyze
materialized view refresh operations and their performance. Typically, you analyze refresh
statistics for critical or long running materialized view refresh operations. If a materialized view
takes longer to refresh than it does normally, then you can analyze its past refresh times and
change data to identify any differences that may account for the increased time (for example, 5
times more data that needs to be refreshed this time).

To analyze materialized view refresh performance:

1. Set the collection level and retention period for the materialized view to collect refresh
statistics over a period of time.

You can set these at the database level or at the materialized view level.

2. Identify the materialized views whose refresh performance needs to be analyzed.

Chapter 9
Analyzing Materialized View Refresh Performance Using Refresh Statistics

9-14

Typically, you would be interested in analyzing the refresh performance of a specific set of
materialized views in the database. In this case, you can modify the refresh statistics
settings for these materialized views as per your requirement.

3. Where multiple refresh operations take place over a period of time (for the materialized
views you want to analyze), Oracle Database collects the desired refresh statistics.

4. Query the data dictionary views that store refresh statistics and analyze the refresh
behavior of materialized views of interest over time to understand refresh behavior.

The database stores both historical and current statistics which can be analyzed to
understand refresh behavior.

Chapter 9
Analyzing Materialized View Refresh Performance Using Refresh Statistics

9-15

10
Dimensions

This chapter discusses using dimensions in a data warehouse: It contains the following topics:

• What are Dimensions?

• Creating Dimensions

• Viewing Dimensions

• Using Dimensions with Constraints

• Validating Dimensions

• Altering Dimensions

• Deleting Dimensions

10.1 What are Dimensions?
A dimension is a structure that categorizes data in order to enable users to answer business
questions. Commonly used dimensions are customers, products, and time. For example, each
sales channel of a clothing retailer might gather and store data regarding sales and
reclamations of their Cloth assortment. The retail chain management can build a data
warehouse to analyze the sales of its products across all stores over time and help answer
questions such as:

• What is the effect of promoting one product on the sale of a related product that is not
promoted?

• What are the sales of a product before and after a promotion?

• How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components: dimensions
and facts. The dimensions are products, customers, promotions, channels, and time. One
approach for identifying your dimensions is to review your reference tables, such as a product
table that contains everything about a product, or a promotion table containing all information
about promotions. The facts are sales (units sold) and profits. A data warehouse contains facts
about the sales of each product at on a daily basis.

A typical relational implementation for such a data warehouse is a star schema. The fact
information is stored in what is called a fact table, whereas the dimensional information is
stored in dimension tables. In our example, each sales transaction record is uniquely defined
as for each customer, for each product, for each sales channel, for each promotion, and for
each day (time).

In Oracle Database, the dimensional information itself is stored in a dimension table. In
addition, the database object dimension helps to organize and group dimensional information
into hierarchies. This represents natural 1:n relationships between columns or column groups
(the levels of a hierarchy) that cannot be represented with constraint conditions. Going up a
level in the hierarchy is called rolling up the data and going down a level in the hierarchy is
called drilling down the data. In the retailer example:

• Within the time dimension, months roll up to quarters, quarters roll up to years, and years
roll up to all years.

10-1

• Within the product dimension, products roll up to subcategories, subcategories roll up to
categories, and categories roll up to all products.

• Within the customer dimension, customers roll up to city. Then cities roll up to state.
Then states roll up to country. Then countries roll up to subregion. Finally, subregions roll
up to region, as shown in Figure 10-1.

Figure 10-1 Sample Rollup for a Customer Dimension

country

subregion

state

city

customer

region

Data analysis typically starts at higher levels in the dimensional hierarchy and gradually drills
down if the situation warrants such analysis.

Dimension schema objects (dimensions) do not have to be defined. However, if your
application uses dimensional modeling, it is worth spending time creating them as it can yield
significant benefits, because they help query rewrite perform more complex types of rewrite.
Dimensions are also beneficial to certain types of materialized view refresh operations and with
the SQL Access Advisor. They are only mandatory if you use the SQL Access Advisor (a GUI
tool for materialized view and index management) without a workload to recommend which
materialized views and indexes to create, drop, or retain.

In spite of the benefits of dimensions, you must not create dimensions in any schema that does
not fully satisfy the dimensional relationships described in this chapter. Incorrect results can be
returned from queries otherwise.

See Also:

• Data Warehousing Optimizations and Techniques for further details about
schemas

• Basic Query Rewrite for Materialized Views for further details regarding query
rewrite

• Oracle Database SQL Tuning Guide for further details regarding the SQL Access
Advisor

Chapter 10
What are Dimensions?

10-2

10.1.1 Requirements for Dimensions in Data Warehouses
• There must be a 1:n relationship between a parent and children. A parent can have one or

more children, but a child can have only one parent.

• There must be a 1:1 attribute relationship between hierarchy levels and their dependent
dimension attributes. For example, if there is a column fiscal_month_desc, then a
possible attribute relationship would be fiscal_month_desc to fiscal_month_name. For
skip NULL levels, if a row of the relation of a skip level has a NULL value for the level
column, then that row must have a NULL value for the attribute-relationship column, too.

• If the columns of a parent level and child level are in different relations, then the connection
between them also requires a 1:n join relationship. Each row of the child table must join
with one and only one row of the parent table unless you use the SKIP WHEN NULL clause.
This relationship is stronger than referential integrity alone, because it requires that the
child join key must be non-null, that referential integrity must be maintained from the child
join key to the parent join key, and that the parent join key must be unique.

• You must ensure (using database constraints if necessary) that the columns of each
hierarchy level are non-null unless you use the SKIP WHEN NULL clause and that hierarchical
integrity is maintained.

• An optional join key is a join key that connects the immediate non-skip child (if such a level
exists), CHILDLEV, of a skip level to the nearest non-skip ancestor (again, if such a level
exists), ANCLEV, of the skip level in the hierarchy. Also, this joinkey is allowed only when
CHILDLEV and ANCLEV are defined over different relations.

• The hierarchies of a dimension can overlap or be disconnected from each other. However,
the columns of a hierarchy level cannot be associated with more than one dimension.

• Join relationships that form cycles in the dimension graph are not supported. For example,
a hierarchy level cannot be joined to itself either directly or indirectly.

Note:

The information stored with a dimension objects is only declarative. The
previously discussed relationships are not enforced with the creation of a
dimension object. You should validate any dimension definition with the
DBMS_DIMENSION.VALIDATE_DIMENSION procedure, as discussed in "Validating
Dimensions".

10.2 Creating Dimensions
Before you can create a dimension object, the dimension tables must exist in the database
possibly containing the dimension data. For example, if you create a customer dimension, one
or more tables must exist that contain the city, state, and country information. In a star schema
data warehouse, these dimension tables already exist. It is therefore a simple task to identify
which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 10-1. For example, city
is a child of state (because you can aggregate city-level data up to state), and country. This
hierarchical information will be stored in the database object dimension.

Chapter 10
Creating Dimensions

10-3

In the case of normalized or partially normalized dimension representation (a dimension that is
stored in more than one table), identify how these tables are joined. Note whether the joins
between the dimension tables can guarantee that each child-side row joins with one and only
one parent-side row. In the case of denormalized dimensions, determine whether the child-side
columns uniquely determine the parent-side (or attribute) columns. If you use constraints to
represent these relationships, they can be enabled with the NOVALIDATE and RELY clauses if the
relationships represented by the constraints are guaranteed by other means.

You may want the capability to skip NULL levels in a dimension. An example of this is with
Puerto Rico. You may want Puerto Rico to be included within a region of North America, but
not include it within the state category. If you want this capability, use the SKIP WHEN NULL
clause. See the sample dimension later in this section for more information and Oracle
Database SQL Language Reference for syntax and restrictions.

You create a dimension using either the CREATE DIMENSION statement or the Dimension Wizard
in Oracle Enterprise Manager. Within the CREATE DIMENSION statement, use the LEVEL clause to
identify the names of the dimension levels.

This customer dimension contains a single hierarchy with a geographical rollup, with arrows
drawn from the child level to the parent level, as shown in Figure 10-1.

Each arrow in this graph indicates that for any child there is one and only one parent. For
example, each city must be contained in exactly one state and each state must be contained in
exactly one country. States that belong to more than one country violate hierarchical integrity.
Also, you must use the SKIP WHEN NULL clause if you want to include cities that do not belong to
a state, such as Washington D.C. Hierarchical integrity is necessary for the correct operation of
management functions for materialized views that include aggregates.

For example, you can declare a dimension products_dim, which contains levels product,
subcategory, and category:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category) ...

Each level in the dimension must correspond to one or more columns in a table in the
database. Thus, level product is identified by the column prod_id in the products table and
level subcategory is identified by a column called prod_subcategory in the same table.

In this example, the database tables are denormalized and all the columns exist in the same
table. However, this is not a prerequisite for creating dimensions. "Using Normalized
Dimension Tables to Create Dimensions" shows how to create a dimension customers_dim
that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY statement
and give that hierarchy a name. A hierarchical relationship is a functional dependency from
one level of a hierarchy to the next level in the hierarchy. Using the level names defined
previously, the CHILD OF relationship denotes that each child's level value is associated with
one and only one parent level value. The following statement declares a hierarchy
prod_rollup and defines the relationship between products, subcategory, and category:

HIERARCHY prod_rollup
 (product CHILD OF
 subcategory CHILD OF
 category)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1 attribute
relationships between the hierarchy levels and their dependent, determined dimension

Chapter 10
Creating Dimensions

10-4

attributes. For example, the dimension times_dim, as defined in Oracle Database Sample
Schemas, has columns fiscal_month_desc, fiscal_month_name, and days_in_fiscal_month.
Their relationship is defined as follows:

LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
...
ATTRIBUTE fis_month DETERMINES
 (fiscal_month_name, days_in_fiscal_month)

The ATTRIBUTE ... DETERMINES clause relates fis_month to fiscal_month_name and
days_in_fiscal_month. Note that this is a unidirectional determination. It is only guaranteed,
that for a specific fiscal_month, for example, 1999-11, you will find exactly one matching
values for fiscal_month_name, for example, November and days_in_fiscal_month, for
example, 28. You cannot determine a specific fiscal_month_desc based on the
fiscal_month_name, which is November for every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_name instead of
fiscal_month_desc. Because this 1:1 relationship exists between the attribute and the level,
an already aggregated materialized view containing fiscal_month_desc can be joined back to
the dimension information and used to identify the data.

A sample dimension definition follows:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory) [SKIP WHEN NULL]
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category)
 ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

Alternatively, the extended_attribute_clause could have been used instead of the
attribute_clause, as shown in the following example:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product_info LEVEL product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

Chapter 10
Creating Dimensions

10-5

The design, creation, and maintenance of dimensions is part of the design, creation, and
maintenance of your data warehouse schema. Once the dimension has been created, verify
that it meets the requirements described in Requirements for Dimensions in Data Warehouses.

See Also:

• Basic Query Rewrite for Materialized Views for further details of using
dimensional information

• Oracle Database SQL Language Reference for a complete description of the
CREATE DIMENSION statement

10.2.1 Dropping and Creating Attributes with Columns
You can use the attribute clause in a CREATE DIMENSION statement to specify one or multiple
columns that are uniquely determined by a hierarchy level.

If you use the extended_attribute_clause to create multiple columns determined by a
hierarchy level, you can drop one attribute column without dropping them all. Alternatively, you
can specify an attribute name for each attribute clause CREATE or ALTER DIMENSION statement
so that an attribute name is specified for each attribute clause where multiple level-to-column
relationships can be individually specified.

The following statement illustrates how you can drop a single column without dropping all
columns:

CREATE DIMENSION products_dim
LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF category)
ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size,prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory_att DETERMINES
 (prod_subcategory, prod_subcategory_desc)
ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

ALTER DIMENSION products_dim
DROP ATTRIBUTE subcategory_att LEVEL subcategory COLUMN prod_subcategory;

See Also:

Oracle Database SQL Language Reference for a complete description of the CREATE
DIMENSION statement

Chapter 10
Creating Dimensions

10-6

10.2.2 Using Multiple Hierarchies While Creating Joins
A single dimension definition can contain multiple hierarchies. Suppose our retailer wants to
track the sales of certain items over time. The first step is to define the time dimension over
which sales will be tracked. Figure 10-2 illustrates a dimension times_dim with two time
hierarchies.

Figure 10-2 times_dim Dimension with Two Time Hierarchies

quarter

year

fis_quarter

fis_year

fis_month

fis_week

day

month

From the illustration, you can construct the hierarchy of the denormalized time_dim
dimension's CREATE DIMENSION statement as follows.

CREATE DIMENSION times_dim
 LEVEL day IS times.time_id
 LEVEL month IS times.calendar_month_desc
 LEVEL quarter IS times.calendar_quarter_desc
 LEVEL year IS times.calendar_year
 LEVEL fis_week IS times.week_ending_day
 LEVEL fis_month IS times.fiscal_month_desc
 LEVEL fis_quarter IS times.fiscal_quarter_desc
 LEVEL fis_year IS times.fiscal_year
 HIERARCHY cal_rollup (
 day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year
)
 HIERARCHY fis_rollup (
 day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF
 fis_year
) <attribute determination clauses>;

Chapter 10
Creating Dimensions

10-7

10.2.3 Using Normalized Dimension Tables to Create Dimensions
The tables used to define a dimension may be normalized or denormalized and the individual
hierarchies can be normalized or denormalized. If the levels of a hierarchy come from the
same table, it is called a fully denormalized hierarchy. For example, cal_rollup in the
times_dim dimension is a denormalized hierarchy. If levels of a hierarchy come from different
tables, such a hierarchy is either a fully or partially normalized hierarchy. This section shows
how to define a normalized hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country. This data is
stored in the tables customers and countries. The customer dimension customers_dim is
partially normalized because the data entities cust_id and country_id are taken from different
tables. The clause JOIN KEY within the dimension definition specifies how to join together the
levels in the hierarchy. The dimension statement is partially shown in the following. This
example does not use the Oracle-supplied sample schemas.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country);

If you use the SKIP WHEN NULL clause, you can use the JOIN KEY clause to link levels that have
a missing level in their hierarchy. For example, the following statement enables a state level
that has been declared as SKIP WHEN NULL to join city and country:

JOIN KEY (city.country_id) REFERENCES country;

This ensures that the rows at customer and city levels can still be associated with the rows of
country, subregion, and region levels.

10.3 Viewing Dimensions
Dimensions can be viewed through one of two methods:

• Viewing Dimensions With Oracle Enterprise Manager

• Viewing Dimensions With the DESCRIBE_DIMENSION Procedure

10.3.1 Viewing Dimensions With Oracle Enterprise Manager
All of the dimensions that exist in the data warehouse can be viewed using Oracle Enterprise
Manager. Select the Dimension object from within the Schema icon to display all of the
dimensions. Select a specific dimension to graphically display its hierarchy, levels, and any
attributes that have been defined.

Chapter 10
Viewing Dimensions

10-8

10.3.2 Viewing Dimensions With the DESCRIBE_DIMENSION Procedure
To view the definition of a dimension, use the DESCRIBE_DIMENSION procedure in the
DBMS_DIMENSION package. For example, if a dimension is created in the sh sample schema
with the following statements:

CREATE DIMENSION channels_dim
 LEVEL channel IS (channels.channel_id)
 LEVEL channel_class IS (channels.channel_class)
 HIERARCHY channel_rollup (
 channel CHILD OF channel_class)
 ATTRIBUTE channel DETERMINES (channel_desc)
 ATTRIBUTE channel_class DETERMINES (channel_class);

Execute the DESCRIBE_DIMENSION procedure as follows:

SET SERVEROUTPUT ON FORMAT WRAPPED; --to improve the display of info
EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');

You then see the following output results:

EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');
 DIMENSION SH.CHANNELS_DIM
 LEVEL CHANNEL IS SH.CHANNELS.CHANNEL_ID
 LEVEL CHANNEL_CLASS IS SH.CHANNELS.CHANNEL_CLASS

 HIERARCHY CHANNEL_ROLLUP (
 CHANNEL CHILD OF
 CHANNEL_CLASS)

 ATTRIBUTE CHANNEL LEVEL CHANNEL DETERMINES
SH.CHANNELS.CHANNEL_DESC
 ATTRIBUTE CHANNEL_CLASS LEVEL CHANNEL_CLASS DETERMINES
SH.CHANNELS.CHANNEL_CLASS

10.4 Using Dimensions with Constraints
Constraints play an important role with dimensions. Full referential integrity is sometimes
enabled in data warehouses, but not always. This is because operational databases normally
have full referential integrity and you can ensure that the data flowing into your data warehouse
never violates the already established integrity rules.

It is recommended that constraints be enabled and, if validation time is a concern, then the
NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;

Primary and foreign keys should be implemented also. Referential integrity constraints and NOT
NULL constraints on the fact tables provide information that query rewrite can use to extend the
usefulness of materialized views.

In addition, you should use the RELY clause to inform query rewrite that it can rely upon the
constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite. See Basic Query Rewrite for Materialized Views
for more information.

Chapter 10
Using Dimensions with Constraints

10-9

If you use the SKIP WHEN NULL clause, at least one of the referenced level columns should not
have NOT NULL constraints.

10.5 Validating Dimensions
The information of a dimension object is declarative only and not enforced by the database. If
the relationships described by the dimensions are incorrect, incorrect results could occur.
Therefore, you should verify the relationships specified by CREATE DIMENSION using the
DBMS_DIMENSION.VALIDATE_DIMENSION procedure periodically.

This procedure is easy to use and has only four parameters:

• dimension: the owner and name.

• incremental: set to TRUE to check only the new rows for tables of this dimension.

• check_nulls: set to TRUE to verify that all columns that are not in the levels containing a
SKIP WHEN NULL clause are not null.

• statement_id: a user-supplied unique identifier to identify the result of each run of the
procedure.

The following example validates the dimension TIME_FN in the sh schema:

@utldim.sql
EXECUTE DBMS_DIMENSION.VALIDATE_DIMENSION ('SH.TIME_FN', FALSE, TRUE,
 'my first example');

Before running the VALIDATE_DIMENSION procedure, you need to create a local table,
DIMENSION_EXCEPTIONS, by running the provided script utldim.sql. If the VALIDATE_DIMENSION
procedure encounters any errors, they are placed in this table. Querying this table will identify
the exceptions that were found. The following illustrates a sample:

SELECT * FROM dimension_exceptions
WHERE statement_id = 'my first example';

STATEMENT_ID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
------------ ----- ---------- -------------- ------------ ---------
my first example SH MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this table, it may be better to query the rowid of the invalid row to
retrieve the actual row that has violated the constraint. In this example, the dimension TIME_FN
is checking a table called month. It has found a row that violates the constraints. Using the
rowid, you can see exactly which row in the month table is causing the problem, as in the
following:

SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
 FROM dimension_exceptions
 WHERE statement_id = 'my first example');

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
------ ------- ---------- ---- --------------- ----------
199903 19981 19981 1998 March 3

10.6 Altering Dimensions
You can modify a dimension using the ALTER DIMENSION statement. You can add or drop a
level, hierarchy, or attribute from the dimension using this command.

Chapter 10
Validating Dimensions

10-10

Referring to the time dimension in Figure 10-2, you can remove the attribute fis_year, drop
the hierarchy fis_rollup, or remove the level fiscal_year. In addition, you can add a new
level called f_year as in the following:

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;
ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;
ALTER DIMENSION times_dim DROP LEVEL fis_year;
ALTER DIMENSION times_dim ADD LEVEL f_year IS times.fiscal_year;

If you used the extended_attribute_clause when creating the dimension, you can drop one
attribute column without dropping all attribute columns. This is illustrated in Dropping and
Creating Attributes with Columns, which shows the following statement:

ALTER DIMENSION product_dim
DROP ATTRIBUTE size LEVEL prod_type COLUMN Prod_TypeSize;

If you try to remove anything with further dependencies inside the dimension, Oracle Database
rejects the altering of the dimension. A dimension becomes invalid if you change any schema
object that the dimension is referencing. For example, if the table on which the dimension is
defined is altered, the dimension becomes invalid.

You can modify a dimension by adding a level containing a SKIP WHEN NULL clause, as in the
following statement:

ALTER DIMENSION times_dim
ADD LEVEL f_year IS times.fiscal_year SKIP WHEN NULL;

You cannot, however, modify a level that contains a SKIP WHEN NULL clause. Instead, you need
to drop the level and re-create it.

To check the status of a dimension, view the contents of the column invalid in the
ALL_DIMENSIONS data dictionary view. To revalidate the dimension, use the COMPILE option as
follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified or deleted using Oracle Enterprise Manager.

10.7 Deleting Dimensions
A dimension is removed using the DROP DIMENSION statement. For example, you could issue
the following statement:

DROP DIMENSION times_dim;

Chapter 10
Deleting Dimensions

10-11

11
Basic Query Rewrite for Materialized Views

This chapter discusses query rewrite in Oracle, and contains:

• Overview of Query Rewrite

• Ensuring that Query Rewrite Takes Effect

• Example of Query Rewrite

11.1 Overview of Query Rewrite
When base tables contain large amount of data, it is expensive and time-consuming to
compute the required aggregates or to compute joins between these tables. In such cases,
queries can take minutes or even hours. Because materialized views contain already
precomputed aggregates and joins, Oracle Database employs an extremely powerful process
called query rewrite to quickly answer the query using materialized views.

One of the major benefits of creating and maintaining materialized views is the ability to take
advantage of query rewrite, which transforms a SQL statement expressed in terms of tables or
views into a statement accessing one or more materialized views that are defined on the detail
tables. The transformation is transparent to the end user or application, requiring no
intervention and no reference to the materialized view in the SQL statement. Because query
rewrite is transparent, materialized views can be added or dropped just like indexes without
invalidating the SQL in the application code. "When Does Oracle Rewrite a Query?" describes
the conditions that must be met for a query to be rewritten.

11.1.1 About Query Rewrite and the Optimizer
A query undergoes several checks to determine whether it is a candidate for query rewrite.

If the query fails any check, then the query is applied to the detail tables rather than the
materialized view. The inability to rewrite can be costly in terms of response time and
processing power.

The optimizer uses two different methods to determine when to rewrite a query in terms of a
materialized view. The first method matches the SQL text of the query to the SQL text of the
materialized view definition. If the first method fails, then the optimizer uses the more general
method in which it compares joins, selections, data columns, grouping columns, and aggregate
functions between the query and materialized views.

Query rewrite operates on queries and subqueries in the following types of SQL statements:

• SELECT
• CREATE TABLE … AS SELECT
• INSERT INTO … SELECT
It also operates on subqueries in the set operators UNION, UNION ALL, INTERSECT, INTERSECT
ALL, EXCEPT, EXCEPT ALL, MINUS, and MINUS ALL, and subqueries in DML statements such as
INSERT, DELETE, and UPDATE.

11-1

Dimensions, constraints, and rewrite integrity levels affect whether a query is rewritten to use
materialized views. Additionally, query rewrite can be enabled or disabled by REWRITE and
NOREWRITE hints and the QUERY_REWRITE_ENABLED session parameter.

The DBMS_MVIEW.EXPLAIN_REWRITE procedure advises whether query rewrite is possible on a
query and, if so, which materialized views are used. It also explains why a query cannot be
rewritten.

11.1.2 When Does Oracle Rewrite a Query?
A query is rewritten only when a certain number of conditions are met:

• Query rewrite must be enabled for the session.

• A materialized view must be enabled for query rewrite.

• The rewrite integrity level should allow the use of the materialized view. For example, if a
materialized view is not fresh and query rewrite integrity is set to ENFORCED, then the
materialized view is not used.

• Either all or part of the results requested by the query must be obtainable from the
precomputed result stored in the materialized view or views.

To test these conditions, the optimizer may depend on some of the data relationships declared
by the user using constraints and dimensions, among others, hierarchies, referential integrity,
and uniqueness of key data, and so on.

11.2 Ensuring that Query Rewrite Takes Effect
You must follow several conditions to enable query rewrite:

1. Individual materialized views must have the ENABLE QUERY REWRITE clause.

If this step is not completed, as described in Enabling Query Rewrite for Materialized
Views, then a materialized view is never eligible for query rewrite.

2. The session parameter QUERY_REWRITE_ENABLED must be set to TRUE (the default) or FORCE.

3. Cost-based optimization must be used by setting the initialization parameter
OPTIMIZER_MODE to ALL_ROWS, FIRST_ROWS, or FIRST_ROWS_n.

You can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a CREATE MATERIALIZED
VIEW statement to enable general QUERY REWRITE.

See Also:

Initialization Parameters for Query Rewrite

11.2.1 Enabling Query Rewrite for Materialized Views
You can specify ENABLE QUERY REWRITE either with the ALTER MATERIALIZED VIEW statement or
when the materialized view is created, as illustrated in the following:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,

Chapter 11
Ensuring that Query Rewrite Takes Effect

11-2

 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

Note:

Both Oracle join syntax (shown above) and ANSI join syntax are supported.

The NOREWRITE hint disables query rewrite in a SQL statement, overriding the
QUERY_REWRITE_ENABLED parameter, and the REWRITE hint (when used with mv_name) restricts
the eligible materialized views to those named in the hint.

11.2.2 About Initialization Parameters for Query Rewrite
Query rewrite behavior is controlled by certain database initialization parameters.

Table 11-1 Initialization Parameters that Control Query Rewrite Behavior

Initialization Parameter Name Initialization Parameter
Value

Behavior of Query Rewrite

OPTIMIZER_MODE ALL_ROWS (default),
FIRST_ROWS, or
FIRST_ROWS_n

With OPTIMIZER_MODE set to FIRST_ROWS, the
optimizer uses a mix of costs and heuristics to find a
best plan for fast delivery of the first few rows. When set
to FIRST_ROWS_n, the optimizer uses a cost-based
approach and optimizes with a goal of best response
time to return the first n rows (where n = 1, 10, 100,
1000).

QUERY_REWRITE_ENABLED TRUE (default), FALSE, or
FORCE

This option enables the query rewrite feature of the
optimizer, enabling the optimizer to utilize materialized
views to enhance performance. If set to FALSE, this
option disables the query rewrite feature of the optimizer
and directs the optimizer not to rewrite queries using
materialized views even when the estimated query cost
of the unrewritten query is lower.

If set to FORCE, this option enables the query rewrite
feature of the optimizer and directs the optimizer to
rewrite queries using materialized views even when the
estimated query cost of the unrewritten query is lower.

QUERY_REWRITE_INTEGRITY STALE_TOLERATED, TRUSTED,
or ENFORCED (the default)

This parameter is optional. However, if it is set, the value
must be one of these specified in the Initialization
Parameter Value column.

By default, the integrity level is set to ENFORCED. In this
mode, all constraints must be validated. Therefore, if you
use ENABLE NOVALIDATE RELY , certain types of query
rewrite might not work. To enable query rewrite in this
environment (where constraints have not been
validated), you should set the integrity level to a lower
level of granularity such as TRUSTED or
STALE_TOLERATED.

Chapter 11
Ensuring that Query Rewrite Takes Effect

11-3

Related Topics

• About the Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the initialization
parameter QUERY_REWRITE_INTEGRITY.

11.2.3 Controlling Query Rewrite
A materialized view is only eligible for query rewrite if the ENABLE QUERY REWRITE clause has
been specified, either initially when the materialized view was first created or subsequently with
an ALTER MATERIALIZED VIEW statement.

You can set the session parameters described previously for all sessions using the ALTER
SYSTEM SET statement or in the initialization file. For a given user's session, ALTER SESSION can
be used to disable or enable query rewrite for that session only. An example is the following:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

You can set the level of query rewrite for a session, thus allowing different users to work at
different integrity levels. The possible statements are:

ALTER SESSION SET QUERY_REWRITE_INTEGRITY = STALE_TOLERATED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = ENFORCED;

11.2.4 About the Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the initialization
parameter QUERY_REWRITE_INTEGRITY.

The values that you can set for the QUERY_REWRITE_INTEGRITY parameter are as follows:

• ENFORCED
This is the default mode. The optimizer only uses fresh data from the materialized views
and only use those relationships that are based on ENABLED VALIDATED primary, unique, or
foreign key constraints.

• TRUSTED
In TRUSTED mode, the optimizer trusts that the relationships declared in dimensions and
RELY constraints are correct. In this mode, the optimizer also uses prebuilt materialized
views or materialized views based on views, and it uses relationships that are not enforced
as well as those that are enforced. It also trusts declared but not ENABLED VALIDATED
primary or unique key constraints and data relationships specified using dimensions. This
mode offers greater query rewrite capabilities but also creates the risk of incorrect results if
any of the trusted relationships you have declared are incorrect.

• STALE_TOLERATED
In STALE_TOLERATED mode, the optimizer uses materialized views that are valid but contain
stale data as well as those that contain fresh data. This mode offers the maximum rewrite
capability but creates the risk of generating inaccurate results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only enforced primary
key constraints and referential integrity constraints to ensure that the results of the query are
the same as the results when accessing the detail tables directly.

If the rewrite integrity is set to levels other than ENFORCED, there are several situations where
the output with rewrite can be different from that without it:

Chapter 11
Ensuring that Query Rewrite Takes Effect

11-4

• A materialized view can be out of synchronization with the primary copy of the data. This
generally happens because the materialized view refresh procedure is pending following
bulk load or DML operations to one or more detail tables of a materialized view. At some
data warehouse sites, this situation is desirable because it is not uncommon for some
materialized views to be refreshed at certain time intervals.

• The relationships implied by the dimension objects are invalid. For example, values at a
certain level in a hierarchy do not roll up to exactly one parent value.

• The values stored in a prebuilt materialized view table might be incorrect.

• A wrong answer can occur because of bad data relationships defined by unenforced table
or view constraints.

You can set QUERY_REWRITE_INTEGRITY either in your initialization parameter file or using an
ALTER SYSTEM or ALTER SESSION statement.

11.2.5 About Privileges for Enabling Query Rewrite
Use of a materialized view is based not on privileges the user has on that materialized view,
but on the privileges the user has on detail tables or views in the query.

The system privilege GRANT QUERY REWRITE lets you enable materialized views in your own
schema for query rewrite only if all tables directly referenced by the materialized view are in
that schema. The GRANT GLOBAL QUERY REWRITE privilege enables you to enable materialized
views for query rewrite even if the materialized view references objects in other schemas.
Alternatively, you can use the QUERY REWRITE object privilege on tables and views outside your
schema.

The privileges for using materialized views for query rewrite are similar to those for definer's
rights procedures.

11.2.6 Sample Schema and Materialized Views
The following sections use the sh sample schema and a few materialized views to illustrate
how the optimizer uses data relationships to rewrite queries.

The query rewrite examples in this chapter mainly refer to the following materialized views.
These materialized views do not necessarily represent the most efficient implementation for the
sh schema. Instead, they are a base for demonstrating rewrite capabilities. Further examples
demonstrating specific functionality can be found throughout this chapter.

The following materialized views contain joins and aggregates:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

Chapter 11
Ensuring that Query Rewrite Takes Effect

11-5

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

The following materialized views contain joins only:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW join_sales_time_product_oj_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id(+);

Note:

Both Oracle join syntax (shown above) and ANSI join syntax are supported.

Although it is not a strict requirement, it is highly recommended that you collect statistics on the
materialized views so that the optimizer can determine whether to rewrite the queries. You can
do this either on a per-object base or for all newly created objects without statistics. The
following is an example of a per-object base, shown for join_sales_time_product_mv:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS (-
 'SH','JOIN_SALES_TIME_PRODUCT_MV', estimate_percent => 20, -
 block_sample => TRUE, cascade => TRUE);

The following illustrates a statistics collection for all newly created objects without statistics:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS ('SH', -
 options => 'GATHER EMPTY', -
 estimate_percent => 20, block_sample => TRUE, -
 cascade => TRUE);

11.2.7 How to Verify if Query Rewrite Occurred
Because query rewrite occurs transparently, special steps have to be taken to verify that a
query has been rewritten. Of course, if the query runs faster, this should indicate that rewrite
has occurred, but that is not proof. Therefore, to confirm that query rewrite does occur, use the
EXPLAIN PLAN statement or the DBMS_MVIEW.EXPLAIN_REWRITE procedure. See "Verifying that
Query Rewrite has Occurred" for further information.

Chapter 11
Ensuring that Query Rewrite Takes Effect

11-6

11.3 Example of Query Rewrite
This example illustrates the power of query rewrite with materialized views.

Consider the following materialized view, cal_month_sales_mv, which provides an aggregation
of the dollar amount sold in every month:

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Let us assume that, in a typical month, the number of sales in the store is around one million.
So this materialized aggregate view has the precomputed aggregates for the dollar amount
sold for each month.

Consider the following query, which asks for the sum of the amount sold at the store for each
calendar month:

SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Note:

Both Oracle join syntax and ANSI join syntax now supported. For example, the
previous query could be written using the ANSI syntax as follows.

SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s JOIN times t ON s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

In the absence of the previous materialized view and query rewrite feature, Oracle Database
must access the sales table directly and compute the sum of the amount sold to return the
results. This involves reading many million rows from the sales table, which will invariably
increase the query response time due to the disk access. The join in the query will also further
slow down the query response as the join needs to be computed on many million rows.

In the presence of the materialized view cal_month_sales_mv, query rewrite will transparently
rewrite the previous query into the following query:

SELECT calendar_month, dollars
FROM cal_month_sales_mv;

Because there are only a few dozen rows in the materialized view cal_month_sales_mv and no
joins, Oracle Database returns the results instantly.

Chapter 11
Example of Query Rewrite

11-7

12
Advanced Query Rewrite for Materialized
Views

This chapter discusses advanced query rewrite topics in Oracle, and contains:

• How Oracle Rewrites Queries

• Types of Query Rewrite

• Other Query Rewrite Considerations

• Advanced Query Rewrite Using Equivalences

• Creating Result Cache Materialized Views with Equivalences

• Query Rewrite and Materialized Views Based on Approximate Queries

• Verifying that Query Rewrite has Occurred

• Design Considerations for Improving Query Rewrite Capabilities

12.1 How Oracle Rewrites Queries
The optimizer uses a number of different methods to rewrite a query. The first step in
determining whether query rewrite is possible is to see if the query satisfies the following
prerequisites:

• Joins present in the materialized view are present in the SQL.

• There is sufficient data in the materialized view(s) to answer the query.

After that, it must determine how it will rewrite the query. The simplest case occurs when the
result stored in a materialized view exactly matches what is requested by a query. The
optimizer makes this type of determination by comparing the text of the query with the text of
the materialized view definition. This text match method is most straightforward but the number
of queries eligible for this type of query rewrite is minimal.

When the text comparison test fails, the optimizer performs a series of generalized checks
based on the joins, selections, grouping, aggregates, and column data fetched. This is
accomplished by individually comparing various clauses (SELECT, FROM, WHERE, HAVING, or
GROUP BY) of a query with those of a materialized view.

You can use the following types of query rewrite: Query Rewrite Method 1: Text Match Rewrite
or General Query Rewrite Methods.

This following topics discuss the optimizer in more detail:

• About Cost-Based Optimization and Query Rewrite

• General Query Rewrite Methods

• About Checks Made by Query Rewrite

• About Query Rewrite Using Dimensions

12-1

12.1.1 About Cost-Based Optimization and Query Rewrite
When a query is rewritten, Oracle's cost-based optimizer compares the cost of the rewritten
query and original query and chooses the cheaper execution plan.

Query rewrite is available with cost-based optimization. Oracle Database optimizes the input
query with and without rewrite and selects the least costly alternative. The optimizer rewrites a
query by rewriting one or more query blocks, one at a time.

If query rewrite has a choice between several materialized views to rewrite a query block, it
selects the ones which can result in reading in the least amount of data. After a materialized
view has been selected for a rewrite, the optimizer then tests whether the rewritten query can
be rewritten further with other materialized views. This process continues until no further
rewrites are possible. Then the rewritten query is optimized and the original query is optimized.
The optimizer compares these two optimizations and selects the least costly alternative.

Because optimization is based on cost, it is important to collect statistics both on tables
involved in the query and on the tables representing materialized views. Statistics are
fundamental measures, such as the number of rows in a table, that are used to calculate the
cost of a rewritten query. They are created by using the DBMS_STATS package.

Queries that contain inline or named views are also candidates for query rewrite. When a
query contains a named view, the view name is used to do the matching between a
materialized view and the query. When a query contains an inline view, the inline view can be
merged into the query before matching between a materialized view and the query occurs.

Figure 12-1 presents a graphical view of the cost-based approach used during the rewrite
process.

Chapter 12
How Oracle Rewrites Queries

12-2

Figure 12-1 The Query Rewrite Process

Rewrite

Generate
plan

User's SQL

Generate
plan

Choose
(based on cost)

Execute

Oracle

12.1.2 General Query Rewrite Methods
The optimizer has a number of different types of query rewrite methods that it can choose from
to answer a query. When text match rewrite is not possible, this group of rewrite methods is
known as general query rewrite. The advantage of using these more advanced techniques is
that one or more materialized views can be used to answer a number of different queries and
the query does not always have to match the materialized view exactly for query rewrite to
occur.

When using general query rewrite methods, the optimizer uses data relationships on which it
can depend, such as primary and foreign key constraints and dimension objects. For example,
primary key and foreign key relationships tell the optimizer that each row in the foreign key
table joins with at most one row in the primary key table. Furthermore, if there is a NOT NULL
constraint on the foreign key, it indicates that each row in the foreign key table must join to
exactly one row in the primary key table. A dimension object describes the relationship
between, say, day, months, and year, which can be used to roll up data from the day to the
month level.

Data relationships such as these are very important for query rewrite because they tell what
type of result is produced by joins, grouping, or aggregation of data. Therefore, to maximize
the rewritability of a large set of queries when such data relationships exist in a database, you
should declare constraints and dimensions.

Chapter 12
How Oracle Rewrites Queries

12-3

See Also:

When are Constraints and Dimensions Needed for Query Rewrite?

12.1.2.1 When are Constraints and Dimensions Needed for Query Rewrite?
Table 12-1 illustrates when dimensions and constraints are required for different types of query
rewrite. These types of query rewrite are described throughout this chapter.

Table 12-1 Dimension and Constraint Requirements for Query Rewrite

Query Rewrite Types Dimensions Primary Key/Foreign Key/Not Null
Constraints

Matching SQL Text Not Required Not Required

Join Back Required OR Required

Aggregate Computability Not Required Not Required

Aggregate Rollup Not Required Not Required

Rollup Using a Dimension Required Not Required

Filtering the Data Not Required Not Required

PCT Rewrite Not Required Not Required

Multiple Materialized Views Not Required Not Required

12.1.3 About Checks Made by Query Rewrite
For query rewrite to occur, there are a number of checks that the data must pass. These
checks are:

• Join Compatibility Check for Query Rewrite

• Data Sufficiency Check for Query Rewrite

• Grouping Compatibility Check for Query Rewrite

• Aggregate Computability Check for Query Rewrite

12.1.3.1 Join Compatibility Check for Query Rewrite
In this check, the joins in a query are compared against the joins in a materialized view. In
general, this comparison results in the classification of joins into three categories:

• Common joins that occur in both the query and the materialized view. These joins form the
common subgraph.

See Common Joins.

• Delta joins that occur in the query but not in the materialized view. These joins form the
query delta subgraph.

See Query Delta Joins.

• Delta joins that occur in the materialized view but not in the query. These joins form the
materialized view delta subgraph.

See Materialized View Delta Joins.

Chapter 12
How Oracle Rewrites Queries

12-4

These can be visualized as shown in Figure 12-2.

Figure 12-2 Query Rewrite Subgraphs

Query

delta

Common

subgraph
MV

delta

countries

customers products

sales

times

Query join
graph

Materialized
view join
graph

See Also:

About Checks Made by Query Rewrite

12.1.3.1.1 Common Joins
The common join pairs between the two must be of the same type, or the join in the query
must be derivable from the join in the materialized view. For example, if a materialized view
contains an outer join of table A with table B, and a query contains an inner join of table A with
table B, the result of the inner join can be derived by filtering the antijoin rows from the result of
the outer join. For example, consider the following query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id
AND mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY p.prod_name, mv.week_ending_day;

The common joins between this query and the materialized view
join_sales_time_product_mv are:

s.time_id = t.time_id AND s.prod_id = p.prod_id

They match exactly and the query can be rewritten as follows:

SELECT p.prod_name, mv.week_ending_day, SUM(s.amount_sold)
FROM join_sales_time_product_mv

Chapter 12
How Oracle Rewrites Queries

12-5

WHERE mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
GROUP BY mv.prod_name, mv.week_ending_day;

The query could also be answered using the join_sales_time_product_oj_mv materialized
view where inner joins in the query can be derived from outer joins in the materialized view.
The rewritten version (transparently to the user) filters out the antijoin rows. The rewritten
query has the following structure:

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_oj_mv mv
WHERE mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY') AND mv.prod_id IS NOT NULL
GROUP BY mv.prod_name, mv.week_ending_day;

In general, if you use an outer join in a materialized view containing only joins, you should put
in the materialized view either the primary key or the rowid on the right side of the outer join.
For example, in the previous example, join_sales_time_product_oj_mv, there is a primary
key on both sales and products.

Another example of when a materialized view containing only joins is used is the case of a
semijoin rewrites. That is, a query contains either an EXISTS or an IN subquery with a single
table. Consider the following query, which reports the products that had sales greater
than $1,000:

SELECT DISTINCT p.prod_name
FROM products p
WHERE EXISTS (SELECT p.prod_id, SUM(s.amount_sold) FROM sales s
 WHERE p.prod_id=s.prod_id HAVING SUM(s.amount_sold) > 1000)
 GROUP BY p.prod_id);

This query could also be represented as:

SELECT DISTINCT p.prod_name
FROM products p WHERE p.prod_id IN (SELECT s.prod_id FROM sales s
 WHERE s.amount_sold > 1000);

This query contains a semijoin (s.prod_id = p.prod_id) between the products and the sales
table.

This query can be rewritten to use either the join_sales_time_product_mv materialized view,
if foreign key constraints are active or join_sales_time_product_oj_mv materialized view, if
primary keys are active. Observe that both materialized views contain s.prod_id=p.prod_id,
which can be used to derive the semijoin in the query. The query is rewritten with
join_sales_time_product_mv as follows:

SELECT mv.prod_name
FROM (SELECT DISTINCT mv.prod_name FROM join_sales_time_product_mv mv
 WHERE mv.amount_sold > 1000);

If the materialized view join_sales_time_product_mv is partitioned by time_id, then this
query is likely to be more efficient than the original query because the original join between
sales and products has been avoided. The query could be rewritten using
join_sales_time_product_oj_mv as follows.

SELECT mv.prod_name
FROM (SELECT DISTINCT mv.prod_name FROM join_sales_time_product_oj_mv mv
 WHERE mv.amount_sold > 1000 AND mv.prod_id IS NOT NULL);

Chapter 12
How Oracle Rewrites Queries

12-6

Rewrites with semi-joins are restricted to materialized views with joins only and are not
possible for materialized views with joins and aggregates.

See Also:

About Checks Made by Query Rewrite

12.1.3.1.2 Query Delta Joins
A query delta join is a join that appears in the query but not in the materialized view. Any
number and type of delta joins in a query are allowed and they are simply retained when the
query is rewritten with a materialized view. In order for the retained join to work, the
materialized view must contain the joining key. Upon rewrite, the materialized view is joined to
the appropriate tables in the query delta. For example, consider the following query against the
sh sample schema.

SELECT p.prod_name, t.week_ending_day, c.cust_city, SUM(s.amount_sold)
FROM sh.sales s, sh.products p, sh.times t, sh.customers c
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id
AND s.cust_id = c.cust_id
GROUP BY p.prod_name, t.week_ending_day, c.cust_city;

Using the materialized view join_sales_time_product_mv, common joins are:
s.time_id=t.time_id and s.prod_id=p.prod_id. The delta join in the query is
s.cust_id=c.cust_id. The rewritten form then joins the join_sales_time_product_mv
materialized view with the customers table as follows:

SELECT mv.prod_name, mv.week_ending_day, c.cust_city, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv, customers c
WHERE mv.cust_id = c.cust_id
GROUP BY mv.prod_name, mv.week_ending_day, c.cust_city;

See Also:

About Checks Made by Query Rewrite

12.1.3.1.3 Materialized View Delta Joins
A materialized view delta join is a join that appears in the materialized view but not the query.
All delta joins in a materialized view are required to be lossless with respect to the result of
common joins. A lossless join guarantees that the result of common joins is not restricted. A
lossless join is one where, if two tables called A and B are joined together, rows in table A will
always match with rows in table B and no data will be lost, hence the term lossless join. For
example, every row with the foreign key matches a row with a primary key provided no nulls
are allowed in the foreign key. Therefore, to guarantee a lossless join, it is necessary to have
FOREIGN KEY, PRIMARY KEY, and NOT NULL constraints on appropriate join keys. Alternatively, if
the join between tables A and B is an outer join (A being the outer table), it is lossless as it
preserves all rows of table A.

All delta joins in a materialized view are required to be non-duplicating with respect to the
result of common joins. A non-duplicating join guarantees that the result of common joins is not
duplicated. For example, a non-duplicating join is one where, if table A and table B are joined

Chapter 12
How Oracle Rewrites Queries

12-7

together, rows in table A will match with at most one row in table B and no duplication occurs.
To guarantee a non-duplicating join, the key in table B must be constrained to unique values by
using a primary key or unique constraint.

Consider the following query that joins sales and times in the sh sample schema:

SELECT t.week_ending_day, SUM(s.amount_sold)
FROM sh.sales s, sh.times t
WHERE s.time_id = t.time_id AND t.week_ending_day BETWEEN TO_DATE
 ('01-MAR-2022', 'DD-MON-YYYY') AND TO_DATE('10-AUG-2022', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The materialized view join_sales_time_product_mv has an additional join
(s.prod_id=p.prod_id) between sales and products. This is the delta join in
join_sales_time_product_mv. You can rewrite the query if this join is lossless and non-
duplicating. This is the case if s.prod_id is a foreign key to p.prod_id and is not null. The
query is therefore rewritten as:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-MAR-2022', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-2022', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_product_mv_oj
where foreign key constraints are not needed. This view contains an outer join
(s.prod_id=p.prod_id(+)) between sales and products. This makes the join lossless. If
p.prod_id is a primary key, then the non-duplicating condition is satisfied as well and optimizer
rewrites the query as follows:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_product_mv_oj
where foreign key constraints are not needed. This view contains an outer join
(s.prod_id=p.prod_id(+)) between sales and products. This makes the join lossless. If
p.prod_id is a primary key, then the non-duplicating condition is satisfied as well and optimizer
rewrites the query as follows:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-MAR-2022', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-2022', 'DD-MON-YYYY')
GROUP BY week_ending_day;

Note that the outer join in the definition of join_sales_time_product_mv_oj is not necessary
because the primary key - foreign key relationship between sales and products in the sh
schema is already lossless. It is used for demonstration purposes only, and would be
necessary if sales.prod_id were nullable, thus violating the losslessness of the join condition
sales.prod_id = products.prod_id.

Current limitations restrict most rewrites with outer joins to materialized views with joins only.
There is limited support for rewrites with materialized aggregate views with outer joins, so
those materialized views should rely on foreign key constraints to assure losslessness of
materialized view delta joins.

Chapter 12
How Oracle Rewrites Queries

12-8

See Also:

About Checks Made by Query Rewrite

12.1.3.1.4 Join Equivalence Recognition
Query rewrite is able to make many transformations based upon the recognition of equivalent
joins. Query rewrite recognizes the following construct as being equivalent to a join:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */

If F(args) is a PL/SQL function that is declared to be deterministic and the arguments to both
invocations of F are the same, then the combination of subexpression A with subexpression B
be can be recognized as a join between table1.column1 and table2.column2. That is, the
following expression is equivalent to the previous expression:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */
AND table1.column1 = table2.column2 /* join-expression J */

Because join-expression J can be inferred from sub-expression A and subexpression B, the
inferred join can be used to match a corresponding join of table1.column1 = table2.column2
in a materialized view.

12.1.3.2 Data Sufficiency Check for Query Rewrite
In this check, the optimizer determines if the necessary column data requested by a query can
be obtained from a materialized view. For this, the equivalence of one column with another is
used. For example, if an inner join between table A and table B is based on a join predicate A.X
= B.X, then the data in column A.X equals the data in column B.X in the result of the join. This
data property is used to match column A.X in a query with column B.X in a materialized view or
vice versa. For example, consider the following query against the sh sample schema:

SELECT p.prod_name, s.time_id, t.week_ending_day, SUM(s.amount_sold)
FROM sh.sales s, sh.products p, sh.times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id
GROUP BY p.prod_name, s.time_id, t.week_ending_day;

This query can be answered with join_sales_time_product_mv even though the materialized
view does not have s.time_id. Instead, it has t.time_id, which, through a join condition
s.time_id=t.time_id, is equivalent to s.time_id. Thus, the optimizer might select the
following rewrite:

SELECT prod_name, time_id, week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_mv
GROUP BY prod_name, time_id, week_ending_day;

12.1.3.3 Grouping Compatibility Check for Query Rewrite
This check is required only if both the materialized view and the query contain a GROUP BY
clause. The optimizer first determines if the grouping of data requested by a query is exactly
the same as the grouping of data stored in a materialized view. In other words, the level of
grouping is the same in both the query and the materialized view. If the materialized views
groups on all the columns and expressions in the query and also groups on additional columns

Chapter 12
How Oracle Rewrites Queries

12-9

or expressions, query rewrite can reaggregate the materialized view over the grouping
columns and expressions of the query to derive the same result requested by the query.

12.1.3.4 Aggregate Computability Check for Query Rewrite
This check is required only if both the query and the materialized view contain aggregates.
Here the optimizer determines if the aggregates requested by a query can be derived or
computed from one or more aggregates stored in a materialized view. For example, if a query
requests AVG(X) and a materialized view contains SUM(X) and COUNT(X), then AVG(X) can be
computed as SUM(X)/COUNT(X).

If the grouping compatibility check determined that the rollup of aggregates stored in a
materialized view is required, then the aggregate computability check determines if it is
possible to roll up each aggregate requested by the query using aggregates in the materialized
view.

12.1.4 About Query Rewrite Using Dimensions
This section discusses the following aspects of using dimensions in a rewrite environment:

• Benefits of Using Dimensions in a Query Rewrite Environment

• How to Define Dimensions for Query Rewrite

12.1.4.1 Benefits of Using Dimensions in a Query Rewrite Environment
A dimension defines a hierarchical (parent/child) relationships between columns, where all the
columns do not have to come from the same table.

Dimension definitions increase the possibility of query rewrite because they help to establish
functional dependencies between the columns. In addition, dimensions can express intra-table
relationships that cannot be expressed by constraints. A dimension definition does not occupy
additional storage. Rather, a dimension definition establishes metadata that describes the
intra- and inter-dimensional relationships within your schema. Before creating a materialized
view, the first step is to review the schema and define the dimensions as this can significantly
improve the chances of rewriting a query.

12.1.4.2 How to Define Dimensions for Query Rewrite
For any given schema, use the following steps to create dimensions:

1. Identify all dimensions and dimension tables in the schema

2. Identify the hierarchies within each dimension

3. Identify the attribute dependencies within each level of the hierarchy

4. Identify joins from the fact table in a data warehouse to each dimension

Remember to set the parameter QUERY_REWRITE_INTEGRITY to TRUSTED or STALE_TOLERATED for
query rewrite to take advantage of the relationships declared in dimensions.

Identify all dimensions and dimension tables in the schema

If the dimensions are normalized, that is, stored in multiple tables, then check that a join
between the dimension tables guarantees that each child-side row joins with one and only one
parent-side row. In the case of denormalized dimensions, check that the child-side columns
uniquely determine the parent-side (or attribute) columns. Failure to abide by these rules may
result in incorrect results being returned from queries.

Chapter 12
How Oracle Rewrites Queries

12-10

Identify the hierarchies within each dimension

As an example, day is a child of month (you can aggregate day level data up to month), and
quarter is a child of year.

Identify the attribute dependencies within each level of the hierarchy

As an example, identify that calendar_month_name is an attribute of month.

Identify joins from the fact table in a data warehouse to each dimension

Then check that each join can guarantee that each fact row joins with one and only one
dimension row. This condition must be declared, and optionally enforced, by adding FOREIGN
KEY and NOT NULL constraints on the fact key columns and PRIMARY KEY constraints on the
parent-side join keys. If these relationships can be guaranteed by other data handling
procedures (for example, your load process), these constraints can be enabled using the
NOVALIDATE option to avoid the time required to validate that every row in the table conforms to
the constraints. The RELY clause is also required for all nonvalidated constraints to make them
eligible for use in query rewrite.

12.1.4.2.1 Example SQL Statement to Create Time Dimensions
CREATE DIMENSION times_dim
LEVEL day IS TIMES.TIME_ID
LEVEL month IS TIMES.CALENDAR_MONTH_DESC
LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC
LEVEL year IS TIMES.CALENDAR_YEAR
LEVEL fis_week IS TIMES.WEEK_ENDING_DAY
LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
LEVEL fis_quarter IS TIMES.FISCAL_QUARTER_DESC
LEVEL fis_year IS TIMES.FISCAL_YEAR
 HIERARCHY cal_rollup
 (day CHILD OF month CHILD OF quarter CHILD OF year)
 HIERARCHY fis_rollup
 (day CHILD OF fis_week CHILD OF fis_month CHILD OF fis_quarter
 CHILD OF fis_year)

 ATTRIBUTE day DETERMINES
 (day_number_in_week, day_name, day_number_in_month,
 calendar_week_number)

 ATTRIBUTE month DETERMINES
 (calendar_month_desc, calendar_month_number, calendar_month_name,
 days_in_cal_month, end_of_cal_month)

 ATTRIBUTE quarter DETERMINES
 (calendar_quarter_desc, calendar_quarter_number,days_in_cal_quarter,
 end_of_cal_quarter)

 ATTRIBUTE year DETERMINES
 (calendar_year, days_in_cal_year, end_of_cal_year)

 ATTRIBUTE fis_week DETERMINES
 (week_ending_day, fiscal_week_number);

Chapter 12
How Oracle Rewrites Queries

12-11

12.2 Types of Query Rewrite
Queries that have aggregates that require computations over a large number of rows or joins
between very large tables can be expensive and thus can take a long time to return the results.
Query rewrite transparently rewrites such queries using materialized views that have pre-
computed results, so that the queries can be answered almost instantaneously. These
materialized views can be broadly categorized into two groups, namely materialized aggregate
views and materialized join views. Materialized aggregate views are tables that have pre-
computed aggregate values for columns from original tables. Similarly, materialized join views
are tables that have pre-computed joins between columns from original tables. Query rewrite
transforms an incoming query to fetch the results from materialized view columns. Because
these columns contain already pre-computed results, the incoming query can be answered
almost instantaneously.

This section discusses the following methods that can be used to rewrite a query:

• Query Rewrite Method 1: Text Match Rewrite

• Query Rewrite Method 2: Join Back

• Query Rewrite Method 3: Aggregate Computability

• Query Rewrite Method 4: Aggregate Rollup

• Query Rewrite Method 5: Rollup Using a Dimension

• Query Rewrite Method 6: When Materialized Views Have Only a Subset of Data

• Partition Change Tracking (PCT) Rewrite

• About Query Rewrite Using Multiple Materialized Views

12.2.1 Query Rewrite Method 1: Text Match Rewrite
The query rewrite engine always initially tries to compare the text of incoming query with the
text of the definition of any potential materialized views to rewrite the query. This is because
the overhead of doing a simple text comparison is usually negligible comparing to the cost of
doing a complex analysis required for the general rewrite.

The query rewrite engine uses two text match methods, full text match rewrite and partial text
match rewrite. In full text match the entire text of a query is compared against the entire text of
a materialized view definition (that is, the entire SELECT expression), ignoring the white space
during text comparison. For example, assume that you have the following materialized view,
sum_sales_pscat_month_city_mv:

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv
ENABLE QUERY REWRITE AS
 SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
 FROM sales s, products p, times t, customers c
 WHERE s.time_id=t.time_id
 AND s.prod_id=p.prod_id
 AND s.cust_id=c.cust_id
 GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

Consider the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,

Chapter 12
Types of Query Rewrite

12-12

 COUNT(s.amount_sold) AS count_amount_sold
 FROM sales s, products p, times t, customers c
 WHERE s.time_id=t.time_id
 AND s.prod_id=p.prod_id
 AND s.cust_id=c.cust_id
 GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query matches sum_sales_pscat_month_city_mv (white space excluded) and is rewritten
as:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 mv.sum_amount_sold, mv.count_amount_sold
FROM sum_sales_pscat_month_city_mv;

When full text match fails, the optimizer then attempts a partial text match. In this method, the
text starting from the FROM clause of a query is compared against the text starting with the FROM
clause of a materialized view definition. Therefore, the following query can be rewritten:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 AVG(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query is rewritten as:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 mv.sum_amount_sold/mv.count_amount_sold
FROM sum_sales_pscat_month_city_mv mv;

Note that, under the partial text match rewrite method, the average of sales aggregate required
by the query is computed using the sum of sales and count of sales aggregates stored in the
materialized view.

When neither text match succeeds, the optimizer uses a general query rewrite method.

Text match rewrite can distinguish contexts where the difference between uppercase and
lowercase is significant and where it is not. For example, the following statements are
equivalent:

SELECT X, 'aBc' FROM Y

Select x, 'aBc' From y

12.2.2 Query Rewrite Method 2: Join Back
If some column data requested by a query cannot be obtained from a materialized view, the
optimizer further determines if it can be obtained based on a data relationship called a
functional dependency. When the data in a column can determine data in another column,
such a relationship is called a functional dependency or functional determinance. For example,
if a table contains a primary key column called prod_id and another column called prod_name,
then, given a prod_id value, it is possible to look up the corresponding prod_name. The
opposite is not true, which means a prod_name value need not relate to a unique prod_id.

When the column data required by a query is not available from a materialized view, such
column data can still be obtained by joining the materialized view back to the table that
contains required column data provided the materialized view contains a key that functionally
determines the required column data. For example, consider the following query:

Chapter 12
Types of Query Rewrite

12-13

SELECT p.prod_category, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND p.prod_category='Golf'
GROUP BY p.prod_category, t.week_ending_day;

The materialized view sum_sales_prod_week_mv contains p.prod_id, but not
p.prod_category. However, you can join sum_sales_prod_week_mv back to products to
retrieve prod_category because prod_id functionally determines prod_category. The
optimizer rewrites this query using sum_sales_prod_week_mv as follows:

SELECT p.prod_category, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_prod_week_mv mv, products p
WHERE mv.prod_id=p.prod_id AND p.prod_category='Golf'
GROUP BY p.prod_category, mv.week_ending_day;

Here the products table is called a joinback table because it was originally joined in the
materialized view but joined again in the rewritten query.

You can declare functional dependency in two ways:

• Using the primary key constraint (as shown in the previous example)

• Using the DETERMINES clause of a dimension

The DETERMINES clause of a dimension definition might be the only way you could declare
functional dependency when the column that determines another column cannot be a primary
key. For example, the products table is a denormalized dimension table that has columns
prod_id, prod_name, and prod_subcategory that functionally determines prod_subcat_desc
and prod_category that determines prod_cat_desc.

The first functional dependency can be established by declaring prod_id as the primary key,
but not the second functional dependency because the prod_subcategory column contains
duplicate values. In this situation, you can use the DETERMINES clause of a dimension to
declare the second functional dependency.

The following dimension definition illustrates how functional dependencies are declared:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product DETERMINES products.prod_name
 ATTRIBUTE product DETERMINES products.prod_desc
 ATTRIBUTE subcategory DETERMINES products.prod_subcat_desc
 ATTRIBUTE category DETERMINES products.prod_cat_desc;

The hierarchy prod_rollup declares hierarchical relationships that are also 1:n functional
dependencies. The 1:1 functional dependencies are declared using the DETERMINES clause, as
seen when prod_subcategory functionally determines prod_subcat_desc.

If the following materialized view is created:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sole
FROM sales s, products p, times t

Chapter 12
Types of Query Rewrite

12-14

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

Then consider the following query:

SELECT p.prod_subcategory_desc, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
AND p.prod_subcat_desc LIKE '%Men'
GROUP BY p.prod_subcat_desc, t.week_ending_day;

This can be rewritten by joining sum_sales_pscat_week_mv to the products table so that
prod_subcat_desc is available to evaluate the predicate. However, the join is based on the
prod_subcategory column, which is not a primary key in the products table; therefore, it
allows duplicates. This is accomplished by using an inline view that selects distinct values and
this view is joined to the materialized view as shown in the rewritten query.

SELECT iv.prod_subcat_desc, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_subcat_desc
 FROM products) iv
WHERE mv.prod_subcategory=iv.prod_subcategory
AND iv.prod_subcat_desc LIKE '%Men'
GROUP BY iv.prod_subcat_desc, mv.week_ending_day;

This type of rewrite is possible because prod_subcategory functionally determines
prod_subcategory_desc as declared in the dimension.

12.2.3 Query Rewrite Method 3: Aggregate Computability
Query rewrite can also occur when the optimizer determines if the aggregates requested by a
query can be derived or computed from one or more aggregates stored in a materialized view.
For example, if a query requests AVG(X) and a materialized view contains SUM(X) and
COUNT(X), then AVG(X) can be computed as SUM(X)/COUNT(X).

In addition, if it is determined that the rollup of aggregates stored in a materialized view is
required, then, if it is possible, query rewrite also rolls up each aggregate requested by the
query using aggregates in the materialized view.

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the state level by
summing all SUM(sales) aggregates in a group with the same state value. However,
AVG(sales) cannot be rolled up to a coarser level unless COUNT(sales) or SUM(sales) is also
available in the materialized view. Similarly, VARIANCE(sales) or STDDEV(sales) cannot be
rolled up unless both COUNT(sales) and SUM(sales) are also available in the materialized view.
For example, consider the following query from the sh sample schema:

ALTER TABLE times MODIFY CONSTRAINT time_pk RELY;
ALTER TABLE customers MODIFY CONSTRAINT customers_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_time_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_customer_fk RELY;
SELECT p.prod_subcategory, AVG(s.amount_sold) AS avg_sales
FROM sh.sales s, sh.products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

This statement can be rewritten with materialized view sum_sales_pscat_month_city_mv
provided the joins between sales and times and sales and customers are lossless and non-
duplicating. Further, the query groups by prod_subcategory whereas the materialized view
groups by prod_subcategory, calendar_month_desc and cust_city, which means the

Chapter 12
Types of Query Rewrite

12-15

aggregates stored in the materialized view have to be rolled up. The optimizer rewrites the
query as the following:

SELECT mv.prod_subcategory, SUM(mv.sum_amount_sold)/COUNT(mv.count_amount_sold)
 AS avg_sales
FROM sum_sales_pscat_month_city_mv mv
GROUP BY mv.prod_subcategory;

The argument of an aggregate such as SUM can be an arithmetic expression such as A+B. The
optimizer tries to match an aggregate SUM(A+B) in a query with an aggregate SUM(A+B) or
SUM(B+A) stored in a materialized view. In other words, expression equivalence is used when
matching the argument of an aggregate in a query with the argument of a similar aggregate in
a materialized view. To accomplish this, Oracle converts the aggregate argument expression
into a canonical form such that two different but equivalent expressions convert into the same
canonical form. For example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into the
same canonical form and, therefore, they are successfully matched.

12.2.4 Query Rewrite Method 4: Aggregate Rollup
If the grouping of data requested by a query is at a coarser level than the grouping of data
stored in a materialized view, the optimizer can still use the materialized view to rewrite the
query. For example, the materialized view sum_sales_pscat_week_mv groups by
prod_subcategory and week_ending_day. This query groups by prod_subcategory, a coarser
grouping granularity:

ALTER TABLE times MODIFY CONSTRAINT time_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_time_fk RELY;
SELECT p.prod_subcategory, SUM(s.amount_sold) AS sum_amount
FROM sh.sales s, sh.products p WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Therefore, the optimizer rewrites this query as:

SELECT mv.prod_subcategory, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv
GROUP BY mv.prod_subcategory;

12.2.5 Query Rewrite Method 5: Rollup Using a Dimension
When reporting is required at different levels in a hierarchy, materialized views do not have to
be created at each level in the hierarchy provided dimensions have been defined. This is
because query rewrite can use the relationship information in the dimension to roll up the data
in the materialized view to the required level in the hierarchy.

In the following example, a query requests data grouped by prod_category while a
materialized view stores data grouped by prod_subcategory. If prod_subcategory is a CHILD
OF prod_category (see the dimension example earlier), the grouped data stored in the
materialized view can be further grouped by prod_category when the query is rewritten. In
other words, aggregates at prod_subcategory level (finer granularity) stored in a materialized
view can be rolled up into aggregates at prod_category level (coarser granularity).

For example, consider the following sh sample schema query:

SELECT p.prod_category, t.week_ending_day, SUM(s.amount_sold) AS sum_amount
FROM sh.sales s, sh.products p, sh.times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_category, t.week_ending_day;

Chapter 12
Types of Query Rewrite

12-16

Because prod_subcategory functionally determines prod_category,
sum_sales_pscat_week_mv can be used with a joinback to products to retrieve prod_category
column data, and then aggregates can be rolled up to prod_category level, as shown in the
following:

SELECT pv.prod_category, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_category
 FROM products) pv
WHERE mv.prod_subcategory= pv.prod_subcategory
GROUP BY pv.prod_category, mv.week_ending_day;

12.2.6 Query Rewrite Method 6: When Materialized Views Have Only a
Subset of Data

Oracle supports rewriting of queries so that they will use materialized views in which the
HAVING or WHERE clause of the materialized view contains a selection of a subset of the data in
a table or tables. For example, only those customers who live in New Hampshire. In other
words, the WHERE clause in the materialized view will be WHERE state = 'New Hampshire'.

To perform this type of query rewrite, Oracle must determine if the data requested in the query
is contained in, or is a subset of, the data stored in the materialized view. The following
sections detail the conditions where Oracle can solve this problem and thus rewrite a query to
use a materialized view that contains a filtered portion of the data in the detail table.

To determine if query rewrite can occur on filtered data, a selection computability check is
performed when both the query and the materialized view contain selections (non-joins) and
the check is done on the WHERE as well as the HAVING clause. If the materialized view contains
selections and the query does not, then the selection compatibility check fails because the
materialized view is more restrictive than the query. If the query has selections and the
materialized view does not, then the selection compatibility check is not needed.

A materialized view's WHERE or HAVING clause can contain a join, a selection, or both, and still
be used to rewrite a query. Predicate clauses containing expressions, or selecting rows based
on the values of particular columns, are examples of non-join predicates.

This section contains the following topics:

• Query Rewrite Definitions When Materialized Views Have Only a Subset of Data

• Selection Categories When Materialized Views Have Only a Subset of Data

• Examples of Query Rewrite Selection

• About Handling of the HAVING Clause in Query Rewrite

• About Query Rewrite When the Materialized View has an IN-List

12.2.6.1 Query Rewrite Definitions When Materialized Views Have Only a Subset of
Data

Before describing what is possible when query rewrite works with only a subset of the data, the
following definitions are useful:

• join relop

Is one of the following (=, <, <=, >, >=)
• selection relop

Chapter 12
Types of Query Rewrite

12-17

Is one of the following (=, <, <=, >, >=, !=, [NOT] BETWEEN | IN| LIKE |NULL)
• join predicate

Is of the form (column1 join relop column2), where columns are from different tables
within the same FROM clause in the current query block. So, for example, an outer reference
is not possible.

• selection predicate

Is of the form left-hand-side-expression relop right-hand-side-expression. All non-join
predicates are selection predicates. The left-hand side usually contains a column and the
right-hand side contains the values. For example, color='red' means the left-hand side is
color and the right-hand side is 'red' and the relational operator is (=).

12.2.6.2 Selection Categories When Materialized Views Have Only a Subset of Data
Selections are categorized into the following cases:

• Simple

Simple selections are of the form expression relop constant.

• Complex

Complex selections are of the form expression relop expression.

• Range

Range selections are of a form such as WHERE (cust_last_name BETWEEN 'abacrombe'
AND 'anakin').

Note that simple selections with relational operators (<,<=,>,>=)are also considered
range selections.

• IN-lists

Single and multi-column IN-lists such as WHERE(prod_id) IN (102, 233,).

Note that selections of the form (column1='v1' OR column1='v2' OR column1='v3'
OR) are treated as a group and classified as an IN-list.

• IS [NOT] NULL
• [NOT] LIKE
• Other

Other selections are when it cannot determine the boundaries for the data. For example,
EXISTS.

When comparing a selection from the query with a selection from the materialized view, the
left-hand side of both selections are compared.

If the left-hand side selections match, then the right-hand side values are checked for
containment. That is, the right-hand side values of the query selection must be contained by
right-hand side values of the materialized view selection.

You can also use expressions in selection predicates. This process resembles the following:

expression relational operator constant

Where expression can be any arbitrary arithmetic expression allowed by the Oracle Database.
The expression in the materialized view and the query must match. Oracle attempts to discern

Chapter 12
Types of Query Rewrite

12-18

expressions that are logically equivalent, such as A+B and B+A, and always recognizes identical
expressions as being equivalent.

You can also use queries with an expression on both sides of the operator or user-defined
functions as operators. Query rewrite occurs when the complex predicate in the materialized
view and the query are logically equivalent. This means that, unlike exact text match, terms
could be in a different order and rewrite can still occur, as long as the expressions are
equivalent.

12.2.6.3 Examples of Query Rewrite Selection
Here are a number of examples showing how query rewrite can still occur when the data is
being filtered.

Example 12-1 Single Value Selection

If the query contains the following clause:

WHERE prod_id = 102

And, if a materialized view contains the following clause:

WHERE prod_id BETWEEN 0 AND 200

Then, the left-hand side selections match on prod_id and the right-hand side value of the
query 102 is within the range of the materialized view, so query rewrite is possible.

Example 12-2 Bounded Range Selection

A selection can be a bounded range (a range with an upper and lower value). For example, if
the query contains the following clause:

WHERE prod_id > 10 AND prod_id < 50

And if a materialized view contains the following clause:

WHERE prod_id BETWEEN 0 AND 200

Then, the selections are matched on prod_id and the query range is within the materialized
view range. In this example, notice that both query selections are based on the same column.

Example 12-3 Selection With Expression

If the query contains the following clause:

WHERE (sales.amount_sold * .07) BETWEEN 1.00 AND 100.00

And if a materialized view contains the following clause:

WHERE (sales.amount_sold * .07) BETWEEN 0.0 AND 200.00

Then, the selections are matched on (sales.amount_sold *.07) and the right-hand side value
of the query is within the range of the materialized view, therefore query rewrite is possible.
Complex selections such as this require that the left-hand side and the right-hand side be
matched within range of the materialized view.

Example 12-4 Exact Match Selections

If the query contains the following clause:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

Chapter 12
Types of Query Rewrite

12-19

And if a materialized view contains the following:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

If the left-hand side and the right-hand side match the materialized view and the
selection_relop is the same, then the selection can usually be dropped from the rewritten
query. Otherwise, the selection must be kept to filter out extra data from the materialized view.

If query rewrite can drop the selection from the rewritten query, all columns from the selection
may not have to be in the materialized view so more rewrites can be done. This ensures that
the materialized view data is not more restrictive than the query.

Example 12-5 More Selection in the Query

Selections in the query do not have to be matched by any selections in the materialized view
but, if they are, then the right-hand side values must be contained by the materialized view. For
example, if the query contains the following clause:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

And if a materialized view contains the following clause:

WHERE prod_category = 'Men'

Then, in this example, only selection with prod_category is matched. The query has an extra
selection that is not matched but this is acceptable because if the materialized view selects
prod_name or selects a column that can be joined back to the detail table to get prod_name,
then query rewrite is possible. The only requirement is that query rewrite must have a way of
applying the prod_name selection to the materialized view.

Example 12-6 No Rewrite Because of Fewer Selections in the Query

If the query contains the following clause:

WHERE prod_category = 'Men'

And if a materialized view contains the following clause:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

Then, the materialized view selection with prod_name is not matched. The materialized view is
more restrictive that the query because it only contains the product Shorts, therefore, query
rewrite does not occur.

Example 12-7 Multi-Column IN-List Selections

Query rewrite also checks for cases where the query has a multi-column IN-list where the
columns are fully matched by individual columns from the materialized view single column IN-
lists. For example, if the query contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1033, 2000))

And if a materialized view contains the following:

WHERE prod_id IN (1022,1033) AND cust_id IN (1000, 2000)

Then, the materialized view IN-lists are matched by the columns in the query multi-column IN-
list. Furthermore, the right-hand side values of the query selection are contained by the
materialized view so that rewrite occurs.

Chapter 12
Types of Query Rewrite

12-20

Example 12-8 Selections Using IN-Lists

Selection compatibility also checks for cases where the materialized view has a multi-column
IN-list where the columns are fully matched by individual columns or columns from IN-lists in
the query. For example, if the query contains the following:

WHERE prod_id = 1022 AND cust_id IN (1000, 2000)

And if a materialized view contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1022, 2000))

Then, the materialized view IN-list columns are fully matched by the columns in the query
selections. Furthermore, the right-hand side values of the query selection are contained by the
materialized view. So rewrite succeeds.

Example 12-9 Multiple Selections or Expressions

If the query contains the following clause:

WHERE (city_population > 15000 AND city_population < 25000
 AND state_name = 'New Hampshire')

And if a materialized view contains the following clause:

WHERE (city_population < 5000 AND state_name = 'New York') OR
 (city_population BETWEEN 10000 AND 50000 AND state_name = 'New Hampshire')

Then, the query is said to have a single disjunct (group of selections separated by AND) and the
materialized view has two disjuncts separated by OR. The single query disjunct is contained by
the second materialized view disjunct so selection compatibility succeeds. It is clear that the
materialized view contains more data than needed by the query so the query can be rewritten.

12.2.6.4 About Handling of the HAVING Clause in Query Rewrite
Query rewrite can also occur when the query specifies a range of values for an aggregate in
the HAVING clause, such as SUM(s.amount_sold) BETWEEN 10000 AND 20000, as long as the
range specified is within the range specified in the materialized view.

CREATE MATERIALIZED VIEW product_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sh.products p, sh.sales s
WHERE p.prod_id = s.prod_id
GROUP BY prod_name
HAVING SUM(s.amount_sold) BETWEEN 5000 AND 50000;

Then, a query such as the following could be rewritten:

SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sh.products p, sh.sales s WHERE p.prod_id = s.prod_id
GROUP BY prod_name
HAVING SUM(s.amount_sold) BETWEEN 5000 AND 50000;

This query is rewritten as follows:

SELECT mv.prod_name, mv.dollar_sales FROM product_sales_mv mv
WHERE mv.dollar_sales BETWEEN 5000 AND 50000;

Chapter 12
Types of Query Rewrite

12-21

12.2.6.5 About Query Rewrite When the Materialized View has an IN-List
You can use query rewrite when the materialized view contains an IN-list. For example, given
the following materialized view definition:

CREATE MATERIALIZED VIEW popular_promo_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT p.promo_name, SUM(s.amount_sold) AS sum_amount_sold
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id
AND p.promo_name IN ('coupon', 'premium', 'giveaway')
GROUP BY promo_name;

The following query can be rewritten:

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id AND p.promo_name IN ('coupon', 'premium')
GROUP BY p.promo_name;

This query is rewritten as follows:

SELECT * FROM popular_promo_sales_mv mv
WHERE mv.promo_name IN ('coupon', 'premium');

12.2.7 Partition Change Tracking (PCT) Rewrite
PCT rewrite enables the optimizer to accurately rewrite queries with fresh data using
materialized views that are only partially fresh. To do so, Oracle Database keeps track of which
partitions in the detail tables have been updated. Oracle Database then tracks which rows in
the materialized view originate from the affected partitions in the detail tables. The optimizer is
then able to use those portions of the materialized view that are known to be fresh. You can
check details about freshness with the DBA_MVIEWS, DBA_DETAIL_RELATIONS, and
DBA_MVIEW_DETAIL_PARTITION views. See "Viewing Partition Freshness" for examples of using
these views.

The optimizer uses PCT rewrite in QUERY_REWRITE_INTEGRITY = ENFORCED and TRUSTED
modes. The optimizer does not use PCT rewrite in STALE_TOLERATED mode because data
freshness is not considered in that mode. Also, for PCT rewrite to occur, a WHERE clause is
required.

You can use PCT rewrite with partitioning, but hash partitioning is not supported. The following
topics discuss aspects of using PCT:

• PCT Rewrite Based on Range Partitioned Tables

• PCT Rewrite Based on Range-List Partitioned Tables

• PCT Rewrite Based on List Partitioned Tables

• PCT Rewrite and PMARKER

• PCT Rewrite Using Rowid as PMARKER

Chapter 12
Types of Query Rewrite

12-22

12.2.7.1 PCT Rewrite Based on Range Partitioned Tables
The following example illustrates a PCT rewrite example where the materialized view is PCT
enabled through partition key and the underlying base table is range partitioned on the time
key.

CREATE TABLE part_sales_by_time (time_id, prod_id, amount_sold,
 quantity_sold)
 PARTITION BY RANGE (time_id)
 (
 PARTITION old_data
 VALUES LESS THAN (TO_DATE('01-01-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter1
 VALUES LESS THAN (TO_DATE('01-04-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter2
 VALUES LESS THAN (TO_DATE('01-07-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter3
 VALUES LESS THAN (TO_DATE('01-10-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter4
 VALUES LESS THAN (TO_DATE('01-01-2000', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION max_partition
 VALUES LESS THAN (MAXVALUE)
 PCTFREE 0
 STORAGE (INITIAL 8M)
)
 AS
 SELECT s.time_id, s.prod_id, s.amount_sold, s.quantity_sold
 FROM sales s;

Then create a materialized view that contains the total number of products sold by date.

CREATE MATERIALIZED VIEW sales_in_1999_mv
 BUILD IMMEDIATE
 REFRESH FORCE ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT s.time_id, s.prod_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id BETWEEN TO_DATE('01-01-1999', 'DD-MM-YYYY')
 AND TO_DATE('31-12-1999', 'DD-MM-YYYY')
 GROUP BY s.time_id, s.prod_id, p.prod_name;

Note that the following query will be rewritten with materialized view sales_in_1999_mv:

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE('01-02-1999', 'DD-MM-YYYY')

Chapter 12
Types of Query Rewrite

12-23

 AND s.time_id >= TO_DATE('01-01-1999', 'DD-MM-YYYY')
 GROUP BY s.time_id, p.prod_name;

If you add a row to quarter4 in part_sales_by_time as:

INSERT INTO part_sales_by_time
 VALUES (TO_DATE('26-12-1999', 'DD-MM-YYYY'),38920,2500, 20);

commit;

Then the materialized view sales_in_1999_mv becomes stale. With PCT rewrite, you can
rewrite queries that request data from only the fresh portions of the materialized view. Note that
because the materialized view sales_in_1999_mv has the time_id in its SELECT and GROUP BY
clause, it is PCT enabled so the following query will be rewritten successfully as no data from
quarter4 is requested.

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE('01-07-1999', 'DD-MM-YYYY')
 AND s.time_id >= TO_DATE('01-03-1999', 'DD-MM-YYYY')
 GROUP BY s.time_id, p.prod_name;

The following query cannot be rewritten if multiple materialized view rewrite is set to off.
Because multiple materialized view rewrite is on by default, the following query is rewritten with
materialized view and base tables:

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE('31-10-1999', 'DD-MM-YYYY') AND
 s.time_id > TO_DATE('01-07-1999', 'DD-MM-YYYY')
 GROUP BY s.time_id, p.prod_name;

12.2.7.2 PCT Rewrite Based on Range-List Partitioned Tables
If the detail table is range-list partitioned, a materialized view that depends on this detail table
can support PCT at both the partitioning and subpartitioning levels. If both the partition and
subpartition keys are present in the materialized view, PCT can be done at a finer granularity;
materialized view refreshes can be done to smaller portions of the materialized view and more
queries could be rewritten with a stale materialized view. Alternatively, if only the partition key is
present in the materialized view, PCT can be done with courser granularity.

Consider the following range-list partitioned table:

CREATE TABLE sales_par_range_list
 (calendar_year, calendar_month_number, day_number_in_month,
 country_name, prod_id, prod_name, quantity_sold, amount_sold)
PARTITION BY RANGE (calendar_month_number)
SUBPARTITION BY LIST (country_name)
 (PARTITION q1 VALUES LESS THAN (4)
 (SUBPARTITION q1_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q1_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q1_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q2 VALUES LESS THAN (7)
 (SUBPARTITION q2_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q2_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q2_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q3 VALUES LESS THAN (10)

Chapter 12
Types of Query Rewrite

12-24

 (SUBPARTITION q3_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q3_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q3_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q4 VALUES LESS THAN (13)
 (SUBPARTITION q4_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q4_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q4_Europe VALUES ('France', 'Spain', 'Ireland')))
 AS SELECT t.calendar_year, t.calendar_month_number,
 t.day_number_in_month, c1.country_name, s.prod_id,
 p.prod_name, s.quantity_sold, s.amount_sold
 FROM times t, countries c1, products p, sales s, customers c2
 WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id AND
 s.cust_id = c2.cust_id AND c2.country_id = c1.country_id AND
 c1.country_name IN ('United States of America', 'Argentina',
 'Japan', 'India', 'France', 'Spain', 'Ireland');

Then consider the following materialized view sum_sales_per_year_month_mv, which has the
total amount of products sold each month of each year:

CREATE MATERIALIZED VIEW sum_sales_per_year_month_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.calendar_year, s.calendar_month_number,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s WHERE s.calendar_year > 1990
GROUP BY s.calendar_year, s.calendar_month_number;

sales_per_country_mv supports PCT against sales_par_range_list at the range partitioning
level as its range partition key calendar_month_number is in its SELECT and GROUP BY list:

INSERT INTO sales_par_range_list
 VALUES (2001, 3, 25, 'Spain', 20, 'PROD20', 300, 20.50);

This statement inserts a row with calendar_month_number = 3 and country_name = 'Spain'.
This row is inserted into partition q1 subpartition Europe. After this INSERT statement,
sum_sales_per_year_month_mv is stale with respect to partition q1 of sales_par_range_list.
So any incoming query that accesses data from this partition in sales_par_range_list cannot
be rewritten, for example, the following statement:

Note that the following query accesses data from partitions q1 and q2. Because q1 was
updated, the materialized view is stale with respect to q1 so PCT rewrite is unavailable.

SELECT s.calendar_year, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s
WHERE s.calendar_year = 2000
 AND s.calendar_month_number BETWEEN 2 AND 6
GROUP BY s.calendar_year;

An example of a statement that does rewrite after the INSERT statement is the following,
because it accesses fresh material:

SELECT s.calendar_year, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s
WHERE s.calendar_year = 2000 AND s.calendar_month_number BETWEEN 5 AND 9
GROUP BY s.calendar_year;

Figure 12-3 offers a graphical illustration of what is stale and what is fresh.

Chapter 12
Types of Query Rewrite

12-25

Figure 12-3 PCT Rewrite and Range-List Partitioning

America

Asia

Europe

Europe

America

Asia

America

Asia

Europe

Europe

America

Asia

q1
(updated)

q2

q3

q4

Fresh

Fresh

calendar_month_number <4
Stale

sales_par_range_list

sum_sales_per_year_month_mv
FRESHNESS regions determined by �
calendar_month_number

12.2.7.3 PCT Rewrite Based on List Partitioned Tables
If the LIST partitioning key is present in the materialized view's SELECT and GROUP BY, then PCT
will be supported by the materialized view. Regardless of the supported partitioning type, if the
partition marker or rowid of the detail table is present in the materialized view then PCT is
supported by the materialized view on that specific detail table.

CREATE TABLE sales_par_list
(calendar_year, calendar_month_number, day_number_in_month,
 country_name, prod_id, quantity_sold, amount_sold)
 PARTITION BY LIST (country_name)
 (PARTITION America
 VALUES ('United States of America', 'Argentina'),
 PARTITION Asia
 VALUES ('Japan', 'India'),
 PARTITION Europe
 VALUES ('France', 'Spain', 'Ireland'))
 AS SELECT t.calendar_year, t.calendar_month_number,
 t.day_number_in_month, c1.country_name, s.prod_id,
 s.quantity_sold, s.amount_sold
 FROM times t, countries c1, sales s, customers c2
 WHERE s.time_id = t.time_id and s.cust_id = c2.cust_id and
 c2.country_id = c1.country_id and
 c1.country_name IN ('United States of America', 'Argentina',
 'Japan', 'India', 'France', 'Spain', 'Ireland');

If a materialized view is created on the table sales_par_list, which has a list partitioning key,
PCT rewrite will use that materialized view for potential rewrites.

To illustrate this feature, the following example creates a materialized view that has the total
amounts sold of every product in each country for each year. The view depends on detail
tables sales_par_list and products.

CREATE MATERIALIZED VIEW sales_per_country_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS

Chapter 12
Types of Query Rewrite

12-26

SELECT s.calendar_year AS calendar_year, s.country_name AS country_name,
 p.prod_name AS prod_name, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year <= 2000
GROUP BY s.calendar_year, s.country_name, prod_name;

sales_per_country_mv supports PCT against sales_par_list as its list partition key
country_name is in its SELECT and GROUP BY list. Table products is not partitioned, so
sales_per_country_mv does not support PCT against this table.

A query could be rewritten (in ENFORCED or TRUSTED modes) in terms of sales_per_country_mv
even if sales_per_country_mv is stale if the incoming query accesses only fresh parts of the
materialized view. You can determine which parts of the materialized view are FRESH only if the
updated tables are PCT enabled in the materialized view. If non-PCT enabled tables have
been updated, then the rewrite is not possible with fresh data from that specific materialized
view as you cannot identify the FRESH portions of the materialized view.

sales_per_country_mv supports PCT on sales_par_list and does not support PCT on table
product. If table products is updated, then PCT rewrite is not possible with
sales_per_country_mv as you cannot tell which portions of the materialized view are FRESH.

The following updates sales_par_list as follows:

INSERT INTO sales_par_list VALUES (2000, 10, 22, 'France', 900, 20, 200.99);

This statement inserted a row into partition Europe in table sales_par_list. Now
sales_per_country_mv is stale, but PCT rewrite (in ENFORCED and TRUSTED modes) is possible
as this materialized view supports PCT against table sales_par_list. The fresh and stale
areas of the materialized view are identified based on the partitioned detail table
sales_par_list.

Figure 12-4 illustrates what is fresh and what is stale in this example.

Figure 12-4 PCT Rewrite and List Partitioning

Fresh

Fresh

Fresh

Stale

Fresh

Fresh

StaleUpdated

partion

Table
Products

Partion America
· United States of America
· Argentina

Partion Asia
· Japan
· India

Partion Europe
· France
· Spain
· Ireland

Table
sales_par_list

MV
sales_per_country_mv �

FRESHNESS regions �
determined by �
country_name

Consider the following query:

SELECT s.country_name, p.prod_name, SUM(s.amount_sold) AS sum_sales,
 COUNT(*) AS cnt

Chapter 12
Types of Query Rewrite

12-27

FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 2000
 AND s.country_name IN ('United States of America', 'Japan')
GROUP BY s.country_name, p.prod_name;

This query accesses partitions America and Asia in sales_par_list; these partition have not
been updated so rewrite is possible with stale materialized view sales_per_country_mv as this
query will access only FRESH portions of the materialized view.

The query is rewritten in terms of sales_per_country_mv as follows:

SELECT country_name, prod_name, SUM(sum_sales) AS sum_sales, SUM(cnt) AS cnt
FROM sales_per_country_mv WHERE calendar_year = 2000
 AND country_name IN ('United States of America', 'Japan')
GROUP BY country_name, prod_name;

Now consider the following query:

SELECT s.country_name, p.prod_name,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 1999
 AND s.country_name IN ('Japan', 'India', 'Spain')
GROUP BY s.country_name, p.prod_name;

This query accesses partitions Europe and Asia in sales_par_list. Partition Europe has been
updated, so this query cannot be rewritten in terms of sales_per_country_mv as the required
data from the materialized view is stale.

You will be able to rewrite after any kinds of updates to sales_par_list, that is DMLs, direct
loads and Partition Maintenance Operations (PMOPs) if the incoming query accesses FRESH
parts of the materialized view.

12.2.7.4 PCT Rewrite and PMARKER
When a partition marker is provided, the query rewrite capabilities are limited to rewrite queries
that access whole detail table partitions as all rows from a specific partition have the same
pmarker value. That is, if a query accesses a portion of a detail table partition, it is not rewritten
even if that data corresponds to a FRESH portion of the materialized view. Now FRESH portions
of the materialized view are determined by the pmarker value. To determine which rows of the
materialized view are fresh, you associate freshness with the marker value, so all rows in the
materialized view with a specific pmarker value are FRESH or are STALE.

The following creates a materialized view has the total amounts sold of every product in each
detail table partition of sales_par_list for each year. This materialized view will also depend
on detail table products as shown in the following:

CREATE MATERIALIZED VIEW sales_per_dt_partition_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.calendar_year AS calendar_year, p.prod_name AS prod_name,
 DBMS_MVIEW.PMARKER(s.rowid) pmarker,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year > 2000
GROUP BY s.calendar_year, DBMS_MVIEW.PMARKER(s.rowid), p.prod_name;

The materialized view sales_per_dt_partition_mv provides the sum of sales for each detail
table partition. This materialized view supports PCT rewrite against table sales_par_list

Chapter 12
Types of Query Rewrite

12-28

because the partition marker is in its SELECT and GROUP BY clauses. Table 12-2 lists the partition
names and their pmarkers for this example.

Table 12-2 Partition Names and Their Pmarkers

Partition Name Pmarker

America 1000

Asia 1001

Europe 1002

Then update the table sales_par_list as follows:

DELETE FROM sales_par_list WHERE country_name = 'India';

You have deleted rows from partition Asia in table sales_par_list. Now
sales_per_dt_partition_mv is stale, but PCT rewrite (in ENFORCED and TRUSTED modes) is
possible as this materialized view supports PCT (pmarker based) against table
sales_par_list.

Now consider the following query:

SELECT p.prod_name, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 2001 AND
 s.country_name IN ('United States of America', 'Argentina')
GROUP BY p.prod_name;

This query can be rewritten in terms of sales_per_dt_partition_mv as all the data
corresponding to a detail table partition is accessed, and the materialized view is FRESH with
respect to this data. This query accesses all data in partition America, which has not been
updated.

The query is rewritten in terms of sales_per_dt_partition_mv as follows:

SELECT prod_name, SUM(sum_sales) AS sum_sales, SUM(cnt) AS cnt
FROM sales_per_dt_partition_mv
WHERE calendar_year = 2001 AND pmarker = 1000
GROUP BY prod_name;

12.2.7.5 PCT Rewrite Using Rowid as PMARKER
A materialized view supports PCT rewrite provided a partition key or a partition marker is
provided in its SELECT and GROUP BY clause, if there is a GROUP BY clause. You can use the
rowids of the partitioned table instead of the pmarker or the partition key. Note that Oracle
converts the rowids into pmarkers internally. Consider the following table:

CREATE TABLE product_par_list
(prod_id, prod_name, prod_category,
 prod_subcategory, prod_list_price)
 PARTITION BY LIST (prod_category)
 (PARTITION prod_cat1
 VALUES ('Boys', 'Men'),
 PARTITION prod_cat2
 VALUES ('Girls', 'Women'))
 AS
 SELECT prod_id, prod_name, prod_category,
 prod_subcategory, prod_list_price
 FROM products;

Chapter 12
Types of Query Rewrite

12-29

Let us create the following materialized view on tables, sales_par_list and
product_par_list:

CREATE MATERIALIZED VIEW sum_sales_per_category_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.rowid prid, p.prod_category,
 SUM (s.amount_sold) sum_sales, COUNT(*) cnt
FROM sales_par_list s, product_par_list p
WHERE s.prod_id = p.prod_id and s.calendar_year <= 2000
GROUP BY p.rowid, p.prod_category;

All the limitations that apply to pmarker rewrite apply here as well. The incoming query should
access a whole partition for the query to be rewritten. The following pmarker table is used in
this case:

product_par_list pmarker value
---------------- -------------
prod_cat1 1000
prod_cat2 1001
prod_cat3 1002

Then update table product_par_list as follows:

DELETE FROM product_par_list WHERE prod_name = 'MEN';

So sum_sales_per_category_mv is stale with respect to partition prod_list1 from
product_par_list.

Now consider the following query:

SELECT p.prod_category, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, product_par_list p
WHERE s.prod_id = p.prod_id AND p.prod_category IN
 ('Girls', 'Women') AND s.calendar_year <= 2000
GROUP BY p.prod_category;

This query can be rewritten in terms of sum_sales_per_category_mv as all the data
corresponding to a detail table partition is accessed, and the materialized view is FRESH with
respect to this data. This query accesses all data in partition prod_cat2, which has not been
updated. Following is the rewritten query in terms of sum_sales_per_category_mv:

SELECT prod_category, sum_sales, cnt
FROM sum_sales_per_category_mv WHERE DBMS_MVIEW.PMARKER(srid) IN (1000)
GROUP BY prod_category;

12.2.8 About Query Rewrite Using Multiple Materialized Views
Query rewrite has been extended to enable the rewrite of a query using multiple materialized
views. If query rewrite determines that there is no set of materialized views that returns all of
the data, then query rewrite retrieves the remaining data from the base tables.

Query rewrite using multiple materialized views can take advantage of many different types
and combinations of rewrite, such as using PCT and IN-lists. The following examples illustrate
some of the queries where query rewrite is now possible.

Consider the following two materialized views, cust_avg_credit_mv1 and
cust_avg_credit_mv2. cust_avg_credit_mv1 asks for all customers average credit limit for
each postal code that were born between the years 1940 and 1950. cust_avg_credit_mv2

Chapter 12
Types of Query Rewrite

12-30

asks for customers average credit limit for each postal code that were born after 1950 and
before or on 1970.

The materialized views' definitions for this example are as follows:

CREATE MATERIALIZED VIEW cust_avg_credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_postal_code, cust_year_of_birth,
 SUM(cust_credit_limit) AS sum_credit,
 COUNT(cust_credit_limit) AS count_credit
FROM customers
WHERE cust_year_of_birth BETWEEN 1940 AND 1950
GROUP BY cust_postal_code, cust_year_of_birth;

CREATE MATERIALIZED VIEW cust_avg_credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_postal_code, cust_year_of_birth,
 SUM(cust_credit_limit) AS sum_credit,
 COUNT(cust_credit_limit) AS count_credit
FROM customers
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1970
GROUP BY cust_postal_code, cust_year_of_birth;

Query 1: One Matched Interval in Materialized View and Query

Consider a query that asks for all customers average credit limit for each postal code who were
born between 1940 and 1970. This query is matched by the interval BETWEEN on
cust_year_of_birth.

SELECT cust_postal_code, AVG(cust_credit_limit) AS avg_credit
FROM customers c
WHERE cust_year_of_birth BETWEEN 1940 AND 1970
GROUP BY cust_postal_code;

The preceding query can be rewritten in terms of these two materialized views to get all the
data as follows:

SELECT v1.cust_postal_code,
SUM(v1.sum_credit)/SUM(v1.count_credit) AS avg_credit
FROM (SELECT cust_postal_code, sum_credit, count_credit
 FROM cust_avg_credit_mv1
 GROUP BY cust_postal_code
 UNION ALL
 SELECT cust_postal_code, sum_credit, count_credit
 FROM cust_avg_credit_mv2
 GROUP BY cust_postal_code) v1
 GROUP BY v1.cust_postal_code;

Note that the UNION ALL query is used in an inline view because of the re-aggregation that
needs to take place. Note also how query rewrite was the count aggregate to perform this
rollup.

Query 2: Query Outside of Data Contained in Materialized View

When the materialized view goes beyond the range asked by the query, a filter (also called
selection) is added to the rewritten query to drop out the unneeded rows returned by the
materialized view. This case is illustrated in the following query:

SELECT cust_postal_code, SUM(cust_credit_limit) AS sum_credit
FROM customers c
WHERE cust_year_of_birth BETWEEN 1945 AND 1955
GROUP BY cust_postal_code;

Chapter 12
Types of Query Rewrite

12-31

Query 2 is rewritten as:

SELECT v1.cust_postal_code, SUM(v1.sum_credit)
FROM
(SELECT cust_postal_code, SUM(sum_credit) AS sum_credit
FROM cust_avg_credit_mv1
WHERE cust_year_of_birth BETWEEN 1945 AND 1950
GROUP BY cust_postal_code
UNION ALL
SELECT cust_postal_code, SUM(sum_credit) AS sum_credit
FROM cust_birth_mv2
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1955
GROUP BY cust_postal_code) v1
GROUP BY v1.cust_postal_code;

Query 3: Requesting More Data Than is in the Materialized View

What if a query asks for more data than is contained in the two materialized views? It still
rewrites using both materialized views and the data in the base table. In the following example,
a new set of materialized views without aggregates is defined It will still rewrite using both
materialized views and the data in the base table.

CREATE MATERIALIZED VIEW cust_birth_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name, cust_year_of_birth
FROM customers WHERE cust_year_of_birth BETWEEN 1940 AND 1950;

CREATE MATERIALIZED VIEW cust_avg_credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name, cust_year_of_birth
FROM customers
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1970;

Our queries now require all customers born between 1940 and 1990.

SELECT cust_last_name, cust_first_name
FROM customers c WHERE cust_year_of_birth BETWEEN 1940 AND 1990;

Query rewrite needs to access the base table to access the customers that were born after
1970 and before or on 1990. Therefore, Query 3 is rewritten as the following:

SELECT cust_last_name, cust_first_name
FROM cust_birth_mv1
UNION ALL
SELECT cust_last_name, cust_first_name
FROM cust_birth_mv2
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers c
WHERE cust_year_of_birth > 1970 AND cust_year_of_birth <= 1990;

Query 4: Requesting Data on Multiple Selection Columns

Consider the following query, which asks for all customers who have a credit limit between
1,000 and 10,000 and were born between the years 1945 and 1960. This query is a multi-
selection query because it is asking for data on multiple selection columns.

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_birth BETWEEN 1945 AND 1960 AND
 cust_credit_limit BETWEEN 1000 AND 10000;

Chapter 12
Types of Query Rewrite

12-32

Figure 12-5 shows a two-selection query, which can be rewritten with the two-selection
materialized views described in the following section.

Figure 12-5 Query Rewrite Using Multiple Materialized Views

0

1,000

5,000

10,000
C

r
e
d

it
 L

im
it

Year of Birth

1945 1950 1955 1960

CREDIT2_MV

CREDIT1�

_MV

CREDIT3�

_MV

BASE

TABLES

The graph in Figure 12-5 illustrates the materialized views that can be used to satisfy this
query. credit_mv1 asks for customers that have credit limits between 1,000 and 5,000 and
were born between 1945 and 1950. credit_mv2 asks for customers that have credit limits >
5,000 and <= 10,000 and were born between 1945 and 1960. credit_mv3 asks for customers
that have credit limits between 1,000 and 5,000 and were born after 1950 and before or on
1955.

The materialized views' definitions for this case are as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
AND cust_year_of_birth BETWEEN 1945 AND 1950;

CREATE MATERIALIZED VIEW credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit > 5000
 AND cust_credit_limit <= 10000 AND cust_year_of_birth
 BETWEEN 1945 AND 1960;

CREATE MATERIALIZED VIEW credit_mv3
ENABLE QUERY REWRITE AS
SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
 AND cust_year_of_birth > 1950 AND cust_year_of_birth <= 1955;

Query 4 can be rewritten by using all three materialized views to access most of the data.
However, because not all the data can be obtained from these three materialized views, query

Chapter 12
Types of Query Rewrite

12-33

rewrite also accesses the base tables to retrieve the data for customers who have credit limits
between 1,000 and 5,000 and were born between 1955 and 1960. It is rewritten as follows:

SELECT cust_last_name, cust_first_name
FROM credit_mv1
UNION ALL
SELECT cust_last_name, cust_first_name
FROM credit_mv2
UNION ALL
SELECT cust_last_name, cust_first_name
FROM credit_mv3
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
 AND cust_year_of_birth > 1955 AND cust_year_of_birth <= 1960;

This example illustrates how a multi-selection query can be rewritten with multiple materialized
views. The example was simplified to show no overlapping data among the three materialized
views. However, query rewrite can perform similar rewrites.

Query 5: Intervals and Constrained Intervals

This example illustrates how a multi-selection query can be rewritten using a single selection
materialized view. In this example, there are two intervals in the query and one constrained
interval in the materialized view. It asks for customers that have credit limits between 1,000
and 10,000 and were born between 1945 and 1960. But suppose that credit_mv1 asks for just
customers that have credit limits between 1,000 and 5,000. credit_mv1 is not constrained by a
selection in cust_year_of_birth, therefore covering the entire range of birth year values for
the query.

Figure 12-6 Constrained Materialized View Selections

0,0

1,000

5,000

10,000

C
re

d
it

 L
im

it

Year of Birth

1945 5550 60

Query

Intersection of �
Query and
credit1_mv

The area between the lines in Figure 12-6 represents the data credit1_mv.

The new credit_mv1 is defined as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,

Chapter 12
Types of Query Rewrite

12-34

 cust_credit_limit, cust_year_of_birth
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 5000;

The query is as follows:

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_birth BETWEEN 1945 AND 1960
 AND cust_credit_limit BETWEEN 1000 AND 10000;

And finally the rewritten query is as follows:

SELECT cust_last_name, cust_first_name
FROM credit_mv1 WHERE cust_year_of_birth BETWEEN 1945 AND 1960
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_brith BETWEEN 1945 AND 1960
 AND cust_credit_limit > 5000 AND cust_credit_limit <= 10000;

Query 6: Query has Single Column IN-List and Materialized Views have Single Column
Intervals

Multiple materialized view query rewrite can process an IN-list in the incoming query and
rewrite the query in terms of materialized views that have intervals on the same selection
column. Given that an IN-list represents discrete values in an interval, this rewrite capability is
a natural extension to the intervals only scenario described earlier.

The following is an example of a one column IN-list selection in the query and one column
interval selection in the materialized views. Consider a query that asks for the number of
customers for each country who were born in any of the following year: 1945, 1950, 1955,
1960, 1965, 1970 or 1975. This query is constrained by an IN-list on cust_year_of_birth.

SELECT c2.country_name, count(c1.country_id)
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND
 c1.cust_year_of_birth IN (1945, 1950, 1955, 1960, 1965, 1970, 1975)
GROUP BY c2.country_name;

Consider the following two materialized views. cust_country_birth_mv1 asks for the number
of customers for each country that were born between the years 1940 and 1950.
cust_country_birth_mv2 asks for the number of customers for each country that were born
after 1950 and before or on 1970. The preceding query can be rewritten in terms of these two
materialized views to get the total number of customers for each country born in 1945, 1950,
1955, 1960, 1965 and 1970. The base table access is required to obtain the number of
customers that were born in 1975.

The materialized views' definitions for this example are as follows:

CREATE MATERIALIZED VIEW cust_country_birth_mv1
ENABLE QUERY REWRITE
AS SELECT c2.country_name, c1.cust_year_of_birth,
 COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND
 cust_year_of_birth BETWEEN 1940 AND 1950
GROUP BY c2.country_name, c1.cust_year_of_birth;

CREATE MATERIALIZED VIEW cust_country_birth_mv2
ENABLE QUERY REWRITE
AS SELECT c2.country_name, c1.cust_year_of_birth,
 COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2

Chapter 12
Types of Query Rewrite

12-35

WHERE c1.country_id = c2.country_id AND cust_year_of_birth > 1950
AND cust_year_of_birth <= 1970
GROUP BY c2.country_name, c1.cust_year_of_birth;

So, Query 6 is rewritten as:

SELECT v1.country_name, SUM(v1.count_customers)
FROM (SELECT country_name, SUM(count_customers) AS count_customers
FROM cust_country_birth_mv1
WHERE cust_year_of_birth IN (1945, 1950)
GROUP BY country_name
UNION ALL
SELECT country_name, SUM(count_customers) AS count_customers
FROM cust_country_birth_mv2
WHERE cust_year_of_birth IN (1955, 1960, 1965, 1970)
GROUP BY country_name
UNION ALL
SELECT c2.country_name, COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND cust_year_of_birth IN (1975)
GROUP BY c2.country_name) v1
GROUP BY v1.country_name;

Query 7: PCT Rewrite with Multiple Materialized Views

Rewrite with multiple materialized views can also take advantage of PCT rewrite. PCT rewrite
refers to the capability of rewriting a query with only the fresh portions of a materialized view
when the materialized view is stale. This feature is used in ENFORCED or TRUSTED integrity
modes, and with multiple materialized view rewrite, it can use the fresh portions of the
materialized view to get the fresh data from it, and go to the base table to get the stale data. So
the rewritten query will UNION ALL only the fresh data from one or more materialized views and
obtain the rest of the data from the base tables to answer the query. Therefore, all the PCT
rules and conditions apply here as well. The materialized view should be PCT enabled and the
changes made to the base table should be such that the fresh and stale portions of the
materialized view can be clearly identified.

This example assumes you have a query that asks for customers who have credit limits
between 1,000 and 10,000 and were born between 1945 and 1964. Also, the customer table is
partitioned by cust_date_of_birth and there is a PCT-enabled materialized view called
credit_mv1 that also asks for customers who have a credit limit between 1,000 and 10,000
and were born between 1945 and 1964.

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 10000;

In Figure 12-7, the diagram illustrates those regions of the materialized view that are fresh
(dark) and stale (light) with respect to the base table partitions p1-p6.

Chapter 12
Types of Query Rewrite

12-36

Figure 12-7 PCT and Multiple Materialized View Rewrite

0,0

1,000

5,000

10,000

C
re

d
it

 L
im

it

Year of Birth

1945 5550 6560 1970

CREDIT1_MV

p1 p2 p3 p4
stale

p5 p6

Let us say that you are in ENFORCED mode and that p1, p2, p3, p5, and p6 of the customer table
are fresh and partition p4 is stale. This means that all partitions of credit_mv1 cannot be used
to answer the query. The rewritten query must get the results for customer partition p4 from
some other materialized view or as shown in this example, from the base table. Below, you can
see part of the table definition for the customers table showing how the table is partitioned:

CREATE TABLE customers
(PARTITION BY RANGE (cust_year_of_birth)
 PARTITION p1 VALUES LESS THAN (1945),
 PARTITION p2 VALUES LESS THAN (1950),
 PARTITION p3 VALUES LESS THAN (1955),
 PARTITION p4 VALUES LESS THAN (1960),
 PARTITION p5 VALUES LESS THAN (1965),
 PARTITION p6 VALUES LESS THAN (1970);

The materialized view definition for the preceding example is as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 10000
AND cust_year_of_birth BETWEEN 1945 AND 1964;

Note that this materialized view is PCT enabled with respect to table customers.

The rewritten query is as follows:

SELECT cust_last_name, cust_first_name FROM credit_mv1
WHERE cust_credit_limit BETWEEN 1000 AND 10000 AND
 (cust_year_of_birth >= 1945 AND cust_year_of_birth < 1955 OR
 cust_year_of_birth BETWEEN 1945 AND 1964)
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 10000
 AND cust_year_of_birth < 1960 AND cust_year_of_birth >= 1955;

Chapter 12
Types of Query Rewrite

12-37

12.3 Other Query Rewrite Considerations
The following topics discusses some of the other cases when query rewrite is possible:

• About Query Rewrite Using Nested Materialized Views

• About Query Rewrite in the Presence of Inline Views

• About Query Rewrite Using Remote Tables

• About Query Rewrite in the Presence of Duplicate Tables

• About Query Rewrite Using Date Folding

• About Query Rewrite Using View Constraints

• Query Rewrite Using Set Operator Materialized Views

• About Query Rewrite in the Presence of Grouping Sets

• Query Rewrite in the Presence of Window Functions

• Query Rewrite and Expression Matching

• Cursor Sharing and Bind Variables During Query Rewrite

• Handling Expressions in Query Rewrite

12.3.1 About Query Rewrite Using Nested Materialized Views
Query rewrite attempts to iteratively take advantage of nested materialized views. Oracle
Database first tries to rewrite a query with materialized views having aggregates and joins,
then with a materialized view containing only joins. If any of the rewrites succeeds, Oracle
repeats that process again until no rewrites are found. For example, assume that you had
created materialized views join_sales_time_product_mv and sum_sales_time_product_mv as
in the following:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW sum_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT mv.prod_name, mv.week_ending_day, COUNT(*) cnt_all,
 SUM(mv.amount_sold) sum_amount_sold,
 COUNT(mv.amount_sold) cnt_amount_sold
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Then consider the following query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_name, t.week_ending_day;

Oracle finds that join_sales_time_product_mv is eligible for rewrite. The rewritten query has
this form:

Chapter 12
Other Query Rewrite Considerations

12-38

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Because a rewrite occurred, Oracle tries the process again. This time, the query can be
rewritten with single-table aggregate materialized view sum_sales_store_time into the
following form:

SELECT mv.prod_name, mv.week_ending_day, mv.sum_amount_sold
FROM sum_sales_time_product_mv mv;

12.3.2 About Query Rewrite in the Presence of Inline Views
Oracle Database supports query rewrite with inline views in two ways:

• when the text from the inline views in the materialized view exactly matches the text in the
request query

• when the request query contains inline views that are equivalent to the inline views in the
materialized view

Two inline views are considered equivalent if their SELECT lists and GROUP BY lists are
equivalent, FROM clauses contain the same or equivalent objects, their join graphs, including all
the selections in the WHERE clauses are equivalent and their HAVING clauses are equivalent.

The following examples illustrate how a query with an inline view can rewrite with a
materialized view using text match and general inline view rewrites. Consider the following
materialized view that contains an inline view:

CREATE MATERIALIZED VIEW SUM_SALES_MV
ENABLE QUERY REWRITE AS
SELECT mv_iv.prod_id, mv_iv.cust_id,
sum(mv_iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) MV_IV
GROUP BY mv_iv.prod_id, mv_iv.cust_id;

The following query has an inline view whose text matches exactly with that of the materialized
view's inline view. Hence, the query inline view is internally replaced with the materialized
view's inline view so that the query can be rewritten:

SELECT iv.prod_id, iv.cust_id,
SUM(iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) IV
GROUP BY iv.prod_id, iv.cust_id;

The following query has an inline view that does not have exact text match with the inline view
in the preceding materialized view. Note that the join predicate in the query inline view is
switched. Even though this query does not textually match with that of the materialized view's
inline view, query rewrite identifies the query's inline view as equivalent to the materialized
view's inline view. As before, the query inline view will be internally replaced with the
materialized view's inline view so that the query can be rewritten.

SELECT iv.prod_id, iv.cust_id,
SUM(iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products

Chapter 12
Other Query Rewrite Considerations

12-39

WHERE products.prod_id = sales.prod_id) IV
GROUP BY iv.prod_id, iv.cust_id;

Both of these queries are rewritten with SUM_SALES_MV as follows:

SELECT prod_id, cust_id, sum_amount_sold
FROM SUM_SALES_MV;

General inline view rewrite is not supported for queries that contain set operators, GROUPING
SET clauses, nested subqueries, nested inline views, and remote tables.

12.3.3 About Query Rewrite Using Remote Tables
Oracle Database supports query rewrite with materialized views that reference tables at a
single remote database site. Note that the materialized view should be present at the site
where the query is being issued. Because any remote table update cannot be propagated to
the local site simultaneously, query rewrite only works in the stale_tolerated mode.
Whenever a query contains columns that are not found in the materialized view, it uses a
technique called join back to rewrite the query. However, if the join back table is not found at
the local site, query rewrite does not take place. Also, because the constraint information of the
remote tables is not available at the remote site, query rewrite does not make use of any
constraint information.

The following query contains tables that are found at a single remote site:

SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales@remotedbl s, products@remotedbl p, times@remotedbl t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

The following materialized view is present at the local site, but it references tables that are all
found at the remote site:

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales@remotedbl s, products@remotedbl p, times@remotedbl t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

Even though the query references remote tables, it is rewritten using the previous materialized
view as follows:

SELECT prod_id, week_ending_day, cust_id, sum_amount_sold
FROM sum_sales_prod_week_mv;

12.3.4 About Query Rewrite in the Presence of Duplicate Tables
Oracle Database accomplishes query rewrite of queries that contain multiple references to the
same tables, or self joins by employing two different strategies. Using the first strategy, you
need to ensure that the query and the materialized view definitions have the same aliases for
the multiple references to a table. If you do not provide a matching alias, Oracle tries the
second strategy, where the joins in the query and the materialized view are compared to match
the multiple references in the query to the multiple references in the materialized view.

Chapter 12
Other Query Rewrite Considerations

12-40

The following is an example of a materialized view and a query. In this example, the query is
missing a reference to a column in a table so an exact text match does not work. General
query rewrite can occur, however, because the aliases for the table references match.

To demonstrate the self-join rewriting possibility with the sh sample schema, the following
addition is assumed to include the actual shipping and payment date in the fact table,
referencing the same dimension table times. This is for demonstration purposes only and does
not return any results:

ALTER TABLE sales ADD (time_id_ship DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_book_fk FOREIGN key (time_id_ship)
 REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_book_fk RELY;
ALTER TABLE sales ADD (time_id_paid DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_paid_fk FOREIGN KEY (time_id_paid)
 REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_paid_fk RELY;

Now, you can define a materialized view as follows:

CREATE MATERIALIZED VIEW sales_shipping_lag_mv
ENABLE QUERY REWRITE AS
SELECT t1.fiscal_week_number, s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_ship;

The following query fails the exact text match test but is rewritten because the aliases for the
table references match:

SELECT s.prod_id, t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_ship;

Note that Oracle Database performs other checks to ensure the correct match of an instance
of a multiply instanced table in the request query with the corresponding table instance in the
materialized view. For instance, in the following example, Oracle correctly determines that the
matching alias names used for the multiple instances of table times does not establish a match
between the multiple instances of table times in the materialized view.

The following query cannot be rewritten using sales_shipping_lag_mv, even though the alias
names of the multiply instanced table time match because the joins are not compatible
between the instances of time aliased by t2:

SELECT s.prod_id, t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_paid;

This request query joins the instance of the time table aliased by t2 on the s.time_id_paid
column, while the materialized views joins the instance of the times table aliased by t2 on the
s.time_id_ship column. Because the join conditions differ, Oracle correctly determines that
rewrite cannot occur.

The following query does not have any matching alias in the materialized view,
sales_shipping_lag_mv, for the table, times. But query rewrite now compares the joins
between the query and the materialized view and correctly match the multiple instances of
times.

SELECT s.prod_id, x2.fiscal_week_number - x1.fiscal_week_number AS lag
FROM times x1, sales s, times x2
WHERE x1.time_id = s.time_id AND x2.time_id = s.time_id_ship;

Chapter 12
Other Query Rewrite Considerations

12-41

12.3.5 About Query Rewrite Using Date Folding
Date folding rewrite is a specific form of expression matching rewrite. In this type of rewrite, a
date range in a query is folded into an equivalent date range representing higher date
granules. The resulting expressions representing higher date granules in the folded date range
are matched with equivalent expressions in a materialized view. The folding of date range into
higher date granules such as months, quarters, or years is done when the underlying data type
of the column is an Oracle DATE. The expression matching is done based on the use of
canonical forms for the expressions.

DATE is a built-in data type which represents ordered time units such as seconds, days, and
months, and incorporates a time hierarchy (second -> minute -> hour -> day -> month ->
quarter -> year). This hard-coded knowledge about DATE is used in folding date ranges from
lower-date granules to higher-date granules. Specifically, folding a date value to the beginning
of a month, quarter, year, or to the end of a month, quarter, year is supported. For example, the
date value 1-jan-1999 can be folded into the beginning of either year 1999 or quarter 1999-1
or month 1999-01. And, the date value 30-sep-1999 can be folded into the end of either
quarter 1999-03 or month 1999-09.

Note:

Due to the way date folding works, you should be careful when using BETWEEN and
date columns. The best way to use BETWEEN and date columns is to increment the
later date by 1. In other words, instead of using date_col BETWEEN '1-jan-1999'
AND '30-jun-1999', you should use date_col BETWEEN '1-jan-1999' AND '1-
jul-1999'. You could also use the TRUNC function to get the equivalent result, as in
TRUNC(date_col) BETWEEN '1-jan-1999' AND '30-jun-1999'. TRUNC will, however,
strip time values.

Because date values are ordered, any range predicate specified on date columns can be
folded from lower level granules into higher level granules provided the date range represents
an integral number of higher level granules. For example, the range predicate date_col >=
'1-jan-1999' AND date_col < '30-jun-1999' can be folded into either a month range or a
quarter range using the TO_CHAR function, which extracts specific date components from a date
value.

The advantage of aggregating data by folded date values is the compression of data achieved.
Without date folding, the data is aggregated at the lowest granularity level, resulting in
increased disk space for storage and increased I/O to scan the materialized view.

Consider a query that asks for the sum of sales by product types for the year 1998:

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id AND s.time_id >= TO_DATE('01-jan-1998', 'dd-mon-yyyy')
 AND s.time_id < TO_DATE('01-jan-1999', 'dd-mon-yyyy')
GROUP BY p.prod_category;

CREATE MATERIALIZED VIEW sum_sales_pcat_monthly_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, TO_CHAR(s.time_id,'YYYY-MM') AS month,
 SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id

Chapter 12
Other Query Rewrite Considerations

12-42

GROUP BY p.prod_category, TO_CHAR(s.time_id, 'YYYY-MM');

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
AND TO_CHAR(s.time_id, 'YYYY-MM') >= '01-jan-1998'
AND TO_CHAR(s.time_id, 'YYYY-MM') < '01-jan-1999'
GROUP BY p.prod_category;

SELECT mv.prod_category, mv.sum_amount
FROM sum_sales_pcat_monthly_mv mv
WHERE month >= '01-jan-1998' AND month < '01-jan-1999';

The range specified in the query represents an integral number of years, quarters, or months.
Assume that there is a materialized view mv3 that contains pre-summarized sales by prod_type
and is defined as follows:

CREATE MATERIALIZED VIEW mv3
ENABLE QUERY REWRITE AS
SELECT prod_name, TO_CHAR(sales.time_id,'yyyy-mm')
 AS month, SUM(amount_sold) AS sum_sales
FROM sales, products WHERE sales.prod_id = products.prod_id
GROUP BY prod_name, TO_CHAR(sales_time_id, 'yyyy-mm');

The query can be rewritten by first folding the date range into the month range and then
matching the expressions representing the months with the month expression in mv3. This
rewrite is shown in two steps (first folding the date range followed by the actual rewrite).

SELECT prod_name, SUM(amount_sold) AS sum_sales
FROM sales, products
WHERE sales.prod_id = products.prod_id AND TO_CHAR(sales.time_id, 'yyyy-mm') >=
 TO_CHAR('01-jan-1998', 'yyyy-mm') AND TO_CHAR(sales.time_id, '01-jan-1999',
 'yyyy-mm') < TO_CHAR(TO_DATE(''01-jan-1999'', ''dd-mon-yyyy''), ''yyyy-mm'')
GROUP BY prod_name;

SELECT prod_name, sum_sales
FROM mv3 WHERE month >=
 TO_CHAR(TO_DATE('01-jan-1998', 'dd-mon-yyyy'), 'yyyy-mm')
 AND month < TO_CHAR(TO_DATE('01-jan-1999', 'dd-mon-yyyy'), 'yyyy-mm');

If mv3 had pre-summarized sales by prod_name and year instead of prod_name and month, the
query could still be rewritten by folding the date range into year range and then matching the
year expressions.

12.3.6 About Query Rewrite Using View Constraints
Data warehouse applications recognize multi-dimensional cubes in the database by identifying
integrity constraints in the relational schema. Integrity constraints represent primary and
foreign key relationships between fact and dimension tables. By querying the data dictionary,
applications can recognize integrity constraints and hence the cubes in the database.
However, this does not work in an environment where database administrators, for schema
complexity or security reasons, define views on fact and dimension tables. In such
environments, applications cannot identify the cubes properly. By allowing constraint definitions
between views, you can propagate base table constraints to the views, thereby allowing
applications to recognize cubes even in a restricted environment.

View constraint definitions are declarative in nature, but operations on views are subject to the
integrity constraints defined on the underlying base tables, and constraints on views can be
enforced through constraints on base tables. Defining constraints on base tables is necessary,

Chapter 12
Other Query Rewrite Considerations

12-43

not only for data correctness and cleanliness, but also for materialized view query rewrite
purposes using the original base objects.

See Also:

Abut View Constraints Restrictions

Materialized view rewrite extensively uses constraints for query rewrite. They are used for
determining lossless joins, which, in turn, determine if joins in the materialized view are
compatible with joins in the query and thus if rewrite is possible.

DISABLE NOVALIDATE is the only valid state for a view constraint. However, you can choose
RELY or NORELY as the view constraint state to enable more sophisticated query rewrites. For
example, a view constraint in the RELY state allows query rewrite to occur when the query
integrity level is set to TRUSTED. Table 12-3 illustrates when view constraints are used for
determining lossless joins.

Note that view constraints cannot be used for query rewrite integrity level ENFORCED. This level
enforces the highest degree of constraint enforcement ENABLE VALIDATE.

Table 12-3 View Constraints and Rewrite Integrity Modes

Constraint States RELY NORELY

ENFORCED No No

TRUSTED Yes No

STALE_TOLERATED Yes No

Example 12-10 View Constraints

To demonstrate the rewrite capabilities on views, you need to extend the sh sample schema as
follows:

CREATE VIEW time_view AS
SELECT time_id, TO_NUMBER(TO_CHAR(time_id, 'ddd')) AS day_in_year FROM times;

You can now establish a foreign key/primary key relationship (in RELY mode) between the view
and the fact table, and thus rewrite takes place as described in Table 12-3, by adding the
following constraints. Rewrite will then work for example in TRUSTED mode.

ALTER VIEW time_view ADD (CONSTRAINT time_view_pk
 PRIMARY KEY (time_id) DISABLE NOVALIDATE);
ALTER VIEW time_view MODIFY CONSTRAINT time_view_pk RELY;
ALTER TABLE sales ADD (CONSTRAINT time_view_fk FOREIGN KEY (time_id)
 REFERENCES time_view(time_id) DISABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_view_fk RELY;

Consider the following materialized view definition:

CREATE MATERIALIZED VIEW sales_pcat_cal_day_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, t.day_in_year, SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s, products p
WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
GROUP BY p.prod_category, t.day_in_year;

Chapter 12
Other Query Rewrite Considerations

12-44

The following query, omitting the dimension table products, is also rewritten without the
primary key/foreign key relationships, because the suppressed join between sales and
products is known to be lossless.

SELECT t.day_in_year, SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s WHERE t.time_id = s.time_id
GROUP BY t.day_in_year;

However, if the materialized view sales_pcat_cal_day_mv were defined only in terms of the
view time_view, then you could not rewrite the following query, suppressing then join between
sales and time_view, because there is no basis for losslessness of the delta materialized view
join. With the additional constraints as shown previously, this query will also rewrite.

SELECT p.prod_category, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p WHERE p.prod_id = s.prod_id
GROUP BY p.prod_category;

To undo the changes you have made to the sh schema, issue the following statements:

ALTER TABLE sales DROP CONSTRAINT time_view_fk;
DROP VIEW time_view;

12.3.6.1 Abut View Constraints Restrictions
If the referential constraint definition involves a view, that is, either the foreign key or the
referenced key resides in a view, the constraint can only be in DISABLE NOVALIDATE mode.

A RELY constraint on a view is allowed only if the referenced UNIQUE or PRIMARY KEY constraint
in DISABLE NOVALIDATE mode is also a RELY constraint.

The specification of ON DELETE actions associated with a referential Integrity constraint, is not
allowed (for example, DELETE cascade). However, DELETE, UPDATE, and INSERT operations are
allowed on views and their base tables as view constraints are in DISABLE NOVALIDATE mode.

12.3.7 About Query Rewrite in the Presence of Hybrid Partitioned Tables
Query rewrite considers external partitions in a hybrid partitioned table to be of UNKNOWN
freshness. Therefore, when a query requests data from one or more external partitions, it can
only be rewritten under TRUSTED or STALE_TOLERATED integrity mode.

When a materialized view that is based on a hybrid partitioned table includes the partition key
or partition marker in its SELECT list, it is eligible for partition tracking. For materialized views
based on hybrid partitioned table tables that are not PCT-enabled, STALE_TOLERATED is the only
possible integrity mode.

Queries against hybrid partitioned tables can be rewritten using PCT rewrite under ENFORCED
and TRUSTED integrity modes only if the hybrid partitioned table is range or list partitioned.

Example 12-11 Query Rewrite and Materialized Views Based on Hybrid Partitioned
Tables

The hybrid partitioned table named hybrid_sales uses the ENFORCED integrity mode. One of
the internal partitions is stale.

The following query is run:

SELECT customer_no, sum(price) as sum_price
FROM hybrid_sales WHERE

Chapter 12
Other Query Rewrite Considerations

12-45

 time_id > TO_DATE(‘01-01-1950’) and time_id < TO_DATE(‘06-01-2001’)
GROUP BY customer_no;

This query can be rewritten to use the hybrid partitioned table. PCT rewrite selects the fresh
partitions from the materialized view and any stale partitions and external partitions directly
from the base table. The rewritten query is as follows:

SELECT v1.customer_no, SUM(v1.total_price) sum_price
FROM
 (SELECT customer_no, SUM(total_price) FROM Hybrid_sales WHERE
 time_id > TO_DATE(‘01-01-1950’) and time_id < TO_DATE(‘01-01-2000’)
 GROUP BY customer_no
 UNION ALL
 SELECT customer_no, SUM(total_price) FROM HyPT_MV WHERE
 time_id > TO_DATE(‘01-01-2000’) and time_id < TO_DATE(‘01-01-2001’)
 GROUP BY customer_no
 UNION ALL
 SELECT customer_no, SUM(total_price) FROM Hybrid_sales WHERE
 time_id > TO_DATE(‘01-01-2001’) and time_id < TO_DATE(‘06-01-2001’)
 GROUP BY customer_no
) v1
GROUP BY v1.customer_no;

12.3.8 Query Rewrite Using Set Operator Materialized Views
You can use query rewrite with materialized views that contain set operators. In this case, the
query and materialized view do not have to match textually for rewrite to occur. As an example,
consider the following materialized view, which uses the postal codes for male customers from
San Francisco or Los Angeles:

CREATE MATERIALIZED VIEW cust_male_postal_mv
ENABLE QUERY REWRITE AS
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_gender = 'M' AND c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_gender = 'M' AND c.cust_city = 'Los Angeles';

If you have the following query, which displays the postal codes for male customers from San
Francisco or Los Angeles:

SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city = 'San Francisco' AND c.cust_gender = 'M';

The rewritten query will be the following:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_male_postal_mv mv;

Chapter 12
Other Query Rewrite Considerations

12-46

The rewritten query has dropped the UNION ALL and replaced it with the materialized view.
Normally, query rewrite has to use the existing set of general eligibility rules to determine if the
SELECT subselections under the UNION ALL are equivalent in the query and the materialized
view.

See UNION ALL Marker and Query Rewrite.

If, for example, you have a query that retrieves the postal codes for male customers from San
Francisco, Palmdale, or Los Angeles, the same rewrite can occur as in the previous example
but query rewrite must keep the UNION ALL with the base tables, as in the following:

SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city = 'San Francisco' AND c.cust_gender = 'M';

The rewritten query will be:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_male_postal_mv mv
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM sh.customers c
WHERE c.cust_city = 'Palmdale' AND c.cust_gender = 'M';

So query rewrite detects the case where a subset of the UNION ALL can be rewritten using the
materialized view cust_male_postal_mv.

UNION, UNION ALL, and INTERSECT are commutative, so query rewrite can rewrite regardless of
the order the subselects are found in the query or materialized view. However, MINUS is not
commutative. A MINUS B is not equivalent to B MINUS A. Therefore, the order in which the
subselects appear under the MINUS operator in the query and the materialized view must be in
the same order for rewrite to happen. As an example, consider the case where there exists an
old version of the customer table called customer_old and you want to find the difference
between the old one and the current customer table only for male customers who live in
London. That is, you want to find those customers in the current one that were not in the old
one. The following example shows how this is done using a MINUS operator:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Los Angeles' AND c.cust_gender = 'M'
MINUS
SELECT c.cust_city, c.cust_postal_code
FROM customers_old c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M';

Switching the subselects would yield a different answer. This illustrates that MINUS is not
commutative.

12.3.8.1 UNION ALL Marker and Query Rewrite
If a materialized view contains one or more UNION ALL operators, it can also include a UNION
ALL marker. The UNION ALL marker is used to identify from which UNION ALL subselect each row

Chapter 12
Other Query Rewrite Considerations

12-47

in the materialized view originates. Query rewrite can use the marker to distinguish what rows
coming from the materialized view belong to a certain UNION ALL subselect. This is useful if the
query needs only a subset of the data from the materialized view or if the subselects of the
query do not textually match with the subselects of the materialized view. As an example, the
following query retrieves the postal codes for male customers from San Francisco and female
customers from Los Angeles:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'M' and c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'F' and c.cust_city = 'Los Angeles';

The query can be answered using the following materialized view:

CREATE MATERIALIZED VIEW cust_postal_mv
ENABLE QUERY REWRITE AS
SELECT 1 AS marker, c.cust_gender, c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'Los Angeles'
UNION ALL
SELECT 2 AS marker, c.cust_gender, c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'San Francisco';

The rewritten query is as follows:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_postal_mv mv
WHERE mv.marker = 2 AND mv.cust_gender = 'M'
UNION ALL
SELECT mv.cust_city, mv.cust_postal_code
FROM cust_postal_mv mv
WHERE mv.marker = 1 AND mv.cust_gender = 'F';

The WHERE clause of the first subselect includes mv.marker = 2 and mv.cust_gender = 'M',
which selects only the rows that represent male customers in the second subselect of the
UNION ALL. The WHERE clause of the second subselect includes mv.marker = 1 and
mv.cust_gender = 'F', which selects only those rows that represent female customers in the
first subselect of the UNION ALL. Note that query rewrite cannot take advantage of set operators
that drop duplicate or distinct rows. For example, UNION drops duplicates so query rewrite
cannot tell what rows have been dropped, as in the following:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'M' and c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'F' and c.cust_city = 'Los Angeles';

The rewritten query using UNION ALL markers is as follows:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'

Chapter 12
Other Query Rewrite Considerations

12-48

UNION ALL
SELECT mv.cust_city, mv.cust_postal_code

FROM cust_postal_mv mv
WHERE mv.marker = 2 AND mv.cust_gender = 'M'
UNION ALL
 SELECT mv.cust_city, mv.cust_postal_code
 FROM cust_postal_mv mv
 WHERE mv.marker = 1 AND mv.cust_gender = 'F';

The rules for using a marker are that it must:

• Be a constant number or string and be the same data type for all UNION ALL subselects.

• Yield a constant, distinct value for each UNION ALL subselect. You cannot reuse the same
value in multiple subselects.

• Be in the same ordinal position for all subselects.

12.3.9 About Query Rewrite in the Presence of Grouping Sets
This section discusses the following considerations for using query rewrite with grouping sets:

• About Query Rewrite When Using GROUP BY Extensions

• Hint for Rewriting Queries with Extended GROUP BY

12.3.9.1 About Query Rewrite When Using GROUP BY Extensions
Several extensions to the GROUP BY clause in the form of GROUPING SETS, CUBE, ROLLUP, and
their concatenation are available. These extensions enable you to selectively specify the
groupings of interest in the GROUP BY clause of the query. For example, the following is a typical
query with grouping sets. This query uses the sh sample schema.

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sh.sales s, sh.customers c, sh.products p, sh.times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS ((p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory));

The term base grouping for queries with GROUP BY extensions denotes all unique expressions
present in the GROUP BY clause. In the previous query, the following grouping
(p.prod_subcategory, t.calendar_month_desc, c.cust_city) is a base grouping.

The extensions can be present in user queries and in the queries defining materialized views.
In both cases, materialized view rewrite applies and you can distinguish rewrite capabilities into
the following scenarios:

• Materialized View has Simple GROUP BY and Query has Extended GROUP BY

• Materialized View has Extended GROUP BY and Query has Simple GROUP BY

• Both Materialized View and Query Have Extended GROUP BY

12.3.9.1.1 Materialized View has Simple GROUP BY and Query has Extended GROUP BY
When a query contains an extended GROUP BY clause, it can be rewritten with a materialized
view if its base grouping can be rewritten using the materialized view as listed in the rewrite
rules explained in "When Does Oracle Rewrite a Query?". For example, in the following query
which uses the sh sample schema:

Chapter 12
Other Query Rewrite Considerations

12-49

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sh.sales s, sh.customers c, sh.products p, sh.times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory));

The base grouping is (p.prod_subcategory, t.calendar_month_desc, c.cust_city,
p.prod_subcategory)) and, consequently, Oracle can rewrite the query using
sum_sales_pscat_month_city_mv as follows:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 SUM(mv.sum_amount_sold) AS sum_amount_sold
FROM sum_sales_pscat_month_city_mv mv
GROUP BY GROUPING SETS
((mv.prod_subcategory, mv.calendar_month_desc),
 (mv.cust_city, mv.prod_subcategory));

A special situation arises if the query uses the EXPAND_GSET_TO_UNION hint. See "Hint for
Rewriting Queries with Extended GROUP BY" for an example of using EXPAND_GSET_TO_UNION.

12.3.9.1.2 Materialized View has Extended GROUP BY and Query has Simple GROUP BY
In order for a materialized view with an extended GROUP BY to be used for rewrite, it must satisfy
two additional conditions:

• It must contain a grouping distinguisher, which is the GROUPING_ID function on all GROUP BY
expressions. For example, if the GROUP BY clause of the materialized view is GROUP BY
CUBE(a, b), then the SELECT list should contain GROUPING_ID(a, b).

• The GROUP BY clause of the materialized view should not result in any duplicate groupings.
For example, GROUP BY GROUPING SETS((a, b), (a, b)) would disqualify a materialized
view from general rewrite.

