
Oracle® Database
Database Globalization Support Guide

21c
F31288-06
February 2025

Oracle Database Database Globalization Support Guide, 21c

F31288-06

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Mary Beth Roeser

Contributors: Dan Chiba, Simon Law, Qianrong Ma, Keni Matsuda, Shige Takeda, Makoto Tozawa, Sergiusz Wolicki,
Michael Yau, Qin Yu, Tim Yu, Weiran Zhang

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Intended Audience xvi

Documentation Accessibility xvi

Diversity and Inclusion xvii

Related Documentation xvii

Conventions xvii

 Changes in Oracle Database Globalization Support Guide for Oracle
Database 21c

New Features xviii

Desupported Features xviii

1 Overview of Globalization Support

1.1 Globalization Support Architecture 1-1

1.1.1 Locale Data on Demand 1-1

1.1.2 Architecture to Support Multilingual Applications 1-2

1.1.3 Using Unicode in a Multilingual Database 1-4

1.2 Globalization Support Features 1-4

1.2.1 Language Support 1-5

1.2.2 Territory Support 1-5

1.2.3 Date and Time Formats 1-6

1.2.4 Monetary and Numeric Formats 1-6

1.2.5 Calendar Systems 1-6

1.2.6 Linguistic Sorting 1-7

1.2.7 Character Set Support 1-7

1.2.8 Character Semantics 1-7

1.2.9 Customization of Locale and Calendar Data 1-8

1.2.10 Unicode Support 1-8

2 Choosing a Character Set

2.1 Character Set Encoding 2-1

iii

2.1.1 What is an Encoded Character Set? 2-1

2.1.2 Which Characters Are Encoded? 2-2

2.1.2.1 Phonetic Writing Systems 2-3

2.1.2.2 Ideographic Writing Systems 2-3

2.1.2.3 Punctuation, Control Characters, Numbers, and Symbols 2-3

2.1.2.4 Writing Direction 2-3

2.1.3 What Characters Does a Character Set Support? 2-4

2.1.3.1 ASCII Encoding 2-5

2.1.4 How are Characters Encoded? 2-6

2.1.4.1 Single-Byte Encoding Schemes 2-6

2.1.4.2 Multibyte Encoding Schemes 2-7

2.1.5 Naming Convention for Oracle Database Character Sets 2-8

2.1.6 Subsets and Supersets 2-8

2.2 Length Semantics 2-9

2.3 Choosing an Oracle Database Character Set 2-11

2.3.1 Current and Future Language Requirements 2-13

2.3.2 Client Operating System and Application Compatibility 2-13

2.3.3 Character Set Conversion Between Clients and the Server 2-13

2.3.4 Performance Implications of Choosing a Database Character Set 2-14

2.3.5 Restrictions on Database Character Sets 2-14

2.3.5.1 Restrictions on Character Sets Used to Express Names 2-14

2.3.6 Database Character Set Statement of Direction 2-15

2.3.7 Choosing Unicode as a Database Character Set 2-15

2.3.8 Choosing a National Character Set 2-15

2.3.9 Summary of Supported Data Types 2-16

2.4 Choosing a Database Character Set for a Multitenant Container Database 2-17

2.5 Changing the Character Set After Database Creation 2-19

2.6 Monolingual Database Scenario 2-20

2.6.1 Character Set Conversion in a Monolingual Scenario 2-21

2.7 Multilingual Database Scenario 2-22

3 Setting Up a Globalization Support Environment

3.1 Setting NLS Parameters 3-1

3.2 Choosing a Locale with the NLS_LANG Environment Variable 3-3

3.2.1 Specifying the Value of NLS_LANG 3-5

3.2.2 Overriding Language and Territory Specifications 3-6

3.2.3 Locale Variants 3-7

3.2.4 Should the NLS_LANG Setting Match the Database Character Set? 3-8

3.3 Character Set Parameter 3-8

3.3.1 NLS_OS_CHARSET Environment Variable 3-8

3.4 NLS Database Parameters 3-9

iv

3.4.1 NLS Data Dictionary Views 3-9

3.4.2 NLS Dynamic Performance Views 3-9

3.4.3 OCINlsGetInfo() Function 3-10

3.5 Language and Territory Parameters 3-10

3.5.1 NLS_LANGUAGE 3-10

3.5.2 NLS_TERRITORY 3-13

3.5.2.1 Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY
During a Session 3-15

3.6 Date and Time Parameters 3-16

3.6.1 Date Formats 3-16

3.6.1.1 NLS_DATE_FORMAT 3-17

3.6.1.2 NLS_DATE_LANGUAGE 3-18

3.6.2 Time Formats 3-19

3.6.2.1 NLS_TIMESTAMP_FORMAT 3-20

3.6.2.2 NLS_TIMESTAMP_TZ_FORMAT 3-21

3.7 Calendar Definitions 3-22

3.7.1 Calendar Formats 3-22

3.7.1.1 First Day of the Week 3-22

3.7.1.2 First Calendar Week of the Year 3-22

3.7.1.3 Number of Days and Months in a Year 3-23

3.7.1.4 First Year of Era 3-24

3.7.2 NLS_CALENDAR 3-24

3.8 Numeric and List Parameters 3-25

3.8.1 Numeric Formats 3-25

3.8.2 NLS_NUMERIC_CHARACTERS 3-26

3.8.3 NLS_LIST_SEPARATOR 3-27

3.9 Monetary Parameters 3-27

3.9.1 Currency Formats 3-28

3.9.2 NLS_CURRENCY 3-28

3.9.3 NLS_ISO_CURRENCY 3-29

3.9.4 NLS_DUAL_CURRENCY 3-30

3.9.5 Oracle Database Support for the Euro 3-30

3.9.6 NLS_MONETARY_CHARACTERS 3-31

3.9.7 NLS_CREDIT 3-32

3.9.8 NLS_DEBIT 3-32

3.10 Linguistic Sort Parameters 3-32

3.10.1 NLS_SORT 3-33

3.10.2 NLS_COMP 3-34

3.11 Character Set Conversion Parameter 3-34

3.11.1 NLS_NCHAR_CONV_EXCP 3-34

3.12 Length Semantics 3-35

v

3.12.1 NLS_LENGTH_SEMANTICS 3-35

4 Datetime Data Types and Time Zone Support

4.1 Overview of Datetime and Interval Data Types and Time Zone Support 4-1

4.2 Datetime and Interval Data Types 4-1

4.2.1 Datetime Data Types 4-2

4.2.1.1 DATE Data Type 4-2

4.2.1.2 TIMESTAMP Data Type 4-4

4.2.1.3 TIMESTAMP WITH TIME ZONE Data Type 4-4

4.2.1.4 TIMESTAMP WITH LOCAL TIME ZONE Data Type 4-5

4.2.1.5 Inserting Values into Datetime Data Types 4-6

4.2.1.6 Choosing a TIMESTAMP Data Type 4-9

4.2.2 Interval Data Types 4-9

4.2.2.1 INTERVAL YEAR TO MONTH Data Type 4-10

4.2.2.2 INTERVAL DAY TO SECOND Data Type 4-10

4.2.2.3 Inserting Values into Interval Data Types 4-11

4.3 Datetime and Interval Arithmetic and Comparisons 4-11

4.3.1 Datetime and Interval Arithmetic 4-11

4.3.2 Datetime Comparisons 4-12

4.3.3 Explicit Conversion of Datetime Data Types 4-12

4.4 Datetime SQL Functions 4-13

4.5 Datetime and Time Zone Parameters and Environment Variables 4-15

4.5.1 Datetime Format Parameters 4-15

4.5.2 Time Zone Environment Variables 4-16

4.5.3 Daylight Saving Time Session Parameter 4-16

4.5.4 Daylight Saving Time Upgrade Parameter 4-16

4.6 Choosing a Time Zone File 4-17

4.7 Upgrading the Time Zone File and Timestamp with Time Zone Data 4-20

4.7.1 Upgrading the Time Zone Data Using the DBMS_DST Package 4-22

4.7.1.1 Prepare Window 4-22

4.7.1.2 Upgrade Window 4-24

4.7.1.3 Upgrade Example 4-27

4.7.1.4 Upgrade Error Handling 4-32

4.7.2 Upgrading the Time Zone Data Using the utltz_* Scripts 4-33

4.7.2.1 Prepare Window 4-33

4.7.2.2 Upgrade Window 4-34

4.8 Clients and Servers Operating with Different Versions of Time Zone Files 4-36

4.9 Setting the Database Time Zone 4-37

4.10 Setting the Session Time Zone 4-38

4.11 Converting Time Zones With the AT TIME ZONE Clause 4-39

4.12 Support for Daylight Saving Time 4-40

vi

4.12.1 Examples: The Effect of Daylight Saving Time on Datetime Calculations 4-40

5 Linguistic Sorting and Matching

5.1 Overview of Oracle Database Collation Capabilities 5-2

5.2 Using Binary Collation 5-2

5.3 Using Linguistic Collation 5-3

5.3.1 Monolingual Collation 5-3

5.3.2 Multilingual Collation 5-4

5.3.2.1 Multilingual Collation Levels 5-4

5.3.3 UCA Collation 5-6

5.3.3.1 UCA Comparison Levels 5-6

5.3.3.2 UCA Collation Parameters 5-8

5.4 Linguistic Collation Features 5-9

5.4.1 Base Letters 5-9

5.4.2 Ignorable Characters 5-10

5.4.2.1 Primary Ignorable Characters 5-10

5.4.2.2 Secondary Ignorable Characters 5-10

5.4.2.3 Tertiary Ignorable Characters 5-10

5.4.3 Variable Characters and Variable Weighting 5-11

5.4.4 Contracting Characters 5-12

5.4.5 Expanding Characters 5-13

5.4.6 Context-Sensitive Characters 5-13

5.4.7 Canonical Equivalence 5-13

5.4.8 Reverse Secondary Sorting 5-14

5.4.9 Character Rearrangement for Thai and Laotian Characters 5-14

5.4.10 Special Letters 5-15

5.4.11 Special Combination Letters 5-15

5.4.12 Special Uppercase Letters 5-15

5.4.13 Special Lowercase Letters 5-16

5.5 Case-Insensitive and Accent-Insensitive Linguistic Collation 5-16

5.5.1 Examples: Case-Insensitive and Accent-Insensitive Collation 5-17

5.5.2 Specifying a Case-Insensitive or Accent-Insensitive Collation 5-18

5.5.3 Examples: Linguistic Collation 5-19

5.6 Performing Linguistic Comparisons 5-21

5.6.1 Collation Keys 5-22

5.6.2 Restricted Precision of Linguistic Comparison 5-23

5.6.3 Avoiding ORA-12742 Error 5-23

5.6.4 Examples: Linguistic Comparison 5-25

5.7 Using Linguistic Indexes 5-27

5.7.1 Supported SQL Operations and Functions for Linguistic Indexes 5-28

5.7.2 Linguistic Indexes for Multiple Languages 5-29

vii

5.7.3 Requirements for Using Linguistic Indexes 5-30

5.7.3.1 Set NLS_SORT Appropriately 5-30

5.7.3.2 Specify NOT NULL in a WHERE Clause If the Column Was Not Declared
NOT NULL 5-30

5.7.3.3 Use a Tablespace with an Adequate Block Size 5-31

5.7.3.4 Example: Setting Up a French Linguistic Index 5-31

5.8 Searching Linguistic Strings 5-31

5.9 SQL Regular Expressions in a Multilingual Environment 5-32

5.9.1 Character Range '[x-y]' in Regular Expressions 5-33

5.9.2 Collation Element Delimiter '[. .]' in Regular Expressions 5-33

5.9.3 Character Class '[: :]' in Regular Expressions 5-33

5.9.4 Equivalence Class '[= =]' in Regular Expressions 5-33

5.9.5 Examples: Regular Expressions 5-34

5.10 Column-Level Collation and Case Sensitivity 5-35

5.10.1 About Data-Bound Collation 5-36

5.10.2 Default Collations 5-38

5.10.3 Enabling Data-Bound Collation 5-39

5.10.4 Specifying a Data-Bound Collation 5-39

5.10.4.1 Effective Schema Default Collation 5-40

5.10.4.2 Specifying Data-Bound Collation for a Schema 5-41

5.10.4.3 Specifying Data-Bound Collation for a Table 5-42

5.10.4.4 Specifying Data-Bound Collation for a View and a Materialized View 5-43

5.10.4.5 Specifying Data-Bound Collation for a Column 5-44

5.10.4.6 Specifying Data-Bound Collation for PL/SQL Units 5-46

5.10.4.7 Specifying Data-Bound Collation for SQL Expressions 5-48

5.10.5 Viewing the Data-Bound Collation of a Database Object 5-51

5.10.6 Case-Insensitive Database 5-51

5.10.7 Effect of Data-Bound Collation on Other Database Objects 5-52

5.10.8 Effect of Data-Bound Collation on Distributed Queries and DML Operations 5-57

5.10.9 Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types 5-57

5.10.10 Effect of Data-Bound Collation on Oracle XML DB 5-58

6 Supporting Multilingual Databases with Unicode

6.1 What is the Unicode Standard? 6-1

6.2 Features of the Unicode Standard 6-2

6.2.1 Code Points and Supplementary Characters 6-2

6.2.2 Unicode Encoding Forms 6-2

6.2.2.1 UTF-8 Encoding Form 6-3

6.2.2.2 UTF-16 Encoding Form 6-3

6.2.2.3 UCS-2 Encoding Form 6-4

6.2.2.4 UTF-32 Encoding Form 6-4

viii

6.2.2.5 CESU-8 Encoding Form 6-4

6.2.2.6 Examples: UTF-16, UTF-8, and UCS-2 Encoding 6-5

6.2.3 Support for the Unicode Standard in Oracle Database 6-5

6.3 Implementing a Unicode Solution in the Database 6-6

6.3.1 Enabling Multilingual Support for a Database 6-7

6.3.2 Enabling Multilingual Support with Unicode Data Types 6-8

6.3.3 How to Choose Between Unicode Solutions 6-10

6.4 Unicode Case Studies 6-10

6.5 Designing Database Schemas to Support Multiple Languages 6-12

6.5.1 Specifying Column Lengths for Multilingual Data 6-12

6.5.2 Storing Data in Multiple Languages 6-13

6.5.3 Storing Documents in Multiple Languages in LOB Data Types 6-14

6.5.4 Creating Indexes for Searching Multilingual Document Contents 6-15

6.5.4.1 Creating Multilexers 6-15

6.5.4.2 Creating Indexes for Documents Stored in the CLOB Data Type 6-16

6.5.4.3 Creating Indexes for Documents Stored in the BLOB Data Type 6-16

7 Programming with Unicode

7.1 Overview of Programming with Unicode 7-1

7.1.1 Database Access Product Stack and Unicode 7-1

7.2 SQL and PL/SQL Programming with Unicode 7-3

7.2.1 SQL NCHAR Data Types 7-3

7.2.1.1 The NCHAR Data Type 7-4

7.2.1.2 The NVARCHAR2 Data Type 7-4

7.2.1.3 The NCLOB Data Type 7-5

7.2.2 Implicit Data Type Conversion Between NCHAR and Other Data Types 7-5

7.2.3 Exception Handling for Data Loss During Data Type Conversion 7-5

7.2.4 Rules for Implicit Data Type Conversion 7-6

7.2.5 SQL Functions for Unicode Data Types 7-7

7.2.6 Other SQL Functions 7-8

7.2.7 Unicode String Literals 7-8

7.2.8 NCHAR String Literal Replacement 7-9

7.2.9 Using the UTL_FILE Package with NCHAR Data 7-9

7.3 OCI Programming with Unicode 7-10

7.3.1 OCIEnvNlsCreate() Function for Unicode Programming 7-11

7.3.2 OCI Unicode Code Conversion 7-12

7.3.2.1 Data Integrity 7-12

7.3.2.2 OCI Performance Implications When Using Unicode 7-12

7.3.2.3 OCI Unicode Data Expansion 7-13

7.3.3 Setting UTF-8 to the NLS_LANG Character Set in OCI 7-14

7.3.4 Binding and Defining SQL CHAR Data Types in OCI 7-14

ix

7.3.5 Binding and Defining SQL NCHAR Data Types in OCI 7-15

7.3.6 Handling SQL NCHAR String Literals in OCI 7-16

7.3.7 Binding and Defining CLOB and NCLOB Unicode Data in OCI 7-17

7.4 Pro*C/C++ Programming with Unicode 7-18

7.4.1 Pro*C/C++ Data Conversion in Unicode 7-18

7.4.2 Using the VARCHAR Data Type in Pro*C/C++ 7-19

7.4.3 Using the NVARCHAR Data Type in Pro*C/C++ 7-19

7.4.4 Using the UVARCHAR Data Type in Pro*C/C++ 7-19

7.5 JDBC Programming with Unicode 7-20

7.5.1 Binding and Defining Java Strings to SQL CHAR Data Types 7-21

7.5.2 Binding and Defining Java Strings to SQL NCHAR Data Types 7-21

7.5.2.1 New JDBC4.0 Methods for NCHAR Data Types 7-22

7.5.3 Using the SQL NCHAR Data Types Without Changing the Code 7-23

7.5.4 Using SQL NCHAR String Literals in JDBC 7-23

7.5.5 Data Conversion in JDBC 7-24

7.5.5.1 Data Conversion for the OCI Driver 7-24

7.5.5.2 Data Conversion for Thin Drivers 7-24

7.5.5.3 Data Conversion for the Server-Side Internal Driver 7-25

7.5.6 Using oracle.sql.CHAR in Oracle Object Types 7-25

7.5.6.1 oracle.sql.CHAR 7-26

7.5.6.2 Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR 7-27

7.5.7 Restrictions on Accessing SQL CHAR Data with JDBC 7-27

7.5.7.1 Character Integrity Issues in a Multibyte Database Environment 7-28

7.6 ODBC and OLE DB Programming with Unicode 7-28

7.6.1 Unicode-Enabled Drivers in ODBC and OLE DB 7-29

7.6.2 OCI Dependency in Unicode 7-29

7.6.3 ODBC and OLE DB Code Conversion in Unicode 7-29

7.6.3.1 OLE DB Code Conversions 7-30

7.6.4 ODBC Unicode Data Types 7-31

7.6.5 OLE DB Unicode Data Types 7-32

7.6.6 ADO Access 7-32

7.7 XML Programming with Unicode 7-32

7.7.1 Writing an XML File in Unicode with Java 7-33

7.7.2 Reading an XML File in Unicode with Java 7-33

7.7.3 Parsing an XML Stream in Unicode with Java 7-34

8 Oracle Globalization Development Kit

8.1 Overview of the Oracle Globalization Development Kit 8-1

8.2 Designing a Global Internet Application 8-1

8.2.1 Deploying a Monolingual Internet Application 8-2

8.2.2 Deploying a Multilingual Internet Application 8-4

x

8.3 Developing a Global Internet Application 8-5

8.3.1 Locale Determination 8-6

8.3.2 Locale Awareness 8-6

8.3.3 Localizing the Content 8-7

8.4 Getting Started with the Globalization Development Kit 8-7

8.5 GDK Quick Start 8-9

8.5.1 Modifying the HelloWorld Application 8-10

8.6 GDK Application Framework for J2EE 8-16

8.6.1 Making the GDK Framework Available to J2EE Applications 8-18

8.6.2 Integrating Locale Sources into the GDK Framework 8-19

8.6.3 Getting the User Locale From the GDK Framework 8-20

8.6.4 Implementing Locale Awareness Using the GDK Localizer 8-22

8.6.5 Defining the Supported Application Locales in the GDK 8-23

8.6.6 Handling Non-ASCII Input and Output in the GDK Framework 8-24

8.6.7 Managing Localized Content in the GDK 8-26

8.6.7.1 Managing Localized Content in JSPs and Java Servlets 8-26

8.6.7.2 Managing Localized Content in Static Files 8-27

8.7 GDK Java API 8-28

8.7.1 Oracle Locale Information in the GDK 8-29

8.7.2 Oracle Locale Mapping in the GDK 8-29

8.7.3 Oracle Character Set Conversion in the GDK 8-30

8.7.4 Oracle Date, Number, and Monetary Formats in the GDK 8-31

8.7.5 Oracle Binary and Linguistic Sorts in the GDK 8-31

8.7.6 Oracle Language and Character Set Detection in the GDK 8-33

8.7.7 Oracle Translated Locale and Time Zone Names in the GDK 8-34

8.7.8 Using the GDK with E-Mail Programs 8-34

8.8 The GDK Application Configuration File 8-36

8.8.1 locale-charset-maps 8-36

8.8.2 page-charset 8-37

8.8.3 application-locales 8-37

8.8.4 locale-determine-rule 8-38

8.8.5 locale-parameter-name 8-39

8.8.6 message-bundles 8-39

8.8.7 url-rewrite-rule 8-40

8.8.8 Example: GDK Application Configuration File 8-41

8.9 GDK for Java Supplied Packages and Classes 8-42

8.9.1 oracle.i18n.lcsd 8-42

8.9.1.1 LCSScan 8-43

8.9.2 oracle.i18n.net 8-44

8.9.3 oracle.i18n.servlet 8-44

8.9.4 oracle.i18n.text 8-44

8.9.5 oracle.i18n.util 8-45

xi

8.10 GDK for PL/SQL Supplied Packages 8-45

8.11 GDK Error Messages 8-46

9 SQL and PL/SQL Programming in a Global Environment

9.1 Locale-Dependent SQL Functions with Optional NLS Parameters 9-1

9.1.1 Default Values for NLS Parameters in SQL Functions 9-2

9.1.2 Specifying NLS Parameters in SQL Functions 9-2

9.1.3 Unacceptable NLS Parameters in SQL Functions 9-4

9.2 Other Locale-Dependent SQL Functions 9-4

9.2.1 The CONVERT Function 9-4

9.2.2 SQL Functions for Different Length Semantics 9-5

9.2.3 LIKE Conditions for Different Length Semantics 9-6

9.2.4 Character Set SQL Functions 9-7

9.2.4.1 Converting from Character Set Number to Character Set Name 9-7

9.2.4.2 Converting from Character Set Name to Character Set Number 9-7

9.2.4.3 Returning the Length of an NCHAR Column 9-8

9.2.5 The NLSSORT Function 9-8

9.2.5.1 NLSSORT Syntax 9-9

9.2.5.2 Comparing Strings in a WHERE Clause 9-10

9.2.5.3 Controlling an ORDER BY Clause 9-11

9.3 Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment 9-11

9.3.1 SQL Date Format Masks 9-12

9.3.2 Calculating Week Numbers 9-12

9.3.3 SQL Numeric Format Masks 9-12

9.3.4 Loading External BFILE Data into LOB Columns 9-13

10

OCI Programming in a Global Environment

10.1 Using the OCI NLS Functions 10-1

10.2 Specifying Character Sets in OCI 10-1

10.3 Getting Locale Information in OCI 10-2

10.4 Mapping Locale Information Between Oracle and Other Standards 10-3

10.5 Manipulating Strings in OCI 10-3

10.6 Classifying Characters in OCI 10-5

10.7 Converting Character Sets in OCI 10-6

10.8 OCI Messaging Functions 10-6

10.9 lmsgen Utility 10-7

xii

11

Character Set Migration

11.1 Overview of Character Set Migration 11-1

11.1.1 Data Truncation 11-2

11.1.1.1 Additional Problems Caused by Data Truncation 11-2

11.1.2 Character Set Conversion Issues 11-3

11.1.2.1 Replacement Characters that Result from Using the Export and Import
Utilities 11-3

11.1.2.2 Invalid Data That Results from Setting the Client's NLS_LANG Parameter
Incorrectly 11-4

11.1.2.3 Conversion from Single-byte to Multibyte Character Set and Oracle Data
Pump 11-6

11.2 Changing the Database Character Set of an Existing Database 11-6

11.2.1 Migrating Character Data Using the Database Migration Assistant for Unicode 11-6

11.2.2 Migrating Character Data Using a Full Export and Import 11-7

11.3 Repairing Database Character Set Metadata 11-8

11.3.1 Example: Using CSREPAIR 11-8

11.4 The Language and Character Set File Scanner 11-9

11.4.1 Syntax of the LCSSCAN Command 11-9

11.4.2 Examples: Using the LCSSCAN Command 11-11

11.4.3 Getting Command-Line Help for the Language and Character Set File Scanner 11-11

11.4.4 Supported Languages and Character Sets 11-12

11.4.5 LCSSCAN Error Messages 11-12

12

Customizing Locale Data

12.1 Overview of the Oracle Locale Builder Utility 12-1

12.1.1 Configuring Unicode Fonts for the Oracle Locale Builder 12-1

12.1.2 The Oracle Locale Builder User Interface 12-2

12.1.3 Oracle Locale Builder Pages and Dialog Boxes 12-3

12.1.3.1 Existing Definitions Dialog Box 12-3

12.1.3.2 Session Log Dialog Box 12-4

12.1.3.3 Preview NLT Tab Page 12-5

12.1.3.4 Open File Dialog Box 12-5

12.2 Creating a New Language Definition with Oracle Locale Builder 12-6

12.3 Creating a New Territory Definition with the Oracle Locale Builder 12-10

12.4 Displaying a Code Chart with the Oracle Locale Builder 12-16

12.5 Creating a New Character Set Definition with the Oracle Locale Builder 12-20

12.5.1 Character Sets with User-Defined Characters 12-21

12.5.2 Oracle Database Character Set Conversion Architecture 12-21

12.5.3 Unicode Private Use Area 12-22

12.5.4 User-Defined Character Cross-References Between Character Sets 12-22

12.5.5 Guidelines for Creating a New Character Set from an Existing Character Set 12-23

xiii

12.5.6 Example: Creating a New Character Set Definition with the Oracle Locale
Builder 12-24

12.6 Creating a New Linguistic Sort with the Oracle Locale Builder 12-27

12.6.1 Changing the Sort Order for All Characters with the Same Diacritic 12-31

12.6.2 Changing the Sort Order for One Character with a Diacritic 12-34

12.7 Generating and Installing NLB Files 12-36

12.8 Upgrading Custom NLB Files from Previous Releases of Oracle Database 12-38

12.9 Deploying Custom NLB Files to Oracle Installations on the Same Platform 12-38

12.10 Deploying Custom NLB Files to Oracle Installations on Another Platform 12-39

12.11 Adding Custom Locale Definitions to Java Components with the GINSTALL Utility 12-39

12.12 Customizing Calendars with the NLS Calendar Utility 12-40

A Locale Data

A.1 Languages A-1

A.2 Translated Messages A-4

A.3 Territories A-5

A.4 Character Sets A-6

A.4.1 Recommended Database Character Sets A-7

A.4.2 Other Character Sets A-10

A.4.3 Character Sets that Support the Euro Symbol A-14

A.4.4 Client-Only Character Sets A-15

A.4.5 Universal Character Sets A-16

A.4.6 Character Set Conversion Support A-17

A.4.7 Binary Subset-Superset Pairs A-18

A.5 Language and Character Set Detection Support A-19

A.6 Linguistic Collations A-21

A.7 Calendar Systems A-26

A.8 Time Zone Region Names A-27

A.9 Obsolete Locale Data A-35

A.9.1 Obsolete Linguistic Sorts A-35

A.9.2 Obsolete Territories A-35

A.9.3 Obsolete Languages A-35

A.9.4 Obsolete Character Sets and Replacement Character Sets A-36

A.9.5 Updates to the Oracle Database Language and Territory Definition Files A-37

A.10 Desupported Locale Data A-38

A.10.1 Desupported Linguistic Sorts A-38

A.10.2 AL24UTFFSS Character Set Desupported A-38

B Unicode Character Code Assignments

B.1 Unicode Code Ranges B-1

xiv

B.2 UTF-16 Encoding B-2

B.3 UTF-8 Encoding B-2

C Collation Derivation and Determination Rules for SQL Operations

C.1 Collation Derivation C-1

C.2 Collation Determination C-4

C.3 SQL Operations and Their Derivation- and Determination-relevant Arguments C-6

Glossary

Index

xv

Preface

This book describes Oracle globalization support for Oracle Database. It explains how to set
up a globalization support environment, choose and migrate a character set, customize locale
data, do linguistic sorting, program in a global environment, and program with Unicode.

This preface contains these topics:

• Intended Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Intended Audience
Oracle Database Globalization Support Guide is intended for database administrators, system
administrators, and database application developers who perform the following tasks:

• Set up a globalization support environment

• Choose, analyze, or migrate character sets

• Sort data linguistically

• Customize locale data

• Write programs in a global environment

• Use Unicode

To use this document, you must be familiar with relational database concepts, basic Oracle
Database concepts, and the operating system environment under which you are running
Oracle.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
Many of the examples in this book use the sample schemas of the seed database, which is
installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for
information on how these schemas were created and how you can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action, or
terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples, text
that appears on the screen, or text that you enter.

Preface

xvii

Changes in Oracle Database Globalization
Support Guide for Oracle Database 21c

The following are changes in Oracle Database Globalization Support Guide for Oracle
Database 21c.

New Features
• Support for Unicode 12.1, a major version of the Unicode Standard that supersedes all its

previous versions.

See "Unicode Support".

• Support for the Unicode Collation Algorithm (UCA) 12.1 collations (UCA1210_*).

See "UCA Collation".

• Two new linguistic sorts (XGERMAN_S and XGERMAN_DIN_S), which support Latin Capital
Letter Sharp S as the uppercase form of Latin Smaller Letter Sharp S.

See "Linguistic Collations".

• The new Japanese era Reiwa, which went into effect on May 1, 2019, is now supported in
Oracle Database for the Japanese Imperial Calendar.

See "Japanese Imperial Calendar".

• You can now upgrade the time zone data in your database without incurring any database
downtime.

See "Upgrading the Time Zone Data Using the DBMS_DST Package".

• The BURMESE, GEORGIAN, and KYRGYZ languages are now supported.

See "Languages".

• The MYANMAR, GEORGIA, and KYRGYZSTAN territories are now supported.

See "Territories".

Desupported Features
• The Unicode Collation Algorithm (UCA) 6.1 collations (UCA0610_*) are desupported in this

release. Oracle recommends that you use the latest supported version of UCA collations,
which in Oracle Database 21c is UCA 12.1. UCA 12.1 incorporates all of the UCA
enhancements since version 6.1, as well as proper collation weight assignments for all
new characters introduced since Unicode 6.1.

See Table A-17 for the list of UCA collations supported in this release.

Changes in Oracle Database Globalization Support Guide for Oracle Database 21c

xviii

1
Overview of Globalization Support

This chapter provides an overview of globalization support for Oracle Database. This chapter
discusses the following topics:

• Globalization Support Architecture

• Globalization Support Features

1.1 Globalization Support Architecture
The globalization support in Oracle Database enables you to store, process, and retrieve data
in native languages. It ensures that database utilities, error messages, sort order, and date,
time, monetary, numeric, and calendar conventions automatically adapt to any native language
and locale.

In the past, Oracle referred to globalization support capabilities as National Language Support
(NLS) features. NLS is actually a subset of globalization support. NLS is the ability to choose a
national language and store data in a specific character set. Globalization support enables you
to develop multilingual applications and software products that can be accessed and run from
anywhere in the world simultaneously. An application can render content of the user interface
and process data in the native users' languages and locale preferences.

1.1.1 Locale Data on Demand
Oracle Database globalization support is implemented with the Oracle NLS Runtime Library
(NLSRTL). NLSRTL provides a comprehensive suite of language-independent functions that
perform proper text and character processing and language-convention manipulations.
Behavior of these functions for a specific language and territory is governed by a set of locale-
specific data that is identified and loaded at run time.

The locale-specific data is structured as independent sets of data for each locale that Oracle
Database supports. The data for a particular locale can be loaded independently of other
locale data.

The advantages of this design are as follows:

• You can manage memory consumption by choosing the set of locales that you need.

• You can add and customize locale data for a specific locale without affecting other locales.

The following figure shows how locale-specific data is loaded at run time. In this example,
French data and Japanese data are loaded into the multilingual database, but German data is
not.

1-1

Figure 1-1 Loading Locale-Specific Data to the Database

Multilingual
Database

French

D
ata

Ja
pa

ne
se

D
at

a

French
Data

German
Data

Japanese
Data

The locale-specific data is stored in the $ORACLE_HOME/nls/data directory. The ORA_NLS10
environment variable should be defined only when you need to change the default directory
location for the locale-specific data files, for example, when the system has multiple Oracle
Database homes that share a single copy of the locale-specific data files.

A boot file is used to determine the availability of the NLS objects that can be loaded. Oracle
Database supports both system and user boot files. The user boot file gives you the flexibility
to tailor what NLS locale objects are available for the database. Also, new locale data can be
added and some locale data components can be customized.

See Also:

"Customizing Locale Data"

1.1.2 Architecture to Support Multilingual Applications
Oracle Database enables multitier applications and client/server applications to support
languages for which the database is configured.

The locale-dependent operations are controlled by several parameters and environment
variables on both the client and the database server. On the database server, each session
that is started on behalf of a client may run in the same or a different locale as other sessions,
and can have the same or different language requirements specified.

Oracle Database has a set of session-independent NLS parameters that are specified when
you create a database. Two of the parameters specify the database character set and the
national character set, which is an alternative Unicode character set that can be specified for
NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the character set that is used to
store text data in the database. Other parameters, such as language and territory, are used to
evaluate and check constraints.

Chapter 1
Globalization Support Architecture

1-2

If the client session and the database server specify different character sets, then the database
converts character set strings automatically.

From a globalization support perspective, all applications are considered to be clients, even if
they run on the same physical machine as the Oracle Database instance. For example, when
SQL*Plus is started by the UNIX user who owns the Oracle Database software from the Oracle
home in which the RDBMS software is installed, and SQL*Plus connects to the database
through an adapter by specifying the ORACLE_SID parameter, SQL*Plus is considered a client.
Its behavior is ruled by client-side NLS parameters.

Another example of an application being considered a client occurs when the middle tier is an
application server. The different sessions spawned by the application server are considered to
be separate client sessions.

When a client application is started, it initializes the client NLS environment from environment
settings. All NLS operations performed locally are executed using these settings. Examples of
local NLS operations are:

• Display formatting in Oracle Developer applications

• User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The new
session initializes its NLS environment from NLS instance parameters specified in the
initialization parameter file. These settings can be subsequently changed by an ALTER SESSION
statement. The statement changes only the session NLS environment. It does not change the
local client NLS environment. The session NLS settings are used to process SQL and PL/SQL
statements that are executed on the server. For example, use an ALTER SESSION statement to
set the NLS_LANGUAGE initialization parameter to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
...
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5
...

Note that the month name abbreviations are in Italian.

Immediately after the connection has been established, if the NLS_LANG environment setting is
defined on the client side, then an implicit ALTER SESSION statement synchronizes the client and
session NLS environments.

See Also:

• "OCI Programming in a Global Environment"

• "Setting Up a Globalization Support Environment"

Chapter 1
Globalization Support Architecture

1-3

1.1.3 Using Unicode in a Multilingual Database
Unicode, the universal encoded character set, enables you to store information in any
language by using a single character set. Unicode provides a unique code value for every
character, regardless of the platform, program, or language. Oracle recommends using
AL32UTF8 as the database character set. AL32UTF8 is the proper implementation of the UTF-8
encoding form of the Unicode standard.

Note:

Starting with Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database, the
default database character set used is the Unicode character set AL32UTF8.

Unicode has the following advantages:

• Simplifies character set conversion and linguistic sort functions.

• Improves performance compared with native multibyte character sets.

• Supports the Unicode data type based on the Unicode standard.

To help you migrate to a Unicode environment, Oracle provides the Database Migration
Assistant for Unicode (DMU). The DMU is an intuitive and user-friendly GUI that helps
streamline the migration process through an interface that minimizes the workload and ensures
that all migration issues are addressed, along with guaranteeing that the data conversion is
carried out correctly and efficiently. The DMU offers many advantages over past methods of
migrating data, some of which are:

• It guides you through the workflow.

• It offers suggestions for handling certain problems, such as failures during the cleansing of
the data.

• It supports selective conversion of data.

• It offers progress monitoring.

See Also:

• "Supporting Multilingual Databases with Unicode"

• "Programming with Unicode"

• "Enabling Multilingual Support with Unicode Data Types"

• Oracle Database Migration Assistant for Unicode Guide

1.2 Globalization Support Features
This section provides an overview of the standard globalization features in Oracle Database:

• Language Support

Chapter 1
Globalization Support Features

1-4

• Territory Support

• Date and Time Formats

• Monetary and Numeric Formats

• Calendar Systems

• Linguistic Sorting

• Character Set Support

• Character Semantics

• Customization of Locale and Calendar Data

• Unicode Support

1.2.1 Language Support
Oracle Database enables you to store, process, and retrieve data in native languages. The
languages that can be stored in a database are all languages written in scripts that are
encoded by Oracle-supported character sets. Through the use of Unicode databases and data
types, Oracle Database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for example,
display dates using translated month names, and can sort text data according to cultural
conventions.

When this document uses the term language support, it refers to the additional language-
dependent functionality, and not to the ability to store text of a specific language. For example,
language support includes displaying dates or sorting text according to specific locales and
cultural conventions. Additionally, for some supported languages, Oracle Database provides
translated error messages and a translated user interface for the database utilities.

See Also:

• "Setting Up a Globalization Support Environment"

• "Languages" for the list of Oracle Database language names and abbreviations

• "Translated Messages" for the list of languages into which Oracle Database
messages are translated

1.2.2 Territory Support
Oracle Database supports cultural conventions that are specific to geographical locations. The
default local time format, date format, and numeric and monetary conventions depend on the
local territory setting. Setting different NLS parameters enables the database session to use
different cultural settings. For example, you can set the euro (EUR) as the primary currency and
the Japanese yen (JPY) as the secondary currency for a given database session, even when
the territory is defined as AMERICA.

Chapter 1
Globalization Support Features

1-5

See Also:

• "Setting Up a Globalization Support Environment"

• "Territories" for a list of territories that are supported by Oracle Database

1.2.3 Date and Time Formats
Different conventions for displaying the hour, day, month, and year can be handled in local
formats. For example, in the United Kingdom, the date is displayed using the DD-MON-YYYY
format, while Japan commonly uses the YYYY-MM-DD format.

Time zones and daylight saving support are also available.

See Also:

• "Setting Up a Globalization Support Environment"

• "Datetime Data Types and Time Zone Support"

• Oracle Database SQL Language Reference

1.2.4 Monetary and Numeric Formats
Currency, credit, and debit symbols can be represented in local formats. Radix symbols and
thousands separators can be defined by locales. For example, in the US, the decimal point is a
dot (.), while it is a comma (,) in France. Therefore, the amount $1,234 has different meanings
in different countries.

See Also:

"Setting Up a Globalization Support Environment"

1.2.5 Calendar Systems
Many different calendar systems are in use around the world. Oracle Database supports eight
different calendar systems:

• Arabic Hijrah

• English Hijrah

• Ethiopian

• Gregorian

• Japanese Imperial

• Persian

• ROC Official (Republic of China)

Chapter 1
Globalization Support Features

1-6

• Thai Buddha

See Also:

• "Setting Up a Globalization Support Environment"

• "Calendar Systems" for more information about supported calendars

1.2.6 Linguistic Sorting
Oracle Database provides linguistic definitions for culturally accurate sorting and case
conversion. The basic definition treats strings as sequences of independent characters. The
extended definition recognizes pairs of characters that should be treated as special cases.

Strings that are converted to upper case or lower case using the basic definition always retain
their lengths. Strings converted using the extended definition may become longer or shorter.

See Also:

"Linguistic Sorting and Matching"

1.2.7 Character Set Support
Oracle Database supports a large number of single-byte, multibyte, and fixed-width encoding
schemes that are based on national, international, and vendor-specific standards.

See Also:

• "Choosing a Character Set"

• "Character Sets" for a list of supported character sets

1.2.8 Character Semantics
Oracle Database provides character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths in terms of characters instead of bytes.

See Also:

"Length Semantics"

Chapter 1
Globalization Support Features

1-7

1.2.9 Customization of Locale and Calendar Data
You can customize locale data such as language, character set, territory, or linguistic sort using
the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

See Also:

• "Customizing Locale Data"

• "Customizing Calendars with the NLS Calendar Utility"

1.2.10 Unicode Support
Unicode is an industry standard that enables text and symbols from all languages to be
consistently represented and manipulated by computers.

Oracle Database has complied with the Unicode standard since Oracle 7. Subsequently,
Oracle Database 10g Release 2 (10.2) supports Unicode 4.0. Oracle Database 11g supports
Unicode 5.0. Oracle Database 12c Release 1 (12.1) supports Unicode 6.2. Oracle Database
12c Release 2 (12.2) supports Unicode 7.0. Oracle Database 18c and Oracle Database 19c
support Unicode 9.0. Oracle Database 21c supports Unicode 12.1.

You can store Unicode characters in an Oracle database in two ways:

• You can create a Unicode database that enables you to store UTF-8 encoded characters
as SQL CHAR data types VARCHAR2, CHAR, LONG (deprecated), and CLOB.

• You can support multilingual data in specific columns by using SQL NCHAR data types
NVARCHAR2, NCHAR, and NCLOB. You can store Unicode characters into columns of the NCHAR
data types regardless of how the database character set has been defined. The NCHAR data
types are exclusively Unicode data types.

Note:

Starting with Oracle Database 12c Release 2 (12.2), if you use Oracle Universal
Installer (OUI) or Oracle Database Configuration Assistant (DBCA) to create a
database, then the default database character set used is the Unicode character set
AL32UTF8.

See Also:

"Supporting Multilingual Databases with Unicode"

Chapter 1
Globalization Support Features

1-8

2
Choosing a Character Set

This chapter explains how to choose a character set. The following topics are included:

• Character Set Encoding

• Length Semantics

• Choosing an Oracle Database Character Set

• Choosing a Database Character Set for a Multitenant Container Database

• Changing the Character Set After Database Creation

• Monolingual Database Scenario

• Multilingual Database Scenario

2.1 Character Set Encoding
When computer systems process characters, they use numeric codes instead of the graphical
representation of the character. For example, when the database stores the letter A, it actually
stores a numeric code that the computer system interprets as the letter. These numeric codes
are especially important in a global environment because of the potential need to convert data
between different character sets.

This section discusses the following topics:

• What is an Encoded Character Set?

• Which Characters Are Encoded?

• What Characters Does a Character Set Support?

• How are Characters Encoded?

• Naming Convention for Oracle Database Character Sets

• Subsets and Supersets

2.1.1 What is an Encoded Character Set?
You specify an encoded character set when you create a database. Choosing a character set
determines what languages can be represented in the database. It also affects:

• How you create the database schema

• How you develop applications that process character data

• How the database works with the operating system

• Database performance

• Storage required for storing character data

A group of characters (for example, alphabetic characters, ideographs, symbols, punctuation
marks, and control characters) can be encoded as a character set. An encoded character set
assigns a unique numeric code to each character in the character set. The numeric codes are

2-1

called code points or encoded values. The following table shows examples of characters that
have been assigned a hexadecimal code value in the ASCII character set.

Table 2-1 Encoded Characters in the ASCII Character Set

Character Description Hexadecimal Code Value

! Exclamation Mark 21

Number Sign 23

$ Dollar Sign 24

1 Number 1 31

2 Number 2 32

3 Number 3 33

A Uppercase A 41

B Uppercase B 42

C Uppercase C 43

a Lowercase a 61

b Lowercase b 62

c Lowercase c 63

The computer industry uses many encoded character sets. Character sets differ in the
following ways:

• The number of characters available to be used in the set

• The characters that are available to be used in the set (also known as the character
repertoire)

• The scripts used for writing and the languages that they represent

• The code points or values assigned to each character

• The encoding scheme used to represent a specific character

Oracle Database supports most national, international, and vendor-specific encoded character
set standards.

See Also:

"Character Sets" for a complete list of character sets that are supported by Oracle
Database

2.1.2 Which Characters Are Encoded?
The characters that are encoded in a character set depend on the writing systems that are
represented. A writing system can be used to represent a language or a group of languages.
Writing systems can be classified into two categories:

• Phonetic Writing Systems

• Ideographic Writing Systems

This section also includes the following topics:

Chapter 2
Character Set Encoding

2-2

• Punctuation, Control Characters, Numbers, and Symbols

• Writing Direction

2.1.2.1 Phonetic Writing Systems
Phonetic writing systems consist of symbols that represent different sounds associated with a
language. Greek, Latin, Cyrillic, and Devanagari are all examples of phonetic writing systems
based on alphabets. Note that alphabets can represent multiple languages. For example, the
Latin alphabet can represent many Western European languages such as French, German,
and English.

Characters associated with a phonetic writing system can typically be encoded in one byte
because the character repertoire is usually smaller than 256 characters.

2.1.2.2 Ideographic Writing Systems
Ideographic writing systems consist of ideographs or pictographs that represent the meaning of
a word, not the sounds of a language. Chinese and Japanese are examples of ideographic
writing systems that are based on tens of thousands of ideographs. Languages that use
ideographic writing systems may also use a syllabary. Syllabaries provide a mechanism for
communicating additional phonetic information. For instance, Japanese has two syllabaries:
Hiragana, normally used for grammatical elements, and Katakana, normally used for foreign
and onomatopoeic words.

Characters associated with an ideographic writing system typically are encoded in more than
one byte because the character repertoire has tens of thousands of characters.

2.1.2.3 Punctuation, Control Characters, Numbers, and Symbols
In addition to encoding the script of a language, other special characters must be encoded:

• Punctuation marks such as commas, periods, and apostrophes

• Numbers

• Special symbols such as currency symbols and math operators

• Control characters such as carriage returns and tabs

2.1.2.4 Writing Direction
Most Western languages are written left to right from the top to the bottom of the page. East
Asian languages are usually written top to bottom from the right to the left of the page,
although exceptions are frequently made for technical books translated from Western
languages. Arabic and Hebrew are written right to left from the top to the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right to left,
numbers within the sentence are written left to right. For example, "I wrote 32 books" would be
written as "skoob 32 etorw I". Regardless of the writing direction, Oracle Database stores the
data in logical order. Logical order means the order that is used by someone typing a
language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

Chapter 2
Character Set Encoding

2-3

2.1.3 What Characters Does a Character Set Support?
Different character sets support different character repertoires. Because character sets are
typically based on a particular writing script, they can support multiple languages. When
character sets were first developed, they had a limited character repertoire. Even now there
can be problems using certain characters across platforms. The following CHAR and VARCHAR
characters are represented in all Oracle Database character sets and can be transported to
any platform:

• Uppercase and lowercase English characters A through Z and a through z

• Arabic digits 0 through 9

• The following punctuation marks: % ' ' () * + - , . / \ : ; < > = ! _ & ~ { } | ^ ? $ # @ " []

• The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is supported in the
database character set that you have chosen.

Setting the NLS_LANG parameter properly is essential to proper data conversion. The character
set that is specified by the NLS_LANG parameter should reflect the setting for the client operating
system. Setting NLS_LANG correctly enables proper conversion from the client operating system
character encoding to the database character set. When these settings are the same, Oracle
Database assumes that the data being sent or received is encoded in the same character set
as the database character set, so character set validation or conversion may not be performed.
This can lead to corrupt data if conversions are necessary.

During conversion from one character set to another, Oracle Database expects client-side data
to be encoded in the character set specified by the NLS_LANG parameter. If you put other values
into the string (for example, by using the CHR or CONVERT SQL functions), then the values may
be corrupted when they are sent to the database because they are not converted properly. If
you have configured the environment correctly and if the database character set supports the
entire repertoire of character data that may be input into the database, then you do not need to
change the current database character set. However, if your enterprise becomes more
globalized and you have additional characters or new languages to support, then you may
need to choose a character set with a greater character repertoire. Oracle recommends that
you use Unicode databases and data types.

See Also:

• "Supporting Multilingual Databases with Unicode"

• Oracle Database SQL Language Reference for more information about the
CONVERT SQL functions

• Oracle Database SQL Language Reference for more information about the CHR
SQL functions

• "Displaying a Code Chart with the Oracle Locale Builder"

Chapter 2
Character Set Encoding

2-4

2.1.3.1 ASCII Encoding
Table 2-2 shows how the ASCII character set is encoded. Row and column headings denote
hexadecimal digits. To find the encoded value of a character, read the column number followed
by the row number. For example, the code value of the character A is 0x41.

Table 2-2 7-Bit ASCII Character Set

- 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ' p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 TAB EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

As languages evolve to meet the needs of people around the world, new character sets are
created to support the languages. Typically, these new character sets support a group of
related languages based on the same script. For example, the ISO 8859 character set series
was created to support different European languages. Table 2-3 shows the languages that are
supported by the ISO 8859 character sets.

Table 2-3 lSO 8859 Character Sets

Standard Languages Supported

ISO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English,
Faeroese, Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin,
Polish, Romanian, Slovak, Slovenian, Serbian)

ISO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German,
Italian, Maltese, Spanish, Turkish)

ISO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian,
Serbian, Ukrainian)

Chapter 2
Character Set Encoding

2-5

Table 2-3 (Cont.) lSO 8859 Character Sets

Standard Languages Supported

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch,
English, Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian,
Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish, Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German,
Greenlandic, Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sámi, Slovenian,
Swedish)

ISO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

ISO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician,
German, Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English,
Estonian, Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic,
Irish Gaelic, Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic,
Scottish Gaelic, Spanish, Swedish)

Historically, character sets have provided restricted multilingual support, which has been
limited to groups of languages based on similar scripts. More recently, universal character sets
have emerged to enable greatly improved solutions for multilingual support. Unicode is one
such universal character set that encompasses most major scripts of the modern world.

See Also:

"Supporting Multilingual Databases with Unicode"

2.1.4 How are Characters Encoded?
Different types of encoding schemes have been created by the computer industry. The
character set you choose affects what kind of encoding scheme is used. This is important
because different encoding schemes have different performance characteristics. These
characteristics can influence your database schema and application development. The
character set you choose uses one of the following types of encoding schemes:

• Single-Byte Encoding Schemes

• Multibyte Encoding Schemes

2.1.4.1 Single-Byte Encoding Schemes
Single-byte encoding schemes are efficient. They take up the least amount of space to
represent characters and are easy to process and program with because one character can be
represented in one byte. Single-byte encoding schemes are classified as one of the following
types:

• 7-bit encoding schemes

Chapter 2
Character Set Encoding

2-6

Single-byte 7-bit encoding schemes can define up to 128 characters and normally support
just one language. One of the most common single-byte character sets, used since the
early days of computing, is ASCII (American Standard Code for Information Interchange).

• 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often support a
group of related languages. One example is ISO 8859-1, which supports many Western
European languages. The following figure shows the ISO 8859-1 8-bit encoding scheme.

Figure 2-1 ISO 8859-1 8-Bit Encoding Scheme

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
VT
NP
CR
SO
SI

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

SP
!
“
#
$
%
&
’
(
)
*
+
,
-
.
/

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

NBSP
¡
¢
£
¤
¥
¦
§
“
©
a
«
¬
-
®
¯

°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
DEL

0 1 2 3 4 5 6 9 10 11 12 13 147 8

2.1.4.2 Multibyte Encoding Schemes
Multibyte encoding schemes are needed to support ideographic scripts used in Asian
languages like Chinese or Japanese because these languages use thousands of characters.
These encoding schemes use either a fixed number or a variable number of bytes to represent
each character.

• Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a fixed
number of bytes. The number of bytes is at least two in a multibyte encoding scheme.

• Variable-width multibyte encoding schemes

A variable-width encoding scheme uses one or more bytes to represent a single character.
Some multibyte encoding schemes use certain bits to indicate the number of bytes that
represents a character. For example, if two bytes is the maximum number of bytes used to
represent a character, then the most significant bit can be used to indicate whether that
byte is a single-byte character or the first byte of a double-byte character.

• Shift-sensitive variable-width multibyte encoding schemes

Some variable-width encoding schemes use control codes to differentiate between single-
byte and multibyte characters with the same code values. A shift-out code indicates that
the following character is multibyte. A shift-in code indicates that the following character is
single-byte. Shift-sensitive encoding schemes are used primarily on IBM platforms. Note
that ISO-2022 character sets cannot be used as database character sets, but they can be
used for applications such as a mail server.

Chapter 2
Character Set Encoding

2-7

2.1.5 Naming Convention for Oracle Database Character Sets
Oracle Database uses the following naming convention for its character set names:

<region><number of bits used to represent a character><standard character set name>[S|C]

The parts of the names that appear between angle brackets are concatenated. The optional S
or C is used to differentiate character sets that can be used only on the server (S) or only on the
client (C).

Note:

Keep in mind that:

• You should use the server character set (S) on the Macintosh platform. The
Macintosh client character sets are obsolete. On EBCDIC platforms, use the
server character set (S) on the server and the client character set (C) on the
client.

• UTF8 and UTFE are exceptions to the naming convention.

The following table shows examples of Oracle Database character set names.

Table 2-4 Examples of Oracle Database Character Set Names

Oracle Database
Character Set Name

Description Region Number of Bits Used
to Represent a
Character

Standard Character
Set Name

US7ASCII U.S. 7-bit ASCII US 7 ASCII

WE8ISO8859P1 Western European 8-
bit ISO 8859 Part 1

WE (Western Europe) 8 ISO8859 Part 1

JA16SJIS Japanese 16-bit Shifted
Japanese Industrial
Standard

JA 16 SJIS

2.1.6 Subsets and Supersets
When discussing character set conversion or character set compatibility between databases,
Oracle documentation sometimes uses the terms superset, subset, binary superset, or binary
subset to describe relationship between two character sets. The terms subset and superset,
without the adjective "binary", pertain to character repertoires of two Oracle character sets, that
is, to the sets of characters supported (encoded) by each of the character sets. By definition,
character set A is a superset of character set B if A supports all characters that B supports.
Character set B is a subset of character set A if A is a superset of B.

The terms binary subset and binary superset restrict the above subset-superset relationship by
adding a condition on binary representation (binary codes) of characters of the two character
sets. By definition, character set A is a binary superset of character set B if A supports all
characters that B supports and all these characters have the same binary representation in A
and B. Character set B is a binary subset of character set A if A is a binary superset of B.

Chapter 2
Character Set Encoding

2-8

When character set A is a binary superset of character set B, any text value encoded in B is at
the same time valid in A without need for character set conversion. When A is a non-binary
superset of B, a text value encoded in B can be represented in A without loss of data but may
require character set conversion to transform the binary representation.

Oracle Database does not maintain a list of all subset-superset pairs, but it does maintain a list
of binary subset-superset pairs that it recognizes in various situations, such as checking
compatibility of a transportable tablespace or a pluggable database.

See Also:

"Binary Subset-Superset Pairs" for the list of binary subset-superset pairs recognized
by Oracle Database

2.2 Length Semantics
In single-byte character sets, the number of bytes and the number of characters in a string are
the same. In multibyte character sets, a character or code point consists of one or more bytes.
Calculating the number of characters based on byte lengths can be difficult in a variable-width
character set. Calculating column lengths in bytes is called byte semantics, while measuring
column lengths in characters is called character semantics.

Character semantics is useful for defining the storage requirements for multibyte strings of
varying widths. For example, in a Unicode database (AL32UTF8), suppose that you need to
define a VARCHAR2 column that can store up to five Chinese characters together with five
English characters. Using byte semantics, this column requires 15 bytes for the Chinese
characters, which are three bytes long, and 5 bytes for the English characters, which are one
byte long, for a total of 20 bytes. Using character semantics, the column requires 10
characters.

The following expressions use byte semantics:

• VARCHAR2(20 BYTE)
• SUBSTRB(string, 1, 20)
Note the BYTE qualifier in the VARCHAR2 expression and the B suffix in the SQL function name.

The following expressions use character semantics:

• VARCHAR2(10 CHAR)
• SUBSTR(string, 1, 10)
Note the CHAR qualifier in the VARCHAR2 expression.

The length semantics of character data type columns, user-defined type attributes, and
PL/SQL variables can be specified explicitly in their definitions with the BYTE or CHAR qualifier.
This method of specifying the length semantics is recommended as it properly documents the
expected semantics in creation DDL statements and makes the statements independent of any
execution environment.

If a column, user-defined type attribute or PL/SQL variable definition contains neither the BYTE
nor the CHAR qualifier, the length semantics associated with the column, attribute, or variable is
determined by the value of the session parameter NLS_LENGTH_SEMANTICS. If you create
database objects with legacy scripts that are too large and complex to be updated to include
explicit BYTE and/or CHAR qualifiers, execute an explicit ALTER SESSION SET

Chapter 2
Length Semantics

2-9

NLS_LENGTH_SEMANTICS statement before running each of the scripts to assure the scripts
create objects in the expected semantics.

The NLS_LENGTH_SEMANTICS initialization parameter determines the default value of the
NLS_LENGTH_SEMANTICS session parameter for new sessions. Its default value is BYTE. For the
sake of compatibility with existing application installation procedures, which may have been
written before character length semantics was introduced into Oracle SQL, Oracle
recommends that you leave this initialization parameter undefined or you set it to BYTE.
Otherwise, created columns may be larger than expected, causing applications to malfunction
or, in some cases, cause buffer overflows.

Byte semantics is the default for the database character set. Character length semantics is the
default and the only allowable kind of length semantics for NCHAR data types. The user cannot
specify the CHAR or BYTE qualifier for NCHAR definitions.

Consider the following example:

CREATE TABLE employees

(employee_id NUMBER(4)
, last_name NVARCHAR2(10)
, job_id NVARCHAR2(9)
, manager_id NUMBER(4)
, hire_date DATE
, salary NUMBER(7,2)
, department_id NUMBER(2)
) ;

last_name can hold up to 10 Unicode code points, independent of whether the NCHAR character
set is AL16UTF16 or UTF8. When the NCHAR character set is AL16UTF16, these stored 10
code points may occupy up to 20 bytes. When the NCHAR character set is UTF8, they may
occupy up to 30 bytes.

The following figure shows the number of bytes needed to store different kinds of characters in
the UTF-8 character set. The ASCII character requires one byte, the non-ASCII Latin, Greek,
Cyrillic, Arabic, and Hebrew characters require two bytes, the Asian characters require three
bytes, and the supplementary character requires four bytes of storage.

Chapter 2
Length Semantics

2-10

Figure 2-2 Bytes of Storage for Different Kinds of Characters

Latin Small Letter E (ASCII Latin)

Latin Small Letter A with Circumflex (Non-ASCII Latin)

Cyrillic Small Letter Ya

Arabic Letter Hah

Hebrew Letter Alef

Devanagari Letter AA (Hindi)

CJK Ideograph “Letter”
(Chinese, Japanese)

Musical Symbol G Clef
(Supplementary character)

Hangul Syllable Sios Ye Rieulpieup (Korean)

Greek Small Letter Delta

C3 A2 CE B4 D1 8F D8 AD D7 90 E0 A4 86 EC 85 BB E5 AD 97 F0 9D 84 9E65

1
byte

2
bytes

2
bytes

2
bytes

3
bytes

4
bytes

3
bytes

3
bytes

2
bytes

2
bytes

See Also:

• "SQL Functions for Different Length Semantics" for more information about the
SUBSTR and SUBSTRB functions

• "Length Semantics" for more information about the NLS_LENGTH_SEMANTICS
initialization parameter

• "Supporting Multilingual Databases with Unicode" for more information about
Unicode and the NCHAR data type

• Oracle Database SQL Language Reference for more information about the
SUBSTRB and SUBSTR functions and the BYTE and CHAR qualifiers for character data
types

2.3 Choosing an Oracle Database Character Set
Oracle Database uses the database character set for:

• Data stored in SQL CHAR data types (CHAR, VARCHAR2, CLOB, and LONG)
• Identifiers such as table names, column names, and PL/SQL variables

• Entering and storing SQL and PL/SQL source code

The character encoding scheme used by the database is defined as part of the CREATE
DATABASE statement. All SQL CHAR data type columns (CHAR, CLOB, VARCHAR2, and LONG),
including columns in the data dictionary, have their data stored in the database character set.
In addition, the choice of database character set determines which characters can name

Chapter 2
Choosing an Oracle Database Character Set

2-11

objects in the database. SQL NCHAR data type columns (NCHAR, NCLOB, and NVARCHAR2) use the
national character set.

After the database is created, you cannot change the character sets, with some exceptions,
without re-creating the database.

Consider the following questions when you choose an Oracle Database character set for the
database:

• What languages does the database need to support now?

• What languages does the database need to support in the future?

• Is the character set available on the operating system?

• What character sets are used on clients?

• How well does the application handle the character set?

• What are the performance implications of the character set?

• What are the restrictions associated with the character set?

The Oracle Database character sets are listed in "Character Sets". They are named according
to the languages and regions in which they are used. Some character sets that are named for
a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

• Check national, international, or vendor product documentation or standards documents

• Use Oracle Locale Builder

This section contains the following topics:

• Current and Future Language Requirements

• Client Operating System and Application Compatibility

• Character Set Conversion Between Clients and the Server

• Performance Implications of Choosing a Database Character Set

• Restrictions on Database Character Sets

• Choosing a National Character Set

• Summary of Supported Data Types

See Also:

• "UCS-2 Encoding Form"

• "Choosing a National Character Set"

• "Changing the Character Set After Database Creation"

• "Locale Data"

• "Customizing Locale Data"

Chapter 2
Choosing an Oracle Database Character Set

2-12

2.3.1 Current and Future Language Requirements
Several character sets may meet your current language requirements. Consider future
language requirements when you choose a database character set. If you expect to support
additional languages in the future, then choose a character set that supports those languages
to prevent the need to migrate to a different character set later. You should generally select the
Unicode character set AL32UTF8, because it supports most languages of the world.

Note:

Starting from Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database, then
the default database character set used is the Unicode character set AL32UTF8.

2.3.2 Client Operating System and Application Compatibility
The database character set is independent of the operating system because Oracle Database
has its own globalization architecture. For example, on an English Windows operating system,
you can create and run a database with a Japanese character set. However, when an
application in the client operating system accesses the database, the client operating system
must be able to support the database character set with appropriate fonts and input methods.
For example, you cannot insert or retrieve Japanese data on the English Windows operating
system without first installing a Japanese font and input method. Another way to insert and
retrieve Japanese data is to use a Japanese operating system remotely to access the
database server.

2.3.3 Character Set Conversion Between Clients and the Server
If you choose a database character set that is different from the character set on the client
operating system, then the Oracle Database can convert the operating system character set to
the database character set. Character set conversion has the following disadvantages:

• Potential data loss

• Increased overhead

Character set conversions can sometimes cause data loss. For example, if you are converting
from character set A to character set B, then the destination character set B must have the
same character set repertoire as A. Any characters that are not available in character set B are
converted to a replacement character. The replacement character is often specified as a
question mark or as a linguistically related character. For example, ä (a with an umlaut) may be
converted to a. If you have distributed environments, then consider using character sets with
similar character repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers several times before the
data reaches the client. The database character set should always be a superset or equivalent
of the native character set of the client's operating system. The character sets used by client
applications that access the database usually determine which superset is the best choice.

If all client applications use the same character set, then that character set is usually the best
choice for the database character set. When client applications use different character sets, the
database character set should be a superset of all the client character sets. This ensures that
every character is represented when converting from a client character set to the database
character set.

Chapter 2
Choosing an Oracle Database Character Set

2-13

See Also:

"Character Set Migration"

2.3.4 Performance Implications of Choosing a Database Character Set
For best performance, choose a character set that avoids character set conversion and uses
the most efficient encoding for the languages desired. Single-byte character sets result in
better performance than multibyte character sets, and they also are the most efficient in terms
of space requirements. However, single-byte character sets limit how many languages you can
support.

2.3.5 Restrictions on Database Character Sets
ASCII-based character sets are supported only on ASCII-based platforms. Similarly, you can
use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In order to do
this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is native to the platform.
Therefore, it is not possible to use a fixed-width, multibyte character set as the database
character set. Currently, only the AL16UTF16 character set cannot be used as a database
character set.

2.3.5.1 Restrictions on Character Sets Used to Express Names
The following table lists the restrictions on the character sets that can be used to express
names.

Table 2-5 Restrictions on Character Sets Used to Express Names

Name Single-Byte Variable Width Comments

Column names Yes Yes -

Schema objects Yes Yes -

Comments Yes Yes -

Database link names Yes No -

Database names Yes No -

File names

(data file, log file, control file,
initialization parameter file)

Yes No -

Instance names Yes No -

Directory names Yes No -

Keywords Yes No Can be expressed in
English ASCII or EBCDIC
characters only

Recovery Manager file names Yes No -

Rollback segment names Yes No The ROLLBACK_SEGMENTS
parameter does not
support NLS

Chapter 2
Choosing an Oracle Database Character Set

2-14

Table 2-5 (Cont.) Restrictions on Character Sets Used to Express Names

Name Single-Byte Variable Width Comments

Stored script names Yes Yes -

Tablespace names Yes No -

For a list of supported string formats and character sets, including LOB data (LOB, BLOB, CLOB,
and NCLOB), see Table 2-7.

2.3.6 Database Character Set Statement of Direction
A list of character sets has been compiled in Table A-4 and Table A-5 that Oracle strongly
recommends for usage as the database character set. Other Oracle-supported character sets
that do not appear on this list can continue to be used in this Oracle Database release, but
may be desupported in a future release. Starting with Oracle Database 11g Release 1, the
choice for the database character set is limited to this list of recommended character sets in
common installation paths of Oracle Universal Installer (OUI)and Oracle Database
Configuration Assistant (DBCA). Customers are still able to create new databases using
custom installation paths and migrate their existing databases even if the character set is not
on the recommended list. However, Oracle suggests that customers migrate to a
recommended character set as soon as possible. At the top of the list of character sets that
Oracle recommends for all new system deployment, is the Unicode character set AL32UTF8.

Note:

Starting with Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database, then
the default database character set used is AL32UTF8.

2.3.7 Choosing Unicode as a Database Character Set
Oracle recommends using Unicode for all new system deployments. Migrating legacy systems
to Unicode is also recommended. Deploying your systems today in Unicode offers many
advantages in usability, compatibility, and extensibility. Oracle Database enables you to deploy
high-performing systems faster and more easily while utilizing the advantages of Unicode.
Even if you do not need to support multilingual data today, nor have any requirement for
Unicode, it is still likely to be the best choice for a new system in the long run and will ultimately
save you time and money as well as give you competitive advantages in the long term.

See Also:

"Supporting Multilingual Databases with Unicode"

2.3.8 Choosing a National Character Set
The term national character set refers to an alternative character set that enables you to
store Unicode character data in a database that does not have a Unicode database character
set. Another reason for choosing a national character set is that the properties of a different

Chapter 2
Choosing an Oracle Database Character Set

2-15

character encoding scheme may be more desirable for extensive character processing
operations.

SQL NCHAR, NVARCHAR2, and NCLOB data types support Unicode data only. You can use either
the UTF8 or the AL16UTF16 character set. The default is AL16UTF16.

Oracle recommends using SQL CHAR, VARCHAR2, and CLOB data types in AL32UTF8 database
to store Unicode character data. Use of SQL NCHAR, NVARCHAR2, and NCLOB should be
considered only if you must use a database whose database character set is not AL32UTF8.

See Also:

"Supporting Multilingual Databases with Unicode"

2.3.9 Summary of Supported Data Types
The following table lists the data types that are supported for different encoding schemes.

Table 2-6 SQL Data Types Supported for Encoding Schemes

Data Type Single Byte Multibyte Non-Unicode Multibyte Unicode

CHAR Yes Yes Yes

VARCHAR2 Yes Yes Yes

NCHAR No No Yes

NVARCHAR2 No No Yes

BLOB Yes Yes Yes

CLOB Yes Yes Yes

LONG Yes Yes Yes

NCLOB No No Yes

Note:

BLOBs process characters as a series of byte sequences. The data is not subject to
any NLS-sensitive operations.

The following table lists the SQL data types that are supported for abstract data types.

Table 2-7 Abstract Data Type Support for SQL Data Types

Abstract Data Type CHAR NCHAR BLOB CLOB NCLOB

Object Yes Yes Yes Yes Yes

Collection Yes Yes Yes Yes Yes

You can create an abstract data type with the NCHAR attribute as follows:

Chapter 2
Choosing an Oracle Database Character Set

2-16

SQL> CREATE TYPE tp1 AS OBJECT (a NCHAR(10));
Type created.
SQL> CREATE TABLE t1 (a tp1);
Table created.

See Also:

• Oracle Database Object-Relational Developer's Guide for more information about
Oracle objects

• Database PL/SQL Language Reference for more information about Oracle
collections

2.4 Choosing a Database Character Set for a Multitenant
Container Database

Starting with Oracle Database 12c Release 2 (12.2), pluggable databases (PDBs) in a
multitenant container database (CDB) can have different database character sets and different
national character sets. The databases or PDB candidates that can be plugged into a CDB can
be traditional independent databases or existing PDBs unplugged from other CDBs or newly
created PDBs in the CDB.

Note:

The character set of the CDB root is considered as the character set of the whole
CDB.

The following scenarios may occur depending upon the database character set of the PDB
candidate that needs to be plugged into a CDB:

• If the PDB candidate is an application PDB to be plugged into an application root:

– If the database character set of the PDB candidate is the same as the database
character set of the application root, the plug-in operation succeeds (as far as the
database character set is concerned).

– If the database character set of the PDB candidate is plug compatible with the
database character set of the application root, that is, the database character set of the
PDB candidate is a binary subset of the database character set of the application root
and both are single-byte or both are multibyte, then the database character set of the
PDB candidate is automatically changed to the database character set of the
application root when the PDB candidate is opened for the first time and the plug-in
operation succeeds.

– If the database character set of the PDB candidate is not plug compatible with the
database character set of the application root (when none of the above two scenarios
apply), then the plug-in operation succeeds. But in this case the newly plugged-in PDB
can be opened only in the restricted mode for performing administrative tasks and
cannot be used for production. Unless you migrate the database character set of the
new PDB to the database character set of the application root, the new PDB is
unusable.