A materialized view with an extended GROUP BY contains multiple groupings. Oracle finds the
grouping with the lowest cost from which the query can be computed and uses that for rewrite.
For example, consider the following materialized view based on the sh sample schema:

CREATE MATERIALIZED VIEW sum_grouping_set_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
 GROUPING_ID(p.prod_category,p.prod_subcategory,
 c.cust_state_province,c.cust_city) AS gid,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sh.sales s, sh.products p, sh.customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city),
 (p.prod_category, p.prod_subcategory));

In this case, the following query is rewritten:

SELECT p.prod_subcategory, c.cust_city, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, c.cust_city;

This query is rewritten with the closest matching grouping from the materialized view. That is,
the (prod_category, prod_subcategory, cust_city) grouping:

Chapter 12
Other Query Rewrite Considerations

12-50

SELECT prod_subcategory, cust_city, SUM(sum_amount_sold) AS sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
GROUP BY prod_subcategory, cust_city;

12.3.9.1.3 Both Materialized View and Query Have Extended GROUP BY
When both materialized view and the query contain GROUP BY extensions, Oracle uses two
strategies for rewrite: grouping match and UNION ALL rewrite. First, Oracle tries grouping match.
The groupings in the query are matched against groupings in the materialized view and if all
are matched with no rollup, Oracle selects them from the materialized view. For example,
consider the following query:

SELECT p.prod_category, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory));

This query matches two groupings from sum_grouping_set_mv and Oracle rewrites the query
as the following:

SELECT prod_subcategory, cust_city, sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
 OR gid = grouping identifier of (prod_category,prod_subcategory)

If grouping match fails, Oracle tries a general rewrite mechanism called UNION ALL rewrite.
Oracle first represents the query with the extended GROUP BY clause as an equivalent UNION ALL
query. Every grouping of the original query is placed in a separate UNION ALL branch. The
branch will have a simple GROUP BY clause. For example, consider this query:

SELECT p.prod_category, p.prod_subcategory, c.cust_state_province,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),
 (p.prod_category, p.prod_subcategory, c.cust_state_province),
 (p.prod_category, p.prod_subcategory));

This is first represented as UNION ALL with four branches:

SELECT null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc
UNION ALL
 SELECT null, null, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY t.calendar_month_desc
UNION ALL
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province,
 null, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t

Chapter 12
Other Query Rewrite Considerations

12-51

WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT p.prod_category, p.prod_subcategory, null,
 null, SUM(s.amount_sold) AS sum_amount_sold
 FROM sales s, products p, customers c, times t
 WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
 GROUP BY p.prod_category, p.prod_subcategory;

Each branch is then rewritten separately using the rules from "When Does Oracle Rewrite a
Query?". Using the materialized view sum_grouping_set_mv, Oracle can rewrite only branches
three (which requires materialized view rollup) and four (which matches the materialized view
exactly). The unrewritten branches will be converted back to the extended GROUP BY form.
Thus, eventually, the query is rewritten as:

SELECT null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
 ((p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),)
UNION ALL
 SELECT prod_category, prod_subcategory, cust_state_province,
 null, SUM(sum_amount_sold) AS sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory, cust_city)>
 GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT prod_category, prod_subcategory, null,
 null, sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory)>

Note that a query with extended GROUP BY is represented as an equivalent UNION ALL and
recursively submitted for rewrite optimization. The groupings that cannot be rewritten stay in
the last branch of UNION ALL and access the base data instead.

12.3.9.2 Hint for Rewriting Queries with Extended GROUP BY
You can use the EXPAND_GSET_TO_UNION hint to force expansion of the query with GROUP BY
extensions into the equivalent UNION ALL query. This hint can be used in an environment where
materialized views have simple GROUP BY clauses only. In this case, Oracle extends rewrite
flexibility as each branch can be independently rewritten by a separate materialized view.

12.3.10 Query Rewrite in the Presence of Window Functions
Window functions are used to compute cumulative, moving and centered aggregates. These
functions work with the following aggregates: AVG, BIT_AND_AGG, BIT_OR_AGG, BIT_XOR_AGG,
CHECKSUM, COUNT, FIRST_VALUE, KURTOSIS_POP, KURTOSIS_SAMP, LAST_VALUE, MAX, MIN,
SKEWNESS_POP, SKEWNESS_SAMP, SUM, STDDEV, and VARIANCE. A query with a window function can
be rewritten using exact text match rewrite. This requires that the materialized view definition
also matches the query exactly. When there is no window function on the materialized view,
then a query with a window function can be rewritten provided the aggregate in the query is
found in the materialized view and all other eligibility checks such as the join computability
checks are successful. A window function on the query is compared to the window function in
the materialized view using its canonical form format. This enables query rewrite to rewrite
even complex window functions.

Chapter 12
Other Query Rewrite Considerations

12-52

When a query with a window function requires rollup during query rewrite, query rewrite,
whenever possible, splits the query into an inner query with the aggregate and an outer query
with the windowing function. This permits query rewrite to rewrite the aggregate in the inner
query before applying the window function. One exception is that if the query has both a
window function and a grouping set, then the presence of the grouping set prevents the
splitting of the query, and therefore query rewrite does not take place.

12.3.11 Query Rewrite and Expression Matching
An expression that appears in a query can be replaced with a simple column in a materialized
view provided the materialized view column represents a precomputed expression that
matches with the expression in the query. If a query can be rewritten to use a materialized
view, it will be faster. This is because materialized views contain precomputed calculations and
do not need to perform expression computation.

The expression matching is done by first converting the expressions into canonical forms and
then comparing them for equality. Therefore, two different expressions will generally be
matched as long as they are equivalent to each other. Further, if the entire expression in a
query fails to match with an expression in a materialized view, then subexpressions of it are
tried to find a match. The subexpressions are tried in a top-down order to get maximal
expression matching.

Consider a query against the sh sample schema that asks for sum of sales by age brackets
(1-10, 11-20, 21-30, and so on).

CREATE MATERIALIZED VIEW sales_by_age_bracket_mv
ENABLE QUERY REWRITE AS
SELECT TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999) AS age_bracket,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sh.sales s, sh.customers c WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

The following query rewrites, using expression matching:

SELECT TO_CHAR(((2000-c.cust_year_of_birth)/10)-0.5,999), SUM(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

This query is rewritten in terms of sales_by_age_bracket_mv based on the matching of the
canonical forms of the age bracket expressions (that is, 2000 - c.cust_year_of_birth)/
10-0.5), as follows:

SELECT age_bracket, sum_amount_sold FROM sales_by_age_bracket_mv;

12.3.11.1 Query Rewrite Using Partially Stale Materialized Views
When a partition of the detail table is updated, only specific sections of the materialized view
are marked stale. The materialized view must have information that can identify the partition of
the table corresponding to a particular row or group of the materialized view. The simplest
scenario is when the partitioning key of the table is available in the SELECT list of the
materialized view because this is the easiest way to map a row to a stale partition. The key
points when using partially stale materialized views are:

• Query rewrite can use a materialized view in ENFORCED or TRUSTED mode if the rows from
the materialized view used to answer the query are known to be FRESH.

• The fresh rows in the materialized view are identified by adding selection predicates to the
materialized view's WHERE clause. Oracle rewrites a query with this materialized view if its
answer is contained within this (restricted) materialized view.

Chapter 12
Other Query Rewrite Considerations

12-53

The fact table sales is partitioned based on ranges of time_id as follows:

PARTITION BY RANGE (time_id)
(PARTITION SALES_Q1_1998
 VALUES LESS THAN (TO_DATE('01-APR-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q2_1998
 VALUES LESS THAN (TO_DATE('01-JUL-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q3_1998
 VALUES LESS THAN (TO_DATE('01-OCT-1998', 'DD-MON-YYYY')),
...

Suppose you have a materialized view grouping by time_id as follows:

CREATE MATERIALIZED VIEW sum_sales_per_city_mv
ENABLE QUERY REWRITE AS
SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
GROUP BY time_id, prod_subcategory, cust_city;

Also suppose new data will be inserted for December 2000, which will be assigned to partition
sales_q4_2000. For testing purposes, you can apply an arbitrary DML operation on sales,
changing a different partition than sales_q1_2000 as the following query requests data in this
partition when this materialized view is fresh. For example, the following:

INSERT INTO SALES VALUES(17, 10, '01-DEC-2000', 4, 380, 123.45, 54321);

Until a refresh is done, the materialized view is generically stale and cannot be used for
unlimited rewrite in enforced mode. However, because the table sales is partitioned and not all
partitions have been modified, Oracle can identify all partitions that have not been touched.
The optimizer can identify the fresh rows in the materialized view (the data which is unaffected
by updates since the last refresh operation) by implicitly adding selection predicates to the
materialized view defining query as follows:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id < TO_DATE('01-OCT-2000','DD-MON-YYYY')
OR s.time_id >= TO_DATE('01-OCT-2001','DD-MON-YYYY'))
GROUP BY time_id, prod_subcategory, cust_city;

Note that the freshness of partially stale materialized views is tracked on a per-partition base,
and not on a logical base. Because the partitioning strategy of the sales fact table is on a
quarterly base, changes in December 2000 causes the complete partition sales_q4_2000 to
become stale.

Consider the following query, which asks for sales in quarters 1 and 2 of 2000:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;

Oracle Database knows that those ranges of rows in the materialized view are fresh and can
therefore rewrite the query with the materialized view. The rewritten query looks as follows:

Chapter 12
Other Query Rewrite Considerations

12-54

SELECT time_id, prod_subcategory, cust_city, sum_amount_sold
FROM sum_sales_per_city_mv
WHERE time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY');

Instead of the partitioning key, a partition marker (a function that identifies the partition given a
rowid) can be present in the SELECT (and GROUP BY list) of the materialized view. You can use
the materialized view to rewrite queries that require data from only certain partitions
(identifiable by the partition-marker), for instance, queries that have a predicate specifying
ranges of the partitioning keys containing entire partitions. See Advanced Materialized Views
for details regarding the supplied partition marker function DBMS_MVIEW.PMARKER.

The following example illustrates the use of a partition marker in the materialized view instead
of directly using the partition key column:

CREATE MATERIALIZED VIEW sum_sales_per_city_2_mv
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) AS pmarker,
 t.fiscal_quarter_desc, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id = t.time_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_subcategory, c.cust_city, t.fiscal_quarter_desc;

Suppose you know that the partition sales_q1_2000 is fresh and DML changes have taken
place for other partitions of the sales table. For testing purposes, you can apply an arbitrary
DML operation on sales, changing a different partition than sales_q1_2000 when the
materialized view is fresh. An example is the following:

INSERT INTO SALES VALUES(17, 10, '01-DEC-2000', 4, 380, 123.45, 54321);

Although the materialized view sum_sales_per_city_2_mv is now considered generically stale,
Oracle Database can rewrite the following query using this materialized view. This query
restricts the data to the partition sales_q1_2000, and selects only certain values of cust_city,
as shown in the following:

SELECT p.prod_subcategory, c.cust_city, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id
AND c.cust_city= 'Nuernberg'
AND s.time_id >=TO_DATE('01-JAN-2000','dd-mon-yyyy')
AND s.time_id < TO_DATE('01-APR-2000','dd-mon-yyyy')
GROUP BY prod_subcategory, cust_city;

Note that rewrite with a partially stale materialized view that contains a PMARKER function can
only take place when the complete data content of one or more partitions is accessed and the
predicate condition is on the partitioned fact table itself, as shown in the earlier example.

The DBMS_MVIEW.PMARKER function gives you exactly one distinct value for each partition. This
dramatically reduces the number of rows in a potential materialized view compared to the
partitioning key itself, but you are also giving up any detailed information about this key. The
only information you know is the partition number and, therefore, the lower and upper
boundary values. This is the trade-off for reducing the cardinality of the range partitioning
column and thus the number of rows.

Assuming the value of p_marker for partition sales_q1_2000 is 31070, the previously shown
queries can be rewritten against the materialized view as follows:

Chapter 12
Other Query Rewrite Considerations

12-55

SELECT mv.prod_subcategory, mv.cust_city, SUM(mv.sum_amount_sold)
FROM sum_sales_per_city_2_mv mv
WHERE mv.pmarker = 31070 AND mv.cust_city= 'Nuernberg'
GROUP BY prod_subcategory, cust_city;

So the query can be rewritten against the materialized view without accessing stale data.

12.3.12 Cursor Sharing and Bind Variables During Query Rewrite
Query rewrite is supported when the query contains user bind variables as long as the actual
bind values are not required during query rewrite. If the actual values of the bind variables are
required during query rewrite, then you can say that query rewrite is dependent on the bind
values. Because the user bind variables are not available during query rewrite time, if query
rewrite is dependent on the bind values, it is not possible to rewrite the query. For example,
consider the following materialized view, customer_mv, which has the predicate, (customer_id
>= 1000), in the WHERE clause:

CREATE MATERIALIZED VIEW customer_mv
ENABLE QUERY REWRITE AS
SELECT cust_id, prod_id, SUM(amount_sold) AS total_amount
FROM sales WHERE cust_id >= 1000
GROUP BY cust_id, prod_id;

Consider the following query, which has a user bind variable, :user_id, in its WHERE clause:

SELECT cust_id, prod_id, SUM(amount_sold) AS sum_amount
FROM sales WHERE cust_id > :user_id
GROUP BY cust_id, prod_id;

Because the materialized view, customer_mv, has a selection in its WHERE clause, query rewrite
is dependent on the actual value of the user bind variable, user_id, to compute the
containment. Because user_id is not available during query rewrite time and query rewrite is
dependent on the bind value of user_id, this query cannot be rewritten.

Even though the preceding example has a user bind variable in the WHERE clause, the same is
true regardless of where the user bind variable appears in the query. In other words,
irrespective of where a user bind variable appears in a query, if query rewrite is dependent on
its value, then the query cannot be rewritten.

Now consider the following query which has a user bind variable, :user_id, in its SELECT list:

SELECT cust_id + :user_id, prod_id, SUM(amount_sold) AS total_amount
FROM sales WHERE cust_id >= 2000
GROUP BY cust_id, prod_id;

Because the value of the user bind variable, user_id, is not required during query rewrite time,
the preceding query will rewrite.

SELECT cust_id + :user_id, prod_id, total_amount
FROM customer_mv;

12.3.13 Handling Expressions in Query Rewrite
Rewrite with some expressions is also supported when the expression evaluates to a constant,
such as TO_DATE('12-SEP-1999','DD-Mon-YYYY'). For example, if an existing materialized
view is defined as:

CREATE MATERIALIZED VIEW sales_on_valentines_day_99_mv
BUILD IMMEDIATE

Chapter 12
Other Query Rewrite Considerations

12-56

REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT s.prod_id, s.cust_id, s.amount_sold
FROM times t, sales s WHERE s.time_id = t.time_id
AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

Then the following query can be rewritten:

SELECT s.prod_id, s.cust_id, s.amount_sold
FROM sales s, times t WHERE s.time_id = t.time_id
AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

This query would be rewritten as follows:

SELECT * FROM sales_on_valentines_day_99_mv;

Whenever TO_DATE is used, query rewrite only occurs if the date mask supplied is the same as
the one specified by the NLS_DATE_FORMAT.

12.4 Advanced Query Rewrite Using Equivalences
There is a special type of query rewrite that is possible where a declaration is made that two
SQL statements are functionally equivalent. This capability enables you to place inside
application knowledge into the database so the database can exploit this knowledge for
improved query performance. You do this by declaring two SELECT statements to be
functionally equivalent (returning the same rows and columns) and indicating that one of the
SELECT statements is more favorable for performance.

This advanced rewrite capability can generally be applied to a variety of query performance
problems and opportunities. Any application can use this capability to affect rewrites against
complex user queries that can be answered with much simpler and more performant queries
that have been specifically created, usually by someone with inside application knowledge.

There are many scenarios where you can have inside application knowledge that would allow
SQL statement transformation and tuning for significantly improved performance. The types of
optimizations you may wish to affect can be very simple or as sophisticated as significant
restructuring of the query. However, the incoming SQL queries are often generated by
applications and you have no control over the form and structure of the application-generated
queries.

To gain access to this capability, you need to connect as SYSDBA and explicitly grant execute
access to the desired database administrators who will be declaring rewrite equivalences. See
Oracle Database PL/SQL Packages and Types Reference for more information.

To illustrate this type of advanced rewrite, some examples using multidimensional data are
provided. To optimize resource usage, an application may employ complicated SQL, custom C
code or table functions to retrieve the data from the database. This complexity is irrelevant as
far as end users are concerned. Users would still want to obtain their answers using typical
queries with SELECT ... GROUP BY.

Example 12-12 Rewrite Using Equivalence

This example declares to Oracle that a given user query must be executed using a specified
alternative query. Oracle would recognize this relationship and every time the user asked the
query, it would transparently rewrite it using the alternative. Thus, the user is saved from the
trouble of understanding and writing SQL for complicated aggregate computations.

There are two base tables sales_fact and geog_dim. You can compute the total sales for each
city, state and region with a rollup, by issuing the following statement:

Chapter 12
Advanced Query Rewrite Using Equivalences

12-57

SELECT g.region, g.state, g.city,
GROUPING_ID(g.city, g.state, g.region), SUM(sales)
FROM sales_fact f, geog_dim g WHERE f.geog_key = g.geog_key
GROUP BY ROLLUP(g.region, g.state, g.city);

An application may want to materialize this query for quick results. Unfortunately, the resulting
materialized view occupies too much disk space. However, if you have a dimension rolling up
city to state to region, you can easily compress the three grouping columns into one column
using a decode statement. (This is also known as an embedded total):

DECODE (gid, 0, city, 1, state, 3, region, 7, "grand_total")

What this does is use the lowest level of the hierarchy to represent the entire information. For
example, saying Boston means Boston, MA, New England Region and saying CA means CA,
Western Region. An application can store these embedded total results into a table, say,
embedded_total_sales.

However, when returning the result back to the user, you would want to have all the data
columns (city, state, region). In order to return the results efficiently and quickly, an application
may use a custom table function (et_function) to retrieve the data back from the
embedded_total_sales table in the expanded form as follows:

SELECT * FROM TABLE (et_function);

In other words, this feature allows an application to declare the equivalence of the user's
preceding query to the alternative query, as in the following:

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'EMBEDDED_TOTAL',
 'SELECT g.region, g.state, g.city,
 GROUPING_ID(g.city, g.state, g.region), SUM(sales)
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key
 GROUP BY ROLLUP(g.region, g.state, g.city)',
 'SELECT * FROM TABLE(et_function)');

Note:

Both Oracle join syntax (shown above) and ANSI join syntax are supported.

This invocation of DECLARE_REWRITE_EQUIVALENCE creates an equivalence declaration named
EMBEDDED_TOTAL stating that the specified SOURCE_STMT and the specified DESTINATION_STMT
are functionally equivalent, and that the specified DESTINATION_STMT is preferable for
performance. After the DBA creates such a declaration, the user need have no knowledge of
the space optimization being performed underneath the covers.

This capability also allows an application to perform specialized partial materializations of a
SQL query. For instance, it could perform a rollup using a UNION ALL of three relations as
shown in Example 12-13.

Example 12-13 Rewrite Using Equivalence (UNION ALL)

CREATE MATERIALIZED VIEW T1
AS SELECT g.region, g.state, g.city, 0 AS gid, SUM(sales) AS sales
FROM sales_fact f, geog_dim g WHERE f.geog_key = g.geog_key
GROUP BY g.region, g.state, g.city;

CREATE MATERIALIZED VIEW T2 AS

Chapter 12
Advanced Query Rewrite Using Equivalences

12-58

SELECT t.region, t.state, SUM(t.sales) AS sales
FROM T1 GROUP BY t.region, t.state;

CREATE VIEW T3 AS
SELECT t.region, SUM(t.sales) AS sales
FROM T2 GROUP BY t.region;

The ROLLUP(region, state, city) query is then equivalent to:

SELECT * FROM T1 UNION ALL
SELECT region, state, NULL, 1 AS gid, sales FROM T2 UNION ALL
SELECT region, NULL, NULL, 3 AS gid, sales FROM T3 UNION ALL
SELECT NULL, NULL, NULL, 7 AS gid, SUM(sales) FROM T3;

By specifying this equivalence, Oracle Database would use the more efficient second form of
the query to compute the ROLLUP query asked by the user.

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'CUSTOM_ROLLUP',
 'SELECT g.region, g.state, g.city,
 GROUPING_ID(g.city, g.state, g.region), SUM(sales)
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key
 GROUP BY ROLLUP(g.region, g.state, g.city ',
 ' SELECT * FROM T1
 UNION ALL
 SELECT region, state, NULL, 1 as gid, sales FROM T2
 UNION ALL
 SELECT region, NULL, NULL, 3 as gid, sales FROM T3
 UNION ALL
 SELECT NULL, NULL, NULL, 7 as gid, SUM(sales) FROM T3');

Another application of this feature is to provide users special aggregate computations that may
be conceptually simple but extremely complex to express in SQL. In this case, the application
asks the user to use a specified custom aggregate function and internally compute it using
complex SQL.

Example 12-14 Rewrite Using Equivalence (Using a Custom Aggregate)

Suppose the application users want to see the sales for each city, state and region and also
additional sales information for specific seasons. For example, the New England user wants
additional sales information for cities in New England for the winter months. The application
would provide you a special aggregate Seasonal_Agg that computes the earlier aggregate. You
would ask a classic summary query but use Seasonal_Agg(sales, region) rather than
SUM(sales).

SELECT g.region, t.calendar_month_name, Seasonal_Agg(f.sales, g.region) AS sales
FROM sales_fact f, geog_dim g, times t
WHERE f.geog_key = g.geog_key AND f.time_id = t.time_id
GROUP BY g.region, t.calendar_month_name;

Instead of asking the user to write SQL that does the extra computation, the application can do
it automatically for them by using this feature. In this example, Seasonal_Agg is computed
using the spreadsheet functionality (see SQL for Modeling). Note that even though
Seasonal_Agg is a user-defined aggregate, the required behavior is to add extra rows to the
query's answer, which cannot be easily done with simple PL/SQL functions.

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'CUSTOM_SEASONAL_AGG',
 SELECT g.region, t.calendar_month_name, Seasonal_Agg(sales, region) AS sales
 FROM sales_fact f, geog_dim g, times t

Chapter 12
Advanced Query Rewrite Using Equivalences

12-59

 WHERE f.geog_key = g.geog_key AND f.time_id = t.time_id
 GROUP BY g.region, t.calendar_month_name',
 'SELECT g,region, t.calendar_month_name, SUM(sales) AS sales
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key AND t.time_id = f.time_id
 GROUP BY g.region, g.state, g.city, t.calendar_month_name
 DIMENSION BY g.region, t.calendar_month_name
 (sales ['New England', 'Winter'] = AVG(sales) OVER calendar_month_name IN
 ('Dec', 'Jan', 'Feb', 'Mar'),
 sales ['Western', 'Summer'] = AVG(sales) OVER calendar_month_name IN
 ('May', 'Jun', 'July', 'Aug'), .);

12.5 Creating Result Cache Materialized Views with
Equivalences

A special type of materialized view, called a result cache materialized view (RCMV), enables
you to use a result cache when running query rewrite. These result cache materialized views
offer the main advantages of the result cache, faster access with less space required, without
the normal drawback of being unable to run query rewrite against them.

An example of using this type of materialized view is the following.

Example 12-15 Result Cache Materialized View

First, grant the requisite permissions:

CONNECT / AS SYSDBA
GRANT CREATE MATERIALIZED VIEW TO sh;
GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO sh;

Next, create the result cache materialized view:

CONNECT sh/sh
begin
 sys.DBMS_ADVANCED_REWRITE.Declare_Rewrite_Equivalence
 (
 Name => 'RCMV_SALES',
 Source_Stmt =>
 'select channel_id, prod_id, sum(amount_sold), count(amount_sold)
 from sales
 group by prod_id, channel_id',
 Destination_Stmt =>
 'select * from
 (select /*+ RESULT_CACHE(name=RCMV_SALES) */
 channel_id, prod_id, sum(amount_sold), count(amount_sold)
 from sales
 group by prod_id, channel_id)',
 Validate => FALSE,
 Rewrite_Mode => 'GENERAL'
);
end;
/

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

Then, verify that different queries all rewrite to RCMV_SALES by looking at the explain plan:

EXPLAIN PLAN FOR
 SELECT channel_id, SUM(amount_sold) FROM sales GROUP BY channel_id;
@?/rdbms/admin/utlxpls

Chapter 12
Creating Result Cache Materialized Views with Equivalences

12-60

PLAN_TABLE_OUTPUT
--
Plan hash value: 3903632134
--
|Id | Operation | Name |Rows|Bytes|Cost(%CPU)| Time |Pstart|Pstop|

0	SELECT STATEMENT		4	64	1340 (68)	00:00:17		
1	HASH GROUP BY		4	64	1340 (68)	00:00:17		
2	VIEW		204	3264	1340 (68)	00:00:17		
3	RESULT CACHE	3gps5zr86gyb53y36js9zuay2s						
4	HASH GROUP BY		204	2448	1340 (68)	00:00:17		
5	PARTITION RANGE ALL		918K	10M	655 (33)	00:00:08	1	28
6	TABLE ACCESS FULL	SALES	918K	10M	655 (33)	00:00:08	1	28

Result Cache Information (identified by operation id):
--
 3 - column-count=4; dependencies=(SH.SALES); name="RCMV_SALES"

18 rows selected.

Then, execute the query that creates the cached result:

SELECT channel_id, SUM(amount_sold)
FROM sales
GROUP BY channel_id;

CHANNEL_ID SUM(AMOUNT_SOLD)
---------- ----------------
 2 26346342.3
 4 13706802
 3 57875260.6
 9 277426.26

Next, verify that the materialized view was materialized in the result cache:

CONNECT / AS SYSDBA

SELECT name, scan_count hits, block_count blocks, depend_count dependencies
FROM V$RESULT_CACHE_OBJECTS
WHERE name = 'RCMV_SALES';

NAME HITS BLOCKS DEPENDENCIES
---------- ---- ------ ------------
RCMV_SALES 0 5 1

Finally, drop the RCMV query equivalence:

begin
 sys.DBMS_ADVANCED_REWRITE.Drop_Rewrite_equivalence('RCMV_SALES');
end;
/

For more information regarding result caches, see Oracle Database SQL Tuning Guide.

Chapter 12
Creating Result Cache Materialized Views with Equivalences

12-61

12.6 Query Rewrite and Materialized Views Based on
Approximate Queries

Queries containing SQL functions that return approximate results are automatically rewritten to
use a matching materialized view, if these queries can be answered using the materialized
view.

For a query containing SQL functions that return approximate results to be rewritten using a
materialized view that is based on an approximate query, ensure that query rewrite is enabled
for the materialized view. Query rewrite must also be enabled either at the database level or for
the current session.

Consider the materialized view approx_count_distinct_pdt_mv that was defined as follows:

CREATE MATERIALIZED VIEW approx_count_distinct_pdt_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_year, t.calendar_month_number, t.day_number_in_month,
approx_count_distinct_detail(prod_id) daily_detail
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_year, t.calendar_month_number, t.day_number_in_month;

Note:

Both Oracle join syntax (shown above) and ANSI join syntax are supported.

When a query that matches the defining query of approx_count_distinct_pdt_mv is run, and
the prerequisites described in this section are met, the query is automatically rewritten to use
this materialized view. The following query is rewritten to use approx_count_distinct_pdt_mv,
as indicated by the execution plan generated for the query.

SELECT t.calendar_year, t.calendar_month_number, t.day_number_in_month,
approx_count_distinct(prod_id)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_year, t.calendar_month_number, t.day_number_in_month;

PLAN_TABLE_OUTPUT
--

Plan hash value: 2307354865
--

| Id | Operation | Name | Rows |
Bytes | Cost (%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 1460 |
74460 | 205 (0)| 00:00:01 |
| 1 | MAT_VIEW REWRITE ACCESS FULL| APPROX_COUNT_DISTINCT_PDT_MV | 1460 |

Chapter 12
Query Rewrite and Materialized Views Based on Approximate Queries

12-62

74460 | 205 (0)| 00:00:01 |
--

8 rows selected.

The following query is also rewritten to use approx_count_distinct_pdt_mv as indicated by
the execution plan. Note that this query aggregates data to a higher level than that defined by
the defining query of approx_count_distinct_pdt_mv.

SELECT t.calendar_year, t.calendar_month_number,
approx_count_distinct(prod_id)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_year, t.calendar_month_number;

PLAN_TABLE_OUTPUT
--

Plan hash value: 827336432
--

| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 34
| 1632 | 206 (1)| 00:00:01 |
| 1 | HASH GROUP BY APPROX | | 34
| 1632 | 206 (1)| 00:00:01 |
| 2 | MAT_VIEW REWRITE ACCESS FULL| APPROX_COUNT_DISTINCT_PDT_MV | 1460
| 70080 | 205 (0)| 00:00:01 |
--

9 rows selected.

Rewriting Queries with Exact Functions to Use Materialized Views that Contain
Approximate Functions

If you set database initialization parameters that substitute exact functions with the
corresponding SQL functions that return approximate values, then the optimizer can rewrite
queries containing exact functions to use materialized views that are defined using the
approximate versions of the same functions. You need not rewrite the query to use the
corresponding approximate functions.

For example, if the approx_for_count_distinct parameter is set to TRUE, then the optimizer
rewrites the following query to use the materialized view approx_count_distinct_pdt_mv:

ALTER SESSION SET approx_for_count_distinct = TRUE;

SELECT t.calendar_year, t.calendar_month_number, COUNT (DISTINCT prod_id)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_year, t.calendar_month_number;

Chapter 12
Query Rewrite and Materialized Views Based on Approximate Queries

12-63

PLAN_TABLE_OUTPUT
--

Plan hash value: 827336432
--

| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 34 | 1632
| 206 (1)| 00:00:01 |
| 1 | HASH GROUP BY APPROX | | 34 | 1632
| 206 (1)| 00:00:01 |
| 2 | MAT_VIEW REWRITE ACCESS FULL| APPROX_COUNT_DISTINCT_PDT_MV |
1460 | 70080 | 205 (0)| 00:00:01 |
--

9 rows selected.

Observe that the above execution plan is the same as the execution plan that was generated
when the query uses the approx_count_distinct in the previous example.

See Also:

• About Approximate Query Processing

• About Approximate Aggregates

• Creating Materialized Views Based on Approximate Queries

12.7 Query Rewrite and Materialized Views Based on Bitmap-
based COUNT(DISTINCT) Functions

Queries that contain COUNT(DISTINCT) operations on integer columns can be rewritten to use
materialized views that contain bitmap-based functions.

Enable query rewrite for the materialized view so that SQL queries can be rewritten using this
materialized views.

Example 12-16 Query Rewrite Using Materialized Views Containing COUNT(DISTINCT)

The materialized view mv_sales was created using the following command:

create materialized view mv_sales as
 select PROMO_ID, BITMAP_BUCKET_NUMBER(PROD_ID) bm_bktno,
 BITMAP_CONSTRUCT_AGG(BITMAP_BIT_POSITION(PROD_ID),'RAW') bm_details
 from sales
 group by PROMO_ID,BITMAP_BUCKET_NUMBER(PROD_ID);

Chapter 12
Query Rewrite and Materialized Views Based on Bitmap-based COUNT(DISTINCT) Functions

12-64

Query rewrite has been enabled for the materialized view mv_sales.

When a SQL query performs a COUNT(DISTINCT) operation on a numeric column that is
included in the mv_sales materialized view definition, the query is rewritten to use the
materialized view. The execution plan below shows that the materialized view was used.

SQL> EXPLAIN PLAN FOR select PROMO_ID,count(distinct PROD_ID) from sales
group by PROMO_ID order by PROMO_ID;

Explained.

SQL> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

PLAN_TABLE_OUTPUT
--

Plan hash value: 2440767223

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT GROUP BY	
2	VIEW	
3	HASH GROUP BY	
4	MAT_VIEW ACCESS FULL	MV_SALES
--

Note

 - dynamic statistics used: dynamic sampling (level=2)

15 rows selected.

Example 12-17 Query Rewrite with Bitmap-based COUNT(DISTINCT) and Rollup

The following command was used to create the materialized view mv_sales_amount:

create materialized view mv_sales_amount AS
SELECT PROMO_ID, CHANNEL_ID,
 BITMAP_BUCKET_NUMBER(PROD_ID) as bm_bktno,
 BITMAP_CONSTRUCT_AGG(BITMAP_BIT_POSITION(PROD_ID)) as bm_details,
 SUM(AMOUNT_SOLD) as amount_sold
FROM sales
GROUP BY PROMO_ID, CHANNEL_ID, BITMAP_BUCKET_NUMBER(PROD_ID);

Query rewrite has been enabled for the materialized view mv_sales_amount.

The execution plan for the SQL command shown below demonstrates query rewrite to satisfy
queries containing a COUNT(DISTINCT) function. Query rewrite is performed at different levels
of aggregation and in the presence of other aggregates.

EXPLAIN PLAN FOR
SELECT PROMO_ID, COUNT(DISTINCT PROD_ID), SUM(AMOUNT_SOLD)
FROM sales

Chapter 12
Query Rewrite and Materialized Views Based on Bitmap-based COUNT(DISTINCT) Functions

12-65

GROUP BY PROMO_ID;
--

| Id | Operation | Name | Rows| Bytes| Cost (%CPU) |
Time

| 0 | SELECT STATEMENT | | 163 | 6357 | 8 (13) |
00:00:01 |
| 1 | HASH GROUP BY | | 163 | 6357 | 8 (13) |
00:00:01 |
| 2 | VIEW | | 163 | 6357 | 8 (13) |
00:00:01 |
| 3 | HASH GROUP BY | | 163 | 324K | 8 (13) |
00:00:01 |
| 4 | MAT_VIEW ACCESS FULL| MV_SALES_AMOUNT | 163 | 324K | 7 (0) |
00:00:01

12.8 Verifying that Query Rewrite has Occurred
Because query rewrite occurs transparently, special steps have to be taken to verify that a
query has been rewritten. Of course, if the query runs faster, this should indicate that rewrite
has occurred, but that is not proof. Therefore, to confirm that query rewrite does occur, use the
EXPLAIN PLAN statement or the DBMS_MVIEW.EXPLAIN_REWRITE procedure.

This section contains the following topics:

• Using EXPLAIN PLAN with Query Rewrite

• Using the EXPLAIN_REWRITE Procedure with Query Rewrite

12.8.1 Using EXPLAIN PLAN with Query Rewrite
The EXPLAIN PLAN facility is used as described in Oracle Database SQL Language Reference.
For query rewrite, all you need to check is that the operation shows MAT_VIEW REWRITE ACCESS.
If it does, then query rewrite has occurred. An example is the following, which creates the
materialized view cal_month_sales_mv:

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

If EXPLAIN PLAN is used on the following SQL statement, the results are placed in the default
table PLAN_TABLE. However, PLAN_TABLE must first be created using the utlxplan.sql script.
Note that EXPLAIN PLAN does not actually execute the query.

EXPLAIN PLAN FOR
SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

For the purposes of query rewrite, the only information of interest from PLAN_TABLE is the
operation OBJECT_NAME, which identifies the method used to execute this query. Therefore, you

Chapter 12
Verifying that Query Rewrite has Occurred

12-66

would expect to see the operation MAT_VIEW REWRITE ACCESS in the output as illustrated in the
following:

SELECT OPERATION, OBJECT_NAME FROM PLAN_TABLE;

OPERATION OBJECT_NAME
-------------------- -----------------------
SELECT STATEMENT
MAT_VIEW REWRITE ACCESS CALENDAR_MONTH_SALES_MV

12.8.2 Using the EXPLAIN_REWRITE Procedure with Query Rewrite
It can be difficult to understand why a query did not rewrite. The rules governing query rewrite
eligibility are quite complex, involving various factors such as constraints, dimensions, query
rewrite integrity modes, freshness of the materialized views, and the types of queries
themselves. In addition, you may want to know why query rewrite chose a particular
materialized view instead of another. To help with this matter, Oracle Database provides the
DBMS_MVIEW.EXPLAIN_REWRITE procedure to advise you when a query can be rewritten and, if
not, why not. Using the results from DBMS_MVIEW.EXPLAIN_REWRITE, you can take the
appropriate action needed to make a query rewrite if at all possible.

Note that the query specified in the EXPLAIN_REWRITE statement does not actually execute.

This section contains the following topics:

• DBMS_MVIEW.EXPLAIN_REWRITE Syntax

• Using REWRITE_TABLE to View EXPLAIN_REWRITE Output

• Using a Varray to View EXPLAIN_REWRITE Output

• EXPLAIN_REWRITE Benefit Statistics

• Support for Query Text Larger than 32KB in EXPLAIN_REWRITE

• About EXPLAIN_REWRITE and Multiple Materialized Views

• About EXPLAIN_REWRITE Output

12.8.2.1 DBMS_MVIEW.EXPLAIN_REWRITE Syntax
You can obtain the output from DBMS_MVIEW.EXPLAIN_REWRITE in two ways. The first is to use a
table, while the second is to create a VARRAY. The following shows the basic syntax for using
an output table:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2,
 mv VARCHAR2(30),
 statement_id VARCHAR2(30));

You can create an output table called REWRITE_TABLE by executing the utlxrw.sql script.

The query parameter is a text string representing the SQL query. The parameter, mv, is a fully-
qualified materialized view name in the form of schema.mv. This is an optional parameter. When
it is not specified, EXPLAIN_REWRITE returns any relevant messages regarding all the
materialized views considered for rewriting the given query. When schema is omitted and only
mv is specified, EXPLAIN_REWRITE looks for the materialized view in the current schema.

If you want to direct the output of EXPLAIN_REWRITE to a varray instead of a table, you should
call the procedure as follows:

Chapter 12
Verifying that Query Rewrite has Occurred

12-67

DBMS_MVIEW.EXPLAIN_REWRITE (
 query [VARCHAR2 | CLOB],
 mv VARCHAR2(30),
 output_array SYS.RewriteArrayType);

Note that if the query is less than 256 characters long, EXPLAIN_REWRITE can be easily invoked
with the EXECUTE command from SQL*Plus. Otherwise, the recommended method is to use a
PL/SQL BEGIN... END block, as shown in the examples in /rdbms/demo/smxrw*.

12.8.2.2 Using REWRITE_TABLE to View EXPLAIN_REWRITE Output
The output of EXPLAIN_REWRITE can be directed to a table named REWRITE_TABLE. You can
create this output table by running the utlxrw.sql script. This script can be found in the admin
directory. The format of REWRITE_TABLE is as follows:

CREATE TABLE REWRITE_TABLE(
 statement_id VARCHAR2(30), -- id for the query
 mv_owner VARCHAR2(30), -- owner of the MV
 mv_name VARCHAR2(30), -- name of the MV
 sequence INTEGER, -- sequence no of the msg
 query VARCHAR2(2000), -- user query
 query_block_no INTEGER, -- block no of the current subquery
 rewritten_txt VARCHAR2(2000), -- rewritten query
 message VARCHAR2(512), -- EXPLAIN_REWRITE msg
 pass VARCHAR2(3), -- rewrite pass no
 mv_in_msg VARCHAR2(30), -- MV in current message
 measure_in_msg VARCHAR2(30), -- Measure in current message
 join_back_tbl VARCHAR2(30), -- Join back table in message
 join_back_col VARCHAR2(30), -- Join back column in message
 original_cost INTEGER, -- Cost of original query
 rewritten_cost INTEGER, -- Cost of rewritten query
 flags INTEGER, -- associated flags
 reserved1 INTEGER, -- currently not used
 reerved2 VARCHAR2(10)) -- currently not used;

Example 12-18 EXPLAIN_REWRITE Using REWRITE_TABLE

An example PL/SQL invocation is:

EXECUTE DBMS_MVIEW.EXPLAIN_REWRITE -
('SELECT p.prod_name, SUM(amount_sold) ' || -
'FROM sales s, products p ' || -
'WHERE s.prod_id = p.prod_id ' || -
' AND prod_name > ''B%'' ' || -
' AND prod_name < ''C%'' ' || -
'GROUP BY prod_name', -
'TestXRW.PRODUCT_SALES_MV', -
'SH');

SELECT message FROM rewrite_table ORDER BY sequence;
MESSAGE
--
QSM-01033: query rewritten with materialized view, PRODUCT_SALES_MV
1 row selected.

The demo file xrwutl.sql contains a procedure that you can call to provide a more detailed
output from EXPLAIN_REWRITE. See "About EXPLAIN_REWRITE Output" for more information.

The following is an example where you can see a more detailed explanation of why some
materialized views were not considered and, eventually, the materialized view sales_mv was
chosen as the best one.

Chapter 12
Verifying that Query Rewrite has Occurred

12-68

DECLARE
 qrytext VARCHAR2(500) :='SELECT cust_first_name, cust_last_name,
 SUM(amount_sold) AS dollar_sales FROM sales s, customers c WHERE s.cust_id=
 c.cust_id GROUP BY cust_first_name, cust_last_name';
 idno VARCHAR2(30) :='ID1';
BEGIN
 DBMS_MVIEW.EXPLAIN_REWRITE(qrytext, '', idno);
END;
/
SELECT message FROM rewrite_table ORDER BY sequence;

SQL> MESSAGE
--
QSM-01082: Joining materialized view, CAL_MONTH_SALES_MV, with table, SALES, not possible
QSM-01022: a more optimal materialized view than PRODUCT_SALES_MV was used to rewrite
QSM-01022: a more optimal materialized view than FWEEK_PSCAT_SALES_MV was used to rewrite
QSM-01033: query rewritten with materialized view, SALES_MV

12.8.2.3 Using a Varray to View EXPLAIN_REWRITE Output
You can save the output of EXPLAIN_REWRITE in a PL/SQL VARRAY. The elements of this array
are of the type RewriteMessage, which is predefined in the SYS schema as shown in the
following:

TYPE RewriteMessage IS OBJECT(
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence NUMBER(3), -- sequence no of the msg
 query_text VARCHAR2(2000), -- User query
 query_block_no NUMBER(3), -- block no of the current subquery
 rewritten_text VARCHAR2(2000), -- rewritten query text
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query rewrite pass no
 mv_in_msg VARCHAR2(30), -- MV in current message
 measure_in_msg VARCHAR2(30), -- Measure in current message
 join_back_tbl VARCHAR2(30), -- Join back table in current msg
 join_back_col VARCHAR2(30), -- Join back column in current msg
 original_cost NUMBER(10), -- Cost of original query
 rewritten_cost NUMBER(10), -- Cost rewritten query
 flags NUMBER, -- Associated flags
 reserved1 NUMBER, -- For future use
 reserved2 VARCHAR2(10) -- For future use
);

The array type, RewriteArrayType, which is a varray of RewriteMessage objects, is predefined
in the SYS schema as follows:

• TYPE RewriteArrayType AS VARRAY(256) OF RewriteMessage;
• Using this array type, now you can declare an array variable and specify it in the

EXPLAIN_REWRITE statement.

• Each RewriteMessage record provides a message concerning rewrite processing.

• The parameters are the same as for REWRITE_TABLE, except for statement_id, which is not
used when using a varray as output.

• The mv_owner field defines the owner of materialized view that is relevant to the message.

• The mv_name field defines the name of a materialized view that is relevant to the message.

• The sequence field defines the sequence in which messages should be ordered.

Chapter 12
Verifying that Query Rewrite has Occurred

12-69

• The query_text field contains the first 2000 characters of the query text under analysis.

• The message field contains the text of message relevant to rewrite processing of query.

• The flags, reserved1, and reserved2 fields are reserved for future use.

Example 12-19 EXPLAIN_REWRITE Using a VARRAY

Consider the following materialized view:

CREATE MATERIALIZED VIEW avg_sales_city_state_mv
ENABLE QUERY REWRITE AS
SELECT c.cust_city, c.cust_state_province, AVG(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id = c.cust_id
GROUP BY c.cust_city, c.cust_state_province;

You might try to use this materialized view with the following query:

SELECT c.cust_state_province, AVG(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id = c.cust_id
GROUP BY c.cust_state_province;

However, the query does not rewrite with this materialized view. This can be quite confusing to
a novice user as it seems like all information required for rewrite is present in the materialized
view. You can find out from DBMS_MVIEW.EXPLAIN_REWRITE that AVG cannot be computed from
the given materialized view. The problem is that a ROLLUP is required here and AVG requires a
COUNT or a SUM to do ROLLUP.

An example PL/SQL block for the previous query, using a VARRAY as its output, is as follows:

SET SERVEROUTPUT ON
DECLARE
 Rewrite_Array SYS.RewriteArrayType := SYS.RewriteArrayType();
 querytxt VARCHAR2(1500) := 'SELECT c.cust_state_province,
 AVG(s.amount_sold)
 FROM sales s, customers c WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_state_province';
 i NUMBER;
BEGIN
 DBMS_MVIEW.EXPLAIN_REWRITE(querytxt, 'AVG_SALES_CITY_STATE_MV',
 Rewrite_Array);
 FOR i IN 1..Rewrite_Array.count
 LOOP
 DBMS_OUTPUT.PUT_LINE(Rewrite_Array(i).message);
 END LOOP;
END;
/

The following is the output of this EXPLAIN_REWRITE statement:

QSM-01065: materialized view, AVG_SALES_CITY_STATE_MV, cannot compute
 measure, AVG, in the query
QSM-01101: rollup(s) took place on mv, AVG_SALES_CITY_STATE_MV
QSM-01053: NORELY referential integrity constraint on table, CUSTOMERS,
 in TRUSTED/STALE TOLERATED integrity mode
PL/SQL procedure successfully completed.

12.8.2.4 EXPLAIN_REWRITE Benefit Statistics
The output of EXPLAIN_REWRITE contains two columns, original_cost and rewritten_cost,
that can help you estimate query cost. original_cost gives the optimizer's estimation for the
query cost when query rewrite was disabled. rewritten_cost gives the optimizer's estimation

Chapter 12
Verifying that Query Rewrite has Occurred

12-70

for the query cost when query was rewritten using a materialized view. These cost values can
be used to find out what benefit a particular query receives from rewrite.

12.8.2.5 Support for Query Text Larger than 32KB in EXPLAIN_REWRITE
In this release, the EXPLAIN_REWRITE procedure has been enhanced to support large queries.
The input query text can now be defined using a CLOB data type instead of a VARCHAR data type.
This allows EXPLAIN_REWRITE to accept queries up to 4 GB.

The syntax for using EXPLAIN_REWRITE using CLOB to obtain the output into a table is shown as
follows:

DBMS_MVIEW.EXPLAIN_REWRITE(
 query IN CLOB,
 mv IN VARCHAR2,
 statement_id IN VARCHAR2);

The second argument, mv, and the third argument, statement_id, can be NULL. Similarly, the
syntax for using EXPLAIN_REWRITE using CLOB to obtain the output into a varray is shown as
follows:

DBMS_MVIEW.EXPLAIN_REWRITE(
 query IN CLOB,
 mv IN VARCHAR2,
 msg_array IN OUT SYS.RewriteArrayType);

As before, the second argument, mv, can be NULL. Note that long query texts in CLOB can be
generated using the procedures provided in the DBMS_LOB package.

12.8.2.6 About EXPLAIN_REWRITE and Multiple Materialized Views
The syntax for using EXPLAIN_REWRITE with multiple materialized views is the same as using it
with a single materialized view, except that the materialized views are specified by a comma-
delimited string. For example, to find out whether a given set of materialized views mv1, mv2,
and mv3 could be used to rewrite the query, query_txt, and, if not, why not, use
EXPLAIN_REWRITE as follows:

DBMS_MVIEW.EXPLAIN_REWRITE(query_txt, 'mv1, mv2, mv3')

If the query, query_txt, rewrote with the given set of materialized views, then the following
message appears:

QSM-01127: query rewritten with materialized view(s), mv1, mv2, and mv3.

If the query fails to rewrite with one or more of the given set of materialized views, then the
reason for the failure will be output by EXPLAIN_REWRITE for each of the materialized views that
did not participate in the rewrite.

12.8.2.7 About EXPLAIN_REWRITE Output
Some examples showing how to use EXPLAIN_REWRITE are included in /rdbms/demo/
smxrw.sql. There is also a utility called SYS.XRW included in the demo xrw area to help you
select the output from the EXPLAIN_REWRITE procedure. When EXPLAIN_REWRITE evaluates a
query, its output includes information such as the rewritten query text, query block number, and
the cost of the rewritten query. The utility SYS.XRW outputs the user specified fields in a neatly
formatted way, so that the output can be easily understood. The syntax is as follows:

Chapter 12
Verifying that Query Rewrite has Occurred

12-71

SYS.XRW(list_of_mvs, list_of_commands, query_text),

where list_of_mvs are the materialized views the user would expect the query rewrite to use.
If there is more than one materialized view, they must be separated by commas, and
list_of_commands is one of the following fields:

QUERY_TXT: User query text
REWRITTEN_TXT: Rewritten query text
QUERY_BLOCK_NO: Query block number to identify each query blocks in
 case the query has subqueries or inline views
PASS: Pass indicates whether a given message was generated
 before or after the view merging process of query rewrite.
COSTS: Costs indicates the estimated execution cost of the
 original query and the rewritten query

The following example illustrates the use of this utility:

DROP MATERIALIZED VIEW month_sales_mv;

CREATE MATERIALIZED VIEW month_sales_mv
 ENABLE QUERY REWRITE
 AS
 SELECT t.calendar_month_number, SUM(s.amount_sold) AS sum_dollars
 FROM sales s, times t
 WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_number;

SET SERVEROUTPUT ON
DECLARE
 querytxt VARCHAR2(1500) := 'SELECT t.calendar_month_number,
 SUM(s.amount_sold) AS sum_dollars FROM sales s, times t
 WHERE s.time_id = t.time_id GROUP BY t.calendar_month_number';
BEGIN
 SYS.XRW('MONTH_SALES_MV', 'COSTS, PASS, REWRITTEN_TXT, QUERY_BLOCK_NO', querytxt);
END;
/

Following is the output from SYS.XRW. As can be seen from the output, SYS.XRW outputs both
the original query cost, rewritten costs, rewritten query text, query block number and whether
the message was generated before or after the view merging process.

==
>> MESSAGE : QSM-01151: query was rewritten
>> RW QUERY : SELECT MONTH_SALES_MV.CALENDAR_MONTH_NUMBER CALENDAR_MONTH_NUMBER,
MONTH_SALES_MV.SUM_DOLLARS SUM_DOLLARS FROM SH.MONTH_SALES_MV MONTH_SALES_MV
>> ORIG COST: 19.952763130792 RW COST: 1.80687108
==
>>
------------------------- ANALYSIS OF QUERY REWRITE -------------------------
>>
>> QRY BLK #: 0
>> MESSAGE : QSM-01209: query rewritten with materialized view,
 MONTH_SALES_MV, using text match algorithm
>> RW QUERY : SELECT MONTH_SALES_MV.CALENDAR_MONTH_NUMBER CALENDAR_MONTH_NUMBER,
 MONTH_SALES_MV.SUM_DOLLARS SUM_DOLLARS FROM SH.MONTH_SALES_MV MONTH_SALES_MV
>> ORIG COST: 19.952763130792 RW COST: 1.80687108
>> MESSAGE OUTPUT BEFORE VIEW MERGING...
============================ END OF MESSAGES ===============================
PL/SQL procedure successfully completed.

Chapter 12
Verifying that Query Rewrite has Occurred

12-72

12.9 Design Considerations for Improving Query Rewrite
Capabilities

This section discusses design considerations that will help in obtaining the maximum benefit
from query rewrite. They are not mandatory for using query rewrite and rewrite is not
guaranteed if you follow them. They are general rules to consider, and are the following:

• Query Rewrite Considerations: Constraints

• Query Rewrite Considerations: Dimensions

• Query Rewrite Considerations: Outer Joins

• Query Rewrite Considerations: Text Match

• Query Rewrite Considerations: Aggregates

• Query Rewrite Considerations: Grouping Conditions

• Query Rewrite Considerations: Expression Matching

• Query Rewrite Considerations: Date Folding

• Query Rewrite Considerations: Statistics

• Query Rewrite Considerations: Hints

12.9.1 Query Rewrite Considerations: Constraints
Make sure all inner joins referred to in a materialized view have referential integrity (foreign
key/primary key constraints) with additional NOT NULL constraints on the foreign key columns.
Because constraints tend to impose a large overhead, you could make them NO VALIDATE and
RELY and set the parameter QUERY_REWRITE_INTEGRITY to STALE_TOLERATED or TRUSTED.
However, if you set QUERY_REWRITE_INTEGRITY to ENFORCED, all constraints must be enabled,
enforced, and validated to get maximum rewritability.

You should avoid using the ON DELETE clause as it can lead to unexpected results.

12.9.2 Query Rewrite Considerations: Dimensions
You can express the hierarchical relationships and functional dependencies in normalized or
denormalized dimension tables using the HIERARCHY and DETERMINES clauses of a dimension.
Dimensions can express intra-table relationships which cannot be expressed by constraints.
Set the parameter QUERY_REWRITE_INTEGRITY to TRUSTED or STALE_TOLERATED for query rewrite
to take advantage of the relationships declared in dimensions.

12.9.3 Query Rewrite Considerations: Outer Joins
Another way of avoiding constraints is to use outer joins in the materialized view. Query rewrite
will be able to derive an inner join in the query, such as (A.a=B.b), from an outer join in the
materialized view (A.a = B.b(+)), as long as the rowid of B or column B.b is available in the
materialized view. Most of the support for rewrites with outer joins is provided for materialized
views with joins only. To exploit it, a materialized view with outer joins should store the rowid or
primary key of the inner table of an outer join. For example, the materialized view
join_sales_time_product_mv_oj stores the primary keys prod_id and time_id of the inner
tables of outer joins.

Chapter 12
Design Considerations for Improving Query Rewrite Capabilities

12-73

12.9.4 Query Rewrite Considerations: Text Match
If you need to speed up an extremely complex, long-running query, you could create a
materialized view with the exact text of the query. Then the materialized view would contain the
query results, thus eliminating the time required to perform any complex joins and search
through all the data for that which is required.

12.9.5 Query Rewrite Considerations: Aggregates
To get the maximum benefit from query rewrite, make sure that all aggregates which are
needed to compute ones in the targeted set of queries are present in the materialized view.
The conditions on aggregates are quite similar to those for incremental refresh. For instance, if
AVG(x) is in the query, then you should store COUNT(x) and AVG(x) or store SUM(x) and
COUNT(x) in the materialized view. See "General Restrictions on Fast Refresh" for fast refresh
requirements.

12.9.6 Query Rewrite Considerations: Grouping Conditions
Aggregating data at lower levels in the hierarchy is better than aggregating at higher levels
because lower levels can be used to rewrite more queries. Note, however, that doing so will
also take up more space. For example, instead of grouping on state, group on city (unless
space constraints prohibit it).

Instead of creating multiple materialized views with overlapping or hierarchically related GROUP
BY columns, create a single materialized view with all those GROUP BY columns. For example,
instead of using a materialized view that groups by city and another materialized view that
groups by month, use a single materialized view that groups by city and month.

Use GROUP BY on columns that correspond to levels in a dimension but not on columns that are
functionally dependent, because query rewrite will be able to use the functional dependencies
automatically based on the DETERMINES clause in a dimension. For example, instead of
grouping on prod_name, group on prod_id (as long as there is a dimension which indicates that
the attribute prod_id determines prod_name, you will enable the rewrite of a query involving
prod_name).

12.9.7 Query Rewrite Considerations: Expression Matching
If several queries share the same common subselect, it is advantageous to create a
materialized view with the common subselect as one of its SELECT columns. This way, the
performance benefit due to precomputation of the common subselect can be obtained across
several queries.

12.9.8 Query Rewrite Considerations: Date Folding
When creating a materialized view that aggregates data by folded date granules such as
months or quarters or years, always use the year component as the prefix but not as the suffix.
For example, TO_CHAR(date_col, 'yyyy-q') folds the date into quarters, which collate in year
order, whereas TO_CHAR(date_col, 'q-yyyy') folds the date into quarters, which collate in
quarter order. The former preserves the ordering while the latter does not. For this reason, any
materialized view created without a year prefix will not be eligible for date folding rewrite.

Chapter 12
Design Considerations for Improving Query Rewrite Capabilities

12-74

12.9.9 Query Rewrite Considerations: Statistics
Optimization with materialized views is based on cost and the optimizer needs statistics of both
the materialized view and the tables in the query to make a cost-based choice. Materialized
views should thus have statistics collected using the DBMS_STATS package.

12.9.10 Query Rewrite Considerations: Hints
This section discusses the following considerations:

• Query Rewrite: REWRITE and NOREWRITE Hints

• Query Rewrite: REWRITE_OR_ERROR Hint

• Query Rewrite: Multiple Materialized View Rewrite Hints

• Query Rewrite: EXPAND_GSET_TO_UNION Hint

12.9.10.1 Query Rewrite: REWRITE and NOREWRITE Hints
You can include hints in the SELECT blocks of your SQL statements to control whether query
rewrite occurs. Using the NOREWRITE hint in a query prevents the optimizer from rewriting it.

The REWRITE hint with no argument in a query forces the optimizer to use a materialized view (if
any) to rewrite it regardless of the cost. If you use the REWRITE(mv1,mv2,...) hint with
arguments, this forces rewrite to select the most suitable materialized view from the list of
names specified.

To prevent a rewrite, you can use the following statement:

SELECT /*+ NOREWRITE */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

To force a rewrite using sum_sales_pscat_week_mv (if such a rewrite is possible), use the
following statement:

SELECT /*+ REWRITE (sum_sales_pscat_week_mv) */
 p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Note that the scope of a rewrite hint is a query block. If a SQL statement consists of several
query blocks (SELECT clauses), you must specify a rewrite hint on each query block to control
the rewrite for the entire statement.

12.9.10.2 Query Rewrite: REWRITE_OR_ERROR Hint
Using the REWRITE_OR_ERROR hint in a query causes the following error if the query failed to
rewrite:

ORA-30393: a query block in the statement did not rewrite

For example, the following query issues an ORA-30393 error when there are no suitable
materialized views for query rewrite to use:

Chapter 12
Design Considerations for Improving Query Rewrite Capabilities

12-75

SELECT /*+ REWRITE_OR_ERROR */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

12.9.10.3 Query Rewrite: Multiple Materialized View Rewrite Hints
There are two hints to control rewrites when using multiple materialized views. The
NO_MULTIMV_REWRITE hint prevents the query from being rewritten with more than one
materialized view and the NO_BASETABLE_MULTIMV_REWRITE hint prevents the query from being
rewritten with a combination of materialized views and the base tables.

12.9.10.4 Query Rewrite: EXPAND_GSET_TO_UNION Hint
You can use the EXPAND_GSET_TO_UNION hint to force expansion of the query with GROUP BY
extensions into the equivalent UNION ALL query. See "Hint for Rewriting Queries with Extended
GROUP BY" for further information.

12.10 About Semi-Join Materialized View Rewrite
Semi-Join Materialized View Rewrite is a unique form of query rewrite introduced in Oracle
Database 23ai.

In Semi-Join Materialized View Rewrite, a single large unified dimension table in the query is
replaced with one or more join-specific materialized views. In a unified dimension data model,
where multiple dimension tables are merged into a single large dimension table, Semi-Join
Materialized Views materialize one or more of the joins of such a single, large unified
dimension table with the fact table.

Replacing multiple joins to a large dimension table with joins to much smaller semi-join
materialized views significantly improves the run-time and resource consumption for complex
analytical operations. Semi-Join Materialized Views are especially beneficial when the number
of applicable dimension keys derived from the large unified dimension table (through semi-join)
is small.

Here is a candidate for this optimization:

Figure 12-8 Candidate Dimension Table for Semi-Join Materialized View Rewrite

Chapter 12
About Semi-Join Materialized View Rewrite

12-76

Note that this is an extremely large dimension table and the NDVs of the foreign key join
columns are small. A query against the fact table in this case can have a very long execution
time. For example, the query below may take a few minutes to execute:

SELECT DB1.C4 A, DB2.C4 B, DB3.C4 C, DB4.C4 D, DS1.C2 E, DS2.C2 F,
SUM(M1) H, MAX(M2) I
FROM MY_FACT F
LEFT OUTER JOIN DIM_BIG DB1 ON F.DB_KEY1=DB1.C1
LEFT OUTER JOIN DIM_BIG DB2 ON F.DB_KEY2=DB2.C1
LEFT OUTER JOIN DIM_BIG DB3 ON F.DB_KEY3=DB3.C1
LEFT OUTER JOIN DIM_BIG DB4 ON F.DB_KEY4=DB4.C1
LEFT OUTER JOIN DIM_SMALL1 DS1 ON F.DS1_KEY1=DS1.C1
LEFT OUTER JOIN DIM_SMALL2 DS2 ON F.DS2_KEY1=DS2.C1
GROUP BY DB1.C4, DB2.C4, DB3.C4, DB4.C4, DS1.C2, DS2.C2;

Using the original query against the MY_FACT table shown in the example above, we use
iterative materialized view rewrite to create a materialized view for each join predicate between
MY_FACT and DIM_BIG. For example:

CREATE MATERIALIZED VIEW MV1
ENABLE QUERY REWRITE AS
SELECT * FROM DIM_BIG
WHERE C1 IN
(SELECT db_key1 from MY_FACT);

A materialized view like this is also be created for db_key2, db_key3, and db_key4 in the
MY_FACT example.. The query is then rewritten as follows:

SELECT MV1.C4 A,MV2.C4 B,MV3.C4 C,MV4.C4 D,SUM(F.M1),SUM(F.M2)
FROM MV1, MV2, MV3, MV4, MY_FACT F
WHERE F.DB_KEY1=MV1.C1(+) AND F.DB_KEY2=MV2.C1(+) AND F.DB_KEY3=MV3.C1(+)
AND F.DB_KEY4=MV4.C1(+) GROUP BY MV1.C4,MV2.C4,MV3.C4,MV4.C4

The execution time for this rewrite of the original query is reduced to a few seconds.

Chapter 12
About Semi-Join Materialized View Rewrite

12-77

13
Working With Automatic Materialized Views

Starting with Oracle Database Release 21c, materialized views can be created and maintained
automatically.

The Oracle Database can automatically create and manage materialized views in order to
optimize query performance. With very little or no interaction with the DBA, background tasks
monitor and analyze workload characteristics and identifies where materialized views will
improve SQL performance. The performance benefit of candidate materialized views is
measured in the background (using workload queries) before they are made visible to the
workload.

Note:

Automatic materialized views support partitioned and non-partitioned base tables.
Incremental materialized view refresh is supported. In addition, for partitioned tables,
there is support for Partition Change Tracking (PCT) view refresh. To be eligible for
PCT-based refresh, partitioned base tables must use either range, list, or composite
partitioning. If there is performance advantage, the automatic materialized view
recommendations will include a partitioned automatic materialized view based on the
partitioning of the base table of the materialized view. The partitioning type supported
is auto-list partitioning, which will mirror the partitioning of the fact table.

The automatic materialized view maintenance module decides the type of refresh
that is the most beneficial at the time of refresh, and will decide during run time
whether to switch from incremental refresh to full refresh.

13.1 Overview of Automatic Materialized Views
The database automatically collects workload information, workload queries and query
execution statistics. It also maintains and purges the history of the workload. This eliminates a
time-consuming DBA task.

Although automatic materialized views can run with minimal DBA interaction, their behavior
can be easily adjusted.

This is a summary of automatic materialized view functionality:

• Automatically detects and collects workload query execution statistics. These include
buffer-gets, database time, estimated cost, and other statistics.

• Creates candidate materialized views hidden from the database workload and verifies that
they will deliver the projected performance benefit. It does this by test executing a sample
of workload queries in the background.

• Provides reports detailing performance test results and which materialized views have
been implemented.

• Provides automatic materialized view refresh.

13-1

The database implements only automatic materialized views whose benefits far outweigh the
cost of maintaining them. It does not implement those that provide marginal benefit.

13.2 Workload Information Provided by the Object Activity
Tracking System

Automatic materialized views use workload information provided by the Object Activity
Tracking System (OATS) as part of the automated decision-making processes.

Starting in Oracle Database 21c, the Object Activity Tracking System (OATS) tracks various
activities associated with database objects. The automatic materialized view feature is one of
the clients of this system. In the case of automatic materialized views, the usage data provided
by OATS is one of the inputs into the analysis of cost versus benefit for creating or refreshing a
materialized view, as well as in determining the best type of refresh and optimal refresh
schedule.

OATS takes periodic snapshots of activity within any number of selected tables. The snapshot
for each table captures the number of scans, loads, inserts/updates/deletes, truncations, and
partition-related activity within the table from the beginning to the end of the snapshot interval.
The DBA can use the DBMS_ACTIVITY PL/SQL package to set the OATS capture interval,
snapshot retention period, and space limits.

For example, the DBA_ACTIVITY_TABLE view shows the usage data captured within each
snaphot.

13.3 Data Dictionary Views That Provide Information About
Automatic Materialized Views and OATS

As of Oracle Database 21c, the database includes data dictionary views that display
information about automatic materialized views as well as OATS (Object Activity Tracking
System).

Views for Monitoring Automatic Materialized Views

Use the following data dictionary views to check the automatic materialized view configuration
and to examine various aspects of automatic materialized views activity:

• DBA_AUTO_MV_ANALYSIS_ACTIONS

Displays information about analysis and tuning tasks, including actions, commands,
advisor-specific flags, and command parameters.

• DBA_AUTO_MV_ANALYSIS_EXECUTIONS
Displays information about analysis and tuning executions, including concurrency, degree
of parallelism (DOP) requested by the user and actual DOP upon execution finish, status,
associated advisor, and informational or error message.

• DBA_AUTO_MV_ANALYSIS_RECOMMENDATIONS
Displays recommendations associated with automatic materialized views.

• DBA_AUTO_MV_ANALYSIS_REPORT
Reports on analyses and recommendations, including task and execution names,
sequence number of the journal entry, and message entry in the journal.

• DBA_AUTO_MV_ANALYSIS_TASK

Chapter 13
Workload Information Provided by the Object Activity Tracking System

13-2

Displays analysis details associated with automatic materialized views, including task
identifiers and task description, creation and last modification dates, execution data, parent
task, status, and other information.

• DBA_AUTO_MV_CONFIG
Displays the current automatic materialized view configuration.

Note:

The configuration parameters displayed in this view can be updated with
CONFIGURE procedure of the DBMS_AUTO_MV package.

• DBA_AUTO_MV_MAINT_REPORT
Displays the date, time, and message associated with automatic materialized view
maintenance actions.

• DBA_AUTO_MV_REFRESH_HISTORY
Displays the owner name, view name, date, start and end time, elapsed time, status, and
error number (if an error occurred) for each automatic materialized view refresh.

• DBA_AUTO_MV_VERIFICATION_REPORT
Displays the task name, execution name, and message associated with verifications.

• DBA_AUTO_MV_VERIFICATION_STATUS
Displays the owner, start/end timestamps of verifications, SQL tuning sets used, and SQL
Performance Analyzer tasks used in each verification.

Views for Monitoring OATS

• DBA_ACTIVITY_CONFIG
Displays the current value of the configuration parameters that control OATS.

Note:

The configuration parameters displayed in this view can be updated with
CONFIGURE procedure of the DBMS_ACTIVITY package.

• DBMS_ACTIVITY_TABLE
Describes table activity snapshots that were recently taken by OATS.

• DBA_ACTIVITY_SNAPSHOT_META
Displays information about activity snapshots taken by OATS.

• DBA_ACTIVITY_MVIEW
Describes materialized view activity snapshots that were recently taken by OATS.

See Also:

Oracle Database Reference

Chapter 13
Data Dictionary Views That Provide Information About Automatic Materialized Views and OATS

13-3

13.4 The DBMS_AUTO_MV Package
This package contains procedures for controlling automatic materialized views.

DBMS_AUTO_MV.CONFIGURE

The DBA can use the CONFIGURE procedure of DBMS_AUTO_MV to start, stop, and configure
automatic materialized views.

Table 13-1 Configure Procedure Parameters

Parameter Description and Examples

AUTO_MV_MODE IMPLEMENT: Implements automatic materialized views.

OFF: Turns off automatic materialized views.

REPORT ONLY: Report-only mode.

exec dbms_auto_mv.configure('AUTO_MV_MODE',
'IMPLEMENT');
exec dbms_auto_mv.configure('AUTO_MV_MODE', 'OFF');
exec dbms_auto_mv.configure('AUTO_MV_MODE', 'REPORT
ONLY');

AUTO_MV_MAINT_TASK ENABLE: Activates the task performing the maintenance (refreshes,
validations, and cleanup).

DISABLE: Deactivates the task performing the maintenance.

CLEANUP_AND_DISABLE: Drops all automatic materialized views and
deactivates the task. If automatic materialized views maintenance is in
progress, then maintenance is allowed to finish before the task is
deactivated.

exec dbms_auto_mv.configure('AUTO_MV_MAINT_TASK',
'ENABLE');
exec dbms_auto_mv.configure('AUTO_MV_MAINT_TASK',
'DISABLE');
exec dbms_auto_mv.configure('AUTO_MV_MAINT_TASK',
'CLEANUP_AND_DISABLE');

Chapter 13
The DBMS_AUTO_MV Package

13-4

Table 13-1 (Cont.) Configure Procedure Parameters

Parameter Description and Examples

AUTO_MV_SPACE_BUDGET Specifies the percentage of space budgeted for implementing
automatic materialized views within the tablespace where those views
were created. This is a percentage of the total space used by all
automatic materialized views and associated indexes within the
tablespace.
A condition on the enforcement of AUTO_MV_SPACE_BUDGET is the
value of AUTO_MV_DEFAULT_TABLESPACE:

• If AUTO_MV_DEFAULT_TABLESPACE is not defined (NULL), then
automatic materialized views are created on the tablespace of the
view's parent object (which is the largest FACT table in the view's
definition). In this case, the budget defined by
AUTO_MV_SPACE_BUDGET is enforced within that tablespace.

• If AUTO_MV_DEFAULT_TABLESPACE is defined, then automatic
materialized views are created in the designated default
tablespace. In this case, the budget set by
AUTO_MV_SPACE_BUDGET is ignored.

If the budget is exceeded (possibly because of the growth of automatic
materialized views), then the least-used automatic materialized view is
dropped.

The value is an integer from 1 to 100. The default is 67 (67% of the
total volume of the tablespace).

exec dbms_auto_mv.configure('AUTO_MV_SPACE_BUDGET',
15);

AUTO_MV_DEFAULT_TABLESPAC
E

Specifies the default tablespace for the creation of automatic
materialized views. Possible values are the name of a valid temporary
tablespace or NULL (the default). In the case of NULL, new automatic
materialized view is created in the default tablespace of the owner of
the parent object. If the view has more than one parent object, such as
materialized views defined on multiple base tables, then the default
tablespace of the owner of largest base table is selected.
If the value is changed dynamically, the change takes effect the next
time automatic materialized view recommendations are implemented.

exec
dbms_auto_mv.configure('AUTO_MV_DEFAULT_TABLESPACE',
'MYTABLESPACE');
exec
dbms_auto_mv.configure('AUTO_MV_DEFAULT_TABLESPACE')
;

Chapter 13
The DBMS_AUTO_MV Package

13-5

Table 13-1 (Cont.) Configure Procedure Parameters

Parameter Description and Examples

AUTO_MV_TEMP_TABLESPACE Specifies the temporary tablespace used for creation or refresh of
automatic materialized views. Possible values are the name of a valid
temporary tablespace or NULL. In the case of NULL, the tablepace is
assigned to the owner of the largest parent object of the automatic
materialized views. The default is NULL.

exec
dbms_auto_mv.configure('AUTO_MV_TEMP_TABLESPACE','TE
MP2');
exec
dbms_auto_mv.configure('AUTO_MV_TEMP_TABLESPACE');

AUTO_MV_RETENTION Specifies the number of days automatic materialized views can
continue to exist without being queried. If an automatic materialized
view remains unused beyond this retention time, it is automatically
dropped.
Possible values are any integer between 1 and 373. The default is 33
days.

exec dbms_auto_mv.configure('AUTO_MV_RETENTION',
365);

AUTO_MV_ANALYZE_REPORT_RE
TENTION

AUTO_MV_ANALYZE_REPORT_RETENTION Specifies the maximum
number of days to retain analysis and recommendation history.
Possible values are any integer from 0 to 90. A value of 0 means no
history is maintained. The default is 31 days.

exec
dbms_auto_mv.configure('AUTO_MV_ANALYZE_REPORT_RETEN
TION', 60);

AUTO_MV_VERIFY_REPORT_RET
ENTION

Specifies the maximum number of days to retain verification history.
Possible values are any integer from 0 to 90. The value 0 specifies
that no verification history will be maintained. The default is 31 days.

exec
dbms_auto_mv.configure('AUTO_MV_VERIFY_REPORT_RETENT
ION', 7);

AUTO_MV_MAINT_REPORT_RETE
NTION

Specifies the maximum number of days to retain history of automatic
materialized view maintenance (refreshes) in the
DBA_AUTO_MV_REFRESH_* dictionary tables. Possible values are any
integer from 0 to 90. The value 0 specifies that no refresh history will
be maintained. The default is 31 days.

exec
dbms_auto_mv.configure('AUTO_MV_MAINT_REPORT_RETENTI
ON', 14);

Chapter 13
The DBMS_AUTO_MV Package

13-6

Table 13-1 (Cont.) Configure Procedure Parameters

Parameter Description and Examples

AUTO_MV_ANALYZE_WORKLOAD_
WINDOW

Specifies the maximum number of hours to investigate queries from
the latest snapshots and make recommendations. Possible values are
any integer between from 1 to 8760. The default is 24 hours.

exec
dbms_auto_mv.configure('AUTO_MV_ANALYZE_WORKLOAD_WIN
DOW', 48);

AUTO_MV_ANALYZE_WORKLOAD_
MIN_TIME

Specifies the minimum time in seconds for a query to be considered
for automatic materialized views recommendation. Queries below this
threshold are not considered for recommendations. Possible values
are any integer from 0 to 3600. The default is 120 seconds.

exec
dbms_auto_mv.configure('AUTO_MV_ANALYZE_WORKLOAD_MIN
_TIME', 1800);

AUTO_MV_SCHEMA Specifies a schema to be either included or excluded during the
creation of automatic materialized views. The schema is added to the
inclusion list or the exclusion list in the configuration. Initially, both lists
are empty and automatic materialized views can be created in all the
schemas in a database where automatic materialized views are
enabled. You can build the inclusion and exclusion lists by calling
AUTO_MV_SCHEMA multiple times.
The boolean ALLOW determines if the schema is added to the inclusion
list (TRUE) or to the exclusion list (FALSE). The default is TRUE. During
workload processing, any query that does not contain a reference at
least one table in a schema on the inclusion list is not analyzed and
not auto tuned. It is not factored into recommendations and
verifications. Likewise, if a query references a table in a schema on the
exclusion list, that query is excluded from processing.

exec
dbms_auto_mv.configure(‘AUTO_MV_SCHEMA’, ’SCHEMA_A’)
;
exec
dbms_auto_mv.configure(‘AUTO_MV_SCHEMA’, ’SCHEMA_B’,
 FALSE);

To enable or disable processing of all schemas, you can specific the
schema as NULL. This either enables or disables all of them,
depending on the value of ALLOW.

exec dbms_auto_mv.configure(‘AUTO_MV_SCHEMA’,'',
TRUE);

Chapter 13
The DBMS_AUTO_MV Package

13-7

Table 13-1 (Cont.) Configure Procedure Parameters

Parameter Description and Examples

AUTO_MV_APP_MODULE Specifies application modules to include or exclude from the creation
of automatic materialized views.

exec dbms_auto_mv.configure('AUTO_MV_APP_MODULE',
'MODULE1', TRUE);
exec dbms_auto_mv.configure('AUTO_MV_APP_MODULE',
'MODULE1', FALSE);
exec dbms_auto_mv.configure('AUTO_MV_APP_MODULE',
'MODULE1');

DBMS_AUTO_MV.DROP_AUTO_MVS

This procedure drops an automatic materialized view. It can be executed only by users who
have the DBA role.

Parameter Description

OWNER The name of the owner of the automatic
materialized view.

MV_NAME The name of the automatic materialized view.

ALLOW_RECREATE Allow the materialized view to be recreated if
necessary. Optional.

Note that if OWNER is specified and MV_NAME is set to NULL, then all automatic materialized views
owned by OWNER are dropped.

exec dbms_auto_mv.drop_auto_mvs(‘SH’, ‘AUTO_MV$$_G2MKPB9SA1FB7’, TRUE);
exec dbms_auto_mv.drop_auto_mvs(‘SH’, ‘AUTO_MV$$_G2MKPB9SA1FB7’);
exec dbms_auto_mv.drop_auto_mvs(‘SH’, '');
exec dbms_auto_mv.drop_auto_mvs(‘SH’, '', TRUE);

DBMS_AUTO_MV.RECOMMEND

DBMS_AUTO_MV.RECOMMEND generates automatic materialized recommendations based on a
given SQL tuning set. This API enables you to manually run automatic materialized view
analysis and verification from a command line (instead of through an Automatic SQL Tuning
task). You set the workload start and end time and determine whether this execution results in
a report only, or an actual implementation. There is no default time limit for the workload
window.

Execution of this API requires the DBA role.

Note:

Automatic materialized view configuration parameters can influence the results of
DBMS_AUTO_MV.RECOMMEND. For example, the analysis and recommendations of this
API are restricted to the schemas specified by the configuration parameter
AUTO_MV_SCHEMA.

Chapter 13
The DBMS_AUTO_MV Package

13-8

Parameter Description

STS_OWNER The name of the owner of the SQL tuning set.
Default: SYS.

STS_NAME The name of the SQL tuning set.
Default: SYS_AUTO_STS.

WORKLOAD_START_TIME Start time for the workload window.
Default: WORKLOAD_END_TIME minus 24 hours.

WORKLOAD_END_TIME End time for the workload window.
Default: The current timestamp.

AUTO_MV_MODE REPORT ONLY (recommendations only) or
IMPLEMENT.
Default: REPORT ONLY

Example:

Generate and report recommendations using SYS_AUTO_STS for the past 24 hours. Note that
the default behavior is REPORT_ONLY, which means that no automatic materialized view will be
implemented.

var exec_name varchar2(200);
begin
 :exec_name := dbms_auto_mv.recommend();
end;
SELECT * FROM DBA_AUTO_MV_ANALYSIS_RECOMMENDATIONS
 WHERE exec_name = :exec_name;

DBMS_AUTO_MV.REFRESH

The DBMS_AUTO_MV.RECOMMEND API enables you force a refresh of all stale automatic
materialized views. The stale automatic materialized views are unconditionally refreshed in
descending order, based on their verified query rewrite benefit values. There are no
parameters. This routine can be executed only by users with the DBA role.

exec dbms_auto_mv.dbms_auto_refresh();

DBMS_AUTO_MV.REPORT_ACTIVITY

The DBMS_AUTO_MV.REPORT_ACTIVITY This API generates a report on automatic materialized
view activities and usage within a specified time window. The report is returned as a CLOB.

Parameter Description

ACTIVITY_START The start of the time window.
Default: SYSTIMESTAMP -1.

ACTIVITY_END The end of the time window.
Default: SYSTIMESTAMP.

TYPE The format of the report. 'TEXT', 'HTML', and
'XML' are supported.
Default: 'TEXT'.

Chapter 13
The DBMS_AUTO_MV Package

13-9

Parameter Description

SECTION The section or sections covered by the report. The
value can be any combination of: SUMMARY,
MV_DETAILS, QUERY_DETAILS,
VERIFICATION_DETAILS or ALL.
Default: 'ALL'.

Note:

Use the “+” or “-
“ operator to
concatenate a single
string that includes or
excludes sections of
the report. This is
shown in one of the
examples below.

LEVEL The level of detail in the report: BASIC, TYPICAL or
ALL.
Default: 'TYPICAL'.

Examples:

Generate a report on all automatic materialized view activities. Output the report in HTML
format:

select dbms_auto_mv.report_activity(type => ‘HTML') from dual;

Generate a report on all automatic materilalized view activities. Exclude the verification details.
Output the report in XML format.

select dbms_auto_mv.report_activity(type => ‘XML', section => ‘ALL-
VERIFICATION_DETAILS’) from dual;

DBMS_AUTO_MV.REPORT_LAST_ACTIVITY

The DBMS_AUTO_MV.REPORT_LAST_ACTIVITY API generates a report on the most recent
automatic materialized view activities and usage.

Parameter Description

TYPE The format of the report. 'TEXT', 'HTML', and
'XML' are supported.
Default: 'TEXT'.

Chapter 13
The DBMS_AUTO_MV Package

13-10

Parameter Description

SECTION The section or sections covered by the report. The
value can be any combination of: SUMMARY,
MV_DETAILS, QUERY_DETAILS,
VERIFICATION_DETAILS or ALL.
Default: 'ALL'.

Note:

Use the “+” or “-
“ operator to
concatenate a single
string that includes or
excludes sections of
the report. See the
examples below.

LEVEL The level of detail in the report: BASIC, TYPICAL or
ALL.
Default: 'TYPICAL'.

Examples:

Generate a comprehensive report of the most recent activity, at the typical level of detail.
Output the report in text format (the default). Note that both of these statements return the
same results.

select dbms_auto_mv.report_last_activity('TEXT', 'ALL', ‘TYPICAL’) from dual;

select dbms_auto_mv.report_last_activity() from dual;

Generate a report of the most recent activity that includes only the summary and the details of
the materialized view. Report at the maximum level of detail. Output in XML format:

select dbms_auto_mv.report_last_activity(‘XML', 'SUMMARY+MV_DETAILS', 'ALL')
from dual;

Generate a report of the most recent activity at the basic level of detail. Exclude the verification
details. Output in HTML format.

select dbms_auto_mv.report_last_activity(‘XML', 'ALL-VERIFICATION_DETAIL',
'BASIC') from dual;

Chapter 13
The DBMS_AUTO_MV Package

13-11

For More Information

See Also:

The Oracle Database PL/SQL Packages and Types Reference.

13.5 The DBMS_ACTIVITY Package
The DBMS_ACTIVITY PL/SQL package contains functions and procedures for configuring Object
Activity Tracking System (OATS) information collection and management. Data collected by
OATS is used in analyses performed by automatic materialized views.

DBAs can use the DBMS_ACTIVITY.CONFIGURE procedure to control three OATS parameters
within a specific database.

• ACTIVITY_INTERVAL
The interval between snapshots.

exec dbms_activity.configure('ACTIVITY_INTERVAL_MINUTES',30)

• ACTIVITY_RETENTION_DAYS
How long snapshots are saved.

exec dbms_activity.configure('ACTIVITY_RETENTION_DAYS',60)

• ACTIVITY_SPACE_PERCENT
How much of available space is reserved for snapshots.

exec dbms_activity.configure('ACTIVITY_SPACE_PERCENT',10)

Note:

OATS is intended to be self-managing and the default configuration is recommended,
particularly if the automatic materialized views feature is used.

See Also:

The PL/SQL Packages and Types Reference.

Chapter 13
The DBMS_ACTIVITY Package

13-12

14
Attribute Clustering

Attribute clustering is a table-level directive that clusters data in close physical proximity based
on the content of certain columns. Storing data that logically belongs together in close physical
proximity can greatly reduce the amount of data to be processed and can lead to better
performance of certain queries in the workload.

This chapter includes the following sections:

• About Attribute Clustering

• Attribute Clustering Operations

• Viewing Attribute Clustering Information

14.1 About Attribute Clustering
An attribute-clustered table stores data in close proximity on disk in an ordered way based on
the values of a certain set of columns in the table or a set of columns in the other tables.

You can cluster according to the linear order of specified columns or by using a function that
permits multi-dimensional clustering (also known as interleaved clustering). Attribute clustering
improves the effectiveness of zone maps, Exadata Storage Indexes, and In-memory min/max
pruning. Queries that qualify clustered columns will access only the clustered regions. When
attribute clustering is defined on a partitioned table, the clustering applies to all partitions.

Attribute clustering is a directive property of a table. It is not enforced for every DML operation,
but only affects direct-path insert operations, data movement, or table creation. Conventional
DML operations on the table are not affected by attribute clustering. This means that whatever
is done to cluster the data is an operation that is only done on the current working data set.
This is in contrast to a manually-applied ORDER BY command, such as what occurs as part of a
CTAS operation.

This section contains the following topics:

• Methods of Clustering Data

• Types of Attribute Clustering

• Example: Attribute Clustered Table

• Guidelines for Using Attribute Clustering

• Advantages of Attribute-Clustered Tables

• About Defining Attribute Clustering for Tables

• About Specifying When Attribute Clustering Must be Performed

14.1.1 Methods of Clustering Data
You can cluster data using the following methods:

• Clustering based on one or more columns of the table on which attribute clustering is
defined.

14-1

• Clustering based on one or more columns that are joined with the table on which attribute
clustering is defined. Clustering based on joined columns is called join attribute
clustering. The tables should be connected through a primary key-foreign key relationship
but foreign keys do not have to be enforced.

Because star queries typically qualify dimension hierarchies, it can be beneficial if fact
tables are clustered based on columns (attributes) of one or more dimension tables. With
join attribute clustering, you can join one or more dimension tables with a fact table and
then cluster the fact table data by dimension hierarchy columns. To cluster a fact table on
columns from one or more dimension tables, the join to the dimension tables must be on a
primary or unique key of the dimension tables. Join attribute clustering in the context of
star queries is also known as hierarchical clustering because the table data is clustered by
dimension hierarchies, each made up of an ordered list of hierarchical columns (for
example, the nation, state, and city columns forming a location hierarchy).

Note: In contrast with Oracle Table Clusters, join attribute clustered tables do not store
data from a group of tables in the same database blocks. For example, consider an
attribute clustered table sales joined with a dimension table products. The sales table will
only contain rows from the sales table, but the ordering of the rows will be based on the
values of columns joined from products table. The appropriate join will be executed during
data movement, direct path insert and CTAS operations.

14.1.2 Types of Attribute Clustering
Attribute clustering is a user-defined table directive that provides data clustering on one or
more columns in a table. The directives can be specified when the table is created or modified.

Oracle Database provides the following types of attribute clustering:

• Attribute Clustering with Linear Ordering

• Attribute Clustering with Interleaved Ordering

Regardless of the type of attribute clustering used, you can either cluster data based on a
single table or by joining multiple tables (join attribute clustering).

14.1.2.1 Attribute Clustering with Linear Ordering
Linear ordering stores the data according to the order of specified columns. This is the default
type of clustering. For example, linear ordering on the (prod_id, channel_id) columns of the
table SALES sorts the data by prod_id first and then by channel_id. The sorted data is stored
on disk with the data for clustered columns being in close proximity.

Linear ordering can be defined on single tables or multiple tables that are connected through a
primary key-foreign key relationship.

Use the CLUSTERING ... BY LINEAR ORDER directive to perform attribute clustering based on the
order of specified columns.

Attribute clustering based on linear ordering of columns is best used in the following scenarios:

• Queries specify the prefix of columns included in the CLUSTERING clause in a single table

For example, if queries on sales often specify either a customer ID or a combination of
customer ID and product ID, then you could cluster data in the table using the column
order cust_id, prod_id.

• Columns used in the CLUSTERING clause have an acceptable level of cardinality

Chapter 14
About Attribute Clustering

14-2

The potential data reduction that can be obtained in the scenarios described in
"Advantages of Attribute-Clustered Tables" increases in direct proportion to the data
reduction obtained from a predicate on a column.

Linear clustering combined with zone maps is very effective in I/O reduction.

14.1.2.2 Attribute Clustering with Interleaved Ordering
Interleaved ordering uses a special multidimensional clustering technique based on Z-order
curve fitting. It maps multiple column attribute values (multidimensional data points) to a single
one-dimensional value while preserving the multidimensional locality of column values (data
points). Interleaved ordering is supported on single tables or multiple tables. Unlike linear
ordering, this method does not require the leading columns of the clustering definition to be
present to achieve I/O pruning benefits for the scenarios described in "Advantages of Attribute-
Clustered Tables".

Columns can be used individually or grouped together into column groups. Each individual
column or column group will be used to constitute one of the multidimensional data points in
the cluster. Grouped columns are bracketed by '('..')', and must follow the dimensional
hierarchy from the coarsest to the finest level of granularity. For example, (product_category,
product_subcategory).

Use the CLUSTERING ... BY INTERLEAVED ORDER directive to perform clustering by interleaved
ordering.

Interleaved clustering is most beneficial for SQL operations with varying predicates on multiple
columns. This is often the case for star queries against a dimensional model, where the query
predicates are on dimension tables and the number of predicates vary. Using interleaved join
attribute clustering is most common in environments where the fact table is clustered based on
columns from the dimension tables. The columns from a dimension table will likely contain a
hierarchy, for example, the hierarchy of a product category and sub-category. In this case,
clustering of the fact table would occur on dimension columns forming a hierarchy. This is the
reason join attribute clustering for star schemas is sometimes referred to as hierarchical
clustering. For example, if queries on sales specify columns from different dimensions, then
you could cluster data in the sales table according to columns in these dimensions.

Interleaved clustering combined with zone maps is very effective in I/O pruning for star schema
queries. In addition, it enables you to provide a very efficient I/O pruning for queries using zone
maps, and enhances compression because the same column values are close to each other
and can be easily compressed.

14.1.3 Example: Attribute Clustered Table
An example of how a clustered table looks is illustrated in Figure 14-1. Assume you have a
table sales with columns (category, country). The table on the left is clustered using linear
ordering, and the table on the right is clustered using interleaved ordering. Observe that, in the
interleaved-ordered table, there are contiguous regions on disk that contain data with a given
category and country.

Chapter 14
About Attribute Clustering

14-3

Figure 14-1 Attribute-Clustered Tables

BOYS

BOYS

BOYS

BOYS

GIRLS

GIRLS

GIRLS

GIRLS

MEN

MEN

MEN

MEN

WOMEN

WOMEN

WOMEN

WOMEN

AR

JP

SA

US

AR

JP

SA

US

AR

JP

SA

US

AR

JP

SA

US

Category Country

AR

WOMEN

JP

WOMEN SA

WOMEN

US

WOMEN

AR

MEN

JP

MEN SA

MEN

US

MEN

AR

GIRLS

JP

GIRLS SA

GIRLS

US

GIRLS

AR

BOYS

JP

BOYS
SA

BOYS

US

BOYS

Linear-Ordered Table Interleaved-Ordered Table

Country

C
a

te
g

o
ry

14.1.4 Guidelines for Using Attribute Clustering
The following are some considerations when defining an attribute clustered table:

• Use attribute clustering in combination with zone maps to facilitate zone pruning and its
associated I/O reduction.

• Consider large tables that are frequently queried with predicates on medium to low
cardinality columns.

• Consider fact tables that are frequently queried by dimensional hierarchies.

• For a partitioned table, consider including columns that correlate with partition keys (to
facilitate zone map partition pruning).

• For linear ordering, list columns in prefix-to-suffix order.

• Group together columns that form a dimensional hierarchy. This constitutes a column
group. Within each column group, list columns in order of coarsest to finest granularity.

• If there are more than four dimension tables, include the dimensions that are most
commonly specified with filters. Limit the number of dimensions to two or three for better
clustering effect.

• Consider using attribute clustering instead of indexes on low to medium cardinality
columns.

• If the primary key of a dimension table is composed of dimension hierarchy values (for
example, the primary key is made up of year, quarter, month, day values), make the
corresponding foreign key as clustering column instead of dimension hierarchy.

14.1.5 Advantages of Attribute-Clustered Tables
• Eliminates storage costs associated with using indexes

Chapter 14
About Attribute Clustering

14-4

• Enables the accessing of clustered regions rather than performing random I/O or full table
scans when used in conjunction with zone maps

• Provides I/O reduction when used in conjunction with any of the following:

– Oracle Exadata Storage Indexes

– Oracle In-memory min/max pruning

– Zone maps

Attribute clustering provides data clustering based on the attributes that are used as filter
predicates. Because both Exadata Storage Indexes and Oracle In-memory min/max
pruning track the minimum and maximum values of columns stored in each physical
region, clustering reduces the I/O required to access data.

I/O pruning using zone maps can significantly reduce I/O costs and CPU cost of table
scans and index scans.

• Enables clustering of fact tables based on dimension columns in star schemas

Techniques such as traditional table clusters do not provide for ordering by columns of
other tables. In star schemas, most queries qualify dimension tables and not fact tables, so
clustering by fact table columns is not effective. Oracle Database supports clustering on
columns in dimension tables.

• Improves data compression ratios and in this way indirectly improves table scan costs

Compression can be improved because, with clustering, there is a high probability that
clustered columns with the same values are close to each other on disk, hence the
database can more easily compress them.

• Minimizes table lookup and single block I/O operations for index range scan operations
when the attribute clustering is on the index selection criteria.

• Enables I/O reduction in OLTP applications for queries that qualify a prefix in and use
attribute clustering with linear order

• Enables I/O reduction on a subset of the clustering columns for attribute clustering with
interleaved ordering

If table data is ordered on multiple columns, as in an index-organized table, then a query
must specify a prefix of the columns to gain I/O savings. In contrast, a BY INTERLEAVED
table permits queries to benefit from I/O pruning when they specify columns from multiple
tables in a non-prefix order.

14.1.6 About Defining Attribute Clustering for Tables
Attribute clustering information is part of the table metadata. You can define attribute clustering
for a table either when table is first created or subsequently, by altering the table definition.

Use the CLUSTERING clause of the CREATE TABLE statement to define attribute clustering for a
table. The type of attribute clustering is specified by including BY LINEAR ORDER or BY
INTERLEAVED ORDER.

See Also:

• "Creating Attribute-Clustered Tables with Linear Ordering"

• "Creating Attribute-Clustered Tables with Interleaved Ordering"

Chapter 14
About Attribute Clustering

14-5

If attribute clustering was not defined when the table was created, you can modify the table
definition and add clustering. Use the ALTER TABLE ... ADD CLUSTERING statement to define
attribute clustering for an existing table.

See Also:

"Adding Attribute Clustering to an Existing Table"

14.1.7 About Specifying When Attribute Clustering Must be Performed
Performing clustering may be expensive because it involves reorganization of the table and
clustering data during DML operations. Oracle Database does not enforce the clustering of
data on conventional DML, conventional insert, update, and merge.

Clustering can be performed in two ways. The first is to automatically perform clustering for
certain DML operations on the table. This is done by defining, as part of the table metadata,
the operations for which clustering is triggered. The second is to explicitly specify that
clustering must be performed as described in "Using Hints to Control Attribute Clustering for
DML Operations" and "Overriding Table-level Settings for Attribute Clustering During DDL
Operations". In this case, you can perform clustering for a table even if its metadata definition
does not include clustering.

As part of the table definition, you can specify that attribute clustering must be performed when
the following operations are triggered:

• Direct-path insert operations

Set the ON LOAD option to YES to specify that attribute clustering must be performed during
direct-path insert operations.

• Data movement operations

Set the ON DATA MOVEMENT option to YES to specify clustering must be performed during
data movement operations. This includes online table redefinition and the following
partition operations: MOVE, MERGE, SPLIT, and COALESCE.

The ON LOAD and ON DATA MOVEMENT options can be included in a CREATE TABLE or ALTER
TABLE statement. If neither YES ON LOAD nor YES ON DATA MOVEMENT is specified, then clustering
is not enforced automatically.

It will serve only as metadata defining natural clustering of the table that may be used later for
zone map creation. In this case, it is up to the user to enforce clustering during loads.

See Also:

"Adding Attribute Clustering to an Existing Table" for an example on using the ON
LOAD and ON DATA MOVEMENT options

14.2 Attribute Clustering Operations
This section describes common tasks involving attribute clustering and includes:

• Privileges for Attribute-Clustered Tables

Chapter 14
Attribute Clustering Operations

14-6

• Creating Attribute-Clustered Tables with Linear Ordering

• Creating Attribute-Clustered Tables with Interleaved Ordering

• Maintaining Attribute Clustering

14.2.1 Privileges for Attribute-Clustered Tables
To define attribute clustering for a table, you must have the CREATE or ALTER privilege on the
table. Additionally, for join attribute clustering, you must also have the SELECT or READ privilege
on the joined table or tables.

See Also:

Oracle Database SQL Language Reference for syntax and semantics of the
CLUSTERING clause of CREATE TABLE

14.2.2 Creating Attribute-Clustered Tables with Linear Ordering
Linear ordering stores the data according to the order of specified columns, equivalent to an
ORDER BY clause. Linear ordering is supported on columns of a single table or multiple tables in
a star schema. Examples of Attribute Clustering with Linear Ordering contains examples of
attribute-clustered tables with linear ordering.

See Also:

Oracle Database SQL Language Reference for information about attribute clustering
restrictions

14.2.2.1 Examples of Attribute Clustering with Linear Ordering
Example 14-1 and Example 14-2 illustrate linear ordering.

Example 14-1 Creating a Table with Linear Ordering

Assume that queries on sales often specify either a customer ID or a combination of a
customer ID and product ID. You can create an attribute-clustered table so that such queries
benefit from I/O reduction for the scenarios described in "Advantages of Attribute-Clustered
Tables".

The following statement creates the sales table with linear ordering:

CREATE TABLE sales (
 prod_id NUMBER(6) NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id CHAR(1) NOT NULL,
 promo_id NUMBER(6) NOT NULL,
 quantity_sold NUMBER(3) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
CLUSTERING
 BY LINEAR ORDER (cust_id, prod_id);

Chapter 14
Attribute Clustering Operations

14-7

This clustered table is useful for queries containing a predicate on cust_id or predicates on
both cust_id and prod_id.

Example 14-2 Creating a Table with Linear Ordering and a Join

Assume that the products dimension table has a unique key or primary key on the prod_id
column. Other columns in this table include, but are not limited to, prod_name, prod_desc,
prod_category, prod_subcategory, and prod_status. Queries on the my_sales fact table often
contain one of the following:

• a predicate on cust_id
• predicates on cust_id and prod_category
• predicates on cust_id, prod_category, and prod_subcategory
Defining attribute clustering for the my_sales table is useful for queries that contain the
predicates included in the CLUSTERING clause.

CREATE TABLE my_sales (
 prod_id NUMBER(6) NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id CHAR(1) NOT NULL,
 promo_id NUMBER(6) NOT NULL,
 quantity_sold NUMBER(3) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
CLUSTERING
 my_sales JOIN products ON (my_sales.prod_id = products.prod_id)
 BY LINEAR ORDER (cust_id, prod_category, prod_subcategory);

See Also:

Oracle Database SQL Language Reference for syntax and semantics of the BY
LINEAR ORDER clause

14.2.3 Creating Attribute-Clustered Tables with Interleaved Ordering
Interleaved ordering uses a special multidimensional clustering technique similar to a Z-order
sort. It is especially beneficial when you have a specific set of predicates that are commonly
used most of the time, but do not always use all of them. Interleaved ordering is useful for
dimensional hierarchies of star schemas in a data warehouse. "Examples of Attribute
Clustering with Interleaved Ordering" contains examples of attribute-clustered tables with
interleaved ordering.

See Also:

Oracle Database SQL Language Reference for information about attribute clustering
restrictions

Chapter 14
Attribute Clustering Operations

14-8

14.2.3.1 Examples of Attribute Clustering with Interleaved Ordering
Example 14-3 and Example 14-4 illustrate interleaved ordering.

You can also create an attribute clustered table so that queries benefit from pruning with zone
maps. "Creating Zone Maps with Attribute Clustering" contains examples of defining zone
maps with attribute clustering.

Example 14-3 Creating a Table with Interleaved Ordering

Assume that queries on sales often specify either a time ID or a combination of time ID and
product ID. You can create sales with interleaved attribute clustering using the following
command:

CREATE TABLE sales (
 prod_id NUMBER(6) NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id CHAR(1) NOT NULL,
 promo_id NUMBER(6) NOT NULL,
 quantity_sold NUMBER(3) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
CLUSTERING
 BY INTERLEAVED ORDER (time_id, prod_id);

This clustered table is useful for queries containing one of the following:

• a predicate on time_id
• a predicate on prod_id
• predicates on time_id and prod_id
Example 14-4 Creating a Table with Interleaved Ordering and a Join

Large data warehouses frequently organize data in star schemas. A dimension table uses a
parent-child hierarchy and is connected to a fact table by a foreign key. Clustering a fact table
with interleaved ordering enables the database to use a special function to skip values in
dimension columns during table scans. Note that clustering does not require an enforced
foreign key relationship. However, Oracle Database does require primary or unique keys on
the dimension tables.

The following command defines attribute clustering using interleaved ordering for the sales
fact table:

CREATE TABLE sales (
 prod_id NUMBER(6) NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id CHAR(1) NOT NULL,
 promo_id NUMBER(6) NOT NULL,
 quantity_sold NUMBER(3) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
CLUSTERING
 sales JOIN products ON (sales.prod_id = products.prod_id)
 BY INTERLEAVED ORDER ((time_id), (prod_category, prod_subcategory));

This clustered table is useful for queries containing one of the following:

Chapter 14
Attribute Clustering Operations

14-9

• a predicate on time_id
• a predicate on prod_category
• predicates on prod_category and prod_subcategory
• predicates on time_id and prod_category
• predicates on time_id, prod_category, and prod_subcategory

See Also:

Oracle Database SQL Language Reference for information on the CREATE TABLE
statement and CLUSTERING clause

14.2.4 Maintaining Attribute Clustering
You can add, drop, and update the attribute clustering definition of a table at any point in time.
The modified definition does not affect existing table data, but can only be used as directive for
future operations.

The following maintenance operations modify table metadata:

• Adding Attribute Clustering to an Existing Table

• Modifying Attribute Clustering Definitions

• Dropping Attribute Clustering for an Existing Table

You can also override the attribute clustering definitions on a table at runtime. The
maintenance operations that influence attribute clustering behavior at runtime are:

• Using Hints to Control Attribute Clustering for DML Operations

• Overriding Table-level Settings for Attribute Clustering During DDL Operations

• Clustering Table Data During Online Table Redefinition

14.2.4.1 Adding Attribute Clustering to an Existing Table
When you create a table with clustering, it is created with a zone map by default. You can,
however, explicitly prevent this by using WITHOUT ZONEMAP. This could be done for several
reasons, such as wanting to create a zone map on clustering columns plus additional columns
that correlate to clustering columns, or to use specific zone map storage options instead of the
defaults.

Use the ALTER TABLE ... ADD CLUSTERING command to add attribute clustering to an existing
table that does not currently use attribute clustering.

The following command adds attribute clustering to the SALES fact table. The modified table will
use interleaved clustering that is based on the joined dimension tables CUSTOMERS and
PRODUCTS.

ALTER TABLE sales
ADD CLUSTERING sales JOIN customers ON (sales.cust_id = customers.cust_id)
 JOIN products ON (sales.prod_id = products.prod_id)
 BY INTERLEAVED ORDER ((prod_category, prod_subcategory),
 (country_id, cust_state_province, cust_city))

Chapter 14
Attribute Clustering Operations

14-10

 YES ON LOAD YES ON DATA MOVEMENT
 WITHOUT MATERLALIZED ZONEMAP;

When you add clustering to a table, the existing data is not clustered. To force the existing data
to be clustered, you need to move the content of the table using an ALTER TABLE...MOVE
statement. You can do this partition by partition.

The following command clusters data in the sales table:

ALTER TABLE sales MOVE PARTITION sales_1995 UPDATE INDEXES ALLOW CLUSTERING;

For more information about zone maps, see "About Zone Maps".

14.2.4.2 Modifying Attribute Clustering Definitions
Use the ALTER TABLE ... MODIFY CLUSTERING statement to modify when attribute clustering is
triggered for a table. Modifying clustering definitions does not affect the existing table data. The
modified definitions are applicable only to future data movement or direct-path insert
operations.

The following command modifies the clustering definition of the SALES table and enables
clustering during data movement.

ALTER TABLE sales MODIFY CLUSTERING YES ON DATA MOVEMENT;

You can also modify a table definition and create or drop a zone map that is based on the
attribute clustering. The following statement modifies the definition of the SALES table and adds
a zone map:

ALTER TABLE sales MODIFY CLUSTERING WITH MATERIALIZED ZONEMAP;

Use the following statement to modify the definition of the attribute-clustered table SALES and
remove zone maps.

ALTER TABLE sales MODIFY CLUSTERING WITHOUT MATERIALIZED ZONEMAP;

14.2.4.3 Dropping Attribute Clustering for an Existing Table
If attribute clustering is defined for an existing table, use the ALTER TABLE ... DROP
CLUSTERING statement to remove attribute clustering. Dropping a clustering definition does not
have any impact on the existing table data.

The following command removes attribute clustering for the SALES table:

ALTER TABLE sales DROP CLUSTERING;

14.2.4.4 Using Hints to Control Attribute Clustering for DML Operations
You can use hints to enforce the use of clustering or to prevent its use during direct-path insert
operations. Use the CLUSTERING hint to enforce clustering for a table and NO_CLUSTERING hint to
prevent the use of clustering.

The following command disables attribute clustering while inserting data into the SALES table.
This table was created with the YES ON LOAD option.

INSERT /*+ APPEND NO_CLUSTERING */ INTO sales SELECT * FROM external_sales;

See "Controlling the Use of Zone Maps" for more information about hints.

Chapter 14
Attribute Clustering Operations

14-11

14.2.4.5 Overriding Table-level Settings for Attribute Clustering During DDL
Operations

You can override the attribute clustering definition during data movement DDL operations such
as partition maintenance that creates new data segments (split or merge operations) or moving
a table, partition, or subpartition. For example, if a table was defined using the NO ON DATA
MOVEMENT option, then you can cluster data for this table during a data movement operation by
using the ALTER TABLE ... ALLOW CLUSTERING statement.

The following command allows clustering during data movement for the sales_2010 partition of
the SALES tables that was defined using the NO ON DATA MOVEMENT option:

ALTER TABLE sales MOVE PARTITION sales_2010 UPDATE INDEXES ALLOW CLUSTERING;

Similarly, you can disable clustering during data movement for a table that was defined using
the YES ON DATA MOVEMENT option by including the DISALLOW CLUSTERING clause in the ALTER
TABLE command that is used to move data.

14.2.4.6 Clustering Table Data During Online Table Redefinition
Online table redefinition enables you to modify the logical or physical structure of a table
without significantly affecting its availability. The table is accessible to both queries and DML
during much of the redefinition process.

You can redefine a table online and add attribute clustering to a table that did not previously
use attribute clustering. The DBMS_REDEFINITION package enables you redefine tables online
and add attribute clustering to them.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_REDEFINITION package

Example 14-5 Redefining an Attribute-Clustered Table Online

Assume that you want to redefine the sales table to change the data type of amount_sold from
a number to a float, add attribute clustering to the table, and cluster the data during online
redefinition.

Use the following steps to redefine the sales table in the SH schema and cluster its data during
online table redefinition:

1. Verify that the table can be redefined online by invoking the CAN_REDEF_TABLE procedure of
the DBMS_REDEFINITION package.

The following command verifies that the sales table can be redefined online:

exec DBMS_REDEFINITION.CAN_REDEF_TABLE('SH','SALES');
2. Create the interim table in the SH schema with the desired physical and logical attributes

that you want to use for the redefined table.

Chapter 14
Attribute Clustering Operations

14-12

The following command creates the interim table sales_interim. The data type of the
amount_sold column is binary_double and the CLUSTERING clause specifies how attribute
clustering must be performed.

CREATE TABLE sales_interim
(
 PROD_ID NUMBER(6) PRIMARY KEY,
 CUST_ID NUMBER NOT NULL,
 TIME_ID DATE NOT NULL,
 CHANNEL_ID CHAR(1) NOT NULL,
 PROMO_ID NUMBER(6),
 QUANTITY_SOLD NUMBER(3) NOT NULL,
 AMOUNT_SOLD binary_double
)
CLUSTERING sales_interim JOIN customers ON
 (sales_interim.cust_id = customers.cust_id)
 JOIN products ON (sales_interim.prod_id = products.prod_id)
 BY INTERLEAVED ORDER ((prod_category, prod_subcategory),
 (country_id, cust_state_province, cust_city));

3. Start the online table redefinition process using the
DBMS_REDEFINITON.START_REDEF_TABLE procedure. The sales table is available for queries
and DML during this process.

The following command starts the redefinition process for the sales table:

exec DBMS_REDEFINITION.START_REDEF_TABLE(uname => 'SH',orig_table => 'SALES',
int_table => 'SALES_INTERIM', options_flag => DBMS_REDEFINITION.CONS_USE_ROWID);

4. Optionally synchronize the interim table with the original table.

Synchronization is recommended if a large number of DML statements may have been
executed on the original table after the redefinition was started. This step reduces the time
taken to finish the redefinition process.

The following command synchronizes the sales_interim table with the original sales
table:

exec DBMS_REDEFINITION.SYNC_INTERIM_TABLE('SH', 'SALES', 'SALES_INTERIM');
5. Complete the online table redefinition using the DBMS_REDEFINITION.FINISH_REDEF_TABLE

procedure.

The following command completes the online redefinition of the sales table:

exec DBMS_REDEFINITION.FINISH_REDEF_TABLE('SH', 'SALES', 'SALES_INTERIM');

14.3 Viewing Attribute Clustering Information
Oracle Database provides a set of data dictionary views that contain information about attribute
clustering. This section describes how you can use these views to obtain information about
attribute clustering.

This section contains the following topics:

• Determining if Attribute Clustering is Defined for Tables

• Viewing Attribute-Clustering Information for Tables

• Viewing Information About the Columns on Which Attribute Clustering is Performed

• Viewing Information About Dimensions and Joins on Which Attribute Clustering is
Performed

Chapter 14
Viewing Attribute Clustering Information

14-13

14.3.1 Determining if Attribute Clustering is Defined for Tables
The CLUSTERING column in the views DBA_TABLES, USER_TABLES, and ALL_TABLES specifies if
attribute clustering is defined for the tables. The CLUSTERING column displays YES if attribute
clustering is defined for the table and NO otherwise.

The following query displays the names of tables in the SH schema and indicates if they use
attribute clustering.

SELECT TABLE_NAME, CLUSTERING FROM DBA_TABLES WHERE OWNER='SH';

TABLE_NAME CLUSTERING
----------- ------------
SALES YES
PRODUCTS NO
MY_SALES YES

14.3.2 Viewing Attribute-Clustering Information for Tables
Use one of the following data dictionary views to obtain details about attribute clustering for
tables:

• DBA_CLUSTERING_TABLES to describe all attribute-clustered tables in the database

• ALL_CLUSTERING_TABLES to describe attribute-clustered table accessible to the user

• USER_CLUSTERING_TABLES to describe attribute-clustered tables owned by the user

The following query displays details about the attribute clustering for the SALES table. The
details include the type of attribute clustering and the operations for which clustering is enabled
for the table. The output has been formatted to fit on the page.

SELECT owner, table_name, clustering_type, on_load, on_datamovement, with_zonemap
FROM DBA_CLUSTERING_TABLES WHERE table_name='SALES';

OWNER TABLE_NAME CLUSTERING_TYPE ON_LOAD ON_DATAMOVEMENT WITH_ZONEMAP
------ ---------- --------------- -------- --------------- -------------
SH SALES LINEAR YES YES YES

SELECT owner, table_name, clustering_type, on_load, on_datamovement
FROM DBA_CLUSTERING_TABLES WHERE table_name='SALES';

OWNER TABLE_NAME CLUSTERING_TYPE ON_LOAD ON_DATAMOVEMENT
------ ---------- --------------- -------- ---------------
SH SALES LINEAR YES YES

14.3.3 Viewing Information About the Columns on Which Attribute
Clustering is Performed

Use one of the following data dictionary views to obtain information about the columns on
which attribute clustering is defined for tables:

• DBA_CLUSTERING_KEYS
• ALL_CLUSTERING_KEYS
• USER_CLUSTERING_KEYS

Chapter 14
Viewing Attribute Clustering Information

14-14

For example, the data in the table SALES is clustered using linear ordering. Use the following
command to display the columns on which table is clustered. The output has been formatted to
fit in the page.

SELECT detail_owner, detail_name, detail_column, position
FROM DBA_CLUSTERING_KEYS
WHERE table_name='SALES';

DETAIL_OWNER DETAIL_NAME DETAIL_COLUMN POSITION
------------ -------------- ----------------- ---------
SH SALES PROD_ID 2
SH SALES TIME_ID 1

14.3.4 Viewing Information About Dimensions and Joins on Which Attribute
Clustering is Performed

To view information about the dimension tables by which a fact table is clustered, query the
DBA_CLUSTERING_DIMENSIONS, ALL_CLUSTERING_DIMENSIONS, or USER_CLUSTERING_DIMENSIONS
data dictionary views.

To view details about the joins of the fact table and dimension tables, query the
DBA_CLUSTERING_JOINS, ALL_CLUSTERING_JOINS, or USER_CLUSTERING_JOINS views. The output
has been formatted to fit in the page.

The following query displays the dimension tables by which the fact table SALES is attribute-
clustered.

SELECT * FROM DBA_CLUSTERING_DIMENSIONS WHERE table_name='MY_SALES';

OWNER TABLE_NAME DIMENSION_OWNER DIMENSION_NAME
------ -------------- ------------------- ---------------------
SH MY_SALES SH PRODUCTS

The following query displays the columns used to join the fact table my_sales with dimension
table products. The output has been formatted to fit in the page.

SELECT tab1_owner, tab1_name,tab1_column
FROM DBA_CLUSTERING_JOINS
WHERE table_name='MY_SALES';

TAB1_OWNER TAB1_NAME TAB1_COLUMN
----------- ------------- --------------------
SH MY_SALES PROD_ID

14.4 About Automatic Data Clustering
Oracle Database automatically and transparently clusters storage-based data in response to
the type of queries used by the application workload. You can make configuration changes to
this process.

Automatic data clustering allows the workload to make more efficient use of data access
optimizations, such as storage indexes, zone maps, and join zone maps. With little user
interaction, the Automatic Data Clustering feature monitors and analyzes workload query
execution, recommends the tables to cluster, how to cluster, and what zone maps to create.
The impact of clustering is verified before it is implemented.

The steps are as follows:

Chapter 14
About Automatic Data Clustering

14-15

• Workload capture.

• Workload analysis.

• You generate a clustering and zone map recommendation.

• You verify the recommendation.

• You apply the recommendation.

Workload Capture and Analysis

Workload SQL statements can be captured using the automatic SQL tuning set. Over time,
workload queries are captured without manual intervention. By default, automatic clustering
analyzes a workload captured in this system-maintained SQL tuning set. Alternatively,
automatic clustering can be directed to base and analysis and recommendation on a workload
captured in any manually populated SQL tuning set.

Clustering and Zone Map Recommendation

Automatic clustering identifies fact and dimension tables and analyzes joins between them
using workload SQL statements captured in the automatic SQL tuning set or in a user-
specified SQL tuning set. Certain criteria must be met before clustering is considered. For
example, fact tables must be a minimum of 64GB, optimizer statistics must be up-to-date, and
there should be no existing manual clustering clause or zone map.

The following may be returned to the fact table:

• a single table or join clustering with dimension tables to join

• a clustering method (linear or interleaved clustering) with clustering columns and their
ordering

• zone map columns

14.4.1 User Controls for Automatic Data Clustering
The workflow for Automatic Data Clustering is to reconfigure the process, generate a
recommendation, verify the recommendation, and apply the recommendation.

Reconfigure the Process

DBMS_AUTO_CLUSTERING.CONFIGURE (
 parameter_name IN VARCHAR2,
 parameter_value IN VARCHAR2,
 allow IN BOOLEAN DEFAULT TRUE);

Example:

exec dbms_auto_clustering.configure('AUTO_CLUSTERING_SCHEMA', 'DW_SCHEMA',
allow=> TRUE);

select parameter_name,parameter_value
from DBA_AUTO_CLUSTERING_CONFIG
where parameter_name = 'AUTO_CLUSTERING_SCHEMA_INCLUDE';

PARAMETER_NAME PARAMETER_VALUE
--

Chapter 14
About Automatic Data Clustering

14-16

AUTO_CLUSTERING_SCHEMA_INCLUDE DW_SCHEMA

Generate Recommendations

DBMS_AUTO_CLUSTERING.RECOMMEND_CLUSTERING_METHOD (
 sqlset_owner IN VARCHAR2 DEFAULT ‘SYS’,
 sqlset_name IN VARCHAR2 DEFAULT ‘SYS_AUTO_STS’,
 table_owner IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2 DEFAULT NULL,
 report_type IN VARCHAR2 DEFAULT ‘TEXT’,
 report_section IN VARCHAR2 DEFAULT ‘SUMMARY’,
 report_level IN VARCHAR2 DEFAULT ‘TYPICAL’,
 verification IN BOOLEAN DEFAULT TRUE)
RETURN RAW;

Example:

set serveroutput on
declare
 rec_id raw(16);
begin
 rec_id := dbms_auto_clustering.recommend_clustering_method(table_owner
=> user,
 table_name => 'MYFACT',
 verification=>false,
 report_level=>'ALL', report_section=>'ALL');
 dbms_output.put_line('Rec ID: '||rec_id);
end;
/
Rec ID: F76780956B8AACA1E053624F46641292

set linesize 200
set pagesize 1000
column table_name format a20
select table_name, status
from dba_auto_clustering_recommendations
where recommendation_id = 'F767C7BD8F92BF4AE053624F4664E9A2';

TABLE_NAME STATUS
------------ ----------
MYFACT UNVERIFIED

Verify Recommendations

The verification step measures compares the performance of the application workload with and
without the recommended clustering method and zone maps. If performance is improved, the
recommendations are marked as VERIFIED and they can be accepted. If performance is not
improved significantly, the recommendation is marked REJECTED.

DBMS_AUTO_CLUSTERING.VERIFY_RECOMMENDATION (
 recommendation_id,

Chapter 14
About Automatic Data Clustering

14-17

 table_owner,
 table_name);

Example:

exec dbms_auto_clustering.verify_recommendation('
F76780956B8AACA1E053624F46641292')

set long 10000
column report format a100
var report clob
begin
 :report := dbms_auto_clustering.report_last_activity(
 type=>'TEXT',
 section=>'ALL',
 level=>'ALL');
end;
/

select :report report
from dual;

REPORT
--

GENERAL INFORMATION
--
-
 Activity start : <Date>
 Activity end : <Date>
 Recommendations generated : 1
 Recommendation verified : 1
 Recommendation applied : 0
--
-

CLUSTERING DETAILS
--
-
1. The following clusterings were created:
--
-
--
| Owner | Table | Recommendation ID | Status |
Method
DW_SCHEMA
SINGLE |
--
-
* Clustering DDLs

ALTER TABLE "ADHOC"."F" ADD CLUSTERING BY ORDER ("DW_SCHEMA"."MYFACT"."Y")

--

Chapter 14
About Automatic Data Clustering

14-18

-

VERIFICATION DETAILS

Apply Recommendations

DBMS_AUTO_CLUSTERING.APPLY_RECOMMENDATION (
 table_owner,
 table_name,
 recommendation_id,
 apply_mode);

Example:

declare
 rec_id raw(16) := null;
 begin
 rec_id := dbms_auto_clustering.get_recommendation('DW_SCHEMA', 'MYFACT');
 dbms_auto_clustering.apply_recommendation(rec_id, 'DW_SCHEMA', 'MYFACT');
 end;
/

select table_name,
 clustering_type,
 on_load,
 on_datamovement,
 valid,
 with_zonemap,
 automatic
from user_clustering_tables;

TABLE_NAME CLUSTERING_ ON_ ON_ VAL WIT AUT
-------------------- ----------- --- --- --- --- ---
MYFACT LINEAR YES YES YES NO YES

select zonemap_name,
 query,
 automatic
from user_zonemaps;

ZONEMAP_NAME QUERY
AUTOMATIC
------------------------------ ---

ACZMAP$_MYFACT SELECT SYS_OP_ZONE_ID("MYFACT"."ROWID") … YES

Chapter 14
About Automatic Data Clustering

14-19

See Also:

• In the Oracle Database Reference, the view
DBA_AUTO_CLUSTERING_CONFIG displays the current configuration
parameter settings for automatic clustering..
DBA_AUTO_CLUSTERING_RECOMMENDATIONS displays recommendations
associated with automatic clustering.

• The Oracle Database PL/SQL Packages and Types Reference describes the
DBMS_AUTO_CLUSTERING package, which includes the APIs for configuring
automatic data clustering as well as generating, verifying, and applying
recommendations.

Chapter 14
About Automatic Data Clustering

14-20

15
Using Zone Maps

A zone map is a independent access structure that can be built for a table. During table and
index scans, zone maps enable you to prune disk blocks of a table and potentially full partitions
of a partitioned table based on predicates on the table columns. Zone maps can be used with
or without attribute clustering.

This chapter includes the following sections:

• About Zone Maps

• Zone Map Operations

• Refresh and Staleness of Zone Maps

• Performing Pruning Using Zone Maps

• Viewing Zone Map Information

15.1 About Zone Maps
A zone map is an independent access structure built for a table that stores information about
zones of a table. Zone maps enable the database to prune data blocks that cannot satisfy
predicates on table columns. A zone is a set of a contiguous data blocks on disk.

Traditional zone maps store the minimum and maximum values of a column in a table per disk
unit, set of blocks, or extents. If queries qualify on clustering columns, then I/O pruning takes
place. Zone maps in an Oracle Database store minimum and maximum values of columns for
a range of blocks (known as a zone). In addition to performing I/O pruning based on predicates
of clustered fact tables, zone maps prune on predicates of dimension tables provided the fact
tables are attribute-clustered by the dimension attributes through outer joins with the dimension
tables.

You can define at most one zone map on a table. In the case of a partitioned table, there is one
zone map for all partitions (and subpartitions). A zone map of a partitioned table also keeps
track of the minimum and maximum values per zone, per partition, and per subpartition. Zone
map definitions can include minimum and maximum values of dimension columns provided the
table has an outer join with the dimension tables.

This section contains the following topics:

• Difference Between Zone Maps and Indexes

• Zone Maps and Attribute Clustering

• Types of Zone Maps

• Benefits of Zone Maps

• Scenarios Which Benefit from Zone Maps

• About Maintaining Zone Maps

15-1

15.1.1 Difference Between Zone Maps and Indexes
A zone map is analogous to a coarse index structure. However, there are fundamental
differences to an index:

• A zone map stores information per zone instead of per row. Thus, it is much more compact
than an index.

• A zone map is not actively managed the way an index is kept in sync with DML actions.
Thus, even if a zone map has the REFRESH ON COMMIT option, it can still be stale within a
transaction until commit or rollback occurs.

• A zone map can contain stale information for some zones and fresh information for the rest
of the zones, and Oracle Database will still use the zone map to perform I/O pruning during
the scan of the fact table.

15.1.2 Zone Maps and Attribute Clustering
Attribute clustering is not a mandatory pre-requirement for zone maps. Zone maps can be
used with or without attribute clustering. Therefore, you can specify attribute clustering without
zone maps and build zone maps without clustering on the table.

It is common for data warehousing environments to have reasonably clustered data due to ETL
processing, for example, clustering by time columns or by geographical regions. Due to
clustering, minimum and maximum values of the columns are more likely to be correlated with
consecutive data blocks in the attribute-clustered table, which allows for more efficient pruning
using zone maps. Zone maps enable more efficient pruning by taking advantage of data
ordering performed by attribute clustering. During table scans and index scans (for example,
fetch by rowid), zone maps allow pruning of data blocks that do not satisfy predicates on table
columns.

See Also:

"About Attribute Clustering" for information about attribute clustering

15.1.3 Types of Zone Maps
There are two types of zone maps:

• A basic zone map is defined on a single table and maintains the minimum and maximum
values of some columns of this table.

• A join zone map is defined on a table that has an outer join to one or more other tables and
maintains the minimum and maximum values of some columns in the other tables; these
join conditions are common in primary-detail relationships as well as in star schemas
between fact and dimension tables.

For star queries, multiple dimension tables are joined through PK-FK relationships with a
fact table. Here a join zone map maintains the minimum and maximum values of columns
from the dimension tables for zones of the fact table.

15.1.4 Benefits of Zone Maps
• Enables I/O reduction during sequential or index scans of tables or table partitions

Chapter 15
About Zone Maps

15-2

• Enables partition pruning based on non-key columns for partitioned and composite-
partitioned tables when zone map columns correlate with the partitioning key

• Enables I/O reduction on a subset of the clustering columns for attribute clustering with
interleaved ordering

• Eliminate storage costs associated with using indexes

See Also:

Oracle Database SQL Language Reference

15.1.5 Scenarios Which Benefit from Zone Maps
Using zone maps can be beneficial in the following scenarios:

• Table scans are performed with frequently-used predicates

Zone maps enable Oracle Database to avoid scanning zones that are excluded by column
predicates.

• Joins are defined between a fact table and dimension tables with frequently-used
predicates on the dimension hierarchy columns

Fact table rows can be ordered by dimension attribute values, pruning zones that are
excluded by predicates on attribute values.

• Columns in partitioned tables contain values that correlate with the partition key

This will facilitate partition pruning based on “non-key" columns. For example, a table
partitioned by date will often have other date columns that correlate well with the partition
key or columns that contain sequenced values that change or cycle over time.

• Data clustering is performed on the zone map column values

Attribute clustering is designed specifically for this purpose. Alternatively, it is appropriate
to make use of ordering inherent in the data (for example, time-based column values
loaded sequentially or data that is sorted on load).

• Frequent and low cardinality index range scans are performed on tables

Attribute clustering can be used alone to improve compression factors. Zone maps can be
used to improve the efficiency of the index scans by pruning lookups from excluded zones.
Alternatively, zone maps can be used to replace indexes.

15.1.6 About Maintaining Zone Maps
Zone maps are based on tables and, therefore, any changes to the underlying tables impacts
the state of the zone map. Depending on the operation performed on the table, some or all
zones of a zone map are impacted. Zone maps affected by changes to the underlying tables
require maintenance.

Zone map maintenance consists of one or more of the tasks:

• Checking the validity of affected zone maps

• Tracking the staleness of the affected zone maps

• Refreshing the affected zone maps that have become stale (depending on the refresh
mode set for the zone map)

Chapter 15
About Zone Maps

15-3

When there is a change in the structure of base tables on which a zone map is based, for
example, dropping a table column whose minimum and maximum values are maintained by
the zone map, then the zone map becomes invalid. Invalid zone maps are not used by queries
and Oracle Database does not maintain these zone maps. However, when there is a change in
the structure of the base tables that does not relate to the zone map, for example, adding a
new column to the table, the zone map stays valid but it needs to be compiled. Oracle
Database automatically compiles the zone map on a subsequent operation such as the use of
zone map by a query. Or, you can compile the zone map using the COMPILE clause of the ALTER
MATERIALIZED ZONEMAP command.

See Also:

"Compiling Zone Maps"

When there is a change in the data of the underlying tables, the zones that are impacted by
these changes are marked stale. Only the data in a stale zone map is not current or fresh but
its definition is still valid. Oracle Database automatically tracks the staleness of zone maps due
to different types of operations on the underlying tables. Depending on the type of operation
performed on the underlying table the Oracle Database will either mark the entire zone map as
stale, or some zones in the zone map as stale.

This section contains the following topics:

• Operations that Require Zone Map Maintenance

• Scenarios in Which Zone Maps are Automatically Refreshed

15.1.6.1 Operations that Require Zone Map Maintenance
Zone map maintenance is required when the following operations are performed on one or
more of the underlying tables:

• DML (insert, delete, update, conventional load).

• Direct-path insert and load.

• Partition Maintenance Operations (MOVE, SPLIT, MERGE, DROP, TRUNCATE, and EXCHANGE),
moving table data, and online redefinition of table.

15.1.6.2 Scenarios in Which Zone Maps are Automatically Refreshed
The zone map refresh mode determines if Oracle Database will automatically refresh the zone
maps affected by above operations.

Oracle Database performs automatic refresh for zone maps affected by the following:

• DML operations if the refresh mode is REFRESH ON COMMIT. Zone maps with REFRESH ON
COMMIT mode stay transactionally fresh. The refresh is performed when the transaction is
committed.

• Direct-path insert or load if the refresh mode is REFRESH ON LOAD.

Zone maps with REFRESH ON LOAD can become stale after DML or PMOP operation on
underlying table.

• PMOPs (MOVE, SPLIT, MERGE, DROP) or table move if the refresh mode is REFRESH ON DATA
MOVEMENT.

Chapter 15
About Zone Maps

15-4

Zone maps with REFRESH ON DATA MOVEMENT can become stale after DML, direct-path
insert or load, PMOP (TRUNCATE, EXCHANGE), or online redefinition of underlying table

• Direct-path insert or load, PMOP (MOVE, SPLIT, MERGE, DROP) or table move if the refresh
mode is REFRESH ON LOAD DATA MOVEMENT.

Zone maps with REFRESH ON LOAD DATA MOVEMENT can become stale after DML, PMOP
(TRUNCATE, EXCHANGE), or online redefinition of underlying table.

Oracle Database does not perform automatic refresh of zone maps affected by any operation
on underlying table if their refresh mode is REFRESH ON DEMAND. Zone maps with REFRESH ON
DEMAND have to be manually refreshed

See Also:

• "Refresh and Staleness of Zone Maps"

• "Maintaining Zone Maps"

15.2 Zone Map Operations
This section describes common tasks involving zone maps, and includes:

• Privileges Required for Zone Maps

• Creating Zone Maps

• Modifying Zone Maps

• Dropping Zone Maps

• Compiling Zone Maps

• Controlling the Use of Zone Maps

• Maintaining Zone Maps

15.2.1 Privileges Required for Zone Maps
• To create, alter, or drop zone maps in your own schema, you must have the CREATE

MATERIALIZED ZONEMAP privilege

• To create zone maps in other schemas, you must have the CREATE ANY MATERIALIZED
ZONEMAP privilege.

• To create zone maps in your own schema but on tables from other schemas, you must
have the SELECT ANY TABLE or READ ANY TABLE privilege.

• To create zone maps in other schemas using tables from other schemas, you must have
both the SELECT ANY TABLE and CREATE ANY MATERIALIZED ZONEMAP privileges. You can
have the READ ANY TABLE privilege instead of the SELECT ANY TABLE privilege.

• To alter zone maps in other schemas, you must have the ALTER ANY MATERIALIZED
ZONEMAP privilege.

• To drop zone maps in other schemas, you must have the DROP ANY MATERIALIZED
ZONEMAP privilege.

Chapter 15
Zone Map Operations

15-5

15.2.2 Creating Zone Maps
While zone maps can be created along with attribute clustering on a table, zone maps are
independent of attribute clustering. Zone maps can be independently created, irrespective of
attribute clustering.

Storage structures used by zone maps are created in the default tablespace of the tables on
which they are defined.

See Also:

• Oracle Database SQL Language Reference for zone map creation syntax

• Oracle Database SQL Language Reference for information about zone map
restrictions

This section contains the following topics:

• Creating Zone Maps with Attribute Clustering

• Creating Zone Maps Independent of Attribute Clustering

15.2.2.1 Creating Zone Maps with Attribute Clustering
You can create a zone map by using WITH MATERIALIZED ZONEMAP subclause. You can use this
subclause when you define attribute clustering for a table or later when you modify the
clustering definition.

Use the steps described in any of the following topics to create a zone map with attribute
clustering:

• Creating a Basic Zone Map with Linear Attribute Clustering

• Creating a Join Zone Map with Interleaved Attribute Clustering

• Creating a Zone Map After Attribute Clustering

See Also:

Attribute Clustering for information about attribute clustering

15.2.2.1.1 Creating a Basic Zone Map with Linear Attribute Clustering
Assume that queries of sales often specify either a customer ID or a combination of a customer
ID and product ID. You can create an attribute-clustered table so that queries benefit from
pruning with zone maps. You create a table as follows:

CREATE TABLE sales (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,

Chapter 15
Zone Map Operations

15-6

 quantity_sold NUMBER(10,2),
 amount_sold NUMBER(10,2)
)
CLUSTERING
BY LINEAR ORDER (cust_id, prod_id)
YES ON LOAD YES ON DATA MOVEMENT
WITH MATERIALIZED ZONEMAP;

Zone map ZMAP$_SALES on columns (cust_id, prod_id) is created. Here, ZMAP$_SALES is the
name automatically generated by Oracle Database for the zone map. However, you can
specify a name for the zone map by enclosing it in parentheses following the WITH
MATERIALIZED ZONEMAP as described in "Creating a Join Zone Map with Interleaved Attribute
Clustering".

Queries that qualify both columns cust_id and prod_id or the prefix cust_id experience
natural pruning. The following examples show how the database can prune during table scans.

An application issues the following query:

SELECT * FROM sales WHERE cust_id = 100;

Because the table is a BY LINEAR ORDER clustered, the database must only read the zones that
include the cust_id value of 100.

An application issues the following query:

SELECT * FROM sales WHERE cust_id = 100 AND prod_id = 2300;

Because the table is a BY LINEAR ORDER clustered, the database must only read the zones that
include the cust_id value of 100 and prod_id of 2300.

15.2.2.1.2 Creating a Join Zone Map with Interleaved Attribute Clustering
Consider a data warehouse that contains a sales fact table and its two dimension tables:
customers and products. Most queries have predicates on the customers table hierarchy
(country_id, cust_state_province, cust_city) and the products hierarchy (prod_category,
prod_subcategory). You can use interleaved ordering for the sales table as shown in the
following partial statement:

CREATE TABLE sales (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 amount_sold NUMBER(10,2))
CLUSTERING
sales JOIN products ON (sales.prod_id = products.prod_id)
JOIN customers ON (sales.cust_id = customers.cust_id)
BY INTERLEAVED ORDER
(
(products.prod_category, products.prod_subcategory),
(customers.country_id, customers.cust_state_province, customers.cust_city)
)
YES ON LOAD YES ON DATA MOVEMENT
WITH MATERIALIZED ZONEMAP (sales_zmap);

A zone map called sales_zmap is created for the attribute clustered table. Note that, in this
clustering clause, the join columns of the dimension table must have primary or unique key
constraints. Note that for interleaved order columns from a single dimension should appear in
the clustering clause a separate group bracketed by '('..')' for example (prod_category,
prod_subcategory). Furthermore, the columns should follow the hierarchy in the dimension
(such as the natural hierarchy of prod_category, prod_subcategory), and the order of the

Chapter 15
Zone Map Operations

15-7

columns in the group should follow that of the hierarchy. This allows Oracle Database to
effectively cluster the data according to the hierarchies present in the dimension tables.

15.2.2.1.3 Creating a Zone Map After Attribute Clustering
Assume a table called sales exists in the database. You can define attribute clustering for the
sales table using the following command:

ALTER TABLE sales ADD CLUSTERING BY INTERLEAVED ORDER (cust_id, prod_id)
 YES ON LOAD YES ON DATA MOVEMENT;

Although this command adds attribute clustering to the table definition, it does not cluster the
existing data in the sales table. When you perform a data movement operation on the sales
table, its data will be clustered because of the YES ON DATA MOVEMENT option.

The following command clusters the data in the sales table:

ALTER TABLES sales MOVE;

After the data in sales table is clustered, you can define a zone map on the sales table by
modifying the clustering using the following command:

ALTER TABLE sales MODIFY CLUSTERING WITH MATERIALIZED ZONEMAP (sales_zmap);

Subsequently, if necessary, you can drop the zone map by modifying the clustering using the
following command:

ALTER TABLE sales MODIFY CLUSTERING WITHOUT MATERIALIZED ZONEMAP;

15.2.2.2 Creating Zone Maps Independent of Attribute Clustering
Use the CREATE MATERIALIZED ZONEMAP command to create a zone map on a table. This zone
map is independent of attribute clustering, which means it can be created on a clustered or
non-clustered table. Also, the set of columns used for the zone map can be same or different
from the set of columns used for attribute clustering.

When you create a zone map, you must specify the table columns on which the zone map is
based.

Use the steps described in any of the following topics to create a zone map independent of
attribute clustering:

• Creating a Basic Zone Map Independent of Attribute Clustering

• Creating a Join Zone Map Independent of Attribute Clustering

15.2.2.2.1 Creating a Basic Zone Map Independent of Attribute Clustering
Assume that queries on the sales table frequently specify a customer ID, product ID, or a
combination of the two columns. You can create a zone map on the customer ID and product
ID columns of the sales table so that queries benefit from pruning as shown in Example 15-1.

Example 15-1 Creating a Basic Zone Map Independent of Attribute Clustering

You can create a zone map sales_zmap on the sales table using the following statement:

CREATE MATERIALIZED ZONEMAP sales_zmap ON sales (cust_id, prod_id);

This statement is equivalent to the following CREATE ... AS statement:

Chapter 15
Zone Map Operations

15-8

CREATE MATERIALIZED ZONEMAP sales_zmap
REFRESH ON LOAD DATA MOVEMENT
AS
SELECT SYS_OP_ZONE_ID(rowid),MIN(cust_id),MAX(cust_id),MIN(prod_id),MAX(prod_id)
FROM sales
GROUP BY SYS_OP_ZONE_ID(rowid);

In this statement, the SYS_OP_ZONE_ID(rowid) function is used to work with zone maps. The
SYS_OP_ZONE_ID function identifies a particular range of contiguous disk blocks (zone) given
the rowid of fact table row. This function helps to maintain minimum and maximum ranges at a
partition level, performing partition pruning and fast refresh of zone maps. When used with
zone maps, it helps to map all rows from a set of contiguous data blocks to a single zone.

15.2.2.2.2 Creating a Join Zone Map Independent of Attribute Clustering
Consider a data warehouse that contains the sales fact and multiple dimensions. Most queries
have predicates on the customers table hierarchy (cust_state_province, cust_city). You
can use interleaved ordering for the sales table as shown in Example 15-2.

Example 15-2 Creating a Join Zone Map Independent of Attribute Clustering

A join zone map involves outer joins from the table on which the zone map is created to one or
more other tables. Most commonly used in star schema setups, a join zone map tracks the
minimum and maximum of columns from dimension tables rather than columns from the fact
table, as is illustrated in the following statement:

CREATE MATERIALIZED ZONEMAP sales_zmap
REFRESH ON LOAD DATA MOVEMENT
AS
SELECT SYS_OP_ZONE_ID(s.rowid), MIN(cust_state_province),
 MAX(cust_state_province), MIN(cust_city), MAX(cust_city)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id(+)
GROUP BY SYS_OP_ZONE_ID(s.rowid);

15.2.3 About Automatic Zone Maps
You can enable automatic creation and maintenance of basic zone maps for both partitioned
and non-partitioned tables.

This functionality is not available for join zone maps, IOTs (Oracle Index-organized Tables),
external tables, or temporary tables.

Automatic zone map creation is turned off by default.

Note:

See Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services.

15.2.4 About the DBMS_AUTO_ZONEMAP Package
The DBMS_AUTO_ZONEMAP package provides controls for turning automatic zone map creation
and maintenance on or off, and for generating activity reports.

Execution of members within DBMS_AUTO_ZONEMAP requires DBA privileges.

Chapter 15
Zone Map Operations

15-9

Use the configure procedure to turn automatic zone map creation on or off. The procedure
also lets you push all automatic zone map creation and maintenance into the background only,
foreground only, or allow it in both. When foreground processing is enabled, automatic zone
map maintenance is done by the user process accessing the table for direct path and data
movement operations. Likewise, when background processing is enabled, automatic zone map
creation and maintenance is done by an auto task running in a background process.

The package also includes the activity_report function, which displays data about automatic
zone map activity within a specified time window and at a configurable level of detail.

15.2.4.1 CONFIGURE Procedure
The DBMS_AUTO_ZONEMAP procedure sets the configuration options for automatic zone maps.

Syntax

The procedure accepts two parameters – the parameter name and the parameter value.

For example: exec dbms_auto_zonemap.configure ('AUTO_ZONEMAP_MODE','ON');

Table 15-1 AUTO_ZONEMAP_MODE Parameter Values

Parameter Data Type Description

parameter_nam
e

VARCHAR2 AUTO_ZONEMAP_MODE is the only configure parameter name that
is currently allowed. If you specify any other name, an invalid
argument error message is displayed.

parameter_val
ue

VARCHAR2 This parameter can be assigned one the following values. Each of
these values represents an alternative automatic zone map
processing mode.
• ON

Turns on automatic zone maps creation and maintenance
and enables both foreground and background processing.

Fresh zone maps offer the best query performance. The ON
mode keeps zone maps as fresh as possible. However,
foreground tasks that move and bulk-load data may take
longer to complete in this mode, because the zone maps are
maintained immediately and this adds overhead to the task..

• OFF
Turns off automatic zone map creation and maintenance in
both the foreground and background. This is the default.

• FOREGROUND
Turns on automatic zone map creation and maintenance. All
processing is done in the foreground only.

This mode is not commonly used. It may be appropriate for
closely-managed environments where control over the timing
of refresh operations is required.

• BACKGROUND
Turns on automatic zone map creation and maintenance. All
processing is done in the background only.

For bulk load and data movement foreground processes, this
mode avoids adding the immediate overhead of zone map
maintenance to these processes. However, it takes longer for
the relevant zone maps to be refreshed in this mode,
because the refresh is done asynchronously in the
background.

Chapter 15
Zone Map Operations

15-10

15.2.4.2 ACTIVITY_REPORT Function
This DBMS_AUTO_ZONEMAP function reports all automatic zone maps activity within a given time
window.

The background job that performs automatic zone map processing starts once per hour (and
each run may last up to three hours). The report shows activity for all instances of the job
running within the specified time window. The report is returned as a CLOB.

Syntax

DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT (START_TIME, END_TIME, TYPE, SECTION,
LEVEL);

The returned CLOB can contain a report formated as TEXT, HTML, or XML. The format is set
by the type parameter described in the table below.

Table 15-2 ACTIVITY_REPORT Parameters

Parameter Data Type Description

start_time TIMESTAMP Start of the time window from which automatic zone map
executions are observed for the report. The default value is NULL.

Possible values:

• time-value
Report all activity proceding from this start time

• NULL
Report recorded zone map maintenance activity from the
earliest data available. Note that this history may be subject
to purging.

end_time TIMESTAMP End of the time window for the report.

Possible values:

• time-value
Report all activity up to this end time.

• NULL
Report all activity up to the end time of recorded activity.

Note:

If both start_time and end_time
are NULL, then report returned
shows the activity from the most
recent run of the job only.

type VARCHAR2 The output type of the report. Possible values are: TEXT, XML, and
HTML. The default value is TEXT. The report formatted as any of
these types is stored as a CLOB.

Chapter 15
Zone Map Operations

15-11

Table 15-2 (Cont.) ACTIVITY_REPORT Parameters

Parameter Data Type Description

section VARCHAR2 Sections that you want to include in the report.

Possible values are:

• SUMMARY
A high-level summary including the counts of new zone maps
created and zone maps maintained for the given time
window.

• DETAILS
A more detailed expansion of the summary, that includes
names and other data about new zone maps created and
zone maps maintained for the given time window. It also
includes findings details.

• ALL
Includes the summary, details, as well as the content from
time series-based execution and action logs.

The default value is DETAILS.

level VARCHAR2 Sets the level of detail within each section of the report. Possible
values are:

• BASIC
Shows only important messages from the action logs as well
as a summary of up to two lines on zone maps created or
maintained in the time window. Details such as column
cluster ratios, process of compilation, and rebuilding of zone
maps are not reported at this level.

• TYPICAL
In addition to the same information reported at BASIC level,
this level reports column clustering ratio computation
information, table eligibility criteria checks, and some other
details.

• ALL
Returns all of the details provided by BASIC and TYPICAL
and also shows the detailed time series logs on all actions
performed during zone map maintenance. This level is most
useful for debugging and also for in-depth analysis of
automatic zone map activity.

The default value is TYPICAL.

Usage Examples

• dbms_auto_zonemap.activity_report()
Report on the last job execution only. Format the report as TEXT. Include the TYPICAL level
of detail (the default level).

SET LONG 100000
SELECT dbms_auto_zonemap.activity_report()report FROM dual;

• dbms_auto_zonemap.activity_report(systimestamp-2)
Report on all execution history for last two days. Format the report as TEXT. Include the
TYPICAL level of detail.

SELECT dbms_auto_zonemap.activity_report(systimestamp-2) report FROM dual;

Chapter 15
Zone Map Operations

15-12

• dbms_auto_zonemap.activity_report(systimestamp–2, systimestamp, ‘XML’,
‘ALL’, ’ALL’)
Return a report for last 48 hours in XML format. Include ALL sections of the reported and
include ALL details.

SELECT dbms_auto_zonemap.activity_report(systimestamp-2, systimestamp,
'XML', 'ALL', 'ALL') report FROM dual;

15.2.4.3 Viewing Information About Automatic Zone Maps

Use the DBA_AUTO_ZONEMAP_CONFIG data dictionary view to display information about
automatic zone maps in the database. For example:

SELECT parameter_name, parameter_value FROM dba_auto_zonemap_config WHERE
parameter_name = 'AUTO_ZMAP_MODE';

PARAMETER_NAME PARAMETER_VALUE
-- --------------
AUTO_ZMAP_MODE OFF

See Also:

DBA_AUTO_ZONEMAP_CONFIG in the Oracle Database Reference.

15.2.5 Modifying Zone Maps
You can alter a zone map with an ALTER MATERIALIZED ZONEMAP statement.

Example 15-3 Making a Zone Map Unusable

The following statement makes a zone map unusable, which means that queries no longer use
this zone map, and Oracle Database no longer maintains the zone map.

ALTER MATERIALIZED ZONEMAP sales_zmap UNUSABLE;

Example 15-4 Performing Complete Refresh for a Zone Map

The following statement performs a complete refresh of the zone map:

ALTER MATERIALIZED ZONEMAP sales_zmap REBUILD COMPLETE;

As part of the rebuild, the zone map is also made usable, if it was earlier marked as unusable.

Example 15-5 Refreshing Zone Maps

The following statement performs a fast refresh, if possible. Else, a complete refresh is
performed.

ALTER MATERIALIZED ZONEMAP sales_zmap REBUILD;

Example 15-6 Disabling Pruning for Zone Maps

The following statement disables pruning, which you might want to do for performance
measurement:

Chapter 15
Zone Map Operations

15-13

ALTER MATERIALIZED ZONEMAP sales_zmap DISABLE PRUNING;

Example 15-7 Enabling Pruning for Zone Maps

The following statement enables pruning, which may have been disabled earlier, for the zone
map:

ALTER MATERIALIZED ZONEMAP sales_zmap ENABLE PRUNING;

Example 15-8 Disabling Refresh for Zone Maps

The following statement turns off refresh on load and data movement, which offers you control
over how and when zone maps are refreshed:

ALTER MATERIALIZED ZONEMAP sales_zmap REFRESH ON DEMAND;

Example 15-9 Enabling Refresh on Commit for Zone Maps

The following statement turns on the refresh of the zone map on each transaction commit:

ALTER MATERIALIZED ZONEMAP sales_zmap REFRESH ON COMMIT;

See Also:

• Oracle Database SQL Language Reference for the syntax to alter a zone map

15.2.6 Dropping Zone Maps
You can drop zone maps by issuing a DROP MATERIALIZED ZONEMAP statement, such as the
following:

DROP MATERIALIZED ZONEMAP sales_zmap;

See Also:

Oracle Database SQL Language Reference for the syntax to drop a zone map

15.2.7 Compiling Zone Maps
Any DDL operation on the base table on which a zone map is based will affect the compile
state of the zone map. This means that the query that defines the zone map must be compiled
to check if the zone map remains valid or not. This behavior is similar to materialized views,
which are also affected by DDL performed on the base table. Oracle Database will compile the
zone map the first time it tries to use it following a DDL operation. You can, however, explicitly
compile a zone map using an alter DDL statement such as the following:

ALTER MATERIALIZED ZONEMAP sales_zmap COMPILE;

The result of compiling a zone map will either be valid or invalid depending on the specific
action performed by the DDL. For example, if DDL was done to add a column to the fact table,
then the zone map will be valid after compilation. But if the DDL was done to drop a column
that is referenced in the definition query, then the zone map will be invalid after compilation.

Chapter 15
Zone Map Operations

15-14

Some of the points to keep in mind are:

• If a column that appears in the clustering clause is dropped, then clustering is dropped. In
addition, if there was a zone map created as part of clustering, then the zone map will be
dropped as well.

• If a dimension table from a star schema is dropped, and it is involved in clustering on a fact
table, then the clustering on the fact table is dropped. In addition, if there was a zone map
created as part of the clustering, then the zone map will be dropped.

• If a user drops a required primary key or unique key on the dimension table involved in a
clustering clause, then clustering is invalidated (data will not be clustered on subsequent
loads or data movement operations performed by certain types of PMOPs).

15.2.8 Controlling the Use of Zone Maps
You can control the use of zone maps for the entire SQL workload or for specific SQL
statements.

This section contains the following topics:

• Controlling Zone Map Usage for Entire SQL Workloads

• Controlling Zone Map Usage for Specific SQL Statements

15.2.8.1 Controlling Zone Map Usage for Entire SQL Workloads
You can control the use of zone maps at the object level. Object-level changes apply to all
statements in the SQL workload. When you create a zone map, it is available for pruning
unless you override the default by specifying DISABLE PRUNING. For example, the following
statement creates a zone map with pruning disabled:

CREATE MATERIALIZED ZONEMAP sales_zmap
 DISABLE PRUNING ON sales(cust_id, prod_id);

This zone map is created and maintained by Oracle Database, but is not used for any SQL in
the workload. You can make it available for pruning by using the following ALTER MATERIALIZED
ZONEMAP statement:

ALTER MATERIALIZED ZONEMAP sales_zmap ENABLE PRUNING;

Similarly, you can use the following statement to make a zone map unavailable for pruning:

ALTER MATERIALIZED ZONEMAP sales_zmap DISABLE PRUNING;

15.2.8.2 Controlling Zone Map Usage for Specific SQL Statements
You can use hints to control the use of zone maps at the individual SQL statement level. Note
that hints cannot be used to control zone map usage if pruning is disabled for the zone map.
You can achieve a finer control through hints by leaving pruning enabled and specifying
negative hints in individual SQL statements.

Use the NO_ZONEMAP hint to disable the usage of a zone map for pruning. The following
examples disable the usage of zone maps while pruning data.

Example 15-10 Scan Pruning: Disabling Zone Maps with the NO_ZONEMAP Hint

SELECT /*+ NO_ZONEMAP (S SCAN) */* FROM sales S
WHERE s.time_id BETWEEN '1-15-2008' AND '1-31-2008';

Chapter 15
Zone Map Operations

15-15

Example 15-11 Join Pruning: Disabling Zone Maps with the NO_ZONEMAP Hint

SELECT /*+ NO_ZONEMAP (S JOIN) */* FROM sales s
WHERE s.time_id BETWEEN '1-15-2008' AND '1-31-2008';

Example 15-12 Partition Pruning: Disabling Zone Maps with the NO_ZONEMAP Hint

SELECT /*+ NO_ZONEMAP (S PARTITION) */* FROM sales S
WHERE s.time_id BETWEEN '1-15-2008' AND '1-31-2008';

15.2.9 Maintaining Zone Maps
You can specify how zone maps must be maintained either at the time of creating the zone
map or, later, by altering the zone map definition. Refer to "Zone Map Maintenance
Considerations".

See Also:

"About Maintaining Zone Maps"

Use the REFRESH clause in the CREATE MATERIALIZED ZONEMAP or ALTER MATERIALIZED
ZONEMAP statement to specify how zone maps must be maintained. If you omit the REFRESH
clause in the CREATE MATERIALIZED ZONEMAP statement, the default used is REFRESH ON LOAD
DATA MOVEMENT, which enables the maintenance of the zone map by Oracle Database upon
direct path load and certain data movement operations.

The following statement creates a zone map whose maintenance is managed manually by the
user:

CREATE MATERIALIZED ZONEMAP sales_zmap
REFRESH ON DEMAND
ON sales (cust_id, prod_id);

The following statement creates a zone map whose maintenance is managed by Oracle
Database at the end of each transaction commit:

CREATE MATERIALIZED ZONEMAP sales_zmap
REFRESH ON COMMIT
ON sales (cust_id, prod_id);

Because it is refreshed on commit, the above zone map never becomes stale.

Use the ALTER MATERIALIZED ZONEMAP statement to change the maintenance of existing zone
maps.

Example 15-13 Enabling Zone Map Maintenance on Data Movement

The following statement enables zone map maintenance by Oracle Database on data
movement operations such as MOVE, SPLIT, MERGE, and DROP:

ALTER MATERIALIZED ZONEMAP sales_zmap REFRESH ON DATA MOVEMENT;

Example 15-14 Enabling Zone Map Maintenance on Direct Path Load

The following statement enables zone map maintenance by Oracle Database on direct path
load operations, such as INSERT /*+ APPEND */ statements:

ALTER MATERIALIZED ZONEMAP sales_zmap REFRESH ON LOAD;

Chapter 15
Zone Map Operations

15-16

Example 15-15 Enabling Zone Map Maintenance on both Data Movement and Load

The following statement enables zone map maintenance by Oracle Database on data
movement and load operations:

ALTER MATERIALIZED ZONEMAP sales_zmap REFRESH ON LOAD DATA MOVEMENT;

Note that REFRESH ON LOAD DATA MOVEMENT is the default option.

15.2.9.1 Zone Map Maintenance Considerations
The following are some of the issues to keep in mind when maintaining zone maps or tracking
their staleness:

• DML/Parallel DML operations to the fact table

When a zone map is created, an internal trigger is created by Oracle Database to track the
row changes made by conventional DML operations. For example, if a new row is inserted
into the sales table, this trigger will compute zone_id from rowid and mark the
corresponding aggregate row in the zone map as stale. So the staleness of a zone map is
tracked zone by zone, which means even after DML has been done to the fact table the
zone map can still be used for pruning using the MIN/MAX aggregates in the fresh zones.

Upon fact table update, if the columns being updated are not referenced by the zone map,
then zone map staleness is not affected. Otherwise, zones corresponding to updated rows
are marked as stale by the internal trigger.

• Direct loads (that is, INSERT /*+ APPEND */) operations to fact table

Even though direct loads insert data above the high water mark, newly added rows can
belong to zones already computed for the zone map. Therefore, Oracle Database will
identify existing zones whose MIN/MAX aggregates are potentially affected by newly added
data and mark such zones as stale. Again, Oracle Database can continue to use the zone
map for pruning in spite of direct loads to the zone map by utilizing MIN/MAX aggregates of
zones that still remain fresh. If the zone maps has the REFRESH ON LOAD option, then
Oracle Database will perform zone map refresh at the end of the load.

• Data movement (for example, partition maintenance operations) on the fact table

Data movement operations include partition maintenance operations and online partition/
table redefinition. However, data movement (for example, move partition) will make the
existing zones belonging to the old partition obsolete in the zone map while zones
belonging to the new partition are not computed until the zone map is refreshed. Oracle
Database will continue to use the zone map for pruning following data movement
operations regardless of whether the zone map was refreshed or not. If the zone map has
the REFRESH ON DATA MOVEMENT option, Oracle Database will perform refresh at the end of
the data movement operation.

• Data movements on the dimension table

This operation does not affect the zone map.

• Any DML to the dimension table

This operation makes the entire zone map stale, so it requires a full refresh. However,
there is one exception. If it is an update operation and the set of updated columns are not
referenced by the zone map, then it remains unaffected.

• Direct loads to dimension table

Chapter 15
Zone Map Operations

15-17

This operation makes the entire zone map stale. If the REFRESH ON LOAD option is specified
for the zone map, then Oracle Database will perform zone map refresh immediately
following the load operation.

• DDL to the fact or dimension table

Upon DDL operation the zone map is marked with unknown staleness (that is, stale set to
'unknown') and requiring compilation (that is, compile_state set to 'needs_compile').
Under this state, Oracle Database will not use the zone map for pruning. However, upon
the first use of a zone map following the DDL operation Oracle Database will compile the
zone map and based on its outcome appropriately set the invalid and stale states. For
example, if the DDL operation dropped a column whose MIN/MAX aggregates are stored in
the zone map, then zone map compilation will fail so zone map compile_state is set to
'compilation error', stale remains as 'unknown', and invalid is set to 'yes'.

15.3 Refresh and Staleness of Zone Maps
Oracle Database marks either the zone maps as stale or individual zones within zone maps as
stale when the data in their base tables changes. Stale zone maps are not used for pruning,
but zone maps with stale zones are still used for pruning. You must refresh the zone maps to
update the zones and make them usable for pruning.

This section contains the following topics:

• About Staleness of Zone Maps

• About Refreshing Zone Maps

• Refreshing Zone Maps

15.3.1 About Staleness of Zone Maps
When the data in the tables on which a zone map is based changes, the zones corresponding
to the changed rows are marked as stale. You need to refresh the zone map to make the
zones current.

When a row in a partition of the fact table is updated, the row corresponding to the zone in the
partitioned table is marked as stale because of the update. This automatically invalidates the
aggregated partition-level information, and pruning can only happen on a zone level. The row
in the zone map corresponding to this particular partition is also marked as stale because of
the update.

In Figure 15-1, this is illustrated with an update in Z4 of P2, and the corresponding Z4 is marked
as stale. Note that the zone map is still usable, however. Table data corresponding to Z4 will
always be read (no pruning is performed on Z4) as long as the zone map is partially stale.

Chapter 15
Refresh and Staleness of Zone Maps

15-18

Figure 15-1 Partially Stale Zone Map

P1

P2

Z2

Z3

Z5

Z4

Z1

Z1

Z2

Z3

Z4

Z5

P1

P2

Updated
Row

Stale
Row

Stale
Row

Fact Table
Sales

Zone Map Table
sales_zmap

If a dimension table is added to the fact table, then the status resembles that in Figure 15-2.

Figure 15-2 Zone Map with Dimension Table

Fact Table
Sales

Dimension Table
Customers

Zone Map Table
sales_zmap

Z2

Z3

Z5

Z4

Z1

P1

P2

Z1

Z2

Z3

Z4

Z5

P1

P2

If any DML is made to the dimension table, the zone map becomes fully stale, as is illustrated
in Figure 15-3. Because the zone map becomes fully state, it is not available for pruning until it

Chapter 15
Refresh and Staleness of Zone Maps

15-19

is completely refreshed. Use the REBUILD option of ALTER MATERIALIZED ZONEMAP statement to
refresh the zone map.

Figure 15-3 Zone Map with Dimension Table and Staleness

Z1

Z2

Z3

P1

Fact Table
Sales

Z4

Z5

P2

Updated
Row

Dimension Table
Customers

Zone Map Table
sales_zmap

Z2

Z3

Z5

Z4

P2

P1

Z1

Stale
Rows

15.3.2 About Refreshing Zone Maps
Oracle Database needs to maintain zone maps by refreshing them after changes to their
underlying tables. The refresh method used for zone maps can be a complete refresh or an
incremental refresh. A complete refresh, specified using the REFRESH COMPLETE clause,
involves rebuilding all the zones in the zone map. A complete refresh is slow when large
amounts of data need to be processed. An incremental refresh, specified using the REFRESH
FAST clause, processes only the changes that have occurred since the last refresh. This
method enables you to refresh the zone map without rebuilding them from scratch. Although
zone maps are internally implemented using materialized view, materialized view logs on base
tables are not required to perform a fast refresh of a zone map

The refresh mode specifies the operations that trigger zone map refresh. Use one of the
following refresh modes:

• ON COMMIT
Zone maps are refreshed when changes to the base tables are committed.

• ON DEMAND
Zone maps must be refreshed manually after DML or partition maintenance operations.

• ON DATA MOVEMENT
Zone maps are refreshed when data movement operations are performed on the base
tables.

Chapter 15
Refresh and Staleness of Zone Maps

15-20

• ON LOAD
Zone maps are refreshed when direct-path insert operations are performed on the base
tables.

• ON LOAD DATA MOVEMENT
Zone maps are refreshed when direct-path insert or certain data movement operations are
performed on the base tables. This is the default.

By default, zone maps are refreshed on load and on data movement. To override this default,
specify one of the following refresh modes when creating or modifying the zone map: ON
COMMIT, ON LOAD, ON DATA MOVEMENT, or ON LOAD.

15.3.3 Refreshing Zone Maps
When you create a zone map without specifying the REFRESH option, Oracle Database by
default performs zone map maintenance after direct load and certain data movement
operations. The exception is the DML operations such as delete, insert, and update. For these
operations, Oracle Database will appropriately mark the zone map or some zones in the zone
map as stale. To manually control the refresh maintenance of zone maps, you must specify the
REFRESH ON DEMAND option.

The following command creates a zone map whose refresh maintenance is disabled which
means that you must manually refresh the zone map after changes are made to the underlying
tables.

CREATE MATERIALIZED ZONEMAP sales_zmap
 ON sales (time_id, cust_id)
 REFRESH ON DEMAND;

Oracle Database provides the following two methods of refreshing zone maps:

• Refreshing Zone Maps Using the ALTER MATERIALIZED ZONEMAP Command

• Refreshing Zone Maps Using the DBMS_MVIEW Package

15.3.3.1 Refreshing Zone Maps Using the ALTER MATERIALIZED ZONEMAP
Command

Use the REBUILD option of ALTER MATERIALIZED ZONEMAP command to refresh zone maps.

The following command performs a complete refresh of the zone map:

ALTER MATERIALIZED ZONEMAP sales_zmap REBUILD COMPLETE;

The following command performs a complete refresh if the zone map is fully stale or marked as
unusable. Otherwise, an incremental (fast) refresh is performed.

ALTER MATERIALIZED ZONEMAP sales_zmap REBUILD;

See Also:

Oracle Database SQL Language Reference for the syntax to refresh a zone map

Chapter 15
Refresh and Staleness of Zone Maps

15-21

15.3.3.2 Refreshing Zone Maps Using the DBMS_MVIEW Package
You can use the REFRESH procedure of DBMS_MVIEW package to refresh zone maps.

When DBMS_MVIEW.REFRESH procedure is used, Oracle Database will refresh the zone map
according to the value specified for its refresh_method parameter as follows:

• C: Performs a complete refresh.

• F - Performs a fast refresh. If a fast refresh is not possible, then an error is issued.

• ? - Performs a fast refresh if possible. else a complete refresh is performed.

This is the default used if no value is specified.

An example of using the REFRESH procedure is the following:

EXECUTE DBMS_MVIEW.REFRESH('sales_zmap','C');

15.4 Performing Pruning Using Zone Maps
The primary benefit of zone maps is I/O reduction for table scans. Pruning leverages
information about the natural locality of records to avoid unnecessary I/O. When a SQL
statement contains predicates on columns tracked in the zone map, the database compares
the predicate values to the minimum and maximum for each zone to determine which zones of
blocks to read or skip during the table scan.

Candidates for zone map pruning include the following predicates:

• Relational predicates =, <=, <, >, >=

• (of the form column_name relational_predicate constant, for example, WHERE
country_name='US' or WHERE country_name=:name)

• IN lists (for example, WHERE product_name IN ('a','b'))

• LIKE predicates suffixed with % (for example, company_name LIKE 'ORA%')

This section contains the following topics:

• How Oracle Database Performs Pruning Using Zone Maps

• Examples: Performing Pruning with Zone Maps and Attribute Clustering

15.4.1 How Oracle Database Performs Pruning Using Zone Maps
This section uses the following examples to illustrate how pruning is performed with zone maps
and attribute clustering:

• Pruning Tables Using Zone Maps

• Pruning Partitioned Tables Using Zone Maps and Attribute Clustering

15.4.1.1 Pruning Tables Using Zone Maps
This example illustrates creating a zone map that can prune data in a query whose predicate
contains a constant. The lineitem table, illustrated in Table 15-3, is created using the following
statement:

CREATE TABLE lineitem
 (orderkey NUMBER

Chapter 15
Performing Pruning Using Zone Maps

15-22

 , shipdate DATE
 , receiptdate DATE
 , destination VARCHAR2(50)
 , quantity NUMBER);

Assume that this table contains four data blocks with two rows per block. Table 15-3 shows the
eight rows of the table.

Table 15-3 Data Blocks for lineitem Table

Block orderkey shipdate receiptdate destination quantity

1 1 1-1-2011 1-10-2011 San_Fran 100

1 2 1-2-2011 1-10-2011 San_Fran 200

2 3 1-3-2011 1-5-2011 San_Fran 100

2 4 1-5-2011 1-10-2011 San_Diego 100

3 5 1-10-2011 1-15-2011 San_Fran 100

3 6 1-12-2011 1-16-2011 San_Fran 200

4 7 1-13-2011 1-20-2011 San_Fran 100

4 8 1-15-2011 1-30-2011 San_Jose 100

Next, you use the CREATE MATERIALED ZONEMAP statement to create a zone map on the
lineitem table.

CREATE MATERIALIZED ZONEMAP lineitem_zmap
 ON lineitem (orderkey, shipdate, receiptdate);

Each zone contains two blocks and stores the minimum and maximum of the orderkey,
shipdate, and receiptdate columns. Table 15-4 represents the zone map.

Table 15-4 Zone Map for lineitem Table

Block
Range

min
orderkey

max
orderkey

min
shipdate

max
shipdate

min
receiptdate

max
receiptdate

1-2 1 4 1-1-2011 1-5-2011 1-5-2011 1-10-2011

3-4 5 8 1-10-2011 1-15-2011 1-15-2011 1-30-2011

When you execute the following query, the database can read the zone map and then scan
only blocks 1 and 2 because the date 1-3-2011 falls between the minimum and maximum
dates:

SELECT * FROM lineitem WHERE shipdate = '1-3-2011';

15.4.1.2 Pruning Partitioned Tables Using Zone Maps and Attribute Clustering
This following statement creates a zone map, with attribute clustering, on a partitioned table:

CREATE TABLE sales
(
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,

Chapter 15
Performing Pruning Using Zone Maps

15-23

 amount_sold NUMBER(10,2)
)
CLUSTERING sales JOIN products ON (sales.prod_id = products.prod_id)
 BY LINEAR ORDER (products.prod_id)
 WITH MATERIALIZED ZONEMAP (sales_zmap)
PARTITION BY HASH (amount_sold)
 (PARTITION p1, PARTITION p2);

Figure 15-4 illustrates creating zone maps for the partitioned table sales. For each of the five
zones, the zone map will store the minimum and maximum of the columns tracked in the zone
map. If a predicate is outside the minimum and maximum for a stored column of a given zone,
then this zone does not have to be read. As an example, if zone Z4 tracks a minimum of 10
and a maximum of 100 for a column prod_id, then a predicate prod_id = 200 will never have
any matching records in this zone, so zone Z4 will not be read.

For partitioned tables, pruning can happen both on a partition as well as zone level. If the
aggregated partition-level information in the zone maps rules out any matching data for a given
set of predicates, then the whole partition will be pruned; otherwise, pruning for the partition will
happen on a per zone level.

Figure 15-4 Zone Map for a Partitioned Fact Table

Fact Table
Sales

Zonemap
sales_zmap

Z1

Z2

Z3

Z4

Z5

Z1

Z2

Z3

Z4

Z5

P1

P2

15.4.2 Examples: Performing Pruning with Zone Maps and Attribute
Clustering

This section provides examples on performing pruning using zone maps and attribute
clustering. The examples are based on the my_sales table that is created as shown in
Example 15-16.

Chapter 15
Performing Pruning Using Zone Maps

15-24

Example 15-16 Creating the my_sales Table

The my_sales table is a join attribute clustered table that contains a zone map. It is based on
the sales tables in the SH schema and is created using the following statement:

CREATE TABLE my_sales
PARTITION BY LIST (channel_id)
 (PARTITION mysales_chan_c VALUES ('C'),
 PARTITION mysales_chan_i VALUES ('I'),
 PARTITION mysales_chan_p VALUES ('P'),
 PARTITION mysales_chan_s VALUES ('S'),
 PARTITION mysales_chan_t VALUES ('T'))
CLUSTERING
 my_sales JOIN customers ON (my_sales.cust_id = customers.cust_id)
 BY INTERLEAVED ORDER ((my_sales.time_id),
 (customers.country_id,
 customers.cust_state_province,
 customers.cust_city))
 WITH MATERIALIZED ZONEMAP (mysales_zmap)
AS SELECT * FROM sales;

This section contains the following topics:

• Example: Partitions and Table Scan Pruning

• Example: Zone Map Join Pruning

15.4.2.1 Example: Partitions and Table Scan Pruning
This example illustrates how zone maps can prune zones and partitions (or sub-partitions in a
composite-partitioned table).

1. Create the my_sales table. Example 15-16 contains the syntax used to create this table.

2. Use the following statement to query the my_sales table joined with the customers
dimension:

SELECT c.cust_city, SUM(quantity_sold)
 FROM my_sales s, customers c
 WHERE s.cust_id = c.cust_id
 AND c.country_id = 'US'
 AND c.cust_state_province = 'CA'
 AND s.promo_id < 50
 GROUP BY c.cust_city;

3. Display the plan using the following statement:

SELECT *
FROM TABLE(dbms_xplan.display_cursor(FORMAT => 'BASIC PREDICATE PARTITION'));

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
1	HASH GROUP BY			
* 2	HASH JOIN			
3	JOIN FILTER CREATE	:BF0000		
* 4	TABLE ACCESS FULL	CUSTOMERS		
5	JOIN FILTER USE	:BF0000		
6	PARTITION LIST ITERATOR		KEY(ZM)	KEY(ZM)
* 7	TABLE ACCESS FULL WITH ZONEMAP	MY_SALES	KEY(ZM)	KEY(ZM)

Chapter 15
Performing Pruning Using Zone Maps

15-25

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

 2 - access("S"."CUST_ID"="C"."CUST_ID")
 4 - filter(("C"."CUST_STATE_PROVINCE"='CA' AND
 "C"."COUNTRY_ID"='US'))
 7 - filter((SYS_ZMAP_FILTER('/* ZM_PRUNING */ SELECT "ZONE_ID$",
 CASE WHEN BITAND(zm."ZONE_STATE$",1)=1 THEN 1 ELSE CASE WHEN
 (zm."MIN_2_COUNTRY_ID" > :1 OR zm."MAX_2_COUNTRY_ID" < :2 OR
 zm."MIN_3_CUST_STATE_PROVINCE" > :3 OR zm."MAX_3_CUST_STATE_PROVINCE" <
 :4) THEN 3 ELSE 2 END END FROM "SH"."MYSALES_ZMAP" zm WHERE
 zm."ZONE_LEVEL$"=0 ORDER BY zm."ZONE_ID$"',SYS_OP_ZONE_ID(ROWID),'US','U
 S','CA','CA')<3 AND "S"."PROMO_ID"<50 AND
 SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID")))

Line 7 illustrates that a zone map is being used. Note the zone map partition list iterator
“KEY(ZM)".

15.4.2.2 Example: Zone Map Join Pruning
This example illustrates join pruning using zone maps and attribute clustering. If the primary
key of a dimension comprises of dimension hierarchy values, it is sufficient to cluster the fact
table by the corresponding foreign key. In this example, times.time_id comprises of
(calendar_year, calendar_month_number, day_number_in_month). Thus, time_id translates to
the calendar time hierarchy as well as the fiscal time hierarchy. You can prune the join between
times and my_sales when there are predicates for either the fiscal or calendar hierarchies.

1. Create the my_sales table. Example 15-16 contains the syntax used to create this table.

2. Query the my_sales table joined with times using the following statement:

SELECT SUM(quantity_sold)
FROM my_sales s, times tWHERE s.time_id = t.time_id AND t.calendar_year = '1999';

3. Display the plan using the following statement:

SELECT *
FROM TABLE(dbms_xplan.display_cursor(FORMAT => 'BASIC PREDICATE PARTITION'));

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
1	SORT AGGREGATE			
* 2	HASH JOIN			
3	JOIN FILTER CREATE	:BF0000		
* 4	TABLE ACCESS FULL	TIMES		
5	JOIN FILTER USE	:BF0000		
6	PARTITION LIST ALL		1	5
* 7	TABLE ACCESS FULL WITH ZONEMAP	MY_SALES	1	5

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT
--
 2 - access("S"."TIME_ID"="T"."TIME_ID")
 4 - filter("T"."CALENDAR_YEAR"=1999)
 7 - filter((SYS_ZMAP_FILTER('/* ZM_PRUNING */ SELECT "ZONE_ID$",
 CASE WHEN BITAND(zm."ZONE_STATE$",1)=1 THEN 1 ELSE CASE WHEN

Chapter 15
Performing Pruning Using Zone Maps

15-26

 ((ORA_RAWCOMPARE(zm."MIN_1_TIME_ID",:1,8)>0 OR
 ORA_RAWCOMPARE(zm."MAX_1_TIME_ID",:2,8)<0)) THEN 3 ELSE 2 END END FROM
 "SH"."MYSALES_ZMAP" zm WHERE zm."ZONE_LEVEL$"=0 ORDER BY
 zm."ZONE_ID$"',SYS_OP_ZONE_ID(ROWID),SYSVARCOL,SYSVARCOL)<3 AND
 SYS_OP_BLOOM_FILTER(:BF0000,"S"."TIME_ID")))

Line 7 illustrates that a zone map is being used, joining on matching time_id zones.

15.5 Viewing Zone Map Information
Information about zone maps and their measures is stored in data dictionary views.

This section contains the following topics:

• Viewing Details of Zone Maps in the Database

• Viewing the Measures of a Zone Map

15.5.1 Viewing Details of Zone Maps in the Database
Use one of the following data dictionary views to display information about the zone maps in
the database:

• DBA_ZONEMAPS to display all zone maps in the database

• ALL_ZONEMAPS to display zone maps that are accessible to the user

• USER_ZONEMAPS to display zone maps that are owned by the user

The following query displays the name, base table, type, refresh mode, and staleness of the
zone maps owned by the current user and indicates if zone maps were created with attribute
clustering:

SELECT zonemap_name,fact_table,hierarchical,with_clustering,refresh_mode,stale
 FROM USER_ZONEMAPS;

ZONEMAP_NAME FACT_TABLE HIERARCHICAL WITH_CLUSTERING REFRESH_MODE STALE
------------ ---------- ------------ --------------- ------------ -----
ZMAP$_MY_SALES MY_SALES NO YES LOAD DATAMOVEMENT NO

The following query displays the status of all zone maps that are accessible to the user. Zone
maps with PRUNING disabled are not used for I/O pruning. Zone maps marked invalid need to
be recompiled because the structure of the underlying base tables has changed.

SQL> SELECT zonemap_name,pruning,refresh_method,invalid,complie_state
 FROM all_zonemaps;

ZONEMAP_NAME PRUNING REFRESH_METHOD INVALID UNUSABLE COMPILE_STATE
------------ --------- -------------- ------- ------ -------------
SALES_ZMAP ENABLED FORCE NO NO VALID
ZMAP$_MY_SALES DISABLED FORCE NO NO VALID

15.5.2 Viewing the Measures of a Zone Map
Use one of the following views to display information about the measures in a zone map:

• DBA_ZONEMAP_MEASURES to display the measures for all zone maps in the database

• ALL_ZONEMAP_MEASURES to display the measures for zone maps that are accessible to the
user

Chapter 15
Viewing Zone Map Information

15-27

• USER_ZONEMAP_MEASURES to display the measures for zone maps that are owned by the
user

The following query displays the zone map, measure, and column whose MIN/MAX values are
maintained for each zone that are accessible to the current user:

SELECT zonemap_name, measure, agg_function
FROM ALL_ZONEMAP_MEASURES;

ZONEMAP_NAME MEASURE AGG_FUNCTION
--------------- -------------------------- -------------
ZMAP$_MY_SALES "SH"."MY_SALES"."PROD_ID" MAX
ZMAP$_MY_SALES "SH"."MY_SALES"."PROD_ID" MIN
ZMAP$_MY_SALES "SH"."MY_SALES"."CUST_ID" MAX
ZMAP$_MY_SALES "SH"."MY_SALES"."CUST_ID" MIN

Chapter 15
Viewing Zone Map Information

15-28

Part III
Data Movement/ETL

This section discusses the tasks necessary for managing a data warehouse.

It contains the following chapters:

• Data Movement/ETL Overview

• Extraction in Data Warehouses

• Transportation in Data Warehouses

• Loading and Transformation in Data Warehouses

16
Data Movement/ETL Overview

This chapter discusses the process of extracting, transporting, transforming, and loading data
in a data warehousing environment. It includes the following topics:

• Overview of ETL in Data Warehouses

• ETL Tools for Data Warehouses

16.1 Overview of ETL in Data Warehouses
You must load your data warehouse regularly so that it can serve its purpose of facilitating
business analysis. To do this, data from one or more operational systems must be extracted
and copied into the data warehouse. The challenge in data warehouse environments is to
integrate, rearrange and consolidate large volumes of data over many systems, thereby
providing a new unified information base for business intelligence.

The process of extracting data from source systems and bringing it into the data warehouse is
commonly called ETL, which stands for extraction, transformation, and loading. Note that ETL
refers to a broad process, and not three well-defined steps. The acronym ETL is perhaps too
simplistic, because it omits the transportation phase and implies that each of the other phases
of the process is distinct. Nevertheless, the entire process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not
necessarily unique to data warehouse environments: a wide variety of proprietary applications
and database systems are the IT backbone of any enterprise. Data has to be shared between
applications or systems, trying to integrate them, giving at least two applications the same
picture of the world. This data sharing was mostly addressed by mechanisms similar to what is
now called ETL

16.1.1 ETL Basics in Data Warehousing
What happens during the ETL process? The following tasks are the main actions in the
process:

• Extraction of Data in Data Warehouses

• Transportation of Data in Data Warehouses

16.1.1.1 Extraction of Data in Data Warehouses
During extraction, the desired data is identified and extracted from many different sources,
including database systems and applications. Very often, it is not possible to identify the
specific subset of interest, therefore more data than necessary has to be extracted, so the
identification of the relevant data will be done at a later point in time. Depending on the source
system's capabilities (for example, operating system resources), some transformations may
take place during this extraction process. The size of the extracted data varies from hundreds
of kilobytes up to gigabytes, depending on the source system and the business situation. The
same is true for the time delta between two (logically) identical extractions: the time span may
vary between days/hours and minutes to near real-time. Web server log files, for example, can
easily grow to hundreds of megabytes in a very short period.

16-1

16.1.1.2 Transportation of Data in Data Warehouses
After data is extracted, it has to be physically transported to the target system or to an
intermediate system for further processing. Depending on the chosen way of transportation,
some transformations can be done during this process, too. For example, a SQL statement
which directly accesses a remote target through a gateway can concatenate two columns as
part of the SELECT statement.

The emphasis in many of the examples in this section is scalability. Many long-time users of
Oracle Database are experts in programming complex data transformation logic using PL/SQL.
These chapters suggest alternatives for many such data manipulation operations, with a
particular emphasis on implementations that take advantage of Oracle's new SQL functionality,
especially for ETL and the parallel query infrastructure.

16.2 ETL Tools for Data Warehouses
Designing and maintaining the ETL process is often considered one of the most difficult and
resource-intensive portions of a data warehouse project. Many data warehousing projects use
ETL tools to manage this process. Oracle Data Integrator (ODI), for example, provides ETL
capabilities and takes advantage of inherent database abilities. Other data warehouse builders
create their own ETL tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other tasks that
are important for a successful ETL implementation as part of the daily operations of the data
warehouse and its support for further enhancements. Besides the support for designing a data
warehouse and the data flow, these tasks are typically addressed by ETL tools such as ODI.

Oracle is not an ETL tool and does not provide a complete solution for ETL. However, Oracle
does provide a rich set of capabilities that can be used by both ETL tools and customized ETL
solutions. Oracle offers techniques for transporting data between Oracle databases, for
transforming large volumes of data, and for quickly loading new data into a data warehouse.

16.2.1 Daily Operations in Data Warehouses
The successive loads and transformations must be scheduled and processed in a specific
order. Depending on the success or failure of the operation or parts of it, the result must be
tracked and subsequent, alternative processes might be started. The control of the progress as
well as the definition of a business workflow of the operations are typically addressed by ETL
tools such as Oracle Data Integrator (ODI).

16.2.2 Evolution of the Data Warehouse
As the data warehouse is a living IT system, sources and targets might change. Those
changes must be maintained and tracked through the lifespan of the system without
overwriting or deleting the old ETL process flow information. To build and keep a level of trust
about the information in the warehouse, the process flow of each individual record in the
warehouse can be reconstructed at any point in time in the future in an ideal case.

Chapter 16
ETL Tools for Data Warehouses

16-2

17
Extraction in Data Warehouses

This chapter discusses extraction, which is the process of taking data from an operational
system and moving it to your data warehouse or staging system. The chapter discusses:

• Overview of Extraction in Data Warehouses

• Introduction to Extraction Methods in Data Warehouses

• Data Warehousing Extraction Examples

17.1 Overview of Extraction in Data Warehouses
Extraction is the operation of extracting data from a source system for further use in a data
warehouse environment. This is the first step of the ETL process. After the extraction, this data
can be transformed and loaded into the data warehouse.

The source systems for a data warehouse are typically transaction processing applications.
For example, one of the source systems for a sales analysis data warehouse might be an
order entry system that records all of the current order activities.

Designing and creating the extraction process is often one of the most time-consuming tasks in
the ETL process and, indeed, in the entire data warehousing process. The source systems
might be very complex and poorly documented, and thus determining which data needs to be
extracted can be difficult. The data has to be extracted normally not only once, but several
times in a periodic manner to supply all changed data to the data warehouse and keep it up-to-
date. Moreover, the source system typically cannot be modified, nor can its performance or
availability be adjusted, to accommodate the needs of the data warehouse extraction process.

These are important considerations for extraction and ETL in general. This chapter, however,
focuses on the technical considerations of having different kinds of sources and extraction
methods. It assumes that the data warehouse team has already identified the data that will be
extracted, and discusses common techniques used for extracting data from source databases.

Designing this process means making decisions about the following two main aspects:

• Which extraction method do I choose?

This influences the source system, the transportation process, and the time needed for
refreshing the warehouse.

• How do I provide the extracted data for further processing?

This influences the transportation method, and the need for cleaning and transforming the
data.

17.2 Introduction to Extraction Methods in Data Warehouses
The extraction method you should choose is highly dependent on the source system and also
from the business needs in the target data warehouse environment. Very often, there is no
possibility to add additional logic to the source systems to enhance an incremental extraction
of data due to the performance or the increased workload of these systems. Sometimes even
the customer is not allowed to add anything to an out-of-the-box application system.

17-1

This section contains the following topics:

• Logical Extraction Methods

• Physical Extraction Methods

• Change Tracking Methods

17.2.1 Logical Extraction Methods
There are two types of logical extraction:

• Full Extraction

• Incremental Extraction

Full Extraction

The data is extracted completely from the source system. Because this extraction reflects all
the data currently available on the source system, there's no need to keep track of changes to
the data source since the last successful extraction. The source data will be provided as-is and
no additional logical information (for example, timestamps) is necessary on the source site. An
example for a full extraction may be an export file of a distinct table or a remote SQL statement
scanning the complete source table.

Incremental Extraction

At a specific point in time, only t the data that has changed since a well-defined event back in
history is extracted. This event may be the last time of extraction or a more complex business
event like the last booking day of a fiscal period. To identify this delta change there must be a
possibility to identify all the changed information since this specific time event. This information
can be either provided by the source data itself such as an application column, reflecting the
last-changed timestamp or a change table where an appropriate additional mechanism keeps
track of the changes besides the originating transactions. In most cases, using the latter
method means adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the extraction
process. Instead, entire tables from the source systems are extracted to the data warehouse or
staging area, and these tables are compared with a previous extract from the source system to
identify the changed data. This approach may not have significant impact on the source
systems, but it clearly can place a considerable burden on the data warehouse processes,
particularly if the data volumes are large.

17.2.2 Physical Extraction Methods
Depending on the chosen logical extraction method and the capabilities and restrictions on the
source side, the extracted data can be physically extracted by two mechanisms. The data can
either be extracted online from the source system or from an offline structure. Such an offline
structure might already exist or it might be generated by an extraction routine.

There are the following methods of physical extraction:

• Online Extraction

• Offline Extraction

Online Extraction

The data is extracted directly from the source system itself. The extraction process can
connect directly to the source system to access the source tables themselves or to an

Chapter 17
Introduction to Extraction Methods in Data Warehouses

17-2

intermediate system that stores the data in a preconfigured manner (for example, snapshot
logs or change tables). Note that the intermediate system is not necessarily physically different
from the source system.

With online extractions, you must consider whether the distributed transactions are using
original source objects or prepared source objects.

Offline Extraction

The data is not extracted directly from the source system but is staged explicitly outside the
original source system. The data already has an existing structure (for example, redo logs,
archive logs or transportable tablespaces) or was created by an extraction routine.

You should consider the following structures:

• Flat files

Data in a defined, generic format. Additional information about the source object is
necessary for further processing.

• Dump files

Oracle-specific format. Information about the containing objects may or may not be
included, depending on the chosen utility.

• Redo and archive logs

Information is in a special, additional dump file.

• Transportable tablespaces

A powerful way to extract and move large volumes of data between Oracle databases. A
more detailed example of using this feature to extract and transport data is provided in
Transportation in Data Warehouses. Oracle recommends that you use transportable
tablespaces whenever possible, because they can provide considerable advantages in
performance and manageability over other extraction techniques.

See Oracle Database Utilities for more information on using export/import.

17.2.3 Change Tracking Methods
An important consideration for extraction is incremental extraction, also called change tracking.
If a data warehouse extracts data from an operational system on a nightly basis, then the data
warehouse requires only the data that has changed since the last extraction (that is, the data
that has been modified in the past 24 hours). Change tracking is also the key-enabling
technology for providing near real-time, or on-time, data warehousing.

When it is possible to efficiently identify and extract only the most recently changed data, the
extraction process (and all downstream operations in the ETL process) can be much more
efficient, because it must extract a much smaller volume of data. Unfortunately, for many
source systems, identifying the recently modified data may be difficult or intrusive to the
operation of the system. Change tracking is typically the most challenging technical issue in
data extraction.

Because change tracking is often desirable as part of the extraction process, this section
describes several techniques for implementing a self-developed change capture on Oracle
Database source systems:

• Timestamps

• Partitioning

• Triggers

Chapter 17
Introduction to Extraction Methods in Data Warehouses

17-3

These techniques are based upon the characteristics of the source systems, or may require
modifications to the source systems. Thus, each of these techniques must be carefully
evaluated by the owners of the source system prior to implementation.

Each of these techniques can work in conjunction with the data extraction technique discussed
previously. For example, timestamps can be used whether the data is being unloaded to a file
or accessed through a distributed query.

Timestamps

The tables in some operational systems have timestamp columns. The timestamp specifies the
time and date that a given row was last modified. If the tables in an operational system have
columns containing timestamps, then the latest data can easily be identified using the
timestamp columns. For example, the following query might be useful for extracting today's
data from an orders table:

SELECT * FROM orders
WHERE TRUNC(CAST(order_date AS date),'dd') =
 TO_DATE(SYSDATE,'dd-mon-yyyy');

If the timestamp information is not available in an operational source system, you are not
always able to modify the system to include timestamps. Such modification would require, first,
modifying the operational system's tables to include a new timestamp column and then
creating a trigger to update the timestamp column following every operation that modifies a
given row.

Partitioning

Some source systems might use range partitioning, such that the source tables are partitioned
along a date key, which allows for easy identification of new data. For example, if you are
extracting from an orders table, and the orders table is partitioned by week, then it is easy to
identify the current week's data.

Triggers

Triggers can be created in operational systems to keep track of recently updated records. They
can then be used in conjunction with timestamp columns to identify the exact time and date
when a given row was last modified. You do this by creating a trigger on each source table that
requires change data capture. Following each DML statement that is executed on the source
table, this trigger updates the timestamp column with the current time. Thus, the timestamp
column provides the exact time and date when a given row was last modified.

A similar internalized trigger-based technique is used for Oracle materialized view logs. These
logs are used by materialized views to identify changed data, and these logs are accessible to
end users. However, the format of the materialized view logs is not documented and might
change over time.

Materialized view logs rely on triggers, but they provide an advantage in that the creation and
maintenance of this change-data system is largely managed by the database.

Trigger-based techniques might affect performance on the source systems, and this impact
should be carefully considered prior to implementation on a production source system.

17.3 Data Warehousing Extraction Examples
You can extract data in two ways:

• Extraction Using Data Files

Chapter 17
Data Warehousing Extraction Examples

17-4

• Extraction Through Distributed Operations

17.3.1 Extraction Using Data Files
Most database systems provide mechanisms for exporting or unloading data from the internal
database format into flat files. Extracts from mainframe systems often use COBOL programs,
but many databases, and third-party software vendors, provide export or unload utilities.

Data extraction does not necessarily mean that entire database structures are unloaded in flat
files. In many cases, it may be appropriate to unload entire database tables or objects. In other
cases, it may be more appropriate to unload only a subset of a given table such as the
changes on the source system since the last extraction or the results of joining multiple tables
together. Different extraction techniques vary in their capabilities to support these two
scenarios.

When the source system is an Oracle database, several alternatives are available for
extracting data into files:

• Extracting into Flat Files Using SQL*Plus

• Extracting into Flat Files Using OCI or Pro*C Programs

• Exporting into Export Files Using the Export Utility

• Extracting into Export Files Using External Tables

17.3.1.1 Extracting into Flat Files Using SQL*Plus
The most basic technique for extracting data is to execute a SQL query in SQL*Plus and direct
the output of the query to a file. For example, to extract a flat file, country_city.log, with the
pipe sign as delimiter between column values, containing a list of the cities in the US in the
tables countries and customers, the following SQL script could be run:

SET echo off SET pagesize 0 SPOOL country_city.log
SELECT distinct t1.country_name ||'|'|| t2.cust_city
FROM countries t1, customers t2 WHERE t1.country_id = t2.country_id
AND t1.country_name= 'United States of America';
SPOOL off

The exact format of the output file can be specified using SQL*Plus system variables.

This extraction technique offers the advantage of storing the result in a customized format.
Note that, using the external table data pump unload facility, you can also extract the result of
an arbitrary SQL operation. The example previously extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent SQL*Plus
sessions, each session running a separate query representing a different portion of the data to
be extracted. For example, suppose that you wish to extract data from an orders table, and
that the orders table has been range partitioned by month, with partitions orders_jan1998,
orders_feb1998, and so on. To extract a single year of data from the orders table, you could
initiate 12 concurrent SQL*Plus sessions, each extracting a single partition. The SQL script for
one such session could be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_jan1998);
SPOOL OFF

These 12 SQL*Plus processes would concurrently spool data to 12 separate files. You can
then concatenate them if necessary (using operating system utilities) following the extraction. If
you are planning to use SQL*Loader for loading into the target, these 12 files can be used as is

Chapter 17
Data Warehousing Extraction Examples

17-5

for a parallel load with 12 SQL*Loader sessions. See Transportation in Data Warehouses for
an example.

Even if the orders table is not partitioned, it is still possible to parallelize the extraction either
based on logical or physical criteria. The logical method is based on logical ranges of column
values, for example:

SELECT ... WHERE order_date
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary, it is
possible to identify the Oracle Database data blocks that make up the orders table. Using this
information, you could then derive a set of rowid-range queries for extracting data from the
orders table:

SELECT * FROM orders WHERE rowid BETWEEN value1 and value2;

Parallelizing the extraction of complex SQL queries is sometimes possible, although the
process of breaking a single complex query into multiple components can be challenging. In
particular, the coordination of independent processes to guarantee a globally consistent view
can be difficult. Unlike the SQL*Plus approach, using the external table data pump unload
functionality provides transparent parallel capabilities.

Note that all parallel techniques can use considerably more CPU and I/O resources on the
source system, and the impact on the source system should be evaluated before parallelizing
any extraction technique.

17.3.1.2 Extracting into Flat Files Using OCI or Pro*C Programs
OCI programs (or other programs using Oracle call interfaces, such as Pro*C programs), can
also be used to extract data. These techniques typically provide improved performance over
the SQL*Plus approach, although they also require additional programming. Like the SQL*Plus
approach, an OCI program can extract the results of any SQL query. Furthermore, the
parallelization techniques described for the SQL*Plus approach can be readily applied to OCI
programs as well.

When using OCI or SQL*Plus for extraction, you need additional information besides the data
itself. At minimum, you need information about the extracted columns. It is also helpful to know
the extraction format, which might be the separator between distinct columns.

17.3.1.3 Exporting into Export Files Using the Export Utility
The Export utility allows tables (including data) to be exported into Oracle Database export
files. Unlike the SQL*Plus and OCI approaches, which describe the extraction of the results of
a SQL statement, Export provides a mechanism for extracting database objects. Thus, Export
differs from the previous approaches in several important ways:

• The export files contain metadata as well as data. An export file contains not only the raw
data of a table, but also information on how to re-create the table, potentially including any
indexes, constraints, grants, and other attributes associated with that table.

• A single export file may contain a subset of a single object, many database objects, or
even an entire schema.

• Export cannot be directly used to export the results of a complex SQL query. Export can be
used only to extract subsets of distinct database objects.

• The Fxport utility can create Data Pump files locally. Also, in cases where the data is being
copied to an object store, the Export utility can copy the files directly into the object store.

Chapter 17
Data Warehousing Extraction Examples

17-6

• When importing into Oracle Database, the output of the Export utility must be processed
using the Import utility.

Oracle Database provides the original Export and Import utilities for backward compatibility and
the data pump export/import infrastructure for high-performant, scalable and parallel extraction.
See Oracle Database Utilities for further details.

17.3.1.4 Extracting into Export Files Using External Tables
In addition to the Export Utility, you can use external tables to extract the results from any
SELECT operation. The data is stored in the platform independent, Oracle-internal data pump
format and can be processed as regular external table on the target system.

The following example extracts the result of a join operation in parallel into the four specified
files. The only allowed external table type for extracting data is the Oracle-internal format
ORACLE_DATAPUMP.

CREATE DIRECTORY def_dir AS '/net/private/jdoe/WORK/FEATURES/et';
DROP TABLE extract_cust;
CREATE TABLE extract_cust
ORGANIZATION EXTERNAL
(TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir ACCESS PARAMETERS
(NOBADFILE NOLOGFILE)
LOCATION ('extract_cust1.exp', 'extract_cust2.exp', 'extract_cust3.exp',
 'extract_cust4.exp'))
PARALLEL 4 REJECT LIMIT UNLIMITED AS
SELECT c.*, co.country_name, co.country_subregion, co.country_region
FROM customers c, countries co where co.country_id=c.country_id;

The total number of extraction files specified limits the maximum degree of parallelism for the
write operation. Note that the parallelizing of the extraction does not automatically parallelize
the SELECT portion of the statement.

Unlike using any kind of export/import, the metadata for the external table is not part of the
created files when using the external table data pump unload. To extract the appropriate
metadata for the external table, use the DBMS_METADATA package, as illustrated in the following
statement:

SET LONG 2000
SELECT DBMS_METADATA.GET_DDL('TABLE','EXTRACT_CUST') FROM DUAL;

17.3.2 Extraction Through Distributed Operations
Using distributed-query technology, one Oracle database can directly query tables located in
various different source systems, such as another Oracle database or a legacy system
connected with the Oracle gateway technology. Specifically, a data warehouse or staging
database can directly access tables and data located in a connected source system. Gateways
are another form of distributed-query technology. Gateways allow an Oracle database (such as
a data warehouse) to access database tables stored in remote, non-Oracle databases. This is
the simplest method for moving data between two Oracle databases because it combines the
extraction and transformation into a single step, and requires minimal programming. However,
this is not always feasible.

Suppose that you wanted to extract a list of employee names with department names from a
source database and store this data into the data warehouse. Using an Oracle Net connection
and distributed-query technology, this can be achieved using a single SQL statement:

CREATE TABLE country_city AS SELECT distinct t1.country_name, t2.cust_city
FROM countries@source_db t1, customers@source_db t2

Chapter 17
Data Warehousing Extraction Examples

17-7

WHERE t1.country_id = t2.country_id
AND t1.country_name='United States of America';

This statement creates a local table in a data mart, country_city, and populates it with data
from the countries and customers tables on the source system.

This technique is ideal for moving small volumes of data. However, the data is transported from
the source system to the data warehouse through a single Oracle Net connection. Thus, the
scalability of this technique is limited. For larger data volumes, file-based data extraction and
transportation techniques are often more scalable and thus more appropriate.

See Also:

• Oracle Database Heterogeneous Connectivity User's Guide for more information
regarding distributed queries

• Oracle Database Concepts for more information regarding distributed queries

Chapter 17
Data Warehousing Extraction Examples

17-8

18
Transportation in Data Warehouses

The following topics provide information about transporting data into a data warehouse:

• Overview of Transportation in Data Warehouses

• Introduction to Transportation Mechanisms in Data Warehouses

18.1 Overview of Transportation in Data Warehouses
Transportation is the operation of moving data from one system to another system. In a data
warehouse environment, the most common requirements for transportation are in moving data
from:

• A source system to a staging database or a data warehouse database

• A staging database to a data warehouse

• A data warehouse to a data mart

Transportation is often one of the simpler portions of the ETL process, and can be integrated
with other portions of the process. For example, as shown in Extraction in Data Warehouses,
distributed query technology provides a mechanism for both extracting and transporting data.

18.2 Introduction to Transportation Mechanisms in Data
Warehouses

You have three basic choices for transporting data in warehouses:

• Transportation Using Flat Files

• Transportation Through Distributed Operations

• Transportation Using Transportable Tablespaces

18.2.1 Transportation Using Flat Files
The most common method for transporting data is by the transfer of flat files, using
mechanisms such as FTP or other remote file system access protocols. Data is unloaded or
exported from the source system into flat files using techniques discussed in Extraction in Data
Warehouses, and is then transported to the target platform using FTP or similar mechanisms.

Because source systems and data warehouses often use different operating systems and
database systems, using flat files is often the simplest way to exchange data between
heterogeneous systems with minimal transformations. However, even when transporting data
between homogeneous systems, flat files are often the most efficient and most easy-to-
manage mechanism for data transfer.

18-1

18.2.2 Transportation Through Distributed Operations
Distributed queries, either with or without gateways, can be an effective mechanism for
extracting data. These mechanisms also transport the data directly to the target systems, thus
providing both extraction and transformation in a single step. Depending on the tolerable
impact on time and system resources, these mechanisms can be well suited for both extraction
and transformation.

As opposed to flat file transportation, the success or failure of the transportation is recognized
immediately with the result of the distributed query or transaction.

See Also:

• Extraction in Data Warehouses for further information

18.2.3 Transportation Using Transportable Tablespaces
Oracle transportable tablespaces are the fastest way for moving large volumes of data
between two Oracle databases. Previous to the introduction of transportable tablespaces, the
most scalable data transportation mechanisms relied on moving flat files containing raw data.
These mechanisms required that data be unloaded or exported into files from the source
database, Then, after transportation, these files were loaded or imported into the target
database. Transportable tablespaces entirely bypass the unload and reload steps.

Using transportable tablespaces, Oracle data files (containing table data, indexes, and almost
every other Oracle database object) can be directly transported from one database to another.
Furthermore, like import and export, transportable tablespaces provide a mechanism for
transporting metadata in addition to transporting data.

Transportable tablespaces have some limitations: source and target systems must be running
Oracle8i (or higher), must use compatible character sets, and, before Oracle Database 10g,
must run on the same operating system. For details on how to transport tablespace between
operating systems, see Oracle Database Administrator's Guide.

The most common applications of transportable tablespaces in data warehouses are in moving
data from a staging database to a data warehouse, or in moving data from a data warehouse
to a data mart.

This section contains the following topics:

• Using Transportable Tablespaces to Transport Data into Data Warehouses: Example

• Other Uses of Transportable Tablespaces

18.2.3.1 Using Transportable Tablespaces to Transport Data into Data Warehouses:
Example

Suppose that you have a data warehouse containing sales data, and several data marts that
are refreshed monthly. Also suppose that you are going to move one month of sales data from
the data warehouse to the data mart.

Use the following steps to create a transportable tablespace:

1. Place the Data to be Transported into its own Tablespace

Chapter 18
Introduction to Transportation Mechanisms in Data Warehouses

18-2

2. Export the Metadata

3. Copy the Datafiles and Export File to the Target System

4. Import the Metadata

Place the Data to be Transported into its own Tablespace

The current month's data must be placed into a separate tablespace in order to be transported.
In this example, you have a tablespace ts_temp_sales, which holds a copy of the current
month's data. Using the CREATE TABLE ... AS SELECT statement, the current month's data can be
efficiently copied to this tablespace:

CREATE TABLE temp_jan_sales NOLOGGING TABLESPACE ts_temp_sales
AS SELECT * FROM sales
WHERE time_id BETWEEN '31-DEC-1999' AND '01-FEB-2000';

Following this operation, the tablespace ts_temp_sales is set to read-only:

ALTER TABLESPACE ts_temp_sales READ ONLY;

A tablespace cannot be transported unless there are no active transactions modifying the
tablespace. Setting the tablespace to read-only enforces this.

The tablespace ts_temp_sales may be a tablespace that has been especially created to
temporarily store data for use by the transportable tablespace features. Following "Copy the
Datafiles and Export File to the Target System", this tablespace can be set to read/write, and, if
desired, the table temp_jan_sales can be dropped, or the tablespace can be re-used for other
transportations or for other purposes.

In a given transportable tablespace operation, all of the objects in a given tablespace are
transported. Although only one table is being transported in this example, the tablespace
ts_temp_sales could contain multiple tables. For example, perhaps the data mart is refreshed
not only with the new month's worth of sales transactions, but also with a new copy of the
customer table. Both of these tables could be transported in the same tablespace. Moreover,
this tablespace could also contain other database objects such as indexes, which would also
be transported.

Additionally, in a given transportable-tablespace operation, multiple tablespaces can be
transported at the same time. This makes it easier to move very large volumes of data
between databases. Note, however, that the transportable tablespace feature can only
transport a set of tablespaces which contain a complete set of database objects without
dependencies on other tablespaces. For example, an index cannot be transported without its
table, nor can a partition be transported without the rest of the table. You can use the DBMS_TTS
package to check that a tablespace is transportable.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the DBMS_TTS package

In this step, you have copied the January sales data into a separate tablespace; however, in
some cases, it may be possible to leverage the transportable tablespace feature without even
moving data to a separate tablespace. If the sales table has been partitioned by month in the
data warehouse and if each partition is in its own tablespace, then it may be possible to directly
transport the tablespace containing the January data. Suppose the January partition,

Chapter 18
Introduction to Transportation Mechanisms in Data Warehouses

18-3

sales_jan2000, is located in the tablespace ts_sales_jan2000. Then the tablespace
ts_sales_jan2000 could potentially be transported, rather than creating a temporary copy of
the January sales data in the ts_temp_sales.

However, the same conditions must be satisfied in order to transport the tablespace
ts_sales_jan2000 as are required for the specially created tablespace. First, this tablespace
must be set to READ ONLY. Second, because a single partition of a partitioned table cannot be
transported without the remainder of the partitioned table also being transported, it is
necessary to exchange the January partition into a separate table (using the ALTER TABLE
statement) to transport the January data. The EXCHANGE operation is very quick, but the
January data will no longer be a part of the underlying sales table, and thus may be
unavailable to users until this data is exchanged back into the sales table after the export of
the metadata. The January data can be exchanged back into the sales table after you
complete the step "Copy the Datafiles and Export File to the Target System".

Export the Metadata

The Export utility is used to export the metadata describing the objects contained in the
transported tablespace. For our example scenario, the Export command could be:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=ts_temp_sales FILE=jan_sales.dmp

This operation generates an export file, jan_sales.dmp. The export file is small, because it
contains only metadata. In this case, the export file contains information describing the table
temp_jan_sales, such as the column names, column data type, and all other information that
the target Oracle database needs in order to access the objects in ts_temp_sales.

Copy the Datafiles and Export File to the Target System

Copy the data files that make up ts_temp_sales, as well as the export file jan_sales.dmp to
the data mart platform, using any transportation mechanism for flat files. Once the datafiles
have been copied, the tablespace ts_temp_sales can be set to READ WRITE mode if desired.

Import the Metadata

Once the files have been copied to the data mart, the metadata should be imported into the
data mart:

IMP TRANSPORT_TABLESPACE=y DATAFILES='/db/tempjan.f'
 TABLESPACES=ts_temp_sales FILE=jan_sales.dmp

At this point, the tablespace ts_temp_sales and the table temp_sales_jan are accessible in
the data mart. You can incorporate this new data into the data mart's tables.

You can insert the data from the temp_sales_jan table into the data mart's sales table in one of
two ways:

INSERT /*+ APPEND */ INTO sales SELECT * FROM temp_sales_jan;

Following this operation, you can delete the temp_sales_jan table (and even the entire
ts_temp_sales tablespace).

Alternatively, if the data mart's sales table is partitioned by month, then the new transported
tablespace and the temp_sales_jan table can become a permanent part of the data mart. The
temp_sales_jan table can become a partition of the data mart's sales table:

ALTER TABLE sales ADD PARTITION sales_00jan VALUES
 LESS THAN (TO_DATE('01-feb-2000','dd-mon-yyyy'));

Chapter 18
Introduction to Transportation Mechanisms in Data Warehouses

18-4

ALTER TABLE sales EXCHANGE PARTITION sales_00jan
 WITH TABLE temp_sales_jan INCLUDING INDEXES WITH VALIDATION;

18.2.3.2 Other Uses of Transportable Tablespaces
The previous example illustrates a typical scenario for transporting data in a data warehouse.
However, transportable tablespaces can be used for many other purposes. In a data
warehousing environment, transportable tablespaces should be viewed as a utility (much like
Import/Export or SQL*Loader), whose purpose is to move large volumes of data between
Oracle databases. When used in conjunction with parallel data movement operations such as
the CREATE TABLE ... AS SELECT and INSERT ... AS SELECT statements, transportable tablespaces
provide an important mechanism for quickly transporting data for many purposes.

Chapter 18
Introduction to Transportation Mechanisms in Data Warehouses

18-5

19
Loading and Transformation in Data
Warehouses

This chapter helps you create and manage a data warehouse, and discusses:

• Overview of Loading and Transformation in Data Warehouses

• Loading Mechanisms for Data Warehouses

• Transformation Mechanisms in Data Warehouses

• Error Logging and Handling Mechanisms

• Loading and Transformation Scenarios

19.1 Overview of Loading and Transformation in Data
Warehouses

Data transformations are often the most complex and, in terms of processing time, the most
costly part of the extraction, transformation, and loading (ETL) process. They can range from
simple data conversions to extremely complex data scrubbing techniques. Many, if not all, data
transformations can occur within an Oracle database, although transformations are often
implemented outside of the database (for example, on flat files) as well.

This chapter introduces techniques for implementing scalable and efficient data
transformations within the Oracle Database. The examples in this chapter are relatively simple.
Real-world data transformations are often considerably more complex. However, the
transformation techniques introduced in this chapter meet the majority of real-world data
transformation requirements, often with more scalability and less programming than alternative
approaches.

This chapter does not seek to illustrate all of the typical transformations that would be
encountered in a data warehouse, but to demonstrate the types of fundamental technology that
can be applied to implement these transformations and to provide guidance in how to choose
the best techniques.

19.1.1 Data Warehouses: Transformation Flow
From an architectural perspective, you can transform your data in the following ways:

• Multistage Data Transformation in Data Warehouses

• Pipelined Data Transformation in Data Warehouses

• Staging Area in Data Warehouses

19.1.1.1 Multistage Data Transformation in Data Warehouses
The data transformation logic for most data warehouses consists of multiple steps. For
example, in transforming new records to be inserted into a sales table, there may be separate
logical transformation steps to validate each dimension key.

19-1

Figure 19-1 offers a graphical way of looking at the transformation logic.

Figure 19-1 Multistage Data Transformation

Insert into sales
warehouse table

Convert source
product keys
to warehouse
product keys

Flat Files Table

new_sales_step1

new_sales_step2 new_sales_step3

sales

TableTable

Table

Load into staging
table

Validate customer
keys (lookup in
customer
dimension table)

When using Oracle Database as a transformation engine, a common strategy is to implement
each transformation as a separate SQL operation and to create a separate, temporary staging
table (such as the tables new_sales_step1 and new_sales_step2 in Figure 19-1) to store the
incremental results for each step. This load-then-transform strategy also provides a natural
checkpointing scheme to the entire transformation process, which enables the process to be
more easily monitored and restarted. However, a disadvantage to multistaging is that the
space and time requirements increase.

It may also be possible to combine many simple logical transformations into a single SQL
statement or single PL/SQL procedure. Doing so may provide better performance than
performing each step independently, but it may also introduce difficulties in modifying, adding,
or dropping individual transformations, as well as recovering from failed transformations.

19.1.1.2 Pipelined Data Transformation in Data Warehouses
The ETL process flow can be changed dramatically and the database becomes an integral part
of the ETL solution.

The new functionality renders some of the former necessary process steps obsolete while
some others can be remodeled to enhance the data flow and the data transformation to
become more scalable and non-interruptive. The task shifts from serial transform-then-load
process (with most of the tasks done outside the database) or load-then-transform process, to
an enhanced transform-while-loading.

Oracle offers a wide variety of new capabilities to address all the issues and tasks relevant in
an ETL scenario. It is important to understand that the database offers toolkit functionality
rather than trying to address a one-size-fits-all solution. The underlying database has to enable
the most appropriate ETL process flow for a specific customer need, and not dictate or
constrain it from a technical perspective. Figure 19-2 illustrates the new functionality, which is
discussed throughout later sections.

Chapter 19
Overview of Loading and Transformation in Data Warehouses

19-2

Figure 19-2 Pipelined Data Transformation

Insert into sales
warehouse table

Flat Files

External table

sales

Table

Validate customer
keys (lookup in
customer
dimension table)

Convert source
product keys
to warehouse
product keys

19.1.1.3 Staging Area in Data Warehouses
The overall speed of your load is determined by how quickly the raw data can be read from the
staging area and written to the target table in the database. It is highly recommended that you
stage your raw data across as many physical disks as possible to ensure the reading of the
raw data is not a bottleneck during the load.

An excellent place to stage the data is in an Oracle Database File System (DBFS). DBFS
creates a mountable file system which can be used to access files stored in the database as
SecureFiles LOBs. DBFS is similar to NFS in that it provides a shared network file system that
looks like a local file system. Oracle recommends that you create the DBFS in a separate
database from the data warehouse, and that the file system be mounted using the DIRECT_IO
option to avoid contention on the system page cache while moving the raw data files in and out
of the file system. More information on setting up DBFS can be found in Oracle Database
SecureFiles and Large Objects Developer's Guide.

19.1.2 About Batch Updates and Online Table Redefinition
You can optimize bulk updates to the table by using the EXECUTE_UPDATE procedure. Because
the updates are not logged in the redo log, performance is optimized.

The DBMS_REDEFINITION.EXECUTE_UPDATE procedure allows you to run UPDATE statements in
direct insert mode. Because redo is not logged during this operation, you cannot recover the
redefinition and data updates using media recovery. To maintain recoverability, it is
recommended that a database or tablespace backup be performed before the redefinition
begins.

See Also:

Oracle Database Administrator’s Guide

19.1.3 Overview of Monitoring ETL Operations
Because ETL can become complex and suffer from poor performance, Oracle Database
provides a user interface that enables you to monitor and report on database operations that
are part of an ETL plan.

Chapter 19
Overview of Loading and Transformation in Data Warehouses

19-3

A database operation is a user-defined logical object that contains a set of related database
tasks, for example an ETL processing job, defined by end users or application code. Each
database operation is uniquely identified by its name and execution ID and can be executed
multiple times.

Database operation monitoring is extremely useful for troubleshooting a suboptimally
performing job and helps to identify where and how much resources are being consumed at
any given step. It enables you to track related information, identify performance bottlenecks,
and reduce the time to tune database performance problems.You can begin a database
operation on an arbitrary session by specifying its session ID and serial number in the
DBMS_SQL_MONITOR.BEGIN_OPERATION function.

See Also:

Oracle Database SQL Tuning Guide

19.2 Loading Mechanisms for Data Warehouses
You can use the following mechanisms for loading a data warehouse:

• Loading a Data Warehouse with SQL*Loader

• Loading a Data Warehouse with External Tables

• Loading a Data Warehouse with OCI and Direct-Path APIs

• Loading a Data Warehouse with Export/Import

19.2.1 Loading a Data Warehouse with SQL*Loader
Before any data transformations can occur within the database, the raw data must become
accessible for the database. One approach is to load it into the database. Transportation in
Data Warehouses, discusses several techniques for transporting data to an Oracle data
warehouse. Perhaps the most common technique for transporting data is by way of flat files.

SQL*Loader is used to move data from flat files into an Oracle data warehouse. During this
data load, SQL*Loader can also be used to implement basic data transformations. When using
direct-path SQL*Loader, basic data manipulation, such as data type conversion and simple
NULL handling, can be automatically resolved during the data load. Most data warehouses use
direct-path loading for performance reasons.

The conventional-path loader provides broader capabilities for data transformation than a
direct-path loader: SQL functions can be applied to any column as those values are being
loaded. This provides a rich capability for transformations during the data load. However, the
conventional-path loader is slower than direct-path loader. For these reasons, the
conventional-path loader should be considered primarily for loading and transforming smaller
amounts of data.

Data warehouses can use direct path mode to run batch updates to avoid the overhead of
maintaining redo data. You can run batch updates on a table during online table redefinition.

The following is a simple example of a SQL*Loader control file to load data into the sales table
of the sh sample schema from an external file sh_sales.dat. The external flat file
sh_sales.dat consists of sales transaction data, aggregated on a daily level. Not all columns

Chapter 19
Loading Mechanisms for Data Warehouses

19-4

of this external file are loaded into sales. This external file is also used as a source for loading
the second fact table of the sh sample schema, which is done using an external table:

The following shows the control file (sh_sales.ctl) loading the sales table:

LOAD DATA INFILE sh_sales.dat APPEND INTO TABLE sales
FIELDS TERMINATED BY "|"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID, QUANTITY_SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

$ sqlldr control=sh_sales.ctl direct=true
Username:
Password:

In the case of SQL*Loader Express mode, you do not use a control file. Instead, it uses table
column definitions to determine input data types.

See Also:

• Oracle Database Utilities for more information.

Note that as described in Automatic Parallel Load of Table Data with SQL*Loader
in the Oracle Database Utilities guide, the SQL*Loader client can automatically
start a parallel direct path load for data without dividing the data into separate
files and starting multiple SQL*Loader clients. The data does not need to be on
the database server. Cloud users can employ this feature to load data in parallel
without having to move the data onto the cloud system (if sufficient network
bandwidth is available).

• Oracle Database Administrator’s Guide for information about bulk updates using
the DBMS_REDEFINITION package

19.2.1.1 Using SQL*Loader to Load From an Object Store
SQL*Loader can load data from files in an object store into Oracle Database tables.

Note:

To manage wallets, Oracle recommends that you use the orapki command line tool.

The loader must pass a CREDENTIAL parameter for authentication against the object store.

Before you start, use the orapki utility to create an Oracle Wallet if you do not already have
one that you want to use. You can specify any wallet path.

orapki wallet create -wallet /u01/app/oracle/product/wallet/ -pwd password -
auto_login

1. Create the CREDENTIAL.

Chapter 19
Loading Mechanisms for Data Warehouses

19-5

Use the mkstore utility to create the CREDENTIAL and the object store username and
password entries in the wallet.

a. Create the CREDENTIAL (credential_name) and at the same time add the username
(object_store_username) that will be authenticated by the object store:

mkstore -wrl wallet_location_directory -createEntry
oracle.sqlldr.credential.credential_name.username object_store_username

b. Add the password associated with the username.

mkstore -wrl wallet_location_directory -createEntry
oracle.sqlldr.credential.same_credential_name.password
object_store_user_password

This example creates CREDENTIAL cred1 for the user djones. In both command responses,
mkstore prompts for the wallet password.

mkstore -wrl /u01/app/oracle/product/wallet/ -createEntry
oracle.sqlldr.credential.cred1.username djones
Enter wallet password:
mkstore -wrl /u01/app/oracle/product/wallet/ -createEntry
oracle.sqlldr.credential.cred1.password Z!1A4z96
Enter wallet password:

2. Create a control file.
The INFILE parameter in the example below points to a CSV file in the object store. In this
case, the data from the file is loaded into the table "DEPTOS" in Oracle Database.

 LOAD DATA
 INFILE 'https://domain.example.com/v1/pkistore/dept.csv'
 truncate
 INTO TABLE DEPTOS
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (DEPTNO, DNAME, LOC)

Note that you can either provide the URL in the control file as shown above or set it as the
value of the DATA parameter in the sqldir command.

3. Run SQL*Loader.
Include the CREDENTIAL parameter in the sqldir command:

sqlldr sqlldr/test@cdb1_pdb6 dept.ctl credential=cred1 log=dept.log
external_table=not_used proxy=https://www.example.com:80

19.2.2 Loading a Data Warehouse with External Tables
Another approach for handling external data sources is using external tables. Oracle's external
table feature enables you to use external data as a virtual table that can be queried and joined
directly and in parallel without requiring the external data to be first loaded in the database. You
can then use SQL, PL/SQL, and Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation phase. The
transformation process can be merged with the loading process without any interruption of the

Chapter 19
Loading Mechanisms for Data Warehouses

19-6

data streaming. It is no longer necessary to stage the data inside the database for further
processing inside the database, such as comparison or transformation. For example, the
conversion functionality of a conventional load can be used for a direct-path INSERT AS SELECT
statement in conjunction with the SELECT from an external table. Starting in Oracle Database
12c, the database automatically gathers table statistics as part of a bulk-load operation (CTAS
and IAS) similar to how statistics are gathered when an index is created. By gathering statistics
during the data load, you avoid additional scan operations and provide the necessary statistics
as soon as the data becomes available to the users.

The main difference between external tables and regular tables is that externally organized
tables are read-only. No DML operations (UPDATE/INSERT/DELETE) are possible and no indexes
can be created on them.

External tables are mostly compliant with the existing SQL*Loader functionality and provide
superior functionality in most cases. External tables are especially useful for environments
where the complete external source has to be joined with existing database objects or when
the data has to be transformed in a complex manner. For example, unlike SQL*Loader, you
can apply any arbitrary SQL transformation and use the direct-path insert method. In addition,
you can specify a program to be executed (such as zcat) that processes files (such as
compressed data files) and enables Oracle Database to use the output (such as
uncompressed data files), which means you can load large amounts of compressed data
without first uncompressing it on a disk.

You can create an external table named sales_transactions_ext, representing the structure
of the complete sales transaction data, represented in the external file sh_sales.gz. The
product department is especially interested in a cost analysis on product and time. You thus
create a fact table named cost in the sh schema. The operational source data is the same as
for the sales fact table. However, because you are not investigating every dimensional
information that is provided, the data in the cost fact table has a coarser granularity than in the
sales fact table, for example, all different distribution channels are aggregated.

You cannot load the data into the cost fact table without applying the previously mentioned
aggregation of the detailed information, due to the suppression of some of the dimensions.

The external table framework offers a solution to solve this. Unlike SQL*Loader, where you
would have to load the data before applying the aggregation, you can combine the loading and
transformation within a single SQL DML statement, as shown in the following. You do not have
to stage the data temporarily before inserting into the target table.

The object directories must already exist, and point to the directory containing the sh_sales.gz
file as well as the directory containing the bad and log files.

CREATE TABLE sales_transactions_ext
(PROD_ID NUMBER, CUST_ID NUMBER,
 TIME_ID DATE, CHANNEL_ID NUMBER,
 PROMO_ID NUMBER, QUANTITY_SOLD NUMBER,
 AMOUNT_SOLD NUMBER(10,2), UNIT_COST NUMBER(10,2),
 UNIT_PRICE NUMBER(10,2))
ORGANIZATION external (TYPE oracle_loader
 DEFAULT DIRECTORY data_file_dir ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 PREPROCESSOR EXECDIR:'zcat'
 BADFILE log_file_dir:'sh_sales.bad_xt'
 LOGFILE log_file_dir:'sh_sales.log_xt'
 FIELDS TERMINATED BY "|" LDRTRIM
 (PROD_ID, CUST_ID,
 TIME_ID DATE(10) "YYYY-MM-DD",
 CHANNEL_ID, PROMO_ID, QUANTITY_SOLD, AMOUNT_SOLD,
 UNIT_COST, UNIT_PRICE))

Chapter 19
Loading Mechanisms for Data Warehouses

19-7

 location ('sh_sales.gz')
)REJECT LIMIT UNLIMITED;

The external table can now be used from within the database, accessing some columns of the
external data only, grouping the data, and inserting it into the costs fact table:

INSERT /*+ APPEND */ INTO COSTS
(TIME_ID, PROD_ID, UNIT_COST, UNIT_PRICE)
SELECT TIME_ID, PROD_ID, AVG(UNIT_COST), AVG(amount_sold/quantity_sold)
FROM sales_transactions_ext GROUP BY time_id, prod_id;

See Also:

• Oracle Database SQL Language Reference for a complete description of
external table syntax

• Oracle Database Utilities for usage examples

19.2.2.1 Using DBMS_CLOUD to Create External Tables for Object Store Data
The DBMS_CLOUD PL/SQL package enables you to connect the data warehouse to object
stores in the Cloud.

DBMS_CLOUD provides APIs to create external tables and enable access to data from files and
objects stored in the Cloud. You can load data from text, Parquet, and Avro files as well as
Data Pump files in the Cloud into external tables.

Authentication against the object store is acquired through a separately-created credential
object which includes a username and password. The object store administrator must provide
these credentials and provision the user with appropriate permissions to access data in the
store.

The package supports loading files from Oracle Object Storage, Microsoft Azure Blob Storage,
and Amazon S3.

See Also:

Database PL/SQL Packages and Types Reference, which describes the DBMS_CLOUD
APIs.

19.2.3 Loading a Data Warehouse with OCI and Direct-Path APIs
OCI and direct-path APIs are frequently used when the transformation and computation are
done outside the database and there is no need for flat file staging.

19.2.4 Loading a Data Warehouse with Export/Import
Export and import are used when the data is inserted as is into the target system. No complex
extractions are possible. See Extraction in Data Warehouses for further information.

Chapter 19
Loading Mechanisms for Data Warehouses

19-8

19.3 Transformation Mechanisms in Data Warehouses
You have the following choices for transforming data inside the database:

• Transforming Data Using SQL

• Transforming Data Using PL/SQL

• Transforming Data Using Table Functions

19.3.1 Transforming Data Using SQL
Once data is loaded into the database, data transformations can be executed using SQL
operations. There are four basic techniques for implementing SQL data transformations:

• CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

• Transforming Data Using UPDATE

• Transforming Data Using MERGE

• Transforming Data Using Multitable INSERT

19.3.1.1 CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT
The CREATE TABLE ... AS SELECT statement (CTAS) is a powerful tool for manipulating large sets
of data. As shown in the following example, many data transformations can be expressed in
standard SQL, and CTAS provides a mechanism for efficiently executing a SQL query and
storing the results of that query in a new database table. The INSERT /*+APPEND*/ ... AS SELECT
statement offers the same capabilities with existing database tables.

In a data warehouse environment, CTAS is typically run in parallel using NOLOGGING mode for
best performance.

A simple and common type of data transformation is data substitution. In a data substitution
transformation, some or all of the values of a single column are modified. For example, our
sales table has a channel_id column. This column indicates whether a given sales transaction
was made by a company's own sales force (a direct sale) or by a distributor (an indirect sale).

You may receive data from multiple source systems for your data warehouse. Suppose that
one of those source systems processes only direct sales, and thus the source system does not
know indirect sales channels. When the data warehouse initially receives sales data from this
system, all sales records have a NULL value for the sales.channel_id field. These NULL values
must be set to the proper key value. For example, you can do this efficiently using a SQL
function as part of the insertion into the target sales table statement. The structure of source
table sales_activity_direct is as follows:

DESC sales_activity_direct
Name Null? Type
------------ ----- ----------------
SALES_DATE DATE
PRODUCT_ID NUMBER
CUSTOMER_ID NUMBER
PROMOTION_ID NUMBER
AMOUNT NUMBER
QUANTITY NUMBER

Chapter 19
Transformation Mechanisms in Data Warehouses

19-9

The following SQL statement inserts data from sales_activity_direct into the sales table of
the sample schema, using a SQL function to truncate the sales date values to the midnight
time and assigning a fixed channel ID of 3.

INSERT /*+ APPEND NOLOGGING PARALLEL */
INTO sales SELECT product_id, customer_id, TRUNC(sales_date), 3,
 promotion_id, quantity, amount
FROM sales_activity_direct;

19.3.1.2 Transforming Data Using UPDATE
Another technique for implementing a data substitution is to use an UPDATE statement to modify
the sales.channel_id column. An UPDATE provides the correct result. However, if the data
substitution transformations require that a very large percentage of the rows (or all of the rows)
be modified, then, it may be more efficient to use a CTAS statement than an UPDATE.

19.3.1.3 Transforming Data Using MERGE
Oracle Database's merge functionality extends SQL, by introducing the SQL keyword MERGE, in
order to provide the ability to update or insert a row conditionally into a table or out of line
single table views. Conditions are specified in the ON clause. This is, besides pure bulk loading,
one of the most common operations in data warehouse synchronization.

Example 19-1 Merge Operation Using SQL

The following example discusses various implementations of a merge. It assumes that new
data for the dimension table products is propagated to the data warehouse and has to be
either inserted or updated. The table products_delta has the same structure as products.

MERGE INTO products t USING products_delta s
ON (t.prod_id=s.prod_id)
WHEN MATCHED THEN UPDATE SET
 t.prod_list_price=s.prod_list_price, t.prod_min_price=s.prod_min_price
WHEN NOT MATCHED THEN INSERT (prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_status,
 prod_list_price, prod_min_price)
VALUES (s.prod_id, s.prod_name, s.prod_desc, s.prod_subcategory,
 s.prod_subcategory_desc, s.prod_category, s.prod_category_desc,
 s.prod_status, s.prod_list_price, s.prod_min_price);

19.3.1.4 Transforming Data Using Multitable INSERT
Many times, external data sources have to be segregated based on logical attributes for
insertion into different target objects. It is also frequent in data warehouse environments to fan
out the same source data into several target objects. Multitable inserts provide a new SQL
statement for these kinds of transformations, where data can either end up in several or
exactly one target, depending on the business transformation rules. This insertion can be done
conditionally based on business rules or unconditionally.

It offers the benefits of the INSERT ... SELECT statement when multiple tables are involved as
targets. In doing so, it avoids the drawbacks of the two obvious alternatives. You either had to
deal with n independent INSERT … SELECT statements, thus processing the same source data n
times and increasing the transformation workload n times. Alternatively, you had to choose a
procedural approach with a per-row determination how to handle the insertion. This solution
lacked direct access to high-speed access paths available in SQL.

As with the existing INSERT ... SELECT statement, the new statement can be parallelized and
used with the direct-load mechanism for faster performance.

Chapter 19
Transformation Mechanisms in Data Warehouses

19-10

Example 19-2 Unconditional Insert

The following statement aggregates the transactional sales information, stored in
sales_activity_direct, on a daily basis and inserts into both the sales and the costs fact
table for the current day.

INSERT ALL
 INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, promotion_id, 3,
 product_cost, product_price)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, p.prod_min_price*0.8 AS product_cost, p.prod_list_price
 AS product_price
FROM sales_activity_direct s, products p
WHERE s.product_id = p.prod_id AND TRUNC(sales_date) = TRUNC(SYSDATE)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id, s.promotion_id,
 p.prod_min_price*0.8, p.prod_list_price;

Example 19-3 Conditional ALL Insert

The following statement inserts a row into the sales and costs tables for all sales transactions
with a valid promotion and stores the information about multiple identical orders of a customer
in a separate table cum_sales_activity. It is possible two rows will be inserted for some sales
transactions, and none for others.

INSERT ALL
WHEN promotion_id IN (SELECT promo_id FROM promotions) THEN
 INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, promotion_id, 3,
 product_cost, product_price)
WHEN num_of_orders > 1 THEN
 INTO cum_sales_activity VALUES (today, product_id, customer_id,
 promotion_id, quantity_per_day, amount_per_day, num_of_orders)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, COUNT(*) num_of_orders, p.prod_min_price*0.8
 AS product_cost, p.prod_list_price AS product_price
FROM sales_activity_direct s, products p
WHERE s.product_id = p.prod_id
AND TRUNC(sales_date) = TRUNC(SYSDATE)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id,
 s.promotion_id, p.prod_min_price*0.8, p.prod_list_price;

Example 19-4 Conditional FIRST Insert

The following statement inserts into an appropriate shipping manifest according to the total
quantity and the weight of a product order. An exception is made for high value orders, which
are also sent by express, unless their weight classification is too high. All incorrect orders, in
this simple example represented as orders without a quantity, are stored in a separate table. It
assumes the existence of appropriate tables large_freight_shipping, express_shipping,
default_shipping, and incorrect_sales_order.

INSERT FIRST WHEN (sum_quantity_sold > 10 AND prod_weight_class < 5) AND
sum_quantity_sold >=1) OR (sum_quantity_sold > 5 AND prod_weight_class > 5) THEN
 INTO large_freight_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class, sum_quantity_sold)
 WHEN sum_amount_sold > 1000 AND sum_quantity_sold >=1 THEN
 INTO express_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class,

Chapter 19
Transformation Mechanisms in Data Warehouses

19-11

 sum_amount_sold, sum_quantity_sold)
WHEN (sum_quantity_sold >=1) THEN INTO default_shipping VALUES
 (time_id, cust_id, prod_id, sum_quantity_sold)
ELSE INTO incorrect_sales_order VALUES (time_id, cust_id, prod_id)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
 SUM(amount_sold) AS sum_amount_sold,
 SUM(quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id AND s.time_id = TRUNC(SYSDATE)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Example 19-5 Mixed Conditional and Unconditional Insert

The following example inserts new customers into the customers table and stores all new
customers with cust_credit_limit higher then 4500 in an additional, separate table for further
promotions.

INSERT FIRST WHEN cust_credit_limit >= 4500 THEN INTO customers
 INTO customers_special VALUES (cust_id, cust_credit_limit)
 ELSE INTO customers
SELECT * FROM customers_new;

See Also:

Refreshing Materialized Views for more information regarding MERGE operations

19.3.2 Transforming Data Using PL/SQL
In a data warehouse environment, you can use procedural languages such as PL/SQL to
implement complex transformations in the Oracle Database. Whereas CTAS operates on entire
tables and emphasizes parallelism, PL/SQL provides a row-based approached and can
accommodate very sophisticated transformation rules. For example, a PL/SQL procedure
could open multiple cursors and read data from multiple source tables, combine this data using
complex business rules, and finally insert the transformed data into one or more target table. It
would be difficult or impossible to express the same sequence of operations using standard
SQL statements.

Using a procedural language, a specific transformation (or number of transformation steps)
within a complex ETL processing can be encapsulated, reading data from an intermediate
staging area and generating a new table object as output. A previously generated
transformation input table and a subsequent transformation will consume the table generated
by this specific transformation. Alternatively, these encapsulated transformation steps within
the complete ETL process can be integrated seamlessly, thus streaming sets of rows between
each other without the necessity of intermediate staging. You can use table functions to
implement such behavior.

19.3.3 Transforming Data Using Table Functions
Table functions provide the support for pipelined and parallel execution of transformations
implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier can be done without
requiring the use of intermediate staging tables, which interrupt the data flow through various
transformations steps. Detailed information about table functions is provided in "What is a
Table Function?".

Chapter 19
Transformation Mechanisms in Data Warehouses

19-12

19.3.3.1 What is a Table Function?
A table function is defined as a function that can produce a set of rows as output. Additionally,
table functions can take a set of rows as input. Prior to Oracle9i, PL/SQL functions:

• Could not take cursors as input.

• Could not be parallelized or pipelined.

Now, functions are not limited in these ways. Table functions extend database functionality by
allowing:

• Multiple rows to be returned from a function.

• Results of SQL subqueries (that select multiple rows) to be passed directly to functions.

• Functions take cursors as input.

• Functions can be parallelized.

• Returning result sets incrementally for further processing as soon as they are created. This
is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java or C
using the Oracle Data Cartridge Interface (ODCI).

See Also:

• Oracle Database PL/SQL Language Reference for further information

• Oracle Database Data Cartridge Developer's Guide for further information

Figure 19-3 illustrates a typical aggregation where you input a set of rows and output a set of
rows, in that case, after performing a SUM operation.

Figure 19-3 Table Function Example

In

Region Sales

10
20
25
5

10
10
. . .

North
South
North
East
West
South
. . .

Out

Region Sum of Sales

35
30
10
5

North
South
West
East

Table
Function

The pseudocode for this operation would be similar to:

INSERT INTO Out SELECT * FROM ("Table Function"(SELECT * FROM In));

The table function takes the result of the SELECT on In as input and delivers a set of records in
a different format as output for a direct insertion into Out.

Chapter 19
Transformation Mechanisms in Data Warehouses

19-13

Additionally, a table function can fan out data within the scope of an atomic transaction. This
can be used for many occasions like an efficient logging mechanism or a fan out for other
independent transformations. In such a scenario, a single staging table is needed.

Figure 19-4 Pipelined Parallel Transformation with Fanout

Source

tf1 tf2

tf3

Target

Stage Table 1

The pseudocode for this would be similar to:

INSERT INTO target SELECT * FROM (tf2(SELECT *
FROM (tf1(SELECT * FROM source))));

This inserts into target and, as part of tf1, into Stage Table 1 within the scope of an atomic
transaction.

INSERT INTO target SELECT * FROM tf3(SELT * FROM stage_table1);

See Also:

• Oracle Database PL/SQL Language Reference for details about table functions

• Oracle Database Data Cartridge Developer's Guide for details about tables
functions implemented in languages other than PL/SQL

Objects to Create Before Running Table Function Examples

The following examples demonstrate the fundamentals of table functions, without the usage of
complex business rules implemented inside those functions. They are chosen for
demonstration purposes only, and are all implemented in PL/SQL.

Table functions return sets of records and can take cursors as input. Besides the sh sample
schema, you have to set up the following database objects before using the examples:

CREATE TYPE product_t AS OBJECT (
 prod_id NUMBER(6)
 , prod_name VARCHAR2(50)
 , prod_desc VARCHAR2(4000)
 , prod_subcategory VARCHAR2(50)
 , prod_subcategory_desc VARCHAR2(2000)
 , prod_category VARCHAR2(50)
 , prod_category_desc VARCHAR2(2000)
 , prod_weight_class NUMBER(2)
 , prod_unit_of_measure VARCHAR2(20)
 , prod_pack_size VARCHAR2(30)
 , supplier_id NUMBER(6)
 , prod_status VARCHAR2(20)
 , prod_list_price NUMBER(8,2)
 , prod_min_price NUMBER(8,2)

Chapter 19
Transformation Mechanisms in Data Warehouses

19-14

);
/
CREATE TYPE product_t_table AS TABLE OF product_t;
/
COMMIT;

CREATE OR REPLACE PACKAGE cursor_PKG AS
 TYPE product_t_rec IS RECORD (
 prod_id NUMBER(6)
 , prod_name VARCHAR2(50)
 , prod_desc VARCHAR2(4000)
 , prod_subcategory VARCHAR2(50)
 , prod_subcategory_desc VARCHAR2(2000)
 , prod_category VARCHAR2(50)
 , prod_category_desc VARCHAR2(2000)
 , prod_weight_class NUMBER(2)
 , prod_unit_of_measure VARCHAR2(20)
 , prod_pack_size VARCHAR2(30)
 , supplier_id NUMBER(6)
 , prod_status VARCHAR2(20)
 , prod_list_price NUMBER(8,2)
 , prod_min_price NUMBER(8,2));
 TYPE strong_refcur_t IS REF CURSOR RETURN product_t_rec;
 TYPE refcur_t IS REF CURSOR;
END;
/

REM artificial help table, used later
CREATE TABLE obsolete_products_errors (prod_id NUMBER, msg VARCHAR2(2000));

Example 19-6 Table Functions Example: Basic Example

This example demonstrates a simple filtering; it shows all obsolete products except the
prod_category Electronics. The table function returns the result set as a set of records and
uses a weakly typed REF CURSOR as input.

CREATE OR REPLACE FUNCTION obsolete_products(cur cursor_pkg.refcur_t)
RETURN product_t_table
IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
 objset product_t_table := product_t_table();
 i NUMBER := 0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,

Chapter 19
Transformation Mechanisms in Data Warehouses

19-15

 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 -- Category Electronics is not meant to be obsolete and will be suppressed
 IF prod_status='obsolete' AND prod_category != 'Electronics' THEN
 -- append to collection
 i:=i+1;
 objset.extend;
 objset(i):=product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price);
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN objset;
END;
/

You can use the table function in a SQL statement to show the results. Here you use additional
SQL functionality for the output:

SELECT DISTINCT UPPER(prod_category), prod_status
FROM TABLE(obsolete_products(
 CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size,
 supplier_id, prod_status, prod_list_price, prod_min_price
 FROM products)));

Example 19-7 Table Functions Example: Filtering Using REF CURSOR

This example implements the same filtering as Example 19-6. The main differences between
the two are:

• This example uses a strong typed REF CURSOR as input and can be parallelized based on
the objects of the strong typed cursor, as shown in one of the following examples.

• The table function returns the result set incrementally as soon as records are created.

CREATE OR REPLACE FUNCTION
 obsolete_products_pipe(cur cursor_pkg.strong_refcur_t) RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,

Chapter 19
Transformation Mechanisms in Data Warehouses

19-16

 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category !='Electronics' THEN
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price));
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

You can use the table function as follows:

SELECT DISTINCT prod_category,
 DECODE(prod_status,'obsolete','NO LONGER AVAILABLE','N/A')
FROM TABLE(obsolete_products_pipe(
 CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size,
 supplier_id, prod_status, prod_list_price, prod_min_price
 FROM products)));

You now change the degree of parallelism for the input table products and issue the same
statement again:

ALTER TABLE products PARALLEL 4;

The session statistics show that the statement has been parallelized:

SELECT * FROM V$PQ_SESSTAT WHERE statistic='Queries Parallelized';

STATISTIC LAST_QUERY SESSION_TOTAL
-------------------- ---------- -------------
Queries Parallelized 1 3

1 row selected.

Example 19-8 Table Functions Example: Fanning Out Results into Persistent Tables

Table functions are also capable to fanout results into persistent table structures. In this
example, the function filters all obsolete products except those of a specific prod_category
(default Electronics), which was set to status obsolete by error. The result set of the table
function consists of all other obsolete product categories. The detected wrong prod_id IDs are
stored in a separate table structure obsolete_products_error. Note that if a table function is
part of an autonomous transaction, it must COMMIT or ROLLBACK before each PIPE ROW statement
to avoid an error in the callings subprogram. Its result set consists of all other obsolete product
categories. It furthermore demonstrates how normal variables can be used in conjunction with
table functions:

CREATE OR REPLACE FUNCTION obsolete_products_dml(cur cursor_pkg.strong_refcur_t,
 prod_cat varchar2 DEFAULT 'Electronics') RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);

Chapter 19
Transformation Mechanisms in Data Warehouses

19-17

 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' THEN
 IF prod_category=prod_cat THEN
 INSERT INTO obsolete_products_errors VALUES
 (prod_id, 'correction: category '||UPPER(prod_cat)||' still
 available');
 COMMIT;
 ELSE
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price));
 END IF;
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

The following query shows all obsolete product groups except the prod_category Electronics,
which was wrongly set to status obsolete:

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_dml(
CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price
FROM products)));

As you can see, there are some products of the prod_category Electronics that were
obsoleted by accident:

SELECT DISTINCT msg FROM obsolete_products_errors;

Taking advantage of the second input variable, you can specify a different product group than
Electronics to be considered:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(
CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,

Chapter 19
Transformation Mechanisms in Data Warehouses

19-18

 prod_list_price, prod_min_price
FROM products),'Photo'));

Because table functions can be used like a normal table, they can be nested, as shown in the
following:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(CURSOR(SELECT *
FROM TABLE(obsolete_products_pipe(CURSOR(SELECT prod_id, prod_name, prod_desc,
 prod_subcategory, prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price
FROM products))))));

The biggest advantage of Oracle Database's ETL is its toolkit functionality, where you can
combine any of the latter discussed functionality to improve and speed up your ETL
processing. For example, you can take an external table as input, join it with an existing table
and use it as input for a parallelized table function to process complex business logic. This
table function can be used as input source for a MERGE operation, thus streaming the new
information for the data warehouse, provided in a flat file within one single statement through
the complete ETL process.

19.4 Error Logging and Handling Mechanisms
Having data that is not clean is very common when loading and transforming data, especially
when dealing with data coming from a variety of sources, including external ones. If this dirty
data causes you to terminate a long-running load or transformation operation, a lot of time and
resources is wasted.

The following topics discuss the two main causes of errors and how to address them:

• Business Rule Violations

• Data Rule Violations (Data Errors)

19.4.1 Business Rule Violations
Data that is logically not clean violates business rules that are known prior to any data
consumption. Most of the time, handling these kind of errors will be incorporated into the
loading or transformation process. However, in situations where the error identification for all
records would become too expensive and the business rule can be enforced as a data rule
violation, for example, testing hundreds of columns to see if they are NOT NULL, programmers
often choose to handle even known possible logical error cases more generically. An example
of this is shown in "Data Error Scenarios".

Incorporating logical rules can be as easy as applying filter conditions on the data input stream
or as complex as feeding the dirty data into a different transformation workflow. Some
examples are as follows:

• Filtering of logical data errors using SQL. Data that does not adhere to certain conditions is
filtered out prior to being processed.

• Identifying and separating logical data errors. In simple cases, this can be accomplished
using SQL, as shown in Example 19-1, or in more complex cases in a procedural
approach, as shown in Example 19-6.

Chapter 19
Error Logging and Handling Mechanisms

19-19

19.4.2 Data Rule Violations (Data Errors)
Unlike logical errors, data rule violations are not usually anticipated by the load or
transformation process. Such unexpected data rule violations (also known as data errors) that
are not handled from an operation cause the operation to fail. Data rule violations are error
conditions that happen inside the database and cause a statement to fail. Examples of this are
data type conversion errors or constraint violations.

In the past, SQL did not offer a way to handle data errors on a row level as part of its bulk
processing. The only way to handle data errors inside the database was to use PL/SQL. Now,
however, you can log data errors into a special error table while the DML operation continues.
You can also handle data conversion errors using SQL functions.

The following sections briefly discuss the various exception handling strategies:

• Handling Data Errors with SQL

• Handling Data Errors in PL/SQL

• Handling Data Errors with an Error Logging Table

19.4.2.1 Handling Data Errors with SQL
External data that is used during the data transformation process may sometimes be
inaccurate thereby causing data conversion errors. Certain SQL functions can be used to
handle data conversion errors.

The COMPATIBLE parameter must be set to 12.2 to use SQL functions that handle data
conversion errors.

The following strategies are available to handle data conversion errors with SQL functions:

• Explicit filtering of either valid or invalid data

The VALIDATE_CONVERSION function identifies problem data that cannot be converted to the
required data type. It returns 1 if a given expression can be converted to the specified data
type, else it returns 0.

• Error handling within SQL data type conversion functions

The CAST, TO_NUMBER, TO_BINARY_FLOAT, TO_BINARY_DOUBLE, TO_DATE, TO_TIMESTAMP,
TO_TIMESTAMP_TZ, TO_DSINTERVAL, and TO_YMINTERVAL functions can return a user-
specified value, instead of an error, when data type conversion errors occur. This reduces
failures during an ETL process.

The user-specified value is returned only if an error occurs while converting the
expression, not when evaluating the expression. The CAST function also allows format
strings and NLS parameter strings as arguments for certain data types.

Example 19-9 Using VALIDATE_CONVERSION and CAST to Handle Data Conversion
Errors

Assume that data is loaded into the PRODUCTS table from the TMP_PRODUCTS table. The number
and names of columns in both tables are the same, but the data type of the prod_id column is
different. The prod_id column in the PRODUCTS table is of data type NUMBER. Although the data
in the prod_id column in the TMP_PRODUCTS table is numeric, its data type is VARCHAR2. While
loading data into the PRODUCTS table, you can handle data type conversion errors on the

Chapter 19
Error Logging and Handling Mechanisms

19-20

prod_id column by either filtering out the rows containing incorrect prod_id values or
assigning a default value for prod_id values that cannot be converted to NUMBER.

The following command loads data from the TMP_PRODUCTS table into PRODUCTS table. Only rows
where tmp_products.prod_id can be successfully converted into a numeric value are inserted.

INSERT INTO PRODUCTS
 (SELECT prod_id, prod_name, prod_desc, prod_category_id,
prod_category_name,
 prod_category_desc, prod_list_price
 FROM tmp_products
 WHERE VALIDATE_CONVERSION(prod_id AS NUMBER)=1);

You can use the CAST function to handle prod_id values that cause data type conversion
errors. The following INSERT command loads data from the TMP_PRODUCTS table into the
PRODUCTS table. The CAST function used with prod_id ensures that the default value of 0 is
assigned to prod_id when a data type conversion error occurs. This ensures that the load
operation does not fail because of data type conversion errors.

INSERT INTO PRODUCTS
 (SELECT CAST(prod_id AS NUMBER DEFAULT 0 ON CONVERSION ERROR), prod_name,
 prod_desc, prod_category_id, prod_category_name, prod_category_desc,
 prod_list_price
 FROM tmp_products);

See Also:

Oracle Database SQL Language Reference for more information about the CAST and
VALIDATE_CONVERSION functions and their supported data types

19.4.2.2 Handling Data Errors in PL/SQL
The following statement is an example of how error handling can be done using PL/SQL. Note
that you have to use procedural record-level processing to catch any errors. This statement is
a rough equivalent of the statement discussed in "Handling Data Errors with an Error Logging
Table".

DECLARE
errm number default 0;
BEGIN
FOR crec IN (SELECT product_id, customer_id, TRUNC(sales_date) sd,
 promotion_id, quantity, amount
 FROM sales_activity_direct) loop

BEGIN
 INSERT INTO sales VALUES (crec.product_id, crec.customer_id,
 crec.sd, 3, crec.promotion_id,
 crec.quantity, crec.amount);
exception
WHEN others then
 errm := sqlerrm;
 INSERT INTO sales_activity_error
 VALUES (errm, crec.product_id, crec.customer_id, crec.sd,
 crec.promotion_id, crec.quantity, crec.amount);

Chapter 19
Error Logging and Handling Mechanisms

19-21

END;
END loop;
END;
/

19.4.2.3 Handling Data Errors with an Error Logging Table
DML error logging extends existing DML functionality by enabling you to specify the name of
an error logging table into which Oracle Database should record errors encountered during
DML operations. This enables you to complete the DML operation in spite of any errors, and to
take corrective action on the erroneous rows at a later time.

This DML error logging table consists of several mandatory control columns and a set of user-
defined columns that represent either all or a subset of the columns of the target table of the
DML operation using a data type that is capable of storing potential errors for the target
column. For example, you need a VARCHAR2 data type in the error logging table to store TO_NUM
data type conversion errors for a NUMBER column in the target table. You should use the
DBMS_ERRLOG package to create the DML error logging tables. See the Oracle Database
PL/SQL Packages and Types Reference for more information about this package and the
structure of the logging table.

The column name mapping between the DML target table and an error logging table
determines which columns besides the control columns is logged for a DML operation.

The following statement illustrates how to enhance the example in "Transforming Data Using
SQL" with DML error logging:

INSERT /*+ APPEND PARALLEL */
INTO sales SELECT product_id, customer_id, TRUNC(sales_date), 3,
 promotion_id, quantity, amount
FROM sales_activity_direct
LOG ERRORS INTO sales_activity_errors('load_20040802')
REJECT LIMIT UNLIMITED

All data errors are logged into table sales_activity_errors, identified by the optional tag
load_20040802. The INSERT statement succeeds even in the presence of data errors. Note that
you have to create the DML error logging table prior to using this statement.

If REJECT LIMIT X had been specified, the statement would have failed with the error message
of error X=1. The error message can be different for different reject limits. In the case of a
failing statement, only the DML statement is rolled back, not the insertion into the DML error
logging table. The error logging table will contain X+1 rows.

A DML error logging table can be in a different schema than the executing user, but you must
fully specify the table name in that case. Optionally, the name of the DML error logging table
can be omitted; Oracle then assumes a default name for the table as generated by the
DBMS_ERRLOG package.

Oracle Database logs the following errors during DML operations:

• Column values that are too large.

• Constraint violations (NOT NULL, unique, referential, and check constraints).

• Errors raised during trigger execution.

• Errors resulting from type conversion between a column in a subquery and the
corresponding column of the table.

• Partition mapping errors.

Chapter 19
Error Logging and Handling Mechanisms

19-22

The following conditions cause the statement to fail and roll back without invoking the error
logging capability:

• Violated deferred constraints.

• Out of space errors.

• Any direct-path INSERT operation (INSERT or MERGE) that raises a unique constraint or index
violation.

• Any UPDATE operation (UPDATE or MERGE) that raises a unique constraint or index violation.

In addition, you cannot track errors in the error logging table for LONG, LOB, or object type
columns. See Oracle Database SQL Language Reference for more information on restrictions
when using error logging.

DML error logging can be applied to any kind of DML operation. Several examples are
discussed in the following section.

Note that SQL*Loader as an external load utility offers the functionality of logging data errors
as well, but lacks the advantage of the integrated ETL processing inside the database.

19.5 Loading and Transformation Scenarios
The following sections offer examples of typical loading and transformation tasks:

• Key Lookup Scenario

• Business Rule Violation Scenario

• Data Error Scenarios

• Pivoting Scenarios

19.5.1 Key Lookup Scenario
A typical transformation is the key lookup. For example, suppose that sales transaction data
has been loaded into a retail data warehouse. Although the data warehouse's sales table
contains a product_id column, the sales transaction data extracted from the source system
contains Uniform Price Codes (UPC) instead of product IDs. Therefore, it is necessary to
transform the UPC codes into product IDs before the new sales transaction data can be
inserted into the sales table.

In order to execute this transformation, a lookup table must relate the product_id values to the
UPC codes. This table might be the product dimension table, or perhaps another table in the
data warehouse that has been created specifically to support this transformation. For this
example, you assume that there is a table named product, which has a product_id and an
upc_code column.

This data substitution transformation can be implemented using the following CTAS statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS SELECT sales_transaction_id,
 product.product_id sales_product_id, sales_customer_id, sales_time_id,
 sales_channel_id, sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code;

This CTAS statement converts each valid UPC code to a valid product_id value. If the ETL
process has guaranteed that each UPC code is valid, then this statement alone may be
sufficient to implement the entire transformation.

Chapter 19
Loading and Transformation Scenarios

19-23

19.5.2 Business Rule Violation Scenario
In the preceding example, if you must also handle new sales data that does not have valid
UPC codes (a logical data error), you can use an additional CTAS statement to identify the
invalid rows:

CREATE TABLE temp_sales_step1_invalid NOLOGGING PARALLEL AS
SELECT * FROM temp_sales_step1 s
WHERE NOT EXISTS (SELECT 1 FROM product p WHERE p.upc_code=s.upc_code);

This invalid data is now stored in a separate table, temp_sales_step1_invalid, and can be
handled separately by the ETL process.

Another way to handle invalid data is to modify the original CTAS to use an outer join, as in the
following statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id, sales_quantity_sold,
 sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

Using this outer join, the sales transactions that originally contained invalidated UPC codes are
assigned a product_id of NULL. These transactions can be handled later. Alternatively, you
could use a multi-table insert, separating the values with a product_id of NULL into a separate
table; this might be a beneficial approach when the expected error count is relatively small
compared to the total data volume. You do not have to touch the large target table but only a
small one for a subsequent processing.

INSERT /*+ APPEND PARALLEL */ FIRST
WHEN sales_product_id IS NOT NULL THEN
 INTO temp_sales_step2
 VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
ELSE
 INTO temp_sales_step1_invalid
 VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

Note that for this solution, the empty tables temp_sales_step2 and
temp_sales_step1_invalid must already exist.

Additional approaches to handling invalid UPC codes exist. Some data warehouses may
choose to insert null-valued product_id values into their sales table, while others may not
allow any new data from the entire batch to be inserted into the sales table until all invalid UPC
codes have been addressed. The correct approach is determined by the business
requirements of the data warehouse. Irrespective of the specific requirements, exception
handling can be addressed by the same basic SQL techniques as transformations.

Chapter 19
Loading and Transformation Scenarios

19-24

19.5.3 Data Error Scenarios
If the quality of the data is unknown, the example discussed in Business Rule Violation
Scenario could be enhanced to handle unexpected data errors, for example, data type
conversion errors, as shown in the following:

INSERT /*+ APPEND PARALLEL */ FIRST
WHEN sales_product_id IS NOT NULL THEN
INTO temp_sales_step2
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED
ELSE
INTO temp_sales_step1_invalid
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

This statement tracks the logical data error of not having a valid product UPC code in table
temp_sales_step1_invalid and all other possible errors in a DML error logging table called
sales_step2_errors. Note that an error logging table can be used for several DML operations.

An alternative to this approach would be to enforce the business rule of having a valid UPC
code on the database level with a NOT NULL constraint. Using an outer join, all orders not
having a valid UPC code would be mapped to a NULL value and then treated as data errors.
This DML error logging capability is used to track these errors in the following statement:

INSERT /*+ APPEND PARALLEL */
INTO temp_sales_step2
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED;

The error logging table contains all records that would have caused the DML operation to fail.
You can use its content to analyze and correct any error. The content in the error logging table
is preserved for any DML operation, irrespective of the success of the DML operation itself. Let
us assume the following SQL statement failed because the reject limit was reached:

SQL> INSERT /*+ APPEND NOLOGGING PARALLEL */ INTO sales_overall
2 SELECT * FROM sales_activity_direct
3 LOG ERRORS INTO err$_sales_overall ('load_test2')
4 REJECT LIMIT 10;
SELECT * FROM sales_activity_direct
*

Chapter 19
Loading and Transformation Scenarios

19-25

ERROR at line 2:
ORA-01722: invalid number

The name of the error logging table, err$_sales_overall, is the default derived by using the
DBMS_ERRLOG package. See Oracle Database PL/SQL Packages and Types Reference for
more information.

The error message raised by Oracle occurs where the first after the error limit is reached. The
next error (number 11) is the one that raised an error. The error message that is displayed is
based on the error that exceeded the limit, so, for example, the ninth error could be different
from the eleventh error.

The target table sales_overall will not show any records being entered (assumed that the
table was empty before), but the error logging table will contain 11 rows (REJECT LIMIT + 1)

SQL> SELECT COUNT(*) FROM sales_overall;
COUNT(*)

0

SQL> SELECT COUNT(*) FROM err$_sales_overall;
COUNT(*)

11

A DML error logging table consists of several fixed control columns that are mandatory for
every error logging table. Besides the Oracle error number, Oracle enforces storing the error
message as well. In many cases, the error message provides additional information to analyze
and resolve the root cause for the data error. The following SQL output of a DML error logging
table shows this difference. Note that the second output contains the additional information for
rows that were rejected due to NOT NULL violations.

SQL> SELECT DISTINCT ora_err_number$ FROM err$_sales_overall;

ORA_ERR_NUMBER$

 1400
 1722
 1830
 1847

SQL> SELECT DISTINCT ora_err_number$, ora_err_mesg$ FROM err$_sales_overall;

ORA_ERR_NUMBER$ ORA_ERR_MESG$
 1400 ORA-01400: cannot insert NULL into
 ("SH"."SALES_OVERALL"."CUST_ID")
 1400 ORA-01400: cannot insert NULL into
 ("SH"."SALES_OVERALL"."PROD_ID")
 1722 ORA-01722: invalid number
 1830 ORA-01830: date format picture ends before
 converting entire input string
 1847 ORA-01847: day of month must be between 1 and last
 day of month

See Also:

Oracle Database Administrator's Guide for a detailed description of control columns.

Chapter 19
Loading and Transformation Scenarios

19-26

19.5.4 Pivoting Scenarios
A data warehouse can receive data from many different sources. Some of these source
systems may not be relational databases and may store data in very different formats from the
data warehouse. For example, suppose that you receive a set of sales records from a
nonrelational database having the form:

product_id, customer_id, weekly_start_date, sales_sun, sales_mon, sales_tue,
 sales_wed, sales_thu, sales_fri, sales_sat

The input table looks like the following:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

In your data warehouse, you would want to store the records in a more typical relational form in
a fact table sales of the sh sample schema:

prod_id, cust_id, time_id, amount_sold

Note:

A number of constraints on the sales table have been disabled for purposes of this
example, because the example ignores a number of table columns for the sake of
brevity.

Thus, you need to build a transformation such that each record in the input stream must be
converted into seven records for the data warehouse's sales table. This operation is
commonly referred to as pivoting, and Oracle Database offers several ways to do this.

The result of the previous example will resemble the following:

SELECT prod_id, cust_id, time_id, amount_sold FROM sales;

 PROD_ID CUST_ID TIME_ID AMOUNT_SOLD
---------- ---------- --------- -----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400

Chapter 19
Loading and Transformation Scenarios

19-27

 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

Example 19-10 Pivoting Example

The following example uses the multitable insert syntax to insert into the demo table sh.sales
some data from an input table with a different structure. The multitable INSERT statement looks
like the following:

INSERT ALL INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
FROM sales_input_table;

This statement only scans the source table once and then inserts the appropriate data for each
day.

See Also:

• "Pivoting Operations" for more information regarding pivoting

• Oracle Database SQL Language Reference for pivot_clause syntax

Chapter 19
Loading and Transformation Scenarios

19-28

Part IV
Relational Analytics

This section deals with ways to improve your data warehouse's performance, and contains the
following chapters:

• SQL for Analysis and Reporting

• SQL for Aggregation in Data Warehouses

• SQL for Pattern Matching

• SQL for Modeling

• Advanced Analytical SQL

20
SQL for Analysis and Reporting

The following topics provide information about analytical SQL features and techniques in
Oracle. Although these topics are presented in terms of data warehousing, they are applicable
to any activity needing analysis and reporting.

• Overview of SQL for Analysis and Reporting

• Ranking, Windowing, and Reporting Functions

• Advanced Aggregates for Analysis

• Pivoting Operations

• Data Densification for Reporting

• Time Series Calculations on Densified Data

• Miscellaneous Analysis and Reporting Capabilities

• Limiting SQL Rows

20.1 Overview of SQL for Analysis and Reporting
Oracle Database provides a large family of analytic SQL functions. These analytic functions
enable you to calculate:

• Rankings and percentiles

• Moving window calculations

• Lag/lead analysis

• First/last analysis

• Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles. Moving window
calculations allow you to find moving and cumulative aggregations, such as sums and
averages. Lag/lead analysis enables direct inter-row references so you can calculate period-to-
period changes. First/last analysis enables you to find the first or last value in an ordered
group.

Other SQL elements valuable for analysis and reporting include the CASE expression and
partitioned outer join. CASE expressions provide if-then logic useful in many situations.
Partitioned outer join is a variant of ANSI outer join syntax that allows users to selectively
densify certain dimensions while keeping others sparse. This allows reporting tools to
selectively densify dimensions, for example, the ones that appear in their cross-tabular reports
while keeping others sparse.

To enhance performance, analytic functions can be parallelized: multiple processes can
simultaneously execute all of these statements. These capabilities make calculations easier
and more efficient, thereby enhancing database performance, scalability, and simplicity.

Analytic functions are classified as described in Table 20-1.

20-1

Table 20-1 Analytic Functions and Their Uses

Type Used For

Ranking Calculating ranks, percentiles, and n-tiles of the values in a result set.

Windowing Calculating cumulative and moving aggregates. Works with these functions: AVG,
BIT_AND_AGG, BIT_OR_AGG, BIT_XOR_AGG, CHECKSUM, COUNT, FIRST_VALUE,
KURTOSIS_POP, KURTOSIS_SAMP, LAST_VALUE, MAX, MIN, SKEWNESS_POP,
SKEWNESS_SAMP, SUM, STDDEV, and VARIANCE, and new statistical functions. Note
that the DISTINCT keyword is not supported in windowing functions except for MAX
and MIN.

Reporting Calculating shares, for example, market share. Works with these functions: SUM,
AVG, MIN, MAX, COUNT (with/without DISTINCT), VARIANCE, STDDEV,
RATIO_TO_REPORT, BIT_AND_AGG, BIT_OR_AGG, BIT_XOR_AGG, KURTOSIS_POP,
KURTOSIS_SAMP, SKEWNESS_POP, SKEWNESS_SAMP, and new statistical functions.
Note that the DISTINCT keyword may be used in those reporting functions that
support DISTINCT in aggregate mode.

LAG/LEAD Finding a value in a row a specified number of rows from a current row.

FIRST/LAST First or last value in an ordered group.

Linear Regression Calculating linear regression and other statistics (slope, intercept, and so on).

Inverse Percentile The value in a data set that corresponds to a specified percentile.

Hypothetical Rank
and Distribution

The rank or percentile that a row would have if inserted into a specified data set.

To perform these operations, the analytic functions add several new elements to SQL
processing. These elements build on existing SQL to allow flexible and powerful calculation
expressions. With just a few exceptions, the analytic functions have these additional elements.
The processing flow is represented in Figure 20-1.

Figure 20-1 Processing Order

Joins,
WHERE, GROUP BY,
and HAVING clauses

Partitions created;
Analytic functions
applied to each row in
each partition

Final
ORDER BY

The essential concepts used in analytic functions are:

• Processing order

Query processing using analytic functions takes place in three stages. First, all joins,
WHERE, GROUP BY and HAVING clauses are performed. Second, the result set is made
available to the analytic functions, and all their calculations take place. Third, if the query
has an ORDER BY clause at its end, the ORDER BY is processed to allow for precise output
ordering. The processing order is shown in Figure 20-1.

• Result set partitions

The analytic functions allow users to divide query result sets into groups of rows called
partitions. Note that the term partitions used with analytic functions is unrelated to the
table partitions feature. Throughout this chapter, the term partitions refers to only the
meaning related to analytic functions. Partitions are created after the groups defined with
GROUP BY clauses, so they are available to any aggregate results such as sums and

Chapter 20
Overview of SQL for Analysis and Reporting

20-2

averages. Partition divisions may be based upon any desired columns or expressions. A
query result set may be partitioned into just one partition holding all the rows, a few large
partitions, or many small partitions holding just a few rows each.

• Window

For each row in a partition, you can define a sliding window of data. This window
determines the range of rows used to perform the calculations for the current row. Window
sizes can be based on either a physical number of rows or a logical interval such as time.
The window has a starting row and an ending row. Depending on its definition, the window
may move at one or both ends. For instance, a window defined for a cumulative sum
function would have its starting row fixed at the first row of its partition, and its ending row
would slide from the starting point all the way to the last row of the partition. In contrast, a
window defined for a moving average would have both its starting and end points slide so
that they maintain a constant physical or logical range.

A window can be set as large as all the rows in a partition or just a sliding window of one
row within a partition. When a window is near a border, the function returns results for only
the available rows, rather than warning you that the results are not what you want.

When using window functions, the current row is included during calculations, so you
should only specify (n-1) when you are dealing with n items.

• Current row

Each calculation performed with an analytic function is based on a current row within a
partition. The current row serves as the reference point determining the start and end of
the window. For instance, a centered moving average calculation could be defined with a
window that holds the current row, the six preceding rows, and the following six rows. This
would create a sliding window of 13 rows, as shown in Figure 20-2.

Figure 20-2 Sliding Window Example

D
ir

e
c

ti
o

n
 o

f
w

in
d

o
w

 m
o

v
e

m
e

n
t

Window Start

Current Row: calculations based on window contents

Window Finish

20.2 Ranking, Windowing, and Reporting Functions
This section illustrates the basic analytic functions for ranking, windowing, and reporting. It
contains the following topics:

• Ranking Functions

• Windowing Functions

• Reporting Functions

Chapter 20
Ranking, Windowing, and Reporting Functions

20-3

• LAG/LEAD Functions

• FIRST_VALUE_ LAST_VALUE_ and NTH_VALUE Functions

20.2.1 Ranking Functions
A ranking function computes the rank of a record compared to other records in the data set
based on the values of a set of measures. The types of ranking function are:

• RANK and DENSE_RANK Functions

• Bottom N Ranking Functions

• CUME_DIST Function

• PERCENT_RANK Function

• NTILE Function

• ROW_NUMBER Function

20.2.1.1 RANK and DENSE_RANK Functions
The RANK and DENSE_RANK functions allow you to rank items in a group, for example, finding the
top three products sold in California last year. There are two functions that perform ranking, as
shown by the following syntax:

RANK () OVER ([query_partition_clause] order_by_clause)
DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

The difference between RANK and DENSE_RANK is that DENSE_RANK leaves no gaps in ranking
sequence when there are ties. That is, if you were ranking a competition using DENSE_RANK and
had three people tie for second place, you would say that all three were in second place and
that the next person came in third. The RANK function would also give three people in second
place, but the next person would be in fifth place.

The following are some relevant points about RANK:

• Ascending is the default sort order, which you may want to change to descending.

• The expressions in the optional PARTITION BY clause divide the query result set into groups
within which the RANK function operates. That is, RANK gets reset whenever the group
changes. In effect, the value expressions of the PARTITION BY clause define the reset
boundaries.

• If the PARTITION BY clause is missing, then ranks are computed over the entire query result
set.

• The ORDER BY clause specifies the measures (<value expression>) on which ranking is
done and defines the order in which rows are sorted in each group (or partition). Once the
data is sorted within each partition, ranks are given to each row starting from 1.

• The NULLS FIRST | NULLS LAST clause indicates the position of NULLs in the ordered
sequence, either first or last in the sequence. The order of the sequence would make
NULLs compare either high or low with respect to non-NULL values. If the sequence were in
ascending order, then NULLS FIRST implies that NULLs are smaller than all other non-NULL
values and NULLS LAST implies they are larger than non-NULL values. It is the opposite for
descending order. See the example in "Examples: Treatment of NULLs in Ranking
Functions".

Chapter 20
Ranking, Windowing, and Reporting Functions

20-4

• If the NULLS FIRST | NULLS LAST clause is omitted, then the ordering of the null values
depends on the ASC or DESC arguments. Null values are considered larger than any other
values. If the ordering sequence is ASC, then nulls will appear last; nulls will appear first
otherwise. Nulls are considered equal to other nulls and, therefore, the order in which nulls
are presented is non-deterministic.

20.2.1.1.1 Ranking Order in RANK and DENSE_RANK Functions
The following example shows how the [ASC | DESC] option of RANK changes the ranking
order.

Example 20-1 Ranking Order

SELECT channel_desc, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY SUM(amount_sold)) AS default_rank,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS custom_rank
FROM sales, products, customers, times, channels, countries
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id AND sales.time_id=times.time_id
 AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-09', '2000-10')
 AND country_iso_code='US'
GROUP BY channel_desc;

CHANNEL_DESC SALES$ DEFAULT_RANK CUSTOM_RANK
-------------------- -------------- ------------ -----------
Direct Sales 1,320,497 3 1
Partners 800,871 2 2
Internet 261,278 1 3

While the data in this result is ordered on the measure SALES$, in general, it is not guaranteed
by the RANK function that the data will be sorted on the measures. If you want the data to be
sorted on SALES$ in your result, you must specify it explicitly with an ORDER BY clause, at the
end of the SELECT statement.

20.2.1.1.2 Ranking on Multiple Expressions
Ranking functions must resolve ties between values in the set. If the first expression cannot
resolve ties, the second expression is used to resolve ties and so on. For example, here is a
query ranking three of the sales channels over two months based on their dollar sales,
breaking ties with the unit sales. (Note that the TRUNC function is used here only to create tie
values for this query.)

Example 20-2 Ranking On Multiple Expressions

SELECT channel_desc, calendar_month_desc, TO_CHAR(TRUNC(SUM(amount_sold),-5),
 '9,999,999,999') SALES$, TO_CHAR(SUM(quantity_sold), '9,999,999,999')
 SALES_Count, RANK() OVER (ORDER BY TRUNC(SUM(amount_sold), -5)
 DESC, SUM(quantity_sold) DESC) AS col_rank
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-09', '2000-10')
 AND channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ SALES_COUNT COL_RANK
-------------------- -------- -------------- -------------- ---------
Direct Sales 2000-10 1,200,000 12,584 1
Direct Sales 2000-09 1,200,000 11,995 2

Chapter 20
Ranking, Windowing, and Reporting Functions

20-5

Partners 2000-10 600,000 7,508 3
Partners 2000-09 600,000 6,165 4
Internet 2000-09 200,000 1,887 5
Internet 2000-10 200,000 1,450 6

The sales_count column breaks the ties for three pairs of values.

If you only want to see the top five results for this query, you can add an ORDER BY COL_RANK
FETCH FIRST 5 ROWS ONLY statement. See "Limiting SQL Rows" for further information.

20.2.1.1.3 Example: Difference Between RANK and DENSE_RANK
The difference between RANK and DENSE_RANK functions is illustrated in Example 20-3.

Example 20-3 RANK and DENSE_RANK

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold),-5), '9,999,999,999') SALES$,
 RANK() OVER (ORDER BY TRUNC(SUM(amount_sold),-5) DESC) AS RANK,
DENSE_RANK() OVER (ORDER BY TRUNC(SUM(amount_sold),-5) DESC) AS DENSE_RANK
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id
 AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-09', '2000-10')
 AND channels.channel_desc<>'Tele Sales'
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK DENSE_RANK
-------------------- -------- -------------- --------- ----------
Direct Sales 2000-09 1,200,000 1 1
Direct Sales 2000-10 1,200,000 1 1
Partners 2000-09 600,000 3 2
Partners 2000-10 600,000 3 2
Internet 2000-09 200,000 5 3
Internet 2000-10 200,000 5 3

Note that, in the case of DENSE_RANK, the largest rank value gives the number of distinct values
in the data set.

20.2.1.1.4 Ranking Within Groups: Example
The RANK function can be made to operate within groups, that is, the rank gets reset whenever
the group changes. This is accomplished with the PARTITION BY clause. The group expressions
in the PARTITION BY subclause divide the data set into groups within which RANK operates. For
example, to rank products within each channel by their dollar sales, you could issue the
following statement.

Example 20-4 Per Group Ranking Example 1

SELECT channel_desc, calendar_month_desc, TO_CHAR(SUM(amount_sold),
 '9,999,999,999') SALES$, RANK() OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_BY_CHANNEL
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11')
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK_BY_CHANNEL

Chapter 20
Ranking, Windowing, and Reporting Functions

20-6

-------------------- -------- -------------- ---------------
Direct Sales 2000-08 1,236,104 1
Direct Sales 2000-10 1,225,584 2
Direct Sales 2000-09 1,217,808 3
Direct Sales 2000-11 1,115,239 4
Internet 2000-11 284,742 1
Internet 2000-10 239,236 2
Internet 2000-09 228,241 3
Internet 2000-08 215,107 4

8 rows selected.