Chapter 2
Choosing a Database Character Set for a Multitenant Container Database

2-17

• If the PDB candidate is to be plugged directly into the CDB root:

– If the database character set of the PDB candidate is the same as the database
character set of the CDB, then the plug-in operation succeeds (as far as the database
character set is concerned).

– If the database character set of the CDB is AL32UTF8, then the plug-in operation
succeeds regardless of the database character set of the PDB candidate.

– If the database character set of the PDB candidate is plug compatible with the
database character set of the CDB, that is, the database character set of the PDB
candidate is a binary subset of the database character set of the CDB and both are
single-byte or both are multibyte, then the database character set of the PDB
candidate is automatically changed to the database character set of the CDB when the
PDB candidate is opened for the first time and the plug-in operation succeeds.

– If the database character set of the PDB candidate is not plug compatible with the
database character set of the CDB, that is, when none of the last three scenarios
mentioned above apply, then the plug-in operation succeeds. But, in this case the
newly plugged-in PDB can be opened only in the restricted mode for performing
administrative tasks and cannot be used for production. Unless you migrate the
database character set of the new PDB to the database character set of the CDB, the
new PDB is unusable.

See Also:

"Subsets and Supersets" for more information about binary subset and binary
superset of a character set.

The following scenarios may occur depending upon the national character set of the PDB
candidate that needs to be plugged into a CDB:

• If the PDB candidate is an application PDB to be plugged into an application root:

– If the national character set of the PDB candidate is the same as the national character
set of the application root, then the plug-in operation succeeds (as far as the national
character set is concerned).

– If the national character set of the PDB candidate is not the same as the national
character set of the application root, then the plug-in operation succeeds. But, in this
case the newly plugged-in PDB can be opened only in the restricted mode for
performing administrative tasks and cannot be used for production. Unless you migrate
the national character set of the new PDB to the national character set of the
application root, the new PDB is unusable.

• If the PDB candidate is to be plugged directly into the CDB root, then the plug-in operation
succeeds (as far as the national character set is concerned).

Chapter 2
Choosing a Database Character Set for a Multitenant Container Database

2-18

Note:

• When a PDB character set is different from the CDB character set, there may be
data truncation, if the column widths of CDB views and V$ views are not able to
accommodate the PDB data that has expanded in length during the character set
conversion.

• As UTF8 and AL32UTF8 have different maximum character widths (three versus
four bytes per character), the automatic change of UTF8 to AL32UTF8 during plug-
in operation will change implicit maximum byte lengths of columns with character
length semantics. This change may fail, if there are functional indexes, virtual
columns, bitmap join indexes, domain indexes, partitioning keys, sub-partitioning
keys, or cluster keys defined on those columns. The plug-in operation may also
fail, if a character length semantics column is part of an index key, and the index
key exceeds the size limit (around 70% of the index block size) after the
character set change. You must make sure that all the offending objects are
removed from a database before it is plugged into a CDB. You can recreate
those offending objects in the database after the database is plugged into a CDB.

Because of these restrictions, Oracle recommends the following when selecting character sets
for CDBs:

• For all new multitenant deployments, use AL32UTF8 as the database character set and
AL16UTF16 as the national character set for a CDB.

• Migrate your existing databases to AL32UTF8 database character set before consolidation
and then consolidate the databases into one or more AL32UTF8 CDBs, depending on your
needs. You can use the Oracle Database Migration Assistant for Unicode software to
migrate a non-CDB to AL32UTF8 database character set.

See Also:

• Oracle Database Concepts and Oracle Multitenant Administrator's Guide for
more information about CDBs, PDBs, and application containers.

• Oracle Database Migration Assistant for Unicode Guide for more information
about migrating a non-Unicode database character set to a Unicode database
character set.

2.5 Changing the Character Set After Database Creation
You may want to change the database character set after the database has been created. For
example, you may find that the number of languages that must be supported in your database
has increased, and you therefore want to migrate to Unicode character set AL32UTF8.

As character type data in the database must be converted to Unicode, in most cases, you will
encounter challenges when you change the database character set to AL32UTF8. For
example, CHAR and VARCHAR2 column data may exceed the declared column length. Character
data may be lost when it is converted to Unicode if it contains invalid characters.

Chapter 2
Changing the Character Set After Database Creation

2-19

Before changing the database character set, it is important to identify all problems and
carefully plan the data migration. Oracle recommends using the Database Migration Assistant
for Unicode to change the database character set to AL32UTF8.

Note:

Starting from Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database, then
the default database character set used is the Unicode character set AL32UTF8.

See Also:

Oracle Database Migration Assistant for Unicode Guide for more information about
how to change character sets

2.6 Monolingual Database Scenario
The simplest example of a database configuration is a client and a server that run in the same
language environment and use the same character set. This monolingual scenario has the
advantage of fast response because the overhead associated with character set conversion is
avoided. The following figure shows a database server and a client that use the same
character set. The Japanese client and the server both use the JA16EUC character set.

Figure 2-3 Monolingual Database Scenario

Unix
(JA16EUC)

Japanese
Server

(JA16EUC)

You can also use a multitier architecture. The following figure shows an application server
between the database server and the client. The application server and the database server
use the same character set in a monolingual scenario. The server, the application server, and
the client use the JA16EUC character set.

Figure 2-4 Multitier Monolingual Database Scenario

BrowserJapanese
Server

(JA16EUC)

Application
Server

(JA16EUC)

Chapter 2
Monolingual Database Scenario

2-20

2.6.1 Character Set Conversion in a Monolingual Scenario
Character set conversion may be required in a client/server environment if a client application
resides on a different platform than the server and if the platforms do not use the same
character encoding schemes. Character data passed between client and server must be
converted between the two encoding schemes. Character conversion occurs automatically and
transparently through Oracle Net.

You can convert between any two character sets. The following figure shows a server and one
client with the JA16EUC Japanese character set. The other client uses the JA16SJIS
Japanese character set.

Figure 2-5 Character Set Conversion

Unix
(JA16EUC)

Windows
(JA16SJIS)

Character
Conversion

Japanese
Server

(JA16EUC)

When a target character set does not contain all of the characters in the source data,
replacement characters are used. If, for example, a server uses US7ASCII and a German
client uses WE8ISO8859P1, then the German character ß is replaced with ? and ä is replaced
with a.

Replacement characters may be defined for specific characters as part of a character set
definition. When a specific replacement character is not defined, a default replacement
character is used. To avoid the use of replacement characters when converting from a client
character set to a database character set, the server character set should be a superset of all
the client character sets.

The following figure shows that data loss occurs when the database character set does not
include all of the characters in the client character set. The database character set is
US7ASCII. The client's character set is WE8MSWIN1252, and the language used by the client
is German. When the client inserts a string that contains ß, the database replaces ß with ?,
resulting in lost data.

Chapter 2
Monolingual Database Scenario

2-21

Figure 2-6 Data Loss During Character Conversion

German
Windows

(WE8MSWIN1252)

Character
Conversion

American
Database

Server
(US7ASCII)

?

If German data is expected to be stored on the server, then a database character set that
supports German characters should be used for both the server and the client to avoid data
loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set, conversion can
introduce noticeable overhead. Carefully evaluate your situation and choose character sets to
avoid conversion as much as possible.

2.7 Multilingual Database Scenario
If you need multilingual support, then use Unicode AL32UTF8 for the server database
character set.

Note:

Starting from Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database, then
the default database character set used is the Unicode character set AL32UTF8.

Unicode has two major encoding schemes:

• UTF-16: Each character is either 2 or 4 bytes long.

• UTF-8: Each character takes 1 to 4 bytes to store.

Oracle Database provides support for UTF-8 as a database character set and both UTF-8 and
UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character set
introduces very little overhead.

Chapter 2
Multilingual Database Scenario

2-22

Conversion between UTF-8 and any multibyte character set has some overhead. There is no
data loss from conversion, with the following exceptions:

• Some multibyte character sets do not support user-defined characters during character set
conversion to and from UTF-8.

• Some Unicode characters are mapped to more than one character in another character
set. For example, one Unicode character is mapped to three characters in the JA16SJIS
character set. This means that a round-trip conversion may not result in the original
JA16SJIS character.

The following figure shows a server that uses the AL32UTF8 Oracle Database character set
that is based on the Unicode UTF-8 character set.

Figure 2-7 Multilingual Support Scenario in a Client/Server Configuration

Japanese
Client

(JA16SJIS)

German
Client

(WE8DEC)

French
Client

(WE8ISO8859P1)

Japanese
Client

(AL32UTF8)

Character
Conversion

Character
Conversion

No Character
Conversion

Character
Conversion

Unicode
Database

(AL32UTF8)

There are four clients:

• A French client that uses the WE8ISO8859P1 Oracle Database character set

• A German client that uses the WE8DEC character set

• A Japanese client that uses the AL32UTF8 character set

• A Japanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server except for the
AL32UTF8 client, but there is no data loss because AL32UTF8 is a universal character set. If

Chapter 2
Multilingual Database Scenario

2-23

the German client tries to retrieve data from one of the Japanese clients, then all of the
Japanese characters in the data are lost during the character set conversion.

The following figure shows a Unicode solution for a multitier configuration.

Figure 2-8 Multitier Multilingual Support Scenario in a Multitier Configuration

Browser

German
Client

Browser

Japanese
Client

Browser

French
Client

Unicode
Database

(AL32UTF8)

Application
Server
(UTF-8)

(UTF-8)

(UTF-8)

(UTF-8)

The database, the application server, and each client use the AL32UTF8 character set. This
eliminates the need for character conversion even though the clients are French, German, and
Japanese.

See Also:

"Supporting Multilingual Databases with Unicode"

Chapter 2
Multilingual Database Scenario

2-24

3
Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the following
topics:

• Setting NLS Parameters

• Choosing a Locale with the NLS_LANG Environment Variable

• Character Set Parameter

• NLS Database Parameters

• Language and Territory Parameters

• Date and Time Parameters

• Calendar Definitions

• Numeric and List Parameters

• Monetary Parameters

• Linguistic Sort Parameters

• Character Set Conversion Parameter

• Length Semantics

3.1 Setting NLS Parameters
NLS (National Language Support) parameters determine the locale-specific behavior on both
the client and the server. NLS parameters can be specified in the following ways:

• As initialization parameters on the server

You can include parameters in the initialization parameter file to specify a default session
NLS environment. These settings have no effect on the client side; they control only the
server's behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"
• As environment variables on the client

You can use NLS environment variables, which may be platform-dependent, to specify
locale-dependent behavior for the client and also to override the default values set for the
session in the initialization parameter file. For example, on a UNIX system:

% setenv NLS_SORT FRENCH
• With the ALTER SESSION statement

You can use NLS parameters that are set in an ALTER SESSION statement to override the
default values that are set for the session in the initialization parameter file or set by the
client with environment variables.

SQL> ALTER SESSION SET NLS_SORT = FRENCH;

3-1

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

• In SQL functions

You can use NLS parameters explicitly to hardcode NLS behavior within a SQL function.
This practice overrides the default values that are set for the session in the initialization
parameter file, set for the client with environment variables, or set for the session by the
ALTER SESSION statement. For example:

TO_CHAR(hiredate, 'DD/MON/YYYY', 'nls_date_language = FRENCH')

See Also:

Oracle Database SQL Language Reference for more information about SQL
functions, including the TO_CHAR function

Table 3-1 shows the precedence order of the different methods of setting NLS parameters.
Higher priority settings override lower priority settings. For example, a value specified in the
initialization parameter file can be overridden by a value explicitly set in a SQL function.

Default values have the lowest priority. They are set at the time of database creation and
cannot be changed. They can be overridden by any other method, with the following exception:
Default values are always used when evaluating expressions in virtual columns, CHECK
constraints, and fine-grained auditing (FGA) rules. These expressions must have deterministic
results for the duration of their existence and cannot depend on NLS parameter settings that
may change.

Table 3-1 Methods of Setting NLS Parameters and Their Priorities

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file

5 (lowest) Default value specified when the database was created

Table 3-2 lists the available NLS parameters. Because the SQL function NLS parameters can
be specified only with specific functions, the table does not show the SQL function scope. This
table shows the following values for Scope:

I = Initialization Parameter File
E = Environment Variable
A = ALTER SESSION

Chapter 3
Setting NLS Parameters

3-2

Table 3-2 NLS Parameters

Parameter Description Default Scope

NLS_CALENDAR Calendar system Gregorian I, E, A

NLS_COMP SQL, PL/SQL operator
comparison

BINARY I, E, A

NLS_CREDIT Credit accounting symbol Derived from
NLS_TERRITORY

E

NLS_CURRENCY Local currency symbol Derived from
NLS_TERRITORY

I, E, A

NLS_DATE_FORMAT Date format Derived from
NLS_TERRITORY

I, E, A

NLS_DATE_LANGUAGE Language for day and month
names

Derived from NLS_LANGUAGE I, E, A

NLS_DEBIT Debit accounting symbol Derived from
NLS_TERRITORY

E

NLS_DUAL_CURRENCY Dual currency symbol Derived from
NLS_TERRITORY

I, E, A

NLS_ISO_CURRENCY ISO international currency
symbol

Derived from
NLS_TERRITORY

I, E, A

NLS_LANG Language, territory, character
set

AMERICAN_AMERICA.
US7ASCII

E

NLS_LANGUAGE Language Derived from NLS_LANG I, A

NLS_LENGTH_SEMANTICS How strings are treated BYTE I, E, A

NLS_LIST_SEPARATOR Character that separates
items in a list

Derived from
NLS_TERRITORY

E

NLS_MONETARY_CHARACTERS Monetary symbol for dollar
and cents (or their
equivalents)

Derived from
NLS_TERRITORY

E

NLS_NCHAR_CONV_EXCP Reports data loss during a
character type conversion

FALSE I, A

NLS_NUMERIC_CHARACTERS Decimal character and group
separator

Derived from
NLS_TERRITORY

I, E, A

NLS_SORT Collation Derived from NLS_LANGUAGE I, E, A

NLS_TERRITORY Territory Derived from NLS_LANG I, A

NLS_TIMESTAMP_FORMAT Timestamp Derived from
NLS_TERRITORY

I, E, A

NLS_TIMESTAMP_TZ_FORMAT Timestamp with time zone Derived from
NLS_TERRITORY

I, E, A

3.2 Choosing a Locale with the NLS_LANG Environment Variable
A locale is a linguistic and cultural environment in which a system or program is running.
Setting the NLS_LANG environment parameter is the simplest way to specify locale behavior for
Oracle Database software. It sets the language and territory used by the client application and

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3-3

the database server. It also sets the client's character set, which is the character set for data
entered or displayed by a client program.

NLS_LANG is set as an environment variable on UNIX platforms. NLS_LANG is set in the registry
on Windows platforms.

The NLS_LANG parameter has three components: language, territory, and character set. Specify
it in the following format, including the punctuation:

NLS_LANG = language_territory.charset

For example, if the Oracle Universal Installer does not populate NLS_LANG, then its value by
default is AMERICAN_AMERICA.US7ASCII. The language is AMERICAN, the territory is AMERICA, and
the character set is US7ASCII. The values in NLS_LANG and other NLS parameters are case-
insensitive.

Each component of the NLS_LANG parameter controls the operation of a subset of globalization
support features:

• language

Specifies conventions such as the language used for Oracle Database messages, sorting,
day names, and month names. Each supported language has a unique name; for example,
AMERICAN, FRENCH, or GERMAN. The language argument specifies default values for the
territory and character set arguments. If the language is not specified, then the value
defaults to AMERICAN.

• territory

Specifies conventions such as the default date, monetary, and numeric formats. Each
supported territory has a unique name; for example, AMERICA, FRANCE, or CANADA. If the
territory is not specified, then the value is derived from the language value.

• charset

Specifies the character set used by the client application (normally the Oracle Database
character set that corresponds to the user's terminal character set or the OS character
set). Each supported character set has a unique acronym, for example, US7ASCII,
WE8ISO8859P1, WE8DEC, WE8MSWIN1252, or JA16EUC. Each language has a default character
set associated with it.

Note:

All components of the NLS_LANG definition are optional; any item that is not
specified uses its default value. If you specify territory or character set, then you
must include the preceding delimiter (underscore (_) for territory, period (.) for
character set). Otherwise, the value is parsed as a language name.

For example, to set only the territory portion of NLS_LANG, use the following
format: NLS_LANG=_JAPAN

The three components of NLS_LANG can be specified in many combinations, as in the following
examples:

NLS_LANG = AMERICAN_AMERICA.WE8MSWIN1252

NLS_LANG = FRENCH_CANADA.WE8ISO8859P1

NLS_LANG = JAPANESE_JAPAN.JA16EUC

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3-4

Note that illogical combinations can be set but do not work properly. For example, the following
specification tries to support Japanese by using a Western European character set:

NLS_LANG = JAPANESE_JAPAN.WE8ISO8859P1

Because the WE8ISO8859P1 character set does not support any Japanese characters, you
cannot store or display Japanese data if you use this definition for NLS_LANG.

The rest of this section includes the following topics:

• Specifying the Value of NLS_LANG

• Overriding Language and Territory Specifications

• Locale Variants

See Also:

• "Locale Data" for a complete list of supported languages, territories, and
character sets

• Your operating system documentation for information about additional
globalization settings that may be necessary for your platform

3.2.1 Specifying the Value of NLS_LANG
In a UNIX operating system C-shell session, you can specify the value of NLS_LANG by entering
a statement similar to the following example:

% setenv NLS_LANG FRENCH_FRANCE.WE8ISO8859P1

Because NLS_LANG is an environment variable, it is read by the client application at startup
time. The client communicates the information defined by NLS_LANG to the server when it
connects to the database server.

The following examples show how date and number formats are affected by the NLS_LANG
parameter.

Example 3-1 Setting NLS_LANG to American_America.WE8ISO8859P1

Set NLS_LANG so that the language is AMERICAN, the territory is AMERICA, and the Oracle
Database character set is WE8ISO8859P1:

% setenv NLS_LANG American_America.WE8ISO8859P1

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
...
Sciarra 30-SEP-05 962.5
Urman 07-MAR-06 975
Popp 07-DEC-07 862.5
...

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3-5

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANG so that the language is FRENCH, the territory is FRANCE, and the Oracle Database
character set is WE8ISO8859P1:

% setenv NLS_LANG French_France.WE8ISO8859P1

Then the query shown in Example 3-1 returns the following output:

LAST_NAME HIRE_DATE SALARY
-------------- --------- ---------
...
Sciarra 30/09/05 962,5
Urman 07/03/06 975
Popp 07/12/07 862,5
...

Note that the date format and the number format have changed. The numbers have not
changed, because the underlying data is the same.

3.2.2 Overriding Language and Territory Specifications
The NLS_LANG parameter sets the language and territory environment used by both the server
session (for example, SQL command execution) and the client application (for example,
display formatting in Oracle Database tools). Using this parameter ensures that the language
environments of both the database and the client application are automatically the same.

The language and territory components of the NLS_LANG parameter determine the default
values for other detailed NLS parameters, such as date format, numeric characters, and
linguistic sorting. Each of these detailed parameters can be set in the client environment to
override the default values if the NLS_LANG parameter has already been set.

If the NLS_LANG parameter is not set, then the server session environment remains initialized
with values of NLS_LANGUAGE, NLS_TERRITORY, and other NLS instance parameters from the
initialization parameter file. You can modify these parameters and restart the instance to
change the defaults.

You might want to modify the NLS environment dynamically during the session. To do so, you
can use the ALTER SESSION statement to change NLS_LANGUAGE, NLS_TERRITORY, and other NLS
parameters.

Note:

You cannot modify the setting for the client character set with the ALTER SESSION
statement.

The ALTER SESSION statement modifies only the session environment. The local client NLS
environment is not modified, unless the client explicitly retrieves the new settings and modifies
its local environment.

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3-6

See Also:

• "Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session"

• Oracle Database SQL Language Reference

3.2.3 Locale Variants
Before Oracle Database 10g, Oracle defined language and territory definitions separately. This
resulted in the definition of a territory being independent of the language setting of the user.
Since Oracle Database 10g, some territories can have different date, time, number, and
monetary formats based on the language setting of a user. This type of language-dependent
territory definition is called a locale variant.

For the variant to work properly, both NLS_TERRITORY and NLS_LANGUAGE must be specified.

The following table shows the territories that have been enhanced to support variations.

Table 3-3 Oracle Database Locale Variants

Oracle Database Territory Oracle Database Language

BELGIUM DUTCH

BELGIUM FRENCH

BELGIUM GERMAN

CANADA FRENCH

CANADA ENGLISH

DJIBOUTI FRENCH

DJIBOUTI ARABIC

FINLAND FINLAND

FINLAND SWEDISH

HONG KONG TRADITIONAL CHINESE

HONG KONG ENGLISH

INDIA ENGLISH

INDIA ASSAMESE

INDIA BANGLA

INDIA GUJARATI

INDIA HINDI

INDIA KANNADA

INDIA MALAYALAM

INDIA MARATHI

INDIA ORIYA

INDIA PUNJABI

INDIA TAMIL

INDIA TELUGU

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3-7

Table 3-3 (Cont.) Oracle Database Locale Variants

Oracle Database Territory Oracle Database Language

LUXEMBOURG GERMAN

LUXEMBOURG FRENCH

SINGAPORE ENGLISH

SINGAPORE MALAY

SINGAPORE SIMPLIFIED CHINESE

SINGAPORE TAMIL

SWITZERLAND GERMAN

SWITZERLAND FRENCH

SWITZERLAND ITALIAN

3.2.4 Should the NLS_LANG Setting Match the Database Character Set?
The NLS_LANG character set should reflect the setting of the operating system character set of
the client. For example, if the database character set is AL32UTF8 and the client is running on
a Windows operating system, then you should not set AL32UTF8 as the client character set in
the NLS_LANG parameter because there are no UTF-8 WIN32 clients. Instead, the NLS_LANG
setting should reflect the code page of the client. For example, on an English Windows client,
the code page is 1252. An appropriate setting for NLS_LANG is
AMERICAN_AMERICA.WE8MSWIN1252.

Setting NLS_LANG correctly enables proper conversion from the client operating system
character set to the database character set. When these settings are the same, Oracle
Database assumes that the data being sent or received is encoded in the same character set
as the database character set, so character set validation or conversion may not be performed.
This can lead to corrupt data if the client code page and the database character set are
different and conversions are necessary.

See Also:

Oracle Database Installation Guide for Microsoft Windows for more information about
commonly used values of the NLS_LANG parameter in Windows

3.3 Character Set Parameter
Oracle provides an environment variable, NLS_OS_CHARSET, for handling the situation where the
client OS character set is different from the Oracle NLS client character set.

3.3.1 NLS_OS_CHARSET Environment Variable
The NLS_OS_CHARSET environment variable should be set on Oracle client installations if the
client OS character set is different from the Oracle NLS client character set specified by the
NLS_LANG environment variable. The client OS character set is the character set used to
represent characters in the OS fields like machine name, program executable name and
logged on user name. On UNIX platforms, this is usually the character set specified in the LANG

Chapter 3
Character Set Parameter

3-8

environment variable or the LC_ALL environment variable. An example of setting
NLS_OS_CHARSET would be if the locale charset specified in LANG or LC_ALL in a Linux client
could be zh_CN (simplified Chinese) and the Oracle client application charset specified in
NLS_LANG could be UTF8. In this case, the NLS_OS_CHARSET variable must be set to the
equivalent Oracle charset ZHT16GBK.

The NLS_OS_CHARSET environment variable must be set to the Oracle character set name
corresponding to the client OS character set.

If NLS_LANG corresponds to the OS character set, NLS_OS_CHARSET does not need to be set.
NLS_OS_CHARSET does not need to be set and is ignored on Windows platforms.

3.4 NLS Database Parameters
When a new database is created during the execution of the CREATE DATABASE statement, the
NLS-related database configuration is established. The current NLS instance parameters are
stored in the data dictionary along with the database and national character sets. The NLS
instance parameters are read from the initialization parameter file at instance startup.

You can find the values for NLS parameters by using:

• NLS Data Dictionary Views

• NLS Dynamic Performance Views

• OCINlsGetInfo() Function

3.4.1 NLS Data Dictionary Views
Applications can check the session, instance, and database NLS parameters by querying the
following data dictionary views:

• NLS_SESSION_PARAMETERS shows the NLS parameters and their values for the session that
is querying the view. It does not show information about the character set.

• NLS_INSTANCE_PARAMETERS shows the current NLS instance parameters that have been
explicitly set and the values of the NLS instance parameters.

• NLS_DATABASE_PARAMETERS shows the values of the NLS parameters for the database. The
values are stored in the database.

3.4.2 NLS Dynamic Performance Views
Applications can check the following NLS dynamic performance views:

• V$NLS_VALID_VALUES lists values for the following NLS parameters:

NLS_LANGUAGE
NLS_SORT
NLS_TERRITORY
NLS_CHARACTERSET

• V$NLS_PARAMETERS shows current values of the following NLS parameters:

NLS_CHARACTERSET
NLS_NCHAR_CHARACTERSET
NLS_NUMERIC_CHARACTERS

Chapter 3
NLS Database Parameters

3-9

NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_TIME_TZ_FORMAT
NLS_TIMESTAMP_FORMAT
NLS_TIMESTAMP_TZ_FORMAT
NLS_CALENDAR
NLS_LANGUAGE
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_TERRITORY
NLS_SORT
NLS_COMP
NLS_LENGTH_SEMANTICS
NLS_NCHAR_CONV_EXP

See Also:

Oracle Database Reference

3.4.3 OCINlsGetInfo() Function
User applications can query client NLS settings with the OCINlsGetInfo() function.

See Also:

"Getting Locale Information in OCI" for the description of OCINlsGetInfo()

3.5 Language and Territory Parameters
This section contains information about the following parameters:

• NLS_LANGUAGE

• NLS_TERRITORY

3.5.1 NLS_LANGUAGE

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value Derived from NLS_LANG
Range of values Any valid language name

NLS_LANGUAGE specifies the default conventions for the following session characteristics:

• Language for server messages

Chapter 3
Language and Territory Parameters

3-10

• Language for day and month names and their abbreviations (specified in the SQL
functions TO_CHAR and TO_DATE)

• Symbols for equivalents of AM, PM, AD, and BC. (A.M., P.M., A.D., and B.C. are valid only
if NLS_LANGUAGE is set to AMERICAN.)

• Default sorting sequence for character data when ORDER BY is specified. (GROUP BY uses a
binary sort unless ORDER BY is specified.)

• Writing direction

• Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS_LANGUAGE in the initialization parameter file is the default for all
sessions in that instance. For example, to specify the default session language as French, the
parameter should be set as follows:

NLS_LANGUAGE = FRENCH

Consider the following server message:

ORA-00942: table or view does not exist

When the language is French, the server message appears as follows:

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in
the $ORACLE_HOME/product_name/mesg directory, or the equivalent for your operating system.
Multiple versions of these files can exist, one for each supported language, using the following
file name convention:

<product_id><language_abbrev>.MSB

For example, the file containing the server messages in French is called oraf.msb, because
ORA is the product ID (<product_id>) and F is the language abbreviation (<language_abbrev>)
for French. The product_name is rdbms, so it is in the $ORACLE_HOME/rdbms/mesg directory.

If NLS_LANG is specified in the client environment, then the value of NLS_LANGUAGE in the
initialization parameter file is overridden at connection time.

Messages are stored in these files in one specific character set, depending on the language
and the operating system. If this character set is different from the database character set, then
message text is automatically converted to the database character set. If necessary, it is then
converted to the client character set if the client character set is different from the database
character set. Hence, messages are displayed correctly at the user's terminal, subject to the
limitations of character set conversion.

The language-specific binary message files that are actually installed depend on the languages
that the user specifies during product installation. Only the English binary message file and the
language-specific binary message files specified by the user are installed.

The default value of NLS_LANGUAGE may be specific to the operating system. You can alter the
NLS_LANGUAGE parameter by changing its value in the initialization parameter file and then
restarting the instance.

Chapter 3
Language and Territory Parameters

3-11

See Also:

Your operating system-specific Oracle Database documentation for more information
about the default value of NLS_LANGUAGE

All messages and text should be in the same language. For example, when you run an Oracle
Developer application, the messages and boilerplate text that you see originate from three
sources:

• Messages from the server

• Messages and boilerplate text generated by Oracle Forms

• Messages and boilerplate text generated by the application

NLS_LANGUAGE determines the language used for the first two kinds of text. The application is
responsible for the language used in its messages and boilerplate text.

See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session" for more information about using the ALTER SESSION statement

The following examples show behavior that results from setting NLS_LANGUAGE to different
values.

Example 3-3 NLS_LANGUAGE=ITALIAN

Use the ALTER SESSION statement to set NLS_LANGUAGE to Italian:

SQL> ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST_NAME HIRE_DATE SALARY
-------------- --------- ----------
...
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5
...

Note that the month name abbreviations are in Italian.

Example 3-4 NLS_LANGUAGE=GERMAN

Use the ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS_LANGUAGE=German;

Enter the same SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

Chapter 3
Language and Territory Parameters

3-12

You should see results similar to the following output:

LAST_NAME HIRE_DATE SALARY
-------------- --------- ----------
...
Sciarra 30-SEP-05 962.5
Urman 07-MRZ-06 975
Popp 07-DEZ-07 862.5
...

Note that the language of the month abbreviations has changed.

3.5.2 NLS_TERRITORY

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value Derived from NLS_LANG
Range of values Any valid territory name

NLS_TERRITORY specifies the conventions for the following default date and numeric formatting
characteristics:

• Date format

• Decimal character and group separator

• Local currency symbol

• ISO currency symbol

• Dual currency symbol

• First day of the week

• Credit and debit symbols

• ISO week flag

• List separator

The value specified for NLS_TERRITORY in the initialization parameter file is the default for the
instance. For example, to specify the default as France, the parameter should be set as
follows:

NLS_TERRITORY = FRANCE

When the territory is FRANCE, numbers are formatted using a comma as the decimal character.

You can alter the NLS_TERRITORY parameter by changing the value in the initialization
parameter file and then restarting the instance. The default value of NLS_TERRITORY can be
specific to the operating system.

If NLS_LANG is specified in the client environment, then the value of NLS_TERRITORY in the
initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORY value in an ALTER SESSION statement. Modifying NLS_TERRITORY resets all
derived NLS session parameters to default values for the new territory.

Chapter 3
Language and Territory Parameters

3-13

To change the territory to France during a session, issue the following ALTER SESSION
statement:

SQL> ALTER SESSION SET NLS_TERRITORY = France;

See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session" for more information about using the ALTER SESSION statement

The following examples show behavior that results from different settings of NLS_TERRITORY
and NLS_LANGUAGE.

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA

Enter the following SELECT statement:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

When NLS_TERRITORY is set to AMERICA and NLS_LANGUAGE is set to AMERICAN, results similar to
the following should appear:

SALARY

$24,000.00
$17,000.00
$17,000.00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the territory to Germany:

SQL> ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to €. The numbers have not changed
because the underlying data is the same.

Example 3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS_LANGUAGE = German;
Session wurde geändert.

Note that the server message now appears in German.

Chapter 3
Language and Territory Parameters

3-14

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see the same results as in Example 3-6:

SALARY

€24.000,00
€17.000,00
€17.000,00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA

Use an ALTER SESSION statement to change the territory to America:

SQL> ALTER SESSION SET NLS_TERRITORY = America;
Session wurde geändert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

$24,000.00
$17,000.00
$17,000.00

Note that the currency symbol changed from € to $ because the territory changed from
Germany to America.

3.5.2.1 Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY
During a Session

Default values for NLS_LANGUAGE and NLS_TERRITORY and default values for specific formatting
parameters can be overridden during a session by using the ALTER SESSION statement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WE8DEC

Set the NLS_LANG environment variable so that the language is Italian, the territory is Italy, and
the character set is WE8DEC:

% setenv NLS_LANG Italian_Italy.WE8DEC

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST_NAME HIRE_DATE SALARY
-------------- --------- ----------
...
Sciarra 30-SET-05 962,5
Urman 07-MAR-06 975
Popp 07-DIC-07 862,5
...

Chapter 3
Language and Territory Parameters

3-15

Note the language of the month abbreviations and the decimal character.

Example 3-10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the decimal
character:

SQL> ALTER SESSION SET NLS_LANGUAGE=german;

Session wurde geändert.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD.MON.YY';

Session wurde geändert.

SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='.,';

Session wurde geändert.

Enter the SELECT statement shown in Example 3-9:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST_NAME HIRE_DATE SALARY
-------------- --------- ----------
...
Sciarra 30.SEP.05 962.5
Urman 07.MRZ.06 975
Popp 07.DEZ.07 862.5
...

Note that the language of the month abbreviations is German and the decimal character is a
period.

The behavior of the NLS_LANG environment variable implicitly determines the language
environment of the database for each session. When a session connects to a database, an
ALTER SESSION statement is automatically executed to set the values of the database
parameters NLS_LANGUAGE and NLS_TERRITORY to those specified by the language and
territory arguments of NLS_LANG. If NLS_LANG is not defined, then no implicit ALTER SESSION
statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all instances to which the
session connects, for both direct and indirect connections. If the values of NLS parameters are
changed explicitly with ALTER SESSION during a session, then the changes are propagated to all
instances to which that user session is connected.

3.6 Date and Time Parameters
Oracle Database enables you to control the display of date and time. This section contains the
following topics:

• Date Formats

• Time Formats

3.6.1 Date Formats
Different Oracle Database date formats are shown in the following table.

Chapter 3
Date and Time Parameters

3-16

Table 3-4 Date Formats

Country Description Example

Estonia dd.mm.yyyy 28.02.2003

Germany dd-mm-rr 28-02-03

Japan rr-mm-dd 03-02-28

UK dd-mon-rr 28-Feb-03

US dd-mon-rr 28-Feb-03

This section includes the following parameters:

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

3.6.1.1 NLS_DATE_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER SESSION
Default value Derived from NLS_TERRITORY
Range of values Any valid date format mask

The NLS_DATE_FORMAT parameter defines the default date format to use with the TO_CHAR and
TO_DATE functions. The NLS_TERRITORY parameter determines the default value of
NLS_DATE_FORMAT. The value of NLS_DATE_FORMAT can be any valid date format mask. For
example:

NLS_DATE_FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double quotes. Note that
when double quotes are included in the date format, the entire value must be enclosed by
single quotes. For example:

NLS_DATE_FORMAT = '"Date: "MM/DD/YYYY'

The value of NLS_DATE_FORMAT is stored in the internal date format. Each format element
occupies two bytes, and each string occupies the number of bytes in the string plus a
terminator byte. Also, the entire format mask has a two-byte terminator. For example,
"MM/DD/YY" occupies 14 bytes internally because there are three format elements (month,
day, and year), two 3-byte strings (the two slashes), and the two-byte terminator for the format
mask. The format for the value of NLS_DATE_FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by:

• Changing its value in the initialization parameter file and then restarting the instance

• Using an ALTER SESSION SET NLS_DATE_FORMAT statement

Chapter 3
Date and Time Parameters

3-17

See Also:

Oracle Database SQL Language Reference for more information about date
format elements and the ALTER SESSION statement

If a table or index is partitioned on a date column, and if the date format specified by
NLS_DATE_FORMAT does not specify the first two digits of the year, then you must use the
TO_DATE function with a 4-character format mask for the year. For example:

TO_DATE('11-jan-1997', 'dd-mon-yyyy')

See Also:

Oracle Database SQL Language Reference for more information about partitioning
tables and indexes and using TO_DATE

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include the following
line in the initialization parameter file:

NLS_DATE_FORMAT = "DD RM YYYY"

Enter the following SELECT statement:

SQL> SELECT TO_CHAR(SYSDATE) currdate FROM DUAL;

You should see the following output if today's date is February 12, 1997:

CURRDATE

12 II 1997

3.6.1.2 NLS_DATE_LANGUAGE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS_LANGUAGE
Range of values Any valid language name

The NLS_DATE_LANGUAGE parameter specifies the language for the day and month names
produced by the TO_CHAR and TO_DATE functions. NLS_DATE_LANGUAGE overrides the language
that is specified implicitly by NLS_LANGUAGE. NLS_DATE_LANGUAGE has the same syntax as the
NLS_LANGUAGE parameter, and all supported languages are valid values.

NLS_DATE_LANGUAGE also determines the language used for:

• Month and day abbreviations returned by the TO_CHAR and TO_DATE functions

• Month and day abbreviations used by the default date format (NLS_DATE_FORMAT)

Chapter 3
Date and Time Parameters

3-18

• Abbreviations for AM, PM, AD, and BC

See Also:

Oracle Database SQL Language Reference

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names

As an example of how to use NLS_DATE_LANGUAGE, set the date language to French:

SQL> ALTER SESSION SET NLS_DATE_LANGUAGE = FRENCH;

Enter a SELECT statement:

SQL> SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') FROM DUAL;

You should see results similar to the following output:

TO_CHAR(SYSDATE,'DAY:DDMONTHYYYY')
--
Vendredi:07 Décembre 2001

When numbers are spelled in words using the TO_CHAR function, the English spelling is always
used. For example, enter the following SELECT statement:

SQL> SELECT TO_CHAR(TO_DATE('12-Oct.-2001'),'Day: ddspth Month') FROM DUAL;

You should see results similar to the following output:

TO_CHAR(TO_DATE('12-OCT.-2001'),'DAY:DDSPTHMONTH')
--
Vendredi: twelfth Octobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS_DATE_LANGUAGE. Enter the following
SELECT statement:

SQL> SELECT TO_CHAR(SYSDATE, 'Dy:dd Mon yyyy') FROM DUAL;

You should see results similar to the following output:

TO_CHAR(SYSDATE,'DY:DDMO

Ve:07 Déc. 2001

Example 3-14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS_DATE_LANGUAGE. For
example, if the default date format is DD-MON-YYYY, then insert a date as follows:

SQL> INSERT INTO tablename VALUES ('12-Févr.-1997');

3.6.2 Time Formats
Different Oracle Database time formats are shown in the following table.

Chapter 3
Date and Time Parameters

3-19

Table 3-5 Time Formats

Country Description Example

Estonia hh24:mi:ss 13:50:23

Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

US hh:mi:ssxff am 1:50:23.555 PM

This section contains information about the following parameters:

• NLS_TIMESTAMP_FORMAT

• NLS_TIMESTAMP_TZ_FORMAT

See Also:

"Datetime Data Types and Time Zone Support"

3.6.2.1 NLS_TIMESTAMP_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS_TERRITORY
Range of values Any valid datetime format mask

NLS_TIMESTAMP_FORMAT defines the default date format for the TIMESTAMP and TIMESTAMP WITH
LOCAL TIME ZONE data types. The following example shows a value for NLS_TIMESTAMP_FORMAT:

NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

You can specify the value of NLS_TIMESTAMP_FORMAT by setting it in the initialization parameter
file. You can specify its value for a client as a client environment variable.

You can also alter the value of NLS_TIMESTAMP_FORMAT by:

• Changing its value in the initialization parameter file and then restarting the instance

• Using the ALTER SESSION SET NLS_TIMESTAMP_FORMAT statement

See Also:

Oracle Database SQL Language Reference for more information about the
TO_TIMESTAMP function and the ALTER SESSION statement

Chapter 3
Date and Time Parameters

3-20

Example 3-15 Timestamp Format

SQL> SELECT TO_TIMESTAMP('11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff') FROM
DUAL;

You should see results similar to the following output:

TO_TIMESTAMP('11-NOV-200001:00:00.336','DD-MON-YYYYHH:MI:SS.FF')

2000-11-11 01:00:00.336000000

3.6.2.2 NLS_TIMESTAMP_TZ_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER SESSION
Default value Derived from NLS_TERRITORY
Range of values Any valid datetime format mask

NLS_TIMESTAMP_TZ_FORMAT defines the default date format for the TIMESTAMP and TIMESTAMP
WITH LOCAL TIME ZONE data types. It is used with the TO_CHAR and TO_TIMESTAMP_TZ functions.

You can specify the value of NLS_TIMESTAMP_TZ_FORMAT by setting it in the initialization
parameter file. You can specify its value for a client as a client environment variable.

You can change the value of NLS_TIMESTAMP_TZ_FORMAT by:

• Changing its value in the initialization parameter file and then restarting the instance

• Using the ALTER SESSION statement.

See Also:

• Oracle Database SQL Language Reference for more information about the
TO_TIMESTAMP_TZ function and the ALTER SESSION statement

• "Choosing a Time Zone File" for more information about time zones

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT

The format value must be surrounded by quotation marks. For example:

NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

The following example of the TO_TIMESTAMP_TZ function uses the format value that was
specified for NLS_TIMESTAMP_TZ_FORMAT:

SQL> SELECT TO_TIMESTAMP_TZ('2000-08-20, 05:00:00.55 America/Los_Angeles', 'yyyy-mm-dd
hh:mi:ss.ff TZR') FROM DUAL;

You should see results similar to the following output:

TO_TIMESTAMP_TZ('2000-08-20,05:00:00.55AMERICA/LOS_ANGELES','YYYY-MM-DDHH:M

2000-08-20 05:00:00.550000000 -07:00

Chapter 3
Date and Time Parameters

3-21

3.7 Calendar Definitions
This section includes the following topics:

• Calendar Formats

• NLS_CALENDAR

3.7.1 Calendar Formats
The following calendar information is stored for each territory:

• First Day of the Week

• First Calendar Week of the Year

• Number of Days and Months in a Year

• First Year of Era

3.7.1.1 First Day of the Week
Some cultures consider Sunday to be the first day of the week. Others consider Monday to be
the first day of the week. A German calendar starts with Monday, as shown in the following
table.

Table 3-6 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So

- - - - - - 1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31 - - - - -

The first day of the week is determined by the NLS_TERRITORY parameter.

See Also:

"NLS_TERRITORY"

3.7.1.2 First Calendar Week of the Year
Some countries use week numbers for scheduling, planning, and bookkeeping. Oracle
Database supports this convention. In the ISO standard, the week number can be different
from the week number of the calendar year. For example, 1st Jan 1988 is in ISO week number
53 of 1987. An ISO week always starts on a Monday and ends on a Sunday.

Chapter 3
Calendar Definitions

3-22

• If January 1 falls on a Friday, Saturday, or Sunday, then the ISO week that includes
January 1 is the last week of the previous year, because most of the days in the week
belong to the previous year.

• If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the ISO week is
the first week of the new year, because most of the days in the week belong to the new
year.

To support the ISO standard, Oracle Database provides the IW date format element. It returns
the ISO week number.

The following table shows an example in which January 1 occurs in a week that has four or
more days in the first calendar week of the year. The week containing January 1 is the first ISO
week of 1998.

Table 3-7 First ISO Week of the Year: Example 1, January 1998

Mo Tu We Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 11 Second ISO week of 1998

12 13 14 15 16 17 18 Third ISO week of 1998

19 20 21 22 23 24 25 Fourth ISO week of 1998

26 27 28 29 30 31 - Fifth ISO week of 1998

The following table shows an example in which January 1 occurs in a week that has three or
fewer days in the first calendar week of the year. The week containing January 1 is the 53rd
ISO week of 1998, and the following week is the first ISO week of 1999.

Table 3-8 First ISO Week of the Year: Example 2, January 1999

Mo Tu We Th Fr Sa Su ISO Week

- - - - 1 2 3 Fifty-third ISO week of 1998

4 5 6 7 8 9 10 First ISO week of 1999

11 12 13 14 15 16 17 Second ISO week of 1999

18 19 20 21 22 23 24 Third ISO week of 1999

25 26 27 28 29 30 31 Fourth ISO week of 1999

The first calendar week of the year is determined by the NLS_TERRITORY parameter.

See Also:

"NLS_TERRITORY"

3.7.1.3 Number of Days and Months in a Year
Oracle Database supports six calendar systems in addition to Gregorian, the default:

• Japanese Imperial—uses the same number of months and days as Gregorian, but the year
starts with the beginning of each Imperial Era.

Chapter 3
Calendar Definitions

3-23

• ROC Official—uses the same number of months and days as Gregorian, but the year
starts with the founding of the Republic of China.

• Persian—has 31 days for each of the first six months. The next five months have 30 days
each. The last month has either 29 days or 30 days (leap year).

• Thai Buddha—uses a Buddhist calendar

• Arabic Hijrah—has 12 months with 354 or 355 days

• English Hijrah—has 12 months with 354 or 355 days

• Ethiopian—has 12 months of 30 days each, then a 13th month that is either five or six
days (leap year). The sixth day of the 13th month is added every four years.

The calendar system is specified by the NLS_CALENDAR parameter.

See Also:

"NLS_CALENDAR"

3.7.1.4 First Year of Era
The Islamic calendar and the Japanese Imperial calendar are based on the first year of an era.

3.7.1.4.1 Islamic Calendar
The Islamic calendar starts from the year of the Hegira.

3.7.1.4.2 Japanese Imperial Calendar
The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For example:

• January 8, 1989, through December 31, 1989, is the first year of the Heisei era (Heisei 1).

• 2018 is the thirtieth year of the Heisei era (Heisei 30).

• January 1, 2019, through April 30, 2019, is the thirty-first year of the Heisei era (Heisei 31).

• May 1, 2019, through December 31, 2019, is the first year of the Reiwa era (Reiwa 1).

• 2020 is the second year of the Reiwa era (Reiwa 2).

It should be noted that the Gregorian system is also widely understood in Japan. So, for
example, both 18 and Heisei 30 can be used to represent 2018.

3.7.2 NLS_CALENDAR

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value None, implies GREGORIAN
Range of values Any valid calendar format name

Chapter 3
Calendar Definitions

3-24

Many different calendar systems are in use throughout the world. NLS_CALENDAR specifies
which calendar system Oracle Database uses.

NLS_CALENDAR can have one of the following values:

• Arabic Hijrah
• English Hijrah
• Ethiopian
• GREGORIAN
• Japanese Imperial
• Persian
• ROC Official (Republic of China)

• Thai Buddha

See Also:

"Calendar Systems" for a list of calendar systems, their default date formats, and the
character sets in which dates are displayed

Example 3-17 NLS_CALENDAR='English Hijrah'

Set NLS_CALENDAR to English Hijrah.

SQL> ALTER SESSION SET NLS_CALENDAR='English Hijrah';

Enter a SELECT statement to display SYSDATE:

SQL> SELECT SYSDATE FROM DUAL;

You should see results similar to the following output:

SYSDATE

24 Ramadan 1422

3.8 Numeric and List Parameters
This section includes the following topics:

• Numeric Formats

• NLS_NUMERIC_CHARACTERS

• NLS_LIST_SEPARATOR

3.8.1 Numeric Formats
The database must know the number-formatting convention used in each session to interpret
numeric strings correctly. For example, the database needs to know whether numbers are
entered with a period or a comma as the decimal character (234.00 or 234,00). Similarly,
applications must be able to display numeric information in the format expected at the client
site.

Chapter 3
Numeric and List Parameters

3-25

Examples of numeric formats are shown in the following table.

Table 3-9 Examples of Numeric Formats

Country Numeric Formats

Estonia 1 234 567,89

Germany 1.234.567,89

Japan 1,234,567.89

UK 1,234,567.89

US 1,234,567.89

Numeric formats are derived from the setting of the NLS_TERRITORY parameter, but they can be
overridden by the NLS_NUMERIC_CHARACTERS parameter.

See Also:

"NLS_TERRITORY"

3.8.2 NLS_NUMERIC_CHARACTERS

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Default decimal character and group separator for a particular territory

Range of values Any two valid numeric characters

This parameter specifies the decimal character and group separator. The group separator is
the character that separates integer groups to show thousands and millions, for example. The
group separator is the character returned by the G number format mask. The decimal
character separates the integer and decimal parts of a number. Setting
NLS_NUMERIC_CHARACTERS overrides the values derived from the setting of NLS_TERRITORY.

Any character can be the decimal character or group separator. The two characters specified
must be single-byte, and the characters must be different from each other. The characters
cannot be any numeric character or any of the following characters: plus (+), hyphen (-), less
than sign (<), greater than sign (>). Either character can be a space.

You can change the default value of NLS_NUMERIC_CHARACTERS by:

• Changing the value of NLS_NUMERIC_CHARACTERS in the initialization parameter file and then
restarting the instance

• Using the ALTER SESSION statement to change the parameter's value during a session

Chapter 3
Numeric and List Parameters

3-26

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period, define
NLS_NUMERIC_CHARACTERS as follows:

SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";

SQL statements can include numbers represented as numeric or text literals. Numeric literals
are not enclosed in quotes. They are part of the SQL language syntax and always use a dot as
the decimal character and never contain a group separator. Text literals are enclosed in single
quotes. They are implicitly or explicitly converted to numbers, if required, according to the
current NLS settings.

The following SELECT statement formats the number 4000 with the decimal character and
group separator specified in the ALTER SESSION statement:

SQL> SELECT TO_CHAR(4000, '9G999D99') FROM DUAL;

You should see results similar to the following output:

TO_CHAR(4

 4.000,00

3.8.3 NLS_LIST_SEPARATOR

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any valid character

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of values
(usually , or . or ; or :). Its default value is derived from the value of NLS_TERRITORY. For
example, a list of numbers from 1 to 5 can be expressed as 1,2,3,4,5 or 1.2.3.4.5 or 1;2;3;4;5
or 1:2:3:4:5.

The character specified must be single-byte and cannot be the same as either the numeric or
monetary decimal character, any numeric character, or any of the following characters: plus
(+), hyphen (-), less than sign (<), greater than sign (>), period (.).

3.9 Monetary Parameters
This section includes the following topics:

• Currency Formats

• NLS_CURRENCY

Chapter 3
Monetary Parameters

3-27

• NLS_ISO_CURRENCY

• NLS_DUAL_CURRENCY

• NLS_MONETARY_CHARACTERS

• NLS_CREDIT

• NLS_DEBIT

3.9.1 Currency Formats
Different currency formats are used throughout the world. Some typical ones are shown in the
following table.

Table 3-10 Currency Format Examples

Country Example

Estonia 1 234,56 kr

Germany 1.234,56€

Japan ©1,234.56

UK £1,234.56

US $1,234.56

3.9.2 NLS_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Derived from NLS_TERRITORY
Range of values Any valid currency symbol string

NLS_CURRENCY specifies the character string returned by the L number format mask, the local
currency symbol. Setting NLS_CURRENCY overrides the setting defined implicitly by
NLS_TERRITORY.

You can change the default value of NLS_CURRENCY by:

• Changing its value in the initialization parameter file and then restarting the instance

• Using an ALTER SESSION statement

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

Example 3-19 Displaying the Local Currency Symbol

Connect to the sample order entry schema:

Chapter 3
Monetary Parameters

3-28

SQL> connect oe/oe
Connected.

Enter a SELECT statement similar to the following example:

SQL> SELECT TO_CHAR(order_total, 'L099G999D99') "total" FROM orders
 WHERE order_id > 2450;

You should see results similar to the following output:

total

 $078,279.60
 $006,653.40
 $014,087.50
 $010,474.60
 $012,589.00
 $000,129.00
 $003,878.40
 $021,586.20

3.9.3 NLS_ISO_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Derived from NLS_TERRITORY
Range of values Any valid string

NLS_ISO_CURRENCY specifies the character string returned by the C number format mask, the
ISO currency symbol. Setting NLS_ISO_CURRENCY overrides the value defined implicitly by
NLS_TERRITORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer to US
dollars or Australian dollars. ISO specifications define unique currency symbols for specific
territories or countries. For example, the ISO currency symbol for the US dollar is USD. The
ISO currency symbol for the Australian dollar is AUD.

More ISO currency symbols are shown in the following table.

Table 3-11 ISO Currency Examples

Country Example

Estonia 1 234 567,89 EEK

Germany 1.234.567,89 EUR

Japan 1,234,567.89 JPY

UK 1,234,567.89 GBP

US 1,234,567.89 USD

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter, and all supported
territories are valid values.

You can change the default value of NLS_ISO_CURRENCY by:

Chapter 3
Monetary Parameters

3-29

• Changing its value in the initialization parameter file and then restarting the instance

• Using an ALTER SESSION statement

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

Example 3-20 Setting NLS_ISO_CURRENCY

This example assumes that you are connected as oe/oe in the sample schema.

To specify the ISO currency symbol for France, set NLS_ISO_CURRENCY as follows:

SQL> ALTER SESSION SET NLS_ISO_CURRENCY = FRANCE;

Enter a SELECT statement:

SQL> SELECT TO_CHAR(order_total, 'C099G999D99') "TOTAL" FROM orders
 WHERE customer_id = 146;

You should see results similar to the following output:

TOTAL

EUR017,848.20
EUR027,455.30
EUR029,249.10
EUR013,824.00
EUR000,086.00

3.9.4 NLS_DUAL_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environmental variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS_TERRITORY
Range of values Any valid symbol

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined implicitly by
NLS_TERRITORY.

NLS_DUAL_CURRENCY was introduced to support the euro currency symbol during the euro
transition period. See Table A-8 for the character sets that support the euro symbol.

3.9.5 Oracle Database Support for the Euro
Twelve members of the European Monetary Union (EMU) have adopted the euro as their
currency. Setting NLS_TERRITORY to correspond to a country in the EMU (Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and
Spain) results in the default values for NLS_CURRENCY and NLS_DUAL_CURRENCY being set to EUR.

Chapter 3
Monetary Parameters

3-30

During the transition period (1999 through 2001), Oracle Database support for the euro was
provided in Oracle Database 8i and later as follows:

• NLS_CURRENCY was defined as the primary currency of the country

• NLS_ISO_CURRENCY was defined as the ISO currency code of a given territory

• NLS_DUAL_CURRENCY was defined as the secondary currency symbol (usually the euro) for a
given territory

Beginning with Oracle Database 9i Release 2, the value of NLS_ISO_CURRENCY results in the
ISO currency symbol being set to EUR for EMU member countries who use the euro. For
example, suppose NLS_ISO_CURRENCY is set to FRANCE. Enter the following SELECT statement:

SQL> SELECT TO_CHAR(order_total, 'C099G999D99') "TOTAL" FROM orders
 WHERE customer_id=116;

You should see results similar to the following output:

TOTAL

EUR006,394.80
EUR011,097.40
EUR014,685.80
EUR000,129.00

Customers who must retain their obsolete local currency symbol can override the default for
NLS_DUAL_CURRENCY or NLS_CURRENCY by defining them as parameters in the initialization file on
the server and as environment variables on the client.

Note:

NLS_LANG must also be set on the client for NLS_CURRENCY or NLS_DUAL_CURRENCY to
take effect.

It is not possible to override the ISO currency symbol that results from the value of
NLS_ISO_CURRENCY.

3.9.6 NLS_MONETARY_CHARACTERS

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any valid character

NLS_MONETARY_CHARACTERS specifies the character that separates groups of numbers in
monetary expressions. For example, when the territory is America, the thousands separator is
a comma, and the decimal separator is a period.

Chapter 3
Monetary Parameters

3-31

3.9.7 NLS_CREDIT

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any string, maximum of 9 bytes (not including null)

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default value of this
parameter is determined by NLS_TERRITORY. For example, a space is a valid value of
NLS_CREDIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCINlsGetInfo() function.

3.9.8 NLS_DEBIT

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any string, maximum or 9 bytes (not including null)

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default value of this
parameter is determined by NLS_TERRITORY. For example, a minus sign (-) is a valid value of
NLS_DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCINlsGetInfo() function.

3.10 Linguistic Sort Parameters
You can choose how to sort data by using linguistic sort parameters.

This section includes the following topics:

• NLS_SORT

• NLS_COMP

See Also:

"Linguistic Sorting and Matching"

Chapter 3
Linguistic Sort Parameters

3-32

3.10.1 NLS_SORT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS_LANGUAGE
Range of values BINARY or any valid linguistic collation name

NLS_SORT specifies a set of matching and comparison rules for character data. It overrides the
default value that is derived from NLS_LANGUAGE.

NLS_SORT contains either of the following values:

NLS_SORT = BINARY | collation_name

BINARY specifies the binary collation. collation_name specifies a linguistic named collation.

Example 3-21 Setting NLS_SORT

To specify the German linguistic collation, set NLS_SORT as follows:

NLS_SORT = German

Note:

When the NLS_SORT parameter is set to BINARY, the optimizer can, in some cases,
satisfy the ORDER BY clause without doing a sort operation by choosing an index scan.

When NLS_SORT is set to a linguistic collation, a sort operation is needed to satisfy the
ORDER BY clause, if there is no linguistic index for the linguistic collation specified by
NLS_SORT.

If a linguistic index exists for the linguistic collation specified by NLS_SORT, then the
optimizer can, in some cases, satisfy the ORDER BY clause without doing a sort
operation by choosing an index scan.

You can alter the default value of NLS_SORT by:

• Changing its value in the initialization parameter file and then restarting the instance

• Using an ALTER SESSION statement

Chapter 3
Linguistic Sort Parameters

3-33

See Also:

• "Linguistic Sorting and Matching"

• Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

• "Linguistic Sorts" for a list of linguistic collation names

3.10.2 NLS_COMP

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER SESSION
Default value BINARY
Range of values BINARY , LINGUISTIC, or ANSI

The value of NLS_COMP affects the comparison behavior of SQL operations whose determined
collation is USING_NLS_COMP.

See Also:

• "Using Linguistic Collation"

• "Using Linguistic Indexes"

• "Performing Linguistic Comparisons"

• "About Data-Bound Collation" for more information about the pseudo-collation
USING_NLS_COMP

3.11 Character Set Conversion Parameter
This section includes the following topic:

• NLS_NCHAR_CONV_EXCP

3.11.1 NLS_NCHAR_CONV_EXCP

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value FALSE
Range of values TRUE or FALSE

Chapter 3
Character Set Conversion Parameter

3-34

NLS_NCHAR_CONV_EXCP determines whether an error is reported when there is data loss during
an implicit or explicit character type conversion between NCHAR/NVARCHAR data and CHAR/
VARCHAR2 data. The default value results in no error being reported.

See Also:

"Character Set Migration" for more information about data loss during character set
conversion

3.12 Length Semantics
This section includes the following topic:

• NLS_LENGTH_SEMANTICS

3.12.1 NLS_LENGTH_SEMANTICS

Property Description

Parameter type String

Parameter scope Environment variable, initialization parameter, and ALTER SESSION
Default value BYTE
Range of values BYTE or CHAR

By default, the character data types CHAR and VARCHAR2 are specified in bytes, not characters.
Hence, the specification CHAR(20) in a table definition allows 20 bytes for storing character
data.

This works well if the database character set uses a single-byte character encoding scheme
because the number of characters is the same as the number of bytes. If the database
character set uses a multibyte character encoding scheme, then the number of bytes no longer
equals the number of characters because a character can consist of one or more bytes. Thus,
column widths must be chosen with care to allow for the maximum possible number of bytes
for a given number of characters. You can overcome this problem by switching to character
semantics when defining the column size.

NLS_LENGTH_SEMANTICS enables you to create CHAR, VARCHAR2, and LONG columns using either
byte or character length semantics. NCHAR, NVARCHAR2, CLOB, and NCLOB columns are always
character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with existing
applications.

NLS_LENGTH_SEMANTICS does not apply to tables created in the SYS schema. The data
dictionary always uses byte semantics. Tables owned by SYS always use byte semantics if the
length qualifier BYTE or CHAR is not specified in the table creation DDL.

Note that if the NLS_LENGTH_SEMANTICS environment variable is not set on the client, then the
client session defaults to the value for NLS_LENGTH_SEMANTICS on the database server. This
enables all client sessions on the network to have the same NLS_LENGTH_SEMANTICS behavior.
Setting the environment variable on an individual client enables the server initialization
parameter to be overridden for that client.

Chapter 3
Length Semantics

3-35

Note that if the NLS_LENGTH_SEMANTICS environment variable is not set on the client or the client
connects through the Oracle JDBC Thin driver, then the client session defaults to the value for
the NLS_LENGTH_SEMANTICS initialization parameter of the instance to which the client connects.
For compatibility reasons, Oracle recommends that this parameter be left undefined or set to
BYTE.

Note:

Oracle strongly recommends that you do NOT set the NLS_LENGTH_SEMANTICS
parameter to CHAR in the instance or server parameter file. This may cause many
existing installation scripts to unexpectedly create columns with character length
semantics, resulting in run-time errors, including buffer overflows.

See Also:

"Length Semantics"

Chapter 3
Length Semantics

3-36

4
Datetime Data Types and Time Zone Support

This chapter includes the following topics:

• Overview of Datetime and Interval Data Types and Time Zone Support

• Datetime and Interval Data Types

• Datetime and Interval Arithmetic and Comparisons

• Datetime SQL Functions

• Datetime and Time Zone Parameters and Environment Variables

• Choosing a Time Zone File

• Upgrading the Time Zone File and Timestamp with Time Zone Data

• Clients and Servers Operating with Different Versions of Time Zone Files

• Setting the Database Time Zone

• Setting the Session Time Zone

• Converting Time Zones With the AT TIME ZONE Clause

• Support for Daylight Saving Time

4.1 Overview of Datetime and Interval Data Types and Time
Zone Support

Businesses conduct transactions across different time zones. Oracle Database datetime and
interval data types and time zone support make it possible to store consistent information
about the time of events and transactions.

Note:

This chapter describes Oracle Database datetime and interval data types. It does not
attempt to describe ANSI data types or other kinds of data types unless noted.

4.2 Datetime and Interval Data Types
The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes.

The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values
of interval data types are sometimes called intervals.

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type. The fields that apply to all Oracle Database datetime and interval data
types are:

4-1

• YEAR
• MONTH
• DAY
• HOUR
• MINUTE
• SECOND
TIMESTAMP WITH TIME ZONE also includes these fields:

• TIMEZONE_HOUR
• TIMEZONE_MINUTE
• TIMEZONE_REGION
• TIMEZONE_ABBR
TIMESTAMP WITH LOCAL TIME ZONE does not store time zone information internally, but you can
see local time zone information in SQL output if the TZH:TZM or TZR TZD format elements are
specified.

The following sections describe the datetime data types and interval data types in more detail:

• Datetime Data Types

• Interval Data Types

See Also:

• Oracle Database SQL Language Reference for the valid values of the datetime
and interval fields

• Oracle Database SQL Language Reference for information about format
elements

4.2.1 Datetime Data Types
This section includes the following topics:

• DATE Data Type

• TIMESTAMP Data Type

• TIMESTAMP WITH TIME ZONE Data Type

• TIMESTAMP WITH LOCAL TIME ZONE Data Type

• Inserting Values into Datetime Data Types

• Choosing a TIMESTAMP Data Type

4.2.1.1 DATE Data Type
The DATE data type stores date and time information. Although date and time information can
be represented in both character and number data types, the DATE data type has special

Chapter 4
Datetime and Interval Data Types

4-2

associated properties. For each DATE value, Oracle Database stores the following information:
century, year, month, date, hour, minute, and second.

You can specify a date value by:

• Specifying the date value as a literal

• Converting a character or numeric value to a date value with the TO_DATE function

A date can be specified as an ANSI date literal or as an Oracle Database date value.

An ANSI date literal contains no time portion and must be specified in exactly the following
format:

DATE 'YYYY-MM-DD'

The following is an example of an ANSI date literal:

DATE '1998-12-25'

Alternatively, you can specify an Oracle Database date value as shown in the following
example:

TO_DATE('1998-DEC-25 17:30','YYYY-MON-DD HH24:MI','NLS_DATE_LANGUAGE=AMERICAN')

The default date format for an Oracle Database date value is derived from the
NLS_DATE_FORMAT and NLS_DATE_LANGUAGE initialization parameters. The date format in the
example includes a two-digit number for the day of the month, an abbreviation of the month
name, the four digits of the year, and a 24-hour time designation. The specification for
NLS_DATE_LANGUAGE is included because 'DEC' is not a valid value for MON in all locales.

Oracle Database automatically converts character values that are in the default date format
into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is midnight. If you
specify a date value without a date, then the default date is the first day of the current month.

Oracle Database DATE columns always contain fields for both date and time. If your queries
use a date format without a time portion, then you must ensure that the time fields in the DATE
column are set to midnight. You can use the TRUNC (date) SQL function to ensure that the time
fields are set to midnight, or you can make the query a test of greater than or less than (<, <=,
>=, or >) instead of equality or inequality (= or !=). Otherwise, Oracle Database may not return
the query results you expect.

See Also:

• Oracle Database SQL Language Reference for more information about the DATE
data type

• "NLS_DATE_FORMAT"

• "NLS_DATE_LANGUAGE"

• Oracle Database SQL Language Reference for more information about literals,
format elements such as MM, and the TO_DATE function

Chapter 4
Datetime and Interval Data Types

4-3

4.2.1.2 TIMESTAMP Data Type
The TIMESTAMP data type is an extension of the DATE data type. It stores year, month, day, hour,
minute, and second values. It also stores fractional seconds, which are not stored by the DATE
data type.

Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

fractional_seconds_precision is optional and specifies the number of digits in the fractional
part of the SECOND datetime field. It can be a number in the range 0 to 9. The default is 6.

For example, '26-JUN-02 09:39:16.78' shows 16.78 seconds. The fractional seconds
precision is 2 because there are 2 digits in '78'.

You can specify the TIMESTAMP literal in a format like the following:

TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

Using the example format, specify TIMESTAMP as a literal as follows:

TIMESTAMP '1997-01-31 09:26:50.12'

The value of NLS_TIMESTAMP_FORMAT initialization parameter determines the timestamp format
when a character string is converted to the TIMESTAMP data type. NLS_DATE_LANGUAGE
determines the language used for character data such as MON.

See Also:

• Oracle Database SQL Language Reference for more information about the
TIMESTAMP data type

• "NLS_TIMESTAMP_FORMAT"

• "NLS_DATE_LANGUAGE"

4.2.1.3 TIMESTAMP WITH TIME ZONE Data Type
TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name or
time zone offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time, formerly Greenwich Mean Time).
Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

fractional_seconds_precision is optional and specifies the number of digits in the fractional
part of the SECOND datetime field.

You can specify TIMESTAMP WITH TIME ZONE as a literal as follows:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Chapter 4
Datetime and Interval Data Types

4-4

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example, the
following expressions have the same value:

TIMESTAMP '1999-01-15 8:00:00 -8:00'
TIMESTAMP '1999-01-15 11:00:00 -5:00'

You can replace the UTC offset with the TZR (time zone region) format element. The following
expression specifies America/Los_Angeles for the time zone region:

TIMESTAMP '1999-01-15 8:00:00 America/Los_Angeles'

To eliminate the ambiguity of boundary cases when the time switches from Standard Time to
Daylight Saving Time, use both the TZR format element and the corresponding TZD format
element. The TZD format element is an abbreviation of the time zone region with Daylight
Saving Time information included. Examples are PST for U. S. Pacific Standard Time and PDT
for U. S. Pacific Daylight Time. The following specification ensures that a Daylight Saving Time
value is returned:

TIMESTAMP '1999-10-29 01:30:00 America/Los_Angeles PDT'

If you do not add the TZD format element, and the datetime value is ambiguous, then Oracle
Database returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to
TRUE. If ERROR_ON_OVERLAP_TIME is set to FALSE (the default value), then Oracle Database
interprets the ambiguous datetime as Standard Time.

The default date format for the TIMESTAMP WITH TIME ZONE data type is determined by the value
of the NLS_TIMESTAMP_TZ_FORMAT initialization parameter.

See Also:

• Oracle Database SQL Language Reference for more information about the
TIMESTAMP WITH TIME ZONE data type

• "TIMESTAMP Data Type" for more information about fractional seconds precision

• "Support for Daylight Saving Time"

• "NLS_TIMESTAMP_TZ_FORMAT"

• Oracle Database SQL Language Reference for more information about format
elements

• Oracle Database SQL Language Reference for more information about setting
the ERROR_ON_OVERLAP_TIME session parameter

4.2.1.4 TIMESTAMP WITH LOCAL TIME ZONE Data Type
TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP. It differs from TIMESTAMP
WITH TIME ZONE as follows: data stored in the database is normalized to the database time
zone, and the time zone offset is not stored as part of the column data. When users retrieve
the data, Oracle Database returns it in the users' local session time zone. The time zone offset
is the difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time, formerly Greenwich Mean Time).

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

Chapter 4
Datetime and Interval Data Types

4-5

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

fractional_seconds_precision is optional and specifies the number of digits in the fractional
part of the SECOND datetime field.

There is no literal for TIMESTAMP WITH LOCAL TIME ZONE, but TIMESTAMP literals and TIMESTAMP
WITH TIME ZONE literals can be inserted into a TIMESTAMP WITH LOCAL TIME ZONE column.

The default date format for TIMESTAMP WITH LOCAL TIME ZONE is determined by the value of the
NLS_TIMESTAMP_FORMAT initialization parameter.

See Also:

• Oracle Database SQL Language Reference for more information about the
TIMESTAMP WITH LOCAL TIME ZONE data type

• "TIMESTAMP Data Type" for more information about fractional seconds precision

• "NLS_TIMESTAMP_FORMAT"

4.2.1.5 Inserting Values into Datetime Data Types
You can insert values into a datetime column in the following ways:

• Insert a character string whose format is based on the appropriate NLS format value

• Insert a literal

• Insert a literal for which implicit conversion is performed

• Use the TO_TIMESTAMP, TO_TIMESTAMP_TZ, or TO_DATE SQL function

See Also:

"Datetime SQL Functions" for more information about the TO_TIMESTAMP or
TO_TIMESTAMP_TZ SQL functions

The following examples show how to insert data into datetime data types.

Example 4-1 Inserting Data into a DATE Column

Set the date format.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';

Create a table table_dt with columns c_id and c_dt. The c_id column is of NUMBER data type
and helps to identify the method by which the data is entered. The c_dt column is of DATE data
type.