A single query block can contain more than one ranking function, each partitioning the data
into different groups (that is, reset on different boundaries). The groups can be mutually
exclusive. The following query ranks products based on their dollar sales within each month
(rank_of_product_per_region) and within each channel (rank_of_product_total).

Example 20-5 Per Group Ranking Example 2

SELECT channel_desc, calendar_month_desc, TO_CHAR(SUM(amount_sold),
 '9,999,999,999') SALES$, RANK() OVER (PARTITION BY calendar_month_desc
 ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_MONTH, RANK() OVER (PARTITION
 BY channel_desc ORDER BY SUM(amount_sold) DESC) AS RANK_WITHIN_CHANNEL
FROM sales, products, customers, times, channels, countries
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id AND sales.time_id=times.time_id
 AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-08', '2000-09', '2000-10', '2000-11')
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ RANK_WITHIN_MONTH RANK_WITHIN_CHANNEL
------------- -------- --------- ----------------- -------------------
Direct Sales 2000-08 1,236,104 1 1
Internet 2000-08 215,107 2 4
Direct Sales 2000-09 1,217,808 1 3
Internet 2000-09 228,241 2 3
Direct Sales 2000-10 1,225,584 1 2
Internet 2000-10 239,236 2 2
Direct Sales 2000-11 1,115,239 1 4
Internet 2000-11 284,742 2 1

20.2.1.1.5 Example: Per Cube and Rollup Group Ranking
Analytic functions, RANK for example, can be reset based on the groupings provided by a CUBE,
ROLLUP, or GROUPING SETS operator. It is useful to assign ranks to the groups created by CUBE,
ROLLUP, and GROUPING SETS queries. See SQL for Aggregation in Data Warehouses for further
information about the GROUPING function.

A sample CUBE and ROLLUP query is the following:

SELECT channel_desc, country_iso_code, SUM(amount_sold) SALES$,
 RANK() OVER (PARTITION BY GROUPING_ID(channel_desc, country_iso_code)
 ORDER BY SUM(amount_sold) DESC) AS RANK_PER_GROUP
FROM sales, customers, times, channels, countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id
 AND countries.country_id = customers.country_id AND sales.channel_id =
channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet') AND

Chapter 20
Ranking, Windowing, and Reporting Functions

20-7

times.calendar_month_desc='2000-07'
 AND country_iso_code IN ('GB', 'US', 'JP')
GROUP BY cube(channel_desc, country_iso_code);

CHANNEL_DESC CO SALES$ RANK_PER_GROUP
-------------- -- ------------- --------------
Direct Sales US 616539.04 1
Direct Sales GB 83869.96 2
Internet US 82595.71 3
Direct Sales JP 79047.78 4
Internet JP 7103.39 5
Internet GB 6477.98 6
Direct Sales 779456.78 1
Internet 96177.08 2
 US 699134.75 1
 GB 90347.94 2
 JP 86151.17 3
 875633.86 1

20.2.1.1.6 Examples: Treatment of NULLs in Ranking Functions
NULLs are treated like normal values. Also, for rank computation, a NULL value is assumed to
be equal to another NULL value. Depending on the ASC | DESC options provided for measures
and the NULLS FIRST | NULLS LAST clause, NULLs will either sort low or high and hence, are
given ranks appropriately. The following example shows how NULLs are ranked in different
cases:

SELECT times.time_id time, sold,
 RANK() OVER (ORDER BY (sold) DESC NULLS LAST) AS NLAST_DESC,
 RANK() OVER (ORDER BY (sold) DESC NULLS FIRST) AS NFIRST_DESC,
 RANK() OVER (ORDER BY (sold) ASC NULLS FIRST) AS NFIRST,
 RANK() OVER (ORDER BY (sold) ASC NULLS LAST) AS NLAST
FROM
 (
 SELECT time_id, SUM(sales.amount_sold) sold
 FROM sales, products, customers, countries
 WHERE sales.prod_id=products.prod_id
 AND customers.country_id = countries.country_id
 AND sales.cust_id=customers.cust_id
 AND prod_name IN ('Envoy Ambassador', 'Mouse Pad') AND country_iso_code ='GB'
 GROUP BY time_id)
 v, times
WHERE v.time_id (+) = times.time_id
 AND calendar_year=1999
 AND calendar_month_number=1
ORDER BY sold DESC NULLS LAST;

TIME SOLD NLAST_DESC NFIRST_DESC NFIRST NLAST
--------- ---------- ---------- ----------- ---------- ----------
25-JAN-99 3097.32 1 18 31 14
17-JAN-99 1791.77 2 19 30 13
30-JAN-99 127.69 3 20 29 12
28-JAN-99 120.34 4 21 28 11
23-JAN-99 86.12 5 22 27 10
20-JAN-99 79.07 6 23 26 9
13-JAN-99 56.1 7 24 25 8
07-JAN-99 42.97 8 25 24 7
08-JAN-99 33.81 9 26 23 6
10-JAN-99 22.76 10 27 21 4

Chapter 20
Ranking, Windowing, and Reporting Functions

20-8

02-JAN-99 22.76 10 27 21 4
26-JAN-99 19.84 12 29 20 3
16-JAN-99 11.27 13 30 19 2
14-JAN-99 9.52 14 31 18 1
09-JAN-99 15 1 1 15
12-JAN-99 15 1 1 15
31-JAN-99 15 1 1 15
11-JAN-99 15 1 1 15
19-JAN-99 15 1 1 15
03-JAN-99 15 1 1 15
15-JAN-99 15 1 1 15
21-JAN-99 15 1 1 15
24-JAN-99 15 1 1 15
04-JAN-99 15 1 1 15
06-JAN-99 15 1 1 15
27-JAN-99 15 1 1 15
18-JAN-99 15 1 1 15
01-JAN-99 15 1 1 15
22-JAN-99 15 1 1 15
29-JAN-99 15 1 1 15
05-JAN-99 15 1 1 15

20.2.1.2 APPROX_RANK Function
The APPROX_RANK function returns the approximate value in a group of values.

This function takes an optional PARTITION BY clause followed by a mandatory ORDER BY ...
DESC clause. The PARTITION BY key must be a subset of the GROUP BY key. The ORDER BY
clause must include either APPROX_COUNT or APPROX_SUM.

The APPROX_RANK function has the following syntax:

SELECT expr_1[, expr_2, … expr_j], APPROX_*(expr_k) agg_1[, APPROX_*(expr_l)
agg_2…]
FROM table_name
WHERE …
GROUP BY expr_1[, expr_2, …expr_j]
HAVING APPROX_RANK(PARTITION BY partition_by_clause ORDER BY APPROX_*(expr_k)
DESC) <= N1
[AND APPROX_RANK(PARTITION BY partition_by_clause ORDER BY APPROX_*(expr_l)
DESC) <= N2…)];

The examples on this page use the hr (Human Resources) sample schema provided by
Oracle.

In the following example, the query returns the jobs that are among the top 10 total salaries per
department. For each job, the total salary and ranking is also given:

SELECT department_id, job_id, APPROX_SUM(salary), APPROX_RANK(PARTITION BY
department_id ORDER BY APPROX_SUM(salary) DESC) rk FROM hr.employees GROUP BY
department_id, job_id HAVING APPROX_RANK(PARTITION BY department_id ORDER BY
APPROX_SUM(salary) DESC) <= 10;
 DEPARTMENT_ID JOB_ID APPROX_SUM(SALARY) RK
 _____ _________ _________________ ____
 10 AD_ASST 4400 1
 20 MK_REP 6000 2
 20 MK_MAN 13000 1
 30 PU_MAN 11000 2

Chapter 20
Ranking, Windowing, and Reporting Functions

20-9

 30 PU_CLERK 13900 1
 40 HR_REP 6500 1
 50 ST_MAN 36400 3
 50 ST_CLERK 55700 2
 50 SH_CLERK 64300 1
 60 IT_PROG 28800 1
 70 PR_REP 10000 1
 80 SA_MAN 61000 2
 80 SA_REP 243500 1
 90 AD_PRES 24000 2
 90 AD_VP 34000 1
 100 FI_MGR 12008 2
 100 FI_ACCOUNT 39600 1
 110 AC_ACCOUNT 8300 2
 110 AC_MGR 12008 1
 SA_REP 7000 1

In the following example, the query returns the jobs that are among the top 2 in terms of total
salary and among the top 3 in terms of number of employees holding the job titles per
department:

SELECT department_id, job_id , APPROX_SUM(salary), APPROX_COUNT(*) FROM
employees GROUP BY department_id, job_id HAVING APPROX_RANK(PARTITION BY
department_id ORDER BY APPROX_SUM(salary) DESC) <= 2 AND
APPROX_RANK(PARTITION BY department_id ORDER BY APPROX_COUNT(*) DESC) <= 3;

 DEPTNO JOB APPROX_SUM(SAL) APPROX_COUNT(*)
---------- --------- --------------- ---------------
 10 MANAGER 2450 1
 10 PRESIDENT 5000 1
 20 MANAGER 2975 1
 20 ANALYST 6000 2
 30 MANAGER 2850 1
 30 SALESPERSON 5600 4

The following example reports the accuracy of the approximate aggregate using the MAX_ERROR
attribute:

SELECT department_id, job_id , APPROX_SUM(salary) sum_salary,
APPROX_SUM(salary,'MAX_ERROR') sum_salary_err
FROM employees
GROUP BY department_id, job_id
HAVING APPROX_RANK(PARTITION BY department_id ORDER BY APPROX_SUM(salary)
DESC) <= 2;
 DEPARTMENT_ID JOB_ID SUM_SALARY SUM_SALARY_ERR
________________ _____________ _____________ _________________
 10 AD_ASST 4400 0
 20 MK_REP 6000 0
 20 MK_MAN 13000 0
 30 PU_MAN 11000 0
 30 PU_CLERK 13900 0
 40 HR_REP 6500 0
 50 ST_CLERK 55700 0
 50 SH_CLERK 64300 0

Chapter 20
Ranking, Windowing, and Reporting Functions

20-10

 60 IT_PROG 28800 0
 70 PR_REP 10000 0
 80 SA_MAN 61000 0
 80 SA_REP 243500 0
 90 AD_PRES 24000 0
 90 AD_VP 34000 0
 100 FI_MGR 12008 0
 100 FI_ACCOUNT 39600 0
 110 AC_ACCOUNT 8300 0
 110 AC_MGR 12008 0
 SA_REP 7000 0

See Also:

• Oracle Database SQL Language Reference

20.2.1.3 Bottom N Ranking Functions
Bottom N is similar to top N except for the ordering sequence within the rank expression. Using
the previous example, you can order SUM(s_amount) ascending instead of descending.

20.2.1.4 CUME_DIST Function
The CUME_DIST function (defined as the inverse of percentile in some statistical books)
computes the position of a specified value relative to a set of values. The order can be
ascending or descending. Ascending is the default. The range of values for CUME_DIST is from
greater than 0 to 1. To compute the CUME_DIST of a value x in a set S of size N, you use the
formula:

CUME_DIST(x) = number of values in S coming before
 and including x in the specified order/ N

Its syntax is:

CUME_DIST () OVER ([query_partition_clause] order_by_clause)

The semantics of various options in the CUME_DIST function are similar to those in the RANK
function. The default order is ascending, implying that the lowest value gets the lowest
CUME_DIST (as all other values come later than this value in the order). NULLs are treated the
same as they are in the RANK function. They are counted toward both the numerator and the
denominator as they are treated like non-NULL values. The following example finds cumulative
distribution of sales by channel within each month:

SELECT calendar_month_desc AS MONTH, channel_desc,
 TO_CHAR(SUM(amount_sold) , '9,999,999,999') SALES$,
 CUME_DIST() OVER (PARTITION BY calendar_month_desc ORDER BY
 SUM(amount_sold)) AS CUME_DIST_BY_CHANNEL
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2000-09', '2000-07','2000-08')
GROUP BY calendar_month_desc, channel_desc;

MONTH CHANNEL_DESC SALES$ CUME_DIST_BY_CHANNEL

Chapter 20
Ranking, Windowing, and Reporting Functions

20-11

-------- -------------------- -------------- --------------------
2000-07 Internet 140,423 .333333333
2000-07 Partners 611,064 .666666667
2000-07 Direct Sales 1,145,275 1
2000-08 Internet 215,107 .333333333
2000-08 Partners 661,045 .666666667
2000-08 Direct Sales 1,236,104 1
2000-09 Internet 228,241 .333333333
2000-09 Partners 666,172 .666666667
2000-09 Direct Sales 1,217,808 1

20.2.1.5 PERCENT_RANK Function
PERCENT_RANK is similar to CUME_DIST, but it uses rank values rather than row counts in its
numerator. Therefore, it returns the percent rank of a value relative to a group of values. The
function is available in many popular spreadsheets. PERCENT_RANK of a row is calculated as:

(rank of row in its partition - 1) / (number of rows in the partition - 1)

PERCENT_RANK returns values in the range zero to one. The row(s) with a rank of 1 will have a
PERCENT_RANK of zero. Its syntax is:

PERCENT_RANK () OVER ([query_partition_clause] order_by_clause)

20.2.1.6 NTILE Function
NTILE allows easy calculation of tertiles, quartiles, deciles and other common summary
statistics. This function divides an ordered partition into a specified number of groups called
buckets and assigns a bucket number to each row in the partition. NTILE is a very useful
calculation because it lets users divide a data set into fourths, thirds, and other groupings.

The buckets are calculated so that each bucket has exactly the same number of rows assigned
to it or at most 1 row more than the others. For instance, if you have 100 rows in a partition and
ask for an NTILE function with four buckets, 25 rows will be assigned a value of 1, 25 rows will
have value 2, and so on. These buckets are referred to as equiheight buckets.

If the number of rows in the partition does not divide evenly (without a remainder) into the
number of buckets, then the number of rows assigned for each bucket will differ by one at
most. The extra rows will be distributed one for each bucket starting from the lowest bucket
number. For instance, if there are 103 rows in a partition which has an NTILE(5) function, the
first 21 rows will be in the first bucket, the next 21 in the second bucket, the next 21 in the third
bucket, the next 20 in the fourth bucket and the final 20 in the fifth bucket.

The NTILE function has the following syntax:

NTILE (expr) OVER ([query_partition_clause] order_by_clause)

In this, the N in NTILE(N) can be a constant (for example, 5) or an expression.

This function, like RANK and CUME_DIST, has a PARTITION BY clause for per group computation,
an ORDER BY clause for specifying the measures and their sort order, and NULLS FIRST | NULLS
LAST clause for the specific treatment of NULLs. For example, the following is an example
assigning each month's sales total into one of four buckets:

SELECT calendar_month_desc AS MONTH , TO_CHAR(SUM(amount_sold),
 '9,999,999,999')
 SALES$, NTILE(4) OVER (ORDER BY SUM(amount_sold)) AS TILE4
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id

Chapter 20
Ranking, Windowing, and Reporting Functions

20-12

 AND times.calendar_year=2000 AND prod_category= 'Electronics'
GROUP BY calendar_month_desc;

MONTH SALES$ TILE4
-------- -------------- ----------
2000-02 242,416 1
2000-01 257,286 1
2000-03 280,011 1
2000-06 315,951 2
2000-05 316,824 2
2000-04 318,106 2
2000-07 433,824 3
2000-08 477,833 3
2000-12 553,534 3
2000-10 652,225 4
2000-11 661,147 4
2000-09 691,449 4

NTILE ORDER BY statements must be fully specified to yield reproducible results. Equal values
can get distributed across adjacent buckets. To ensure deterministic results, you must order on
a unique key.

20.2.1.7 ROW_NUMBER Function
The ROW_NUMBER function assigns a unique number (sequentially, starting from 1, as defined by
ORDER BY) to each row within the partition. It has the following syntax:

ROW_NUMBER () OVER ([query_partition_clause] order_by_clause)

Example 20-6 ROW_NUMBER

SELECT channel_desc, calendar_month_desc,
 TO_CHAR(TRUNC(SUM(amount_sold), -5), '9,999,999,999') SALES$,
 ROW_NUMBER() OVER (ORDER BY TRUNC(SUM(amount_sold), -6) DESC) AS ROW_NUMBER
FROM sales, products, customers, times, channels
WHERE sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id
 AND sales.time_id=times.time_id AND sales.channel_id=channels.channel_id
 AND times.calendar_month_desc IN ('2021-09', '2021-10')
GROUP BY channel_desc, calendar_month_desc;

CHANNEL_DESC CALENDAR SALES$ ROW_NUMBER
-------------- -------- -------------- ----------
Direct Sales 2021-09 1,200,000 1
Direct Sales 2021-10 1,200,000 2
Internet 2021-10 200,000 3
Partners 2021-10 600,000 4
Partners 2021-09 600,000 5
Internet 2021-09 200,000 6

Note that there are three pairs of tie values in these results. Like NTILE, ROW_NUMBER is a non-
deterministic function, so each tied value could have its row number switched. To ensure
deterministic results, you must order on a unique key. In most cases, that will require adding a
new tie breaker column to the query and using it in the ORDER BY specification.

20.2.2 Windowing Functions
Windowing functions can be used to compute cumulative, moving, and centered aggregates.
They return a value for each row in the table, which depends on other rows in the
corresponding window. With windowing aggregate functions, you can calculate moving and

Chapter 20
Ranking, Windowing, and Reporting Functions

20-13

cumulative versions of SUM, AVERAGE, COUNT, MAX, MIN, and many more functions. They can be
used only in the SELECT and ORDER BY clauses of the query. Windowing aggregate functions
include the convenient FIRST_VALUE, which returns the first value in the window; and
LAST_VALUE, which returns the last value in the window. These functions provide access to
more than one row of a table without a self-join.

The syntax of the windowing function is:

analytic_function([arguments])
 OVER {window_name | (analytic_clause)}

 where analytic_clause =
 [window_name | query_partition_clause]
 [order_by_clause [windowing_clause]]

and query_partition_clause =
 PARTITION BY
 { value_expr[, value_expr]...
 }

and windowing_clause =
 { ROWS | RANGE | GROUPS }
 { BETWEEN
 { UNBOUNDED PRECEDING
 | CURRENT ROW
 | value_expr { PRECEDING | FOLLOWING }
 }
 AND
 { UNBOUNDED FOLLOWING
 | CURRENT ROW
 | value_expr { PRECEDING | FOLLOWING }
 }
 | { UNBOUNDED PRECEDING
 | CURRENT ROW
 | value_expr PRECEDING
 }
}
[EXCLUDE CURRENT ROW
| EXCLUDE GROUP
| EXCLUDE TIES
| EXCLUDE NO OTHERS]

Note the following:

• The DISTINCT keyword is not supported in windowing functions except for MAX and MIN.

• If GROUPS is specified, then as is similar to ROWS, value_expr must be either a constant or
an expression and must evaluate to a positive numeric value.

See Also:

Oracle Database SQL Language Reference for further information regarding syntax
and restrictions

This section contains the following topics:

• About Treatment of NULLs as Input to Window Functions

• Windowing Functions with Logical Offset

Chapter 20
Ranking, Windowing, and Reporting Functions

20-14

• Centered Aggregate Function

• Windowing Aggregate Functions in the Presence of Duplicates

• Varying Window Size for Each Row

• Windowing Aggregate Functions with Physical Offsets

• Parallel Partition-Wise Operations with Windowing Functions

20.2.2.1 Examples of Window Clauses
A window clause can be implemented within a windowing function as shown in these
examples.

In these examples note that instead of repeating the same analytic clause multiple times, we
can define a window name for it and refer to the name in multiple windowing functions. The
second example also shows how one window name can be built on top of another window
name.

 select ename, deptno, sal,
 sum(sal) over (w1) sum_sal,
 min(sal) over (w1) min_sal,
 avg(sal) over (w1) avg_sal,
 sum(sal) over (w2) cum_sal
 from emp
 window w1 as (partition by deptno),
 w2 as (partition by deptno order by sal);

 select ename, deptno, sal,
 sum(sal) over (w1 order by sal) cum_sal1,
 sum(sal) over (w2) cum_sal2
 from emp
 window w1 as (partition by deptno),
 w2 as (w1 order by sal);

 select ename, deptno, sal,
 min(sal) over w1 min_sal_3,
 max(sal) over w1 max_sal_3
 from emp
 window w1 as (partition by deptno order by sal
 rows between 1 preceding and 1 following);

Chapter 20
Ranking, Windowing, and Reporting Functions

20-15

Note:

When the window name is specified with a windowing clause, it can only be
referenced directly (without parentheses). The example below demonstrates this
restriction. Notice that the window name w1 is in parentheses in several places.

 select ename, deptno, sal,
 min(sal) over (w1) min_sal_3,
 max(sal) over w1 max_sal_3
 from emp
 window w1 as (partition by deptno order by sal
 rows between 1 preceding and 1 following);

This query results in the following error.

ERROR at line 2:
ORA-32785: cannot reference a window name defined with WINDOWING clause

20.2.2.2 Examples of Windowing Clause Extensions
A windowing clause extension can be implemented within a windowing function as shown in
these examples.

The following example shows windowing clauses using the ROWS and EXCLUDE clause with
various options.

select sal,
 sum(sal) over (w rows between 1 preceding and 1 following
 exclude current row) as exclude_current_row,
 sum(sal) over (w rows between 1 preceding and 1 following
 exclude group) as exclude_group,
 sum(sal) over (w rows between 1 preceding and 1 following
 exclude ties) as exclude_ties,
 sum(sal) over (w rows between 1 preceding and 1 following
 exclude no others) as exclude_no_others
from emp
window w as (order by sal);

The following example shows windowing clauses using the RANGE and EXCLUDE clause with
various options.

select sal,
 sum(sal) over (w range between 100 preceding and 100 following
 exclude current row) as exclude_current_row,
 sum(sal) over (w range between 100 preceding and 100 following
 exclude group) as exclude_group,
 sum(sal) over (w range between 100 preceding and 100 following
 exclude ties) as exclude_ties,

Chapter 20
Ranking, Windowing, and Reporting Functions

20-16

 sum(sal) over (w range between 100 preceding and 100 following
 exclude no others) as exclude_no_others
from emp
window w as (order by sal);

The following example shows windowing clauses using the GROUPS and EXCLUDE clause
with various options.

select sal,
 sum(sal) over (w groups between 1 preceding and 1 following
 exclude current row) as exclude_current_row,
 sum(sal) over (w groups between 1 preceding and 1 following
 exclude group) as exclude_group,
 sum(sal) over (w groups between 1 preceding and 1 following
 exclude ties) as exclude_ties,
 sum(sal) over (w groups between 1 preceding and 1 following
 exclude no others) as exclude_no_others
from emp
window w as (order by sal);

20.2.2.3 About Treatment of NULLs as Input to Window Functions
Window functions' NULL semantics match the NULL semantics for SQL aggregate functions.
Other semantics can be obtained by user-defined functions, or by using the DECODE or a CASE
expression within the window function.

20.2.2.4 Windowing Functions with Logical Offset
A logical offset can be specified with constants such as RANGE 10 PRECEDING, or an expression
that evaluates to a constant, or by an interval specification like RANGE INTERVAL N DAY/MONTH/
YEAR PRECEDING or an expression that evaluates to an interval.

With logical offset, there can only be one expression in the ORDER BY expression list in the
function, with type compatible to NUMERIC if offset is numeric, or DATE if an interval is specified.

An analytic function that uses the RANGE keyword can use multiple sort keys in its ORDER BY
clause if it specifies either of these two windows:

• RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form of this is RANGE
UNBOUNDED PRECEDING, which can also be used.

• RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING.

Window boundaries that do not meet these conditions can have only one sort key in the
analytic function's ORDER BY clause.

Example 20-7 Cumulative Aggregate Function

The following is an example of cumulative amount_sold by customer ID by quarter in 2000:

SELECT c.cust_id, t.calendar_quarter_desc, TO_CHAR (SUM(amount_sold),
 '9,999,999,999.99') AS Q_SALES, TO_CHAR(SUM(SUM(amount_sold))
OVER (PARTITION BY c.cust_id ORDER BY c.cust_id, t.calendar_quarter_desc
ROWS UNBOUNDED
PRECEDING), '9,999,999,999.99') AS CUM_SALES
 FROM sales s, times t, customers c

Chapter 20
Ranking, Windowing, and Reporting Functions

20-17

 WHERE s.time_id=t.time_id AND s.cust_id=c.cust_id AND t.calendar_year=2022
 AND c.cust_id IN (2595, 9646, 11111)
 GROUP BY c.cust_id, t.calendar_quarter_desc
 ORDER BY c.cust_id, t.calendar_quarter_desc;

CUST_ID CALENDAR_QUARTER_DESC Q_SALES CUM_SALES
__________ _______________________ __________ _____________
 2595 2022-01 98.16 98.16
 2595 2022-02 95.11 193.27
 2595 2022-04 10,902.18 11,095.45
 9646 2022-01 422.64 422.64
 9646 2022-02 1,220.11 1,642.75
 9646 2022-03 1,121.65 2,764.40
 9646 2022-04 1,381.58 4,145.98
 11111 2022-01 6,080.14 6,080.14
 11111 2022-02 3,322.30 9,402.44
 11111 2022-03 1,073.12 10,475.56
 11111 2022-04 1,420.24 11,895.80

In this example, the analytic function SUM defines, for each row, a window that starts at the
beginning of the partition (UNBOUNDED PRECEDING) and ends, by default, at the current row.

Nested SUMs are needed in this example because you are performing a SUM over a value that is
itself a SUM. Nested aggregations are used very often in analytic aggregate functions.

Example 20-8 Moving Aggregate Function

This example of a time-based window shows, for one customer, the moving average of sales
for the current month and preceding two months:

SELECT c.cust_id, t.calendar_month_desc, TO_CHAR (SUM(amount_sold),
 '9,999,999,999') AS SALES, TO_CHAR(AVG(SUM(amount_sold))
OVER (ORDER BY c.cust_id, t.calendar_month_desc ROWS 2 PRECEDING),
 '9,999,999,999') AS MOVING_3_MONTH_AVG
FROM sales s, times t, customers c
WHERE s.time_id=t.time_id AND s.cust_id=c.cust_id
 AND t.calendar_year=1999 AND c.cust_id IN (6510)
GROUP BY c.cust_id, t.calendar_month_desc
ORDER BY c.cust_id, t.calendar_month_desc;

 CUST_ID CALENDAR SALES MOVING_3_MONTH
---------- -------- -------------- --------------
 6510 1999-04 125 125
 6510 1999-05 3,395 1,760
 6510 1999-06 4,080 2,533
 6510 1999-07 6,435 4,637
 6510 1999-08 5,105 5,207
 6510 1999-09 4,676 5,405
 6510 1999-10 5,109 4,963
 6510 1999-11 802 3,529

Note that the first two rows for the three month moving average calculation in the output data
are based on a smaller interval size than specified because the window calculation cannot
reach past the data retrieved by the query. You must consider the different window sizes found
at the borders of result sets. In other words, you may need to modify the query to include
exactly what you want.

Chapter 20
Ranking, Windowing, and Reporting Functions

20-18

20.2.2.5 Centered Aggregate Function
Calculating windowing aggregate functions centered around the current row is straightforward.
This example computes for all customers a centered moving average of sales for one week in
late December 1999. It finds an average of the sales total for the one day preceding the current
row and one day following the current row including the current row as well.

The example below uses the sh sample schema.

Example 20-9 Centered Aggregate

SELECT t.time_id, TO_CHAR (SUM(amount_sold), '9,999,999,999')
AS SALES, TO_CHAR(AVG(SUM(amount_sold)) OVER
 (ORDER BY t.time_id
 RANGE BETWEEN INTERVAL '1' DAY PRECEDING AND
 INTERVAL '1' DAY FOLLOWING), '9,999,999,999') AS CENTERED_3_DAY_AVG
 FROM sh.sales s, sh.times t
 WHERE s.time_id=t.time_id AND t.calendar_week_number IN (51)
 AND calendar_year=2022
 GROUP BY t.time_id
 ORDER BY t.time_id;

 TIME_ID SALES CENTERED_3_DAY_AVG
____________ ______________ __________________
17-DEC-22 281,264 197,907
18-DEC-22 114,550 161,631
19-DEC-22 89,080 103,482
20-DEC-22 106,816 109,094
21-DEC-22 131,385 87,102
22-DEC-22 23,104 85,469
23-DEC-22 101,917 62,511

The starting and ending rows for each product's centered moving average calculation in the
output data are based on just two days, because the window calculation cannot reach past the
data retrieved by the query. As in the prior example, you must consider the different window
sizes found at the borders of result sets: the query may need to be adjusted.

20.2.2.6 Windowing Aggregate Functions in the Presence of Duplicates
The following example illustrates how window aggregate functions compute values when there
are duplicates, that is, when multiple rows are returned for a single ordering value. The query
retrieves the quantity sold to several customers during a specified time range. (Although an
inline view was used to define the base data set, it has no special significance and can be
ignored.) The query defines a moving window that runs from the date of the current row to 10
days earlier.Note that the RANGE keyword is used to define the windowing clause of this
example. This means that the window can potentially hold many rows for each value in the
range. In this case, there are three pairs of rows with duplicate date values.

Example 20-10 Windowing Aggregate Functions with Logical Offsets

SELECT time_id, daily_sum, SUM(daily_sum) OVER (ORDER BY time_id
RANGE BETWEEN INTERVAL '10' DAY PRECEDING AND CURRENT ROW)
AS current_group_sum
FROM (SELECT time_id, channel_id, SUM(s.quantity_sold)
AS daily_sum
FROM sh.customers c, sh.sales s, sh.countries
WHERE c.cust_id=s.cust_id
 AND c.country_id = countries.country_id
 AND s.cust_id IN (638, 634, 753, 440) AND s.time_id BETWEEN '01-MAY-22'

Chapter 20
Ranking, Windowing, and Reporting Functions

20-19

 AND '13-MAY-23' GROUP BY time_id, channel_id);

TIME_ID DAILY_SUM CURRENT_GROUP_SUM
____________ ____________ ____________________
06-MAY-22 4 12
06-MAY-22 8 12
10-MAY-22 5 24
10-MAY-22 4 24
10-MAY-22 3 24
12-MAY-22 3 33
12-MAY-22 6 33
16-MAY-22 2 45
16-MAY-22 6 45
16-MAY-22 4 45
05-JUN-22 4 16
05-JUN-22 12 16
.
.
.

In the output of this example, all dates except May 6 and May 12 return two rows. Examine the
commented numbers to the right of the output to see how the values are calculated. Note that
each group in parentheses represents the values returned for a single day.

Note that this example applies only when you use the RANGE keyword rather than the ROWS
keyword. It is also important to remember that with RANGE, you can only use 1 ORDER BY
expression in the analytic function's ORDER BY clause. With the ROWS keyword, you can use
multiple order by expressions in the analytic function's ORDER BY clause.

20.2.2.7 Varying Window Size for Each Row
There are situations where it is useful to vary the size of a window for each row, based on a
specified condition. For instance, you may want to make the window larger for certain dates
and smaller for others. Assume that you want to calculate the moving average of stock price
over three working days. If you have an equal number of rows for each day for all working days
and no non-working days are stored, then you can use a physical window function. However, if
the conditions noted are not met, you can still calculate a moving average by using an
expression in the window size parameters.

Expressions in a window size specification can be made in several different sources. the
expression could be a reference to a column in a table, such as a time table. It could also be a
function that returns the appropriate boundary for the window based on values in the current
row. The following statement for a hypothetical stock price database uses a user-defined
function in its RANGE clause to set window size:

SELECT t_timekey, AVG(stock_price)
 OVER (ORDER BY t_timekey RANGE fn(t_timekey) PRECEDING) av_price
FROM stock, time WHERE st_timekey = t_timekey
ORDER BY t_timekey;

In this statement, t_timekey is a date field. Here, fn could be a PL/SQL function with the
following specification:

fn(t_timekey) returns

• 4 if t_timekey is Monday, Tuesday

• 2 otherwise

• If any of the previous days are holidays, it adjusts the count appropriately.

Chapter 20
Ranking, Windowing, and Reporting Functions

20-20

Note that, when window is specified using a number in a window function with ORDER BY on a
date column, then it is converted to mean the number of days. You could have also used the
interval literal conversion function, as NUMTODSINTERVAL(fn(t_timekey), 'DAY') instead of
just fn(t_timekey) to mean the same thing. You can also write a PL/SQL function that returns
an INTERVAL data type value.

20.2.2.8 Windowing Aggregate Functions with Physical Offsets
For windows expressed in rows, the ordering expressions should be unique to produce
deterministic results. For this example, which uses the Oracle-provided sh sample schema,
the following query is not deterministic because time_id is not unique in this result set.

Example 20-11 Windowing Aggregate Functions With Physical Offsets

SELECT t.time_id, TO_CHAR(amount_sold, '9,999,999,999') AS INDIV_SALE,
 TO_CHAR(SUM(amount_sold) OVER (PARTITION BY t.time_id ORDER BY t.time_id
ROWS UNBOUNDED PRECEDING), '9,999,999,999') AS CUM_SALES
FROM sh.sales s, sh.times t, sh.customers c
WHERE s.time_id=t.time_id AND s.cust_id=c.cust_id
 AND t.time_id IN
 (TO_DATE('11-DEC-2022'), TO_DATE('12-DEC-2022'))
 AND c.cust_id
BETWEEN 6500 AND 6600
ORDER BY t.time_id;

TIME_ID INDIV_SALE CUM_SALES
____________ ___________ ___________
11-DEC-22 61 61
11-DEC-22 152 214
11-DEC-22 209 423
11-DEC-22 21 444
11-DEC-22 62 506
11-DEC-22 208 714
11-DEC-22 22 736
11-DEC-22 25 761
11-DEC-22 22 783
11-DEC-22 115 899
11-DEC-22 115 1,014
11-DEC-22 112 1,126
11-DEC-22 204 1,330

One way to handle this problem would be to add the prod_id column to the result set and
order on both time_id and prod_id.

20.2.2.9 Parallel Partition-Wise Operations with Windowing Functions
SQL windowing functions can have a query partitioning clause that can partition a query result
into groups based on expressions used in the clause. For parallel queries on partitioned tables,
the partitioning defined by the clause can be used to perform a partition-wise operation if the
requirements for such operations are satisfied. This achieves faster SQL windowing queries on
partitioned tables.

See Also:

Oracle Database VLDB and Partitioning Guide

Chapter 20
Ranking, Windowing, and Reporting Functions

20-21

20.2.3 Reporting Functions
After a query has been processed, aggregate values like the number of resulting rows or an
average value in a column can be easily computed within a partition and made available to
other reporting functions. Reporting aggregate functions return the same aggregate value for
every row in a partition. Their behavior with respect to NULLs is the same as the SQL aggregate
functions. The syntax is:

{SUM | AVG | MAX | MIN | COUNT | STDDEV | VARIANCE ... }
 ([ALL | DISTINCT] {value expression1 [,...] | *})
 OVER ([PARTITION BY value expression2[,...]])

In addition, the following conditions apply:

• An asterisk (*) is only allowed in COUNT(*)
• DISTINCT is supported only if corresponding aggregate functions allow it.

• value expression1 and value expression2 can be any valid expression involving column
references or aggregates.

• The PARTITION BY clause defines the groups on which the windowing functions would be
computed. If the PARTITION BY clause is absent, then the function is computed over the
whole query result set.

See Also:

RATIO_TO_REPORT Function

Reporting functions can appear only in the SELECT clause or the ORDER BY clause. The major
benefit of reporting functions is their ability to do multiple passes of data in a single query block
and speed up query performance. Queries such as "Count the number of salesmen with sales
more than 10% of city sales" do not require joins between separate query blocks.

For example, consider the question "For each product category, find the region in which it had
maximum sales". The equivalent SQL query against the sh sample schema using the MAX
reporting aggregate function would be:

SELECT prod_category, country_region, sales
FROM (SELECT SUBSTR(p.prod_category,1,8) AS prod_category, co.country_region,
 SUM(amount_sold) AS sales,
MAX(SUM(amount_sold)) OVER (PARTITION BY prod_category) AS MAX_REG_SALES
FROM sh.sales s, sh.customers c, sh.countries co, sh.products p
WHERE s.cust_id=c.cust_id AND c.country_id=co.country_id
 AND s.prod_id =p.prod_id AND s.time_id = TO_DATE('11-OCT-2021')
GROUP BY prod_category, country_region)
WHERE sales = MAX_REG_SALES;

The inner query with the reporting aggregate function MAX(SUM(amount_sold)) returns:

PROD_CATEGORY COUNTRY_REGION SALES MAX_REG_SALES
________________ _________________ __________ ________________
Baseball Americas 10208.6 10208.6
Baseball Asia 1592.8 10208.6
Baseball Europe 4174.76 10208.6
Cricket Americas 4577.73 4577.73

Chapter 20
Ranking, Windowing, and Reporting Functions

20-22

Cricket Asia 731.14 4577.73
Cricket Europe 1898.42 4577.73

The full query results are:

PROD_CATEGORY COUNTRY_REGION SALES
________________ _________________ __________
Baseball Americas 10208.6
Cricket Americas 4577.73

Example 20-12 Reporting Aggregate Example

Reporting aggregates combined with nested queries enable you to answer complex queries
efficiently. For example, what if you want to know the best selling products in your most
significant product subcategories? The following is a query which finds the 5 top-selling
products for each product subcategory that contributes more than 20% of the sales within its
product category. You can run this against the sh sample schema.

SELECT SUBSTR(prod_category,1,8) AS CATEG, prod_subcategory, prod_id, SALES
FROM (SELECT p.prod_category, p.prod_subcategory, p.prod_id,
 SUM(amount_sold) AS SALES,
 SUM(SUM(amount_sold)) OVER (PARTITION BY p.prod_category) AS CAT_SALES,
 SUM(SUM(amount_sold)) OVER
 (PARTITION BY p.prod_subcategory) AS SUBCAT_SALES,
 RANK() OVER (PARTITION BY p.prod_subcategory
 ORDER BY SUM(amount_sold)) AS RANK_IN_LINE
 FROM sh.sales s, sh.customers c, sh.countries co, sh.products p
 WHERE s.cust_id=c.cust_id
 AND c.country_id=co.country_id AND s.prod_id=p.prod_id
 AND s.time_id=to_DATE('11-OCT-2022')
 GROUP BY p.prod_category, p.prod_subcategory, p.prod_id
 ORDER BY prod_category, prod_subcategory)
 WHERE SUBCAT_SALES>0.2*CAT_SALES AND RANK_IN_LINE<=5;

20.2.3.1 RATIO_TO_REPORT Function
The RATIO_TO_REPORT function computes the ratio of a value to the sum of a set of values. If
the expression value expression evaluates to NULL, RATIO_TO_REPORT also evaluates to NULL,
but it is treated as zero for computing the sum of values for the denominator. Its syntax is:

RATIO_TO_REPORT (expr) OVER ([query_partition_clause])

In this, the following applies:

• expr can be any valid expression involving column references or aggregates.

• The PARTITION BY clause defines the groups on which the RATIO_TO_REPORT function is to
be computed. If the PARTITION BY clause is absent, then the function is computed over the
whole query result set.

Example 20-13 RATIO_TO_REPORT

To calculate RATIO_TO_REPORT of sales for each channel, you might use the following syntax:

SELECT ch.channel_desc, TO_CHAR(SUM(amount_sold),'9,999,999') AS SALES,
 TO_CHAR(SUM(SUM(amount_sold)) OVER (), '9,999,999') AS TOTAL_SALES,
 TO_CHAR(RATIO_TO_REPORT(SUM(amount_sold)) OVER (), '9.999')
 AS RATIO_TO_REPORT
FROM sh.sales s, sh.channels ch
WHERE s.channel_id=ch.channel_id AND s.time_id=to_DATE('11-OCT-2019')
GROUP BY ch.channel_desc;

Chapter 20
Ranking, Windowing, and Reporting Functions

20-23

CHANNEL_DESC SALES TOTAL_SALES RATIO_TO_REPORT
_______________ _____________ ______________ __________________
Partners 7,764 28,158 .276
Direct Sales 14,798 28,158 .526
Internet 5,596 28,158 .199

20.2.4 LAG/LEAD Functions
The LAG and LEAD functions are useful for comparing values when the relative positions of rows
can be known reliably. They work by specifying the count of rows which separate the target row
from the current row. Because the functions provide access to more than one row of a table at
the same time without a self-join, they can enhance processing speed. The LAG function
provides access to a row at a given offset prior to the current position, and the LEAD function
provides access to a row at a given offset after the current position. "LAG/LEAD Syntax"
describes the syntax of these functions.

The LAG and LEAD functions can be thought of as being related to, and a simplification of, the
NTH_VALUE function. With LAG and LEAD, you can only retrieve values from a row at the specified
physical offset. If this is insufficient, you can use NTH_VALUE, which enables you to retrieve
values from a row based on what is called a logical offset or relative position. You can use the
IGNORE NULLS option with the NTH_VALUE function to make it more useful, in the sense that you
can specify conditions and filter out rows based on certain conditions. See Example 20-17,
where rows with quantities less than eight are filtered out. This cannot be done with LAG or
LEAD, as you would not know the offset to the row.

See "NTH_VALUE Function" and Oracle Database SQL Language Reference for more
information.

20.2.4.1 LAG/LEAD Syntax
These functions have the following syntax:

{LAG | LEAD} (value_expr [, offset] [, default]) [RESPECT NULLS|IGNORE NULLS]
 OVER ([query_partition_clause] order_by_clause)

offset is an optional parameter and defaults to 1. default is an optional parameter and is the
value returned if offset falls outside the bounds of the table or partition. When IGNORE NULLS is
specified, the value returned will be from a row at a specified lag or lead offset after ignoring
rows with NULLs.

Example 20-14 LAG/LEAD

This example illustrates a typical case of using LAG and LEAD:

SELECT time_id, TO_CHAR(SUM(amount_sold),'9,999,999') AS SALES,
 TO_CHAR(LAG(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LAG1,
 TO_CHAR(LEAD(SUM(amount_sold),1) OVER (ORDER BY time_id),'9,999,999') AS LEAD1
FROM sales
WHERE time_id>=TO_DATE('10-OCT-2019') AND time_id<=TO_DATE('22-OCT-2019')
GROUP BY time_id;

TIME_ID SALES LAG1 LEAD1
____________ _____________ _____________ _____________
10-OCT-19 179,364 28,158
11-OCT-19 28,158 179,364 22,243
12-OCT-19 22,243 28,158 57,482
13-OCT-19 57,482 22,243 110,980

Chapter 20
Ranking, Windowing, and Reporting Functions

20-24

14-OCT-19 110,980 57,482 30,011
15-OCT-19 30,011 110,980 81,224
16-OCT-19 81,224 30,011 158,634
17-OCT-19 158,634 81,224 77,557
18-OCT-19 77,557 158,634 84,686
19-OCT-19 84,686 77,557 190,446
20-OCT-19 190,446 84,686 227,484
21-OCT-19 227,484 190,446 20,439
22-OCT-19 20,439 227,484

See "Data Densification for Reporting" for information showing how to use the LAG/LEAD
functions for doing period-to-period comparison queries on sparse data.

Example 20-15 LAG/LEAD Using IGNORE NULLS

This example illustrates a typical case of using LAG and LEAD with the IGNORE NULLS option:

SELECT prod_id, channel_id, SUM(quantity_sold) quantity,
 CASE WHEN SUM(quantity_sold) < 5000 THEN SUM(amount_sold) ELSE NULL END amount,
 LAG(CASE WHEN SUM(quantity_sold) < 5000 THEN SUM(amount_sold) ELSE NULL END)
 IGNORE NULLS OVER (PARTITION BY prod_id ORDER BY channel_id) lag
FROM sales
WHERE prod_id IN (18,127,138)
GROUP BY prod_id, channel_id;

 PROD_ID CHANNEL_ID QUANTITY AMOUNT LAG
-------- ---------- -------- ----------- ----------
 18 2 2888 4420923.94
 18 3 5615 4420923.94
 18 4 1088 1545729.81 4420923.94
 127 2 4508 274088.08
 127 3 9626 274088.08
 127 4 1850 173682.67 274088.08
 138 2 1120 127390.3
 138 3 3878 393111.15 127390.3
 138 4 543 71203.21 393111.15

9 rows selected.

20.2.5 FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functions
This section illustrates the FIRST_VALUE, LAST_VALUE, and NTH_VALUE functions that are
described in the following topics:

• FIRST_VALUE and LAST_VALUE Functions

• NTH_VALUE Function

20.2.5.1 FIRST_VALUE and LAST_VALUE Functions
The FIRST_VALUE and LAST_VALUE functions allow you to select the first and last rows from a
window. These rows are especially valuable because they are often used as the baselines in
calculations. For instance, with a partition holding sales data ordered by day, you might ask
"How much was each day's sales compared to the first sales day (FIRST_VALUE) of the period?"

If the IGNORE NULLS option is used with FIRST_VALUE, it returns the first non-null value in the set,
or NULL if all values are NULL. If IGNORE NULLS is used with LAST_VALUE, it returns the last non-
null value in the set, or NULL if all values are NULL. The IGNORE NULLS option is particularly
useful in populating an inventory table properly.

Chapter 20
Ranking, Windowing, and Reporting Functions

20-25

These functions have syntax as follows:

FIRST_VALUE|LAST_VALUE (<expr>) [RESPECT NULLS|IGNORE NULLS] OVER (analytic clause);

Example 20-16 FIRST_VALUE

This example illustrates using the IGNORE NULLS option with FIRST_VALUE:

SELECT prod_id, channel_id, time_id,
 CASE WHEN MIN(amount_sold) > 9.5
 THEN MIN(amount_sold) ELSE NULL END amount_sold,
 FIRST_VALUE(CASE WHEN MIN(amount_sold) > 9.5
 THEN min(amount_sold) ELSE NULL END)
 IGNORE NULLS OVER (PARTITION BY prod_id
 ORDER BY channel_id DESC, time_id
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) nv FROM sales
 WHERE prod_id = 115 AND time_id BETWEEN '18-DEC-20'
 AND '22-DEC-20' GROUP BY prod_id, channel_id, time_id
 ORDER BY prod_id;

 PROD_ID CHANNEL_ID TIME_ID AMOUNT_SOLD NV
---------- ---------- --------- ----------- ----------
 115 2 18-DEC-20 10.91
 115 2 20-DEC-20 10.91
 115 2 21-DEC-20 10.91
 115 2 22-DEC-20 10.91
 115 3 18-DEC-20 0.91 10.91
 115 3 20-DEC-20 0.91 10.91
 115 3 21-DEC-20 10.91 10.91
 115 3 22-DEC-20 10.8 10.91
 115 4 18-DEC-20 10.91
 115 4 21-DEC-20 10.91
13 rows selected.

20.2.5.2 NTH_VALUE Function
The NTH_VALUE function enables you to find column values from an arbitrary row in the window.
This could be used when, for example, you want to retrieve the 5th highest closing price for a
company's shares during a year.

The LAG and LEAD functions can be thought of as being related to, and a simplification of, the
NTH_VALUE function. With LAG and LEAD, you can only retrieve values from a row at the specified
physical offset. If this is insufficient, you can use NTH_VALUE, which enables you to retrieve
values from a row based on what is called a logical offset or relative position. You can use the
IGNORE NULLS option with the NTH_VALUE, FIRST_VALUE, and LAST_VALUE functions to make it
more powerful, in the sense that you can specify conditions and filter out rows based on certain
conditions. See Example 20-17, where rows with quantities less than eight are filtered out. This
cannot be done with LAG or LEAD, as you would not know the offset to the row.

See Oracle Database SQL Language Reference for more information.

This function has syntax as follows:

NTH_VALUE (<expr>, <n expr>) [FROM FIRST | FROM LAST]
[RESPECT NULLS | IGNORE NULLS] OVER (<window specification>)

• expr can be a column, constant, bind variable, or an expression involving them.

• n can be a column, constant, bind variable, or an expression involving them.

Chapter 20
Ranking, Windowing, and Reporting Functions

20-26

• RESPECT NULLS is the default NULL handling mechanism. It determines whether null values
of expr are included in or eliminated from the calculation. The default is RESPECT NULLS.

• The FROM FIRST and FROM LAST options determine whether the offset n is from the first or
last row. The default is FROM FIRST.

• IGNORE NULLS enables you to skip NULLs in measure values.

Example 20-17 NTH_VALUE

The following example returns the amount_sold value of the second channel_id in ascending
order for each prod_id in the range between 10 and 20:

SELECT prod_id, channel_id, MIN(amount_sold),
 NTH_VALUE(MIN(amount_sold), 2) OVER (PARTITION BY prod_id ORDER BY channel_id
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) NV
FROM sh.sales
WHERE prod_id BETWEEN 10 AND 20 GROUP BY prod_id, channel_id;

 PROD_ID CHANNEL_ID MIN(AMOUNT_SOLD) NV
---------- ---------- ---------------- ----------
 13 2 907.34 906.2
 13 3 906.2 906.2
 13 4 842.21 906.2
 14 2 1015.94 1036.72
 14 3 1036.72 1036.72
 14 4 935.79 1036.72
 15 2 871.19 871.19
 15 3 871.19 871.19
 15 4 871.19 871.19
 16 2 266.84 266.84
 16 3 266.84 266.84
 16 4 266.84 266.84
 16 9 11.99 266.84
...

20.3 Advanced Aggregates for Analysis
Oracle Database provides multiple SQL functions to perform advanced aggregations.
Additionally, for certain exact functions, corresponding functions that return approximate results
are provided.

This section illustrates the following advanced analytic aggregate functions:

• About Approximate Aggregates

• LISTAGG Function

• FIRST/LAST Functions

• Inverse Percentile Functions

• Hypothetical Rank Functions

• Linear Regression Functions

• About Statistical Aggregates

• About User-Defined Aggregates

Chapter 20
Advanced Aggregates for Analysis

20-27

20.3.1 About Approximate Aggregates
Approximate aggregates are computed using SQL functions that return approximate results.
They are used primarily in data exploration queries where exact values are not required and
approximations are acceptable.

The APPROX_COUNT_DISTINCT function returns the approximate number of rows containing a
distinct value for a specified expression. The APPROX_COUNT_DISTINCT_DETAIL and
APPROX_COUNT_DISTINCT_AGG functions enable you to compute varying aggregated levels of
approximate distinct value counts within specified groupings. The result of these aggregations
can be stored in tables or materialized views for further analysis or answering user queries.

The APPROX_COUNT_DISTINCT_DETAIL function creates a base-level summary, in binary format,
containing tuples for all the dimensions listed in the WHERE clause. The
APPROX_COUNT_DISTINCT_AGG function uses the data generated by the
APPROX_COUNT_DISTINCT_DETAIL function to extract the higher level tuples in binary format.
This avoids having to rerun the original calculation (in this case, the calculation with
APPROX_COUNT_DISTINCT). The aggregate data that uses a binary format is converted into a
human-readable format using TO_APPROX_COUNT_DISTINCT.

Figure 20-3 describes an example of using APPROX_COUNT_DISTINCT_DETAIL to obtain the
approximate number of distinct products sold each month. The sales data selected from the
my_sales table is aggregated by year and month and stored in the SALES_APPROX_MONTH table
using a query such as the following:

INSERT INTO sales_approx_month
 (SELECT year, month, APPROX_COUNT_DISTINCT_DETAIL(prod_id) approx_month
 FROM my_sales
 GROUP BY year, month);

Notice that the values stored in approx_month are binary values. Use the
TO_APPROX_COUNT_DISTINCT function to display these binary values in human readable format.
To display the distinct number of products sold, aggregated by year and month, use the
TO_APPROX_COUNT_DISTINCT function on the approx_month column. To display data aggregated
by year, use the TO_APPROX_COUNT_DISTINCT function along with the
APPROX_COUNT_DISTINCT_AGG function on the data stored in the approx_month column.

Chapter 20
Advanced Aggregates for Analysis

20-28

Figure 20-3 Displaying Approximate Aggregates Using SQL Functions

Another approach to computing the approximate number of distinct products sold each year
could be to use the APPROX_COUNT_DISTINCT_AGG to aggregate the monthly detail stored in the
SALES_APPROX_MONTH table and store the results in a table or materialized view.

Properties of SQL Functions that Return Approximate Percentile Results

SQL functions that provide approximate percentile results include APPROX_PERCENTILE,
APPROX_PERCENTILE_DETAIL, and APPROX_PERCENTILE_AGG. These functions have the following
additional properties:

• ERROR_RATE
Indicates the accuracy of the interpolated percentile values by computing the error rate of
the approximate calculation

• CONFIDENCE
Indicates the confidence in the accuracy of the error rate (when error rate is specified)

• DETERMINISTIC
Controls the algorithm used to calculate approximations

If you need consistent and repeatable results, then use DETERMINISTIC. This would
typically be the case where results need to be shared with other users

Chapter 20
Advanced Aggregates for Analysis

20-29

See Also:

• Using Percentile Functions that Return Approximate Results

• APPROX_COUNT_DISTINCT in Oracle Database SQL Language Reference

• APPROX_COUNT_DISTINCT_DETAIL in Oracle Database SQL Language Reference
for information about the function and the ERROR_RATE, CONFIDENCE, and
DETERMINISTIC properties

• APPROX_COUNT_DISTINCT_AGG in Oracle Database SQL Language Reference

• TO_APPROX_COUNT_DISTINCT in Oracle Database SQL Language Reference

20.3.2 LISTAGG Function
The LISTAGG function orders data within each group based on the ORDER BY clause and then
concatenates the values of the measure column.

In releases prior to Oracle Database 12c Release 2 (12.2), if the concatenated value returned
by the LISTAGG function exceeds the maximum length supported for the return data type, then
the following error is returned:

ORA-01489: result of string concatenation is too long
Starting with Oracle Database 12c Release 2 (12.2), you can truncate the return string to fit
within the maximum length supported for the return data type and display a truncation literal to
indicate that the return value was truncated. The truncation is performed after the last complete
data value thereby ensuring that no incomplete data value is displayed.

The syntax of the LISTAGG function is as follows:

LISTAGG ([ALL] [DISTINCT] <measure_column> [,<delimiter>] [ON OVERFLOW TRUNCATE
[truncate_literal] | ON OVERFLOW ERROR [WITH | WITHOUT COUNT]])
 WITHIN GROUP (ORDER BY <oby_expression_list>)

DISTINCT removes duplicate values from the list.

measure_column can be a column, constant, bind variable, or an expression involving them.

When the return string does not fit within the maximum length supported for the data type, you
can either display an error or truncate the return string and display a truncation literal. The
default is ON OVERFLOW ERROR, which displays an error when truncation occurs.

truncate_literal can be NULL, a string literal, or constant expression. It is appended to the
end of the list of values, after the last delimiter, when LISTAGG returns a value that is larger than
the maximum length supported for the return data type. The default value is an ellipsis (...).

WITH COUNT displays the number of data values that were truncated from the LISTAGG output
because the maximum length supported for the return data type was exceeded. This is the
default option. Use WITHOUT COUNT to omit displaying a count at the end of the LISTAGG
function when the string is truncated.

delimiter can be NULL (default value), a string literal, bind variable, or constant expression.
This is a mandatory parameter. If no delimiter is specified, then NULL is used as the delimiter.

Chapter 20
Advanced Aggregates for Analysis

20-30

oby_expression_list can be a list of expressions with optional ordering options to sort in
ascending or descending order (ASC or DESC), and to control the sort order of NULLs (NULLS
FIRST or NULLS LAST). ASCENDING and NULLS LAST are the defaults.

See Also:

Oracle Database SQL Language Reference for information about the maximum
length supported for the VARCHAR2 data type

20.3.2.1 LISTAGG as Aggregate
You can use the LISTAGG function as an aggregate.

Example 20-18 LISTAGG as Aggregate

The following example illustrates using LISTAGG as an aggregate.

SELECT prod_id, LISTAGG(cust_first_name||' '||cust_last_name, '; ')
 WITHIN GROUP (ORDER BY amount_sold DESC) cust_list
FROM sales, customers
WHERE sales.cust_id = customers.cust_id AND cust_gender = 'M'
 AND cust_credit_limit = 15000 AND prod_id BETWEEN 15 AND 18
 AND channel_id = 2 AND time_id > '01-JAN-01'
GROUP BY prod_id;

PROD_ID CUST_LIST
------- ---
 15 Hope Haarper; Roxanne Crocker; ... Mason Murray
 16 Manvil Austin; Bud Pinkston; ... Helga Nickols
 17 Opal Aaron; Thacher Rudder; ... Roxanne Crocker
 18 Boyd Lin; Bud Pinkston; ... Erik Ready

The output has been modified for readability. In this case, the ellipsis indicate that some values
before the last customer name have been omitted from the output.

Example 20-19 LISTAGG with Return String Exceeding the Maximum Permissible
Length

This example orders data within each group specified by the GROUP BY clause and
concatenates the values in the cust_first_name and cust_last_name columns. If the list of
concatenated names exceeds the maximum length supported for the VARCHAR2 data type, then
the list is truncated to the last complete name. At the end of the list, the overflow literal of ’...’ is
appended followed by the number of values that were truncated.

SELECT country_region,
 LISTAGG(s.CUST_FIRST_NAME||' '|| s.CUST_LAST_NAME, ';' ON OVERFLOW TRUNCATE
WITH COUNT) WITHIN GROUP (ORDER BY s.cust_id) AS customer_names
FROM countries c, customers s
WHERE c.country_id = s.country_id
GROUP BY c.country_region
ORDER BY c.country_region;

COUNTRY_REGION

CUSTOMER_NAMES

Chapter 20
Advanced Aggregates for Analysis

20-31

--
--
Africa
Laurice Lincoln;Kirsten Newkirk;Verna Yarborough;Chloe Dwyer;Betty
Sampler;Terry
 Hole;Waren Parkburg;Uwe Feldman;Douglas Hanson;Woodrow Lazar;Alfred
Doctor;Stac
.
.
Zwolinsky;Buzz Milenova;Abbie Venkayala

COUNTRY_REGION

CUSTOMER_NAMES
--
--
Americas
Linette Ingram;Vida Puleo;Gertrude Atkins;Sibil Haul;Raina Cassidy;Kaula
Daley;G
abriela Sean;Dolores Moore;Erica Vandermark;Madallyn Ladd;Carolyn
Hinkle;Leonora
.
.
emphill;Urban Smyth;Murry Ivy;Steven Lauers;...(21482)

COUNTRY_REGION

CUSTOMER_NAMES
--
--
Asia
Harriett Charles;Willa Fitz;Faith Fischer;Gay Nance;Maggie Cain;Neda
Clatterbuck
;Justa Killman;Penelope Oliver;Mandisa Grandy;Marette Overton;Astrid
Rice;Poppy
.
.
ob Gentile;Lynn Hardesty;Mabel Barajas;...(1648)

COUNTRY_REGION

CUSTOMER_NAMES
--
--
Europe
Abigail Kessel;Anne Koch;Buick Emmerson;Frank Hardy;Macklin Gowen;Rosamond
Kride
r;Raina Silverberg;Gloria Saintclair;Macy Littlefield;Yuri Finch;Bertilde
Sexton
.
.
el Floyd;Lincoln Sean;Morel Gregory;Kane Speer;...(30284)

COUNTRY_REGION

CUSTOMER_NAMES

Chapter 20
Advanced Aggregates for Analysis

20-32

--
--
Middle East
Dalila Rockwell;Alma Elliott;Cara Jeffreys;Joy Sandstrum;Elizabeth
Barone;Whitby
 Burnns;Geoffrey Door;Austin Dutton;Tobin Newcomer;Blake Overton;Lona
Kimball;Lo
.
.
edy;Brandon Moy;Sydney Fenton

COUNTRY_REGION

CUSTOMER_NAMES
--
--
Oceania
Fredericka Umstatt;Viola Nettles;Alyce Reagan;Catherine Odenwalld;Mauritia
Linde
green;Heidi Schmidt;Ray Wade;Cicily Graham;Myrtle Joseph;Joan Morales;Brenda
Obr
.
.
;Fredie Elgin;Gilchrist Lease;Guthrey Cain;...(793)

6 rows selected.

Example 20-20 LISTAGG with Repeating Values Removed Using DISTINCT

This example orders data within each group specified by the GROUP BY clause and
concatenates the values in the prod_cateogry and prod_desc columns. If the list of
concatenated names exceeds the maximum length supported for the VARCHAR2 data type, then
the list is truncated to the last complete string. The DISTINCT keyword specifies that duplicate
values in the specified measure column must be removed.

SELECT cust_id, LISTAGG(DISTINCT prod_category||':'||prod_desc,' ; ' ON
OVERFLOW TRUNCATE WITH COUNT)
WITHIN GROUP (ORDER BY amount_sold)
FROM sh.sales, sh.products
WHERE sales.prod_id=products.prod_id
AND amount_sold > 200 AND products.prod_id BETWEEN 10 and 15
AND time_id > '01-JAN-01'
GROUP BY cust_id;

20.3.2.2 LISTAGG as Reporting Aggregate
You can use the LISTAGG function as a reporting aggregate.

Example 20-21 LISTAGG as Reporting Aggregate

This example illustrates using LISTAGG as a reporting aggregate. It extracts the lowest unit cost
for each product within each time period.

Chapter 20
Advanced Aggregates for Analysis

20-33

SELECT time_id, prod_id, LISTAGG(MIN(unit_cost),';')
 WITHIN GROUP (ORDER BY prod_id) OVER (PARTITION BY time_id) lowest_unit_cost
 FROM sh.sales_transactions_ext
 WHERE time_id BETWEEN '20-DEC-01' AND '22-DEC-01' AND prod_id BETWEEN 120 AND 125
 GROUP BY time_id, prod_id;

 TIME_ID PROD_ID LOWEST_UNIT_COST
 --------- ---------- -----------------------------------
 20-DEC-01 121 9.11;9.27;15.84;43.95
 20-DEC-01 122 9.11;9.27;15.84;43.95
 20-DEC-01 123 9.11;9.27;15.84;43.95
 21-DEC-01 120 9.11;9.27
 21-DEC-01 121 9.11;9.27
 22-DEC-01 120 9.11;9.27;15.84;43.95;16.06;12.66
 22-DEC-01 121 9.11;9.27;15.84;43.95;16.06;12.66
 22-DEC-01 122 9.11;9.27;15.84;43.95;16.06;12.66
 22-DEC-01 123 9.11;9.27;15.84;43.95;16.06;12.66
 22-DEC-01 124 9.11;9.27;15.84;43.95;16.06;12.66
 22-DEC-01 125 9.11;9.27;15.84;43.95;16.06;12.66

20.3.3 FIRST/LAST Functions
The FIRST/LAST aggregate functions allow you to rank a data set and work with its top-ranked
or bottom-ranked rows. After finding the top or bottom ranked rows, an aggregate function is
applied to any desired column. That is, FIRST/LAST lets you rank on column A but return the
result of an aggregate applied on the first-ranked or last-ranked rows of column B. This is
valuable because it avoids the need for a self-join or subquery, thus improving performance.
These functions' syntax begins with a regular aggregate function (AVG, BIT_AND_AGG,
BIT_OR_AGG, BIT_XOR_AGG, CHECKSUM, COUNT, KURTOSIS_POP, KURTOSIS_SAMP, MAX, MIN,
SKEWNESS_POP, SKEWNESS_SAMP, STDDEV, SUM, and VARIANCE) that produces a single return value
per group. To specify the ranking used, the FIRST/LAST functions add a new clause starting with
the word KEEP.

These functions have the following syntax:

aggregate_function KEEP (DENSE_RANK FIRST | LAST ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)
[OVER query_partitioning_clause]

Note that the ORDER BY clause can take multiple expressions.

This section contains the following topics:

• FIRST/LAST As Regular Aggregates

• FIRST/LAST As Reporting Aggregates

20.3.3.1 FIRST/LAST As Regular Aggregates
You can use the FIRST/LAST family of aggregates as regular aggregate functions.

Example 20-22 FIRST/LAST Example 1

The following query lets us compare minimum price and list price of our products. For each
product subcategory within the Tennis category, it returns the following:

• List price of the product with the lowest minimum price

• Lowest minimum price

Chapter 20
Advanced Aggregates for Analysis

20-34

• List price of the product with the highest minimum price

• Highest minimum price

SELECT prod_subcategory, MIN(prod_list_price)
 KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price)) AS LP_OF_LO_MINP,
MIN(prod_min_price) AS LO_MINP,
MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 AS LP_OF_HI_MINP,
MAX(prod_min_price) AS HI_MINP
FROM sh.products WHERE prod_category='Tennis'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY LP_OF_LO_MINP LO_MINP LP_OF_HI_MINP HI_MINP
---------------- ------------- ------- ------------- ----------
Tennis Balls 11.99 11.99 20.99 20.99
Tennis Racquet 299.99 299.99 599.99 599.99
Tennis Racquet Grip 7.99 7.99 7.99 7.99
Tennis Strings 19.99 19.99 29.99 29.99

20.3.3.2 FIRST/LAST As Reporting Aggregates
You can also use the FIRST/LAST family of aggregates as reporting aggregate functions. An
example is calculating which months had the greatest and least increase in head count
throughout the year. The syntax for these functions is similar to the syntax for any other
reporting aggregate.

Consider the example in Example 20-22 for FIRST/LAST. What if you wanted to find the list
prices of individual products and compare them to the list prices of the products in their
subcategory that had the highest and lowest minimum prices?

The following query lets us find that information for the Cricket subcategory by using FIRST/
LAST as reporting aggregates.

Example 20-23 FIRST/LAST Example 2

SELECT prod_id, prod_list_price,
 MIN(prod_list_price) KEEP (DENSE_RANK FIRST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_LO_MINP,
 MAX(prod_list_price) KEEP (DENSE_RANK LAST ORDER BY (prod_min_price))
 OVER(PARTITION BY (prod_subcategory)) AS LP_OF_HI_MINP
FROM sh.products WHERE prod_subcategory = 'Cricket';

 PROD_ID PROD_LIST_PRICE LP_OF_LO_MINP LP_OF_HI_MINP
---------- --------------- ------------- -------------
 48 11.99 6.99 22.99
 113 22.99 6.99 22.99
 114 18.99 6.99 22.99
 115 8.99 6.99 22.99
 116 11.99 6.99 22.99
 117 8.99 6.99 22.99
 118 7.99 6.99 22.99
 119 6.99 6.99 22.99

Using the FIRST and LAST functions as reporting aggregates makes it easy to include the
results in calculations such as "Salary as a percent of the highest salary."

Chapter 20
Advanced Aggregates for Analysis

20-35

20.3.4 Inverse Percentile Functions
Using the CUME_DIST function, you can find the cumulative distribution (percentile) of a set of
values. However, the inverse operation (finding what value computes to a certain percentile) is
neither easy to do nor efficiently computed. To overcome this difficulty, the PERCENTILE_CONT
and PERCENTILE_DISC functions were introduced. These can be used both as window reporting
functions as well as normal aggregate functions.

These functions need a sort specification and a parameter that takes a percentile value
between 0 and 1. The sort specification is handled by using an ORDER BY clause with one
expression. When used as a normal aggregate function, it returns a single value for each
ordered set.

PERCENTILE_CONT is a continuous function computed by interpolation and PERCENTILE_DISC is a
step function that assumes discrete values. Like other aggregates, PERCENTILE_CONT and
PERCENTILE_DISC operate on a group of rows in a grouped query, but with the following
differences:

• They require a parameter between 0 and 1 (inclusive). A parameter specified out of this
range results in error. This parameter should be specified as an expression that evaluates
to a constant.

• They require a sort specification. This sort specification is an ORDER BY clause with a single
expression. Multiple expressions are not allowed.

Starting with Oracle Database 12c Release 2 (12.2), the approximate inverse distribution
function APPROX_PERCENTILE returns an approximate interpolated value that would fall into that
percentile value with respect to the sort specification.

20.3.4.1 Normal Aggregate Syntax
[PERCENTILE_CONT | PERCENTILE_DISC](constant expression)
 WITHIN GROUP (ORDER BY single order by expression
[ASC|DESC] [NULLS FIRST| NULLS LAST])

20.3.4.2 Inverse Percentile Example Basis
Use the following queries to return customer data from the sh sample schema.

SELECT cust_id, cust_credit_limit, CUME_DIST()
 OVER (ORDER BY cust_credit_limit) AS CUME_DIST
FROM sh.customers WHERE cust_city='Marshal';

 CUST_ID CUST_CREDIT_LIMIT CUME_DIST
---------- ----------------- ---
 32497 1500 0.173913043478260869565217391304347826087
 28344 1500 0.173913043478260869565217391304347826087
 36651 1500 0.173913043478260869565217391304347826087
 8962 1500 0.173913043478260869565217391304347826087
 102343 3000 0.3478260869565217391304347826086956521739
 102077 3000 0.3478260869565217391304347826086956521739
 8270 3000 0.3478260869565217391304347826086956521739
 15192 3000 0.3478260869565217391304347826086956521739
 101784 5000 0.5217391304347826086956521739130434782609
 13808 5000 0.5217391304347826086956521739130434782609
 30420 5000 0.5217391304347826086956521739130434782609
 21380 5000 0.5217391304347826086956521739130434782609

Chapter 20
Advanced Aggregates for Analysis

20-36

 35266 7000 0.6521739130434782608695652173913043478261
 10346 7000 0.6521739130434782608695652173913043478261
 31112 7000 0.6521739130434782608695652173913043478261
 100977 9000 0.7391304347826086956521739130434782608696
 3424 9000 0.7391304347826086956521739130434782608696
 103066 10000 0.7826086956521739130434782608695652173913
 100421 11000 0.9565217391304347826086956521739130434783
 14459 11000 0.9565217391304347826086956521739130434783
 17268 11000 0.9565217391304347826086956521739130434783
 35225 11000 0.9565217391304347826086956521739130434783
 41496 15000 1

PERCENTILE_DISC(x) is computed by scanning up the CUME_DIST values in each group till you
find the first one greater than or equal to x, where x is the specified percentile value. For the
example query where PERCENTILE_DISC(0.5), the result is 5,000, as the following illustrates:

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc, PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
 FROM sh.customers WHERE cust_city='Marshal';

PERC_DISC PERC_CONT
--------- ---------
 5000 5000

The result of PERCENTILE_CONT is computed by linear interpolation between rows after ordering
them. To compute PERCENTILE_CONT(x), you first compute the row number = RN= (1+x*(n-1)),
where n is the number of rows in the group and x is the specified percentile value. The final
result of the aggregate function is computed by linear interpolation between the values from
rows at row numbers CRN = CEIL(RN) and FRN = FLOOR(RN).

The final result is: PERCENTILE_CONT(X) = if (CRN = FRN = RN), then (value of expression from
row at RN) else (CRN - RN) * (value of expression for row at FRN) + (RN -FRN) * (value of
expression for row at CRN).

Consider the previous example query, where you compute PERCENTILE_CONT(0.5). Here n is
17. The row number RN = (1 + 0.5*(n-1))= 9 for both groups. Putting this into the formula,
(FRN=CRN=9), you return the value from row 9 as the result.

Another example is, if you want to compute PERCENTILE_CONT(0.66). The computed row
number RN=(1 + 0.66*(n-1))= (1 + 0.66*16)= 11.67. PERCENTILE_CONT(0.66) = (12-11.67)*(value
of row 11)+(11.67-11)*(value of row 12). These results are:

SELECT PERCENTILE_DISC(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_disc, PERCENTILE_CONT(0.66) WITHIN GROUP
 (ORDER BY cust_credit_limit) AS perc_cont
FROM sh.customers WHERE cust_city='Marshal';

 PERC_DISC PERC_CONT
---------- ----------
 9000 8040

Inverse percentile aggregate functions can appear in the HAVING clause of a query like other
existing aggregate functions.

Chapter 20
Advanced Aggregates for Analysis

20-37

20.3.4.3 As Reporting Aggregates
You can also use the aggregate functions PERCENTILE_CONT, PERCENTILE_DISC as reporting
aggregate functions. When used as reporting aggregate functions, the syntax is similar to
those of other reporting aggregates.

[PERCENTILE_CONT | PERCENTILE_DISC](constant expression)
WITHIN GROUP (ORDER BY single order by expression
[ASC|DESC] [NULLS FIRST| NULLS LAST])
OVER ([PARTITION BY value expression [,...]])

This query performs the same computation (median credit limit for customers in this result set),
but reports the result for every row in the result set, as shown in the following output:

SELECT cust_id, cust_credit_limit, PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY cust_credit_limit) OVER () AS perc_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY cust_credit_limit)
 OVER () AS perc_cont
FROM sh.customers WHERE cust_city='Marshal';

 CUST_ID CUST_CREDIT_LIMIT PERC_DISC PERC_CONT
---------- ----------------- ---------- ----------
 32497 1500 5000 5000
 28344 1500 5000 5000
 36651 1500 5000 5000
 8962 1500 5000 5000
 102343 3000 5000 5000
 102077 3000 5000 5000
 8270 3000 5000 5000
 15192 3000 5000 5000
 101784 5000 5000 5000
 13808 5000 5000 5000
 30420 5000 5000 5000
 21380 5000 5000 5000
 35266 7000 5000 5000
 10346 7000 5000 5000
 31112 7000 5000 5000
 100977 9000 5000 5000
 3424 9000 5000 5000
 103066 10000 5000 5000
 100421 11000 5000 5000
 14459 11000 5000 5000
 17268 11000 5000 5000
 35225 11000 5000 5000
 41496 15000 5000 5000

20.3.4.4 Restrictions on Inverse Percentile Functions
For PERCENTILE_DISC, the expression in the ORDER BY clause can be of any data type that you
can sort (numeric, string, date, and so on). However, the expression in the ORDER BY clause
must be a numeric or datetime type (including intervals) because linear interpolation is used to
evaluate PERCENTILE_CONT. If the expression is of type DATE, the interpolated result is rounded
to the smallest unit for the type. For a DATE type, the interpolated value is rounded to the
nearest second, for interval types to the nearest second (INTERVAL DAY TO SECOND) or to the
month (INTERVAL YEAR TO MONTH).

Like other aggregates, the inverse percentile functions ignore NULLs in evaluating the result.
For example, when you want to find the median value in a set, Oracle Database ignores the

Chapter 20
Advanced Aggregates for Analysis

20-38

NULLs and finds the median among the non-null values. You can use the NULLS FIRST/NULLS
LAST option in the ORDER BY clause, but they will be ignored as NULLs are ignored.

20.3.4.5 Using Percentile Functions that Return Approximate Results
Oracle Database provides a set of SQL functions that return approximate percentile results.
These functions can be used to monitor quality, track social media activity, monitor
performance, and search for outliers within a data set.

The following SQL functions compute and display approximate percentile results:

• APPROX_PERCENTILE
Returns an approximate interpolated value that falls into the percentile value with respect
to a sort specification. It can process large amounts of data significantly faster than the
PERCENTILE_CONT with negligible deviation from the exact result.

• APPROX_PERCENTILE_DETAIL
Calculates approximate percentile information, called a detail, within a set of data that is
specified using a GROUP BY clause. Detail information created with this function is stored in
binary format and is meant to be consumed by both the TO_APPROX_PERCENTILE and
APPROX_PERCENT_DETAIL_AGG functions.

• APPROX_PERCENTILE_AGG
Performs aggregations on the details created using the APPROX_PERCENTILE_DETAIL
function.

• TO_APPROX_PECENTILE
Displays the results of detail or aggregation, which are stored as BLOB values, in human
readable format.

The detail and the higher level aggregated data can be stored in tables or materialized views
for further analysis.

Example: Displaying Approximate Percentile Sales Data Within a Country or State

This example from the sh sample schema uses APPROX_PERCENTILE_DETAIL to perform
percentile calculations once, store the results in table, and then perform approximate
aggregations based on the stored data. The TO_APPROX_PERCENTILE function is used to display
the results of the percentile calculations in human-readable format.

1. Use APPROX_PERCENTILE_DETAIL to calculate the approximate percentile of the amount of
sales in each state and store the results in a table called
approx_sales_percentile_detail.

CREATE TABLE approx_sales_percentile_detail AS
SELECT c.country_id country, c.cust_state_province state,
approx_percentile_detail(amount_sold) detail
FROM sh.sales s, sh.customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.country_id, c.cust_state_province;

2. Use TO_APPROX_PERCENTILE to query the detail and aggregate values stored in the table
and display these values in human-readable format.

Chapter 20
Advanced Aggregates for Analysis

20-39

The following statement uses the APPROX_PERCENTILE_AGG function to further aggregate the
detail data stored in the approx_sales_percentile_detail table. The
TO_APPROX_PERCENTILE function displays the aggregated results in human-readable format.

SELECT country, to_approx_percentile(approx_percentile_agg(detail),0.5)
median_amt_sold
FROM approx_sales_percentile_detail
GROUP BY country
ORDER BY country;

 COUNTRY MEDIAN_AMT_SOLD
---------- ---------------
 52769 35.43
 52770 33.65
 52771 44.99
 52772 35.48
 52773 29.61
 52774 39.38
 52775 42.09
 52776 33.25
 52777 33.7
 52778 38.99
 52779 33.72
 52782 35.69
 52785 22.99
 52786 44.99
 52787 27.99
 52788 27.13
 52789 37.57
 52790 33.5

See Also:

APROX_PERCENTILE, APPROX_PERCENTILE_DETAIL, APPROX_PERCENTILE_AGG, and
TO_APPROX_PERCENTILE in Oracle Database SQL Language Reference

20.3.5 Hypothetical Rank Functions
These functions provide functionality useful for what-if analysis. As an example, what would be
the rank of a row, if the row was hypothetically inserted into a set of other rows?

This family of aggregates takes one or more arguments of a hypothetical row and an ordered
group of rows, returning the RANK, DENSE_RANK, PERCENT_RANK or CUME_DIST of the row as if it
was hypothetically inserted into the group.

[RANK | DENSE_RANK | PERCENT_RANK | CUME_DIST](constant expression [, ...])
WITHIN GROUP (ORDER BY order by expression [ASC|DESC] [NULLS FIRST|NULLS LAST][, ...])

Here, constant expression refers to an expression that evaluates to a constant, and there
may be more than one such expressions that are passed as arguments to the function. The
ORDER BY clause can contain one or more expressions that define the sorting order on which
the ranking will be based. ASC, DESC, NULLS FIRST, NULLS LAST options will be available for each
expression in the ORDER BY.

Chapter 20
Advanced Aggregates for Analysis

20-40

Example 20-24 Hypothetical Rank and Distribution Example 1

Using the list price data from the products table used throughout this section, you can
calculate the RANK, PERCENT_RANK and CUME_DIST for a hypothetical sweater with a price of $50
for how it fits within each of the sweater subcategories. The query and results are:

SELECT cust_city,
 RANK(6000) WITHIN GROUP (ORDER BY CUST_CREDIT_LIMIT DESC) AS HRANK,
 TO_CHAR(PERCENT_RANK(6000) WITHIN GROUP
 (ORDER BY cust_credit_limit),'9.999') AS HPERC_RANK,
 TO_CHAR(CUME_DIST (6000) WITHIN GROUP
 (ORDER BY cust_credit_limit),'9.999') AS HCUME_DIST
FROM sh.customers
WHERE cust_city LIKE 'Fo%'
GROUP BY cust_city;

CUST_CITY HRANK HPERC_ HCUME_
------------------------------ ---------- ------ ------
Fondettes 13 .455 .478
Fords Prairie 18 .320 .346
Forest City 47 .370 .378
Forest Heights 38 .456 .464
Forestville 58 .412 .418
Forrestcity 51 .438 .444
Fort Klamath 59 .356 .363
Fort William 30 .500 .508
Foxborough 52 .414 .420

Unlike the inverse percentile aggregates, the ORDER BY clause in the sort specification for
hypothetical rank and distribution functions may take multiple expressions. The number of
arguments and the expressions in the ORDER BY clause should be the same and the arguments
must be constant expressions of the same or compatible type to the corresponding ORDER BY
expression. The following is an example using two arguments in several hypothetical ranking
functions.

Example 20-25 Hypothetical Rank and Distribution Example 2

SELECT prod_subcategory,
 RANK(10,8) WITHIN GROUP (ORDER BY prod_list_price DESC,prod_min_price)
 AS HRANK, TO_CHAR(PERCENT_RANK(10,8) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') AS HPERC_RANK,
 TO_CHAR(CUME_DIST (10,8) WITHIN GROUP
 (ORDER BY prod_list_price, prod_min_price),'9.999') AS HCUME_DIST
FROM sh.products WHERE prod_subcategory LIKE 'Baseball%'
GROUP BY prod_subcategory;

PROD_SUBCATEGORY HRANK HPERC_ HCUME_
-------------------- ----- ------ ------
Baseball Clothing 3 .000 .333
Baseballs 6 .000 .167

These functions can appear in the HAVING clause of a query just like other aggregate functions.
They cannot be used as either reporting aggregate functions or windowing aggregate
functions.

20.3.6 Linear Regression Functions
The regression functions support the fitting of an ordinary-least-squares regression line to a set
of number pairs. You can use them as both aggregate functions or windowing or reporting
functions.

Chapter 20
Advanced Aggregates for Analysis

20-41

The regression functions are as follows:

• REGR_COUNT Function

• REGR_AVGY and REGR_AVGX Functions

• REGR_SLOPE and REGR_INTERCEPT Functions

• REGR_R2 Function

• REGR_SXX, REGR_SYY, and REGR_SXY Functions

Oracle applies the function to the set of (e1, e2) pairs after eliminating all pairs for which either
of e1 or e2 is null. e1 is interpreted as a value of the dependent variable (a "y value"), and e2 is
interpreted as a value of the independent variable (an "x value"). Both expressions must be
numbers.

The regression functions are all computed simultaneously during a single pass through the
data. They are frequently combined with the COVAR_POP, COVAR_SAMP, and CORR functions.

See Also:

• Linear Regression Statistics Examples

• Sample Linear Regression Calculation

20.3.6.1 REGR_COUNT Function
REGR_COUNT returns the number of non-null number pairs used to fit the regression line. If
applied to an empty set (or if there are no (e1, e2) pairs where neither of e1 or e2 is null), the
function returns 0.

20.3.6.2 REGR_AVGY and REGR_AVGX Functions
REGR_AVGY and REGR_AVGX compute the averages of the dependent variable and the
independent variable of the regression line, respectively. REGR_AVGY computes the average of
its first argument (e1) after eliminating (e1, e2) pairs where either of e1 or e2 is null. Similarly,
REGR_AVGX computes the average of its second argument (e2) after null elimination. Both
functions return NULL if applied to an empty set.

20.3.6.3 REGR_SLOPE and REGR_INTERCEPT Functions
The REGR_SLOPE function computes the slope of the regression line fitted to non-null (e1, e2)
pairs.

The REGR_INTERCEPT function computes the y-intercept of the regression line. REGR_INTERCEPT
returns NULL whenever slope or the regression averages are NULL.

20.3.6.4 REGR_R2 Function
The REGR_R2 function computes the coefficient of determination (usually called "R-squared" or
"goodness of fit") for the regression line.

Chapter 20
Advanced Aggregates for Analysis

20-42

REGR_R2 returns values between 0 and 1 when the regression line is defined (slope of the line
is not null), and it returns NULL otherwise. The closer the value is to 1, the better the regression
line fits the data.

20.3.6.5 REGR_SXX, REGR_SYY, and REGR_SXY Functions
REGR_SXX, REGR_SYY and REGR_SXY functions are used in computing various diagnostic statistics
for regression analysis. After eliminating (e1, e2) pairs where either of e1 or e2 is null, these
functions make the following computations:

REGR_SXX: REGR_COUNT(e1,e2) * VAR_POP(e2)
REGR_SYY: REGR_COUNT(e1,e2) * VAR_POP(e1)
REGR_SXY: REGR_COUNT(e1,e2) * COVAR_POP(e1, e2)

20.3.6.6 Linear Regression Statistics Examples
Some common diagnostic statistics that accompany linear regression analysis are given in
Table 20-2. Note that Oracle enables you to calculate all of these.

Table 20-2 Common Diagnostic Statistics and Their Expressions

Type of Statistic Expression

Adjusted R2 1-((1 - REGR_R2)*((REGR_COUNT-1)/(REGR_COUNT-2)))
Standard error SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))
Total sum of squares REGR_SYY
Regression sum of squares POWER(REGR_SXY,2) / REGR_SXX
Residual sum of squares REGR_SYY - (POWER(REGR_SXY,2)/REGR_SXX)
t statistic for slope REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept REGR_INTERCEPT / ((Standard error) * SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/
REGR_SXX))

20.3.6.7 Sample Linear Regression Calculation
In this example from the sh sample schema, you compute an ordinary-least-squares
regression line that expresses the quantity sold of a product as a linear function of the
product's list price. The calculations are grouped by sales channel. The values SLOPE, INTCPT,
RSQR are slope, intercept, and coefficient of determination of the regression line, respectively.
The (integer) value COUNT is the number of products in each channel for whom both quantity
sold and list price data are available.

SELECT s.channel_id, REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE,
 REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT,
 REGR_R2(s.quantity_sold, p.prod_list_price) RSQR,
 REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT,
 REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP,
 REGR_AVGY(s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sh.sales s, sh.products p WHERE s.prod_id=p.prod_id
 AND p.prod_category LIKE 'Baseball%' AND s.time_id=to_DATE('10-OCT-2020')
GROUP BY s.channel_id;
 CHANNEL_ID SLOPE INTCPT RSQR COUNT
AVGLISTP AVGQSOLD
_____________ ________ _________ _______ ________
__ ___________
 2 0 1 1 238

Chapter 20
Advanced Aggregates for Analysis

20-43

103.103445378151260504201680672268907563 1
 3 0 1 1 169
152.179349112426035502958579881656804734 1
 4 0 1 1 75
46.41666666666666666666666666666666666667 1

20.3.7 About Statistical Aggregates
Oracle Database provides a set of SQL statistical functions and a statistics package,
DBMS_STAT_FUNCS. This section lists some of the new functions along with basic syntax.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_STAT_FUNCS package

• Oracle Database SQL Language Reference for detailed information about syntax
and semantics

This section contains the following topics:

• Descriptive Statistics

• Hypothesis Testing - Parametric Tests

• Crosstab Statistics

• Hypothesis Testing - Non-Parametric Tests

• Non-Parametric Correlation

20.3.7.1 Descriptive Statistics
You can calculate the following descriptive statistics:

• Median of a Data Set

Median (expr) [OVER (query_partition_clause)]
• Mode of a Data Set

STATS_MODE (expr)

Starting with Oracle Database 12c Release 2 (12.2), the approximate inverse distribution
function APPROX_MEDIAN provides an approximate median value of the specified expression.

See Also:

Oracle Database SQL Language Reference

20.3.7.2 Hypothesis Testing - Parametric Tests
You can calculate the following descriptive statistics:

Chapter 20
Advanced Aggregates for Analysis

20-44

• One-Sample T-Test

STATS_T_TEST_ONE (expr1, expr2 (a constant) [, return_value])
• Paired-Samples T-Test

STATS_T_TEST_PAIRED (expr1, expr2 [, return_value])
• Independent-Samples T-Test. Pooled Variances

STATS_T_TEST_INDEP (expr1, expr2 [, return_value])
• Independent-Samples T-Test, Unpooled Variances

STATS_T_TEST_INDEPU (expr1, expr2 [, return_value])
• The F-Test

STATS_F_TEST (expr1, expr2 [, return_value])
• One-Way ANOVA

STATS_ONE_WAY_ANOVA (expr1, expr2 [, return_value])

20.3.7.3 Crosstab Statistics
You can calculate crosstab statistics using the following syntax:

STATS_CROSSTAB (expr1, expr2 [, return_value])

Can return any one of the following:

• Observed value of chi-squared

• Significance of observed chi-squared

• Degree of freedom for chi-squared

• Phi coefficient, Cramer's V statistic

• Contingency coefficient

• Cohen's Kappa

20.3.7.4 Hypothesis Testing - Non-Parametric Tests
You can calculate hypothesis statistics using the following syntax:

STATS_BINOMIAL_TEST (expr1, expr2, p [, return_value])

• Binomial Test/Wilcoxon Signed Ranks Test

STATS_WSR_TEST (expr1, expr2 [, return_value])
• Mann-Whitney Test

STATS_MW_TEST (expr1, expr2 [, return_value])
• Kolmogorov-Smirnov Test

STATS_KS_TEST (expr1, expr2 [, return_value])

20.3.7.5 Non-Parametric Correlation
You can calculate the following parametric statistics:

• Spearman's rho Coefficient

Chapter 20
Advanced Aggregates for Analysis

20-45

CORR_S (expr1, expr2 [, return_value])
• Kendall's tau-b Coefficient

CORR_K (expr1, expr2 [, return_value])
In addition to the functions, this release has a PL/SQL package, DBMS_STAT_FUNCS. It contains
the descriptive statistical function SUMMARY along with functions to support distribution fitting.
The SUMMARY function summarizes a numerical column of a table with a variety of descriptive
statistics. The five distribution fitting functions support normal, uniform, Weibull, Poisson, and
exponential distributions.

20.3.8 About User-Defined Aggregates
Oracle offers a facility for creating your own functions, called user-defined aggregate functions.
These functions are written in programming languages such as PL/SQL, Java, and C, and can
be used as analytic functions or aggregates in materialized views. See Oracle Database Data
Cartridge Developer's Guide for further information regarding syntax and restrictions.

The advantages of these functions are:

• Highly complex functions can be programmed using a fully procedural language.

• Higher scalability than other techniques when user-defined functions are programmed for
parallel processing.

• Object data types can be processed.

As a simple example of a user-defined aggregate function, consider the skew statistic. This
calculation measures if a data set has a lopsided distribution about its mean. It will tell you if
one tail of the distribution is significantly larger than the other. If you created a user-defined
aggregate called udskew and applied it to the credit limit data in the prior example, the SQL
statement and results might look like this:

SELECT USERDEF_SKEW(cust_credit_limit) FROM customers
WHERE cust_city='Marshal';

USERDEF_SKEW
============
0.583891

Before building user-defined aggregate functions, you should consider if your needs can be
met in regular SQL. Many complex calculations are possible directly in SQL, particularly by
using the CASE expression.

Staying with regular SQL will enable simpler development, and many query operations are
already well-parallelized in SQL. Even the earlier example, the skew statistic, can be created
using standard, albeit lengthy, SQL.

20.4 Pivoting Operations
The data returned by business intelligence queries is often most usable if presented in a
crosstabular format. The pivot_clause of the SELECT statement lets you write crosstabulation
queries that rotate rows into columns, aggregating data in the process of the rotation. Pivoting
is a key technique in data warehouses. In it, you transform multiple rows of input into fewer and
generally wider rows in the data warehouse. When pivoting, an aggregation operator is applied
for each item in the pivot column value list. The pivot column cannot contain an arbitrary
expression. If you need to pivot on an expression, then you should alias the expression in a
view before the PIVOT operation. The basic syntax is as follows:

Chapter 20
Pivoting Operations

20-46

SELECT
FROM <table-expr>
 PIVOT
 (
 aggregate-function(<column>) AS <alias>
 FOR <pivot-column> IN (<value1>, <value2>,..., <valuen>)
) AS <alias>
WHERE

See Oracle Database SQL Language Reference for pivot_clause syntax.

This section contains the following topics:

• Creating the View Used for Pivoting Examples

• Pivoting Example

• Pivoting on Multiple Columns

• Pivoting: Multiple Aggregates

• Distinguishing PIVOT-Generated Nulls from Nulls in Source Data

• Wildcard and Subquery Pivoting with XML Operations

20.4.1 Creating the View Used for Pivoting Examples
The pivoting and unpivoting examples in this section are based on the sales_view view
created here.

Example 20-26 Creating the SALES_VIEW View for Pivoting Examples

The following example creates the sales_view view that is used as the basis to illustrate the
use of pivoting.

CREATE VIEW sales_view AS
SELECT
 prod_name product, country_name country, channel_id channel,
 SUBSTR(calendar_quarter_desc, 6,2) quarter,
 SUM(amount_sold) amount_sold, SUM(quantity_sold) quantity_sold
FROM sh.sales, sh.times, sh.customers, sh.countries, sh.products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY prod_name, country_name, channel_id,
 SUBSTR(calendar_quarter_desc, 6, 2);

20.4.2 Pivoting Example
The following statement illustrates a typical pivot on the channel column of view sales_view
created as described in Example 20-26:

SELECT * FROM
 (SELECT product, channel, amount_sold
 FROM sales_view
) S PIVOT (SUM(amount_sold)
 FOR CHANNEL IN (3 AS DIRECT_SALES, 4 AS INTERNET_SALES,
 5 AS CATALOG_SALES, 9 AS TELESALES))
ORDER BY product;

PRODUCT DIRECT_SALES INTERNET_SALES
CATALOG_SALES TELESALES

Chapter 20
Pivoting Operations

20-47

___ _______________ _________________
________________ ____________
11" Youth Field Master Glove 229512.97
26249.55
11.5" Youth Triple Stripe Series Glove 391230.15
53767.53
12" Premium Series Glove 495494.7
49750.07
12.75" Premium Series Glove 577851.94
152500.6
13" Field Master Series Glove 286291.49
42809.44
2 Competition Grade NFHS Baseballs 153199.63
28768.04 5172.75
5 Point Batting Tee 1546466.39
196999.42
6 Gallon Empty Ball Bucket 158223.55
102388.63
...
...

Note that the output has created four new aliased columns, DIRECT_SALES, INTERNET_SALES,
CATALOG_SALES, and TELESALES, one for each of the pivot values. The output is a sum. If no
alias is provided, the column heading will be the values of the IN-list.

20.4.3 Pivoting on Multiple Columns
You can pivot on more than one column. The following statement illustrates a typical multiple
column pivot on the view sales_view created as described in Example 20-26:

SELECT *
FROM
 (SELECT product, channel, quarter, quantity_sold
 FROM sales_view
) PIVOT (SUM(quantity_sold)
 FOR (channel, quarter) IN
 ((5, '02') AS CATALOG_Q2,
 (4, '01') AS INTERNET_Q1,
 (4, '04') AS INTERNET_Q4,
 (2, '02') AS PARTNERS_Q2,
 (9, '03') AS TELE_Q3
)
);

PRODUCT CATALOG_Q2 INTERNET_Q1 INTERNET_Q4
PARTNERS_Q2 TELE_Q3
_________________________________ _____________ ______________ ______________
______________ _______
12" Premium Series Glove 197
401 494
12.75" Premium Series Glove 635
898 930
Soccer Ball - Size 5 279
484 872
Pro Style Batting Tee 217
400 865
Match Used Autograph Racquet 195
335 641
Cricket Ball - Training Ball 355
423 774
...

Chapter 20
Pivoting Operations

20-48

Note that this example specifies a multi-column IN-list with column headings designed to
match the IN-list members.

20.4.4 Pivoting: Multiple Aggregates
You can pivot with multiple aggregates, as shown in the following example that pivots on
multiple aggregates from the sales_view created in Example 20-26:

SELECT *
FROM
 (SELECT product, channel, amount_sold, quantity_sold
 FROM sales_view
) PIVOT (SUM(amount_sold) AS sums,
 SUM(quantity_sold) AS sumq
 FOR channel IN (5, 4, 2, 9)
)
ORDER BY product;

PRODUCT 5_SUMS 5_SUMQ 4_SUMS 4_SUMQ
2_SUMS 2_SUMQ 9_SUMS 9_SUMQ
___ _________ _________ _____________ _________ _____________
_________ ___________ _________
11" Youth Field Master Glove 26249.55 861
60554.68 1886
11.5" Youth Triple Stripe Series Glove 53767.53 1370
132582.67 3103
12" Premium Series Glove 49750.07 1170
100341.35 2094
12.75" Premium Series Glove 152500.6 2770
316811.53 5361
13" Field Master Series Glove 42809.44 1223
183990.15 4881
2 Competition Grade NFHS Baseballs 28768.04 1195
62693.53 2596 5172.75 225

...

Note that the query creates column headings by concatenating the pivot values, the
underscore character (_), and the alias of the aggregate column. If the length of the generated
column heading exceeds the maximum length of a column name, then an ORA-00918 error is
returned. To avoid this error, use AS alias to specify a shorter column alias for the pivot
column heading, the aggregate value column name, or both. "Pivoting on Multiple Columns"
demonstrates using an alias for the pivot values.

See Also:

Oracle Database SQL Language Reference for information about the maximum
length of column names

20.4.5 Distinguishing PIVOT-Generated Nulls from Nulls in Source Data
Implicit Group By in PIVOT Operations

Chapter 20
Pivoting Operations

20-49

For tables used in PIVOT operations, columns not specified within the PIVOT clause act as
hidden group-by keys. This means rows are implicitly grouped by these columns.

For example, in the following query:

SELECT *
FROM emp
PIVOT (SUM(sal) FOR deptno IN (10, 20));

Columns like ename, hiredate, mgr, and job (not part of the PIVOT clause) are treated as
hidden group-by keys. The query groups rows based on these implicit keys.

Example: Distinguishing Nulls

You can distinguish between null values that are generated from the use of PIVOT and those
that exist in the source data. The following example illustrates nulls that PIVOT generates.

The following query returns rows with five columns, column prod_id, and pivot resulting
columns Q1, Q1_COUNT_TOTAL, Q2, Q2_COUNT_TOTAL. For each unique value of prod_id,
Q1_COUNT_TOTAL returns the total number of rows whose qtr value is Q1, that is, and
Q2_COUNT_TOTAL returns the total number of rows whose qtr value is Q2.

Assume you have a table sales2 of the following structure:

PROD_ID QTR AMOUNT_SOLD
------- --- -----------
100 Q1 10
100 Q1 20
100 Q2 NULL
200 Q1 50

Run the following query:

SELECT *
FROM sales2
 PIVOT
 (SUM(amount_sold), COUNT(*) AS count_total
 FOR qtr IN ('Q1', 'Q2')
);

The output is:

PROD_ID "Q1" "Q1_COUNT_TOTAL" "Q2" "Q2_COUNT_TOTAL"
------- ---- ---------------- --------- ----------------
 100 30 2 NULL 1
 200 50 1 NULL 0

From the result, you know that for prod_id 100:

• There are two sales rows for quarter Q1.

• There is one sales row for quarter Q2.

For prod_id 200:

• There is one sales rows for quarter Q1.

Chapter 20
Pivoting Operations

20-50

• No sales rows exist for quarter Q2.

Thus:

• The NULL in column Q2 for prod_id 100 originates from a row in the original table where the
measure value (amount_sold) is NULL.

• The NULL in column Q2 for prod_id 200 occurs because no rows exist in the original table
for this combination.

Note:

When working with PIVOT operations, it is essential to understand the terms pivot
column and pivot value:

• Pivot Column: The column whose values become headings in the resulting table.

• Pivot Value: The data points that populate the cells corresponding to the pivot
columns in the resulting table.

20.4.6 Wildcard and Subquery Pivoting with XML Operations
If you want to use a wildcard argument or subquery in your pivoting columns, you can do so
with PIVOT XML syntax. With PIVOT XML, the output of the operation is properly formatted
XML.

The following example illustrates using the wildcard keyword, ANY. It outputs XML that includes
all channel values in sales_view:

SELECT *
FROM
 (SELECT product, channel, quantity_sold
 FROM sales_view
) PIVOT XML(SUM(quantity_sold)
 FOR channel IN (ANY)
);

See #unique_693/
unique_693_Connect_42_CreatingTheSALES_VIEWViewForPivotin-0B828FA2 for the syntax
that creates the view sales_view.

Note that the keyword ANY is available in PIVOT operations only as part of an XML operation.
This output includes data for cases where the channel exists in the data set. Also note that
aggregation functions must specify a GROUP BY clause to return multiple values, yet the
pivot_clause does not contain an explicit GROUP BY clause. Instead, the pivot_clause
performs an implicit GROUP BY.

The following example illustrates using a subquery. It outputs XML that includes all channel
values and the sales data corresponding to each channel:

SELECT *
FROM
 (SELECT product, channel, quantity_sold
 FROM sales_view
) PIVOT XML(SUM(quantity_sold)
 FOR channel IN (SELECT DISTINCT channel_id FROM CHANNELS)
);

Chapter 20
Pivoting Operations

20-51

The output densifies the data to include all possible channels for each product.

20.5 Unpivoting Operations
An unpivot does not reverse a PIVOT operation. Instead, it rotates data from columns into rows.
If you are working with pivoted data, an UNPIVOT operation cannot reverse any aggregations
that have been made by PIVOT or any other means.

To illustrate unpivoting, first create a pivoted table that includes four columns, for quarters of
the year. The following command creates a table based on the view sales_view created as
described in Example 20-26:

CREATE TABLE pivotedTable AS
SELECT *
FROM (SELECT product, quarter, quantity_sold, amount_sold
 FROM sales_view)
 PIVOT
 (
 SUM(quantity_sold) AS sumq, SUM(amount_sold) AS suma
 FOR quarter IN ('01' AS Q1, '02' AS Q2, '03' AS Q3, '04' AS Q4));

The table's contents resemble the following:

SELECT *
FROM pivotedTable
ORDER BY product;

PRODUCT Q1_SUMQ Q1_SUMA Q2_SUMQ Q2_SUMA
Q3_SUMQ Q3_SUMA Q4_SUMQ Q4_SUMA
___ __________ _____________ __________ _____________
__________ _____________ __________ _____________
11" Youth Field Master Glove 2750 91653.75 2069 69199.25
2487 82265.49 2217 73198.71
11.5" Youth Triple Stripe Series Glove 3524 157638.52 2898 128662.03
3351 147640.32 3270 143639.48
12" Premium Series Glove 3196 161666.11 3074 153903.54
3504 172981.83 3234 157034.64
12.75" Premium Series Glove 4338 261078.2 2992 178748.85
5392 323570.59 4708 283766.43
13" Field Master Series Glove 2983 114058.14 2074 80042.09
4183 161536.24 4079 157454.61
2 Competition Grade NFHS Baseballs 3376 83585.33 1699 41743.94
2654 65205.61 2427 59299.07

...

The following UNPIVOT operation rotates the quarter columns into rows. For each product, there
will be four rows, one for each quarter.

SELECT product, DECODE(quarter, 'Q1_SUMQ', 'Q1', 'Q2_SUMQ', 'Q2', 'Q3_SUMQ', 'Q3',
 'Q4_SUMQ', 'Q4') AS quarter, quantity_sold
FROM pivotedTable
 UNPIVOT INCLUDE NULLS
 (quantity_sold
 FOR quarter IN (Q1_SUMQ, Q2_SUMQ, Q3_SUMQ, Q4_SUMQ))
ORDER BY product, quarter;

PRODUCT QU QUANTITY_SOLD
------- -- -------------
1.44MB External 3.5" Diskette Q1 6098
1.44MB External 3.5" Diskette Q2 5112

Chapter 20
Unpivoting Operations

20-52

1.44MB External 3.5" Diskette Q3 6050
1.44MB External 3.5" Diskette Q4 5848
128MB Memory Card Q1 1963
128MB Memory Card Q2 2361
128MB Memory Card Q3 3069
128MB Memory Card Q4 2832
...

Note the use of INCLUDE NULLS in this example. You can also use EXCLUDE NULLS, which is the
default setting.

In addition, you can also unpivot using two columns, as in the following:

SELECT product, quarter, quantity_sold, amount_sold
FROM pivotedTable
 UNPIVOT INCLUDE NULLS
 (
 (quantity_sold, amount_sold)
 FOR quarter IN ((Q1_SUMQ, Q1_SUMA) AS 'Q1', (Q2_SUMQ, Q2_SUMA) AS 'Q2',
(Q3_SUMQ, Q3_SUMA) AS 'Q3', (Q4_SUMQ, Q4_SUMA) AS 'Q4'))
ORDER BY product, quarter;

PRODUCT QU QUANTITY_SOLD AMOUNT_SOLD
----------------------------- -- ------------- ------------
1.44MB External 3.5" Diskette Q1 6098 58301.33
1.44MB External 3.5" Diskette Q2 5112 49001.56
1.44MB External 3.5" Diskette Q3 6050 56974.3
1.44MB External 3.5" Diskette Q4 5848 55341.28
128MB Memory Card Q1 1963 110763.63
128MB Memory Card Q2 2361 132123.12
128MB Memory Card Q3 3069 170710.4
128MB Memory Card Q4 2832 157736.6

20.6 Data Densification for Reporting
Data is normally stored in sparse form. That is, if no value exists for a given combination of
dimension values, no row exists in the fact table. However, you may want to view the data in
dense form, with rows for all combination of dimension values displayed even when no fact
data exist for them. For example, if a product did not sell during a particular time period, you
may still want to see the product for that time period with zero sales value next to it. Moreover,
time series calculations can be performed most easily when data is dense along the time
dimension. This is because dense data will fill a consistent number of rows for each period,
which in turn makes it simple to use the analytic windowing functions with physical offsets.
Data densification is the process of converting sparse data into dense form.

To overcome the problem of sparsity, you can use a partitioned outer join to fill the gaps in a
time series or any other dimension. Such a join extends the conventional outer join syntax by
applying the outer join to each logical partition defined in a query. Oracle logically partitions the
rows in your query based on the expression you specify in the PARTITION BY clause. The result
of a partitioned outer join is a UNION of the outer joins of each of the partitions in the logically
partitioned table with the table on the other side of the join.

Note that you can use this type of join to fill the gaps in any dimension, not just the time
dimension. Most of the examples here focus on the time dimension because it is the dimension
most frequently used as a basis for comparisons.

This section contains the following topics:

• About Partition Join Syntax

Chapter 20
Data Densification for Reporting

20-53

• Sample of Sparse Data

• Filling Gaps in Data

• Filling Gaps in Two Dimensions

• Filling Gaps in an Inventory Table

• Computing Data Values to Fill Gaps

20.6.1 About Partition Join Syntax
The syntax for partitioned outer join extends the SQL JOIN clause with the phrase PARTITION
BY followed by an expression list. The expressions in the list specify the group to which the
outer join is applied. The following are the two forms of syntax normally used for partitioned
outer join:

SELECT
FROM table_reference
PARTITION BY (expr [, expr]...)
RIGHT OUTER JOIN table_reference

SELECT
FROM table_reference
LEFT OUTER JOIN table_reference
PARTITION BY {expr [,expr]...)

Note that FULL OUTER JOIN is not supported with a partitioned outer join.

20.6.2 Sample of Sparse Data
A typical situation with a sparse dimension is shown in the following example, which computes
the weekly sales and year-to-date sales for the product Bounce for weeks 20-30 in 2000 and
2001:

SELECT SUBSTR(p.Prod_Name,1,15) Product_Name, t.Calendar_Year Year,
 t.Calendar_Week_Number Week, SUM(Amount_Sold) Sales
FROM sh.Sales s, sh.Times t, sh.Products p
WHERE s.Time_id = t.Time_id AND s.Prod_id = p.Prod_id AND
 p.Prod_name LIKE ('Tennis%') AND t.Calendar_Year IN (2020,2021) AND
 t.Calendar_Week_Number BETWEEN 20 AND 30
GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number;

PRODUCT_NAME YEAR WEEK SALES
__________________ _______ _______ __________
Tennis Balls He 2020 29 2072.4
Tennis Balls He 2020 30 2730.46
Tennis Balls He 2021 30 3854.76
Tennis Strings 2020 25 3051.6
Tennis Strings 2020 23 2555.41
Tennis Strings 2021 21 3776.64
Tennis Strings 2021 24 2875.29
Tennis Strings 2020 26 949.72
Tennis Strings 2020 20 849.84
Tennis Strings 2020 21 379.96
Tennis Strings 2020 22 335.62
Tennis Grip Ove 2020 29 293.64
Tennis Grip Ove 2021 27 265.08
Tennis Racquet 2021 26 63.92
...

Chapter 20
Data Densification for Reporting

20-54

In this example, you would expect 22 rows of data (11 weeks each from 2 years) if the data
were dense. However, you get only 18 rows because weeks 25 and 26 are missing in 2000,
and weeks 26 and 28 in 2001.

20.6.3 Filling Gaps in Data
You can take the sparse data of the query shown in Sample of Sparse Data and do a
partitioned outer join with a dense set of time data. In the following query, you alias the original
query as v and you select data from the times table, which you alias as t. Here you retrieve 22
rows because there are no gaps in the series. The four added rows each have 0 as their Sales
value set to 0 by using the NVL function.

SELECT Product_Name, t.Year, t.Week, NVL(Sales,0) dense_sales
FROM
 (SELECT SUBSTR(p.Prod_Name,1,15) Product_Name,
 t.Calendar_Year Year, t.Calendar_Week_Number Week, SUM(Amount_Sold) Sales
 FROM sh.Sales s, sh.Times t, sh.Products p
 WHERE s.Time_id = t.Time_id AND s.Prod_id = p.Prod_id AND
 p.Prod_name LIKE ('Baseball%') AND t.Calendar_Year IN (2019,2021) AND
 t.Calendar_Week_Number BETWEEN 20 AND 30
 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number) v
PARTITION BY (v.Product_Name)
RIGHT OUTER JOIN
 (SELECT DISTINCT Calendar_Week_Number Week, Calendar_Year Year
 FROM Times
 WHERE Calendar_Year IN (2019, 2021)
 AND Calendar_Week_Number BETWEEN 20 AND 30) t
ON (v.week = t.week AND v.Year = t.Year)
ORDER BY t.year, t.week;

PRODUCT_NAME YEAR WEEK DENSE_SALES
__________________ _______ _______ ______________
Baseball Is Lif 2019 20 0
Baseball Is Lif 2019 21 0
Baseball Is Lif 2019 22 0
Baseball Is Lif 2019 23 0
Baseball Is Lif 2019 24 0
Baseball Is Lif 2019 25 0
Baseball Is Lif 2019 26 0
Baseball Is Lif 2019 27 5088.35
Baseball Is Lif 2019 28 2890.79
Baseball Is Lif 2019 29 4993.36
Baseball Is Lif 2019 30 5340.06
Baseball Is Lif 2021 20 8686.19
Baseball Is Lif 2021 21 6725.1
Baseball Is Lif 2021 22 7494.93
Baseball Is Lif 2021 23 1010.34
Baseball Is Lif 2021 24 6656.23
Baseball Is Lif 2021 25 0
Baseball Is Lif 2021 26 7925.89
Baseball Is Lif 2021 27 4145.25
Baseball Is Lif 2021 28 3520.6
Baseball Is Lif 2021 29 9874.68
Baseball Is Lif 2021 30 6380.98

Note that in this query, a WHERE condition was placed for weeks between 20 and 30 in the inline
view for the time dimension. This was introduced to keep the result set small.

Chapter 20
Data Densification for Reporting

20-55

20.6.4 Filling Gaps in Two Dimensions
N-dimensional data is typically displayed as a dense 2-dimensional cross tab of (n - 2) page
dimensions. This requires that all dimension values for the two dimensions appearing in the
cross tab be filled in. The following is another example where the partitioned outer join
capability can be used for filling the gaps on two dimensions:

WITH v1 AS
 (SELECT p.prod_id, country_id, calendar_year,
 SUM(quantity_sold) units, SUM(amount_sold) sales
 FROM sh.sales s, sh.products p, sh.customers c, sh.times t
 WHERE s.prod_id in (147, 148) AND t.time_id = s.time_id AND
 c.cust_id = s.cust_id AND p.prod_id = s.prod_id
 GROUP BY p.prod_id, country_id, calendar_year),
v2 AS --countries to use for densifications
 (SELECT DISTINCT country_id
 FROM customers
 WHERE country_id IN (52782, 52785, 52786, 52787, 52788)),
v3 AS --years to use for densifications
 (SELECT DISTINCT calendar_year FROM times)
SELECT v4.prod_id, v4.country_id, v3.calendar_year, units, sales
FROM
 (SELECT prod_id, v2.country_id, calendar_year, units, sales
 FROM v1 PARTITION BY (prod_id)
 RIGHT OUTER JOIN v2 --densifies on country
 ON (v1.country_id = v2.country_id)) v4
PARTITION BY (prod_id,country_id)
RIGHT OUTER JOIN v3 --densifies on year
ON (v4.calendar_year = v3.calendar_year)
ORDER BY 1, 2, 3;

In this query, the WITH subquery factoring clause v1 summarizes sales data at the product,
country, and year level. This result is sparse but users may want to see all the country, year
combinations for each product. To achieve this, you take each partition of v1 based on product
values and outer join it on the country dimension first. This will give us all values of country for
each product. You then take that result and partition it on product and country values and then
outer join it on time dimension. This will give us all time values for each product and country
combination.

 PROD_ID COUNTRY_ID CALENDAR_YEAR UNITS SALES
__________ _____________ ________________ ________ __________
 147 52782 2019
 147 52782 2020 29 209.82
 147 52782 2021 71 594.36
 147 52782 2022 345 2754.42
 147 52782 2023
 147 52785 2019 1 7.99
 147 52785 2020
 147 52785 2021
 147 52785 2022
 147 52785 2023
 147 52786 2019 1 7.99
 147 52786 2020
 147 52786 2021 2 15.98
 147 52786 2022

Chapter 20
Data Densification for Reporting

20-56

20.6.5 Filling Gaps in an Inventory Table
An inventory table typically tracks quantity of units available for various products. This table is
sparse: it only stores a row for a product when there is an event. For a sales table, the event is
a sale, and for the inventory table, the event is a change in quantity available for a product. For
example, consider the following inventory table:

CREATE TABLE invent_table (
product VARCHAR2(10),
time_id DATE,
quant NUMBER);

INSERT INTO invent_table VALUES
 ('bottle', TO_DATE('01/04/21', 'DD/MM/YY'), 10);
1 row inserted.
SQL> INSERT INTO invent_table VALUES
 ('bottle', TO_DATE('06/04/21', 'DD/MM/YY'), 8);
1 row inserted.
SQL> INSERT INTO invent_table VALUES
 ('can', TO_DATE('01/04/21', 'DD/MM/YY'), 15);
1 row inserted.
SQL> INSERT INTO invent_table VALUES
 ('can', TO_DATE('04/04/21', 'DD/MM/YY'), 11);
1 row inserted.

The inventory table now has the following rows:

PRODUCT TIME_ID QUANT
__________ ____________ ________
bottle 01-APR-21 10
bottle 06-APR-21 8
can 01-APR-21 15
can 04-APR-21 11

For reporting purposes, users may want to see this inventory data differently. For example,
they may want to see all values of time for each product. This can be accomplished using
partitioned outer join. In addition, for the newly inserted rows of missing time periods, users
may want to see the values for quantity of units column to be carried over from the most recent
existing time period. The latter can be accomplished using analytic window function
LAST_VALUE value. Here is the query and the desired output:

WITH v1 AS
 (SELECT time_id
 FROM sh.times
 WHERE times.time_id BETWEEN
 TO_DATE('01/04/21', 'DD/MM/YY')
 AND TO_DATE('07/04/21', 'DD/MM/YY'))
SELECT product, time_id, quant quantity,
 LAST_VALUE(quant IGNORE NULLS)
 OVER (PARTITION BY product ORDER BY time_id)
 repeated_quantity
FROM
 (SELECT product, v1.time_id, quant
 FROM invent_table PARTITION BY (product)
 RIGHT OUTER JOIN v1
 ON (v1.time_id = invent_table.time_id))
ORDER BY 1, 2;

Chapter 20
Data Densification for Reporting

20-57

The inner query computes a partitioned outer join on time within each product. The inner query
densifies the data on the time dimension (meaning the time dimension will now have a row for
each day of the week). However, the measure column quantity will have nulls for the newly
added rows (see the output in the column quantity in the following results.

The outer query uses the analytic function LAST_VALUE. Applying this function partitions the
data by product and orders the data on the time dimension column (time_id). For each row,
the function finds the last non-null value in the window due to the option IGNORE NULLS, which
you can use with both LAST_VALUE and FIRST_VALUE. You see the desired output in the column
repeated_quantity in the following output:

PRODUCT TIME_ID QUANTITY REPEATED_QUANTITY
__________ ____________ ___________ ____________________
bottle 01-APR-21 10 10
bottle 02-APR-21 10
bottle 03-APR-21 10
bottle 04-APR-21 10
bottle 05-APR-21 10
bottle 06-APR-21 8 8
bottle 07-APR-21 8
can 01-APR-21 15 15
can 02-APR-21 15
can 03-APR-21 15
can 04-APR-21 11 11
can 05-APR-21 11
can 06-APR-21 11
can 07-APR-21 11

20.6.6 Computing Data Values to Fill Gaps
Examples in sections Filling Gaps in Data, Filling Gaps in Two Dimensions, and Filling Gaps in
an Inventory Table illustrate how to use partitioned outer join to fill gaps in one or more
dimensions. However, the result sets produced by partitioned outer join have null values for
columns that are not included in the PARTITION BY list. Typically, these are measure columns.
Users can make use of analytic SQL functions to replace those null values with a non-null
value.

For example, the following query computes monthly totals for products 64MB Memory card and
DVD-R Discs (product IDs 122 and 136) for the year 2000. It uses partitioned outer join to
densify data for all months. For the missing months, it then uses the analytic SQL function AVG
to compute the sales and units to be the average of the months when the product was sold.

If working in SQL*Plus, the following two commands wraps the column headings for greater
readability of results:

col computed_units heading 'Computed|_units'
col computed_sales heading 'Computed|_sales'

WITH V AS
 (SELECT substr(p.prod_name,1,12) prod_name, calendar_month_desc,
 SUM(quantity_sold) units, SUM(amount_sold) sales
 FROM sh.sales s, sh.products p, sh.times t
 WHERE s.prod_id IN (122,136) AND calendar_year = 2020
 AND t.time_id = s.time_id
 AND p.prod_id = s.prod_id
 GROUP BY p.prod_name, calendar_month_desc)
SELECT v.prod_name, calendar_month_desc, units, sales,
 NVL(units, AVG(units) OVER (PARTITION BY v.prod_name)) computed_units,
 NVL(sales, AVG(sales) OVER (PARTITION BY v.prod_name)) computed_sales
FROM

Chapter 20
Data Densification for Reporting

20-58

 (SELECT DISTINCT calendar_month_desc
 FROM times
 WHERE calendar_year = 2020) t
 LEFT OUTER JOIN V
 PARTITION BY (prod_name)
 USING (calendar_month_desc);

PROD_NAME CALENDAR_MONTH_DESC UNITS SALES COMPUTED_UNITS COMPUTED_SALES
_______________ ____________________ _____ __________ ________________ _______________
Soccer Jerse 2020-01 27 940.92
Soccer Jerse 2020-02 27 940.92
Soccer Jerse 2020-03 27 940.92
Soccer Jerse 2020-04 27 940.92
Soccer Jerse 2020-05 27 940.92
Soccer Jerse 2020-06 27 940.92
Soccer Jerse 2020-07 27 940.92
Soccer Jerse 2020-08 27 940.92
Soccer Jerse 2020-09 27 940.92
Soccer Jerse 2020-10 34 1206.75 34 1206.75
Soccer Jerse 2020-11 41 1425.49 41 1425.49
Soccer Jerse 2020-12 6 190.52 6 190.52
Wide Brim Ha 2020-01 30 631.17 30 631.17
Wide Brim Ha 2020-02 25 484.22 25 484.22
...

20.7 Time Series Calculations on Densified Data
Densification is not just for reporting purpose. It also enables certain types of calculations,
especially, time series calculations. Time series calculations are easier when data is dense
along the time dimension. Dense data has a consistent number of rows for each time periods
which in turn make it simple to use analytic window functions with physical offsets.

To illustrate, let us first take the example on "Filling Gaps in Data", and let's add an analytic
function to that query. In the following enhanced version, you calculate weekly year-to-date
sales alongside the weekly sales. The NULL values that the partitioned outer join inserts in
making the time series dense are handled in the usual way: the SUM function treats them as 0's.

SELECT Product_Name, t.Year, t.Week, NVL(Sales,0) Current_sales,
 SUM(Sales)
 OVER (PARTITION BY Product_Name, t.year ORDER BY t.week) Cumulative_sales
FROM
 (SELECT SUBSTR(p.Prod_Name,1,15) Product_Name, t.Calendar_Year Year,
 t.Calendar_Week_Number Week, SUM(Amount_Sold) Sales
 FROM sh.Sales s, sh.Times t, sh.Products p
 WHERE s.Time_id = t.Time_id AND
 s.Prod_id = p.Prod_id AND p.Prod_name IN ('Bounce') AND
 t.Calendar_Year IN (2020,2021) AND
 t.Calendar_Week_Number BETWEEN 20 AND 30
 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number) v
PARTITION BY (v.Product_Name)
RIGHT OUTER JOIN
(SELECT DISTINCT
 Calendar_Week_Number Week, Calendar_Year Year
 FROM Times
 WHERE Calendar_Year in (2020, 2021)
 AND Calendar_Week_Number BETWEEN 20 AND 30) t
ON (v.week = t.week AND v.Year = t.Year)
ORDER BY t.year, t.week;

Chapter 20
Time Series Calculations on Densified Data

20-59

PRODUCT_NAME YEAR WEEK CURRENT_SALES CUMULATIVE_SALES
__________________ _______ _______ ________________ ___________________
Tennis Balls 12 2020 20 2222.52 2222.52
Tennis Balls He 2020 20 0
Tennis Grip Ove 2020 20 0
Tennis Racquet 2020 20 0
Tennis Strings 2020 20 1775.4 6623.44
Tennis Strings 2020 20 985.45 6623.44
Tennis Strings 2020 20 3012.75 6623.44
Tennis Strings 2020 20 849.84 6623.44
Tennis Balls 12 2020 21 1468.75 3691.27
Tennis Balls He 2020 21 248.78 248.78
Tennis Grip Ove 2020 21 20.7 20.7
Tennis Racquet 2020 21 113.76 113.76
Tennis Strings 2020 21 1043.74 10609.1
Tennis Strings 2020 21 2057.76 10609.1
Tennis Strings 2020 21 504.2 10609.1
Tennis Strings 2020 21 379.96 10609.1
Tennis Balls 12 2020 22 1270 4961.27
Tennis Balls He 2020 22 0 248.78
Tennis Grip Ove 2020 22 0 20.7

This section contains the following topics:

• Period-to-Period Comparison for One Time Level: Example

• Period-to-Period Comparison for Multiple Time Levels: Example

• Creating a Custom Member in a Dimension: Example

20.7.1 Period-to-Period Comparison for One Time Level: Example
How do you use this feature to compare values across time periods? Specifically, how do you
calculate a year-over-year sales comparison at the week level? The following query returns on
the same row, for each product, the year-to-date sales for each week of 2021 with that of 2020.

Note that in this example you start with a WITH clause. This improves readability of the query
and lets us focus on the partitioned outer join. If working in SQL*Plus, the following command
wraps the column headings for greater readability of results:

col Weekly_ytd_sales_prior_year heading 'Weekly_ytd|_sales_|prior_year'

WITH v AS
 (SELECT SUBSTR(p.Prod_Name,1,6) Prod, t.Calendar_Year Year,
 t.Calendar_Week_Number Week, SUM(Amount_Sold) Sales
 FROM sh.Sales s, sh.Times t, sh.Products p
 WHERE s.Time_id = t.Time_id AND
 s.Prod_id = p.Prod_id AND p.Prod_name in ('Y Box') AND
 t.Calendar_Year in (2020,2021) AND
 t.Calendar_Week_Number BETWEEN 30 AND 40
 GROUP BY p.Prod_Name, t.Calendar_Year, t.Calendar_Week_Number)
SELECT Prod , Year, Week, Sales,
 Weekly_ytd_sales, Weekly_ytd_sales_prior_year
FROM
 (SELECT Prod, Year, Week, Sales, Weekly_ytd_sales,
 LAG(Weekly_ytd_sales, 1) OVER
 (PARTITION BY Prod , Week ORDER BY Year) Weekly_ytd_sales_prior_year
 FROM
 (SELECT v.Prod Prod , t.Year Year, t.Week Week,
 NVL(v.Sales,0) Sales, SUM(NVL(v.Sales,0)) OVER
 (PARTITION BY v.Prod , t.Year ORDER BY t.week) weekly_ytd_sales
 FROM v

Chapter 20
Time Series Calculations on Densified Data

20-60

 PARTITION BY (v.Prod)
 RIGHT OUTER JOIN
 (SELECT DISTINCT Calendar_Week_Number Week, Calendar_Year Year
 FROM Times
 WHERE Calendar_Year IN (2020, 2021)) t
 ON (v.week = t.week AND v.Year = t.Year)
) dense_sales
) year_over_year_sales
WHERE Year = 2021 AND Week BETWEEN 30 AND 40
ORDER BY 1, 2, 3;

In the FROM clause of the inline view dense_sales, you use a partitioned outer join of aggregate
view v and time view t to fill gaps in the sales data along the time dimension. The output of the
partitioned outer join is then processed by the analytic function SUM ... OVER to compute the
weekly year-to-date sales (the weekly_ytd_sales column). Thus, the view dense_sales
computes the year-to-date sales data for each week, including those missing in the aggregate
view s. The inline view year_over_year_sales then computes the year ago weekly year-to-
date sales using the LAG function. The LAG function labeled weekly_ytd_sales_prior_year
specifies a PARTITION BY clause that pairs rows for the same week of years 2000 and 2001 into
a single partition. You then pass an offset of 1 to the LAG function to get the weekly year to date
sales for the prior year.The outermost query block selects data from year_over_year_sales
with the condition yr = 2001, and thus the query returns, for each product, its weekly year-to-
date sales in the specified weeks of years 2001 and 2000.

20.7.2 Period-to-Period Comparison for Multiple Time Levels: Example
While the prior example shows us a way to create comparisons for a single time level, it would
be even more useful to handle multiple time levels in a single query. For example, you could
compare sales versus the prior period at the year, quarter, month and day levels. How can you
create a query which performs a year-over-year comparison of year-to-date sales for all levels
of our time hierarchy?

You will take several steps to perform this task. The goal is a single query with comparisons at
the day, week, month, quarter, and year level. The steps are as follows:

1. Create a view called cube_prod_time, which holds a hierarchical cube of sales aggregated
across times and products.

See "Create the Hierarchical Cube View".

2. Create a view of the time dimension to use as an edge of the cube. The time edge, which
holds a complete set of dates, will be partitioned outer joined to the sparse data in the view
cube_prod_time.

See "Create the View edge_time, which is a Complete Set of Date Values".

3. Finally, for maximum performance, create a materialized view, mv_prod_time, built using
the same definition as cube_prod_time.

See "Create the Materialized View mv_prod_time to Support Faster Performance".

4. Create the comparison query.

See "Create the Comparison Query".

For more information regarding hierarchical cubes, see SQL for Aggregation in Data
Warehouses. The materialized view is defined in the following section.

Chapter 20
Time Series Calculations on Densified Data

20-61

Create the Hierarchical Cube View

The materialized view shown in the following may already exist in your system; if not, create it
now. If you must generate it, note that you limit the query to just two products to keep
processing time short:

CREATE OR REPLACE VIEW cube_prod_time AS
SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)
 AND (GROUPING(calendar_quarter_desc)=1))
 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')
 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(t.time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(t.time_id) || '_3')
 END) Hierarchical_Time,
 calendar_year year, calendar_quarter_desc quarter,
 calendar_month_desc month, t.time_id day,
 prod_category cat, prod_subcategory subcat, p.prod_id prod,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id,
 calendar_year, calendar_quarter_desc, calendar_month_desc,t.time_id) gid,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id) gid_p,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id) gid_t,
 SUM(amount_sold) s_sold, COUNT(amount_sold) c_sold, COUNT(*) cnt
FROM SALES s, TIMES t, PRODUCTS p
WHERE s.time_id = t.time_id AND
 p.prod_name IN ('Bounce', 'Y Box') AND s.prod_id = p.prod_id
GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc, calendar_month_desc, t.time_id),
 ROLLUP(prod_category, prod_subcategory, p.prod_id);

Because this view is limited to two products, it returns just over 2200 rows. Note that the
column Hierarchical_Time contains string representations of time from all levels of the time
hierarchy. The CASE expression used for the Hierarchical_Time column appends a marker
(_0, _1, ...) to each date string to denote the time level of the value. A _0 represents the year
level, _1 is quarters, _2 is months, and _3 is day. Note that the GROUP BY clause is a
concatenated ROLLUP which specifies the rollup hierarchy for the time and product dimensions.
The GROUP BY clause is what determines the hierarchical cube contents.

Create the View edge_time, which is a Complete Set of Date Values

edge_time is the source for filling time gaps in the hierarchical cube using a partitioned outer
join. The column Hierarchical_Time in edge_time will be used in a partitioned join with the
Hierarchical_Time column in the view cube_prod_time. The following statement defines
edge_time:

CREATE OR REPLACE VIEW edge_time AS
SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)
 AND (GROUPING(calendar_quarter_desc)=1))
 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')

Chapter 20
Time Series Calculations on Densified Data

20-62

 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(time_id) || '_3')
 END) Hierarchical_Time,
 calendar_year yr, calendar_quarter_number qtr_num,
 calendar_quarter_desc qtr, calendar_month_number mon_num,
 calendar_month_desc mon, time_id - TRUNC(time_id, 'YEAR') + 1 day_num,
 time_id day,
GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, time_id) gid_t
FROM TIMES
GROUP BY ROLLUP
 (calendar_year, (calendar_quarter_desc, calendar_quarter_number),
 (calendar_month_desc, calendar_month_number), time_id);

Create the Materialized View mv_prod_time to Support Faster Performance

The materialized view definition is a duplicate of the view cube_prod_time defined earlier.
Because it is a duplicate query, references to cube_prod_time will be rewritten to use the
mv_prod_time materialized view. The following materialized may already exist in your system; if
not, create it now. If you must generate it, note that you limit the query to just two products to
keep processing time short.

CREATE MATERIALIZED VIEW mv_prod_time
REFRESH COMPLETE ON DEMAND AS
SELECT
 (CASE
 WHEN ((GROUPING(calendar_year)=0)
 AND (GROUPING(calendar_quarter_desc)=1))
 THEN (TO_CHAR(calendar_year) || '_0')
 WHEN ((GROUPING(calendar_quarter_desc)=0)
 AND (GROUPING(calendar_month_desc)=1))
 THEN (TO_CHAR(calendar_quarter_desc) || '_1')
 WHEN ((GROUPING(calendar_month_desc)=0)
 AND (GROUPING(t.time_id)=1))
 THEN (TO_CHAR(calendar_month_desc) || '_2')
 ELSE (TO_CHAR(t.time_id) || '_3')
 END) Hierarchical_Time,
 calendar_year year, calendar_quarter_desc quarter,
 calendar_month_desc month, t.time_id day,
 prod_category cat, prod_subcategory subcat, p.prod_id prod,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id,
 calendar_year, calendar_quarter_desc, calendar_month_desc,t.time_id) gid,
 GROUPING_ID(prod_category, prod_subcategory, p.prod_id) gid_p,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 calendar_month_desc, t.time_id) gid_t,
 SUM(amount_sold) s_sold, COUNT(amount_sold) c_sold, COUNT(*) cnt
FROM SALES s, TIMES t, PRODUCTS p
WHERE s.time_id = t.time_id AND
 p.prod_name IN ('Bounce', 'Y Box') AND s.prod_id = p.prod_id
GROUP BY
 ROLLUP(calendar_year, calendar_quarter_desc, calendar_month_desc, t.time_id),
 ROLLUP(prod_category, prod_subcategory, p.prod_id);

Create the Comparison Query

You have now set the stage for our comparison query. You can obtain period-to-period
comparison calculations at all time levels. It requires applying analytic functions to a
hierarchical cube with dense data along the time dimension.

Some of the calculations you can achieve for each time level are:

Chapter 20
Time Series Calculations on Densified Data

20-63

• Sum of sales for prior period at all levels of time.

• Variance in sales over prior period.

• Sum of sales in the same period a year ago at all levels of time.

• Variance in sales over the same period last year.

The following example performs all four of these calculations. It uses a partitioned outer join of
the views cube_prod_time and edge_time to create an inline view of dense data called
dense_cube_prod_time. The query then uses the LAG function in the same way as the prior
single-level example. The outer WHERE clause specifies time at three levels: the days of August
2001, the entire month, and the entire third quarter of 2001. Note that the last two rows of the
results contain the month level and quarter level aggregations.Note that to make the results
easier to read if you are using SQL*Plus, the column headings should be adjusted with the
following commands. The commands will fold the column headings to reduce line length:

col sales_prior_period heading 'sales_prior|_period'
col variance_prior_period heading 'variance|_prior|_period'
col sales_same_period_prior_year heading 'sales_same|_period_prior|_year'
col variance_same_period_p_year heading 'variance|_same_period|_prior_year'

Here is the query comparing current sales to prior and year ago sales:

SELECT SUBSTR(prod,1,4) prod, SUBSTR(Hierarchical_Time,1,12) ht,
 sales, sales_prior_period,
 sales - sales_prior_period variance_prior_period,
 sales_same_period_prior_year,
 sales - sales_same_period_prior_year variance_same_period_p_year
FROM
 (SELECT cat, subcat, prod, gid_p, gid_t,
 Hierarchical_Time, yr, qtr, mon, day, sales,
 LAG(sales, 1) OVER (PARTITION BY gid_p, cat, subcat, prod,
 gid_t ORDER BY yr, qtr, mon, day)
 sales_prior_period,
 LAG(sales, 1) OVER (PARTITION BY gid_p, cat, subcat, prod,
 gid_t, qtr_num, mon_num, day_num ORDER BY yr)
 sales_same_period_prior_year
 FROM
 (SELECT c.gid, c.cat, c.subcat, c.prod, c.gid_p,
 t.gid_t, t.yr, t.qtr, t.qtr_num, t.mon, t.mon_num,
 t.day, t.day_num, t.Hierarchical_Time, NVL(s_sold,0) sales
 FROM cube_prod_time c
 PARTITION BY (gid_p, cat, subcat, prod)
 RIGHT OUTER JOIN edge_time t
 ON (c.gid_t = t.gid_t AND
 c.Hierarchical_Time = t.Hierarchical_Time)
) dense_cube_prod_time
) --side by side current and prior year sales
WHERE prod IN (139) AND gid_p=0 AND --1 product and product level data
 ((mon IN ('2001-08') AND gid_t IN (0, 1)) OR --day and month data
 (qtr IN ('2001-03') AND gid_t IN (3))) --quarter level data
ORDER BY day;

 variance sales_same variance
 sales_prior _prior _period_prior _same_period
PROD HT SALES _period _period _year _prior_year
---- ------------ ---------- ----------- ---------- ------------- ------------
139 01-AUG-01_3 0 0 0 0 0
139 02-AUG-01_3 1347.53 0 1347.53 0 1347.53
139 03-AUG-01_3 0 1347.53 -1347.53 42.36 -42.36
139 04-AUG-01_3 57.83 0 57.83 995.75 -937.92
139 05-AUG-01_3 0 57.83 -57.83 0 0

Chapter 20
Time Series Calculations on Densified Data

20-64

139 06-AUG-01_3 0 0 0 0 0
139 07-AUG-01_3 134.81 0 134.81 880.27 -745.46
139 08-AUG-01_3 1289.89 134.81 1155.08 0 1289.89
139 09-AUG-01_3 0 1289.89 -1289.89 0 0
139 10-AUG-01_3 0 0 0 0 0
139 11-AUG-01_3 0 0 0 0 0
139 12-AUG-01_3 0 0 0 0 0
139 13-AUG-01_3 0 0 0 0 0
139 14-AUG-01_3 0 0 0 0 0
139 15-AUG-01_3 38.49 0 38.49 1104.55 -1066.06
139 16-AUG-01_3 0 38.49 -38.49 0 0
139 17-AUG-01_3 77.17 0 77.17 1052.03 -974.86
139 18-AUG-01_3 2467.54 77.17 2390.37 0 2467.54
139 19-AUG-01_3 0 2467.54 -2467.54 127.08 -127.08
139 20-AUG-01_3 0 0 0 0 0
139 21-AUG-01_3 0 0 0 0 0
139 22-AUG-01_3 0 0 0 0 0
139 23-AUG-01_3 1371.43 0 1371.43 0 1371.43
139 24-AUG-01_3 153.96 1371.43 -1217.47 2091.3 -1937.34
139 25-AUG-01_3 0 153.96 -153.96 0 0
139 26-AUG-01_3 0 0 0 0 0
139 27-AUG-01_3 1235.48 0 1235.48 0 1235.48
139 28-AUG-01_3 173.3 1235.48 -1062.18 2075.64 -1902.34
139 29-AUG-01_3 0 173.3 -173.3 0 0
139 30-AUG-01_3 0 0 0 0 0
139 31-AUG-01_3 0 0 0 0 0
139 2001-08_2 8347.43 7213.21 1134.22 8368.98 -21.55
139 2001-03_1 24356.8 28862.14 -4505.34 24168.99 187.81

The first LAG function (sales_prior_period) partitions the data on gid_p, cat, subcat, prod,
gid_t and orders the rows on all the time dimension columns. It gets the sales value of the
prior period by passing an offset of 1. The second LAG function
(sales_same_period_prior_year) partitions the data on additional columns qtr_num, mon_num,
and day_num and orders it on yr so that, with an offset of 1, it can compute the year ago sales
for the same period. The outermost SELECT clause computes the variances.

20.7.3 Creating a Custom Member in a Dimension: Example
In many analytical SQL tasks, it is helpful to define custom members in a dimension. For
instance, you might define a specialized time period for analyses. You can use a partitioned
outer join to temporarily add a member to a dimension. Note that the new SQL MODEL clause is
suitable for creating more complex scenarios involving new members in dimensions. See SQL
for Modeling for more information on this topic.

As an example of a task, what if you want to define a new member for the time dimension?
You want to create a 13th member of the Month level in the time dimension. This 13th month is
defined as the summation of the sales for each product in the first month of each quarter of
year 2021.

The solution has two steps. Note that you will build this solution using the views and tables
created in the prior example. Two steps are required. First, create a view with the new member
added to the appropriate dimension. The view uses a UNION ALL operation to add the new
member. To query using the custom member, use a CASE expression and a partitioned outer
join.

Our new member for the time dimension is created with the following view:

CREATE OR REPLACE VIEW time_c AS
(SELECT * FROM edge_time

Chapter 20
Time Series Calculations on Densified Data

20-65

UNION ALL
SELECT '2021-13_2', 2021, 5, '2021-05', 13, '2021-13', null, null,
8 -- <gid_of_mon>;

In this statement, the view time_c is defined by performing a UNION ALL of the edge_time view
(defined in the prior example) and the user-defined 13th month. The gid_t value of 8 was
chosen to differentiate the custom member from the standard members. The UNION ALL
specifies the attributes for a 13th month member by doing a SELECT from the DUAL table. Note
that the grouping id, column gid_t, is set to 8, and the quarter number is set to 5.

Then, the second step is to use an inline view of the query to perform a partitioned outer join of
cube_prod_time with time_c. This step creates sales data for the 13th month at each level of
product aggregation. In the main query, the analytic function SUM is used with a CASE
expression to compute the 13th month, which is defined as the summation of the first month's
sales of each quarter.

SELECT * FROM (SELECT SUBSTR(cat,1,12) cat, SUBSTR(subcat,1,12) subcat,
 prod, mon, mon_num,
 SUM(CASE WHEN mon_num IN (1, 4, 7, 10)
 THEN s_sold
 ELSE NULL
 END)
 OVER (PARTITION BY gid_p, prod, subcat, cat, yr) sales_month_13
 FROM
 (SELECT c.gid, c.prod, c.subcat, c.cat, gid_p,
 t.gid_t, t.day, t.mon, t.mon_num,
 t.qtr, t.yr, NVL(s_sold,0) s_sold
 FROM cube_prod_time c
 PARTITION BY (gid_p, prod, subcat, cat)
 RIGHT OUTER JOIN time_c t
 ON (c.gid_t = t.gid_t AND
 c.Hierarchical_Time = t.Hierarchical_Time)
)
)
WHERE mon_num=13;

The SUM function uses a CASE to limit the data to months 1, 4, 7, and 10 within each year. Due
to the tiny data set, with just two products, the rollup values of the results are necessarily
repetitions of lower level aggregations.

20.8 Miscellaneous Analysis and Reporting Capabilities
This section illustrates the following additional analytic capabilities:

• TIME_BUCKET Function

• WIDTH_BUCKET Function

• Linear Algebra

• CASE Expressions

• Frequent Itemsets in SQL Analytics

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-66

20.8.1 TIME_BUCKET Function
Time bucketing is a common operation when processing time series or event streaming data
where a series of data points within an arbitrarily defined time window need to be mapped to a
specific fixed time interval (bucket) for aggregated analysis.

The TIME_BUCKET function supports bucketing the input DATETIMES into the specified interval
aligned with a specific origin, and returns the START of the bucket into which time is placed.

TIME_BUCKET is directly supported for the following input DATETIMES:

• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• NUMBER(EPOCH TIME)
TIME_BUCKET also accepts the following DATETIMES as inputs, but these binary datatypes and
the CHAR datatype are implicitly converted as shown in Table 20-3.

Table 20-3 IMPLICIT TIME_BUCKET CONVERSIONS FOR SOME DATETIMES

DATETIME CONVERTED TO...

BINARY_FLOAT NUMBER
BINARY_DOUBLE NUMBER
CHAR TIMESTAMP

20.8.1.1 TIME_BUCKET Syntax

Syntax

TIME_BUCKET(DATETIME, STRIDE, ORIGIN[, START_OR_END]
[TIMEBUCKET_OPTIONAL_CLAUSE])

Table 20-4 TIME_BUCKET Inputs

Input Description

DATETIME DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE, EPOCH TIME, BINARY_FLOAT, BINARY_DOUBLE, CHAR, an expression or a bind
variable.
There are implicit conversions for DATETIME. A BINARY_FLOAT or BINARY_DOUBLE is
converted to NUMBER. Note that precision here is the user's responsibility. A CHAR is
converted to TIMESTAMP.

CHAR should match session nls_timestamp_format. Otherwise, an error is raised.
Currently, fractional second is supported only if DATETIME and ORIGIN are EPOCH
TIME, BINARY_FLOAT or BINARY_DOUBLE.

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-67

Table 20-4 (Cont.) TIME_BUCKET Inputs

Input Description

STRIDE The time interval – a positive Oracle INTERVAL, ISO 8601 time interval string, an
expression or a bind variable.
For Oracle INTERVAL, the two types of valid intervals are INTERVAL YEAR TO MONTH,
and INTERVAL DAY TO SECOND. For ISO 8601 time interval string, years, months,
days, hours, minutes and seconds are integers between 0 and 999999999.

FRAC_SECS is the fractional part of seconds between .0 and .999999999. If year or
month is specified, then all other units specified are ignored. Currently, fractional second
is supported only if DATETIME and ORIGIN are EPOCH TIME, BINARY_FLOAT or
BINARY_DOUBLE.

Oracle Database provides two kinds of INTERVAL: INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND. The ISO 8601 time interval string used should match the
definition of Oracle INTERVAL.

These are the requirements for the INTERVAL string:

• No blanks are allowed in the string.
• 'P' is required .

• If you specify 'T', then you must specify at least one of the hours, minutes, or
seconds values.

Note that hours are based on 24-hour time. For example, 'P100DT05H' indicates 100
days and 5 hours. 'P1Y2M' indicates 1 year and 2 months. 'P1M1DT5H30M30S' is
equivalent to 'P1M' which indicates 1 month.

Only positive values are allowed for STRIDE.

ORIGIN The anchor to which all buckets are aligned. ORIGIN supports the same DATETIMES as
the DATETIME argument. Note that the ORIGIN datatype must match the datatype of the
datetime.
There are implicit conversions for ORIGIN. A BINARY_FLOAT or BINARY_DOUBLE, is
converted to NUMBER implicitly.

Notice that precision is the user's responsibility. A CHAR is converted to TIMESTAMP
implicitly. Note that the CHAR should match session nls_timestamp_format. Otherwise,
an error is raised. Currently, fractional second is supported only if DATETIME and
ORIGIN are EPOCH TIME, BINARY_FLOAT or BINARY_DOUBLE.

START_OR_END The start or end of the time bucket to be returned. The value is either START or END.
The default is START. This argument is optional.

TIMEBUCKET_OPTIONAL_CLAUSE Controls how the function behaves when the return value is an invalid date, or when the
ORIGIN is the last day of a month and the STRIDE contains only MONTH and/or YEAR.
The possible values are:
• ON OVERFLOW ROUND (default): If the return value is an invalid date, then the

function returns a value whose date component is the last day of the month.
• ON OVERFLOW ERROR: If the return value is an invalid date, then the function

returns an error.
• LAST DAY OF MONTH: If the ORIGIN is the last day of a month and the STRIDE

contains only the MONTH or/and YEAR, then the function always returns a value
whose date component is the last day of the month.

This clause is optional.

20.8.1.2 TIME_BUCKET Examples

Here are TIME_BUCKET examples using different datetypes.

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-68

Assume that all of the examples are run in the same session.

SQL> alter session set nls_date_format='dd mon syyyy hh24:mi:ss';

Session altered.

The three examples in this set use the datatype DATE. We select a five-year window with
Oracle INTERVAL syntax and then with ISO 8601 syntax. Those first two examples use the
START argument, which defines the starting point of a window as return value. The third
example uses the same statement, but with the END argument, which returns the end of a
window.

SQL> select time_bucket(DATE '2022-06-29', 'P5Y', DATE '2000-01-01', START) ;

TIME_BUCKET(DATE'2022

01 jan 2020
00:00:00

SQL> select time_bucket(DATE '2022-06-29', INTERVAL '5' YEAR, DATE
'2000-01-01', START) ;

TIME_BUCKET(DATE'2022

01 jan 2020
00:00:00

SQL> select time_bucket(DATE '2022-06-29', INTERVAL '5' YEAR, DATE
'2000-01-01', END) ;

TIME_BUCKET(DATE'2022

01 jan 2025
00:00:00

The following example uses the TIMESTAMP datatype. Note that DATETIME and ORIGIN must be
of the same datatype, as shown here.

SQL> select time_bucket(TIMESTAMP '2022-06-29 12:34:56', INTERVAL '5' HOUR,
TIMESTAMP '2022-06-29 00:00:00', END);

TIME_BUCKET(TIMESTAMP'2022-06-2912:34:56',INTERVAL'5'HOUR,TIMESTAMP'2022-06

2022-06-29
15:00:00

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-69

The example below uses Epoch time. The INTERVAL is in fractions of seconds. The alignment
is the default – START.

SQL> select time_bucket(1234.56, INTERVAL '2.555' SECOND, 1000.6);

TIME_BUCKET(1234.56,INTERVAL'2.555'SECOND,1000.6)

1233.105

The following is a BINARY_FLOAT example, which returns a number.

SQL> select time_bucket(TO_BINARY_FLOAT(52.35), 'PT30S', TO_BINARY_FLOAT(10),
START);

TIME_BUCKET(TO_BINARY_FLOAT(52.35),'PT30S',TO_BINARY_FLOAT(10),START)

40

This is a CHAR datatype example. Note that the input is a character in NLS_TIMESTAMP_FORMAT
and is automatically converted to TIMESTAMP. This is why the second argument ORIGIN can be
a timestamp.

SQL> alter session set nls_timestamp_format='yyyy-mm-dd hh24:mi:ss';

Session altered.

SQL> select time_bucket('2022-06-27 12:34:56', 'P5D', TIMESTAMP '2022-06-29
12:14:56');

TIME_BUCKET('2022-06-2712:34:56','P5D',TIMESTAMP'2022-06-2912:14:56')

2022-06-24
12:14:56

This is a simple example of how to bucket DATE data.

SQL> select time_bucket(hiredate, 'P1Y', DATE '1970-01-01') year_of_hire,
count(empno) num_of_hires
from emp
group by time_bucket(hiredate, 'P1Y', DATE '1970-01-01');

YEAR_OF_HIRE
NUM_OF_HIRES

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-70

01 jan 1980 00:00:00
1
01 jan 1981 00:00:00
10
01 jan 1987 00:00:00
2
01 jan 1982 00:00:00
1

20.8.2 WIDTH_BUCKET Function
For a given expression, the WIDTH_BUCKET function returns the bucket number that the result of
this expression will be assigned after it is evaluated. "WIDTH_BUCKET Syntax" describes the
WIDTH_BUCKET syntax.

You can generate equiwidth histograms with this function. Equiwidth histograms divide data
sets into buckets whose interval size (highest value to lowest value) is equal. The number of
rows held by each bucket will vary. A related function, NTILE, creates equiheight buckets.

Equiwidth histograms can be generated only for numeric, date or datetime types. So the first
three parameters should be all numeric expressions or all date expressions. Other types of
expressions are not allowed. If the first parameter is NULL, the result is NULL. If the second or
the third parameter is NULL, an error message is returned, as a NULL value cannot denote any
end point (or any point) for a range in a date or numeric value dimension. The last parameter
(number of buckets) should be a numeric expression that evaluates to a positive integer value;
0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less than the
minimum. Bucket(n+1) holds the count of values greater than or equal to the maximum
specified value.

20.8.2.1 WIDTH_BUCKET Syntax
The WIDTH_BUCKET takes four expressions as parameters. The first parameter is the expression
that the equiwidth histogram is for. The second and third parameters are expressions that
denote the end points of the acceptable range for the first parameter. The fourth parameter
denotes the number of buckets.

WIDTH_BUCKET(expression, minval expression, maxval expression, num buckets)

Consider the following data from table customers, that shows the credit limits of 17 customers.
This data is gathered in the query shown in Example 20-27.

CUST_ID CUST_CREDIT_LIMIT
--------- -----------------
 10346 7000
 35266 7000
 41496 15000
 35225 11000
 3424 9000
 28344 1500
 31112 7000
 8962 1500
 15192 3000
 21380 5000
 36651 1500

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-71

 30420 5000
 8270 3000
 17268 11000
 14459 11000
 13808 5000
 32497 1500
 100977 9000
 102077 3000
 103066 10000
 101784 5000
 100421 11000
 102343 3000

In the table customers, the column cust_credit_limit contains values between 1500 and
15000, and you can assign the values to four equiwidth buckets, numbered from 1 to 4, by
using WIDTH_BUCKET (cust_credit_limit, 0, 20000, 4). Ideally each bucket is a closed-
open interval of the real number line, for example, bucket number 2 is assigned to scores
between 5000.0000 and 9999.9999..., sometimes denoted [5000, 10000) to indicate that 5,000
is included in the interval and 10,000 is excluded. To accommodate values outside the range
[0, 20,000), values less than 0 are assigned to a designated underflow bucket which is
numbered 0, and values greater than or equal to 20,000 are assigned to a designated overflow
bucket which is numbered 5 (num buckets + 1 in general). See Figure 20-4 for a graphical
illustration of how the buckets are assigned.

Figure 20-4 Bucket Assignments

0 5000 10000 15000 20000

0 1 2 3 4 5

Bucket #

Credit Limits

You can specify the bounds in the reverse order, for example, WIDTH_BUCKET
(cust_credit_limit, 20000, 0, 4). When the bounds are reversed, the buckets will be open-
closed intervals. In this example, bucket number 1 is (15000,20000], bucket number 2 is
(10000,15000], and bucket number 4, is (0,5000]. The overflow bucket will be numbered 0
(20000, +infinity), and the underflow bucket will be numbered 5 (-infinity, 0].

It is an error if the bucket count parameter is 0 or negative.

Example 20-27 WIDTH_BUCKET

The following query shows the bucket numbers for the credit limits in the customers table for
both cases where the boundaries are specified in regular or reverse order. You use a range of
0 to 20,000.

SELECT cust_id, cust_credit_limit,
 WIDTH_BUCKET(cust_credit_limit,0,20000,4) AS WIDTH_BUCKET_UP,
 WIDTH_BUCKET(cust_credit_limit,20000, 0, 4) AS WIDTH_BUCKET_DOWN
FROM customers WHERE cust_city = 'Marshal';

 CUST_ID CUST_CREDIT_LIMIT WIDTH_BUCKET_UP WIDTH_BUCKET_DOWN
---------- ----------------- --------------- -----------------
 10346 7000 2 3
 35266 7000 2 3
 41496 15000 4 2
 35225 11000 3 2
 3424 9000 2 3

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-72

 28344 1500 1 4
 31112 7000 2 3
 8962 1500 1 4
 15192 3000 1 4
 21380 5000 2 4
 36651 1500 1 4
 30420 5000 2 4
 8270 3000 1 4
 17268 11000 3 2
 14459 11000 3 2
 13808 5000 2 4
 32497 1500 1 4
 100977 9000 2 3
 102077 3000 1 4
 103066 10000 3 3
 101784 5000 2 4
 100421 11000 3 2
 102343 3000 1 4

20.8.3 Linear Algebra
Linear algebra is a branch of mathematics with a wide range of practical applications. Many
areas have tasks that can be expressed using linear algebra, and here are some examples
from several fields: statistics (multiple linear regression and principle components analysis),
data mining (clustering and classification), bioinformatics (analysis of microarray data),
operations research (supply chain and other optimization problems), econometrics (analysis of
consumer demand data), and finance (asset allocation problems). Various libraries for linear
algebra are freely available for anyone to use. Oracle's UTL_NLA package exposes matrix
PL/SQL data types and wrapper PL/SQL subprograms for two of the most popular and robust
of these libraries, BLAS and LAPACK.

Linear algebra depends on matrix manipulation. Performing matrix manipulation in PL/SQL in
the past required inventing a matrix representation based on PL/SQL's native data types and
then writing matrix manipulation routines from scratch. This required substantial programming
effort and the performance of the resulting implementation was limited. If developers chose to
send data to external packages for processing rather than create their own routines, data
transfer back and forth could be time consuming. Using the UTL_NLA package lets data stay
within Oracle, removes the programming effort, and delivers a fast implementation.

See Also:

Oracle Database PL/SQL Packages and Types Reference for further information
regarding the use of the UTL_NLA package and linear algebra

Example 20-28 Linear Algebra

Here is an example of how Oracle's linear algebra support could be used for business analysis.
It invokes a multiple linear regression application built using the UTL_NLA package. The multiple
regression application is implemented in an object called OLS_Regression. Note that sample
files for the OLS Regression object can be found in $ORACLE_HOME/plsql/demo.

Consider the scenario of a retailer analyzing the effectiveness of its marketing program. Each
of its stores allocates its marketing budget over the following possible programs: media
advertisements (media), promotions (promo), discount coupons (disct), and direct mailers
(dmail). The regression analysis builds a linear relationship between the amount of sales that

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-73

an average store has in a given year (sales) and the spending on the four components of the
marketing program. Suppose that the marketing data is stored in the following table:

sales_marketing_data (
 /* Store information*/
 store_no NUMBER,
 year NUMBER,
 /* Sales revenue (in dollars)*/
 sales NUMBER, /* sales amount*/
 /* Marketing expenses (in dollars)*/
 media NUMBER, /*media advertisements*/
 promo NUMBER, /*promotions*/
 disct NUMBER, /*discount coupons*/
 dmail NUMBER, /*direct mailers*/

Then you can build the following sales-marketing linear model using coefficients:

Sales Revenue = a + b Media Advisements
 + c Promotions
 + d Discount Coupons
 + e Direct Mailer

This model can be implemented as the following view, which refers to the OLS regression
object:

CREATE OR REPLACE VIEW sales_marketing_model (year, ols)
 AS SELECT year,
 OLS_Regression(
 /* mean_y => */
 AVG(sales),
 /* variance_y => */
 var_pop(sales),
 /* MV mean vector => */
 UTL_NLA_ARRAY_DBL (AVG(media),AVG(promo),
 AVG(disct),AVG(dmail)),
 /* VCM variance covariance matrix => */
 UTL_NLA_ARRAY_DBL (var_pop(media),covar_pop(media,promo),
 covar_pop(media,disct),covar_pop(media,dmail),
 var_pop(promo),covar_pop(promo,disct),
 covar_pop(promo,dmail),var_pop(disct),
 covar_pop(disct,dmail),var_pop(dmail)),
 /* CV covariance vector => */
 UTL_NLA_ARRAY_DBL (covar_pop(sales,media),covar_pop(sales,promo),
 covar_pop(sales,disct),covar_pop(sales,dmail)))
 FROM sales_marketing_data
 GROUP BY year;

Using this view, a marketing program manager can perform an analysis such as "Is this sales-
marketing model reasonable for year 2020 data? That is, is the multiple-correlation greater
than some acceptable value, say, 0.9?" The SQL for such a query might be as follows:

SELECT model.ols.getCorrelation(1)
 AS "Applicability of Linear Model"
FROM sales_marketing_model model
WHERE year = 2020;

You could also solve questions such as "What is the expected base-line sales revenue of a
store without any marketing programs in 2020?" or "Which component of the marketing
program was the most effective in 2021? That is, a dollar increase in which program produced
the greatest expected increase in sales?"

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-74

20.8.4 CASE Expressions
Oracle now supports simple and searched CASE statements. CASE statements are similar in
purpose to the DECODE statement, but they offer more flexibility and logical power. They are also
easier to read than traditional DECODE statements, and offer better performance as well. They
are commonly used when breaking categories into buckets like age (for example, 20-29,
30-39, and so on).

The syntax for simple CASE statements is:

CASE expr WHEN comparison_expr THEN return_expr
 [, WHEN comparison_expr THEN return_expr]... [ELSE else_expr] END

Simple CASE expressions test if the expr value equals the comparison_expr.

The syntax for searched CASE statements is:

CASE WHEN condition THEN return_expr [, WHEN condition THEN return_expr]
 ... ELSE else_expr] END

You can use any kind of condition in a searched CASE expression, not just an equality test.

You can specify only 65,535 arguments and each WHEN ... THEN pair counts as two arguments.
To avoid exceeding this limit, you can nest CASE expressions so that the return_expr itself is a
CASE expression.

See Also:

"Creating Histograms Using CASE Statement" for information about using CASE to
create histograms

Example 20-29 CASE

This statements in this example uses the hr (Human Resources) sample schema.

Suppose you wanted to find the average salary of all employees in the company. If an
employee's salary is less than $50000, you want the query to use $50000 instead. Without a
CASE statement, you might choose to write this query as follows:

SELECT AVG(foo(e.salary)) FROM hr.employees e;

In the above example, foo is a function that returns its input if the input is greater than 14000,
and returns 14000 otherwise. The query has performance implications because it needs to
invoke a function for each row. Writing custom functions can also add to the development load.

Using CASE expressions in the database without PL/SQL, this query can be rewritten as
follows.

SELECT AVG(CASE when e.salary > 14000 THEN e.salary ELSE 14000 end) AS avg_sal_14k_floor
FROM hr.employees e;

Using a CASE expression lets you avoid developing custom functions and can also perform
faster.

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-75

Example 20-30 CASE for Aggregating Independent Subsets

Using CASE inside aggregate functions is a convenient way to perform aggregates on multiple
subsets of data when a plain GROUP BY will not suffice. For instance, the preceding example
could have included multiple AVG columns in its SELECT list, each with its own CASE expression.
You might have had a query find the average salary for all employees in the salary ranges
0-14000 and 14001-24000. It would look like:

SELECT AVG(CASE WHEN e.salary BETWEEN 0 AND 1400 THEN e.salary ELSE null END) avg14000,
AVG(CASE WHEN e.salary BETWEEN 14001 AND 24000 THEN e.salary ELSE null END) avg24000
FROM employees e;

Although this query places the aggregates of independent subsets data into separate columns,
by adding a CASE expression to the GROUP BY clause you can display the aggregates as the
rows of a single column. The next section shows the flexibility of this approach with two
approaches to creating histograms with CASE.

20.8.4.1 Creating Histograms Using CASE Statement
You can use the CASE statement when you want to obtain histograms with user-defined buckets
(both in number of buckets and width of each bucket). The following are two examples of
histograms created with CASE statements. In the first example, the histogram totals are shown
in multiple columns and a single row is returned. In the second example, the histogram is
shown with a label column and a single column for totals, and multiple rows are returned.

Example 20-31 Histogram Example 1

SELECT SUM(CASE WHEN cust_credit_limit BETWEEN 0 AND 3999 THEN 1 ELSE 0 END)
 AS "0-3999",
SUM(CASE WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN 1 ELSE 0 END)
 AS "4000-7999",
SUM(CASE WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN 1 ELSE 0 END)
 AS "8000-11999",
SUM(CASE WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN 1 ELSE 0 END)
 AS "12000-16000"
FROM customers WHERE cust_city = 'Marshal';

 0-3999 4000-7999 8000-11999 12000-16000
---------- ---------- ---------- -----------
 8 7 7 1

Example 20-32 Histogram Example 2

SELECT (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000' END)
 AS BUCKET, COUNT(*) AS Count_in_Group
FROM customers WHERE cust_city = 'Marshal' GROUP BY
 (CASE WHEN cust_credit_limit BETWEEN 0 AND 3999 THEN ' 0 - 3999'
 WHEN cust_credit_limit BETWEEN 4000 AND 7999 THEN ' 4000 - 7999'
 WHEN cust_credit_limit BETWEEN 8000 AND 11999 THEN ' 8000 - 11999'
 WHEN cust_credit_limit BETWEEN 12000 AND 16000 THEN '12000 - 16000' END);

BUCKET COUNT_IN_GROUP
------------- --------------
 0 - 3999 8
 4000 - 7999 7
 8000 - 11999 7
12000 - 16000 1

Chapter 20
Miscellaneous Analysis and Reporting Capabilities

20-76

20.8.5 Frequent Itemsets in SQL Analytics
Instead of counting how often a given event occurs (for example, how often someone has
purchased milk at the grocery), you may find it useful to count how often multiple events occur
together (for example, how often someone has purchased both milk and cereal together at the
grocery store). You can count these multiple events using what is called a frequent itemset,
which is, as the name implies, a set of items. Some examples of itemsets could be all of the
products that a given customer purchased in a single trip to the grocery store (commonly called
a market basket), the web pages that a user accessed in a single session, or the financial
services that a given customer utilizes.

The practical motivation for using a frequent itemset is to find those itemsets that occur most
often. If you analyze a grocery store's point-of-sale data, you might, for example, discover that
milk and bananas are the most commonly bought pair of items. Frequent itemsets have thus
been used in business intelligence environments for many years, with the most common one
being for market basket analysis in the retail industry. Frequent itemset calculations are
integrated with the database, operating on top of relational tables and accessed through SQL.
This integration provides the following key benefits:

• Applications that previously relied on frequent itemset operations now benefit from
significantly improved performance as well as simpler implementation.

• SQL-based applications that did not previously use frequent itemsets can now be easily
extended to take advantage of this functionality.

Frequent itemsets analysis is performed with the PL/SQL package DBMS_FREQUENT_ITEMSETS.
See Oracle Database PL/SQL Packages and Types Reference for more information. In
addition, there is an example of frequent itemset usage in "Business Intelligence Query
Example 4: Frequent Itemsets".

20.9 Limiting SQL Rows
You can limit the rows returned from SQL queries by either a specific number of rows or a
percentage of rows. In some cases, you may need the query results to be ordered before the
number of rows returned is limited. A query which first sorts its rows and then limits the number
of rows returned is often called a Top-N query, and it offers a straightforward way of creating
reports or just a simple view of basic questions, such as "Who are the ten highest-paid
employees?" It is also useful for user interfaces that provide the first few rows of a data set for
browsing. When you issue a Top-N query, you may also want to specify an offset: the offset
excludes the leading rows of the query result set. The query then returns the specified number
or percent of rows starting with the first row after the offset. An offset enables you to modify
typical questions, so that the question about highest-paid employees might skip the top ten
employees and return only those from eleventh to twentieth place in the salary rankings. In a
similar manner, you could query the employees by salary, skip the top ten employees and then
return the top 10% of the remaining employees.

Queries that limit the rows returned have been possible using the ROW_NUMBER window function,
the ROWNUM pseudocolumn, and other techniques for some time, but can now be written more
simply with the ANSI SQL standard syntax of row_limiting_clause. When using this clause, you
can ensure a deterministic sort order, as needed for Top-N queries, by including an ORDER BY
clause in the query. The row_limiting_clause clause appears as the last part of a SELECT,
after the ORDER BY clause, and it starts with either the keyword FETCH or OFFSET. Its basic syntax
is as follows:

Chapter 20
Limiting SQL Rows

20-77

[OFFSET offset { ROW | ROWS }]
[FETCH { FIRST | NEXT } [{ rowcount | percent PERCENT }]
 { ROW | ROWS } { ONLY | WITH TIES }]

This syntax is illustrated in the following sections.

OFFSET

This specifies the number of rows to skip before row limiting begins. offset must be a number.
If you specify a negative number, then offset is treated as 0. If you specify NULL, or a number
greater than or equal to the number of rows returned by the query, then 0 rows are returned. If
offset includes a fraction, then the fractional portion is truncated. If you do not specify this
clause, then offset is 0 and row limiting begins with the first row. To improve readability,
Oracle offers the option of using either ROW or ROWS - both are equivalent.

FETCH

This specifies the number of rows or percentage of rows to return. If you do not specify this
clause, then all rows are returned, beginning at the offset + 1 row. If you use the WITH TIES
keywords, your query will also include all rows that match the sort key of the last qualified row.

To illustrate how you can limit the number of rows returned in a query, consider the following
statements. These statements are run against the hr (Human Resources) schema provided by
Oracle.

SELECT employee_id, last_name
FROM hr.employees
ORDER BY employee_id
FETCH FIRST 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- ----------
 100 King
 101 Yang
 102 Garcia
 103 James
 104 Miller

In this statement, the first 5 employees with the lowest employee_id values are returned.

To return the next set of 5 employees, add an OFFSET to the statement:

SELECT employee_id, last_name
FROM hr.employees
ORDER BY employee_id
OFFSET 5 ROWS FETCH NEXT 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- ----------
 105 Austin
 106 Pataballa
 107 Lorentz
 108 Greenberg
 109 Faviet

In this statement, FETCH FIRST and FETCH NEXT are equivalent, but FETCH NEXT is clearer when
OFFSET is used.

The offset can be a larger value, such as 10, as in the following statement:

Chapter 20
Limiting SQL Rows

20-78

SELECT employee_id, last_name
FROM hr.employees
ORDER BY employee_id
OFFSET 10 ROWS FETCH NEXT 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- ----------
 105 Williams
 106 Jackson
 107 Nguyen
 108 Gruenberg
 109 Faviet

You can choose to return values by percentage instead of a fixed number. To illustrate this, the
following statement returns the 5 percent of employees with the lowest salaries:

SELECT employee_id, last_name, salary
FROM hr.employees
ORDER BY salary
FETCH FIRST 5 PERCENT ROWS ONLY;

EMPLOYEE_ID LAST_NAME SALARY
----------- --------------------- ------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400

In the following result set, 5% is six rows. This is important if you use OFFSET, because the
percentage calculation is based on the entire result set before the offset is applied. An example
of using OFFSET is the following statement:

SELECT employee_id, last_name, salary
FROM hr.employees
ORDER BY salary, employee_id
OFFSET 6 ROWS FETCH FIRST 5 PERCENT ROWS ONLY;

EMPLOYEE_ID LAST_NAME SALARY
----------- -------------------- ------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500

This statement still returns six rows, but starts with the seventh row of the result set. The
additional employee_id added to the ORDER BY clause was to guarantee a deterministic sort.

You have the option of returning tie values by using WITH TIES. This would return the 5 percent
with the lowest salaries, plus all additional employees with the same salary as the last row
fetched:

SELECT employee_id, last_name, salary
FROM hr.employees
ORDER BY salary
FETCH FIRST 5 PERCENT ROWS WITH TIES;

 EMPLOYEE_ID LAST_NAME SALARY
______________ _____________ _________
 132 Olson 2100

Chapter 20
Limiting SQL Rows

20-79

 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500
 131 Marlow 2500
 140 Patel 2500
 144 Vargas 2500
 182 Sullivan 2500
 191 Perkins 2500

You could issue the same query, but skip the first 5 values with the following statement:

SELECT employee_id, last_name, salary
FROM hr.employees
ORDER BY salary
OFFSET 5 ROWS FETCH FIRST 5 PERCENT ROWS WITH TIES;

EMPLOYEE_ID LAST_NAME SALARY
----------- --------------------- ------
 119 Colmenares 2500
 131 Marlow 2500
 140 Patel 2500
 144 Vargas 2500
 182 Sullivan 2500
 191 Perkins 2500

20.9.1 SQL Row Limiting Restrictions and Considerations
The row_limiting_clause clause is subject to the following restrictions:

• You cannot specify this clause with the for_update_clause.

• If you specify this clause, then the select list cannot contain the sequence pseudocolumns
CURRVAL or NEXTVAL.

• Materialized views are not eligible for an incremental refresh if the defining query contains
this clause.

See Also:

Oracle Database SQL Language Reference for further information regarding syntax
and restrictions

Chapter 20
Limiting SQL Rows

20-80

21
SQL for Aggregation in Data Warehouses

This chapter discusses aggregation of SQL, a basic aspect of data warehousing. It contains
these topics:

• Overview of SQL for Aggregation in Data Warehouses

• ROLLUP Extension to GROUP BY

• CUBE Extension to GROUP BY

• GROUPING Functions

• GROUPING SETS Expression

• About Composite Columns and Grouping

• Concatenated Groupings and Data Aggregation

• Considerations when Using Aggregation in Data Warehouses

• Computation Using the WITH Clause

• Working with Hierarchical Cubes in SQL

21.1 Overview of SQL for Aggregation in Data Warehouses
Aggregation is a fundamental part of data warehousing. To improve aggregation performance
in your warehouse, Oracle Database provides the following functionality:

• CUBE and ROLLUP extensions to the GROUP BY clause

• Three GROUPING functions

• GROUPING SETS expression

• Pivoting operations

The CUBE, ROLLUP, and GROUPING SETS extensions to SQL make querying and reporting easier
and faster. CUBE, ROLLUP, and grouping sets produce a single result set that is equivalent to a
UNION ALL of differently grouped rows. ROLLUP calculates aggregations such as SUM, COUNT, MAX,
MIN, and AVG at increasing levels of aggregation, from the most detailed up to a grand total.
CUBE is an extension similar to ROLLUP, enabling a single statement to calculate all possible
combinations of aggregations. The CUBE, ROLLUP, and the GROUPING SETS extensions let you
specify just the groupings needed in the GROUP BY clause. This allows efficient analysis across
multiple dimensions without performing a CUBE operation. Computing a CUBE creates a heavy
processing load, so replacing cubes with grouping sets can significantly increase performance.

To enhance performance, CUBE, ROLLUP, and GROUPING SETS can be parallelized: multiple
processes can simultaneously execute all of these statements. These capabilities make
aggregate calculations more efficient, thereby enhancing database performance, and
scalability.

The three GROUPING functions help you identify the group each row belongs to and enable
sorting subtotal rows and filtering results.

This section contains the following topics:

21-1

• About Analyzing Across Multiple Dimensions

• About Optimized Aggregation Performance

• Data Warehousing: An Aggregate Scenario

21.1.1 About Analyzing Across Multiple Dimensions
One of the key concepts in decision support systems is multidimensional analysis: examining
the enterprise from all necessary combinations of dimensions. The term dimension is used to
mean any category used in specifying questions. Among the most commonly specified
dimensions are time, geography, product, department, and distribution channel, but the
potential dimensions are as endless as the varieties of enterprise activity. The events or
entities associated with a particular set of dimension values are usually referred to as facts.
The facts might be sales in units or local currency, profits, customer counts, production
volumes, or anything else worth tracking.

Here are some examples of multidimensional requests:

• Show total sales across all products at increasing aggregation levels for a geography
dimension, from state to country to region, for 1999 and 2000.

• Create a cross-tabular analysis of our operations showing expenses by territory in South
America for 1999 and 2000. Include all possible subtotals.

• List the top 10 sales representatives in Asia according to 2000 sales revenue for
automotive products, and rank their commissions.

All these requests involve multiple dimensions. Many multidimensional questions require
aggregated data and comparisons of data sets, often across time, geography or budgets.

To visualize data that has many dimensions, analysts commonly use the analogy of a data
cube, that is, a space where facts are stored at the intersection of n dimensions. Figure 21-1
shows a data cube and how it can be used differently by various groups. The cube stores sales
data organized by the dimensions of product, market, sales, and time. Note that this is only a
metaphor: the actual data is physically stored in normal tables. The cube data consists of both
detail and aggregated data.

Figure 21-1 Logical Cubes and Views by Different Users

Regional Mgr. View

Financial Mgr. View Ad Hoc View

PR
O

D

Time

M
a

rk
e

t

SALES
Product Mgr. View

Chapter 21
Overview of SQL for Aggregation in Data Warehouses

21-2

You can retrieve slices of data from the cube. These correspond to cross-tabular reports such
as the one shown in #unique_732/unique_732_Connect_42_G1014032. Regional managers
might study the data by comparing slices of the cube applicable to different markets. In
contrast, product managers might compare slices that apply to different products. An ad hoc
user might work with a wide variety of constraints, working in a subset cube.

Answering multidimensional questions often involves accessing and querying huge quantities
of data, sometimes in millions of rows. Because the flood of detailed data generated by large
organizations cannot be interpreted at the lowest level, aggregated views of the information are
essential. Aggregations, such as sums and counts, across many dimensions are vital to
multidimensional analyses. Therefore, analytical tasks require convenient and efficient data
aggregation.

21.1.2 About Optimized Aggregation Performance
Not only multidimensional issues, but all types of processing can benefit from enhanced
aggregation facilities. Transaction processing, financial and manufacturing systems—all of
these generate large numbers of production reports needing substantial system resources.
Improved efficiency when creating these reports will reduce system load. In fact, any computer
process that aggregates data from details to higher levels will benefit from optimized
aggregation performance.

These extensions provide aggregation features and bring many benefits, including:

• Simplified programming requiring less SQL code for many tasks.

• Quicker and more efficient query processing.

• Reduced client processing loads and network traffic because aggregation work is shifted to
servers.

• Opportunities for caching aggregations because similar queries can leverage existing
work.

21.1.3 Data Warehousing: An Aggregate Scenario
To illustrate the use of the GROUP BY extension, this chapter uses the sh data of the sample
schema. All the examples refer to data from this scenario. The hypothetical company has sales
across the world and tracks sales by both dollars and quantities information. Because there are
many rows of data, the queries shown here typically have tight constraints on their WHERE
clauses to limit the results to a small number of rows.

Consider that even a simple report, with just nine values in its grid, generates four subtotals
and a grand total. Half of the values needed for this report would not be calculated with a query
that requested SUM(amount_sold) and did a GROUP BY(channel_desc, country_id). To get
the higher-level aggregates would require additional queries. Database commands that offer
improved calculation of subtotals bring major benefits to querying, reporting, and analytical
operations.

SELECT channels.channel_desc, countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc='2020-09'
 AND customers.country_id=countries.country_id
 AND countries.country_iso_code IN ('US','FR')
GROUP BY CUBE(channels.channel_desc, countries.country_iso_code);

Chapter 21
Overview of SQL for Aggregation in Data Warehouses

21-3

CHANNEL_DESC COUNTRY_ISO_CODE SALES$
_______________ ___________________ _________________
 884,171
 FR 64,961
 US 819,210
Internet 222,761
Internet FR 11,187
Internet US 211,574
Direct Sales 661,411
Direct Sales FR 53,774
Direct Sales US 607,636

Interpreting NULLs in Aggregation Examples

NULLs returned by the GROUP BY extensions are not always the traditional null meaning value
unknown. Instead, a NULL may indicate that its row is a subtotal. To avoid introducing another
non-value in the database system, these subtotal values are not given a special tag.

See Also:

GROUPING Functions for details on how the nulls representing subtotals are
distinguished from nulls stored in the data

21.2 ROLLUP Extension to GROUP BY
ROLLUP enables a SELECT statement to calculate multiple levels of subtotals across a specified
group of dimensions. It also calculates a grand total. ROLLUP is a simple extension to the GROUP
BY clause, so its syntax is extremely easy to use. The ROLLUP extension is highly efficient,
adding minimal overhead to a query.

The action of ROLLUP is straightforward: it creates subtotals that roll up from the most detailed
level to a grand total, following a grouping list specified in the ROLLUP clause. ROLLUP takes as
its argument an ordered list of grouping columns. First, it calculates the standard aggregate
values specified in the GROUP BY clause. Then, it creates progressively higher-level subtotals,
moving from right to left through the list of grouping columns. Finally, it creates a grand total.

ROLLUP creates subtotals at n+1 levels, where n is the number of grouping columns. For
instance, if a query specifies ROLLUP on grouping columns of time, region, and
department(n=3), the result set will include rows at four aggregation levels.

You might want to compress your data when using ROLLUP. This is particularly useful when
there are few updates to older partitions.

This section contains the following topics:

• When to Use ROLLUP

• ROLLUP Syntax

• Partial Rollup

21.2.1 When to Use ROLLUP
Use the ROLLUP extension in tasks involving subtotals.

Chapter 21
ROLLUP Extension to GROUP BY

21-4

• It is very helpful for subtotaling along a hierarchical dimension such as time or geography.
For instance, a query could specify a ROLLUP(y, m, day) or ROLLUP(country, state,
city).

• For data warehouse administrators using summary tables, ROLLUP can simplify and speed
up the maintenance of summary tables.

21.2.2 ROLLUP Syntax
ROLLUP appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY ROLLUP(grouping_column_reference_list)

Example 21-1 ROLLUP

This example uses the data in the sh sample schema data, the same data as was used in
Figure 21-1. The ROLLUP is across three dimensions.

SELECT channels.channel_desc, calendar_month_desc,
 countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels, countries
WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id = channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2019-09', '2019-10')
 AND countries.country_iso_code IN ('GB', 'US')
GROUP BY
 ROLLUP(channels.channel_desc, calendar_month_desc, countries.country_iso_code);

CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$
_______________ ______________________ ___________________ _________________
Direct Sales 2019-09 GB 99,275
Direct Sales 2019-10 GB 93,965
Internet 2019-09 GB 18,213
Direct Sales 2019-10 US 656,981
Direct Sales 2019-09 US 683,977
Internet 2019-10 US 191,265
Internet 2019-09 US 144,514
Internet 2019-10 GB 11,719
Direct Sales 2019-09 783,253
Direct Sales 2019-10 750,946
Internet 2019-09 162,727
Internet 2019-10 202,984
Direct Sales 1,534,199
Internet 365,711
 1,899,909

Note that results do not always add up due to rounding.

This query returns the following sets of rows:

• Regular aggregation rows that would be produced by GROUP BY without using ROLLUP.

• First-level subtotals aggregating across country_id for each combination of channel_desc
and calendar_month.

• Second-level subtotals aggregating across calendar_month_desc and country_id for each
channel_desc value.

Chapter 21
ROLLUP Extension to GROUP BY

21-5

• A grand total row.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle LiveSQL: ROLLUP
with GROUP BY

21.2.3 Partial Rollup
You can also roll up so that only some of the sub-totals will be included. This partial rollup uses
the following syntax:

GROUP BY expr1, ROLLUP(expr2, expr3);

In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels. That is, at
level (expr1, expr2, expr3), (expr1, expr2), and (expr1).

Example 21-2 Partial ROLLUP

SELECT channel_desc, calendar_month_desc, countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id= channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2020-10', '2021-10')
 AND countries.country_iso_code IN ('GB', 'US')
GROUP BY channel_desc, ROLLUP(calendar_month_desc, countries.country_iso_code);
CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$
_______________ ______________________ ___________________ _________________
Direct Sales 2020-10 GB 83,685
Direct Sales 2021-10 GB 91,925
Direct Sales 2021-10 US 682,297
Direct Sales 2020-10 US 596,924
Internet 2020-10 US 32,480
Internet 2021-10 US 137,054
Internet 2020-10 GB 2,743
Internet 2021-10 GB 14,539
Direct Sales 2020-10 680,609
Direct Sales 2021-10 774,222
Internet 2020-10 35,223
Internet 2021-10 151,593
Direct Sales 1,454,831
Internet 186,816

• Regular aggregation rows that would be produced by GROUP BY without using ROLLUP.

• First-level subtotals aggregating across country_id for each combination of channel_desc
and calendar_month_desc.

• Second-level subtotals aggregating across calendar_month_desc and country_id for each
channel_desc value.

• It does not produce a grand total row.

Chapter 21
ROLLUP Extension to GROUP BY

21-6

https://livesql.oracle.com/apex/livesql/docs/dwhsg/sql-analytics/rollup.html
https://livesql.oracle.com/apex/livesql/docs/dwhsg/sql-analytics/rollup.html

21.3 CUBE Extension to GROUP BY
CUBE takes a specified set of grouping columns and creates subtotals for all of their possible
combinations. In terms of multidimensional analysis, CUBE generates all the subtotals that could
be calculated for a data cube with the specified dimensions. If you have specified CUBE(time,
region, department), the result set will include all the values that would be included in an
equivalent ROLLUP statement plus additional combinations.

For instance, the departmental totals across regions (279,000 and 319,000) would not be
calculated by a ROLLUP(time, region, department) clause, but they would be calculated by a
CUBE(time, region, department) clause. If n columns are specified for a CUBE, there will be 2 to
the n combinations of subtotals returned.

CUBE Syntax gives an example of a three-dimension cube.

See Also:

Oracle Database SQL Language Reference for syntax and restrictions

This section contains the following topics:

• When to Use CUBE

• CUBE Syntax

• Partial CUBE

• Calculating Subtotals Without CUBE

21.3.1 When to Use CUBE
Consider Using CUBE in any situation requiring cross-tabular reports. The data needed for
cross-tabular reports can be generated with a single SELECT using CUBE. Like ROLLUP, CUBE can
be helpful in generating summary tables. Note that population of summary tables is even faster
if the CUBE query executes in parallel.

CUBE is typically most suitable in queries that use columns from multiple dimensions rather than
columns representing different levels of a single dimension. For instance, a commonly
requested cross-tabulation might need subtotals for all the combinations of month, state, and
product. These are three independent dimensions, and analysis of all possible subtotal
combinations is commonplace. In contrast, a cross-tabulation showing all possible
combinations of year, month, and day would have several values of limited interest, because
there is a natural hierarchy in the time dimension. Subtotals such as profit by day of month
summed across year would be unnecessary in most analyses. Relatively few users need to
ask "What were the total sales for the 16th of each month across the year?" See "Hierarchy
Handling in ROLLUP and CUBE" for an example of handling rollup calculations efficiently.

21.3.2 CUBE Syntax
CUBE appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY CUBE (grouping_column_reference_list)

Chapter 21
CUBE Extension to GROUP BY

21-7

Example 21-3 CUBE Keyword in a Query

SELECT channel_desc, calendar_month_desc, countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels, countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id
 AND customers.country_id = countries.country_id
 AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND countries.country_iso_code IN ('GB', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, countries.country_iso_code);
CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$
_______________ ______________________ ___________________ _________________
 1,990,931
 GB 218,674
 US 1,772,256
 2020-09 923,577
 2020-09 GB 104,367
 2020-09 US 819,210
 2022-10 1,067,354
 2022-10 GB 114,307
 2022-10 US 953,046
Internet 650,303
Internet GB 52,403
Internet US 597,900
Internet 2020-09 224,965
Internet 2020-09 GB 13,392
Internet 2020-09 US 211,574
Internet 2022-10 425,337
Internet 2022-10 GB 39,011
Internet 2022-10 US 386,327
Direct Sales 1,340,628
Direct Sales GB 166,272
Direct Sales US 1,174,356
Direct Sales 2020-09 698,612
Direct Sales 2020-09 GB 90,975
Direct Sales 2020-09 US 607,636
Direct Sales 2022-10 642,016
Direct Sales 2022-10 GB 75,296
Direct Sales 2022-10 US 566,720

This query illustrates CUBE aggregation across three dimensions.

21.3.3 Partial CUBE
Partial CUBE resembles partial ROLLUP in that you can limit it to certain dimensions and precede
it with columns outside the CUBE operator. In this case, subtotals of all possible combinations
are limited to the dimensions within the cube list (in parentheses), and they are combined with
the preceding items in the GROUP BY list.

The syntax for partial CUBE is as follows:

GROUP BY expr1, CUBE(expr2, expr3)

This syntax example calculates 2*2, or 4, subtotals. That is:

• (expr1, expr2, expr3)

• (expr1, expr2)

• (expr1, expr3)

Chapter 21
CUBE Extension to GROUP BY

21-8

• (expr1)

Example 21-4 Partial CUBE in a Query

Using the sales database, you can issue the following statement:

SELECT channel_desc, calendar_month_desc, countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id = times.time_id
 AND sales.cust_id = customers.cust_id
 AND customers.country_id=countries.country_id
 AND sales.channel_id = channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2020-09', '2021-10')
 AND countries.country_iso_code IN ('GB', 'US')
GROUP BY channel_desc, CUBE(calendar_month_desc, countries.country_iso_code);

CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$
_______________ ______________________ ___________________ _________________
Internet 376,559
Internet GB 27,931
Internet US 348,628
Internet 2020-09 224,965
Internet 2020-09 GB 13,392
Internet 2020-09 US 211,574
Internet 2021-10 151,593
Internet 2021-10 GB 14,539
Internet 2021-10 US 137,054
Direct Sales 1,472,834
Direct Sales GB 182,901
Direct Sales US 1,289,933
Direct Sales 2020-09 698,612
Direct Sales 2020-09 GB 90,975
Direct Sales 2020-09 US 607,636
Direct Sales 2021-10 774,222
Direct Sales 2021-10 GB 91,925
Direct Sales 2021-10 US 682,297

21.3.4 Calculating Subtotals Without CUBE
Just as for ROLLUP, multiple SELECT statements combined with UNION ALL statements could
provide the same information gathered through CUBE. However, this might require many SELECT
statements. For an n-dimensional cube, 2 to the n SELECT statements are needed. In the three-
dimension example, this would mean issuing SELECT statements linked with UNION ALL. So
many SELECT statements yield inefficient processing and very lengthy SQL.

Consider the impact of adding just one more dimension when calculating all possible
combinations: the number of SELECT statements would double to 16. The more columns used
in a CUBE clause, the greater the savings compared to the UNION ALL approach.

21.4 GROUPING Functions
Two challenges arise with the use of ROLLUP and CUBE. First, how can you programmatically
determine which result set rows are subtotals, and how do you find the exact level of
aggregation for a given subtotal? You often need to use subtotals in calculations such as
percent-of-totals, so you need an easy way to determine which rows are the subtotals. Second,
what happens if query results contain both stored NULL values and "NULL" values created by a

Chapter 21
GROUPING Functions

21-9

ROLLUP or CUBE? How can you differentiate between the two? This section discusses some of
these situations.

See Also:

Oracle Database SQL Language Reference for syntax and restrictions

This section contains the following topics:

• GROUPING Function

• When to Use GROUPING

• GROUPING_ID Function

• GROUP_ID Function

21.4.1 GROUPING Function
GROUPING handles these problems. Using a single column as its argument, GROUPING returns 1
when it encounters a NULL value created by a ROLLUP or CUBE operation. That is, if the NULL
indicates the row is a subtotal, GROUPING returns a 1. Any other type of value, including a stored
NULL, returns a 0.

GROUPING appears in the selection list portion of a SELECT statement. Its form is:

SELECT … [GROUPING(dimension_column)…] …
 GROUP BY … {CUBE | ROLLUP| GROUPING SETS} (dimension_column)

Example 21-5 GROUPING to Mask Columns

This example uses GROUPING to create a set of mask columns for the result set shown in
Example 21-2. The mask columns are easy to analyze programmatically.

SELECT channel_desc, calendar_month_desc, country_iso_code,
TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$, GROUPING(channel_desc) AS Ch,
 GROUPING(calendar_month_desc) AS Mo, GROUPING(country_iso_code) AS Co
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id= channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2019-09', '2022-10')
 AND countries.country_iso_code IN ('GB', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, countries.country_iso_code);

CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$ CH
MO CO
_______________ ______________________ ___________________ _________________ _____ _____

Direct Sales 2019-09 GB 99,275 0
0 0
Direct Sales 2022-10 GB 75,296 0
0 0
Internet 2019-09 GB 18,213 0
0 0
Internet 2022-10 GB 39,011 0

Chapter 21
GROUPING Functions

21-10

0 0
Internet 2022-10 US 386,327 0
0 0
Direct Sales 2022-10 US 566,720 0
0 0
Direct Sales 2019-09 US 683,977 0
0 0
Internet 2019-09 US 144,514 0
0 0
Direct Sales 2019-09 783,253 0
0 1
Direct Sales 2022-10 642,016 0
0 1
Internet 2019-09 162,727 0
0 1
Internet 2022-10 425,337 0
0 1
Direct Sales 1,425,269 0
1 1
Internet 588,064 0
1 1
 2,013,333 1
1 1

A program can easily identify the detail rows by a mask of "0 0 0" on the T, R, and D columns.
The first level subtotal rows have a mask of "0 0 1", the second level subtotal rows have a
mask of "0 1 1", and the overall total row has a mask of "1 1 1".

You can improve the readability of result sets by using the GROUPING and DECODE functions as
shown in Example 21-6.

Example 21-6 GROUPING For Readability

SELECT DECODE(GROUPING(channel_desc), 1, 'Multi-channel sum', channel_desc) AS
 Channel, DECODE (GROUPING (country_iso_code), 1, 'Multi-country sum',
 country_iso_code) AS Country, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id= channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc= '2022-09'
 AND country_iso_code IN ('GB', 'US')
GROUP BY CUBE(channel_desc, country_iso_code);

CHANNEL COUNTRY SALES$
____________________ ____________________ _________________
Multi-channel sum Multi-country sum 1,050,492
Multi-channel sum GB 129,672
Multi-channel sum US 920,820
Internet Multi-country sum 336,429
Internet GB 36,807
Internet US 299,622
Direct Sales Multi-country sum 714,063
Direct Sales GB 92,865
Direct Sales US 621,198

To understand the previous statement, note its first column specification, which handles the
channel_desc column. Consider the first line of the previous statement:

SELECT DECODE(GROUPING(channel_desc), 1, 'Multi-Channel sum', channel_desc)AS Channel

Chapter 21
GROUPING Functions

21-11

In this, the channel_desc value is determined with a DECODE function that contains a GROUPING
function. The GROUPING function returns a 1 if a row value is an aggregate created by ROLLUP or
CUBE, otherwise it returns a 0. The DECODE function then operates on the GROUPING function's
results. It returns the text "All Channels" if it receives a 1 and the channel_desc value from the
database if it receives a 0. Values from the database will be either a real value such as
"Internet" or a stored NULL. The second column specification, displaying country_id, works the
same way.

21.4.2 When to Use GROUPING
The GROUPING function is not only useful for identifying NULLs, it also enables sorting subtotal
rows and filtering results. In Example 21-7, you retrieve a subset of the subtotals created by a
CUBE and none of the base-level aggregations. The HAVING clause constrains columns that use
GROUPING functions.

Example 21-7 GROUPING Combined with HAVING

SELECT channel_desc, calendar_month_desc, country_iso_code, TO_CHAR(
SUM(amount_sold), '9,999,999,999') SALES$, GROUPING(channel_desc) CH, GROUPING
 (calendar_month_desc) MO, GROUPING(country_iso_code) CO
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id= channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2020-09', '2022-10')
 AND country_iso_code IN ('GB', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_iso_code)
HAVING (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1
 AND GROUPING(country_iso_code)=1) OR (GROUPING(channel_desc)=1
 AND GROUPING (calendar_month_desc)= 1) OR (GROUPING(country_iso_code)=1
 AND GROUPING(calendar_month_desc)= 1);

CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$ CH
MO CO
_______________ ______________________ ___________________ _________________ _____ _____

Direct Sales 1,340,628 0
1 1
Internet 650,303 0
1 1
 1,990,931 1
1 1
 US 1,772,256 1
1 0
 GB 218,674 1
1 0

Compare the result set of Example 21-7 with that in Example 21-2 to see how Example 21-7 is
a precisely specified group: it contains only the yearly totals, regional totals aggregated over
time and department, and the grand total.

21.4.3 GROUPING_ID Function
To find the GROUP BY level of a particular row, a query must return GROUPING function information
for each of the GROUP BY columns. If you do this using the GROUPING function, every GROUP BY
column requires another column using the GROUPING function. For instance, a four-column
GROUP BY clause must be analyzed with four GROUPING functions. This is inconvenient to write in

Chapter 21
GROUPING Functions

21-12

SQL and increases the number of columns required in the query. When you want to store the
query result sets in tables, as with materialized views, the extra columns waste storage space.

To address these problems, you can use the GROUPING_ID function. GROUPING_ID returns a
single number that enables you to determine the exact GROUP BY level. For each row,
GROUPING_ID takes the set of 1's and 0's that would be generated if you used the appropriate
GROUPING functions and concatenates them, forming a bit vector. The bit vector is treated as a
binary number, and the number's base-10 value is returned by the GROUPING_ID function. For
instance, if you group with the expression CUBE(a, b) the possible values are as shown in
Table 21-1.

Table 21-1 GROUPING_ID Example for CUBE(a, b)

Aggregation Level Bit Vector GROUPING_ID

a, b 0 0 0

a 0 1 1

b 1 0 2

Grand Total 1 1 3

GROUPING_ID clearly distinguishes groupings created by grouping set specification, and it is
very useful during refresh and rewrite of materialized views.

21.4.4 GROUP_ID Function
While the extensions to GROUP BY offer power and flexibility, they also allow complex result sets
that can include duplicate groupings. The GROUP_ID function lets you distinguish among
duplicate groupings. If there are multiple sets of rows calculated for a given level, GROUP_ID
assigns the value of 0 to all the rows in the first set. All other sets of duplicate rows for a
particular grouping are assigned higher values, starting with 1. For example, consider the
following query, which generates a duplicate grouping:

Example 21-8 GROUP_ID in a Query

SELECT country_iso_code, SUBSTR(cust_state_province,1,12), SUM(amount_sold),
 GROUPING_ID(country_iso_code, cust_state_province) GROUPING_ID, GROUP_ID()
FROM sh.sales, sh.customers, sh.times, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id
 AND customers.country_id=countries.country_id AND times.time_id= '30-OCT-22'
 AND country_iso_code IN ('FR')
GROUP BY GROUPING SETS (country_iso_code,
ROLLUP(country_iso_code, cust_state_province));
COUNTRY_ISO_CODE SUBSTR(CUST_STATE_PROVINCE,1,12) SUM(AMOUNT_SOLD)
GROUPING_ID GROUP_ID()
___________________ ___________________________________ ___________________
______________ _____________
FR Languedoc-Ro 722.16
0 0
FR Rhtne-Alpes 1527.04
0 0
 2249.2
3 0
FR 2249.2
1 0
FR 2249.2
1 1

Chapter 21
GROUPING Functions

21-13

This query generates the following groupings: (country_id, cust_state_province),
(country_id), (country_id), and (). Note that the grouping (country_id) is repeated twice. The
syntax for GROUPING SETS is explained in "GROUPING SETS Expression".

This function helps you filter out duplicate groupings from the result. For example, you can filter
out duplicate (region) groupings from the previous example by adding a HAVING clause
condition GROUP_ID()=0 to the query.

21.5 GROUPING SETS Expression
You can selectively specify the set of groups that you want to create using a GROUPING SETS
expression within a GROUP BY clause. This allows precise specification across multiple
dimensions without computing the whole CUBE. "GROUPING SETS Syntax" contains the
GROUPING SETS syntax.

For example, you can say:

SELECT channel_desc, calendar_month_desc, country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND country_iso_code IN ('GB', 'US')
GROUP BY GROUPING SETS((channel_desc, calendar_month_desc, country_iso_code),
 (channel_desc, country_iso_code), (calendar_month_desc, country_iso_code));

Note that this statement uses composite columns, described in "About Composite Columns
and Grouping". This statement calculates aggregates over three groupings:

• (channel_desc, calendar_month_desc, country_iso_code)
• (channel_desc, country_iso_code)
• (calendar_month_desc, country_iso_code)
Compare the previous statement with the following alternative, which uses the CUBE operation
and the GROUPING_ID function to return the desired rows:

SELECT channel_desc, calendar_month_desc, country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,
 GROUPING_ID(channel_desc, calendar_month_desc, country_iso_code) gid
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND country_iso_code IN ('GB', 'US')
GROUP BY CUBE(channel_desc, calendar_month_desc, country_iso_code)
HAVING GROUPING_ID(channel_desc, calendar_month_desc, country_iso_code)=0
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_iso_code)=2
 OR GROUPING_ID(channel_desc, calendar_month_desc, country_iso_code)=4;

This statement computes all the 8 (2 *2 *2) groupings, though only the previous 3 groups are of
interest to you.

Another alternative is the following statement, which is lengthy due to several unions. This
statement requires three scans of the base table, making it inefficient. CUBE and ROLLUP can be
thought of as grouping sets with very specific semantics. For example, consider the following
statement:

CUBE(a, b, c)

Chapter 21
GROUPING SETS Expression

21-14

This statement is equivalent to:

GROUPING SETS ((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ())
ROLLUP(a, b, c)

And this statement is equivalent to:

GROUPING SETS ((a, b, c), (a, b), ())

21.5.1 GROUPING SETS Syntax
GROUPING SETS syntax lets you define multiple groupings in the same query. GROUP BY computes
all the groupings specified and combines them with UNION ALL. For example, consider the
following statement:

GROUP BY GROUPING sets (channel_desc, calendar_month_desc, country_id)

This statement is equivalent to:

GROUP BY channel_desc UNION ALL
GROUP BY calendar_month_desc UNION ALL GROUP BY country_id

Table 21-2 shows grouping sets specification and equivalent GROUP BY specification. Note that
some examples use composite columns.

Table 21-2 GROUPING SETS Statements and Equivalent GROUP BY

GROUPING SETS Statement Equivalent GROUP BY Statement

GROUP BY GROUPING SETS(a, b, c) GROUP BY a UNION ALL GROUP BY b UNION ALL
GROUP BY c

GROUP BY GROUPING SETS(a, b, (b,
c))

GROUP BY a UNION ALL GROUP BY b UNION ALL
GROUP BY b, c

GROUP BY GROUPING SETS((a, b, c)) GROUP BY a, b, c
GROUP BY GROUPING SETS(a, (b), ()) GROUP BY a UNION ALL GROUP BY b UNION ALL

GROUP BY ()
GROUP BY GROUPING SETS(a,
ROLLUP(b, c))

GROUP BY a UNION ALL GROUP BY ROLLUP(b, c)

In the absence of an optimizer that looks across query blocks to generate the execution plan, a
query based on UNION would need multiple scans of the base table, sales. This could be very
inefficient as fact tables will normally be huge. Using GROUPING SETS statements, all the
groupings of interest are available in the same query block.

21.6 About Composite Columns and Grouping
A composite column is a collection of columns that are treated as a unit during the computation
of groupings. You specify the columns in parentheses as in the following statement:

ROLLUP (year, (quarter, month), day)

In this statement, the data is not rolled up across year and quarter, but is instead equivalent to
the following groupings of a UNION ALL:

• (year, quarter, month, day),

Chapter 21
About Composite Columns and Grouping

21-15

• (year, quarter, month),

• (year)

• ()

Here, (quarter, month) form a composite column and are treated as a unit. In general,
composite columns are useful in ROLLUP, CUBE, GROUPING SETS, and concatenated groupings.
For example, in CUBE or ROLLUP, composite columns would mean skipping aggregation across
certain levels. That is, the following statement:

GROUP BY ROLLUP(a, (b, c))

This is equivalent to:

GROUP BY a, b, c UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b, c) are treated as a unit and rollup will not be applied across (b, c). It is as if you
have an alias, for example z, for (b, c) and the GROUP BY expression reduces to GROUP BY
ROLLUP(a, z). Compare this with the normal rollup as in the following:

GROUP BY ROLLUP(a, b, c)

This would be the following:

GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ().

Similarly, the following statement is equivalent to the four GROUP BYs:

GROUP BY CUBE((a, b), c)

GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

In GROUPING SETS, a composite column is used to denote a particular level of GROUP BY. See
#unique_745/unique_745_Connect_42_G1014117 for more examples of composite columns.

Example 21-9 Composite Columns

You do not have full control over what aggregation levels you want with CUBE and ROLLUP. For
example, consider the following statement:

SELECT channel_desc, calendar_month_desc, country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id= channels.channel_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2020-09', '2022-10')
 AND country_iso_code IN ('GB', 'US')
GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_iso_code);

This statement results in Oracle computing the following groupings:

• (channel_desc, calendar_month_desc, country_iso_code)

Chapter 21
About Composite Columns and Grouping

21-16

• (channel_desc, calendar_month_desc)
• (channel_desc)
• ()
If you are just interested in the first, third, and fourth of these groupings, you cannot limit the
calculation to those groupings without using composite columns. With composite columns, this
is possible by treating month and country as a single unit while rolling up. Columns enclosed in
parentheses are treated as a unit while computing CUBE and ROLLUP. Thus, you would say:

SELECT channel_desc, calendar_month_desc, country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND country_iso_code IN ('GB', 'US')
GROUP BY ROLLUP(channel_desc, (calendar_month_desc, country_iso_code));

CHANNEL_DESC CALENDAR_MONTH_DESC COUNTRY_ISO_CODE SALES$
_______________ ______________________ ___________________ _________________
Direct Sales 2020-09 US 1,189,377
Direct Sales 2022-10 US 1,088,611
Internet 2020-09 US 389,343
Internet 2022-10 US 711,634
Direct Sales 2020-09 GB 1,189,377
Direct Sales 2022-10 GB 1,088,611
Internet 2020-09 GB 389,343
Internet 2022-10 GB 711,634
Direct Sales 4,555,976
Internet 2,201,954
 6,757,929

21.7 Concatenated Groupings and Data Aggregation
Concatenated groupings offer a concise way to generate useful combinations of groupings.
Groupings specified with concatenated groupings yield the cross-product of groupings from
each grouping set. The cross-product operation enables even a small number of concatenated
groupings to generate a large number of final groups. The concatenated groupings are
specified simply by listing multiple grouping sets, cubes, and rollups, and separating them with
commas. Here is an example of concatenated grouping sets:

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

This SQL defines the following groupings:

(a, c), (a, d), (b, c), (b, d)

Concatenation of grouping sets is very helpful for these reasons:

• Ease of query development

You need not enumerate all groupings manually.

• Use by applications

SQL generated by analytical applications often involves concatenation of grouping sets,
with each grouping set defining groupings needed for a dimension.

Chapter 21
Concatenated Groupings and Data Aggregation

21-17

Example 21-10 Concatenated Groupings

You can also specify more than one grouping in the GROUP BY clause. For example, if you want
aggregated sales values for each product rolled up across all levels in the time dimension
(year, month and day), and across all levels in the geography dimension (region), you can
issue the following statement:

SELECT channel_desc, calendar_year, calendar_quarter_desc, country_iso_code,
 cust_state_province, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id = times.time_id AND sales.cust_id = customers.cust_id
 AND sales.channel_id = channels.channel_id AND countries.country_id =
 customers.country_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2020-09',
 '2022-10') AND countries.country_iso_code IN ('GB', 'FR')
GROUP BY channel_desc, GROUPING SETS (ROLLUP(calendar_year,
 calendar_quarter_desc),
ROLLUP(country_iso_code, cust_state_province));

This results in the following groupings:

• (channel_desc, calendar_year, calendar_quarter_desc)

• (channel_desc, calendar_year)

• (channel_desc)

• (channel_desc, country_iso_code, cust_state_province)

• (channel_desc, country_iso_code)

• (channel_desc)

This is the cross-product of the following:

• The expression, channel_desc
• ROLLUP(calendar_year, calendar_quarter_desc), which is equivalent to ((calendar_year,

calendar_quarter_desc), (calendar_year), ())

• ROLLUP(country_iso_code, cust_state_province), which is equivalent to
((country_iso_code, cust_state_province), (country_iso_code), ())

Note that the output contains two occurrences of (channel_desc) group. To filter out the extra
(channel_desc) group, the query could use a GROUP_ID function.

Another concatenated join example is Example 21-11, showing the cross product of two
grouping sets.

Example 21-11 Concatenated Groupings (Cross-Product of Two Grouping Sets)

SELECT country_iso_code, cust_state_province, calendar_year,
calendar_quarter_desc, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 countries.country_id=customers.country_id AND
 sales.channel_id= channels.channel_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND country_iso_code IN ('GB', 'FR')
GROUP BY GROUPING SETS (country_iso_code, cust_state_province),
 GROUPING SETS (calendar_year, calendar_quarter_desc);

This statement results in the computation of groupings:

Chapter 21
Concatenated Groupings and Data Aggregation

21-18

• (country_iso_code, year), (country_iso_code, calendar_quarter_desc),
(cust_state_province, year) and (cust_state_province, calendar_quarter_desc)

21.7.1 Concatenated Groupings and Hierarchical Data Cubes
One of the most important uses for concatenated groupings is to generate the aggregates
needed for a hierarchical cube of data. A hierarchical cube is a data set where the data is
aggregated along the rollup hierarchy of each of its dimensions and these aggregations are
combined across dimensions. It includes the typical set of aggregations needed for business
intelligence queries. By using concatenated groupings, you can generate all the aggregations
needed by a hierarchical cube with just n ROLLUPs (where n is the number of dimensions), and
avoid generating unwanted aggregations.

Consider just three of the dimensions in the sh sample schema data set, each of which has a
multilevel hierarchy:

• time: year, quarter, month, day (week is in a separate hierarchy)

• product: category, subcategory, prod_name
• geography: region, subregion, country, state, city
This data is represented using a column for each level of the hierarchies, creating a total of
twelve columns for dimensions, plus the columns holding sales figures.

For your business intelligence needs, you would like to calculate and store certain aggregates
of the various combinations of dimensions. In Example 21-12, you create the aggregates for all
levels, except for "day", which would create too many rows. In particular, you want to use
ROLLUP within each dimension to generate useful aggregates. Once you have the ROLLUP-
based aggregates within each dimension, you want to combine them with the other
dimensions. This will generate a hierarchical cube. Note that this is not at all the same as a
CUBE using all twelve of the dimension columns: that would create 2 to the 12th power (4,096)
aggregation groups, of which you need only a small fraction. Concatenated grouping sets
make it easy to generate exactly the aggregations you need. Example 21-12 shows where a
GROUP BY clause is needed.

Example 21-12 Concatenated Groupings and Hierarchical Cubes

SELECT calendar_year, calendar_quarter_desc, calendar_month_desc,
 country_region, country_subregion, countries.country_iso_code,
 cust_state_province, cust_city, prod_category_desc, prod_subcategory_desc,
 prod_name, TO_CHAR(SUM (amount_sold), '9,999,999,999') SALES$
FROM sh.sales, sh.customers, sh.times, sh.channels, sh.countries, sh.products
WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND
 sales.channel_id= channels.channel_id AND sales.prod_id=products.prod_id AND
 customers.country_id=countries.country_id AND channels.channel_desc IN
 ('Direct Sales', 'Internet') AND times.calendar_month_desc IN
 ('2020-09', '2022-10') AND prod_name LIKE ('Tennis%') AND countries.country_iso_code IN
('GB', 'US')
GROUP BY ROLLUP(calendar_year, calendar_quarter_desc, calendar_month_desc),
 ROLLUP(country_region, country_subregion, countries.country_iso_code,
 cust_state_province, cust_city),
 ROLLUP(prod_category_desc, prod_subcategory_desc, prod_name);

The rollups in the GROUP BY specification generate the following groups, four for each
dimension.

Chapter 21
Concatenated Groupings and Data Aggregation

21-19

Table 21-3 Hierarchical CUBE Example

ROLLUP By Time ROLLUP By Product ROLLUP By Geography

year, quarter, month category, subcategory, name region, subregion, country, state, city
region, subregion, country, state
region, subregion, country

year, quarter category, subcategory region, subregion
year category region
all times all products all geographies

The concatenated grouping sets specified in the previous SQL will take the ROLLUP
aggregations listed in the table and perform a cross-product on them. The cross-product will
create the 96 (4x4x6) aggregate groups needed for a hierarchical cube of the data. There are
major advantages in using three ROLLUP expressions to replace what would otherwise require
96 grouping set expressions: the concise SQL is far less error-prone to develop and far easier
to maintain, and it enables much better query optimization. You can picture how a cube with
more dimensions and more levels would make the use of concatenated groupings even more
advantageous.

See "Working with Hierarchical Cubes in SQL" for more information regarding hierarchical
cubes.

21.8 Considerations when Using Aggregation in Data
Warehouses

This section discusses the following topics.

• Hierarchy Handling in ROLLUP and CUBE

• Column Capacity in ROLLUP and CUBE

• HAVING Clause Used with GROUP BY Extensions

• ORDER BY Clause Used with GROUP BY Extensions

• Using Other Aggregate Functions with ROLLUP and CUBE

• Using In-Memory Aggregation

21.8.1 Hierarchy Handling in ROLLUP and CUBE
The ROLLUP and CUBE extensions work independently of any hierarchy metadata in your
system. Their calculations are based entirely on the columns specified in the SELECT statement
in which they appear. This approach enables CUBE and ROLLUP to be used whether or not
hierarchy metadata is available. The simplest way to handle levels in hierarchical dimensions
is by using the ROLLUP extension and indicating levels explicitly through separate columns. The
following code shows a simple example of this with months rolled up to quarters and quarters
rolled up to years.

Example 21-13 ROLLUP and CUBE Hierarchy Handling

SELECT calendar_year, calendar_quarter_number,
 calendar_month_number, SUM(amount_sold)
FROM sh.sales, sh.times, sh.products, sh.customers, sh.countries

Chapter 21
Considerations when Using Aggregation in Data Warehouses

21-20

WHERE sales.time_id=times.time_id
 AND sales.prod_id=products.prod_id
 AND customers.country_id = countries.country_id
 AND sales.cust_id=customers.cust_id
 AND prod_name LIKE ('%Bat')
 AND country_iso_code = 'GB' AND calendar_year=2020
GROUP BY ROLLUP(calendar_year, calendar_quarter_number, calendar_month_number);

 CALENDAR_YEAR CALENDAR_QUARTER_NUMBER CALENDAR_MONTH_NUMBER SUM(AMOUNT_SOLD)
________________ __________________________ ________________________ ___________________
 2020 2 6 13138.29
 2020 3 7 11411.52
 2020 3 8 11869.9
 2020 1 3 10333.08
 2020 4 10 11720.44
 2020 2 5 10056.33
 2020 3 9 12752.25
 2020 4 11 11231.48
 2020 1 1 10652.43
 2020 1 2 16004.55
 2020 2 4 12226.67
 2020 4 12 10500.77
 2020 2 35421.29
 2020 3 36033.67
 2020 1 36990.06
 2020 4 33452.69
 2020 141897.71
 141897.71

21.8.2 Column Capacity in ROLLUP and CUBE
CUBE, ROLLUP, and GROUPING SETS do not restrict the GROUP BY clause column capacity. The
GROUP BY clause, with or without the extensions, can work with up to 255 columns. However,
the combinatorial explosion of CUBE makes it unwise to specify a large number of columns with
the CUBE extension. Consider that a 20-column list for CUBE would create 2 to the 20
combinations in the result set. A very large CUBE list could strain system resources, so any
such query must be tested carefully for performance and the load it places on the system.

21.8.3 HAVING Clause Used with GROUP BY Extensions
The HAVING clause of SELECT statements is unaffected by the use of GROUP BY. Note that the
conditions specified in the HAVING clause apply to both the subtotal and non-subtotal rows of
the result set. In some cases a query may need to exclude the subtotal rows or the non-
subtotal rows from the HAVING clause. This can be achieved by using a GROUPING or
GROUPING_ID function together with the HAVING clause. See #unique_742/
unique_742_Connect_42_i1006706 and its associated SQL statement for an example.

21.8.4 ORDER BY Clause Used with GROUP BY Extensions
In many cases, a query must order the rows in a certain way, and this is done with the ORDER BY
clause. The ORDER BY clause of a SELECT statement is unaffected by the use of GROUP BY,
because the ORDER BY clause is applied after the GROUP BY calculations are complete.

Note that the ORDER BY specification makes no distinction between aggregate and non-
aggregate rows of the result set. For instance, you might wish to list sales figures in declining
order, but still have the subtotals at the end of each group. Simply ordering sales figures in
descending sequence will not be sufficient, because that will place the subtotals (the largest

Chapter 21
Considerations when Using Aggregation in Data Warehouses

21-21

values) at the start of each group. Therefore, it is essential that the columns in the ORDER BY
clause include columns that differentiate aggregate from non-aggregate columns. This
requirement means that queries using ORDER BY along with aggregation extensions to GROUP BY
will generally need to use one or more of the GROUPING functions.

21.8.5 Using Other Aggregate Functions with ROLLUP and CUBE
The examples in this chapter show ROLLUP and CUBE used with the SUM function. While this is
the most common type of aggregation, these extensions can also be used with all other
functions available to the GROUP BY clause, for example, AVG, BIT_AND_AGG, BIT_OR_AGG,
BIT_XOR_AGG, CHECKSUM, COUNT, KURTOSIS_POP, KURTOSIS_SAMP, MAX, MIN, SKEWNESS_POP,
SKEWNESS_SAMP, STDDEV, and VARIANCE. COUNT, which is often needed in cross-tabular analyses,
is likely to be the second most commonly used function.

21.8.6 Using In-Memory Aggregation
Analytic queries typically attempt to find patterns and trends by performing complex
aggregations on data. In-memory aggregation uses KEY VECTOR and VECTOR GROUP BY
operations to optimize query blocks involving aggregation and joins from a single large table to
multiple small tables, such as in a typical star query. These operations use efficient in-memory
arrays for joins and aggregation, and are especially effective when the underlying tables are
stored in the In-Memory Column Store (IM column store).

The VECTOR GROUP BY transformation is an optimization transformation that enables efficient in-
memory array-based aggregation. It accumulates aggregate values into in-memory arrays
during table scans. This results in enhanced performance for joins and joins and aggregates.

The VECTOR GROUP BY transformation is a two-part process, similar to that of star
transformation, that involves the following steps:

1. The dimension tables are scanned and any WHERE clause predicates are applied. A new
data structure called a key vector is created based on the results of these scans.

The key vector is similar to a bloom filter as it allows the join predicates to be applied as
additional filter predicates during the scan of the fact table, but it also enables Oracle
Database to conduct the GROUP BY or aggregation during the scan of the fact table instead
of having to do it afterwards.

2. The results of the fact table scan are joined back to the temporary tables created as part of
the key vector creation.

The combination of these two phases dramatically improves the efficiency of a multiple table
join with complex aggregations. Both phases are visible in the execution plan of your query.

Example 21-14 Example: Aggregation Using VECTOR GROUP BY Transformation

Consider the following query that joins the products, customers, and times dimensions with
the sales fact table:

SELECT p.department_name, c.customer_id, t.fiscal_year, SUM(sales)
FROM PRODUCTS p, CUSTOMERS c, TIMES t, SALES s
WHERE p.product_id = s.product_id AND c.customer_id = s.customer_id
 AND t.time_id = s.time_id
GROUP BY p.department_name, c.customer_id, t.fiscal_year;

When the IM column store is configured, the Optimizer rewrites this query to use vector joins
and VECTOR GROUP BY aggregation. Figure 21-2 describes how aggregation is performed using
VECTOR GROUP BY. The predicates on the dimension tables PRODUCTS, CUSTOMERS, and TIMES

Chapter 21
Considerations when Using Aggregation in Data Warehouses

21-22

are converted to filters on the fact table SALES. The GROUP BY is performed simultaneously with
the scan of the SALES table by using in-memory arrays.

Figure 21-2 VECTOR GROUP BY Using Oracle In-Memory Column Store

TIMES

CUSTOMERS

SALES

STORES

PRODUCTS

21.9 Computation Using the WITH Clause
The WITH clause (formally known as subquery_factoring_clause) enables you to reuse the
same query block in a SELECT statement when it occurs more than once within a complex
query. WITH is a part of the SQL-99 standard. This is particularly useful when a query has
multiple references to the same query block and there are joins and aggregations. Using the
WITH clause, Oracle retrieves the results of a query block and stores them in the user's
temporary tablespace. Depending on how your system is configured, the results may be stored
in the shared temporary tablespace or local temporary tablespace. Note that Oracle Database
does not support recursive use of the WITH clause. Note that Oracle Database supports
recursive use of the WITH clause that may be used for such queries as are used with a bill of
materials or expansion of parent-child hierarchies to parent-descendant hierarchies. See
Oracle Database SQL Language Reference for more information.

Note:

In previous releases, the term temporary tablespace referred to what is now called a
shared temporary tablespace.

Chapter 21
Computation Using the WITH Clause

21-23

The following query is an example of where you can improve performance and write SQL more
simply by using the WITH clause. The query calculates the sum of sales for each channel and
holds it under the name channel_summary. Then it checks each channel's sales total to see if
any channel's sales are greater than one third of the total sales. By using the WITH clause, the
channel_summary data is calculated just once, avoiding an extra scan through the large sales
table.

Example 21-15 WITH Clause

WITH channel_summary AS (SELECT channels.channel_desc, SUM(amount_sold)
AS channel_total FROM sh.sales, sh.channels
WHERE sales.channel_id = channels.channel_id GROUP BY channels.channel_desc)
SELECT channel_desc, channel_total
FROM channel_summary WHERE channel_total > (SELECT SUM(channel_total) * 1/3
FROM channel_summary);

CHANNEL_DESC CHANNEL_TOTAL
-------------------- -------------
Direct Sales 57875260.6

Note that this example could also be performed efficiently using the reporting aggregate
functions described in SQL for Analysis and Reporting.

21.10 Working with Hierarchical Cubes in SQL
This section illustrates examples of working with hierarchical cubes. It contains the following
topics:

• Specifying Hierarchical Cubes in SQL

• Querying Hierarchical Cubes in SQL

21.10.1 Specifying Hierarchical Cubes in SQL
Oracle Database can specify hierarchical cubes in a simple and efficient SQL query. These
hierarchical cubes represent the logical cubes referred to in many analytical SQL products. To
specify data in the form of hierarchical cubes, you can use one of the extensions to the GROUP
BY clause, concatenated grouping sets, to generate the aggregates needed for a hierarchical
cube of data. By using concatenated rollup (rolling up along the hierarchy of each dimension
and then concatenate them across multiple dimensions), you can generate all the aggregations
needed by a hierarchical cube.

Example 21-16 Concatenated ROLLUP

The following shows the GROUP BY clause needed to create a hierarchical cube for a 2-
dimensional example similar to #unique_746/unique_746_Connect_42_i1007098. The
following simple syntax performs a concatenated rollup:

GROUP BY ROLLUP(year, quarter, month), ROLLUP(Division, brand, item)

This concatenated rollup takes the ROLLUP aggregations similar to those listed in Table 21-3 in
the prior section and performs a cross-product on them. The cross-product will create the 16
(4x4) aggregate groups needed for a hierarchical cube of the data.

21.10.2 Querying Hierarchical Cubes in SQL
Analytic applications treat data as cubes, but they want only certain slices and regions of the
cube. Concatenated rollup (hierarchical cube) enables relational data to be treated as cubes.

Chapter 21
Working with Hierarchical Cubes in SQL

21-24

To handle complex analytic queries, the fundamental technique is to enclose a hierarchical
cube query in an outer query that specifies the exact slice needed from the cube. Oracle
Database optimizes the processing of hierarchical cubes nested inside slicing queries. By
applying many powerful algorithms, these queries can be processed at unprecedented speed
and scale. This enables SQL analytical tools and applications to use a consistent style of
queries to handle the most complex questions.

Example 21-17 Hierarchical Cube Query

Consider the following analytic query. It consists of a hierarchical cube query nested in a slicing
query.

SELECT month, division, sum_sales FROM
 (SELECT year, quarter, month, division, brand, item, SUM(sales) sum_sales,
 GROUPING_ID(grouping-columns) gid
 FROM sales, products, time
 WHERE join-condition
 GROUP BY ROLLUP(year, quarter, month),
 ROLLUP(division, brand, item))
WHERE division = 25 AND month = 200201 AND gid = gid-for-Division-Month;

The inner hierarchical cube specified defines a simple cube, with two dimensions and four
levels in each dimension. It would generate 16 groups (4 Time levels * 4 Product levels). The
GROUPING_ID function in the query identifies the specific group each row belongs to, based on
the aggregation level of the grouping-columns in its argument.

The outer query applies the constraints needed for our specific query, limiting Division to a
value of 25 and Month to a value of 200201 (representing January 2002 in this case). In
conceptual terms, it slices a small chunk of data from the cube. The outer query's constraint on
the GID column, indicated in the query by gid-for-division-month would be the value of a key
indicating that the data is grouped as a combination of division and month. The GID constraint
selects only those rows that are aggregated at the level of a GROUP BY month, division clause.

Oracle Database removes unneeded aggregation groups from query processing based on the
outer query conditions. The outer conditions of the previous query limit the result set to a single
group aggregating division and month. Any other groups involving year, month, brand, and
item are unnecessary here. The group pruning optimization recognizes this and transforms the
query into:

SELECT month, division, sum_sales
FROM (SELECT null, null, month, division, null, null, SUM(sales) sum_sales,
 GROUPING_ID(grouping-columns) gid
 FROM sales, products, time WHERE join-condition
 GROUP BY month, division)
WHERE division = 25 AND month = 200201 AND gid = gid-for-Division-Month;

The bold items highlight the changed SQL. The inner query now has a simple GROUP BY clause
of month, division. The columns year, quarter, brand, and item have been converted to null
to match the simplified GROUP BY clause. Because the query now requests just one group,
fifteen out of sixteen groups are removed from the processing, greatly reducing the work. For a
cube with more dimensions and more levels, the savings possible through group pruning can
be far greater. Note that the group pruning transformation works with all the GROUP BY
extensions: ROLLUP, CUBE, and GROUPING SETS.

While the optimizer has simplified the previous query to a simple GROUP BY, faster response
times can be achieved if the group is precomputed and stored in a materialized view. Because
online analytical queries can ask for any slice of the cube many groups may need to be
precomputed and stored in a materialized view. This is discussed in the next section.

This section contains the following topics:

Chapter 21
Working with Hierarchical Cubes in SQL

21-25

• SQL for Creating Materialized Views to Store Hierarchical Cubes

• Examples of Hierarchical Cube Materialized Views

21.10.2.1 SQL for Creating Materialized Views to Store Hierarchical Cubes
Analytical SQL requires fast response times for multiple users, and this in turn demands that
significant parts of a cube be precomputed and held in materialized views.

Data warehouse designers can choose exactly how much data to materialize. A data
warehouse can have the full hierarchical cube materialized. While this will take the most
storage space, it ensures quick response for any query within the cube. Alternatively, a data
warehouse could have just partial materialization, saving storage space, but allowing only a
subset of possible queries to be answered at highest speed. If the queries cover the full range
of aggregate groupings possible in its data set, it may be best to materialize the whole
hierarchical cube.

This means that each dimension's aggregation hierarchy is precomputed in combination with
each of the other dimensions. Naturally, precomputing a full hierarchical cube requires more
disk space and higher creation and refresh times than a small set of aggregate groups. The
trade-off in processing time and disk space versus query performance must be considered
before deciding to create it. An additional possibility you could consider is to use data
compression to lessen your disk space requirements.

See Also:

• Oracle Database SQL Language Reference for table compression syntax and
restrictions

• Oracle Database Administrator's Guide for further details about table
compression

• "About Storage And Table Compression for Materialized Views" for details
regarding table compression

21.10.2.2 Examples of Hierarchical Cube Materialized Views
This section shows complete and partial hierarchical cube materialized views. Many of the
examples are meant to illustrate capabilities, and do not actually run.

In a data warehouse where rolling window scenario is very common, it is recommended that
you store the hierarchical cube in multiple materialized views - one for each level of time you
are interested in. Hence, a complete hierarchical cube will be stored in four materialized views:
sales_hierarchical_mon_cube_mv, sales_hierarchical_qtr_cube_mv,
sales_hierarchical_yr_cube_mv, and sales_hierarchical_all_cube_mv.

The following statements create a complete hierarchical cube stored in a set of three
composite partitioned and one list partitioned materialized view.

Example 21-18 Complete Hierarchical Cube Materialized View

CREATE MATERIALIZED VIEW sales_hierarchical_mon_cube_mv
PARTITION BY RANGE (mon)
SUBPARTITION BY LIST (gid)
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT calendar_year yr, calendar_quarter_desc qtr, calendar_month_desc mon,

Chapter 21
Working with Hierarchical Cubes in SQL

21-26

 country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name,
 GROUPING_ID(calendar_year, calendar_quarter_desc, calendar_month_desc,
 country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name) gid,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales,
 COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id
GROUP BY calendar_year, calendar_quarter_desc, calendar_month_desc,
 ROLLUP(country_id, cust_state_province, cust_city),
 ROLLUP(prod_category, prod_subcategory, prod_name),
...;

CREATE MATERIALIZED VIEW sales_hierarchical_qtr_cube_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT calendar_year yr, calendar_quarter_desc qtr,
 country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name,
 GROUPING_ID(calendar_year, calendar_quarter_desc,
 country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name) gid,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales,
 COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
 AND s.time_id = t.time_id
GROUP BY calendar_year, calendar_quarter_desc,
 ROLLUP(country_id, cust_state_province, cust_city),
 ROLLUP(prod_category, prod_subcategory, prod_name),
PARTITION BY RANGE (qtr)
 SUBPARTITION BY LIST (gid)
...;

CREATE MATERIALIZED VIEW sales_hierarchical_yr_cube_mv
PARTITION BY RANGE (year)
SUBPARTITION BY LIST (gid)
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT calendar_year yr, country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name,
 GROUPING_ID(calendar_year, country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name) gid,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id
GROUP BY calendar_year,
 ROLLUP(country_id, cust_state_province, cust_city),
 ROLLUP(prod_category, prod_subcategory, prod_name),
...;

CREATE MATERIALIZED VIEW sales_hierarchical_all_cube_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name,
 GROUPING_ID(country_id, cust_state_province, cust_city,
 prod_category, prod_subcategory, prod_name) gid,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id

Chapter 21
Working with Hierarchical Cubes in SQL

21-27

GROUP BY ROLLUP(country_id, cust_state_province, cust_city),
 ROLLUP(prod_category, prod_subcategory, prod_name),
PARTITION BY LIST (gid)
...;

This allows use of PCT refresh on the materialized views sales_hierarchical_mon_cube_mv,
sales_hierarchical_qtr_cube_mv, and sales_hierarchical_yr_cube_mv on partition
maintenance operations to sales table. PCT refresh can also be used when there have been
significant changes to the base table and log based fast refresh is estimated to be slower than
PCT refresh. You can just specify the method as force (method => '?') in to refresh sub-
programs in the DBMS_MVIEW package and Oracle Database will pick the best method of
refresh. See "About Partition Change Tracking (PCT) Refresh for Materialized Views" for more
information regarding PCT refresh.

Because sales_hierarchical_qtr_cube_mv does not contain any column from times table,
PCT refresh is not enabled on it. But, you can still call refresh sub-programs in the DBMS_MVIEW
package with method as force (method => '?') and Oracle Database will pick the best method of
refresh.

If you are interested in a partial cube (that is, a subset of groupings from the complete cube),
then Oracle recommends storing the cube as a "federated cube". A federated cube stores
each grouping of interest in a separate materialized view.

CREATE MATERIALIZED VIEW sales_mon_city_prod_mv
PARTITION BY RANGE (mon)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
 USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_month_desc mon, cust_city, prod_name, SUM(amount_sold) s_sales,
 COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id = t.time_id
GROUP BY calendar_month_desc, cust_city, prod_name;

CREATE MATERIALIZED VIEW sales_qtr_city_prod_mv
PARTITION BY RANGE (qtr)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
 USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_quarter_desc qtr, cust_city, prod_name,SUM(amount_sold) s_sales,
COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id =p.prod_id AND s.time_id = t.time_id
GROUP BY calendar_quarter_desc, cust_city, prod_name;

CREATE MATERIALIZED VIEW sales_yr_city_prod_mv
PARTITION BY RANGE (yr)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_year yr, cust_city, prod_name, SUM(amount_sold) s_sales,
 COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id =p.prod_id AND s.time_id = t.time_id

Chapter 21
Working with Hierarchical Cubes in SQL

21-28

GROUP BY calendar_year, cust_city, prod_name;

CREATE MATERIALIZED VIEW sales_mon_city_scat_mv
PARTITION BY RANGE (mon)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
 USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_month_desc mon, cust_city, prod_subcategory,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id =p.prod_id AND s.time_id =t.time_id
GROUP BY calendar_month_desc, cust_city, prod_subcategory;

CREATE MATERIALIZED VIEW sales_qtr_city_cat_mv
PARTITION BY RANGE (qtr)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
 USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_quarter_desc qtr, cust_city, prod_category cat,
 SUM(amount_sold) s_sales, COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id =p.prod_id AND s.time_id =t.time_id
GROUP BY calendar_quarter_desc, cust_city, prod_category;

CREATE MATERIALIZED VIEW sales_yr_city_all_mv
PARTITION BY RANGE (yr)
...
BUILD DEFERRED
REFRESH FAST ON DEMAND
 USING TRUSTED CONSTRAINTS
ENABLE QUERY REWRITE AS
SELECT calendar_year yr, cust_city, SUM(amount_sold) s_sales,
 COUNT(amount_sold) c_sales, COUNT(*) c_star
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id
GROUP BY calendar_year, cust_city;

These materialized views can be created as BUILD DEFERRED and then, you can execute
DBMS_MVIEW.REFRESH_DEPENDENT(number_of_failures, 'SALES', 'C' ...) so that the
complete refresh of each of the materialized views defined on the detail table sales is
scheduled in the most efficient order. See "Scheduling Refresh of Materialized Views" for more
information.

Because each of these materialized views is partitioned on the time level (month, quarter, or
year) present in the SELECT list, PCT is enabled on sales table for each one of them, thus
providing an opportunity to apply PCT refresh method in addition to FAST and COMPLETE refresh
methods.

Chapter 21
Working with Hierarchical Cubes in SQL

21-29

22
SQL for Pattern Matching

Recognizing patterns in a sequence of rows has been a capability that was widely desired, but
not possible with SQL until now. There were many workarounds, but these were difficult to
write, hard to understand, and inefficient to execute. Beginning in Oracle Database 12c, you
can use the MATCH_RECOGNIZE clause to achieve this capability in native SQL that executes
efficiently. This chapter discusses how to do this, and includes the following sections:

• Overview of Pattern Matching in Data Warehouses

• Basic Topics in Pattern Matching

• Pattern Matching Details

• Advanced Topics in Pattern Matching

• Rules and Restrictions in Pattern Matching

• Examples of Pattern Matching

22.1 Overview of Pattern Matching in Data Warehouses
Pattern matching in SQL is performed using the MATCH_RECOGNIZE clause. MATCH_RECOGNIZE
enables you to do the following tasks:

• Logically partition and order the data that is used in the MATCH_RECOGNIZE clause with its
PARTITION BY and ORDER BY clauses.

• Define patterns of rows to seek using the PATTERN clause of the MATCH_RECOGNIZE clause.
These patterns use regular expression syntax, a powerful and expressive feature, applied
to the pattern variables you define.

• Specify the logical conditions required to map a row to a row pattern variable in the DEFINE
clause.

• Define measures, which are expressions usable in other parts of the SQL query, in the
MEASURES clause.

As a simple case of pattern matching, consider the stock price chart illustrated in Figure 22-1.

22-1

Figure 22-1 Stock Chart

30

25

20

15

10

5

0

0
1

-A
p

r-
1

1

0
2

-A
p

r-
1

1

0
3

-A
p

r-
1

1

0
4

-A
p

r-
1

1

0
5

-A
p

r-
1

1

0
6

-A
p

r-
1

1

0
7

-A
p

r-
1

1

0
8

-A
p

r-
1

1

0
9

-A
p

r-
1

1

1
0

-A
p

r-
1

1

1
1

-A
p

r-
1

1

1
2

-A
p

r-
1

1

1
3

-A
p

r-
1

1

1
4

-A
p

r-
1

1

1
5

-A
p

r-
1

1

1
6

-A
p

r-
1

1

1
7

-A
p

r-
1

1

1
8

-A
p

r-
1

1

1
9

-A
p

r-
1

1

2
0

-A
p

r-
1

1

Pattern matching can let you identify price patterns, such as V-shapes and W-shapes
illustrated in Figure 22-1, along with performing many types of calculations. For example, your
calculations might include the count of observations or the average value on a downward or
upward slope.

This section contains the following topics:

• Why Use Pattern Matching?

• How Data is Processed in Pattern Matching

• About Pattern Matching Special Capabilities

22.1.1 Why Use Pattern Matching?
The ability to recognize patterns found across multiple rows is important for many kinds of
work. Examples include all kinds of business processes driven by sequences of events, such
as security applications, where unusual behavior must be detected, and financial applications,
where you seek patterns of pricing, trading volume, and other behavior. Other common uses
are fraud detection applications and sensor data analysis. One term that describes this general
area is complex event processing, and pattern matching is a powerful aid to this activity.

Now consider the query in Example 22-1. It uses the stock price shown in Figure 22-1, which
you can load into your database with the CREATE and INSERT statements that follow. The query
finds all cases where stock prices dipped to a bottom price and then rose. This is generally
called a V-shape. Before studying the query, look at the output. There are only three rows
because the code was written to report just one row per match, and three matches were found.
The MATCH_RECOGNIZE clause lets you choose between showing one row per match and all
rows per match. In this example, the shorter output of one row per match is used.

Example 22-1 Pattern Match: Simple V-Shape with 1 Row Output per Match

CREATE TABLE Ticker (SYMBOL VARCHAR2(10), tstamp DATE, price NUMBER);

INSERT INTO Ticker VALUES('ACME', '01-Apr-22', 12);
INSERT INTO Ticker VALUES('ACME', '02-Apr-22', 17);
INSERT INTO Ticker VALUES('ACME', '03-Apr-22', 19);

Chapter 22
Overview of Pattern Matching in Data Warehouses

22-2

INSERT INTO Ticker VALUES('ACME', '04-Apr-22', 21);
INSERT INTO Ticker VALUES('ACME', '05-Apr-22', 25);
INSERT INTO Ticker VALUES('ACME', '06-Apr-22', 12);
INSERT INTO Ticker VALUES('ACME', '07-Apr-22', 15);
INSERT INTO Ticker VALUES('ACME', '08-Apr-22', 20);
INSERT INTO Ticker VALUES('ACME', '09-Apr-22', 24);
INSERT INTO Ticker VALUES('ACME', '10-Apr-22', 25);
INSERT INTO Ticker VALUES('ACME', '11-Apr-22', 19);
INSERT INTO Ticker VALUES('ACME', '12-Apr-22', 15);
INSERT INTO Ticker VALUES('ACME', '13-Apr-22', 25);
INSERT INTO Ticker VALUES('ACME', '14-Apr-22', 25);
INSERT INTO Ticker VALUES('ACME', '15-Apr-22', 14);
INSERT INTO Ticker VALUES('ACME', '16-Apr-22', 12);
INSERT INTO Ticker VALUES('ACME', '17-Apr-22', 14);
INSERT INTO Ticker VALUES('ACME', '18-Apr-22', 24);
INSERT INTO Ticker VALUES('ACME', '19-Apr-22', 23);
INSERT INTO Ticker VALUES('ACME', '20-Apr-22', 22);

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 LAST(DOWN.tstamp) AS bottom_tstamp,
 LAST(UP.tstamp) AS end_tstamp
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.start_tstamp;

SYMBOL START_TSTAMP BOTTOM_TSTAMP END_TSTAMP
_________ _______________ ________________ _____________
ACME 05-APR-22 06-APR-22 10-APR-22
ACME 10-APR-22 12-APR-22 13-APR-22
ACME 14-APR-22 16-APR-22 18-APR-22

What does this query do? The following explains each line in the MATCH_RECOGNIZE clause:

• PARTITION BY divides the data from the Ticker table into logical groups where each group
contains one stock symbol.

• ORDER BY orders the data within each logical group by tstamp.

• MEASURES defines three measures: the timestamp at the beginning of a V-shape
(start_tstamp), the timestamp at the bottom of a V-shape (bottom_tstamp), and the
timestamp at the end of the a V-shape (end_tstamp). The bottom_tstamp and end_tstamp
measures use the LAST() function to ensure that the values retrieved are the final value of
the timestamp within each pattern match.

• ONE ROW PER MATCH means that for every pattern match found, there will be one row of
output.

• AFTER MATCH SKIP TO LAST UP means that whenever you find a match you restart your
search at the row that is the last row of the UP pattern variable. A pattern variable is a
variable used in a MATCH_RECOGNIZE statement, and is defined in the DEFINE clause.

Chapter 22
Overview of Pattern Matching in Data Warehouses

22-3

• PATTERN (STRT DOWN+ UP+) says that the pattern you are searching for has three pattern
variables: STRT, DOWN, and UP. The plus sign (+) after DOWN and UP means that at least one
row must be mapped to each of them. The pattern defines a regular expression, which is a
highly expressive way to search for patterns.

• DEFINE gives us the conditions that must be met for a row to map to your row pattern
variables STRT, DOWN, and UP. Because there is no condition for STRT, any row can be
mapped to STRT. Why have a pattern variable with no condition? You use it as a starting
point for testing for matches. Both DOWN and UP take advantage of the PREV() function,
which lets them compare the price in the current row to the price in the prior row. DOWN is
matched when a row has a lower price than the row that preceded it, so it defines the
downward (left) leg of our V-shape. A row can be mapped to UP if the row has a higher
price than the row that preceded it.

The following two figures will help you better understand the results returned by Example 22-1.
Figure 22-2 shows the dates mapped to specific pattern variables, as specified in the PATTERN
clause. After the mappings of pattern variables to dates are available, that information is used
by the MEASURES clause to calculate the measure values. The measures results are shown in
Figure 22-3.

Figure 22-2 Stock Chart Illustrating Which Dates are Mapped to Which Pattern Variables

30

25

20

15

10

5

0

0
1
-A

p
r-

1
1

0
2
-A

p
r-

1
1

0
3
-A

p
r-

1
1

0
4
-A

p
r-

1
1

0
5
-A

p
r-

1
1

0
6
-A

p
r-

1
1

0
7
-A

p
r-

1
1

0
8
-A

p
r-

1
1

0
9
-A

p
r-

1
1

1
0
-A

p
r-

1
1

1
1
-A

p
r-

1
1

1
2
-A

p
r-

1
1

1
3
-A

p
r-

1
1

1
4
-A

p
r-

1
1

1
5
-A

p
r-

1
1

1
6
-A

p
r-

1
1

1
7
-A

p
r-

1
1

1
8
-A

p
r-

1
1

1
9
-A

p
r-

1
1

2
0
-A

p
r-

1
1

Up

DownDown

StartUp Up
Up

StartStart

MATCH 2 MATCH 3MATCH 1

Up

Up

Up

Down

Down

Down

Figure 22-2 labels every date mapped to a pattern variable. The mapping is based on the
pattern specified in the PATTERN clause and the logical conditions specified in the DEFINE
clause. The thin vertical lines show the borders of the three matches that were found for the
pattern. In each match, the first date has the STRT pattern variable mapped to it (labeled as
Start), followed by one or more dates mapped to the DOWN pattern variable, and finally, one or
more dates mapped to the UP pattern variable.

Because you specified AFTER MATCH SKIP TO LAST UP in the query, two adjacent matches can
share a row. That means a single date can have two variables mapped to it. For example, 10-
April has both the pattern variables UP and STRT mapped to it: April 10 is the end of Match 1
and the start of Match 2.

Chapter 22
Overview of Pattern Matching in Data Warehouses

22-4

Figure 22-3 Stock Chart Showing the Dates to Which the Measures Correspond

30

25

20

15

10

5

0

0
1
-A

p
r-

1
1

0
2
-A

p
r-

1
1

0
3
-A

p
r-

1
1

0
4
-A

p
r-

1
1

0
5
-A

p
r-

1
1

0
6
-A

p
r-

1
1

0
7
-A

p
r-

1
1

0
8
-A

p
r-

1
1

0
9
-A

p
r-

1
1

1
0
-A

p
r-

1
1

1
1
-A

p
r-

1
1

1
2
-A

p
r-

1
1

1
3
-A

p
r-

1
1

1
4
-A

p
r-

1
1

1
5
-A

p
r-

1
1

1
6
-A

p
r-

1
1

1
7
-A

p
r-

1
1

1
8
-A

p
r-

1
1

1
9
-A

p
r-

1
1

2
0
-A

p
r-

1
1

BottomBottom

StartEnd End
End
StartStart

MATCH 2 MATCH 3MATCH 1

Bottom

In Figure 22-3, the labels are solely for the measures defined in the MEASURES clause of the
query: START (start_tstamp in the query), BOTTOM (bottom_tstamp in the query), and END
(end_tstamp in the query). As in Figure 22-2, the thin vertical lines show the borders of the
three matches found for the pattern. Every match has a Start date, a Bottom date, and an End
date. As with Figure 22-2, the date 10-April is found in two matches: it is the END measure for
Match 1 and the START measure for Match 2. The labeled dates of Figure 22-3 show which
dates correspond to the measure definitions, which are based on the pattern variable
mappings shown in Figure 22-2.

Note that the dates labeled in Figure 22-3 correspond to the nine dates shown earlier in the
output of the example. The first row of the output has the dates shown in Match 1, the second
row of the output has the dates shown in Match 2, and the third row of the output has the dates
shown in Match 3.

22.1.2 How Data is Processed in Pattern Matching
The MATCH_RECOGNIZE clause performs these steps:

1. The row pattern input table is partitioned according to the PARTITION BY clause. Each
partition consists of the set of rows of the input table that have the same value on the
partitioning columns.

2. Each row pattern partition is ordered according to the ORDER BY clause.

3. Each ordered row pattern partition is searched for matches to the PATTERN.

4. Pattern matching operates by seeking the match at the earliest row, considering the rows
in a row pattern partition in the order specified by the ORDER BY clause.

Pattern matching in a sequence of rows is an incremental process, with one row after
another examined to see if it fits the pattern. With this incremental processing model, at
any step until the complete pattern is recognized, you only have a partial match, and you
do not know what rows might be added in the future, nor to what variables those future
rows might be mapped.

Chapter 22
Overview of Pattern Matching in Data Warehouses

22-5

If no match is found at the earliest row, the search moves to the next row in the partition,
checking if a match can be found starting with that row.

5. After a match is found, row pattern matching calculates the row pattern measure columns,
which are expressions defined by the MEASURES clause.

6. Using ONE ROW PER MATCH, as shown in the first example, pattern matching generates one
row for each match that is found. If you use ALL ROWS PER MATCH, every row that is matched
is included in the pattern match output.

7. The AFTER MATCH SKIP clause determines where row pattern matching resumes within a
row pattern partition after a non-empty match is found. In the previous example, row
pattern matching resumes at the last row of the match found (AFTER MATCH SKIP TO LAST
UP).

22.1.3 About Pattern Matching Special Capabilities
The capabilities are:

• Regular expressions are a robust and long-established way for systems to search for
patterns in data. The regular expression features of the language Perl were adopted as the
design target for pattern matching rules, and Oracle Database 12c Release 1, implements
a subset of those rules for pattern matching.

• Oracle's regular expressions differ from typical regular expressions in that the row pattern
variables are defined by Boolean conditions rather than characters or sets of characters.

• While pattern matching uses the notation of regular expressions to express patterns, it is
actually a richer capability, because the pattern variables may be defined to depend upon
the way previous rows were mapped to row pattern variables. The DEFINE clause enables
pattern variables to be built upon other pattern variables.

• Subqueries are permitted in the definition of row pattern variables and the definition of
measures.

22.2 Basic Topics in Pattern Matching
This section discusses:

• Basic Examples of Pattern Matching

• Tasks and Keywords in Pattern Matching

• Pattern Matching Syntax

22.2.1 Basic Examples of Pattern Matching
This section includes some basic examples for matching patterns.

Example 22-2 Pattern Match for a Simple V-Shape with All Rows Output per Match

This example uses the table Ticker created in the previous example.

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 FINAL LAST(DOWN.tstamp) AS bottom_tstamp,

Chapter 22
Basic Topics in Pattern Matching

22-6

 FINAL LAST(UP.tstamp) AS end_tstamp,
 MATCH_NUMBER() AS match_num,
 CLASSIFIER() AS var_match
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.match_num, MR.tstamp;

SYMBOL TSTAMP START_TSTAMP BOTTOM_TSTAMP END_TSTAMP MATCH_NUM
VAR_MATCH PRICE
_________ ____________ _______________ ________________ _____________ ____________
____________ ________
ACME 05-APR-22 05-APR-22 06-APR-22 10-APR-22 1
STRT 25
ACME 06-APR-22 05-APR-22 06-APR-22 10-APR-22 1
DOWN 12
ACME 07-APR-22 05-APR-22 06-APR-22 10-APR-22 1
UP 15
ACME 08-APR-22 05-APR-22 06-APR-22 10-APR-22 1
UP 20
ACME 09-APR-22 05-APR-22 06-APR-22 10-APR-22 1
UP 24
ACME 10-APR-22 05-APR-22 06-APR-22 10-APR-22 1
UP 25
ACME 10-APR-22 10-APR-22 12-APR-22 13-APR-22 2
STRT 25
ACME 11-APR-22 10-APR-22 12-APR-22 13-APR-22 2
DOWN 19
ACME 12-APR-22 10-APR-22 12-APR-22 13-APR-22 2
DOWN 15
ACME 13-APR-22 10-APR-22 12-APR-22 13-APR-22 2
UP 25
ACME 14-APR-22 14-APR-22 16-APR-22 18-APR-22 3
STRT 25
ACME 15-APR-22 14-APR-22 16-APR-22 18-APR-22 3
DOWN 14
ACME 16-APR-22 14-APR-22 16-APR-22 18-APR-22 3
DOWN 12
ACME 17-APR-22 14-APR-22 16-APR-22 18-APR-22 3
UP 14
ACME 18-APR-22 14-APR-22 16-APR-22 18-APR-22 3
UP 24

15 rows selected.

What does this query do? It is similar to the query in Example 22-1 except for items in the
MEASURES clause, the change to ALL ROWS PER MATCH, and a change to the ORDER BY at the end
of the query. In the MEASURES clause, there are these additions:

• MATCH_NUMBER() AS match_num
Because this example gives multiple rows per match, you need to know which rows are
members of which match. MATCH_NUMBER assigns the same number to each row of a
specific match. For instance, all the rows in the first match found in a row pattern partition
are assigned the match_num value of 1. Note that match numbering starts over again at 1 in
each row pattern partition.

Chapter 22
Basic Topics in Pattern Matching

22-7

• CLASSIFIER() AS var_match
To know which rows map to which variable, use the CLASSIFIER function. In this example,
some rows will map to the STRT variable, some rows the DOWN variable, and others to the UP
variable.

• FINAL LAST()
By specifying FINAL and using the LAST() function for bottom_tstamp, every row inside
each match shows the same date for the bottom of its V-shape. Likewise, applying FINAL
LAST() to the end_tstamp measure makes every row in each match show the same date
for the end of its V-shape. Without this syntax, the dates shown would be the running value
for each row.

Changes were made in two other lines:

• ALL ROWS PER MATCH - While Example 22-1 gave a summary with just 1 row about each
match using the line ONE ROW PER MATCH, this example asks to show every row of each
match.

• ORDER BY on the last line - This was changed to take advantage of the MATCH_NUM, so all
rows in the same match are together and in chronological order.

Note that the row for April 10 appears twice because it is in two pattern matches: it is the last
day of the first match and the first day of the second match.

Example 22-3 Pattern Match with an Aggregate on a Variable

Example 22-3 highlights the use of aggregate functions in pattern matching queries.

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES
 MATCH_NUMBER() AS match_num,
 CLASSIFIER() AS var_match,
 FINAL COUNT(UP.tstamp) AS up_days,
 FINAL COUNT(tstamp) AS total_days,
 RUNNING COUNT(tstamp) AS cnt_days,
 price - STRT.price AS price_dif
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.match_num, MR.tstamp;

SYMBOL TSTAMP MATCH_NUM VAR_ UP_DAYS TOTAL_DAYS CNT_DAYS PRICE_DIF PRICE
------ --------- --------- ---- ------- ---------- -------- --------- -----
ACME 05-APR-11 1 STRT 4 6 1 0 25
ACME 06-APR-11 1 DOWN 4 6 2 -13 12
ACME 07-APR-11 1 UP 4 6 3 -10 15
ACME 08-APR-11 1 UP 4 6 4 -5 20
ACME 09-APR-11 1 UP 4 6 5 -1 24
ACME 10-APR-11 1 UP 4 6 6 0 25
ACME 10-APR-11 2 STRT 1 4 1 0 25
ACME 11-APR-11 2 DOWN 1 4 2 -6 19
ACME 12-APR-11 2 DOWN 1 4 3 -10 15
ACME 13-APR-11 2 UP 1 4 4 0 25
ACME 14-APR-11 3 STRT 2 5 1 0 25

Chapter 22
Basic Topics in Pattern Matching

22-8

ACME 15-APR-11 3 DOWN 2 5 2 -11 14
ACME 16-APR-11 3 DOWN 2 5 3 -13 12
ACME 17-APR-11 3 UP 2 5 4 -11 14
ACME 18-APR-11 3 UP 2 5 5 -1 24

15 rows selected.

What does this query do? It builds on Example 22-2 by adding three measures that use the
aggregate function COUNT(). It also adds a measure showing how an expression can use a
qualified and unqualified column.

• The up_days measure (with FINAL COUNT) shows the number of days mapped to the UP
pattern variable within each match. You can verify this by counting the UP labels for each
match in Figure 22-2.

• The total_days measure (also with FINAL COUNT) introduces the use of unqualified
columns. Because this measure specified the FINAL count(tstamp) with no pattern
variable to qualify the tstamp column, it returns the count of all rows included in a match.

• The cnt_days measure introduces the RUNNING keyword. This measure gives a running
count that helps distinguish among the rows in a match. Note that it also has no pattern
variable to qualify the tstamp column, so it applies to all rows of a match. You do not need
to use the RUNNING keyword explicitly in this case because it is the default. See "Running
Versus Final Semantics and Keywords" for more information.

• The price_dif measure shows us each day's difference in stock price from the price at the
first day of a match. In the expression "price - STRT.price)," you see a case where an
unqualified column, "price," is used with a qualified column, "STRT.price".

Example 22-4 Pattern Match for a W-Shape

This example illustrates a W-Shape.

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES
 MATCH_NUMBER() AS match_num,
 CLASSIFIER() AS var_match,
 STRT.tstamp AS start_tstamp,
 FINAL LAST(UP.tstamp) AS end_tstamp
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+ DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.match_num, MR.tstamp;

SYMBOL TSTAMP MATCH_NUM VAR_ START_TST END_TSTAM PRICE
---------- --------- ---------- ---- --------- --------- ----------
ACME 05-APR-11 1 STRT 05-APR-11 13-APR-11 25
ACME 06-APR-11 1 DOWN 05-APR-11 13-APR-11 12
ACME 07-APR-11 1 UP 05-APR-11 13-APR-11 15
ACME 08-APR-11 1 UP 05-APR-11 13-APR-11 20
ACME 09-APR-11 1 UP 05-APR-11 13-APR-11 24
ACME 10-APR-11 1 UP 05-APR-11 13-APR-11 25
ACME 11-APR-11 1 DOWN 05-APR-11 13-APR-11 19
ACME 12-APR-11 1 DOWN 05-APR-11 13-APR-11 15
ACME 13-APR-11 1 UP 05-APR-11 13-APR-11 25

Chapter 22
Basic Topics in Pattern Matching

22-9

What does this query do? It builds on the concepts introduced in Example 22-1 and seeks W-
shapes in the data rather than V-shapes. The query results show one W-shape. To find the W-
shape, the line defining the PATTERN regular expression was modified to seek the pattern DOWN
followed by UP two consecutive times: PATTERN (STRT DOWN+ UP+ DOWN+ UP+). This pattern
specification means it can only match a W-shape where the two V-shapes have no separation
between them. For instance, if there is a flat interval with the price unchanging, and that
interval occurs between two V-shapes, the pattern will not match that data. To illustrate the
data returned, the output is set to ALL ROWS PER MATCH. Note that FINAL LAST(UP.tstamp) in the
MEASURES clause returns the timestamp value for the last row mapped to UP.

22.2.2 Tasks and Keywords in Pattern Matching
This section discusses the following tasks and keywords in pattern matching.

PARTITION BY: Logically Dividing the Rows into Groups

You will typically want to divide your input data into logical groups for analysis. In the example
with stocks, you divide the pattern matching so that it applies to just one stock at a time. You
do this with the PARTITION BY keyword. PARTITION BY is used to specify that the rows of the row
pattern input table are to be partitioned by one or more columns. Matches are found within
partitions and do not cross partition boundaries.

If there is no PARTITION BY, then all rows of the row pattern input table constitute a single row
pattern partition.

ORDER BY: Logically Ordering the Rows in a Partition

After you divided your input data into logical partitions, you will want to order the data inside
each partition. Without row ordering, you cannot have a reliable sequence to check for pattern
matches. The ORDER BY keyword is used to specify the order of rows within a row pattern
partition.

[ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for Each Match

You will sometimes want summary data about the matches and other times need details. You
can do that with the following SQL keywords:

• ONE ROW PER MATCH
Each match produces one summary row. This is the default.

• ALL ROWS PER MATCH
A match spanning multiple rows will produce one output row for each row in the match.

The output is explained in "Row Pattern Output".

MEASURES: Defining Calculations for Export from the Pattern Matching

The pattern matching clause enables you to create expressions useful in a wide range of
analyses. These are presented as columns in the output by using the MEASURES clause. The
MEASURES clause defines row pattern measure columns, whose value is computed by
evaluating an expression related to a particular match.

PATTERN: Defining the Row Pattern That Will be Matched

The PATTERN clause lets you define which pattern variables must be matched, the sequence in
which they must be matched, and the quantity of rows which must be matched. The PATTERN
clause specifies a regular expression for the match search.

Chapter 22
Basic Topics in Pattern Matching

22-10

A row pattern match consists of a set of contiguous rows in a row pattern partition. Each row of
the match is mapped to a pattern variable. Mapping of rows to pattern variables must conform
to the regular expression in the PATTERN clause, and all conditions in the DEFINE clause must
be true.

DEFINE: Defining Primary Pattern Variables

Because the PATTERN clause depends on pattern variables, you must have a clause to define
these variables. They are specified in the DEFINE clause.

DEFINE is a required clause, used to specify the conditions that a row must meet to be mapped
to a specific pattern variable.

A pattern variable does not require a definition. Any row can be mapped to an undefined
pattern variable.

AFTER MATCH SKIP: Restarting the Matching Process After a Match is Found

After the query finds a match, it must look for the next match at exactly the correct point. Do
you want to find matches where the end of the earlier match overlaps the start of the next
match? Do you want some other variation? Pattern matching provides great flexibility in
specifying the restart point. The AFTER MATCH SKIP clause determines the point to resume row
pattern matching after a non-empty match was found. The default for the clause is AFTER MATCH
SKIP PAST LAST ROW: resume pattern matching at the next row after the last row of the current
match.

MATCH_NUMBER: Finding Which Rows are Members of Which Match

You might have a large number of matches for your pattern inside a given row partition. How
do you tell apart all these matches? This is done with the MATCH_NUMBER function. Matches
within a row pattern partition are numbered sequentially starting with 1 in the order they are
found. Note that match numbering starts over again at 1 in each row pattern partition, because
there is no inherent ordering between row pattern partitions.

CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows

Along with knowing which MATCH_NUMBER you are seeing, you may want to know which
component of a pattern applies to a specific row. This is done using the CLASSIFIER function.
The classifier of a row is the pattern variable that the row is mapped to by a row pattern match.
The CLASSIFIER function returns a character string whose value is the name of the variable the
row is mapped to.

22.2.3 Pattern Matching Syntax
The pattern matching syntax is as follows:

table_reference ::=
 {only (query_table_expression) | query_table_expression }[flashback_query_clause]
 [pivot_clause|unpivot_clause|row_pattern_recognition_clause] [t_alias]

row_pattern_recognition_clause ::=
 MATCH_RECOGNIZE (
 [row_pattern_partition_by]
 [row_pattern_order_by]
 [row_pattern_measures]
 [row_pattern_rows_per_match]
 [row_pattern_skip_to]
 PATTERN (row_pattern)
 [row_pattern_subset_clause]

Chapter 22
Basic Topics in Pattern Matching

22-11

 DEFINE row_pattern_definition_list
)

row_pattern_partition_by ::=
 PARTITION BY column[, column]...

row_pattern_order_by ::=
 ORDER BY column[, column]...

row_pattern_measures ::=
 MEASURES row_pattern_measure_column[, row_pattern_measure_column]...

row_pattern_measure_column ::=
 expression AS c_alias

row_pattern_rows_per_match ::=
 ONE ROW PER MATCH
 | ALL ROWS PER MATCH

row_pattern_skip_to ::=
 AFTER MATCH {
 SKIP TO NEXT ROW
 | SKIP PAST LAST ROW
 | SKIP TO FIRST variable_name
 | SKIP TO LAST variable_name
 | SKIP TO variable_name}

row_pattern ::=
 row_pattern_term
 | row_pattern "|" row_pattern_term

row_pattern_term ::=
 row_pattern_factor
 | row_pattern_term row_pattern_factor

row_pattern_factor ::=
 row_pattern_primary [row_pattern_quantifier]

row_pattern_quantifier ::=
 *[?]
 |+[?]
 |?[?]
 |"{"[unsigned_integer],[unsigned_integer]"}"[?]
 |"{"unsigned_integer "}"

row_pattern_primary ::=
 variable_name
 |$
 |^
 |([row_pattern])
 |"{-" row_pattern"-}"
 | row_pattern_permute

row_pattern_permute ::=
 PERMUTE (row_pattern [, row_pattern] ...)

row_pattern_subset_clause ::=
 SUBSET row_pattern_subset_item [, row_pattern_subset_item] ...

row_pattern_subset_item ::=
 variable_name = (variable_name[, variable_name]...)

Chapter 22
Basic Topics in Pattern Matching

22-12

row_pattern_definition_list ::=
 row_pattern_definition[, row_pattern_definition]...

row_pattern_definition ::=
 variable_name AS condition

The syntax for row pattern operations inside pattern matching is:

function ::=
 single_row_function
| aggregate_function
| analytic_function
| object_reference_function
| model_function
| user_defined_function
| data_cartridge_function
| row_pattern_recognition_function

row_pattern_recognition_function ::=
 row_pattern_classifier_function
| row_pattern_match_number_function
| row_pattern_navigation_function
| row_pattern_aggregate_function

row_pattern_classifier_function ::=
 CLASSIFIER()

row_pattern_match_number_function ::=
 MATCH_NUMBER()

row_pattern_navigation_function ::=
 row_pattern_navigation_logical
 | row_pattern_navigation_physical
 | row_pattern_navigation_compound

row_pattern_navigation_logical ::=
 [RUNNING|FINAL] {FIRST|LAST} (expression[,offset])

row_pattern_navigation_physical ::=
 {PREV|NEXT}(expression[, offset])

row_pattern_navigation_compound ::=
 {PREV | NEXT} (
 [RUNNING| FINAL] {FIRST|LAST} (expression[, offset]) [,offset])

The syntax for set function specification inside the pattern matching clause is:

row_pattern_aggregate_function ::=
 [RUNNING | FINAL] aggregate_function

22.3 Pattern Matching Details
This section presents details on the items discussed in Pattern Matching Syntax, plus
additional topics. Note that some of the material is unavoidably intricate. Certain aspects of
pattern matching require careful attention to subtle details.

• PARTITION BY: Logically Dividing the Rows into Groups

• ORDER BY: Logically Ordering the Rows in a Partition

• [ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for Each Match

Chapter 22
Pattern Matching Details

22-13

• MEASURES: Defining Calculations for Use in the Query

• PATTERN: Defining the Row Pattern to Be Matched

• SUBSET: Defining Union Row Pattern Variables

• DEFINE: Defining Primary Pattern Variables

• AFTER MATCH SKIP: Defining Where to Restart the Matching Process After a Match Is
Found

• Expressions in MEASURES and DEFINE

• Row Pattern Output

22.3.1 PARTITION BY: Logically Dividing the Rows into Groups
Typically, you want to divide your input data into logical groups for analysis. In the examples
with stocks, the pattern matching is divided so that it applies to just one stock at a time. To do
this, use the PARTITION BY clause. PARTITION BY specifies that the rows of the input table are to
be partitioned by one or more columns. Matches are found within partitions and do not cross
partition boundaries.

If there is no PARTITION BY, then all rows of the row pattern input table constitute a single row
pattern partition.

22.3.2 ORDER BY: Logically Ordering the Rows in a Partition
The ORDER BY clause is used to specify the order of rows within a row pattern partition. If the
order of two rows in a row pattern partition is not determined by ORDER BY, then the result of the
MATCH_RECOGNIZE clause is non-deterministic: it may not give consistent results each time the
query is run.

22.3.3 [ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or
Details for Each Match

You will sometimes want summary data about the matches and other times need details. You
can do that with the following SQL:

• ONE ROW PER MATCH
Each match produces one summary row. This is the default.

• ALL ROWS PER MATCH
A match spanning multiple rows will produce one output row for each row in the match.

The output is explained in "Row Pattern Output".

The MATCH_RECOGNIZE clause may find a match with zero rows. For an empty match, ONE ROW
PER MATCH returns a summary row: the PARTITION BY columns take the values from the row
where the empty match occurs, and the measure columns are evaluated over an empty set of
rows.

ALL ROWS PER MATCH has three suboptions:

• ALL ROWS PER MATCH SHOW EMPTY MATCHES
• ALL ROWS PER MATCH OMIT EMPTY MATCHES
• ALL ROWS PER MATCH WITH UNMATCHED ROWS

Chapter 22
Pattern Matching Details

22-14

These options are explained in "Advanced Topics in Pattern Matching".

22.3.4 MEASURES: Defining Calculations for Use in the Query
The MEASURES clause defines a list of columns for the pattern output table. Each pattern
measure column is defined with a column name whose value is specified by a corresponding
pattern measure expression.

A value expression is defined with respect to the pattern variables. Value expression can
contain set functions, pattern navigation operations, CLASSIFIER(), MATCH_NUMBER(), and
column references to any column of the input table. See "Expressions in MEASURES and
DEFINE" for more information.

22.3.5 PATTERN: Defining the Row Pattern to Be Matched
The PATTERN keyword specifies the pattern to be recognized in the ordered sequence of rows
in a partition. Each variable name in a pattern corresponds to a Boolean condition, which is
specified later using the DEFINE component of the syntax.

The PATTERN clause is used to specify a regular expression. It is outside the scope of this
material to explain regular expression concepts and details. If you are not familiar with regular
expressions, you are encouraged to familiarize yourself with the topic using other sources.

The regular expression in a PATTERN clause is enclosed in parentheses. PATTERN may use the
following operators:

• Concatenation

Concatenation is used to list two or more items in a pattern to be matched in that order.
Items are concatenated when there is no operator sign between two successive items. For
example: PATTERN (A B C).

• Quantifiers

Quantifiers are POSIX operators that define the number of iterations accepted for a match.
The syntax of POSIX extended regular expressions is similar to that of traditional UNIX
regular expressions. The following are choices for quantifiers:

– * — 0 or more iterations

– + — 1 or more iterations

– ? — 0 or 1 iterations

– {n} — n iterations (n > 0)

– {n,} — n or more iterations (n >= 0)

– {n,m} — between n and m (inclusive) iterations (0 <= n <= m, 0 < m)

– {,m} — between 0 and m (inclusive) iterations (m > 0)

– reluctant quantifiers — indicated by an additional question mark following a quantifier
(*?, +?, ??, {n,}?, { n, m }?, {,m}?). See "Reluctant Versus Greedy Quantifier"
for the difference between reluctant and non-reluctant quantifiers.

The following are examples of using quantifier operators:

– A* matches 0 or more iterations of A
– A{3,6} matches 3 to 6 iterations of A
– A{,4} matches 0 to 4 iterations of A

Chapter 22
Pattern Matching Details

22-15

• Alternation

Alternation matches a single regular expression from a list of several possible regular
expressions. The alternation list is created by placing a vertical bar (|) between each
regular expression. Alternatives are preferred in the order they are specified. As an
example, PATTERN (A | B | C) attempts to match A first. If A is not matched, it attempts to
match B. If B is not matched, it attempts to match C.

• Grouping

Grouping treats a portion of the regular expression as a single unit, enabling you to apply
regular expression operators such as quantifiers to that group. Grouping is created with
parentheses. As an example, PATTERN ((A B){3} C) attempts to match the group (A B)
three times and then seeks one occurrence of C.

• PERMUTE
See "How to Express All Permutations" for more information.

• Exclusion

Parts of the pattern to be excluded from the output of ALL ROWS PER MATCH are enclosed
between {- and -}. See "How to Exclude Portions of the Pattern from the Output".

• Anchors

Anchors work in terms of positions rather than rows. They match a position either at the
start or end of a partition.

– ^ matches the position before the first row in the partition.

– $ matches the position after the last row in the partition.

As an example, PATTERN (^A+$) will match only if all rows in a partition satisfy the
condition for A. The resulting match spans the entire partition.

• Empty pattern (), matches an empty set of rows

This section contains the following topics:

• Reluctant Versus Greedy Quantifier

• Operator Precedence

22.3.5.1 Reluctant Versus Greedy Quantifier
Pattern quantifiers are referred to as greedy; they will attempt to match as many instances of
the regular expression on which they are applied as possible. The exception is pattern
quantifiers that have a question mark ? as a suffix, and those are referred to as reluctant. They
will attempt to match as few instances as possible of the regular expression on which they are
applied.

The difference between greedy and reluctant quantifiers appended to a single pattern variable
is illustrated as follows: A* tries to map as many rows as possible to A, whereas A*? tries to
map as few rows as possible to A. For example:

PATTERN (X Y* Z)

The pattern consists of three variable names, X, Y, and Z, with Y quantified with *. This means a
pattern match will be recognized and reported when the following condition is met by
consecutive incoming input rows:

Chapter 22
Pattern Matching Details

22-16

• A row satisfies the condition that defines variable X followed by zero or more rows that
satisfy the condition that defines the variable Y followed by a row that satisfies the condition
that defines the variable Z.

During the pattern matching process, after a row was mapped to X and 0 or more rows were
mapped to Y, if the following row can be mapped to both variables Y and Z (which satisfies the
defining condition of both Y and Z), then, because the quantifier * for Y is greedy, the row is
preferentially mapped to Y instead of Z. Due to this greedy property, Y gets preference over Z
and a greater number of rows to Y are mapped. If the pattern expression was PATTERN (X Y*?
Z), which uses a reluctant quantifier *? over Y, then Z gets preference over Y.

22.3.5.2 Operator Precedence
The precedence of the elements in a regular expression, in decreasing order, is as follows:

• row_pattern_primary
These elements include primary pattern variables (pattern variables not created with the
SUBSET clause described in "SUBSET: Defining Union Row Pattern Variables"), anchors,
PERMUTE, parenthetic expressions, exclusion syntax, and empty pattern

• Quantifier

A row_pattern_primary may have zero or one quantifier.

• Concatenation

• Alternation

Precedence of alternation is illustrated by PATTERN(A B | C D), which is equivalent to PATTERN
((A B) | (C D)). It is not, however, equivalent to PATTERN (A (B | C) D).

Precedence of quantifiers is illustrated by PATTERN (A B *), which is equivalent to PATTERN (A
(B*)). It is not, however, PATTERN ((A B)*).

A quantifier may not immediately follow another quantifier. For example, PATTERN(A**) is
prohibited.

It is permitted for a primary pattern variable to occur more than once in a pattern, for example,
PATTERN (X Y X).

22.3.6 SUBSET: Defining Union Row Pattern Variables
At times, it is helpful to create a grouping of multiple pattern variables that can be referred to
with a variable name of its own. These groupings are called union row pattern variables, and
you create them with the SUBSET clause. The union row pattern variable created by SUBSET can
be used in the MEASURES and DEFINE clauses. The SUBSET clause is optional. It is used to
declare union row pattern variables. For example, here is a query using SUBSET to calculate an
average based on all rows that are mapped to the union of STRT and DOWN variables, where
STRT is the starting point for a pattern, and DOWN is the downward (left) leg of a V shape.

Example 22-5 illustrates creating a union row pattern variable.

Example 22-5 Defining Union Row Pattern Variables

SELECT *
FROM Ticker MATCH_RECOGNIZE(
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES FIRST(STRT.tstamp) AS strt_time,

Chapter 22
Pattern Matching Details

22-17

 LAST(DOWN.tstamp) AS bottom,
 AVG(STDN.Price) AS stdn_avgprice
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 SUBSET STDN= (STRT, DOWN)
 DEFINE
 UP AS UP.Price > PREV(UP.Price),
 DOWN AS DOWN.Price < PREV (DOWN.Price)
);

SYMBOL STRT_TIME BOTTOM STDN_AVGPRICE
_________ ____________ ____________ __
ACME 05-APR-22 06-APR-22 18.5
ACME 10-APR-22 12-APR-22 19.66666666666666666666666666666666666667
ACME 14-APR-22 16-APR-22 17

This example declares a single union row pattern variable, STDN, and defines it as the union of
the rows mapped to STRT and the rows mapped to DOWN. There can be multiple union row
pattern variables in a query. For example:

PATTERN (W+ X+ Y+ Z+)
SUBSET XY = (X, Y),
 WZ = (W, Z)

The right-hand side of a SUBSET item is a comma-separated list of distinct primary row pattern
variables within parentheses. This defines the union row pattern variable (on the left-hand side)
as the union of the primary row pattern variables (on the right-hand side).

Note that the list of pattern variables on the right-hand side may not include any union row
pattern variables (there are no unions of unions).