SQL> CREATE TABLE table_dt (c_id NUMBER, c_dt DATE);

Insert a date as a character string.

SQL> INSERT INTO table_dt VALUES(1, '01-JAN-2003');

Insert the same date as a DATE literal.

Chapter 4
Datetime and Interval Data Types

4-6

SQL> INSERT INTO table_dt VALUES(2, DATE '2003-01-01');

Insert the date as a TIMESTAMP literal. Oracle Database drops the time zone information.

SQL> INSERT INTO table_dt VALUES(3, TIMESTAMP '2003-01-01 00:00:00 America/Los_Angeles');

Insert the date with the TO_DATE function.

SQL> INSERT INTO table_dt VALUES(4, TO_DATE('01-JAN-2003', 'DD-MON-YYYY'));

Display the data.

SQL> SELECT * FROM table_dt;

C_ID C_DT
---------- --------------------
1 01-JAN-2003 00:00:00
2 01-JAN-2003 00:00:00
3 01-JAN-2003 00:00:00
4 01-JAN-2003 00:00:00

Example 4-2 Inserting Data into a TIMESTAMP Column

Set the timestamp format.

SQL> ALTER SESSION SET NLS_TIMESTAMP_FORMAT='DD-MON-YY HH:MI:SSXFF';

Create a table table_ts with columns c_id and c_ts. The c_id column is of NUMBER data type
and helps to identify the method by which the data is entered. The c_ts column is of
TIMESTAMP data type.

SQL> CREATE TABLE table_ts(c_id NUMBER, c_ts TIMESTAMP);

Insert a date and time as a character string.

SQL> INSERT INTO table_ts VALUES(1, '01-JAN-2003 2:00:00');

Insert the same date and time as a TIMESTAMP literal.

SQL> INSERT INTO table_ts VALUES(2, TIMESTAMP '2003-01-01 2:00:00');

Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal. Oracle Database
converts it to a TIMESTAMP value, which means that the time zone information is dropped.

SQL> INSERT INTO table_ts VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -08:00');

Display the data.

SQL> SELECT * FROM table_ts;

C_ID C_TS
---------- -----------------------------
1 01-JAN-03 02:00:00.000000 AM
2 01-JAN-03 02:00:00.000000 AM
3 01-JAN-03 02:00:00.000000 AM

Note that the three methods result in the same value being stored.

Example 4-3 Inserting Data into the TIMESTAMP WITH TIME ZONE Data Type

Set the timestamp format.

SQL> ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT='DD-MON-RR HH:MI:SSXFF AM TZR';

Chapter 4
Datetime and Interval Data Types

4-7

Set the time zone to '-07:00'.

SQL> ALTER SESSION SET TIME_ZONE='-7:00';

Create a table table_tstz with columns c_id and c_tstz. The c_id column is of NUMBER data
type and helps to identify the method by which the data is entered. The c_tstz column is of
TIMESTAMP WITH TIME ZONE data type.

SQL> CREATE TABLE table_tstz (c_id NUMBER, c_tstz TIMESTAMP WITH TIME ZONE);

Insert a date and time as a character string.

SQL> INSERT INTO table_tstz VALUES(1, '01-JAN-2003 2:00:00 AM -07:00');

Insert the same date and time as a TIMESTAMP literal. Oracle Database converts it to a
TIMESTAMP WITH TIME ZONE literal, which means that the session time zone is appended to the
TIMESTAMP value.

SQL> INSERT INTO table_tstz VALUES(2, TIMESTAMP '2003-01-01 2:00:00');

Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal.

SQL> INSERT INTO table_tstz VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -8:00');

Display the data.

SQL> SELECT * FROM table_tstz;

C_ID C_TSTZ
---------- ------------------------------------
1 01-JAN-03 02:00.00:000000 AM -07:00
2 01-JAN-03 02:00:00.000000 AM -07:00
3 01-JAN-03 02:00:00.000000 AM -08:00

Note that the time zone is different for method 3, because the time zone information was
specified as part of the TIMESTAMP WITH TIME ZONE literal.

Example 4-4 Inserting Data into the TIMESTAMP WITH LOCAL TIME ZONE Data Type

Consider data that is being entered in Denver, Colorado, U.S.A., whose time zone is UTC-7.

SQL> ALTER SESSION SET TIME_ZONE='-07:00';

Create a table table_tsltz with columns c_id and c_tsltz. The c_id column is of NUMBER
data type and helps to identify the method by which the data is entered. The c_tsltz column is
of TIMESTAMP WITH LOCAL TIME ZONE data type.

SQL> CREATE TABLE table_tsltz (c_id NUMBER, c_tsltz TIMESTAMP WITH LOCAL TIME ZONE);

Insert a date and time as a character string.

SQL> INSERT INTO table_tsltz VALUES(1, '01-JAN-2003 2:00:00');

Insert the same data as a TIMESTAMP WITH LOCAL TIME ZONE literal.

SQL> INSERT INTO table_tsltz VALUES(2, TIMESTAMP '2003-01-01 2:00:00');

Insert the same data as a TIMESTAMP WITH TIME ZONE literal. Oracle Database converts the data
to a TIMESTAMP WITH LOCAL TIME ZONE value. This means the time zone that is entered (-08:00)
is converted to the session time zone value (-07:00).

SQL> INSERT INTO table_tsltz VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -08:00');

Chapter 4
Datetime and Interval Data Types

4-8

Display the data.

SQL> SELECT * FROM table_tsltz;

C_ID C_TSLTZ
---------- ------------------------------------
1 01-JAN-03 02.00.00.000000 AM
2 01-JAN-03 02.00.00.000000 AM
3 01-JAN-03 03.00.00.000000 AM

Note that the information that was entered as UTC-8 has been changed to the local time zone,
changing the hour from 2 to 3.

4.2.1.6 Choosing a TIMESTAMP Data Type
Use the TIMESTAMP data type when you need a datetime value to record the time of an event
without the time zone. For example, you can store information about the times when workers
punch a time card in and out of their assembly line workstations. Because this is always a local
time it is then not needed to store the timezone part. The TIMESTAMP data type uses 7 or 11
bytes of storage.

Use the TIMESTAMP WITH TIME ZONE data type when the datetime value represents a future local
time or the time zone information must be recorded with the value. Consider a scheduled
appointment in a local time. The future local time may need to be adjusted if the time zone
definition, such as daylight saving rule, changes. Otherwise, the value can become incorrect.
This data type is most immune to such impact.

The TIMESTAMP WITH TIME ZONE data type requires 13 bytes of storage, or two more bytes of
storage than the TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE data types because it stores
time zone information. The time zone is stored as a time zone region name or as an offset from
UTC. The data is available for display or calculations without additional processing. A
TIMESTAMP WITH TIME ZONE column cannot be used as a primary key. If an index is created on a
TIMESTAMP WITH TIME ZONE column, it becomes a function-based index.

The TIMESTAMP WITH LOCAL TIME ZONE data type stores the timestamp without time zone
information. It normalizes the data to the database time zone every time the data is sent to and
from a client. It requires 11 bytes of storage.

The TIMESTAMP WITH LOCAL TIME ZONE data type is appropriate when the original time zone is of
no interest, but the relative times of events are important and daylight saving adjustment does
not have to be accurate. The time zone conversion that this data type performs to and from the
database time zone is asymmetrical, due to the daylight saving adjustment. Because this data
type does not preserve the time zone information, it does not distinguish values near the
adjustment in fall, whether they are daylight saving time or standard time. This confusion
between distinct instants can cause an application to behave unexpectedly, especially if the
adjustment takes place during the normal working hours of a user.

Note that some regions, such as Brazil and Israel, that update their Daylight Saving Transition
dates frequently and at irregular periods, are particularly susceptible to time zone adjustment
issues. If time information from these regions is key to your application, you may want to
consider using one of the other datetime types.

4.2.2 Interval Data Types
Interval data types store time durations. They are used primarily with analytic functions. For
example, you can use them to calculate a moving average of stock prices. You must use
interval data types to determine the values that correspond to a particular percentile. You can
also use interval data types to update historical tables.

Chapter 4
Datetime and Interval Data Types

4-9

This section includes the following topics:

• INTERVAL YEAR TO MONTH Data Type

• INTERVAL DAY TO SECOND Data Type

• Inserting Values into Interval Data Types

See Also:

Oracle Database Data Warehousing Guide for more information about analytic
functions, including moving averages and inverse percentiles

4.2.2.1 INTERVAL YEAR TO MONTH Data Type
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

year_precision is the number of digits in the YEAR datetime field. Accepted values are 0 to 9.
The default value of year_precision is 2.

Interval values can be specified as literals. There are many ways to specify interval literals.
The following is one example of specifying an interval of 123 years and 2 months. The year
precision is 3.

INTERVAL '123-2' YEAR(3) TO MONTH

See Also:

Oracle Database SQL Language Reference for more information about specifying
interval literals with the INTERVAL YEAR TO MONTH data type

4.2.2.2 INTERVAL DAY TO SECOND Data Type
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and seconds.
Specify this data type as follows:

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]

day_precision is the number of digits in the DAY datetime field. Accepted values are 0 to 9.
The default is 2.

fractional_seconds_precision is the number of digits in the fractional part of the SECOND
datetime field. Accepted values are 0 to 9. The default is 6.

The following is one example of specifying an interval of 4 days, 5 hours, 12 minutes, 10
seconds, and 222 thousandths of a second. The fractional second precision is 3.

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

Interval values can be specified as literals. There are many ways to specify interval literals.

Chapter 4
Datetime and Interval Data Types

4-10

See Also:

Oracle Database SQL Language Reference for more information about specifying
interval literals with the INTERVAL DAY TO SECOND data type

4.2.2.3 Inserting Values into Interval Data Types
You can insert values into an interval column in the following ways:

• Insert an interval as a literal. For example:

INSERT INTO table1 VALUES (INTERVAL '4-2' YEAR TO MONTH);

This statement inserts an interval of 4 years and 2 months.

Oracle Database recognizes literals for other ANSI interval types and converts the values
to Oracle Database interval values.

• Use the NUMTODSINTERVAL, NUMTOYMINTERVAL, TO_DSINTERVAL, and TO_YMINTERVAL SQL
functions.

See Also:

"Datetime SQL Functions"

4.3 Datetime and Interval Arithmetic and Comparisons
This section includes the following topics:

• Datetime and Interval Arithmetic

• Datetime Comparisons

• Explicit Conversion of Datetime Data Types

4.3.1 Datetime and Interval Arithmetic
You can perform arithmetic operations on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL DAY TO SECOND
and INTERVAL YEAR TO MONTH) data. You can maintain the most precision in arithmetic
operations by using a timestamp data type with an interval data type.

You can use NUMBER constants in arithmetic operations on date and timestamp values. Oracle
Database internally converts timestamp values to date values before doing arithmetic
operations on them with NUMBER constants. This means that information about fractional
seconds is lost during operations that include both date and timestamp values. Oracle
Database interprets NUMBER constants in datetime and interval expressions as number of days.

Each DATE value contains a time component. The result of many date operations includes a
fraction. This fraction means a portion of one day. For example, 1.5 days is 36 hours. These
fractions are also returned by Oracle Database built-in SQL functions for common operations
on DATE data. For example, the built-in MONTHS_BETWEEN SQL function returns the number of

Chapter 4
Datetime and Interval Arithmetic and Comparisons

4-11

months between two dates. The fractional portion of the result represents that portion of a 31-
day month.

Oracle Database performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL
TIME ZONE data, Oracle Database converts the datetime value from the database time zone to
UTC and converts back to the database time zone after performing the arithmetic. For
TIMESTAMP WITH TIME ZONE data, the datetime value is always in UTC, so no conversion is
necessary.

See Also:

• Oracle Database SQL Language Reference for detailed information about
datetime and interval arithmetic operations

• "Datetime SQL Functions" for information about which functions cause implicit
conversion to DATE

4.3.2 Datetime Comparisons
When you compare date and timestamp values, Oracle Database converts the data to the
more precise data type before doing the comparison. For example, if you compare data of
TIMESTAMP WITH TIME ZONE data type with data of TIMESTAMP data type, Oracle Database
converts the TIMESTAMP data to TIMESTAMP WITH TIME ZONE, using the session time zone.

The order of precedence for converting date and timestamp data is as follows:

1. DATE
2. TIMESTAMP
3. TIMESTAMP WITH LOCAL TIME ZONE
4. TIMESTAMP WITH TIME ZONE
For any pair of data types, Oracle Database converts the data type that has a smaller number
in the preceding list to the data type with the larger number.

4.3.3 Explicit Conversion of Datetime Data Types
If you want to do explicit conversion of datetime data types, use the CAST SQL function. You
can explicitly convert DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE to another data type in the list.

See Also:

Oracle Database SQL Language Reference

Chapter 4
Datetime and Interval Arithmetic and Comparisons

4-12

4.4 Datetime SQL Functions
Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle Database DATE data type. If you
provide a timestamp value as their argument, then Oracle Database internally converts the
input type to a DATE value. Oracle Database does not perform internal conversion for the ROUND
and TRUNC functions.

The following table shows the datetime functions that were designed for the Oracle Database
DATE data type.

Table 4-1 Datetime Functions Designed for the DATE Data Type

Function Description

ADD_MONTHS Returns the date d plus n months

LAST_DAY Returns the last day of the month that contains date

MONTHS_BETWEEN Returns the number of months between date1 and date2

NEW_TIME Returns the date and time in zone2 time zone when the date and time in
zone1 time zone are date
Note: This function takes as input only a limited number of time zones.
You can have access to a much greater number of time zones by
combining the FROM_TZ function and the datetime expression.

NEXT_DAY Returns the date of the first weekday named by char that is later than
date

ROUND(date) Returns date rounded to the unit specified by the fmt format model

TRUNC(date) Returns date with the time portion of the day truncated to the unit
specified by the fmt format model

The following table describes additional datetime functions.

Table 4-2 Additional Datetime Functions

Datetime Function Description

CURRENT_DATE Returns the current date in the session time zone in a value in the
Gregorian calendar, of the DATE data type

CURRENT_TIMESTAMP Returns the current date and time in the session time zone as a
TIMESTAMP WITH TIME ZONE value

DBTIMEZONE Returns the value of the database time zone. The value is a time zone
offset or a time zone region name

EXTRACT (datetime) Extracts and returns the value of a specified datetime field from a
datetime or interval value expression

FROM_TZ Converts a TIMESTAMP value at a time zone to a TIMESTAMP WITH TIME
ZONE value

LOCALTIMESTAMP Returns the current date and time in the session time zone in a value of
the TIMESTAMP data type

Chapter 4
Datetime SQL Functions

4-13

Table 4-2 (Cont.) Additional Datetime Functions

Datetime Function Description

NUMTODSINTERVAL Converts number n to an INTERVAL DAY TO SECOND literal

NUMTOYMINTERVAL Converts number n to an INTERVAL YEAR TO MONTH literal

SESSIONTIMEZONE Returns the value of the current session's time zone

SYS_EXTRACT_UTC Extracts the UTC from a datetime with time zone offset

SYSDATE Returns the date and time of the operating system on which the database
resides, taking into account the time zone of the database server's
operating system that was in effect when the database was started

SYSTIMESTAMP Returns the system date, including fractional seconds and time zone of
the system on which the database resides

TO_CHAR (datetime) Converts a datetime or interval value of DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE data type to
a value of VARCHAR2 data type in the format specified by the fmt date
format

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to a value of INTERVAL DAY TO SECOND data type

TO_NCHAR (datetime) Converts a datetime or interval value of DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL
MONTH TO YEAR, or INTERVAL DAY TO SECOND data type from the
database character set to the national character set

TO_TIMESTAMP Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to a value of TIMESTAMP data type

TO_TIMESTAMP_TZ Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to a value of the TIMESTAMP WITH TIME ZONE data type

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to a value of the INTERVAL YEAR TO MONTH data type

TZ_OFFSET Returns the time zone offset that corresponds to the entered value, based
on the date that the statement is executed

The following table describes the functions related to the Daylight Saving Time (DST) upgrade
process.

Table 4-3 Time Zone Conversion Functions

Time Zone Function Description

ORA_DST_AFFECTED Enables you to verify whether the data in a column is affected by
upgrading the DST rules from one version to another version

ORA_DST_CONVERT Enables you to upgrade your TSTZ column data from one version to
another

ORA_DST_ERROR Enables you to verify that there are no errors when upgrading a datetime
value

Chapter 4
Datetime SQL Functions

4-14

See Also:

• Oracle Database SQL Language Reference for more information about the
Oracle Database datetime functions

• "Support for Daylight Saving Time" for more information about the Daylight
Saving Time functionality of Oracle Database

• "Daylight Saving Time Session Parameter" for information about the session
parameter ERROR_ON_OVERLAP_TIME related to Daylight Saving Time

• "Daylight Saving Time Upgrade Parameter" for information about the initialization
parameter DST_UPGRADE_INSERT_CONV that is used during the Daylight Saving
Time upgrade process

4.5 Datetime and Time Zone Parameters and Environment
Variables

This section includes the following topics:

• Datetime Format Parameters

• Time Zone Environment Variables

• Daylight Saving Time Session Parameter

• Daylight Saving Time Upgrade Parameter

4.5.1 Datetime Format Parameters
The following table contains the names and descriptions of the datetime format parameters.

Table 4-4 Datetime Format Parameters

Parameter Description

NLS_DATE_FORMAT Defines the default date format to use with the TO_CHAR and
TO_DATE functions

NLS_TIMESTAMP_FORMAT Defines the default timestamp format to use with the TO_CHAR
and TO_TIMESTAMP functions

NLS_TIMESTAMP_TZ_FORMAT Defines the default timestamp with time zone format to use with
the TO_CHAR and TO_TIMESTAMP_TZ functions

Their default values are derived from NLS_TERRITORY.

You can specify their values by setting them in the initialization parameter file. If you change
the values in the initialization parameter file, you must restart the instance for the change to
take effect. You can also specify their values for a client as client environment variables. For
Java clients, the value of NLS_TERRITORY is derived from the default locale of JRE. The values
specified in the initialization parameter file are not used for JDBC sessions.

To change their values during a session, use the ALTER SESSION statement.

Chapter 4
Datetime and Time Zone Parameters and Environment Variables

4-15

See Also:

• "Date and Time Parameters" for more information, including examples

• "NLS_DATE_FORMAT"

• "NLS_TIMESTAMP_FORMAT"

• "NLS_TIMESTAMP_TZ_FORMAT"

4.5.2 Time Zone Environment Variables
The time zone environment variables are:

• ORA_TZFILE, which enables you to specify a time zone on the client and Oracle Database
server. Note that when you specify ORA_TZFILE on Oracle Database server, the only time
when this environment variable takes effect is during the creation of the database.

• ORA_SDTZ, which specifies the default session time zone.

See Also:

• "Choosing a Time Zone File"

• "Setting the Session Time Zone"

4.5.3 Daylight Saving Time Session Parameter
ERROR_ON_OVERLAP_TIME is a session parameter that determines how Oracle Database handles
an ambiguous datetime boundary value. Ambiguous datetime values can occur when the time
changes between Daylight Saving Time and standard time.

The possible values are TRUE and FALSE. When ERROR_ON_OVERLAP_TIME is TRUE, then an error
is returned when Oracle Database encounters an ambiguous datetime value. When
ERROR_ON_OVERLAP_TIME is FALSE, then ambiguous datetime values are assumed to be the
standard time representation for the region. The default value is FALSE.

See Also:

• "Support for Daylight Saving Time"

• Oracle Database SQL Language Reference

4.5.4 Daylight Saving Time Upgrade Parameter
DST_UPGRADE_INSERT_CONV is an initialization parameter that is only used during the upgrade
window of the Daylight Saving Time (DST) upgrade process. It is only applicable to tables with
TIMESTAMP WITH TIME ZONE columns because those are the only ones that are modified during
the DST upgrade.

Chapter 4
Datetime and Time Zone Parameters and Environment Variables

4-16

During the upgrade window of the DST patching process (which is described in the DBMS_DST
package), tables with TIMESTAMP WITH TIMEZONE data undergo conversion to the new time zone
version. Columns in tables that have not yet been converted will still have the TIMESTAMP WITH
TIMEZONE reflecting the previous time zone version. In order to present the data in these
columns as though they had been converted to the new time zone version when you issue
SELECT statements, Oracle adds by default conversion operators over the columns to convert
them to the new version. Adding the conversion operator may, however, slow down queries
and disable usage of indexes on the TIMESTAMP WITH TIMEZONE columns. Hence, Oracle
provides a parameter, DST_UPGRADE_INSERT_CONV, that specifies whether or not internal
operators are allocated on top of TIMESTAMP WITH TIMEZONE columns of tables that have not
been upgraded. By default, its value is TRUE. If users know that the conversion process will not
affect the TIMESTAMP WITH TIMEZONE columns, then this parameter can be set to FALSE.

Oracle strongly recommends that you set this parameter to TRUE throughout the DST patching
process. By default, this parameter is set to TRUE. However, if set to TRUE, query performance
may be degraded on unconverted tables. Note that this only applies during the upgrade
window.

See Also:

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

4.6 Choosing a Time Zone File
The Oracle Database time zone files contain the valid time zone names. The following
information is also included for each time zone:

• Offset from Coordinated Universal Time (UTC)

• Transition times for Daylight Saving Time

• Abbreviations for standard time and Daylight Saving Time

Oracle Database supplies multiple versions of time zone files, and there are two types of file
associated with each version: a large file, which contains all the time zones defined in the
database, and a small file, which contains only the most commonly used time zones. The large
version files are named as timezlrg_version_number.dat and the small version files are
named as timezone_version_number.dat, where version_number is the version number of the
time zone file. The time zone files are stored in the $ORACLE_HOME/oracore/zoneinfo directory
and the default time zone file is a large time zone file having the highest version number. In
Oracle Database 21c, the default time zone file is $ORACLE_HOME/oracore/zoneinfo/
timezlrg_35.dat.

Examples of time zone files are:

$ORACLE_HOME/oracore/zoneinfo/timezlrg_34.dat -- large version 34
$ORACLE_HOME/oracore/zoneinfo/timezone_34.dat -- small version 34
$ORACLE_HOME/oracore/zoneinfo/timezlrg_35.dat -- large version 35
$ORACLE_HOME/oracore/zoneinfo/timezone_35.dat -- small version 35

During the database creation process, you choose the time zone version for the server. This
version is fixed, but you can, however, go through the upgrade process to achieve a higher
version. You can use different versions of time zone files on the client and server, but Oracle

Chapter 4
Choosing a Time Zone File

4-17

recommends that you do not. This is because there is a performance penalty when a client on
one version communicates with a server on a different version. The performance penalty arises
because the TIMESTAMP WITH TIME ZONE (TSTZ) data is transferred using a local timestamp
instead of UTC.

On the server, Oracle Database always uses a large file. On the client, you can use either a
large or a small file. If you use a large time zone file on the client, then you should continue to
use it unless you are sure that no information will be missing if you switch to a smaller one. If
you use a small file, you have to make sure that the client does not query data that is not
present in the small time zone file. Otherwise, you get an error.

You can enable the use of a specific time zone file on the client or on the server. If you want to
enable a time zone file on the server, there are two situations. One is when you want to
upgrade the time zone to the target version. See "Upgrading the Time Zone File and
Timestamp with Time Zone Data" for more information. Another is when you want to create a
new database. In this case, you can set the ORA_TZFILE environment variable to point to the
time zone file of your choice.

To enable a specific time zone file on a client, you can set ORA_TZFILE to whatever time zone
file you want. If ORA_TZFILE is not set, Oracle Database automatically picks up and uses the
file with the latest time zone version.

See Also:

Oracle Call Interface Programmer's Guide for more information on how to upgrade
Daylight Saving Time on a client

Note:

Oracle Database time zone data is derived from the public domain information
available on The IANA Functions website. Oracle Database time zone data may not
reflect the most recent data available on this website.

You can obtain a list of time zone names and time zone abbreviations from the time zone file
that is installed with your database by entering the following statement:

SELECT TZNAME, TZABBREV
FROM V$TIMEZONE_NAMES
ORDER BY TZNAME, TZABBREV;

For the default time zone file, this statement results in output similar to the following:

TZNAME TZABBREV
-------------------- ----------
Africa/Abidjan GMT
Africa/Abidjan LMT
...
Africa/Algiers CEST
Africa/Algiers CET
Africa/Algiers LMT
Africa/Algiers PMT
Africa/Algiers WET
Africa/Algiers WEST
...

Chapter 4
Choosing a Time Zone File

4-18

WET LMT
WET WEST
WET WET

2137 rows selected.

In the above output, 2 time zone abbreviations are associated with the Africa/Abidjan time
zone, and 6 abbreviations are associated with the Africa/Algiers time zone. The following table
shows some of the time zone abbreviations and their meanings.

Time Zone Abbreviation Meaning

LMT Local Mean Time

PMT Paris Mean Time

WET Western European Time

WEST Western European Summer Time

CET Central Europe Time

CEST Central Europe Summer Time

EET Eastern Europe Time

EEST Eastern Europe Summer Time

Note that an abbreviation can be associated with multiple time zones. For example, CET is
associated with both Africa/Algiers and Africa/Casablanca, as well as time zones in Europe.

If you want a list of time zones without repeating the time zone name for each abbreviation,
use the following query:

SELECT UNIQUE TZNAME
FROM V$TIMEZONE_NAMES;

For example, version 11 contains output similar to the following:

TZNAME

Africa/Addis_Ababa
Africa/Bissau
Africa/Ceuta
...
Turkey
US/East-Indiana
US/Samoa

The default time zone file, that is, the large time zone file contains more than 350 unique time
zone names. The small time zone file contains more than 180 unique time zone names.

See Also:

• "Time Zone Region Names" for a list of valid Oracle Database time zone names

• $ORACLE_HOME/oracore/zoneinfo/timezdif.csv provided with your Oracle
Database software installation for a full list of time zones changed in each
version of the time zone file.

Chapter 4
Choosing a Time Zone File

4-19

4.7 Upgrading the Time Zone File and Timestamp with Time
Zone Data

The time zone files that are supplied with the Oracle Database are updated periodically to
reflect changes in transition rules for various time zone regions. To find which time zone file
your database currently uses, query the V$TIMEZONE_FILE view.

Note:

Each Oracle Database release includes a time zone file that is current at the time of
the release and a number of older version files. Between Oracle Database releases,
new time zone file versions may be provided in patch sets or individual patches to
reflect the changes in transition rules for various time zone regions. Older time zone
file versions allow you to run upgraded databases without a need to immediately
upgrade the time zone file to the most current version.

Daylight Saving Time (DST) Transition Rules Changes

Governments can and do change the rules for when Daylight Saving Time takes effect or how
it is handled. When this occurs, Oracle provides a new set of transition rules for handling
timestamp with time zone data.

Transition periods for the beginning or ending of Daylight Saving Time can potentially introduce
problems (such as data loss) when handling timestamps with time zone data. Oracle has
provided the PL/SQL package DBMS_DST and the utltz_* scripts to deal with this transition.

The changes to DST transition rules may affect existing data of TIMESTAMP WITH TIME ZONE
data type, because of the way Oracle Database stores this data internally. When users enter
timestamps with time zone, Oracle Database converts the data to UTC, based on the transition
rules in the time zone file, and stores the data together with the ID of the original time zone on
disk. When data is retrieved, the reverse conversion from UTC takes place. For example, in
the past, under version 2 transition rules, the value TIMESTAMP '2007-11-02 12:00:00
America/Los_Angeles' was stored as UTC value '2007-11-02 20:00:00' plus the time zone
ID for 'America/Los_Angeles'. The time in Los Angeles was stored as UTC minus eight hours
(PST). Under version 3 of the transition rules, the offset for the same day is minus seven hours
(PDT). Beginning with year 2007, the DST has been in effect longer (until the first Sunday of
November, which was November 4th in 2007). Now, when users retrieve the same timestamp
and the new offset is added to the stored UTC time, they receive TIMESTAMP '2007-11-02
13:00:00 America/Los_Angeles'. There is a one hour difference compared to the data
previous to version 3 taking effect.

Note:

For any time zone region whose transition rules have been updated, the upgrade
process discussed throughout this section affects only timestamps that point to the
future relative to the effective date of the corresponding DST rule change. For
example, no timestamp before year 2007 is affected by the version 3 change to the
'America/Los_Angeles' time zone region.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-20

Preparing to Upgrade the Time Zone File and Timestamp with Time Zone Data

Before you actually upgrade any data, that is TIMESTAMP WITH TIME ZONE (TSTZ) data in a
database, you should verify what the impact of the upgrade is likely to be. In general, you can
consider the upgrade process to have two separate sub-processes – prepare and upgrade. To
prepare for the upgrade, you start a prepare window, which is the time when you check how
much data has to be updated in the database. To upgrade, you start an upgrade window, which
is the time when changes to the data actually occur.

While not required, Oracle strongly recommends that you perform the prepare step. In addition
to finding out how much data will have to be modified during the upgrade, thus giving you an
estimate of how much time the upgrade will take, you will also see any semantic errors that
you may encounter.

Upgrading the Time Zone File and Timestamp with Time Zone Data in a Multitenant
Environment

The following guidelines apply when upgrading the time zone file and timestamp with time
zone data in a multitenant environment:

• Each container in a multitenant environment has its own time zone file. Therefore, to
perform a time zone data upgrade across an entire CDB, you must upgrade the CDB root
and each PDB separately. Note that Oracle allows different containers to have different
time zone file versions, so you have the option of upgrading only a subset of containers in
a CDB.

• When performing a time zone data upgrade in a CDB (using either the DBMS_DST package
or the utltz_* scripts), you must perform the Prepare Window steps and the Upgrade
Window steps completely in one container before moving on to the next container.

• A new PDB is always assigned the time zone version of PDB$SEED.

• PDB$SEED is always assigned the time zone version at the time of CDB creation. The time
zone version of PDB$SEED cannot be changed.

Methods for Upgrading the Time Zone File and Timestamp with Time Zone Data

You can upgrade the time zone data in your database using either of the following methods:

• Upgrading the Time Zone Data Using the DBMS_DST Package

This method provides the most control over the individual steps of the time zone data
upgrade. Starting with Oracle Database 21c, you have the option of performing this
method while the database is online or offline. The online version of this method requires
one restart of the database at your convenience and requires minimal locks on tables that
need to be upgraded. It allows applications to query all time zone data and to insert and
modify time zone data for all tables that can be migrated online. The offline version of this
method, which was also available in previous releases, requires the database to be in
UPGRADE mode during part of the procedure and is more restrictive about when applications
can insert and modify time zone data.

• Upgrading the Time Zone Data Using the utltz_* Scripts

This method is easier to perform than the method that uses the DBMS_DST package,
because it provides a set of wrapper scripts that call the various DBMS_DST procedures.
However, during the time zone upgrade process, the database is automatically restarted
multiple times and applications cannot query or insert time zone data in the database.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-21

4.7.1 Upgrading the Time Zone Data Using the DBMS_DST Package
This section describes how to perform a time zone data upgrade using the DBMS_DST package.

Each container in a multitenant environment has its own time zone file. Therefore, to perform a
time zone data upgrade across an entire CDB, you must upgrade the CDB root and each PDB
separately. Note that Oracle allows different containers to have different time zone file
versions, so you have the option of upgrading only a subset of containers in a CDB.

Perform the steps in the following sections completely in one container before moving on to the
next container:

• Prepare Window

• Upgrade Window

• Upgrade Example

• Upgrade Error Handling

4.7.1.1 Prepare Window
During the prepare window, you can get the information about the data that will be affected
during the time zone upgrade process using the following steps:

1. Install the desired version of time zone files to which you will be later migrating
into $ORACLE_HOME/oracore/zoneinfo. If the desired version is version_number, then you
must add the file timezlrg_version_number.dat. You can add the file
timezone_version_number.dat at your discretion later. These files can be found on My
Oracle Support. The desired version should be the latest version available, unless the
latest version contains relevant DST rule changes that were rolled back by the appropriate
government after the version had been released.

2. You can optionally create the following tables:

• an error table that contains the errors generated during the upgrade process by using
the DBMS_DST.CREATE_ERROR_TABLE procedure. If you do not explicitly create this table,
then the default table used is sys.dst$error_table.

• a table that contains the affected timestamp with time zone information by using the
DBMS_DST.CREATE_AFFECTED_TABLE procedure. If you do not explicitly create this table,
then the default table used is sys.dst$affected_tables.

• a trigger table that stores the disabled TSTZ table triggers information by using the
DBMS_DST.CREATE_TRIGGER_TABLE procedure. If you do not explicitly create this table,
then the default table used is sys.dst$trigger_table. Note that during the upgrade
window, Oracle Database first disables the triggers on a TSTZ table and then performs
the upgrade of its affected TSTZ data. Oracle Database saves the information about
those triggers in the sys.dst$trigger_table table. After completing the upgrade of
the affected TSTZ data in the table, the disabled triggers are enabled by reading their
information from the sys.dst$trigger_table table and then their information is
removed from the sys.dst$trigger_table table. If any fatal error occurs, such as an
unexpected instance shutdown during the upgrade window, you should check the
sys.dst$trigger_table table to see if any trigger has not been restored to its
previous active state before the upgrade.

3. Purge unneeded data.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-22

The DBMS_SCHEDULER log tables contain a large amount of time zone data. If this data is not
needed, then delete it using the following command before you run the upgrade steps.
Stop the main jobs before running this command as it may not delete all of the data from
the DBMS_SCHEDULER log tables, if some of the main jobs in a chain of jobs are still running.

exec dbms_scheduler.purge_log;

The other tables that may contain a large amount of time zone data are the
SYS.WRI$_OPTSTAT_HISTGRM_HISTORY and SYS.WRI$_OPTSTAT_HISTHEAD_HISTORY tables. In
case you do not need this data, then you may delete it using the following commands:

-- check the number of rows in the tables
select count(*) from SYS.WRI$_OPTSTAT_HISTGRM_HISTORY;
select count(*) from SYS.WRI$_OPTSTAT_HISTHEAD_HISTORY;

-- check the data retention period of the stats
-- the default value is 31
select systimestamp - dbms_stats.get_stats_history_availability from dual;

-- disable stats retention
exec dbms_stats.alter_stats_history_retention(0);

-- remove all the stats
exec DBMS_STATS.PURGE_STATS(systimestamp);

-- check the result of the purge operation
select count(*) from SYS.WRI$_OPTSTAT_HISTGRM_HISTORY;
select count(*) from SYS.WRI$_OPTSTAT_HISTHEAD_HISTORY;

You may set the data retention period back to its original value using the following
command once the time zone data upgrade is completed:

exec dbms_stats.alter_stats_history_retention(31);

4. Execute the procedure DBMS_DST.BEGIN_PREPARE(new_version), where new_version is
the time zone file version you chose in Step 1.

5. Collect information about affected data by executing the procedure
DBMS_DST.FIND_AFFECTED_TABLES, optionally passing the names of custom tables created
in Step 2 as parameters. Verify the affected columns by querying
sys.dst$affected_tables or the corresponding custom table. Also, it is particularly
important to check sys.dst$affected_tables.error_count or the corresponding
error_count column in the custom table for possible errors. If the error count is greater
than 0, you can check what kind of errors you might expect during the upgrade by
checking sys.dst$error_table or the corresponding custom error table. See "Upgrade
Error Handling".

6. End the prepare window by executing the procedure DBMS_DST.END_PREPARE.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-23

Note:

• Only one DBA should run the prepare window at one time. Also, make sure to
correct all errors before running the upgrade.

• You can find the matrix of available patches for updating your time zone files by
going to Oracle Support and reading Document ID 412160.1.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
DBMS_DST package

4.7.1.2 Upgrade Window

Note:

In a multitenant environment, all the PDBs must be shut down before running the
DBMS_DST.UPGRADE_DATABASE procedure on a CDB.

During the upgrade window, you can upgrade the time zone data using the following steps:

1. If you have not already done so, download the desired version of
timezlrg_version_number.dat and install it in $ORACLE_HOME/oracore/zoneinfo. In
addition, you can optionally download timezone_version_number.dat from My Oracle
Support and put it in the same location.

2. Starting with Oracle Database 21c, you have the option of performing this method while
the database is online or offline. The online version of this method requires one restart of
the database at your convenience and requires minimal locks on tables that need to be
upgraded. It allows applications to query all time zone data and to insert and modify time
zone data for all tables that can be migrated online. The offline version of this method,
which was also available in previous releases, requires the database to be in UPGRADE
mode during part of the procedure and is more restrictive about when applications can
insert and modify time zone data.

a. If you choose to perform the online version of this procedure:

i. Set the TIMEZONE_VERSION_UPGRADE_ONLINE initialization parameter to true:

ALTER SYSTEM SET TIMEZONE_VERSION_UPGRADE_ONLINE = true;

ii. Proceed to Step 3.

b. If you choose to perform the offline version of this procedure:

i. Ensure that the TIMEZONE_VERSION_UPGRADE_ONLINE initialization parameter is set
to its default value of false:

ALTER SYSTEM SET TIMEZONE_VERSION_UPGRADE_ONLINE = false;

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-24

ii. Shut down the database. In Oracle RAC, you must shut down all instances.

iii. Start up the database in the UPGRADE mode. Note that, in Oracle RAC, only one
instance should be started. See Oracle Database Upgrade Guide for more
information about the UPGRADE mode.

3. Run the procedure DBMS_DST.BEGIN_UPGRADE(new_version). Optionally, you can set the
error_on_overlap_time and error_on_nonexisting_time parameters to TRUE if you do
not want to ignore semantic errors during the upgrade of dictionary tables that contain
timestamp with time zone data. Examples of such errors could be related to
DBMS_SCHEDULER, as discussed in "Upgrade Error Handling". If you specify TRUE for either
or both of these parameters, the errors are populated into sys.dst$error_table. In this
case, you might want to truncate the error table before you run the BEGIN_UPGRADE
procedure. See Oracle Database PL/SQL Packages and Types Reference for more
information.

The BEGIN_UPGRADE procedure modifies time zone information in the database, but does
not modify any user table data. While the BEGIN_UPGRADE procedure is operating, you
cannot add tables containing TSTZ columns to the database, nor can you add TSTZ
columns to existing tables. TSTZ columns are columns defined on TIMESTAMP WITH TIME
ZONE data types or object types containing attributes of TIMESTAMP WITH TIME ZONE data
types.

After the BEGIN_UPGRADE procedure has successfully executed, user tables that contain
TSTZ data will be marked with the UPGRADE IN PROGRESS property.

4. If the BEGIN_UPGRADE procedure fails, the error "ORA-56927: Starting an upgrade window
failed" is displayed.

After the BEGIN_UPGRADE procedure finishes executing with errors, check
sys.dst$error_table to determine if the dictionary conversion was successful. If
successful, there will not be any rows in the table. If there are errors, correct those errors
manually and rerun the BEGIN_UPGRADE procedure. See "Upgrade Error Handling".

5. Truncate the error and trigger tables (by default, sys.dst$error_table and
sys.dst$trigger_table).

6. This step depends on whether you are performing the online or offline version of this
procedure:

• If you are performing the online version of this procedure, then allow the database to
continue running until you reach a convenient time to perform a reboot. During this
time, the database is still operating with the old time zone version and the TSTZ data
has not yet been updated. You are allowed to add tables that contain TSTZ columns to
the database and you can add TSTZ columns to existing tables. When it is a
convenient time to reboot the database, shut down the database and then restart it in
normal mode. In Oracle RAC, you must shut down all instances first before restarting
them.

• If you are performing the offline version of this procedure (that is, you put the database
in UPGRADE mode in Step 2), then restart the database now in normal mode.

7. Confirm that the new time zone version is the primary version by running the following
query:

SELECT * FROM V$TIMEZONE_FILE;

8. Allow the database to continue running until you reach a convenient time to upgrade the
TSTZ data in all tables. A convenient time could be when the database has low usage.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-25

While the database continues running, previously existing TSTZ columns still have the
TIMESTAMP WITH TIMEZONE reflecting the previous time zone version. In order to present the
data in these columns as though they have been converted to the new time zone version
when you issue SELECT statements, Oracle adds conversion operators over the columns to
convert them to the new version. Newly created TSTZ columns will have TIMESTAMP WITH
TIMEZONE reflecting the new time zone version.

9. When it is a convenient time to upgrade the TSTZ data in all tables, run the procedure
DBMS_DST.UPGRADE_DATABASE.

Each TSTZ table is upgraded in a separate transaction. For TSTZ base tables with
materialized view logs, the base table and materialized view log table are upgraded in one
transaction. During the upgrade, if TIMEZONE_VERSION_UPGRADE_ONLINE is set to true, the
upgrade operation will be done online whenever possible. For tables containing TSTZ data
that cannot be upgraded online, the database will acquire an exclusive DML lock. If
TIMEZONE_VERSION_UPGRADE_ONLINE is set to false, all upgrade operations will acquire an
exclusive DML lock on each table and do the upgrade. All dependent cursors on a table
will be invalidated when the upgrade of the table is complete.

10. Verify that all tables have been upgraded by querying the DBA_TSTZ_TABLES view, as
shown in "Upgrade Example". Then check sys.dst$error_table to see if there are any
errors. If there are errors, correct the errors and rerun the DBMS_DST.UPGRADE_TABLE
procedure for the relevant tables. Or, if you do not think those errors are important, then
rerun the DBMS_DST.UPGRADE_TABLE procedure with the parameters set to ignore errors.

11. End the upgrade window by running the procedure DBMS_DST.END_UPGRADE.

Notes:

• Tables containing TIMESTAMP WITH TIME ZONE columns need to be in a state
where they can be updated. Therefore, as an example, the columns cannot have
validated and disabled check constraints because this prevents updating.

• Oracle recommends that you use the parallel option if a table size is greater than
2 Gigabytes. Oracle also recommends that you allow Oracle to handle any
semantic errors that may arise.

• When you run the CREATE statements for error, trigger, or affected tables, you
must pass the table name only, not the schema name. This is because the tables
are created in the schema from which the CREATE statements are run.

• You cannot create materialized views or materialized view logs on tables marked
with the UPGRADE_IN_PROGRESS property; if you attempt to do so, error ORA-30403
or ORA-32426 will be raised. You cannot alter existing materialized view logs on
tables marked with the UPGRADE_IN_PROGRESS property; if you attempt to do so,
error ORA-32426 will be raised. Existing materialized views on tables that are
marked with the UPGRADE_IN_PROGRESS property are not allowed to perform a
refresh; if a refresh is attempted, error ORA-30403 will be raised.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
DBMS_DST package

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-26

4.7.1.3 Upgrade Example
This example illustrates updating DST behavior by using the online method of the procedure. It
upgrades an Oracle database to time zone version 14. First, assume that your current
database is using time zone version 3, and also assume you have an existing table t, which
contains timestamp with time zone data.

Connect to the database as the user scott and execute the following statements:

DROP TABLE t;
CREATE TABLE t (c NUMBER, mark VARCHAR(25), ts TIMESTAMP WITH TIME ZONE);

INSERT INTO t VALUES(1, 'not_affected',
 to_timestamp_tz('22-sep-2006 13:00:00 america/los_angeles',
 'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES(4, 'affected_err_exist',
 to_timestamp_tz('11-mar-2007 00:30:00 america/st_johns',
 'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES(6, 'affected_no_err',
 to_timestamp_tz('11-mar-2007 01:30:00 america/st_johns',
 'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES(14, 'affected_err_dup',
 to_timestamp_tz('21-sep-2006 23:30:00 egypt',
 'dd-mon-yyyy hh24:mi:ss tzr tzd'));
COMMIT;

Then, optionally, you can start a prepare window to check the affected data and potential
semantic errors where there is an overlap or non-existing time. To do this, you should start a
window for preparation to migrate to time zone version 14. It is assumed that you have the
necessary privileges. These privileges are controlled with the DBMS_DST package.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_DST package

As an example, first, prepare the window.

connect / as sysdba
set serveroutput on
EXEC DBMS_DST.BEGIN_PREPARE(14);

A prepare window has been successfully started.

PL/SQL procedure successfully completed.

Note that the argument 14 causes the time zone version 14 to be used in this statement. After
this window is successfully started, you can check the status of the DST in
DATABASE_PROPERTIES as shown in the following example:

SELECT property_name, SUBSTR(property_value, 1, 30) value
FROM database_properties
WHERE property_name LIKE 'DST_%'
ORDER BY property_name;

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-27

You will see the output similar to the following:

PROPERTY_NAME VALUE
--------------------------- ---------
DST_PRIMARY_TT_VERSION 3
DST_SECONDARY_TT_VERSION 14
DST_UPGRADE_STATE PREPARE

Next, you can execute DBMS_DST.FIND_AFFECTED_TABLES to find all the tables in the database
that are affected if you upgrade from version 3 to version 14. This table contains the table
owner, table name, column name, row count, and error count. Here, you have the choice of
using the defaults for error tables (sys.dst$error_table) and affected tables
(sys.dst$affected_tables) or you can create your own. In this example, we create our own
tables by using DBMS_DST.CREATE_ERROR_TABLE and DBMS_DST.CREATE_AFFECTED_TABLE and
then pass to FIND_AFFECTED_TABLES as shown below.

Connect to the database as the user SYS and execute the following statements:

EXEC DBMS_DST.CREATE_AFFECTED_TABLE('my_affected_tables');
EXEC DBMS_DST.CREATE_ERROR_TABLE('my_error_table');

Then, you can execute FIND_AFFECTED_TABLES to see which tables are impacted during the
upgrade:

connect / as sysdba

BEGIN
 DBMS_DST.FIND_AFFECTED_TABLES(affected_tables => 'my_affected_tables',
 log_errors => TRUE,
 log_errors_table => 'my_error_table');
END;
/

Then, check the affected tables:

SELECT * FROM my_affected_tables;

TABLE_OWNER TABLE_NAME COLUMN_NAM ROW_COUNT ERROR_COUNT
----------- ---------- ---------- --------- -----------
SCOTT T TS 3 2

Then, check the error table:

SELECT * FROM my_error_table;

TABLE_OWNER TABLE_NAME COLUMN_NAME ROWID ERROR_NUMBER
----------- ---------- ----------- ------------------ ------------
SCOTT T TS AAAPW3AABAAANzoAAB 1878
SCOTT T TS AAAPW3AABAAANzoAAE 1883

These errors can be corrected as described in "Upgrade Error Handling". Then, end the
prepare window, as in the following statement:

EXEC DBMS_DST.END_PREPARE;

A prepare window has been successfully ended.

PL/SQL procedure successfully completed.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-28

After this, you can check the DST status in DATABASE_PROPERTIES:

SELECT property_name, SUBSTR(property_value, 1, 30) value
FROM database_properties
WHERE property_name LIKE 'DST_%'
ORDER BY property_name;

PROPERTY_NAME VALUE
------------------------ --------
DST_PRIMARY_TT_VERSION 3
DST_SECONDARY_TT_VERSION 0
DST_UPGRADE_STATE NONE

Next, you can use the upgrade window to upgrade the affected data. To do this, first set the
TIMEZONE_VERSION_UPGRADE_ONLINE initialization parameter to true:

ALTER SYSTEM SET TIMEZONE_VERSION_UPGRADE_ONLINE = true;

Execute DBMS_DST.BEGIN_UPGRADE. In Oracle RAC, all instances must be running.
BEGIN_UPGRADE upgrades all dictionary tables in one transaction, so the invocation will either
succeed or fail as one whole. During the procedure's execution, all tables with TSTZ data are
marked as an upgrade in progress. You cannot add tables containing TSTZ columns to the
database, nor can you add TSTZ columns to existing tables. See Oracle Database Upgrade
Guide for more information.

So, BEGIN_UPGRADE upgrades system tables that contain TSTZ data and marks user tables
(containing TSTZ data) with the UPGRADE_IN_PROGRESS property. This can be checked in
DBA_TSTZ_TABLES, and is illustrated later in this example.

There are two parameters in BEGIN_UPGRADE that are for handling semantic errors:
error_on_overlap_time (error number ORA-1883) and error_on_nonexisting_time (error
number ORA-1878). If the parameters use the default setting of FALSE, Oracle converts the
data using a default conversion and does not signal an error. See "Upgrade Error Handling" for
more information regarding what they mean, and how to handle errors.

The following call can automatically correct semantic errors based on some default values
when you upgrade the dictionary tables. If you do not ignore semantic errors, and you do have
such errors in the dictionary tables, BEGIN_UPGRADE will fail. These semantic errors are
populated into my_error_table.

EXEC DBMS_DST.BEGIN_UPGRADE(14);
An upgrade window has been successfully started.

PL/SQL procedure successfully completed.

After this, you can check the DST status in DATABASE_PROPERTIES, as in the following:

SELECT property_name, SUBSTR(property_value, 1, 30) value
FROM database_properties
WHERE property_name LIKE 'DST_%'
ORDER BY property_name;

PROPERTY_NAME VALUE
------------------------ ------------
DST_PRIMARY_TT_VERSION 14
DST_SECONDARY_TT_VERSION 3

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-29

DST_UPGRADE_STATE NEEDRESTART

Then, note that all tables containing TSTZ data display YES for UPGRADE_IN_PROGRESS:

SELECT owner, table_name, upgrade_in_progress FROM dba_tstz_tables;

OWNER TABLE_NAME UPGRADE_IN_PROGRESS
----- ------------------------- -------------------
SYS WRI$_OPTSTAT_AUX_HISTORY YES
SYS WRI$_OPTSTAT_OPR YES
SYS OPTSTAT_HIST_CONTROL$ YES
SYS SCHEDULER$_JOB YES
SYS KET$_AUTOTASK_STATUS YES
SYS AQ$_ALERT_QT_S YES
SYS AQ$_KUPC$DATAPUMP_QUETAB_S YES
DBSNMP MGMT_DB_FEATURE_LOG YES
WMSYS WM$VERSIONED_TABLES YES
SYS WRI$_OPTSTAT_IND_HISTORY YES
SYS OPTSTAT_USER_PREFS$ YES
SYS FGR$_FILE_GROUP_FILES YES
SYS SCHEDULER$_WINDOW YES
SYS WRR$_REPLAY_DIVERGENCE YES
SCOTT T YES
IX AQ$_ORDERS_QUEUETABLE_S YES
...

Note that the upgrade is in progress for table SCOTT.T. If you access SCOTT.T, the database will
transparently apply conversion operators to ensure to properly reflect the new time zone rules
on this table while the upgrade is in progress.

After BEGIN_UPGRADE has successfully executed, the database continues to operate with the old
time zone file. When it is a convenient time to reboot the database, shut down the database
and then restart it in normal mode.

Confirm that the new time zone version is the primary version by running the following query:

SELECT * FROM V$TIMEZONE_FILE;

FILENAME VERSION CON_ID
-------------------- ---------- ----------
timezlrg_14.dat 14 0

Now you can perform an upgrade of all tables containing TSTZ data by using
DBMS_DST.UPGRADE_DATABASE. All tables must be upgraded, otherwise, you will not be able to
end the upgrade window using the END_UPGRADE procedure.

Consider the following choices for running the DBMS_DST.UPGRADE_DATABASE procedure:

• Oracle recommends that you use the following code to perform the upgrade. It instructs the
database to resolve any errors encountered and relieves you of having to resolve the
errors manually.

VAR numfail number;
BEGIN
 DBMS_DST.UPGRADE_DATABASE(:numfail);
 DBMS_OUTPUT.PUT_LINE('Number of tables failed to upgrade:' || :numfail);
END;
/

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-30

• However, if you prefer to view and resolve errors manually, you can use the following code:

VAR numfail number;
BEGIN
 DBMS_DST.UPGRADE_DATABASE(:numfail,
 parallel => TRUE,
 log_errors => TRUE,
 log_errors_table => 'my_error_table',
 log_triggers_table => 'SYS.DST$TRIGGER_TABLE',
 error_on_overlap_time => TRUE,
 error_on_nonexisting_time => TRUE);

DBMS_OUTPUT.PUT_LINE('Number of tables failed to upgrade:' || :numfail);
END;
/

If there are any errors, you should correct them and use UPGRADE_TABLE on the individual
tables. In that case, you may need to handle tables related to materialized views, such as
materialized view base tables, materialized view log tables, and materialized view
container tables. There are a couple of considerations to keep in mind when upgrading
these tables. First, the base table and its materialized view log table have to be upgraded
atomically. Next, the materialized view container table has to be upgraded after all its base
tables and the materialized view log tables have been upgraded. In general, Oracle
recommends that you handle semantic errors by letting Oracle Database take the default
action.

For the sake of this example, let us assume there were some errors in SCOTT.T after you
ran UPGRADE_DATABASE. In that case, you can check these errors by using the following
query:

SELECT * FROM my_error_table;

TABLE_OWNER TABLE_NAME COLUMN_NAME ROWID ERROR_NUMBER
----------- ---------- ----------- ------------------ ------------
SCOTT T TS AAAO2XAABAAANrgAAD 1878
SCOTT T TS AAAO2XAABAAANrgAAE 1878

In the output, you can see the errors having number 1878. This error means that an error
has occurred for a non-existing time.

To continue with this example, assume that SCOTT.T has a materialized view log
scott.mlog$_t, and that there is a single materialized view on SCOTT.T. Then, assume that
this 1878 error has been corrected.

Finally, you can upgrade the table, materialized view log and materialized view as follows:

VAR numfail number;
BEGIN
 DBMS_DST.UPGRADE_TABLE(:numfail,
 table_list => 'SCOTT.t, SCOTT.mlog$_T',
 parallel => TRUE,
 continue_after_errors => FALSE,
 log_errors => TRUE,
 log_errors_table => 'my_error_table',
 error_on_overlap_time => FALSE,
 error_on_nonexisting_time => TRUE,
 log_triggers_table => 'SYS.DST$TRIGGER_TABLE',
 atomic_upgrade => TRUE);

 DBMS_OUTPUT.PUT_LINE('Number of tables failed to upgrade:' || :numfail);
END;

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-31

/

VAR numfail number;
BEGIN
 DBMS_DST.UPGRADE_TABLE(:numfail,
 table_list => 'SCOTT.MYMV_T',
 parallel => TRUE,
 continue_after_errors => FALSE,
 log_errors => TRUE,
 log_errors_table => 'my_error_table',
 error_on_overlap_time => FALSE,
 error_on_nonexisting_time => TRUE,
 log_triggers_table => 'SYS.DST$TRIGGER_TABLE',
 atomic_upgrade => TRUE);

 DBMS_OUTPUT.PUT_LINE('Number of tables failed to upgrade:' || :numfail);
END;
/

The atomic_upgrade parameter enables you to combine the upgrade of the table with its
materialized view log.

After all the tables are upgraded, you can invoke END_UPGRADE to end an upgrade window as
shown below:

VAR numfail number;
BEGIN
 DBMS_DST.END_UPGRADE(:numfail);
 DBMS_OUTPUT.PUT_LINE('Number of tables failed to upgrade:' || :numfail);
END;
/

The upgrade window ends if all the affected tables are upgraded successfully, else the output
shows how many tables did not upgrade successfully.

4.7.1.4 Upgrade Error Handling
There are three major semantic errors that can occur during an upgrade. The first is when an
existing time becomes a non-existing time, the second is when a time becomes duplicated,
and the third is when a duplicate time becomes a non-duplicate time.

As an example of the first case, consider the change from Pacific Standard Time (PST) to
Pacific Daylight Saving Time (PDT) in 2007. This change takes place on Mar-11-2007 at 2AM
according to version 3 (and any later version up to at least 32) when the clock moves forward
one hour to 3AM and produces a gap between 2AM and 3AM. In version 2, this time change
occurs on Apr-01-2007. If you upgrade the time zone file from version 2 to version 3, any time
in the interval between 2AM and 3AM on Mar-11-2007 is not valid, and raises an error
(ORA-1878) if ERROR_ON_NONEXISTING_TIME is set to TRUE. Therefore, there is a non-existing
time problem. When ERROR_ON_NONEXISTING_TIME is set to FALSE, which is the default value for
this parameter, the error is not reported and Oracle preserves UTC time in this case. For
example, "Mar-11-2007 02:30 PST" in version 2 becomes "Mar-11-2007 03:30 PDT" in version
3 as they both are translated to the same UTC timestamp.

An example of the second case occurs when changing from PDT to PST. For example, in
version 3 for 2007, the change occurs on Nov-04-2007, when the time falls back from 2AM to
1AM. This means that times in the interval <1AM, 2AM> on Nov-04-2007 can appear twice,
once with PST and once with PDT. In version 2, this transition occurs on Oct-28-2007 at 2AM.
Thus, any timestamp within <1AM, 2AM> on Nov-04-2007, which is uniquely identified in
version 2, results in an error (ORA-1883) in version 3, if ERROR_ON_OVERLAP_TIME is set to TRUE.
If you leave this parameter on its default setting of FALSE, then the UTC timestamp value is

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-32

preserved and no error is raised. In this situation, if you change the version from 2 to 3,
timestamp "Nov-04-2007 01:30 PST" in version 2 becomes "Nov-04-2007 01:30 PST" in
version 3.

The third case happens when a duplicate time becomes a non-duplicate time. Consider the
transition from PDT to PST in 2007, for example, where <1AM, 2AM> on Oct-28-2007 in
version 2 is the overlapped interval. Then both "Oct-28-2007 01:30 PDT" and "Oct-28-2007
01:30 PST" are valid timestamps in version 2. If ERROR_ON_OVERLAP_TIME is set to TRUE, an
ORA-1883 error is raised during an upgrade from version 2 to version 3. If
ERROR_ON_OVERLAP_TIME is set to FALSE (the default value of this parameter), however, the
LOCAL time is preserved and no error is reported. In this case, both "Oct-28-2007 01:30 PDT"
and "Oct-28-2007 01:30 PST" in version 2 convert to the same "Oct-28-2007 01:30 PDT" in
version 3. Note that setting ERROR_ON_OVERLAP_TIME to FALSE can potentially cause some time
sequences to be reversed. For example, a job (Job A) scheduled at "Oct-28-2007 01:45 PDT"
in version 2 is supposed to be executed before a job (Job B) scheduled at "Oct-28-2007 01:30
PST". After the upgrade to version 3, Job A is scheduled at "Oct-28-2007 01:45 PDT" and Job
B remains at "Oct-28-2007 01:30 PDT", resulting in Job B being executed before Job A. Even
though unchained scheduled jobs are not guaranteed to be executed in a certain order, this
issue should be kept in mind when setting up scheduled jobs.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
regarding how to use these parameters

4.7.2 Upgrading the Time Zone Data Using the utltz_* Scripts
This section describes how to perform a time zone data upgrade using the utltz_* scripts.

Each container in a multitenant environment has its own time zone file. Therefore, to perform a
time zone data upgrade across an entire CDB, you must upgrade the CDB root and each PDB
separately. Note that Oracle allows different containers to have different time zone file
versions, so you have the option of upgrading only a subset of containers in a CDB.

Perform the steps in the following sections completely in one container before moving on to the
next container:

• Prepare Window

• Upgrade Window

4.7.2.1 Prepare Window
During the prepare window, you can get the information about the data that will be affected
during the time zone upgrade process using the following steps:

1. Install the desired version of time zone files to which you will be later migrating
into $ORACLE_HOME/oracore/zoneinfo. If the desired version is version_number, then you
must add the file timezlrg_version_number.dat. You can add the file
timezone_version_number.dat at your discretion later. These files can be found on My
Oracle Support. The desired version should be the latest version available, unless the
latest version contains relevant DST rule changes that were rolled back by the appropriate
government after the version had been released.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-33

2. Run any of the following scripts present in the $ORACLE_HOME/rdbms/admin directory to
check how much data will need to be updated in the database during the time zone data
upgrade:

• utltz_countstats.sql
This script shows the optimizer statistics of num_rows of all the tables having TIMESTAMP
WITH TIME ZONE (TSTZ) data.

Note:

Run the utltz_countstats.sql script only when the database optimizer
statistics are up to date. Otherwise, run the utltz_countstar.sql script. If
you run the utltz_countstats.sql script, then you need not run the
utltz_countstar.sql script.

• utltz_countstar.sql
This script shows the result of the count(*) operation for all the tables having
TIMESTAMP WITH TIME ZONE (TSTZ) data.

Note:

The utltz_countstar.sql script may take a considerable amount of time to
complete its execution.

3. Purge unneeded data.

Perform this step as described in the Prepare Window for upgrading the time zone data
using the DBMS_DST package. Refer to Step 3 in "Prepare Window".

4.7.2.2 Upgrade Window
During the upgrade window, you can run the following scripts present in the $ORACLE_HOME/
rdbms/admin directory to upgrade the time zone data in the database:

1. If you have not already done so, download the desired version of
timezlrg_version_number.dat and install it in $ORACLE_HOME/oracore/zoneinfo. In
addition, you can optionally download timezone_version_number.dat from My Oracle
Support and put it in the same location.

2. Ensure that the TIMEZONE_VERSION_UPGRADE_ONLINE initialization parameter is set to its
default value of false:

ALTER SYSTEM SET TIMEZONE_VERSION_UPGRADE_ONLINE = false;

3. Run the utltz_upg_check.sql script from the $ORACLE_HOME directory:

spool utltz_upg_check.log
@utltz_upg_check.sql
spool off

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-34

The following information is displayed on the screen after successful execution of the
script:

INFO: A newer RDBMS DST version than the one currently used is found.
INFO: Note that NO DST update was yet done.
INFO: Now run utltz_upg_apply.sql to do the actual RDBMS DST update.
INFO: Note that the utltz_upg_apply.sql script will
INFO: restart the database 2 times WITHOUT any confirmation or prompt.

The script also writes the following information in the alert.log file:

utltz_upg_check sucessfully found newer RDBMS DSTv new_time_zone_version and
took number_of_minutes minutes to run.
If the utltz_upg_check.sql script displays the following error, check the previous
message displayed on the screen and proceed accordingly.

ORA-20xxx: Stopping script - see previous message...
4. Run the utltz_upg_apply.sql script from the $ORACLE_HOME directory after the

utltz_upg_check.sql script is executed successfully:

spool utltz_upg_apply.log
@utltz_upg_apply.sql
spool off

Note:

The following are the prerequisites for running the utltz_upg_apply.sql script:

• In an Oracle RAC environment, the Oracle RAC database must be started as
a single database instance.

• In a multitenant environment, all the PDBs must be shut down before running
the utltz_upg_apply.sql script on the CDB.

Also, note the following:

• The utltz_upg_apply.sql script automatically restarts the database multiple
times during its execution.

• The utltz_upg_apply.sql script generally takes less time to execute than
the utltz_upg_check.sql script.

The following information is displayed on the screen after successful execution of the
utltz_upg_apply.sql script:

INFO: The RDBMS DST update is successfully finished.
INFO: Make sure to exit this sqlplus session.
INFO: Do not use it for timezone related selects.

The TZ_VERSION column in the Registry$database table now gets updated with the new
time zone version.

If the script displays the following error message, then check the previous message
displayed on the screen and proceed accordingly.

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

4-35

ORA-20xxx: Stopping script - see previous message...

Note:

If you want to see what is happening when the scripts utltz_upg_check.sql and
utltz_upg_apply.sql are being executed, run the following commands:

set PAGES 1000

-- query the V$SESSION_LONGOPS view
select TARGET, TO_CHAR(START_TIME,'HH24:MI:SS - DD-MM-YY'),
 TIME_REMAINING, SOFAR, TOTALWORK, SID, SERIAL#, OPNAME
from V$SESSION_LONGOPS
where sid in
 (select SID from V$SESSION where CLIENT_INFO = 'upg_tzv')
 and
 SOFAR < TOTALWORK
order by START_TIME;

-- query the V$SESSION and V$SQLAREA views
select S.SID, S.SERIAL#, S.SQL_ID, S.PREV_SQL_ID,
 S.EVENT#, S.EVENT, S.P1TEXT, S.P1, S.P2TEXT,
 S.P2, S.P3TEXT, S.P3, S.TIME_REMAINING_MICRO,
 S.SEQ#, S.BLOCKING_SESSION, BS.PROGRAM "Blocking Program",
 Q1.SQL_TEXT "Current SQL", Q2.SQL_TEXT "Previous SQL"
from V$SESSION S, V$SQLAREA Q1, V$SQLAREA Q2, V$SESSION BS
where S.SQL_ID = Q1.SQL_ID(+) and
 S.PREV_SQL_ID = Q2.SQL_ID(+) and
 S.BLOCKING_SESSION = BS.SID(+) and
 S.CLIENT_INFO = 'upg_tzv';

4.8 Clients and Servers Operating with Different Versions of Time
Zone Files

In Oracle Database 11g, Release 11.2 and later, you can use different versions of time zone
file on the client and the server. This mode of operation was not supported in the earlier Oracle
Database releases. Both client and server must be Oracle Database 11g, Release 11.2 or later
to operate in such a mixed mode.

See Also:

Oracle Call Interface Programmer's Guide for the ramifications of working in the
mixed mode

OCI, JDBC, Pro*C, and SQL*Plus clients can now continue to communicate with the database
server without having to update client-side time zone files. For other products, if not explicitly
stated in the product-specific documentation, it should be assumed that such clients cannot
operate with a database server with a different time zone file than the client. Otherwise,

Chapter 4
Clients and Servers Operating with Different Versions of Time Zone Files

4-36

computations on the TIMESTAMP WITH TIMEZONE values that are region ID based may give
inconsistent results on the client. This is due to different daylight saving time (DST) rules in
effect for the time zone regions affected between the different time zone file versions at the
client and on the server.

Note if an application connects to different databases directly or via database links, it is
recommended that all databases be on the same time zone file version. Otherwise,
computations on the TIMESTAMP WITH TIMEZONE values on these different databases may give
inconsistent results. This is due to different DST rules in effect for the time zone regions
affected between the different time zone file versions across the different database servers.

4.9 Setting the Database Time Zone
Set the database time zone when the database is created by using the SET TIME_ZONE clause
of the CREATE DATABASE statement. If you do not set the database time zone, then it defaults to
the time zone of the server's operating system.

The time zone may be set to a named region or an absolute offset from UTC. To set the time
zone to a named region, use a statement similar to the following example:

CREATE DATABASE db01
...
SET TIME_ZONE='Europe/London';

To set the time zone to an offset from UTC, use a statement similar to the following example:

CREATE DATABASE db01
...
SET TIME_ZONE='-05:00';

The range of valid offsets is -12:00 to +14:00.

Note:

The database time zone is relevant only for TIMESTAMP WITH LOCAL TIME ZONE
columns. Oracle recommends that you set the database time zone to UTC (0:00) to
avoid data conversion and improve performance when data is transferred among
databases. This is especially important for distributed databases, replication, and
exporting and importing.

You can change the database time zone by using the SET TIME_ZONE clause of the ALTER
DATABASE statement. For example:

ALTER DATABASE SET TIME_ZONE='Europe/London';
ALTER DATABASE SET TIME_ZONE='-05:00';

The ALTER DATABASE SET TIME_ZONE statement returns an error if the database contains a
table with a TIMESTAMP WITH LOCAL TIME ZONE column and the column contains data.

The change does not take effect until the database has been shut down and restarted.

You can find out the database time zone by entering the following query:

SELECT dbtimezone FROM DUAL;

Chapter 4
Setting the Database Time Zone

4-37

4.10 Setting the Session Time Zone
You can set the default session time zone with the ORA_SDTZ environment variable. When users
retrieve TIMESTAMP WITH LOCAL TIME ZONE data, Oracle Database returns it in the users'
session time zone. The session time zone also takes effect when a TIMESTAMP value is
converted to the TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE data type.

Note:

Setting the session time zone does not affect the value returned by the SYSDATE and
SYSTIMESTAMP SQL function. SYSDATE returns the date and time of the operating
system on which the database resides, taking into account the time zone of the
database server's operating system that was in effect when the database was
started.

The ORA_SDTZ environment variable can be set to the following values:

• Operating system local time zone ('OS_TZ')

• Database time zone ('DB_TZ')

• Absolute offset from UTC (for example, '-05:00')

• Time zone region name (for example, 'Europe/London')

To set ORA_SDTZ, use statements similar to one of the following in a UNIX environment (C
shell):

% setenv ORA_SDTZ 'OS_TZ'
% setenv ORA_SDTZ 'DB_TZ'
% setenv ORA_SDTZ 'Europe/London'
% setenv ORA_SDTZ '-05:00'

When setting the ORA_SDTZ variable in a Microsoft Windows environment -- in the Registry,
among system environment variables, or in a command prompt window -- do not enclose the
time zone value in quotes.

The default value of the ORA_SDTZ variable, which is used when the variable is not set or it is
set to an invalid value, is 'OS_TZ'.

You can change the time zone for a specific SQL session with the SET TIME_ZONE clause of the
ALTER SESSION statement.

TIME_ZONE can be set to the following values:

• Default local time zone when the session was started (local)

• Database time zone (dbtimezone)

• Absolute offset from UTC (for example, '+10:00')

• Time zone region name (for example, 'Asia/Hong_Kong')

Use ALTER SESSION statements similar to the following:

ALTER SESSION SET TIME_ZONE=local;
ALTER SESSION SET TIME_ZONE=dbtimezone;

Chapter 4
Setting the Session Time Zone

4-38

ALTER SESSION SET TIME_ZONE='Asia/Hong_Kong';
ALTER SESSION SET TIME_ZONE='+10:00';

You can find out the current session time zone by entering the following query:

SELECT sessiontimezone FROM DUAL;

4.11 Converting Time Zones With the AT TIME ZONE Clause
A datetime SQL expression can be one of the following:

• A datetime column

• A compound expression that yields a datetime value

A datetime expression can include an AT LOCAL clause or an AT TIME ZONE clause. If you
include an AT LOCAL clause, then the result is returned in the current session time zone. If you
include the AT TIME ZONE clause, then use one of the following settings with the clause:

• Time zone offset: The string '(+|-)HH:MM' specifies a time zone as an offset from UTC. For
example, '-07:00' specifies the time zone that is 7 hours behind UTC. For example, if the
UTC time is 11:00 a.m., then the time in the '-07:00' time zone is 4:00 a.m.