For every match, there is one implicit union row pattern variable called the universal row
pattern variable. The universal row pattern variable is the union of all primary row pattern
variables. For instance, if your pattern has primary pattern variable A, B, and C, then the
universal row pattern variable is equivalent to a SUBSET clause with the argument (A, B, C).
Thus, every row of a match is mapped to the universal row pattern variable. Any unqualified
column reference within the MEASURES or DEFINE clauses is implicitly qualified by the universal
row pattern variable. Note that there is no keyword to explicitly specify the universal row
pattern variable.

22.3.7 DEFINE: Defining Primary Pattern Variables
DEFINE is a mandatory clause, used to specify the conditions that define primary pattern
variables. In the example:

DEFINE UP AS UP.Price > PREV(UP.Price),
DOWN AS DOWN.Price < PREV(DOWN.Price)

UP is defined by the condition UP.Price > PREV (UP.Price), and DOWN is defined by the
condition DOWN.Price < PREV (DOWN.Price). (PREV is a row pattern navigation operation which
evaluates an expression in the previous row; see "Row Pattern Navigation Operations"
regarding the complete set of row pattern navigation operations.)

A pattern variable does not require a definition; if there is no definition, any row can be mapped
to the pattern variable.

Chapter 22
Pattern Matching Details

22-18

A union row pattern variable (see discussion of SUBSET in "SUBSET: Defining Union Row
Pattern Variables") cannot be defined by DEFINE, but can be referenced in the definition of a
pattern variable.

The definition of a pattern variable can reference another pattern variable, which is illustrated
in Example 22-6.

Example 22-6 Defining Pattern Variables

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY Symbol
 FROM Ticker
 MATCH_RECOGNIZE (
 PARTITION BY Symbol
 ORDER BY tstamp
 MEASURES FIRST (A.tstamp) AS A_Firstday,
 LAST (D.tstamp) AS D_Lastday,
 AVG (B.Price) AS B_Avgprice,
 AVG (D.Price) AS D_Avgprice
 PATTERN (A B+ C+ D)
 SUBSET BC = (B,C)
 DEFINE A AS Price > 100,
 B AS B.Price > A.Price,
 C AS C.Price < AVG (B.Price),
 D AS D.Price > MAX (BC.Price)
) M

In this example:

• The definition of A implicitly references the universal row pattern variable (because of the
unqualified column reference Price).

• The definition of B references the pattern variable A.

• The definition of C references the pattern variable B.

• The definition of D references the union row pattern variable BC.

The conditions are evaluated on successive rows of a partition in a trial match, with the current
row being tentatively mapped to a pattern variable as permitted by the pattern. To be
successfully mapped, the condition must evaluate to true.

In the previous example:

A AS Price > 100

Price refers to the Price in the current row, because the last row mapped to any primary row
pattern variable is the current row, which is tentatively mapped to A. Alternatively, in this
example, using A.Price would have led to the same results.

B AS B.Price > A.Price

B.Price refers to the Price in the current row (because B is being defined), whereas A.Price
refers to the last row mapped to A. In view of the pattern, the only row mapped to A is the first
row to be mapped.

C AS C.Price < AVG(B.Price)

Here C.Price refers to the Price in the current row, because C is being defined. The aggregate
AVG (that is, insert Price) is computed as the average of all rows that are already mapped to B.

D AS D.Price > MAX(BC.Price)

Chapter 22
Pattern Matching Details

22-19

The pattern variable D is similar to pattern variable C, though it illustrates the use of a union row
pattern variable in the Boolean condition. In this case, MAX(BC.Price) returns the maximum
price value of the rows matched to variable B or variable C. The semantics of Boolean
conditions are discussed in more detail in "Expressions in MEASURES and DEFINE".

22.3.8 AFTER MATCH SKIP: Defining Where to Restart the Matching
Process After a Match Is Found

The AFTER MATCH SKIP clause determines the point to resume row pattern matching after a non-
empty match was found. The default for the clause is AFTER MATCH SKIP PAST LAST ROW. The
options are as follows:

• AFTER MATCH SKIP TO NEXT ROW
Resume pattern matching at the row after the first row of the current match.

• AFTER MATCH SKIP PAST LAST ROW
Resume pattern matching at the next row after the last row of the current match.

• AFTER MATCH SKIP TO FIRST pattern_variable

Resume pattern matching at the first row that is mapped to the pattern variable.

• AFTER MATCH SKIP TO LAST pattern_variable

Resume pattern matching at the last row that is mapped to the pattern variable.

• AFTER MATCH SKIP TO pattern_variable

The same as AFTER MATCH SKIP TO LAST pattern_variable.

When using AFTER MATCH SKIP TO FIRST or AFTER MATCH SKIP TO [LAST], it is possible that no
row is mapped to the pattern_variable. For example:

AFTER MATCH SKIP TO A
PATTERN (X A* X),

The pattern variable A in the example might have no rows mapped to A. If there is no row
mapped to A, then there is no row to skip to, so a runtime exception is generated. Another
problem condition is that AFTER MATCH SKIP may try to resume pattern matching at the same
row that the last match started. For example:

AFTER MATCH SKIP TO X
PATTERN (X Y+ Z),

In this example, AFTER MATCH SKIP TO X tries to resume pattern matching at the same row
where the previous match was found. This would result in an infinite loop, so a runtime
exception is generated for this scenario.

Note that the AFTER MATCH SKIP syntax only determines the point to resume scanning for a
match after a non-empty match. When an empty match is found, one row is skipped (as if SKIP
TO NEXT ROW had been specified). Thus an empty match never causes one of these exceptions.
A query that gets one of these exceptions should be rewritten, as, for example, in the following:

AFTER MATCH SKIP TO A
PATTERN (X (A | B) Y)

This will cause a run-time error when a row is mapped to B, because no row was mapped to A.
If the intent is to skip to either A or B, the following will work:

Chapter 22
Pattern Matching Details

22-20

AFTER MATCH SKIP TO C
PATTERN (X (A | B) Y)
SUBSET C = (A, B)

In the revised example, no runtime error is possible, whether A or B is matched.

As another example:

AFTER MATCH SKIP TO FIRST A
PATTERN (A* X)

This example gets an exception after the first match, either for skipping to the first row of the
match (if A* matches) or for skipping to a nonexistent row (if A* does not match). In this
example, SKIP TO NEXT ROW is a better choice.

When using ALL ROWS PER MATCH together with skip options other than AFTER MATCH SKIP PAST
LAST ROW, it is possible for consecutive matches to overlap, in which case a row R of the row
pattern input table might occur in more than one match. In that case, the row pattern output
table will have one row for each match in which the row participates. If a row of the row pattern
input table participates in multiple matches, the MATCH_NUMBER function can be used to
distinguish among the matches. When a row participates in more than one match, its classifier
can be different in each match.

22.3.9 Expressions in MEASURES and DEFINE
Pattern matching provides the following scalar expressions that are unique to row pattern
matching:

• Row pattern navigation operations, using the functions PREV, NEXT, FIRST and LAST. Row
pattern navigation operations are discussed in "Row Pattern Navigation Operations".

• The MATCH_NUMBER function, which returns the sequential number of a row pattern match
within its row pattern partition, discussed in "MATCH_NUMBER: Finding Which Rows Are
in Which Match".

• The CLASSIFIER function, which returns the name of the primary row pattern variable that a
row is mapped to, discussed in "CLASSIFIER: Finding Which Pattern Variable Applies to
Which Rows".

Expressions in MEASURES and DEFINE clauses have the same syntax and semantics, with the
following exceptions:

• The DEFINE clause only supports running semantics.

• The MEASURES clause defaults to running semantics, but also supports final semantics. This
distinction is discussed in "RUNNING Versus FINAL Semantics".

Working with Expressions

This section discusses some of the considerations when working with expressions in pattern
matching, and includes:

• MATCH_NUMBER: Finding Which Rows Are in Which Match

• CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows

• Row Pattern Column References

• Aggregates

• Row Pattern Navigation Operations

Chapter 22
Pattern Matching Details

22-21

22.3.9.1 MATCH_NUMBER: Finding Which Rows Are in Which Match
Matches within a row pattern partition are numbered sequentially starting with 1 in the order
they are found. Note that match numbering starts over again at 1 in each row pattern partition,
because there is no inherent ordering between row pattern partitions. MATCH_NUMBER() is a
function that returns a numeric value with scale 0 (zero) whose value is the sequential number
of the match within the row pattern partition.

The previous examples using MATCH_NUMBER() have shown it used in the MEASURES clause. It is
also possible to use MATCH_NUMBER() in the DEFINE clause, where it can be used to define
conditions that depend upon the match number.

22.3.9.2 CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows
The CLASSIFIER function returns a character string whose value is the name of the pattern
variable to which a row is mapped. The CLASSIFIER function is allowed in both the MEASURES
and the DEFINE clauses.

In the DEFINE clause, the CLASSIFIER function returns the name of the primary pattern variable
to which the current row is mapped.

In the MEASURES clause:

• If ONE ROW PER MATCH is specified, the query is using the last row of the match when
processing the MEASURES clause, so the CLASSIFIER function returns the name of the
pattern variable to which the last row of the match is mapped.

• If ALL ROWS PER MATCH is specified, for each row of the match found, the CLASSIFIER
function returns the name of the pattern variable to which the row is mapped.

The classifier for the starting row of an empty match is the null value.

22.3.9.3 Row Pattern Column References
A row pattern column reference is a column name qualified by an explicit or implicit pattern
variable, such as the following:

A.Price

A is the pattern variable and Price is a column name. A column name with no qualifier, such as
Price, is implicitly qualified by the universal row pattern variable, which references the set of all
rows in a match. Column references can be nested within other syntactic elements, notably
aggregates and navigation operators. (However, nesting in row pattern matching is subject to
limitations described in "Prohibited Nesting in the MATCH_RECOGNIZE Clause" for the FROM
clause.)

Pattern column references are classified as follows:

• Nested within an aggregate, such as SUM: an aggregated row pattern column reference.

• Nested within a row pattern navigation operation (PREV, NEXT, FIRST, and LAST): a
navigated row pattern column reference.

• Otherwise: an ordinary row pattern column reference.

All pattern column references in an aggregate or row pattern navigation operation must be
qualified by the same pattern variable. For example:

Chapter 22
Pattern Matching Details

22-22

PATTERN (A+ B+)
DEFINE B AS AVG(A.Price + B.Tax) > 100

The preceding example is a syntax error, because A and B are two different pattern variables.
Aggregate semantics require a single set of rows; there is no way to form a single set of rows
on which to evaluate A.Price + B.Tax. However, the following is acceptable:

DEFINE B AS AVG (B.Price + B.Tax) > 100

In the preceding example, all pattern column references in the aggregate are qualified by B.

An unqualified column reference is implicitly qualified by the universal row pattern variable,
which references the set of all rows in a match. For example:

DEFINE B AS AVG(Price + B.Tax) > 1000

The preceding example is a syntax error, because the unqualified column reference Price is
implicitly qualified by the universal row pattern variable, whereas B.Tax is explicitly qualified by
B. However, the following is acceptable:

DEFINE B AS AVG (Price + Tax) > 1000

In the preceding example, both Price and Tax are implicitly qualified by the universal row
pattern variable.

22.3.9.4 Aggregates
The aggregates (COUNT, SUM, AVG, MAX, and MIN) can be used in both the MEASURES and DEFINE
clauses. Note that the DISTINCT keyword is not supported. When used in row pattern matching,
aggregates operate on a set of rows that are mapped to a particular pattern variable, using
either running or final semantics. For example:

MEASURES SUM (A.Price) AS RunningSumOverA,
 FINAL SUM(A.Price) AS FinalSumOverA
ALL ROWS PER MATCH

In this example, A is a pattern variable. The first pattern measure, RunningSumOverA, does not
specify either RUNNING or FINAL, so it defaults to RUNNING. This means that it is computed as
the sum of Price in those rows that are mapped to A by the current match, up to and including
the current row. The second pattern measure, FinalSumOverA, computes the sum of Price
over all rows that are mapped to A by the current match, including rows that may be later than
the current row. Final aggregates are only available in the MEASURES clause, not in the DEFINE
clause.

An unqualified column reference contained in an aggregate is implicitly qualified by the
universal row pattern variable, which references all rows of the current pattern match. For
example:

SUM (Price)

The running sum of Price over all rows of the current row pattern match is computed.

All column references contained in an aggregate must be qualified by the same pattern
variable. For example:

SUM (Price + A.Tax)

Because Price is implicitly qualified by the universal row pattern variable, whereas A.Tax is
explicitly qualified by A, you get a syntax error.

Chapter 22
Pattern Matching Details

22-23

The COUNT aggregate has special syntax for pattern matching, so that COUNT(A.*) can be
specified. COUNT(A.*) is the number of rows that are mapped to the pattern variable A by the
current pattern match. As for COUNT(*), the * implicitly covers the rows of the universal row
pattern variable, so that COUNT(*) is the number of rows in the current pattern match.

22.3.9.5 Row Pattern Navigation Operations
There are four functions — PREV, NEXT, FIRST, and LAST — that enable navigation within the
row pattern by either physical or logical offsets.

22.3.9.5.1 PREV and NEXT
The PREV function can be used to evaluate an expression using a previous row in a partition. It
operates in terms of physical rows and is not limited to the rows mapped to a specific variable.
If there is no previous row, the null value is returned. For example:

DEFINE A AS PREV (A.Price) > 100

The preceding example says that the current row can be mapped to A if the row preceding the
current row has a price greater than 100. If the preceding row does not exist (that is, the
current row is the first row of a row pattern partition), then PREV(A.Price) is null, so the
condition is not True, and therefore the first row cannot be mapped to A.

Note that you can use another pattern variable (such as B) in defining the pattern variable A,
and have the condition apply a PREV() function to that other pattern variable. That might
resemble:

DEFINE A AS PREV (B.PRICE) > 100

In that case, the starting row used by the PREV() function for its navigation is the last row
mapped to pattern variable B.

The PREV function can accept an optional non-negative integer argument indicating the
physical offset to the previous rows. Thus:

• PREV (A.Price, 0) is equivalent to A.Price.

• PREV (A.price, 1) is equivalent to PREV (A.Price). Note: 1 is the default offset.

• PREV (A.Price, 2) is the value of Price in the row two rows before to the row denoted by
A with running semantics. (If no row is mapped to A, or if there is no row two rows prior,
then PREV (A.Price, 2) is null.)

The offset must be a runtime constant (literal, bind variable, and expressions involving them),
but not a column or a subquery.

The NEXT function is a forward-looking version of the PREV function. It can be used to reference
rows in the forward direction in the row pattern partition using a physical offset. The syntax is
the same as for PREV, except for the name of the function. For example:

DEFINE A AS NEXT (A.Price) > 100

The preceding example looks forward one row in the row pattern partition. Note that pattern
matching does not support aggregates that look past the current row during the DEFINE clause,
because of the difficulty of predicting what row will be mapped to what pattern variable in the
future. The NEXT function does not violate this principle, because it navigates to "future" rows
on the basis of a physical offset, which does not require knowing the future mapping of rows.

Chapter 22
Pattern Matching Details

22-24

For example, to find an isolated row that is more than twice the average of the two rows before
and two rows after it: using NEXT, this can be expressed:

PATTERN (X)
DEFINE X AS X.Price > 2 * (PREV (X.Price, 2)
 + PREV (X.Price, 1)
 + NEXT (X.Price, 1)
 + NEXT (X.Price, 2)) / 4

Note that the row in which PREV or NEXT is evaluated is not necessarily mapped to the pattern
variable in the argument. For example, in this example, PREV (X.Price, 2) is evaluated in a
row that is not part of the match. The purpose of the pattern variable is to identify the row from
which to offset, not the row that is ultimately reached. (If the definition of pattern variable refers
to itself in a PREV() or NEXT(), then it is referring to the current row as the row from which to
offset.) This point is discussed further in "Nesting FIRST and LAST Within PREV and NEXT in
Pattern Matching".

PREV and NEXT may be used with more than one column reference; for example:

DEFINE A AS PREV (A.Price + A.Tax) < 100

When using a complex expression as the first argument of PREV or NEXT, all qualifiers must be
the same pattern variable (in this example, A).

PREV and NEXT always have running semantics; the keywords RUNNING and FINAL cannot be
used with PREV or NEXT. (See the section on "Running Versus Final Semantics and Keywords").
To obtain final semantics, use, for example, PREV (FINAL LAST (A.Price)) as explained in
"Nesting FIRST and LAST Within PREV and NEXT in Pattern Matching".

22.3.9.5.1.1 FIRST and LAST

In contrast to the PREV and NEXT functions, the FIRST and LAST functions navigate only among
the rows mapped to pattern variables: they use logical, not physical, offsets. FIRST returns the
value of an expression evaluated in the first row of the group of rows mapped to a pattern
variable. For example:

FIRST (A.Price)

If no row is mapped to A, then the value is null.

Similarly, LAST returns the value of an expression evaluated in the last row of the group of rows
mapped to a pattern variable. For example:

LAST (A.Price)

The preceding example evaluates A.Price in the last row that is mapped to A (null if there is no
such row).

The FIRST and LAST operators can accept an optional non-negative integer argument indicating
a logical offset within the set of rows mapped to the pattern variable. For example:

FIRST (A.Price, 1)

The preceding line evaluates Price in the second row that is mapped to A. Consider the
following data set and mappings in Table 22-1.

Chapter 22
Pattern Matching Details

22-25

Table 22-1 Pattern and Row

Row Price Mapping

R1 10 A

R2 20 B

R3 30 A

R4 40 C

R5 50 A

Then the following:

• FIRST (A.Price) = FIRST (A.Price, 0) = LAST (A.Price, 2) = 10
• FIRST (A.Price, 1) = LAST (A.Price, 1) = 30
• FIRST (A.Price, 2) = LAST (A.Price, 0) = LAST (A.Price) = 50
• FIRST (A.Price, 3) is null, as is LAST (A.Price, 3)
Note that the offset is a logical offset, moving within the set of rows {R1, R3, R5} that are
mapped to the pattern variable A. It is not a physical offset, as with PREV or NEXT.

The optional integer argument must be a runtime constant (literal, bind variable, and
expressions involving them), but not a column or subquery.

The first argument of FIRST or LAST must have at least one row pattern column reference.
Thus, FIRST(1) is a syntax error.

The first argument of FIRST or LAST may have more than one row pattern column reference, in
which case all qualifiers must be the same pattern variable. For example, FIRST (A.Price +
B.Tax) is a syntax error, but FIRST (A.Price + A.Tax) is acceptable.

FIRST and LAST support both running and final semantics. The RUNNING keyword is the default,
and the only supported option in the DEFINE clause. Final semantics can be accessed in the
MEASURES by using the keyword FINAL, as in:

MEASURES FINAL LAST (A.Price) AS FinalPrice
ALL ROWS PER MATCH

22.3.9.6 Running Versus Final Semantics and Keywords
This section discusses some of the considerations to keep in mind when working with RUNNING
and FINAL.

22.3.9.6.1 RUNNING Versus FINAL Semantics
Pattern matching in a sequence of rows is usually thought of as an incremental process, with
one row after another examined to see if it fits the pattern. With this incremental processing
model, at any step until the complete pattern has been recognized, there is only a partial match
and it is not known what rows might be added in the future, nor to what variables those future
rows might be mapped. Therefore, in pattern matching, a row pattern column reference in the
Boolean condition of a DEFINE clause has running semantics. This means that a pattern
variable represents the set of rows that were already mapped to the pattern variable, up to and
including the current row, but not any future rows.

Chapter 22
Pattern Matching Details

22-26

After the complete match is established, it is possible to have final semantics. Final semantics
is the same as running semantics on the last row of a successful match. Final semantics is
only available in MEASURES, because in DEFINE there is uncertainty about whether a complete
match was achieved.

The keywords RUNNING and FINAL are used to indicate running or final semantics, respectively;
the rules for these keywords are discussed in "RUNNING Versus FINAL Keywords".

The fundamental rule for expression evaluation in MEASURES and DEFINE is as follows:

• When an expression involving a pattern variable is computed on a group of rows, then the
set of rows that is mapped to the pattern variable is used. If the set is empty, then COUNT is
0 and any other expression involving the pattern variable is null.

• When an expression requires evaluation in a single row, then the latest row of the set is
used. If the set is empty, then the expression is null.

For example, consider the following table and query in Example 22-7.

Example 22-7 RUNNING Versus FINAL Semantics

SELECT M.Symbol, M.Tstamp, M.Price, M.RunningAvg, M.FinalAvg
FROM TICKER MATCH_RECOGNIZE (
 PARTITION BY Symbol
 ORDER BY tstamp
 MEASURES RUNNING AVG (A.Price) AS RunningAvg,
 FINAL AVG (A.Price) AS FinalAvg
 ALL ROWS PER MATCH
 PATTERN (A+)
 DEFINE A AS A.Price >= AVG (A.Price)
) M
;

Consider the following ordered row pattern partition of data shown in Table 22-2.

Table 22-2 Pattern and Partitioned Data

Row Symbol Timestamp Price

R1 XYZ 09-Jun-09 10

R2 XYZ 10-Jun-09 16

R3 XYZ 11-Jun-09 13

R4 XYZ 12-Jun-09 9

The following logic can be used to find a match:

• On the first row of the row pattern partition, tentatively map row R1 to pattern variable A. At
this point, the set of rows mapped to variable A is {R1}. To confirm whether this mapping is
successful, evaluate the predicate:

A.Price >= AVG (A.Price)
On the left-hand side, A.Price must be evaluated in a single row, which is the last row of
the set using running semantics. The last row of the set is R1; therefore A.Price is 10.

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows
of the set. This average is 10/1 = 10.

Thus the predicate asks if 10 >= 10. The answer is yes, so the mapping is successful.
However, the pattern A+ is greedy, so the query must try to match more rows if possible.

Chapter 22
Pattern Matching Details

22-27

• On the second row of the row pattern partition, tentatively map R2 to pattern variable A. At
this point there are two rows mapped to A, so the set is {R1, R2}. Confirm whether the
mapping is successful by evaluating the predicate.

A.Price >= AVG (A.Price)
On the left hand side, A.Price must be evaluated in a single row, which is the last row of
the set using running semantics. The last row of the set is R2; therefore A.Price is 16.On
the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of
the set. This average is (10+16)/2 = 13.Thus the predicate asks if 16 >= 13. The answer is
yes, so the mapping is successful.

• On the third row of the row pattern partition, tentatively map R3 to pattern variable A. Now
there are three rows mapped to A, so the set is {R1, R2, R3}. Confirm whether the
mapping is successful by evaluating the predicate:

A.Price >= AVG (A.Price)
On the left-hand side, A.Price is evaluated in R3; therefore, A.Price is 13.

On the right-hand side, AVG (A.Price) is an aggregate, which is computed using the rows
of the set. This average is (10+16+13)/3 = 13.Thus the predicate asks if 13 >= 13. The
answer is yes, so the mapping is successful.

• On the fourth row of the row pattern partition, tentatively map R4 to pattern variable A. At
this point, the set is {R1, R2, R3, R4}. Confirm whether the mapping is successful by
evaluating the predicate:

A.Price >= AVG (A.Price)
On the left-hand side, A.Price is evaluated in R4; therefore, A.Price is 9.

On the right-hand side, AVG (A.Price) is an aggregate, which is computed using the rows
of the set. This average is (10+16+13+9)/4 = 12.Thus the predicate asks if 9 >= 12. The
answer is no, so the mapping is not successful.

R4 did not satisfy the definition of A, so the longest match to A+ is {R1, R2, R3}. Because A+
has a greedy quantifier, this is the preferred match.

The averages computed in the DEFINE clause are running averages. In MEASURES, especially
with ALL ROWS PER MATCH, it is possible to distinguish final and running aggregates. Notice the
use of the keywords RUNNING and FINAL in the MEASURES clause. The distinction can be
observed in the result of the example in Table 22-3.

Table 22-3 Row Pattern Navigation

Symbol Timestamp Price Running Average Final Average

XYZ 2009-06-09 10 10 13

XYZ 2009-06-10 16 13 13

XYZ 2009-06-11 13 13 13

It is possible that the set of rows mapped to a pattern variable is empty. When evaluating over
an empty set:

• COUNT is 0.

• Any other aggregate, row pattern navigation operation, or ordinary pattern column
reference is null.

For example:

Chapter 22
Pattern Matching Details

22-28

PATTERN (A? B+)
DEFINE A AS A.Price > 100,
 B AS B.Price > COUNT (A.*) * 50

With the preceding example, consider the following ordered row pattern partition of data in
Table 22-4.

Table 22-4 Pattern and Row

Row Price

R1 60

R2 70

R3 40

A match can be found in this data as follows:

• Tentatively map row R1 to pattern variable A. (The quantifier ? means to try first for a single
match to A; if that fails, then an empty match is taken as matching A?). To see if the
mapping is successful, the predicate A.Price > 100 is evaluated. A.Price is 60; therefore,
the predicate is false and the mapping to A does not succeed.

• Because the mapping to A failed, the empty match is taken as matching A?.

• Tentatively map row R1 to B. The predicate to check for this mapping is B.Price > COUNT
(A.*) * 50
No rows are mapped to A, therefore COUNT (A.*) is 0. Because B.Price = 60 is greater
than 0, the mapping is successful.

• Similarly, rows R2 and R3 can be successfully mapped to B. Because there are no more
rows, this is the complete match: no rows mapped A, and rows {R1, R2, R3} mapped to B.

A pattern variable can make a forward reference, that is, a reference to a pattern variable that
was not matched yet. For example:

PATTERN (X+ Y+)
DEFINE X AS COUNT (Y.*) > 3,
Y AS Y.Price > 10

The previous example is valid syntax. However, this example will never be matched because
at the time that a row is mapped to X, no row has been mapped to Y. Thus COUNT(Y.*) is 0 and
can never be greater than three. This is true even if there are four future rows that might be
successfully mapped to Y. Consider this data set in Table 22-5.

Table 22-5 Pattern and Row

Row Price

R1 2

R2 11

R3 12

R4 13

R5 14

Mapping {R2, R3, R4, R5} to Y would be successful, because all four of these rows satisfy
the Boolean condition defined for Y. In that case, you might think that you could map R1 to X

Chapter 22
Pattern Matching Details

22-29

and have a complete successful match. However, the rules of pattern matching will not find this
match, because, according to the pattern X+ Y+, at least one row must be mapped to X before
any rows are mapped to Y.

22.3.9.6.2 RUNNING Versus FINAL Keywords
RUNNING and FINAL are keywords used to indicate whether running or final semantics are
desired. RUNNING and FINAL can be used with aggregates and the row pattern navigation
operations FIRST and LAST.

Aggregates, FIRST and LAST can occur in the following places in a row pattern matching query:

• In the DEFINE clause. When processing the DEFINE clause, the query is still in the midst of
recognizing a match, therefore the only supported semantics is running.

• In the MEASURES clause. When processing the MEASURES clause, the query has finished
recognizing a match; therefore, it becomes possible to consider final semantics. There are
two subcases:

– If ONE ROW PER MATCH is specified, then conceptually the query is positioned on the last
row of the match, and there is no real difference between running versus final
semantics.

– If ALL ROWS PER MATCH is specified, then the row pattern output table will have one row
for each row of the match. In this circumstance, the user may wish to see both running
and final values, so pattern matching provides the RUNNING and FINAL keywords to
support that distinction.

Based on this analysis, pattern matching specifies the following:

• In MEASURES, the keywords RUNNING and FINAL can be used to indicate the desired
semantics for an aggregate, FIRST or LAST. The keyword is written before the operator, for
example, RUNNING COUNT (A.*) or FINAL SUM (B.Price).

• In both MEASURES and DEFINE, the default is RUNNING.

• In DEFINE, FINAL is not permitted; RUNNING may be used for added clarity if desired.

• In MEASURES with ONE ROW PER MATCH, all aggregates, FIRST, and LAST are computed after
the last row of the match is recognized, so that the default RUNNING semantics is actually
no different from FINAL semantics. The user may prefer to think of expressions defaulting
to FINAL in these cases or the user may choose to write FINAL for added clarity.

• Ordinary column references have running semantics. (For ALL ROWS PER MATCH, to get final
semantics in MEASURES, use the FINAL LAST row pattern navigation operation instead of an
ordinary column reference.)

22.3.9.6.3 Ordinary Row Pattern Column References
An ordinary row pattern column reference is one that is neither aggregated nor navigated, for
example:

A.Price

"RUNNING Versus FINAL Keywords" stated that ordinary row pattern column references
always have running semantics. This means:

• In DEFINE, an ordinary column reference references the last row that is mapped to the
pattern variable, up to and including the current row. If there is no such row, then the value
is null.

Chapter 22
Pattern Matching Details

22-30

• In MEASURES, there are two subcases:

– If ALL ROWS PER MATCH is specified, then there is also a notion of current row, and the
semantics are the same as in DEFINE.

– If ONE ROW PER MATCH is specified, then conceptually the query is positioned on the last
row of the match. An ordinary column reference references the last row that is mapped
to the pattern variable. If the variable is not mapped to any row, then the value is null.

These semantics are the same as the LAST operator, with the implicit RUNNING default.
Consequently, an ordinary column reference such as X.Price is equivalent to RUNNING LAST
(X.Price).

22.3.10 Row Pattern Output
The result of MATCH_RECOGNIZE is called the row pattern output table. The shape (row type) of
the row pattern output table depends on the choice of ONE ROW PER MATCH or ALL ROWS PER
MATCH.

If ONE ROW PER MATCH is specified or implied, then the columns of the row pattern output table
are the row pattern partitioning columns in their order of declaration, followed by the row
pattern measure columns in their order of declaration. Because a table must have at least one
column, this implies that there must be at least one row pattern partitioning column or one row
pattern measure column.

If ALL ROWS PER MATCH is specified, then the columns of the row pattern output table are the row
pattern partitioning columns in their order of declaration, the ordering columns in their order of
declaration, the row pattern measure columns in their order of declaration, and finally any
remaining columns of the row pattern input table, in the order they occur in the row pattern
input table.

The names and declared types of the pattern measure columns are determined by the
MEASURES clause. The names and declared types of the non-measure columns are inherited
from the corresponding columns of the pattern input table.

See Also:

"Correlation Name and Row Pattern Output" for information about assigning a
correlation name to row pattern output

22.3.10.1 Correlation Name and Row Pattern Output
A correlation name can be assigned to the row pattern output table, similar to the following:

SELECT M.Matchno
FROM Ticker MATCH_RECOGNIZE (...
 MEASURE MATCH_NUMBER() AS Matchno
 ...
) M

In the preceding example, M is the correlation name assigned to the row pattern output table.
The benefit to assigning a correlation name is that the correlation name can be used to qualify
the column names of the row pattern output table, as in M.Matchno in the preceding example.
This is especially important to resolve ambiguous column names if there are other tables in the
FROM clause.

Chapter 22
Pattern Matching Details

22-31

22.4 Advanced Topics in Pattern Matching
This section discusses the following advanced topics:

• Nesting FIRST and LAST Within PREV and NEXT in Pattern Matching

• Handling Empty Matches or Unmatched Rows in Pattern Matching

• How to Exclude Portions of the Pattern from the Output

• How to Express All Permutations

22.4.1 Nesting FIRST and LAST Within PREV and NEXT in Pattern
Matching

FIRST and LAST provide navigation within the set of rows already mapped to a particular pattern
variable; PREV and NEXT provide navigation using a physical offset from a particular row. These
kinds of navigation can be combined by nesting FIRST or LAST within PREV or NEXT. This
permits expressions such as the following:

PREV (LAST (A.Price + A.Tax, 1), 3)

In this example, A must be a pattern variable. It is required to have a row pattern column
reference, and all pattern variables in the compound operator must be equivalent (A, in this
example).

This compound operator is evaluated as follows:

1. The inner operator, LAST, operates solely on the set of rows that are mapped to the pattern
variable A. In this set, find the row that is the last minus 1. (If there is no such row, the
result is null.)

2. The outer operator, PREV, starts from the row found in Step 1 and backs up three rows in
the row pattern partition. (If there is no such row, the result is null.)

3. Let R be an implementation-dependent range variable that references the row found by
Step 2. In the expression A.Price + A.Tax, replace every occurrence of the pattern
variable A with R. The resulting expression R.Price + R.Tax is evaluated and determines
the value of the compound navigation operation.

For example, consider the data set and mappings in Table 22-6.

Table 22-6 Data Set and Mappings

Row Price Tax Mapping

R1 10 1

R2 20 2 A

R3 30 3 B

R4 40 4 A

R5 50 5 C

R6 60 6 A

To evaluate PREV (LAST (A.Price + A.Tax, 1), 3), the following steps can be used:

Chapter 22
Advanced Topics in Pattern Matching

22-32

• The set of rows mapped to A is {R2, R4, R6}. LAST operates on this set, offsetting from
the end to arrive at row R4.

• PREV performs a physical offset, 3 rows before R4, arriving at R1.

• Let R be a range variable pointing at R1. R.Price + R.Tax is evaluated, giving 10+1 = 11.

Note that this nesting is not defined as a typical evaluation of nested functions. The inner
operator LAST does not actually evaluate the expression A.Price + A.Tax; it uses this
expression to designate a pattern variable (A) and then navigate within the rows mapped to
that variable. The outer operator PREV performs a further physical navigation on rows. The
expression A.Price + A.Tax is not actually evaluated as such, because the row that is
eventually reached is not necessarily mapped to the pattern variable A. In this example, R1 is
not mapped to any pattern variable.

22.4.2 Handling Empty Matches or Unmatched Rows in Pattern Matching
ALL ROWS PER MATCH has three suboptions:

• ALL ROWS PER MATCH SHOW EMPTY MATCHES
• ALL ROWS PER MATCH OMIT EMPTY MATCHES
• ALL ROWS PER MATCH WITH UNMATCHED ROWS
These options are explained in the following topics:

• Handling Empty Matches in Pattern Matching

• Handling Unmatched Rows in Pattern Matching

22.4.2.1 Handling Empty Matches in Pattern Matching
Some patterns permit empty matches. For example, PATTERN (A*) can be matched by zero or
more rows that are mapped to A.

An empty match does not map any rows to pattern variables; nevertheless, an empty match
has a starting row. For example, there can be an empty match at the first row of a partition, an
empty match at the second row of a partition, and so on. An empty match is assigned a
sequential match number, based on the ordinal position of its starting row, the same as any
other match.

When using ONE ROW PER MATCH, an empty match results in one row of the output table. The row
pattern measures for an empty match are computed as follows:

• The value of MATCH_NUMBER() is the sequential match number of the empty match.

• Any COUNT is 0.

• Any other aggregate, row pattern navigation operation, or ordinary row pattern column
reference is null.

As for ALL ROWS PER MATCH, the question arises, whether to generate a row of output for an
empty match, because there are no rows in the empty match. To govern this, there are two
options:

• ALL ROWS PER MATCH SHOW EMPTY MATCHES: with this option, any empty match generates a
single row in the row pattern output table.

• ALL ROWS PER MATCH OMIT EMPTY MATCHES: with this option, an empty match is omitted from
the row pattern output table. (This may cause gaps in the sequential match numbering.)

Chapter 22
Advanced Topics in Pattern Matching

22-33

ALL ROWS PER MATCH defaults to SHOW EMPTY MATCHES. Using this option, an empty match
generates one row in the row pattern output table. In this row:

• The value of the CLASSIFIER() function is null.

• The value of the MATCH_NUMBER () function is the sequential match number of the empty
match.

• The value of any ordinary row pattern column reference is null.

• The value of any aggregate or row pattern navigation operation is computed using an
empty set of rows (so any COUNT is 0, and all other aggregates and row pattern navigation
operations are null).

• The value of any column corresponding to a column of the row pattern input table is the
same as the corresponding column in the starting row of the empty match.

22.4.2.2 Handling Unmatched Rows in Pattern Matching
Some rows of the row pattern input table may be neither the starting row of an empty match,
nor mapped by a non-empty match. Such rows are called unmatched rows.

The option ALL ROWS PER MATCH WITH UNMATCHED ROWS shows both empty matches and
unmatched rows. Empty matches are handled the same as with SHOW EMPTY MATCHES. When
displaying an unmatched row, all row pattern measures are null, somewhat analogous to the
null-extended side of an outer join. Thus, COUNT and MATCH_NUMBER may be used to distinguish
an unmatched row from the starting row of an empty match. The exclusion syntax {- -} is
prohibited as contrary to the spirit of WITH UNMATCHED ROWS. See "How to Exclude Portions of
the Pattern from the Output" for more information.

It is not possible for a pattern to permit empty matches and also have unmatched rows. The
reason is that if a row of the row pattern input table cannot be mapped to a primary row pattern
variable, then that row can still be the starting row of an empty match, and will not be regarded
as unmatched, assuming that the pattern permits empty matches. Thus, if a pattern permits
empty matches, then the output using ALL ROWS PER MATCH SHOW EMPTY MATCHES is the same as
the output using ALL ROWS PER MATCH WITH UNMATCHED ROWS. Thus WITH UNMATCHED ROWS is
primarily intended for use with patterns that do not permit empty matches. However, the user
may prefer to specify WITH UNMATCHED ROWS if the user is uncertain whether a pattern may have
empty matches or unmatched rows.

Note that if ALL ROWS PER MATCH WITH UNMATCHED ROWS is used with the default skipping behavior
(AFTER MATCH SKIP PAST LAST ROW), then there is exactly one row in the output for every row in
the input.

Other skipping behaviors are permitted using WITH UNMATCHED ROWS, in which case it becomes
possible for a row to be mapped by more than one match and appear in the row pattern output
table multiple times. Unmatched rows will appear in the output only once.

22.4.3 How to Exclude Portions of the Pattern from the Output
When using ALL ROWS PER MATCH with either the OMIT EMPTY MATCHES or SHOW EMPTY MATCHES
suboptions, rows matching a portion of the PATTERN may be excluded from the row pattern
output table. The excluded portion is bracketed between {- and -} in the PATTERN clause.

For example, the following example finds the longest periods of increasing prices that start with
a price no less than ten.

Chapter 22
Advanced Topics in Pattern Matching

22-34

Example 22-8 Periods of Increasing Prices

SELECT M.Symbol, M.Tstamp, M.Matchno, M.Classfr, M.Price, M.Avgp
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY Symbol
 ORDER BY tstamp
 MEASURES FINAL AVG(S.Price) AS Avgp,
 CLASSIFIER() AS Classfr,
 MATCH_NUMBER() AS Matchno
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST B
 PATTERN ({- A -} B+ {- C+ -})
 SUBSET S = (A,B)
 DEFINE
 A AS A.Price >= 10,
 B AS B.Price > PREV(B.Price),
 C AS C.Price <= PREV(C.Price)
) M
ORDER BY symbol, tstamp;

SYMBOL TSTAMP MATCHNO CLASSFR
PRICE AVGP
_________ ____________ __________ __________ ________
__
ACME 02-APR-22 1 B
17 18.8
ACME 03-APR-22 1 B
19 18.8
ACME 04-APR-22 1 B
21 18.8
ACME 05-APR-22 1 B
25 18.8
ACME 07-APR-22 2 B
15 19.2
ACME 08-APR-22 2 B
20 19.2
ACME 09-APR-22 2 B
24 19.2
ACME 10-APR-22 2 B
25 19.2
ACME 13-APR-22 3 B
25 20
ACME 17-APR-22 4 B 14
16.66666666666666666666666666666666666667
ACME 18-APR-22 4 B 24
16.66666666666666666666666666666666666667

The row pattern output table will only have rows that are mapped to B, the rows mapped to A
and C will be excluded from the output. Although the excluded rows do not appear in the row
pattern output table, they are not excluded from the definitions of union pattern variables, or
from the calculation of scalar expressions in the DEFINE or MEASURES. For example, see the
definitions of the primary pattern variables A and C, the definition of union pattern variable S, or
the Avgp row pattern measure in the previous example.

The exclusion syntax is not permitted with ALL ROWS PER MATCH WITH UNMATCHED ROWS.

The exclusion syntax is permitted with ONE ROW PER MATCH, though it has no effect because in
this case there is only a single summary row per match.

Chapter 22
Advanced Topics in Pattern Matching

22-35

22.4.4 How to Express All Permutations
The PERMUTE syntax may be used to express a pattern that is a permutation of simpler patterns.
For example, PATTERN (PERMUTE (A, B, C)) is equivalent to an alternation of all permutations
of three pattern variables A, B, and C, similar to the following:

PATTERN (A B C | A C B | B A C | B C A | C A B | C B A)

Note that PERMUTE is expanded lexicographically and that each element to permute must be
comma-separated from the other elements. (In this example, because the three pattern
variables A, B, and C are listed in alphabetic order, it follows from lexicographic expansion that
the expanded possibilities are also listed in alphabetic order.) This is significant because
alternatives are attempted in the order written in the expansion. Thus a match to (A B C) is
attempted before a match to (A C B), and so on; the first attempt that succeeds is what can be
called the "winner".

As another example:

PATTERN (PERMUTE (X{3}, B C?, D))

This is equivalent to the following:

PATTERN ((X{3} B C? D)
| (X{3} D B C?)
| (B C? X{3} D)
| (B C? D X{3})
| (D X{3} B C?)
| (D B C? X{3}))

Note that the pattern elements "B C?" are not comma-separated and so they are treated as a
single unit.)

22.5 Rules and Restrictions in Pattern Matching
This section discusses the following rules and restrictions:

• Input Table Requirements in Pattern Matching

• Prohibited Nesting in the MATCH_RECOGNIZE Clause

• Concatenated MATCH_RECOGNIZE Clause

• Aggregate Restrictions

22.5.1 Input Table Requirements in Pattern Matching
The row pattern input table is the input argument to MATCH_RECOGNIZE. You can use a table or
view, or a named query (defined in a WITH clause). The row pattern input table can also be a
derived table (also known as in-line view). For example.

FROM (SELECT S.Name, T.Tstamp, T.Price
 FROM Ticker T, SymbolNames S
 WHERE T.Symbol = S.Symbol)
MATCH_RECOGNIZE (...) M

The row pattern input table cannot be a joined table. The work-around is to use a derived table,
such as the following:

Chapter 22
Rules and Restrictions in Pattern Matching

22-36

FROM (SELECT * FROM A LEFT OUTER JOIN B ON (A.X = B.Y))
MATCH_RECOGNIZE (...) M

Column names in the pattern input table must be unambiguous. If the row pattern input table is
a base table or a view, this is not a problem, because SQL does not allow ambiguous column
names in a base table or view. This is only an issue when the row pattern input table is a
derived table. For example, consider a join of two tables, Emp and Dept, each of which has a
column called Name. The following is a syntax error:

FROM (SELECT D.Name, E.Name, E.Empno, E.Salary
 FROM Dept D, Emp E
 WHERE D.Deptno = E.Deptno)
MATCH_RECOGNIZE (
 PARTITION BY D.Name
 ...)

The previous example is an error because the variable D is not visible within the
MATCH_RECOGNIZE clause (The scope of D is just the derived table). Rewriting similar to the
following does not help:

FROM (SELECT D.Name, E.Name, E.Empno, E.Salary
 FROM Dept D, Emp E
 WHERE D.Deptno = E.Deptno)
MATCH_RECOGNIZE (
 PARTITION BY Name
 ...)

This rewrite eliminates the use of the variable D within the MATCH_RECOGNIZE clause. However,
now the error is that Name is ambiguous, because there are two columns of the derived table
called Name. The way to handle this is to disambiguate the column names within the derived
table itself, similar to the following:

FROM (SELECT D.Name AS Dname, E.Name AS Ename,
 E.Empno, E.Salary
 FROM Dept D, Emp E
 WHERE D.Deptno = E.Deptno)
MATCH_RECOGNIZE (
 PARTITION BY Dname
 ...)

See Also:

Oracle Database SQL Language Reference

22.5.2 Prohibited Nesting in the MATCH_RECOGNIZE Clause
The following kinds of nesting are prohibited in the MATCH_RECOGNIZE clause:

• Nesting one MATCH_RECOGNIZE clause within another.

• Outer references in the MEASURES clause or the DEFINE subclause. This means that a
MATCH_RECOGNIZE clause cannot reference any table in an outer query block except the row
pattern input table.

• Correlated subqueries cannot be used in MEASURES or DEFINE. Also, subqueries in
MEASURES or DEFINE cannot reference pattern variables.

Chapter 22
Rules and Restrictions in Pattern Matching

22-37

• The MATCH_RECOGNIZE clause cannot be used in recursive queries.

• The SELECT FOR UPDATE statement cannot use the MATCH_RECOGNIZE clause.

22.5.3 Concatenated MATCH_RECOGNIZE Clause
Note that it is not prohibited to feed the output of one MATCH_RECOGNIZE clause into the input of
another, as in this example:

SELECT ...
FROM (SELECT *
 FROM Ticker
 MATCH_RECOGNIZE (...))
 MATCH_RECOGNIZE (...)

In this example, the first MATCH_RECOGNIZE clause is in a derived table, which then provides the
input to the second MATCH_RECOGNIZE.

22.5.4 Aggregate Restrictions
The aggregate functions COUNT, SUM, AVG, MAX, and MIN can be used in both the MEASURES and
DEFINE clauses. The DISTINCT keyword is not supported.

22.6 Examples of Pattern Matching
This section contains the following types of advanced pattern matching examples:

• Pattern Matching Examples: Stock Market

• Pattern Matching Examples: Security Log Analysis

• Pattern Matching Examples: Sessionization

• Pattern Matching Example: Financial Tracking

22.6.1 Pattern Matching Examples: Stock Market
This section contains pattern matching examples that are based on common tasks involving
share prices and patterns.

Example 22-9 Price Dips of a Specified Magnitude

The query in Example 22-9 shows stocks where the current price is more than a specific
percentage (in this example 8%) below the prior day's closing price.

CREATE TABLE Ticker3Wave (SYMBOL VARCHAR2(10), tstamp DATE, PRICE NUMBER);

INSERT INTO Ticker3Wave VALUES('ACME', '01-Apr-22', 1000);
INSERT INTO Ticker3Wave VALUES('ACME', '02-Apr-22', 775);
INSERT INTO Ticker3Wave VALUES('ACME', '03-Apr-22', 900);
INSERT INTO Ticker3Wave VALUES('ACME', '04-Apr-22', 775);
INSERT INTO Ticker3Wave VALUES('ACME', '05-Apr-22', 900);
INSERT INTO Ticker3Wave VALUES('ACME', '06-Apr-22', 775);
INSERT INTO Ticker3Wave VALUES('ACME', '07-Apr-22', 900);
INSERT INTO Ticker3Wave VALUES('ACME', '08-Apr-22', 775);
INSERT INTO Ticker3Wave VALUES('ACME', '09-Apr-22', 800);
INSERT INTO Ticker3Wave VALUES('ACME', '10-Apr-22', 550);
INSERT INTO Ticker3Wave VALUES('ACME', '11-Apr-22', 900);
INSERT INTO Ticker3Wave VALUES('ACME', '12-Apr-22', 800);

Chapter 22
Examples of Pattern Matching

22-38

INSERT INTO Ticker3Wave VALUES('ACME', '13-Apr-22', 1100);
INSERT INTO Ticker3Wave VALUES('ACME', '14-Apr-22', 800);
INSERT INTO Ticker3Wave VALUES('ACME', '15-Apr-22', 550);
INSERT INTO Ticker3Wave VALUES('ACME', '16-Apr-22', 800);
INSERT INTO Ticker3Wave VALUES('ACME', '17-Apr-22', 875);
INSERT INTO Ticker3Wave VALUES('ACME', '18-Apr-22', 950);
INSERT INTO Ticker3Wave VALUES('ACME', '19-Apr-22', 600);
INSERT INTO Ticker3Wave VALUES('ACME', '20-Apr-22', 300);

SELECT *
FROM Ticker3Wave MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES B.tstamp AS timestamp,
 A.price AS Aprice,
 B.price AS Bprice,
 ((B.price - A.price)*100) / A.price AS PctDrop
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO B
 PATTERN (A B)
 DEFINE
 B AS (B.price - A.price) / A.price < -0.08
);

 SYMBOL TIMESTAMP APRICE BPRICE
PCTDROP
_________ ____________ _________ _________ ___
ACME 02-APR-22 1000 775 -22.5
ACME 04-APR-22 900 775 -13.88888888888888888888888888888888888889
ACME 06-APR-22 900 775 -13.88888888888888888888888888888888888889
ACME 08-APR-22 900 775 -13.88888888888888888888888888888888888889
ACME 10-APR-22 800 550 -31.25
ACME 12-APR-22 900 800 -11.11111111111111111111111111111111111111
ACME 14-APR-22 1100 800 -27.27272727272727272727272727272727272727
ACME 15-APR-22 800 550 -31.25
ACME 19-APR-22 950 600 -36.84210526315789473684210526315789473684
ACME 20-APR-22 600 300 -50

Example 22-10 Prices Dips of Specified Magnitude When They Have Returned to the
Original Price

The query in Example 22-10 extends the pattern defined in Example 22-9. It finds a stock with
a price drop of more than 8%. It also seeks zero or more additional days when the stock price
remains below the original price. Then, it identifies when the stock has risen in price to equal or
exceed its initial value. Because it can be useful to know the number of days that the pattern
occurs, it is included here. The start_price column is the starting price of a match and the
end_price column is the end price of a match, when the price is equal to or greater than the
start price.

SELECT *
 FROM Ticker3Wave MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES
 A.tstamp as start_timestamp,
 A.price as start_price,
 B.price as drop_price,
 COUNT(C.*)+1 as cnt_days,
 D.tstamp as end_timestamp,
 D.price as end_price
 ONE ROW PER MATCH
 AFTER MATCH SKIP PAST LAST ROW

Chapter 22
Examples of Pattern Matching

22-39

 PATTERN (A B C* D)
 DEFINE
 B as (B.price - A.price)/A.price < -0.08,
 C as C.price < A.price,
 D as D.price >= A.price
);

SYMBOL START_TIM START_PRICE DROP_PRICE CNT_DAYS END_TIMES END_PRICE
---------- --------- ----------- ---------- -------- --------- ----------
ACME 01-Apr-22 1000 775 11 13-Apr-22 1100
ACME 14-Apr-22 800 550 1 16-Apr-22 800

Example 22-11 Find both V and U Shapes in Trading History

Example 22-11 shows how important it is to take all possible data behavior into account when
defining a pattern. The table TickerVU is just like the first example's table Ticker, except that it
has two equal-price days in a row at the low point of its third bottom, April 16 and 17. This sort
of flat bottom price drop is called a U-shape. Can the original example, Example 22-1,
recognize that the modified data is a lot like a V-shape, and include the U-shape in its output?
No, the query needs to be modified as shown.

CREATE TABLE TickerVU (SYMBOL VARCHAR2(10), tstamp DATE, PRICE NUMBER);

INSERT INTO TickerVU values('ACME', '01-Apr-22', 12);
INSERT INTO TickerVU values('ACME', '02-Apr-22', 17);
INSERT INTO TickerVU values('ACME', '03-Apr-22', 19);
INSERT INTO TickerVU values('ACME', '04-Apr-22', 21);
INSERT INTO TickerVU values('ACME', '05-Apr-22', 25);
INSERT INTO TickerVU values('ACME', '06-Apr-22', 12);
INSERT INTO TickerVU values('ACME', '07-Apr-22', 15);
INSERT INTO TickerVU values('ACME', '08-Apr-22', 20);
INSERT INTO TickerVU values('ACME', '09-Apr-22', 24);
INSERT INTO TickerVU values('ACME', '10-Apr-22', 25);
INSERT INTO TickerVU values('ACME', '11-Apr-22', 19);
INSERT INTO TickerVU values('ACME', '12-Apr-22', 15);
INSERT INTO TickerVU values('ACME', '13-Apr-22', 25);
INSERT INTO TickerVU values('ACME', '14-Apr-22', 25);
INSERT INTO TickerVU values('ACME', '15-Apr-22', 14);
INSERT INTO TickerVU values('ACME', '16-Apr-22', 12);
INSERT INTO TickerVU values('ACME', '17-Apr-22', 12);
INSERT INTO TickerVU values('ACME', '18-Apr-22', 24);
INSERT INTO TickerVU values('ACME', '19-Apr-22', 23);
INSERT INTO TickerVU values('ACME', '20-Apr-22', 22);

What happens if you run your original query of Example 22-1, modified to use this table name?

SELECT *
FROM TickerVU MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 DOWN.tstamp AS bottom_tstamp,
 UP.tstamp AS end_tstamp
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.start_tstamp;

Chapter 22
Examples of Pattern Matching

22-40

SYMBOL START_TST BOTTOM_TS END_TSTAM
---------- --------- --------- ---------
ACME 05-Apr-22 06-Apr-22 10-Apr-22
ACME 10-Apr-22 12-Apr-22 13-Apr-22

Instead of showing three rows of output (one per price drop), the query shows only two. This
happens because no variable was defined to handle a flat stretch of data at the bottom of a
price dip. Now, use a modified version of this query, adding a variable for flat data in the DEFINE
clause and using that variable in the PATTERN clause.

SELECT *
FROM TickerVU MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 DOWN.tstamp AS bottom_tstamp,
 UP.tstamp AS end_tstamp
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ FLAT* UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 FLAT AS FLAT.price = PREV(FLAT.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.start_tstamp;

SYMBOL START_TST BOTTOM_TS END_TSTAM
---------- --------- --------- ---------
ACME 05-Apr-22 06-Apr-22 10-Apr-22
ACME 10-Apr-22 12-Apr-22 13-Apr-22
ACME 14-Apr-22 16-Apr-22 18-Apr-22

Now, you get output that includes all three price dips in the data. The lesson here is to consider
all possible variations in your data sequence and include those possibilities in your PATTERN,
DEFINE, and MEASURES clauses as needed.

Example 22-12 Finding Elliott Wave Pattern: Multiple Instances of Inverted-V

Example 22-12 shows a simple version of a class of stock price patterns referred to as the
Elliott Wave which has multiple consecutive patterns of inverted V-shapes. In this particular
case, the pattern expression searches for 1 or more days up followed by 1 or more days down,
and this sequence must appear five times consecutively with no gaps. That is, the pattern
looks similar to: /\/\/\/\/\.

SELECT MR_ELLIOTT.*
FROM Ticker3Wave MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES
 COUNT(*) as CNT,
 COUNT(P.*) AS CNT_P,
 COUNT(Q.*) AS CNT_Q,
 COUNT(R.*) AS CNT_R,
 COUNT(S.*) AS CNT_S,
 COUNT(T.*) AS CNT_T,
 COUNT(U.*) AS CNT_U,
 COUNT(V.*) AS CNT_V,
 COUNT(W.*) AS CNT_W,
 COUNT(X.*) AS CNT_X,
 COUNT(Y.*) AS CNT_Y,

Chapter 22
Examples of Pattern Matching

22-41

 COUNT(Z.*) AS CNT_Z,
 CLASSIFIER() AS CLS,
 MATCH_NUMBER() AS MNO
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST Z
 PATTERN (P Q+ R+ S+ T+ U+ V+ W+ X+ Y+ Z+)
 DEFINE
 Q AS Q.price > PREV(Q.price),
 R AS R.price < PREV(R.price),
 S AS S.price > PREV(S.price),
 T AS T.price < PREV(T.price),
 U AS U.price > PREV(U.price),
 V AS V.price < PREV(V.price),
 W AS W.price > PREV(W.price),
 X AS X.price < PREV(X.price),
 Y AS Y.price > PREV(Y.price),
 Z AS Z.price < PREV(Z.price)
) MR_ELLIOTT
ORDER BY symbol, tstamp;

SYMB TSTAMP CNT CNT_P CNT_Q CNT_R CNT_S CNT_T CNT_U CNT_V CNT_W CNT_X CNT_Y CNT_Z CLS MNO PRICE
---- --------- ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- --- --- -----
ACME 02-Apr-22 1 1 0 0 0 0 0 0 0 0 0 0 P 1 775
ACME 03-Apr-22 2 1 1 0 0 0 0 0 0 0 0 0 Q 1 900
ACME 04-Apr-22 3 1 1 1 0 0 0 0 0 0 0 0 R 1 775
ACME 05-Apr-22 4 1 1 1 1 0 0 0 0 0 0 0 S 1 900
ACME 06-Apr-22 5 1 1 1 1 1 0 0 0 0 0 0 T 1 775
ACME 07-Apr-22 6 1 1 1 1 1 1 0 0 0 0 0 U 1 900
ACME 08-Apr-22 7 1 1 1 1 1 1 1 0 0 0 0 V 1 775
ACME 09-Apr-22 8 1 1 1 1 1 1 1 1 0 0 0 W 1 800
ACME 10-Apr-22 9 1 1 1 1 1 1 1 1 1 0 0 X 1 550
ACME 11-Apr-22 10 1 1 1 1 1 1 1 1 1 1 0 Y 1 900
ACME 12-Apr-22 11 1 1 1 1 1 1 1 1 1 1 1 Z 1 800

11 rows selected.

Example 22-13 Finding Elliott Waves and Specifying a Range of Acceptable Row
Counts

Similar to Example 22-12, Example 22-13 specifies an Elliott Wave of inverted Vs. However, in
this case, regular expressions are used to specify for each pattern variable the number of
consecutive rows to match, and it is specified as a range. Set each pattern variable to seek
three or four consecutive matches, using the syntax "{3,4}". The output shows all rows for
one full match of the pattern and lets you see exactly when each pattern variable has its
beginning and end. Note that variables W and X each have four rows which match, while
variables Y and Z each have only three rows matching.

CREATE TABLE tickerwavemulti (symbol VARCHAR2(10), tstamp DATE, price NUMBER);

INSERT INTO tickerwavemulti VALUES('ACME', '01-May-22', 36.25);
INSERT INTO tickerwavemulti VALUES('BLUE', '01-May-22', 177.85);
INSERT INTO tickerwavemulti VALUES('EDGY', '01-May-22', 27.18);
INSERT INTO tickerwavemulti VALUES('ACME', '02-May-22', 36.47);
INSERT INTO tickerwavemulti VALUES('BLUE', '02-May-22', 177.25);
INSERT INTO tickerwavemulti VALUES('EDGY', '02-May-22', 27.41);
INSERT INTO tickerwavemulti VALUES('ACME', '03-May-22', 36.36);
INSERT INTO tickerwavemulti VALUES('BLUE', '03-May-22', 176.16);
INSERT INTO tickerwavemulti VALUES('EDGY', '03-May-22', 27.43);
INSERT INTO tickerwavemulti VALUES('ACME', '04-May-22', 36.25);
INSERT INTO tickerwavemulti VALUES('BLUE', '04-May-22', 176.28);
INSERT INTO tickerwavemulti VALUES('EDGY', '04-May-22', 27.56);
INSERT INTO tickerwavemulti VALUES('ACME', '05-May-22', 36.36);

Chapter 22
Examples of Pattern Matching

22-42

INSERT INTO tickerwavemulti VALUES('BLUE', '05-May-22', 177.72);
INSERT INTO tickerwavemulti VALUES('EDGY', '05-May-22', 27.31);
INSERT INTO tickerwavemulti VALUES('ACME', '06-May-22', 36.70);
INSERT INTO tickerwavemulti VALUES('BLUE', '06-May-22', 178.36);
INSERT INTO tickerwavemulti VALUES('EDGY', '06-May-22', 27.23);
INSERT INTO tickerwavemulti VALUES('ACME', '07-May-22', 36.50);
INSERT INTO tickerwavemulti VALUES('BLUE', '07-May-22', 178.93);
INSERT INTO tickerwavemulti VALUES('EDGY', '07-May-22', 27.08);
INSERT INTO tickerwavemulti VALUES('ACME', '08-May-22', 36.66);
INSERT INTO tickerwavemulti VALUES('BLUE', '08-May-22', 178.18);
INSERT INTO tickerwavemulti VALUES('EDGY', '08-May-22', 26.90);
INSERT INTO tickerwavemulti VALUES('ACME', '09-May-22', 36.98);
INSERT INTO tickerwavemulti VALUES('BLUE', '09-May-22', 179.15);
INSERT INTO tickerwavemulti VALUES('EDGY', '09-May-22', 26.73);
INSERT INTO tickerwavemulti VALUES('ACME', '10-May-22', 37.08);
INSERT INTO tickerwavemulti VALUES('BLUE', '10-May-22', 180.39);
INSERT INTO tickerwavemulti VALUES('EDGY', '10-May-22', 26.86);
INSERT INTO tickerwavemulti VALUES('ACME', '11-May-22', 37.43);
INSERT INTO tickerwavemulti VALUES('BLUE', '11-May-22', 181.44);
INSERT INTO tickerwavemulti VALUES('EDGY', '11-May-22', 26.78);
INSERT INTO tickerwavemulti VALUES('ACME', '12-May-22', 37.68);
INSERT INTO tickerwavemulti VALUES('BLUE', '12-May-22', 183.11);
INSERT INTO tickerwavemulti VALUES('EDGY', '12-May-22', 26.59);
INSERT INTO tickerwavemulti VALUES('ACME', '13-May-22', 37.66);
INSERT INTO tickerwavemulti VALUES('BLUE', '13-May-22', 181.50);
INSERT INTO tickerwavemulti VALUES('EDGY', '13-May-22', 26.39);
INSERT INTO tickerwavemulti VALUES('ACME', '14-May-22', 37.32);
INSERT INTO tickerwavemulti VALUES('BLUE', '14-May-22', 180.65);
INSERT INTO tickerwavemulti VALUES('EDGY', '14-May-22', 26.31);
INSERT INTO tickerwavemulti VALUES('ACME', '15-May-22', 37.16);
INSERT INTO tickerwavemulti VALUES('BLUE', '15-May-22', 179.51);
INSERT INTO tickerwavemulti VALUES('EDGY', '15-May-22', 26.53);
INSERT INTO tickerwavemulti VALUES('ACME', '16-May-22', 36.98);
INSERT INTO tickerwavemulti VALUES('BLUE', '16-May-22', 180.00);
INSERT INTO tickerwavemulti VALUES('EDGY', '16-May-22', 26.76);
INSERT INTO tickerwavemulti VALUES('ACME', '17-May-22', 37.19);
INSERT INTO tickerwavemulti VALUES('BLUE', '17-May-22', 179.24);
INSERT INTO tickerwavemulti VALUES('EDGY', '17-May-22', 26.63);
INSERT INTO tickerwavemulti VALUES('ACME', '18-May-22', 37.45);
INSERT INTO tickerwavemulti VALUES('BLUE', '18-May-22', 180.48);
INSERT INTO tickerwavemulti VALUES('EDGY', '18-May-22', 26.84);
INSERT INTO tickerwavemulti VALUES('ACME', '19-May-22', 37.79);
INSERT INTO tickerwavemulti VALUES('BLUE', '19-May-22', 181.21);
INSERT INTO tickerwavemulti VALUES('EDGY', '19-May-22', 26.90);
INSERT INTO tickerwavemulti VALUES('ACME', '20-May-22', 37.49);
INSERT INTO tickerwavemulti VALUES('BLUE', '20-May-22', 179.79);
INSERT INTO tickerwavemulti VALUES('EDGY', '20-May-22', 27.06);
INSERT INTO tickerwavemulti VALUES('ACME', '21-May-22', 37.30);
INSERT INTO tickerwavemulti VALUES('BLUE', '21-May-22', 181.19);
INSERT INTO tickerwavemulti VALUES('EDGY', '21-May-22', 27.17);
INSERT INTO tickerwavemulti VALUES('ACME', '22-May-22', 37.08);
INSERT INTO tickerwavemulti VALUES('BLUE', '22-May-22', 179.88);
INSERT INTO tickerwavemulti VALUES('EDGY', '22-May-22', 26.95);
INSERT INTO tickerwavemulti VALUES('ACME', '23-May-22', 37.34);
INSERT INTO tickerwavemulti VALUES('BLUE', '23-May-22', 181.21);
INSERT INTO tickerwavemulti VALUES('EDGY', '23-May-22', 26.71);
INSERT INTO tickerwavemulti VALUES('ACME', '24-May-22', 37.54);
INSERT INTO tickerwavemulti VALUES('BLUE', '24-May-22', 181.94);
INSERT INTO tickerwavemulti VALUES('EDGY', '24-May-22', 26.96);
INSERT INTO tickerwavemulti VALUES('ACME', '25-May-22', 37.69);
INSERT INTO tickerwavemulti VALUES('BLUE', '25-May-22', 180.88);
INSERT INTO tickerwavemulti VALUES('EDGY', '25-May-22', 26.72);

Chapter 22
Examples of Pattern Matching

22-43

INSERT INTO tickerwavemulti VALUES('ACME', '26-May-22', 37.60);
INSERT INTO tickerwavemulti VALUES('BLUE', '26-May-22', 180.72);
INSERT INTO tickerwavemulti VALUES('EDGY', '26-May-22', 26.47);
INSERT INTO tickerwavemulti VALUES('ACME', '27-May-22', 37.93);
INSERT INTO tickerwavemulti VALUES('BLUE', '27-May-22', 181.54);
INSERT INTO tickerwavemulti VALUES('EDGY', '27-May-22', 26.73);
INSERT INTO tickerwavemulti VALUES('ACME', '28-May-22', 38.17);
INSERT INTO tickerwavemulti VALUES('BLUE', '28-May-22', 182.93);
INSERT INTO tickerwavemulti VALUES('EDGY', '28-May-22', 26.89);

SELECT MR_EW.*
FROM tickerwavemulti MATCH_RECOGNIZE (
 PARTITION by symbol
 ORDER by tstamp
 MEASURES V.tstamp AS START_T,
 Z.tstamp AS END_T,
 COUNT(V.price) AS CNT_V,
 COUNT(W.price) AS UP__W,
 COUNT(X.price) AS DWN_X,
 COUNT(Y.price) AS UP__Y,
 COUNT(Z.price) AS DWN_Z,
 MATCH_NUMBER() AS MNO
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST Z
 PATTERN (V W{3,4} X{3,4} Y{3,4} Z{3,4})
 DEFINE
 W AS W.price > PREV(W.price),
 X AS X.price < PREV(X.price),
 Y AS Y.price > PREV(Y.price),
 Z AS Z.price < PREV(Z.price)
) MR_EW
ORDER BY symbol, tstamp;

SYMBOL TSTAMP START_T END_T CNT_V UP__W DWN_X UP__Y
DWN_Z MNO PRICE
_________ ____________ ____________ ____________ ________ ________ ________ ________
________ ______ ________
ACME 08-MAY-22 08-MAY-22 1 0 0
0 0 1 36.66
ACME 09-MAY-22 08-MAY-22 1 1 0
0 0 1 36.98
ACME 10-MAY-22 08-MAY-22 1 2 0
0 0 1 37.08
ACME 11-MAY-22 08-MAY-22 1 3 0
0 0 1 37.43
ACME 12-MAY-22 08-MAY-22 1 4 0
0 0 1 37.68
ACME 13-MAY-22 08-MAY-22 1 4 1
0 0 1 37.66
ACME 14-MAY-22 08-MAY-22 1 4 2
0 0 1 37.32
ACME 15-MAY-22 08-MAY-22 1 4 3
0 0 1 37.16
ACME 16-MAY-22 08-MAY-22 1 4 4
0 0 1 36.98
ACME 17-MAY-22 08-MAY-22 1 4 4
1 0 1 37.19
ACME 18-MAY-22 08-MAY-22 1 4 4
2 0 1 37.45
ACME 19-MAY-22 08-MAY-22 1 4 4
3 0 1 37.79
ACME 20-MAY-22 08-MAY-22 20-MAY-22 1 4 4

Chapter 22
Examples of Pattern Matching

22-44

3 1 1 37.49
ACME 21-MAY-22 08-MAY-22 21-MAY-22 1 4 4
3 2 1 37.3
ACME 22-MAY-22 08-MAY-22 22-MAY-22 1 4 4
3 3 1 37.08

Example 22-14 Skipping into the Middle of a Match to Check for Overlapping Matches

Example 22-14 highlights the power of the AFTER MATCH SKIP TO clause to find overlapping
matches. It has a simple pattern that seeks a W-shape made up of pattern variables Q, R, S,
and T. For each leg of the W, the number of rows can be one or more. The match also takes
advantage of the AFTER MATCH SKIP TO clause: when a match is found, it will skip forward only
to the last R value, which is the midpoint of the W-shape. This enables the query to find
matches in the W-shape where the second half of a W-shape is the first half of a following
overlapped W-shape. In the following output, you can see that match one ends on April 5, but
match two overlaps and begins on April 3.

SELECT MR_W.*
FROM Ticker3Wave MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES
 MATCH_NUMBER() AS MNO,
 P.tstamp AS START_T,
 T.tstamp AS END_T,
 MAX(P.price) AS TOP_L,
 MIN(Q.price) AS BOTT1,
 MAX(R.price) AS TOP_M,
 MIN(S.price) AS BOTT2,
 MAX(T.price) AS TOP_R
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST R
 PATTERN (P Q+ R+ S+ T+)
 DEFINE
 Q AS Q.price < PREV(Q.price),
 R AS R.price > PREV(R.price),
 S AS S.price < PREV(S.price),
 T AS T.price > PREV(T.price)
) MR_W
ORDER BY symbol, mno, tstamp;

SYMB TSTAMP MNO START_T END_T TOP_L BOTT1 TOP_M BOTT2 TOP_R PRICE
---- --------- ----- --------- --------- ----- ----- ----- ----- ----- -----
ACME 01-Apr-22 1 01-Apr-22 1000 1000
ACME 02-Apr-22 1 01-Apr-22 1000 775 775
ACME 03-Apr-22 1 01-Apr-22 1000 775 900 900
ACME 04-Apr-22 1 01-Apr-22 1000 775 900 775 775
ACME 05-Apr-22 1 01-Apr-22 05-Apr-22 1000 775 900 775 900 900
ACME 03-Apr-22 2 03-Apr-22 900 900
ACME 04-Apr-22 2 03-Apr-22 900 775 775
ACME 05-Apr-22 2 03-Apr-22 900 775 900 900
ACME 06-Apr-22 2 03-Apr-22 900 775 900 775 775
ACME 07-Apr-22 2 03-Apr-22 07-Apr-22 900 775 900 775 900 900
ACME 05-Apr-22 3 05-Apr-22 900 900
ACME 06-Apr-22 3 05-Apr-22 900 775 775
ACME 07-Apr-22 3 05-Apr-22 900 775 900 900
ACME 08-Apr-22 3 05-Apr-22 900 775 900 775 775
ACME 09-Apr-22 3 05-Apr-22 09-Apr-22 900 775 900 775 800 800
ACME 07-Apr-22 4 07-Apr-22 900 900
ACME 08-Apr-22 4 07-Apr-22 900 775 775
ACME 09-Apr-22 4 07-Apr-22 900 775 800 800
ACME 10-Apr-22 4 07-Apr-22 900 775 800 550 550

Chapter 22
Examples of Pattern Matching

22-45

ACME 11-Apr-22 4 07-Apr-22 11-Apr-22 900 775 800 550 900 900
ACME 09-Apr-22 5 09-Apr-22 800 800
ACME 10-Apr-22 5 09-Apr-22 800 550 550
ACME 11-Apr-22 5 09-Apr-22 800 550 900 900
ACME 12-Apr-22 5 09-Apr-22 800 550 900 800 800
ACME 13-Apr-22 5 09-Apr-22 13-Apr-22 800 550 900 800 1100 1100
ACME 11-Apr-22 6 11-Apr-22 900 900
ACME 12-Apr-22 6 11-Apr-22 900 800 800
ACME 13-Apr-22 6 11-Apr-22 900 800 1100 1100
ACME 14-Apr-22 6 11-Apr-22 900 800 1100 800 800
ACME 15-Apr-22 6 11-Apr-22 900 800 1100 550 550
ACME 16-Apr-22 6 11-Apr-22 16-Apr-22 900 800 1100 550 800 800
ACME 17-Apr-22 6 11-Apr-22 17-Apr-22 900 800 1100 550 875 875
ACME 18-Apr-22 6 11-Apr-22 18-Apr-22 900 800 1100 550 950 950

Example 22-15 Find Large Transactions Occurring Within a Specified Time Interval

In Example 22-15, you find stocks which have heavy trading, that is, large transactions in a
concentrated period. In this example, heavy trading is defined as three transactions occurring
in a single hour where each transaction was for more than 30,000 shares. Note that it is
essential to include a pattern variable such as B, so the pattern can accept the trades that do
not meet the condition. Without the B variable, the pattern would only match cases where there
were three consecutive transactions meeting the conditions.

The query in this example uses table stockT04.

CREATE TABLE STOCKT04 (symbol varchar2(10), tstamp TIMESTAMP,
 price NUMBER, volume NUMBER);

INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.00.00.000000 PM', 35, 35000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.05.00.000000 PM', 35, 15000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.10.00.000000 PM', 35, 5000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.11.00.000000 PM', 35, 42000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.16.00.000000 PM', 35, 7000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.19.00.000000 PM', 35, 5000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.20.00.000000 PM', 35, 5000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.33.00.000000 PM', 35, 55000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.36.00.000000 PM', 35, 15000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.48.00.000000 PM', 35, 15000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 12.59.00.000000 PM', 35, 15000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 01.09.00.000000 PM', 35, 55000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 01.19.00.000000 PM', 35, 55000);
INSERT INTO STOCKT04 VALUES('ACME', '01-May-22 01.29.00.000000 PM', 35, 15000);

SELECT *
FROM stockT04 MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES FIRST (A.tstamp) AS in_hour_of_trade,
 SUM (A.volume) AS sum_of_large_volumes
 ONE ROW PER MATCH
 AFTER MATCH SKIP PAST LAST ROW
 PATTERN (A B* A B* A)
 DEFINE
 A AS ((A.volume > 30000) AND
 ((A.tstamp - FIRST (A.tstamp)) < '0 01:00:00.00')),
 B AS ((B.volume <= 30000) AND ((B.tstamp - FIRST (A.tstamp)) < '0
 01:00:00.00'))
);

SYMBOL IN_HOUR_OF_TRADE SUM_OF_LARGE_VOLUMES

Chapter 22
Examples of Pattern Matching

22-46

------ ----------------------------- --------------------
ACME 01-May-22 12.00.00.000000 PM 132000

1 row selected.

22.6.2 Pattern Matching Examples: Security Log Analysis
The examples in this section deal with a computer system that issues error messages and
authentication checks, and stores the events in a system file. To determine if there are security
issues and other problems, you want to analyze the system file. This activity is also referred to
as log combing because the software combs through the file to find items of concern. Note that
the source data for these examples is not shown because it would use too much space. In
these examples, the AUTHENLOG table comes from the log file.

Example 22-16 Four or More Consecutive Identical Messages

The query in this example seeks occurrences of four or more consecutive identical messages
from a set of three possible 'errtype' values: error, notice, and warn.

SELECT MR_SEC.ERRTYPE,
 MR_SEC.MNO AS Pattern,
 MR_SEC.CNT AS Count,
 SUBSTR(MR_SEC.MSG_W, 1, 30) AS Message,
 MR_SEC.START_T AS Starting_on,
 MR_SEC.END_T AS Ending_on
FROM AUTHENLOG
MATCH_RECOGNIZE(
 PARTITION BY errtype
 ORDER BY tstamp
 MEASURES
 S.tstamp AS START_T,
 W.tstamp AS END_T,
 W.message AS MSG_W,
 COUNT(*) AS CNT,
 MATCH_NUMBER() AS MNO
 ONE ROW PER MATCH
 AFTER MATCH SKIP PAST LAST ROW
 PATTERN (S W{3,})
 DEFINE W AS W.message = PREV (W.message)
) MR_SEC
ORDER BY ErrType, Pattern;

ERRTYP PATTERN COUNT MESSAGE STARTING_ON ENDING_ON
------ ------- ----- ------------------- ---------------------------- ----------------------------
error 1 4 script not found or 09-JAN-10 12.00.06.000006 PM 09-JAN-10 12.00.15.000015 PM
error 2 4 File does not exist 04-FEB-10 12.00.18.000018 PM 04-FEB-10 12.00.23.000023 PM
error 3 4 File does not exist 06-FEB-10 12.00.25.000025 PM 06-FEB-10 12.00.33.000033 PM
error 4 4 File does not exist 13-FEB-10 12.00.19.000019 PM 14-FEB-10 12.00.07.000007 PM
error 5 5 File does not exist 28-FEB-10 12.00.27.000027 PM 28-FEB-10 12.00.34.000034 PM
error 6 4 script not found or 05-APR-10 12.00.19.000019 PM 05-MAR-10 12.00.23.000023 PM
error 7 4 File does not exist 07-MAR-10 12.00.31.000031 PM 08-MAR-10 12.00.02.000002 PM
error 8 4 File does not exist 14-MAR-10 12.00.19.000019 PM 15-MAR-10 12.00.00.000000 PM
error 9 4 File does not exist 20-MAR-10 12.00.02.000002 PM 20-MAR-10 12.00.06.000006 PM
error 10 5 File does not exist 28-APR-10 12.00.24.000024 PM 28-APR-10 12.00.31.000031 PM
error 11 5 script not found or 01-MAY-10 12.00.15.000015 PM 02-MAY-10 12.00.11.000011 PM
error 12 5 user jsmith: authen 02-MAY-10 12.00.54.000054 PM 03-MAY-10 12.00.11.000011 PM
error 13 4 File does not exist 09-MAY-10 12.00.46.000046 PM 10-MAY-10 12.00.01.000001 PM
error 14 4 File does not exist 20-MAY-10 12.00.42.000042 PM 20-MAY-10 12.00.47.000047 PM
error 15 4 user jsmith: authen 21-MAY-10 12.00.08.000008 PM 21-MAY-10 12.00.18.000018 PM
error 16 4 File does not exist 24-MAY-10 12.00.07.000007 PM 25-MAY-10 12.00.01.000001 PM
error 17 4 user jsmith: authen 12-JUN-10 12.00.00.000000 PM 12-JUN-10 12.00.07.000007 PM

Chapter 22
Examples of Pattern Matching

22-47

error 18 4 script not found or 12-JUN-10 12.00.18.000018 PM 13-JUN-10 12.00.01.000001 PM
error 19 4 File does not exist 17-JUN-10 12.00.23.000023 PM 17-JUN-10 12.00.30.000030 PM
error 20 5 File does not exist 21-JUN-10 12.00.31.000031 PM 22-JUN-10 12.00.01.000001 PM
error 21 4 user jsmith: authen 22-JUN-10 12.00.36.000036 PM 22-JUN-10 12.00.56.000056 PM
error 22 4 File does not exist 08-JUL-10 12.00.29.000029 PM 08-JUL-10 12.00.32.000032 PM
error 23 6 user jsmith: authen 10-JUL-10 12.00.43.000043 PM 11-JUL-10 12.00.06.000006 PM
error 24 4 File does not exist 12-JUL-10 12.00.09.000009 PM 12-JUL-10 12.00.22.000022 PM
error 25 4 File does not exist 26-JUL-10 12.00.18.000018 PM 27-JUL-10 12.00.04.000004 PM
error 26 4 File does not exist 03-AUG-10 12.00.02.000002 PM 03-AUG-10 12.00.11.000011 PM
error 27 4 File does not exist 23-AUG-10 12.00.04.000004 PM 23-AUG-10 12.00.18.000018 PM
error 28 5 File does not exist 24-AUG-10 12.00.09.000009 PM 26-AUG-10 12.00.00.000000 PM
error 29 4 script not found or 09-SEP-10 12.00.03.000003 PM 09-SEP-10 12.00.09.000009 PM
error 30 4 script not found or 11-SEP-10 12.00.22.000022 PM 11-SEP-10 12.00.31.000031 PM
error 31 4 script not found or 23-SEP-10 12.00.09.000009 PM 23-SEP-10 12.00.16.000016 PM
error 32 5 script not found or 17-OCT-10 12.00.02.000002 PM 18-OCT-10 12.00.09.000009 PM
error 33 4 File does not exist 20-OCT-10 12.00.35.000035 PM 21-OCT-10 12.00.00.000000 PM
error 34 5 File does not exist 21-OCT-10 12.00.16.000016 PM 21-OCT-10 12.00.35.000035 PM
error 35 4 File does not exist 26-OCT-10 12.00.25.000025 PM 26-OCT-10 12.00.35.000035 PM
error 36 4 user jsmith: authen 26-OCT-10 12.00.43.000043 PM 26-OCT-10 12.00.49.000049 PM
error 37 4 user jsmith: authen 01-NOV-10 12.00.35.000035 PM 01-NOV-10 12.00.39.000039 PM
error 38 4 File does not exist 09-NOV-10 12.00.46.000046 PM 10-NOV-10 12.00.09.000009 PM
error 39 4 user jsmith: authen 11-NOV-10 12.00.14.000014 PM 11-NOV-10 12.00.30.000030 PM
error 40 4 user jsmith: authen 22-NOV-10 12.00.46.000046 PM 23-NOV-10 12.00.07.000007 PM
error 41 4 script not found or 03-DEC-10 12.00.14.000014 PM 03-DEC-10 12.00.27.000027 PM
error 42 5 File does not exist 07-DEC-10 12.00.02.000002 PM 07-DEC-10 12.00.37.000037 PM
error 43 4 user jsmith: authen 11-DEC-10 12.00.06.000006 PM 11-DEC-10 12.00.11.000011 PM
error 44 4 user jsmith: authen 19-DEC-10 12.00.26.000026 PM 20-DEC-10 12.00.04.000004 PM
error 45 4 user jsmith: authen 25-DEC-10 12.00.11.000011 PM 25-DEC-10 12.00.17.000017 PM
error 46 4 File does not exist 04-JAN-11 12.00.09.000009 PM 04-JAN-11 12.00.19.000019 PM
error 47 4 user jsmith: authen 10-JAN-11 12.00.23.000023 PM 11-JAN-11 12.00.03.000003 PM
error 48 4 File does not exist 11-JAN-11 12.00.14.000014 PM 11-JAN-11 12.00.24.000024 PM
notice 1 4 Child 3228: Release 08-JAN-10 12.00.38.000038 PM 09-JAN-10 12.00.02.000002 PM
notice 2 4 Child 3228: Release 16-JAN-10 12.00.10.000010 PM 17-JAN-10 12.00.13.000013 PM
notice 3 4 Child 1740: Startin 28-JAN-10 12.00.17.000017 PM 28-JAN-10 12.00.22.000022 PM
notice 4 4 Child 1740: Child p 08-MAR-10 12.00.37.000037 PM 08-MAR-10 12.00.40.000040 PM
notice 5 4 Child 3228: All wor 19-APR-10 12.00.10.000010 PM 19-APR-10 12.00.15.000015 PM
notice 6 4 Child 1740: Acquire 02-MAY-10 12.00.38.000038 PM 02-MAY-10 12.00.46.000046 PM
notice 7 4 Child 1740: Starting 09-MAY-10 12.00.03.000003 PM 09-MAY-10 12.00.08.000008 PM
notice 8 4 Child 3228: Child pr 18-MAY-10 12.00.38.000038 PM 18-MAY-10 12.00.45.000045 PM
notice 9 4 Child 3228: All work 25-JUL-10 12.00.04.000004 PM 25-JUL-10 12.00.09.000009 PM
notice 10 4 Child 3228: All work 24-AUG-10 12.00.11.000011 PM 24-AUG-10 12.00.18.000018 PM
notice 11 4 Child 1740: Starting 19-SEP-10 12.00.05.000005 PM 19-SEP-10 12.00.15.000015 PM
notice 12 4 Child 1740: Acquired 06-OCT-10 12.00.07.000007 PM 06-OCT-10 12.00.13.000013 PM
notice 13 4 Child 1740: Starting 09-JAN-11 12.00.12.000012 PM 09-JAN-11 12.00.18.000018 PM
warn 1 3448 The ScriptAlias dire 01-JAN-10 12.00.00.000000 PM 17-JAN-11 12.00.18.000018 PM

62 rows selected.

Example 22-17 Four or More Consecutive Authentication Failures

In this example, you are looking for four or more consecutive authentication failures, regardless
of IP origination address. The output shows two matches, the first with five rows and the last
one with four rows.

SELECT MR_SEC2.ERRTYPE AS Authen,
 MR_SEC2.MNO AS Pattern,
 MR_SEC2.CNT AS Count,
 MR_SEC2.IPADDR AS On_IP,
 MR_SEC2.TSTAMP AS Occurring_on
FROM AUTHENLOG
MATCH_RECOGNIZE(
 PARTITION BY errtype

Chapter 22
Examples of Pattern Matching

22-48

 ORDER BY tstamp
 MEASURES
 COUNT(*) AS CNT,
 MATCH_NUMBER() AS MNO
 ALL ROWS PER MATCH
 AFTER MATCH SKIP TO LAST W
 PATTERN (S W{3,})
 DEFINE S AS S.message LIKE '%authenticat%',
 W AS W.message = PREV (W.message)
) MR_SEC2
ORDER BY Authen, Pattern, Count;

AUTHEN PATTERN COUNT ON_IP OCCURRING_ON
------ ------- --------- ------------ ----------------------------
error 1 1 10.111.112.3 02-MAY-10 12.00.54.000054 PM
error 1 2 10.111.112.6 03-MAY-10 12.00.07.000007 PM
error 1 3 10.111.112.6 03-MAY-10 12.00.08.000008 PM
error 1 4 10.111.112.6 03-MAY-10 12.00.09.000009 PM
error 1 5 10.111.112.6 03-MAY-10 12.00.11.000011 PM
error 2 1 10.111.112.5 21-MAY-10 12.00.08.000008 PM
error 2 2 10.111.112.6 21-MAY-10 12.00.16.000016 PM
error 2 3 10.111.112.4 21-MAY-10 12.00.17.000017 PM
error 2 4 10.111.112.6 21-MAY-10 12.00.18.000018 PM
error 3 1 10.111.112.5 12-JUN-10 12.00.00.000000 PM
error 3 2 10.111.112.4 12-JUN-10 12.00.04.000004 PM
error 3 3 10.111.112.3 12-JUN-10 12.00.06.000006 PM
error 3 4 10.111.112.3 12-JUN-10 12.00.07.000007 PM
error 4 1 10.111.112.5 22-JUN-10 12.00.36.000036 PM
error 4 2 10.111.112.5 22-JUN-10 12.00.50.000050 PM
error 4 3 10.111.112.5 22-JUN-10 12.00.53.000053 PM
error 4 4 10.111.112.6 22-JUN-10 12.00.56.000056 PM
error 5 1 10.111.112.4 10-JUL-10 12.00.43.000043 PM
error 5 2 10.111.112.6 10-JUL-10 12.00.48.000048 PM
error 5 3 10.111.112.6 10-JUL-10 12.00.51.000051 PM
error 5 4 10.111.112.3 11-JUL-10 12.00.00.000000 PM
error 5 5 10.111.112.5 11-JUL-10 12.00.04.000004 PM
error 5 6 10.111.112.3 11-JUL-10 12.00.06.000006 PM
error 6 1 10.111.112.4 26-OCT-10 12.00.43.000043 PM
error 6 2 10.111.112.4 26-OCT-10 12.00.47.000047 PM
error 6 3 10.111.112.4 26-OCT-10 12.00.48.000048 PM
error 6 4 10.111.112.5 26-OCT-10 12.00.49.000049 PM
error 7 1 10.111.112.3 01-NOV-10 12.00.35.000035 PM
error 7 2 10.111.112.5 01-NOV-10 12.00.37.000037 PM
error 7 3 10.111.112.5 01-NOV-10 12.00.38.000038 PM
error 7 4 10.111.112.3 01-NOV-10 12.00.39.000039 PM
error 8 1 10.111.112.6 11-NOV-10 12.00.14.000014 PM
error 8 2 10.111.112.5 11-NOV-10 12.00.20.000020 PM
error 8 3 10.111.112.6 11-NOV-10 12.00.24.000024 PM
error 8 4 10.111.112.3 11-NOV-10 12.00.30.000030 PM
error 9 1 10.111.112.5 22-NOV-10 12.00.46.000046 PM
error 9 2 10.111.112.5 22-NOV-10 12.00.51.000051 PM
error 9 3 10.111.112.3 23-NOV-10 12.00.06.000006 PM
error 9 4 10.111.112.3 23-NOV-10 12.00.07.000007 PM
error 10 1 10.111.112.5 11-DEC-10 12.00.06.000006 PM
error 10 2 10.111.112.4 11-DEC-10 12.00.07.000007 PM
error 10 3 10.111.112.5 11-DEC-10 12.00.08.000008 PM
error 10 4 10.111.112.6 11-DEC-10 12.00.11.000011 PM
error 11 1 10.111.112.5 19-DEC-10 12.00.26.000026 PM
error 11 2 10.111.112.5 20-DEC-10 12.00.01.000001 PM
error 11 3 10.111.112.4 20-DEC-10 12.00.03.000003 PM
error 11 4 10.111.112.3 20-DEC-10 12.00.04.000004 PM

Chapter 22
Examples of Pattern Matching

22-49

error 12 1 10.111.112.4 25-DEC-10 12.00.11.000011 PM
error 12 2 10.111.112.4 25-DEC-10 12.00.12.000012 PM
error 12 3 10.111.112.4 25-DEC-10 12.00.16.000016 PM
error 12 4 10.111.112.3 25-DEC-10 12.00.17.000017 PM
error 13 1 10.111.112.6 10-JAN-11 12.00.23.000023 PM
error 13 2 10.111.112.6 11-JAN-11 12.00.00.000000 PM
error 13 3 10.111.112.3 11-JAN-11 12.00.02.000002 PM
error 13 4 10.111.112.4 11-JAN-11 12.00.03.000003 PM

55 rows selected.

Example 22-18 Authentication Failures from the Same IP Address

The query in Example 22-18 is similar to Example 22-17, but it finds authentication failures
from the same IP origination address that occurred three or more consecutive times.

SELECT MR_S3.MNO AS Pattern, MR_S3.CNT AS Count,
 MR_S3.ERRTYPE AS Type, MR_S3.IPADDR AS On_IP_addr,
 MR_S3.START_T AS Starting_on, MR_S3.END_T AS Ending_on
FROM AUTHENLOG
MATCH_RECOGNIZE(
 PARTITION BY errtype
 ORDER BY tstamp
 MEASURES
 S.tstamp AS START_T,
 W.tstamp AS END_T,
 W.ipaddr AS IPADDR,
 COUNT(*) AS CNT,
 MATCH_NUMBER() AS MNO
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST W
 PATTERN (S W{2,})
 DEFINE S AS S.message LIKE '%authenticat%',
 W AS W.message = PREV (W.message)
 AND W.ipaddr = PREV (W.ipaddr)
) MR_S3
ORDER BY Type, Pattern;

PATTERN COUNT TYPE ON_IP_ADDR STARTING_ON ENDING_ON
------- ----- ----- ------------ ---------------------------- ----------------------------
 1 4 error 10.111.112.6 03-MAY-10 12.00.07.000007 PM 03-MAY-10 12.00.11.000011 PM
 2 3 error 10.111.112.5 22-JUN-10 12.00.36.000036 PM 22-JUN-10 12.00.53.000053 PM
 3 3 error 10.111.112.4 27-JUN-10 12.00.03.000003 PM 27-JUN-10 12.00.08.000008 PM
 4 3 error 10.111.112.6 19-JUL-10 12.00.15.000015 PM 19-JUL-10 12.00.17.000017 PM
 5 3 error 10.111.112.4 26-OCT-10 12.00.43.000043 PM 26-OCT-10 12.00.48.000048 PM
 6 3 error 10.111.112.4 25-DEC-10 12.00.11.000011 PM 25-DEC-10 12.00.16.000016 PM
 7 3 error 10.111.112.5 12-JAN-11 12.00.01.000001 PM 12-JAN-11 12.00.08.000008 PM

7 rows selected.

22.6.3 Pattern Matching Examples: Sessionization
Sessionization is the process of defining distinct sessions of user activity, typically involving
multiple events in a single session. Pattern matching makes it easy to express queries for
sessionization. For instance, you may want to know how many pages visitors to your website
view during a typical session. If you are a communications provider, you may want to know the
characteristics of phone sessions between two users where the sessions involve dropped
connections and users redialing. Enterprises can derive significant value from understanding
their user session behavior, because it can help firms define service offerings and
enhancements, pricing, marketing and more.

Chapter 22
Examples of Pattern Matching

22-50

The following examples include two introductory examples of sessionization related to web site
clickstreams followed by an example involving phone calls.

Example 22-19 Simple Sessionization for Clickstream Data

Example 22-19 is a simple illustration of sessionization for clickstream data analysis. For a set
of rows, the goal is to detect the sessions, assign a session ID to each session, and to display
each input row with its session ID. The data below would come from a web server system log
that tracks all page requests. You start with a set of rows where each row is the event of a user
requesting a page. In this simple example, the data includes a partition key, which is the user
ID, and a timestamp indicating when the user requested a page. Web system logs show when
a user requested a given page, but there is no indication of when the user stopped looking at
the page.

In Example 22-19, a session is defined as a sequence of one or more time-ordered rows with
the same partition key (User_ID) where the time gap between timestamps is less than a
specified threshold. In this case, the threshold is ten time units. If rows have a timestamp
greater than ten units apart, they are considered to be in different sessions. Note that the 10-
unit threshold used here is an arbitrary number: each real-world case requires the analyst's
judgment to determine the most suitable threshold time gap. Historically, a 30-minute gap has
been a commonly used threshold for separating sessions of website visits.

Start by creating a table of clickstream events.

CREATE TABLE Events(
 Time_Stamp NUMBER,
 User_ID VARCHAR2(10)
);

Next insert the data. The insert statements below have been ordered and spaced for your
reading convenience so that you can see the partitions and the sessions within them. In real
life, the events would arrive in timestamp order and the rows for different user sessions would
be intermingled.

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (1, 'Mary');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (11, 'Mary');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (23, 'Mary');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (34, 'Mary');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (44, 'Mary');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (53, 'Mary');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (63, 'Mary');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (3, 'Richard');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (13, 'Richard');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (23, 'Richard');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (33, 'Richard');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (43, 'Richard');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (54, 'Richard');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (63, 'Richard');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (2, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (12, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (22, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (32, 'Sam');

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (43, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (47, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (48, 'Sam');

Chapter 22
Examples of Pattern Matching

22-51

 INSERT INTO Events(Time_Stamp, User_ID) VALUES (59, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (60, 'Sam');
 INSERT INTO Events(Time_Stamp, User_ID) VALUES (68, 'Sam');

The row pattern matching query below will display each input row with its Session_ID. As
noted above, events are considered to be part of the same session if they are ten or fewer time
units apart. That session threshold is expressed in the DEFINE clause for pattern variables.

SELECT time_stamp, user_id, session_id
FROM Events MATCH_RECOGNIZE
 (PARTITION BY User_ID ORDER BY Time_Stamp
 MEASURES match_number() AS session_id
 ALL ROWS PER MATCH
 PATTERN (b s*)
 DEFINE
 s AS (s.Time_Stamp - prev(Time_Stamp) <= 10)
)
ORDER BY user_id, time_stamp;

The output will be:

TIME_STAMP USER_ID SESSION_ID
---------- ---------- ----------
 1 Mary 1
 11 Mary 1
 23 Mary 2
 34 Mary 3
 44 Mary 3
 53 Mary 3
 63 Mary 3
 3 Richard 1
 13 Richard 1
 23 Richard 1
 33 Richard 1
 43 Richard 1
 54 Richard 2
 63 Richard 2
 2 Sam 1
 12 Sam 1
 22 Sam 1
 32 Sam 1
 43 Sam 2
 47 Sam 2
 48 Sam 2
 59 Sam 3
 60 Sam 3
 68 Sam 3

24 rows selected.

Example 22-20 Simple Sessionization with Aggregation

Assigning session numbers to detail-level rows as in example Example 22-19 just begins the
analytic process. The business value of sessionized data emerges only after aggregating by
session.

This example aggregates the data to give one row per session with these columns:
Session_ID, User_ID, number of aggregated events per session, and total session duration.
This output makes it easy to see how many clicks each user has per session and how long
each session lasts. In turn, data from this query could be used to drive many other analyses
such as maximum, minimum, and average session duration.

Chapter 22
Examples of Pattern Matching

22-52

SELECT session_id, user_id, start_time, no_of_events, duration
FROM Events MATCH_RECOGNIZE
 (PARTITION BY User_ID
 ORDER BY Time_Stamp
 MEASURES MATCH_NUMBER() session_id,
 COUNT(*) AS no_of_events,
 FIRST(time_stamp) start_time,
 LAST(time_stamp) - FIRST(time_stamp) duration
 PATTERN (b s*)
 DEFINE
 s AS (s.Time_Stamp - PREV(Time_Stamp) <= 10)
)
ORDER BY user_id, session_id;

The output will be:

SESSION_ID USER_ID START_TIME NO_OF_EVENTS DURATION
---------- ---------- ---------- ------------ ----------
 1 Mary 1 2 10
 2 Mary 23 1 0
 3 Mary 34 4 29
 1 Richard 3 5 40
 2 Richard 54 2 9
 1 Sam 2 4 30
 2 Sam 43 3 5
 3 Sam 59 3 9

8 rows selected.

Example 22-21 Sessionization for Phone Calls with Dropped Connections

In the examples Example 22-19 and Example 22-20 with clickstream data, there was no
explicit end point in the source data to indicate the end time for viewing a page. Even if there
are clear end points for user activity, an end point may not indicate that a user wanted to end
the session. Consider a person using a mobile phone service whose phone connection is
dropped: typically, the user will redial and continue the phone call. In that scenario, multiple
phone calls involving the same pair of phone numbers should be considered part of a single
phone session.

Example 22-21 illustrates phone call sessionization. It uses call detail record data as the base
for sessionization, where the call data record rows include Start_Time, End_Time, Caller_ID,
Callee_ID. The query below does the following:

• Partitions the data by caller_id and callee_id.

• Finds sessions where calls from a caller to a callee are grouped into a session if the gap
between subsequent calls is within a threshold of 60 seconds. That threshold is specified
in the DEFINE clause for pattern variable B.

• Returns for each session (see the MEASURES clause):

– The session_id, the caller and callee

– How many times calls were restarted in a session

– Total effective call duration (total time during the session when the phones were
connected)

– Total interrupted duration (total time during the session when the phones were
disconnected

SELECT Caller, Callee, Start_Time, Effective_Call_Duration,
 (End_Time - Start_Time) - Effective_Call_Duration

Chapter 22
Examples of Pattern Matching

22-53

 AS Total_Interruption_Duration, No_Of_Restarts, Session_ID
FROM my_cdr MATCH_RECOGNIZE
 (PARTITION BY Caller, Callee ORDER BY Start_Time
 MEASURES
 A.Start_Time AS Start_Time,
 End_Time AS End_Time,
 SUM(End_Time - Start_Time) AS Effective_Call_Duration,
 COUNT(B.*) AS No_Of_Restarts,
 MATCH_NUMBER() AS Session_ID
 PATTERN (A B*)
 DEFINE B AS B.Start_Time - PREV(B.end_Time) < 60
);

Because the previous query needs a significant amount of data to be meaningful, and that
would consume substantial space, no INSERT statement is included here. However, the
following is sample output.

SQL> desc my_cdr
Name Null? Type
-------------- ---------- ----------
CALLER NOT NULL NUMBER(38)
CALLEE NOT NULL NUMBER(38)
START_TIME NOT NULL NUMBER(38)
END_TIME NOT NULL NUMBER(38)

SELECT * FROM my_cdr ORDER BY 1, 2, 3, 4;

CALLER CALLEE START_TIME END_TIME
------ ------ ---------- ---------
 1 7 1354 1575
 1 7 1603 1829
 1 7 1857 2301
 1 7 2320 2819
 1 7 2840 2964
 1 7 64342 64457
 1 7 85753 85790
 1 7 85808 85985
 1 7 86011 86412
 1 7 86437 86546
 1 7 163436 163505
 1 7 163534 163967
 1 7 163982 164454
 1 7 214677 214764
 1 7 214782 215248
 1 7 216056 216271
 1 7 216297 216728
 1 7 216747 216853
 1 7 261138 261463
 1 7 261493 261864
 1 7 261890 262098
 1 7 262115 262655
 1 7 301931 302226
 1 7 302248 302779
 1 7 302804 302992
 1 7 303015 303258
 1 7 303283 303337
 1 7 383019 383378
 1 7 383407 383534
 1 7 424800 425096

30 rows selected.

Chapter 22
Examples of Pattern Matching

22-54

CALLER CALLEE START_TIME EFFECTIVE_CALL TOTAL_INTERUPTION NO_OF_RE SESSION_ID
------ ------- --------- -------------- ----------------- -------- ----------
 1 7 1354 1514 96 4 1
 1 7 64342 115 0 0 2
 1 7 85753 724 69 3 3
 1 7 163436 974 44 2 4
 1 7 214677 553 18 1 5
 1 7 216056 752 45 2 6
 1 7 261138 1444 73 3 7
 1 7 301931 1311 95 4 8
 1 7 383019 486 29 1 9
 1 7 424800 296 0 0 10

10 rows selected.

22.6.4 Pattern Matching Example: Financial Tracking
A common financial application is to search for suspicious financial patterns. Example 22-22
illustrates how to detect money transfers that seem suspicious because certain criteria you
have defined as being unusual have been met.

Example 22-22 Suspicious Money Transfer

In Example 22-22, we search for a pattern that seems suspicious when transferring funds. In
this case, that is defined as three or more small (less than $2000) money transfers within 30
days followed by a large transfer (over $1,000,000) within 10 days of the last small transfer. To
simplify things, the table and data are made very basic.

First, we create a table that contains the necessary data:

CREATE TABLE event_log
 (time DATE,
 userid VARCHAR2(30),
 amount NUMBER(10),
 event VARCHAR2(10),
 transfer_to VARCHAR2(10));

Then we insert data into event_log:

INSERT INTO event_log VALUES
 (TO_DATE('01-JAN-2021', 'DD-MON-YYYY'), 'john', 1000000, 'deposit', NULL);
INSERT INTO event_log VALUES
 (TO_DATE('05-JAN-2021', 'DD-MON-YYYY'), 'john', 1200000, 'deposit', NULL);
INSERT INTO event_log VALUES
 (TO_DATE('06-JAN-2021', 'DD-MON-YYYY'), 'john', 1000, 'transfer', 'bob');
INSERT INTO event_log VALUES
 (TO_DATE('15-JAN-2021', 'DD-MON-YYYY'), 'john', 1500, 'transfer', 'bob');
INSERT INTO event_log VALUES
 (TO_DATE('20-JAN-2021', 'DD-MON-YYYY'), 'john', 1500, 'transfer', 'allen');
INSERT INTO event_log VALUES
 (TO_DATE('23-JAN-2021', 'DD-MON-YYYY'), 'john', 1000, 'transfer', 'tim');
INSERT INTO event_log VALUES
 (TO_DATE('26-JAN-2021', 'DD-MON-YYYY'), 'john', 1000000, 'transfer', 'tim');
INSERT INTO event_log VALUES
 (TO_DATE('27-JAN-2021', 'DD-MON-YYYY'), 'john', 500000, 'deposit', NULL);

Next, we can query this table:

SELECT userid, first_t, last_t, amount
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE
 (PARTITION BY userid ORDER BY time

Chapter 22
Examples of Pattern Matching

22-55

 MEASURES FIRST(x.time) first_t, y.time last_t, y.amount amount
 PATTERN (x{3,} y)
 DEFINE x AS (event='transfer' AND amount < 2000),
 y AS (event='transfer' AND amount >= 1000000 AND
 LAST(x.time) - FIRST(x.time) < 30 AND
 y.time - LAST(x.time) < 10));

USERID FIRST_T LAST_T AMOUNT
---------- --------- --------- -------
john 06-JAN-21 26-JAN-21 1000000

In this statement, the first text in bold represents the small transfers, the second represents a
large transfer, the third that the small transfers occurred within 30 days, and the fourth that the
large transfer occurred within 10 days of the last small transfer.

This statement can be further refined to include the recipient of the suspicious transfer, as in
the following:

SELECT userid, first_t, last_t, amount, transfer_to
FROM (SELECT * FROM event_log WHERE event = 'transfer')
MATCH_RECOGNIZE
 (PARTITION BY userid ORDER BY time
 MEASURES z.time first_t, y.time last_t, y.amount amount,
 y.transfer_to transfer_to
 PATTERN (z x{2,} y)
 DEFINE z AS (event='transfer' AND amount < 2000),
 x AS (event='transfer' AND amount <= 2000 AND
 PREV(x.transfer_to) <> x.transfer_to),
 y AS (event='transfer' AND amount >= 1000000 AND
 LAST(x.time) - z.time < 30 AND
 y.time - LAST(x.time) < 10 AND
 SUM(x.amount) + z.amount < 20000));

USERID FIRST_T LAST_T AMOUNT TRANSFER_TO
---------- --------- --------- ------- -----------
john 15-JAN-21 26-JAN-21 1000000 tim

In this statement, the first text in bold represents the first small transfer, the next represents two
or more small transfers to different accounts, the third represents the sum of all small transfers
less than $20,000.

22.7 Fuzzy String Matching
Approximate or "fuzzy" string matching methods like PHONIC_ENCODE and FUZZY_MATCH
are an important component of data quality capabilities.

Oracle Database 23ai introduces two new operators for fuzzy string matching. PHONIC_ENCODE
converts words or phrases in language-specific codes based on pronunciation. FUZZY_MATCH,
which is language-neutral, gauges the textual similarity between two strings. By default, the
resulting fuzzy match score is usually normalized to be a percentage of the lengths of the
strings being compared.

These flexible and intelligent operators can often find valid matches in spite of typographical
errors, spelling/phonetic variations, alternative names, initials in place of complete names, and
other irregularities that preclude discovery via methods that use exact string matching or
regular expressions. Because these operations can be run directly on the database, runtime is
much more efficient than in EDO operations where the data must first be moved outside the
database for processing.

Chapter 22
Fuzzy String Matching

22-56

Both operators are re-implementations of well-known public data quality string match
algorithms.

PHONIC_ENCODE

This operator mainly implements the Double Metaphone algorithm. If the keyword
DOUBLE_METAPHONE is specified, it returns the main code. If DOUBLE_METAPHONE_ALT is specified,
it returns the alternative code.

 SQL> select phonic_encode(DOUBLE_METAPHONE, 'smith') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'smith') c2 from dual;

C1 C2
------------- -------------
SM0 XMT

1 row selected.

FUZZY_MATCH

This operator supports the following keywords, each representing the corresponding supported
algorithm: LEVENSHTEIN, JARO_WINKLER, BIGRAM and TRIGRAM, WHOLE_WORD_MATCH, and
LONGEST_COMMON_SUBSTRING.

SQL> select fuzzy_match(LEVENSHTEIN, 'Mohamed Tarik', 'Mo Tariq') from dual;

FUZZY_MATCH(LEVENSHTEIN,'MOHAMEDTARIK','MOTARIQ')

 54
1 row selected.

See Also:

Data Quality Operators Data Quality Operators in the SQL Language Reference
provides complete details and more examples for use of PHONIC_ENCODE and
FUZZY_MATCH.

Chapter 22
Fuzzy String Matching

22-57

23
SQL for Modeling

This chapter discusses using SQL modeling, and includes:

• Overview of SQL Modeling in Data Warehouses

• Basic Topics in SQL Modeling

• Advanced Topics in SQL Modeling

• Performance Considerations with SQL Modeling

• Examples of SQL Modeling

23.1 Overview of SQL Modeling in Data Warehouses
The MODEL clause brings a new level of power and flexibility to SQL calculations. With the
MODEL clause, you can create a multidimensional array from query results and then apply
formulas (called rules) to this array to calculate new values. The rules can range from basic
arithmetic to simultaneous equations using recursion. For some applications, the MODEL clause
can replace PC-based spreadsheets. Models in SQL leverage Oracle Database's strengths in
scalability, manageability, collaboration, and security. The core query engine can work with
unlimited quantities of data. By defining and executing models within the database, users avoid
transferring large data sets to and from separate modeling environments. Models can be
shared easily across workgroups, ensuring that calculations are consistent for all applications.
Just as models can be shared, access can also be controlled precisely with Oracle's security
features. With its rich functionality, the MODEL clause can enhance all types of applications.

The MODEL clause enables you to create a multidimensional array by mapping the columns of a
query into three groups: partitioning, dimension, and measure columns. These elements
perform the following tasks:

• Partition columns define the logical blocks of the result set in a way similar to the partitions
of the analytical functions described in SQL for Analysis and Reporting. Rules in the MODEL
clause are applied to each partition independent of other partitions. Thus, partitions serve
as a boundary point for parallelizing the MODEL computation.

• Dimension columns define the multi-dimensional array and are used to identify cells within
a partition. By default, a full combination of dimensions should identify just one cell in a
partition. In default mode, they can be considered analogous to the key of a relational
table.

• Measures are equivalent to the measures of a fact table in a star schema. They typically
contain numeric values such as sales units or cost. Each cell is accessed by specifying its
full combination of dimensions. Note that each partition may have a cell that matches a
given combination of dimensions.

The MODEL clause enables you to specify rules to manipulate the measure values of the cells in
the multi-dimensional array defined by partition and dimension columns. Rules access and
update measure column values by directly specifying dimension values. The references used
in rules result in a highly readable model. Rules are concise and flexible, and can use wild
cards and looping constructs for maximum expressiveness. Oracle Database evaluates the
rules in an efficient way, parallelizes the model computation whenever possible, and provides a

23-1

seamless integration of the MODEL clause with other SQL clauses. The MODEL clause, thus, is a
scalable and manageable way of computing business models in the database.

Figure 23-1 offers a conceptual overview of the modeling feature of SQL. The figure has three
parts. The top segment shows the concept of dividing a typical table into partition, dimension,
and measure columns. The middle segment shows two rules that calculate the value of Prod1
and Prod2 for the year 2002. Finally, the third part shows the output of a query that applies the
rules to such a table with hypothetical data. The unshaded output is the original data as it is
retrieved from the database, while the shaded output shows the rows calculated by the rules.
Note that results in partition A are calculated independently from results of partition B.

Figure 23-1 Model Elements

Country

Partition

A

A

A

A

B

B

B

Product

Dimension

Prod2

Prod1

Prod1

Prod2

Prod1

Prod1

Prod2

Year

Dimension

2001

2000

2001

2000

2001

2000

Sales

Measure

Sales(Prod1, 2002) = Sales(Prod1,2000)+Sales(Prod1,2001)�

Sales(Prod2, 2002) = Sales(Prod2,2000)+Sales(Prod2,2001)

16

10

15

12

21

23

28

A

B

A

B

B

Prod1

Prod2

Prod2

Prod1

Prod2

2002

2002

2002

2002

25

29

28

44

57

Output of MODEL clause:

Rules:

Country

Partition

Product

Dimension

Year

Dimension

Sales

Measure

Mapping of columns to model entities:

2000

2001

Rule�
Results

Original
Data

This section contains the following topics:

• How Data is Processed in a SQL Model

• Why Use SQL Modeling in Data Warehouses?

• About SQL Modeling Capabilities

Chapter 23
Overview of SQL Modeling in Data Warehouses

23-2

23.1.1 How Data is Processed in a SQL Model
Figure 23-2 shows the flow of processing within a simple MODEL clause. In this case, you will
follow data through a MODEL clause that includes three rules. One of the rules updates an
existing value, while the other two create new values for a forecast. The figure shows that the
rows of data retrieved by a query are fed into the MODEL clause and rearranged into an array.
Once the array is defined, rules are applied one by one to the data. The shaded cells in
Figure 23-2 represent new data created by the rules and the cells enclosed by ovals represent
the source data for the new values. Finally, the data, including both its updated values and
newly created values, is rearranged into row form and presented as the results of the query.
Note that no data is inserted into any table by this query.

Figure 23-2 Model Flow Processing

1 3 42

5 7 86

9 1 2

1999

2000

20010

vcr tv pcdvd
prod

2001dvd 0

2001vcr 9

...... ...

...... ...

yearprod sales

Query results
input to MODEL
clause

Array defined

1 3 42

2 6 84

9 1 2

1999

2000

20010

vcr tv pcdvd

Rule 1 applied

2001dvd 0

2001vcr 9

2002dvd 3

2002vcr 11

MODEL clause
results
converted
back to rows

MODEL

DIMENSION BY (prod, year)

MEASURES (sales s)

RULES UPSERT

(s[ANY, 2000]=s[CV(prod), CV(year -1)*2], --Rule 1

 s[vcr, 2002]=s[vcr, 2001]+s[vcr, 2000], --Rule 2

 s[dvd, 2002]=AVG(s)[CV(prod), year<2001]) --Rule 3

2 6 84

1 3 42

9 1 20

11

2000

1999

2001

20023

vcr tv pcdvd

Rule 3 applied

2 6 84

1 3 42

9 1 20

11

2000

1999

2001

2002

vcr tv pcdvd

Rule 2 applied

y
e
a
r

...

...... ...

... ...

yearprod sales

23.1.2 Why Use SQL Modeling in Data Warehouses?
Oracle modeling enables you to perform sophisticated calculations on your data. A typical case
is when you want to apply business rules to data and then generate reports. Because Oracle
Database integrates modeling calculations into the database, performance and manageability

Chapter 23
Overview of SQL Modeling in Data Warehouses

23-3

are enhanced significantly. Consider the following query. The view sales_view has been
created in previous sh sample schema examples.

SELECT SUBSTR(country, 1, 20) country,
 SUBSTR(product, 1, 15) product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL
 PARTITION BY (country) DIMENSION BY (product, year)
 MEASURES (sales sales)
 RULES
 (sales['Catchers Mitt', 2022] = sales['Catchers Mitt', 2021] + sales['Catchers Mitt',
2020],
 sales['Practice Tennis Balls', 2022] = sales['Practice Tennis Balls', 2021],
 sales['5 Point Batting Tee', 2022] = sales['Catchers Mitt', 2022] + sales['Practice
Tennis Balls', 2022])
ORDER BY country, product, year;

This query partitions the data in sales_view (which is illustrated in "Base Schema for SQL
Modeling Examples") on country so that the model computation, as defined by the three rules,
is performed on each country. This model calculates the sales of Bounce in 2022 as the sum of
its sales in 2020 and 2021, and sets the sales for Y Box in 2022 to the same value as they
were in 2021. Also, it introduces a new product category All_Products (sales_view does not
have the product All_Products) for year 2022 to be the sum of sales of Bounce and Y Box for
that year. The output of this query is as follows, where bold text indicates new values:

COUNTRY PRODUCT YEAR SALES
__________ __________________ _______ ___________
Italy 11" Youth Field 2019 2070.22
Italy 11" Youth Field 2020 4360.09
Italy 11" Youth Field 2021 1276
Italy 11" Youth Field 2022 3186.55
Italy 11.5" Youth Tri 2019 4896.79
...
Japan 6 Gallon Empty 2019 5461.59
Japan 6 Gallon Empty 2020 5897.8
Japan 6 Gallon Empty 2021 2995.93
Japan 6 Gallon Empty 2022 8935.03
Japan Baseball Is Lif 2019 7510.02
Japan Baseball Is Lif 2020 19291.97
Japan Baseball Is Lif 2021 18087.06
Japan Baseball Is Lif 2022 24092.75
...

See that while the sales values for and Y Box exist in the input, the values for All_Products are
derived.

Chapter 23
Overview of SQL Modeling in Data Warehouses

23-4

Note:

If sales_view does not exist, you can create it as follows.

CREATE VIEW sales_view AS
SELECT
 prod_name product, country_name country, channel_id channel,
 SUBSTR(calendar_quarter_desc, 6,2) quarter,
 SUM(amount_sold) amount_sold, SUM(quantity_sold) quantity_sold
FROM sh.sales, sh.times, sh.customers, sh.countries, sh.products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY prod_name, country_name, channel_id,
 SUBSTR(calendar_quarter_desc, 6, 2);

23.1.3 About SQL Modeling Capabilities
Oracle Database provides the following capabilities with the MODEL clause:

• Cell addressing using dimension values

Measure columns in individual rows are treated like cells in a multi-dimensional array and
can be referenced and updated using dimension values. For example, in a fact table
ft(country, year, sales), you can designate country and year to be dimension
columns and sales to be the measure and reference sales for a given country and year as
sales[country='Spain', year=2019]. This gives you the sales value for Spain in 2019.
You can also use a shorthand form sales['Spain', 2019], which has the same meaning.
There are a few semantic differences between these notations, though. See "About Cell
Referencing in SQL Modeling" for further details.

• Symbolic array computation

You can specify a series of formulas, called rules, to operate on the data. Rules can invoke
functions on individual cells or on a set or range of cells. An example involving individual
cells is the following:

sales[country='Spain',year=2021] = sales['Spain',2020]+ sales['Spain',2019]

This sets the sales in Spain for the year 2021 to the sum of sales in Spain for 2019 and
2020. An example involving a range of cells is the following:

sales[country='Spain',year=2021] =
 MAX(sales)['Spain',year BETWEEN 1997 AND 2020]

This sets the sales in Spain for the year 2021 equal to the maximum sales in Spain
between 1997 and 2020.

• UPSERT, UPSERT ALL, and UPDATE options

Using the UPSERT option, which is the default, you can create cell values that do not exist in
the input data. If the cell referenced exists in the data, it is updated. If the cell referenced
does not exist in the data, and the rule uses appropriate notation, then the cell is inserted.
The UPSERT ALL option enables you to have UPSERT behavior for a wider variety of rules.
The UPDATE option, on the other hand, would never insert any new cells.

Chapter 23
Overview of SQL Modeling in Data Warehouses

23-5

You can specify these options globally, in which case they apply to all rules, or per each
rule. If you specify an option at the rule level, it overrides the global option. Consider the
following rules:

UPDATE sales['Spain', 2019] = 3567.99,
UPSERT sales['Spain', 2021] = sales['Spain', 2020]+ sales['Spain', 2019]

The first rule updates the cell for sales in Spain for 2019. The second rule updates the cell
for sales in Spain for 2021 if it exists, otherwise, it creates a new cell.

• Wildcard specification of dimensions

You can use ANY and IS ANY to specify all values in a dimension. As an example, consider
the following statement:

sales[ANY, 2021] = sales['Japan', 2020]

This rule sets the 2021 sales of all countries equal to the sales value of Japan for the year
2020. All values for the dimension, including nulls, satisfy the ANY specification. You can
also specify this using an IS ANY predicate as in the following:

sales[country IS ANY, 2021] = sales['Japan', 2020]
• Accessing dimension values using the CV function

You can use the CV function on the right side of a rule to access the value of a dimension
column of the cell referenced on the left side of a rule. It enables you to combine multiple
rules performing similar computation into a single rule, thus resulting in concise
specification. For example, you can combine the following rules:

sales[country='Spain', year=2022] = 1.2 * sales['Spain', 2021],
sales[country='Italy', year=2022] = 1.2 * sales['Italy', 2021],
sales[country='Japan', year=2022] = 1.2 * sales['Japan', 2021]

They can be combined into one single rule:

sales[country IN ('Spain', 'Italy', 'Japan'), year=2022] = 1.2 *
 sales[CV(country), 2021]

Observe that the CV function passes the value for the country dimension from the left to
the right side of the rule.

• Ordered computation

For rules updating a set of cells, the result may depend on the ordering of dimension
values. You can force a particular order for the dimension values by specifying an ORDER BY
in the rule. An example is the following rule:

sales[country IS ANY, year BETWEEN 2020 AND 2003] ORDER BY year =
 1.05 * sales[CV(country), CV(year)-1]

This ensures that the years are referenced in increasing chronological order.

• Automatic rule ordering

Rules in the MODEL clause can be automatically ordered based on dependencies among
the cells using the AUTOMATIC ORDER keywords. For example, in the following assignments,
the last two rules will be processed before the first rule because the first depends on the
second and third:

RULES AUTOMATIC ORDER
{sales[c='Spain', y=2021] = sales[c='Spain', y=2020]
 + sales[c='Spain', y=2019]

Chapter 23
Overview of SQL Modeling in Data Warehouses

23-6

sales[c='Spain', y=2020] = 50000,
sales[c='Spain', y=2019] = 40000}

• Iterative rule evaluation

You can specify iterative rule evaluation, in which case the rules are evaluated iteratively
until the termination condition is satisfied. Consider the following specification:

MODEL DIMENSION BY (x) MEASURES (s)
 RULES ITERATE (4) (s[x=1] = s[x=1]/2)

This statement specifies that the formula s[x=1] = s[x=1]/2 evaluation be repeated four
times. The number of iterations is specified in the ITERATE option of the MODEL clause. It is
also possible to specify a termination condition by using an UNTIL clause.

Iterative rule evaluation is an important tool for modeling recursive relationships between
entities in a business application. For example, a loan amount might depend on the
interest rate where the interest rate in turn depends on the amount of the loan.

• Reference models

A model can include multiple ref models, which are read-only arrays. Rules can reference
cells from different reference models. Rules can update or insert cells in only one multi-
dimensional array, which is called the main model. The use of reference models enables
you to relate models with different dimensionality. For example, assume that, in addition to
the fact table ft(country, year, sales), you have a table with currency conversion
ratios cr(country, ratio) with country as the dimension column and ratio as the
measure. Each row in this table gives the conversion ratio of that country's currency to that
of US dollar. These two tables could be used in rules such as the following:

dollar_sales['Spain',2021] = sales['Spain',2020] * ratio['Spain']
• Scalable computation

You can partition data and evaluate rules within each partition independent of other
partitions. This enables parallelization of model computation based on partitions. For
example, consider the following model:

MODEL PARTITION BY (country) DIMENSION BY (year) MEASURES (sales)
 (sales[year=2021] = AVG(sales)[year BETWEEN 1990 AND 2020]

The data is partitioned by country and, within each partition, you can compute the sales in
2021 to be the average of sales in the years between 1990 and 2020. Partitions can be
processed in parallel and this results in a scalable execution of the model.

23.2 Basic Topics in SQL Modeling
This section introduces some of the basic ideas and uses for models, and includes:

• Base Schema for SQL Modeling Examples

• MODEL Clause Syntax

• Keywords in SQL Modeling

• About Cell Referencing in SQL Modeling

• About Rules for SQL Modeling

• Order of Evaluation of SQL Modeling Rules

• Global and Local Keywords for SQL Modeling Rules

• UPDATE, UPSERT, and UPSERT ALL Behavior

Chapter 23
Basic Topics in SQL Modeling

23-7

• Treatment of NULLs and Missing Cells in SQL Modeling

• About Reference Models in SQL Modeling

23.2.1 Base Schema for SQL Modeling Examples
This chapter's examples are based on the following view sales_view, which is derived from the
sh sample schema.

CREATE VIEW sales_view AS
SELECT country_name country, prod_name product, calendar_year year,
 SUM(amount_sold) sales, COUNT(amount_sold) cnt,
 MAX(calendar_year) KEEP (DENSE_RANK FIRST ORDER BY SUM(amount_sold) DESC)
 OVER (PARTITION BY country_name, prod_name) best_year,
 MAX(calendar_year) KEEP (DENSE_RANK LAST ORDER BY SUM(amount_sold) DESC)
 OVER (PARTITION BY country_name, prod_name) worst_year
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND sales.prod_id = products.prod_id AND
 sales.cust_id =customers.cust_id AND customers.country_id=countries.country_id
GROUP BY country_name, prod_name, calendar_year;

This query computes SUM and COUNT aggregates on the sales data grouped by country, product,
and year. It will report for each product sold in a country, the year when the sales were the
highest for that product in that country. This is called the best_year of the product. Similarly,
worst_year gives the year when the sales were the lowest.

23.2.2 MODEL Clause Syntax
The MODEL clause enables you to define multi-dimensional calculations on the data in the SQL
query block. In multi-dimensional applications, a fact table consists of columns that uniquely
identify a row with the rest serving as dependent measures or attributes. The MODEL clause lets
you specify the PARTITION, DIMENSION, and MEASURE columns that define the multi-dimensional
array, the rules that operate on this multi-dimensional array, and the processing options.

The MODEL clause contains a list of updates representing array computation within a partition
and is a part of a SQL query block. Its structure is as follows:

MODEL
[<global reference options>]
[<reference models>]
[MAIN <main-name>]
 [PARTITION BY (<cols>)]
 DIMENSION BY (<cols>)
 MEASURES (<cols>)
 [<reference options>]
 [RULES] <rule options>
 (<rule>, <rule>,.., <rule>)
 <global reference options> ::= <reference options> <ret-opt>
 <ret-opt> ::= RETURN {ALL|UPDATED} ROWS
 <reference options> ::=
 [IGNORE NAV | [KEEP NAV]
 [UNIQUE DIMENSION | UNIQUE SINGLE REFERENCE]
 <rule options> ::=
 [UPDATE | UPSERT | UPSERT ALL]
 [AUTOMATIC ORDER | SEQUENTIAL ORDER]
 [ITERATE (<number>) [UNTIL <condition>]]
 <reference models> ::= REFERENCE ON <ref-name> ON (<query>)
 DIMENSION BY (<cols>) MEASURES (<cols>) <reference options>

Chapter 23
Basic Topics in SQL Modeling

23-8

Each rule represents an assignment. Its left side references a cell or a set of cells and the right
side can contain expressions involving constants, host variables, individual cells or aggregates
over ranges of cells. For example, consider the query in Example 23-1, this is based on the
view sales_view created as described in Base Schema for SQL Modeling Examples.

Example 23-1 Simple Query with the MODEL Clause

SELECT SUBSTR(country,1,20) country, SUBSTR(product,1,15) product, year, sales
FROM sales_view
WHERE country in ('Italy', 'Japan')
MODEL
 RETURN UPDATED ROWS
 MAIN simple_model
 PARTITION BY (country)
 DIMENSION BY (product, year)
 MEASURES (sales)
 RULES
 (sales['Bounce', 2021] = 1000,
 sales['Bounce', 2022] = sales['Bounce', 2021] + sales['Bounce', 2020],
 sales['Y Box', 2022] = sales['Y Box', 2021])
ORDER BY country, product, year;

This query defines model computation on the rows from sales_view for the countries Italy and
Japan. This model has been given the name simple_model. It partitions the data on country
and defines, within each partition, a two-dimensional array on product and year. Each cell in
this array holds the value of the sales measure. The first rule of this model sets the sales of
Bounce in year 2001 to 1000. The next two rules define that the sales of Bounce in 2002 are
the sum of its sales in years 2001 and 2000, and the sales of Y Box in 2002 are same as that
of the previous year 2001.

Specifying RETURN UPDATED ROWS makes the preceding query return only those rows that are
updated or inserted by the model computation. By default or if you use RETURN ALL ROWS, you
would get all rows not just the ones updated or inserted by the MODEL clause. The query
produces the following output:

COUNTRY PRODUCT YEAR SALES
__________ __________ _______ ________
Italy Bounce 2021 1000
Italy Bounce 2022
Italy Y Box 2022
Japan Bounce 2021 1000
Japan Bounce 2022
Japan Y Box 2022

Note that the MODEL clause does not update or insert rows into database tables. The following
query illustrates this by showing that sales_view has not been altered:

SELECT SUBSTR(country,1,20) country, SUBSTR(product,1,15) product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan');

COUNTRY PRODUCT YEAR SALES
__________ __________________ _______ ___________
Italy 11" Youth Field 2019 2070.22
Italy 11" Youth Field 2020 4360.09
Italy 11" Youth Field 2021 1276
Italy 11" Youth Field 2022 3186.55
Italy 11.5" Youth Tri 2019 4896.79
Italy 11.5" Youth Tri 2020 11063.49
...

Chapter 23
Basic Topics in SQL Modeling

23-9

Observe that the update of the sales value for Bounce in the 2001 done by this MODEL clause is
not reflected in the database. If you want to update or insert rows in the database tables, you
should use the INSERT, UPDATE, or MERGE statements.

In the preceding example, columns are specified in the PARTITION BY, DIMENSION BY, and
MEASURES list. You can also specify constants, host variables, single-row functions, aggregate
functions, analytical functions, or expressions involving them as partition and dimension keys
and measures. However, you must alias them in PARTITION BY, DIMENSION BY, and MEASURES
lists. You must use aliases to refer these expressions in the rules, SELECT list, and the query
ORDER BY. The following example shows how to use expressions and aliases:

SELECT country, p product, year, sales, profits
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL
 RETURN UPDATED ROWS
 PARTITION BY (SUBSTR(country,1,20) AS country)
 DIMENSION BY (product AS p, year)
 MEASURES (sales, 0 AS profits)
 RULES
 (profits['11" Youth Field ', 2021] = sales['11" Youth Field ', 2021] * 0.25,
 sales['11" Youth Field e', 2022] = sales['11" Youth Field ', 2021] + sales['11"
Youth Field ', 2000],
 profits['11" Youth Field ', 2022] = sales['11" Youth Field ', 2022] * 0.35)
ORDER BY country, year;

COUNTRY PRODUCT YEAR SALES PROFITS
__________ ____________________ _______ ________ __________
Italy 11" Youth Field 2021
Italy 11" Youth Field e 2022
Italy 11" Youth Field 2022
Japan 11" Youth Field 2021
Japan 11" Youth Field 2022
Japan 11" Youth Field e 2022

Note that the alias "0 AS profits" initializes all cells of the profits measure to 0. See Oracle
Database SQL Language Reference for more information regarding MODEL clause syntax.

23.2.3 Keywords in SQL Modeling
This section defines keywords used in SQL modeling. It contains the following topics:

• Assigning Values and Null Handling

• Calculation Definition

23.2.3.1 Assigning Values and Null Handling
• UPSERT

This updates the measure values of existing cells. If the cells do not exist, and the rule has
appropriate notation, they are inserted. If any of the cell references are symbolic, no cells
are inserted.

• UPSERT ALL
This is similar to UPSERT, except it allows a broader set of rule notation to insert new cells.

• UPDATE
This updates existing cell values. If the cell values do not exist, no updates are done.

Chapter 23
Basic Topics in SQL Modeling

23-10

• IGNORE NAV
For numeric cells, this treats values that are not available as 0. This means that a cell not
supplied to MODEL by the query result set will be treated as a zero for the calculation. This
can be used at a global level for all measures in a model.

• KEEP NAV
This keeps cell values that are not available unchanged. It is useful for making exceptions
when IGNORE NAV is specified at the global level. This is the default, and can be omitted.

23.2.3.2 Calculation Definition
• MEASURES

The set of values that are modified or created by the model.

• RULES
The expressions that assign values to measures.

• AUTOMATIC ORDER
This causes all rules to be evaluated in an order based on their logical dependencies.

• SEQUENTIAL ORDER
This causes rules to be evaluated in the order they are written. This is the default.

• UNIQUE DIMENSION
This is the default, and it means that the combination of PARTITION BY and DIMENSION BY
columns in the MODEL clause must uniquely identify each and every cell in the model. This
uniqueness is explicitly verified at query execution when necessary, in which case it may
increase processing time.

• UNIQUE SINGLE REFERENCE
The PARTITION BY and DIMENSION BY clauses uniquely identify single point references on
the right-hand side of the rules. This may reduce processing time by avoiding explicit
checks for uniqueness at query execution.

• RETURN [ALL|UPDATED] ROWS
This enables you to specify whether to return all rows selected or only those rows updated
by the rules. The default is ALL, while the alternative is UPDATED ROWS.

23.2.4 About Cell Referencing in SQL Modeling
In the MODEL clause, a relation is treated as a multi-dimensional array of cells. A cell of this
multi-dimensional array contains the measure values and is indexed using DIMENSION BY keys,
within each partition defined by the PARTITION BY keys. For example, consider the following
query run on the view sales_view created as described in Base Schema for SQL Modeling
Examples:

SELECT country, product, year, sales, best_year, best_year
FROM sales_view
MODEL
 PARTITION BY (country)
 DIMENSION BY (product, year)
 MEASURES (sales, best_year)
 (<rules> ..)
ORDER BY country, product, year;

Chapter 23
Basic Topics in SQL Modeling

23-11

This partitions the data by country and defines within each partition, a two-dimensional array
on product and year. The cells of this array contain two measures: sales and best_year.

Accessing the measure value of a cell by specifying the DIMENSION BY keys constitutes a cell
reference. An example of a cell reference is as follows:

sales[product= 'Bounce', year=2020]

Here, you are accessing the sales value of a cell referenced by product Bounce and the year
2000. In a cell reference, you can specify DIMENSION BY keys either symbolically as in the
preceding cell reference or positionally as in sales['11" Youth Field ', 2020].

This section contains the following topics:

• Symbolic Dimension References

• Positional Dimension References

23.2.4.1 Symbolic Dimension References
A symbolic dimension reference (or symbolic reference) is one in which DIMENSION BY key
values are specified with a boolean expression. For example, the cell reference sales[year >=
2001] has a symbolic reference on the DIMENSION BY key year and specifies all cells whose
year value is greater than or equal to 2001. An example of symbolic references on product and
year dimensions is sales[product = 'Bounce', year >= 2001].

23.2.4.2 Positional Dimension References
A positional dimension reference (or positional reference, in short) is a constant or a constant
expression specified for a dimension. For example, the cell reference sales['Bounce'] has a
positional reference on the product dimension and accesses sales value for the product
Bounce. The constants (or constant expressions) in a cell reference are matched to the column
order specified for DIMENSION BY keys. The following example shows the usage of positional
references on dimensions:

sales['Bounce', 2001]

Assuming DIMENSION BY keys to be product and year in that order, it accesses the sales value
for Bounce and 2001.

Based on how they are specified, cell references are either single cell or multi-cell reference.

23.2.5 About Rules for SQL Modeling
Model computation is expressed in rules that manipulate the cells of the multi-dimensional
array defined by PARTITION BY, DIMENSION BY, and MEASURES clauses. A rule is an assignment
statement whose left side represents a cell or a range of cells and whose right side is an
expression involving constants, bind variables, individual cells or an aggregate function on a
range of cells. Rules can use wild cards and looping constructs for maximum expressiveness.
An example of a rule is the following:

sales['Cricket - Athle', 2020] = 1.2 * sales['Cricket - Athle', 2019]

This rule says that, for the product - Cricket - Athle, the sales for 2020 are 20% more than
that of 2019.

Chapter 23
Basic Topics in SQL Modeling

23-12

Note that this rule refers to single cells on both the left and right side and is relatively simple.
Complex rules can be written with multi-cell references, aggregates, and nested cell
references.