• DBTIMEZONE: Oracle Database uses the database time zone established (explicitly or by
default) during database creation.

• SESSIONTIMEZONE: Oracle Database uses the session time zone established by default or
in the most recent ALTER SESSION statement.

• Time zone region name: Oracle Database returns the value in the time zone indicated by
the time zone region name. For example, you can specify Asia/Hong_Kong.

• An expression: If an expression returns a character string with a valid time zone format,
then Oracle Database returns the input in that time zone. Otherwise, Oracle Database
returns an error.

See Also:

Oracle Database SQL Language Reference

The following example converts the datetime value in the America/New_York time zone to the
datetime value in the America/Los_Angeles time zone.

Example 4-5 Converting a Datetime Value to Another Time Zone

SELECT FROM_TZ(CAST(TO_DATE('1999-12-01 11:00:00',
 'YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New_York')
 AT TIME ZONE 'America/Los_Angeles' "West Coast Time"
FROM DUAL;

West Coast Time
--
01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

Chapter 4
Converting Time Zones With the AT TIME ZONE Clause

4-39

4.12 Support for Daylight Saving Time
Oracle Database automatically determines whether Daylight Saving Time is in effect for a
specified time zone and returns the corresponding local time. Normally, date/time values are
sufficient to allow Oracle Database to determine whether Daylight Saving Time is in effect for a
specified time zone. The periods when Daylight Saving Time begins or ends are boundary
cases. For example, in the Eastern region of the United States, the time changes from
01:59:59 a.m. to 3:00:00 a.m. when Daylight Saving Time goes into effect. The interval
between 02:00:00 and 02:59:59 a.m. does not exist. Values in that interval are invalid. When
Daylight Saving Time ends, the time changes from 02:00:00 a.m. to 01:00:01 a.m. The interval
between 01:00:01 and 02:00:00 a.m. is repeated. Values from that interval are ambiguous
because they occur twice.

To resolve these boundary cases, Oracle Database uses the TZR and TZD format elements. TZR
represents the time zone region in datetime input strings. Examples are 'Australia/North',
'UTC', and 'Singapore'. TZD represents an abbreviated form of the time zone region with
Daylight Saving Time information. Examples are 'PST' for U. S. Pacific Standard Time and 'PDT'
for U. S. Pacific Daylight Time. To see a list of valid values for the TZR and TZD format
elements, query the TZNAME and TZABBREV columns of the V$TIMEZONE_NAMES dynamic
performance view.

See Also:

• Oracle Database SQL Language Reference for more information regarding the
session parameter ERROR_ON_OVERLAP_TIME

• "Time Zone Region Names" for a list of valid time zones

4.12.1 Examples: The Effect of Daylight Saving Time on Datetime
Calculations

The TIMESTAMP data type does not accept time zone values and does not calculate Daylight
Saving Time.

The TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE data types have the
following behavior:

• If a time zone region is associated with the datetime value, then the database server
knows the Daylight Saving Time rules for the region and uses the rules in calculations.

• Daylight Saving Time is not calculated for regions that do not use Daylight Saving Time.

The rest of this section contains examples that use datetime data types. The examples use the
global_orders table. It contains the orderdate1 column of TIMESTAMP data type and the
orderdate2 column of TIMESTAMP WITH TIME ZONE data type. The global_orders table is
created as follows:

CREATE TABLE global_orders (orderdate1 TIMESTAMP(0),
 orderdate2 TIMESTAMP(0) WITH TIME ZONE);
INSERT INTO global_orders VALUES ('28-OCT-00 11:24:54 PM',
 '28-OCT-00 11:24:54 PM America/New_York');

Chapter 4
Support for Daylight Saving Time

4-40

Note:

If you have created a global_orders table for the previous examples, then drop the
global_orders table before you try Example 4-7 through Example 4-8.

Example 4-6 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
TIME ZONE and TIMESTAMP

SELECT orderdate1 + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
 FROM global_orders;

The following output results:

ORDERDATE1+INTERVAL'8'HOUR ORDERDATE2+INTERVAL'8'HOUR
-------------------------- --------------------------
29-OCT-00 07.24.54.000000 AM 29-OCT-00 06.24.54.000000 AM AMERICA/NEW_YORK

This example shows the effect of adding 8 hours to the columns. The time period includes a
Daylight Saving Time boundary (a change from Daylight Saving Time to standard time). The
orderdate1 column is of TIMESTAMP data type, which does not use Daylight Saving Time
information and thus does not adjust for the change that took place in the 8-hour interval. The
TIMESTAMP WITH TIME ZONE data type does adjust for the change, so the orderdate2 column
shows the time as one hour earlier than the time shown in the orderdate1 column.

Example 4-7 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
LOCAL TIME ZONE and TIMESTAMP

The TIMESTAMP WITH LOCAL TIME ZONE data type uses the value of TIME_ZONE that is set for
the session environment. The following statements set the value of the TIME_ZONE session
parameter and create a global_orders table. The global_orders table has one column of
TIMESTAMP data type and one column of TIMESTAMP WITH LOCAL TIME ZONE data type.

ALTER SESSION SET TIME_ZONE='America/New_York';
CREATE TABLE global_orders (orderdate1 TIMESTAMP(0),
 orderdate2 TIMESTAMP(0) WITH LOCAL TIME ZONE);
INSERT INTO global_orders VALUES ('28-OCT-00 11:24:54 PM',
 '28-OCT-00 11:24:54 PM');

Add 8 hours to both columns.

SELECT orderdate1 + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global_orders;

Because a time zone region is associated with the datetime value for orderdate2, the Oracle
Database server uses the Daylight Saving Time rules for the region. Thus the output is the
same as in Example 4-6. There is a one-hour difference between the two calculations because
Daylight Saving Time is not calculated for the TIMESTAMP data type, and the calculation crosses
a Daylight Saving Time boundary.

Example 4-8 Daylight Saving Time Is Not Calculated for Regions That Do Not Use
Daylight Saving Time

Set the time zone region to UTC. UTC does not use Daylight Saving Time.

ALTER SESSION SET TIME_ZONE='UTC';

Truncate the global_orders table.

Chapter 4
Support for Daylight Saving Time

4-41

TRUNCATE TABLE global_orders;

Insert values into the global_orders table.

INSERT INTO global_orders VALUES ('28-OCT-00 11:24:54 PM',
 TIMESTAMP '2000-10-28 23:24:54 ');

Add 8 hours to the columns.

SELECT orderdate1 + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global_orders;

The following output results.

ORDERDATE1+INTERVAL'8'HOUR ORDERDATE2+INTERVAL'8'HOUR
-------------------------- ---------------------------
29-OCT-00 07.24.54.000000000 AM 29-OCT-00 07.24.54.000000000 AM UTC

The times are the same because Daylight Saving Time is not calculated for the UTC time zone
region.

Chapter 4
Support for Daylight Saving Time

4-42

5
Linguistic Sorting and Matching

This chapter explains the mechanism of linguistic sorting and searching of character data or
strings in Oracle Database. The process of determining the mutual ordering of strings
(character values) is called a collation. For any two strings, the collation defines whether the
strings are equal or whether one precedes the other in the sorting order. In the Oracle
documentation, the term sort is often used in place of collation.

Determining equality is especially important when a set of strings, such as a table column, is
searched for values that equal a specified search term or that match a search pattern. SQL
operators and functions used in searching are =, LIKE, REGEXP_LIKE, INSTR, and REGEXP_INSTR.
This chapter uses the term matching to mean determining the equality of entire strings using
the equality operator = or determining the equality of substrings of a string when the string is
matched against a pattern using LIKE, REGEXP_LIKE or REGEXP_INSTR. Note that Oracle Text
provides advanced full-text searching capabilities for the Oracle Database.

The ordering of strings in a set is called sorting. For example, the ORDER BY clause uses
collation to determine the ordering of strings to sort the query results, while PL/SQL uses
collations to sort strings in associative arrays indexed by VARCHAR2 values, and the functions
MIN, MAX, GREATEST, and LEAST use collations to find the smallest or largest character value.

There are many possible collations that can be applied to strings to determine their ordering.
Collations that take into consideration the standards and customs of spoken languages are
called linguistic collations. They order strings in the same way as dictionaries, phone
directories, and other text lists written in a given language. In contrast, binary collation orders
strings based on their binary representation (character encoding), treating each string as a
simple sequences of bytes.

See Also:

Oracle Text Application Developer's Guide

The following topics explain linguistic sorting and matching:

• Overview of Oracle Database Collation Capabilities

• Using Binary Collation

• Using Linguistic Collation

• Linguistic Collation Features

• Case-Insensitive and Accent-Insensitive Linguistic Collation

• Performing Linguistic Comparisons

• Using Linguistic Indexes

• Searching Linguistic Strings

• SQL Regular Expressions in a Multilingual Environment

• Column-Level Collation and Case Sensitivity

5-1

5.1 Overview of Oracle Database Collation Capabilities
Different languages have different collations. In addition, different cultures or countries that use
the same alphabets may sort words differently. For example, in Danish, Æ is after Z, while Y
and Ü are considered to be variants of the same letter.

Collation can be case-sensitive or case-insensitive. Case refers to the condition of being
uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase glyph for a, the
lowercase glyph.

Collation can ignore or consider diacritics. A diacritic is a mark near or through a character or
combination of characters that indicates a different sound than the sound of the character
without the diacritic. For example, the cedilla (,) in façade is a diacritic. It changes the sound of
c.

Collation order can be phonetic or it can be based on the appearance of the character. For
example, collation can be based on the number of strokes in East Asian ideographs. Another
common collation issue is combining letters into a single character. For example, in traditional
Spanish, ch is a distinct character that comes after c, which means that the correct order is:
cerveza, colorado, cheremoya. This means that the letter c cannot be sorted until Oracle
Database has checked whether the next letter is an h.

Oracle Database provides the following types of collation:

• Binary

• Monolingual

• Multilingual

• Unicode Collation Algorithm (UCA)

While monolingual collation achieves a linguistically correct order for a single language,
multilingual collation and UCA collation are designed to handle many languages at the same
time. Furthermore, UCA collation conforms to the Unicode Collation Algorithm (UCA) that is a
Unicode standard and is fully compatible with the international collation standard ISO 14651.
The UCA standard provides a complete linguistic ordering for all characters in Unicode, hence
all the languages around the world. With wide deployment of Unicode application, UCA
collation is best suited for sorting multilingual data.

5.2 Using Binary Collation
One way to sort character data is based on the numeric values of the characters defined by the
character encoding scheme. This is called a binary collation. Binary collation is the fastest
type of sort. It produces reasonable results for the English alphabet because the ASCII and
EBCDIC standards define the letters A to Z in ascending numeric value.

Note:

In the ASCII standard, all uppercase letters appear before any lowercase letters. In
the EBCDIC standard, the opposite is true: all lowercase letters appear before any
uppercase letters.

Chapter 5
Overview of Oracle Database Collation Capabilities

5-2

When characters used in other languages are present, a binary collation usually does not
produce reasonable results. For example, an ascending ORDER BY query returns the character
strings ABC, ABZ, BCD, ÄBC, when Ä has a higher numeric value than B in the character encoding
scheme. A binary collation is not usually linguistically meaningful for Asian languages that use
ideographic characters.

5.3 Using Linguistic Collation
To produce a collation sequence that matches the alphabetic sequence of characters, another
sorting technique must be used that sorts characters independently of their numeric values in
the character encoding scheme. This technique is called a linguistic collation. A linguistic
collation operates by replacing characters with numeric values that reflect each character's
proper linguistic order.

This section includes the following topics:

• Monolingual Collation

• Multilingual Collation

• UCA Collation

5.3.1 Monolingual Collation
Oracle Database compares character strings in two steps for monolingual collation. The first
step compares the major value of the entire string from a table of major values. Usually, letters
with the same appearance have the same major value. The second step compares the minor
value from a table of minor values. The major and minor values are defined by Oracle
Database. Oracle Database defines letters with diacritic and case differences as having the
same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a character. The
Unicode code point is a 16-bit binary value that represents a character.

The following table illustrates sample values for sorting a, A, ä, Ä, and b.

Table 5-1 Sample Glyphs and Their Major and Minor Sort Values

Glyph Major Value Minor Value

a 15 5

A 15 10

ä 15 15

Ä 15 20

b 20 5

Note:

Monolingual collation is not available for non-Unicode multibyte database character
sets. If a monolingual collation is specified when the database character set is non-
Unicode multibyte, then the default sort order is the binary sort order of the database
character set. One exception is UNICODE_BINARY. This collation is available for all
character sets.

Chapter 5
Using Linguistic Collation

5-3

See Also:

"What is the Unicode Standard?"

5.3.2 Multilingual Collation
Oracle Database provides multilingual collation so that you can sort data in more than one
language in one sort. This is useful for regions or languages that have complex sorting rules
and for multilingual databases. Note that Oracle Database supports all of the collations defined
in the previous releases.

For Asian language data or multilingual data, Oracle Database provides a sorting mechanism
based on the ISO 14651 standard. For example, Chinese characters can be ordered by the
number of strokes, PinYin, or radicals.

In addition, multilingual collation can handle canonical equivalence and supplementary
characters. Canonical equivalence is a basic equivalence between characters or sequences
of characters. For example, ç is equivalent to the combination of c and ,. Supplementary
characters are user-defined characters or predefined characters in Unicode that require two
code points within a specific code range. You can define up to 1.1 million code points in one
multilingual sort.

For example, Oracle Database supports a monolingual French sort (FRENCH), but you can
specify a multilingual French collation (FRENCH_M). _M represents the ISO 14651 standard for
multilingual sorting. The sorting order is based on the GENERIC_M sorting order and can sort
diacritical marks from right to left. Multilingual linguistic sort is usually used if the tables contain
multilingual data. If the tables contain only French, then a monolingual French sort might have
better performance because it uses less memory. It uses less memory because fewer
characters are defined in a monolingual French sort than in a multilingual French sort. There is
a trade-off between the scope and the performance of a sort.

See Also:

• "Canonical Equivalence"

• "Code Points and Supplementary Characters"

5.3.2.1 Multilingual Collation Levels
Oracle Database evaluates multilingual collation at three levels of precision:

• Primary Level Collation

• Secondary Level Collation

• Tertiary Level Collation

5.3.2.1.1 Primary Level Collation
A primary level collation distinguishes between base letters, such as the difference between
characters a and b. It is up to individual locales to define whether a is before b, b is before a, or
if they are equal. The binary representation of the characters is completely irrelevant. If a

Chapter 5
Using Linguistic Collation

5-4

character is an ignorable character, then it is assigned a primary level order (or weight) of
zero, which means it is ignored at the primary level. Characters that are ignorable on other
levels are given an order of zero at those levels.

For example, at the primary level, all variations of bat come before all variations of bet. The
variations of bat can appear in any order, and the variations of bet can appear in any order:

Bat
bat
BAT
BET
Bet
bet

See Also:

"Ignorable Characters"

5.3.2.1.2 Secondary Level Collation
A secondary level collation distinguishes between base letters (the primary level collation)
before distinguishing between diacritics on a given base letter. For example, the character Ä
differs from the character A only because it has a diacritic. Thus, Ä and A are the same on the
primary level because they have the same base letter (A) but differ on the secondary level.

The following list has been sorted on the primary level (resume comes before resumes) and on
the secondary level (strings without diacritics come before strings with diacritics):

resume
résumé
Résumé
Resumes
resumes
résumés

5.3.2.1.3 Tertiary Level Collation
A tertiary level collation distinguishes between base letters (primary level collation), diacritics
(secondary level collation), and case (upper case and lower case). It can also include special
characters such as +, -, and *.
The following are examples of tertiary level collations:

• Characters a and A are equal on the primary and secondary levels but different on the
tertiary level because they have different cases.

• Characters ä and A are equal on the primary level and different on the secondary and
tertiary levels.

• The primary and secondary level orders for the dash character - is 0. That is, it is ignored
on the primary and secondary levels. If a dash is compared with another character whose
primary level weight is nonzero, for example, u, then no result for the primary level is
available because u is not compared with anything. In this case, Oracle Database finds a
difference between - and u only at the tertiary level.

Chapter 5
Using Linguistic Collation

5-5

The following list has been sorted on the primary level (resume comes before resumes) and on
the secondary level (strings without diacritics come before strings with diacritics) and on the
tertiary level (lower case comes before upper case):

resume
Resume
résumé
Résumé
resumes
Resumes
résumés
Résumés

5.3.3 UCA Collation
Unicode Collation Algorithm (UCA) is a Unicode standard that is fully compatible with the
international collation standard ISO 14651. UCA defines a Default Unicode Collation Element
Table (DUCET) that provides a reasonable default ordering for all languages that are not
tailored. To achieve the correct ordering for a particular language, DUCET can be tailored to
meet the linguistic requirements for that language. There are tailorings of DUCET for various
languages provided in the Unicode Common Locale Data Repository.

This Oracle Database release provides UCA collation that fully conforms to UCA 12.1. In
addition to the collation based on DUCET, it provides tailored collations for a number of
commonly used languages. For example, you can specify UCA collation UCA1210_SCHINESE to
sort multilingual data containing Simplified Chinese. The collation will make Simplified Chinese
data appear in the PinYin order.

For sorting multilingual data, Oracle recommends the latest supported version of UCA
collations.

This section describes the following topics:

• UCA Comparison Levels

• UCA Collation Parameters

See Also:

The Unicode Consortium website for more information about Unicode Collation
Algorithm and related terminologies

5.3.3.1 UCA Comparison Levels
Similar to multilingual collation, UCA collations employ a multilevel comparison algorithm to
evaluate characters. This can go up to four levels of comparison:

• Primary Level

• Secondary Level

• Tertiary Level

• Quaternary Level

Chapter 5
Using Linguistic Collation

5-6

5.3.3.1.1 Primary Level
The primary level is used to distinguish between base letters, which is similar to the
comparison used in the primary level collation of the multilingual collation.

See Also:

"Primary Level Collation" for examples of base letter differences

5.3.3.1.2 Secondary Level
The secondary level is used to distinguish between diacritics if base letters are the same,
which is similar to what is used in the secondary level collation of the multilingual collation to
distinguish between diacritics.

See Also:

"Secondary Level Collation" for examples of diacritic differences

5.3.3.1.3 Tertiary Level
The tertiary level is used to distinguish between cases on a given base letter with the same
diacritic, which is similar to what is used in the tertiary level collation of the multilingual collation
to distinguish between cases. Moreover, UCA DUCET collation treats punctuations with
primary or quaternary significance based on how variable characters are weighted, which is
different from the tertiary level collation of the multilingual collation that treat punctuations with
tertiary level of significance.

See Also:

"Tertiary Level Collation" for examples of characters with case differences

5.3.3.1.4 Quaternary Level
The quaternary level is used to distinguish variable characters from other characters, if variable
characters are weighted as shifted. It is also used to distinguish Hiragana from Katakana with
the same base and case. An example is illustrated in the following figure.

Figure 5-1 Hiragana and Katakana Collation

 =3 (and are equal on the first three levels)

 <4 (is less than on the quaternary level)

Chapter 5
Using Linguistic Collation

5-7

See Also:

"UCA Collation Parameters"

5.3.3.2 UCA Collation Parameters
The following table illustrates the collation parameters and options that are supported in UCA
collations in this release.

Table 5-2 UCA Collation Parameters

Attribute Options Collation Modifier

strength primary

secondary

tertiary

quaternary

_AI or _S1
_CI or _S2
_S3
_S4 (Only applicable when
the alternate attribute is
set to shifted)

alternate non-ignorable

shifted

blanked

_VN
_VS
_VB

backwards on

off

_BY
_BN

normalization on _NY
caseLevel off _EN
caseFirst upper

off

_FU (Only valid for Danish)

_FN (Only valid for other
languages)

hiraganaQuaternary
(Deprecated as of UCA 7.0)

on

off

_HY
_HN

numeric off _DN
match-style minimal _MN

The parameter strength represents UCA comparison level.

The parameter alternate controls how variable characters are weighted.

The parameter backwards controls if diacritics are to be sorted backward.

The parameter hiraganaQuaternary is applicable to the UCA collations for the Japanese
language only. It has no effect on other collations. If it is set to “on” (_HY), then the
corresponding Hiragana and Katakana characters have different quaternary weights.
Otherwise, they have the same weights. The hiraganaQuaternary parameter is deprecated as
of UCA 7.0.

You can configure the preceding four UCA parameters using the options listed in Table 5-2.
The options for the other parameters listed in Table 5-2 are currently fixed based on tailored
languages and are not configurable.

Chapter 5
Using Linguistic Collation

5-8

See Also:

• "UCA Comparison Levels"

• The Unicode Consortium website for a complete description of UCA collation
parameters and options

5.4 Linguistic Collation Features
This section contains information about different features that a linguistic collation can have:

• Base Letters

• Ignorable Characters

• Contracting Characters

• Expanding Characters

• Context-Sensitive Characters

• Canonical Equivalence

• Reverse Secondary Sorting

• Character Rearrangement for Thai and Laotian Characters

• Special Letters

• Special Combination Letters

• Special Uppercase Letters

• Special Lowercase Letters

You can customize linguistic collations to include the desired characteristics.

See Also:

"Customizing Locale Data"

5.4.1 Base Letters
Base letters are defined in a base letter table, which maps each letter to its base letter. For
example, a, A, ä, and Ä all map to a, which is the base letter. This concept is particularly
relevant for working with Oracle Text.

See Also:

Oracle Text Reference

Chapter 5
Linguistic Collation Features

5-9

5.4.2 Ignorable Characters
In multilingual collation and UCA collation, certain characters may be treated as ignorable.
Ignorable characters are skipped, that is, treated as non-existent, when two character values
(strings) containing such characters are compared in a sorting or matching operation. There
are three kinds of ignorable characters: primary, secondary, and tertiary.

• Primary Ignorable Characters

• Secondary Ignorable Characters

• Tertiary Ignorable Characters

5.4.2.1 Primary Ignorable Characters
Primary ignorable characters are ignored when the multilingual collation or UCA collation
definition applied to the given comparison has the accent-insensitivity modifier _AI, for
example, GENERIC_M_AI or UCA1210_DUCET_AI.

Primary ignorable characters are comprised of diacritics (accents) from various alphabets
(Latin, Cyrillic, Greek, Devanagari, Katakana, and so on) and also of decorating modifiers,
such as an enclosing circle or enclosing square. These characters are non-spacing combining
characters, which means they combine with the preceding character to form a complete
accented or decorated character ("non-spacing" means that the character occupies the same
character position on screen or paper as the preceding character). For example, the character
"Latin Small Letter e" followed by the character "Combining Grave Accent" forms a single letter
"è", while the character "Latin Capital Letter A" followed by the "Combining Enclosing Circle"
forms a single character "(A)". Because non-spacing characters are defined as ignorable for
accent-insensitive sorts, these sorts can treat, for example, rôle as equal to role, naïve as
equal to naive, and (A)(B)(C) as equal to ABC.

Primary ignorable characters are called non-spacing characters when viewed in a multilingual
collation definition in the Oracle Locale Builder utility.

5.4.2.2 Secondary Ignorable Characters
Secondary ignorable characters are ignored when the applied definition has either the accent-
insensitivity modifier _AI or the case-insensitivity modifier _CI.

In multilingual collation, secondary ignorable characters are comprised of punctuation
characters, such as the space character, new line control codes, dashes, various quote forms,
mathematical operators, dot, comma, exclamation mark, various bracket forms, and so on. In
accent-insensitive (_AI) and case-insensitive (_CI) sorts, these punctuation characters are
ignored so that multi-lingual can be treated as equal to multilingual and e-mail can be
treated as equal to email.

Secondary ignorable characters are called punctuation characters when viewed in a
multilingual collation definition in the Oracle Locale Builder utility.

There are no secondary ignorable characters defined in the UCA DUCET, however.
Punctuations are treated as variable characters in the UCA.

5.4.2.3 Tertiary Ignorable Characters
Tertiary ignorable characters are generally ignored in linguistic comparison. They are mainly
comprised of control codes, format characters, variation selectors, and so on.

Chapter 5
Linguistic Collation Features

5-10

Primary and secondary ignorable characters are not ignored when a standard, case- and
accent-sensitive sort is used. However, they have lower priority when determining the order of
strings. For example, multi-lingual is sorted after multilingual in the GENERIC_M sort, but it
is still sorted between multidimensional and multinational. The comparison d < l < n of
the base letters has higher priority in determining the order than the presence of the secondary
ignorable character HYPHEN (U+002D).

You can see the full list of non-spacing characters and punctuation characters in a multilingual
collation definition when viewing the definition in the Oracle Locale Builder. Generally, neither
punctuation characters nor non-spacing characters are included in monolingual collation
definitions. In some monolingual collation definitions, the space character and the tabulator
character may be included. The comparison algorithm automatically assigns a minor value to
each undefined character. This makes punctuation characters non-ignorable but, as in the
case of multilingual collations, considered with lower priority when determining the order of
compared strings. The ordering among punctuation characters in monolingual collations is
based on their Unicode code points and may not correspond to user expectations.

See Also:

"Case-Insensitive and Accent-Insensitive Linguistic Collation"

5.4.3 Variable Characters and Variable Weighting
There are characters defined with variable collation elements in the UCA. These characters
are called variable characters and are comprised of white space characters, punctuations, and
certain symbols.

Variable characters can be weighted differently in UCA collations to adjust the effect of these
characters in a sorting or comparison, which is called variable weighting. The collation
parameter, alternate, controls how it works. The following options on variable weighting are
supported in UCA collations in this release:

• blanked
Variable characters are treated as ignorable characters. For example, SPACE (U+0020) is
ignored in comparison.

• non-ignorable
Variable characters are treated as if they were not ignorable characters. For example,
SPACE (U+0020) is not ignored in comparison at primary level.

• shifted
Variable characters are treated as ignorable characters on the primary, secondary and
tertiary levels. In addition, a new quaternary level is used for all characters. The quaternary
weight of a character depends on if the character is a variable, ignorable, or other. For
example, SPACE (U+0020) is assigned a quaternary weight differently from A (U+0041)
because SPACE is a variable character while A is neither a variable nor an ignorable
character.

See Also:

"UCA Collation Parameters"

Chapter 5
Linguistic Collation Features

5-11

Examples of Variable Weighting

This section includes different examples of variable weighting.

Example 5-1 UCA DUCET Order When Variable is Weighed as Blanked

The following list has been sorted using UCA1210_DUCET_VB:

blackbird
Blackbird
Black-bird
Black bird
BlackBird

Blackbird, Black-bird, and Black bird have the same collation weight because
SPACE(U+0020) and HYPHEN(U+002D) are treated as ignorable characters. Selecting only
the distinct entries illustrates this behavior (note that only Blackbird is shown in the result):

blackbird
Blackbird
BlackBird

Blackbird, Black-bird, and Black bird are sorted after blackbird due to case difference on
the first letter B (U+0042), but before BlackBird due to case difference at the second b
(U+0062).

Example 5-2 UCA DUCET Order When Variable is Weighed as Non-Ignorable

The following list has been sorted using UCA1210_DUCET_VN:

Black bird
Black-bird
blackbird
Blackbird
BlackBird

Black bird and Black-bird are sorted before blackbird because both SPACE (U+0020) and
HYPHEN (U+002D) are not treated as ignorable characters but they are smaller than b
(U+0062) at the primary level. Black bird is sorted before Black-bird because SPACE
(U+0020) is small than HYPHEN (U+002D) at the primary level.

Example 5-3 UCA DUCET Order When Variable is Weighed as Shifted

The following list has been sorted using UCA1210_DUCET:

blackbird
Black bird
Black-bird
Blackbird
BlackBird

blackbird is sorted before Black bird and Black-bird because both SPACE (U+0020) and
HYPHEN (U+002D) are ignored at the first three levels, and there is a case difference on the
first letter b (U+0062). Black-bird is sorted before Blackbird is because HYPHEN (U+002D)
has a small quaternary weight than the letter b (U+0062) in Blackbird.

5.4.4 Contracting Characters
Collation elements usually consist of a single character, but in some locales, two or more
characters in a character string must be considered as a single collation element during

Chapter 5
Linguistic Collation Features

5-12

sorting. For example, in traditional Spanish, the string ch is composed of two characters. These
characters are called contracting characters in multilingual collation and special
combination letters in monolingual collation.

Do not confuse a composed character with a contracting character. A composed character
like á can be decomposed into a and ', each with their own encoding. The difference between
a composed character and a contracting character is that a composed character can be
displayed as a single character on a terminal, while a contracting character is used only for
sorting, and its component characters must be rendered separately.

5.4.5 Expanding Characters
In some locales, certain characters must be sorted as if they were character strings. An
example is the German character ß (sharp s). It is sorted exactly the same as the string ss.
Another example is that ö sorts as if it were oe, after od and before of. These characters are
known as expanding characters in multilingual collation and special letters in monolingual
collation. Just as with contracting characters, the replacement string for an expanding
character is meaningful only for sorting.

5.4.6 Context-Sensitive Characters
In Japanese, a prolonged sound mark that resembles an em dash — represents a length mark
that lengthens the vowel of the preceding character. The sort order depends on the vowel that
precedes the length mark. This is called context-sensitive collation. For example, after the
character ka, the — length mark indicates a long a and is treated the same as a, while after the
character ki, the — length mark indicates a long i and is treated the same as i. Transliterating
this to Latin characters, a sort might look like this:

kaa
ka— -- kaa and ka— are the same
kai -- kai follows ka- because i is after a
kia -- kia follows kai because i is after a
kii -- kii follows kia because i is after a
ki— -- kii and ki— are the same

5.4.7 Canonical Equivalence
Canonical equivalence is an attribute of a multilingual collation and describes how equivalent
code point sequences are sorted. If canonical equivalence is applied in a particular multilingual
collation, then canonically equivalent strings are treated as equal.

One Unicode code point can be equivalent to a sequence of base letter code points plus
diacritic code points. This is called the Unicode canonical equivalence. For example, ä equals
its base letter a and an umlaut. A linguistic flag, CANONICAL_EQUIVALENCE = TRUE, indicates that
all canonical equivalence rules defined in Unicode need to be applied in a specific multilingual
collation. Oracle Database-defined multilingual collations include the appropriate setting for the
canonical equivalence flag. You can set the flag to FALSE to speed up the comparison and
ordering functions if all the data is in its composed form.

For example, consider the following strings:

• äa (a umlaut followed by a)

• a¨b (a followed by umlaut followed by b)

• äc (a umlaut followed by c)

If CANONICAL_EQUIVALENCE=FALSE, then the sort order of the strings is:

Chapter 5
Linguistic Collation Features

5-13

a¨b
äa
äc

This occurs because a comes before ä if canonical equivalence is not applied.

If CANONICAL_EQUIVALENCE=TRUE, then the sort order of the strings is:

äa
a¨b
äc

This occurs because ä and a¨ are treated as canonically equivalent.

You can use Oracle Locale Builder to view the setting of the canonical equivalence flag in
existing multilingual collations. When you create a customized multilingual collation with Oracle
Locale Builder, you can set the canonical equivalence flag as desired.

See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the canonical equivalence flag

5.4.8 Reverse Secondary Sorting
In French, sorting strings of characters with diacritics first compares base letters from left to
right, but compares characters with diacritics from right to left. For example, by default, a
character with a diacritic is placed after its unmarked variant. Thus Èdit comes before Edít in
a French sort. They are equal on the primary level, and the secondary order is determined by
examining characters with diacritics from right to left. Individual locales can request that the
characters with diacritics be sorted with the right-to-left rule. Set the REVERSE_SECONDARY
linguistic flag to TRUE to enable reverse secondary sorting.

See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the reverse secondary flag

5.4.9 Character Rearrangement for Thai and Laotian Characters
In Thai and Lao, some characters must first change places with the following character before
sorting. Normally, these types of characters are symbols representing vowel sounds, and the
next character is a consonant. Consonants and vowels must change places before sorting. Set
the SWAP_WITH_NEXT linguistic flag for all characters that must change places before sorting.

See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the SWAP_WITH_NEXT flag

Chapter 5
Linguistic Collation Features

5-14

5.4.10 Special Letters
Special letters is a term used in monolingual collation. They are called expanding characters
in multilingual collation.

See Also:

"Expanding Characters"

5.4.11 Special Combination Letters
Special combination letters is the term used in monolingual collations. They are called
contracting letters in multilingual collation.

See Also:

"Contracting Characters"

5.4.12 Special Uppercase Letters
One lowercase letter may map to multiple uppercase letters. For example, in traditional
German, the uppercase letters for ß are SS.

These case conversions are handled by the NLS_UPPER, NLS_LOWER, and NLS_INITCAP SQL
functions, according to the conventions established by the linguistic collations. The UPPER,
LOWER, and INITCAP SQL functions cannot handle these special characters, because their
casing operation is based on binary mapping defined for the underlying character set, which is
not linguistic sensitive.

The NLS_UPPER SQL function returns its first argument string in which all lowercase letters have
been mapped to their uppercase equivalents. The following example shows the result of the
NLS_UPPER function when NLS_SORT is set to XGERMAN:

SELECT NLS_UPPER ('große') "Uppercase" FROM DUAL;

Upper

GROSSE

See Also:

Oracle Database SQL Language Reference

Chapter 5
Linguistic Collation Features

5-15

5.4.13 Special Lowercase Letters
Oracle Database supports special lowercase letters. One uppercase letter may map to multiple
lowercase letters. An example is the Turkish uppercase I becoming a small, dotless i.

5.5 Case-Insensitive and Accent-Insensitive Linguistic Collation
An SQL operation in an Oracle Database is generally sensitive to the case and the accents
(diacritics) of characters. However, sometimes you may need to perform case-insensitive or
accent-insensitive comparison or matching.

In previous versions of the database, case-insensitive queries could be achieved by using the
NLS_UPPER and NLS_LOWER SQL functions. The functions change the case of strings based on a
specific linguistic collation definition. This enables you to perform case-insensitive searches
regardless of the language being used. For example, create a table called test1 as follows:

SQL> CREATE TABLE test1(word VARCHAR2(12));
SQL> INSERT INTO test1 VALUES('GROSSE');
SQL> INSERT INTO test1 VALUES('Große');
SQL> INSERT INTO test1 VALUES('große');
SQL> SELECT * FROM test1;

WORD

GROSSE
Große
große

Perform a case-sensitive search for GROSSE as follows:

SQL> SELECT word FROM test1 WHERE word='GROSSE';

WORD

GROSSE

Perform a case-insensitive search for GROSSE using the NLS_UPPER function:

SELECT word FROM test1
WHERE NLS_UPPER(word, 'NLS_SORT = XGERMAN') = 'GROSSE';

WORD

GROSSE
Große
große

Oracle Database provides case-insensitive and accent-insensitive options for collation. It
provides the following types of linguistic collations:

• Linguistic collations that use information about base letters, diacritics, punctuation, and
case. These are the standard linguistic collations that are described in "Using Linguistic
Collation".

• Monolingual collations that use information about base letters, diacritics, and punctuation,
but not case, and multilingual and UCA collations that use information about base letters
and diacritics, but not case or punctuation. This type of sort is called case-insensitive.

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5-16

• Monolingual collations that use information about base letters and punctuation only, and
multilingual and UCA collations that use information about base letters only. This type of
sort is called accent-insensitive. (Accent is another word for diacritic.) Like case-
insensitive sorts, an accent-insensitive sort does not use information about case.

Accent- and case-insensitive multilingual collations ignore punctuation characters as described
in "Ignorable Characters".

The rest of this section contains the following topics:

• Examples: Case-Insensitive and Accent-Insensitive Collation

• Specifying a Case-Insensitive or Accent-Insensitive Collation

• Examples: Linguistic Collation

See Also:

• "NLS_SORT"

• "NLS_COMP"

5.5.1 Examples: Case-Insensitive and Accent-Insensitive Collation
The following examples show:

• A collation that uses information about base letters, diacritics, punctuation, and case

• A case-insensitive collation

• An accent-insensitive collation

Example 5-4 Linguistic Collation Using Base Letters, Diacritics, Punctuation, and Case
Information

The following list has been sorted using information about base letters, diacritics, punctuation,
and case:

blackbird
black bird
black-bird
Blackbird
Black-bird
blackbîrd
bläckbird

Example 5-5 Case-Insensitive Linguistic Collation

The following list has been sorted using information about base letters, diacritics, and
punctuation, ignoring case:

black bird
black-bird
Black-bird
blackbird
Blackbird
blackbîrd
bläckbird

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5-17

black-bird and Black-bird have the same value in the collation, because the only different
between them is case. They could appear interchanged in the list. Blackbird and blackbird
also have the same value in the collation and could appear interchanged in the list.

Example 5-6 Accent-Insensitive Linguistic Collation

The following list has been sorted using information about base letters only. No information
about diacritics, punctuation, or case has been used.

blackbird
bläckbird
blackbîrd
Blackbird
BlackBird
Black-bird
Black bird

5.5.2 Specifying a Case-Insensitive or Accent-Insensitive Collation
Use the NLS_SORT session parameter to specify a case-insensitive or accent-insensitive
collation:

• Append _CI to an Oracle Database collation name for a case-insensitive collation.

• Append _AI to an Oracle Database collation name for an accent-insensitive and case-
insensitive collation.

For example, you can set NLS_SORT to the following types of values:

UCA1210_SPANISH_AI
FRENCH_M_AI
XGERMAN_CI

Binary collation can also be case-insensitive or accent-insensitive. When you specify
BINARY_CI as a value for NLS_SORT, it designates a collation that is accent-sensitive and case-
insensitive. BINARY_AI designates an accent-insensitive and case-insensitive binary collation.
You may want to use a binary collation if the binary collation order of the character set is
appropriate for the character set you are using.

For example, with the NLS_LANG environment variable set to AMERICAN_AMERICA.WE8ISO8859P1,
create a table called test2 and populate it as follows:

SQL> CREATE TABLE test2 (letter VARCHAR2(10));
SQL> INSERT INTO test2 VALUES('ä');
SQL> INSERT INTO test2 VALUES('a');
SQL> INSERT INTO test2 VALUES('A');
SQL> INSERT INTO test2 VALUES('Z');
SQL> SELECT * FROM test2;

LETTER

ä
a
A
Z

The default value of NLS_SORT is BINARY. Use the following statement to do a binary collation of
the characters in table test2:

SELECT * FROM test2 ORDER BY letter;

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5-18

To change the value of NLS_SORT, enter a statement similar to the following:

ALTER SESSION SET NLS_SORT=BINARY_CI;

The following table shows the collation orders that result from setting NLS_SORT to BINARY,
BINARY_CI, and BINARY_AI.

BINARY BINARY_CI BINARY_AI

A a ä
Z A a
a Z A
ä ä Z

When NLS_SORT=BINARY, uppercase letters come before lowercase letters. Letters with
diacritics appear last.

When the collation considers diacritics but ignores case (BINARY_CI), the letters with diacritics
appear last.

When both case and diacritics are ignored (BINARY_AI), ä is sorted with the other characters
whose base letter is a. All the characters whose base letter is a occur before z.

You can use binary collation for better performance when the character set is US7ASCII or
another character set that has the same collation order as the binary collation.

The following table shows the collation orders that result from German collation for the table.

GERMAN GERMAN_CI GERMAN_AI

a a ä
A A a
ä ä A
Z Z Z

A German collation places lowercase letters before uppercase letters, and ä occurs before Z.
When the collation ignores both case and diacritics (GERMAN_AI), ä appears with the other
characters whose base letter is a.

5.5.3 Examples: Linguistic Collation
The examples in this section demonstrate a binary collation, a monolingual collation, and a
UCA collation. To prepare for the examples, create and populate a table called test3. Enter
the following statements:

SQL> CREATE TABLE test3 (name VARCHAR2(20));
SQL> INSERT INTO test3 VALUES('Diet');
SQL> INSERT INTO test3 VALUES('À voir');
SQL> INSERT INTO test3 VALUES('Freizeit');

Example 5-7 Binary Collation

The ORDER BY clause uses a binary collation.

SQL> SELECT * FROM test3 ORDER BY name;

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5-19

You should see the following output:

Diet
Freizeit
À voir

Note that a binary collation results in À voir being at the end of the list.

Example 5-8 Monolingual German Collation

Use the NLSSORT function with the NLS_SORT parameter set to german to obtain a German
collation.

SQL> SELECT * FROM test3 ORDER BY NLSSORT(name, 'NLS_SORT=german');

You should see the following output:

À voir
Diet
Freizeit

Note that À voir is at the beginning of the list in a German collation.

Example 5-9 Comparing a Monolingual German Collation to a UCA Collation

Insert the character string shown in the following figure into test. It is a D with a crossbar
followed by ñ.

Figure 5-2 Example Character String

Perform a monolingual German collation by using the NLSSORT function with the NLS_SORT
parameter set to german.

SELECT * FROM test2 ORDER BY NLSSORT(name, 'NLS_SORT=german');

The output from the German collation shows the new character string last in the list of entries
because the characters are not recognized in a German collation.

Perform a UCA collation by entering the following statement:

SELECT * FROM test2
ORDER BY NLSSORT(name, 'NLS_SORT=UCA1210_DUCET');

The output shows the new character string after Diet, following the UCA order.

See Also:

• "The NLSSORT Function"

• "NLS_SORT" for more information about setting and changing the NLS_SORT
parameter

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5-20

5.6 Performing Linguistic Comparisons
Starting with Oracle Database 12c Release 2 (12.2), a collation-sensitive operation determines
the collation to use from the collations associated with its arguments.

A collation can be declared for a table column or a view column when the column is created.
This associated collation is then passed along the column values to the operations processing
the column. An operation applies a set of precedence rules to determine the collation to use
based on the collations of its arguments. Similarly, an operation returning a character value
derives collation for the return value from the collations of its arguments.

See Also:

"Column-Level Collation and Case Sensitivity" for more information about the
collation architecture in Oracle Database.

If a collation-sensitive operation determines that the collation it should apply is the pseudo-
collation USING_NLS_COMP, then the NLS_COMP and NLS_SORT parameters are referenced to
determine the actual named collation to use. In this case, the collation is determined in the
same way as it is determined in Oracle Database 12c Release 1 (12.1) and earlier releases.

The NLS_COMP setting determines how NLS_SORT is handled by the SQL operations. There are
three valid values for NLS_COMP:

• BINARY
Most SQL operations compare character values using binary collation, regardless of the
value set in NLS_SORT. This is the default setting.

• LINGUISTIC
All SQL operations compare character values using collation specified in NLS_SORT. For
example, NLS_COMP=LINGUISTIC and NLS_SORT=BINARY_CI means the collation-sensitive
SQL operations will use binary comparison, but will ignore character case.

• ANSI
A limited set of SQL operations honors the NLS_SORT setting. ANSI is available for
backward compatibility.

The following table shows how different SQL or PL/SQL operations behave with these different
settings.

Table 5-3 Linguistic Comparison Behavior with NLS_COMP Settings

SQL or PL/SQL Operation: BINARY LINGUISTIC ANSI

Set Operators: - - -

UNION, INTERSECT, MINUS Binary Honors NLS_SORT Binary

Scalar Functions: - - -

DECODE Binary Honors NLS_SORT Binary

INSTRx Binary Honors NLS_SORT Binary

LEAST, GREATEST Binary Honors NLS_SORT Binary

Chapter 5
Performing Linguistic Comparisons

5-21

Table 5-3 (Cont.) Linguistic Comparison Behavior with NLS_COMP Settings

SQL or PL/SQL Operation: BINARY LINGUISTIC ANSI

MAX, MIN Binary Honors NLS_SORT Binary

NULLIF Binary Honors NLS_SORT Binary

REPLACE Binary Honors NLS_SORT Binary

TRIM, LTRIM, RTRIM Binary Honors NLS_SORT Binary

TRANSLATE Binary Honors NLS_SORT Binary

NLS_INITCAP Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
NLS_LOWER, NLS_UPPER Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
NLSSORT Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
REGEXP_COUNT Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
REGEXP_INSTR Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
REGEXP_REPLACE Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
REGEXP_SUBSTR Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
Conditions: - - -

=, !=, >, <, >=, <= Binary Honors NLS_SORT Honors NLS_SORT
BETWEEN, NOT BETWEEN Binary Honors NLS_SORT Honors NLS_SORT
IN, NOT IN Binary Honors NLS_SORT Honors NLS_SORT
REGEXP_LIKE Binary Honors NLS_SORT Honors NLS_SORT
LIKE Binary Honors NLS_SORT Binary

CASE Expression: - - -

CASE Binary Honors NLS_SORT Binary

Analytic Function Clauses: - - -

DISTINCT Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
OVER(ORDER BY) Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
OVER(PARTITION BY) Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
Subquery Clauses: - - -

DISTINCT, UNIQUE Binary Honors NLS_SORT Binary

GROUP BY Binary Honors NLS_SORT Binary

ORDER BY Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT

See Also:

"NLS_COMP" and "NLS_SORT" for more information about these parameters.

5.6.1 Collation Keys
When the comparison conditions =, !=, >, <, >=, <=, BETWEEN, NOT BETWEEN, IN, NOT IN, the
query clauses ORDER BY or GROUP BY, or the aggregate function COUNT(DISTINCT) are evaluated

Chapter 5
Performing Linguistic Comparisons

5-22

according to linguistic rules, the compared argument values are first transformed to binary
values called collation keys and then compared byte by byte, like RAW values.

If a monolingual collation is applied, collation keys contain concatenated major values for
characters of the source value followed by concatenated minor values for those characters. If a
multilingual collation is applied, collation keys contain concatenated primary, then secondary,
and then tertiary values. If a UCA collation is applied, collation keys contain concatenated
primary, secondary, tertiary, and possibly quaternary values. The case-insensitive and accent-
insensitive multilingual and UCA collations may omit quaternary, tertiary, and secondary
values.

The collation keys are the same values that are returned by the NLSSORT function. That is,
activating the linguistic behavior of these SQL operations is equivalent to including their
arguments into calls to the NLSSORT function.

See Also:

"The NLSSORT Function"

5.6.2 Restricted Precision of Linguistic Comparison
As collation keys are values of the data type RAW and the maximum length of a RAW value
depends on the value of the initialization parameter, MAX_STRING_SIZE, the maximum length of
a collation key is controlled by the parameter as well.

When MAX_STRING_SIZE is set to STANDARD, the maximum length of a collation key is restricted
to 2000 bytes. If a full source string yields a collation key longer than the maximum length, the
collation key generated for this string is calculated for a maximum prefix (initial substring) of the
value for which the calculated result does not exceed 2000 bytes.

For monolingual collation, the prefix is typically 1000 characters. For multilingual collation, the
prefix is typically 500 characters. For UCA collations, the prefix is typically 300 characters. The
exact length of the prefix may be higher or lower and depends on the particular collation and
the particular characters contained in the source string. The implication of this method of
collation key generation is that SQL operations using the collation keys to implement the
linguistic behavior will return results that may ignore trailing parts of long arguments. For
example, two strings starting with the same 1000 characters but differing somewhere after the
1000th character will be grouped together by the GROUP BY clause.

When MAX_STRING_SIZE is set to EXTENDED, the maximum length of a collation key is restricted
to 32767 bytes. With this setting, collation key generation is switched to precise mode. If a full
source string yields a collation key longer than the maximum length, the database raises the
ORA-12742 error message instead of generating a truncated key.

5.6.3 Avoiding ORA-12742 Error
In the precise mode, that is, when the initialization parameter MAX_STRING_SIZE is set to
EXTENDED, generation of a collation key may fail with ORA-12742 error, if the buffer reserved for
the collation key is too small. This can happen in any of the following two cases:

• The length of the generated key is longer than 32767 bytes

• The expansion ratio used to calculate the collation key length from the source string length
is too low for a given combination of collation and source string

Chapter 5
Performing Linguistic Comparisons

5-23

The first case may happen for long source strings in any linguistic collation because collation
keys are mostly longer than the source strings for which they are created. To avoid ORA-12742
error in this case, make sure that lengths of the collated values are never longer than the
following limits:

• 21844 bytes for the collation BINARY_CI
• 4094 bytes for a monolingual or multilingual collation

• 1560 bytes for a UCA collation

The second case may happen for strings of any length in all UCA0620 collations and in the
collations UCA0700_DUCET, UCA0700_ROOT, UCA1210_DUCET, and UCA1210_ROOT. This case
happens because the pessimistic expansion ratio for the listed UCA collations is very high.
Using the pessimistic expansion ratio for calculation of the pessimistic collation key length
would strongly reduce the maximum length of a linguistically indexable column. Therefore, a
lower ratio is used for these collations, which works for all source strings except those
containing one or more of the four specific rare compatibility characters - one Japanese, one
Korean, and two Arabic. The presence of these specific characters in a string may cause the
collation key generation for the string to fail with ORA-12742 error.

The UCA0700 collations other than UCA0700_DUCET and UCA0700_ROOT have been customized to
never generate collation keys longer than the chosen expansion ratio. In particular,
UCA0700_ORADUCET and UCA0700_ORAROOT collations are almost identical versions of the
corresponding UCA0700_DUCET and UCA0700_ROOT collations, in which the collation weights for
the four problematic characters have been shortened.

Similarly, the UCA1210 collations other than UCA1210_DUCET and UCA1210_ROOT have been
customized to never generate collation keys longer than the chosen expansion ratio. In
particular, UCA1210_ORADUCET and UCA1210_ORAROOT collations are almost identical versions of
the corresponding UCA1210_DUCET and UCA1210_ROOT collations, in which the collation weights
for the four problematic characters have been shortened.

Note:

Oracle recommends that if you want to use UCA collations, then use only the
UCA1210 collations, except UCA1210_DUCET and UCA1210_ROOT.

When a character value for which a collation key cannot be generated for a certain collation is
inserted into a column, any query comparing or sorting this character value using this collation
fails with ORA-12742 error. In certain application configurations, this may cause a denial of
service (DoS) attack vulnerability. It is therefore important to follow these guidelines:

• Collate only column values limited in length, not using the problematic UCA collations as
described above or

• Dynamically verify that only safe values are inserted into a table or

• Assure that applications are designed in such a way that values entered by one user
cannot break queries issued by another user

You can dynamically verify safety of values inserted into a column by creating a CHECK
constraint on the column. For example, if you create a table as follows:

CREATE TABLE translation_string
(
 id NUMBER,

Chapter 5
Performing Linguistic Comparisons

5-24

 string VARCHAR2(32767),
 CONSTRAINT check_string CHECK (VSIZE(NLSSORT(string COLLATE
UCA1210_DUCET)) != -1)
);

then any insert or update of a character value in the string column will trigger the collation key
generation in the check constraint condition. Problematic values will cause the DML to fail with
ORA-12742 error. However, once successfully inserted or updated, the value will never cause
ORA-12742 error in a later query.

The check_string constraint in the above example performs a pessimistic check over all the
collations. It may be over-pessimistic for many collations. If you know that one or two specific
collations will be used with a column, you can modify the check constraint to force generation
of collation keys only for those collations. However, in that case, you have to restrict the
collations that can be used in your application.

5.6.4 Examples: Linguistic Comparison
The following examples illustrate behavior with different NLS_COMP settings.

Example 5-10 Binary Comparison Binary Collation

The following illustrates behavior with a binary setting:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT ename FROM emp1;

ENAME

Mc Calla
MCAfee
McCoye
Mccathye
McCafeé

5 rows selected

SQL> SELECT ename FROM emp1 WHERE ename LIKE 'McC%e';

ENAME

McCoye

1 row selected

Example 5-11 Linguistic Comparison Binary Case-Insensitive Collation

The following illustrates behavior with a case-insensitive setting:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=BINARY_CI;
SQL> SELECT ename FROM emp1 WHERE ename LIKE 'McC%e';

ENAME

McCoye
Mccathye

2 rows selected

Chapter 5
Performing Linguistic Comparisons

5-25

Example 5-12 Linguistic Comparison Binary Accent-Insensitive Collation

The following illustrates behavior with an accent-insensitive setting:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=BINARY_AI;
SQL> SELECT ename FROM emp1 WHERE ename LIKE 'McC%e';

ENAME

McCoye
Mccathye
McCafeé

3 rows selected

Example 5-13 Linguistic Comparisons Returning Fewer Rows

Some operations may return fewer rows after applying linguistic rules. For example, with a
binary setting, McAfee and Mcafee are different:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT DISTINCT ename FROM emp2;

ENAME

McAfee
Mcafee
McCoy

3 rows selected

However, with a case-insensitive setting, McAfee and Mcafee are the same:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=BINARY_CI;
SQL> SELECT DISTINCT ename FROM emp2;

ENAME

McAfee
McCoy

2 rows selected

In this example, either McAfee or Mcafee could be returned from the DISTINCT operation. There
is no guarantee exactly which one will be picked.

Example 5-14 Linguistic Comparisons Using XSPANISH

There are cases where characters are the same using binary comparison but different using
linguistic comparison. For example, with a binary setting, the character C in Cindy, Chad, and
Clara represents the same letter C:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

ENAME

Cindy
Chad

Chapter 5
Performing Linguistic Comparisons

5-26

Clara

3 rows selected

In a database session with the linguistic rule set to traditional Spanish, XSPANISH, ch is treated
as one character. So the letter c in Chad is different than the letter C in Cindy and Clara:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=XSPANISH;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

ENAME

Cindy
Clara

2 rows selected

And the letter c in combination ch is different than the c standing by itself:

SQL> SELECT REPLACE ('character', 'c', 't') "Changes" FROM DUAL;

Changes

charatter

Example 5-15 Linguistic Comparisons Using UCA1210_TSPANISH

The character ch behaves the same in the traditional Spanish ordering of the UCA collations as
that in XSPANISH:

SQL> ALTER SESSION SET NLS_COMP = LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT = UCA1210_TSPANISH;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

ENAME

Cindy
Clara

SQL> SELECT REPLACE ('character', 'c', 't') "Changes" FROM DUAL;

Changes

charatter

5.7 Using Linguistic Indexes
Linguistic collation is language-specific and requires more data processing than binary
collation. Using a binary collation for ASCII is accurate and fast because the binary codes for
ASCII characters reflect their linguistic order.

When data in multiple languages is stored in the database, you may want applications to
collate the data returned from a SELECT...ORDER BY statement according to different collation
sequences depending on the language. You can accomplish this without sacrificing
performance by using linguistic indexes. Although a linguistic index for a column slows down
inserts and updates, it greatly improves the performance of linguistic collation with the ORDER BY
clause and the WHERE clause.

Chapter 5
Using Linguistic Indexes

5-27

You can create a function-based index that uses languages other than English. The index does
not change the linguistic collation order determined by NLS_SORT. The linguistic index simply
improves the performance.

The following statement creates an index based on a German collation:

CREATE TABLE my_table(name VARCHAR(20) NOT NULL);
CREATE INDEX nls_index ON my_table (NLSSORT(name, 'NLS_SORT = German'));

The NOT NULL in the CREATE TABLE statement ensures that the index is used.

After the index has been created, enter a SELECT statement similar to the following example:

SELECT * FROM my_table WHERE name LIKE 'Hein%' ORDER BY name;

It returns the result much faster than the same SELECT statement without a linguistic index.

When a standard index is created on a column column with a named collation collation other
than BINARY, the created index is implicitly a functional, linguistic index created on the
expression:

NLSSORT(column,'NLS_SORT=collation')

See Also:

• "Standard Indexes" in the section “Effect of Data-Bound Collation on Other
Database Objects” for more information about the effect of column-level collation
on indexes

• Oracle Database Administrator's Guide for more information about function-
based indexes

The rest of this section contains the following topics:

• Supported SQL Operations and Functions for Linguistic Indexes

• Linguistic Indexes for Multiple Languages

• Requirements for Using Linguistic Indexes

5.7.1 Supported SQL Operations and Functions for Linguistic Indexes
Linguistic index support is available for the following collation-sensitive SQL operations and
SQL functions:

• Comparison conditions =, !=, >, <, >=, <=
• Range conditions BETWEEN | NOT BETWEEN
• IN | NOT IN
• ORDER BY
• GROUP BY
• LIKE (LIKE, LIKE2, LIKE4, LIKEC)

• DISTINCT

Chapter 5
Using Linguistic Indexes

5-28

• UNIQUE
• UNION
• INTERSECT
• MINUS
The SQL functions in the following list cannot utilize linguistic index:

• INSTR (INSTR, INSTRB, INSTR2, INSTR4, INSTRC)

• MAX
• MIN
• REPLACE
• TRIM
• LTRIM
• RTRIM
• TRANSLATE

5.7.2 Linguistic Indexes for Multiple Languages
There are four ways to build linguistic indexes for data in multiple languages:

• Build a linguistic index for each language that the application supports. This approach
offers simplicity but requires more disk space. For each index, the rows in the language
other than the one on which the index is built are collated together at the end of the
sequence. The following example builds linguistic indexes for French and German.

CREATE INDEX french_index ON employees (NLSSORT(employee_id, 'NLS_SORT=FRENCH'));
CREATE INDEX german_index ON employees (NLSSORT(employee_id, 'NLS_SORT=GERMAN'));

Oracle Database chooses the index based on the NLS_SORT session parameter or the
arguments of the NLSSORT function specified in the ORDER BY clause. For example, if the
NLS_SORT session parameter is set to FRENCH, then Oracle Database uses french_index.
When it is set to GERMAN, Oracle Database uses german_index.

• Build a single linguistic index for all languages. This requires a language column (LANG_COL
in "Example: Setting Up a French Linguistic Index") to be used as a parameter of the
NLSSORT function. The language column contains NLS_LANGUAGE values for the data in the
column on which the index is built. The following example builds a single linguistic index for
multiple languages. With this index, the rows with the same values for NLS_LANGUAGE are
sorted together.

CREATE INDEX i ON t (LANG_COL, NLSSORT(col, 'NLS_SORT=' || LANG_COL));

Queries choose an index based on the argument of the NLSSORT function specified in the
ORDER BY clause.

• Build a single linguistic index for all languages using one of the multilingual collations such
as GENERIC_M or FRENCH_M. These indexes sort characters according to the rules defined in
ISO 14651. For example:

CREATE INDEX i ON t (NLSSORT(col, 'NLS_SORT=GENERIC_M'));

Chapter 5
Using Linguistic Indexes

5-29

See Also:

"Multilingual Collation" for more information

• Build a single linguistic index for all languages using one of the UCA collations such as
UCA1210_ORADUCET or UCA1210_CFRENCH. These indexes sort characters in the order
conforming to ISO 14651 and UCA 12.1. For example:

CREATE INDEX i
 ON t (NLSSORT(col, 'NLS_SORT=UCA1210_ORADUCET'));

See Also:

"UCA Collation" for more information

5.7.3 Requirements for Using Linguistic Indexes
The following are requirements for using linguistic indexes:

• Set NLS_SORT Appropriately

• Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT NULL

• Use a Tablespace with an Adequate Block Size

This section also includes:

• Example: Setting Up a French Linguistic Index

5.7.3.1 Set NLS_SORT Appropriately
The NLS_SORT parameter should indicate the linguistic definition you want to use for the
linguistic collation. If you want a French linguistic collation order, then NLS_SORT should be set
to FRENCH. If you want a German linguistic collation order, then NLS_SORT should be set to
GERMAN.

There are several ways to set NLS_SORT. You should set NLS_SORT as a client environment
variable so that you can use the same SQL statements for all languages. Different linguistic
indexes can be used when NLS_SORT is set in the client environment.

See Also:

"NLS_SORT"

5.7.3.2 Specify NOT NULL in a WHERE Clause If the Column Was Not Declared
NOT NULL

When you want to use the ORDER BY column_name clause with a column that has a linguistic
index, include a WHERE clause like the following example:

Chapter 5
Using Linguistic Indexes

5-30

WHERE NLSSORT(column_name) IS NOT NULL

This WHERE clause is not necessary if the column has already been defined as a NOT NULL
column in the schema.

5.7.3.3 Use a Tablespace with an Adequate Block Size
A collation key created from a character value is usually a few times longer than this value.
The actual length expansion depends on the particular collation in use and the content of the
source value, with the UCA-based collations expanding the most.

When creating a linguistic index, Oracle Database first calculates the estimated maximum size
of the index key by summing up the estimated maximum sizes of the collation keys (NLSSORT
results) for each of the character columns forming the index key. In this calculation, the
maximum size of a collation key for a character column with the maximum byte length n is
estimated to be n*21+5 for UCA-based collations and n*8+10 for other collations.

The large expansion ratios can yield large maximum index key sizes, especially for composite
(multicolumn) keys. At the same time, the maximum key size of an index cannot exceed
around 70% of the block size of the tablespace containing the index. If it does, an ORA-1450
error is reported. To avoid this error, you should store the linguistic index in a tablespace with
an adequate block size, which may be larger than the default block size of your database. A
suitable tablespace can be created with the CREATE TABLESPACE statement, provided the
initialization parameter DB_nK_CACHE_SIZE corresponding to the required block size n has been
set appropriately.

See Also:

Oracle Database Administrator's Guide

5.7.3.4 Example: Setting Up a French Linguistic Index
The following example shows how to set up a French linguistic index. You may want to set
NLS_SORT as a client environment variable instead of using the ALTER SESSION statement.

ALTER SESSION SET NLS_SORT='FRENCH';
CREATE INDEX test_idx ON test4(NLSSORT(name, 'NLS_SORT=FRENCH'));
SELECT * FROM test4 ORDER BY col;
ALTER SESSION SET NLS_COMP=LINGUISTIC;
SELECT * FROM test4 WHERE name > 'Henri';

Note:

The SQL functions MAX() and MIN() cannot use linguistic indexes when NLS_COMP is
set to LINGUISTIC.

5.8 Searching Linguistic Strings
Searching and collation are related tasks. Organizing data and processing it in a linguistically
meaningful order is necessary for proper business processing. Searching and matching data in
a linguistically meaningful way depends on what collation order is applied.

Chapter 5
Searching Linguistic Strings

5-31

For example, searching for all strings greater than c and less than f produces different results
depending on the value of NLS_SORT. In an ASCII binary collation, the search finds any strings
that start with d or e but excludes entries that begin with upper case D or E or accented e with a
diacritic, such as ê. Applying an accent-insensitive binary collation returns all strings that start
with d, D, and accented e, such as Ê or ê. Applying the same search with NLS_SORT set to
XSPANISH also returns strings that start with ch, because ch is treated as a composite character
that collates between c and d in traditional Spanish. This chapter discusses the kinds of
collation that Oracle Database offers and how they affect string searches by SQL and SQL
regular expressions.

See Also:

• "Linguistic Collation Features"

• "SQL Regular Expressions in a Multilingual Environment"

5.9 SQL Regular Expressions in a Multilingual Environment
Regular expressions provide a powerful method of identifying patterns of strings within a body
of text. Usage ranges from a simple search for a string such as San Francisco to the more
complex task of extracting all URLs to finding all words whose every second character is a
vowel. SQL and PL/SQL support regular expressions in Oracle Database.

Traditional regular expression engines were designed to address only English text. However,
regular expression implementations can encompass a wide variety of languages with
characteristics that are very different from western European text. The implementation of
regular expressions in Oracle Database is based on the Unicode Regular Expression
Guidelines. The REGEXP SQL functions work with all character sets that are supported as
database character sets and national character sets. Moreover, Oracle Database enhances the
matching capabilities of the POSIX regular expression constructs to handle the unique
linguistic requirements of matching multilingual data.

Oracle Database enhancements of the linguistic-sensitive operators are described in the
following sections:

• Character Range '[x-y]' in Regular Expressions

• Collation Element Delimiter '[. .]' in Regular Expressions

• Character Class '[: :]' in Regular Expressions

• Equivalence Class '[= =]' in Regular Expressions

• Examples: Regular Expressions

See Also:

• Oracle Database Development Guide for more information about regular
expression syntax

• Oracle Database SQL Language Reference for more information about REGEX
SQL functions

Chapter 5
SQL Regular Expressions in a Multilingual Environment

5-32

5.9.1 Character Range '[x-y]' in Regular Expressions
According to the POSIX standard, a range in a regular expression includes all collation
elements between the start point and the end point of the range in the linguistic definition of the
current locale. Therefore, ranges in regular expressions are meant to be linguistic ranges, not
byte value ranges, because byte value ranges depend on the platform, and the end user
should not be expected to know the ordering of the byte values of the characters. The
semantics of the range expression must be independent of the character set. This implies that
a range such as [a-d] may include all the letters between a and d plus all of those letters with
diacritics, plus any special case collation element such as ch in Traditional Spanish that is
sorted as one character.

Oracle Database interprets range expressions as specified by the NLS_SORT parameter to
determine the collation elements covered by a given range. For example:

Expression: [a-d]e
NLS_SORT: BINARY
Does not match: cheremoya
NLS_SORT: XSPANISH
Matches: >>che<<remoya

5.9.2 Collation Element Delimiter '[. .]' in Regular Expressions
This construct is introduced by the POSIX standard to separate collating elements. A collating
element is a unit of collation and is equal to one character in most cases. However, the
collation sequence in some languages may define two or more characters as a collating
element. The historical regular expression syntax does not allow the user to define ranges
involving multicharacter collation elements. For example, there was no way to define a range
from a to ch because ch was interpreted as two separate characters.

By using the collating element delimiter [. .], you can separate a multicharacter collation
element from other elements. For example, the range from a to ch can be written as [a-
[.ch.]]. It can also be used to separate single-character collating elements. If you use [. .]
to enclose a multicharacter sequence that is not a defined collating element, then it is
considered as a semantic error in the regular expression. For example, [.ab.] is considered
invalid if ab is not a defined multicharacter collating element.

5.9.3 Character Class '[: :]' in Regular Expressions
In English regular expressions, the range expression can be used to indicate a character class.
For example, [a-z] can be used to indicate any lowercase letter. However, in non-English
regular expressions, this approach is not accurate unless a is the first lowercase letter and z is
the last lowercase letter in the collation sequence of the language.

The POSIX standard introduces a new syntactical element to enable specifying explicit
character classes in a portable way. The [: :] syntax denotes the set of characters belonging
to a certain character class. The character class definition is based on the character set
classification data.

5.9.4 Equivalence Class '[= =]' in Regular Expressions
Oracle Database also supports equivalence classes through the [= =] syntax as
recommended by the POSIX standard. A base letter and all of the accented versions of the
base constitute an equivalence class. For example, the equivalence class [=a=] matches ä

Chapter 5
SQL Regular Expressions in a Multilingual Environment

5-33

as well as â. The current implementation does not support matching of Unicode composed and
decomposed forms for performance reasons. For example, ä (a umlaut) does not match 'a
followed by umlaut'.

5.9.5 Examples: Regular Expressions
The following examples show regular expression matches.

Example 5-16 Case-Insensitive Match Using the NLS_SORT Value

Case sensitivity in an Oracle Database regular expression match is determined at two levels:
the NLS_SORT initialization parameter and the run-time match option. The REGEXP functions
inherit the case-sensitive behavior from the value of NLS_SORT by default. The value can also
be explicitly overridden by the run-time match option 'c' (case-sensitive) or 'i' (case-
insensitive).

Expression: catalog(ue)?
NLS_SORT: GENERIC_M_CI
Matches:

>>Catalog<<
>>catalogue<<
>>CATALOG<<

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS_SORT='GENERIC_M_CI';
SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'catalog(ue)?');

Example 5-17 Case Insensitivity Overridden by the Run-time Match Option

Expression: catalog(ue)?
NLS_SORT: GENERIC_M_CI
Match option: 'c'
Matches:

>>catalogue<<

Does not match:

Catalog
CATALOG

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS_SORT='GENERIC_M_CI';
SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'catalog(ue)?','c');

Example 5-18 Matching with the Collation Element Operator [..]

Expression: [^-a-[.ch.]]+ /*with NLS_SORT set to xspanish*/
Matches:

>>driver<<

Does not match:

cab

Oracle Database SQL syntax:

Chapter 5
SQL Regular Expressions in a Multilingual Environment

5-34

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'[^-a-[.ch.]]+');

Example 5-19 Matching with the Character Class Operator [::]

This expression looks for 6-character strings with lowercase characters. Note that accented
characters are matched as lowercase characters.

Expression: [[:lower:]]{6}
Database character set: WE8ISO8859P1
Matches:

>>maître<<
>>mòbile<<
>>pájaro<<
>>zurück<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'[[:lower:]]{6}');

Example 5-20 Matching with the Base Letter Operator [==]

Expression: r[[=e=]]sum[[=e=]]
Matches:

>>resume<<
>>résumé<<
>>résume<<
>>resumé<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'r[[=e=]]sum[[=e=]]');

See Also:

• Oracle Database Development Guide for more information about regular
expression syntax

• Oracle Database SQL Language Reference for more information about REGEX
SQL functions

5.10 Column-Level Collation and Case Sensitivity
The column-level collation feature specifies a collation for a character column in its definition.
This feature applies linguistic processing only where needed and achieves consistent handling
of particular column data in all SQL statements. Oracle supports case-insensitive and accent-
insensitive collations. By assigning such collation to a column, you can easily force all
comparisons of column values to be case-insensitive or accent-insensitive or both.

The collations declared at a column-level are part of the more general data-bound collation
architecture, where collation becomes an attribute of data, analogous to the data type. The
declared collation is passed along the column to SQL operations and is used together with
collations of other operation arguments to determine the collation to use by the operation.

The column-level collation feature is based on the ISO SQL standard and it simplifies
application migration to Oracle Database from other database systems that support this

Chapter 5
Column-Level Collation and Case Sensitivity

5-35

feature. This feature is backward-compatible with the mechanism of controlling linguistic
behavior for SQL and PL/SQL operations using the session parameters NLS_COMP and
NLS_SORT.

This section contains the following topics:

• About Data-Bound Collation

• Default Collations

• Enabling Data-Bound Collation

• Specifying a Data-Bound Collation

• Viewing the Data-Bound Collation of a Database Object

• Case-Insensitive Database

• Effect of Data-Bound Collation on Other Database Objects

• Effect of Data-Bound Collation on Distributed Queries and DML Operations

• Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types

• Effect of Data-Bound Collation on Oracle XML DB

5.10.1 About Data-Bound Collation
In Oracle Database 12c Release 1 (12.1) and earlier releases, the two session parameters
NLS_SORT and NLS_COMP determine the rules by which character type data is compared and
matched. The collation specified using these two session parameters is called the session
collation. The value of NLS_COMP decides which operations are controlled by the collation
specified in the value of NLS_SORT and which operations use the BINARY collation. All collation-
sensitive operations selected by the value of NLS_COMP in all SQL and PL/SQL statements
executed in the session use the same collation.

Starting with Oracle Database 12c Release 2 (12.2), a new mechanism has been added to
apply collations for SQL operations in a much more granular way. A collation is an attribute of
data, similar to the data type. A collation can be declared for a character data container, such
as table column, and is passed to all SQL operations that operate on that column. Each
collation-sensitive operation combines declared collations of its arguments to determine the
collation to use for the operation processing. Furthermore, an operation that returns a
character value combines collations of its arguments to derive a collation for the result. The
operator COLLATE allows overriding a collation in any place in an expression.

This type of collation, which is associated with a particular data, is called the data-bound
collation . A data-bound collation can be applied only to the values of character data types —
VARCHAR2, CHAR, LONG, NVARCHAR2, NCHAR, CLOB, and NCLOB.

Chapter 5
Column-Level Collation and Case Sensitivity

5-36

Note:

The data-bound collation of a table column is also used for the following operations
that always used binary collation earlier to the Oracle Database 12c Release 2
(12.2):

• Index key ordering for standard (that is, non-functional) indexes on the column,
including indexes of primary keys, unique constraints, and bitmap indexes.

• Range, list, and reference partitioning on a column.

• Enforcement of a foreign key constraint on a column that points to a primary key
or unique key column in another table.

There are two types of data-bound collations:

• Named Collation: This collation is a particular set of collating rules specified by a collation
name. Named collations are the same collations that are specified as values for the
NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

– Examples of binary named collation are: BINARY, BINARY_CI (case-insensitive binary
collation), and BINARY_AI (accent-insensitive and case-insensitive binary collation).

– Examples of linguistic named collation are: GENERIC_M, GENERIC_M_AI, FRENCH, POLISH,
UCA1210_CFRENCH, and so on.

• Pseudo-collation: This collation does not directly specify the collating rules for a character
data type. Instead, it instructs collation-sensitive operations to check the values of the
NLS_SORT and NLS_COMP session parameters for the actual named collation to use. Pseudo-
collations are the bridge between the new declarative method of specifying collations and
the old method that uses session parameters.

The following are the supported pseudo-collations:

– USING_NLS_COMP: Operations that use the USING_NLS_COMP pseudo-collation behave
the same as in Oracle Database 12c (12.1) and earlier releases, that is, they use the
session collation. The particular named collation applied by the SQL or PL/SQL
operation is either BINARY or determined by the value of NLS_SORT, NLS_COMP, and the
operation itself.

– USING_NLS_SORT, USING_NLS_SORT_CI, USING_NLS_SORT_AI, and USING_NLS_SORT_CS: If
one of these collations is determined as the collation to use for an operation, the
operation applies the collation named by the value of NLS_SORT parameter without
considering the value of NLS_COMP parameter. Additionally:

* If the pseudo-collation is USING_NLS_SORT_CI and the value of NLS_SORT does not
end in _CI or _AI, then the name of collation to apply is constructed by appending
_CI to the value of NLS_SORT.

* If the pseudo-collation is USING_NLS_SORT_AI and the value of NLS_SORT does not
end in _CI or _AI, then the name of collation to apply is constructed by appending
_AI to the value of NLS_SORT. If the value of NLS_SORT ends in _CI, then the suffix
_CI is changed to _AI.

* If the pseudo-collation is USING_NLS_SORT_CS and the value of NLS_SORT ends in
_CI or _AI, then the name of collation to apply is constructed by stripping this suffix
from the NLS_SORT value.

Chapter 5
Column-Level Collation and Case Sensitivity

5-37

* Otherwise, the name of collation to apply is the value of NLS_SORT.

Note:

• Suffix _CI stands for case insensitivity. Suffix _AI stands for case and accent
insensitivity. Suffix _CS stands for case and accent sensitivity.

• The pseudo-collation USING_NLS_SORT_CI forces the use of the case-insensitive
version of the collation specified in the NLS_SORT parameter value.

• The pseudo-collation USING_NLS_SORT_AI forces the use of the case-insensitive
and accent-insensitive version of the collation specified in the NLS_SORT
parameter value.

• The pseudo-collation USING_NLS_SORT_CS forces the use of the case-sensitive
and accent-sensitive version of the collation specified in the NLS_SORT parameter
value.

• The only collation supported by CLOB and NCLOB columns is the pseudo-collation
USING_NLS_COMP.

5.10.2 Default Collations
Starting with Oracle Database 12c Release 2 (12.2), each table column with a character data
type has a declared data-bound collation. If collation for a column is not specified explicitly in
the DDL statement that creates the column (in the CREATE TABLE or ALTER TABLE ADD
statement), then the containing table’s default collation is used for the column. If the DDL
statement creating a table does not specify a default collation, then the default collation of the
schema owning the table is used as the default collation for the table. Specify default collation
for a schema in the CREATE USER statement that creates the owner of the schema. If the
CREATE USER statement does not specify the default collation for a schema, then the
collation USING_NLS_COMP is used.

Collations are inherited only when database objects are created. For example, changing the
table default collation does not change the collations of existing character columns of a table.
Only new columns added to the table after the change inherit the new default collation.
Similarly, changing the schema default collation does not change the default collations of
tables in a schema. Only new tables created in the schema after the change inherit the new
default collation.

The session parameter DEFAULT_COLLATION overrides the schema default collation as
described in the section "Effective Schema Default Collation".

Note:

After upgrading to Oracle Database 12c Release 2 (12.2) or later, all the columns,
tables, and schemas in the upgraded database have the USING_NLS_COMP collation.
This ensures that all the collation-sensitive operations in the database behave the
same as before the upgrade, that is, all the operations use session collation.

Chapter 5
Column-Level Collation and Case Sensitivity

5-38

5.10.3 Enabling Data-Bound Collation
To enable the data-bound collation feature, set the following database initialization parameter
values:

• MAX_STRING_SIZE=EXTENDED
• COMPATIBLE>=12.2

Note:

• If the data-bound collation feature is not enabled, collations cannot be specified
for database objects and value for the DEFAULT_COLLATION session parameter
cannot be set.

• Until the data-bound collation feature is enabled, all user-defined database
objects have the data-bound collation USING_NLS_COMP. However, Oracle-
supplied database objects are not guaranteed to use only this collation.

• Even if the data-bound collation feature is not enabled, the COLLATE operator and
the COLLATION(), NLS_COLLATION_ID(), and NLS_COLLATION_NAME() functions
can be used in SQL statements.

• Once the data-bound collation feature is enabled, it cannot be disabled, that is,
you cannot set the value for the MAX_STRING_SIZE parameter back to STANDARD
and the value for the COMPATIBLE parameter back to the earlier Oracle Database
release.

• The data-bound collation feature cannot be used in a multitenant container
database root (CDB root), because, for a CDB root, the actual value of the
MAX_STRING_SIZE initialization parameter is ignored and its value is always
assumed to be STANDARD. However, if the MAX_STRING_SIZE parameter value is
not specified for a PDB, then the PDB uses the MAX_STRING_SIZE parameter
value specified for the CDB root.

5.10.4 Specifying a Data-Bound Collation
A data-bound collation can be specified for:

• Table columns

• Cluster columns

• Tables

• Schemas through the owning user

• Views and materialized views

• PL/SQL units, such as procedures, functions, packages, types, and triggers

• SQL expressions

Chapter 5
Column-Level Collation and Case Sensitivity

5-39

Note:

• A collation cannot be specified for a cluster, but it can be specified for key
columns in a cluster.

• A collation cannot be specified for a whole database.

5.10.4.1 Effective Schema Default Collation
The effective schema default collation is a default collation assigned to a database object
created in a particular schema using a DDL statement in a particular user session, when a
default collation for the object is not explicitly declared in the DDL statement. The effective
schema default collation is a combination of the corresponding schema default collation and
the value of the DEFAULT_COLLATION parameter for the session.

If a value is specified for the DEFAULT_COLLATION parameter in a session, then the effective
schema default collation for that session for a schema is the value of the DEFAULT_COLLATION
parameter. If a value is not specified for the DEFAULT_COLLATION parameter in a session, then
the effective schema default collation for that session is the value of the corresponding schema
default collation.

You can specify a value for the parameter DEFAULT_COLLATION with the ALTER SESSION
statement:

SQL> ALTER SESSION SET DEFAULT_COLLATION=collation_name;

Both named collations and pseudo-collations can be specified as the value for
collation_name.

You can remove the collation assigned to the DEFAULT_COLLATION parameter by assigning it the
value NONE:

SQL> ALTER SESSION SET DEFAULT_COLLATION=NONE;

The current value of the DEFAULT_COLLATION parameter can be checked in a session by using
the statement:

SQL> SELECT SYS_CONTEXT('USERENV', 'SESSION_DEFAULT_COLLATION') FROM DUAL;

Chapter 5
Column-Level Collation and Case Sensitivity

5-40

Note:

• Oracle recommends that you specify a default collation for a database object
during its creation using a DDL statement, when you want the object’s default
collation to be independent of the default collation of the enclosing schema. You
should use the parameter DEFAULT_COLLATION only when dealing with legacy
scripts that do not specify the collation explicitly.

• A session default collation specified by the DEFAULT_COLLATION parameter does
not get propagated to any remote sessions connected to the current session
using DB links.

5.10.4.2 Specifying Data-Bound Collation for a Schema
You can specify a default data-bound collation for a schema using the DEFAULT COLLATION
clause in the CREATE USER and ALTER USER statements. The schema default collation
determines the effective schema default collation that is assigned as the default collation for all
the tables, views, materialized views, PL/SQL units, and user-defined types (UDTs) created in
that schema, if these database objects do not have explicitly declared default collations.

If a schema default collation is not specified explicitly in the CREATE USER statement, then it is
set to USING_NLS_COMP collation. You can change the schema default collation with the ALTER
USER statement. The change does not affect the existing database objects and affects only the
database objects that are subsequently created, replaced, or compiled in the schema.

Note:

• If the DEFAULT_COLLATION parameter is specified for a session, then it overrides
the default collation of a schema referenced in that session.

• If a schema has a default collation declaration other than USING_NLS_COMP, then
PL/SQL units, including user-defined types, can be created in that schema, only
if the session parameter DEFAULT_COLLATION is set to USING_NLS_COMP or the
PL/SQL unit creation DDL contains the DEFAULT COLLATION USING_NLS_COMP
clause.

• A schema default collation cannot be changed for an Oracle-supplied database
user.

Example: Applying a default collation to a schema

CREATE USER hrsys
 IDENTIFIED BY password
 DEFAULT TABLESPACE hr_ts_1
 DEFAULT COLLATION BINARY
 ACCOUNT LOCK
-- the clauses after password can be in any order
/

Chapter 5
Column-Level Collation and Case Sensitivity

5-41

This statement creates a new database user hrsys with its schema. The default collation of the
schema is set to BINARY. All database objects created in the schema that do not contain the
DEFAULT COLLATION clause have their default collation set to BINARY, unless the session
parameter DEFAULT_COLLATION overrides it.

Example: Changing the default collation of a schema

ALTER USER hrsys DEFAULT COLLATION USING_NLS_COMP
/

This statement changes the default collation of the hrsys schema to the pseudo-collation
USING_NLS_COMP. After this statement is executed, all the database objects created in the
schema that do not contain the DEFAULT COLLATION clause have their default collation set to
USING_NLS_COMP, unless the session parameter DEFAULT_COLLATION overrides it. The default
collations of the existing database objects are not affected.

You can change the default collation for a schema at any time.

See Also:

• "Effective Schema Default Collation"

• Oracle Database SQL Language Reference for the syntax of declaring schema
default collation in CREATE USER and ALTER USER statements

5.10.4.3 Specifying Data-Bound Collation for a Table
You can specify a default data-bound collation for a table using the DEFAULT COLLATION clause
in the CREATE TABLE and ALTER TABLE statements. The table default collation is assigned to a
character column of the table, when an explicit collation is not declared for that column. If a
default collation is not explicitly declared for a table in the CREATE TABLE statement, then the
table collation is set to effective schema default collation.

You can change the default collation of a table using the ALTER TABLE statement. The change
does not affect the existing table columns and affects only those columns that are
subsequently added to the table or are updated using the ALTER TABLE statement.

Example: Applying a default collation to a table while creating a table

CREATE TABLE employees
(
 emp_code VARCHAR2(10) PRIMARY KEY,
 first_name VARCHAR2(100),
 last_name VARCHAR2(200),
 job_code VARCHAR2(5) COLLATE BINARY,
 dep_code NUMBER
)
DEFAULT COLLATION BINARY_CI
-- other CREATE TABLE clauses
/

Chapter 5
Column-Level Collation and Case Sensitivity

5-42

The columns emp_code, first_name, and last_name inherit the table default collation
BINARY_CI. The column job_code is declared explicitly with the collation BINARY. The primary
key constraint declared on the column emp_code will not allow rows having the emp_code values
of abcde123 and ABCDE123 in the table simultaneously.

Example: Changing the default collation of a table

ALTER TABLE employees DEFAULT COLLATION USING_NLS_COMP
/

This statement changes the default collation of the table employees to the pseudo-collation
USING_NLS_COMP. Any new VARCHAR2, CHAR, NVARCHAR2, NCHAR, and LONG columns added to
the table after the ALTER TABLE statement is executed, inherits the new collation, unless these
columns are declared with an explicit collation or belong to a foreign key. The collations of the
existing columns are not affected.

The default collation of a table can be changed at any time.

See Also:

• "Effective Schema Default Collation"

• Oracle Database SQL Language Reference for the syntax of declaring table
default collation in the CREATE TABLE and ALTER TABLE statements

5.10.4.4 Specifying Data-Bound Collation for a View and a Materialized View
You can specify a default data-bound collation for a view and a materialized view by using the
DEFAULT COLLATION clause in the CREATE VIEW and CREATE MATERIALIZED VIEW statements
respectively.

The default collation of a view or a materialized view is used as the derived collation of all the
character literals included in the defining query of that view or materialized view. The default
collation of a view or a materialized view can only be changed by recreating that view or
materialized view.

Note:

• If a default collation is not specified for a view or a materialized view, then it is set
to effective schema default collation.

• A default collation for a view or a materialized view is not used by the view
columns. The collations of the view columns are derived from the view’s defining
subquery. The CREATE VIEW or CREATE MATERIALIZED VIEW statement fails with
an error or is created invalid, if any of the character columns of that view or
materialized view is based on an expression in the defining subquery that has no
derived collation.

• The CREATE VIEW or CREATE MATERIALIZED VIEW statement fails with an error, if
its default collation is other than USING_NLS_COMP, and the defining query uses a
WITH plsql_declarations clause.

Chapter 5
Column-Level Collation and Case Sensitivity

5-43

Example: Applying a collation to a view

CREATE VIEW employees_j_polish_sort
 (emp_code, first_name, last_name, job_code, dep_code)
 DEFAULT COLLATION BINARY
AS
 SELECT * FROM employees
 WHERE last_name LIKE 'j%'
 ORDER BY last_name COLLATE POLISH
/

Assuming the definition of the table employees is as in the CREATE TABLE example above, the
view employees_j_polish_sort selects all employees with the last name starting with
lowercase or uppercase ‘j’ and sorts them using the named collation POLISH. This collation
properly orders accented letters for the Polish language. For example, it orders ‘ó’ between
‘o’ and ‘p’. The BINARY and BINARY_CI collations order it after ‘z’. Without the operator
COLLATE, the ORDER BY clause would order the query result based on the collation of the
column last_name, which is BINARY_CI.

The default collation of the view, which is BINARY collation, is used only to derive the collation
of the character literal 'j%'. However, collation of a literal has lower priority than collation of a
column. The collation of the column last_name, which is BINARY_CI, takes precedence and is
used by the operator LIKE.

See Also:

"Effective Schema Default Collation"

5.10.4.5 Specifying Data-Bound Collation for a Column
A data-bound collation can be explicitly specified for columns of character data types
VARCHAR2, CHAR, LONG, CLOB, NVARCHAR2, NCHAR, and NCLOB using:

• The COLLATE clause of a standard or a virtual column definition in a CREATE TABLE or ALTER
TABLE statement.

– If the column collation is not specified explicitly with the COLLATE clause for a column,
then the default collation of the table is used for that column, except for the cases
documented below.

– If a column has the data type of CLOB or NCLOB, then its specified collation must be
USING_NLS_COMP. The default collation of CLOB and NCLOB columns is always
USING_NLS_COMP and it does not depend on the table default collation.

– There are no operators allowed on LONG data type values in SQL, other than
conversion to CLOB data type. Therefore, collation of LONG columns is not used in SQL
statements. However, the LONG data type is identical to VARCHAR2(32767) in PL/SQL,
and hence needs collation specification in PL/SQL. Therefore, collation specification
for LONG columns is supported by Oracle, so that it can be passed to PL/SQL units
through %TYPE and %ROWTYPE attributes.

Chapter 5
Column-Level Collation and Case Sensitivity

5-44

Note:

Only the USING_NLS_COMP collation is supported for columns referenced using
the %TYPE and %ROWTYPE attributes in PL/SQL units.

– If neither the collation nor the data type is specified explicitly for a virtual column, or a
column is created by a CREATE TABLE AS SELECT statement, then the collation is
derived from the defining expression of the column, except when the column belongs
to a foreign key. If the defining expression of a column has no derived collation, an
error is reported.

– If a column belongs to a foreign key, its explicit collation specification must specify the
same collation that is declared for the corresponding column of the referenced primary
key or unique constraint. If a column belongs to a foreign key and has no explicit
collation specification, its collation is assigned from the corresponding column of the
referenced primary key or unique constraint. If a column belongs to two or more
foreign key constraints referencing primary key or unique constraints with different
collation specifications, an error is reported.

Example: Adding a column with collation declaration

ALTER TABLE employees ADD gender VARCHAR2(1) COLLATE BINARY_CI
/

This statement adds a new column named gender to the table employees and requests it
to be collated using the collation BINARY_CI. Without the COLLATE clause, the column
employees.gender would inherit the default collation of the table.

Example: Changing the collation of a column

ALTER TABLE employees MODIFY job_code COLLATE BINARY_CI
/

This statement changes the collation of the column employees.job_code to BINARY_CI.
The statement would fail, if the column were included in an index key, partitioning key,
foreign key, or a virtual column expression.

Note:

The COLLATE clause can be applied to a column during its modification only
when:

– the column to be modified is of a character data type and is not going to be
changed to a non-character data type

– the column to be modified is not of a character data type and is going to be
changed to a character data type, and the column is one of the following:

* a primary key column

* a unique key column

* a partition key column

* a column having a standard index applied to it

Chapter 5
Column-Level Collation and Case Sensitivity

5-45

• The COLLATE clause of a key column definition in a CREATE CLUSTER statement.

– If the column collation is not specified explicitly with the COLLATE clause for a cluster
column, then the effective schema default collation for the CREATE CLUSTER statement
is used for that column.

– The collations of cluster key columns must match the collations of the corresponding
columns in the tables created in the cluster.

Example: Applying a collation to a column in a cluster

CREATE CLUSTER clu1
(
 id VARCHAR2(10) COLLATE BINARY_CI,
 category VARCHAR2(20)
)
SIZE 8192 HASHKEYS 1000000
-- other CREATE CLUSTER clauses
/

The collation for the column category is inherited from the effective schema default
collation at the time of CREATE CLUSTER execution. Unless the schema containing the
cluster clu1 is defined with a different explicit collation or a different collation is set in the
DEFAULT_COLLATION session parameter, this effective schema default collation is the
pseudo-collation USING_NLS_COMP.

A CREATE TABLE statement defining a table to be added to the hash cluster clu1 must
specify two of the table’s columns in the CLUSTER clause. The first column must be of data
type VARCHAR2(10) and must be declared with the collation BINARY_CI, and the second
column must be of data type VARCHAR2(20) and must be declared with the collation
inherited by the cluster column clu1.category from the effective schema default collation.
The two collations are not used by the hash cluster itself.

Note:

• Declared collations of columns involved in creation of various database objects,
such as indexes, constraints, clusters, partitions, materialized views, and zone
maps undergo certain restrictions that are further described in the section "Effect
of Data-Bound Collation on Other Database Objects".

• The declared collation of a column can be modified with the ALTER TABLE MODIFY
statement, except for the cases described in the section "Effect of Data-Bound
Collation on Other Database Objects".

5.10.4.6 Specifying Data-Bound Collation for PL/SQL Units
A data-bound collation can be specified for the following PL/SQL units using the DEFAULT
COLLATION clause in their CREATE [OR REPLACE] statement:

• Procedures

• Functions

• Packages

Chapter 5
Column-Level Collation and Case Sensitivity

5-46

• Types

• Triggers

Varray and nested table types do not have explicitly declared default collations, as they do not
have PL/SQL methods or multiple attributes to apply the default collation. Package and type
bodies do not have their own collations, and they use the default collations of their
specifications.

Starting with Oracle Database 12c Release 2 (12.2), the CREATE [OR REPLACE] PROCEDURE |
FUNCTION | PACKAGE | TYPE | TRIGGER statement succeeds, only if the effective schema
default collation is the pseudo-collation USING_NLS_COMP or the DEFAULT COLLATION
USING_NLS_COMP clause in the CREATE statement overrides the effective schema default
collation. This restriction includes varrays and nested tables with scalar elements of character
data types.

If an ALTER COMPILE statement is issued with the REUSE SETTINGS clause, the stored default
collation of the database object being compiled is not changed. The compilation of a database
object fails, if the object does not satisfy the requirements described in the section “Effect of
Data-Bound Collation on PL/SQL Types and User-Defined Types”. For example, the
compilation of a database object fails when the stored default collation is not USING_NLS_COMP
or the %TYPE attribute is applied to a column with a named collation in the PL/SQL code.

If an ALTER COMPILE statement is issued without the REUSE SETTINGS clause, the stored default
collation of the database object being compiled is compared with the effective schema default
collation for the object owner at the time of the execution of the statement. If they are not equal
and the PL/SQL unit does not contain the DEFAULT COLLATION clause, then an error is reported
and the statement fails without compiling the object. If they are equal, then the compilation
proceeds. The compilation fails, if the object does not satisfy the requirements described in the
section “Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types”.

Starting with Oracle Database 12c Release 2 (12.2), all character data containers in
procedures, functions, and methods, such as variables, parameters, and return values, behave
as if their data-bound collation is the pseudo-collation USING_NLS_COMP. Also, all character
attributes behave as if their data-bound collation is the pseudo-collation USING_NLS_COMP and
all the relational table columns storing object attributes are assigned the pseudo-collation
USING_NLS_COMP.

Note:

If a default collation is not specified for a PL/SQL unit, then it is set to the effective
schema default collation.

See Also:

• "Effective Schema Default Collation"

• "Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types"

Chapter 5
Column-Level Collation and Case Sensitivity

5-47

5.10.4.7 Specifying Data-Bound Collation for SQL Expressions
During an SQL expression evaluation, each character argument to an operator and each
character result of an operator has an associated data-bound collation. The collations of an
operator’s arguments determine the collation used by the operator, if the operator is collation-
sensitive. The derived collation of an SQL expression result is relevant for a consumer of the
result, which may be another SQL operator in the expression tree or a top-level consumer,
such as an SQL statement clause in a SELECT statement. You can override the derived
collation of an expression node, such as a simple expression or an operator result, by using
the COLLATE operator. The collation derivation and collation determination rules are used while
evaluating an SQL expression.

This section contains the following topics:

• Collation Derivation

• Collation Determination

• Expression Evaluation and the COLLATE Operator

• COLLATION Function

• NLS_COLLATION_ID and NLS_COLLATION_NAME Functions

5.10.4.7.1 Collation Derivation
The process of determining the collation of a character result of an SQL operation is called
collation derivation. Such operation may be an operator, column reference, character literal,
bind variable reference, function call, CASE expression, or a query clause.

See Also:

"Collation Derivation and Determination Rules for SQL Operations" for more
information about collation derivation.

5.10.4.7.2 Collation Determination
Collation determination is the process of selecting the right collation to apply during the
execution of a collation-sensitive operation. A collation-sensitive operation can be an SQL
operator, condition, built-in function call, CASE expression or a query clause.

See Also:

"Collation Derivation and Determination Rules for SQL Operations" for more
information about collation determination.

5.10.4.7.3 Expression Evaluation and the COLLATE Operator
You can override the derived collation of any expression node, that is, a simple expression or
an operator result, with the COLLATE operator. The COLLATE operator does for collations what
the CAST operator does for data types. The COLLATE operator must specify a collation or a
pseudo-collation by name. Dynamic collation specification in the form of an expression is not

Chapter 5
Column-Level Collation and Case Sensitivity

5-48

allowed. This is different from how collations are specified for the SQL functions NLSSORT,
NLS_UPPER, NLS_LOWER, and NLS_INITCAP.

Starting with Oracle Database 12c Release 2 (12.2), the syntax of SQL expressions used in
SELECT and DML statements allows changing the collation of a character value expression.
The syntax of compound expression clause is as follows:

{ (expr)
| { + | - | PRIOR } expr
| expr { * | / | + | - | || } expr
| expr COLLATE collation_name
}

collation_name is the name the collation to be assigned to the value of the expression expr.
The name must be enclosed in double-quotes, if it contains the space character. The
COLLATE operator overrides the collation that the database derives using the standard
collation derivation rules for expr. The COLLATE operator can be applied only to the
expressions of the data types VARCHAR2, CHAR, LONG, NVARCHAR2, and NCHAR. There
is no implicit conversion of the argument of COLLATE to a character data type. The COLLATE
operator has the same precedence as other unary operators, but it is a postfix operator and it
is evaluated only after all the prefix operators are evaluated.

See Also:

• "Enabling Data-Bound Collation"

• "Collation Derivation and Determination Rules for SQL Operations"

5.10.4.7.4 COLLATION Function
Starting with Oracle Database 12c Release 2 (12.2), the function COLLATION returns the
derived data-bound collation of a character expression.

COLLATION(expr);

expr is an expression of a character data type. The COLLATION function returns the name of the
derived collation of expr as a VARCHAR2 value. This function returns pseudo-collations as well.
The UCA collation names are returned in the long, canonical format with all collation
parameters included in the collation name. This function returns NULL value, if the collation of
the expression is undefined due to any collation conflict in the expression tree.

Chapter 5
Column-Level Collation and Case Sensitivity

5-49

Note:

• The COLLATION function returns only the data-bound collations, and not the
dynamic collations set by the NLS_SORT parameter. Thus, for a column declared
as COLLATE USING_NLS_SORT, the function returns the character value
"USING_NLS_SORT", and not the actual value of the session parameter NLS_SORT.
You can use the built-in function SYS_CONTEXT('USERENV','NLS_SORT') to get the
actual value of the session parameter NLS_SORT.

• The COLLATION function used in SQL is evaluated during the compilation of the
SQL statement.

5.10.4.7.5 NLS_COLLATION_ID and NLS_COLLATION_NAME Functions
Starting with Oracle Database 12c Release 2 (12.2), the two functions NLS_COLLATION_ID and
NLS_COLLATION_NAME allow numeric collation IDs, as stored in data dictionary, to be translated
to collation names and collation names translated to collation IDs.

The syntax for the NLS_COLLATION_ID function is:

NLS_COLLATION_ID(expr);

expr is an expression that must evaluate to a VARCHAR2 value. The value of expr is taken as a
collation name or pseudo-collation name, and the corresponding collation ID is returned by the
function. The NULL value is returned, if the collation name is invalid.

The syntax for the NLS_COLLATION_NAME function is:

NLS_COLLATION_NAME(expr [,flag]);

expr is an expression that must evaluate to a NUMBER value. The value of expr is taken as a
collation ID, and the corresponding collation name or pseudo-collation name is returned by the
function. The NULL value is returned, if the collation ID is invalid.

The optional parameter flag must evaluate to a VARCHAR2 value. The value of the flag
parameter must be 'S', 's', 'L', or 'l'. The default value of the flag parameter is 'L'. This
parameter determines the behavior of the function for UCA collations. The flag parameter
values 'S' and 's' mean that the UCA collation names are returned in the short format, that is,
the format in which all the UCA collation parameters with default values are omitted. The flag
parameter values 'L' and 'l' mean that the UCA collation names are returned in the long,
canonical format, that is, the format in which all the UCA collation parameters are included,
even if they have default values. For example, UCA1210_DUCET and
UCA1210_DUCET_S4_VS_BN_NY_EN_FN_HN_DN_MN are short and long names of the same collation
respectively.

See Also:

"UCA Collation"

Chapter 5
Column-Level Collation and Case Sensitivity

5-50

5.10.5 Viewing the Data-Bound Collation of a Database Object
You can view the data-bound collation information for a database object or a column using the
following data dictionary views:

Data dictionary views for viewing the default collation of an object

DBA|USER_USERS.DEFAULT_COLLATION
DBA|ALL|USER_TABLES.DEFAULT_COLLATION
DBA|ALL|USER_VIEWS.DEFAULT_COLLATION
DBA|ALL|USER_MVIEWS.DEFAULT_COLLATION
DBA|ALL|USER_OBJECTS.DEFAULT_COLLATION
Data dictionary views for viewing the collation of a table, a view, or a cluster column

{DBA|ALL|USER}_TAB_COLS.COLLATION
{DBA|ALL|USER}_TAB_COLUMNS.COLLATION
Data dictionary views to view the collation association between a virtual column and an
original column

The data dictionary views contain the following columns that show the collation association
between a virtual column and an original columns whose linguistic behavior the virtual column
implements:

{DBA|ALL|USER}_TAB_COLS.COLLATED_COLUMN_ID
{DBA|ALL|USER}_PART_KEY_COLUMNS.COLLATED_COLUMN_ID
{DBA|ALL|USER}_SUBPART_KEY_COLUMNS.COLLATED_COLUMN_ID

Note:

The name of a UCA collation is stored in the data dictionary views in the form of a
long canonical format with all its parameters, including the parameters with the
default values. For example, the UCA collation UCA1210_DUCET is stored in these
views as UCA1210_DUCET_S4_VS_BN_NY_EN_FN_HN_DN_MN.

5.10.6 Case-Insensitive Database
Oracle Database supports case-insensitive collations, such as BINARY_CI, BINARY_AI,
GENERIC_M_CI, GENERIC_M_AI, UCA1210_DUCET_CI, and UCA1210_DUCET_AI. By applying such
collations to SQL operations, an application can perform string comparisons and matching in a
case-insensitive way.

Starting with Oracle Database 12c Release 2 (12.2), you can declare a column to be always
compared as case-insensitive by specifying a case-insensitive data-bound collation (collation
having suffix _CI or _AI) in the column definition. The column collation, if not specified
explicitly, is inherited from the table default collation, which in turn is inherited from the schema
default collation. This way, you can easily declare all the character columns in a database as

Chapter 5
Column-Level Collation and Case Sensitivity

5-51

case-insensitive by default, and use explicit collation declarations only for columns that require
a case-sensitive collation.

See Also:

"About Data-Bound Collation"

5.10.7 Effect of Data-Bound Collation on Other Database Objects
This section describes the affect on the following database objects, when they reference a
column implementing a data-bound collation:

• Persistent Objects

• Standard Indexes

• Bitmap Join Indexes

• Primary and Unique Constraints

• Foreign Key Constraints

• Partitioning and Sharding

• Index-organized Tables (IOTs)

• Clusters

• Table Clustering and Zone Maps

• Oracle Text Indexes and Other Domain Indexes

• Other Specific Table Types

Persistent Objects

A database object with content stored persistently in the database, such as index, partition,
primary key, unique key, referential constraint, cluster, or zone map, cannot have its content
collated persistently based on transient, possibly changing values of session parameters
NLS_COMP and NLS_SORT. Therefore, when a pseudo-collation is declared for a key column of
such an object, the values of the column are collated and grouped as described below.

Collation Group Key Column Collation Collation Used

Group 1 USING_NLS_COMP
USING_NLS_SORT
USING_NLS_SORT_CS

BINARY

Group 2 USING_NLS_SORT_CI BINARY_CI
Group 3 USING_NLS_SORT_AI BINARY_AI

Standard Indexes

Standard indexes, that is, B-tree indexes defined on a column declared with a collation not
from Group 1, automatically become functional indexes on the function NLSSORT. This
functionality is applicable to bitmap indexes as well. The NLSSORT function uses the collation of
the index key column, if it is a named collation, or the collation BINARY_CI or BINARY_AI, as
described in the section "Persistent Objects".

Chapter 5
Column-Level Collation and Case Sensitivity

5-52

Note:

An index defined on a column declared with a collation from Group 1 is created as a
standard binary index.

For example, the SQL statements:

CREATE TABLE my_table
(
 my_column VARCHAR2(100) COLLATE POLISH,
 ...
);

CREATE [UNIQUE|BITMAP] INDEX my_index ON my_table(my_column);

are equivalent to:

CREATE TABLE my_table
(
 my_column VARCHAR2(100) COLLATE POLISH,
 ...
);

CREATE [UNIQUE|BITMAP] INDEX my_index ON
my_table(NLSSORT(my_column,'NLS_SORT=POLISH'));

A compound index key comprising columns that have collations from Group 1 as well as not
from Group 1 contains both NLSSORT-based expressions and plain columns.

For example, the SQL statements:

CREATE TABLE my_table
(
 id VARCHAR2(20) COLLATE USING_NLS_COMP,
 my_column VARCHAR2(100) COLLATE POLISH,
 ...
);

CREATE [UNIQUE|BITMAP] INDEX my_index ON my_table(id, my_column);

are equivalent to:

CREATE TABLE my_table
(
 id VARCHAR2(20) COLLATE USING_NLS_COMP,
 my_column VARCHAR2(100) COLLATE POLISH,
 ...
);

CREATE [UNIQUE|BITMAP] INDEX my_index ON my_table(id,
NLSSORT(my_column,'NLS_SORT=POLISH'));

Chapter 5
Column-Level Collation and Case Sensitivity

5-53

You can change the collation of an index key column with the ALTER TABLE MODIFY statement
only among collations of the same group as defined in the section "Persistent Objects". For
example, you can change the collationBINARY to USING_NLS_SORT, but not to
USING_NLS_SORT_CI or to any other named collation. To change the collation to another value,
the index must be dropped first.

Bitmap Join Indexes

A bitmap join index definition can only reference columns with collations BINARY,
USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS. For any of these collations, index
keys are collated and the join condition is evaluated using the BINARY collation.

The collation of a bitmap join index key column or a column referenced in the bitmap index join
condition can be changed with the ALTER TABLE MODIFY statement only among collations
permitted in the index definition.

Primary and Unique Constraints

Primary and unique constraints defined on a column declared with a named collation use that
collation to determine the uniqueness of the value to be inserted in that column. In this case, a
primary constraint or a unique constraint is implemented by using a unique functional index
instead of a binary unique index. Primary and unique constraints on columns declared with any
of the pseudo-collations use a variant of the binary collation as described in the section
"Persistent Objects".

The collation of a primary or a unique key column can be changed with the ALTER TABLE
MODIFY statement only among collations of the same group as defined in the section and only if
no foreign key constraint references the primary or unique key. To change the collation to
another value, the constraint must be dropped first.

Foreign Key Constraints

Foreign key constraints use the collation of the referenced primary or unique key columns
when comparing key values. The comparison between a foreign key value and a referenced
primary key value is not necessarily binary. Foreign constraints on columns declared with any
of the pseudo-collations use a variant of the binary collation as described in the section
"Persistent Objects". The collation of a foreign key column cannot be changed with the ALTER
TABLE MODIFY statement. To change the collation, the constraint must be dropped first.

Note:

The collation of a foreign key column must be the same as the collation of the
referenced column. This requirement is checked when the foreign key constraint is
defined.

Partitioning and Sharding

Range, list, hash, and referential partitioning use the collations of the columns building the
partitioning key to determine the ordering of values for the purpose of assigning them to proper
partitions and sub-partitions, and for partition pruning.

In Oracle Database 18c and later, partitioning and partition set key columns with character data
types used as sharding keys must have the collation BINARY, USING_NLS_COMP,
USING_NLS_SORT, or USING_NLS_SORT_CS. The same collations are required for partitioning key
columns in tables that:

Chapter 5
Column-Level Collation and Case Sensitivity

5-54

• are of XMLType or

• contain columns of XMLType or

• are defined with the FOR EXCHANGE WITH TABLE clause

The collation of a partitioning key column can be changed with the ALTER TABLE MODIFY
statement only among the collations of the same group described in the section "Persistent
Objects".

Note:

Data-bound collation does not affect system partitioning.

Index-organized Tables (IOTs)

An index-organized table stores columns of its primary key plus zero or more columns in its
primary key index, and the rest of the columns in a heap-organized overflow segment.

Starting with Oracle Database 12c Release 2 (12.2), primary key columns of an IOT must have
the collation BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. For all these
collations, the index key values are collated with BINARY collation.

The collation of a primary key column of an IOT can be changed with the ALTER TABLE MODIFY
statement to any of the above mentioned collations only.

Clusters

Oracle Database supports hash clusters and index clusters. Index clusters have an index, and
the key value ordering for character key columns in this index is sensitive to collation. Hash
clusters are not collation-sensitive in general because table rows are grouped based on a
numerical hash function. However, the value of a user-defined hash function may depend on
the collations of key columns referenced by the function.

Additionally, the SORT clause on hash cluster columns instructs Oracle Database to sort the
rows of a cluster on those columns after applying the hash function when performing a DML
operation. To ensure that hash and index processing is consistent for all the tables of a cluster,
key columns of both hash and index clusters having declared collations must match the
collations of corresponding columns of tables stored in that cluster.

Chapter 5
Column-Level Collation and Case Sensitivity

5-55

Note:

• Starting with Oracle Database 12c Release 2 (12.2), creation of an index clusters
with key columns declared with a collation other than BINARY, USING_NLS_COMP,
USING_NLS_SORT, or USING_NLS_SORT_CS is not supported. The same restriction
applies to columns of hash clusters that have the SORT clause. Key columns of
hash clusters without the SORT clause can have any collation.

• Hash clusters and index clusters have no default collation. Cluster keys usually
have very few columns and new columns cannot be added to a cluster using the
ALTER CLUSTER command. Therefore, default collations are not useful for
clusters. The default collation for a column in a cluster is always derived from the
effective schema default collation.

• Collation of a table column corresponding to a cluster key cannot be modified
with ALTER TABLE MODIFY statement.

See Also:

"Effective Schema Default Collation"

Table Clustering and Zone Maps

The data-bound collation feature is not supported for table clustering and zone maps.
Clustering and zone maps can only be applied to table columns declared with BINARY or
USING_NLS_COMP collation. For all these collations, column values are clustered based on the
BINARY collation.

Oracle Text Indexes and Other Domain Indexes

The data-bound collation feature is not supported for Oracle Text indexes and other domain
indexes. Domain indexes can be created only on table columns declared with collation BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. Oracle Text does not use data-
bound collation in its processing. Oracle Text has its own mechanisms to specify matching
behavior.

Other Specific Table Types

The default table collation and column collations can be specified for temporary and external
tables as well.

Note:

User-defined types (UDTs) support only the pseudo-collation USING_NLS_COMP.
Therefore, nested tables, which are always based on a user-defined collection type,
also support USING_NLS_COMP collation only.

Chapter 5
Column-Level Collation and Case Sensitivity

5-56

See Also:

• "Specifying Data-Bound Collation for a Table"

• "Specifying Data-Bound Collation for a Column"

5.10.8 Effect of Data-Bound Collation on Distributed Queries and DML
Operations

Distributed queries and DML operations may involve one or more database nodes of different
Oracle Database releases, such as, 12.2, 12.1, and earlier. Evaluation of different parts of a
query may happen in different nodes and determination of particular nodes evaluating
particular operators is subject to optimizer decisions. Moreover, a local node is generally aware
only of nodes that it directly accesses through database links. Indirect or multi-hop nodes,
which are remote nodes accessed through synonyms referenced in the query and defined in
directly connected nodes, are not visible to a local node.

Considering the above scenario and the requirement that query results must be deterministic
and cannot depend on optimizer decisions, Oracle defines the following behavior for queries
and subqueries:

• If an Oracle Database 12.2 node with the data-bound collation feature enabled connects to
another Oracle Database 12.2 node with the data-bound collation feature enabled, all data-
bound collation related behavior is supported.

• If an Oracle Database 12.1 node or an earlier Oracle Database release node connects to
an Oracle Database 12.2 node, the Oracle Database 12.2 node recognizes that the query
is coming from an earlier Oracle Database release. If such a query references columns
with a declared collation other than USING_NLS_COMP, an error is reported. However, if the
remote Oracle Database 12.2 node receives a DML statement, the statement is evaluated,
even if it references columns with a declared collation other than USING_NLS_COMP.

• If a local Oracle Database 12.2 node connects to a remote database node of earlier Oracle
Database release, the local database node assumes that any character data coming from
the remote database node has the declared collation of USING_NLS_COMP. The local
database node makes sure that the new SQL operators, such as COLLATE and
NLS_COLLATION_NAME, are not sent to the remote database node. If an SQL statement has
to be executed on the remote node (for example, a DML operation on a remote table), and
if it contains the new SQL operators or a reference to a local column with collation other
than USING_NLS_COMP, then an error is reported.

Note:

The above rules are applied recursively when additional databases are accessed
through database links defined in remote nodes and referenced through synonyms.

5.10.9 Effect of Data-Bound Collation on PL/SQL Types and User-Defined
Types

Oracle Database provides limited data-bound collation support for PL/SQL types and user-
defined types (UDTs). Only those features are provided in Oracle Database that are needed to

Chapter 5
Column-Level Collation and Case Sensitivity

5-57

maintain forward compatibility of PL/SQL code, with the possible future extension of data-
bound collation architecture to PL/SQL without limiting the use of PL/SQL with database
objects that use the data-bound collation feature.

The following features related to PL/SQL units and UDTs are provided in Oracle Database for
data-bound collation support:

• A PL/SQL procedure, function, package, trigger, or UDT can be created as a valid object,
only if the effective schema default collation at the time of its creation is USING_NLS_COMP,
or its definition contains an explicit DEFAULT COLLATION USING_NLS_COMP clause. If the
resulting default object collation is different from USING_NLS_COMP, the database object is
created as invalid with a compilation error.

See Also:

"Effective Schema Default Collation"

• The new SQL operators COLLATE, COLLATION, NLS_COLLATION_ID, and
NLS_COLLATION_NAME used in embedded SQL are accepted and passed to the SQL engine,
but their functionality is not available in PL/SQL code.

• The database columns with declared collations other than USING_NLS_COMP can be
referenced in embedded SQL, but not in PL/SQL expressions.

• The DML row-level triggers cannot reference fields of OLD, NEW, or PARENT pseudo-records,
or correlation names that correspond to columns with declared collation other than
USING_NLS_COMP.

• The PL/SQL variables referenced in embedded SQL statements have the pseudo-collation
USING_NLS_COMP and the coercibility level 2.

• The %TYPE attribute is not allowed on character columns with a declared collation other
than the pseudo-collation USING_NLS_COMP. Similarly, the %ROWTYPE attribute is not allowed
on tables, views, cursors, or cursor variables with at least one character column with a
declared collation other than USING_NLS_COMP. The columns with collations other than
USING_NLS_COMP can be selected into INTO clause variables declared without those
attributes. PL/SQL variables always have the default collation USING_NLS_COMP. Thus,
whatever is the collation of the selected columns, it is always overridden with the pseudo-
collation USING_NLS_COMP for PL/SQL processing.

• The cursor FOR LOOP statements are not allowed on cursors that return result set columns
with collation other than the pseudo-collation USING_NLS_COMP.

• A relational column created to store an UDT attribute, whether of an object column or of an
object table, inherits the attribute’s collation property. However, as all UDTs are created
using the pseudo-collation USING_NLS_COMP, any relevant columns for UDT attributes are
also created with the pseudo-collation USING_NLS_COMP.

• A WHEN condition in a trigger is evaluated by the SQL engine, and hence, it supports the
data-bound collation feature. A WHEN condition can reference a column with declared
collation other than USING_NLS_COMP, and can use the new operators and functions.

5.10.10 Effect of Data-Bound Collation on Oracle XML DB
The XML Query standard XQuery defines features to specify collation for collation-sensitive
operators in XML Query expressions. An XQuery collation can be specified for a particular
operator, similar to how collation is specified in the second parameter of the Oracle SQL

Chapter 5
Column-Level Collation and Case Sensitivity

5-58

function NLS_UPPER, or as a default collation in the static context of an XQuery expression.
XQuery does not provide any mechanism to declare collation for a data container or data
source. Therefore, the declared collations of any relational database columns passed as
arguments in the PASSING clause of the XMLQuery , XMLExists, or XMLTable operator are
ignored by Oracle XML DB.

Chapter 5
Column-Level Collation and Case Sensitivity

5-59

6
Supporting Multilingual Databases with
Unicode

This chapter illustrates how to use the Unicode Standard in an Oracle Database environment.
This chapter includes the following topics:

• What is the Unicode Standard?

• Features of the Unicode Standard

• Implementing a Unicode Solution in the Database

• Unicode Case Studies

• Designing Database Schemas to Support Multiple Languages

6.1 What is the Unicode Standard?
The Unicode Standard is a character encoding system that defines every character in most of
the spoken languages in the world.

To overcome the limitations of existing character encodings, several organizations began
working on the creation of a global character set in the late 1980s. The need for this became
even greater with the development of the World Wide Web in the mid-1990s. The Internet has
changed how companies do business, with an emphasis on the global market that has made a
universal character set a major requirement.

A global character set needs to fulfill the following conditions:

• Contain all major living scripts

• Support legacy data and implementations

• Be simple enough that a single implementation of an application is sufficient for worldwide
use

A global character set should also have the following capabilities:

• Support multilingual users and organizations

• Conform to international standards

• Enable worldwide interchange of data

The Unicode Standard, which is now in wide use, meets all of the requirements and
capabilities of a global character set. It provides a unique code value for every character,
regardless of the platform, program, or language. It also defines a number of character
properties and processing rules that help implement complex multilingual text processing
correctly and consistently. Bi-directional behavior, word breaking, and line breaking are
examples of such complex processing.

The Unicode Standard has been adopted by many software and hardware vendors. Many
operating systems and browsers now support the standard. The Unicode Standard is required
by other standards such as XML, Java, JavaScript, LDAP, and WML. It is also synchronized
with the ISO/IEC 10646 standard.

6-1

Oracle Database introduced the Unicode Standard character encoding as the now obsolete
database character set AL24UTFFSS in Oracle Database 7. Since then, incremental
improvements have been made in each release to synchronize the support with the new
published version of the standard.

Note:

Oracle Database 21c supports Unicode version 12.1.

See Also:

The Unicode Consortium website for more information about the Unicode Standard

6.2 Features of the Unicode Standard
This section contains the following topics:

• Code Points and Supplementary Characters

• Unicode Encoding Forms

• Support for the Unicode Standard in Oracle Database

6.2.1 Code Points and Supplementary Characters
The first version of the Unicode Standard was a 16-bit, fixed-width encoding that used two
bytes to encode each character. This enabled 65,536 characters to be represented. However,
more characters need to be supported, especially additional CJK ideographs that are important
for the Chinese, Japanese, and Korean markets.

The current definition of the Unicode Standard assigns a number to each character defined in
the standard. These numbers are called code points, and are in the range 0 to 10FFFF
hexadecimal. The Unicode notation for representing character code points is the prefix "U+"
followed by the hexadecimal code point value. The code point value is left-padded with non-
significant zeros to the minimum length of four. Characters with code points U+0000 to
U+FFFF are called Basic Multilingual Plane characters. Characters with code points U+10000
to U+10FFFF are called supplementary characters.

Adding supplementary characters has increased the complexity of the Unicode 16-bit, fixed-
width encoding form; however, this is still far less complex than managing hundreds of legacy
encodings used before Unicode.

6.2.2 Unicode Encoding Forms
The Unicode Standard defines a few encoding forms, which are mappings from Unicode code
points to code units. Code units are integer values processed by applications. Code units may
have 8, 16, or 32 bits. The standard encoding forms are: UTF-8, UTF-16, and UTF-32. There
are also two compatibility encodings mentioned in the standard and its associated technical
reports: UCS-2 and CESU-8. Conversion between different Unicode encodings is a simple bit-
wise operation that is defined in the standard.

This section contains the following topics:

Chapter 6
Features of the Unicode Standard

6-2

• UTF-8 Encoding Form

• UTF-16 Encoding Form

• UCS-2 Encoding Form

• UTF-32 Encoding Form

• CESU-8 Encoding Form

• Examples: UTF-16, UTF-8, and UCS-2 Encoding

6.2.2.1 UTF-8 Encoding Form
UTF-8 is the 8-bit encoding form of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character set is
available in UTF-8 with the same byte representation. One Unicode character can be
represented by 1 byte, 2 bytes, 3 bytes, or 4 bytes in the UTF-8 encoding form. Characters
from the European and Middle Eastern scripts are represented in either 1 or 2 bytes.
Characters from most Asian scripts are represented in 3 bytes. Supplementary characters are
represented in 4 bytes.

UTF-8 is the Unicode encoding used for HTML and most Internet browsers.

The benefits of UTF-8 are as follows:

• Compact storage requirement for European scripts because it is a strict superset of ASCII

• Ease of migration between ASCII-based character sets and UTF-8

See Also:

• "Code Points and Supplementary Characters"

• Table B-2

6.2.2.2 UTF-16 Encoding Form
UTF-16 is the 16-bit encoding form of Unicode. One character can be represented by either
one 16-bit integer value (two bytes) or two 16-bit integer values (four bytes) in UTF-16. All
characters from the Basic Multilingual Plane, which are most characters used in everyday text,
are represented in two bytes. Supplementary characters are represented in four bytes. The two
code units (integer values) encoding a single supplementary character are called a surrogate
pair.

UTF-16 is the main Unicode encoding used for internal processing by Java since version J2SE
5.0 and by Microsoft Windows since version 2000.

The benefits of UTF-16 over UTF-8 are as follows:

• More compact storage for Asian scripts because most of the commonly used Asian
characters are represented in two bytes.

• Better compatibility with Java and Microsoft clients

Chapter 6
Features of the Unicode Standard

6-3

See Also:

• "Code Points and Supplementary Characters"

• Table B-1

6.2.2.3 UCS-2 Encoding Form
UCS-2 is not an official Unicode encoding form. The name originally comes from older versions
of the ISO/IEC 10646 standard, before the introduction of the supplementary characters.
Therefore, it is currently used to refer to the UTF-16 encoding form stripped from support for
supplementary characters and surrogate pairs. That is, surrogate pairs are processed in
UCS-2 as two separate characters. Applications supporting UCS-2 but not UTF-16 should not
process text containing supplementary characters, as they may incorrectly split surrogate pairs
when dividing text into fragments. They are also generally incapable of displaying such text.

UCS-2 is the Unicode encoding used for internal processing by Java before version J2SE 5.0
and by Microsoft Windows NT.

6.2.2.4 UTF-32 Encoding Form
UTF-32 is the 32-bit encoding form of Unicode. Each Unicode code point is represented by a
single 32-bit, fixed-width integer value. If is the simplest encoding form, but very space
inefficient. For English text, it quadruples the storage requirements compared to UTF-8 and
doubles when compared to UTF16. Therefore, UTF-32 is sometimes used as an intermediate
form in internal text processing, but it is generally not used for information interchange.

In Java, since version J2SE 5.0, selected APIs have been enhanced to operate on characters
in the 32-bit form, stored as int values.

6.2.2.5 CESU-8 Encoding Form
CESU-8 is not part of the core Unicode Standard. It is described in the Unicode Technical
Report #26 published by The Unicode Consortium. CESU-8 is a compatibility encoding form
identical to UTF-8 except for its representation of supplementary characters. In CESU-8,
supplementary characters are represented as surrogate pairs, as in UTF-16. To obtain the
CESU-8 encoding of a supplementary character, encode the character in UTF-16 first and then
treat each of the surrogate code units as a code point with the same value. Then, apply the
UTF-8 encoding rules (bit transformation) to each of the code points. This will yield two three-
byte representations, six bytes in total.

CESU-8 has only two benefits:

• It has the same binary sorting order as UTF-16.

• It uses the same number of codes per character (one or two). This is important for
character length semantics in string processing.

In general, the CESU-8 encoding form should be avoided as much as possible.

Chapter 6
Features of the Unicode Standard

6-4

See Also:

Unicode Technical Report #26 “Compatibility Encoding Scheme for UTF-16: 8-Bit
(CESU-8)” published on The Unicode Consortium website

6.2.2.6 Examples: UTF-16, UTF-8, and UCS-2 Encoding
The following table shows some characters and their character codes in UTF-16, UTF-8, and
UCS-2 encoding. The last character is a treble clef (a music symbol), a supplementary
character.

0041

0063

00F6

4E9C

D834 DD1E

41

63

C3 B6

E4 BA 9C

F0 9D 84 9E

A

c

Ö

Character UTF-16

0041

0063

00F6

4E9C

N/A

UCS-2UTF-8

6.2.3 Support for the Unicode Standard in Oracle Database
Oracle Database began supporting the Unicode character set as a database character set in
release 7. Table 6-1 summarizes the Unicode character sets supported by Oracle Database.

Table 6-1 Unicode Character Sets Supported by Oracle Database

Character Set Supported in
RDBMS
Release

Unicode
Encoding
Form

Unicode Version Database
Character
Set

National
Character
Set

AL24UTFFSS 7.2 to 8i UTF-8 1.1 Yes No

UTF8 8.0 to 21c CESU-8 Oracle Database release 8.0 through
Oracle8i Release 8.1.6: 2.1

Oracle8i Database release 8.1.7 and
later: 3.0

Yes Yes

(Oracle9i
Database
and later
versions
only)

UTFE 8.0 to 21c UTF-EBCDIC Oracle8i Database releases 8.0 through
8.1.6: 2.1

For Oracle8i Database release 8.1.7 and
later: 3.0

Yes1 No

Chapter 6
Features of the Unicode Standard

6-5

Table 6-1 (Cont.) Unicode Character Sets Supported by Oracle Database

Character Set Supported in
RDBMS
Release

Unicode
Encoding
Form

Unicode Version Database
Character
Set

National
Character
Set

AL32UTF8 9i to 21c UTF-8 Oracle9i Database release 1: 3.0

Oracle9i Database release 2: 3.1

Oracle Database 10g, release 1: 3.2

Oracle Database 10g, release 2: 4.0

Oracle Database 11g: 5.0

Oracle Database 12c, release 1: 6.2

Oracle Database 12c, release 2: 7.0

Oracle Database 18c to Oracle Database
19c: 9.0

Oracle Database 21c: 12.1

Yes No

AL16UTF16 9i to 21c UTF-16 Oracle9i Database release 1: 3.0

Oracle9i Database release 2: 3.1

Oracle Database 10g, release 1: 3.2

Oracle Database 10g, release 2: 4.0

Oracle Database 11g: 5.0

Oracle Database 12c, release 1: 6.2

Oracle Database 12c, release 2: 7.0

Oracle Database 18c to Oracle Database
19c: 9.0

Oracle Database 21c: 12.1

No Yes

1 UTF-EBCDIC is a compatibility encoding form specific to EBCDIC-based systems, such as IBM z/OS or Fujitsu BS2000. It is described in
the Unicode Technical Report #16. Oracle character set UTFE is a partial implementation of the UTF-EBCDIC encoding form, supported
on ECBDIC-based platforms only. Oracle Database does not support five-byte sequences of the this encoding form, limiting the supported
code point range to U+000 - U+3FFFF. The use of the UTFE character set is discouraged.

6.3 Implementing a Unicode Solution in the Database
Unicode characters can be stored in an Oracle database in two ways:

• You can create a database that enables you to store UTF-8 encoded characters as SQL
CHAR data types (CHAR, VARCHAR2, CLOB, and LONG).

• You can store Unicode data in either the UTF-16 or CESU-8 encoding form in SQL NCHAR
data types (NCHAR, NVARCHAR2, and NCLOB). The SQL NCHAR data types are called Unicode
data types because they are used only for storing Unicode data.

Note:

You can combine both Unicode solutions, if required by different applications running
in a single database.

The following sections explain how to use the two Unicode solutions and how to choose
between them:

Chapter 6
Implementing a Unicode Solution in the Database

6-6

• Enabling Multilingual Support for a Database

• Enabling Multilingual Support with Unicode Data Types

• How to Choose Between Unicode Solutions

6.3.1 Enabling Multilingual Support for a Database
The database character set specifies the encoding to be used in the SQL CHAR data types as
well as the metadata such as table names, column names, and SQL statements. A Unicode
Standard-enabled database is a database with a Unicode Standard-compliant character set
as the database character set. There are two database Oracle character sets that implement
the Unicode Standard.

• AL32UTF8

The AL32UTF8 character set implements the UTF-8 encoding form and supports the latest
version of the Unicode standard. It encodes characters in one, two, three, or four bytes.
Supplementary characters require four bytes. It is for ASCII-based platforms.

AL32UTF8 is the recommended database character set for any new deployment of Oracle
Database as it provides the optimal support for multilingual applications, such as Internet
websites and applications for multinational companies.

• UTF8

The UTF8 character set implements the CESU-8 encoding form and encodes characters in
one, two, or three bytes. It is for ASCII-based platforms.

Supplementary characters inserted into a UTF8 database are stored in the CESU-8
encoding form. Each character is represented by two three-byte codes and hence
occupies six bytes of memory in total.

The properties of characters in the UTF8 character set are not guaranteed to be updated
beyond version 3.0 of the Unicode Standard.

Oracle recommends that you switch to AL32UTF8 for full support of the supplementary
characters and the most recent versions of the Unicode Standard.

Chapter 6
Implementing a Unicode Solution in the Database

6-7

Note:

• Specify a database character set when you create a database. Oracle
recommends using AL32UTF8 as the database character set. AL32UTF8 is the
proper implementation of the Unicode encoding UTF-8. Starting with Oracle
Database 12c Release 2, AL32UTF8 is used as the default database character
set while creating a database using Oracle Universal Installer (OUI) as well as
Oracle Database Configuration Assistant (DBCA).

• Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character set is
used where UTF-8 processing is expected, then data loss and security issues
may occur. This is especially true for Web related data, such as XML and URL
addresses.

• AL32UTF8 and UTF8 character sets are not compatible with each other as they
have different maximum character widths. AL32UTF8 has a maximum character
width of 4 bytes, whereas UTF8 has a maximum character width of 3 bytes.

• If the CHARACTER SET clause is not specified in the CREATE DATABASE statement
explicitly, then the database character set defaults to US7ASCII (except on
EBCDIC platforms).

Example 6-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE statement
and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'disk1:df1.dbf' AUTOEXTEND ON,
'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = '+00:00';

6.3.2 Enabling Multilingual Support with Unicode Data Types
An alternative to storing Unicode data in the database is to use the SQL NCHAR data types
(NCHAR, NVARCHAR2, NCLOB). You can store Unicode characters in columns of these data types
regardless of how the database character set has been defined. The NCHAR data type is

Chapter 6
Implementing a Unicode Solution in the Database

6-8

exclusively a Unicode data type, which means that it stores data encoded in a Unicode
encoding form.

Oracle recommends using SQL CHAR, VARCHAR2, and CLOB data types in AL32UTF8 database
to store Unicode character data. SQL NCHAR, NVARCHAR2, and NCLOB data types are not
supported by some database features. Most notably, Oracle Text and XML DB do not support
these data types.

You can create a table using the NVARCHAR2 and NCHAR data types. The column length specified
for the NCHAR and NVARCHAR2 columns always equals the number of characters instead of the
number of bytes:

CREATE TABLE product_information
 (product_id NUMBER(6)
 , product_name NVARCHAR2(100)
 , product_description VARCHAR2(1000));

The encoding used in the SQL NCHAR data types is the national character set specified for the
database. You can specify one of the following Oracle character sets as the national character
set:

• AL16UTF16

This is the default character set and recommended for SQL NCHAR data types. This
character set encodes Unicode data in the UTF-16 encoding form. It supports
supplementary characters, which are stored as four bytes.

• UTF8

When UTF8 is specified for SQL NCHAR data types, the data stored in the SQL data types is
in CESU-8 encoding form. The UTF8 character set is deprecated.

You can specify the national character set for the SQL NCHAR data types when you create a
database using the CREATE DATABASE statement with the NATIONAL CHARACTER SET clause. The
following statement creates a database with WE8ISO8859P1 as the database character set
and AL16UTF16 as the national character set.

Example 6-2 Creating a Database with a National Character Set

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET WE8ISO8859P1
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'disk1:df1.dbf' AUTOEXTEND ON,
'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = '+00:00';

Chapter 6
Implementing a Unicode Solution in the Database

6-9

6.3.3 How to Choose Between Unicode Solutions
Oracle recommends that you deploy all new Oracle databases in the database character set
AL32UTF8 and you use SQL VARCHAR2, CHAR, and CLOB data types to store character data. The
SQL NVARCHAR2, NCHAR, and NCLOB data types should be considered only if:

• You have an existing database with a non-Unicode database character set and a legacy
application, for which the business costs of migrating to Unicode would be inacceptable,
and you need to add support for multilingual data in a small part of the application or in a
small new module for which a separate database would not make much sense, or

• You need to create an application that has to support multilingual data and which must be
installable in any of Oracle database deployed by your customers.

For the database character set in a Unicode Standard-enabled database, always select
AL32UTF8. For the national character set, select AL16UTF16. If you consider choosing the
deprecated UTF8 because of the lower storage requirements for English character data, first
consider other options, such as data compression or increasing disk storage. Later migration to
AL16UTF16 may be expensive, if a lot of data accumulates in the database.

Note:

• Oracle recommends using AL32UTF8 as the database character set. AL32UTF8
is the proper implementation of the Unicode encoding UTF-8. Starting with
Oracle Database 12c Release 2, AL32UTF8 is used as the default database
character set while creating a database using Oracle Universal Installer (OUI) as
well as Oracle Database Configuration Assistant (DBCA).

• Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character set is
used where UTF-8 processing is expected, then data loss and security issues
may occur. This is especially true for Web related data, such as XML and URL
addresses.

• AL32UTF8 and UTF8 character sets are not compatible with each other as they
have different maximum character widths. AL32UTF8 has a maximum character
width of 4 bytes, whereas UTF8 has a maximum character width of 3 bytes.

6.4 Unicode Case Studies
This section describes typical scenarios for storing Unicode characters in an Oracle database:

• Scenario 1: Unicode Solution with a Unicode Standard-Enabled Database

• Scenario 2: Unicode Solution with Unicode Data Types

Scenario 1: Unicode Solution with a Unicode Standard-Enabled Database

An American company running a Java application would like to add German and French
support in the next release of the application. They would like to add Japanese support at a
later time. The company currently has the following system configuration:

• The existing database has a database character set of US7ASCII.

• All character data in the existing database is composed of ASCII characters.

Chapter 6
Unicode Case Studies

6-10

• PL/SQL stored procedures are used in the database.

• The database is about 300 GB, with very little data stored in CLOB columns.

• There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose AL32UTF8 for the database character set because
of the following reasons:

• The database is very large and the scheduled downtime is short. Fast migration of the
database to a Unicode character set is vital. Because the database is in US7ASCII, the
easiest and fastest way of enabling the database to support the Unicode Standard is to
switch the database character set to AL32UTF8 by using the Database Migration Assistant
for Unicode (DMU). No data conversion is required for columns other than CLOB because
US7ASCII is a subset of AL32UTF8.

• Because most of the code is written in Java and PL/SQL, changing the database character
set to AL32UTF8 is unlikely to break existing code. Unicode support is automatically
enabled in the application.

Scenario 2: Unicode Solution with Unicode Data Types

A European company that runs its legacy applications mainly on Windows platforms wants to
add a new small Windows application written in Visual C/C++. The new application will use the
existing database to support Japanese and Chinese customer names. The company currently
has the following system configuration:

• The existing database has a database character set of WE8MSWIN1252.

• All character data in the existing database is composed of Western European characters.

• The database is around 500 GB with a lot of CLOB columns.

• Support for full-text search and XML storage is not required in the new application

A typical solution is to take the following actions:

• Use NCHAR and NVARCHAR2 data types to store Unicode characters

• Keep WE8MSWIN1252 as the database character set

• Use AL16UTF16 as the national character set

The reasons for this solution are:

• Migrating the existing database to a Unicode database requires data conversion because
the database character set is WE8MSWIN1252 (a Windows Latin-1 character set), which
is not a subset of AL32UTF8. Also, a lot of data is stored in CLOB columns. All CLOB values
in a database, even if they contain only ASCII characters, must be converted when
migrating from a single-byte database character set, such as US7ASCII or
WE8MSWIN1252 to AL32UTF8. As a result, there will be a lot of overhead in converting
the data to AL32UTF8.

• The additional languages are supported in the new application only. It does not depend on
the existing applications or schemas. It is simpler to use the Unicode data type in the new
schema and keep the existing schemas unchanged.

• Only customer name columns require Unicode character set support. Using a single NCHAR
column meets the customer's requirements without migrating the entire database.

• The new application does not need database features that do not support SQL NCHAR data
types.

Chapter 6
Unicode Case Studies

6-11

• The lengths of the SQL NCHAR data types are defined as number of characters. This is the
same as how they are treated when using wchar_t strings in Windows C/C++ programs.
This reduces programming complexity.

• Existing applications using the existing schemas are unaffected.

6.5 Designing Database Schemas to Support Multiple
Languages

In addition to choosing a Unicode solution, the following issues should be taken into
consideration when the database schema is designed to support multiple languages:

• Specifying Column Lengths for Multilingual Data

• Storing Data in Multiple Languages

• Storing Documents in Multiple Languages in LOB Data Types

• Creating Indexes for Searching Multilingual Document Contents

6.5.1 Specifying Column Lengths for Multilingual Data
When you use NCHAR and NVARCHAR2 data types for storing multilingual data, the column size
specified for a column is defined in number of characters. (This number of characters means
the number of encoded Unicode code points, except that supplementary Unicode characters
represented through surrogate pairs count as two characters.)

The following table shows the maximum size of the NCHAR and NVARCHAR2 data types for the
AL16UTF16 and UTF8 national character sets.

Table 6-2 Maximum Data Type Size for the AL16UTF16 and UTF8 National Character Sets

National Character Set Maximum Column Size of
NCHAR Data Type

Maximum Column Size of
NVARCHAR2 Data Type
(When MAX_STRING_SIZE
= STANDARD)

Maximum Column Size of
NVARCHAR2 Data Type
(When MAX_STRING_SIZE
= EXTENDED)

AL16UTF16 1000 characters 2000 characters 16383 characters

UTF8 2000 characters 4000 characters 32767 characters

This maximum size in characters is a constraint, not guaranteed capacity of the data type. The
maximum capacity is expressed in bytes.

For the NCHAR data type, the maximum capacity is 2000 bytes. For NVARCHAR2, it is 4000 bytes,
if the initialization parameter MAX_STRING_SIZE is set to STANDARD, and 32767 bytes, if the
initialization parameter MAX_STRING_SIZE is set to EXTENDED
When the national character set is AL16UTF16, the maximum number of characters never
occupies more bytes than the maximum capacity, as each character (in an Oracle sense)
occupies exactly 2 bytes. However, if the national character set is UTF8, the maximum number
of characters can be stored only if all these characters are from the Unicode Basic Latin range,
which corresponds to the ASCII standard.

Other Unicode characters occupy more than one byte each in UTF8 and presence of such
characters in a 4000 character string makes the string longer than the maximum 4000 bytes. If
you want national character set columns to be able to hold the declared number of characters
in any national character set, do not declare NCHAR columns longer than 2000/3=666

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-12

characters and NVARCHAR2 columns longer than 4000/3=1333 or 32767/3=10922 characters,
depending on the MAX_STRING_SIZE initialization parameter.

When you use CHAR and VARCHAR2 data types for storing multilingual data, the maximum length
specified for each column is, by default, in number of bytes. If the database needs to support
Thai, Arabic, or multibyte languages such as Chinese and Japanese, then the maximum
lengths of the CHAR, VARCHAR, and VARCHAR2 columns may need to be extended. This is
because the number of bytes required to encode these languages in UTF8 or AL32UTF8 may
be significantly larger than the number of bytes for encoding English and Western European
languages. For example, one Thai character in the Thai character set requires 3 bytes in UTF8
or AL32UTF8. Application designers should consider using an extended character data type or
CLOB data type if they need to store data larger than 4000 bytes.

See Also:

• Oracle Database SQL Language Reference

• Oracle Database Reference for more information about extending character data
types by setting MAX_STRING_SIZE to the value of EXTENDED

6.5.2 Storing Data in Multiple Languages
The Unicode character set includes characters of most written languages around the world, but
it does not contain information about the language to which a given character belongs. In other
words, a character such as ä does not contain information about whether it is a Swedish or
German character. In order to provide information in the language a user desires, data stored
in a Unicode database should be tagged with the language information to which the data
belongs.

There are many ways for a database schema to relate data to a language. The following
sections discuss example steps to achieve this goal.

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language column
(language_id) of CHAR or VARCHAR2 data type to the product table to identify the language of the
corresponding product information. This enables applications to retrieve the information in the
desired language. The possible values for this language column are the 3-letter abbreviations
of the valid NLS_LANGUAGE values of the database.