Single Cell References

This type of rule involves single cell reference on the left side with constants and single cell
references on the right side. Some examples are the following:

sales[product='Wicket Keeper G', year=2021] = 5662
sales['Wicket Keeper G', 2022] = 1.2 * sales['Wicket Keeper G', 2021]
sales[product='Wide Brim Hat', year=2021] = 0.8 * sales['Tennis Strings',
 year=2022] + sales['Wicket Keeper G', 2019]

Multi-Cell References on the Right Side

Multi-cell references can be used on the right side of rules, in which case an aggregate
function needs to be applied on them to convert them to a single value. All existing aggregate
functions including analytic aggregates (inverse percentile functions, hypothetical rank and
distribution functions and so on) and statistical aggregates (correlation, regression slope and
so on), and user-defined aggregate functions can be used. Windowing functions such as RANK
and MOVING_AVG can be used as well. For example, the rule to compute the sales of Team
shirt for 2022 to be 100 more than the maximum sales in the period 2019 to 2021 would be:

sales['Team shirt', 2022] = 100 + MAX(sales)['Team shirt', year BETWEEN 2019 AND 2021]

The following example illustrates the usage of inverse percentile function PERCENTILE_DISC. It
projects Finding Fido sales for year 2003 to be 30% more than the median sales for products
Finding Fido, Match Used Auto, and Boat for all years prior to 2003.

sales[product='Spiked Shoes', year=2019] = 1.5 *
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY sales) [product IN ('Spiked Shoes','Tennis
Racquet ','Sonic Core Grap'), year < 2018]

Aggregate functions can appear only on the right side of rules. Arguments to the aggregate
function can be constants, bind variables, measures of the MODEL clause, or expressions
involving them. For example, the rule computes the sales of Soccer Jersey for 2022 to be the
weighted average of its sales for years from 2018 to 2021 would be:

sales['Soccer Jersey ', 2022] =
 AVG(sales * weight)['Soccer Jersey', year BETWEEN 2018 AND 2021]

Multi-Cell References on the Left Side

Rules can have multi-cell references on the left side as in the following:

sales['Soccer Goal - P ', year > 2021] =
 0.2 * sales['Right-Handed Gr', year=2019]

This rule accesses a range of cells on the left side (cells for product Soccer Goal - P and year
greater than 2021) and assigns sales measure of each such cell to the value computed by the
right side expression. Computation by the preceding rule is described as "sales of Soccer Goal
- P for years after 2021" is 20% of the sales of Right-Handed Gr for year 2019 . This
computation is simple in that the right side cell references and hence the right side expression
are the same for all cells referenced on the left.

Use of the CV Function

The use of the CV function provides the capability of relative indexing where dimension values
of the cell referenced on the left side are used on the right side cell references. The CV function

Chapter 23
Basic Topics in SQL Modeling

23-13

takes a dimension key as its argument, so it provides the value of a DIMENSION BY key of the
cell currently referenced on the left side. As an example, consider the following:

sales[product='Linseed Oil', year>2022] =
 sales[CV(product), CV(year)] + 0.2 * sales['Match Used Auto', 2020]

When the left side references the cell Linseed Oil and 2022, the right side expression would
be:

sales['Match Used Auto', 2020] + 0.2 * sales['Linseed Oil', 2022]

Similarly, when the left side references the cell Match Used Auto and 2022, the right side
expression you would evaluate is:

sales['Match Used Auto', 2022] + 0.2 * sales['Linseed Oil', 2022]

It is also possible to use CV without any argument as in CV() and in which case, positional
referencing is implied. CV() may be used outside a cell reference, but when used in this way its
argument must contain the name of the dimension desired. You can also write the preceding
rule as:

sales[product='Match Used Auto', year>2020] =
 sales[CV(), CV()] + 0.2 * sales[''Pitching Machin'', 2020]

The first CV() reference corresponds to CV(product) and the latter corresponds to CV(year).
The CV function can be used only in right side cell references. Another example of the usage of
CV function is the following:

sales[product IN ('Linseed Oil','Match Used Auto','Plastic - Beach'), year
 BETWEEN 2022 AND 2023] = 2 * sales[CV(product), CV(year)-10]

This rule says that, for products Linseed Oil, Match Used Auto, and Plastic - Beach, the
sales for years between 2022 and 2023 will be twice of what their sales were 10 years ago.

Use of the ANY Wildcard

You can use the wild card ANY in cell references to match all dimension values including nulls.
ANY may be used on both the left and right side of rules. For example, a rule for the
computation "sales of all products for 2023 are 10% more than their sales for 2022" would be
the following:

sales[product IS ANY, 2023] = 1.1 * sales[CV(product), 2022]

Using positional references, it can also be written as:

sales[ANY, 2023] = 1.1 * sales[CV(), 2022]

Note that ANY is treated as a symbolic reference even if it is specified positionally, because it
really means that (dimension IS NOT NULL OR dimension IS NULL).

Nested Cell References

Cell references can be nested. In other words, cell references providing dimension values can
be used within a cell reference. An example, assuming best_year is a measure, for nested cell
reference is given as follows:

sales[product='Pitching Machin', year = best_year['Pitching Machin', 2019]]

Here, the nested cell reference best_year['Pitching Machin', 2019] provides value for the
dimension key year and is used in the symbolic reference for year. Measures best_year and

Chapter 23
Basic Topics in SQL Modeling

23-14

worst_year give, for each year (y) and product (p) combination, the year for which sales of
product p were highest or lowest. The following rule computes the sales of Match Used Auto
for 2003 to be the average of Match Used Auto sales for the years in which Finding Fido sales
were highest and lowest:

sales['Match Used Auto', 2023] = (sales[CV(), best_year['Pitching Machin',
 CV(year)]] + sales[CV(), worst_year['Pitching Machin', CV(year)]]) / 2

Oracle Database allows only one level of nesting, and only single cell references can be used
as nested cell references. Aggregates on multi-cell references cannot be used in nested cell
references.

23.2.6 Order of Evaluation of SQL Modeling Rules
By default, rules are evaluated in the order they appear in the MODEL clause. You can specify
an optional keyword SEQUENTIAL ORDER in the MODEL clause to make such an evaluation order
explicit. SQL models with sequential rule order of evaluation are called sequential order
models. For example, the following RULES specification makes Oracle Database evaluate rules
in the specified sequence:

RULES SEQUENTIAL ORDER
 (sales['Match Used Auto', 2021] =
 sales['Match Used Auto', 2020] + sales['Bounce', 2019], --Rule R1
 sales['Match Used Auto', 2020] = 50000, --Rule R2
 sales['Match Used Auto', 2019] = 40000) --Rule R3

Alternatively, the option AUTOMATIC ORDER enables Oracle Database to determine the order of
evaluation of rules automatically. Oracle examines the cell references within rules and finds
dependencies among rules. If cells referenced on the left side of rule R1 are referenced on the
right side of another rule R2, then R2 is considered to depend on R1. In other words, rule R1
should be evaluated before rule R2. If you specify AUTOMATIC ORDER in the preceding example
as in:

RULES AUTOMATIC ORDER
 (sales['Match Used Auto', 2021] = sales['Match Used Auto', 2020] + sales['Match Used
Auto', 2019],
 sales['Match Used Auto', 2020] = 50000,
 sales['Match Used Auto', 2019] = 40000)

Rules 2 and 3 are evaluated, in some arbitrary order, before rule 1. This is because rule 1
depends on rules 2 and 3 and hence need to be evaluated after rules 2 and 3. The order of
evaluation among second and third rules can be arbitrary as they do not depend on one
another. The order of evaluation among rules independent of one another can be arbitrary.
SQL models with an automatic order of evaluation, as in the preceding fragment, are called
automatic order models.

In an automatic order model, multiple assignments to the same cell are not allowed. In other
words, measure of a cell can be assigned only once. Oracle Database will return an error in
such cases as results would be non-deterministic. For example, the following rule specification
will generate an error as sales['Match Used Auto', 2021] is assigned more than once:

RULES AUTOMATIC ORDER
 (sales['Match Used Auto', 2021] = sales['Match Used Auto', 2020] + sales['Match Used
Auto', 2019],
 sales['Match Used Auto', 2021] = 50000,
 sales['Match Used Auto', 2021] = 40000)

The rules assigning the sales of product Bounce for 2001 do not depend on one another and
hence, no particular evaluation order can be fixed among them. This leads to non-deterministic

Chapter 23
Basic Topics in SQL Modeling

23-15

results as the evaluation order is arbitrary - sales['Match Used Auto', 2021] can be 40000
or 50000 or sum of Bounce sales for years 1999 and 2000. Oracle Database prevents this by
disallowing multiple assignments when AUTOMATIC ORDER is specified. However, multiple
assignments are fine in sequential order models. If SEQUENTIAL ORDER was specified instead of
AUTOMATIC ORDER in the preceding example, the result of sales['Match Used Auto', 2021]
would be 40000.

23.2.7 Global and Local Keywords for SQL Modeling Rules
You can specify an UPDATE, UPSERT, UPSERT ALL, IGNORE NAV, and KEEP NAV option at the global
level in the RULES clause in which case all rules operate in the respective mode. These options
can be specified at a local level with each rule and in which case, they override the global
behavior. For example, in the following specification:

RULES UPDATE
(UPDATE s['Match Used Auto',2021] = sales['Match Used Auto',2020] + sales['Match Used
Auto',2019],
 UPSERT s['Pro Maple Bat', 2021] = sales['Pro Maple Bat', 2020] + sales['Pro Maple Bat',
2019],
 sales['Pro Maple Youth', 2021] = sales['Pro Maple Youth', 2020] +
 sales['Pro Maple Youth',2019])

The UPDATE option is specified at the global level so, the first and third rules operate in update
mode. The second rule operates in upsert mode as an UPSERT keyword is specified with that
rule. Note that no option was specified for the third rule and hence it inherits the update
behavior from the global option.

23.2.8 UPDATE, UPSERT, and UPSERT ALL Behavior
You can determine how cells in rules behave by choosing whether to have UPDATE, UPSERT, or
UPSERT ALL semantics. By default, rules in the MODEL clause have UPSERT semantics, though
you can specify an optional UPSERT keyword to make the upsert semantic explicit.

The following sections discuss these three types of behavior:

• UPDATE Behavior

• UPSERT Behavior

• UPSERT ALL Behavior

23.2.8.1 UPDATE Behavior
The UPDATE option forces strict update mode. In this mode, the rule is ignored if the cell it
references on the left side does not exist. If the cell referenced on the left side of a rule exists,
then its measure is updated with the value of the right side expression. Otherwise, if a cell
reference is positional, a new cell is created (that is, inserted into the multi-dimensional array)
with the measure value equal to the value of the right side expression. If a cell reference is not
positional, it will not insert cells. Note that if there are any symbolic references in a cell's
specification, inserts are not possible in an upsert rule. For example, consider the following
rule:

sales['Match Used Auto', 2023] = sales['Match Used Auto', 2021] + sales ['Match Used
Auto', 2022]

The cell for product Match Used Auto and year 2023, if it exists, gets updated with the sum of
Bounce sales for years 2021 and 2022, otherwise, it gets created. If you had created the same
rule using any symbolic references, no updates would be performed, as in the following:

Chapter 23
Basic Topics in SQL Modeling

23-16

sales[prod= 'Match Used Auto', year= 2003] = sales['Match Used Auto', 2021] + sales
['Match Used Auto', 2022]

23.2.8.2 UPSERT Behavior
Using UPSERT creates a new cell corresponding to the one referenced on the left side of the
rule when the cell is missing, and the cell reference contains only positional references
qualified by constants. Note that cell references created with FOR loops (described in
"Advanced Topics in SQL Modeling") are treated as positional references, so the values FOR
loops create will be used to insert new cells. Assuming you do not have cells for years greater
than 2020, consider the following rule:

UPSERT sales['Match Used Auto', year = 2021] = 1.1 * sales['Match Used Auto', 2020]

This would not create any new cell because of the symbolic reference year = 2021. However,
consider the following:

UPSERT sales['Match Used Auto', 2021] = 1.1 * sales['Match Used Auto', 2020]

This would create a new cell for product Match Used Auto for year 2021. On a related note,
new cells will not be created if any of the references is ANY. This is because ANY is a predicate
that qualifies all dimensional values including NULL. If there is a reference ANY for a dimension
d, then it means the same thing as the predicate (d IS NOT NULL OR d IS NULL).

If an UPSERT rule uses FOR loops in its left side cell references, the list of upsert cells is
generated by performing a cross product of all the distinct values for each dimension. Although
UPSERT with FOR loops can be used to densify dimensions (see "Data Densification for
Reporting"), it is generally preferable to densify using the partitioned outer join operation.

23.2.8.3 UPSERT ALL Behavior
UPSERT ALL behavior allows model rules with existential predicates (comparisons, IN, ANY, and
so on) in their left side to have UPSERT behavior. As an example, the following uses ANY and
creates Bay Area as the combination of San Francisco, San Jose, and Oakland:

SELECT product, time, city, s sales
FROM cube_subquery
MODEL PARTITION BY (product)
DIMENSION BY (time, city) MEASURES(sales s
RULES UPSERT ALL
(s[ANY, 'Bay Area'] =
 s[CV(), 'San Francisco'] + s[CV(), 'San Jose'] + s[CV(), 'Oakland']
s['2020', ANY] = s['2018', CV()] + s['2019', CV()]);

In this example, the first rule simply inserts a Bay Area cell for each distinct time value, and the
second rule inserts a 2004 cell for each distinct city value including Bay Area. This example is
relatively simple as the existential predicates used on the left side are ANY predicates, but you
can also use UPSERT ALL with more complex calculations.

It is important to understand exactly what the UPSERT ALL operation does, especially in cases
where there is more than one symbolic dimension reference. Note that the behavior is different
than the behavior of an UPSERT rule that uses FOR loops.

When evaluating an UPSERT ALL rule, Oracle Database performs the following steps to create a
list of cell references to be upserted:

1. Find the existing cells that satisfy all the symbolic predicates of the cell reference.

Chapter 23
Basic Topics in SQL Modeling

23-17

2. Using just the dimensions that have symbolic references, find the distinct dimension value
combinations of these cells.

3. Perform a cross product of these value combinations with the dimension values specified
through positional references.

4. The results of Step 3 are then used to upsert new cells into the array.

23.2.8.3.1 Example: UPSERT ALL Behavior
To illustrate the four steps described in "UPSERT ALL Behavior", here is a brief example using
abstracted data and a model with three dimensions. Consider a model dimensioned by
(product, time, city) with a measure called sales. You wish to upsert new sales values for the
city of z, and these sales values are copied from those of the city of y.

UPSERT ALL sales[ANY, ANY, 'z']= sales[CV(product),CV(time),'y']

Our source data set has these four rows:

PROD TIME CITY SALES
 1 2022 x 10
 1 2023 x 15
 2 2022 y 21
 2 2023 y 24

The following explains the details of the four steps, applied to this data:

1. Because the symbolic predicates of the rule are ANY, any of the rows shown in this
example is acceptable.

2. The distinct dimension combinations of cells with symbolic predicates that match the
condition are: (1, 2022), (1, 2023), (2, 2022), and (2, 2023).

3. You find the cross product of these dimension combinations with the cells specified with
positional references. In this case, it is simply a cross product with the value z, and the
resulting cell references are: (1, 2022, z), (1, 2023, z), (2, 2022, z), and (2, 2023, z).

4. The cells listed in Step 3 will be upserted, with sales calculated based on the city y.
Because there are no values for product 1 in city y, those cells created for product 1 will
have NULL as their sales value. Of course, a different rule might have generated non-NULL
results for all the new cells. Our result set includes the four original rows plus four new
rows:

PROD TIME CITY SALES
 1 2022 x 10
 1 2023 x 15
 2 2022 y 21
 2 2023 y 24
 1 2022 z NULL
 1 2023 z NULL
 2 2022 z 21
 2 2023 z 24

It is important to note that these results are not a cross product using all values of all
dimensions. If that were the case, you would have cells such as (1,2022, y) and (2,2023, x).
Instead, the results here are created using dimension combinations found in existing rows.

23.2.9 Treatment of NULLs and Missing Cells in SQL Modeling
Applications using models would not only have to deal with non-deterministic values for a cell
measure in the form of NULL, but also with non-determinism in the form of missing cells. A cell,

Chapter 23
Basic Topics in SQL Modeling

23-18

referenced by a single cell reference, that is missing in the data is called a missing cell. The
MODEL clause provides a default treatment for nulls and missing cells that is consistent with the
ANSI SQL standard and also provides options to treat them in other useful ways according to
business logic, for example, to treat nulls as zero for arithmetic operations.

By default, NULL cell measure values are treated the same way as nulls are treated elsewhere
in SQL. For example, in the following rule:

sales['Plastic Cricket', 2021] = sales['Plastic Cricket', 2019] + sales['Plastic
Cricket', 2020]

The right side expression would evaluate to NULL if Plastic Cricket sales for one of the years
2019 and 2020 is NULL. Similarly, aggregate functions in rules would treat NULL values in the
same way as their regular behavior where NULL values are ignored during aggregation.

Missing cells are treated as cells with NULL measure values. For example, in the preceding
rule, if the cell for Plastic Cricket and 2020 is missing, then it is treated as a NULL value and
the right side expression would evaluate to NULL.

This section contains the following topics:

• Distinguishing Missing Cells from NULLs

• Use Defaults for Missing Cells and NULLs

• Using NULLs in a Cell Reference

23.2.9.1 Distinguishing Missing Cells from NULLs
The functions PRESENTV and PRESENTNNV enable you to identify missing cells and distinguish
them from NULL values. These functions take a single cell reference and two expressions as
arguments as in PRESENTV(cell, expr1, expr2). PRESENTV returns the first expression expr1
if the cell cell is existent in the data input to the MODEL clause. Otherwise, it returns the second
expression expr2. For example, consider the following:

PRESENTV(sales['Pro Maple Bat ', 2020], 1.1*sales['Pro Maple Bat ', 2020], 100)

If the cell for product Pro Maple Bat and year 2020 exists, it returns the corresponding sales
multiplied by 1.1, otherwise, it returns 100. Note that if sales for the product Pro Maple Bat for
year 2020 is NULL, the preceding specification would return NULL.

The PRESENTNNV function not only checks for the presence of a cell but also whether it is NULL
or not. It returns the first expression expr1 if the cell exists and is not NULL, otherwise, it returns
the second expression expr2. For example, consider the following:

PRESENTNNV(sales['Pro Maple Bat ', 2020], 1.1*sales['Pro Maple Bat ', 2020], 100)

This would return 1.1*sales['Pro Maple Bat ', 2020] if sales['Pro Maple Bat ', 2020]
exists and is not NULL. Otherwise, it returns 100.

Applications can use the IS PRESENT predicate in their model to check the presence of a cell in
an explicit fashion.This predicate returns TRUE if cell exists and FALSE otherwise. The preceding
example using PRESENTNNV can be written using IS PRESENT as:

CASE WHEN sales['Pro Maple Bat ', 2020] IS PRESENT AND sales['Pro Maple Bat ', 2020] IS
NOT NULL
THEN 1.1 * sales['Pro Maple Bat ', 2020]
ELSE 100
END

Chapter 23
Basic Topics in SQL Modeling

23-19

The IS PRESENT predicate, like the PRESENTV and PRESENTNNV functions, checks for cell
existence in the input data, that is, the data as existed before the execution of the MODEL
clause. This enables you to initialize multiple measures of a cell newly inserted by an UPSERT
rule. For example, if you want to initialize sales and profit values of a cell, if it does not exist in
the data, for product Pro Maple Bat and year 2023 to 1000 and 500 respectively, you can do so
by the following:

RULES
 (UPSERT sales['Pro Maple Bat ', 2023] =
 PRESENTV(sales['Pro Maple Bat ', 2023], sales['Pro Maple Bat ', 2023], 1000),
 UPSERT profit['Pro Maple Bat ', 2023] =
 PRESENTV(profit['Pro Maple Bat ', 2023], profit['Pro Maple Bat ', 2023], 500))

The PRESENTV functions used in this formulation return TRUE or FALSE based on the existence of
the cell in the input data. If the cell for Pro Maple Bat and 2023 gets inserted by one of the
rules, based on their evaluation order, PRESENTV function in the other rule would still evaluate to
FALSE. You can consider this behavior as a preprocessing step to rule evaluation that evaluates
and replaces all PRESENTV and PRESENTNNV functions and IS PRESENT predicate by their
respective values.

23.2.9.2 Use Defaults for Missing Cells and NULLs
The MODEL clause, by default, treats missing cells as cells with NULL measure values. An
optional KEEP NAV keyword can be specified in the MODEL clause to get this behavior.If your
application wants to default missing cells and nulls to some values, you can do so by using IS
PRESENT, IS NULL predicates and PRESENTV, PRESENTNNV functions. But it may become
cumbersome if you have lot of single cell references and rules. You can use IGNORE NAV option
instead of the default KEEP NAV option to default nulls and missing cells to:

• 0 for numeric data

• Empty string for character/string data

• 01-JAN-2021 for data type data

• NULL for all other data types

Consider the following query:

SELECT product, year, sales
FROM sales_view
WHERE country = 'Poland'
MODEL
 DIMENSION BY (product, year) MEASURES (sales sales) IGNORE NAV
 RULES UPSERT
 (sales['Tennis Strings', 2023] = sales['Tennis Strings', 2022] + sales['Tennis
Strings', 2021]);

In this, the input to the MODEL clause does not have a cell for product Bounce and year 2022.
Because of IGNORE NAV option, sales['Tennis Strings', 2022] value would default to 0 (as
sales is of numeric type) instead of NULL. Thus, sales['Tennis Strings', 2023] value would
be same as that of sales['Tennis Strings', 2021].

23.2.9.3 Using NULLs in a Cell Reference
To use NULL values in a cell reference, you must use one of the following:

• Positional reference using wild card ANY as in sales[ANY].

• Symbolic reference using the IS ANY predicate as in sales[product IS ANY].

Chapter 23
Basic Topics in SQL Modeling

23-20

• Positional reference of NULL as in sales[NULL].

• Symbolic reference using IS NULL predicate as in sales[product IS NULL].

Note that symbolic reference sales[product = NULL] would not test for nulls in the product
dimension. This behavior conforms with the standard handling of nulls by SQL.

23.2.10 About Reference Models in SQL Modeling
In addition to the multi-dimensional array on which rules operate, which is called the main
model, one or more read-only multi-dimensional arrays, called reference models, can be
created and referenced in the MODEL clause to act as look-up tables for the main model. Like
the main model, a reference model is defined over a query block and has DIMENSION BY and
MEASURES clauses to indicate its dimensions and measures respectively. A reference model is
created by the following subclause:

REFERENCE model_name ON (query) DIMENSION BY (cols) MEASURES (cols)
 [reference options]

Like the main model, a multi-dimensional array for the reference model is built before
evaluating the rules. But, unlike the main model, reference models are read-only in that their
cells cannot be updated and no new cells can be inserted after they are built. Thus, the rules in
the main model can access cells of a reference model, but they cannot update or insert new
cells into the reference model. The following is an example using a currency conversion table
as a reference model:

CREATE TABLE dollar_conv_tbl(country VARCHAR2(30), exchange_rate NUMBER);
INSERT INTO dollar_conv_tbl VALUES('Poland', 0.25);
INSERT INTO dollar_conv_tbl VALUES('France', 0.14);
...

Now, to convert the projected sales of Poland and France for 2023 to the US dollar, you can
use the dollar conversion table as a reference model as in the following command. The view
sales_view was created as described in Base Schema for SQL Modeling Examples.

SELECT country, year, sales, dollar_sales
FROM sales_view
GROUP BY country, year
MODEL
 REFERENCE conv_ref ON (SELECT country, exchange_rate FROM dollar_conv_tbl)
 DIMENSION BY (country) MEASURES (exchange_rate) IGNORE NAV
 MAIN conversion
 DIMENSION BY (country, year)
 MEASURES (SUM(sales) sales, SUM(sales) dollar_sales) IGNORE NAV
RULES
(dollar_sales['France', 2023] = sales[CV(country), 2022] * 1.02 *
 conv_ref.exchange_rate['France'],
 dollar_sales['Poland', 2023] =
 sales['Poland', 2022] * 1.05 * exchange_rate['Poland']);

Observe in this example that:

• A one dimensional reference model named conv_ref is created on rows from the table
dollar_conv_tbl and that its measure exchange_rate has been referenced in the rules of
the main model.

• The main model (called conversion) has two dimensions, country and year, whereas the
reference model conv_ref has one dimension, country.

Chapter 23
Basic Topics in SQL Modeling

23-21

• Different styles of accessing the exchange_rate measure of the reference model. For
France, it is rather explicit with model_name.measure_name notation
conv_ref.exchange_rate, whereas for Poland, it is a simple measure_name reference
exchange_rate. The former notation needs to be used to resolve any ambiguities in
column names across main and reference models.

Growth rates, in this example, are hard coded in the rules. The growth rate for France is 2%
and that of Poland is 5%. But they could come from a separate table and you can have a
reference model defined on top of that. Assume that you have a growth_rate(country, year,
rate) table defined as the following:

CREATE TABLE growth_rate_tbl(country VARCHAR2(30),
 year NUMBER, growth_rate NUMBER);
INSERT INTO growth_rate_tbl VALUES('Poland', 2022, 2.5);
INSERT INTO growth_rate_tbl VALUES('Poland', 2023, 5);
...
INSERT INTO growth_rate_tbl VALUES('France', 2022, 3);
INSERT INTO growth_rate_tbl VALUES('France', 2023, 2.5);

Then the following query computes the projected sales in dollars for 2023 for all countries:

SELECT country, year, sales, dollar_sales
FROM sales_view
GROUP BY country, year
MODEL
 REFERENCE conv_ref ON
 (SELECT country, exchange_rate FROM dollar_conv_tbl)
 DIMENSION BY (country c) MEASURES (exchange_rate) IGNORE NAV
 REFERENCE growth_ref ON
 (SELECT country, year, growth_rate FROM growth_rate_tbl)
 DIMENSION BY (country c, year y) MEASURES (growth_rate) IGNORE NAV
 MAIN projection
 DIMENSION BY (country, year) MEASURES (SUM(sales) sales, 0 dollar_sales)
 IGNORE NAV
 RULES
 (dollar_sales[ANY, 2023] = sales[CV(country), 2022] *
 growth_rate[CV(country), CV(year)] *
 exchange_rate[CV(country)]);

This query shows the capability of the MODEL clause in dealing with and relating objects of
different dimensionality. Reference model conv_ref has one dimension while the reference
model growth_ref and the main model have two dimensions. Dimensions in the single cell
references on reference models are specified using the CV function thus relating the cells in
main model with the reference model. This specification, in effect, is performing a relational join
between main and reference models.

Reference models also help you convert keys to sequence numbers, perform computations
using sequence numbers (for example, where a prior period would be used in a subtraction
operation), and then convert sequence numbers back to keys. For example, consider a view
that assigns sequence numbers to years:

CREATE or REPLACE VIEW year_2_seq (i, year) AS
SELECT ROW_NUMBER() OVER (ORDER BY calendar_year), calendar_year
FROM (SELECT DISTINCT calendar_year FROM TIMES);

This view can define two lookup tables: integer-to-year i2y, which maps sequence numbers to
integers, and year-to-integer y2i, which performs the reverse mapping. The references
y2i.i[year] and y2i.i[year] - 1 return sequence numbers of the current and previous
years respectively and the reference i2y.y[y2i.i[year]-1] returns the year key value of the
previous year. The following query demonstrates such a usage of reference models:

Chapter 23
Basic Topics in SQL Modeling

23-22

SELECT country, product, year, sales, prior_period
FROM sales_view
MODEL
 REFERENCE y2i ON (SELECT year, i FROM year_2_seq) DIMENSION BY (year y)
 MEASURES (i)
 REFERENCE i2y ON (SELECT year, i FROM year_2_seq) DIMENSION BY (i)
 MEASURES (year y)
 MAIN projection2 PARTITION BY (country)
 DIMENSION BY (product, year)
 MEASURES (sales, CAST(NULL AS NUMBER) prior_period)
(prior_period[ANY, ANY] = sales[CV(product), i2y.y[y2i.i[CV(year)]-1]])
ORDER BY country, product, year;

Nesting of reference model cell references is evident in the preceding example. Cell reference
on the reference model y2i is nested inside the cell reference on i2y which, in turn, is nested
in the cell reference on the main SQL model. There is no limitation on the levels of nesting you
can have on reference model cell references. However, you can only have two levels of
nesting on the main SQL model cell references.

Finally, the following are restrictions on the specification and usage of reference models:

• Reference models cannot have a PARTITION BY clause.

• The query block on which the reference model is defined cannot be correlated to an outer
query.

• Reference models must be named and their names should be unique.

• All references to the cells of a reference model should be single cell references.

23.3 Advanced Topics in SQL Modeling
This section discusses more advanced topics in SQL modeling, and includes:

• FOR Loops in SQL Modeling

• Iterative Models in SQL Modeling

• Rule Dependency in AUTOMATIC ORDER Models

• Ordered Rules in SQL Modeling

• Analytic Functions in SQL Modeling

• Unique Dimensions Versus Unique Single References in SQL Modeling

• Rules and Restrictions when Using SQL for Modeling

23.3.1 FOR Loops in SQL Modeling
The MODEL clause provides a FOR construct that can be used inside rules to express
computations more compactly. It can be used on both the left and right side of a rule. FOR loops
are treated as positional references when on the left side of a rule. For example, consider the
following computation, which estimates the sales of several products for 2020 to be 10%
higher than their sales for 2019:

RULES UPSERT
(sales['Wide Brim Hat', 2020] = 1.1 * sales['Wide Brim Hat', 2019],
 sales['11" Youth Field', 2020] = 1.1 * sales['11" Youth Field', 2019],
...
 sales['12" Premium Ser', 2020] = 1.1 * sales['12" Premium Ser', 2019])

Chapter 23
Advanced Topics in SQL Modeling

23-23

The UPSERT option is used in this computation so that cells for these products and 2020 will be
inserted if they are not previously present in the multi-dimensional array. This is rather bulky as
you have to have as many rules as there are products. Using the FOR construct, this
computation can be represented compactly and with exactly the same semantics as in:

RULES UPSERT
(sales[FOR product IN ('Wide Brim Hat', '11" Youth Field', ..., '12" Premium Ser'),
2020] =
 1.1 * sales[CV(product), 2019])

If you write a specification similar to this, but without the FOR keyword as in the following:

RULES UPSERT
(sales[product IN ('Wide Brim Hat', '11" Youth Field', ..., '12" Premium Ser'), 2020] =
 1.1 * sales[CV(product), 2019])

You would get UPDATE semantics even though you have specified UPSERT. In other words,
existing cells will be updated but no new cells will be created by this specification. This is
because the multi-cell reference on product is a symbolic reference and symbolic references
do not permit insertion of new cells. You can view a FOR construct as a macro that generates
multiple rules with positional references from a single rule, thus preserving the UPSERT
semantics. Conceptually, the following rule:

sales[FOR product IN ('Wide Brim Hat', '11" Youth Field', ..., '12" Premium Ser'),
 FOR year IN (2020, 2020)] = 1.1 * sales[CV(product), CV(year)-1]

Can be treated as an ordered collection of the following rules:

sales['Wide Brim Hat', 2020] = 1.1 * sales[CV(product), CV(year)-1],
sales['Wide Brim Hat', 2020] = 1.1 * sales[CV(product), CV(year)-1],
sales['11" Youth Field', 2020] = 1.1 *
 sales[CV(product), CV(year)-1],
sales['11" Youth Field', 2020] = 1.1 * sales[CV(product),
 CV(year)-1],
...
sales['12" Premium Ser', 2020] = 1.1 * sales[CV(product), CV(year)-1],
sales['12" Premium Ser', 2021] = 1.1 * sales[CV(product), CV(year)-1]

The FOR construct in the preceding examples is of type FOR dimension IN (list of values).
Values in the list should be single-value expressions such as expressions of constants, single-
cell references, and so on. In the last example, there are separate FOR constructs on product
and year. It is also possible to specify all dimensions using one FOR construct and specify the
values using multi-column IN lists. Consider for example, if you want only to estimate sales for
Wide Brim Hat in 2020, 11" Youth Field in 2020 and 12" Premium Ser in 2020 and 2020. This
can be formulated as the following:

sales[FOR (product, year) IN (('Wide Brim Hat', 2020), ('11" Youth Field', 2020),
 ('12" Premium Ser', 2020), ('12" Premium Ser', 2020))] =
 1.1 * sales[CV(product), CV(year)-1]

This FOR construct should be of the form FOR (d1, ..., dn) IN ((d1_val1, ...,
dn_val1), ..., (d1_valm, ..., dn_valm)] when there are n dimensions d1, ..., dn and m
values in the list.

In some cases, the list of values for a dimension in FOR can be retrieved from a table or a
subquery. Oracle Database provides a type of FOR construct as in FOR dimension IN
(subquery) to handle these cases. For example, assume that the products of interest are
stored in a table interesting_products, then the following rule estimates their sales in 2020
and 2021:

Chapter 23
Advanced Topics in SQL Modeling

23-24

sales[FOR product IN (SELECT product_name FROM interesting_products)
 FOR year IN (2020, 2021)] = 1.1 * sales[CV(product), CV(year)-1]

As another example, consider the scenario where you want to introduce a new country, called
new_country, with sales that mimic those of Poland for all products and years where there are
sales in Poland. This is accomplished by issuing the following statement:

SELECT country, product, year, s
FROM sales_view
MODEL
DIMENSION BY (country, product, year)
MEASURES (sales s) IGNORE NAV
RULES UPSERT
(s[FOR (country, product, year) IN
 (SELECT DISTINCT 'new_country', product, year
 FROM sales_view
 WHERE country = 'Poland')] = s['Poland',CV(),CV()])
ORDER BY country, year, product;

The view sales_view was created as described in Base Schema for SQL Modeling Examples.

Note the multi-column IN-list produced by evaluating the subquery in this specification. The
subquery used to obtain the IN-list cannot be correlated to outer query blocks.

Note that the upsert list created by the rule is a cross-product of the distinct values for each
dimension. For example, if there are 10 values for country, 5 values for year, and 3 values for
product, you will generate an upsert list containing 150 cells.

If you know that the values of interest come from a discrete domain, you can use FOR construct
FOR dimension FROM value1 TO value2 [INCREMENT | DECREMENT] value3. This
specification results in values between value1 and value2 by starting from value1 and
incrementing (or decrementing) by value3. The values value1, value2, and value3 should be
single-value expressions. For example, the following rule:

sales['Wide Brim Hat', FOR year FROM 2017 TO 2020 INCREMENT 1] =
 sales['Wide Brim Hat', year=CV(year)-1] * 1.2

This is semantically equivalent to the following rules in order:

sales['Wide Brim Hat', 2017] = sales['Wide Brim Hat', 2016] * 1.2,
sales['Wide Brim Hat', 2018] = sales['Wide Brim Hat', 2017] * 1.2,
...
sales['Wide Brim Hat', 2020] = sales['Wide Brim Hat', 2019] * 1.2

This kind of FOR construct can be used for dimensions of numeric, date and datetime data
types. The type for increment/decrement expression value3 should be numeric for numeric
dimensions and can be numeric or interval for dimensions of date or datetime types. Also,
value3 should be positive. Oracle Database returns an error if you use FOR year FROM 2020
TO 2017 INCREMENT -1. You should use either FOR year FROM 2020 TO 2017 DECREMENT 1 or
FOR year FROM 2017 TO 2020 INCREMENT 1.

To generate string values, you can use the FOR construct FOR dimension LIKE string FROM
value1 TO value2 [INCREMENT | DECREMENT] value3. The string string should contain only
one % character. This specification results in string by replacing % with values between value1
and value2 with appropriate increment/decrement value value3. For example, consider the
following rule:

sales[FOR product LIKE 'product-%' FROM 1 TO 3 INCREMENT 1, 2019] =
sales[CV(product), 2018] * 1.2

Chapter 23
Advanced Topics in SQL Modeling

23-25

This is equivalent to the following:

sales['product-1', 2019] = sales['product-1', 2018] * 1.2,
sales['product-2', 2019] = sales['product-2', 2018] * 1.2,
sales['product-3', 2020] = sales['product-3', 2019] * 1.2

In SEQUENTIAL ORDER models, rules represented by a FOR construct are evaluated in the order
they are generated. On the contrary, rule evaluation order would be dependency based if
AUTOMATIC ORDER is specified. For example, the evaluation order for the rules represented by
the rule:

sales['Wide Brim Hat', FOR year FROM 2020 TO 2017 DECREMENT 1] =
 1.1 * sales['Wide Brim Hat', CV(year)-1]

For SEQUENTIAL ORDER models, the rules would be generated in this order:

sales['Wide Brim Hat', 2020] = 1.1 * sales['Wide Brim Hat', 2019],
sales['Wide Brim Hat', 2019] = 1.1 * sales['Wide Brim Hat', 2018],
sales['Wide Brim Hat', 2018] = 1.1 * sales['Wide Brim Hat', 2017],
sales['Wide Brim Hat', 2017] = 1.1 * sales['Wide Brim Hat', 2016]

While for AUTOMATIC ORDER models, the order would be equivalent to:

sales['Wide Brim Hat', 2017] = 1.1 * sales['Wide Brim Hat', 2016],
sales['Wide Brim Hat', 2018] = 1.1 * sales['Wide Brim Hat', 2017],
sales['Wide Brim Hat', 2019] = 1.1 * sales['Wide Brim Hat', 2018],
sales['Wide Brim Hat', 2020] = 1.1 * sales['Wide Brim Hat', 2019]

See Also:

Evaluation of Formulas with FOR Loops

23.3.1.1 Evaluation of Formulas with FOR Loops
The FOR loop construct provides an iterative mechanism to generate single-value references
for a dimension or for all dimensions (in the case of multi-column for IN lists). The evaluation of
a formula with FOR loops on its left side basically consists of evaluation of the right side of the
formula for each single-value reference generated by these FOR loops and assigning the result
to the specified cell with this single-value reference. The generation of these single reference
values is called "unfolding the FOR loop". These unfolded cells are evaluated in the order they
are generated during the unfolding process.

How unfolding is performed depends on the UPSERT, UPDATE, and UPDATE ALL behavior
specified for the rule and the specific characteristics of the rule. To understand this, a
discussion of two stages of query processing is needed: query plan creation and query
execution. Query plan creation is a stage where certain rule references are resolved in order to
create an efficient query execution plan. Query execution is the stage where all remaining
unresolved references must be determined. FOR loops may be unfolded at either query plan
generation or at query execution. Below the details of the unfolding decision are discussed.

Chapter 23
Advanced Topics in SQL Modeling

23-26

See Also:

• Unfolding For UPDATE and UPSERT Rules

• Unfolding For UPSERT ALL: Rules

• Restrictions on Using FOR Loop Expressions on the Left Side of Formulas

23.3.1.1.1 Unfolding For UPDATE and UPSERT Rules
When using UPDATE or UPSERT rules, if unfolding the left side of a rule is guaranteed to generate
single cell references, the unfolding is done at query execution. If the unfolding process cannot
generate single cell references, unfolding is performed at query plan creation and a copy of the
same formula for each generated reference by the unfolding process is created. For example,
the unfolding of the following formula occurs at query execution as unfolding generates single
cell references:

sales[FOR product IN ('prod1', 'prod2'), 2003] = sales[CV(product), 2002] * 1.2

However, consider the following formula, where unfolding reference values do not produce
single value references due to the existence of a predicate on another dimension:

sales[FOR product in ('prod1', 'prod2'), year >= 2003]
 = sales[CV(product), 2002] * 1.2

There is no single-value reference on the year dimension, so even when the FOR loop is
unfolded on the product dimension, there will be no single-value references on the left side of
this formula. This means that the unfolding occurs at query plan creation and physically
replace the original formula with the following formulas:

sales['prod1', year >= 2003] = sales[CV(product), 2002] * 1.2,
sales['prod2', year >= 2003] = sales[CV(product), 2002] * 1.2

The analysis and optimizations performed within the MODEL clause are done after unfolding at
query plan creation (if that is what occurs), so, from that point on, everything is as if the
multiple rules are specified explicitly in the MODEL clause. By performing unfolding at query plan
creation in these cases, more accurate analysis and better optimization of formula evaluation is
achieved. One thing to note is that there may be an increase in the number of formulas and, if
this increase pushes the total number of formulas beyond the maximum limit, Oracle Database
signals an error.

23.3.1.1.2 Unfolding For UPSERT ALL: Rules
Rules with UPSERT ALL behavior have a very different approach to unfolding FOR loops. No
matter what predicates are used, an UPSERT ALL rule will unfold FOR loops at query execution.
This behavior avoids certain FOR loop restrictions discussed in the next section. However,
there is a trade-off of fewer restrictions versus more optimized query plans. An UPSERT ALL rule
tends toward slower performance than a similar UPSERT or UPDATE rule, and this should be
considered when designing models.

23.3.1.1.3 Restrictions on Using FOR Loop Expressions on the Left Side of Formulas
Restrictions on the use of FOR loop constructs are determined based on whether the unfolding
takes place at query plan creation or at query execution. If a formula with FOR loops on its left
side is unfolded at query plan creation (due to the reasons explained in the previous section),

Chapter 23
Advanced Topics in SQL Modeling

23-27

the expressions that need to be evaluated for unfolding must be expressions of constants
whose values are available at query plan creation. For example, consider the following
statement:

sales[For product like 'prod%' from ITERATION_NUMBER
to ITERATION_NUMBER+1, year >= 2003] = sales[CV(product), 2002]*1.2

If this rule does not have UPSERT ALL specified for its behavior, it is unfolded at query plan
creation. Because the value of the ITERATION_NUMBER is not known at query plan creation, and
the value is needed to evaluate start and end expressions, Oracle Database signals an error
unless that rule is unfolded at query execution. However, the following rule would be unfolded
at query plan creation without any errors: the value of ITERATION_NUMBER is not needed for
unfolding in this case, even though it appears as an expression in the FOR loop:

sales[For product in ('prod'||ITERATION_NUMBER, 'prod'||(ITERATION_NUMBER+1)),
 year >= 2003] = sales[CV(product), 2002]*1.2

Expressions that have any of the following conditions cannot be evaluated at query plan
creation:

• nested cell references

• reference model look-ups

• ITERATION_NUMBER references

Rules with FOR loops that require the results of such expressions causes an error if unfolded at
query plan creation. However, these expressions will not cause any error if unfolding is done at
query execution.

If a formula has subqueries in its FOR loop constructs and this formula requires compile-time
unfolding, these subqueries are evaluated at query plan creation so that unfolding can happen.
Evaluating a subquery at query plan creation can render a cursor non-sharable, which means
the same query may need to be recompiled every time it is issued. If unfolding of such a
formula is deferred to query execution, no compile-time evaluation is necessary and the
formula has no impact on the sharability of the cursor.

Subqueries in the FOR loops of a formula can reference tables in the WITH clause if the formula
is to be unfolded at query execution. If the formula has to be unfolded at query plan creation,
Oracle Database signals an error.

23.3.2 Iterative Models in SQL Modeling
Using the ITERATE option of the MODEL clause, you can evaluate rules iteratively for a certain
number of times, which you can specify as an argument to the ITERATE clause. ITERATE can be
specified only for SEQUENTIAL ORDER models and such models are referred to as iterative
models. For example, consider the following:

SELECT x, s FROM DUAL
MODEL
 DIMENSION BY (1 AS x) MEASURES (1024 AS s)
 RULES UPDATE ITERATE (4)
(s[1] = s[1]/2);

In Oracle, the table DUAL has only one row. Hence this model defines a 1-dimensional array,
dimensioned by x with a measure s, with a single element s[1] = 1024. The rule s[1] =
s[1]/2 evaluation will be repeated four times. The result of this query is a single row with
values 1 and 64 for columns x and s respectively. The number of iterations arguments for the
ITERATE clause should be a positive integer constant. Optionally, you can specify an early

Chapter 23
Advanced Topics in SQL Modeling

23-28

termination condition to stop rule evaluation before reaching the maximum iteration. This
condition is specified in the UNTIL subclause of ITERATE and is checked at the end of an
iteration. So, you will have at least one iteration when ITERATE is specified. The syntax of the
ITERATE clause is:

ITERATE (number_of_iterations) [UNTIL (condition)]

Iterative evaluation stops either after finishing the specified number of iterations or when the
termination condition evaluates to TRUE, whichever comes first.

In some cases, you may want the termination condition to be based on the change, across
iterations, in value of a cell. Oracle Database provides a mechanism to specify such conditions
in that it enables you to access cell values as they existed before and after the current iteration
in the UNTIL condition. Oracle's PREVIOUS function takes a single cell reference as an argument
and returns the measure value of the cell as it existed after the previous iteration. You can also
access the current iteration number by using the system variable ITERATION_NUMBER, which
starts at value 0 and is incremented after each iteration. By using PREVIOUS and
ITERATION_NUMBER, you can construct complex termination conditions.

Consider the following iterative model that specifies iteration over rules till the change in the
value of s[1] across successive iterations falls below 1, up to a maximum of 1000 times:

SELECT x, s, iterations FROM DUAL
MODEL
 DIMENSION BY (1 AS x) MEASURES (1024 AS s, 0 AS iterations)
 RULES ITERATE (1000) UNTIL ABS(PREVIOUS(s[1]) - s[1]) < 1
 (s[1] = s[1]/2, iterations[1] = ITERATION_NUMBER);

The absolute value function (ABS) can be helpful for termination conditions because you may
not know if the most recent value is positive or negative. Rules in this model will be iterated
over 11 times as after 11th iteration the value of s[1] would be 0.5. This query results in a
single row with values 1, 0.5, 10 for x, s and iterations respectively.

You can use the PREVIOUS function only in the UNTIL condition. However, ITERATION_NUMBER
can be anywhere in the main model. In the following example, ITERATION_NUMBER is used in
cell references:

SELECT country, product, year, sales
FROM sales_view
MODEL
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 IGNORE NAV
 RULES ITERATE(3)
(sales['Tennis Racquet', 2018 + ITERATION_NUMBER] = sales['Tennis Racquet', 2016
 + ITERATION_NUMBER]);

This statement achieves an array copy of sales of Tennis Racquet from cells in the arrays
previously created.

The view sales_view was created as described in Base Schema for SQL Modeling Examples.

23.3.3 Rule Dependency in AUTOMATIC ORDER Models
Oracle Database determines the order of evaluation of rules in an AUTOMATIC ORDER model
based on their dependencies. A rule is evaluated only after the rules it depends on are
evaluated. The algorithm chosen to evaluate the rules is based on the dependency analysis
and whether rules in your model have circular (or cyclical) dependencies. A cyclic dependency
can be of the form "rule A depends on B and rule B depends on A" or of the self-cyclic "rule
depending on itself" form. An example of the former is as follows.

Chapter 23
Advanced Topics in SQL Modeling

23-29

Note:

All examples here and in previous sections are operations against the Products table
in the sh sample schema provided by Oracle

.

sales['Wide Brim Hat', 2023] = 1.5 * sales['Wicket Keeper G', 2023],
sales['Wicket Keeper G', 2023] = 100000 / sales['Wide Brim Hat', 2023

An example of the latter is:

sales['Wide Brim Hat', 2023] = 25000 / sales['Wide Brim Hat', 2023]

However, there is no self-cycle in the following rule as different measures are being accessed
on the left and right side:

projected_sales['Wide Brim Hat', 2023] = 25000 / sales['Wide Brim Hat', 2023]

When the analysis of an AUTOMATIC ORDER model finds that the rules have no circular
dependencies, Oracle Database evaluates the rules in their dependency order. For example, in
the following AUTOMATIC ORDER model:

MODEL DIMENSION BY (prod, year) MEASURES (sale sales) IGNORE NAV
 RULES AUTOMATIC ORDER
 (sales['SUV', 2021] = 10000,
 sales['Practice Tennis', 2021] = sales['Shin Guards', 2021]
 * 0.10 + sales['Boat', 2021] * 0.50,
 sales['Boat', 2021] = sales['Shin Guards', 2021]
 * 0.25 + sales['SUV', 2021]* 0.75,
 sales['Shin Guards', 2021] = 20000)

Rule 2 depends on rules 3 and 4, while rule 3 depends on rules 1 and 4, and rules 1 and 4 do
not depend on any rule. Oracle, in this case, will find that the rule dependencies are acyclic
and evaluate rules in one of the possible evaluation orders (1, 4, 3, 2) or (4, 1, 3, 2). This type
of rule evaluation is called an ACYCLIC algorithm.

In some cases, Oracle Database may not be able to ascertain that your model is acyclic even
though there is no cyclical dependency among the rules. This can happen if you have complex
expressions in your cell references. Oracle Database assumes that the rules are cyclic and
employs a CYCLIC algorithm that evaluates the model iteratively based on the rules and data.
Iteration stops as soon as convergence is reached and the results are returned. Convergence
is defined as the state in which further executions of the model will not change values of any of
the cell in the model. Convergence is certain to be reached when there are no cyclical
dependencies.

If your AUTOMATIC ORDER model has rules with cyclical dependencies, Oracle Database employs
the earlier mentioned CYCLIC algorithm. Results are produced if convergence can be reached
within the number of iterations Oracle is going to try the algorithm. Otherwise, Oracle reports a
cycle detection error. You can circumvent this problem by manually ordering the rules and
specifying SEQUENTIAL ORDER.

23.3.4 Ordered Rules in SQL Modeling
An ordered rule is one that has ORDER BY specified on the left side. It accesses cells in the
order prescribed by ORDER BY and applies the right side computation. When you have ANY or
symbolic references on the left side of a rule but without the ORDER BY clause, Oracle might

Chapter 23
Advanced Topics in SQL Modeling

23-30

return an error saying that the rule's results depend on the order in which cells are accessed
and hence are non-deterministic. Consider the following SEQUENTIAL ORDER model. The
examples here use the sh sample schema.

SELECT t, s
FROM sh.sales, sh.times
WHERE sales.time_id = times.time_id
GROUP BY calendar_year
MODEL
 DIMENSION BY (calendar_year t) MEASURES (SUM(amount_sold) s)
 RULES SEQUENTIAL ORDER
 (s[ANY] = s[CV(t)-1]);

This query attempts to set, for all years t, sales s value for a year to the sales value of the prior
year. Unfortunately, the result of this rule depends on the order in which the cells are accessed.
If cells are accessed in the ascending order of year, the result would be that of column 3 in
Table 23-1. If they are accessed in descending order, the result would be that of column 4.

Table 23-1 Ordered Rules

t s If ascending If descending

2018 1210000982 null null

2019 1473757581 null 1210000982

2020 2376222384 null 1473757581

2021 1267107764 null 2376222384

If you want the cells to be considered in descending order and get the result given in column 4,
you should specify:

SELECT t, s
FROM sh.sales, sh.times
WHERE sales.time_id = times.time_id
GROUP BY calendar_year
MODEL
 DIMENSION BY (calendar_year t) MEASURES (SUM(amount_sold) s)
 RULES SEQUENTIAL ORDER
 (s[ANY] ORDER BY t DESC = s[CV(t)-1]);

In general, you can use any ORDER BY specification as long as it produces a unique order
among cells that match the left side cell reference. Expressions in the ORDER BY of a rule can
involve constants, measures and dimension keys and you can specify the ordering options
[ASC | DESC] [NULLS FIRST | NULLS LAST] to get the order you want.

You can also specify ORDER BY for rules in an AUTOMATIC ORDER model to make Oracle consider
cells in a particular order during rule evaluation. Rules are never considered self-cyclic if they
have ORDER BY. For example, to make the following AUTOMATIC ORDER model with a self-cyclic
formula acyclic:

MODEL
 DIMENSION BY (calendar_year t) MEASURES (SUM(amount_sold) s)
 RULES AUTOMATIC ORDER
 (s[ANY] = s[CV(t)-1])

You must provide the order in which cells need to be accessed for evaluation using ORDER BY.
For example, you can say:

s[ANY] ORDER BY t = s[CV(t) - 1]

Chapter 23
Advanced Topics in SQL Modeling

23-31

Then Oracle Database picks an ACYCLIC algorithm (which is certain to produce the result) for
formula evaluation.

23.3.5 Analytic Functions in SQL Modeling
Analytic functions (also known as window functions) can be used in the right side of rules. The
ability to use analytic functions adds expressive power and flexibility to the MODEL clause.The
following example combines an analytic function with the MODEL clause. First, you create a view
sales_rollup_time that uses the GROUPING_ID function to calculate an identifier for different
levels of aggregations. You then use the view in a query that calculates the cumulative sum of
sales at both the quarter and year levels.

CREATE OR REPLACE VIEW sales_rollup_time
AS
SELECT country_name country, calendar_year year, calendar_quarter_desc quarter,
GROUPING_ID(calendar_year, calendar_quarter_desc) gid, SUM(amount_sold) sale,
COUNT(amount_sold) cnt
FROM sales, times, customers, countries
WHERE sales.time_id = times.time_id AND sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
GROUP BY country_name, calendar_year, ROLLUP(calendar_quarter_desc)
ORDER BY gid, country, year, quarter;

SELECT country, year, quarter, sale, csum
FROM sales_rollup_time
WHERE country IN ('United States of America', 'United Kingdom')
MODEL DIMENSION BY (country, year, quarter)
MEASURES (sale, gid, 0 csum)
(
csum[any, any, any] =
 SUM(sale) OVER (PARTITION BY country, DECODE(gid,0,year,null)
ORDER BY year, quarter
ROWS UNBOUNDED PRECEDING)
)
ORDER BY country, gid, year, quarter;

COUNTRY YEAR QUARTER SALE CSUM
------------------------------ ---------- ------- ---------- ----------
United Kingdom 2018 2018-01 484733.96 484733.96
United Kingdom 2018 2018-02 386899.15 871633.11
United Kingdom 2018 2018-03 402296.49 1273929.6
United Kingdom 2018 2018-04 384747.94 1658677.54
United Kingdom 2019 2019-01 394911.91 394911.91
United Kingdom 2019 2019-02 331068.38 725980.29
United Kingdom 2019 2019-03 383982.61 1109962.9
United Kingdom 2019 2019-04 398147.59 1508110.49
United Kingdom 2020 2020-01 424771.96 424771.96
United Kingdom 2020 2020-02 351400.62 776172.58
United Kingdom 2020 2020-03 385137.68 1161310.26
United Kingdom 2020 2020-04 390912.8 1552223.06
United Kingdom 2021 2021-01 343468.77 343468.77
United Kingdom 2021 2021-02 415168.32 758637.09
United Kingdom 2021 2021-03 478237.29 1236874.38
United Kingdom 2021 2021-04 437877.47 1674751.85
United Kingdom 2018 1658677.54 1658677.54
United Kingdom 2019 1508110.49 3166788.03
United Kingdom 2020 1552223.06 4719011.09
United Kingdom 2021 1674751.85 6393762.94
... /*and similar output for the US*/

Chapter 23
Advanced Topics in SQL Modeling

23-32

There are some specific restrictions when using analytic functions. See "Rules and Restrictions
when Using SQL for Modeling" for more information.

23.3.6 Unique Dimensions Versus Unique Single References in SQL
Modeling

The MODEL clause, in its default behavior, requires the PARTITION BY and DIMENSION BY keys to
uniquely identify each row in the input to the model. Oracle verifies that and returns an error if
the data is not unique. Uniqueness of the input rowset on the PARTITION BY and DIMENSION BY
keys guarantees that any single cell reference accesses one and only one cell in the model.
You can specify an optional UNIQUE DIMENSION keyword in the MODEL clause to make this
behavior explicit. For example, the following query run on the view sales_view in the sh
sample schema. This view is created as described in Base Schema for SQL Modeling
Examples:

SELECT country, product, sales
FROM sales_view
WHERE country IN ('France', 'Poland')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product) MEASURES (sales sales)
 IGNORE NAV RULES UPSERT
(sales['Right-Handed Gr'] = sales['All Products'] * 0.24);

This would return a uniqueness violation error as the rowset input to model is not unique on
country and product because year is also needed:

ERROR at line 2:ORA-32638: Non unique addressing in MODEL dimensions

However, the following query does not return such an error:

SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 RULES UPSERT
(sales['Right-Handed Gr', 2023] = sales['All Products', 2022] * 0.24);

Input to the MODEL clause in this case is unique on country, product, and year as shown in:

COUNTRY PRODUCT YEAR SALES
__________ ___ _______ ___________
Italy 11" Youth Field Master Glove 2019 2070.22
Italy 11" Youth Field Master Glove 2020 4360.09
Italy 11" Youth Field Master Glove 2021 1276
Italy 11" Youth Field Master Glove 2022 3186.55
Italy 11.5" Youth Triple Stripe Series Glove 2019 4896.79
Italy 11.5" Youth Triple Stripe Series Glove 2020 11063.49
Italy 11.5" Youth Triple Stripe Series Glove 2021 2841.13
Italy 11.5" Youth Triple Stripe Series Glove 2022 5208.63
Italy 12" Premium Series Glove 2019 5871.16
Italy 12" Premium Series Glove 2020 12219.3
...

If you want to relax this uniqueness checking, you can specify UNIQUE SINGLE REFERENCE
keyword. This can save processing time. In this case, the MODEL clause checks the uniqueness
of only the single cell references appearing on the right side of rules. So the query that

Chapter 23
Advanced Topics in SQL Modeling

23-33

returned the uniqueness violation error would be successful if you specify UNIQUE SINGLE
REFERENCE instead of UNIQUE DIMENSION.

Another difference between UNIQUE DIMENSION and UNIQUE SINGLE REFERENCE semantics is the
number of cells that can be updated by a rule with a single cell reference on left side. In the
case of UNIQUE DIMENSION, such a rule can update at most one row as only one cell would
match the single cell reference on the left side. This is because the input rowset would be
unique on PARTITION BY and DIMENSION BY keys. With UNIQUE SINGLE REFERENCE, all cells that
match the left side single cell reference would be updated by the rule.

23.3.7 Rules and Restrictions when Using SQL for Modeling
The following general rules and restrictions apply when using the MODEL clause:

• The only columns that can be updated are the columns specified in the MEASURES
subclause of the main SQL model. Measures of reference models cannot be updated.

• The MODEL clause is evaluated after all clauses in the query block except SELECT DISTINCT,
and ORDER BY clause are evaluated. These clauses and expressions in the SELECT list are
evaluated after the MODEL clause.

• If your query has a MODEL clause, then the query's SELECT and ORDER BY lists cannot contain
aggregates or analytic functions. If needed, these can be specified in PARTITION BY,
DIMENSION BY, and MEASURES lists and need to be aliased. Aliases can then be used in the
SELECT or ORDER BY clauses. In the following example, the analytic function RANK is
specified and aliased in the MEASURES list of the MODEL clause, and its alias is used in the
SELECT list so that the outer query can order resulting rows based on their ranks.

SELECT country, product, year, s, RNK
FROM (SELECT country, product, year, s, rnk
 FROM sales_view
 MODEL
 PARTITION BY (country) DIMENSION BY (product, year)
 MEASURES (sales s, year y, RANK() OVER (ORDER BY sales) rnk)
 RULES UPSERT
 (s['5 Point Batting Tee Increase 90-99', 2021] =
 REGR_SLOPE(s, y) ['5 Point Batting Tee', year BETWEEN 1990 AND 2000],
 s['5 Point Batting Tee', 2021] = s['5 Point Batting Tee', 2000] *
 (1+s['5 Point Batting Tee increase 90-99', 2021])))
WHERE product <> '5 Point Batting Tee Increase 90-99'
ORDER BY country, year, rnk, product;

• When there is a multi-cell reference on the right hand side of a rule, you need to apply a
function to aggregate the measure values of multiple cells referenced into a single value.
You can use any kind of aggregate function for this purpose: regular, analytic aggregate
(inverse percentile, hypothetical rank and distribution), or user-defined aggregate.

• Only rules with positional single cell references on the left side have UPSERT semantics. All
other rules have UPDATE semantics, even when you specify the UPSERT option for them.

• Negative increments are not allowed in FOR loops. Also, no empty FOR loops are allowed.
FOR d FROM 2005 TO 2021 INCREMENT -1 is not permitted. You should use FOR d FROM
2005 TO 2021 DECREMENT 1 instead. FOR d FROM 2005 TO 2021 INCREMENT 1 is not
permitted as it designates an empty loop.

• You cannot use nested query expressions (subqueries) in rules except in the FOR construct.
For example, it would be not permitted to issue the following:

SELECT *
FROM sales_view WHERE country = 'Poland'

Chapter 23
Advanced Topics in SQL Modeling

23-34

MODEL DIMENSION BY (product, year)
 MEASURES (sales sales)
 RULES UPSERT
 (sales['5 Point Batting Tee', 2023] = sales['5 Point Batting Tee', 2022] +
 (SELECT SUM(sales) FROM sales_view));

This is because the rule has a subquery on its right side. Instead, you can rewrite the
preceding query in the following legal way:

SELECT *
FROM sales_view WHERE country = 'Poland'
MODEL DIMENSION BY (product, year)
 MEASURES (sales sales, (SELECT SUM(sales) FROM sales_view) AS grand_total)
 RULES UPSERT
 (sales['5 Point Batting Tee', 2023] =sales['5 Point Batting Tee', 2022] +
 grand_total['5 Point Batting Tee', 2022]);

• You can also use subqueries in the FOR construct specified on the left side of a rule.
However, they:

– Cannot be correlated

– Must return fewer than 10,000 rows

– Cannot be a query defined in the WITH clause

– Will make the cursor unsharable

Nested cell references have the following restrictions:

• Nested cell references must be single cell references. Aggregates on nested cell
references are not supported. So, it would be not permitted to say s['5 Point Batting
Tee', MAX(best_year)['5 Point Batting Tee', ANY]].

• Only one level of nesting is supported for nested cell references on the main model. So, for
example, s['5 Point Batting Tee', best_year['5 Point Batting Tee', 2021]] is
legal, but s['5 Point Batting Tee', best_year['5 Point Batting Tee',
best_year['5 Point Batting Tee', 2021]]] is not.

• Nested cell references appearing on the left side of rules in an AUTOMATIC ORDER model
should not be updated in any rule of the model. This restriction ensures that the rule
dependency relationships do not arbitrarily change (and hence cause non-deterministic
results) due to updates to reference measures.

There is no such restriction on nested cell references in a SEQUENTIAL ORDER model. Also,
this restriction is not applicable on nested references appearing on the right side of rules in
both SEQUENTIAL or AUTOMATIC ORDER models.

Reference models have the following restrictions:

• The query defining the reference model cannot be correlated to any outer query. It can,
however, be a query with subqueries, views, and so on.

• Reference models cannot have a PARTITION BY clause.

• Reference models cannot be updated.

Window functions have the following restrictions:

• The expressions in the OVER clause can be expressions of constants, measures, keys from
PARTITION BY and DIMENSION BY of the MODEL clause, and single cell expressions.
Aggregates are not permitted inside the OVER clause. Therefore, the following is okay:

rnk[ANY, ANY, ANY] = RANK() OVER (PARTITION BY prod, country ORDER BY sale)

Chapter 23
Advanced Topics in SQL Modeling

23-35

While the following is not:

rnk[ANY, ANY, ANY] = RANK() OVER (PARTITION BY prod, country ORDER BY SUM(sale))
• Rules with window functions on their right side cannot have an ORDER BY clause on their left

side.

• Window functions and aggregate functions cannot both be on the right side of a rule.

• Window functions can only be used on the right side of an UPDATE rule.

• If a rule has a FOR loop on its left side, a window function cannot be used on the right side
of the rule.

23.4 Performance Considerations with SQL Modeling
The following sections describe topics that affect performance when using the MODEL clause:

• Parallel Execution and SQL Modeling

• Aggregate Computation and SQL Modeling

• Using EXPLAIN PLAN to Understand Model Queries

23.4.1 Parallel Execution and SQL Modeling
MODEL clause computation is scalable in terms of the number of processors you have.
Scalability is achieved by performing the MODEL computation in parallel across the partitions
defined by the PARTITION BY clause. Data is distributed among processing elements based on
the PARTITION BY key values such that all rows with the same values for the PARTITION BY keys
will go to the same processing element. Note that the internal processing of partitions will not
create a one-to-one match of logical and internally processed partitions. This way, each
processing element can finish MODEL clause computation independent of other elements. The
data partitioning can be hash based or range based. Consider the following MODEL clause:

MODEL
 PARTITION BY (country) DIMENSION BY (product, time) MEASURES (sales)
 RULES UPDATE
 (sales['12.75" Premium Series Glove', 2022] = 1.2 * sales['12.75" Premium Series
Glove', 2001],
 sales['11" Youth Field Master Glove', 2022] = 0.8 * sales['11" Youth Field Master
Glove', 2001])

Here input data will be partitioned among processing elements based on the PARTITION BY key
country and this partitioning can be hash or range based. Each processing element will
evaluate the rules on the data it receives.

Parallelism of the model computation is governed or limited by the way you specify the MODEL
clause. If your MODEL clause has no PARTITION BY keys, then the computation cannot be
parallelized (with exceptions mentioned in the following). If PARTITION BY keys have very low
11" Youth Field Master Gloved cardinality, then the degree of parallelism will be limited. In such
cases, Oracle identifies the DIMENSION BY keys that can used for partitioning. For example,
consider a MODEL clause equivalent to the preceding one, but without PARTITION BY keys as in
the following:

MODEL
 DIMENSION BY (country, product, time) MEASURES (sales)
 RULES UPDATE
 (sales[ANY, '12.75" Premium Series Glove', 2022] = 1.2 * sales[CV(country), '12.75"
Premium Series Glove', 2001],

Chapter 23
Performance Considerations with SQL Modeling

23-36

 sales[ANY, '11" Youth Field Master Glove', 2022] = 0.8 * sales[CV(country), '11"
Youth Field Master Glove', 2001])

In this case, Oracle Database identifies that it can use the DIMENSION BY key country for
partitioning and uses region as the basis of internal partitioning. It partitions the data among
processing elements on country and thus effects parallel execution.

23.4.2 Aggregate Computation and SQL Modeling
The MODEL clause processes aggregates in two different ways: first, the regular fashion in
which data in the partition is scanned and aggregated and second, an efficient window style
aggregation. The first type as illustrated in the following introduces a new dimension member
ALL_2022_products and computes its value to be the sum of year 2022 sales for all products:

MODEL PARTITION BY (country) DIMENSION BY (product, time) MEASURES (sale sales)
RULES UPSERT
 (sales['ALL_2022_products', 2022] = SUM(sales)[ANY, 2022])

To evaluate the aggregate sum in this case, each partition will be scanned to find the cells for
2022 for all products and they will be aggregated. If the left side of the rule were to reference
multiple cells, then Oracle will have to compute the right side aggregate by scanning the
partition for each cell referenced on the left. For example, consider the following example:

MODEL PARTITION BY (country) DIMENSION BY (product, time)
 MEASURES (sale sales, 0 avg_exclusive)
 RULES UPDATE
 (avg_exclusive[ANY, 2022] = AVG(sales)[product <> CV(product), CV(time)])

This rule calculates a measure called avg_exclusive for every product in 2022. The measure
avg_exclusive is defined as the average sales of all products excluding the current product. In
this case, Oracle scans the data in a partition for every product in 2022 to calculate the
aggregate, and this may be expensive.

Oracle Database optimizes the evaluation of such aggregates in some scenarios with window-
style computation as used in analytic functions. These scenarios involve rules with multi-cell
references on their left side and computing window computations such as moving averages,
cumulative sums and so on. Consider the following example:

MODEL PARTITION BY (country) DIMENSION BY (product, time)
 MEASURES (sale sales, 0 mavg)
 RULES UPDATE
 (mavg[product IN (5 Point Batting Tee', 'Team shirt', 'Spiked Shoes'), ANY] =
 AVG(sales)[CV(product), time BETWEEN CV(time)
 AND CV(time) - 2])

It computes the moving average of sales for products 5 Point Batting Tee, Team shirt, and
Spiked Shoes over a three year period. It would be very inefficient to evaluate the aggregate
by scanning the partition for every cell referenced on the left side. Oracle identifies the
computation as being in window-style and evaluates it efficiently. It sorts the input on product,
time and then scans the data once to compute the moving average. You can view this rule as
an analytic function being applied on the sales data for products 5 Point Batting Tee, Team
shirt, and Spiked Shoes:

AVG(sales) OVER (PARTITION BY product ORDER BY time
RANGE BETWEEN 2 PRECEDING AND CURRENT ROW)

This computation style is called WINDOW (IN MODEL) SORT. This style of aggregation is
applicable when the rule has a multi-cell reference on its left side with no ORDER BY, has a
simple aggregate (SUM, COUNT, MIN, MAX, STDEV, and VAR) on its right side, only one dimension

Chapter 23
Performance Considerations with SQL Modeling

23-37

on the right side has a boolean predicate (<, <=, >, >=, BETWEEN), and all other dimensions on
the right are qualified with CV.

23.4.3 Using EXPLAIN PLAN to Understand Model Queries
Oracle's explain plan facility is fully aware of models. You will see a line in your query's main
explain plan output showing the model and the algorithm used. Reference models are tagged
with the keyword REFERENCE in the plan output. Also, Oracle annotates the plan with WINDOW
(IN MODEL) SORT if any of the rules qualify for window-style aggregate computation.

By examining an explain plan, you can find out the algorithm chosen to evaluate your model. If
your model has SEQUENTIAL ORDER semantics, then ORDERED is displayed. For AUTOMATIC ORDER
models, Oracle displays ACYCLIC or CYCLIC based on whether it chooses ACYCLIC or CYCLIC
algorithm for evaluation. In addition, the plan output will have an annotation FAST in case of
ORDERED and ACYCLIC algorithms if all left side cell references are single cell references and
aggregates, if any, on the right side of rules are simple arithmetic non-distinct aggregates like
SUM, COUNT, AVG, and so on. Rule evaluation in this case would be highly efficient and hence the
annotation FAST. Thus, the output you will see in the explain plan would be MODEL {ORDERED
[FAST] | ACYCLIC [FAST] | CYCLIC}.

This section contains the following topics:

• Using ORDERED FAST: Example

• Using ORDERED: Example

• Using ACYCLIC FAST: Example

• Using ACYCLIC: Example

• Using CYCLIC: Example

Using ORDERED FAST: Example

This model has only single cell references on the left side of rules and the aggregate AVG on
the right side of first rule is a simple non-distinct aggregate:

EXPLAIN PLAN FOR
SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 RULES UPSERT
 (sales['Bounce', 2023] = AVG(sales)[ANY, 2022] * 1.24,
 sales['Y Box', 2023] = sales['Bounce', 2023] * 0.25);

Using ORDERED: Example

Because the left side of the second rule is a multi-cell reference, the FAST method will not be
chosen in the following:

EXPLAIN PLAN FOR
SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 RULES UPSERT
 (sales['Bounce', 2023] = AVG(sales)[ANY, 2022] * 1.24,
 sales[prod <> 'Bounce', 2023] = sales['Bounce', 2023] * 0.25);

Chapter 23
Performance Considerations with SQL Modeling

23-38

Using ACYCLIC FAST: Example

Rules in this model are not cyclic and the explain plan will show ACYCLIC. The FAST method is
chosen in this case as well.

EXPLAIN PLAN FOR
SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 RULES UPSERT AUTOMATIC ORDER
 (sales['Y Box', 2023] = sales['Bounce', 2023] * 0.25,
 sales['Bounce', 2023] = sales['Bounce', 2022] / SUM(sales)[ANY, 2022] * 2 *
 sales['All Products', 2023],
 sales['All Products', 2023] = 200000);

Using ACYCLIC: Example

Rules in this model are not cyclic. The PERCENTILE_DISC aggregate that gives the median sales
for year 2022, in the second rule is not a simple aggregate function. Therefore, Oracle will not
choose the FAST method, and the explain plan will just show ACYCLIC.

SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 RULES UPSERT AUTOMATIC ORDER
 (sales['Y Box', 2023] = sales['Bounce', 2023] * 0.25,
 sales['Bounce',2023] = PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY
 sales)[ANY,2022] / SUM(sales)[ANY, 2022] * 2 * sales['All Products', 2023],
 sales['All Products', 2023] = 200000);

Using CYCLIC: Example

Oracle chooses CYCLIC algorithm for this model as there is a cycle among second and third
rules.

EXPLAIN PLAN FOR
SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Italy', 'Japan')
MODEL UNIQUE DIMENSION
 PARTITION BY (country) DIMENSION BY (product, year) MEASURES (sales sales)
 IGNORE NAV RULES UPSERT AUTOMATIC ORDER
 (sales['All Products', 2023] = 200000,
 sales['Y Box', 2023] = sales['Bounce', 2023] * 0.25,
 sales['Bounce', 2023] = sales['Y Box', 2023] +
 (sales['Bounce', 2022] / SUM(sales)[ANY, 2022] * 2 *
 sales['All Products', 2023]));

23.5 Examples of SQL Modeling
The examples in this section assume that in addition to sales_view (created in Base Schema
for SQL Modeling Examples), you have the following view defined. It finds monthly totals of
sales and quantities by product and country.

CREATE VIEW sales_view2 AS
SELECT country_name country, prod_name product, calendar_year year,

Chapter 23
Examples of SQL Modeling

23-39

 calendar_month_name month, SUM(amount_sold) sale, COUNT(amount_sold) cnt
FROM sh.sales, sh.times, sh.customers, sh.countries, sh.products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year, calendar_month_name;

This section contains the following examples:

• SQL Modeling Example 1: Calculating Sales Differences

• SQL Modeling Example 2: Calculating Percentage Change

• SQL Modeling Example 3: Calculating Net Present Value

• SQL Modeling Example 4: Calculating Using Simultaneous Equations

• SQL Modeling Example 5: Calculating Using Regression

• SQL Modeling Example 6: Calculating Mortgage Amortization

23.5.1 SQL Modeling Example 1: Calculating Sales Differences
Show the sales for Italy and Spain and the difference between the two for each product. The
difference should be placed in a new row with country = 'Diff Italy-Spain'.

SELECT product, country, sales
FROM sales_view
WHERE country IN ('Italy', 'Spain')
GROUP BY product, country
MODEL
 PARTITION BY (product) DIMENSION BY (country) MEASURES (SUM(sales) AS sales)
 RULES UPSERT
 (sales['DIFF ITALY-SPAIN'] = sales['Italy'] - sales['Spain']);

See "Examples of SQL Modeling" for information about the views required to run this example.

23.5.2 SQL Modeling Example 2: Calculating Percentage Change
If sales for each product in each country grew (or declined) at the same monthly rate from
November 2000 to December 2000 as they did from October 2000 to November 2000, what
would the fourth quarter's sales be for the whole company and for each country?

SELECT country, SUM(sales)
FROM (SELECT product, country, month, sales
 FROM sales_view2
 WHERE year=2020 AND month IN ('October','November')
MODEL
 PARTITION BY (product, country) DIMENSION BY (month) MEASURES (sale sales)
 RULES
 (sales['December']=(sales['November'] /sales['October']) *sales['November']))
GROUP BY GROUPING SETS ((),(country));

See "Examples of SQL Modeling" for information about the views required to run this example.

23.5.3 SQL Modeling Example 3: Calculating Net Present Value
You want to calculate the net present value (NPV) of a series of periodic cash flows. Your
scenario involves two projects, each of which starts with an initial investment at time 0,
represented as a negative cash flow. The initial investment is followed by three years of

Chapter 23
Examples of SQL Modeling

23-40

positive cash flow. First, create a table (cash_flow) and populate it with some data, as in the
following statements:

CREATE TABLE cash_flow (year DATE, i INTEGER, prod VARCHAR2(3), amount NUMBER);
INSERT INTO cash_flow VALUES (TO_DATE('2019', 'YYYY'), 0, 'vcr', -100.00);
INSERT INTO cash_flow VALUES (TO_DATE('2020', 'YYYY'), 1, 'vcr', 12.00);
INSERT INTO cash_flow VALUES (TO_DATE('2021', 'YYYY'), 2, 'vcr', 10.00);
INSERT INTO cash_flow VALUES (TO_DATE('2022', 'YYYY'), 3, 'vcr', 20.00);
INSERT INTO cash_flow VALUES (TO_DATE('2019', 'YYYY'), 0, 'dvd', -200.00);
INSERT INTO cash_flow VALUES (TO_DATE('2020', 'YYYY'), 1, 'dvd', 22.00);
INSERT INTO cash_flow VALUES (TO_DATE('2021', 'YYYY'), 2, 'dvd', 12.00);
INSERT INTO cash_flow VALUES (TO_DATE('2022', 'YYYY'), 3, 'dvd', 14.00);

See "Examples of SQL Modeling" for information about the views required to run this example.

To calculate the NPV using a discount rate of 0.14, issue the following statement:

SELECT year, i, prod, amount, npv
FROM cash_flow
MODEL PARTITION BY (prod)
 DIMENSION BY (i)
 MEASURES (amount, 0 npv, year)
 RULES
 (npv[0] = amount[0],
 npv[i !=0] ORDER BY i =
 amount[CV()]/ POWER(1.14,CV(i)) + npv[CV(i)-1]);

YEAR I PROD AMOUNT NPV
____________ ____ _______ _________ ___
01-JAN-19 0 dvd -200 -200
01-JAN-20 1 dvd 22 -180.701754385964912280701754385964912281
01-JAN-21 2 dvd 12 -171.468144044321329639889196675900277009
01-JAN-22 3 dvd 14 -162.01854281749310179110441539367038711
01-JAN-19 0 vcr -100 -100
01-JAN-20 1 vcr 12 -89.47368421052631578947368421052631578947
01-JAN-21 2 vcr 10 -81.77900892582333025546321945213911972914
01-JAN-22 3 vcr 20 -68.27957860178300475719924619181070558822

23.5.4 SQL Modeling Example 4: Calculating Using Simultaneous
Equations

You want your interest expenses to equal 30% of your net income (net=pay minus tax minus
interest). Interest is tax deductible from gross, and taxes are 38% of salary and 28% capital
gains. You have salary of $100,000 and capital gains of $15,000. Net income, taxes, and
interest expenses are unknown. Observe that this is a simultaneous equation (net depends on
interest, which depends on net), thus the ITERATE clause is included.

See "Examples of SQL Modeling" for information about the views required to run this example.

First, create a table called ledger:

CREATE TABLE ledger (account VARCHAR2(20), balance NUMBER(10,2));

Then, insert the following five rows:

INSERT INTO ledger VALUES ('Salary', 100000);
INSERT INTO ledger VALUES ('Capital_gains', 15000);
INSERT INTO ledger VALUES ('Net', 0);
INSERT INTO ledger VALUES ('Tax', 0);
INSERT INTO ledger VALUES ('Interest', 0);

Chapter 23
Examples of SQL Modeling

23-41

Next, issue the following statement:

SELECT s, account
FROM ledger
MODEL
 DIMENSION BY (account) MEASURES (balance s)
 RULES ITERATE (100)
 (s['Net']=s['Salary']-s['Interest']-s['Tax'],
 s['Tax']=(s['Salary']-s['Interest'])*0.38 + s['Capital_gains']*0.28,
 s['Interest']=s['Net']*0.30);

The output (with numbers rounded) is:

 S ACCOUNT
___ ________________
 100000 Salary
 15000 Capital_gains
 48735.24451 Net
 36644.18212 Tax
 14620.57335 Interest

23.5.5 SQL Modeling Example 5: Calculating Using Regression
The sales of the product Helmet in 2021 will increase in comparison to 2020 as they did in the
previous three years (between 2017 and 2019). To calculate the increase, use the regression
function REGR_SLOPE as follows. Because you are calculating the next period's value, it is
sufficient to add the slope to the 2020 value.

SELECT * FROM
 (SELECT country, product, year, projected_sale, sales
 FROM sales_view
 WHERE country IN ('Italy', 'Japan') AND product IN ('Helmet')
MODEL
 PARTITION BY (country) DIMENSION BY (product, year)
 MEASURES (sales sales, year y, CAST(NULL AS NUMBER) projected_sale) IGNORE NAV
 RULES UPSERT
 (projected_sale[FOR product IN ('Helmet'), 2021] =
 sales[CV(), 2020] +
 REGR_SLOPE(sales, y)[CV(), year BETWEEN 2019 AND 2020]))
ORDER BY country, product, year;

See "Examples of SQL Modeling" for information about the views required to run this example.

The output is as follows:

COUNTRY PRODUCT YEAR PROJECTED_SALE SALES
__________ __________ _______ _________________ ___________
Italy Helmet 2019 7421.58
Italy Helmet 2020 9405.81
Italy Helmet 2021 11390.04 7804.42
Italy Helmet 2022 13115.52
Japan Helmet 2019 10226.85
Japan Helmet 2020 13827.28
Japan Helmet 2021 17427.71 11335.5
Japan Helmet 2022 18768.84

Chapter 23
Examples of SQL Modeling

23-42

23.5.6 SQL Modeling Example 6: Calculating Mortgage Amortization
This example creates mortgage amortization tables for any number of customers, using
information about mortgage loans selected from a table of mortgage facts. First, create two
tables and insert needed data:

• mortgage_facts
Holds information about individual customer loans, including the name of the customer, the
fact about the loan that is stored in that row, and the value of that fact. The facts stored for
this example are loan (Loan), annual interest rate (Annual_Interest), and number of
payments (Payments) for the loan. Also, the values for two customers, Smith and Jones,
are inserted.

CREATE TABLE mortgage_facts (customer VARCHAR2(20), fact VARCHAR2(20),
 amount NUMBER(10,2));
INSERT INTO mortgage_facts VALUES ('Smith', 'Loan', 100000);
INSERT INTO mortgage_facts VALUES ('Smith', 'Annual_Interest', 12);
INSERT INTO mortgage_facts VALUES ('Smith', 'Payments', 360);
INSERT INTO mortgage_facts VALUES ('Smith', 'Payment', 0);
INSERT INTO mortgage_facts VALUES ('Jones', 'Loan', 200000);
INSERT INTO mortgage_facts VALUES ('Jones', 'Annual_Interest', 12);
INSERT INTO mortgage_facts VALUES ('Jones', 'Payments', 180);
INSERT INTO mortgage_facts VALUES ('Jones', 'Payment', 0);

• mortgage
Holds output information for the calculations. The columns are customer, payment number
(pmt_num), principal applied in that payment (principalp), interest applied in that payment
(interestp), and remaining loan balance (mort_balance). In order to upsert new cells into
a partition, you need to have at least one row pre-existing per partition. Therefore, you
seed the mortgage table with the values for the two customers before they have made any
payments. This seed information could be easily generated using a SQL INSERT statement
based on the mortgage_facts table.

CREATE TABLE mortgage_facts (customer VARCHAR2(20), fact VARCHAR2(20),
 amount NUMBER(10,2));

INSERT INTO mortgage_facts VALUES ('Smith', 'Loan', 100000);
INSERT INTO mortgage_facts VALUES ('Smith', 'Annual_Interest', 12);
INSERT INTO mortgage_facts VALUES ('Smith', 'Payments', 360);
INSERT INTO mortgage_facts VALUES ('Smith', 'Payment', 0);
INSERT INTO mortgage_facts VALUES ('Smith', 'PaymentAmt', null);
INSERT INTO mortgage_facts VALUES ('Jones', 'Loan', 200000);
INSERT INTO mortgage_facts VALUES ('Jones', 'Annual_Interest', 12);
INSERT INTO mortgage_facts VALUES ('Jones', 'Payments', 180);
INSERT INTO mortgage_facts VALUES ('Jones', 'Payment', 0);
INSERT INTO mortgage_facts VALUES ('Jones', 'PaymentAmt', null);

CREATE TABLE mortgage (customer VARCHAR2(20), pmt_num NUMBER(4),
 principalp NUMBER(10,2), interestp NUMBER(10,2), mort_balance NUMBER(10,2));

INSERT INTO mortgage VALUES ('Jones',0, 0, 0, 200000);
INSERT INTO mortgage VALUES ('Smith',0, 0, 0, 100000);

See "Examples of SQL Modeling" for information about the views required to run this example.

The following SQL statement is complex, so individual lines have been annotated as needed.
These lines are explained in more detail later.

Chapter 23
Examples of SQL Modeling

23-43

SELECT c, p, m, pp, ip
FROM MORTGAGE
MODEL --See 1
REFERENCE R ON
 (SELECT customer, fact, amt --See 2
 FROM mortgage_facts
 MODEL DIMENSION BY (customer, fact) MEASURES (amount amt) --See 3
 RULES
 (amt[any, 'PaymentAmt']= (amt[CV(),'Loan']*
 Power(1+ (amt[CV(),'Annual_Interest']/100/12),
 amt[CV(),'Payments']) *
 (amt[CV(),'Annual_Interest']/100/12)) /
 (Power(1+(amt[CV(),'Annual_Interest']/100/12),
 amt[CV(),'Payments']) - 1)
)
)
 DIMENSION BY (customer cust, fact) measures (amt) --See 4
MAIN amortization
 PARTITION BY (customer c) --See 5
 DIMENSION BY (0 p) --See 6
 MEASURES (principalp pp, interestp ip, mort_balance m, customer mc) --See 7
 RULES
 ITERATE(1000) UNTIL (ITERATION_NUMBER+1 =
r.amt[mc[0],'Payments']) --See 8
 (ip[ITERATION_NUMBER+1] = m[CV()-1] *
 r.amt[mc[0], 'Annual_Interest']/1200, --See 9
 pp[ITERATION_NUMBER+1] = r.amt[mc[0], 'PaymentAmt'] - ip[CV()], --See 10
 m[ITERATION_NUMBER+1] = m[CV()-1] - pp[CV()] --See 11
)
ORDER BY c, p;

The following numbers refer to the numbers listed in the example:

1: This is the start of the main model definition.

2 through 4: These lines mark the start and end of the reference model labeled R. This model
defines a SELECT statement that calculates the monthly payment amount for each customer's
loan. The SELECT statement uses its own MODEL clause starting at the line labeled 3 with a
single rule that defines the amt value based on information from the mortgage_facts table. The
measure returned by reference model R is amt, dimensioned by customer name cust and fact
value fact as defined in the line labeled 4.

The reference model is computed once and the values are then used in the main model for
computing other calculations. Reference model R will return a row for each existing row of
mortgage_facts, and it will return the newly calculated rows for each customer where the fact
type is Payment and the amt is the monthly payment amount. If you wish to use a specific
amount from the R output, you address it with the expression
r.amt[<customer_name>,<fact_name>].

5: This is the continuation of the main model definition. You will partition the output by
customer, aliased as c.

6: The main model is dimensioned with a constant value of 0, aliased as p. This represents the
payment number of a row.

7: Four measures are defined: principalp (pp) is the principal amount applied to the loan in
the month, interestp (ip) is the interest paid that month, mort_balance (m) is the remaining
mortgage value after the payment of the loan, and customer (mc) is used to support the
partitioning.

Chapter 23
Examples of SQL Modeling

23-44

8: This begins the rules block. It will perform the rule calculations up to 1000 times. Because
the calculations are performed once for each month for each customer, the maximum number
of months that can be specified for a loan is 1000. Iteration is stopped when the
ITERATION_NUMBER+1 equals the amount of payments derived from reference R. Note that the
value from reference R is the amt (amount) measure defined in the reference clause. This
reference value is addressed as r.amt[<customer_name>,<fact>]. The expression used in the
iterate line, "r.amt[mc[0], 'Payments']" is resolved to be the amount from reference R,
where the customer name is the value resolved by mc[0]. Because each partition contains only
one customer, mc[0] can have only one value. Thus "r.amt[mc[0], 'Payments']" yields the
reference clause's value for the number of payments for the current customer. This means that
the rules will be performed as many times as there are payments for that customer.

9 through 11: The first two rules in this block use the same type of r.amt reference that was
explained in 8. The difference is that the ip rule defines the fact value as Annual_Interest.
Note that each rule refers to the value of one of the other measures. The expression used on
the left side of each rule, "[ITERATION_NUMBER+1]" will create a new dimension value, so the
measure will be upserted into the result set. Thus the result will include a monthly amortization
row for all payments for each customer.

The final line of the example sorts the results by customer and loan payment number.

Chapter 23
Examples of SQL Modeling

23-45

24
Advanced Analytical SQL

This chapter illustrates techniques for handling advanced business intelligence queries. We
hope to enhance your understanding of how different SQL features can be used together to
perform demanding analyses. Although the features shown here have been addressed on an
individual basis in SQL for Aggregation in Data Warehouses, SQL for Analysis and Reporting,
and SQL for Modeling, seeing features one at a time gives only a limited sense of how they
can work together. Here we show the analytic power available when the features are
combined.

What makes a business intelligence query "advanced"? The label is best applied to multistep
queries, often involving dimension hierarchies. In such queries, the final result depends on
several sets of retrieved data, multiple calculation steps, and the data retrieved may involve
multiple levels of a dimension hierarchy. Prime examples of advanced queries are market
share calculations based on multiple conditions and sales projections that require filling gaps in
data.

The examples in this chapter illustrate using nested inline views, CASE expressions, partitioned
outer join, the MODEL and WITH clauses, analytic SQL functions, and more. Where relevant to
the discussion, query plans will be discussed. This chapter includes:

• Examples of Business Intelligence Queries

24.1 Examples of Business Intelligence Queries
The queries in this chapter illustrate various business intelligence tasks. The topics of the
queries and the features used in each query are:

• Percent change in market share based on complex multistep conditions. It illustrates
nested inline views, CASE expression, and analytic SQL functions.

See "Business Intelligence Query Example 1: Percent Change in Market Share of
Products in a Calculated Set"

• Sales projection with gaps in data filled in. It illustrates the MODEL clause together with
partitioned outer join and the CASE expression.

See "Business Intelligence Query Example 2: Sales Projection that Fills in Missing Data"

• Customer analysis grouping customers into purchase-size buckets. It illustrates the WITH
clause (query subfactoring) and the analytic SQL functions percentile_cont and
width_bucket.

See "Business Intelligence Query Example 3: Customer Analysis by Grouping Customers
into Buckets"

• Customer item grouping into itemsets. It illustrates calculating frequent itemsets using
DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL as a table function.

See "Business Intelligence Query Example 4: Frequent Itemsets"

24-1

24.1.1 Business Intelligence Query Example 1: Percent Change in Market
Share of Products in a Calculated Set

What was the percent change in market share for a grouping of my top 20% of products for the
current three-month period versus same period year ago for accounts that grew by more than
20 percent in revenue?

We define market share as a product's share of total sales. We do this because there is no
data for competitors in the sh sample schema, so the typical share calculation of product sales
and competitors' sales is not possible. The processing required for our share calculation is
logically similar to a competitive market share calculation.

Here are the pieces of information we find in the query, in the order we need to find them:

1. Cities whose purchases grew by more than 20% during the specified 3-month period,
versus the same 3-month period last year. Note that cities are limited to one country, and
sales involving no promotion.

2. Top 20% of the products for the group of cities found in the prior step. That is, find sales by
product summed across this customer group, and then select the 20% of products with the
best sales.

3. The share of sales for each product found in the prior step. That is, using the products
group found in the prior step, find each product's share of sales of all products. Find the
shares for the same period a year ago and then calculate the change in share between the
two years.

The techniques used in this example are:

• This query is performed using the WITH clause and nested inline views. Each inline view
has been given a descriptive alias to show its data element, and comment lines indicate
the boundaries of each inline view. Although inline views are powerful, we believe that
readability and maintenance are much easier if queries are structured to maximize the use
of the WITH clause.

• This query does not use the WITH clause as extensively as it might: some of the nested
inline views could have been expressed as separate subclauses of the WITH clause. For
instance, in the main query, we use two inline views that return just one value. These are
used for the denominator of the share calculations. We could have factored out these
items and placed them in the WITH clause for greater readability. For a contrast that does
use the WITH clause to its maximum, see "Business Intelligence Query Example 3:
Customer Analysis by Grouping Customers into Buckets" regarding customer purchase
analysis.

• Note the use of CASE expressions within the arguments to SUM functions. The CASE
expressions simplify the SQL by acting as an extra set of data filters after the WHERE
clause. They allow us to sum one column of sales for a desired date and another column
for a different date.

WITH prod_list AS --START: Top 20% of products
 (SELECT prod_id prod_subset, cume_dist_prod
 FROM --START: All products Sales for city subset
 (SELECT s.prod_id, SUM(amount_sold),
 CUME_DIST() OVER (ORDER BY SUM(amount_sold)) cume_dist_prod
 FROM sales s, customers c, channels ch, products p, times t
 WHERE s.prod_id = p.prod_id AND p.prod_total_id = 1 AND
 s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id = c.cust_id AND

Chapter 24
Examples of Business Intelligence Queries

24-2

 s.promo_id = 999 AND
 s.time_id = t.time_id AND t.calendar_quarter_id = 1776 AND
 c.cust_city_id IN
 (SELECT cust_city_id --START: Top 20% of cities
 FROM
 (
 SELECT cust_city_id, ((new_cust_sales - old_cust_sales)
 / old_cust_sales) pct_change, old_cust_sales
 FROM
 (
 SELECT cust_city_id, new_cust_sales, old_cust_sales
 FROM
 (--START: Cities AND sales for 1 country in 2 periods
 SELECT cust_city_id,
 SUM(CASE WHEN t.calendar_quarter_id = 1776
 THEN amount_sold ELSE 0 END) new_cust_sales,
 SUM(CASE WHEN t.calendar_quarter_id = 1772
 THEN amount_sold ELSE 0 END) old_cust_sales
 FROM sales s, customers c, channels ch,
 products p, times t
 WHERE s.prod_id = p.prod_id AND p.prod_total_id = 1 AND
 s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id = c.cust_id AND c.country_id = 52790 AND
 s.promo_id = 999 AND
 s.time_id = t.time_id AND
 (t.calendar_quarter_id = 1776 OR t.calendar_quarter_id =1772)
 GROUP BY cust_city_id
) cust_sales_wzeroes
 WHERE old_cust_sales > 0
) cust_sales_woutzeroes
) --END: Cities and sales for country in 2 periods
 WHERE old_cust_sales > 0 AND pct_change >= 0.20)
 --END: Top 20% of cities
GROUP BY s.prod_id
) prod_sales --END: All products sales for city subset
 WHERE cume_dist_prod > 0.8 --END: Top 20% products
)
 --START: Main query bloc
SELECT prod_id, ((new_subset_sales/new_tot_sales)
 - (old_subset_sales/old_tot_sales)
) *100 share_changes
FROM
(--START: Total sales for country in later period
 SELECT prod_id,
 SUM(CASE WHEN t.calendar_quarter_id = 1776
 THEN amount_sold ELSE 0 END) new_subset_sales,
 (SELECT SUM(amount_sold) FROM sales s, times t, channels ch,
 customers c, countries co, products p
 WHERE s.time_id = t.time_id AND t.calendar_quarter_id = 1776 AND
 s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id = c.cust_id AND
 c.country_id = co.country_id AND co.country_total_id = 52806 AND
 s.prod_id = p.prod_id AND p.prod_total_id = 1 AND
 s.promo_id = 999
) new_tot_sales,

 --END: Total sales for country in later period
 --START: Total sales for country in earlier period
 SUM(CASE WHEN t.calendar_quarter_id = 1772
 THEN amount_sold ELSE 0 END) old_subset_sales,
 (SELECT SUM(amount_sold) FROM sales s, times t, channels ch,
 customers c, countries co, products p

Chapter 24
Examples of Business Intelligence Queries

24-3

 WHERE s.time_id = t.time_id AND t.calendar_quarter_id = 1772 AND
 s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id = c.cust_id AND
 c.country_id = co.country_id AND co.country_total_id = 52806 AND
 s.prod_id = p.prod_id AND p.prod_total_id = 1 AND
 s.promo_id = 999
) old_tot_sales
 --END: Total sales for country in earlier period
 FROM sales s, customers c, countries co, channels ch, times t
 WHERE s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id = c.cust_id AND
 c.country_id = co.country_id AND co.country_total_id = 52806 AND
 s.promo_id = 999 AND
 s.time_id = t.time_id AND
 (t.calendar_quarter_id = 1776 OR t.calendar_quarter_id = 1772)
 AND s.prod_id IN
 (SELECT prod_subset FROM prod_list)
 GROUP BY prod_id);

24.1.2 Business Intelligence Query Example 2: Sales Projection that Fills in
Missing Data

This query projects sales for 2022 based on the sales of 2020 and 2021. It finds the most
percentage changes in sales from 2000 to 2001 and then adds that to the sales of 2022. While
this is a simple calculation, there is an important thing to consider: many products have months
with no sales in 2020 and 2021. We want to fill in blank values with the average sales value for
the year (based on the months with actual sales). It converts currency values by country into
US dollars. Finally, the query returns just the 2002 projection values.

The techniques used in this example are:

• By predefining all possible rows of data with the cross join ahead of the MODEL clause, we
reduce the processing required by MODEL.

• The MODEL clause uses a reference model to perform currency conversion.

• By using the CV function extensively, we reduce the total number of rules needed to just
three.

• The most interesting expression is found in the last rule, which uses a nested rule to find
the currency conversion factor. To supply the country name needed for this expression, we
define country as both a dimension c in the reference model, and a measure cc in the main
model.

The way this example proceeds is to begin by creating a reference table of currency
conversion factors. The table will hold conversion factors for each month for each country. Note
that we use a cross join to specify the rows inserted into the table. For our purposes, we only
set the conversion factor for one country, Canada.

CREATE TABLE currency (
 country VARCHAR2(20),
 year NUMBER,
 month NUMBER,
 to_us NUMBER);

INSERT INTO currency
(SELECT distinct
SUBSTR(country_name,1,20), calendar_year, calendar_quarter_number, 1
FROM sh.countries
CROSS JOIN times t

Chapter 24
Examples of Business Intelligence Queries

24-4

WHERE calendar_year IN (2020,2021,2022)
);
UPDATE currency set to_us=.74 WHERE country='Canada';

Here is the projection query. It starts with a WITH clause that has two subclauses. The first
subclause finds the monthly sales per product by country for the years 2000, 2001, and 2002.
The second subclause finds a list of distinct times at the month level.

WITH prod_sales_mo AS --Product sales per quarter for one country
(
SELECT country_name c, prod_id p, calendar_year y,
 calendar_quarter_number m, SUM(amount_sold) s
FROM sales s, customers c, times t, countries cn, promotions p, channels ch
WHERE s.promo_id = p.promo_id AND p.promo_total_id = 1 AND
 s.channel_id = ch.channel_id AND ch.channel_total_id = 1 AND
 s.cust_id=c.cust_id AND
 c.country_id=cn.country_id AND country_name='France' AND
 s.time_id=t.time_id AND t.calendar_year IN (2020, 2021,2022)
GROUP BY cn.country_name, prod_id, calendar_year, calendar_quarter_number
),
 -- Time data used for ensuring that model has all dates
time_summary AS(SELECT DISTINCT calendar_year cal_y, calendar_quarter_number cal_m
 FROM times
 WHERE calendar_year IN (2020, 2021, 2022)
)
 --START: main query block
SELECT c, p, y, m, s, nr FROM (
SELECT c, p, y, m, s, nr
FROM prod_sales_mo s
 --Use partitioned outer join to make sure that each combination
 --of country and product has rows for all month values
 PARTITION BY (s.c, s.p)
 RIGHT OUTER JOIN time_summary ts ON
 (s.m = ts.cal_m
 AND s.y = ts.cal_y
)
MODEL
 REFERENCE curr_conversion ON
 (SELECT country, year, month, to_us
 FROM currency)
 DIMENSION BY (country, year y,month m) MEASURES (to_us)
 --START: main model
 PARTITION BY (s.c c)
 DIMENSION BY (s.p p, ts.cal_y y, ts.cal_m m)
 MEASURES (s.s s, CAST(NULL AS NUMBER) nr,
 s.c cc) --country is used for currency conversion
 RULES (
 --first rule fills in missing data with average values
 nr[ANY, ANY, ANY]
 = CASE WHEN s[CV(), CV(), CV()] IS NOT NULL
 THEN s[CV(), CV(), CV()]
 ELSE ROUND(AVG(s)[CV(), CV(), m BETWEEN 1 AND 12],2)
 END,
 --second rule calculates projected values for 2002
 nr[ANY, 2022, ANY] = ROUND(
 ((nr[CV(),2021,CV()] - nr[CV(),2020, CV()])
 / nr[CV(),2020, CV()]) * nr[CV(),2021, CV()]
 + nr[CV(),2021, CV()],2),
 --third rule converts 2002 projections to US dollars
 nr[ANY,y != 2022,ANY]
 = ROUND(nr[CV(),CV(),CV()]
 * curr_conversion.to_us[cc[CV(),CV(),CV()], CV(y), CV(m)], 2)

Chapter 24
Examples of Business Intelligence Queries

24-5

)
ORDER BY c, p, y, m)
WHERE y = '2022'
ORDER BY c, p, y, m;

24.1.3 Business Intelligence Query Example 3: Customer Analysis by
Grouping Customers into Buckets

One important way to understand customers is by studying their purchasing patterns and
learning the profitability of each customer. This can help us decide if a customer is worth
cultivating and what kind of treatment to give it. Because the sh sample schema data set
includes many customers, a good way to start a profitability analysis is with a high level view:
we will find data for a histogram of customer profitability, dividing profitability into 10 ranges
(often called "buckets" for histogram analyses).For each country at an aggregation level of 1
month, we show:

• The data needed for a 10-bucket equiwidth histogram of customer profitability. That is,
show the count of customers falling into each of 10 profitability buckets. This is just 10
rows of results, but it involves significant calculations.

For each profitability bucket, we also show:

• The median count of transactions per customer during the month (treating each day's
purchases by 1 customer in 1 channel as a single transaction).

• The median transaction size (in local currency) per customer.

• Products that generated the most and least profit.

• Percent change of median transaction count and median transaction size versus last year.

The techniques used in this example illustrate the following:

• Using the WITH clause to clarify a query. By dividing the needed data into logical chunks,
each of which is expressed in its own WITH subclause, we greatly improve readability and
maintenance compared to nested inline views. The thorough use of WITH subclauses
means that the main SELECT clause does not need to perform any calculations on the data
it retrieves, again contributing to the readability and maintainability of the query.

• Using two analytic SQL functions, width_bucket equiwidth histogram buckets and
percentile_cont to median transaction size and count.

This query shows us the analytic challenges inherent in data warehouse designs: because the
sh data does not include entries for every transaction, nor a count of transactions, we are
forced to make an assumption. In this query, we will make the minimalist interpretation and
assume that all products sold to a single customer through a single channel on a single day
are part of the same transaction. This approach inevitably undercounts transactions, because
some customers will in fact make multiple purchases through the same channel on the same
day.

Note that the query below should not be run until a materialized view is created for the initial
query subfactor cust_prod_mon_profit. Before creating the materialized view, create two
additional indexes. Unless these preparatory steps are taken, the query may require significant
time to run.The two additional indexes needed and the main query are as follows:

CREATE BITMAP INDEX costs_chan_bix
 ON costs (channel_id)
 LOCAL NOLOGGING COMPUTE STATISTICS;

CREATE BITMAP INDEX costs_promo_bix

Chapter 24
Examples of Business Intelligence Queries

24-6

 ON costs (promo_id)
 LOCAL NOLOGGING COMPUTE STATISTICS;

WITH cust_prod_mon_profit AS
-- profit by cust, prod, day, channel, promo
 (SELECT s.cust_id, s.prod_id, s.time_id,
 s.channel_id, s.promo_id,
 s.quantity_sold*(c.unit_price-c.unit_cost) profit,
 s.amount_sold dol_sold, c.unit_price price, c.unit_cost cost
 FROM sales s, costs c
 WHERE s.prod_id=c.prod_id
 AND s.time_id=c.time_id
 AND s.promo_id=c.promo_id
 AND s.channel_id=c.channel_id
 AND s.cust_id in (SELECT cust_id FROM customers cst
 WHERE cst.country_id = 52770
 AND s.time_id IN (SELECT time_id FROM times t
 WHERE t.calendar_month_desc = '2000-12'
),
-- Transaction Definition: All products sold through a single channel to a
-- single cust on a single day are assumed to be sold in 1 transaction.
-- Some products in a transacton
-- may be on promotion
-- A customers daily transaction amount is the sum of ALL products
-- purchased in the same channel in the same day
cust_daily_trans_amt AS
(SELECT cust_id, time_id, channel_id, SUM(dol_sold) cust_daily_trans_amt
 FROM cust_prod_mon_profit
 GROUP BY cust_id, time_id, channel_id
--A customers monthly transaction count is the count of all channels
--used to purchase items in the same day, over all days in the month.
--It is really a count of the minimum possible number of transactions
cust_purchase_cnt AS(SELECT cust_id, COUNT(*) cust_purchase_cnt
 FROM cust_daily_trans_amt
 GROUP BY cust_id
),
-- Total profit for a customer over 1 month
cust_mon_profit AS
(SELECT cust_id, SUM(profit) cust_profit
 FROM cust_prod_mon_profit
 GROUP BY cust_id
-- Minimum and maximum profit across all customer
-- sets endpoints for histogram data.
min_max_p AS
-- Note max profit + 0.1 to allow 10th bucket to include max value
(SELECT 0.1 + MAX(cust_profit) max_p, MIN(cust_profit) min_p
FROM cust_mon_profit),
-- Profitability bucket found for each customer
cust_bucket AS
(SELECT cust_id, cust_profit,
 width_bucket(cust_profit,
 min_max_p.min_p,
FROM cust_mon_profit, min_max_p
-- Aggregated data needed for each bucket
histo_data AS
(SELECT bucket,
 bucket*((max_p-min_p) /10) top_end , count(*) histo_count
 FROM cust_bucket, min_max_p
 GROUP BY bucket, bucket*((max_p - min_p) /10)
-- Median count of transactions per cust per month median_trans_count AS
-- Find median count of transactions per cust per month
(SELECT cust_bucket.bucket,

Chapter 24
Examples of Business Intelligence Queries

24-7

 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_purchase_cnt.cust_purchase_cnt) median_trans_count
 FROM cust_bucket, cust_purchase_cnt
 WHERE cust_bucket.cust_id=cust_purchase_cnt.cust_id
 GROUP BY cust_bucket.bucket
-- Find Mmedian transaction size for custs by profit bucket
cust_median_trans_size AS
(SELECT cust_bucket.bucket,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY cust_daily_trans_amt.cust_daily_trans_amt)
 cust_median_trans_ size
 FROM cust_bucket, cust_daily_trans_amt
 WHERE cust_bucket.cust_id=cust_daily_trans_amt.cust_id
 GROUP BY cust_bucket.bucket
-- Profitability of each product sold within each bucket
bucket_prod_profits AS
(SELECT cust_bucket.bucket, prod_id, SUM(profit) tot_prod_profit
 FROM cust_bucket, cust_prod_mon_profit
 WHERE cust_bucket.cust_id=cust_prod_mon_profit.cust_id
 GROUP BY cust_bucket.bucket, prod_id
), -- Most and least profitable product by bucket
prod_profit AS
(SELECT bucket, MIN(tot_prod_profit) min_profit_prod,
 MAX(tot_prod_profit) max_profit_prod
 FROM bucket_prod_profits
 GROUP BY bucket
-- Main query block
SELECT histo_data.bucket, histo_data.histo_count,
 median_trans_count.median_trans_count,
 cust_median_trans_size.cust_median_trans_size,
 prod_profit.min_profit_prod, prod_profit.max_profit_prod
FROM histo_data, median_trans_count, cust_median_trans_size,
 prod_profit
WHERE histo_data.bucket=median_trans_count.bucket
 AND histo_data.bucket=cust_median_trans_size.bucket
 AND histo_data.bucket=prod_profit.bucket;

24.1.4 Business Intelligence Query Example 4: Frequent Itemsets
Consider a marketing manager who wants to know which pieces of their firm's collateral are
downloaded by users during a single session. That is, the manager wants to know which
groupings of collateral are the most frequent itemsets. This is easy to do with the integrated
frequent itemsets facility, as long as the Web site's activity log records a user ID and session ID
for each collateral piece that is downloaded. For context, first we show a list of the aggregate
number of downloads for individual white papers. (In our example data here, we use names of
Oracle papers.)

White paper titles #
--- ----
Table Compression in Oracle Database 19C 696
Field Experiences with Large Data Warehouses 439
Key Data Warehouse Features: A Comparative Performance Analysis 181
Materialized Views in Oracle Database 19C 167
Parallel Execution in Oracle Database 19C 166

Here is a sample of the type of query that would be used for such analysis. The query uses
DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL as a table function. To understand the details of
the query structure, see the Oracle Database PL/SQL Packages and Types Reference. The
query returns the itemset of pairs of papers that were downloaded in a single session:

Chapter 24
Examples of Business Intelligence Queries

24-8

SELECT itemset, support, length, rnk
FROM
 (SELECT itemset, support, length,
 RANK() OVER (PARTITION BY length ORDER BY support DESC) rnk
FROM
(SELECT CAST(itemset AS fi_char) itemset, support, length, total_tranx
 FROM table(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL
 (CURSOR(SELECT session_id, command
 FROM web_log
 WHERE time_stamp BETWEEN '01-APR-2002' AND '01-JUN-2002'),
 (60/2600), 2, 2, CURSOR(SELECT 'a' FROM DUAL WHERE 1=0),
 CURSOR(SELECT 'a' FROM DUAL WHERE 1=0)))))
 WHERE rnk <= 10;

Here are the first three items of results:

White paper titles #
--- -----
Table Compression in Oracle Database 19C 115
Field Experiences with Large Data Warehouses

Data Warehouse Performance Enhancements with Oracle Database 19C 109
Oracle Performance and Scalability in DSS Environments

Materialized Views in Oracle Database 19C 107
Query Optimization in Oracle Database 19C

This analysis yielded some interesting results. If one were to look at the list of the most popular
single papers, one would expect the most popular pairs of downloaded papers would often
include the white paper "Table Compression in Oracle Database 10g", because it was the most
popular download of all papers. However, only one of the top three pairs included this paper.

By using frequent itemsets to analyze the Web log information, a manager can glean much
more information than available in a simple report that only lists the most popular pieces of
collateral. From these results, the manager can see that visitors to this Web site tend to search
for information on a single topic area during a single session: visitors interested in scalability
download white papers on compression and large data warehouses, while visitors interested in
complex query capabilities download papers on query optimization and materialized views. For
a marketing manager, this type of information is helpful in determining what sort of collateral
should be written in the future; for a Web designer, this information can provide additional
suggestions on how to organize the Web site.

See "Frequent Itemsets in SQL Analytics" for more information.

Chapter 24
Examples of Business Intelligence Queries

24-9

Part V
Analytic Views

With analytic views you can easily create complex analytic queries on large amounts of
hierarchical and dimensional data in database tables and views.

Analytic views are described in the following topics.

• Overview of Analytic Views

• Attribute Dimension and Hierarchy Objects

• Analytic View Objects

25
Overview of Analytic Views

Analytic views are metadata objects that enable the user to quickly and easily create complex
hierarchical and dimensional queries on data in database tables and views.

General considerations of analytic views are described in the following topics.

• What Are Analytic Views?

• Privileges for Analytic Views

• Application Programming Interfaces for Analytic Views

• Compilation States of Analytic Views

• Validation of Data

• Classifications for Analytic Views

• Share Analytic Views with Application Containers

• Alter or Drop an Analytic View Object

• Data and Scripts for Examples

25.1 What Are Analytic Views?
Analytic views provide a fast and efficient way to create analytic queries of data stored in
existing database tables and views.

Analytic views organize data using a dimensional model. They allow you to easily add
aggregations and calculations to data sets and to present data in views that can be queried
with relatively simple SQL.

Like standard relational views, analytic views:

• Are metadata objects (that is, they do not store data)

• Can be queried using SQL

• Can access data from other database objects such as tables, views, and external tables

• Can join multiple tables into a single view

Analytic views also:

• Organize data using a rich business model that has dimensional and hierarchical concepts

• Include system-generated columns with hierarchical data

• Automatically aggregate data

• Include embedded measure calculations that are easily defined using syntax based on the
business model

• Include presentation metadata

The definition of an analytic view includes navigation, join, aggregation, and calculation rules,
thus eliminating the need to include these rules in queries. Rather than having simple tables
and complex SELECT statements that express joins, aggregations, and measure calculations,

25-1

you can use simple SQL to query smart analytic views. This approach has several benefits,
including:

• Simplified and faster application development; it is much easier to define calculations
within analytic views than it is to write or generate complex SELECT statements

• Calculation rules can be defined once in the database and then be re-used by any number
of applications; this provides end-users with greater freedom of choice in their use of
reporting tools without concern for inconsistent results

Analytic views are especially useful for the following users:

• Data warehouse architect or designer

• Business Intelligence application developer

• Database analyst

For a data warehouse architect, analytic views are a tool for presenting data in a data
warehouse to application developers and business users. Tools provided by the BI application
generate a query, get the data, and present the result.

Components of Analytic Views

Analytic view component objects consist of the following:

• Attribute dimensions, which are metadata objects that reference tables or views and
organize columns into higher-level objects such as attributes and levels. Most metadata
related to dimensions and hierarchies is defined in the attribute dimension object.

• Hierarchies, which are a type of view that reference attribute dimension objects and that
organize data using hierarchical relationships. Data related to dimensions and hierarchies
is selected from hierarchies.

• Analytic view objects, which are a type of view that presents fact data. Analytic views
reference both fact tables and hierarchies. You can select both hierarchy and measure
data from analytic views.

• Derived analytic views, which are defined in the WITH or FROM clause of a SELECT
statement and are based on an existing analytic view.

Data dictionary views, such as ALL_ANALYTIC_VIEW_COLUMNS, contain the metadata and other
information for the analytic view component objects.

The DBMS_HIERARCHY PL/SQL package contains functions for validating analytic view and
hierarchy objects and a procedure that creates a table that you can use for logging messages
generated by the validation functions.

Data Sources for Analytic Views

Attribute dimensions and analytic views typically use star schema dimension tables and fact
tables as data sources. For larger data sets, tables in the in-memory column store can offer the
best query performance with analytic views. Analytic views can also be used with snowflake
schemas, denormailized tables, external tables and remote tables.

You specify the data source with the using_clause in the attribute dimension or analytic view
definition. You may specify an alias for the data source.

A database user who has the privileges required for access to the data sources can create
analytic view objects. The creator defines the business model, which specifies how the data is
queried, and implements the model by creating attribute dimensions, hierarchies, and analytic
views.

Chapter 25
What Are Analytic Views?

25-2

Materialized Views and Analytic Views

Creating a materialized view over queries of an analytic view or a hierarchy is not supported.
You may use a materialized view in a MEASURE_GROUP phrase of a cache_clause of an analytic
view.

Constraints for Analytic View Objects

For optimal query performance in queries of an analytic view, you should use the same
constraints that you would typically use for querying a star schema. An attribute dimension or
analytic view does not require that the source table or view have any particular constraints
defined or enabled. Also, defining an attribute dimension or analytic view does not introduce
any additional constraints on those tables or views. The PL/SQL functions
VALIDATE_HIERARCHY and VALIDATE_ANALYTIC_VIEW are available for validating that the data in
a table or view used by an attribute dimension in a hierarchy or used by an analytic view
conforms to the logical constraints inherent in the metadata definitions.

Naming Conventions for Analytic Views

The naming conventions for attribute dimensions, hierarchies, and analytic views, and
components of them such as attributes, levels, and measures, follow standard database
identifier rules. Double-quotes may be used to enclose identifiers, including extended
characters and mixed-case; otherwise, the standard upper-case and limited character rules
apply.

25.2 New Features for Analytic Views
Oracle Database 23ai includes these new features for analytic views.

New features for analytic views include the following:

• Base table query transformations

• Access to calculations through transparency views

• Remote source support

• Query-scoped base measures

• Autonomous caching

• Attribute dimension star caches

• Aggregation table support

Base Table Query Transformations

The ENABLE QUERY TRANSFORM RELY clause in a CREATE OR REPLACE ANALYTIC VIEW statement
enables the automatic creation of views that can improve the performance of queries. A query
against a base table for the analytic view is automatically transformed into a query of the
analytic view. This provides you with the performance improvements of analytic views without
your needing to change to your SQL query.

Access to Calculations Through Transparency Views

You can create transparency views using the CREATE_VIEW_FOR_FACT_ROWS and
CREATE_VIEW_FOR_STAR_ROWS procedures of the DBMS_HIERARCHY package. When you query an
analytic view and specify the FACT ROWS or STAR ROWS keywords in the SELECT statement, a
transparency view is automatically created. The FACT ROWS keywords indicate that the analytic

Chapter 25
New Features for Analytic Views

25-3

view should return rows as they are in the fact table, and the STAR ROWS keywords indicate that
the analytic view should return rows for an attribute dimension. These keywords enable the
analytic view to use base table query transformation.

One of the key features of analytic views is the hierarchy-aware analytic calculations used in
creation of calculated measures. In a SELECT statement, you can specify the AV_AGGREGATE
function to query a calculated measure

Remote Source Support

When creating an analytic view or attribute dimension, you can specify the REMOTE keyword in
the USING clause to include a remote table as a source for the object. The data dictionary
tables ALL_ATTRIBUTE_DIM_TABLES and ALL_ANALYTIC_VIEWS, and their related DBA_ and USER_
tables, now have the IS_REMOTE column that indicates whether a source is remote.

Query-Scoped Base Measures

In a query, you can add new base measures to a dynamic analytic view with the FACT and
AGGREGATE BY keywords in the ADD MEASURES clause. Each base measure can have a different
aggregation operator.

Autonomous Caching

With procedures in the DBMS_AVTUNE PL/SQL package, you can enable the automatic creation
of caches for an analytic view. These caches improve the performance of queries of the
analytic view and other transformed SQL queries.

Attribute Dimension Star Caches

A fact-based hierarchy is built over one or more columns of the fact table. When creating an
attribute dimension, you can specify the creation of a cache for the star representation of a
fact-based hierarchy. All hierarchies and analytic views based on that attribute dimension are
able to share the single materialized star cache. In a query of the fact table, the cache
eliminates the need to compute the distinct values of the hierarchy members.

Aggregation Table Support

When creating an analytic view, you can specify an object, such as an aggregate table, a view,
or a materialized view, to use in a level grouping cache in place of a materialized view. You can
then refresh the aggregate table as desired, which allows you complete control of the
aggregate results.

You specify the aggregation object with the MATERIALIZED USING keywords for a level in the
measure group of the cache specification clause of the analytic view.

25.3 Privileges for Analytic Views
Describes the system and object privileges available for analytic views, attribute dimensions,
and hierarchies.

System Privileges

The following system privileges allow the user to create, alter, or drop analytic view component
objects.

Chapter 25
Privileges for Analytic Views

25-4

System Privilege Description

CREATE ANALYTIC VIEW Create an analytic view in the grantee's schema.

CREATE ANY ANALYTIC VIEW Create analytic views in any schema except SYS.

CREATE ATTRIBUTE DIMENSION Create an attribute dimension in the grantee's schema.

CREATE ANY ATTRIBUTE DIMENSION Create attribute dimensions in any schema except SYS.

CREATE HIERARCHY Create a hierarchy in the grantee's schema.

CREATE ANY HIERARCHY Create hierarchies in any schema except SYS.

ALTER ANY ANALYTIC VIEW Rename analytic views in any schema except SYS.

ALTER ANY ATTRIBUTE DIMENSION Rename attribute dimensions in any schema except
SYS.

ALTER ANY HIERARCHY Rename hierarchies in any schema except SYS.

DROP ANY ANALYTIC VIEW Drop analytic views in any schema except SYS.

DROP ANY ATTRIBUTE DIMENSION Drop attribute dimensions in any schema except SYS.

DROP ANY HIERARCHY Drop hierarchies in any schema except SYS.

SELECT ANY TABLE Query or view any analytic view or hierarchy in any
schema.

Object Privileges

The following object privileges allow the user to query or rename analytic view component
objects.

Object Privilege Operations Authorized

ALTER Rename the analytic view, attribute dimension, or
hierarchy.

READ Query the object with the SELECT statement.

SELECT Query the object with the SELECT statement.

Example 25-1 Granting System Privileges

The following statements grant the CREATE system privilege to the user av_user.

GRANT CREATE ATTRIBUTE DIMENSION TO av_user;
GRANT CREATE HIERARCHY TO av_user;
GRANT CREATE ANALYTIC VIEW TO av_user;
GRANT SELECT ANY TABLE TO av_user;

Example 25-2 Granting Object Privileges

The following statements grant all object privileges to the user av_user2 and then revoke the
ALTER privilege.

GRANT ALL ON "AV_USER".SALES_AV TO "AV_USER2";
REVOKE ALTER ON "AV_USER".SALES_AV FROM "AV_USER2";

Chapter 25
Privileges for Analytic Views

25-5

25.4 Application Programming Interfaces for Analytic Views
The application programming interfaces for analytic views consist of SQL DDL statements,
PL/SQL procedures and functions, and data dictionary views.

These interfaces are listed in the following topics:

• SQL DDL Statements for the Creation and Management of Analytic Views

• PL/SQL Package for Analytic Views

• Data Dictionary Views for Analytic Views

SQL DDL Statements for the Creation and Management of Analytic Views

You create and manage analytic view objects with the following SQL DDL statements:

• CREATE ANALYTIC VIEW
• CREATE ATTRIBUTE DIMENSION
• CREATE HIERARCHY
• ALTER ANALYTIC VIEW
• ALTER ATTRIBUTE DIMENSION
• ALTER HIERARCHY
• DROP ANALYTIC VIEW
• DROP ATTRIBUTE DIMENSION
• DROP HIERARCHY
For details about these statements, see CREATE ANALYTIC VIEW and the other statements in
Oracle Database SQL Language Reference.

SQL SELECT Statement Clauses for Filtered Facts and Added Measures

In the WITH and FROM clauses of a SELECT statement, you can define one or more transitory
analytic views that filter the hierarchy members before the aggregation of measure values for
the hierarchy. You can also define additional measures that participate in the query. The filtered
facts and additional measures are based on an existing persistent analytic view, but they do
not alter the definition of the persistent analytic view itself.

See Also:

Analytic View Queries with Filtered Facts and Added Measures

PL/SQL Package for Analytic Views

You can validate the data for analytic view and hierarchy objects with the following procedures
in the DBMS_HIERARCHY package:

• CREATE_VALIDATE_LOG_TABLE procedure

• VALIDATE_ANALYTIC_VIEW function

• VALIDATE_CHECK_SUCCESS function

Chapter 25
Application Programming Interfaces for Analytic Views

25-6

• VALIDATE_HIERARCHY function

For details about this package, see DBMS_HIERARCHY in Oracle Database PL/SQL
Packages and Types Reference.

Data Dictionary Views for Analytic Views

The following data dictionary views contain information about analytic view objects. Only the
views with the prefix ALL are listed. Each view also has a corresponding DBA and USER version.

Analytic View Views

• ALL_ANALYTIC_VIEW_ATTR_CLASS
• ALL_ANALYTIC_VIEW_BASE_MEAS
• ALL_ANALYTIC_VIEW_CALC_MEAS
• ALL_ANALYTIC_VIEW_CLASS
• ALL_ANALYTIC_VIEW_COLUMNS
• ALL_ANALYTIC_VIEW_DIM_CLASS
• ALL_ANALYTIC_VIEW_DIMENSIONS
• ALL_ANALYTIC_VIEW_HIER_CLASS
• ALL_ANALYTIC_VIEW_HIERS
• ALL_ANALYTIC_VIEW_KEYS
• ALL_ANALYTIC_VIEW_LEVEL_CLASS
• ALL_ANALYTIC_VIEW_LEVELS
• ALL_ANALYTIC_VIEW_LVLGRPS
• ALL_ANALYTIC_VIEW_MEAS_CLASS
• ALL_ANALYTIC_VIEWS
Attribute Dimension Views

• ALL_ATTRIBUTE_DIM_ATTR_CLASS
• ALL_ATTRIBUTE_DIM_ATTRS
• ALL_ATTRIBUTE_DIM_CLASS
• ALL_ATTRIBUTE_DIM_JOIN_PATHS
• ALL_ATTRIBUTE_DIM_KEYS
• ALL_ATTRIBUTE_DIM_LEVEL_ATTRS
• ALL_ATTRIBUTE_DIM_LEVELS
• ALL_ATTRIBUTE_DIM_LVL_CLASS
• ALL_ATTRIBUTE_DIM_ORDER_ATTRS
• ALL_ATTRIBUTE_DIM_TABLES
• ALL_ATTRIBUTE_DIMENSIONS
Hierarchy Views

• ALL_HIER_CLASS

Chapter 25
Application Programming Interfaces for Analytic Views

25-7

• ALL_HIER_COLUMNS
• ALL_HIER_HIER_ATTR_CLASS
• ALL_HIER_HIER_ATTRIBUTES
• ALL_HIER_JOIN_PATHS
• ALL_HIER_LEVEL_ID_ATTRS
• ALL_HIER_LEVELS
• ALL_HIERARCHIES
For details about these views, see ALL_ANALYTIC_VIEWS and the other views in Oracle
Database Reference.

25.5 Compilation States of Analytic Views
When you create or alter an attribute dimension, a hierarchy, or an analytic view, Oracle
Database ascertains the internal validity of the object’s metadata.

The SQL DDL CREATE and ALTER statements for analytic views have FORCE and NOFORCE
options, with NOFORCE as the default. The verification of metadata that depends on another
object is optional and is determined by the FORCE and NOFORCE options.

If you specify NOFORCE and the compilation fails, then the CREATE or ALTER operation fails and
an error is raised. If you specify FORCE, the CREATE or ALTER succeeds even if the compilation
fails.

You can explicitly invoke a compilation by specifying the COMPILE keyword; a compilation is
implicitly invoked as needed during a query. A query returns an error if an object is not
compiled and cannot implicitly be compiled.

The compilation state is recorded in the COMPILE_STATE column in the
ALL_ATTRIBUTE_DIMENSIONS, ALL_HIERARCHIES, and ALL_ANALYTIC_VIEWS data dictionary views
(and the corresponding DBA and USER views). The state may be one of the following:

Value Description

VALID The object has been compiled without error.

INVALID Some change requires recompilation or the object has been compiled and errors have
occurred.

A SQL DDL operation on the analytic views object causes the state of dependent objects to
change to INVALID. For example, a change to an attribute dimension causes any hierarchies
that use that attribute dimension, and analytic views dimensioned by the attribute dimension, to
change state to INVALID. Also, DDL changes to the tables or views used by attribute
dimensions and analytic views cause the state for those objects to change to INVALID.

The ALL_OBJECTS data dictionary view has a STATUS column that may be VALID or INVALID. For
attribute dimensions, hierarchies, and analytic views, the STATUS value correlates to the
COMPILE_STATE. When COMPILE_STATE is VALID, the STATUS value is VALID. When
COMPILE_STATE is INVALID, STATUS is INVALID.

Chapter 25
Compilation States of Analytic Views

25-8

25.6 Validation of Data
To ensure the accuracy of query results, the data of hierarchies and analytic views must be
validated.

To validate the data for a hierarchy or analytic view, use the functions in the PL/SQL package
DBMS_HIERARCHY. The VALIDATE_HIERARCHY and VALIDATE_ANALYTIC_VIEW functions validate
the data and store the results in a table. An optional argument to the functions is the name of a
table. The CREATE_VALIDATE_LOG_TABLE procedure creates a table that you can use for the
purpose. If you do not specify a table, the VALIDATE_HIERARCHY and VALIDATE_ANALYTIC_VIEW
functions create a table.

Any SQL DDL or DML changes made on the tables used by an associated attribute dimension
or analytic view, or any DDL change to an attribute dimension, hierarchy, or analytic view itself,
causes the state of a hierarchy to change to INVALID.

If any data security policies are applied to a hierarchy or analytic view, or any of the tables or
views used by an associated attribute dimension, then the validation state cannot be
determined and the VALIDATE_STATE is not set to VALID. An execution of the
VALIDATE_HIERARCHY or VALIDATE_ANALYTIC_VIEW function indicates whether the hierarchy or
analytic view is valid at that time and for that user.

If a SQL DML change to a table or view used by an attribute dimension occurs between the
time you query the data dictionary or run the VALIDATE_HIERARCHY function and the time you
execute a query of a hierarchy or analytic view, then the hierarchy may become invalid. To
ensure that a hierarchy is valid for a query, you can establish a read-only transaction (for
example, SET TRANSACTION READ ONLY), run the validation function, verify the success of the
validation, execute queries, and then end the transaction with a COMMIT or ROLLBACK statement.

25.7 Classifications for Analytic Views
Classifications provide descriptive metadata for attribute dimensions, hierarchies, and analytic
view objects, and for components of them such as attribute dimension keys, attributes, levels,
and measures.

Applications can use classifications to present information about hierarchies and analytic
views. Classifications are similar to comments on tables and columns, but a comment is a
single value. You can specify any number of classifications for the same object. You can vary
the values by language. A classification value is always a text literal and can have maximum
length of 4000 bytes.

Classifications play no role in SQL queries, but are available in the data dictionary views for
use by tools or applications. The CAPTION and DESCRIPTION classifications have DDL shortcuts
for all objects that support classifications.

You may specify a language for a classification value. If you specify a language, it must be a
valid NLS_LANGUAGE value. If you do not specify a language, then the language value for the
classification is NULL and the default database language is used.

The DDL shortcuts for CAPTION and DESCRIPTION apply only to the NULL language. To specify a
CAPTION and DESCRIPTION classification for a particular language, you must use the full
CLASSIFICATION syntax.

SQL tools can interpret a NULL language value as a default. For example, suppose a tool is
looking for the CAPTION for an attribute dimension. The tool might first look for the CAPTION

Chapter 25
Validation of Data

25-9

having a language that matches the current NLS_LANGUAGE. If it finds one, it uses that CAPTION
value. If not, it then looks for a CAPTION having a NULL language value and uses that. The SQL
logic is up to the user, tool, or application.

To provide descriptive metadata that varies by language for a member of a hierarchy, use the
hierarchical attributes MEMBER_NAME, MEMBER_CAPTION, and MEMBER_DESCRIPTION.

25.8 Share Analytic Views with Application Containers
You can share analytic views with application containers.

In the definition of analytic view objects, you can use the SHARING clause to share attribute
dimension, hierarchy, or analytic view metadata or objects with application containers. The
values for the clause are the following:

Value Description

NONE Do not share; this is the default value.

METADATA Share metadata only.

OBJECT Share the object, including data.

If you specify METADATA, then only the definition of the object is shared with application
containers.

If you specify OBJECT, then the attribute dimension, hierarchy, or analytic view object, including
the data sources of the object, is shared with the application container.

25.9 Alter or Drop an Analytic View Object
With SQL DDL statements you can change the name of an object or you can drop it.

To alter any aspect of an analytic view object other than the name, use a CREATE OR REPLACE
statement to replace the object with one that has the desired alterations.

Example 25-3 Renaming an Attribute Dimension

The following example renames an attribute dimension.

ALTER ATTRIBUTE DIMENSION product_attr_dim RENAME TO myproduct_attr_dim;

Example 25-4 Dropping an Attribute Dimension

The following example drops an attribute dimension.

DROP ATTRIBUTE DIMENSION myproduct_attr_dim;

25.10 Data and Scripts for Examples
This section describes the data on which the analytic views examples are based and contains
SQL statements that create the analytic view component objects.

The data and the analytic view components are described in the following topics:

• About the Data and Scripts for Examples

Chapter 25
Share Analytic Views with Application Containers

25-10

• Create Attribute Dimension Statements

• Create Hierarchy Statements

• Create Analytic View Statements

25.10.1 About the Data and Scripts for Examples
The data used by the examples consists of sales data in a single fact table and three
dimension tables with time periods, products, and geographies.

You can view and run the SQL scripts that create the tables, the analytic view component
objects, and the queries used in the examples from the Oracle Live SQL website at https://
livesql.oracle.com/apex/livesql/file/index.html.

The data is in the star schema tables shown in the following figure.

Figure 25-1 Tables for Analytic View Examples

TIME_DIM Table

YEAR_ID

YEAR_NAME

YEAR_END_DATE

SEASON

SEASON_ORDER

MONTH_OF_QUARTER

QUARTER_ID

QUARTER_END_DATE

QUARTER_OF_YEAR

MONTH_ID

MONTH_NAME

MONTH_LONG_NAME

MONTH_END_DATE

MONTH_OF_YEAR

SALES_FACT Table

MONTH_ID

CATEGORY_ID

STATE_PROVINCE_ID

SALES

UNITS

GEOGRAPHY_DIM Table

REGION_ID

REGION_NAME

COUNTRY_ID

COUTRY_NAME

STATE_PROVINCE_ID

STATE_PROVINCE_NAME

PRODUCT_DIM Table

DEPARTMENT_ID

DEPARTMENT_NAME

CATEGORY_ID

CATEGORY_NAME

In the SALES_FACT table, the MONTH_ID, DEPARTMENT_ID, and STATE_PROVINCE_ID
columns are foreign keys to the TIME_DIM, PRODUCT_DIM, and GEOGRAPHY_DIM
dimension tables, respectively.

In each dimension table, the _ID columns are used as keys and the _NAME columns are used
as descriptors. Other columns may be used as attributes for sorting or reporting.

There are 1:1 relationships in data between _ID and _NAME columns. You can sort time
periods by using the _END_DATE columns of the TIME_DIM table.

Chapter 25
Data and Scripts for Examples

25-11

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

25.10.2 Create Attribute Dimension Statements
This topic contains SQL statements that create the example attribute dimensions.

Create the time_attr_dim Attribute Dimension

The time_attr_dim attribute dimension is based on the TIME_DIM dimension table. The
following statement creates the attribute dimension.

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id
 CLASSIFICATION caption VALUE 'YEAR_ID'
 CLASSIFICATION description VALUE 'YEAR ID',
 year_name
 CLASSIFICATION caption VALUE 'YEAR_NAME'
 CLASSIFICATION description VALUE 'Year',
 year_end_date
 CLASSIFICATION caption VALUE 'YEAR_END_DATE'
 CLASSIFICATION description VALUE 'Year End Date',
 quarter_id
 CLASSIFICATION caption VALUE 'QUARTER_ID'
 CLASSIFICATION description VALUE 'QUARTER ID',
 quarter_name
 CLASSIFICATION caption VALUE 'QUARTER_NAME'
 CLASSIFICATION description VALUE 'Quarter',
 quarter_end_date
 CLASSIFICATION caption VALUE 'QUARTER_END_DATE'
 CLASSIFICATION description VALUE 'Quarter End Date',
 quarter_of_year
 CLASSIFICATION caption VALUE 'QUARTER_OF_YEAR'
 CLASSIFICATION description VALUE 'Quarter of Year',
 month_id
 CLASSIFICATION caption VALUE 'MONTH_ID'
 CLASSIFICATION description VALUE 'MONTH ID',
 month_name
 CLASSIFICATION caption VALUE 'MONTH_NAME'
 CLASSIFICATION description VALUE 'Month',
 month_long_name
 CLASSIFICATION caption VALUE 'MONTH_LONG_NAME'
 CLASSIFICATION description VALUE 'Month Long Name',
 month_end_date
 CLASSIFICATION caption VALUE 'MONTH_END_DATE'
 CLASSIFICATION description VALUE 'Month End Date',
 month_of_quarter
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter',
 month_of_year
 CLASSIFICATION caption VALUE 'MONTH_OF_YEAR'
 CLASSIFICATION description VALUE 'Month of Year',
 season
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season',

Chapter 25
Data and Scripts for Examples

25-12

 season_order
 CLASSIFICATION caption VALUE 'SEASON_ORDER'
 CLASSIFICATION description VALUE 'Season Order')
LEVEL month
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH'
 CLASSIFICATION description VALUE 'Month'
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
 DETERMINES (month_end_date,
 quarter_id,
 season,
 season_order,
 month_of_year,
 month_of_quarter)
LEVEL quarter
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'QUARTER'
 CLASSIFICATION description VALUE 'Quarter'
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
 DETERMINES (quarter_end_date,
 quarter_of_year,
 year_id)
LEVEL year
 LEVEL TYPE YEARS
 CLASSIFICATION caption VALUE 'YEAR'
 CLASSIFICATION description VALUE 'Year'
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date
 DETERMINES (year_end_date)
LEVEL season
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season'
 KEY season
 MEMBER NAME season
 MEMBER CAPTION season
 MEMBER DESCRIPTION season
LEVEL month_of_quarter
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter'
 KEY month_of_quarter;

Chapter 25
Data and Scripts for Examples

25-13

Create the product_attr_dim Attribute Dimension

The product_attr_dim attribute dimension is based on the PRODUCT_DIM dimension table.
The following statement creates the attribute dimension.