See Also:

"Locale Data" for a list of NLS_LANGUAGE values and their abbreviations

You can also create a view to select the data of the current language. For example:

ALTER TABLE scott.product_information ADD (language_id VARCHAR2(50)):

CREATE OR REPLACE VIEW product AS
 SELECT product_id, product_name
 FROM product_information
 WHERE language_id = SYS_CONTEXT('USERENV','LANG');

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-13

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERE clause. When you
add a WHERE clause as a fine-grained access policy to a table or view, Oracle automatically
appends the WHERE clause to any SQL statements on the table at run time so that only those
rows satisfying the WHERE clause can be accessed.

You can use this feature to avoid specifying the desired language of a user in the WHERE clause
in every SELECT statement in your applications. The following WHERE clause limits the view of a
table to the rows corresponding to the desired language of a user:

WHERE language_id = SYS_CONTEXT('userenv', 'LANG')

Specify this WHERE clause as a fine-grained access policy for product_information as follows:

CREATE FUNCTION func1 (sch VARCHAR2 , obj VARCHAR2)
RETURN VARCHAR2(100);
BEGIN
RETURN 'language_id = SYS_CONTEXT(''userenv'', ''LANG'')';
END
/

DBMS_RLS.ADD_POLICY ('scott', 'product_information', 'lang_policy', 'scott', 'func1',
'select');

Then any SELECT statement on the product_information table automatically appends the
WHERE clause.

See Also:

Oracle Database Development Guide for more information about fine-grained access
control

6.5.3 Storing Documents in Multiple Languages in LOB Data Types
You can store documents in multiple languages in CLOB, NCLOB, or BLOB data types and set up
Oracle Text to enable content search for the documents.

Data in CLOB columns is stored in the AL16UTF16 character set when the database character
set is multibyte, such as UTF8 or AL32UTF8. This means that the storage space required for
an English document doubles when the data is converted. Storage for an Asian language
document in a CLOB column requires less storage space than the same document in a LONG
column using AL32UTF8, typically around 30% less, depending on the contents of the
document.

Documents in NCLOB format are also stored in the AL16UTF16 character set regardless of the
database character set or national character set. The storage space requirement is the same
as for CLOB data. Document contents are converted to UTF-16 when they are inserted into a
NCLOB column. If you want to store multilingual documents in a non-Unicode database, then
choose NCLOB. However, content search on NCLOB with Oracle Text is not supported.

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-14

Documents in BLOB format are stored as they are. No data conversion occurs during insertion
and retrieval. However, SQL string manipulation functions (such as LENGTH or SUBSTR) and
collation functions (such as NLS_SORT and ORDER BY) cannot be applied to the BLOB data type.

The following table lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB data
types when storing documents:

Table 6-3 Comparison of LOB Data Types for Document Storage

Data Types Advantages Disadvantages

CLOB • Content search support with Oracle Text
• String manipulation support

• Depends on database character set
• Data conversion is necessary for insertion
• Cannot store binary documents

NCLOB • Independent of database character set
• String manipulation support

• No content search support
• Data conversion is necessary for insertion
• Cannot store binary documents

BLOB • Independent of database character set
• Content search support
• No data conversion, data stored as is
• Can store binary documents, such as

Microsoft Word or Microsoft Excel

• No string manipulation support

6.5.4 Creating Indexes for Searching Multilingual Document Contents
Oracle Text enables you to build indexes for content search on multilingual documents stored
in CLOB format and BLOB format. It uses a language-specific lexer to parse the CLOB or BLOB
data and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a language-
specific lexer for each row, based on a language column. This section describes the high level
steps to create indexes for documents in multiple languages. It contains the following topics:

• Creating Multilexers

• Creating Indexes for Documents Stored in the CLOB Data Type

• Creating Indexes for Documents Stored in the BLOB Data Type

See Also:

Oracle Text Reference

6.5.4.1 Creating Multilexers
The first step in creating the multilexer is the creation of language-specific lexer preferences for
each language supported. The following example creates English, German, and Japanese
lexers with PL/SQL procedures:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.create_preference('german_lexer', 'basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-15

ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.create_preference('japanese_lexer', 'JAPANESE_VGRAM_LEXER');

After the language-specific lexer preferences are created, they need to be gathered together
under a single multilexer preference. First, create the multilexer preference, using the
MULTI_LEXER object:

ctx_ddl.create_preference('global_lexer','multi_lexer');

Now add the language-specific lexers to the multilexer preference using the add_sub_lexer
call:

ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'default','english_lexer');

This nominates the german_lexer preference to handle German documents, the
japanese_lexer preference to handle Japanese documents, and the english_lexer
preference to handle everything else, using DEFAULT as the language.

6.5.4.2 Creating Indexes for Documents Stored in the CLOB Data Type
The multilexer decides which lexer to use for each row based on a language column in the
table. This is a character column that stores the language of the document in a text column.
Use the Oracle language name to identify the language of a document in this column. For
example, if you use the CLOB data type to store your documents, then add the language column
to the table where the documents are stored:

CREATE TABLE globaldoc
 (doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 text CLOB);

To create an index for this table, use the multilexer preference and specify the name of the
language column:

CREATE INDEX globalx ON globaldoc(text)
 indextype IS ctxsys.context
 parameters ('lexer
 global_lexer
 language
 column
 language');

6.5.4.3 Creating Indexes for Documents Stored in the BLOB Data Type
In addition to the language column, the character set and format columns must be added in the
table where the documents are stored. The character set column stores the character set of
the documents using the Oracle character set names. The format column specifies whether a
document is a text or binary document. For example, the CREATE TABLE statement can specify
columns called characterset and format:

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 characterset VARCHAR2(30),
 format VARCHAR2(10),
 text BLOB
);

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-16

You can put word-processing or spreadsheet documents into the table and specify binary in
the format column. For documents in HTML, XML and text format, you can put them into the
table and specify text in the format column.

Because there is a column in which to specify the character set, you can store text documents
in different character sets.

When you create the index, specify the names of the format and character set columns:

CREATE INDEX globalx ON globaldoc(text)
 indextype is ctxsys.context
 parameters ('filter inso_filter
 lexer global_lexer
 language column language
 format column format
 charset column characterset');

You can use the charset_filter if all documents are in text format. The charset_filter
converts data from the character set specified in the charset column to the database character
set.

Chapter 6
Designing Database Schemas to Support Multiple Languages

6-17

7
Programming with Unicode

This chapter describes how to use programming and access products for Oracle Database
with Unicode. This chapter contains the following topics:

• Overview of Programming with Unicode

• SQL and PL/SQL Programming with Unicode

• OCI Programming with Unicode

• Pro*C/C++ Programming with Unicode

• JDBC Programming with Unicode

• ODBC and OLE DB Programming with Unicode

• XML Programming with Unicode

7.1 Overview of Programming with Unicode
Oracle offers several database access products for inserting and retrieving Unicode data.
Oracle offers database access products for commonly used programming environments such
as Java and C/C++. Data is transparently converted between the database and client
programs, which ensures that client programs are independent of the database character set
and national character set. In addition, client programs are sometimes even independent of the
character data type, such as NCHAR or CHAR, used in the database.

To avoid overloading the database server with data conversion operations, Oracle always tries
to move them to the client side database access products. In a few cases, data must be
converted in the database, which affects performance. This chapter discusses details of the
data conversion paths.

7.1.1 Database Access Product Stack and Unicode
Oracle offers a comprehensive set of database access products that enable programs from
different development environments to access Unicode data stored in the database. These
products are listed in the following table.

Table 7-1 Oracle Database Access Products

Programming Environment Oracle Database Access Products

C/C++ Oracle Call Interface (OCI)

Oracle Pro*C/C++

Oracle ODBC driver

Oracle Provider for OLE DB

Oracle Data Provider for .NET

Java Oracle JDBC OCI or thin driver

Oracle server-side thin driver

Oracle server-side internal driver

7-1

Table 7-1 (Cont.) Oracle Database Access Products

Programming Environment Oracle Database Access Products

PL/SQL Oracle PL/SQL and SQL

Visual Basic/C# Oracle ODBC driver

Oracle Provider for OLE DB

The following figure shows how the database access products can access the database.

Figure 7-1 Oracle Database Access Products

· Visual Basic Programs
· VBScript using ADO
· C#
· ASP

C/C++ Programs

· OLE DB
· ODBC
· Oracle Data Provider
 for .NET

Pro*C/C++

JDBC

Oracle Call Interface (OCI) Thin

Oracle
PL/SQL

SQL

Java

Oracle
Net

Oracle Net on TCP/IP

Java Programs

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side database
access products use. It provides a flexible way for C/C++ programs to access Unicode data
stored in SQL CHAR and NCHAR data types. Using OCI, you can programmatically specify the
character set (UTF-8, UTF-16, and others) for the data to be inserted or retrieved. It accesses
the database through Oracle Net.

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It uses OCI's
Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL CHAR and NCHAR data
types.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs running on
Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data types of the
database. It provides UTF-16 data access by implementing the SQLWCHAR interface specified in
the ODBC standard specification.

The Oracle Provider for OLE DB enables C/C++, Visual Basic, and VBScript programs running
on Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data types. It
provides UTF-16 data access through wide string OLE DB data types.

The Oracle Data Provider for .NET enables programs running in any .NET programming
environment on Windows platforms to access Unicode data stored in SQL CHAR and NCHAR data
types. It provides UTF-16 data access through Unicode data types.

Chapter 7
Overview of Programming with Unicode

7-2

Oracle JDBC drivers are the primary Java programmatic interface for accessing an Oracle
database. Oracle provides the following JDBC drivers:

• The JDBC OCI driver that is used by Java applications and requires the OCI library

• The JDBC thin driver, which is a pure Java driver that is primarily used by Java applets and
supports the Oracle Net protocol over TCP/IP

• The JDBC server-side thin driver, a pure Java driver used inside Java stored procedures to
connect to another Oracle server

• The JDBC server-side internal driver that is used inside the Oracle server to access the
data in the database

All drivers support Unicode data access to SQL CHAR and NCHAR data types in the database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on behalf of
client-side programs such as OCI and server-side PL/SQL stored procedures. They allow
PL/SQL programs to declare CHAR, VARCHAR2, NCHAR, and NVARCHAR2 variables and to access
SQL CHAR and NCHAR data types in the database.

The following sections describe how each of the database access products supports Unicode
data access to an Oracle database and offer examples for using those products:

• SQL and PL/SQL Programming with Unicode

• OCI Programming with Unicode

• Pro*C/C++ Programming with Unicode

• JDBC Programming with Unicode

• ODBC and OLE DB Programming with Unicode

7.2 SQL and PL/SQL Programming with Unicode
SQL is the fundamental language with which all programs and users access data in an Oracle
database either directly or indirectly. PL/SQL is a procedural language that combines the data
manipulating power of SQL with the data processing power of procedural languages. Both SQL
and PL/SQL can be embedded in other programming languages. This section describes
Unicode-related features in SQL and PL/SQL that you can deploy for multilingual applications.

This section contains the following topics:

• SQL NCHAR Data Types

• Implicit Data Type Conversion Between NCHAR and Other Data Types

• Exception Handling for Data Loss During Data Type Conversion

• Rules for Implicit Data Type Conversion

• SQL Functions for Unicode Data Types

• Other SQL Functions

• Unicode String Literals

• Using the UTL_FILE Package with NCHAR Data

7.2.1 SQL NCHAR Data Types
There are three SQL NCHAR data types:

Chapter 7
SQL and PL/SQL Programming with Unicode

7-3

• The NCHAR Data Type

• The NVARCHAR2 Data Type

• The NCLOB Data Type

7.2.1.1 The NCHAR Data Type
When you define a table column or a PL/SQL variable as the NCHAR data type, the length is
always specified as the number of characters. For example, the following statement creates a
column with a maximum length of 30 characters:

CREATE TABLE table1 (column1 NCHAR(30));

The maximum number of bytes for the column is determined as follows:

maximum number of bytes = (maximum number of characters) x (maximum number of bytes for
each character)

For example, if the national character set is UTF8, then the maximum byte length is 30
characters times 3 bytes for each character, or 90 bytes.

The national character set, which is used for all NCHAR data types, is defined when the
database is created. The national character set can be either UTF8 or AL16UTF16. The
default is AL16UTF16.

The maximum column size allowed is 32000 characters when the national character set is
UTF8 and 8000 when it is AL16UTF16. The actual data is subject to the maximum byte limit of
16000. The two size constraints must be satisfied at the same time. In PL/SQL, the maximum
length of NCHAR data is 32767 bytes. You can define an NCHAR variable of up to 32767
characters, but the actual data cannot exceed 32767 bytes. If you insert a value that is shorter
than the column length, then Oracle pads the value with blanks to whichever length is smaller:
maximum character length or maximum byte length.

Note:

UTF8 may affect performance because it is a variable-width character set. Excessive
blank padding of NCHAR fields decreases performance. Consider using the NVARCHAR2
data type or changing to the AL16UTF16 character set for the NCHAR data type.

7.2.1.2 The NVARCHAR2 Data Type
The NVARCHAR2 data type specifies a variable length character string that uses the national
character set. When you create a table with an NVARCHAR2 column, you specify the maximum
number of characters for the column. Lengths for NVARCHAR2 are always in units of characters,
just as for NCHAR. Oracle subsequently stores each value in the column exactly as you specify
it, if the value does not exceed the column's maximum length. Oracle does not pad the string
value to the maximum length.

The maximum length for the NVARCHAR2 type is 4000 characters if MAX_STRING_SIZE = STANDARD
or 32767 characters if MAX_STRING_SIZE = EXTENDED. These lengths are based on using UTF8;
the values are 2000 and 16383 characters when using AL16UTF16.

In PL/SQL, the maximum length for an NVARCHAR2 variable is 32767 bytes. You can define
NVARCHAR2 variables up to 32767 characters, but the actual data cannot exceed 32767 bytes.

Chapter 7
SQL and PL/SQL Programming with Unicode

7-4

The following statement creates a table with one NVARCHAR2 column whose maximum length in
characters is 2000 and maximum length in bytes is 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

7.2.1.3 The NCLOB Data Type
NCLOB is a character large object containing Unicode characters, with a maximum size of 4
gigabytes. Unlike the BLOB data type, the NCLOB data type has full transactional support so that
changes made through SQL, the DBMS_LOB package, or OCI participate fully in transactions.
Manipulations of NCLOB value can be committed and rolled back. Note, however, that you
cannot save an NCLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

NCLOB values are stored in the database in a format that is compatible with UCS-2, regardless
of the national character set. Oracle translates the stored Unicode value to the character set
requested on the client or on the server, which can be fixed-width or variable-width. When you
insert data into an NCLOB column using a variable-width character set, Oracle converts the data
into a format that is compatible with UCS-2 before storing it in the database.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about the NCLOB data type

7.2.2 Implicit Data Type Conversion Between NCHAR and Other Data
Types

Oracle supports implicit conversions between SQL NCHAR data types and other Oracle data
types, such as CHAR, VARCHAR2, NUMBER, DATE, ROWID, and CLOB. Any implicit conversions for
CHAR and VARCHAR2 data types are also supported for SQL NCHAR data types. You can use SQL
NCHAR data types the same way as SQL CHAR data types.

Type conversions between SQL CHAR data types and SQL NCHAR data types may involve
character set conversion when the database and national character sets are different. Padding
with blanks may occur if the target data is either CHAR or NCHAR.

See Also:

Oracle Database SQL Language Reference

7.2.3 Exception Handling for Data Loss During Data Type Conversion
Data loss can occur during data type conversion when character set conversion is necessary. If
a character in the source character set is not defined in the target character set, then a
replacement character is used in its place. For example, if you try to insert NCHAR data into a
regular CHAR column and the character data in NCHAR (Unicode) form cannot be converted to
the database character set, then the character is replaced by a replacement character defined
by the database character set. The NLS_NCHAR_CONV_EXCP initialization parameter controls the

Chapter 7
SQL and PL/SQL Programming with Unicode

7-5

behavior of data loss during character type conversion. When this parameter is set to TRUE,
any SQL statements that result in data loss return an ORA-12713 error and the corresponding
operation is stopped. When this parameter is set to FALSE, data loss is not reported and the
unconvertible characters are replaced with replacement characters. The default value is FALSE.
This parameter works for both implicit and explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHAR and NCHAR data types, the
LOSSY_CHARSET_CONVERSION exception is raised for both implicit and explicit conversion.

7.2.4 Rules for Implicit Data Type Conversion
In some cases, conversion between data types is possible in only one direction. In other cases,
conversion in both directions is possible. Oracle defines a set of rules for conversion between
data types. The following table contains the rules for conversion between data types.

Table 7-2 Rules for Conversion Between Data Types

Statement Rule

INSERT/UPDATE statement Values are converted to the data type of the target database column.

SELECT INTO statement Data from the database is converted to the data type of the target variable.

Variable assignments Values on the right of the equal sign are converted to the data type of the target
variable on the left of the equal sign.

Parameters in SQL and PL/SQL
functions

CHAR, VARCHAR2, NCHAR, and NVARCHAR2 are loaded the same way. An argument with
a CHAR, VARCHAR2, NCHAR or NVARCHAR2 data type is compared to a formal parameter
of any of the CHAR, VARCHAR2, NCHAR or NVARCHAR2 data types. If the argument and
formal parameter data types do not match exactly, then implicit conversions are
introduced when data is copied into the parameter on function entry and copied out to
the argument on function exit.

Concatenation || operation or
CONCAT function

If one operand is a SQL CHAR or NCHAR data type and the other operand is a NUMBER
or other non-character data type, then the other data type is converted to VARCHAR2 or
NVARCHAR2. For concatenation between character data types, see "SQL NCHAR data
types and SQL CHAR data types".

SQL CHAR or NCHAR data types
and NUMBER data type

Character values are converted to NUMBER data type.

SQL CHAR or NCHAR data types
and DATE data type

Character values are converted to DATE data type.

SQL CHAR or NCHAR data types
and ROWID data type

Character values are converted to ROWID data type.

SQL NCHAR data types and SQL
CHAR data types

Comparisons between SQL NCHAR data types and SQL CHAR data types are more
complex because they can be encoded in different character sets.

When CHAR and VARCHAR2 values are compared, the CHAR values are converted to
VARCHAR2 values.

When NCHAR and NVARCHAR2 values are compared, the NCHAR values are converted to
NVARCHAR2 values.

When there is comparison between SQL NCHAR data types and SQL CHAR data types,
character set conversion occurs if they are encoded in different character sets. The
character set for SQL NCHAR data types is always Unicode and can be either UTF8 or
AL16UTF16 encoding, which have the same character repertoires but are different
encodings of the Unicode standard. SQL CHAR data types use the database character
set, which can be any character set that Oracle supports. Unicode is a superset of any
character set supported by Oracle, so SQL CHAR data types can always be converted
to SQL NCHAR data types without data loss.

Chapter 7
SQL and PL/SQL Programming with Unicode

7-6

7.2.5 SQL Functions for Unicode Data Types
SQL NCHAR data types can be converted to and from SQL CHAR data types and other data types
using explicit conversion functions. The examples in this section use the table created by the
following statement:

CREATE TABLE customers
 (id NUMBER, name NVARCHAR2(50), address NVARCHAR2(200), birthdate DATE);

See Also:

Oracle Database SQL Language Reference for more information about explicit
conversion functions for SQL NCHAR data types

Example 7-1 Populating the Customers Table Using the TO_NCHAR Function

The TO_NCHAR function converts the data at run time, while the N function converts the data at
compilation time.

INSERT INTO customers VALUES (1000,
 TO_NCHAR('John Smith'),N'500 Oracle Parkway',sysdate);

Example 7-2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of name from characters in the national character
set to characters in the database character set before selecting them according to the LIKE
clause:

SELECT name FROM customers WHERE TO_CHAR(name) LIKE '%Sm%';

You should see the following output:

NAME

John Smith

Example 7-3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHAR or CHAR data can be passed as parameters for the
TO_DATE function. The data types can mixed because they are converted at run time.

DECLARE
 ndatestring NVARCHAR2(20) := N'12-SEP-1975';
 ndstr NVARCHAR2(50);
BEGIN
 SELECT name INTO ndstr FROM customers
 WHERE (birthdate)> TO_DATE(ndatestring, 'DD-MON-YYYY', NLS_DATE_LANGUAGE =
 'AMERICAN');
END;

As demonstrated in Example 7-3, SQL NCHAR data can be passed to explicit conversion
functions. SQL CHAR and NCHAR data can be mixed together when using multiple string
parameters.

Chapter 7
SQL and PL/SQL Programming with Unicode

7-7

7.2.6 Other SQL Functions
Most SQL functions can take arguments of SQL NCHAR data types as well as mixed character
data types. The return data type is based on the type of the first argument. If a non-string data
type like NUMBER or DATE is passed to these functions, then it is converted to VARCHAR2.

See Also:

Oracle Database SQL Language Reference

The following examples use the customer table created in "SQL Functions for Unicode Data
Types".

Example 7-4 INSTR Function

In this example, the string literal 'Sm' is converted to NVARCHAR2 and then scanned by INSTR, to
detect the position of the first occurrence of this string in name.

SELECT INSTR(name, N'Sm', 1, 1) FROM customers;

Example 7-5 CONCAT Function

SELECT CONCAT(name,id) FROM customers;

id is converted to NVARCHAR2 and then concatenated with name.

Example 7-6 RPAD Function

SELECT RPAD(name,100,' ') FROM customers;

The following output results:

RPAD(NAME,100,'')
--
John Smith

The space character ' ' is converted to the corresponding character in the NCHAR character set
and then padded to the right of name until the total display length reaches 100.

7.2.7 Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:

• Put a prefix N before a string literal that is enclosed with single quotation marks. This
explicitly indicates that the following string literal is an NCHAR string literal. For example,
N'résumé' is an NCHAR string literal. For information about limitations of this method, see
"NCHAR String Literal Replacement".

• Use the NCHR(n) SQL function, which returns a unit of character code in the national
character set, which is AL16UTF16 or UTF8. The result of concatenating several NCHR(n)
functions is NVARCHAR2 data. In this way, you can bypass the client and server character set
conversions and create an NVARCHAR2 string directly. For example, NCHR(32) represents a
blank character.

Chapter 7
SQL and PL/SQL Programming with Unicode

7-8

Because NCHR(n) is associated with the national character set, portability of the resulting
value is limited to applications that run with the same national character set. If this is a
concern, then use the UNISTR function to remove portability limitations.

• Use the UNISTR('string') SQL function. UNISTR('string') converts a string to the national
character set. To ensure portability and to preserve data, include only ASCII characters
and Unicode encoding in the following form: \xxxx, where xxxx is the hexadecimal value of
a character code value in UTF-16 encoding format. For example, UNISTR('G\0061ry')
represents 'Gary'. The ASCII characters are converted to the database character set and
then to the national character set. The Unicode encoding is converted directly to the
national character set.

The last two methods can be used to encode any Unicode string literals.

7.2.8 NCHAR String Literal Replacement
This section provides information on how to avoid data loss when performing NCHAR string
literal replacement.

Being part of a SQL or PL/SQL statement, the text of any literal, with or without the prefix N, is
encoded in the same character set as the rest of the statement. On the client side, the
statement is in the client character set, which is determined by the client character set defined
in NLS_LANG, or specified in the OCIEnvNlsCreate() call, or predefined as UTF-16 in JDBC. On
the server side, the statement is in the database character set.

• When the SQL or PL/SQL statement is transferred from client to the database server, its
character set is converted accordingly. It is important to note that if the database character
set does not contain all characters used in the text literals, then the data is lost in this
conversion. This problem affects NCHAR string literals more than the CHAR text literals. This
is because the N' literals are designed to be independent of the database character set,
and should be able to provide any data that the client character set supports.

To avoid data loss in conversion to an incompatible database character set, you can
activate the NCHAR literal replacement functionality. The functionality transparently replaces
the N' literals on the client side with an internal format. The database server then decodes
this to Unicode when the statement is executed.

• The sections "Handling SQL NCHAR String Literals in OCI" and "Using SQL NCHAR
String Literals in JDBC" show how to switch on the replacement functionality in OCI and
JDBC, respectively. Because many applications, for example, SQL*Plus, use OCI to
connect to a database, and they do not control NCHAR literal replacement explicitly, you can
set the client environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE to control the
functionality for them. By default, the functionality is switched off to maintain backward
compatibility.

7.2.9 Using the UTL_FILE Package with NCHAR Data
The UTL_FILE package handles Unicode national character set data of the NVARCHAR2 data
type. NCHAR and NCLOB are supported through implicit conversion. The functions and
procedures include the following:

• FOPEN_NCHAR
This function opens a file in national character set mode for input or output, with the
maximum line size specified. Even though the contents of an NVARCHAR2 buffer may be
AL16UTF16 or UTF8 (depending on the national character set of the database), the
contents of the file are always read and written in UTF8. See "Support for the Unicode

Chapter 7
SQL and PL/SQL Programming with Unicode

7-9

Standard in Oracle Database" for more information. UTL_FILE converts between UTF8 and
AL16UTF16 as necessary.

• GET_LINE_NCHAR
This procedure reads text from the open file identified by the file handle and places the text
in the output buffer parameter. The file must be opened in national character set mode,
and must be encoded in the UTF8 character set. The expected buffer data type is
NVARCHAR2. If a variable of another data type, such as NCHAR, NCLOB, or VARCHAR2 is
specified, PL/SQL performs standard implicit conversion from NVARCHAR2 after the text is
read.

• PUT_NCHAR
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. The file must be opened in the national character set mode.
The text string will be written in the UTF8 character set. The expected buffer data type is
NVARCHAR2. If a variable of another data type is specified, PL/SQL performs implicit
conversion to NVARCHAR2 before writing the text.

• PUT_LINE_NCHAR
This procedure is equivalent to PUT_NCHAR, except that the line separator is appended to
the written text.

• PUTF_NCHAR
This procedure is a formatted version of a PUT_NCHAR procedure. It accepts a format string
with formatting elements \n and %s, and up to five arguments to be substituted for
consecutive instances of %s in the format string. The expected data type of the format
string and the arguments is NVARCHAR2. If variables of another data type are specified,
PL/SQL performs implicit conversion to NVARCHAR2 before formatting the text. Formatted
text is written in the UTF8 character set to the file identified by the file handle. The file must
be opened in the national character set mode.

The above functions and procedures process text files encoded in the UTF8 character set, that
is, in the Unicode CESU-8 encoding. See "Universal Character Sets" for more information
about CESU-8. The functions and procedures convert between UTF8 and the national
character set of the database, which can be UTF8 or AL16UTF16, as needed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the UTL_FILE package

7.3 OCI Programming with Unicode
OCI is the lowest-level API for accessing a database, so it offers the best possible
performance. When using Unicode with OCI, consider these topics:

• OCIEnvNlsCreate() Function for Unicode Programming

• OCI Unicode Code Conversion

• Setting UTF-8 to the NLS_LANG Character Set in OCI

• Binding and Defining SQL CHAR Data Types in OCI

• Binding and Defining SQL NCHAR Data Types in OCI

Chapter 7
OCI Programming with Unicode

7-10

• Handling SQL NCHAR String Literals in OCI

• Binding and Defining CLOB and NCLOB Unicode Data in OCI

See Also:

"OCI Programming in a Global Environment"

7.3.1 OCIEnvNlsCreate() Function for Unicode Programming
The OCIEnvNlsCreate() function is used to specify a SQL CHAR character set and a SQL NCHAR
character set when the OCI environment is created. It is an enhanced version of the
OCIEnvCreate() function and has extended arguments for two character set IDs. The
OCI_UTF16ID UTF-16 character set ID replaces the Unicode mode introduced in Oracle9i
release 1 (9.0.1). For example:

OCIEnv *envhp;
status = OCIEnvNlsCreate((OCIEnv **)&envhp,
(ub4)0,
(void *)0,
(void *(*) ()) 0,
(void *(*) ()) 0,
(void(*) ()) 0,
(size_t) 0,
(void **)0,
(ub2)OCI_UTF16ID, /* Metadata and SQL CHAR character set */
(ub2)OCI_UTF16ID /* SQL NCHAR character set */);

The Unicode mode, in which the OCI_UTF16 flag is used with the OCIEnvCreate() function, is
deprecated.

When OCI_UTF16ID is specified for both SQL CHAR and SQL NCHAR character sets, all
metadata and bound and defined data are encoded in UTF-16. Metadata includes SQL
statements, user names, error messages, and column names. Thus, all inherited operations
are independent of the NLS_LANG setting, and all metatext data parameters (text*) are
assumed to be Unicode text data types (utext*) in UTF-16 encoding.

To prepare the SQL statement when the OCIEnv() function is initialized with the OCI_UTF16ID
character set ID, call the OCIStmtPrepare() function with a (utext*) string. The following
example runs on the Windows platform only. You may need to change wchar_t data types for
other platforms.

const wchar_t sqlstr[] = L"SELECT * FROM ENAME=:ename";
...
OCIStmt* stmthp;
sts = OCIHandleAlloc(envh, (void **)&stmthp, OCI_HTYPE_STMT, 0,
NULL);
status = OCIStmtPrepare(stmthp, errhp,(const text*)sqlstr,
wcslen(sqlstr), OCI_NTV_SYNTAX, OCI_DEFAULT);

To bind and define data, you do not have to set the OCI_ATTR_CHARSET_ID attribute because
the OCIEnv() function has already been initialized with UTF-16 character set IDs. The bind
variable names also must be UTF-16 strings.

/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (const text*)L":ename",
(sb4)wcslen(L":ename"),

Chapter 7
OCI Programming with Unicode

7-11

 (void *) ename, sizeof(ename), SQLT_STR, (void
*)&insname_ind,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *)0,
OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *)
&ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
(ub2*)0, (ub4)OCI_DEFAULT);

The OCIExecute() function performs the operation.

See Also:

"Specifying Character Sets in OCI"

7.3.2 OCI Unicode Code Conversion
Unicode character set conversions take place between an OCI client and the database server
if the client and server character sets are different. The conversion occurs on either the client
or the server depending on the circumstances, but usually on the client side.

7.3.2.1 Data Integrity
You can lose data during conversion if you call an OCI API inappropriately. If the server and
client character sets are different, then you can lose data when the destination character set is
a smaller set than the source character set. You can avoid this potential problem if both
character sets are Unicode character sets (for example, UTF8 and AL16UTF16).

When you bind or define SQL NCHAR data types, you should set the OCI_ATTR_CHARSET_FORM
attribute to SQLCS_NCHAR. Otherwise, you can lose data because the data is converted to the
database character set before converting to or from the national character set. This occurs only
if the database character set is not Unicode.

7.3.2.2 OCI Performance Implications When Using Unicode
Redundant data conversions can cause performance degradation in your OCI applications.
These conversions occur in two cases:

• When you bind or define SQL CHAR data types and set the OCI_ATTR_CHARSET_FORM
attribute to SQLCS_NCHAR, data conversions take place from client character set to the
national database character set, and from the national character set to the database
character set. No data loss is expected, but two conversions happen, even though it
requires only one.

• When you bind or define SQL NCHAR data types and do not set OCI_ATTR_CHARSET_FORM,
data conversions take place from client character set to the database character set, and
from the database character set to the national database character set. In the worst case,
data loss can occur if the database character set is smaller than the client's.

Chapter 7
OCI Programming with Unicode

7-12

To avoid performance problems, you should always set OCI_ATTR_CHARSET_FORM correctly,
based on the data type of the target columns. If you do not know the target data type, then you
should set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR when binding and defining.

The following table contains information about OCI character set conversions.

Table 7-3 OCI Character Set Conversions

Data Types
for OCI
Client
Buffer

OCI_ATTR_CHARSET_F
ORM

Data Types of the Target
Column in the Database

Conversion Between Comments

utext SQLCS_IMPLICIT CHAR,VARCHAR2,
CLOB

UTF-16 and database
character set in OCI

No unexpected data loss

utext SQLCS_NCHAR NCHAR,NVARCHAR2,
NCLOB

UTF-16 and national
character set in OCI

No unexpected data loss

utext SQLCS_NCHAR CHAR,VARCHAR2,
CLOB

UTF-16 and national
character set in OCI

National character set and
database character set in
database server

No unexpected data loss,
but may degrade
performance because the
conversion goes through
the national character set

utext SQLCS_IMPLICIT NCHAR,NVARCHAR2,
NCLOB

UTF-16 and database
character set in OCI

Database character set
and national character set
in database server

Data loss may occur if the
database character set is
not Unicode

text SQLCS_IMPLICIT CHAR,VARCHAR2,
CLOB

NLS_LANG character set
and database character
set in OCI

No unexpected data loss

text SQLCS_NCHAR NCHAR,NVARCHAR2,
NCLOB

NLS_LANG character set
and national character set
in OCI

No unexpected data loss

text SQLCS_NCHAR CHAR,VARCHAR2,
CLOB

NLS_LANG character set
and national character set
in OCI

National character set and
database character set in
database server

No unexpected data loss,
but may degrade
performance because the
conversion goes through
the national character set

text SQLCS_IMPLICIT NCHAR,NVARCHAR2,
NCLOB

NLS_LANG character set
and database character
set in OCI

Database character set
and national character set
in database server

Data loss may occur
because the conversion
goes through the
database character set

7.3.2.3 OCI Unicode Data Expansion
Data conversion can result in data expansion, which can cause a buffer to overflow. For
binding operations, you must set the OCI_ATTR_MAXDATA_SIZE attribute to a large enough size
to hold the expanded data on the server. If this is difficult to do, then you must consider
changing the table schema. For defining operations, client applications must allocate enough
buffer space for the expanded data. The size of the buffer should be the maximum length of
the expanded data. You can estimate the maximum buffer length with the following calculation:

Chapter 7
OCI Programming with Unicode

7-13

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes for each character in the client character set.

This method is the simplest and quickest way, but it may not be accurate and can waste
memory. It is applicable to any character set combination. For example, for UTF-16 data
binding and defining, the following example calculates the client buffer:

ub2 csid = OCI_UTF16ID;
oratext *selstmt = "SELECT ename FROM emp";
counter = 1;
...
OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char*)selstmt),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
OCIStmtExecute (svchp, stmthp, errhp, (ub4)0, (ub4)0,
 (CONST OCISnapshot*)0, (OCISnapshot*)0,
 OCI_DESCRIBE_ONLY);
OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OCIAttrGet((void*)myparam, (ub4)OCI_DTYPE_PARAM, (void*)&col_width,
 (ub4*)0, (ub4)OCI_ATTR_DATA_SIZE, errhp);
...
maxenamelen = (col_width + 1) * sizeof(utext);
cbuf = (utext*)malloc(maxenamelen);
...
OCIDefineByPos(stmthp, &dfnp, errhp, (ub4)1, (void *)cbuf,
 (sb4)maxenamelen, SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
...

7.3.3 Setting UTF-8 to the NLS_LANG Character Set in OCI
For OCI client applications that support Unicode UTF-8 encoding, use AL32UTF8 to specify
the NLS_LANG character set, unless the database character set is UTF8. Use UTF8 if the
database character set is UTF8.

Do not set NLS_LANG to AL16UTF16, because AL16UTF16 is the national character set for the
server. If you need to use UTF-16, then you should specify the client character set to
OCI_UTF16ID, using the OCIAttrSet() function when binding or defining data.

7.3.4 Binding and Defining SQL CHAR Data Types in OCI
To specify a Unicode character set for binding and defining data with SQL CHAR data types, you
may need to call the OCIAttrSet() function to set the appropriate character set ID after
OCIBind() or OCIDefine() APIs. There are two typical cases:

• Call OCIBind() or OCIDefine() followed by OCIAttrSet() to specify UTF-16 Unicode
character set encoding. For example:

...
ub2 csid = OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);

Chapter 7
OCI Programming with Unicode

7-14

OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0,
 (ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

If bound buffers are of the utext data type, then you should add a cast (text*) when
OCIBind() or OCIDefine() is called. The value of the OCI_ATTR_MAXDATA_SIZE attribute is
usually determined by the column size of the server character set because this size is only
used to allocate temporary buffer space for conversion on the server when you perform
binding operations.

• Call OCIBind() or OCIDefine() with the NLS_LANG character set specified as UTF8 or
AL32UTF8.

UTF8 or AL32UTF8 can be set in the NLS_LANG environment variable. You call OCIBind()
and OCIDefine() in exactly the same manner as when you are not using Unicode. Set the
NLS_LANG environment variable to UTF8 or AL32UTF8 and run the following OCI program:

...
oratext ename[100]; /* enough buffer size for ENAME */
...
/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename, sizeof(ename),
 SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
...

7.3.5 Binding and Defining SQL NCHAR Data Types in OCI
Oracle recommends that you access SQL NCHAR data types using UTF-16 binding or defining
when using OCI. Beginning with Oracle9i, SQL NCHAR data types are Unicode data types with
an encoding of either UTF8 or AL16UTF16. To access data in SQL NCHAR data types, set the
OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR between binding or defining and execution
so that it performs an appropriate data conversion without data loss. The length of data in SQL
NCHAR data types is always in the number of Unicode code units.

The following program is a typical example of inserting and fetching data against an NCHAR data
column:

...
ub2 csid = OCI_UTF16ID;
ub1 cform = SQLCS_NCHAR;
utext ename[100]; /* enough buffer for ENAME */
...

Chapter 7
OCI Programming with Unicode

7-15

/* Inserting Unicode data */
OCIBindByName(stmthp1, &bnd1p, errhp, (oratext*)":ENAME",
 (sb4)strlen((char *)":ENAME"), (void *) ename,
 sizeof(ename), SQLT_STR, (void *)&insname_ind, (ub2 *) 0,
 (ub2 *) 0, (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) bnd1p, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (void *)ename,
 (sb4)sizeof(ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
 (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &csid, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((void *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

7.3.6 Handling SQL NCHAR String Literals in OCI
By default, the NCHAR literal replacement is not enabled in OCI. You can enable it in OCI by
setting the environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE.

You can also enable literal replacement programmatically in OCI by using the
OCI_NCHAR_LITERAL_REPLACE_ON and OCI_NCHAR_LITERAL_REPLACE_OFF modes in
OCIEnvCreate() and OCIEnvNlsCreate(). For example,
OCIEnvCreate(OCI_NCHAR_LITERAL_REPLACE_ON) enables NCHAR literal replacement and
OCIEnvCreate(OCI_NCHAR_LITERAL_REPLACE_OFF) disables it.

As an example, consider the following statement:

int main(argc, argv)
{
 OCIEnv *envhp;

 if (OCIEnvCreate((OCIEnv **) &envhp,
 (ub4)OCI_THREADED|OCI_NCHAR_LITERAL_REPLACE_ON,
 (dvoid *)0, (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0))
 {
 printf("FAILED: OCIEnvCreate()\n";
 return 1;
 }
 ...
}

Chapter 7
OCI Programming with Unicode

7-16

Note:

When NCHAR literal replacement is enabled, OCIStmtPrepare and OCIStmtPrepare2
transform N' literals with U' literals in the SQL text and store the resulting SQL text in
the statement handle. Thus, if an application uses OCI_ATTR_STATEMENT to retrieve
the SQL text from the OCI statement handle, the SQL text returns U' instead of N' as
specified in the original text.

See Also:

• "NCHAR String Literal Replacement"

• Oracle Database Administrator's Guide for information about how to set
environment variables

7.3.7 Binding and Defining CLOB and NCLOB Unicode Data in OCI
In order to write (bind) and read (define) UTF-16 data for CLOB or NCLOB columns, the UTF-16
character set ID must be specified as OCILobWrite() and OCILobRead(). When you write
UTF-16 data into a CLOB column, call OCILobWrite() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobWrite (ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4) BUFSIZE, OCI_ONE_PIECE, (void *)0,
 (sb4 (*)()) 0, (ub2) csid, (ub1) SQLCS_IMPLICIT);

The amtp parameter is the data length in number of Unicode code units. The offset parameter
indicates the offset of data from the beginning of the data column. The csid parameter must be
set for UTF-16 data.

To read UTF-16 data from CLOB columns, call OCILobRead() as follows:

...
ub2 csid = OCI_UTF16ID;
err = OCILobRead(ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
 (ub4)BUFSIZE , (void *) 0, (sb4 (*)()) 0, (ub2)csid,
 (ub1) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code units. Note one Unicode
supplementary character is counted as two code units, because the encoding is UTF-16. After
binding or defining a LOB column, you can measure the data length stored in the LOB column
using OCILobGetLength(). The returning value is the data length in the number of code units if
you bind or define as UTF-16.

err = OCILobGetLength(ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOB, then you must set OCI_ATTR_CHARSET_FORM to SQLCS_NCHAR.

Chapter 7
OCI Programming with Unicode

7-17

7.4 Pro*C/C++ Programming with Unicode
Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or from the
database:

• Using the VARCHAR Pro*C/C++ data type or the native C/C++ text data type, a program
can access Unicode data stored in SQL CHAR data types of a UTF8 or AL32UTF8
database. Alternatively, a program could use the C/C++ native text type.

• Using the UVARCHAR Pro*C/C++ data type or the native C/C++ utext data type, a program
can access Unicode data stored in NCHAR data types of a database.

• Using the NVARCHAR Pro*C/C++ data type, a program can access Unicode data stored in
NCHAR data types. The difference between UVARCHAR and NVARCHAR in a Pro*C/C++ program
is that the data for the UVARCHAR data type is stored in a utext buffer while the data for the
NVARCHAR data type is stored in a text data type.

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded SQL text
must be encoded in the character set specified in the NLS_LANG environment variable.

This section contains the following topics:

• Pro*C/C++ Data Conversion in Unicode

• Using the VARCHAR Data Type in Pro*C/C++

• Using the NVARCHAR Data Type in Pro*C/C++

• Using the UVARCHAR Data Type in Pro*C/C++

7.4.1 Pro*C/C++ Data Conversion in Unicode
Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that instructs
OCI which conversion path should be taken based on the data types used in a Pro*C/C++
program. The following table shows the conversion paths.

Table 7-4 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Data Type SQL Data Type Conversion Path

VARCHAR or text CHAR NLS_LANG character set to and from the database character set happens in OCI

VARCHAR or text NCHAR NLS_LANG character set to and from database character set happens in OCI

Database character set to and from national character set happens in database
server

NVARCHAR NCHAR NLS_LANG character set to and from national character set happens in OCI

NVARCHAR CHAR NLS_LANG character set to and from national character set happens in OCI

National character set to and from database character set in database server

UVARCHAR or utext NCHAR UTF-16 to and from the national character set happens in OCI

UVARCHAR or utext CHAR UTF-16 to and from national character set happens in OCI

National character set to database character set happens in database server

Chapter 7
Pro*C/C++ Programming with Unicode

7-18

7.4.2 Using the VARCHAR Data Type in Pro*C/C++
The Pro*C/C++ VARCHAR data type is preprocessed to a struct with a length field and text
buffer field. The following example uses the C/C++ text native data type and the VARCHAR
Pro*C/C++ data types to bind and define table columns.

#include <sqlca.h>
main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 text ename[20] ; /* unsigned short type */
 varchar address[50] ; /* Pro*C/C++ varchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
 /* ename is NULL-terminated */
 printf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.arr);
 ...
}

When you use the VARCHAR data type or native text data type in a Pro*C/C++ program, the
preprocessor assumes that the program intends to access columns of SQL CHAR data types
instead of SQL NCHAR data types in the database. The preprocessor generates C/C++ code to
reflect this fact by doing a bind or define using the SQLCS_IMPLICIT value for the
OCI_ATTR_CHARSET_FORM attribute. As a result, if a bind or define variable is bound to a column
of SQL NCHAR data types in the database, then implicit conversion occurs in the database
server to convert the data from the database character set to the national database character
set and vice versa. During the conversion, data loss occurs when the database character set is
a smaller set than the national character set.

7.4.3 Using the NVARCHAR Data Type in Pro*C/C++
The Pro*C/C++ NVARCHAR data type is similar to the Pro*C/C++ VARCHAR data type. It should be
used to access SQL NCHAR data types in the database. It tells Pro*C/C++ preprocessor to bind
or define a text buffer to the column of SQL NCHAR data types. The preprocessor specifies the
SQLCS_NCHAR value for the OCI_ATTR_CHARSET_FORM attribute of the bind or define variable. As a
result, no implicit conversion occurs in the database.

If the NVARCHAR buffer is bound against columns of SQL CHAR data types, then the data in the
NVARCHAR buffer (encoded in the NLS_LANG character set) is converted to or from the national
character set in OCI, and the data is then converted to the database character set in the
database server. Data can be lost when the NLS_LANG character set is a larger set than the
database character set.

7.4.4 Using the UVARCHAR Data Type in Pro*C/C++
The UVARCHAR data type is preprocessed to a struct with a length field and utext buffer field.
The following example code contains two host variables, ename and address. The ename host
variable is declared as a utext buffer containing 20 Unicode characters. The address host
variable is declared as a uvarchar buffer containing 50 Unicode characters. The len and arr
fields are accessible as fields of a struct.

#include <sqlca.h>
#include <sqlucs2.h>

Chapter 7
Pro*C/C++ Programming with Unicode

7-19

main()
{
 ...
 /* Change to STRING datatype */
 EXEC ORACLE OPTION (CHAR_MAP=STRING);
 utext ename[20]; /* unsigned short type */
 uvarchar address[50]; /* Pro*C/C++ uvarchar type */

 EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;

 /* ename is NULL-terminated */
 wprintf(L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.arr);
 ...
}

When you use the UVARCHAR data type or native utext data type in Pro*C/C++ programs, the
preprocessor assumes that the program intends to access SQL NCHAR data types. The
preprocessor generates C/C++ code by binding or defining using the SQLCS_NCHAR value for
OCI_ATTR_CHARSET_FORM attribute. As a result, if a bind or define variable is bound to a column
of a SQL NCHAR data type, then an implicit conversion of the data from the national character
set occurs in the database server. However, there is no data lost in this scenario because the
national character set is always a larger set than the database character set.

7.5 JDBC Programming with Unicode
Oracle provides the following JDBC drivers for Java programs to access character data in an
Oracle database:

• The JDBC OCI driver

• The JDBC thin driver

• The JDBC server-side internal driver

• The JDBC server-side thin driver

Java programs can insert or retrieve character data to and from columns of SQL CHAR and
NCHAR data types. Specifically, JDBC enables Java programs to bind or define Java strings to
SQL CHAR and NCHAR data types. Because Java's string data type is UTF-16 encoded, data
retrieved from or inserted into the database must be converted from UTF-16 to the database
character set or the national character set and vice versa. JDBC also enables you to specify
the PL/SQL and SQL statements in Java strings so that any non-ASCII schema object names
and string literals can be used.

At database connection time, JDBC sets the server NLS_LANGUAGE and NLS_TERRITORY
parameters to correspond to the locale of the Java VM that runs the JDBC driver. This
operation ensures that the server and the Java client communicate in the same language. As a
result, Oracle error messages returned from the server are in the same language as the client
locale.

This section contains the following topics:

• Binding and Defining Java Strings to SQL CHAR Data Types

• Binding and Defining Java Strings to SQL NCHAR Data Types

• Using the SQL NCHAR Data Types Without Changing the Code

• Using SQL NCHAR String Literals in JDBC

• Data Conversion in JDBC

Chapter 7
JDBC Programming with Unicode

7-20

• Using oracle.sql.CHAR in Oracle Object Types

• Restrictions on Accessing SQL CHAR Data with JDBC

7.5.1 Binding and Defining Java Strings to SQL CHAR Data Types
Oracle JDBC drivers allow you to access SQL CHAR data types in the database using Java
string bind or define variables. The following code illustrates how to bind a Java string to a
CHAR column.

int employee_id = 12345;
String last_name = "Joe";
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO" +
 "employees (last_name, employee_id) VALUES (?, ?)");
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into second row */

You can define the target SQL columns by specifying their data types and lengths. When you
define a SQL CHAR column with the data type and the length, JDBC uses this information to
optimize the performance of fetching SQL CHAR data from the column. The following is an
example of defining a SQL CHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
 conn.prepareStatement("SELECT ename, empno from emp");
pstmt.defineColumnType(1,Types.VARCHAR, 3);
pstmt.defineColumnType(2,Types.INTEGER);
ResultSet rest = pstmt.executeQuery();
String name = rset.getString(1);
int id = reset.getInt(2);

You must cast PreparedStatement to OraclePreparedStatement to call defineColumnType().
The second parameter of defineColumnType() is the data type of the target SQL column. The
third parameter is the length in number of characters.

7.5.2 Binding and Defining Java Strings to SQL NCHAR Data Types
For binding or defining Java string variables to SQL NCHAR data types, Oracle provides an
extended PreparedStatement which has the setFormOfUse() method through which you can
explicitly specify the target column of a bind variable to be a SQL NCHAR data type. The
following code illustrates how to bind a Java string to an NCHAR column.

int employee_id = 12345;
String last_name = "Joe"
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
 conn.prepareStatement("INSERT INTO employees (last_name, employee_id)
 VALUES (?, ?)");
pstmt.setFormOfUse(1, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */

Chapter 7
JDBC Programming with Unicode

7-21

pstmt.setString(1, last_name);
pstmt.setInt(2, employee_id);
pstmt.execute(); /* execute to insert into second row */

You can define the target SQL NCHAR columns by specifying their data types, forms of use, and
lengths. JDBC uses this information to optimize the performance of fetching SQL NCHAR data
from these columns. The following is an example of defining a SQL NCHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
 conn.prepareStatement("SELECT ename, empno from emp");
pstmt.defineColumnType(1,Types.VARCHAR, 3,
 OraclePreparedStatement.FORM_NCHAR);
pstmt.defineColumnType(2,Types.INTEGER);
ResultSet rest = pstmt.executeQuery();
String name = rset.getString(1);
int id = reset.getInt(2);

To define a SQL NCHAR column, you must specify the data type that is equivalent to a SQL CHAR
column in the first argument, the length in number of characters in the second argument, and
the form of use in the fourth argument of defineColumnType().

You can bind or define a Java string against an NCHAR column without explicitly specifying the
form of use argument. This implies the following:

• If you do not specify the argument in the setString() method, then JDBC assumes that
the bind or define variable is for the SQL CHAR column. As a result, it tries to convert them
to the database character set. When the data gets to the database, the database implicitly
converts the data in the database character set to the national character set. During this
conversion, data can be lost when the database character set is a subset of the national
character set. Because the national character set is either UTF8 or AL16UTF16, data loss
would happen if the database character set is not UTF8 or AL32UTF8.

• Because implicit conversion from SQL CHAR to SQL NCHAR data types happens in the
database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHAR data types but specify
the form of use argument, then performance of the database is degraded. However, data
should not be lost because the national character set is always a larger set than the database
character set.

7.5.2.1 New JDBC4.0 Methods for NCHAR Data Types
JDBC 11.1 adds support for the new JDBC 4.0 (JDK6) SQL data types NCHAR, NVARCHAR,
LONGNVARCHAR, and NCLOB. To retrieve a national character value, an application can call one of
the following methods:

• getNString
• getNClob
• getNCharacterStream
The getNClob method verifies that the retrieved value is indeed an NCLOB. Otherwise, these
methods are equivalent to corresponding methods without the letter N.

To specify a value for a parameter marker of national character type, an application can call
one of the following methods:

• setNString
• setNCharacterStream

Chapter 7
JDBC Programming with Unicode

7-22

• setNClob
These methods are equivalent to corresponding methods without the letter N preceded by a
call to setFormOfUse(..., OraclePreparedStatement.FORM_NCHAR).

See Also:

Oracle Database JDBC Developer's Guide for more information

7.5.3 Using the SQL NCHAR Data Types Without Changing the Code
A Java system property has been introduced in the Oracle JDBC drivers for customers to tell
whether the form of use argument should be specified by default in a Java application. This
property has the following purposes:

• Existing applications accessing the SQL CHAR data types can be migrated to support the
SQL NCHAR data types for worldwide deployment without changing a line of code.

• Applications do not need to call the setFormOfUse() method when binding and defining a
SQL NCHAR column. The application code can be made neutral and independent of the
data types being used in the back-end database. With this property set, applications can
be easily switched from using SQL CHAR or SQL NCHAR.

The Java system property is specified in the command line that invokes the Java application.
The syntax of specifying this flag is as follows:

java -Doracle.jdbc.defaultNChar=true <application class>

With this property specified, the Oracle JDBC drivers assume the presence of the form of use
argument for all bind and define operations in the application.

If you have a database schema that consists of both the SQL CHAR and SQL NCHAR columns,
then using this flag may have some performance impact when accessing the SQL CHAR
columns because of implicit conversion done in the database server.

See Also:

"Data Conversion in JDBC" for more information about the performance impact of
implicit conversion

7.5.4 Using SQL NCHAR String Literals in JDBC
When using NCHAR string literals in JDBC, there is a potential for data loss because characters
are converted to the database character set before processing. See "NCHAR String Literal
Replacement" for more details.

The desired behavior for preserving the NCHAR string literals can be achieved by enabling the
property set oracle.jdbc.convertNcharLiterals. If the value is true, then this option is
enabled; otherwise, it is disabled. The default setting is false. It can be enabled in two ways: a)
as a Java system property or b) as a connection property. Once enabled, conversion is
performed on all SQL in the VM (system property) or in the connection (connection property).
For example, the property can be set as a Java system property as follows:

Chapter 7
JDBC Programming with Unicode

7-23

java -Doracle.jdbc.convertNcharLiterals="true" ...

Alternatively, you can set this as a connection property as follows:

Properties props = new Properties();
...
props.setProperty("oracle.jdbc.convertNcharLiterals", "true");
Connection conn = DriverManager.getConnection(url, props);

If you set this as a connection property, it overrides a system property setting.

7.5.5 Data Conversion in JDBC
Because Java strings are always encoded in UTF-16, JDBC drivers transparently convert data
from the database character set to UTF-16 or the national character set. The conversion paths
taken are different for the JDBC drivers:

• Data Conversion for the OCI Driver

• Data Conversion for Thin Drivers

• Data Conversion for the Server-Side Internal Driver

7.5.5.1 Data Conversion for the OCI Driver
For the OCI driver, the SQL statements are always converted to the database character set by
the driver before it is sent to the database for processing. When the database character set is
neither US7ASCII nor WE8ISO8859P1, the driver converts the SQL statements to UTF-8 first
in Java and then to the database character set in C. Otherwise, it converts the SQL statements
directly to the database character set. For Java string bind variables, The following table
summarizes the conversion paths taken for different scenarios. For Java string define
variables, the same conversion paths, but in the opposite direction, are taken.

Table 7-5 OCI Driver Conversion Path

Form of Use SQL Data Type Conversion Path

FORM_CHAR
(Default)

CHAR Conversion between the UTF-16 encoding of a Java string and the database
character set happens in the JDBC driver.

FORM_CHAR
(Default)

NCHAR Conversion between the UTF-16 encoding of a Java string and the database
character set happens in the JDBC driver. Then, conversion between the
database character set and the national character set happens in the database
server.

FORM_NCHAR NCHAR Conversion between the UTF-16 encoding of a Java string and the national
character set happens in the JDBC driver.

FORM_NCHAR CHAR Conversion between the UTF-16 encoding of a Java string and the national
character set happens in the JDBC driver. Then, conversion between the
national character set and the database character set happens in the database
server.

7.5.5.2 Data Conversion for Thin Drivers
SQL statements are always converted to either the database character set or to UTF-8 by the
driver before they are sent to the database for processing. The driver converts the SQL
statement to the database character set when the database character set is one of the
following character sets:

Chapter 7
JDBC Programming with Unicode

7-24

• US7ASCII

• WE8ISO8859P1

• WE8DEC

• WE8MSWIN1252

Otherwise, the driver converts the SQL statement to UTF-8 and notifies the database that the
statement requires further conversion before being processed. The database, in turn, converts
the SQL statement to the database character set. For Java string bind variables, the
conversion paths shown in the following table are taken for the thin driver. For Java string
define variables, the same conversion paths but in the opposite direction are taken. The four
character sets listed earlier are called selected characters sets in the table.

Table 7-6 Thin Driver Conversion Path

Form of Use SQL Data Type Database
Character Set

Conversion Path

FORM_CHAR
(Default)

CHAR One of the
selected
character sets

Conversion between the UTF-16 encoding of a Java string
and the database character set happens in the thin driver.

FORM_CHAR
(Default)

NCHAR One of the
selected
character sets

Conversion between the UTF-16 encoding of a Java string
and the database character set happens in the thin driver.
Then, conversion between the database character set and
the national character set happens in the database server.

FORM_CHAR
(Default)

CHAR Other than the
selected
character sets

Conversion between the UTF-16 encoding of a Java string
and UTF-8 happens in the thin driver. Then, conversion
between UTF-8 and the database character set happens in
the database server.

FORM_CHAR
(Default)

NCHAR Other than the
selected
character sets

Conversion between the UTF-16 encoding of a Java string
and UTF-8 happens in the thin driver. Then, conversion from
UTF-8 to the database character set and then to the national
character set happens in the database server.

FORM_NCHAR CHAR Any Conversion between the UTF-16 encoding of a Java string
and the national character set happens in the thin driver.
Then, conversion between the national character set and the
database character set happens in the database server.

FORM_NCHAR NCHAR Any Conversion between the UTF-16 encoding of a Java string
and the national character set happens in the thin driver.

7.5.5.3 Data Conversion for the Server-Side Internal Driver
All data conversion occurs in the database server because the server-side internal driver works
inside the database.

7.5.6 Using oracle.sql.CHAR in Oracle Object Types
JDBC drivers support Oracle object types. Oracle objects are always sent from database to
client as an object represented in the database character set or national character set. That
means the data conversion path in "Data Conversion in JDBC" does not apply to Oracle object
access. Instead, the oracle.sql.CHAR class is used for passing SQL CHAR and SQL NCHAR data
of an object type from the database to the client.

This section includes the following topics:

• oracle.sql.CHAR

Chapter 7
JDBC Programming with Unicode

7-25

• Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

7.5.6.1 oracle.sql.CHAR
The oracle.sql.CHAR class has a special functionality for conversion of character data. The
Oracle character set is a key attribute of the oracle.sql.CHAR class. The Oracle character set
is always passed in when an oracle.sql.CHAR object is constructed. Without a known
character set, the bytes of data in the oracle.sql.CHAR object are meaningless.

The oracle.sql.CHAR class provides the following methods for converting character data to
strings:

• getString()
Converts the sequence of characters represented by the oracle.sql.CHAR object to a
string, returning a Java string object. If the character set is not recognized, then
getString() returns a SQLException.

• toString()
Identical to getString(), except that if the character set is not recognized, then
toString() returns a hexadecimal representation of the oracle.sql.CHAR data and does
not returns a SQLException.

• getStringWithReplacement()
Identical to getString(), except that a default replacement character replaces characters
that have no Unicode representation in the character set of this oracle.sql.CHAR object.
This default character varies among character sets, but it is often a question mark.

You may want to construct an oracle.sql.CHAR object yourself (to pass into a prepared
statement, for example). When you construct an oracle.sql.CHAR object, you must provide
character set information to the oracle.sql.CHAR object by using an instance of the
oracle.sql.CharacterSet class. Each instance of the oracle.sql.CharacterSet class
represents one of the character sets that Oracle supports.

Complete the following tasks to construct an oracle.sql.CHAR object:

1. Create a CharacterSet instance by calling the static CharacterSet.make() method. This
method creates the character set class. It requires as input a valid Oracle character set
(OracleId). For example:

int OracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(OracleId);

Each character set that Oracle supports has a unique predefined OracleId. The OracleId
can always be referenced as a character set specified as
Oracle_character_set_name_CHARSET where Oracle_character_set_name is the Oracle
character set.

2. Construct an oracle.sql.CHAR object. Pass to the constructor a string (or the bytes that
represent the string) and the CharacterSet object that indicates how to interpret the bytes
based on the character set. For example:

String mystring = "teststring";
...
oracle.sql.CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

Chapter 7
JDBC Programming with Unicode

7-26

The oracle.sql.CHAR class has multiple constructors: they can take a string, a byte array,
or an object as input along with the CharacterSet object. In the case of a string, the string
is converted to the character set indicated by the CharacterSet object before being placed
into the oracle.sql.CHAR object.

The server (database) and the client (or application running on the client) can use different
character sets. When you use the methods of this class to transfer data between the server
and the client, the JDBC drivers must convert the data between the server character set and
the client character set.

7.5.6.2 Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR
The following is an example of an object type created using SQL:

CREATE TYPE person_type AS OBJECT (
 name VARCHAR2(30), address NVARCHAR2(256), age NUMBER);
CREATE TABLE employees (id NUMBER, person PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SqlData
{
 oracle.sql.CHAR name;
 oracle.sql.CHAR address;
 oracle.sql.NUMBER age;
 // SqlData interfaces
 getSqlType() {...}
 writeSql(SqlOutput stream) {...}
 readSql(SqlInput stream, String sqltype) {...}
}

The oracle.sql.CHAR class is used here to map to the NAME attributes of the Oracle object
type, which is of VARCHAR2 data type. JDBC populates this class with the byte representation of
the VARCHAR2 data in the database and the CharacterSet object corresponding to the database
character set. The following code retrieves a person object from the employees table:

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put("PERSON_TYPE", Class.forName("person"));
conn.setTypeMap(map);
 . . .
 . . .
ResultSet rs = stmt.executeQuery("SELECT PERSON FROM EMPLOYEES");
rs.next();
person p = (person) rs.getObject(1);
oracle.sql.CHAR sql_name = p.name;
oracle.sql.CHAR sql_address=p.address;
String java_name = sql_name.getString();
String java_address = sql_address.getString();

The getString() method of the oracle.sql.CHAR class converts the byte array from the
database character set or national character set to UTF-16 by calling Oracle's Java data
conversion classes and returning a Java string. For the rs.getObject(1) call to work, the
SqlData interface has to be implemented in the class person, and the Typemap map has to be
set up to indicate the mapping of the object type PERSON_TYPE to the Java class.

7.5.7 Restrictions on Accessing SQL CHAR Data with JDBC
This section contains the following topic:

Chapter 7
JDBC Programming with Unicode

7-27

• Character Integrity Issues in a Multibyte Database Environment

7.5.7.1 Character Integrity Issues in a Multibyte Database Environment
Oracle JDBC drivers perform character set conversions as appropriate when character data is
inserted into or retrieved from the database. The drivers convert Unicode characters used by
Java clients to Oracle database character set characters, and vice versa. Character data that
makes a round trip from the Java Unicode character set to the database character set and
back to Java can suffer some loss of information. This happens when multiple Unicode
characters are mapped to a single character in the database character set. An example is the
Unicode full-width tilde character (0xFF5E) and its mapping to Oracle's JA16SJIS character
set. The round-trip conversion for this Unicode character results in the Unicode character
0x301C, which is a wave dash (a character commonly used in Japan to indicate range), not a
tilde.

The following figure shows the round-trip conversion of the tilde character.

Figure 7-2 Character Integrity

Oracle database
Character Set

(JA16SJIS) Java UnicodeJava Unicode

0x8160

0xFF5E

0x301C

0x301C

0xFF5E

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the ambiguity in
character mapping specifications on different operating systems. Fortunately, this problem
affects only a small number of characters in a small number of Oracle character sets such as
JA16SJIS, JA16EUC, ZHT16BIG5, and KO16KS5601. The workaround is to avoid making a
full round-trip with these characters.

7.6 ODBC and OLE DB Programming with Unicode
You should use the Oracle ODBC driver or Oracle Provider for OLE DB to access the Oracle
server when using a Windows platform. This section describes how these drivers support
Unicode. It includes the following topics:

• Unicode-Enabled Drivers in ODBC and OLE DB

• OCI Dependency in Unicode

• ODBC and OLE DB Code Conversion in Unicode

• ODBC Unicode Data Types

• OLE DB Unicode Data Types

• ADO Access

Chapter 7
ODBC and OLE DB Programming with Unicode

7-28

7.6.1 Unicode-Enabled Drivers in ODBC and OLE DB
Oracle's ODBC driver and Oracle Provider for OLE DB can handle Unicode data properly
without data loss. For example, you can run a Unicode ODBC application containing Japanese
data on English Windows if you install Japanese fonts and an input method editor for entering
Japanese characters.

Oracle provides ODBC and OLE DB products for Windows platforms only. For UNIX platforms,
contact your vendor.

7.6.2 OCI Dependency in Unicode
OCI Unicode binding and defining features are used by the ODBC and OLE DB drivers to
handle Unicode data. OCI Unicode data binding and defining features are independent from
NLS_LANG. This means Unicode data is handled properly, irrespective of the NLS_LANG setting
on the platform.

See Also:

"OCI Programming with Unicode"

7.6.3 ODBC and OLE DB Code Conversion in Unicode
In general, no redundant data conversion occurs unless you specify a different client data type
from that of the server. If you bind Unicode buffer SQL_C_WCHAR with a Unicode data column like
NCHAR, for example, then ODBC and OLE DB drivers bypass it between the application and
OCI layer.

If you do not specify data types before fetching, but call SQLGetData with the client data types
instead, then the conversions described in the following table occur.

Table 7-7 ODBC Implicit Binding Code Conversions

Data Types of
ODBC Client Buffer

Data Types of the
Target Column in
the Database

Fetch Conversions Comments

SQL_C_WCHAR CHAR,VARCHAR2,
CLOB

If the database character set is a
subset of the NLS_LANG character set,
then the conversions occur in the
following order:

• Database character set
• NLS_LANG
• UTF-16 in OCI
• UTF-16 in ODBC

No unexpected data loss

May degrade performance if database
character set is a subset of the
NLS_LANG character set

Chapter 7
ODBC and OLE DB Programming with Unicode

7-29

Table 7-7 (Cont.) ODBC Implicit Binding Code Conversions

Data Types of
ODBC Client Buffer

Data Types of the
Target Column in
the Database

Fetch Conversions Comments

SQL_C_CHAR CHAR,VARCHAR2,
CLOB

If database character set is a subset of
NLS_LANG character set:

Database character set to NLS_LANG
in OCI

If database character set is NOT a
subset of NLS_LANG character set:

Database character set, UTF-16, to
NLS_LANG character set in OCI and
ODBC

No unexpected data loss

May degrade performance if database
character set is not a subset of
NLS_LANG character set

You must specify the data type for inserting and updating operations.

The data type of the ODBC client buffer is given when you call SQLGetData but not
immediately. Hence, SQLFetch does not have the information.

Because the ODBC driver guarantees data integrity, if you perform implicit bindings, then
redundant conversion may result in performance degradation. Your choice is the trade-off
between performance with explicit binding or usability with implicit binding.

7.6.3.1 OLE DB Code Conversions
Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting, updating,
and fetching data. The conversion algorithm for determining the intermediate character set is
the same as the implicit binding cases of ODBC.

Table 7-8 OLE DB Implicit Bindings

Data Types of
OLE_DB Client
Buffer

Data Types of the
Target Column in
the Database

In-Binding and Out-Binding
Conversions

Comments

DBTYPE_WCHAR CHAR,VARCHAR2,
CLOB

If database character set is a subset of
the NLS_LANG character set:

Database character set to and from
NLS_LANG character set in OCI.
NLS_LANG character set to UTF-16 in
OLE DB

If database character set is NOT a
subset of NLS_LANG character set:

Database character set to and from
UTF-16 in OCI

No unexpected data loss

May degrade performance if database
character set is a subset of NLS_LANG
character set

Chapter 7
ODBC and OLE DB Programming with Unicode

7-30

Table 7-8 (Cont.) OLE DB Implicit Bindings

Data Types of
OLE_DB Client
Buffer

Data Types of the
Target Column in
the Database

In-Binding and Out-Binding
Conversions

Comments

DBTYPE_CHAR CHAR,VARCHAR2,
CLOB

If database character set is a subset of
the NLS_LANG character set:

Database character set to and from
NLS_LANG in OCI

If database character set is not a
subset of NLS_LANG character set:

Database character set to and from
UTF-16 in OCI. UTF-16 to NLS_LANG
character set in OLE DB

No unexpected data loss

May degrade performance if database
character set is not a subset of
NLS_LANG character set

7.6.4 ODBC Unicode Data Types
In ODBC Unicode applications, use SQLWCHAR to store Unicode data. All standard Windows
Unicode functions can be used for SQLWCHAR data manipulations. For example, wcslen counts
the number of characters of SQLWCHAR data:

SQLWCHAR sqlStmt[] = L"select ename from emp";
len = wcslen(sqlStmt);

Microsoft's ODBC 3.5 specification defines three Unicode data type identifiers for the
SQL_C_WCHAR, SQL_C_WVARCHAR, and SQL_WLONGVARCHAR clients; and three Unicode data type
identifiers for servers SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR.

For binding operations, specify data types for both client and server using SQLBindParameter.
The following is an example of Unicode binding, where the client buffer Name indicates that
Unicode data (SQL_C_WCHAR) is bound to the first bind variable associated with the Unicode
column (SQL_WCHAR):

SQLBindParameter(StatementHandle, 1, SQL_PARAM_INPUT, SQL_C_WCHAR,
SQL_WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

The following table represents the data type mappings of the ODBC Unicode data types for the
server against SQL NCHAR data types.

Table 7-9 Server ODBC Unicode Data Type Mapping

ODBC Data Type Oracle Data Type

SQL_WCHAR NCHAR
SQL_WVARCHAR NVARCHAR2
SQL_WLONGVARCHAR NCLOB

According to ODBC specifications, SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR are
treated as Unicode data, and are therefore measured in the number of characters instead of
the number of bytes.