CREATE OR REPLACE ATTRIBUTE DIMENSION product_attr_dim
USING product_dim
ATTRIBUTES
 (department_id
 CLASSIFICATION caption VALUE 'DEPARTMENT_ID'
 CLASSIFICATION description VALUE 'DEPARTMENT ID',
 department_name
 CLASSIFICATION caption VALUE 'DEPARTMENT_NAME'
 CLASSIFICATION description VALUE 'Department',
 category_id
 CLASSIFICATION caption VALUE 'CATEGORY_ID'
 CLASSIFICATION description VALUE 'CATEGORY ID',
 category_name
 CLASSIFICATION caption VALUE 'CATEGORY_NAME'
 CLASSIFICATION description VALUE 'Category')
LEVEL DEPARTMENT
 CLASSIFICATION caption VALUE 'DEPARTMENT'
 CLASSIFICATION description VALUE 'Department'
 KEY department_id
 MEMBER NAME department_name
 MEMBER CAPTION department_name
 ORDER BY department_name
LEVEL CATEGORY
 CLASSIFICATION caption VALUE 'CATEGORY'
 CLASSIFICATION description VALUE 'Category'
 KEY category_id
 MEMBER NAME category_name
 MEMBER CAPTION category_name
 ORDER BY category_name
 DETERMINES(department_id)
ALL MEMBER NAME 'ALL PRODUCTS';

Create the geography_attr_dim Attribute Dimension

The geography_attr_dim attribute dimension is based on the GEOGRAPHY_DIM dimension
table. The following statement creates the attribute dimension.

CREATE OR REPLACE ATTRIBUTE DIMENSION geography_attr_dim
USING geography_dim
ATTRIBUTES
 (region_id
 CLASSIFICATION caption VALUE 'REGION_ID'
 CLASSIFICATION description VALUE 'REGION ID',
 region_name
 CLASSIFICATION caption VALUE 'REGION_NAME'
 CLASSIFICATION description VALUE 'Region',
 country_id
 CLASSIFICATION caption VALUE 'COUNTRY_ID'
 CLASSIFICATION description VALUE 'COUNTRY ID',
 country_name

Chapter 25
Data and Scripts for Examples

25-14

 CLASSIFICATION caption VALUE 'COUNTRY_NAME'
 CLASSIFICATION description VALUE 'Country',
 state_province_id
 CLASSIFICATION caption VALUE 'STATE_PROVINCE_ID'
 CLASSIFICATION description VALUE 'STATE-PROVINCE ID',
 state_province_name
 CLASSIFICATION caption VALUE 'STATE_PROVINCE_NAME'
 CLASSIFICATION description VALUE 'State-Province')
LEVEL REGION
 CLASSIFICATION caption VALUE 'REGION'
 CLASSIFICATION description VALUE 'Region'
 KEY region_id
 MEMBER NAME region_name
 MEMBER CAPTION region_name
 ORDER BY region_name
LEVEL COUNTRY
 CLASSIFICATION caption VALUE 'COUNTRY'
 CLASSIFICATION description VALUE 'Country'
 KEY country_id
 MEMBER NAME country_name
 MEMBER CAPTION country_name
 ORDER BY country_name
 DETERMINES(region_id)
LEVEL STATE_PROVINCE
 CLASSIFICATION caption VALUE 'STATE_PROVINCE'
 CLASSIFICATION description VALUE 'State-Province'
 KEY state_province_id
 MEMBER NAME state_province_name
 MEMBER CAPTION state_province_name
 ORDER BY state_province_name
 DETERMINES(country_id)
ALL MEMBER NAME 'ALL CUSTOMERS';

25.10.3 Create Hierarchy Statements
This topic contains SQL statements that create the example hierarchies.

Create Hierarchies Using time_attr_dim

The following statements create hierarchies that use the time_attr_dim attribute dimension.

CREATE OR REPLACE HIERARCHY time_hier
 CLASSIFICATION caption VALUE 'CALENDAR'
 CLASSIFICATION description VALUE 'CALENDAR'
USING time_attr_dim
 (month CHILD OF
 quarter CHILD OF
 year);
--
CREATE OR REPLACE HIERARCHY time_season_hier
 CLASSIFICATION caption VALUE 'SEASONS'
 CLASSIFICATION description VALUE 'Seasons'
USING time_attr_dim
 (month CHILD OF
 season);

Chapter 25
Data and Scripts for Examples

25-15

--
CREATE OR REPLACE HIERARCHY time_year_season_hier
USING time_attr_dim
 (month CHILD OF
 season CHILD OF
 year);
--
CREATE OR REPLACE HIERARCHY time_month_of_qtr_hier
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter'
USING time_attr_dim
 (month CHILD OF
 month_of_quarter);

Create a Hierarchy Using product_attr_dim

The following statement creates a hierarchy that uses the product_attr_dim attribute
dimension.

CREATE OR REPLACE HIERARCHY product_hier
 CLASSIFICATION caption VALUE 'PRODUCT'
 CLASSIFICATION description VALUE 'Product'
USING product_attr_dim
 (CATEGORY
 CHILD OF department);

Create a Hierarchy Using geography_attr_dim

The following statement creates a hierarchy that uses the geography_attr_dim attribute
dimension.

CREATE OR REPLACE HIERARCHY geography_hier
 CLASSIFICATION caption VALUE 'GEOGRAPHY'
 CLASSIFICATION description VALUE 'Geography'
USING geography_attr_dim
 (state_province
 CHILD OF country
 CHILD OF region);

25.10.4 Create Analytic View Statements
This topic contains a SQL statement that creates the example analytic view.

Create the sales_av Analytic View

The following statement creates an analytic view that uses the SALES_FACT fact table.

CREATE OR REPLACE ANALYTIC VIEW sales_av
 CLASSIFICATION caption VALUE 'Sales AV'
 CLASSIFICATION description VALUE 'Sales Analytic View'
 CLASSIFICATION created_by VALUE 'Harold C. Ehrlicher'
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id

Chapter 25
Data and Scripts for Examples

25-16

 HIERARCHIES (
 time_hier DEFAULT,
 time_season_hier,
 time_year_season_hier,
 time_month_of_qtr_hier),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id
 REFERENCES state_province_id
 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales
 CLASSIFICATION caption VALUE 'Sales'
 CLASSIFICATION description VALUE 'Sales'
 CLASSIFICATION format_string VALUE '$9,999.99',
 units FACT units
 CLASSIFICATION caption VALUE 'Units'
 CLASSIFICATION description VALUE 'Units Sold'
 CLASSIFICATION format_string VALUE '9,999',
 sales_prior_period AS
 (LAG(SALES) OVER (HIERARCHY time_hier OFFSET 1))
 CLASSIFICATION caption VALUE 'Sales Prior Period'
 CLASSIFICATION description VALUE 'Sales Prior_Period'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_chg_prior_period AS
 (LAG_DIFF(SALES) OVER (HIERARCHY time_hier OFFSET 1))
 CLASSIFICATION caption VALUE 'Sales Change Prior Period'
 CLASSIFICATION description VALUE 'Sales Change Prior Period'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_qtr_ago AS
 (LAG(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
 CLASSIFICATION caption VALUE 'Sales Qtr Ago'
 CLASSIFICATION description VALUE 'Sales Qtr Ago'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_chg_qtr_ago AS
 (LAG_DIFF(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
 CLASSIFICATION caption VALUE 'Sales Change Qtr Ago'
 CLASSIFICATION description VALUE 'Sales Change Qtr Ago'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_pct_chg_qtr_ago AS
 (LAG_DIFF_PERCENT(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
 CLASSIFICATION caption VALUE 'Sales Percent Change Qtr Ago'
 CLASSIFICATION description VALUE 'Sales Percent Change Qtr Ago'
 CLASSIFICATION format_string VALUE '999.99',
 sales_yr_ago AS
 (LAG(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year))
 CLASSIFICATION caption VALUE 'Sales Year Ago'

Chapter 25
Data and Scripts for Examples

25-17

 CLASSIFICATION description VALUE 'Sales Year Ago'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_chg_yr_ago AS
 (LAG_DIFF(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year))
 CLASSIFICATION caption VALUE 'Sales Change Year Ago'
 CLASSIFICATION description VALUE 'Sales Change Year Ago'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_pct_chg_yr_ago AS
 (LAG_DIFF_PERCENT(SALES) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year))
 CLASSIFICATION caption VALUE 'Sales Percent Change Year Ago'
 CLASSIFICATION description VALUE 'Sales Percent Change Year Ago'
 CLASSIFICATION format_string VALUE '999.99',
 sales_qtd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
 WITHIN ANCESTOR AT LEVEL quarter))
 CLASSIFICATION caption VALUE 'Sales Quarter to Date'
 CLASSIFICATION description VALUE 'Sales Quarter to Date'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_ytd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
 WITHIN ANCESTOR AT LEVEL year))
 CLASSIFICATION caption VALUE 'Sales Year to Date'
 CLASSIFICATION description VALUE 'Sales Year to Date'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_2011 AS
 (QUALIFY (sales, time_hier = year['11']))
 CLASSIFICATION caption VALUE 'Sales CY2011'
 CLASSIFICATION description VALUE 'Sales CY2011'
 CLASSIFICATION format_string VALUE '$9,999.99',
 sales_pct_chg_2011 AS
 ((sales - (QUALIFY (sales, time_hier = year['11']))) /
 (QUALIFY (sales, time_hier = year['11'])))
 CLASSIFICATION caption VALUE 'Sales Pct Change CY2011'
 CLASSIFICATION description VALUE 'Sales Pct Change CY2011'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_time_parent AS
 (SHARE_OF(sales HIERARCHY time_hier PARENT))
 CLASSIFICATION caption VALUE 'Sales Share of Time Parent'
 CLASSIFICATION description VALUE 'Sales Share of Time Parent'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_season_parent AS
 (SHARE_OF(sales HIERARCHY time_season_hier PARENT))
 CLASSIFICATION caption VALUE 'Sales Share of Season Parent'
 CLASSIFICATION description VALUE 'Sales Share of Season Parent'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_prod_parent AS
 (SHARE_OF(sales HIERARCHY product_hier PARENT))
 CLASSIFICATION caption VALUE 'Sales Share of Product Parent'
 CLASSIFICATION description VALUE 'Sales Share of Product Parent'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_dept AS
 (SHARE_OF(sales HIERARCHY product_hier LEVEL department))

Chapter 25
Data and Scripts for Examples

25-18

 CLASSIFICATION caption VALUE 'Sales Share of Product Parent'
 CLASSIFICATION description VALUE 'Sales Share of Product Parent'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_geog_parent AS
 (SHARE_OF(sales HIERARCHY geography_hier PARENT))
 CLASSIFICATION caption VALUE 'Sales Share of Geography Parent'
 CLASSIFICATION description VALUE 'Sales Share of Geography Parent'
 CLASSIFICATION format_string VALUE '999.99',
 sales_share_region AS
 (SHARE_OF(sales HIERARCHY geography_hier LEVEL region))
 CLASSIFICATION caption VALUE 'Sales Share of Geography Parent'
 CLASSIFICATION description VALUE 'Sales Share of Geography Parent'
 CLASSIFICATION format_string VALUE '999.99'
)
DEFAULT MEASURE SALES;

Chapter 25
Data and Scripts for Examples

25-19

26
Attribute Dimension and Hierarchy Objects

Attribute dimensions reference data sources and specify attributes and levels; hierarchies
organize levels hierarchically.

Attribute dimensions and hierarchies are described in the following topics:

• About Attribute Dimensions and Hierarchies

• Attributes and Hierarchical Attributes

• Order Levels

• Level Keys

• Determine Attribute Relationships

26.1 About Attribute Dimensions and Hierarchies
An attribute dimension specifies a data source, attributes, and levels; a hierarchy organizes the
levels hierarchically.

An attribute dimension specifies the data source it is using and specifies columns of that
source as its attributes. It specifies levels for some or all of the attributes and determines
attribute relationships between levels.

A hierarchy defines the hierarchical relationships between the levels of an attribute dimension.
Attribute dimensions and hierarchies provide the dimension members for analytic view objects.

Most metadata related to dimensions and hierarchies is defined in the attribute dimension. A
hierarchy inherits all of the metadata of the attribute dimension it uses. This allows the
metadata for attributes and levels to be reused in many hierarchies, promoting consistency and
simplifying the definition of the hierarchy.

About Attribute Dimensions

An attribute dimension has the following characteristics:

• A data source, which is typically a star schema or snowflake schema dimension table but
may be a denormalized table, a view or an external or remote table; each column of the
dimension table may be presented in a hierarchy

• A dimension type, which is either STANDARD or TIME
• Attributes, which are columns from the data source

• Levels, which represent groups of values that are all at the same level of aggregation

• Hierarchical attributes, which are used by hierarchies to describe hierarchical relationships
between levels

• An implicit ALL level with only one member, which is the highest level in any hierarchy that
uses the attribute dimension

• Can be used by any number of hierarchies

An attribute dimension also has the following optional characteristics:

26-1

• Can specify sharing its metadata or its metadata and data with an application container

• Can specify the ordering of level members

• Can specify classifications for the attribute dimension itself, its attributes, some of its
hierarchical attributes, its levels, and the ALL member; the classifications provide metadata
that an application can use in queries and in presenting query results

The attributes determined by the included levels specify the attributes that become columns in
the hierarchy, and, therefore, of any analytic view that references the hierarchy.

About Attribute Dimension and Level Types

An attribute dimension can be either a STANDARD or a TIME type. Functionally, the STANDARD and
TIME type attribute dimensions are the same. However, each level of a TIME type attribute
dimension must specify a level type, even though the values of the level members are not
necessarily of that type. For example, a TIME type attribute dimension could have a level
named SEASON that has a level type of QUARTERS, even though its values are the names of
seasons. You can use the level types for whatever purpose you choose.

The levels of a STANDARD type attribute dimension are of type STANDARD. You do not need to
specify a level type for the levels of a STANDARD type attribute dimension.

The levels of a TIME type attribute dimension must be one of the following level types:

• YEARS
• HALF_YEARS
• QUARTERS
• MONTHS
• WEEKS
• DAYS
• HOURS
• MINUTES
• SECONDS

About Hierarchies

A hierarchy has the following characteristics:

• An attribute dimension

• A hierarchical ordering of levels of the attribute dimension

• Columns for each attribute, including determined attributes, of the levels

• Columns for its hierarchical attributes

• A row for each member of each level of the hierarchy and a row for an implicit ALL level,
which represents a single top-level aggregate value

• Metadata it inherits from the attribute dimension

• May be used in the FROM clause of a SQL SELECT statement.

A hierarchy also has the following optional characteristics:

• Can specify sharing its metadata or its metadata and data with an application container

• Can specify classifications for itself and for its hierarchical attributes

Chapter 26
About Attribute Dimensions and Hierarchies

26-2

Example 26-1 A Simple Attribute Dimension

An attribute dimension may be as simple as a list of attributes and levels defined only with key
attributes. This example creates an attribute dimension that specifies as attributes only the
YEAR_ID, QUARTER_ID, and MONTH_ID columns from the TIME_DIM table.

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim -- References the TIME_DIM table
ATTRIBUTES -- A list of table columns to be used as attributes
 (year_id,
 quarter_id,
 month_id)
LEVEL MONTH -- A level
 LEVEL TYPE MONTHS -- The level type
 KEY month_id -- Attribute with unique values
LEVEL QUARTER
 LEVEL TYPE QUARTERS
 KEY quarter_id
LEVEL YEAR
 LEVEL TYPE YEARS
 KEY year_id;

For a description of the TIME_DIM table, see About the Data and Scripts for Examples.

Each of the _ID columns in the TIME_DIM table is included in the attribute list. By default, the
name of the attribute is the dimension table column name. You can provide a different name for
the attribute by using the AS alias clause in the definition.

Levels are created for each attribute using the KEY property, which is the only required property
for a level.

Example 26-2 A Simple Hierarchy

CREATE OR REPLACE HIERARCHY time_hier -- Hierarchy name
USING time_attr_dim -- Refers to the TIME_ATTR_DIM attribute dimension
 (month CHILD OF -- Levels in the attribute dimension
 quarter CHILD OF
 year);

The hierarchy has columns for each attribute of the attribute dimension and for its hierarchical
attributes.

SELECT column_name from ALL_HIER_COLUMNS WHERE HIER_NAME = 'TIME_HIER';

Chapter 26
About Attribute Dimensions and Hierarchies

26-3

The following selects the attribute columns and some of the hierarchical columns from
TIME_HIER when TIME_ATTR_DIM is the attribute dimension defined in Example 26-1.

SELECT year_id, quarter_id, month_id,
 member_name, member_unique_name
 member_caption, member_description
 FROM time_hier
 ORDER BY hier_order;

An excerpt from the query results are:

26.2 Attributes and Hierarchical Attributes
Attribute dimension attributes typically reference columns from a source table or view.
Hierarchical attributes provide information about the members of a hierarchy.

In an attribute dimension, attributes specify the columns of the source table or view to
reference. The default name of the attribute is the name of the table column. You may provide
a different name for an attribute by using syntax similar to SQL SELECT clause aliases. You
define levels using attributes and you define the relationships between attributes using levels.
Attributes appear as columns in hierarchies, depending on the levels that the hierarchy
includes and on the defined attribute relationships of the levels.

Chapter 26
Attributes and Hierarchical Attributes

26-4

The hierarchical attributes are the following:

• DEPTH is the level depth of the hierarchy member; the ALL level is at depth 0 (zero)

• HIER_ORDER is the order of the member in the hierarchy

• IS_LEAF is a boolean value that indicates whether the member is at the lowest (leaf) level
of the hierarchy

• LEVEL_NAME is the name of the level in the definition of the attribute dimension

• MEMBER_NAME is the name of the member in the definition of the attribute dimension

• MEMBER_CAPTION is NULL unless you specify values for it in the definition of the attribute
dimension or the hierarchy

• MEMBER_DESCRIPTION is NULL unless you specify values for it in the definition of the attribute
dimension or the hierarchy

• MEMBER_UNIQUE_NAME is a name that is guaranteed to be unique in the hierarchy; it is a
concatenation of level name, ancestors, and key attribute values

• PARENT_LEVEL_NAME is the name of level that is the parent of the current member

• PARENT_UNIQUE_NAME is the MEMBER_UNIQUE_NAME of the parent of the current member

The hierarchical attribute value is composed of the level and the lineage. The lineage includes
the member’s key value. Each component of the lineage is enclosed in square brackets, and
the components are separated by periods. If a component value contains a right square
bracket, it is represented using two right square brackets.

Example 26-3 Providing Values for Some Hierarchical Attributes

This is the excerpt from the results of the query of the hierarchy based on the simple attribute
dimension in About Attribute Dimensions and Hierarchies.

While this hierarchy is functional, it lacks some important features. Note that the
MEMBER_NAME column might not be easily readable, and the MEMBER_CAPTION and
MEMBER_DESCRIPTION columns do not return data.

This new definition of the time_attr_dim attribute dimension includes the _NAME columns from
the TIME_DIM table. In the definitions of the levels, it specifies attributes that contain values for
the hierarchical attributes MEMBER_NAME, MEMBER_CAPTION, and MEMBER_DESCRIPTION. This
definition provides a hierarchy that uses the attribute dimension with descriptive values for the
level members.

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME

Chapter 26
Attributes and Hierarchical Attributes

26-5

USING time_dim
ATTRIBUTES
 (year_id,
 year_name,
 quarter_id,
 quarter_name,
 month_id,
 month_name,
 month_long_name)
LEVEL MONTH
 LEVEL TYPE MONTHS
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
LEVEL QUARTER
 LEVEL TYPE QUARTERS
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
LEVEL YEAR
 LEVEL TYPE YEARS
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name;

This statement selects the attribute columns and some of the hierarchical columns from the
TIME_HIER hierarchy.

SELECT year_id, quarter_id, month_id,
 member_name, member_unique_name,
 member_caption, member_description
 FROM time_hier
 ORDER BY hier_order;

An excerpt from the query results are:

Chapter 26
Attributes and Hierarchical Attributes

26-6

The ordering of time periods is not yet correct for reporting on time series calculations; for
example, February comes before January. For an example of specifying a sort order for a level,
see Order Levels.

26.3 Order Levels
You can specify the order of attribute dimension level members.

You may use the ORDER BY clause of an attribute dimension level definition to specify an order
for members of the level. By default, values of an attribute dimension level are sorted
alphabetically by the MEMBER_NAME value. If you do not specify a member name, the level is
ordered by its KEY attribute value.

The ORDER BY clause also specifies whether NULL values are first or last in the order. You may
specify MIN or MAX expression if the attribute is not determined by the level, with the default
being MIN.

Example 26-4 Add End Dates

This example adds end date attributes to the definition of the time_attr_dim attribute
dimension.

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id,
 year_name,
 year_end_date,
 quarter_id,
 quarter_name,
 quarter_end_date,
 month_id,
 month_name,
 month_long_name,
 month_end_date)
LEVEL MONTH
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
LEVEL QUARTER
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
LEVEL YEAR
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date;

Chapter 26
Order Levels

26-7

This is the definition of the time_hier hierarchy.

CREATE OR REPLACE HIERARCHY time_hier
USING time_attr_dim
 (month CHILD OF
 quarter CHILD OF
 year);

This query includes the hierarchy order attribute.

SELECT year_id,
 quarter_id,
 month_id,
 member_name,
 hier_order
FROM time_hier
ORDER BY hier_order;

This is an excerpt from the query results.

The level members are now sorted by end dates.

26.4 Level Keys
A level key attribute specifies the data source of the level members.

An attribute dimension level specifies key and optional alternate key attributes that provide the
members of the level.

A level must have a key, which is defined by a single attribute, or by multiple attributes for a
compound key. Each distinct value for the key defines an attribute dimension member at that
level.

A level can also have one or more alternate keys. An alternate key must have a one-to-one
relationship with the level key: an attribute specified as an alternate key must have a unique
value for every member of the level key attribute.

Chapter 26
Level Keys

26-8

Example 26-5 Create the PRODUCT_ATTR_DIM Attribute Dimension

This example creates the product_attr_dim attribute dimension. The level clauses specify keys
and alternate keys.

CREATE OR REPLACE ATTRIBUTE DIMENSION product_attr_dim
USING product_dim
ATTRIBUTES
 (department_id,
 department_name,
 category_id,
 category_name)
LEVEL DEPARTMENT
 KEY department_id
 ALTERNATE KEY department_name
 MEMBER NAME department_name
 MEMBER CAPTION department_name
 ORDER BY department_name
LEVEL CATEGORY
 KEY category_id
 ALTERNATE KEY category_name
 MEMBER NAME category_name
 MEMBER CAPTION category_name
 ORDER BY category_name
 DETERMINES(department_id)
ALL MEMBER NAME 'ALL PRODUCTS';

26.5 Determine Attribute Relationships
You can specify that an attribute of a level determines the values of other attributes.

You can use the DETERMINES clause of an attribute dimension level definition to specify a
relationship between the level key attribute and other attributes. When there is only one value
of an attribute for each value of another attribute, the value of one attribute determines the
value of another. For example, there is only one value of QUARTER_ID for each value of
MONTH_ID; MONTH_ID determines QUARTER_ID.

An attribute determined by a level is included in a hierarchy that uses the attribute dimension.
An attribute specified in a DETERMINES clause can have the same value for different level
members. A level implicitly determines its key and alternate key attributes, although, unlike the
attributes in a DETERMINES clause, those attributes must have unique values.

The relationships specified by a DETERMINES clause can do the following:

• Change the number of rows returned by a hierarchy

• Control whether certain attributes return data for certain rows

• Simplify the SQL that is generated when an analytic view is queried

Specifying determined attributes helps a hierarchy or analytic view to determine a unique value
for a member. If an attribute is determined by a level, you do not need to explicitly specify in a
query the attribute value that identifies the relationship of the determined attribute to the
hierarchy member. For example, a QUALIFY calculation requires a uniquely identified hierarchy
member. If you omit attributes from a DETERMINES clause, then in an analytic view measure that
uses a QUALIFY calculation, you must explicitly specify those attributes to identify the unique
member.

Chapter 26
Determine Attribute Relationships

26-9

The relationship of determined attributes to key and alternate key attributes is not validated or
enforced in an attribute dimension or in a hierarchy that uses the attribute dimension. To
validate the relationship, use the PL/SQL procedure DBMS_HIERARCHY.VALIDATE_HIERARCHY,
which inspects the data in the source table or view.

Usage Notes

When using a DETERMINES clause, consider the following:

• Include in a DETERMINES clause the KEY attribute of a parent level in a hierarchy whenever
the key of the lower level determines the value of the parent level. Lower levels inherit the
determined attributes of ancestor levels; therefore, it is a good practice to include the key
attribute value of the parent level in the DETERMINES clause of the lower level.

• Values of the MEMBER NAME, MEMBER CAPTION, MEMBER DESCRIPTION, and ORDER BY properties
are assumed to be determined by the KEY attribute value. You do not need to include
attributes for those properties in a DETERMINES clause. You should be sure, however, that
the data for those attributes has only one value for each value of the KEY attribute.

Example 26-6 Add DETERMINES Clauses

This example adds the DETERMINES clause to the levels of time_attr_dim.

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id,
 year_name,
 year_end_date,
 quarter_id,
 quarter_name,
 quarter_end_date,
 month_id,
 month_name,
 month_long_name,
 month_end_date)
LEVEL MONTH
 LEVEL TYPE MONTHS
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
 DETERMINES (quarter_id)
LEVEL QUARTER
 LEVEL TYPE QUARTERS
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
 DETERMINES (year_id)
LEVEL YEAR
 LEVEL TYPE YEARS
 KEY year_id
 MEMBER NAME year_name

Chapter 26
Determine Attribute Relationships

26-10

 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date;

Select the LEVEL_NAME, _ID, and MEMBER_UNIQUE_NAME columns from the TIME_HIER
hierarchy.

SELECT level_name,
 year_id,
 quarter_id,
 month_id,
 member_unique_name
FROM time_hier
ORDER BY hier_order;

The hierarchy now knows the relationship between the months, quarters, and years attributes,
as shown in the following results of the preceding query. The MEMBER_UNIQUE_NAME values are
now created from only the level name and the KEY attribute value; they no longer must include
the full lineage as seen in Example 26-3.

Chapter 26
Determine Attribute Relationships

26-11

27
Analytic View Objects

An analytic view is a type of view that you can use to easily extend the content of a star
schema, snowflake schema, or a flat (denormalized) fact table with aggregated data, measure
calculations and descriptive metadata, and to simplify the SQL needed to access data.

Analytic views are described in the following topics.

• About Analytic Views

• Measures of Analytic Views

• Create Analytic Views

• Examples of Calculated Measures

• Attribute Reporting

• Analytic View Queries with Filtered Facts and Added Measures

27.1 About Analytic Views
Analytic views layer a hierarchical/dimensional model over data.
Analytic views are defined over the dimension tables and the fact table of a star or snowflake
schema. You can also define an analytic view over a denormalized table, in which dimension
attributes and fact data are in the same table. Hierarchies are defined over dimension tables.
An analytic view references hierarchies and a fact table.

Even though an analytic view is defined over data modeled as a star schema, the data does
not need to be stored in a star schema. You can use views to represent other forms of stored
data to an analytic view. Generally, if the tables or views perform well with a star style query
they work well with analytic views. Smaller data sets might work well with views. Larger data
sets might perform better with tables in a star schema. The most performant schema is a star
schema loaded into the in-memory column store, using the Oracle Database In-Memory
Option.

When used with the in-memory column store, analytic views optimize the SQL execution plan
to take advantage of In-Memory Aggregation (that is, the vector transform execution plan).
Analytic views can take advantage of materialized views to further accelerate aggregate level
queries (note that materialized views can be loaded into the in-memory column store).

The minimum requirements for an analytic view include the following:

• A dimension table (or view). This table should have a primary key that provides a unique
list of values and that joins to the fact table.

• A fact table with at least one fact (measure) column and a key column that joins to the
primary key of the dimension table.

More typically, an analytic view has the following characteristics:

• Is defined over using two or more dimension tables, which enables the ability to slice and
dice data.

• One or more of the dimension tables contain data at different levels of aggregation (for
example: days, months, quarters, and years).

27-1

Analytic views comprise three types of objects: attribute dimensions, hierarchies, and analytic
views.

An attribute dimension is a metadata object that references tables or views and organizes
columns into higher-level objects such as attributes and levels. Most metadata related to
dimensions and hierarchies is defined in the attribute dimension object.

A hierarchy is a type of view. Hierarchies reference attribute dimension objects. Hierarchies
organize data using hierarchical relationships between the hierarchy members. Queries of a
hierarchy return detail and aggregate-level keys ("hierarchy values") and attributes of those
values.

An analytic view is a type of view that returns fact data. Analytic views reference both fact
tables and hierarchies. Both hierarchy and measure data is selected from analytic views.

27.2 Measures of Analytic Views
Analytic view measures specify fact data and the calculations or other operations to perform on
the data.

In an analytic view definition, you may specify one or more base measures and calculated
measures.

Base Measures

A base measure is a reference to a column in a fact table. You may optionally specify a
meas_aggregate_clause, which overrides the default aggregation method of the analytic view.
Each base measure may specify a default aggregation. The aggregation may be a simple
operation like SUM or AVG, or a complex nesting of operations that vary by attribute dimension.

You can use the default_aggregate_clause to specify a default aggregation method for base
measures that don't have a meas_aggregate_clause. The default value of the
default_aggregate_clause is SUM.

Calculated Measures

A calculated measure is an expression that can be a user-defined expression or one of the
many pre-defined analytic calculations. A calculated measure expression may include other
measures, row functions, and hierarchy functions. Hierarchy functions allow computations
based on identifying and processing related members in a hierarchy. The expression may
reference other measures in the analytic view, but may not reference fact columns. Because a
calculation can refer to other measures, you can easily build complex calculations through
nesting.

In defining a calculated measure expression, you may use any other measure in the analytic
view, irrespective of the order in which you defined the measures of the analytic view. The only
restriction is that no cycles may be introduced in the calculations.

In addition to using calculated measures in the definition of an analytic view, you can add
calculated measures in a SELECT statement that queries an analytic view. To do so, you use the
ADD MEASURES keywords in the WITH or FROM clauses of the statement. The syntax of a
calculated measure is the same whether it is in the definition of the analytic view or in a SELECT
statement.

Categories of calculated measure expressions are the following:

• Analytic view measure expressions

• Analytic view hierarchical expressions

Chapter 27
Measures of Analytic Views

27-2

• Simple expressions

• Single row function expressions

• Compound expressions

• Datetime expressions

• Interval expressions

Analytic view measure expressions include the following operations:

• Lead and lag

• Qualified data reference (QDR)

• Rank

• Related member

• Share of

• Window calculations

Related Topics

• Analytic View Query with Added Measures

27.3 Create Analytic Views
In creating an analytic view, you specify one or more hierarchies and a fact table that has at
least one measure column that can join to each hierarchy.

Create a Simple Analytic View

An analytic view must have a reference to a fact table and a measure that can join to a
hierarchy.

Example 27-1 Creating a Simple Analytic View

This analytic view uses the TIME_HIER hierarchy and the SALE_FACT table. It contains a
single measure, SALES.

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact -- Refers to the SALES_FACT table
DIMENSION BY -- List of attribute dimensions
 (time_attr_dim -- TIME_ATTR_DIM attribute dimension
 KEY month_id REFERENCES month_id -- Dimension key joins to fact column
 HIERARCHIES (-- List of hierarchies that use
 time_hier DEFAULT)) -- the attribute dimension
MEASURES -- List of measures
 (sales FACT sales) -- SALES measure references SALES column
DEFAULT MEASURE SALES; -- Default measure of the analytic view

A query that selects from an analytic view that does not include filters has the potential of
returning large numbers of rows. However, in this query, the SALES_AV analytic view includes
a single hierarchy that returns only 86 rows.

SELECT *
 FROM sales_av HIERARCHIES(time_hier)
 ORDER BY time_hier.hier_order;

Chapter 27
Create Analytic Views

27-3

This is a excerpt of the returned values.

Add Another Base Measure

To add another base measure to an analytic view, include the measure in the MEASURES list.

Example 27-2 Adding a Base Measure to an Analytic View

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT))
MEASURES
 (sales FACT sales,
 units FACT units) -- Add the UNITS base measure
DEFAULT MEASURE SALES;

Because a query of the analytic view could return a great many rows, a query typically uses
filters to limit the results. In the WHERE clause, this query filters the time periods to those in the
YEAR level, so it returns only SALES and UNITS data at that level.

SELECT time_hier.member_name as TIME,
 sales,
 units
FROM
 sales_av HIERARCHIES(time_hier)
WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

These are the returned values.

Chapter 27
Create Analytic Views

27-4

Add Hierarchies to an Analytic View

Typically, an analytic view has more than one hierarchy using one or more attribute
dimensions.

Example 27-3 Adding Hierarchies to an Analytic View

This example adds attribute dimensions and hierarchies to the DIMENSION BY list of the analytic
view.

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id
 REFERENCES state_province_id
 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales,
 units FACT units
)
DEFAULT MEASURE sales;

The following query adds the PRODUCT_HIER and GEOGRAPHY_HIER hierarchies to the
HIERARCHIES phrase of the FROM clause.

SELECT time_hier.member_name AS Time,
 product_hier.member_name AS Product,
 geography_hier.member_name AS Geography,
 sales,
 units
FROM
 sales_av HIERARCHIES (time_hier, product_hier, geography_hier)
WHERE time_hier.level_name in ('YEAR')
 AND product_hier.level_name in ('DEPARTMENT')
 AND geography_hier.level_name in ('REGION')
ORDER BY time_hier.hier_order,
 product_hier.hier_order,
 geography_hier.hier_order;

The query returns 50 rows. The following image shows only the first 20 rows.

Chapter 27
Create Analytic Views

27-5

You can view and run SQL scripts that create the tables, the analytic view component objects,
and the queries used in the examples from the Oracle Live SQL website at https://
livesql.oracle.com/apex/livesql/file/index.html.

27.4 Examples of Calculated Measures
Calculated measures are expressions you add to a MEASURES clause of an analytic view in the
form of measure_name AS (expression).

Add a LAG Expression

This example adds a calculated measure that uses a LAG operation to the SALES_AV analytic
view.

Example 27-4 Adding a LAG Expression

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id REFERENCES state_province_id

Chapter 27
Examples of Calculated Measures

27-6

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales,
 units FACT units,
 sales_prior_period AS -- Add a calculated measure.
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1))
)
DEFAULT MEASURE SALES;

Select the SALES and SALES_PRIOR_PERIOD measures at the YEAR and QUARTER
levels.

SELECT time_hier.member_name as TIME,
 sales,
 sales_prior_period
FROM
 sales_av HIERARCHIES(time_hier)
WHERE time_hier.level_name IN ('YEAR','QUARTER')
ORDER BY time_hier.hier_order;

In this excerpt from the query results, note that the LAG expression returns prior periods within
the same level.

SHARE OF Expressions

Share of measures calculate the ratio of a current row to a parent row, ancestor row, or all rows
in the current level; for example, the ratio of a geography member to the parent of the member.
Share of measures are specified using the SHARE OF expression.

Chapter 27
Examples of Calculated Measures

27-7

Example 27-5 Using SHARE OF Expressions

This example adds calculated measures that use SHARE OF operations to the SALES_AV
analytic view.

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id REFERENCES state_province_id
 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales,
 units FACT units,
 -- Share of calculations
 sales_shr_parent_prod AS
 (SHARE_OF(sales HIERARCHY product_hier PARENT)),
 sales_shr_parent_geog AS
 (SHARE_OF(sales HIERARCHY geography_hier PARENT)),
 sales_shr_region AS
 (SHARE_OF(sales HIERARCHY geography_hier LEVEL REGION))
)
DEFAULT MEASURE SALES;

The SALES_SHR_PARENT_PROD measure calculates the ratio of a SALES value at the
CATEGORY or DEPARTMENT level to SALES of the parent in the PRODUCT_HIER
hierarchy, such as the ratio of SALES for Total Server Computers to Computers.

This query selects SALES and SALES_SHR_PARENT_PROD measure for CY2014 at each
level of the PRODUCT_HIER hierarchy.

SELECT time_hier.member_name AS Time,
 product_hier.member_name AS Product,
 product_hier.level_name AS Prod_Level,
 sales,
 ROUND(sales_shr_parent_prod,2) AS sales_shr_parent_prod
FROM
 sales_av HIERARCHIES (time_hier, product_hier)
WHERE time_hier.year_name = 'CY2014'
AND time_hier.level_name = 'YEAR'
ORDER BY product_hier.hier_order;

The results of the query are:

Chapter 27
Examples of Calculated Measures

27-8

The SALE_SHR_REGION measure calculates the share of SALES at the STATE or
COUNTRY levels to SALES at the REGION level, for example, the ratio of SALES for
California – US to SALES for North America.

This query returns the values for the SALES and SALES_SHR_REGION measures for year
CY2014 and states in the United States.

SELECT time_hier.member_name AS Time,
 geography_hier.member_name AS Geography,
 geography_hier.level_name AS Geog_Level,
 sales,
 ROUND(sales_shr_region,2) AS sales_shr_region
FROM
 sales_av HIERARCHIES (time_hier, geography_hier)
WHERE time_hier.year_name = 'CY2014'
AND time_hier.level_name = 'YEAR'
AND geography_hier.country_name = 'United States'
AND geography_hier.level_name = 'STATE_PROVINCE'
ORDER BY geography_hier.hier_order;

This is the result of the query.

Chapter 27
Examples of Calculated Measures

27-9

QDR Expressions

A qdr_expression uses the QUALIFY keyword to limit the values of a measure to those for a
single dimension member. An example is Sales for the year CY2011 or the percent difference
in SALES between the current time period and CY2011. The QUALIFY expression refers to a
KEY attribute value.

Example 27-6 Using QUALIFY Expressions

Create the SALES_AV analytic view with the SALES_2011 and SALES_PCT_CHG_2011
measures.

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id REFERENCES state_province_id
 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales,
 units FACT units,
 -- Sales for CY2011
 sales_2011 AS
 (QUALIFY (sales, time_hier = year['11'])),

Chapter 27
Examples of Calculated Measures

27-10

 -- Sales percent change from 2011.
 sales_pct_chg_2011 AS
 ((sales - (QUALIFY (sales, time_hier = year['11']))) /
 (QUALIFY (sales, time_hier = year['11'])))
)
DEFAULT MEASURE SALES;

Regardless of filters in the query, the SALES_2011 measure always returns data for the year
CY2011. The SALES_PCT_CHG_2011 measure calculates the percent difference between the
current time period and CY2011.

This query selects SALES, SALES_2011 and SALES_PCT_CHG_2011 at the YEAR and
REGION levels.

SELECT time_hier.member_name AS Time,
 geography_hier.member_name AS Geography,
 sales,
 sales_2011,
 ROUND(sales_pct_chg_2011,2) as sales_pct_chg_2011
FROM
 sales_av HIERARCHIES (time_hier, geography_hier)
WHERE time_hier.level_name = 'YEAR'
AND geography_hier.level_name = 'REGION'
ORDER BY geography_hier.hier_order,
 time_hier.hier_order;

This is an excerpt from the query results. Note that for each row SALES_2011 returns SALES
for CY2011.

27.5 Attribute Reporting
You can use any attribute of an attribute dimension in a hierarchy and aggregate data for it in
an analytic view.

You can use attributes to filter data or to display in a report. You can also break out (aggregate)
data by an attribute. You can create calculated measures in an analytic view using the
attribute; the analytic view then provides the aggregate rows for the attribute.

Chapter 27
Attribute Reporting

27-11

Example 27-7 Using the SEASON Attribute

This example first creates an attribute dimension that has SEASON and SEASON_ORDER as
attributes. This allows a hierarchy and an analytic view to reuse some metadata of those
attributes and to relate the attributes to other levels. For example, SEASON is determined by
MONTH values.

-- Create a time attribute dimension with a SEASON attribute.
CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id,
 year_name,
 year_end_date,
 quarter_id,
 quarter_name,
 quarter_end_date,
 month_id,
 month_name,
 month_long_name,
 month_end_date,
 season,
 season_order)
LEVEL month
 LEVEL TYPE MONTHS
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
 DETERMINES (quarter_id, season, season_order)
LEVEL quarter
 LEVEL TYPE QUARTERS
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
 DETERMINES (year_id)
LEVEL year
 LEVEL TYPE YEARS
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date
LEVEL season
 LEVEL TYPE QUARTERS
 KEY season
 MEMBER NAME season
 MEMBER CAPTION season
 MEMBER DESCRIPTION season
 ORDER BY season_order;

Chapter 27
Attribute Reporting

27-12

Create a hierarchy in which MONTH is a child of SEASON.

CREATE OR REPLACE HIERARCHY time_season_hier
USING time_attr_dim
 (month CHILD OF
 season);

Select data from the TIME_SEASON_HIER hierarchy.

SELECT member_name,
 member_unique_name,
 level_name,
 hier_order
FROM time_season_hier
ORDER BY hier_order;

In the results of the query, the TIME_SEASON_HIER hierarchy returns rows for the ALL level,
SEASONS, and MONTHS. This image captures the first twenty of the rows returned.

The example next creates an analytic view that provides aggregate data for SEASON.

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT,

Chapter 27
Attribute Reporting

27-13

 time_season_hier),
 product_attr_dim
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim
 KEY state_province_id
 REFERENCES state_province_id
 HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales,
 units FACT units
)
DEFAULT MEASURE SALES;

You can now select SALES by YEAR and SEASON directly from the analytic view. This query
selects from the TIME_HIER and TIME_SEASON_HIER hierarchies at the YEAR and
SEASON levels.

SELECT time_hier.member_name AS Time,
 time_season_hier.member_name AS Season,
 ROUND(sales) AS Sales
FROM sales_av HIERARCHIES (time_hier, time_season_hier)
WHERE time_hier.level_name = 'YEAR'
 AND time_season_hier.level_name = 'SEASON'
ORDER BY time_hier.hier_order,
 time_season_hier.hier_order;

This excerpt from the query results shows the first twelve rows returned.

You can view and run the SQL scripts that create the tables, the analytic view component
objects, and the queries used in the examples from the Oracle Live SQL website at https://
livesql.oracle.com/apex/livesql/file/index.html.

Chapter 27
Attribute Reporting

27-14

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

27.6 Analytic View Queries with Filtered Facts and Added
Measures

Queries that SELECT from analytic views may include the FILTER FACT keywords to filter the fact
data accessed by the analytic view prior to any calculations and the ADD MEASURES keywords to
define additional calculated measures for the query.

Related Topics

• Analytic View Query with Filtered Facts

• Analytic View Query with Added Measures

• Analytic View Query with Filtered Facts and Multiple Added Measures

27.6.1 Analytic View Query with Filtered Facts
In a query of an analytic view, you can filter the fact data before the analytic view aggregates
the data for higher-level hierarchy members.

The values of aggregate records returned by an analytic view are determined by the
hierarchies of the analytic view, the aggregation operators, and the rows contained in the fact
table. A predicate in a SELECT statement that queries an analytic view restricts the rows
returned by the analytic view but does not affect the computation of aggregate records.

By using the FILTER FACT keywords in a SELECT statement, you can filter fact records before
the data is aggregated by the analytic view, which produces aggregate values only for the
specified hierarchy members.

Example 27-8 Queries With and Without Filter-Before Aggregation Predicates

The following query selects hierarchy member names and sales values from the sales_av
analytic view. The query predicate limits the hierarchy members to those in the YEAR level.
The filtering does not affect the aggregation of the measure values.

SELECT time_hier.member_name, TO_CHAR(sales, '999,999,999,999') AS sales
 FROM sales_av HIERARCHIES(time_hier)
 WHERE time_hier.level_name = 'YEAR'
 ORDER BY time_hier.hier_order;

The result of the query is the following. The result includes the aggregated measure values for
hierarchy members at the YEAR level.

MEMBER_NAME SALES
----------- -------------
CY2011 6,755,115,981
CY2012 6,901,682,399
CY2013 7,240,938,718
CY2014 7,579,746,353
CY2015 7,941,102,885

Chapter 27
Analytic View Queries with Filtered Facts and Added Measures

27-15

The following query defines an inline analytic view that the filters the hierarchy members before
aggregation.

SELECT time_hier.member_name, TO_CHAR(sales, '999,999,999,999') AS sales
 FROM ANALYTIC VIEW (-- inline analytic view
 USING sales_av HIERARCHIES(time_hier)
 FILTER FACT (time_hier TO level_name = 'MONTH'
 AND TO_CHAR(month_end_date, 'Q') IN (1, 2)
)
)
 WHERE time_hier.level_name = 'YEAR')
 ORDER BY time_hier.hier_order;

The result of the query is the following. The FILTER FACT clause of the inline analytic view
filters out all but the months that are in the first two quarters. The result includes the
aggregated values at the YEAR level for those quarters. The aggregations do not include the
third and fourth quarter values.

MEMBER_NAME SALES
----------- -------------
CY2011 3,340,459,835
CY2012 3,397,271,965
CY2013 3,564,557,290
CY2014 3,739,283,051
CY2015 3,926,231,605

Related Topics

• Analytic View Query with Filtered Facts and Multiple Added Measures

27.6.2 Analytic View Query with Added Measures
With the ADD MEASURES keywords, you can add measure calculations to a query of an analytic
view.

Example 27-9 Calculation Adding a Measure in the FROM Clause

This example has an inline analytic view that adds the calculated measure share_sales to a
query using the sales_av analytic view.

SELECT time_hier.member_name AS "Member",
 TO_CHAR(sales, '999,999,999,999') AS "Sales",
 ROUND(share_sales, 2) AS "Share of Sales"
 FROM ANALYTIC VIEW (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 share_sales as (SHARE_OF(sales HIERARCHY time_hier PARENT))
)
)
 WHERE time_hier.level_name IN ('ALL', 'YEAR')
 ORDER BY time_hier.hier_order;

Chapter 27
Analytic View Queries with Filtered Facts and Added Measures

27-16

The following is the result of the query.

Member Sales Share of Sales
------ -------------- --------------
ALL 36,418,586,336
CY2011 6,755,115,981 0.19
CY2012 6,901,682,399 0.19
CY2013 7,240,938,718 0.2
CY2014 7,579,746,353 0.21
CY2015 7,941,102,885 0.22

Example 27-10 Calculation Adding a Measure in the WITH Clause

This example defines the same analytic view as in the previous example but it does so in the
WITH clause of the SELECT statement.

WITH my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 share_sales as (SHARE_OF(sales HIERARCHY time_hier PARENT))
)
)
SELECT time_hier.member_name AS "Member",
 TO_CHAR(sales, '999,999,999,999') AS "Sales",
 ROUND(share_sales, 2) AS "Share of Sales"
 FROM my_av
 WHERE time_hier.level_name IN ('ALL', 'YEAR')
 ORDER BY time_hier.hier_order;

The result of the query are the same as the previous example.

Member Sales Share of Sales
------ -------------- --------------
ALL 36,418,586,336
CY2011 6,755,115,981 0.19
CY2012 6,901,682,399 0.19
CY2013 7,240,938,718 0.2
CY2014 7,579,746,353 0.21
CY2015 7,941,102,885 0.22

Related Topics

• Analytic View Query with Filtered Facts and Multiple Added Measures

27.6.3 Analytic View Query with Filtered Facts and Multiple Added
Measures

In a query of an analytic view, you can specify pre-aggregation filters and added measures.

Example 27-11 Query Using Filter Facts and Multiple Calculated Measures

The analytic view in the WITH clause in this query is based on the sales_av analytic view. The
my_av analytic view filters the time_hier hierarchy members to the first and second quarters of
the QUARTER level and the geography_hier hierarchy members to the countries Mexico and

Chapter 27
Analytic View Queries with Filtered Facts and Added Measures

27-17

Canada of the COUNTRY level. It adds calculated measures that compute sales for the prior
period and the percent change of the difference between sales and the prior period sales.

WITH my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier, geography_hier)
 FILTER FACT (time_hier TO level_name = 'QUARTER'
 AND (quarter_name LIKE 'Q1%' OR quarter_name LIKE 'Q2%'),
 geography_hier TO level_name = 'COUNTRY'
 AND country_name IN ('Mexico', 'Canada'))
 ADD MEASURES (sales_pp AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1)),
 sales_pp_pct_change AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET
1)))
)
 SELECT time_hier.member_name AS time,
 geography_hier.member_name AS geography,
 sales,
 sales_pp,
 ROUND(sales_pp_pct_change,3) AS "Change"
 FROM my_av HIERARCHIES (time_hier, geography_hier)
 WHERE time_hier.level_name IN ('YEAR') AND
 geography_hier.level_name = 'REGION'
 ORDER BY time_hier.hier_order;

The result is the following.

TIME GEOGRAPHY SALES SALES_PP Change
------ ------------- ------------ ----------- ------
CY2011 North America 229,884,616
CY2012 North America 233,688,485 229,884,616 .017
CY2013 North America 245,970,470 233,688,485 .053
CY2014 North America 256,789,511 245,970,470 .044
CY2015 North America 270,469,199 256,789,511 .053

Related Topics

• Analytic View Query with Filtered Facts

• Analytic View Query with Added Measures

Chapter 27
Analytic View Queries with Filtered Facts and Added Measures

27-18

Glossary

additive
Describes a fact (or measure) that can be summarized through addition. An additive fact is the
most common type of fact. Examples include sales, cost, and profit. Contrast with nonadditive
and semi-additive.

advisor
See SQL Access Advisor.

aggregate
Summarized data. For example, unit sales of a particular product could be aggregated by day,
month, quarter and yearly sales.

aggregation
The process of consolidating data values into a single value. For example, sales data could be
collected on a daily basis and then be aggregated to the week level, the week data could be
aggregated to the month level, and so on. The data can then be referred to as aggregate data.
The term aggregation is synonymous with summarization, and aggregate data is synonymous
with summary data.

analytic view
A type of view that encapsulates aggregations, calculations, and joins of fact data. Analytic
views organize data using a dimensional model. They allow you to easily add aggregations
and calculations to data sets and to present data in views that can be queried with relatively
simple SQL.

ancestor
A value at any level higher than a given value in a hierarchy. For example, in a Time
dimension, the value 1999 might be the ancestor of the values Q1-99 and Jan-99.

attribute
A descriptive characteristic of one or more levels. For example, the product dimension for a
clothing manufacturer might contain a level called item, one of whose attributes is color.

Glossary-1

Attributes represent logical groupings that enable end users to select data based on like
characteristics.

Note that in relational modeling, an attribute is defined as a characteristic of an entity. In Oracle
Database 10g, an attribute is a column in a dimension that characterizes each element of a
single level.

attribute dimension
Specifies a data source and the columns of the data source that are attributes of the attribute
dimension. It specifies levels for its members and determines attribute relationships between
levels. Attribute dimensions are used by hierarchies and analytic views.

cardinality
From an OLTP perspective, this refers to the number of rows in a table. From a data
warehousing perspective, this typically refers to the number of distinct values in a column. For
most data warehouse DBAs, a more important issue is the degree of cardinality.

child
A value at the level under a given value in a hierarchy. For example, in a Time dimension, the
value Jan-99 might be the child of the value Q1-99. A value can be a child for more than one
parent if the child value belongs to multiple hierarchies.

cleansing
The process of resolving inconsistencies and fixing the anomalies in source data, typically as
part of the ETL process.

Common Warehouse Metadata (CWM)
A repository standard used by Oracle data warehousing, and decision support. The CWM
repository schema is a standalone product that other products can share—each product owns
only the objects within the CWM repository that it creates.

cross product
A procedure for combining the elements in multiple sets. For example, given two columns,
each element of the first column is matched with every element of the second column. A
simple example is illustrated as follows:

Col1 Col2 Cross Product
---- ---- -------------
a c ac
b d ad
 bc
 bd

Glossary

Glossary-2

Cross products are performed when grouping sets are concatenated, as described in SQL for
Aggregation in Data Warehouses.

data mart
A data warehouse that is designed for a particular line of business, such as sales, marketing,
or finance. In a dependent data mart, the data can be derived from an enterprise-wide data
warehouse. In an independent data mart, data can be collected directly from sources.

data source
A database, application, repository, or file that contributes data to a warehouse.

data warehouse
A relational database that is designed for query and analysis rather than transaction
processing. A data warehouse usually contains historical data that is derived from transaction
data, but it can include data from other sources. It separates analysis workload from
transaction workload and enables a business to consolidate data from several sources.

In addition to a relational database, a data warehouse environment often consists of an ETL
solution, an analytical SQL engine, client analysis tools, and other applications that manage
the process of gathering data and delivering it to business users.

degree of cardinality
The number of unique values of a column divided by the total number of rows in the table. This
is particularly important when deciding which indexes to build. You typically want to use bitmap
indexes on low degree of cardinality columns and B-tree indexes on high degree of cardinality
columns. As a general rule, a cardinality of under 1% makes a good candidate for a bitmap
index.

denormalize
The process of allowing redundancy in a table. Contrast with normalize.

derived fact (or measure)
A fact (or measure) that is generated from existing data using a mathematical operation or a
data transformation. Examples include averages, totals, percentages, and differences.

detail
See: fact table.

Glossary

Glossary-3

detail table
See: fact table.

dimension
The term dimension is commonly used in two ways:

• A general term for any characteristic that is used to specify the members of a data set. The
three most common dimensions in a sales-oriented data warehouse are time, geography,
and product. Most dimensions have hierarchies.

• An object defined in a database to enable queries to navigate dimensions. In Oracle
Database 10g, a dimension is a database object that defines hierarchical (parent/child)
relationships between pairs of column sets. In Oracle Express, a dimension is a database
object that consists of a list of values.

dimension table
Dimension tables describe the business entities of an enterprise, represented as hierarchical,
categorical information such as time, departments, locations, and products. Dimension tables
are sometimes called lookup or reference tables.

dimension value
One element in the list that makes up a dimension. For example, a computer company might
have dimension values in the product dimension called LAPPC and DESKPC. Values in the
geography dimension might include Boston and Paris. Values in the time dimension might
include MAY96 and JAN97.

drill
To navigate from one item to a set of related items. Drilling typically involves navigating up and
down through a level (or levels) in a hierarchy. When selecting data, you expand a hierarchy
when you drill down in it, and you collapse a hierarchy when you drill up in it.

drill down
To expand the view to include child values that are associated with parent values in the
hierarchy.

drill up
To collapse the list of descendant values that are associated with a parent value in the
hierarchy.

Glossary

Glossary-4

element
An object or process. For example, a dimension is an object, a mapping is a process, and both
are elements.

enterprise data warehouse
A data warehouse where raw data is consolidated in one storage location and is used as the
center of the data warehousing architecture.

entity
Entity is used in database modeling. In relational databases, it typically maps to a table.

ELT
ELT stands for extraction, loading, transformation, and transportation. This is a more modern
version of the old ETL.

ETL
ETL stands for extraction, transformation, and loading. ETL refers to the methods involved in
accessing and manipulating source data and loading it into a data warehouse. The order in
which these processes are performed varies.

Note that ETT (extraction, transformation, transportation) and ETM (extraction, transformation,
move) are sometimes used instead of ETL.

extraction
The process of taking data out of a source as part of an initial phase of ETL.

fact
Data, usually numeric and additive, that can be examined and analyzed. Examples include
sales, cost, and profit. Fact and measure are synonymous; fact is more commonly used with
relational environments, measure is more commonly used with multidimensional environments.
A derived fact (or measure) is generated from existing data using a mathematical operation or
a data transformation.

fact table
A table in a star schema that contains facts. A fact table typically has two types of columns:
those that contain facts and those that are dimension table foreign keys. The primary key of a
fact table is usually a composite key that is made up of all of its foreign keys.

A fact table might contain either detail level facts or facts that have been aggregated (fact
tables that contain aggregated facts are often instead called summary tables). A fact table
usually contains facts with the same level of aggregation.

Glossary

Glossary-5

fast refresh
An operation that applies only the data changes to a materialized view, thus eliminating the
need to rebuild the materialized view from scratch.

file-to-table mapping
Maps data from flat files to tables in the warehouse.

hierarchy
A logical structure that uses ordered levels as a means of organizing data. A hierarchy can be
used to define data aggregation; for example, in a time dimension, a hierarchy might be used
to aggregate data from the Month level to the Quarter level to the Year level. Hierarchies can
be defined in Oracle as part of the dimension object. A hierarchy can also be used to define a
navigational drill path, regardless of whether the levels in the hierarchy represent aggregated
totals.

A hierarchy can also be a data dictionary object that is a type of view that defines the
hierarchical relationships between the levels of an attribute dimension. Attribute dimensions
and hierarchies provide the dimension members of an analytic view.

level
A position in a hierarchy. For example, a time dimension might have a hierarchy that
represents data at the Month, Quarter, and Year levels.

level value table
A database table that stores the values or data for the levels you created as part of your
dimensions and hierarchies.

mapping
The definition of the relationship and data flow between source and target objects.

materialized view
A pre-computed table comprising aggregated or joined data from fact and possibly a dimension
table. Also known as a summary or aggregate table.

materialized view log
A log that records details about a given materialized view. Materialized view logs are required if
you want to use fast refresh, with the exception of partition change tracking refresh.

Glossary

Glossary-6

measure
See fact.

metadata
Data that describes data and other structures, such as objects, business rules, and processes.
For example, the schema design of a data warehouse is typically stored in a repository as
metadata, which is used to generate scripts used to build and populate the data warehouse. A
repository contains metadata.

Examples include: for data, the definition of a source to target transformation that is used to
generate and populate the data warehouse; for information, definitions of tables, columns and
associations that are stored inside a relational modeling tool; for business rules, discount by 10
percent after selling 1,000 items.

model
An object that represents something to be made. A representative style, plan, or design. A
model can also be metadata that defines the structure of the data warehouse.

nonadditive
Describes a fact (or measure) that cannot be summarized through addition. An example
includes Average. Contrast with additive and semi-additive.

normalize
In a relational database, the process of removing redundancy in data by separating the data
into multiple tables. Contrast with denormalize.

The process of removing redundancy in data by separating the data into multiple tables.

OLTP
See: online transaction processing (OLTP).

online transaction processing (OLTP)
Online transaction processing. OLTP systems are optimized for fast and reliable transaction
handling. Compared to data warehouse systems, most OLTP interactions will involve a
relatively small number of rows, but a larger group of tables.

parallel execution
Breaking down a task so that several processes do part of the work. When multiple CPUs each
do their portion simultaneously, very large performance gains are possible.

Glossary

Glossary-7

parallelism
Breaking down a task so that several processes do part of the work. When multiple CPUs each
do their portion simultaneously, very large performance gains are possible.

parent
A value at the level above a given value in a hierarchy. For example, in a Time dimension, the
value Q1-99 might be the parent of the child value Jan-99.

partition
Very large tables and indexes can be difficult and time-consuming to work with. To improve
manageability, you can break your tables and indexes into smaller pieces called partitions.

partition change tracking (PCT)
A way of tracking the staleness of a materialized view on the partition and subpartition level.

pattern matching
A way of recognizing patterns in a sequence of rows using the MATCH_RECOGNIZE clause.

pivoting
A transformation where each record in an input stream is converted to many records in the
appropriate table in the data warehouse. This is particularly important when taking data from
nonrelational databases.

query rewrite
A mechanism to use a materialized view (which is precomputed) to quickly answer queries.

refresh
The mechanism whereby a materialized view is changed to reflect new data.

rewrite
See: query rewrite.

schema
A collection of related database objects. Relational schemas are grouped by database user ID
and include tables, views, and other objects. The sample schemas sh are used throughout this
Guide. Two special types of schema are snowflake schema and star schema.

Glossary

Glossary-8

semi-additive
Describes a fact (or measure) that can be summarized through addition along some, but not
all, dimensions. Examples include headcount and on hand stock. Contrast with additive and
nonadditive.

slice and dice
This is an informal term referring to data retrieval and manipulation. We can picture a data
warehouse as a cube of data, where each axis of the cube represents a dimension. To "slice"
the data is to retrieve a piece (a slice) of the cube by specifying measures and values for some
or all of the dimensions. When we retrieve a data slice, we may also move and reorder its
columns and rows as if we had diced the slice into many small pieces. A system with good
slicing and dicing makes it easy to navigate through large amounts of data.

snowflake schema
A type of star schema in which each dimension table is partly or fully normalized.

source
A database, application, file, or other storage facility from which the data in a data warehouse
is derived.

source system
A database, application, file, or other storage facility from which the data in a data warehouse
is derived.

source tables
The tables in a source database.

SQL Access Advisor
The SQL Access Advisor helps you achieve your performance goals by recommending the
proper materialized view set, materialized view logs, partitions, and indexes for a given
workload. It is a GUI in Oracle Enterprise Manager, and has similar capabilities to the
DBMS_ADVISOR package.

staging area
A place where data is processed before entering the warehouse.

staging file
A file used when data is processed before entering the warehouse.

Glossary

Glossary-9

star query
A join between a fact table and a number of dimension tables. Each dimension table is joined
to the fact table using a primary key to foreign key join, but the dimension tables are not joined
to each other.

star schema
A relational schema whose design represents a multidimensional data model. The star schema
consists of one or more fact tables and one or more dimension tables that are related through
foreign keys.

subject area
A classification system that represents or distinguishes parts of an organization or areas of
knowledge. A data mart is often developed to support a subject area such as sales, marketing,
or geography.

summary
See: materialized view.

Summary Advisor
Replaced by the SQL Access Advisor.

target
Holds the intermediate or final results of any part of the ETL process. The target of the entire
ETL process is the data warehouse.

third normal form (3NF)
A classical relational database modeling technique that minimizes data redundancy through
normalization.

third normal form schema
A schema that uses the same kind of normalization as typically found in an OLTP system.
Third normal form schemas are sometimes chosen for a large data warehouse, especially an
environment with significant data loading requirements that is used to feed a data mart and
execute long-running queries. Compare with snowflake schema and star schema.

transformation
The process of manipulating data. Any manipulation beyond copying is a transformation.
Examples include cleansing, aggregating, and integrating data from multiple source tables.

Glossary

Glossary-10

transportation
The process of moving copied or transformed data from a source to a data warehouse.
Compare with transformation.

unique identifier
An identifier whose purpose is to differentiate between the same item when it appears in more
than one place.

update window
The length of time available for updating a warehouse. For example, you might have 8 hours at
night to update your warehouse.

update frequency
How often a data warehouse is updated with new information. For example, a warehouse
might be updated nightly from an OLTP system.

validation
The process of verifying metadata definitions and configuration parameters.

versioning
The ability to create new versions of a data warehouse project for new requirements and
changes.

Glossary

Glossary-11

Index

Numerics
3NF, 2-2

A
about

refresh statistics, 9-1
accessing

real-time materialized views, 6-16
ADO, and IM column store, 2-12
aggregates, 5-10, 12-74

computability check, 12-10
aggregation

In-Memory Column Store, 21-22
VECTOR GROUP BY, 21-22

alter analytic views, 25-10
altering dimensions, 10-10
alternate keys

of an attribute dimension level, 26-8
amortization

calculating, 23-43
analytic functions, 23-32

concepts, 20-2
analytic processing

materialized views, 6-7
analytic views

about, 27-1
alter or drop, 25-10
and materialized views, 6-8
APIs, 25-6
compilation states, 25-8
creating, 27-3
described, 25-1
example of creating, 25-16
example of filtering facts, 27-15, 27-17
example of using added measures, 27-16,

27-17
example scripts, 25-10
hierarchical attributes, 26-4
hierarchies, 26-1
measures, 27-2
privileges for, 25-4
sharing with application containers, 25-10
tables for examples, 25-11

application containers, sharing analytic views
with, 25-10

applications
decision support systems (DSS), 4-3

APPROX_COUNT function, 4-32
APPROX_RANK function, 20-9
APPROX_SUM function, 4-32
approximate aggregations, 20-28
approximate query processing, 4-30
approximate top-n query processing, 4-32
approximate values

percentile functions, 20-39
architecture

data warehouse, 1-5
attribute clustering, 14-1

adding to existing table, 14-10
advantages, 14-4
data dictionary views, 14-13
dropping, 14-11
guidelines, 14-4
methods, 14-1
modifying, 14-11
privileges, 14-7
types, 14-2

interleaved ordering, 14-3
linear ordering, 14-2, 14-7, 14-8

using hints for DML, 14-11
attribute dimensions

about, 26-1
attributes, 26-4
examples of creating, 25-12
level keys, 26-8
order of level members, 26-7
privileges for, 25-4

attribute-clustered tables, 14-1
attributes, 2-2

attribute dimension, 26-4
creating hierarchies using, 27-11

automatic big table caching
about, 2-13

B
B-tree indexes, 4-8

bitmap indexes versus, 4-3

Index-1

base measures
examples of, 27-3

bind variables
with query rewrite, 12-56

bitmap indexes, 4-1
nulls and, 4-2
on partitioned tables, 4-2
parallel query and DML, 4-3

bitmap join indexes, 4-5
build methods, 5-21
business intelligence, 1-1

queries, 24-1
business rules

violation of, 19-19

C
calculated measures, 27-2

examples of, 27-6, 27-16, 27-17
CAPTION classification, 25-9
cardinality

degree of, 4-3
CASE expressions, 20-75
cell referencing, 23-11
classifications

analytic view, 25-9
columns

cardinality, 4-3
common joins, 12-5
common tasks

in data warehouses, 1-4
compilation states

of analytic views, 25-8
complete refresh, 7-3
complex queries

snowflake schemas, 2-10
composite

columns, 21-15
compression

See data segment compression, 5-21
concatenated groupings, 21-17
concatenated ROLLUP, 21-24
constraints, 4-10, 10-9

foreign key, 4-12
RELY, 4-13
states, 4-10
unique, 4-11
view, 4-14, 12-43
with partitioning, 4-14
with query rewrite, 12-73

cost-based rewrite, 12-2
CREATE DIMENSION statement, 10-4
CREATE MATERIALIZED VIEW statement, 5-17

enabling query rewrite, 11-3

creating
materialized views with approximate queries,

5-33
real-time materialized views, 6-17
zone maps, 15-8

with attribute clustering, 15-6
CUBE clause, 21-7

partial, 21-8
when to use, 21-7

cubes
hierarchical, 6-8
materialized views, 6-8

CUME_DIST function, 20-11

D
data

nonvolatile, 1-3
purging, 7-36
sufficiency check, 12-9
transformation, 19-9
transportation, 18-1

data compression, 4-18
See data segment compression, 5-21

data cubes
hierarchical, 21-19

data densification, 20-53
time series calculation, 20-59
with sparse data, 20-54

data error handling
using SQL, 19-20

data marts, 1-6
data rules

violation of, 19-20
data segment compression, 3-3

materialized views, 5-21
partitioning, 3-3

data transformation
multistage, 19-1
pipelined, 19-2

data warehouse, 5-1
architectures, 1-5
dimension tables, 5-5
fact tables, 5-5
physical design, 3-1
refresh tips, 7-12

data warehouses
common tasks, 1-4
key characteristics of, 1-3

database
staging, 5-1

date folding
with query rewrite, 12-42

DBMS_ADVISOR
TUNE_MVIEW procedure, 5-22

DBMS_ERROR package, 19-22

Index

Index-2

DBMS_MVIEW package, 7-8
EXPLAIN_MVIEW procedure, 5-38
EXPLAIN_REWRITE procedure, 12-67

DBMS_SYNC_REFRESH package, 8-1
decision support systems (DSS)

bitmap indexes, 4-3
degree of cardinality, 4-3
DENSE_RANK function, 20-4
densification

data, 20-53
DESCRIPTION classification, 25-9
design

logical, 3-1
physical, 3-1

DETERMINES
clause of an attribute dimension level, 26-9

dimension levels
skipping, 10-4

dimension tables, 5-6
normalized, 10-8

dimensions, 3-7, 10-1, 10-9
altering, 10-10
analyzing, 21-2
creating, 10-3
definition, 10-1
dimension tables, 5-5
dropping, 10-11
hierarchies, 3-8
multiple, 21-2
skipping levels, 10-4
validating, 10-10
with query rewrite, 12-73

displaying
real-time materialized views, 6-23

drilling down, 10-1
hierarchies, 10-1

drop analytic views, 25-10
DROP MATERIALIZED VIEW statement

prebuilt tables, 5-36
dropping

dimensions, 10-11
materialized views, 5-37
zone maps, 15-14

E
ELT, 16-1
entity, 2-2
error logging, 19-19

table, 19-22
errors

handling, 19-19
ETL jobs

monitoring, 19-3
ETL. See extraction, transformation, and loading

(ETL), 16-1

examples
analytic views, 25-10
tables for analytic view, 25-11
zone maps

join pruning, 15-26
partition and table scan pruning, 15-25

EXCHANGE PARTITION statement, 4-14
execution plans

star transformations, 4-22
EXPAND_GSET_TO_UNION hint, 12-52, 12-76
EXPLAIN PLAN statement, 12-66

star transformations, 4-22
EXPLAIN_REWRITE procedure, 12-67
exporting

EXP utility, 17-6
expression matching

with query rewrite, 12-53
external tables, 19-6
extraction, transformation, and loading (ETL),

16-1
overview, 16-1
process, 4-10

extractions
data files, 17-5
distributed operations, 17-7
full, 17-2
incremental, 17-2
OCI, 17-6
online, 17-2
overview, 17-1
physical, 17-2
Pro*C, 17-6
SQL*Plus, 17-5

F
facts, 10-1
fast refresh, 7-4

restrictions, 5-26
with UNION ALL, 7-23

FETCH
row_limiting_clause, 20-77

files
ultralarge, 3-2

filling gaps
with data, 20-58

FIRST_VALUE function, 20-25
FIRST/LAST functions, 20-34
FOR loops, 23-23
foreign key

constraints, 4-12
joins

snowflake schemas, 2-10
frequent itemsets, 20-77
functions

analytic, 23-32

Index

Index-3

functions (continued)
APPROX_COUNT, 4-32
APPROX_RANK, 20-9
APPROX_SUM, 4-32
COUNT, 4-2
CUME_DIST, 20-11
DENSE_RANK, 20-4
FIRST_VALUE, 20-25
FIRST/LAST, 20-34
GROUP_ID, 21-13
GROUPING, 21-9
GROUPING_ID, 21-12
LAG/LEAD, 20-24
LAST_VALUE, 20-25
linear regression, 20-41
LISTAGG function, 20-30
NTH_VALUE, 20-26
RANK, 20-4
ranking, 20-4
RATIO_TO_REPORT, 20-23
REGR_INTERCEPT, 20-42
REGR_SLOPE, 20-42
reporting, 20-22
ROW_NUMBER, 20-13
WIDTH_BUCKET, 20-71, 20-72
window, 23-32
windowing, 20-13

G
GROUP_ID function, 21-13
grouping

compatibility check, 12-9
conditions, 12-74

GROUPING function, 21-9
when to use, 21-12

GROUPING_ID function, 21-12
GROUPING_SETS expression, 21-14

H
hierarchical attributes

in a hierarchy, 26-4
MEMBER_UNIQUE_NAME, 26-4

hierarchical cubes, 6-8, 21-24
in SQL, 21-24

hierarchies, 10-1
analytic view, 26-1
examples of creating, 25-15
hierarchical attributes, 26-4
how used, 3-8
multiple, 10-7
overview, 3-8
privileges for, 25-4
rolling up and drilling down, 10-1
using any attribute, 27-11

hierarchies (continued)
validating data of, 25-9

hints
EXPAND_GSET_TO_UNION, 12-52, 12-76
NOWRITE, 12-75
query rewrite, 11-3, 12-75
REWRITE, 12-75
REWRITE_OR_ERROR, 12-75

histograms
creating with user-defined buckets, 20-76

hypothetical rank, 20-40

I
IM column store, managing contents, 2-12
In-Memory aggregation, 21-22
In-Memory Column Store

aggregation, 21-22
in-memory expressions, 2-11
in-memory virtual columns, 2-12
indexes

B-tree, 4-8
bitmap indexes, 4-2
bitmap join, 4-5
cardinality, 4-3
nulls and, 4-2
partitioned tables, 4-2

initialization parameters
QUERY_REWRITE_ENABLED, 11-3

integrity constraints, 4-10
invalidating

materialized views, 6-13
itemsets

frequent, 20-77

J
join compatibility, 12-4

K
key lookups, 19-23
keys, 5-6

of an attribute dimension level, 26-8

L
LAG/LEAD functions, 20-24
LAST_VALUE function, 20-25
level relationships, 3-8

purpose, 3-8
levels, 3-7, 3-8

order of members in, 26-7
types in an attribute dimension, 26-1

Index

Index-4

levels in a dimension
skipping, 10-4

limiting rows returned, 20-77
linear regression functions, 20-41
LISTAGG function, 20-30
local indexes, 4-2, 4-3
logging

error, 19-19
logical design, 3-1
logs

materialized views, 5-32
lookup tables

See dimension tables, 5-5

M
managing

refresh statistics, 9-2
manual

refresh, 7-9
manual refresh

with DBMS_MVIEW package, 7-8
MATCH_RECOGNIZE clause, 22-1
materialized view logs, 5-32
materialized view refresh

online table redefinition, 7-14
materialized views

aggregates, 5-10
altering, 6-14
analytic processing, 6-7
based on hybrid partitioned tables, 5-20
build methods, 5-21
containing only joins, 5-13
creating, 5-17
cubes, 6-8
data segment compression, 5-21
delta joins, 12-7
dropping, 5-36, 5-37
invalidating, 6-13
logs, 17-4
multiple, 12-30
naming, 5-21
nested, 5-15
ON STATEMENT refresh, 7-7
partition change tracking (PCT), 6-1
partitioned tables, 7-24
partitioning, 6-1
prebuilt, 5-17
query rewrite

hints, 11-3, 12-75
matching join graphs, 5-22
parameters, 11-3
privileges, 11-5

real-time materialized views, 6-15
refresh dependent, 7-11
refreshing, 5-25, 7-1

materialized views (continued)
refreshing all, 7-10
registration, 5-35
restrictions, 5-22
rewrites

enabling, 11-3
schema design, 5-6
schema design guidelines, 5-6
security, 6-11
set operators, 6-9
storage characteristics, 5-21
types of, 5-10
uses for, 5-1
with VPD, 6-12

materialized viewsCOUNT(DISTINCT), 5-34
measures, 5-6

analytic view, 27-2
base, 27-3
calculated, 27-6

MERGE PARTITION operation, 4-19
MERGE statement, 7-33
MODEL clause, 23-1

cell referencing, 23-11
data flow, 23-3
keywords, 23-10
parallel execution, 23-36
rules, 23-12

modeling
logical design, 2-1
physical design, 2-1

modifying
zone maps, 15-13

monitoring
ETL jobs, 19-3
refresh, 7-15

mortgage calculation, 23-43
MOVE PARTITION operation, 4-19
multiple hierarchies, 10-7
multiple materialized views, 12-30
MV_CAPABILITIES_TABLE table, 5-39

N
nested materialized views, 5-15

refreshing, 7-22
restrictions, 5-17

net present value
calculating, 23-40

nonvolatile data, 1-3
NOREWRITE hint, 11-3, 12-75
NTH_VALUE function, 20-26
nulls

indexes and, 4-2

Index

Index-5

O
OFFSET

row_limiting_clause, 20-77
ON COMMIT clause, 5-24
ON DEMAND clause, 5-24
ON STATEMENT clause, 5-24
online redefinition

materialized views, 7-14
optimizations

query rewrite
enabling, 11-3
hints, 11-3, 12-75
matching join graphs, 5-22

query rewrites
privileges, 11-5

optimizer
with rewrite, 11-1

ORDER BY clause, 5-30
in an attribute dimension level, 26-7

out-of-place refresh, 7-6
outer joins

with query rewrite, 12-73

P
packages

DBMS_ADVISOR, 5-3
DBMS_DIMENSION, 10-9
DBMS_ERROR, 19-22
DBMS_ERRORLOG, 19-22, 19-26
DBMS_MVIEW, 5-38, 7-2
DBMS_SYNC_REFRESH, 8-1

parallel DML
bitmap indexes, 4-3

parallel execution, 4-14
parallel query

bitmap indexes, 4-3
parallelism, 4-14
partition change tracking (PCT), 6-1, 7-24, 12-22

with Pmarkers, 12-28
partitioned outer join, 20-53
partitioned tables

materialized views, 7-24
partitioning, 17-4

materialized views, 6-1
prebuilt tables, 6-6

partitions
bitmap indexes, 4-2

pattern matching, 22-1
keywords, 22-10

patterns
in SQL, 22-1

percentile functions
approximate results, 20-39

physical design, 3-1
structures, 3-2

pivoting, 19-27, 20-46
operations, 20-46

plans
star transformations, 4-22

Pmarkers
with PCT, 12-28

prebuilt materialized views, 5-17
pruning

examples, 15-25, 15-26
using zone maps, 15-22

purging data, 7-36

Q
queries

running with approximate functions, 4-31
query delta joins, 12-7
query rewrite

advanced, 12-57
checks made by, 12-4
controlling, 11-4
correctness, 11-4
date folding, 12-42
enabling, 11-2, 11-3
hints, 11-3, 12-75
matching join graphs, 5-22
materialized view with approximate queries,

12-62
methods, 12-1
parameters, 11-3
privileges, 11-5
real-time materialized views, 6-19
restrictions, 5-23
using equivalences, 12-57
using GROUP BY extensions, 12-49
using nested materialized views, 12-38
using PCT, 12-22
VPD, 6-12
when it occurs, 11-2
with bind variables, 12-56
with DBMS_MVIEW package, 12-67
with expression matching, 12-53
with inline views, 12-39
with partially stale materialized views, 12-53
with selfjoins, 12-40
with set operator materialized views, 12-46
with view constraints, 12-43

QUERY_REWRITE_ENABLED initialization
parameter, 11-3

R
range-partitioned table, 4-19
RANK function, 20-4

Index

Index-6

ranking functions, 20-4
RATIO_TO_REPORT function, 20-23
real-time materialized views, 6-15

accessing, 6-16
creating, 6-17
displaying, 6-23
for direct query access, 6-21
guidelines, 6-23
query rewrite, 6-19
restrictions, 6-16

reference tables
See dimension tables, 5-5

refresh
monitoring, 7-15
options, 5-23
out-of-place, 7-6
scheduling, 7-18
synchronous, 8-1
with UNION ALL, 7-23

refresh statistics
about, 9-1, 9-4, 9-6
analyzing, 9-14
collecting, 9-4, 9-5
data dictionary views, 9-2
managing, 9-2
modifying collection level, 9-5
modifying retention period, 9-7
purging, 9-9
retaining, 9-6
retention period, 9-7
setting defaults, 9-5, 9-7
SQL statements, 9-13
understanding, 9-14
viewing basic, 9-10
viewing change data, 9-12
viewing detailed, 9-11
viewing settings, 9-8

refreshing
materialized views, 7-1
materialized views based on approximate

queries, 7-12
nested materialized views, 7-22
partitioning, 7-28
zone maps, 15-21

REGR_INTERCEPT function, 20-42
REGR_R2 function, 20-42
REGR_SLOPE function, 20-42
RELY constraints, 4-13
reporting functions, 20-22
restrictions

fast refresh, 5-26
nested materialized views, 5-17
query rewrite, 5-23

result set, 4-20
REWRITE hint, 11-3, 12-75
REWRITE_OR_ERROR hint, 12-75

rewrites
hints, 12-75
parameters, 11-3
privileges, 11-5
query optimizations

hints, 11-3, 12-75
matching join graphs, 5-22

rolling up hierarchies, 10-1
ROLLUP, 21-4

concatenated, 21-24
partial, 21-6
when to use, 21-4

root level, 3-8
row_limiting_clause clause, 20-77
ROW_NUMBER function, 20-13
rules

in MODEL clause, 23-12
in SQL modeling, 23-12
order of evaluation, 23-15

S
schemas

3NF, 2-2
design guidelines for materialized views, 5-6
snowflake, 2-2
star, 2-2

set operators
materialized views, 6-9

simultaneous equations, 23-41
SKIP WHEN NULL clause, 10-4
skipping levels in a dimension, 10-4
snowflake schemas, 2-10

complex queries, 2-10
source systems, 17-1
sparse data

data densification, 20-54
SPLIT PARTITION operation, 4-19
SQL modeling, 23-1

cell referencing, 23-11
keywords, 23-10
order of evaluation, 23-15
performance, 23-36
rules, 23-12
rules and restrictions, 23-34

staging
areas, 1-6
databases, 5-1
files, 5-1

star queries
star transformation, 4-20

star schemas
dimensional model, 2-6

star transformations, 4-20
restrictions, 4-24

statistics, 12-75

Index

Index-7

storage
optimizing, 4-18

summary management
components, 5-4

sync refresh, 8-1
synchronous refresh, 8-1

T
tables

attribute-clustered, 14-1
detail tables, 5-5
dimension tables (lookup tables), 5-5
external, 19-6
fact tables, 5-5

tablespaces
transportable, 17-3, 18-2, 18-5

text match, 12-12
with query rewrite, 12-74

Third Normal Form, 2-2
time series calculations, 20-59
timestamps, 17-4
Top-N queries, 20-77
transformations, 19-1

scenarios, 19-23
SQL and PL/SQL, 19-9
SQL*Loader, 19-4

transportable tablespaces, 17-3, 18-2, 18-5
transportation

definition, 18-1
distributed operations, 18-2
flat files, 18-1

triggers, 17-4
types

attribute clustering, 14-2
zone maps, 15-2

U
ultralarge files, 3-2
unique

constraints, 4-11
identifier, 2-2, 3-1

update frequencies, 5-9
UPDATE statement, 23-16
update windows, 5-9
UPSERT ALL statement, 23-16

UPSERT statement, 23-16

V
validating dimensions, 10-10
validating hierarchy data, 25-9
VECTOR GROUP BY

aggregation, 21-22
VECTOR GROUP BY aggregation

optimizing star queries, 4-29
view constraints, 4-14, 12-43
VPD

and materialized views, 6-12
restrictions with materialized views, 6-13

W
WIDTH_BUCKET function, 20-71, 20-72
window functions, 23-32
windowing functions, 20-13

Z
zone maps, 15-1

about, 15-1
about refreshing, 15-20
about staleness, 15-18
automatic refresh, 15-4
benefits, 15-2
compiling, 15-14
creating, 15-8

with attribute clustering, 15-6
data dictionary views, 15-27
dropping, 15-14
maintaining, 15-16
maintenance, 15-4
modifying, 15-13
privileges, 15-5
pruning, 15-22
refreshing, 15-21
types, 15-2
usage for SQL statements, 15-15
usage for SQL workloads, 15-15
usage scenarios, 15-3
with attribute clustering, 15-2

Index

Index-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Data Warehouse - Fundamentals
	1 Introduction to Data Warehousing Concepts
	1.1 What Is a Data Warehouse?
	1.1.1 Key Characteristics of a Data Warehouse

	1.2 Contrasting OLTP and Data Warehousing Environments
	1.3 Common Data Warehouse Tasks
	1.4 Data Warehouse Architectures
	1.4.1 Data Warehouse Architecture: Basic
	1.4.2 Data Warehouse Architecture: with a Staging Area
	1.4.3 Data Warehouse Architecture: with a Staging Area and Data Marts

	2 Data Warehousing Logical Design
	2.1 Logical Versus Physical Design in Data Warehouses
	2.2 Creating a Logical Design
	2.2.1 What is a Schema?

	2.3 About Third Normal Form Schemas
	2.3.1 About Normalization
	2.3.2 Design Concepts for 3NF Schemas
	2.3.2.1 Identifying Candidate Primary Keys
	2.3.2.2 Foreign Key Relationships and Referential Integrity Constraints
	2.3.2.3 Denormalization

	2.4 About Star Schemas
	2.4.1 About Facts and Dimensions in Star Schemas
	2.4.1.1 About Fact Tables in Data Warehouses
	2.4.1.2 About Dimension Tables in Data Warehouses

	2.4.2 Design Concepts in Star Schemas
	2.4.3 About Snowflake Schemas

	2.5 Improved Analytics Using the In-Memory Column Store
	2.5.1 About Improving Query Performance Using In-Memory Expressions
	2.5.2 About Using In-Memory Virtual Columns to Improve Query Performance
	2.5.3 About In-Memory Column Store and Automatic Data Optimization

	2.6 Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries

	3 Data Warehousing Physical Design
	3.1 Moving from Logical to Physical Design
	3.2 About Physical Design
	3.2.1 Physical Design Structures
	3.2.1.1 About Tablespaces in Data Warehouses
	3.2.1.2 About Partitioning in Data Warehouses
	3.2.1.2.1 Basic Partitioning Strategies Used in Data Warehouses

	3.2.1.3 Index Partitioning in Data Warehouses
	3.2.1.4 About Partitioning for Manageability
	3.2.1.5 About Partitioning for Performance
	3.2.1.6 About Partitioning for Availability

	3.2.2 About Views in Data Warehouses
	3.2.3 About Integrity Constraints in Data Warehouses
	3.2.4 About Indexes and Partitioned Indexes in Data Warehouses
	3.2.5 About Materialized Views in Data Warehouses
	3.2.6 About Dimensions in Data Warehouses
	3.2.6.1 About Dimension Hierarchies
	3.2.6.1.1 About Levels
	3.2.6.1.2 About Level Relationships

	3.2.6.2 Typical Dimension Hierarchy

	4 Data Warehousing Optimizations and Techniques
	4.1 Using Indexes in Data Warehouses
	4.1.1 About Using Bitmap Indexes in Data Warehouses
	4.1.1.1 About Bitmap Indexes and Nulls
	4.1.1.2 About Bitmap Indexes on Partitioned Tables

	4.1.2 Benefits of Indexes for Data Warehousing Applications
	4.1.3 About Cardinality and Bitmap Indexes
	4.1.4 How to Determine Candidates for Using a Bitmap Index
	4.1.5 Using Bitmap Join Indexes in Data Warehouses
	4.1.5.1 Four Join Models for Bitmap Join Indexes in Data Warehouses
	4.1.5.2 Bitmap Join Index Restrictions and Requirements

	4.1.6 Using B-Tree Indexes in Data Warehouses
	4.1.7 Using Index Compression
	4.1.8 Choosing Between Local Indexes and Global Indexes

	4.2 Using Integrity Constraints in a Data Warehouse
	4.2.1 Overview of Constraint States
	4.2.2 Typical Data Warehouse Integrity Constraints
	4.2.2.1 UNIQUE Constraints in a Data Warehouse
	4.2.2.2 FOREIGN KEY Constraints in a Data Warehouse
	4.2.2.3 RELY Constraints in a Data Warehouse
	4.2.2.4 NOT NULL Constraints in a Data Warehouse
	4.2.2.5 Integrity Constraints and Parallelism in a Data Warehouse
	4.2.2.6 Integrity Constraints and Partitioning in a Data Warehouse
	4.2.2.7 View Constraints in a Data Warehouse

	4.3 About Parallel Execution in Data Warehouses
	4.3.1 Why Use Parallel Execution?
	4.3.1.1 When to Implement Parallel Execution
	4.3.1.2 When Not to Implement Parallel Execution

	4.3.2 Automatic Degree of Parallelism and Statement Queuing
	4.3.3 About In-Memory Parallel Execution in Data Warehouses

	4.4 About Optimizing Storage Requirements in Data Warehouses
	4.4.1 Using Data Compression to Improve Storage in Data Warehouses

	4.5 Optimizing Star Queries and 3NF Schemas
	4.5.1 Optimizing Star Queries
	4.5.1.1 Tuning Star Queries

	4.5.2 Using Star Transformation
	4.5.2.1 Star Transformation with a Bitmap Index
	4.5.2.2 Execution Plan for a Star Transformation with a Bitmap Index
	4.5.2.3 Star Transformation with a Bitmap Join Index
	4.5.2.4 Execution Plan for a Star Transformation with a Bitmap Join Index
	4.5.2.5 How Oracle Chooses to Use Star Transformation
	4.5.2.6 Star Transformation Restrictions

	4.5.3 Optimizing Third Normal Form Schemas
	4.5.3.1 3NF Schemas: Partitioning
	4.5.3.1.1 Partitioning for Manageability
	4.5.3.1.2 Partitioning for Easier Data Access
	4.5.3.1.3 Partitioning for Join Performance

	4.5.3.2 3NF Schemas: Parallel Query Execution
	4.5.3.2.1 Whether or Not to Use Cross Instance Parallel Execution in Oracle RAC

	4.5.4 Optimizing Star Queries Using VECTOR GROUP BY Aggregation

	4.6 About Approximate Query Processing
	4.6.1 Running Queries Containing Exact Functions Using SQL Functions that Return Approximate Values

	4.7 About Approximate Top-N Query Processing

	Part II Optimizing Data Warehouses
	5 Basic Materialized Views
	5.1 Overview of Data Warehousing with Materialized Views
	5.1.1 About Materialized Views for Data Warehouses
	5.1.2 About Materialized Views for Distributed Computing
	5.1.3 About Materialized Views for Mobile Computing
	5.1.4 The Need for Materialized Views
	5.1.5 Components of Summary Management
	5.1.6 Data Warehousing Terminology
	5.1.7 About Materialized View Schema Design
	5.1.7.1 Schemas and Dimension Tables
	5.1.7.2 Guidelines for Materialized View Schema Design

	5.1.8 About Loading Data into Data Warehouses
	5.1.9 Overview of Materialized View Management Tasks

	5.2 Types of Materialized Views
	5.2.1 About Materialized Views with Aggregates
	5.2.1.1 Requirements for Using Materialized Views with Aggregates

	5.2.2 About Materialized Views Containing Only Joins
	5.2.2.1 Materialized Join Views FROM Clause Considerations

	5.2.3 About Nested Materialized Views
	5.2.3.1 Why Use Nested Materialized Views?
	5.2.3.2 About Nesting Materialized Views with Joins and Aggregates
	5.2.3.3 Nested Materialized View Usage Guidelines
	5.2.3.4 Restrictions When Using Nested Materialized Views

	5.3 Creating Materialized Views
	5.3.1 Creating Materialized Views with Column Alias Lists
	5.3.2 Creating Materialized Views Based on Hybird Partitioned Tables
	5.3.3 About Materialized Views Names
	5.3.4 About Storage And Table Compression for Materialized Views
	5.3.5 About Build Methods for Materialized Views
	5.3.6 About Enabling Query Rewrite for Materialized Views
	5.3.7 About Query Rewrite Restrictions
	5.3.7.1 About Materialized View Restrictions for Query Rewrite
	5.3.7.2 General Query Rewrite Restrictions

	5.3.8 About Refresh Options for Materialized Views
	5.3.8.1 About Refresh Modes for Materialized Views
	5.3.8.2 About Types of Materialized View Refresh
	5.3.8.3 About Using Trusted Constraints and Materialized View Refresh
	5.3.8.4 General Restrictions on Fast Refresh
	5.3.8.5 Restrictions on Fast Refresh on Materialized Views with Joins Only
	5.3.8.6 Restrictions on Fast Refresh on Materialized Views with Aggregates
	5.3.8.7 Restrictions on Fast Refresh on Materialized Views with UNION ALL
	5.3.8.8 About Achieving Refresh Goals
	5.3.8.8.1 Refreshing Materialized Views on Prebuilt Tables

	5.3.8.9 Refreshing Nested Materialized Views

	5.3.9 ORDER BY Clause in Materialized Views
	5.3.10 Using Oracle Enterprise Manager to Create Materialized Views
	5.3.11 Using Materialized Views with NLS Parameters
	5.3.12 Adding Comments to Materialized Views

	5.4 Creating Materialized View Logs
	5.4.1 Using the FORCE Option With Materialized View Logs
	5.4.2 Purging Materialized View Logs

	5.5 Creating Materialized Views Based on Approximate Queries
	5.6 Creating a Materialized View Containing Bitmap-based COUNT(DISTINCT) Functions
	5.7 Registering Existing Materialized Views
	5.8 Choosing Indexes for Materialized Views
	5.9 Dropping Materialized Views
	5.10 Analyzing Materialized View Capabilities
	5.10.1 Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
	5.10.1.1 DBMS_MVIEW.EXPLAIN_MVIEW Declarations
	5.10.1.2 Using MV_CAPABILITIES_TABLE
	5.10.1.3 MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
	5.10.1.4 MV_CAPABILITIES_TABLE Column Details

	6 Advanced Materialized Views
	6.1 About Partitioning and Materialized Views
	6.1.1 About Partition Change Tracking
	6.1.1.1 About Partition Key and Partition Change Tracking
	6.1.1.2 About Join Dependent Expression and Partition Change Tracking
	6.1.1.3 About Partition Markers and Partition Change Tracking
	6.1.1.4 About Partial Rewrite in Partition Change Tracking

	6.1.2 Partitioning a Materialized View
	6.1.3 Partitioning a Prebuilt Table
	6.1.3.1 Benefits of Partitioning a Materialized View

	6.1.4 Rolling Materialized Views
	6.1.5 About Automatic Partitioning of Materialized Views

	6.2 About Materialized Views in Analytic Processing Environments
	6.2.1 About Materialized Views and Analytic Views
	6.2.2 About Materialized Views and Hierarchical Cubes
	6.2.3 Benefits of Partitioning Materialized Views
	6.2.4 About Compressing Materialized Views
	6.2.5 About Materialized Views with Set Operators
	6.2.5.1 Examples of Materialized Views Using UNION ALL

	6.3 About Materialized Views and Models
	6.4 About Security Issues with Materialized Views
	6.4.1 Querying Materialized Views with Virtual Private Database (VPD)
	6.4.1.1 Using Query Rewrite with Virtual Private Database
	6.4.1.2 Restrictions with Materialized Views and Virtual Private Database

	6.5 Invalidating Materialized Views
	6.6 Altering Materialized Views
	6.7 Using Real-time Materialized Views
	6.7.1 Overview of Real-time Materialized Views
	6.7.1.1 Restrictions on Using Real-time Materialized Views
	6.7.1.2 About Accessing Real-time Materialized Views

	6.7.2 Creating Real-time Materialized Views
	6.7.3 Converting an Existing Materialized View into a Real-time Materialized View
	6.7.4 Enabling Query Rewrite to Use Real-time Materialized Views
	6.7.5 Using Real-time Materialized Views During Query Rewrite
	6.7.6 Using Real-time Materialized Views for Direct Query Access
	6.7.7 Listing Real-time Materialized Views
	6.7.8 Improving Real-time Materialized Views Performance

	7 Refreshing Materialized Views
	7.1 About Refreshing Materialized Views
	7.1.1 About Complete Refresh for Materialized Views
	7.1.2 About Fast Refresh for Materialized Views
	7.1.3 About Partition Change Tracking (PCT) Refresh for Materialized Views
	7.1.4 About Logical Partition Change Tracking (LPCT) Refresh for Materialized Views
	7.1.5 About the Out-of-Place Refresh Option
	7.1.5.1 Types of Out-of-Place Refresh
	7.1.5.2 Restrictions and Considerations with Out-of-Place Refresh

	7.1.6 About ON COMMIT Refresh for Materialized Views
	7.1.7 About ON STATEMENT Refresh for Materialized Views
	7.1.8 About Manual Refresh Using the DBMS_MVIEW Package
	7.1.9 Refreshing Specific Materialized Views with REFRESH
	7.1.10 Refreshing All Materialized Views with REFRESH_ALL_MVIEWS
	7.1.11 Refreshing Dependent Materialized Views with REFRESH_DEPENDENT
	7.1.12 About Using Job Queues for Refresh
	7.1.13 When Fast Refresh is Possible
	7.1.14 Refreshing Materialized Views Based on Approximate Queries
	7.1.15 About Concurrent Refresh of On-Commit Materialized Views
	7.1.16 About Refreshing Dependent Materialized Views During Online Table Redefinition
	7.1.17 Recommended Initialization Parameters for Parallelism
	7.1.18 Monitoring a Refresh
	7.1.19 Checking the Status of a Materialized View
	7.1.19.1 Examples of Using Views to Determine Freshness

	7.1.20 Scheduling Refresh of Materialized Views

	7.2 Tips for Refreshing Materialized Views
	7.2.1 Tips for Refreshing Materialized Views with Aggregates
	7.2.2 Tips for Refreshing Materialized Views Without Aggregates
	7.2.3 Tips for Refreshing Nested Materialized Views
	7.2.4 Tips for Fast Refresh with UNION ALL
	7.2.5 Tips for Fast Refresh with Commit SCN-Based Materialized View Logs
	7.2.6 Tips After Refreshing Materialized Views

	7.3 Using Materialized Views with Partitioned Tables
	7.3.1 Materialized View Fast Refresh with Partition Change Tracking
	7.3.1.1 PCT Fast Refresh for Materialized Views: Scenario 1
	7.3.1.2 PCT Fast Refresh for Materialized Views: Scenario 2
	7.3.1.3 PCT Fast Refresh for Materialized Views: Scenario 3

	7.4 Refreshing Materialized Views Based on Hybrid Partitioned Tables
	7.5 Using Partitioning to Improve Data Warehouse Refresh
	7.5.1 Data Warehouse Refresh Scenarios
	7.5.2 Scenarios for Using Partitioning for Refreshing Data Warehouses
	7.5.2.1 Partitioning for Refreshing Data Warehouses: Scenario 1
	7.5.2.2 Partitioning for Refreshing Data Warehouses: Scenario 2

	7.6 Optimizing DML Operations During Refresh
	7.6.1 Implementing an Efficient MERGE Operation
	7.6.2 Maintaining Referential Integrity in Data Warehouses
	7.6.3 Purging Data from Data Warehouses

	8 Synchronous Refresh
	8.1 About Synchronous Refresh for Materialized Views
	8.1.1 What Is Synchronous Refresh?
	8.1.2 Why Use Synchronous Refresh?
	8.1.3 Registering Tables and Materialized Views for Synchronous Refresh
	8.1.4 Specifying Change Data for Refresh
	8.1.5 Synchronous Refresh Preparation and Execution
	8.1.6 Materialized View Eligibility Rules and Restrictions for Synchronous Refresh
	8.1.6.1 Synchronous Refresh Restrictions: Partitioning
	8.1.6.2 Synchronous Refresh Restrictions: Refresh Options
	8.1.6.3 Synchronous Refresh Restrictions: Constraints
	8.1.6.4 Synchronous Refresh Restrictions: Tables
	8.1.6.5 Synchronous Refresh Restrictions: Materialized Views
	8.1.6.6 Synchronous Refresh Restrictions: Materialized Views with Aggregates

	8.2 Using Synchronous Refresh for Materialized Views
	8.2.1 Synchronous Refresh Step 1: Registration Phase
	8.2.2 Synchronous Refresh Step 2: Synchronous Refresh Phase
	8.2.3 Synchronous Refresh Step 3: The Unregistration Phase

	8.3 Using Synchronous Refresh Groups
	8.3.1 Examples of Common Actions with Synchronous Refresh Groups
	8.3.2 Examples of Working with Multiple Synchronous Refresh Groups

	8.4 Specifying and Preparing Change Data for Synchronous Refresh
	8.4.1 Working with Partition Operations While Capturing Change Data for Synchronous Refresh
	8.4.2 Working with Staging Logs While Capturing Change Data for Synchronous Refresh
	8.4.2.1 About the Staging Log Key
	8.4.2.2 About Staging Log Rules
	8.4.2.3 About Columns Being Updated to NULL
	8.4.2.4 Examples of Working with Staging Logs
	8.4.2.5 Error Handling in Preparing Staging Logs

	8.5 Troubleshooting Synchronous Refresh Operations
	8.5.1 Overview of the Status of Refresh Operations
	8.5.2 How PREPARE_REFRESH Sets the STATUS Fields
	8.5.3 Examples of Preparing for Synchronous Refresh Using PREPARE_REFRESH
	8.5.4 How EXECUTE_REFRESH Sets the Status Fields During Synchronous Refresh
	8.5.5 Examples of Executing Synchronous Refresh Using EXECUTE_REFRESH
	8.5.6 Example of EXECUTE_REFRESH with Constraint Violations

	8.6 Performing Synchronous Refresh Eligibility Analysis
	8.6.1 Using SYNCREF_TABLE to Store the Results of Synchronous Refresh Eligibility Analysis
	8.6.2 Using a VARRAY to Store the Results of Synchronous Refresh Eligibility Analysis
	8.6.3 Demo Scripts

	8.7 Overview of Synchronous Refresh Security Considerations

	9 Monitoring Materialized View Refresh Operations
	9.1 About Materialized View Refresh Statistics
	9.2 Overview of Managing Materialized View Refresh Statistics
	9.3 About Data Dictionary Views that Store Materialized View Refresh Statistics
	9.4 Collecting Materialized View Refresh Statistics
	9.4.1 About Collecting Materialized View Refresh Statistics
	9.4.2 Specifying Default Settings for Collecting Materialized View Refresh Statistics
	9.4.3 Modifying the Collection Level for Materialized View Refresh Statistics

	9.5 Retaining Materialized View Refresh Statistics
	9.5.1 About Retaining Materialized View Refresh Statistics
	9.5.2 Specifying the Default Retention Period for Materialized View Refresh Statistics
	9.5.3 Modifying the Retention Period for Materialized View Refresh Statistics

	9.6 Viewing Materialized View Refresh Statistics Settings
	9.7 Purging Materialized View Refresh Statistics
	9.8 Viewing Materialized View Refresh Statistics
	9.8.1 Viewing Basic Refresh Statistics for a Materialized View
	9.8.2 Viewing Detailed Statistics for Each Materialized View Refresh Operation
	9.8.3 Viewing Change Data Statistics During Materialized View Refresh Operations
	9.8.4 Viewing the SQL Statements Associated with A Materialized View Refresh Operation

	9.9 Analyzing Materialized View Refresh Performance Using Refresh Statistics

	10 Dimensions
	10.1 What are Dimensions?
	10.1.1 Requirements for Dimensions in Data Warehouses

	10.2 Creating Dimensions
	10.2.1 Dropping and Creating Attributes with Columns
	10.2.2 Using Multiple Hierarchies While Creating Joins
	10.2.3 Using Normalized Dimension Tables to Create Dimensions

	10.3 Viewing Dimensions
	10.3.1 Viewing Dimensions With Oracle Enterprise Manager
	10.3.2 Viewing Dimensions With the DESCRIBE_DIMENSION Procedure

	10.4 Using Dimensions with Constraints
	10.5 Validating Dimensions
	10.6 Altering Dimensions
	10.7 Deleting Dimensions

	11 Basic Query Rewrite for Materialized Views
	11.1 Overview of Query Rewrite
	11.1.1 About Query Rewrite and the Optimizer
	11.1.2 When Does Oracle Rewrite a Query?

	11.2 Ensuring that Query Rewrite Takes Effect
	11.2.1 Enabling Query Rewrite for Materialized Views
	11.2.2 About Initialization Parameters for Query Rewrite
	11.2.3 Controlling Query Rewrite
	11.2.4 About the Accuracy of Query Rewrite
	11.2.5 About Privileges for Enabling Query Rewrite
	11.2.6 Sample Schema and Materialized Views
	11.2.7 How to Verify if Query Rewrite Occurred

	11.3 Example of Query Rewrite

	12 Advanced Query Rewrite for Materialized Views
	12.1 How Oracle Rewrites Queries
	12.1.1 About Cost-Based Optimization and Query Rewrite
	12.1.2 General Query Rewrite Methods
	12.1.2.1 When are Constraints and Dimensions Needed for Query Rewrite?

	12.1.3 About Checks Made by Query Rewrite
	12.1.3.1 Join Compatibility Check for Query Rewrite
	12.1.3.1.1 Common Joins
	12.1.3.1.2 Query Delta Joins
	12.1.3.1.3 Materialized View Delta Joins
	12.1.3.1.4 Join Equivalence Recognition

	12.1.3.2 Data Sufficiency Check for Query Rewrite
	12.1.3.3 Grouping Compatibility Check for Query Rewrite
	12.1.3.4 Aggregate Computability Check for Query Rewrite

	12.1.4 About Query Rewrite Using Dimensions
	12.1.4.1 Benefits of Using Dimensions in a Query Rewrite Environment
	12.1.4.2 How to Define Dimensions for Query Rewrite
	12.1.4.2.1 Example SQL Statement to Create Time Dimensions

	12.2 Types of Query Rewrite
	12.2.1 Query Rewrite Method 1: Text Match Rewrite
	12.2.2 Query Rewrite Method 2: Join Back
	12.2.3 Query Rewrite Method 3: Aggregate Computability
	12.2.4 Query Rewrite Method 4: Aggregate Rollup
	12.2.5 Query Rewrite Method 5: Rollup Using a Dimension
	12.2.6 Query Rewrite Method 6: When Materialized Views Have Only a Subset of Data
	12.2.6.1 Query Rewrite Definitions When Materialized Views Have Only a Subset of Data
	12.2.6.2 Selection Categories When Materialized Views Have Only a Subset of Data
	12.2.6.3 Examples of Query Rewrite Selection
	12.2.6.4 About Handling of the HAVING Clause in Query Rewrite
	12.2.6.5 About Query Rewrite When the Materialized View has an IN-List

	12.2.7 Partition Change Tracking (PCT) Rewrite
	12.2.7.1 PCT Rewrite Based on Range Partitioned Tables
	12.2.7.2 PCT Rewrite Based on Range-List Partitioned Tables
	12.2.7.3 PCT Rewrite Based on List Partitioned Tables
	12.2.7.4 PCT Rewrite and PMARKER
	12.2.7.5 PCT Rewrite Using Rowid as PMARKER

	12.2.8 About Query Rewrite Using Multiple Materialized Views

	12.3 Other Query Rewrite Considerations
	12.3.1 About Query Rewrite Using Nested Materialized Views
	12.3.2 About Query Rewrite in the Presence of Inline Views
	12.3.3 About Query Rewrite Using Remote Tables
	12.3.4 About Query Rewrite in the Presence of Duplicate Tables
	12.3.5 About Query Rewrite Using Date Folding
	12.3.6 About Query Rewrite Using View Constraints
	12.3.6.1 Abut View Constraints Restrictions

	12.3.7 About Query Rewrite in the Presence of Hybrid Partitioned Tables
	12.3.8 Query Rewrite Using Set Operator Materialized Views
	12.3.8.1 UNION ALL Marker and Query Rewrite

	12.3.9 About Query Rewrite in the Presence of Grouping Sets
	12.3.9.1 About Query Rewrite When Using GROUP BY Extensions
	12.3.9.1.1 Materialized View has Simple GROUP BY and Query has Extended GROUP BY
	12.3.9.1.2 Materialized View has Extended GROUP BY and Query has Simple GROUP BY
	12.3.9.1.3 Both Materialized View and Query Have Extended GROUP BY

	12.3.9.2 Hint for Rewriting Queries with Extended GROUP BY

	12.3.10 Query Rewrite in the Presence of Window Functions
	12.3.11 Query Rewrite and Expression Matching
	12.3.11.1 Query Rewrite Using Partially Stale Materialized Views

	12.3.12 Cursor Sharing and Bind Variables During Query Rewrite
	12.3.13 Handling Expressions in Query Rewrite

	12.4 Advanced Query Rewrite Using Equivalences
	12.5 Creating Result Cache Materialized Views with Equivalences
	12.6 Query Rewrite and Materialized Views Based on Approximate Queries
	12.7 Query Rewrite and Materialized Views Based on Bitmap-based COUNT(DISTINCT) Functions
	12.8 Verifying that Query Rewrite has Occurred
	12.8.1 Using EXPLAIN PLAN with Query Rewrite
	12.8.2 Using the EXPLAIN_REWRITE Procedure with Query Rewrite
	12.8.2.1 DBMS_MVIEW.EXPLAIN_REWRITE Syntax
	12.8.2.2 Using REWRITE_TABLE to View EXPLAIN_REWRITE Output
	12.8.2.3 Using a Varray to View EXPLAIN_REWRITE Output
	12.8.2.4 EXPLAIN_REWRITE Benefit Statistics
	12.8.2.5 Support for Query Text Larger than 32KB in EXPLAIN_REWRITE
	12.8.2.6 About EXPLAIN_REWRITE and Multiple Materialized Views
	12.8.2.7 About EXPLAIN_REWRITE Output

	12.9 Design Considerations for Improving Query Rewrite Capabilities
	12.9.1 Query Rewrite Considerations: Constraints
	12.9.2 Query Rewrite Considerations: Dimensions
	12.9.3 Query Rewrite Considerations: Outer Joins
	12.9.4 Query Rewrite Considerations: Text Match
	12.9.5 Query Rewrite Considerations: Aggregates
	12.9.6 Query Rewrite Considerations: Grouping Conditions
	12.9.7 Query Rewrite Considerations: Expression Matching
	12.9.8 Query Rewrite Considerations: Date Folding
	12.9.9 Query Rewrite Considerations: Statistics
	12.9.10 Query Rewrite Considerations: Hints
	12.9.10.1 Query Rewrite: REWRITE and NOREWRITE Hints
	12.9.10.2 Query Rewrite: REWRITE_OR_ERROR Hint
	12.9.10.3 Query Rewrite: Multiple Materialized View Rewrite Hints
	12.9.10.4 Query Rewrite: EXPAND_GSET_TO_UNION Hint

	12.10 About Semi-Join Materialized View Rewrite

	13 Working With Automatic Materialized Views
	13.1 Overview of Automatic Materialized Views
	13.2 Workload Information Provided by the Object Activity Tracking System
	13.3 Data Dictionary Views That Provide Information About Automatic Materialized Views and OATS
	13.4 The DBMS_AUTO_MV Package
	13.5 The DBMS_ACTIVITY Package

	14 Attribute Clustering
	14.1 About Attribute Clustering
	14.1.1 Methods of Clustering Data
	14.1.2 Types of Attribute Clustering
	14.1.2.1 Attribute Clustering with Linear Ordering
	14.1.2.2 Attribute Clustering with Interleaved Ordering

	14.1.3 Example: Attribute Clustered Table
	14.1.4 Guidelines for Using Attribute Clustering
	14.1.5 Advantages of Attribute-Clustered Tables
	14.1.6 About Defining Attribute Clustering for Tables
	14.1.7 About Specifying When Attribute Clustering Must be Performed

	14.2 Attribute Clustering Operations
	14.2.1 Privileges for Attribute-Clustered Tables
	14.2.2 Creating Attribute-Clustered Tables with Linear Ordering
	14.2.2.1 Examples of Attribute Clustering with Linear Ordering

	14.2.3 Creating Attribute-Clustered Tables with Interleaved Ordering
	14.2.3.1 Examples of Attribute Clustering with Interleaved Ordering

	14.2.4 Maintaining Attribute Clustering
	14.2.4.1 Adding Attribute Clustering to an Existing Table
	14.2.4.2 Modifying Attribute Clustering Definitions
	14.2.4.3 Dropping Attribute Clustering for an Existing Table
	14.2.4.4 Using Hints to Control Attribute Clustering for DML Operations
	14.2.4.5 Overriding Table-level Settings for Attribute Clustering During DDL Operations
	14.2.4.6 Clustering Table Data During Online Table Redefinition

	14.3 Viewing Attribute Clustering Information
	14.3.1 Determining if Attribute Clustering is Defined for Tables
	14.3.2 Viewing Attribute-Clustering Information for Tables
	14.3.3 Viewing Information About the Columns on Which Attribute Clustering is Performed
	14.3.4 Viewing Information About Dimensions and Joins on Which Attribute Clustering is Performed

	14.4 About Automatic Data Clustering
	14.4.1 User Controls for Automatic Data Clustering

	15 Using Zone Maps
	15.1 About Zone Maps
	15.1.1 Difference Between Zone Maps and Indexes
	15.1.2 Zone Maps and Attribute Clustering
	15.1.3 Types of Zone Maps
	15.1.4 Benefits of Zone Maps
	15.1.5 Scenarios Which Benefit from Zone Maps
	15.1.6 About Maintaining Zone Maps
	15.1.6.1 Operations that Require Zone Map Maintenance
	15.1.6.2 Scenarios in Which Zone Maps are Automatically Refreshed

	15.2 Zone Map Operations
	15.2.1 Privileges Required for Zone Maps
	15.2.2 Creating Zone Maps
	15.2.2.1 Creating Zone Maps with Attribute Clustering
	15.2.2.1.1 Creating a Basic Zone Map with Linear Attribute Clustering
	15.2.2.1.2 Creating a Join Zone Map with Interleaved Attribute Clustering
	15.2.2.1.3 Creating a Zone Map After Attribute Clustering

	15.2.2.2 Creating Zone Maps Independent of Attribute Clustering
	15.2.2.2.1 Creating a Basic Zone Map Independent of Attribute Clustering
	15.2.2.2.2 Creating a Join Zone Map Independent of Attribute Clustering

	15.2.3 About Automatic Zone Maps
	15.2.4 About the DBMS_AUTO_ZONEMAP Package
	15.2.4.1 CONFIGURE Procedure
	15.2.4.2 ACTIVITY_REPORT Function
	15.2.4.3 Viewing Information About Automatic Zone Maps

	15.2.5 Modifying Zone Maps
	15.2.6 Dropping Zone Maps
	15.2.7 Compiling Zone Maps
	15.2.8 Controlling the Use of Zone Maps
	15.2.8.1 Controlling Zone Map Usage for Entire SQL Workloads
	15.2.8.2 Controlling Zone Map Usage for Specific SQL Statements

	15.2.9 Maintaining Zone Maps
	15.2.9.1 Zone Map Maintenance Considerations

	15.3 Refresh and Staleness of Zone Maps
	15.3.1 About Staleness of Zone Maps
	15.3.2 About Refreshing Zone Maps
	15.3.3 Refreshing Zone Maps
	15.3.3.1 Refreshing Zone Maps Using the ALTER MATERIALIZED ZONEMAP Command
	15.3.3.2 Refreshing Zone Maps Using the DBMS_MVIEW Package

	15.4 Performing Pruning Using Zone Maps
	15.4.1 How Oracle Database Performs Pruning Using Zone Maps
	15.4.1.1 Pruning Tables Using Zone Maps
	15.4.1.2 Pruning Partitioned Tables Using Zone Maps and Attribute Clustering

	15.4.2 Examples: Performing Pruning with Zone Maps and Attribute Clustering
	15.4.2.1 Example: Partitions and Table Scan Pruning
	15.4.2.2 Example: Zone Map Join Pruning

	15.5 Viewing Zone Map Information
	15.5.1 Viewing Details of Zone Maps in the Database
	15.5.2 Viewing the Measures of a Zone Map

	Part III Data Movement/ETL
	16 Data Movement/ETL Overview
	16.1 Overview of ETL in Data Warehouses
	16.1.1 ETL Basics in Data Warehousing
	16.1.1.1 Extraction of Data in Data Warehouses
	16.1.1.2 Transportation of Data in Data Warehouses

	16.2 ETL Tools for Data Warehouses
	16.2.1 Daily Operations in Data Warehouses
	16.2.2 Evolution of the Data Warehouse

	17 Extraction in Data Warehouses
	17.1 Overview of Extraction in Data Warehouses
	17.2 Introduction to Extraction Methods in Data Warehouses
	17.2.1 Logical Extraction Methods
	17.2.2 Physical Extraction Methods
	17.2.3 Change Tracking Methods

	17.3 Data Warehousing Extraction Examples
	17.3.1 Extraction Using Data Files
	17.3.1.1 Extracting into Flat Files Using SQL*Plus
	17.3.1.2 Extracting into Flat Files Using OCI or Pro*C Programs
	17.3.1.3 Exporting into Export Files Using the Export Utility
	17.3.1.4 Extracting into Export Files Using External Tables

	17.3.2 Extraction Through Distributed Operations

	18 Transportation in Data Warehouses
	18.1 Overview of Transportation in Data Warehouses
	18.2 Introduction to Transportation Mechanisms in Data Warehouses
	18.2.1 Transportation Using Flat Files
	18.2.2 Transportation Through Distributed Operations
	18.2.3 Transportation Using Transportable Tablespaces
	18.2.3.1 Using Transportable Tablespaces to Transport Data into Data Warehouses: Example
	18.2.3.2 Other Uses of Transportable Tablespaces

	19 Loading and Transformation in Data Warehouses
	19.1 Overview of Loading and Transformation in Data Warehouses
	19.1.1 Data Warehouses: Transformation Flow
	19.1.1.1 Multistage Data Transformation in Data Warehouses
	19.1.1.2 Pipelined Data Transformation in Data Warehouses
	19.1.1.3 Staging Area in Data Warehouses

	19.1.2 About Batch Updates and Online Table Redefinition
	19.1.3 Overview of Monitoring ETL Operations

	19.2 Loading Mechanisms for Data Warehouses
	19.2.1 Loading a Data Warehouse with SQL*Loader
	19.2.1.1 Using SQL*Loader to Load From an Object Store

	19.2.2 Loading a Data Warehouse with External Tables
	19.2.2.1 Using DBMS_CLOUD to Create External Tables for Object Store Data

	19.2.3 Loading a Data Warehouse with OCI and Direct-Path APIs
	19.2.4 Loading a Data Warehouse with Export/Import

	19.3 Transformation Mechanisms in Data Warehouses
	19.3.1 Transforming Data Using SQL
	19.3.1.1 CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT
	19.3.1.2 Transforming Data Using UPDATE
	19.3.1.3 Transforming Data Using MERGE
	19.3.1.4 Transforming Data Using Multitable INSERT

	19.3.2 Transforming Data Using PL/SQL
	19.3.3 Transforming Data Using Table Functions
	19.3.3.1 What is a Table Function?

	19.4 Error Logging and Handling Mechanisms
	19.4.1 Business Rule Violations
	19.4.2 Data Rule Violations (Data Errors)
	19.4.2.1 Handling Data Errors with SQL
	19.4.2.2 Handling Data Errors in PL/SQL
	19.4.2.3 Handling Data Errors with an Error Logging Table

	19.5 Loading and Transformation Scenarios
	19.5.1 Key Lookup Scenario
	19.5.2 Business Rule Violation Scenario
	19.5.3 Data Error Scenarios
	19.5.4 Pivoting Scenarios

	Part IV Relational Analytics
	20 SQL for Analysis and Reporting
	20.1 Overview of SQL for Analysis and Reporting
	20.2 Ranking, Windowing, and Reporting Functions
	20.2.1 Ranking Functions
	20.2.1.1 RANK and DENSE_RANK Functions
	20.2.1.1.1 Ranking Order in RANK and DENSE_RANK Functions
	20.2.1.1.2 Ranking on Multiple Expressions
	20.2.1.1.3 Example: Difference Between RANK and DENSE_RANK
	20.2.1.1.4 Ranking Within Groups: Example
	20.2.1.1.5 Example: Per Cube and Rollup Group Ranking
	20.2.1.1.6 Examples: Treatment of NULLs in Ranking Functions

	20.2.1.2 APPROX_RANK Function
	20.2.1.3 Bottom N Ranking Functions
	20.2.1.4 CUME_DIST Function
	20.2.1.5 PERCENT_RANK Function
	20.2.1.6 NTILE Function
	20.2.1.7 ROW_NUMBER Function

	20.2.2 Windowing Functions
	20.2.2.1 Examples of Window Clauses
	20.2.2.2 Examples of Windowing Clause Extensions
	20.2.2.3 About Treatment of NULLs as Input to Window Functions
	20.2.2.4 Windowing Functions with Logical Offset
	20.2.2.5 Centered Aggregate Function
	20.2.2.6 Windowing Aggregate Functions in the Presence of Duplicates
	20.2.2.7 Varying Window Size for Each Row
	20.2.2.8 Windowing Aggregate Functions with Physical Offsets
	20.2.2.9 Parallel Partition-Wise Operations with Windowing Functions

	20.2.3 Reporting Functions
	20.2.3.1 RATIO_TO_REPORT Function

	20.2.4 LAG/LEAD Functions
	20.2.4.1 LAG/LEAD Syntax

	20.2.5 FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functions
	20.2.5.1 FIRST_VALUE and LAST_VALUE Functions
	20.2.5.2 NTH_VALUE Function

	20.3 Advanced Aggregates for Analysis
	20.3.1 About Approximate Aggregates
	20.3.2 LISTAGG Function
	20.3.2.1 LISTAGG as Aggregate
	20.3.2.2 LISTAGG as Reporting Aggregate

	20.3.3 FIRST/LAST Functions
	20.3.3.1 FIRST/LAST As Regular Aggregates
	20.3.3.2 FIRST/LAST As Reporting Aggregates

	20.3.4 Inverse Percentile Functions
	20.3.4.1 Normal Aggregate Syntax
	20.3.4.2 Inverse Percentile Example Basis
	20.3.4.3 As Reporting Aggregates
	20.3.4.4 Restrictions on Inverse Percentile Functions
	20.3.4.5 Using Percentile Functions that Return Approximate Results

	20.3.5 Hypothetical Rank Functions
	20.3.6 Linear Regression Functions
	20.3.6.1 REGR_COUNT Function
	20.3.6.2 REGR_AVGY and REGR_AVGX Functions
	20.3.6.3 REGR_SLOPE and REGR_INTERCEPT Functions
	20.3.6.4 REGR_R2 Function
	20.3.6.5 REGR_SXX, REGR_SYY, and REGR_SXY Functions
	20.3.6.6 Linear Regression Statistics Examples
	20.3.6.7 Sample Linear Regression Calculation

	20.3.7 About Statistical Aggregates
	20.3.7.1 Descriptive Statistics
	20.3.7.2 Hypothesis Testing - Parametric Tests
	20.3.7.3 Crosstab Statistics
	20.3.7.4 Hypothesis Testing - Non-Parametric Tests
	20.3.7.5 Non-Parametric Correlation

	20.3.8 About User-Defined Aggregates

	20.4 Pivoting Operations
	20.4.1 Creating the View Used for Pivoting Examples
	20.4.2 Pivoting Example
	20.4.3 Pivoting on Multiple Columns
	20.4.4 Pivoting: Multiple Aggregates
	20.4.5 Distinguishing PIVOT-Generated Nulls from Nulls in Source Data
	20.4.6 Wildcard and Subquery Pivoting with XML Operations

	20.5 Unpivoting Operations
	20.6 Data Densification for Reporting
	20.6.1 About Partition Join Syntax
	20.6.2 Sample of Sparse Data
	20.6.3 Filling Gaps in Data
	20.6.4 Filling Gaps in Two Dimensions
	20.6.5 Filling Gaps in an Inventory Table
	20.6.6 Computing Data Values to Fill Gaps

	20.7 Time Series Calculations on Densified Data
	20.7.1 Period-to-Period Comparison for One Time Level: Example
	20.7.2 Period-to-Period Comparison for Multiple Time Levels: Example
	20.7.3 Creating a Custom Member in a Dimension: Example

	20.8 Miscellaneous Analysis and Reporting Capabilities
	20.8.1 TIME_BUCKET Function
	20.8.1.1 TIME_BUCKET Syntax
	20.8.1.2 TIME_BUCKET Examples

	20.8.2 WIDTH_BUCKET Function
	20.8.2.1 WIDTH_BUCKET Syntax

	20.8.3 Linear Algebra
	20.8.4 CASE Expressions
	20.8.4.1 Creating Histograms Using CASE Statement

	20.8.5 Frequent Itemsets in SQL Analytics

	20.9 Limiting SQL Rows
	20.9.1 SQL Row Limiting Restrictions and Considerations

	21 SQL for Aggregation in Data Warehouses
	21.1 Overview of SQL for Aggregation in Data Warehouses
	21.1.1 About Analyzing Across Multiple Dimensions
	21.1.2 About Optimized Aggregation Performance
	21.1.3 Data Warehousing: An Aggregate Scenario

	21.2 ROLLUP Extension to GROUP BY
	21.2.1 When to Use ROLLUP
	21.2.2 ROLLUP Syntax
	21.2.3 Partial Rollup

	21.3 CUBE Extension to GROUP BY
	21.3.1 When to Use CUBE
	21.3.2 CUBE Syntax
	21.3.3 Partial CUBE
	21.3.4 Calculating Subtotals Without CUBE

	21.4 GROUPING Functions
	21.4.1 GROUPING Function
	21.4.2 When to Use GROUPING
	21.4.3 GROUPING_ID Function
	21.4.4 GROUP_ID Function

	21.5 GROUPING SETS Expression
	21.5.1 GROUPING SETS Syntax

	21.6 About Composite Columns and Grouping
	21.7 Concatenated Groupings and Data Aggregation
	21.7.1 Concatenated Groupings and Hierarchical Data Cubes

	21.8 Considerations when Using Aggregation in Data Warehouses
	21.8.1 Hierarchy Handling in ROLLUP and CUBE
	21.8.2 Column Capacity in ROLLUP and CUBE
	21.8.3 HAVING Clause Used with GROUP BY Extensions
	21.8.4 ORDER BY Clause Used with GROUP BY Extensions
	21.8.5 Using Other Aggregate Functions with ROLLUP and CUBE
	21.8.6 Using In-Memory Aggregation

	21.9 Computation Using the WITH Clause
	21.10 Working with Hierarchical Cubes in SQL
	21.10.1 Specifying Hierarchical Cubes in SQL
	21.10.2 Querying Hierarchical Cubes in SQL
	21.10.2.1 SQL for Creating Materialized Views to Store Hierarchical Cubes
	21.10.2.2 Examples of Hierarchical Cube Materialized Views

	22 SQL for Pattern Matching
	22.1 Overview of Pattern Matching in Data Warehouses
	22.1.1 Why Use Pattern Matching?
	22.1.2 How Data is Processed in Pattern Matching
	22.1.3 About Pattern Matching Special Capabilities

	22.2 Basic Topics in Pattern Matching
	22.2.1 Basic Examples of Pattern Matching
	22.2.2 Tasks and Keywords in Pattern Matching
	22.2.3 Pattern Matching Syntax

	22.3 Pattern Matching Details
	22.3.1 PARTITION BY: Logically Dividing the Rows into Groups
	22.3.2 ORDER BY: Logically Ordering the Rows in a Partition
	22.3.3 [ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for Each Match
	22.3.4 MEASURES: Defining Calculations for Use in the Query
	22.3.5 PATTERN: Defining the Row Pattern to Be Matched
	22.3.5.1 Reluctant Versus Greedy Quantifier
	22.3.5.2 Operator Precedence

	22.3.6 SUBSET: Defining Union Row Pattern Variables
	22.3.7 DEFINE: Defining Primary Pattern Variables
	22.3.8 AFTER MATCH SKIP: Defining Where to Restart the Matching Process After a Match Is Found
	22.3.9 Expressions in MEASURES and DEFINE
	22.3.9.1 MATCH_NUMBER: Finding Which Rows Are in Which Match
	22.3.9.2 CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows
	22.3.9.3 Row Pattern Column References
	22.3.9.4 Aggregates
	22.3.9.5 Row Pattern Navigation Operations
	22.3.9.5.1 PREV and NEXT
	22.3.9.5.1.1 FIRST and LAST

	22.3.9.6 Running Versus Final Semantics and Keywords
	22.3.9.6.1 RUNNING Versus FINAL Semantics
	22.3.9.6.2 RUNNING Versus FINAL Keywords
	22.3.9.6.3 Ordinary Row Pattern Column References

	22.3.10 Row Pattern Output
	22.3.10.1 Correlation Name and Row Pattern Output

	22.4 Advanced Topics in Pattern Matching
	22.4.1 Nesting FIRST and LAST Within PREV and NEXT in Pattern Matching
	22.4.2 Handling Empty Matches or Unmatched Rows in Pattern Matching
	22.4.2.1 Handling Empty Matches in Pattern Matching
	22.4.2.2 Handling Unmatched Rows in Pattern Matching

	22.4.3 How to Exclude Portions of the Pattern from the Output
	22.4.4 How to Express All Permutations

	22.5 Rules and Restrictions in Pattern Matching
	22.5.1 Input Table Requirements in Pattern Matching
	22.5.2 Prohibited Nesting in the MATCH_RECOGNIZE Clause
	22.5.3 Concatenated MATCH_RECOGNIZE Clause
	22.5.4 Aggregate Restrictions

	22.6 Examples of Pattern Matching
	22.6.1 Pattern Matching Examples: Stock Market
	22.6.2 Pattern Matching Examples: Security Log Analysis
	22.6.3 Pattern Matching Examples: Sessionization
	22.6.4 Pattern Matching Example: Financial Tracking

	22.7 Fuzzy String Matching

	23 SQL for Modeling
	23.1 Overview of SQL Modeling in Data Warehouses
	23.1.1 How Data is Processed in a SQL Model
	23.1.2 Why Use SQL Modeling in Data Warehouses?
	23.1.3 About SQL Modeling Capabilities

	23.2 Basic Topics in SQL Modeling
	23.2.1 Base Schema for SQL Modeling Examples
	23.2.2 MODEL Clause Syntax
	23.2.3 Keywords in SQL Modeling
	23.2.3.1 Assigning Values and Null Handling
	23.2.3.2 Calculation Definition

	23.2.4 About Cell Referencing in SQL Modeling
	23.2.4.1 Symbolic Dimension References
	23.2.4.2 Positional Dimension References

	23.2.5 About Rules for SQL Modeling
	23.2.6 Order of Evaluation of SQL Modeling Rules
	23.2.7 Global and Local Keywords for SQL Modeling Rules
	23.2.8 UPDATE, UPSERT, and UPSERT ALL Behavior
	23.2.8.1 UPDATE Behavior
	23.2.8.2 UPSERT Behavior
	23.2.8.3 UPSERT ALL Behavior
	23.2.8.3.1 Example: UPSERT ALL Behavior

	23.2.9 Treatment of NULLs and Missing Cells in SQL Modeling
	23.2.9.1 Distinguishing Missing Cells from NULLs
	23.2.9.2 Use Defaults for Missing Cells and NULLs
	23.2.9.3 Using NULLs in a Cell Reference

	23.2.10 About Reference Models in SQL Modeling

	23.3 Advanced Topics in SQL Modeling
	23.3.1 FOR Loops in SQL Modeling
	23.3.1.1 Evaluation of Formulas with FOR Loops
	23.3.1.1.1 Unfolding For UPDATE and UPSERT Rules
	23.3.1.1.2 Unfolding For UPSERT ALL: Rules
	23.3.1.1.3 Restrictions on Using FOR Loop Expressions on the Left Side of Formulas

	23.3.2 Iterative Models in SQL Modeling
	23.3.3 Rule Dependency in AUTOMATIC ORDER Models
	23.3.4 Ordered Rules in SQL Modeling
	23.3.5 Analytic Functions in SQL Modeling
	23.3.6 Unique Dimensions Versus Unique Single References in SQL Modeling
	23.3.7 Rules and Restrictions when Using SQL for Modeling

	23.4 Performance Considerations with SQL Modeling
	23.4.1 Parallel Execution and SQL Modeling
	23.4.2 Aggregate Computation and SQL Modeling
	23.4.3 Using EXPLAIN PLAN to Understand Model Queries

	23.5 Examples of SQL Modeling
	23.5.1 SQL Modeling Example 1: Calculating Sales Differences
	23.5.2 SQL Modeling Example 2: Calculating Percentage Change
	23.5.3 SQL Modeling Example 3: Calculating Net Present Value
	23.5.4 SQL Modeling Example 4: Calculating Using Simultaneous Equations
	23.5.5 SQL Modeling Example 5: Calculating Using Regression
	23.5.6 SQL Modeling Example 6: Calculating Mortgage Amortization

	24 Advanced Analytical SQL
	24.1 Examples of Business Intelligence Queries
	24.1.1 Business Intelligence Query Example 1: Percent Change in Market Share of Products in a Calculated Set
	24.1.2 Business Intelligence Query Example 2: Sales Projection that Fills in Missing Data
	24.1.3 Business Intelligence Query Example 3: Customer Analysis by Grouping Customers into Buckets
	24.1.4 Business Intelligence Query Example 4: Frequent Itemsets

	Part V Analytic Views
	25 Overview of Analytic Views
	25.1 What Are Analytic Views?
	25.2 New Features for Analytic Views
	25.3 Privileges for Analytic Views
	25.4 Application Programming Interfaces for Analytic Views
	25.5 Compilation States of Analytic Views
	25.6 Validation of Data
	25.7 Classifications for Analytic Views
	25.8 Share Analytic Views with Application Containers
	25.9 Alter or Drop an Analytic View Object
	25.10 Data and Scripts for Examples
	25.10.1 About the Data and Scripts for Examples
	25.10.2 Create Attribute Dimension Statements
	25.10.3 Create Hierarchy Statements
	25.10.4 Create Analytic View Statements

	26 Attribute Dimension and Hierarchy Objects
	26.1 About Attribute Dimensions and Hierarchies
	26.2 Attributes and Hierarchical Attributes
	26.3 Order Levels
	26.4 Level Keys
	26.5 Determine Attribute Relationships

	27 Analytic View Objects
	27.1 About Analytic Views
	27.2 Measures of Analytic Views
	27.3 Create Analytic Views
	27.4 Examples of Calculated Measures
	27.5 Attribute Reporting
	27.6 Analytic View Queries with Filtered Facts and Added Measures
	27.6.1 Analytic View Query with Filtered Facts
	27.6.2 Analytic View Query with Added Measures
	27.6.3 Analytic View Query with Filtered Facts and Multiple Added Measures

	Glossary
	additive
	advisor
	aggregate
	aggregation
	analytic view
	ancestor
	attribute
	attribute dimension
	cardinality
	child
	cleansing
	Common Warehouse Metadata (CWM)
	cross product
	data mart
	data source
	data warehouse
	degree of cardinality
	denormalize
	derived fact (or measure)
	detail
	detail table
	dimension
	dimension table
	dimension value
	drill
	drill down
	drill up
	element
	enterprise data warehouse
	entity
	ELT
	ETL
	extraction
	fact
	fact table
	fast refresh
	file-to-table mapping
	hierarchy
	level
	level value table
	mapping
	materialized view
	materialized view log
	measure
	metadata
	model
	nonadditive
	normalize
	OLTP
	online transaction processing (OLTP)
	parallel execution
	parallelism
	parent
	partition
	partition change tracking (PCT)
	pattern matching
	pivoting
	query rewrite
	refresh
	rewrite
	schema
	semi-additive
	slice and dice
	snowflake schema
	source
	source system
	source tables
	SQL Access Advisor
	staging area
	staging file
	star query
	star schema
	subject area
	summary
	Summary Advisor
	target
	third normal form (3NF)
	third normal form schema
	transformation
	transportation
	unique identifier
	update window
	update frequency
	validation
	versioning

	Index