Chapter 7
ODBC and OLE DB Programming with Unicode

7-31

7.6.5 OLE DB Unicode Data Types
OLE DB offers the wchar_t, BSTR, and OLESTR data types for a Unicode C client. In practice,
wchar_t is the most common data type and the others are for specific purposes. The following
example assigns a static SQL statement:

wchar_t *sqlStmt = OLESTR("SELECT ename FROM emp");

The OLESTR macro works exactly like an "L" modifier to indicate the Unicode string. If you need
to allocate Unicode data buffer dynamically using OLESTR, then use the IMalloc allocator (for
example, CoTaskMemAlloc). However, using OLESTR is not the normal method for variable
length data; use wchar_t* instead for generic string types. BSTR is similar. It is a string with a
length prefix in the memory location preceding the string. Some functions and methods can
accept only BSTR Unicode data types. Therefore, BSTR Unicode string must be manipulated with
special functions like SysAllocString for allocation and SysFreeString for freeing memory.

Unlike ODBC, OLE DB does not allow you to specify the server data type explicitly. When you
set the client data type, the OLE DB driver automatically performs data conversion if
necessary.

The following table shows the OLE DB data type mapping.

Table 7-10 OLE DB Data Type Mapping

OLE DB Data Type Oracle Data Type

DBTYPE_WCHAR NCHAR or NVARCHAR2

If DBTYPE_BSTR is specified, then it is assumed to be DBTYPE_WCHAR because both are Unicode
strings.

7.6.6 ADO Access
ADO is a high-level API to access database with the OLE DB and ODBC drivers. Most
database application developers use the ADO interface on Windows because it is easily
accessible from Visual Basic, the primary scripting language for Active Server Pages (ASP) for
the Internet Information Server (IIS). To OLE DB and ODBC drivers, ADO is simply an OLE DB
consumer or ODBC application. ADO assumes that OLE DB and ODBC drivers are Unicode-
aware components; hence, it always attempts to manipulate Unicode data.

7.7 XML Programming with Unicode
XML support of Unicode is essential for software development for global markets so that text
information can be exchanged in any language. Unicode uniformly supports almost every
character and language, which makes it much easier to support multiple languages within
XML. To enable Unicode for XML within an Oracle database, the character set of the database
must be UTF-8. By enabling Unicode text handling in your application, you acquire a basis for
supporting any language. Every XML document is Unicode text and potentially multilingual,
unless it is guaranteed that only a known subset of Unicode characters will appear on your
documents. Thus Oracle recommends that you enable Unicode for XML. Unicode support
comes with Java and many other modern programming environments.

This section includes the following topics:

• Writing an XML File in Unicode with Java

Chapter 7
XML Programming with Unicode

7-32

• Reading an XML File in Unicode with Java

• Parsing an XML Stream in Unicode with Java

7.7.1 Writing an XML File in Unicode with Java
A common mistake in reading and writing XML files is using the Reader and Writer classes for
character input and output. Using Reader and Writer for XML files should be avoided because
it requires character set conversion based on the default character encoding of the run-time
environment.

For example, using FileWriter class is not safe because it converts the document to the
default character encoding. The output file can suffer from a parsing error or data loss if the
document contains characters that are not available in the default character encoding.

UTF-8 is popular for XML documents, but UTF-8 is not usually the default file encoding for
Java. Thus using a Java class that assumes the default file encoding can cause problems.

The following example shows how to avoid these problems:

import java.io.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLFileWritingSample
{
 public static void main(String[] args) throws Exception
 {
 // create a test document
 XMLDocument doc = new XMLDocument();
 doc.setVersion("1.0");
 doc.appendChild(doc.createComment("This is a test empty document."));
 doc.appendChild(doc.createElement("root"));

 // create a file
 File file = new File("myfile.xml");

 // create a binary output stream to write to the file just created
 FileOutputStream fos = new FileOutputStream(file);

 // create a Writer that converts Java character stream to UTF-8 stream
 OutputStreamWriter osw = new OutputStreamWriter(fos, "UTF8");

 // buffering for efficiency
 Writer w = new BufferedWriter(osw);

 // create a PrintWriter to adapt to the printing method
 PrintWriter out = new PrintWriter(w);

 // print the document to the file through the connected objects
 doc.print(out);
 }
}

7.7.2 Reading an XML File in Unicode with Java
Do not read XML files as text input. When reading an XML document stored in a file system,
use the parser to automatically detect the character encoding of the document. Avoid using a
Reader class or specifying a character encoding on the input stream. Given a binary input
stream with no external encoding information, the parser automatically figures out the
character encoding based on the byte order mark and encoding declaration of the XML

Chapter 7
XML Programming with Unicode

7-33

document. Any well-formed document in any supported encoding can be successfully parsed
using the following sample code:

import java.io.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLFileReadingSample
{
 public static void main(String[] args) throws Exception
 {
 // create an instance of the xml file
 File file = new File("myfile.xml");

 // create a binary input stream
 FileInputStream fis = new FileInputStream(file);

 // buffering for efficiency
 BufferedInputStream in = new BufferedInputStream(fis);

 // get an instance of the parser
 DOMParser parser = new DOMParser();

 // parse the xml file
 parser.parse(in);
 }
}

7.7.3 Parsing an XML Stream in Unicode with Java
When the source of an XML document is not a file system, the encoding information is usually
available before reading the document. For example, if the input document is provided in the
form of a Java character stream or Reader, its encoding is evident and no detection should
take place. The parser can begin parsing a Reader in Unicode without regard to the character
encoding.

The following is an example of parsing a document with external encoding information:

import java.io.*;
import java.net.*;
import org.xml.sax.*;
import oracle.xml.parser.v2.*;

public class I18nSafeXMLStreamReadingSample
{
 public static void main(String[] args) throws Exception
 {
 // create an instance of the xml file
 URL url = new URL("http://myhost/mydocument.xml");

 // create a connection to the xml document
 URLConnection conn = url.openConnection();

 // get an input stream
 InputStream is = conn.getInputStream();

 // buffering for efficiency
 BufferedInputStream bis = new BufferedInputStream(is);

 /* figure out the character encoding here */
 /* a typical source of encoding information is the content-type header */
 /* we assume it is found to be utf-8 in this example */

Chapter 7
XML Programming with Unicode

7-34

 String charset = "utf-8";

 // create an InputSource for UTF-8 stream
 InputSource in = new InputSource(bis);
 in.setEncoding(charset);

 // get an instance of the parser
 DOMParser parser = new DOMParser();

 // parse the xml stream
 parser.parse(in);
 }
}

Chapter 7
XML Programming with Unicode

7-35

8
Oracle Globalization Development Kit

This chapter includes the following sections:

• Overview of the Oracle Globalization Development Kit

• Designing a Global Internet Application

• Developing a Global Internet Application

• Getting Started with the Globalization Development Kit

• GDK Quick Start

• GDK Application Framework for J2EE

• GDK Java API

• The GDK Application Configuration File

• GDK for Java Supplied Packages and Classes

• GDK for PL/SQL Supplied Packages

• GDK Error Messages

8.1 Overview of the Oracle Globalization Development Kit
Designing and developing a globalized application can be a daunting task even for the most
experienced developers. This is usually caused by lack of knowledge and the complexity of
globalization concepts and APIs. Application developers who write applications using Oracle
Database need to understand the Globalization Support architecture of the database, including
the properties of the different character sets, territories, languages and linguistic sort
definitions. They also need to understand the globalization functionality of their middle-tier
programming environment, and find out how it can interact and synchronize with the locale
model of the database. Finally, to develop a globalized Internet application, they need to
design and write code that is capable of simultaneously supporting multiple clients running on
different operating systems, with different character sets and locale requirements.

Oracle Globalization Development Kit (GDK) simplifies the development process and reduces
the cost of developing Internet applications that will be used to support a global environment.
The GDK includes comprehensive programming APIs for both Java and PL/SQL, code
samples, and documentation that address many of the design, development, and deployment
issues encountered while creating global applications.

The GDK mainly consists of two parts: GDK for Java and GDK for PL/SQL. GDK for Java
provides globalization support to Java applications. GDK for PL/SQL provides globalization
support to the PL/SQL programming environment. The features offered in GDK for Java and
GDK for PL/SQL are not identical.

8.2 Designing a Global Internet Application
There are two architectural models for deploying a global Web site or a global Internet
application, depending on your globalization and business requirements. Which model to

8-1

deploy affects how the Internet application is developed and how the application server is
configured in the middle-tier. The two models are:

• Multiple instances of monolingual Internet applications

Internet applications that support only one locale in a single binary are classified as
monolingual applications. A locale refers to a national language and the region in which the
language is spoken. For example, the primary language of the United States and Great
Britain is English. However, the two territories have different currencies and different
conventions for date formats. Therefore, the United States and Great Britain are
considered to be two different locales.

This level of globalization support is suitable for customers who want to support one locale
for each instance of the application. Users need to have different entry points to access the
applications for different locales. This model is manageable only if the number of
supported locales is small.

• Single instance of a multilingual application

Internet applications that support multiple locales simultaneously in a single binary are
classified as multilingual applications. This level of globalization support is suitable for
customers who want to support several locales in an Internet application simultaneously.
Users of different locale preferences use the same entry point to access the application.

Developing an application using the monolingual model is very different from developing
an application using the multilingual model. The Globalization Development Kit consists of
libraries, which can assist in the development of global applications using either
architectural model.

The rest of this section includes the following topics:

• Deploying a Monolingual Internet Application

• Deploying a Multilingual Internet Application

8.2.1 Deploying a Monolingual Internet Application
Deploying a global Internet application with multiple instances of monolingual Internet
applications is shown in the following figure.

Chapter 8
Designing a Global Internet Application

8-2

Figure 8-1 Monolingual Internet Application Architecture

English
Locale

Japanese
Locale

Hebrew
Locale

Monolingual
Application:

Japanese Locale

Shift-JIS

ISO-8859-1

ISO-8859-8

JAI6SJIS

Monolingual
Application:

English Locale

Application Server

WE8MSWIN1252

Monolingual
Application:

Hebrew Locale

IW8MSWIN1255

HTTP

Oracle Net

Oracle
Unicode�
Database

Browsers Customer
Database

Application Server�
Instance 1

Application Server�
Instance 2

Server A

Application Server�
Instance 3

Server B

Each application server is configured for the locale that it serves. This deployment model
assumes that one instance of an Internet application runs in the same locale as the application
in the middle tier.

The Internet applications access a back-end database in the native encoding used for the
locale. The following are advantages of deploying monolingual Internet applications:

• The support of the individual locales is separated into different servers so that multiple
locales can be supported independently in different locations and that the workload can be
distributed accordingly. For example, customers may want to support Western European
locales first and then support Asian locales such as Japanese (Japan) later.

• The complexity required to support multiple locales simultaneously is avoided. The amount
of code to write is significantly less for a monolingual Internet application than for a
multilingual Internet application.

The following are disadvantages of deploying monolingual Internet applications:

• Extra effort is required to maintain and manage multiple servers for different locales.
Different configurations are required for different application servers.

Chapter 8
Designing a Global Internet Application

8-3

• The minimum number of application servers required depends on the number of locales
the application supports, regardless of whether the site traffic will reach the capacity
provided by the application servers.

• Load balancing for application servers is limited to the group of application servers for the
same locale.

• More QA resources, both human and machine, are required for multiple configurations of
application servers. Internet applications running on different locales must be certified on
the corresponding application server configuration.

• It is not designed to support multilingual content. For example, a web page containing
Japanese and Arabic data cannot be easily supported in this model.

As more and more locales are supported, the disadvantages quickly outweigh the advantages.
With the limitation and the maintenance overhead of the monolingual deployment model, this
deployment architecture is suitable for applications that support only one or two locales.

8.2.2 Deploying a Multilingual Internet Application
Multilingual Internet applications are deployed to the application servers with a single
application server configuration that works for all locales. The following figure shows the
architecture of a multilingual Internet application.

Figure 8-2 Multilingual Internet Application Architecture

English
Locale

Japanese
Locale

Hebrew
Locale

Thai
Locale

Multilingual
Application with
Dynamic Locale

Switching

Application Server�
Instance

Shift-JIS

ISO-8859-1

UTF-8

UTF-8

Oracle

Unicode�
Database

Unicode

HTTP

Oracle Net

Browsers Customer
Database

Server

Chapter 8
Designing a Global Internet Application

8-4

To support multiple locales in a single application instance, the application may need to do the
following:

• Dynamically detect the locale of the users and adapt to the locale by constructing HTML
pages in the language and cultural conventions of the locale

• Process character data in Unicode so that data in any language can be supported.
Character data can be entered by users or retrieved from back-end databases.

• Dynamically determine the HTML page encoding (or character set) to be used for HTML
pages and convert content from Unicode to the page encoding and the reverse.

The following are major advantages of deploying multilingual Internet application:

• Using a single application server configuration for all application servers simplifies the
deployment configuration and hence reduces the cost of maintenance.

• Performance tuning and capacity planning do not depend on the number of locales
supported by the Web site.

• Introducing additional locales is relatively easy. No extra machines are necessary for the
new locales.

• Testing the application across different locales can be done in a single testing environment.

• This model can support multilingual content within the same instance of the application.
For example, a web page containing Japanese, Chinese, English and Arabic data can be
easily supported in this model.

The disadvantage of deploying multilingual Internet applications is that it requires extra coding
during application development to handle dynamic locale detection and Unicode, which is
costly when only one or two languages need to be supported.

Deploying multilingual Internet applications is more appropriate than deploying monolingual
applications when Web sites support multiple locales.

8.3 Developing a Global Internet Application
Building an Internet application that supports different locales requires good development
practices.

For multilingual Internet applications, the application itself must be aware of the user's locale
and be able to present locale-appropriate content to the user. Clients must be able to
communicate with the application server regardless of the client's locale. The application
server then communicates with the database server, exchanging data while maintaining the
preferences of the different locales and character set settings. One of the main considerations
when developing a multilingual Internet application is to be able to dynamically detect, cache,
and provide the appropriate contents according to the user's preferred locale.

For monolingual Internet applications, the locale of the user is always fixed and usually follows
the default locale of the run-time environment. Hence, the locale configuration is much simpler.

The following sections describe some of the most common issues that developers encounter
when building a global Internet application:

• Locale Determination

• Locale Awareness

• Localizing the Content

Chapter 8
Developing a Global Internet Application

8-5

8.3.1 Locale Determination
To be locale-aware or locale-sensitive, Internet applications must be able to determine the
preferred locale of the user.

Monolingual applications always serve users with the same locale, and that locale should be
equivalent to the default run-time locale of the corresponding programming environment.

Multilingual applications can determine a user locale dynamically in three ways. Each method
has advantages and disadvantages, but they can be used together in the applications to
complement each other. The user locale can be determined in the following ways:

• Based on the user profile information from a LDAP directory server such as the Oracle
Internet Directory or other user profile tables stored inside the database

The schema for the user profile should include preferred locale attribute to indicate the
locale of a user. This way of determining a locale user does not work if a user has not been
logged on before.

• Based on the default locale of the browser

Get the default ISO locale setting from a browser. The default ISO locale of the browser is
sent through the Accept-Language HTTP header in every HTTP request. If the Accept-
Language header is NULL, then the desired locale should default to English. The drawback
of this approach is that the Accept-Language header may not be a reliable source of
information for the locale of a user.

• Based on user selection

Allow users to select a locale from a list box or from a menu, and switch the application
locale to the one selected.

The Globalization Development Kit provides an application framework that enables you to use
these locale determination methods declaratively.

See Also:

"Getting Started with the Globalization Development Kit"

8.3.2 Locale Awareness
To be locale-aware or locale-sensitive, Internet applications need to determine the locale of a
user. After the locale of a user is determined, applications should:

• Construct HTML content in the language of the locale

• Use the cultural conventions implied by the locale

Locale-sensitive functions, such as date, time, and monetary formatting, are built into various
programming environments such as Java and PL/SQL. Applications may use them to format
the HTML pages according to the cultural conventions of the locale of a user. A locale is
represented differently in different programming environments. For example, the French
(Canada) locale is represented in different environments as follows:

• In the ISO standard, it is represented by fr-CA where fr is the language code defined in
the ISO 639 standard and CA is the country code defined in the ISO 3166 standard.

Chapter 8
Developing a Global Internet Application

8-6

• In Java, it is represented as a Java locale object constructed with fr, the ISO language
code for French, as the language and CA, the ISO country code for Canada, as the country.
The Java locale name is fr_CA.

• In PL/SQL and SQL, it is represented mainly by the NLS_LANGUAGE and NLS_TERRITORY
session parameters where the value of the NLS_LANGUAGE parameter is equal to CANADIAN
FRENCH and the value of the NLS_TERRITORY parameter is equal to CANADA.

If you write applications for more than one programming environment, then locales must be
synchronized between environments. For example, Java applications that call PL/SQL
procedures should map the Java locales to the corresponding NLS_LANGUAGE and
NLS_TERRITORY values and change the parameter values to match the user's locale before
calling the PL/SQL procedures.

The Globalization Development Kit for Java provides a set of Java classes to ensure
consistency on locale-sensitive behaviors with Oracle databases.

8.3.3 Localizing the Content
For the application to support a multilingual environment, it must be able to present the content
in the preferred language and in the locale convention of the user. Hard-coded user interface
text must first be externalized from the application, together with any image files, so that they
can be translated into the different languages supported by the application. The translation files
then must be staged in separate directories, and the application must be able to locate the
relevant content according to the user locale setting. Special application handling may also be
required to support a fallback mechanism, so that if the user-preferred locale is not available,
then the next most suitable content is presented. For example, if Canadian French content is
not available, then it may be suitable for the application to switch to the French files instead.

8.4 Getting Started with the Globalization Development Kit
The Globalization Development Kit (GDK) for Java provides a J2EE application framework and
Java APIs to develop globalized Internet applications using the best globalization practices and
features designed by Oracle. It reduces the complexities and simplifies the code that Oracle
developers require to develop globalized Java applications.

GDK for Java complements the existing globalization features in J2EE. Although the J2EE
platform already provides a strong foundation for building globalized applications, its
globalization functionalities and behaviors can be quite different from Oracle's functionalities.
GDK for Java provides synchronization of locale-sensitive behaviors between the middle-tier
Java application and the database server.

GDK for PL/SQL contains a suite of PL/SQL packages that provide additional globalization
functionalities for applications written in PL/SQL.

The following figure shows major components of the GDK and how they are related to each
other. User applications run on the J2EE container of Oracle Application Server in the middle
tier. GDK provides the application framework that the J2EE application uses to simplify coding
to support globalization. Both the framework and the application call the GDK Java API to
perform locale-sensitive tasks. GDK for PL/SQL offers PL/SQL packages that help to resolve
globalization issues specific to the PL/SQL environment.

Chapter 8
Getting Started with the Globalization Development Kit

8-7

Figure 8-3 GDK Components

Middle-Tier
Application

Server-Tier
Database

Client-Tier
Browser

GDK
PL / SQL

GDK - Java API

LDAP

GDK
Framework for J2EE

Oracle Application Server
Containers for J2EE

J2EE User
Application

Request

Response

The functionalities offered by GDK for Java can be divided into two categories:

• The GDK application framework for J2EE provides the globalization framework for building
J2EE-based Internet application. The framework encapsulates the complexity of
globalization programming, such as determining user locale, maintaining locale
persistency, and processing locale information. It consists of a set of Java classes through
which applications can gain access to the framework. These associated Java classes
enable applications to code against the framework so that globalization behaviors can be
extended declaratively.

• The GDK Java API offers development support in Java applications and provides
consistent globalization operations as provided in Oracle database servers. The API is
accessible and is independent of the GDK framework so that standalone Java applications
and J2EE applications that are not based on the GDK framework are able to access the
individual features offered by the Java API. The features provided in the Java API include
data and number formatting, sorting, and handling character sets in the same way as the
Oracle Database.

Note:

The GDK Java API is supported with JDK versions 1.6 and later.

GDK for Java is contained in nine .jar files, all in the form of orai18n*jar. These files are
shipped with the Oracle Database, in the $ORACLE_HOME/jlib directory. If the application using
the GDK is not hosted on the same machine as the database, then the GDK files must be

Chapter 8
Getting Started with the Globalization Development Kit

8-8

copied to the application server and included into the CLASSPATH to run your application. You do
not need to install the Oracle Database into your application server to be able to run the GDK
inside your Java application. GDK is a pure Java library that runs on every platform. The
Oracle client parameters NLS_LANG and ORACLE_HOME are not required.

8.5 GDK Quick Start
This section explains how to modify a monolingual application to be a global, multilingual
application using GDK. The subsequent sections in this chapter provide detailed information on
using GDK.

The following figure shows a screenshot from a monolingual Web application.

Figure 8-4 Original HelloWorld Web Page

The initial, non-GDK HelloWorld Web application simply prints a "Hello World!" message, along
with the current date and time in the top right hand corner of the page. Example 8-1 shows the
original HelloWorld JSP source code for the preceding image.

Example 8-2 shows the corresponding Web application descriptor file for the HelloWorld
message.

Example 8-1 HelloWorld JSP Page Code

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <title>Hello World Demo</title>
 </head>
 <body>
 <div style="color: blue;" align="right">
 <%= new java.util.Date(System.currentTimeMillis()) %>
 </div>
 <hr/>
 <h1>Hello World!</h1>
 </body>
</html>

Chapter 8
GDK Quick Start

8-9

Example 8-2 HelloWorld web.xml Code

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <description>web.xml file for the monolingual Hello World</description>
 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

The HelloWorld JSP code in Example 8-1 is only for English-speaking users. Some of the
problems with this code are as follows:

• There is no locale determination based on user preference or browser setting.

• The title and the heading are included in the code.

• The date and time value is not localized based on any locale preference.

• The character encoding included in the code is for Latin-1.

The GDK framework can be integrated into the HelloWorld code to make it a global,
multilingual application. The preceding code can be modified to include the following features:

• Automatic locale negotiation to detect the user's browser locale and serve the client with
localized HTML pages. The supported application locales are configured in the GDK
configuration file.

• Locale selection list to map the supported application locales. The list can have application
locale display names which are the name of the country representing the locale. The list
will be included on the Web page so users can select a different locale.

• GDK framework and API for globalization support for the HelloWorld JSP. This involves
selecting display strings in a locale-sensitive manner and formatting the date and time
value.

8.5.1 Modifying the HelloWorld Application
This section explains how to modify the HelloWorld application to support globalization. The
application will be modified to support three locales, Simplified Chinese (zh-CN), Swiss
German (de-CH), and American English (en-US). The following rules will be used for the
languages:

• If the client locale supports one of these languages, then that language will be used for the
application.

• If the client locale does not support one of these languages, then American English will be
used for the application.

In addition, the user will be able to change the language by selecting a supported locales from
the locale selection list. The following tasks describe how to modify the application:

• Task 1: Enable the Hello World Application to use the GDK Framework

Chapter 8
GDK Quick Start

8-10

• Task 2: Configure the GDK Framework for Hello World

• Task 3: Enable the JSP or Java Servlet

• Task 4: Create the Locale Selection List

• Task 5: Build the Application

Task 1: Enable the Hello World Application to use the GDK Framework

In this task, the GDK filter and a listener are configured in the Web application deployment
descriptor file, web.xml. This allows the GDK framework to be used with the HelloWorld
application. The following example shows the GDK-enabled web.xml file.

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <description>web.xml file for Hello World</description>
 <!-- Enable the application to use the GDK Application Framework.-->
 <filter>
 <filter-name>GDKFilter</filter-name>
 <filter-class>oracle.i18n.servlet.filter.ServletFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>GDKFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
 </listener>

 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

The following tags were added to the file:

• <filter>
The filter name is GDKFilter, and the filter class is
oracle.i18n.servlet.filter.ServletFilter.

• <filter-mapping>
The GDKFilter is specified in the tag, as well as the URL pattern.

• <listener>
The listener class is oracle.i18n.servlet.listener.ContextListener. The default GDK
listener is configured to instantiate GDK ApplicationContext, which controls application
scope operations for the framework.

Chapter 8
GDK Quick Start

8-11

Task 2: Configure the GDK Framework for Hello World

The GDK application framework is configured with the application configuration file
gdkapp.xml. The configuration file is located in the same directory as the web.xml file. The
following example shows the gdkapp.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<gdkapp xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="gdkapp.xsd">

 <!-- The Hello World GDK Configuration -->
 <page-charset default="yes">UTF-8</page-charset>

 <!-- The supported application locales for the Hello World Application -->

 <application-locales>
 <locale>de-CH</locale>
 <locale default="yes">en-US</locale>
 <locale>zh-CN</locale>
 </application-locales>

 <locale-determine-rule>
 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HttpAcceptLanguage
 </locale-source>
 </locale-determine-rule>

 <message-bundles>
 <resource-bundle name="default">com.oracle.demo.Messages</resource-bundle>
 </message-bundles>
</gdkapp>

The file must be configured for J2EE applications. The following tags are used in the file:

• <page-charset>
The page encoding tag specifies the character set used for HTTP requests and responses.
The UTF-8 encoding is used as the default because many languages can be represented
by this encoding.

• <application-locales>
Configuring the application locales in the gdkapp.xml file makes a central place to define
locales. This makes it easier to add and remove locales without changing source code.
The locale list can be retrieved using the GDK API call
ApplicationContext.getSupportedLocales.

• <locale-determine-rule>
The language of the initial page is determined by the language setting of the browser. The
user can override this language by choosing from the list. The locale-determine-rule is
used by GDK to first try the Accept-Language HTTP header as the source of the locale. If
the user selects a locale from the list, then the JSP posts a locale parameter value
containing the selected locale. The GDK then sends a response with the contents in the
selected language.

• <message-bundles>
The message resource bundles allow an application access to localized static content that
may be displayed on a Web page. The GDK framework configuration file allows an
application to define a default resource bundle for translated text for various languages. In
the HelloWorld example, the localized string messages are stored in the Java

Chapter 8
GDK Quick Start

8-12

ListResourceBundle bundle named Messages. The Messages bundle consists of base
resources for the application which are in the default locale. Two more resource bundles
provide the Chinese and German translations. These resource bundles are named
Messages_zh_CN.java and Messages_de.java respectively. The HelloWorld application will
select the right translation for "Hello World!" from the resource bundle based on the locale
determined by the GDK framework. The <message-bundles> tag is used to configure the
resource bundles that the application will use.

Task 3: Enable the JSP or Java Servlet

JSPs and Java servlets must be enabled to use the GDK API. The following example shows a
JSP that has been modified to enable to use the GDK API and services. This JSP can
accommodate any language and locale.

. . .
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title><%= localizer.getMessage("helloWorldTitle") %></title>
 </head>
 <body>
 <div style="color: blue;" align="right">
 <% Date currDate= new Date(System.currentTimeMillis()); %>
 <%=localizer.formatDateTime(currDate, OraDateFormat.LONG)%>
 </div>
 <hr/>
 <div align="left">
 <form>
 <select name="locale" size="1">
 <%= getCountryDropDown(request)%>
 </select>
 <input type="submit" value="<%= localizer.getMessage("changeLocale") %>">
 </input>
 </form>
 </div>
 <h1><%= localizer.getMessage("helloWorld") %></h1>
 </body>
</html>

The following figure shows the HelloWorld application that has been configured with the zh-CN
locale as the primary locale for the browser preference. The HelloWorld string and page title
are displayed in Simplified Chinese. In addition, the date is formatted in the zh-CN locale
convention. This example allows the user to override the locale from the locale selection list.

Chapter 8
GDK Quick Start

8-13

Figure 8-5 HelloWorld Localized for the zh-CN Locale

When the locale changes or is initialized using the HTTP Request Accept-Language header or
the locale selection list, the GUI behaves appropriately for that locale. This means the date and
time value in the upper right corner is localized properly. In addition, the strings are localized
and displayed on the HelloWorld page.

The GDK Java Localizer class provides capabilities to localize the contents of a Web page
based on the automatic detection of the locale by the GDK framework.

The following code retrieves an instance of the localizer based on the current
HTTPServletRequest object. In addition, several imports are declared for use of the GDK API
within the JSP page. The localizer retrieves localized strings in a locale-sensitive manner with
fallback behavior, and formats the date and time.

<%@page contentType="text/html;charset=UTF-8"%>
<%@page import="java.util.*, oracle.i18n.servlet.*" %>
<%@page import="oracle.i18n.util.*, oracle.i18n.text.*" %>

<%
 Localizer localizer = ServletHelper.getLocalizerInstance(request);
%>

The following code retrieves the current date and time value stored in the currDate variable.
The value is formatted by the localizer formatDateTime method. The OraDateFormat.LONG
parameter in the formatDateTime method instructs the localizer to format the date using the
locale's long formatting style. If the locale of the incoming request is changed to a different
locale with the locale selection list, then the date and time value will be formatted according to
the conventions of the new locale. No code changes need to be made to support newly-
introduced locales.

<div style="color: blue;" align="right">
 <% Date currDate= new Date(System.currentTimeMillis()); %>
 <%=localizer.formatDateTime(currDate, OraDateFormat.LONG)%>
 </div>

The HelloWorld JSP can be reused for any locale because the HelloWorld string and title are
selected in a locale-sensitive manner. The translated strings are selected from a resource
bundle.

Chapter 8
GDK Quick Start

8-14

The GDK uses the OraResourceBundle class for implementing the resource bundle fallback
behavior. The following code shows how the Localizer picks the HelloWorld message from the
resource bundle.

The default application resource bundle Messages is declared in the gdkapp.xml file. The
localizer uses the message resource bundle to pick the message and apply the locale-specific
logic. For example, if the current locale for the incoming request is "de-CH", then the message
will first be looked for in the messages_de_CH bundle. If it does not exist, then it will look up in
the Messages_de resource bundle.

<h1><%= localizer.getMessage("helloWorld") %></h1>

Task 4: Create the Locale Selection List

The locale selection list is used to override the selected locale based on the HTTP Request
Accept-Language header. The GDK framework checks the locale parameter passed in as part
of the HTTP POST request as a value for the new locale. A locale selected with the locale
selection list is posted as the locale parameter value. GDK uses this value for the request
locale. All this happens implicitly within the GDK code.

The following code sample displays the locale selection list as an HTML select tag with the
name locale. The submit tag causes the new value to be posted to the server. The GDK
framework retrieves the correct selection.

<form>
 <select name="locale" size="1">
 <%= getCountryDropDown(request)%>
 </select>
 <input type="submit" value="<%= localizer.getMessage("changeLocale") %>">
 </input>
</form>

The locale selection list is constructed from the HTML code generated by the
getCountryDropDown method. The method converts the configured application locales into
localized country names.

A call is made to the ServletHelper class to get the ApplicationContext object associated with
the current request. This object provides the globalization context for an application, which
includes information such as supported locales and configuration information. The
getSupportedLocales call retrieves the list of locales in the gdkapp.xml file. The configured
application locale list is displayed as options of the HTML select. The OraDisplayLocaleInfo
class is responsible for providing localization methods of locale-specific elements such as
country and language names.

An instance of this class is created by passing in the current locale automatically determined
by the GDK framework. GDK creates requests and response wrappers for HTTP request and
responses. The request.getLocale() method returns the GDK determined locale based on
the locale determination rules.

The OraDsiplayLocaleInfo.getDisplayCountry method retrieves the localized country names
of the application locales. An HTML option list is created in the ddOptBuffer string buffer. The
getCountryDropDown call returns a string containing the following HTML values:

 <option value="en_US" selected>United States [en_US]</option>
 <option value="zh_CN">China [zh_CN]</option>
 <option value="de_CH">Switzerland [de_CH]</option>

In the preceding values, the en-US locale is selected for the locale. Country names are
generated are based on the current locale.

Chapter 8
GDK Quick Start

8-15

The following example shows the code for constructing the locale selection list.

<%!
 public String getCountryDropDown(HttpServletRequest request)
 {
 StringBuffer ddOptBuffer = new StringBuffer();
 ApplicationContext ctx =
 ServletHelper.getApplicationContextInstance(request);
 Locale[] appLocales = ctx.getSupportedLocales();
 Locale currentLocale = request.getLocale();

 if (currentLocale.getCountry().equals(""))
 {
 // Since the Country was not specified get the Default Locale
 // (with Country) from the GDK
 OraLocaleInfo oli = OraLocaleInfo.getInstance(currentLocale);
 currentLocale = oli.getLocale();
 }

 OraDisplayLocaleInfo odli =
 OraDisplayLocaleInfo.getInstance(currentLocale);
 for (int i=0;i<appLocales.length; i++)
 {
 ddOptBuffer.append("<option value=\"" + appLocales[i] + "\"" +
 (appLocales[i].getLanguage().equals(currentLocale.getLanguage()) ?
 " selected" : "") +
 ">" + odli.getDisplayCountry(appLocales[i]) +
 " [" + appLocales[i] + "]</option>\n");
 }

 return ddOptBuffer.toString();
 }
%>

Task 5: Build the Application

In order to build the application, the following files must be specified in the classpath:

orai18n.jar
regexp.jar

The orai18n.jar file contains the GDK framework and the API. The regexp.jar file contains
the regular expression library. The GDK API also has locale determination capabilities. The
classes are supplied by the ora18n-lcsd.jar file.

8.6 GDK Application Framework for J2EE
GDK for Java provides the globalization framework for middle-tier J2EE applications. The
framework encapsulates the complexity of globalization programming, such as determining
user locale, maintaining locale persistency, and processing locale information. This framework
minimizes the effort required to make Internet applications global-ready. The following figure
shows the GDK application framework.

Chapter 8
GDK Application Framework for J2EE

8-16

Figure 8-6 GDK Application Framework for J2EE

Request Response

ServletResponseWrapperServletRequestWrapper

Localizer

J2EE User Application

GDK
Configuration
File

GDK Framework for J2EE

A
p
p
lic
a
tio
n
C
o
n
te
x
t

L
o
c
a
le
S
o
u
rc
e

GDK Java API

The main Java classes composing the framework are as follows:

• ApplicationContext provides the globalization context of an application. The context
information includes the list of supported locales and the rule for determining user-
preferred locale. The context information is obtained from the GDK application
configuration file for the application.

• The set of LocaleSource classes can be plugged into the framework. Each LocaleSource
class implements the LocaleSource interface to get the locale from the corresponding
source. Oracle bundles several LocaleSource classes in GDK. For example, the
DBLocaleSource class obtains the locale information of the current user from a database
schema. You can also write a customized LocaleSource class by implementing the same
LocaleSource interface and plugging it into the framework.

• ServletRequestWrapper and ServletResponseWrapper are the main classes of the GDK
Servlet filter that transforms HTTP requests and HTTP responses.
ServletRequestWrapper instantiates a Localizer object for each HTTP request based on
the information gathered from the ApplicationContext and LocaleSource objects and
ensures that forms parameters are handled properly. ServletResponseWrapper controls
how HTTP response should be constructed.

• Localizer is the all-in-one object that exposes the important functions that are sensitive to
the current user locale and application context. It provides a centralized set of methods for
you to call and make your applications behave appropriately to the current user locale and
application context.

• The GDK Java API is always available for applications to enable finer control of
globalization behavior.

The GDK application framework simplifies the coding required for your applications to support
different locales. When you write a J2EE application according to the application framework,
the application code is independent of what locales the application supports, and you control
the globalization support in the application by defining it in the GDK application configuration

Chapter 8
GDK Application Framework for J2EE

8-17

file. There is no code change required when you add or remove a locale from the list of
supported application locales.

The following list gives you some idea of the extent to which you can define the globalization
support in the GDK application configuration file:

• You can add and remove a locale from the list of supported locales.

• You can change the way the user locale is determined.

• You can change the HTML page encoding of your application.

• You can specify how the translated resources can be located.

• You can plug a new LocaleSource object into the framework and use it to detect a user
locale.

This section includes the following topics:

• Making the GDK Framework Available to J2EE Applications

• Integrating Locale Sources into the GDK Framework

• Getting the User Locale From the GDK Framework

• Implementing Locale Awareness Using the GDK Localizer

• Defining the Supported Application Locales in the GDK

• Handling Non-ASCII Input and Output in the GDK Framework

• Managing Localized Content in the GDK

8.6.1 Making the GDK Framework Available to J2EE Applications
The behavior of the GDK application framework for J2EE is controlled by the GDK application
configuration file, gdkapp.xml. The application configuration file allows developers to specify
the behaviors of globalized applications in one centralized place. One application configuration
file is required for each J2EE application using the GDK. The gdkapp.xml file should be placed
in the ./WEB-INF directory of the J2EE environment of the application. The file dictates the
behavior and the properties of the GDK framework and the application that is using it. It
contains locale mapping tables, character sets of content files, and globalization parameters
for the configuration of the application. The application administrator can modify the application
configuration file to change the globalization behavior in the application, without needing to
change the programs and to recompile them.

See Also:

"The GDK Application Configuration File"

For a J2EE application to use the GDK application framework defined by the corresponding
GDK application configuration file, the GDK Servlet filter and the GDK context listener must be
defined in the web.xml file of the application. The web.xml file should be modified to include the
following at the beginning of the file:

<web-app>
<!-- Add GDK filter that is called after the authentication -->

<filter>
 <filter-name>gdkfilter</filter-name>

Chapter 8
GDK Application Framework for J2EE

8-18

 <filter-class>oracle.i18n.servlet.filter.ServletFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>gdkfilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

<!-- Include the GDK context listener -->

 <listener>
<listener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
 </listener>
</web-app>

Examples of the gdkapp.xml and web.xml files can be found in the $ORACLE_HOME/nls/gdk/
demo directory.

The GDK application framework supports Servlet container version 2.3 and later. It uses the
Servlet filter facility for transparent globalization operations such as determining the user locale
and specifying the character set for content files. The ContextListener instantiates GDK
application parameters described in the GDK application configuration file. The ServletFilter
overrides the request and response objects with a GDK request (ServletRequestWrapper) and
response (ServletResponseWrapper) objects, respectively.

If other application filters are used in the application to also override the same methods, then
the filter in the GDK framework may return incorrect results. For example, if getLocale returns
en_US, but the result is overridden by other filters, then the result of the GDK locale detection
mechanism is affected. All of the methods that are being overridden in the filter of the GDK
framework are documented in Oracle Globalization Development Kit Java API Reference. Be
aware of potential conflicts when using other filters together with the GDK framework.

8.6.2 Integrating Locale Sources into the GDK Framework
Determining the user's preferred locale is the first step in making an application global-ready.
The locale detection offered by the J2EE application framework is primitive. It lacks the method
that transparently retrieves the most appropriate user locale among locale sources. It provides
locale detection by the HTTP language preference only, and it cannot support a multilevel
locale fallback mechanism. The GDK application framework provides support for predefined
locale sources to complement J2EE. In a web application, several locale sources are available.
Table 8-1 summarizes locale sources that are provided by the GDK.

Table 8-1 Locale Resources Provided by the GDK

Locale Description

HTTP language
preference

Locales included in the HTTP protocol as a value of Accept-Language.
This is set at the web browser level. A locale fallback operation is required if
the browser locale is not supported by the application.

User input locale Locale specified by the user from a menu or a parameter in the HTTP
protocol

User profile locale
preference from database

Locale preference stored in the database as part of the user profiles

Application default locale A locale defined in the GDK application configuration file. This locale is
defined as the default locale for the application. Typically, this is used as a
fallback locale when the other locale sources are not available.

Chapter 8
GDK Application Framework for J2EE

8-19

See Also:

"The GDK Application Configuration File" for information about the GDK multilevel
locale fallback mechanism

The GDK application framework provides seamless support for predefined locale sources,
such as user input locale, HTTP language preference, user profile locale preference in the
database, and the application default locale. You can incorporate the locale sources to the
framework by defining them under the <locale-determine-rule> tag in the GDK application
configuration file as follows:

<locale-determine-rule>
 <locale-source>
 oracle.i18n.servlet.localesource.UserInput
 </locale-source>
 <locale-source>
 oracle.i18n.servlet.localesource.HTTPAcceptLanguage
 </locale-source>
</locale-determine-rule>

The GDK framework uses the locale source declaration order and determines whether a
particular locale source is available. If it is available, then it is used as the source, otherwise, it
tries to find the next available locale source for the list. In the preceding example, if the
UserInput locale source is available, it is used first, otherwise, the HTTPAcceptLanguage locale
source will be used.

Custom locale sources, such as locale preference from an LDAP server, can be easily
implemented and integrated into the GDK framework. You must implement the LocaleSource
interface and specify the corresponding implementation class under the <locale-determine-
rule> tag in the same way as the predefined locale sources were specified.

The LocaleSource implementation not only retrieves the locale information from the
corresponding source to the framework but also updates the locale information to the
corresponding source when the framework tells it to do so. Locale sources can be read-only or
read/write, and they can be cacheable or noncacheable. The GDK framework initiates updates
only to read/write locale sources and caches the locale information from cacheable locale
sources. Examples of custom locale sources can be found in the $ORACLE_HOME/nls/gdk/demo
directory.

See Also:

Oracle Globalization Development Kit Java API Reference for more information about
implementing a LocaleSource

8.6.3 Getting the User Locale From the GDK Framework
The GDK offers automatic locale detection to determine the current locale of the user. For
example, the following code retrieves the current user locale in Java. It uses a Locale object
explicitly.

Locale loc = request.getLocale();

Chapter 8
GDK Application Framework for J2EE

8-20

The getLocale() method returns the Locale that represents the current locale. This is similar
to invoking the HttpServletRequest.getLocale() method in JSP or Java Servlet code.
However, the logic in determining the user locale is different, because multiple locale sources
are being considered in the GDK framework.

Alternatively, you can get a Localizer object that encapsulates the Locale object determined
by the GDK framework. For the benefits of using the Localizer object, see "Implementing
Locale Awareness Using the GDK Localizer".

Localizer localizer = ServletHelper.getLocalizerInstance(request);
Locale loc = localizer.getLocale();

The locale detection logic of the GDK framework depends on the locale sources defined in the
GDK application configuration file. The names of the locale sources are registered in the
application configuration file. The following example shows the locale determination rule
section of the application configuration file. It indicates that the user-preferred locale can be
determined from either the LDAP server or from the HTTP Accept-Language header. The
LDAPUserSchema locale source class should be provided by the application. Note that all of the
locale source classes have to be extended from the LocaleSource abstract class.

<locale-determine-rule>
 <locale-source>LDAPUserSchema</locale-source>
 <locale-source>oracle.i18n.localesource.HTTPAcceptLanguage</locale-source>
</locale-determine-rule>

For example, when the user is authenticated in the application and the user locale preference
is stored in an LDAP server, then the LDAPUserSchema class connects to the LDAP server to
retrieve the user locale preference. When the user is anonymous, then the
HttpAcceptLanguage class returns the language preference of the web browser.

The cache is maintained for the duration of a HTTP session. If the locale source is obtained
from the HTTP language preference, then the locale information is passed to the application in
the HTTP Accept-Language header and not cached. This enables flexibility so that the locale
preference can change between requests. The cache is available in the HTTP session.

The GDK framework exposes a method for the application to overwrite the locale preference
information persistently stored in locale sources such as the LDAP server or the user profile
table in the database. This method also resets the current locale information stored inside the
cache for the current HTTP session. The following is an example of overwriting the preferred
locale using the store command.

<input type="hidden"
name="<%=appctx.getParameterName(LocaleSource.Parameter.COMMAND)%>"
value="store">

To discard the current locale information stored inside the cache, the clean command can be
specified as the input parameter. The following table shows the list of commands supported by
the GDK:

Command Functionality

store Updates user locale preferences in the available locale sources with the specified
locale information. This command is ignored by the read-only locale sources.

clean Discards the current locale information in the cache.

Note that the GDK parameter names can be customized in the application configuration file to
avoid name conflicts with other parameters used in the application.

Chapter 8
GDK Application Framework for J2EE

8-21

8.6.4 Implementing Locale Awareness Using the GDK Localizer
The Localizer object obtained from the GDK application framework is an all-in-one
globalization object that provides access to functions that are commonly used in building locale
awareness in your applications. In addition, it provides functions to get information about the
application context, such as the list of supported locales. The Localizer object simplifies and
centralizes the code required to build consistent locale awareness behavior in your
applications.

The oracle.i18n.servlet package contains the Localizer class. You can get the Localizer
instance as follows:

Localizer lc = ServletHelper.getLocalizerInstance(request);

The Localizer object encapsulates the most commonly used locale-sensitive information
determined by the GDK framework and exposes it as locale-sensitive methods. This object
includes the following functionalities pertaining to the user locale:

• Format date in long and short formats

• Format numbers and currencies

• Get collation key value of a string

• Get locale data such as language, country and currency names

• Get locale data to be used for constructing user interface

• Get a translated message from resource bundles

• Get text formatting information such as writing direction

• Encode and decode URLs

• Get the common list of time zones and linguistic sorts

For example, when you want to display a date in your application, you may want to call the
Localizer.formatDate() or Localizer.formateDateTime() methods. When you want to
determine the writing direction of the current locale, you can call the
Localizer.getWritingDirection() and Localizer.getAlignment() to determine the value
used in the <DIR> tag and <ALIGN> tag respectively.

The Localizer object also exposes methods to enumerate the list of supported locales and
their corresponding languages and countries in your applications.

The Localizer object actually makes use of the classes in the GDK Java API to accomplish its
tasks. These classes include, but are not limited to, the following: OraDateFormat,
OraNumberFormat, OraCollator, OraLocaleInfo, oracle.i18n.util.LocaleMapper,
oracle.i18n.net.URLEncoder, and oracle.i18n.net.URLDecoder.

The Localizer object simplifies the code you need to write for locale awareness. It maintains
caches of the corresponding objects created from the GDK Java API so that the calling
application does not need to maintain these objects for subsequent calls to the same objects. If
you require more than the functionality the Localizer object can provide, then you can always
call the corresponding methods in the GDK Java API directly.

Chapter 8
GDK Application Framework for J2EE

8-22

Note:

Strings returned by many Localizer methods, such as formatted dates and locale-
specific currency symbols, depend on locale data that may be provided by users
through URLs or form input. For example, the locale source class
oracle.i18n.servlet.localesource.UserInput provides various datetime format
patterns and the ISO currency abbreviation retrieved from a page URL. A datetime
format pattern may include double-quoted literal strings with arbitrary contents. To
prevent cross-site script injection attacks, strings returned by Localizer methods
must be properly escaped before being displayed as part of an HTML page, for
example, by applying the method encode of the class
oracle.i18n.net.CharEntityReference.

See Also:

Oracle Globalization Development Kit Java API Reference for detailed information
about the Localizer object

8.6.5 Defining the Supported Application Locales in the GDK
The number of locales and the names of the locales that an application needs to support are
based on the business requirements of the application. The names of the locales that are
supported by the application are registered in the application configuration file. The following
example shows the application locales section of the application configuration file. It indicates
that the application supports German (de), Japanese (ja), and English for the US (en-US), with
English defined as the default fallback application locale. Note that the locale names are based
on the IANA convention.

<application-locales>
 <locale>de</locale>
 <locale>ja</locale>
 <locale default="yes">en-US</locale>
</application-locales>

When the GDK framework detects the user locale, it verifies whether the locale that is returned
is one of the supported locales in the application configuration file. The verification algorithm is
as follows:

1. Retrieve the list of supported application locales from the application configuration file.

2. Check whether the locale that was detected is included in the list. If it is included in the list,
then use this locale as the current client's locale.

3. If there is a variant in the locale that was detected, then remove the variant and check
whether the resulting locale is in the list. For example, the Java locale de_DE_EURO has a
EURO variant. Remove the variant so that the resulting locale is de_DE.

4. If the locale includes a country code, then remove the country code and check whether the
resulting locale is in the list. For example, the Java locale de_DE has a country code of DE.
Remove the country code so that the resulting locale is de.

5. If the detected locale does not match any of the locales in the list, then use the default
locale that is defined in the application configuration file as the client locale.

Chapter 8
GDK Application Framework for J2EE

8-23

By performing steps 3 and 4, the application can support users with the same language
requirements but with different locale settings than those defined in the application
configuration file. For example, the GDK can support de-AT (the Austrian variant of German),
de-CH (the Swiss variant of German), and de-LU (the Luxembourgian variant of German)
locales.

The locale fallback detection in the GDK framework is similar to that of the Java Resource
Bundle, except that it is not affected by the default locale of the Java VM. This exception
occurs because the Application Default Locale can be used during the GDK locale fallback
operations.

If the application-locales section is omitted from the application configuration file, then the GDK
assumes that the common locales, which can be returned from the
OraLocaleInfo.getCommonLocales method, are supported by the application.

8.6.6 Handling Non-ASCII Input and Output in the GDK Framework
The character set (or character encoding) of an HTML page is a very important piece of
information to a browser and an Internet application. The browser needs to interpret this
information so that it can use correct fonts and character set mapping tables for displaying
pages. The Internet applications need to know so they can safely process input data from a
HTML form based on the specified encoding.

The page encoding can be translated as the character set used for the locale to which an
Internet application is serving.

In order to correctly specify the page encoding for HTML pages without using the GDK
framework, Internet applications must:

1. Determine the desired page input data character set encoding for a given locale.

2. Specify the corresponding encoding name for each HTTP request and HTTP response.

Applications using the GDK framework can ignore these steps. No application code change is
required. The character set information is specified in the GDK application configuration file. At
run time, the GDK automatically sets the character sets for the request and response objects.
The GDK framework does not support the scenario where the incoming character set is
different from that of the outgoing character set.

The GDK application framework supports the following scenarios for setting the character sets
of the HTML pages:

• A single local character set is dedicated to the whole application. This is appropriate for a
monolingual Internet application. Depending on the properties of the character set, it may
be able to support more than one language. For example, most Western European
languages can be served by ISO-8859-1.

• Unicode UTF-8 is used for all contents regardless of the language. This is appropriate for a
multilingual application that uses Unicode for deployment.

• The native character set for each language is used. For example, English contents are
represented in ISO-8859-1, and Japanese contents are represented in Shift_JIS. This is
appropriate for a multilingual Internet application that uses a default character set mapping
for each locale. This is useful for applications that need to support different character sets
based on the user locales. For example, for mobile applications that lack Unicode fonts or
Internet browsers that cannot fully support Unicode, the character sets must to be
determined for each request.

The character set information is specified in the GDK application configuration file. The
following is an example of setting UTF-8 as the character set for all the application pages.

Chapter 8
GDK Application Framework for J2EE

8-24

<page-charset>UTF-8</page-charset>

The page character set information is used by the ServletRequestWrapper class, which sets
the proper character set for the request object. It is also used by the ContentType HTTP
header specified in the ServletResponseWrapper class for output when instantiated. If page-
charset is set to AUTO-CHARSET, then the character set is assumed to be the default character
set for the current user locale. Set page-charset to AUTO-CHARSET as follows:

<page-charset>AUTO-CHARSET</page-charset>

The default mappings are derived from the LocaleMapper class, which provides the default
IANA character set for the locale name in the GDK Java API.

Table 8-2 lists the mappings between the common ISO locales and their IANA character sets.

Table 8-2 Mapping Between Common ISO Locales and IANA Character Sets

ISO Locale NLS_LANGUAGE Value NLS_TERRITORY Value IANA Character Set

ar-SA ARABIC SAUDI ARABIA WINDOWS-1256

de-DE GERMAN GERMANY WINDOWS-1252

en-US AMERICAN AMERICA WINDOWS-1252

en-GB ENGLISH UNITED KINGDOM WINDOWS-1252

el GREEK GREECE WINDOWS-1253

es-ES SPANISH SPAIN WINDOWS-1252

fr FRENCH FRANCE WINDOWS-1252

fr-CA CANADIAN FRENCH CANADA WINDOWS-1252

iw HEBREW ISRAEL WINDOWS-1255

ko KOREAN KOREA EUC-KR

ja JAPANESE JAPAN SHIFT_JIS

it ITALIAN ITALY WINDOWS-1252

pt PORTUGUESE PORTUGAL WINDOWS-1252

pt-BR BRAZILIAN PORTUGUESE BRAZIL WINDOWS-1252

tr TURKISH TURKEY WINDOWS-1254

nl DUTCH THE NETHERLANDS WINDOWS-1252

zh SIMPLIFIED CHINESE CHINA GBK

zh-TW TRADITIONAL CHINESE TAIWAN BIG5

The locale to character set mapping in the GDK can also be customized. To override the
default mapping defined in the GDK Java API, a locale-to-character-set mapping table can be
specified in the application configuration file.

<locale-charset-maps>
 <locale-charset>
 <locale>ja</locale><charset>EUC-JP</charset>
 </locale-charset>
</locale-charset-maps>

The previous example shows that for locale Japanese (ja), the GDK changes the default
character set from SHIFT_JIS to EUC-JP.

Chapter 8
GDK Application Framework for J2EE

8-25

See Also:

"Oracle Locale Information in the GDK"

8.6.7 Managing Localized Content in the GDK
This section includes the following topics:

• Managing Localized Content in JSPs and Java Servlets

• Managing Localized Content in Static Files

8.6.7.1 Managing Localized Content in JSPs and Java Servlets
Resource bundles enable access to localized contents at run time in J2SE. Translatable strings
within Java servlets and Java Server Pages (JSPs) are externalized into Java resource
bundles so that these resource bundles can be translated independently into different
languages. The translated resource bundles carry the same base class names as the English
bundles, using the Java locale name as the suffix.

To retrieve translated data from the resource bundle, the getBundle() method must be invoked
for every request.

<% Locale user_locale=request.getLocale();
 ResourceBundle rb=ResourceBundle.getBundle("resource",user_locale); %>
<%= rb.getString("Welcome") %>

The GDK framework simplifies the retrieval of text strings from the resource bundles.
Localizer.getMessage() is a wrapper to the resource bundle.

<% Localizer.getMessage ("Welcome") %>

Instead of specifying the base class name as getBundle() in the application, you can specify
the resource bundle in the application configuration file, so that the GDK automatically
instantiates a ResourceBundle object when a translated text string is requested.

<message-bundles>
 <resource-bundle name="default">resource</resource-bundle>
</message-bundles>

This configuration file snippet declares a default resource bundle whose translated contents
reside in the "resource" Java bundle class. Multiple resource bundles can be specified in the
configuration file. To access a nondefault bundle, specify the name parameter in the getMessage
method. The message bundle mechanism uses the OraResourceBundle GDK class for its
implementation. This class provides the special locale fallback behaviors on top of the Java
behaviors. The rules are as follows:

• If the given locale exactly matches the locale in the available resource bundles, it will be
used.

• If the resource bundle for Chinese in Singapore (zh_SG) is not found, it will fall back to the
resource bundle for Chinese in China (zh_CN) for Simplified Chinese translations.

• If the resource bundle for Chinese in Hong Kong (zh_HK) is not found, it will fall back to the
resource bundle for Chinese in Taiwan (zh_TW) for Traditional Chinese translations.

Chapter 8
GDK Application Framework for J2EE

8-26

• If the resource bundle for Chinese in Macau (zh_MO) is not found, it will fall back to the
resource bundle for Chinese in Taiwan (zh_TW) for Traditional Chinese translations.

• If the resource bundle for any other Chinese (zh_ and zh) is not found, it will fall back to the
resource bundle for Chinese in China (zh_CN) for Simplified Chinese translations.

• The default locale, which can be obtained by the Locale.getDefault() method, will not be
considered in the fallback operations.

For example, assume the default locale is ja_JP and the resource handle for it is available.
When the resource bundle for es_MX is requested, and neither resource bundle for es or es_MX
is provided, the base resource bundle object that does not have a local suffix is returned.

The usage of the OraResourceBundle class is similar to the java.util.ResourceBundle class,
but the OraResearchBundle class does not instantiate itself. Instead, the return value of the
getBundle method is an instance of the subclass of the java.util.ResourceBundle class.

8.6.7.2 Managing Localized Content in Static Files
For a application, which supports only one locale, the URL that has a suffix of /index.html
typically takes the user to the starting page of the application.

In a globalized application, contents in different languages are usually stored separately, and it
is common for them to be staged in different directories or with different file names based on
the language or the country name. This information is then used to construct the URLs for
localized content retrieval in the application.

The following examples illustrate how to retrieve the French and Japanese versions of the
index page. Their suffixes are as follows:

/fr/index.html
/ja/index.html

By using the rewriteURL() method of the ServletHelper class, the GDK framework handles
the logic to locate the translated files from the corresponding language directories. The
ServletHelper.rewriteURL() method rewrites a URL based on the rules specified in the
application configuration file. This method is used to determine the correct location where the
localized content is staged.

The following is an example of the JSP code:

<img src="<%="ServletHelper.rewriteURL("image/welcome.jpg", request)%>">
<a href="<%="ServletHelper.rewriteURL("html/welcome.html", request)%>">

The URL rewrite definitions are defined in the GDK application configuration file:

 <url-rewrite-rule fallback="yes">
 <pattern>(.*)/(a-zA-Z0-9_\]+.)$</pattern>
 <result>$1/$A/$2</result>
 </url-rewrite-rule>

The pattern section defined in the rewrite rule follows the regular expression conventions. The
result section supports the following special variables for replacing:

• $L is used to represent the ISO 639 language code part of the current user locale

• $C represents the ISO 3166 country code

• $A represents the entire locale string, where the ISO 639 language code and ISO 3166
country code are connected with an underscore character (_)

• $1 to $9 represent the matched substrings

Chapter 8
GDK Application Framework for J2EE

8-27

For example, if the current user locale is ja, then the URL for the welcome.jpg image file is
rewritten as image/ja/welcome.jpg, and welcome.html is changed to html/ja/welcome.html.

Both ServletHelper.rewriteURL()and Localizer.getMessage() methods perform consistent
locale fallback operations in the case where the translation files for the user locale are not
available. For example, if the online help files are not available for the es_MX locale (Spanish
for Mexico), but the es (Spanish for Spain) files are available, then the methods will select the
Spanish translated files as the substitute.

8.7 GDK Java API
The globalization features and behaviors in Java are not the same as those offered in Oracle
Database. For example, J2SE supports a set of locales and character sets that are different
from locales and character sets in Oracle Database. This inconsistency can be confusing for
users when their application contains data that is formatted based on two different
conventions. For example, dates that are retrieved from the database are formatted using
Oracle conventions, such as number and date formatting and linguistic sort ordering. However,
the static application data is typically formatted using Java locale conventions. The
globalization functionalities in Java can also be different depending on the version of the JDK
on which the application runs.

Before Oracle Database 10g, when an application was required to incorporate Oracle
globalization features, it had to make connections to the database and issue SQL statements.
Such operations make the application complicated and generate more network connections to
the database.

In Oracle Database 10g and later, the GDK Java API extends the globalization features to the
middle tier. By enabling applications to perform globalization logic such as Oracle date and
number formatting and linguistic sorting in the middle tier, the GDK Java API enables
developers to eliminate expensive programming logic in the database. The GDK Java API also
provides standard compliance for XQuery. This improves the overall application performance
by reducing the database processing load, and by decreasing unnecessary network traffic
between the application tier and the back end.

The GDK Java API also offers advanced globalization features, such as language and
character set detection, and the enumeration of common locale data for a territory or a
language (for example, all time zones supported in Canada). These features are not available
in most programming platforms. Without the GDK Java API, developers must write business
logic to handle these processes inside the application.

The key functionalities of the GDK Java API are as follows:

• Oracle Locale Information in the GDK

• Oracle Locale Mapping in the GDK

• Oracle Character Set Conversion in the GDK

• Oracle Date, Number, and Monetary Formats in the GDK

• Oracle Binary and Linguistic Sorts in the GDK

• Oracle Language and Character Set Detection in the GDK

• Oracle Translated Locale and Time Zone Names in the GDK

• Using the GDK with E-Mail Programs

Chapter 8
GDK Java API

8-28

8.7.1 Oracle Locale Information in the GDK
Oracle locale definitions, which include languages, territories, linguistic sorts, and character
sets, are exposed in the GDK Java API. The naming convention that Oracle uses may be
different from other vendors. Although many of these names and definitions follow industry
standards, some are Oracle-specific, tailored to meet special customer requirements.

OraLocaleInfo is an Oracle locale class that includes language, territory, and collator objects.
It provides a method for applications to retrieve a collection of locale-related objects for a given
locale. Examples include: a full list of the Oracle linguistic sorts available in the GDK, the local
time zones defined for a given territory, or the common languages used in a particular territory.

Following are examples of using the OraLocaleInfo class:

// All Territories supported by GDK
String[] avterr = OraLocaleInfo.getAvailableTerritories();

// Local TimeZones for a given Territory

OraLocaleInfo oloc = OraLocaleInfo.getInstance("English", "Canada");
TimeZone[] loctz = oloc.getLocalTimeZones();

8.7.2 Oracle Locale Mapping in the GDK
The GDK Java API provides the LocaleMapper class. It maps equivalent locales and character
sets between Java, IANA, ISO, and Oracle. A Java application may receive locale information
from the client that is specified in an Oracle Database locale name or an IANA character set
name. The Java application must be able to map to an equivalent Java locale or Java
encoding before it can process the information correctly.

The follow example shows using the LocaleMapper class.

// Mapping from Java locale to Oracle language and Oracle territory

Locale locale = new Locale("it", "IT");
String oraLang = LocaleMapper.getOraLanguage(locale);
String oraTerr = LocaleMapper.getOraTerritory(locale);

// From Oracle language and Oracle territory to Java Locale

locale = LocaleMapper.getJavaLocale("AMERICAN","AMERICA");
locale = LocaleMapper.getJavaLocale("TRADITONAL CHINESE", "");

// From IANA & Java to Oracle Character set

String ocs1 = LocaleMapper.getOraCharacterSet(
 LocaleMapper.IANA, "ISO-8859-1");
String ocs2 = LocaleMapper.getOraCharacterSet(
 LocaleMapper.JAVA, "ISO8859_1");

The LocaleMapper class can also return the most commonly used e-mail character set for a
specific locale on both Windows and UNIX platforms. This is useful when developing Java
applications that need to process e-mail messages.

Chapter 8
GDK Java API

8-29

See Also:

"Using the GDK with E-Mail Programs"

8.7.3 Oracle Character Set Conversion in the GDK
The GDK Java API contains a set of character set conversion classes APIs that enable users
to perform Oracle character set conversions. Although Java JDK is already equipped with
classes that can perform conversions for many of the standard character sets, they do not
support Oracle-specific character sets and Oracle's user-defined character sets.

JDK provides an interface for developers to extend Java's character sets. The GDK Java API
provides implicit support for Oracle's character sets by using this plug-in feature provided by
the JDK package java.nio.charset. You can access the J2SE API to obtain Oracle-
specific behaviors.

Note:

The GDK Java API is supported with JDK versions 1.6 and later.

The following figure shows that the GDK character set conversion tables are plugged into
J2SE in the same way as the Java character set tables. With this pluggable framework of
J2SE, the Oracle character set conversions can be used in the same way as other Java
character set conversions.

Figure 8-7 Oracle Character Set Plug-In

J2SE

Runtime

Java character set

conversion table

GDK character set

conversion table

The GDK character conversion classes support all Oracle character sets including user-
defined characters sets. It can be used by Java applications to properly convert to and from
Java's internal character set, UTF-16.

Oracle's character set names are proprietary. To avoid potential conflicts with Java's own
character sets, all Oracle character set names have an X-ORACLE- prefix for all implicit usage
through Java's API.

The following is an example of Oracle character set conversion:

// Converts the Chinese character "three" from UCS2 to JA16SJIS

Chapter 8
GDK Java API

8-30

String str = "\u4e09";
byte[] barr = str.getBytes("x-oracle-JA16SJIS");

Just as with other Java character sets, the character set facility in java.nio.charset.Charset
is applicable to all of the Oracle character sets. For example, if you want to check whether the
specified character set is a superset of another character set, then you can use the
Charset.contains method as follows:

Charset cs1 = Charset.forName("x-oracle-US7ASCII");
Charset cs2 = Charset.forName("x-oracle-WE8WINDOWS1252");
// true if WE8WINDOWS1252 is the superset of US7ASCII, otherwise false.
boolean osc = cs2.contains(cs1);

For a Java application that is using the JDBC driver to communicate with the database, the
JDBC driver provides the necessary character set conversion between the application and the
database. Calling the GDK character set conversion methods explicitly within the application is
not required. A Java application that interprets and generates text files based on Oracle's
character set encoding format is an example of using Oracle character set conversion classes.

8.7.4 Oracle Date, Number, and Monetary Formats in the GDK
The GDK Java API provides formatting classes that support date, number, and monetary
formats using Oracle conventions for Java applications in the oracle.i18n.text package.

New locale formats introduced in Oracle Database 10g, such as the short and long date,
number, and monetary formats, are also exposed in these format classes.

The following are examples of Oracle date, Oracle number, and Oracle monetary formatting:

// Obtain the current date and time in the default Oracle LONG format for
// the locale de_DE (German_Germany)

Locale locale = new Locale("de", "DE");
OraDateFormat odf =
 OraDateFormat.getDateTimeInstance(OraDateFormat.LONG, locale);

// Obtain the numeric value 1234567.89 using the default number format
// for the Locale en_IN (English_India)

locale = new Locale("en", "IN");
OraNumberFormat onf = OraNumberFormat.getNumberInstance(locale);
String nm = onf.format(new Double(1234567.89));

// Obtain the monetary value 1234567.89 using the default currency
// format for the Locale en_US (American_America)

locale = new Locale("en", "US");

onf = OraNumberFormat.getCurrencyInstance(locale);
nm = onf.format(new Double(1234567.89));

8.7.5 Oracle Binary and Linguistic Sorts in the GDK
Oracle provides support for binary, monolingual, and multilingual linguistic sorts in the
database. In Oracle Database, these sorts provide case-insensitive and accent-insensitive
sorting and searching capabilities inside the database. By using the OraCollator class, the
GDK Java API enables Java applications to sort and search for information based on the latest
Oracle binary and linguistic sorting features, including case-insensitive and accent-insensitive
options.

Chapter 8
GDK Java API

8-31

Normalization can be an important part of sorting. The composition and decomposition of
characters are based on the Unicode standard; therefore, sorting also depends on the Unicode
standard. The GDK contains methods to perform composition.

Note:

Because each version of the JDK may support a different version of the Unicode
standard, the GDK provides an OraNormalizer class that is based on the latest
version of the Unicode standard, which for this release is Unicode 12.1.

The sorting order of a binary sort is based on the Oracle character set that is being used.
Except for the UTFE character set, the binary sorts of all Oracle character sets are supported
in the GDK Java API. The only linguistic sort that is not supported in the GDK Java API is
JAPANESE, but a similar and more accurate sorting result can be achieved by using JAPANESE_M.

The following example shows string comparisons and string sorting.

Example 8-3 String Comparisons and String Sorting

// compares strings using XGERMAN

private static String s1 = "abcSS";
private static String s2 = "abc\u00DF";

String cname = "XGERMAN";
OraCollator ocol = OraCollator.getInstance(cname);
int c = ocol.compare(s1, s2);

// sorts strings using GENERIC_M

private static String[] source =
 new String[]
 {
 "Hochgeschwindigkeitsdrucker",
 "Bildschirmfu\u00DF",
 "Skjermhengsel",
 "DIMM de Mem\u00F3ria",
 "M\u00F3dulo SDRAM com ECC",
 };

 cname = "GENERIC_M";
 ocol = OraCollator.getInstance(cname);
 List result = getCollationKeys(source, ocol);

private static List getCollationKeys(String[] source, OraCollator ocol)
{
 List karr = new ArrayList(source.length);
 for (int i = 0; i < source.length; ++i)
 {
 karr.add(ocol.getCollationKey(source[i]));
 }
 Collections.sort(karr); // sorting operation
 return karr;
}

Chapter 8
GDK Java API

8-32

8.7.6 Oracle Language and Character Set Detection in the GDK
The Oracle Language and Character Set Detection Java classes in the GDK Java API provide
a high performance, statistically based engine for determining the character set and language
for unspecified text. It can automatically identify language and character set pairs from
throughout the world. With each text, the language and character set detection engine sets up
a series of probabilities, each probability corresponding to a language and character set pair.
The most probable pair statistically identifies the dominant language and character set.

The purity of the text submitted affects the accuracy of the language and character set
detection. Only plain text strings are accepted, so any tagging must be stripped before hand.
The ideal case is literary text with almost no foreign words or grammatical errors. Text strings
that contain a mix of languages or character sets, or nonnatural language text like addresses,
phone numbers, and programming language code may yield poor results.

The LCSDetector class can detect the language and character set of a byte array, a character
array, a string, and an InputStream class. It supports both plain text and HTML file detection. It
can take the entire input for sampling or only portions of the input for sampling, when the
length or both the offset and the length are supplied. For each input, up to three potential
language and character set pairs can be returned by the LCSDetector class. They are always
ranked in sequence, with the pair with the highest probability returned first.

See Also:

"Language and Character Set Detection Support" for a list of supported language and
character set pairs

The following are examples of using the LCSDetector class to enable language and character
set detection:

// This example detects the character set of a plain text file "foo.txt" and
// then appends the detected ISO character set name to the name of the text file

LCSDetector lcsd = new LCSDetector();
File oldfile = new File("foo.txt");
FileInputStream in = new FileInputStream(oldfile);
lcsd.detect(in);
String charset = lcsd.getResult().getIANACharacterSet();
File newfile = new File("foo."+charset+".txt");
oldfile.renameTo(newfile);

// This example shows how to use the LCSDector class to detect the language and
// character set of a byte array

int offset = 0;
LCSDetector led = new LCSDetector();
/* loop through the entire byte array */
while (true)
{
 bytes_read = led.detect(byte_input, offset, 1024);
 if (bytes_read == -1)
 break;
 offset += bytes_read;
}
LCSDResultSet res = led.getResult();

Chapter 8
GDK Java API

8-33

/* print the detection results with close ratios */
System.out.println("the best guess ");
System.out.println("Langauge " + res.getOraLanguage());
System.out.println("CharacterSet " + res.getOraCharacterSet());
int high_hit = res.getHiHitPairs();
if (high_hit >= 2)
{
 System.out.println("the second best guess ");
 System.out.println("Langauge " + res.getOraLanguage(2));
 System.out.println("CharacterSet " +res.getOraCharacterSet(2));
}
if (high_hit >= 3)
{
 System.out.println("the third best guess ");
 System.out.println("Langauge " + res.getOraLanguage(3));
 System.out.println("CharacterSet " +res.getOraCharacterSet(3));
}

8.7.7 Oracle Translated Locale and Time Zone Names in the GDK
All of the Oracle language names, territory names, character set names, linguistic sort names,
and time zone names have been translated into 27 languages including English. They are
readily available for inclusion into the user applications, and they provide consistency for the
display names across user applications in different languages. OraDisplayLocaleInfo is a
utility class that provides the translations of locale and attributes. The translated names are
useful for presentation in user interface text and for drop-down selection boxes. For example, a
native French speaker prefers to select from a list of time zones displayed in French than in
English.

The following example shows using OraDisplayLocaleInfo to return a list of time zones
supported in Canada, using the French translation names.

Example 8-4 Using OraDisplayLocaleInfo to Return a Specific List of Time Zones

OraLocaleInfo oloc = OraLocaleInfo.getInstance("CANADIAN FRENCH", "CANADA");
OraDisplayLocaleInfo odloc = OraDisplayLocaleInfo.getInstance(oloc);
TimeZone[] loctzs = oloc.getLocaleTimeZones();
String [] disptz = new string [loctzs.length];
for (int i=0; i<loctzs.length; ++i)
{
 disptz [i]= odloc.getDisplayTimeZone(loctzs[i]);
 ...
}

8.7.8 Using the GDK with E-Mail Programs
You can use the GDK LocaleMapper class to retrieve the most commonly used e-mail
character set. Call LocaleMapper.getIANACharSetFromLocale, passing in the locale object.
The return value is an array of character set names. The first character set returned is the most
commonly used e-mail character set.

The following example illustrates sending an e-mail message containing Simplified Chinese
data in the GBK character set encoding.

Example 8-5 Sending E-mail Containing Simplified Chinese Data in GBK Character Set
Encoding

import oracle.i18n.util.LocaleMapper;
import java.util.Date;

Chapter 8
GDK Java API

8-34

import java.util.Locale;
import java.util.Properties;
import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeUtility;
/**
 * Email send operation sample
 *
 * javac -classpath orai18n.jar:j2ee.jar EmailSampleText.java
 * java -classpath .:orai18n.jar:j2ee.jar EmailSampleText
 */
public class EmailSampleText
{
 public static void main(String[] args)
 {
 send("localhost", // smtp host name
 "your.address@yourcompany.com", // from email address
 "You", // from display email
 "somebody@somecompany.com", // to email address
 "Subject test zh CN", // subject
 "Content ˘4E02 from Text email", // body
 new Locale("zh", "CN") // user locale
);
 }
 public static void send(String smtp, String fromEmail, String fromDispName,
 String toEmail, String subject, String content, Locale locale
)
 {
 // get the list of common email character sets
 final String[] charset = LocaleMapper.getIANACharSetFromLocale(LocaleMapper.
EMAIL_WINDOWS,
locale
);
 // pick the first one for the email encoding
 final String contentType = "text/plain; charset=" + charset[0];
 try
 {
 Properties props = System.getProperties();
 props.put("mail.smtp.host", smtp);
 // here, set username / password if necessary
 Session session = Session.getDefaultInstance(props, null);
 MimeMessage mimeMessage = new MimeMessage(session);
 mimeMessage.setFrom(new InternetAddress(fromEmail, fromDispName,
 charset[0]
)
);
 mimeMessage.setRecipients(Message.RecipientType.TO, toEmail);
 mimeMessage.setSubject(MimeUtility.encodeText(subject, charset[0], "Q"));
 // body
 mimeMessage.setContent(content, contentType);
 mimeMessage.setHeader("Content-Type", contentType);
 mimeMessage.setHeader("Content-Transfer-Encoding", "8bit");
 mimeMessage.setSentDate(new Date());
 Transport.send(mimeMessage);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

Chapter 8
GDK Java API

8-35

 }
}

8.8 The GDK Application Configuration File
The GDK application configuration file dictates the behavior and the properties of the GDK
application framework and the application that is using it. It contains locale mapping tables and
parameters for the configuration of the application. One configuration file is required for each
application.

The gdkapp.xml application configuration file is an XML document. This file resides in the ./
WEB-INF directory of the J2EE environment of the application.

The following sections describe the contents and the properties of the application configuration
file in detail:

• locale-charset-maps

• page-charset

• application-locales

• locale-determine-rule

• locale-parameter-name

• message-bundles

• url-rewrite-rule

• Example: GDK Application Configuration File

8.8.1 locale-charset-maps
This section enables applications to override the mapping from the language to the default
character set provided by the GDK. This mapping is used when the page-charset is set to
AUTO-CHARSET.

For example, for the en locale, the default GDK character set is windows-1252. However, if the
application requires ISO-8859-1, this can be specified as follows:

 <locale-charset-maps>
 <locale-charset>
 <locale>en</locale>
 <charset>ISO_8859-1</charset>
 </locale-charset>
 </locale-charset-maps>

The locale name is comprised of the language code and the country code, and they should
follow the ISO naming convention as defined in ISO 639 and ISO 3166, respectively. The
character set name follows the IANA convention.

Optionally, the user-agent parameter can be specified in the mapping table to distinguish
different clients as follows:

<locale-charset>
 <locale>en,de</locale>
 <user-agent>^Mozilla⁄4.0</user-agent>
 <charset>ISO-8859-1</charset>
</locale-charset>

Chapter 8
The GDK Application Configuration File

8-36

The previous example shows that if the user-agent value in the HTTP header starts with
Mozilla/4.0 (which indicates an older version of Web clients) for English (en) and German
(de) locales, then the GDK sets the character set to ISO-8859-1.

Multiple locales can be specified in a comma-delimited list.

See Also:

"page-charset"

8.8.2 page-charset
This tag section defines the character set of the application pages. If this is explicitly set to a
given character set, then all pages use this character set. The character set name must follow
the IANA character set convention, for example:

<page-charset>UTF-8</page-charset>

However, if the page-charset is set to AUTO-CHARSET, then the character set is based on the
default character set of the current user locale. The default character set is derived from the
locale to character set mapping table specified in the application configuration file.

If the character set mapping table in the application configuration file is not available, then the
character set is based on the default locale name to IANA character set mapping table in the
GDK. Default mappings are derived from OraLocaleInfo class.

See Also:

• "locale-charset-maps"

• "Handling Non-ASCII Input and Output in the GDK Framework"

8.8.3 application-locales
This tag section defines a list of the locales supported by the application. For example:

<application-locales>
 <locale default="yes">en-US</locale>
 <locale>de</locale>
 <locale>zh-CN</locale>
</application-locales>

If the language component is specified with the * country code, then all locale names with this
language code qualify. For example, if de-* (the language code for German) is defined as one
of the application locales, then this supports de-AT (German- Austria), de (German-Germany),
de-LU (German-Luxembourg), de-CH (German-Switzerland), and even irregular locale
combination such as de-CN (German-China). However, the application can be restricted to
support a predefined set of locales.

It is recommended to set one of the application locales as the default application locale (by
specifying default="yes") so that it can be used as a fall back locale for customers who are
connecting to the application with an unsupported locale.

Chapter 8
The GDK Application Configuration File

8-37

8.8.4 locale-determine-rule
This section defines the order in which the preferred user locale is determined. The locale
sources should be specified based on the scenario in the application. This section includes the
following scenarios:

• Scenario 1: The GDK framework uses the accept language at all times.

 <locale-source>
 oracle.i18n.servlet.localesource.HTTPAcceptLanguage
 </locale-source>

• Scenario 2: By default, the GDK framework uses the accept language. After the user
specifies the locale, the locale is used for further operations.

 <locale-source>
 oracle.i18n.servlet.localesource.UserInput
 </locale-source>

 <locale-source>
 oracle.i18n.servlet.localesource.HTTPAcceptLanguage
 </locale-source>

• Scenario 3: By default, the GDK framework uses the accept language. After the user is
authenticated, the GDK framework uses the database locale source. The database locale
source is cached until the user logs out. After the user logs out, the accept language is
used again.

 <db-locale-source
 data-source-name="jdbc/OracleCoreDS"
 locale-source-table="customer"
 user-column="customer_email"
 user-key="userid"
 language-column="nls_language"
 territory-column="nls_territory"
 timezone-column="timezone">

 oracle.i18n.servlet.localesource.DBLocaleSource

 </db-locale-source>

 <locale-source>
 oracle.i18n.servlet.localesource.HttpAcceptLanguage
 </locale-source>

Note that Scenario 3 includes the predefined database locale source, DBLocaleSource. It
enables the user profile information to be specified in the configuration file without writing a
custom database locale source. In the example, the user profile table is called "customer".
The columns are "customer_email", "nls_language", "nls_territory", and "timezone".
They store the unique e-mail address, the Oracle name of the preferred language, the Oracle
name of the preferred territory, and the time zone ID of a customer. The user-key is a
mandatory attribute that specifies the attribute name used to pass the user ID from the
application to the GDK framework.

• Scenario 4: The GDK framework uses the accept language in the first page. When the
user inputs a locale, it is cached and used until the user logs into the application. After the
user is authenticated, the GDK framework uses the database locale source. The database
locale source is cached until the user logs out. After the user logs out, the accept language
is used again or the user input is used if the user inputs a locale.

 <locale-source>
 demo.DatabaseLocaleSource
 </locale-source>

Chapter 8
The GDK Application Configuration File

8-38

 <locale-source>
 oracle.i18n.servlet.localesource.UserInput
 </locale-source>
 <locale-source>
 oracle.i18n.servlet.localesource.HttpAcceptLanguage
 </locale-source>

Note that Scenario 4 uses the custom database locale source. If the user profile schema is
complex, such as user profile information separated into multiple tables, then the custom locale
source should be provided by the application. Examples of custom locale sources can be
found in the $ORACLE_HOME/nls/gdk/demo directory.

8.8.5 locale-parameter-name
This tag defines the name of the locale parameters that are used in the user input so that the
current user locale can be passed between requests.

Table 8-3 shows the parameters used in the GDK framework.

Table 8-3 Locale Parameters Used in the GDK Framework

Default Parameter Name Value

locale ISO locale where ISO 639 language code and ISO 3166 country code are connected with
an underscore (_) or a hyphen (-). For example, zh_CN for Simplified Chinese used in
China.

language Oracle language name. For example, AMERICAN for American English.

territory Oracle territory name. For example, SPAIN.

timezone Time zone name. For example, American/Los_Angeles.

iso-currency ISO 4217 currency code. For example, EUR for the euro.

date-format Date format pattern mask. For example, DD_MON_RRRR.

long-date-format Long date format pattern mask. For example, DAY-YYY-MM-DD.

date-time-format Date and time format pattern mask. For example, DD-MON-RRRR HH24:MI:SS.

long-date-time-format Long date and time format pattern mask. For example, DAY YYYY-MM-DD HH12:MI:SS
AM.

time-format Time format pattern mask. For example, HH:MI:SS.

number-format Number format. For example, 9G99G990D00.

currency-format Currency format. For example, L9G99G990D00.

linguistic-sorting Linguistic sort order name. For example, JAPANESE_M for Japanese multilingual sort.

charset Character set. For example, WE8ISO8859P15.

writing-direction Writing direction string. For example, LTR for left-to-right writing direction or RTL for right-to-
left writing direction.

command GDK command. For example, store for the update operation.

The parameter names are used in either the parameter in the HTML form or in the URL.

8.8.6 message-bundles
This tag defines the base class names of the resource bundles used in the application. The
mapping is used in the Localizer.getMessage method for locating translated text in the
resource bundles.

Chapter 8
The GDK Application Configuration File

8-39

<message-bundles>
 <resource-bundle>Messages</resource-bundle>
 <resource-bundle name="newresource">NewMessages</resource-bundle>
</message-bundles>

If the name attribute is not specified or if it is specified as name="default" to the <resource-
bundle> tag, then the corresponding resource bundle is used as the default message bundle.
To support more than one resource bundle in an application, resource bundle names must be
assigned to the nondefault resource bundles. The nondefault bundle names must be passed
as a parameter of the getMessage method.

For example:

 Localizer loc = ServletHelper.getLocalizerInstance(request);
 String translatedMessage = loc.getMessage("Hello");
 String translatedMessage2 = loc.getMessage("World", "newresource");

8.8.7 url-rewrite-rule
This tag is used to control the behavior of the URL rewrite operations. The rewriting rule is a
regular expression.

<url-rewrite-rule fallback="no">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>$1/$L/$2</result>
</url-rewrite-rule>

See Also:

"Managing Localized Content in the GDK"

If the localized content for the requested locale is not available, then it is possible for the GDK
framework to trigger the locale fallback mechanism by mapping it to the closest translation
locale. By default, the fallback option is turned off. This can be turned on by specifying
fallback="yes".

For example, suppose an application supports only the following translations: en, de, and ja,
and en is the default locale of the application. If the current application locale is de-US, then it
falls back to de. If the user selects zh-TW as its application locale, then it falls back to en.

A fallback mechanism is often necessary if the number of supported application locales is
greater than the number of the translation locales. This usually happens if multiple locales
share one translation. One example is Spanish. The application may need to support multiple
Spanish-speaking countries and not just Spain, with one set of translation files.

Multiple URL rewrite rules can be specified by assigning the name attribute to nondefault URL
rewrite rules. To use the nondefault URL rewrite rules, the name must be passed as a
parameter of the rewrite URL method. For example:

<img src="<%=ServletHelper.rewriteURL("images/welcome.gif", request) %>">
<img src="<%=ServletHelper.rewriteURL("US.gif", "flag", request) %>">

The first rule changes the "images/welcome.gif" URL to the localized welcome image file.
The second rule named "flag" changes the "US.gif" URL to the user's country flag image
file. The rule definition should be as follows:

Chapter 8
The GDK Application Configuration File

8-40

<url-rewrite-rule fallback="yes">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>$1/$L/$2</result>
</url-rewrite-rule>
<url-rewrite-rule name="flag">
 <pattern>US.gif/pattern>
 <result>$C.gif</result>
</url-rewrite-rule>

8.8.8 Example: GDK Application Configuration File
This section contains an example of an application configuration file with the following
application properties:

• The application supports the following locales: Arabic (ar), Greek (el), English (en),
German (de), French (fr), Japanese (ja) and Simplified Chinese for China (zh-CN).

• English is the default application locale.

• The page character set for the ja locale is always UTF-8.

• The page character set for the en and de locales when using an Internet Explorer client is
windows-1252.

• The page character set for the en, de, and fr locales on other web browser clients is
iso-8859-1.

• The page character sets for all other locales are the default character set for the locale.

• The user locale is determined by the following order: user input locale and then Accept-
Language.

• The localized contents are stored in their appropriate language subfolders. The folder
names are derived from the ISO 639 language code. The folders are located in the root
directory of the application. For example, the Japanese file for /shop/welcome.jpg is
stored in /ja/shop/welcome.jpg.

<?xml version="1.0" encoding="utf-8"?>
<gdkapp
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="gdkapp.xsd">
 <!-- Language to Character set mapping -->
 <locale-charset-maps>
 <locale-charset>
 <locale>ja</locale>
 <charset>UTF-8</charset>
 </locale-charset>
 <locale-charset>
 <locale>en,de</locale>
 <user-agent>^Mozilla\/[0-9\.]+\(compatible; MSIE [^;]+; \)
 </user-agent>
 <charset>WINDOWS-1252</charset>
 </locale-charset>
 <locale-charset>
 <locale>en,de,fr</locale>
 <charset>ISO-8859-1</charset>
 </locale-charset>
 </locale-charset-maps>

 <!-- Application Configurations -->
 <page-charset>AUTO-CHARSET</page-charset>
 <application-locales>
 <locale>ar</locale>
 <locale>de</locale>
 <locale>fr</locale>
 <locale>ja</locale>

Chapter 8
The GDK Application Configuration File

8-41

 <locale>el</locale>
 <locale default="yes">en</locale>
 <locale>zh-CN</locale>
 </application-locales>
 <locale-determine-rule>
 <locale-source>
 oracle.i18n.servlet.localesource.UserInput
 </locale-source>
 <locale-source>
 oracle.i18n.servlet.localesource.HttpAcceptLanguage
 </locale-source>
 </locale-determine-rule>
 <!-- URL rewriting rule -->
 <url-rewrite-rule fallback="no">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>/$L/$1/$2</result>
 </url-rewrite-rule>
</gdkapp>

8.9 GDK for Java Supplied Packages and Classes
Oracle Globalization Services for Java contains the following packages:

• oracle.i18n.lcsd

• oracle.i18n.net

• oracle.i18n.servlet

• oracle.i18n.text

• oracle.i18n.util

See Also:

Oracle Globalization Development Kit Java API Reference

8.9.1 oracle.i18n.lcsd
Package oracle.i18n.lcsd provides classes to automatically detect and recognize language
and character set based on text input. It supports the detection of both plain text and HTML
files. Language is based on ISO; encoding is based on IANA or Oracle character sets. It
includes the following classes:

• LCSDetector: Contains methods to automatically detect and recognize language and
character set based on text input.

• LCSDResultSet: Stores the result generated by LCSDetector. Methods in this class can be
used to retrieve specific information from the result.

• LCSDetectionInputStream: Transparently detects the language and encoding for a stream
object.

• LCSDetectionReader: Transparently detects the language and encoding, and converts the
input data to Unicode.

• LCSDetectionHTMLInputStream: Extends the LCSDetectionInputStream class to support
the language and encoding detection for input in HTML format.

• LCSDetectionHTMLReader: Extends the LCSDetectionReader class to support the language
and encoding detection for input in HTML format.

Chapter 8
GDK for Java Supplied Packages and Classes

8-42

8.9.1.1 LCSScan
The Language and Character Set File Scanner (Java Version) is a statistically-based utility for
determining the language and character set for unknown file text. Its functionality and usage
are similar to the Language and Character Set File Scanner of the "C" Version.

See Also:

"The Language and Character Set File Scanner"

8.9.1.1.1 Syntax of the LCSScan Command
Usage: java LCSScan <options>
Example: java LCSScan FILE=test.txt RESULTS=3 SIZE=10000

Keyword Description (Default)
------- -------------- --------
RESULTS number of language and character set pairs to return 1..3 1
SIZE sampling size of the file in bytes 8192
FORMAT file format TEXT or HTML TEXT
RATIO show result ratio YES or NO NO
FILE name of input file
HELP show help screen this screen

8.9.1.1.2 Examples of Using LCSScan
Make sure that the orai18n-lcsd.jar and orai18n-mapping.jar files are in the CLASSPATH.

Example 8-6 Specifying the File Name in the LCSScan Command

java oracle/i18n/lcsd/LCSScan FILE=example.txt

In this example, 8192 bytes of example.txt file is scanned. One language and character set
pair will be returned.

Example 8-7 Specifying the File Name and Sampling Size in the LCSScan Command

java oracle/i18n/lcsd/LCSScan FILE=example.txt SIZE=4096

In this example, 4096 bytes of example.txt file is scanned. One language and character set
pair will be returned.

Example 8-8 Specifying the File Name and Number of Language and Character Set
Pairs in the LCSScan Command

java oracle/i18n/lcsd/LCSScan FILE=example.txt RESULTS=3

In this example, 8192 bytes of example.txt file is scanned. Three language and character set
pairs will be returned.

Example 8-9 Specifying the File Name and Show Result Ratio in the LCSScan
Command

java oracle/i18n/lcsd/LCSScan FILE=example.txt RATIO=YES

Chapter 8
GDK for Java Supplied Packages and Classes

8-43

In this example, 8192 bytes of example.txt file is scanned. One language and character set
pair will be returned with the result ratio.

Example 8-10 Specifying the File Name and Format as HTML

java oracle/i18n/lcsd/LCSScan FILE=example.html FORMAT=html

In this example, 8192 bytes of example.html file is scanned. The scan will strip HTML tags
before the scan, thus results are more accurate. One language and character set pair will be
returned.

8.9.2 oracle.i18n.net
Package oracle.i18n.net provides Internet-related data conversions for globalization. It
includes the following classes:

• CharEntityReference: A utility class to escape or unescape a string into character
reference or entity reference form.

• CharEntityReference.Form: A form parameter class that specifies the escaped form.

8.9.3 oracle.i18n.servlet
Package oracle.i18n.Servlet enables JSP and JavaServlet to have automatic locale support
and also returns the localized contents to the application. It includes the following classes:

• ApplicationContext: Performs application scope operations in the framework.

• Localizer: Provides access to the most commonly used globalization information.

• ServletHelper: Bridges Java servlets and globalization objects.

8.9.4 oracle.i18n.text
Package oracle.i18n.text provides general text data globalization support. It includes the
following classes:

• OraCollationKey: Represents a String under certain rules of a specific OraCollator
object.

• OraCollator: Performs locale-sensitive string comparison, including linguistic collation and
binary sorting.

• OraDateFormat: Performs formatting and parsing between datetime and string locale. It
supports Oracle datetime formatting behavior.

• OraDecimalFormat: Performs formatting and parsing between number and string locale. It
supports Oracle number formatting behavior.

• OraDecimalFormatSymbol: Contains Oracle format symbols used by Oracle number and
currency formatting.

• OraNumberFormat: Performs formatting and parsing between number and string locale. It
supports Oracle number formatting behavior.

• OraSimpleDateFormat: Performs formatting and parsing between datetime and string
locale. It supports Oracle datetime formatting behavior.

Chapter 8
GDK for Java Supplied Packages and Classes

8-44

8.9.5 oracle.i18n.util
Package oracle.i18n.util provides general utilities for globalization support. It includes the
following classes:

• LocaleMapper: Provides mappings between Oracle locale elements and equivalent locale
elements in other vendors and standards.

• OraDisplayLocaleInfo: Provides translations of locale and attributes.

• OraLocaleInfo: Contains the language, territory, and collator objects.

• OraSQLUtil: Provides useful methods for dealing with SQL.

8.10 GDK for PL/SQL Supplied Packages
The GDK for PL/SQL includes the following PL/SQL packages:

• UTL_I18N
• UTL_LMS
UTL_I18N is a set of PL/SQL services that help developers to build globalized applications. The
UTL_I18N PL/SQL package provides the following functions:

• String conversion functions for various data types

• Escape and unescape sequences for predefined characters and multibyte characters used
by HTML and XML documents

• Functions that map between Oracle, Internet Assigned Numbers Authority (IANA), ISO,
and e-mail application character sets, languages, and territories

• A function that returns the Oracle character set name from an Oracle language name

• A function that performs script transliteration

• Functions that return the ISO currency code, local time zones, and local languages
supported for a given territory

• Functions that return the most commonly used linguistic sort, a listing of all applicable
linguistic sorts, and the local territories supported for a given language

• Functions that map between Oracle full and short language names

• A function that returns the language translation of a given language and territory name

• A function that returns a listing of the most commonly used time zones

• A function that returns the maximum number of bytes for a character of an Oracle
character set

• Functions that validate the character encoding of VARCHAR2, NVARCHAR2, CLOB, and
NCLOB data

UTL_LMS retrieves and formats error messages in different languages.

Chapter 8
GDK for PL/SQL Supplied Packages

8-45

See Also:

"UTL_I18N" and "UTL_LMS" in the Oracle Database PL/SQL Packages and Types
Reference

8.11 GDK Error Messages
GDK-03001 Invalid or unsupported sorting rule
Cause: An invalid or unsupported sorting rule name was specified.

Action: Choose a valid sorting rule name and check the Globalization Support Guide for the
list of sorting rule names.

GDK-03002 The functional-driven sort is not supported.
Cause: A functional-driven sorting rule name was specified.

Action: Choose a valid sorting rule name and check the Globalization Support Guide for the
list of sorting rule names.

GDK-03003 The linguistic data file is missing.
Cause: A valid sorting rule was specified, but the associated data file was not found.

Action: Make sure the GDK jar files are correctly installed in the Java application.

GDK-03005 Binary sort is not available for the specified character set .
Cause: Binary sorting for the specified character set is not supported.

Action: Check the Globalization Support Guide for a character set that supports binary sort.

GDK-03006 The comparison strength level setting is invalid.
Cause: An invalid comparison strength level was specified.

Action: Choose a valid comparison strength level from the list -- PRIMARY, SECONDARY or
TERTIARY.

GDK-03007 The composition level setting is invalid.
Cause: An invalid composition level setting was specified.

Action: Choose a valid composition level from the list -- NO_COMPOSITION or
CANONICAL_COMPOSITION.

GDK-04001 Cannot map Oracle character to Unicode
Cause: The program attempted to use a character in the Oracle character set that cannot be
mapped to Unicode.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

GDK-04002 Cannot map Unicode to Oracle character
Cause: The program attempted to use an Unicode character that cannot be mapped to a
character in the Oracle character set.

Chapter 8
GDK Error Messages

8-46

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

GDK-05000 A literal in the date format is too large.
Cause: The specified string literal in the date format was too long.

Action: Use a shorter string literal in the date format.

GDK-05001 The date format is too long for internal buffer.
Cause: The date format pattern was too long.

Action: Use a shorter date format pattern.

GDK-05002 The Julian date is out of range.
Cause: An illegal date range was specified.

Action: Make sure that date is in the specified range 0 - 3439760.

GDK-05003 Failure in retrieving date/time
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05010 Duplicate format code found
Cause: The same format code was used more than once in the format pattern.

Action: Remove the redundant format code.

GDK-05011 The Julian date precludes the use of the day of the year.
Cause: Both the Julian date and the day of the year were specified.

Action: Remove either the Julian date or the day of the year.

GDK-05012 The year may only be specified once.
Cause: The year format code appeared more than once.

Action: Remove the redundant year format code.

GDK-05013 The hour may only be specified once.
Cause: The hour format code appeared more than once.

Action: Remove the redundant hour format code.

GDK-05014 The AM/PM conflicts with the use of A.M./P.M.
Cause: AM/PM was specified along with A.M./P.M.

Action: Use either AM/PM or A.M./P.M; do not use both.

GDK-05015 The BC/AD conflicts with the use of B.C./A.D.
Cause: BC/AD was specified along with B.C./A.D.

Action: Use either BC/AD or B.C./A.D.; do not use both.

GDK-05016 Duplicate month found
Cause: The month format code appeared more than once.

Action: Remove the redundant month format code.

Chapter 8
GDK Error Messages

8-47

GDK-05017 The day of the week may only be specified once.
Cause: The day of the week format code appeared more than once.

Action: Remove the redundant day of the week format code.

GDK-05018 The HH24 precludes the use of meridian indicator.
Cause: HH24 was specified along with the meridian indicator.

Action: Use either the HH24 or the HH12 with the meridian indicator.

GDK-05019 The signed year precludes the use of BC/AD.
Cause: The signed year was specified along with BC/AD.

Action: Use either the signed year or the unsigned year with BC/AD.

GDK-05020 A format code cannot appear in a date input format.
Cause: A format code appeared in a date input format.

Action: Remove the format code.

GDK-05021 Date format not recognized
Cause: An unsupported format code was specified.

Action: Correct the format code.

GDK-05022 The era format code is not valid with this calendar.
Cause: An invalid era format code was specified for the calendar.

Action: Remove the era format code or use anther calendar that supports the era.

GDK-05030 The date format pattern ends before converting entire input string.
Cause: An incomplete date format pattern was specified.

Action: Rewrite the format pattern to cover the entire input string.

GDK-05031 The year conflicts with the Julian date.
Cause: An incompatible year was specified for the Julian date.

Action: Make sure that the Julian date and the year are not in conflict.

GDK-05032 The day of the year conflicts with the Julian date.
Cause: An incompatible day of year was specified for the Julian date.

Action: Make sure that the Julian date and the day of the year are not in conflict.

GDK-05033 The month conflicts with the Julian date.
Cause: An incompatible month was specified for the Julian date.

Action: Make sure that the Julian date and the month are not in conflict.

GDK-05034 The day of the month conflicts with the Julian date.
Cause: An incompatible day of the month was specified for the Julian date.

Action: Make sure that the Julian date and the day of the month are not in conflict.

GDK-05035 The day of the week conflicts with the Julian date.
Cause: An incompatible day of the week was specified for the Julian date.

Chapter 8
GDK Error Messages

8-48

Action: Make sure that the Julian date and the day of week are not in conflict.

GDK-05036 The hour conflicts with the seconds in the day.
Cause: The specified hour and the seconds in the day were not compatible.

Action: Make sure the hour and the seconds in the day are not in conflict.

GDK-05037 The minutes of the hour conflicts with the seconds in the day.
Cause: The specified minutes of the hour and the seconds in the day were not compatible.

Action: Make sure the minutes of the hour and the seconds in the day are not in conflict.

GDK-05038 The seconds of the minute conflicts with the seconds in the day.
Cause: The specified seconds of the minute and the seconds in the day were not compatible.

Action: Make sure the seconds of the minute and the seconds in the day are not in conflict.

GDK-05039 Date not valid for the month specified
Cause: An illegal date for the month was specified.

Action: Check the date range for the month.

GDK-05040 Input value not long enough for the date format
Cause: Too many format codes were specified.

Action: Remove unused format codes or specify a longer value.

GDK-05041 A full year must be between -4713 and +9999, and not be 0.
Cause: An illegal year was specified.

Action: Specify the year in the specified range.

GDK-05042 A quarter must be between 1 and 4.
Cause: Cause: An illegal quarter was specified.

Action: Action: Make sure that the quarter is in the specified range.

GDK-05043 Not a valid month
Cause: An illegal month was specified.

Action: Make sure that the month is between 1 and 12 or has a valid month name.

GDK-05044 The week of the year must be between 1 and 52.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK-05045 The week of the month must be between 1 and 5.
Cause: An illegal week of the month was specified.

Action: Make sure that the week of the month is in the specified range.

GDK-05046 Not a valid day of the week
Cause: An illegal day of the week was specified.

Action: Make sure that the day of the week is between 1 and 7 or has a valid day name.

Chapter 8
GDK Error Messages

8-49

GDK-05047 A day of the month must be between 1 and the last day of the month.
Cause: An illegal day of the month was specified.

Action: Make sure that the day of the month is in the specified range.

GDK-05048 A day of year must be between 1 and 365 (366 for leap year).
Cause: An illegal day of the year was specified.

Action: Make sure that the day of the year is in the specified range.

GDK-05049 An hour must be between 1 and 12.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05050 An hour must be between 0 and 23.
Cause: An illegal hour was specified.

Action: Make sure that the hour is in the specified range.

GDK-05051 A minute must be between 0 and 59.
Cause: Cause: An illegal minute was specified.

Action: Action: Make sure the minute is in the specified range.

GDK-05052 A second must be between 0 and 59.
Cause: An illegal second was specified.

Action: Make sure the second is in the specified range.

GDK-05053 A second in the day must be between 0 and 86399.
Cause: An illegal second in the day was specified.

Action: Make sure second in the day is in the specified range.

GDK-05054 The Julian date must be between 1 and 5373484.
Cause: An illegal Julian date was specified.

Action: Make sure that the Julian date is in the specified range.

GDK-05055 Missing AM/A.M. or PM/P.M.
Cause: Neither AM/A.M. nor PM/P.M. was specified in the format pattern.

Action: Specify either AM/A.M. or PM/P.M.

GDK-05056 Missing BC/B.C. or AD/A.D.
Cause: Neither BC/B.C. nor AD/A.D. was specified in the format pattern.

Action: Specify either BC/B.C. or AD/A.D.

GDK-05057 Not a valid time zone
Cause: An illegal time zone was specified.

Action: Specify a valid time zone.

GDK-05058 Non-numeric character found
Cause: A non-numeric character was found where a numeric character was expected.

Chapter 8
GDK Error Messages

8-50

Action: Make sure that the character is a numeric character.

GDK-05059 Non-alphabetic character found
Cause: A non-alphabetic character was found where an alphabetic was expected.

Action: Make sure that the character is an alphabetic character.

GDK-05060 The week of the year must be between 1 and 53.
Cause: An illegal week of the year was specified.

Action: Make sure that the week of the year is in the specified range.

GDK-05061 The literal does not match the format string.
Cause: The string literals in the input were not the same length as the literals in the format
pattern (with the exception of the leading whitespace).

Action: Correct the format pattern to match the literal. If the "FX" modifier has been toggled on,
the literal must match exactly, with no extra whitespace.

GDK-05062 The numeric value does not match the length of the format item.
Cause: The numeric value did not match the length of the format item.

Action: Correct the input date or turn off the FX or FM format modifier. When the FX and FM
format codes are specified for an input date, then the number of digits must be exactly the
number specified by the format code. For example, 9 will not match the format code DD but 09
will.

GDK-05063 The year is not supported for the current calendar.
Cause: An unsupported year for the current calendar was specified.

Action: Check the Globalization Support Guide to find out what years are supported for the
current calendar.

GDK-05064 The date is out of range for the calendar.
Cause: The specified date was out of range for the calendar.

Action: Specify a date that is legal for the calendar.

GDK-05065 Invalid era
Cause: An illegal era was specified.

Action: Make sure that the era is valid.

GDK-05066 The datetime class is invalid.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05067 The interval is invalid.
Cause: An invalid interval was specified.

Action: Specify a valid interval.

GDK-05068 The leading precision of the interval is too small.
Cause: The specified leading precision of the interval was too small to store the interval.

Action: Increase the leading precision of the interval or specify an interval with a smaller
leading precision.

Chapter 8
GDK Error Messages

8-51

GDK-05069 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05070 The specified intervals and datetimes were not mutually comparable.
Cause: The specified intervals and datetimes were not mutually comparable.

Action: Specify a pair of intervals or datetimes that are mutually comparable.

GDK-05071 The number of seconds must be less than 60.
Cause: The specified number of seconds was greater than 59.

Action: Specify a value for the seconds to 59 or smaller.

GDK-05072 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05073 The leading precision of the interval was too small.
Cause: The specified leading precision of the interval was too small to store the interval.

Action: Increase the leading precision of the interval or specify an interval with a smaller
leading precision.

GDK-05074 An invalid time zone hour was specified.
Cause: The hour in the time zone must be between -12 and 13.

Action: Specify a time zone hour between -12 and 13.

GDK-05075 An invalid time zone minute was specified.
Cause: The minute in the time zone must be between 0 and 59.

Action: Specify a time zone minute between 0 and 59.

GDK-05076 An invalid year was specified.
Cause: A year must be at least -4713.

Action: Specify a year that is greater than or equal to -4713.

GDK-05077 The string is too long for the internal buffer.
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05078 The specified field was not found in the datetime or interval.
Cause: The specified field was not found in the datetime or interval.

Action: Make sure that the specified field is in the datetime or interval.

GDK-05079 An invalid hh25 field was specified.
Cause: The hh25 field must be between 0 and 24.

Action: Specify an hh25 field between 0 and 24.

GDK-05080 An invalid fractional second was specified.
Cause: The fractional second must be between 0 and 999999999.

Chapter 8
GDK Error Messages

8-52

Action: Specify a value for fractional second between 0 and 999999999.

GDK-05081 An invalid time zone region ID was specified.
Cause: The time zone region ID specified was invalid.

Action: Contact Oracle Support Services.

GDK-05082 Time zone region name not found
Cause: The specified region name cannot be found.

Action: Contact Oracle Support Services.

GDK-05083 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-05084 Internal formatting error
Cause: This is an internal error.

Action: Contact Oracle Support Services.

GDK-05085 Invalid object type
Cause: An illegal object type was specified.

Action: Use a supported object type.

GDK-05086 Invalid date format style
Cause: An illegal format style was specified.

Action: Choose a valid format style.

GDK-05087 A null format pattern was specified.
Cause: The format pattern cannot be null.

Action: Provide a valid format pattern.

GDK-05088 Invalid number format model
Cause: An illegal number format code was specified.

Action: Correct the number format code.

GDK-05089 Invalid number
Cause: An invalid number was specified.

Action: Correct the input.

GDK-05090 Reserved for future use
Cause: Reserved.

Action: Reserved.

GDK-0509 Datetime/interval internal error
Cause: This is an internal error.

Action: Contact Oracle Support Services.

Chapter 8
GDK Error Messages

8-53

GDK-05098 Too many precision specifiers
Cause: Extra data was found in the date format pattern while the program attempted to
truncate or round dates.

Action: Check the syntax of the date format pattern.

GDK-05099 Bad precision specifier
Cause: An illegal precision specifier was specified.

Action: Use a valid precision specifier.

GDK-05200 Missing WE8ISO8859P1 data file
Cause: The character set data file for WE8ISO8859P1 was not installed.

Action: Make sure the GDK jar files are installed properly in the Java application.

GDK-05201 Failed to convert to a hexadecimal value
Cause: An invalid hexadecimal string was included in the HTML/XML data.

Action: Make sure the string includes the hexadecimal character in the form of &x[0-9A-Fa-f]
+;.

GDK-05202 Failed to convert to a decimal value
Cause: An invalid decimal string was found in the HTML/XML data.

Action: Make sure the string includes the decimal character in the form of &[0-9]+;.

GDK-05203 Unregistered character entity
Cause: An invalid character entity was found in the HTML/XML data.

Action: Use a valid character entity value in HTML/XML data. See HTML/XML standards for
the registered character entities.

GDK-05204 Invalid Quoted-Printable value
Cause: An invalid Quoted-Printable data was found in the data.

Action: Make sure the input data has been encoded in the proper Quoted-Printable form.

GDK-05205 Invalid MIME header format
Cause: An invalid MIME header format was specified.

Action: Check RFC 2047 for the MIME header format. Make sure the input data conforms to
the format.

GDK-05206 Invalid numeric string
Cause: An invalid character in the form of %FF was found when a URL was being decoded.

Action: Make sure the input URL string is valid and has been encoded correctly; %FF needs to
be a valid hex number.

GDK-05207 Invalid class of the object, key, in the user-defined locale to charset
mapping"
Cause: The class of key object in the user-defined locale to character set mapping table was
not java.util.Locale.

Action: When you construct the Map object for the user-defined locale to character set
mapping table, specify java.util.Locale for the key object.

Chapter 8
GDK Error Messages

8-54

GDK-05208 Invalid class of the object, value, in the user-defined locale to charset
mapping
Cause: The class of value object in the user-defined locale to character set mapping table was
not java.lang.String.

Action: When you construct the Map object for the user-defined locale to character set
mapping table, specify java.lang.String for the value object.

GDK-05209 Invalid rewrite rule
Cause: An invalid regular expression was specified for the match pattern in the rewrite rule.

Action: Make sure the match pattern for the rewriting rule uses a valid regular expression.

GDK-05210 Invalid character set
Cause: An invalid character set name was specified.

Action: Specify a valid character set name.

GDK-0521 Default locale not defined as a supported locale
Cause: The default application locale was not included in the supported locale list.

Action: Include the default application locale in the supported locale list or change the default
locale to the one that is in the list of the supported locales.

GDK-05212 The rewriting rule must be a String array with three elements.
Cause: The rewriting rule parameter was not a String array with three elements.

Action: Make sure the rewriting rule parameter is a String array with three elements. The first
element represents the match pattern in the regular expression, the second element
represents the result pattern in the form specified in the JavaDoc of ServletHelper.rewriteURL,
and the third element represents the Boolean value "True" or "False" that specifies whether
the locale fallback operation is performed or not.

GDK-05213 Invalid type for the class of the object, key, in the user-defined parameter
name mapping
Cause: The class of key object in the user-defined parameter name mapping table was not
java.lang.String.

Action: When you construct the Map object for the user-defined parameter name mapping
table, specify java.lang.String for the key object.

GDK-05214 The class of the object, value, in the user-defined parameter name mapping,
must be of type \"java.lang.String\".
Cause: The class of value object in the user-defined parameter name mapping table was not
java.lang.String.

Action: When you construct the Map object for the user-defined parameter name mapping
table, specify java.lang.String for the value object.

GDK-05215 Parameter name must be in the form [a-z][a-z0-9]*.
Cause: An invalid character was included in the parameter name.

Action: Make sure the parameter name is in the form of [a-z][a-z0-9]*.

GDK-05216 The attribute \"var\" must be specified if the attribute \"scope\" is set.
Cause: Despite the attribute "scope" being set in the tag, the attribute "var" was not specified.

Action: Specify the attribute "var" for the name of variable.

Chapter 8
GDK Error Messages

8-55

GDK-05217 The \"param\" tag must be nested inside a \"message\" tag.
Cause: The "param" tag was not nested inside a "message" tag.

Action: Make sure the tag "param" is inside the tag "message".

GDK-05218 Invalid \"scope\" attribute is specified.
Cause: An invalid "scope" value was specified.

Action: Specify a valid scope as either "application," "session," "request," or "page".

GDK-05219 Invalid date format style
Cause: The specified date format style was invalid.

Action: Specify a valid date format style as either "default," "short," or "long"

GDK-05220 No corresponding Oracle character set exists for the IANA character set.
Cause: An unsupported IANA character set name was specified.

Action: Specify the IANA character set that has a corresponding Oracle character set.

GDK-05221 Invalid parameter name
Cause: An invalid parameter name was specified in the user-defined parameter mapping
table.

Action: Make sure the specified parameter name is supported. To get the list of supported
parameter names, call LocaleSource.Parameter.toArray.

GDK-05222 Invalid type for the class of the object, key, in the user-defined message
bundle mapping.
Cause: The class of key object in the user-defined message bundle mapping table was not
"java.lang.String."

Action: When you construct the Map object for the user-defined message bundle mapping
table, specify java.lang.String for the key object.

GDK-05223 Invalid type for the class of the object, value, in the user-defined message
bundle mapping
Cause: The class of value object in the user-defined message bundle mapping table was not
"java.lang.String."

Action: When you construct the Map object for the user-defined message bundle mapping
table, specify java.lang.String for the value object.

GDK-05224 Invalid locale string
Cause: An invalid character was included in the specified ISO locale names in the GDK
application configuration file.

Action: Make sure the ISO locale names include only valid characters. A typical name format
is an ISO 639 language followed by an ISO 3166 country connected by a dash character; for
example, "en-US" is used to specify the locale for American English in the United States.

GDK-06001 LCSDetector profile not available
Cause: The specified profile was not found.

Action: Make sure the GDK jar files are installed properly in the Java application.

Chapter 8
GDK Error Messages

8-56

GDK-06002 Invalid IANA character set name or no corresponding Oracle name found
Cause: The IANA character set specified was either invalid or did not have a corresponding
Oracle character set.

Action: Check that the IANA character is valid and make sure that it has a corresponding
Oracle character set.

GDK-06003 Invalid ISO language name or no corresponding Oracle name found
Cause: The ISO language specified was either invalid or did not have a corresponding Oracle
language.

Action: Check to see that the ISO language specified is valid and has a corresponding Oracle
language.

GDK-06004 A character set filter and a language filter cannot be set at the same time.
Cause: A character set filter and a language filter were set at the same time in a LCSDetector
object.

Action: Set only one of the two -- character set or language.

GDK-06005 Reset is necessary before LCSDetector can work with a different data
source.
Cause: The reset method was not invoked before a different type of data source was used for
a LCSDetector object.

Action: Call LCSDetector.reset to reset the detector before switching to detect other types of
data source.

ORA-17154 Cannot map Oracle character to Unicode
Cause: The Oracle character was either invalid or incomplete and could not be mapped to an
Unicode value.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

ORA-17155 Cannot map Unicode to Oracle character
Cause: The Unicode character did not have a counterpart in the Oracle character set.

Action: Write a separate exception handler for the invalid character, or call the
withReplacement method so that the invalid character can be replaced with a valid
replacement character.

Chapter 8
GDK Error Messages

8-57

9
SQL and PL/SQL Programming in a Global
Environment

This chapter contains information useful for SQL programming in a globalization support
environment. This chapter includes the following topics:

• Locale-Dependent SQL Functions with Optional NLS Parameters

• Other Locale-Dependent SQL Functions

• Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

9.1 Locale-Dependent SQL Functions with Optional NLS
Parameters

NLS parameters can be specified for all SQL functions whose behavior depends on
globalization support conventions. These functions are:

TO_CHAR
TO_DATE
TO_NUMBER
NLS_UPPER
NLS_LOWER
NLS_INITCAP
NLSSORT

Explicitly specifying the optional NLS parameters for these functions enables the functions to
be evaluated independently of the session's NLS parameters. This feature can be important for
SQL statements that contain numbers and dates as string literals.

For example, the following query is evaluated correctly if the language specified for dates is
AMERICAN:

SELECT last_name FROM employees WHERE hire_date > '01-JAN-2005';

Such a query can be made independent of the current date language by using a statement
similar to the following:

SELECT last_name FROM employees
 WHERE hire_date > TO_DATE('01-JAN-2005','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = AMERICAN');

In this way, SQL statements that are independent of the session language can be defined
where necessary. Such statements are necessary when string literals appear in SQL
statements in views, CHECK constraints, or triggers.

9-1

Note:

Only SQL statements that must be independent of the session NLS parameter values
should explicitly specify optional NLS parameters in locale-dependent SQL functions.
Using session default values for NLS parameters in SQL functions usually results in
better performance.

All character functions support both single-byte and multibyte characters. Except where
explicitly stated, character functions operate character by character, rather than byte by byte.

The rest of this section includes the following topics:

• Default Values for NLS Parameters in SQL Functions

• Specifying NLS Parameters in SQL Functions

• Unacceptable NLS Parameters in SQL Functions

9.1.1 Default Values for NLS Parameters in SQL Functions
When SQL functions evaluate views and triggers, default values from the current session are
used for the NLS function parameters. When SQL functions evaluate CHECK constraints, they
use the default values that were specified for the NLS parameters when the database was
created.

9.1.2 Specifying NLS Parameters in SQL Functions
NLS parameters are specified in SQL functions as follows:

'parameter = value'

For example:

'NLS_DATE_LANGUAGE = AMERICAN'

The following NLS parameters can be specified in SQL functions:

NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR
NLS_SORT

Table 9-1 shows which NLS parameters are valid for specific SQL functions.

Chapter 9
Locale-Dependent SQL Functions with Optional NLS Parameters

9-2

Table 9-1 SQL Functions and Their Valid NLS Parameters

SQL Functions Valid NLS Parameters

TO_DATE NLS_DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR, TO_NCHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_UPPER, NLS_LOWER,
NLS_INITCAP, NLSSORT

NLS_SORT

The following examples show how to use NLS parameters in SQL functions:

TO_DATE ('1-JAN-99', 'DD-MON-YY',
 'nls_date_language = American')

TO_CHAR (hire_date, 'DD/MON/YYYY',
 'nls_date_language = French')

TO_CHAR (SYSDATE, 'DD/MON/YYYY',
 'nls_date_language=''Traditional Chinese'' ')

TO_NUMBER ('13.000,00', '99G999D99',
 'nls_numeric_characters = '',.''')

TO_CHAR (salary, '9G999D99L', 'nls_numeric_characters = '',.''
 nls_currency = ''EUR''')

TO_CHAR (salary, '9G999D99C', 'nls_numeric_characters = ''.,''
 nls_iso_currency = Japan')

NLS_UPPER (last_name, 'nls_sort = Swiss')

NLSSORT (last_name, 'nls_sort = German')

Chapter 9
Locale-Dependent SQL Functions with Optional NLS Parameters

9-3

Note:

In some languages, some lowercase characters correspond to more than one
uppercase character or vice versa. As a result, the length of the output from the
NLS_UPPER, NLS_LOWER, and NLS_INITCAP functions can differ from the length of the
input.

See Also:

• "Special Uppercase Letters"

• "Special Lowercase Letters"

9.1.3 Unacceptable NLS Parameters in SQL Functions
The following NLS parameters are not accepted in SQL functions except for NLSSORT:

NLS_LANGUAGE
NLS_TERRITORY
NLS_DATE_FORMAT

NLS_DATE_FORMAT and NLS_TERRITORY_FORMAT are not accepted as parameters because they
can interfere with required format masks. A date format must always be specified if an NLS
parameter is in a TO_CHAR or TO_DATE function. As a result, NLS_DATE_FORMAT and
NLS_TERRITORY_FORMAT are not valid NLS parameters for the TO_CHAR or TO_DATE functions. If
you specify NLS_DATE_FORMAT or NLS_TERRITORY_FORMAT in the TO_CHAR or TO_DATE function,
then an error is returned.

NLS_LANGUAGE can interfere with the session value of NLS_DATE_LANGUAGE. If you specify
NLS_LANGUAGE in the TO_CHAR function, for example, then its value is ignored if it differs from the
session value of NLS_DATE_LANGUAGE.

9.2 Other Locale-Dependent SQL Functions
This section includes the following topics:

• The CONVERT Function

• SQL Functions for Different Length Semantics

• LIKE Conditions for Different Length Semantics

• Character Set SQL Functions

• The NLSSORT Function

9.2.1 The CONVERT Function
The CONVERT function enables conversion of character data between character sets.

Chapter 9
Other Locale-Dependent SQL Functions

9-4

The CONVERT function converts the binary representation of a character string in one character
set to another. It uses exactly the same technique as conversion between database and client
character sets. Hence, it uses replacement characters and has the same limitations.

See Also:

"Character Set Conversion Between Clients and the Server"

The syntax for CONVERT is as follows:

CONVERT(char, dest_char_set[, source_char_set])

char is the value to be converted. source_char_set is the source character set and
dest_char_set is the destination character set. If the source_char_set parameter is not
specified, then it defaults to the database character set.

See Also:

• Oracle Database SQL Language Reference for more information about the
CONVERT function

• "Character Set Conversion Support" for character set encodings that are used
only for the CONVERT function

9.2.2 SQL Functions for Different Length Semantics
Oracle provides SQL functions that work in accordance with different length semantics. There
are three groups of such SQL functions: SUBSTR, LENGTH, and INSTR. Each function in a group
is based on a different kind of length semantics and is distinguished by the character or
number appended to the function name. For example, SUBSTRB is based on byte semantics.

The SUBSTR functions return a requested portion of a substring. The LENGTH functions return the
length of a string. The INSTR functions search for a substring in a string.

The SUBSTR functions calculate the length of a string differently. Table 9-2 summarizes the
calculation methods.

Table 9-2 How the SUBSTR Functions Calculate the Length of a String

Function Calculation Method

SUBSTR Calculates the length of a string in characters based on the length semantics associated with the
character set of the data type. For example, AL32UTF8 characters are calculated in UCS-4 characters.
UTF8 and AL16UTF16 characters are calculated in UCS-2 characters. A supplementary character is
counted as one character in AL32UTF8 and as two characters in UTF8 and AL16UTF16. Because
VARCHAR and NVARCHAR2 may use different character sets, SUBSTR may give different results for
different data types even if two strings are identical. If your application requires consistency, then use
SUBSTR2 or SUBSTR4 to force all semantic calculations to be UCS-2 or UCS-4, respectively.

SUBSTRB Calculates the length of a string in bytes.

Chapter 9
Other Locale-Dependent SQL Functions

9-5

Table 9-2 (Cont.) How the SUBSTR Functions Calculate the Length of a String

Function Calculation Method

SUBSTR2 Calculates the length of a string in UCS-2 characters, which is compliant with Java strings and
Windows client environments. Characters are represented in UCS-2 or 16-bit Unicode values.
Supplementary characters are counted as two characters.

SUBSTR4 Calculates the length of a string in UCS-4 characters. Characters are represented in UCS-4 or 32-bit
Unicode values. Supplementary characters are counted as one character.

SUBSTRC Calculates the length of a string in Unicode composed characters. Supplementary characters and
composed characters are counted as one character.

The LENGTH and INSTR functions calculate string length in the same way, according to the
character or number added to the function name.

The following examples demonstrate the differences between SUBSTR and SUBSTRB on a
database whose character set is AL32UTF8.

For the string Fußball, the following statement returns a substring that is 4 characters long,
beginning with the second character:

SELECT SUBSTR ('Fußball', 2 , 4) SUBSTR FROM DUAL;

SUBS

ußba

For the string Fußball, the following statement returns a substring 4 bytes long, beginning with
the second byte:

SELECT SUBSTRB ('Fußball', 2 , 4) SUBSTRB FROM DUAL;

SUB

ußb

See Also:

Oracle Database SQL Language Reference for more information about the SUBSTR,
LENGTH, and INSTR functions

9.2.3 LIKE Conditions for Different Length Semantics
The LIKE conditions specify a test that uses pattern-matching. The equality operator (=) exactly
matches one character value to another, but the LIKE conditions match a portion of one
character value to another by searching the first value for the pattern specified by the second.

LIKE calculates the length of strings in characters using the length semantics associated with
the input character set. The LIKE2, LIKE4, and LIKEC conditions are summarized in Table 9-3.

Chapter 9
Other Locale-Dependent SQL Functions

9-6

Table 9-3 LIKE Conditions

Function Description

LIKE2 Use when characters are represented in UCS-2 semantics. A supplementary character is considered
as two characters.

LIKE4 Use when characters are represented in UCS-4 semantics. A supplementary character is considered
as one character.

LIKEC Use when characters are represented in Unicode complete character semantics. A composed
character is treated as one character.

There is no LIKEB condition.

9.2.4 Character Set SQL Functions
Two SQL functions, NLS_CHARSET_NAME and NLS_CHARSET_ID, can convert between character
set ID numbers and character set names. They are used by programs that need to determine
character set ID numbers for binding variables through OCI.

Another SQL function, NLS_CHARSET_DECL_LEN, returns the declaration length of a column in
number of characters, given the byte length of the column.

This section includes the following topics:

• Converting from Character Set Number to Character Set Name

• Converting from Character Set Name to Character Set Number

• Returning the Length of an NCHAR Column

See Also:

Oracle Database SQL Language Reference

9.2.4.1 Converting from Character Set Number to Character Set Name
The NLS_CHARSET_NAME(n) function returns the name of the character set corresponding to ID
number n. The function returns NULL if n is not a recognized character set ID value.

9.2.4.2 Converting from Character Set Name to Character Set Number
NLS_CHARSET_ID(text) returns the character set ID corresponding to the name specified by
text. text is defined as a run-time VARCHAR2 quantity, a character set name. Values for text
can be NLSRTL names that resolve to character sets that are not the database character set or
the national character set.

If the value CHAR_CS is entered for text, then the function returns the ID of the database
character set. If the value NCHAR_CS is entered for text, then the function returns the ID of the
database's national character set. The function returns NULL if text is not a recognized name.

Chapter 9
Other Locale-Dependent SQL Functions

9-7

Note:

The value for text must be entered in uppercase characters.

9.2.4.3 Returning the Length of an NCHAR Column
NLS_CHARSET_DECL_LEN(BYTECNT, CSID) returns the declaration length of a column in number of
characters, given the byte length of the column. BYTECNT is the byte length of the column. CSID
is the character set ID of the column.

9.2.5 The NLSSORT Function
The NLSSORT function enables you to force a specific collation (sort order) for ORDER BY, GROUP
BY, comparison conditions, and a number of other collation-sensitive operations. However,
starting with Oracle Database 12c Release 2 (12.2), the recommended way to force a specific
collation for such operations is to use the COLLATE operator. The COLLATE operator works for all
the collation-sensitive operations, including those for which NLSSORT cannot be used, for
example MAX, MIN, and INSTR.

See Also:

"Expression Evaluation and the COLLATE Operator"

The NLSSORT function calculates a collation key for its character argument. The collation key is
a value of data type RAW, which has the following property: when two collation keys created for
a given collation for two (possibly different) source character values are compared as binary,
their mutual ordering corresponds to the expected mutual ordering of the source character
values in this collation, that is, NLSSORT(c1) < NLSSORT(c2), if and only if c1 < c2, where both
NLSSORT and the character operator < (less-than) use the same collation.

The collations used for ORDER BY, GROUP BY, comparison conditions, and other collation-
sensitive operations are determined by the data-bound collation determination rules. If these
rules yield a pseudo-collation, the session parameters NLS_COMP and NLS_SORT determine the
actual collation.

See Also:

"Collation Determination"

The following example specifies a German collation with the NLS_SORT session parameter. It
assumes that the declared collation of column1 is USING_NLS_COMP or USING_NLS_SORT.

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT * FROM table1
 ORDER BY column1;

The following example first sets the NLS_SORT session parameter to German, but the NLSSORT
function overrides it by specifying a French sort.

Chapter 9
Other Locale-Dependent SQL Functions

9-8

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT * FROM table1
 ORDER BY NLSSORT(column1, 'NLS_SORT=FRENCH');

The WHERE clause uses binary comparison when NLS_COMP is set to BINARY and the declared
collation of referenced columns is USING_NLS_COMP. But, this can be overridden by using the
NLSSORT function in the WHERE clause.

Note:

If the Data-bound Collation feature is not used, then all the columns have the
declared collation of USING_NLS_COMP.

The following example makes a linguistic comparison using the WHERE clause.

ALTER SESSION SET NLS_COMP = BINARY;
SELECT * FROM table1
WHERE NLSSORT(column1, 'NLS_SORT=FRENCH')>
 NLSSORT(column2, 'NLS_SORT=FRENCH');

Setting the NLS_COMP session parameter to LINGUISTIC causes the NLS_SORT value to be used
in the WHERE clause.

Oracle Database may add the NLSSORT function implicitly to SQL expressions in a subquery to
implement linguistic behavior for a category of collation-sensitive operations. The implicitly
added NLSSORT calls are visible in the execution plan for an SQL statement.

Note:

The NLSSORT function, whether called explicitly or implicitly, may report error
ORA-12742 under certain conditions. See "Avoiding ORA-12742 Error" for more
details regarding this error.

The rest of this section contains the following topics:

• NLSSORT Syntax

• Comparing Strings in a WHERE Clause

• Controlling an ORDER BY Clause

9.2.5.1 NLSSORT Syntax
There are four ways to use NLSSORT:

• NLSSORT(), which relies on the collation determination rules

• NLSSORT(column1, 'NLS_SORT=xxxx')
• NLSSORT(column1, 'NLS_LANG=xxxx')
• NLSSORT(column1, 'NLS_LANGUAGE=xxxx')

Chapter 9
Other Locale-Dependent SQL Functions

9-9

The NLS_LANG parameter of the NLSSORT function is not the same as the NLS_LANG client
environment setting. In the NLSSORT function, NLS_LANG specifies the abbreviated language
name, such as US for American or PL for Polish. For example:

SELECT * FROM table1
ORDER BY NLSSORT(column1, 'NLS_LANG=PL');

When a language is specified in an NLSSORT call, the default collation for that language is used
by the function.

9.2.5.2 Comparing Strings in a WHERE Clause
NLSSORT enables applications to perform string matching that follows alphabetic conventions.
Normally, character strings in a WHERE clause are compared by using the binary values of the
characters. One character is considered greater than another character if it has a greater
binary value in the database character set. Because the sequence of characters based on their
binary values might not match the alphabetic sequence for a language, such comparisons may
not follow alphabetic conventions. For example, if a column (column1) contains the values
ABC, ABZ, BCD, and ÄBC in the ISO 8859-1 8-bit character set, then the following query
returns both BCD and ÄBC because Ä has a higher numeric value than B:

SELECT column1 FROM table1 WHERE column1 > 'B';

In German, Ä is sorted alphabetically before B, but in Swedish, Ä is sorted after Z. Linguistic
comparisons can be made by using NLSSORT in the WHERE clause:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_string)

Note that NLSSORT must be on both sides of the comparison operator. For example:

SELECT column1 FROM table1 WHERE NLSSORT(column1) > NLSSORT('B');

If a German linguistic sort has been set, then the statement does not return strings beginning
with Ä because Ä comes before B in the German alphabet. If a Swedish linguistic sort has been
set, then strings beginning with Ä are returned because Ä comes after Z in the Swedish
alphabet.

Starting with Oracle Database 12c Release 2 (12.2), the recommended way to make the >
(greater-than) operator use linguistic comparison is to add the COLLATE operator to one of the
compared values. For example:

SELECT column1 FROM table1 WHERE column1 COLLATE USING_NLS_SORT > 'B';

When you want to force a particular collation, independent of the session NLS parameters, you
can specify it in place of the pseudo-collation USING_NLS_SORT. For example:

SELECT column1 FROM table1 WHERE column1 COLLATE GERMAN > 'B';

Note:

You will get the same result as shown in the preceding examples for the COLLATE
operator, if you remove the operator COLLATE and specify the corresponding collation
when declaring collation of column1 in table1.

Chapter 9
Other Locale-Dependent SQL Functions

9-10

See Also:

"Specifying Data-Bound Collation for a Column"

9.2.5.3 Controlling an ORDER BY Clause
If a linguistic sort is in use, then ORDER BY clauses use an implicit NLSSORT on character data.
The sort mechanism (linguistic or binary) for an ORDER BY clause is transparent to the
application. However, if the NLSSORT function is explicitly specified in an ORDER BY clause, then
the implicit NLSSORT is not done.

If a linguistic sort has been defined by the NLS_SORT session parameter, then an ORDER BY
clause in an application uses an implicit NLSSORT function. If you specify an explicit NLSSORT
function, then it overrides the implicit NLSSORT function.

When the sort mechanism has been defined as linguistic, the NLSSORT function is usually
unnecessary in an ORDER BY clause.

When the sort mechanism either defaults or is defined as binary, then a query like the following
uses a binary sort:

SELECT last_name FROM employees
 ORDER BY last_name;

A German linguistic sort can be obtained as follows:

SELECT last_name FROM employees
 ORDER BY NLSSORT(last_name, 'NLS_SORT = GERMAN');

See Also:

"Using Linguistic Collation"

9.3 Miscellaneous Topics for SQL and PL/SQL Programming in a
Global Environment

This section contains the following topics:

• SQL Date Format Masks

• Calculating Week Numbers

• SQL Numeric Format Masks

• Loading External BFILE Data into LOB Columns

See Also:

Oracle Database SQL Language Reference for a complete description of format
masks

Chapter 9
Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

9-11

9.3.1 SQL Date Format Masks
Several format masks are provided with the TO_CHAR, TO_DATE, and TO_NUMBER functions.

The RM (Roman Month) format element returns a month as a Roman numeral. You can specify
either upper case or lower case by using RM or rm. For example, for the date 7 Sep 2007, DD-
rm-YYYY returns 07-ix-2007 and DD-RM-YYYY returns 07-IX-2007.

Note that the MON and DY format masks explicitly support month and day abbreviations that may
not be three characters in length. For example, the abbreviations "Lu" and "Ma" can be
specified for the French "Lundi" and "Mardi", respectively.

9.3.2 Calculating Week Numbers
The week numbers returned by the WW format mask are calculated according to the following
algorithm: int(dayOfYear+6)/7. This algorithm does not follow the ISO standard (2015,
1992-06-15).

To support the ISO standard, the IW format element is provided. It returns the ISO week
number. In addition, the I, IY, IYY, and IYYY format elements, equivalent in behavior to the Y,
YY, YYY, and YYYY format elements, return the year relating to the ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from the
calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A week always
starts on a Monday and ends on a Sunday. The week number is determined according the
following rules:

• If January 1 falls on a Friday, Saturday, or Sunday, then the week including January 1 is
the last week of the previous year, because most of the days in the week belong to the
previous year.

• If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the week is the
first week of the new year, because most of the days in the week belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to Sunday,
January 6, 1991, is in week 1. Thus, the ISO week number and year for December 31, 1990, is
1, 1991. To get the ISO week number, use the IW format mask for the week number and one of
the IY formats for the year.

9.3.3 SQL Numeric Format Masks
Several additional format elements are provided for formatting numbers:

Element Description Purpose

D Decimal Returns the decimal point character

G Group Returns the group separator

L Local currency Returns the local currency symbol

C International currency Returns the ISO currency symbol

RN Roman numeral Returns the number as its Roman numeral
equivalent

For Roman numerals, you can specify either upper case or lower case, using RN or rn,
respectively. The number being converted must be an integer in the range 1 to 3999.

Chapter 9
Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

9-12

9.3.4 Loading External BFILE Data into LOB Columns
The DBMS_LOB PL/SQL package can load external BFILE data into LOB columns. Oracle
Database performs character set conversion before loading the binary data into CLOB or NCLOB
columns. Thus, the BFILE data does not need to be in the same character set as the database
or national character set to work properly. The APIs convert the data from the specified BFILE
character set into the database character set for the CLOB data type, or the national character
set for the NCLOB data type. The loading takes place on the server because BFILE data is not
supported on the client.

• Use DBMS_LOB.LOADBLOBFROMFILE to load BLOB columns.

• Use DBMS_LOB.LOADCLOBFROMFILE to load CLOB and NCLOB columns.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database SecureFiles and Large Objects Developer's Guide

Chapter 9
Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment

9-13

10
OCI Programming in a Global Environment

This chapter contains information about OCI programming in a globalized environment. This
chapter includes the following topics:

• Using the OCI NLS Functions

• Specifying Character Sets in OCI

• Getting Locale Information in OCI

• Mapping Locale Information Between Oracle and Other Standards

• Manipulating Strings in OCI

• Classifying Characters in OCI

• Converting Character Sets in OCI

• OCI Messaging Functions

• lmsgen Utility

10.1 Using the OCI NLS Functions
Many OCI NLS functions accept one of the following handles:

• The environment handle

• The user session handle

The OCI environment handle is associated with the client NLS environment and initialized with
the client NLS environment variables. This environment does not change when ALTER SESSION
statements are issued to the server. The character set associated with the environment handle
is the client character set.

The OCI session handle is associated with the server session environment. Its NLS settings
change when the session environment is modified with an ALTER SESSION statement. The
character set associated with the session handle is the database character set.

Note that the OCI session handle does not have any NLS settings associated with it until the
first transaction begins in the session. SELECT statements do not begin a transaction.

See Also:

Oracle Call Interface Programmer's Guide for detailed information about the OCI NLS
functions

10.2 Specifying Character Sets in OCI
Use the OCIEnvNlsCreate function to specify client-side database and national character sets
when the OCI environment is created. This function enables users to set character set

10-1

information dynamically in applications, independent of the NLS_LANG and NLS_NCHAR
initialization parameter settings. In addition, one application can initialize several environment
handles for different client environments in the same server environment.

Any Oracle character set ID except AL16UTF16 can be specified through the OCIEnvNlsCreate
function to specify the encoding of metadata, SQL CHAR data, and SQL NCHAR data. Use
OCI_UTF16ID in the OCIEnvNlsCreate function to specify UTF-16 data.

See Also:

Oracle Call Interface Programmer's Guide for more information about the
OCIEnvNlsCreate function

10.3 Getting Locale Information in OCI
An Oracle locale consists of language, territory, and character set definitions. The locale
determines conventions such as day and month names, as well as date, time, number, and
currency formats. A globalized application complies with a user's locale setting and cultural
conventions. For example, when the locale is set to German, users expect to see day and
month names in German.

You can use the OCINlsGetInfo() function to retrieve the following locale information:

- Days of the week (translated)
- Abbreviated days of the week (translated)
- Month names (translated)
- Abbreviated month names (translated)
- Yes/no (translated)
- AM/PM (translated)
- AD/BC (translated)
- Numeric format
- Debit/credit
- Date format
- Currency formats
- Default language
- Default territory
- Default character set
- Default linguistic sort
- Default calendar

Table 10-1 summarizes OCI functions that return locale information.

Table 10-1 OCI Functions That Return Locale Information

Function Description

OCINlsGetInfo() Returns locale information. See preceding text.

OCINlsCharSetNameTold() Returns the Oracle character set ID for the specified Oracle character set name

OCINlsCharSetIdToName() Returns the Oracle character set name from the specified character set ID

OCINlsNumericInfoGet() Returns specified numeric information such as maximum character size

OCINlsEnvironmentVariableGet() Returns the character set ID from NLS_LANG or the national character set ID from
NLS_NCHAR

Chapter 10
Getting Locale Information in OCI

10-2

See Also:

Oracle Call Interface Programmer's Guide

10.4 Mapping Locale Information Between Oracle and Other
Standards

The OCINlsNameMap function maps Oracle character set names, language names, and territory
names to and from Internet Assigned Numbers Authority (IANA) and International Organization
for Standardization (ISO) names.

10.5 Manipulating Strings in OCI
Two types of data structures are supported for string manipulation:

• Native character strings

• Wide character strings

Native character strings are encoded in native Oracle character sets. Functions that operate on
native character strings take the string as a whole unit with the length of the string calculated in
bytes. Wide character (wchar) string functions provide more flexibility in string manipulation.
They support character-based and string-based operations with the length of the string
calculated in characters.

The wide character data type is Oracle-specific and should not be confused with the wchar_t
data type defined by the ANSI/ISO C standard. The Oracle wide character data type is always
4 bytes in all platforms, while the size of wchar_t depends on the implementation and the
platform. The Oracle wide character data type normalizes native characters so that they have a
fixed width for easy processing. This guarantees no data loss for round-trip conversion
between the Oracle wide character format and the native character format.

String manipulation includes the:

• Conversion of strings between native character format and wide character format

• Character classifications

• Case conversion

• Calculations of display length

• General string manipulation, such as comparison, concatenation, and searching

Table 10-2 summarizes the OCI string manipulation functions.

Note:

The functions and descriptions in Table 10-2 that refer to multibyte strings apply to
native character strings.

Chapter 10
Mapping Locale Information Between Oracle and Other Standards

10-3

Table 10-2 OCI String Manipulation Functions

Function Description

OCIMultiByteToWideChar() Converts an entire null-terminated string into the wchar format.

OCIMultiByteInSizeToWideChar() Converts part of a string into the wchar format.

OCIWideCharToMultiByte() Converts an entire null-terminated wide character string into a multibyte string.

OCIWideCharInSizeToMultiByte() Converts part of a wide character string into the multibyte format.

OCIWideCharToLower() Converts the wchar character specified by wc into the corresponding lowercase
character if it exists in the specified locale. If no corresponding lowercase
character exists, then it returns wc itself.

OCIWideCharToUpper() Converts the wchar character specified by wc into the corresponding uppercase
character if it exists in the specified locale. If no corresponding uppercase
character exists, then it returns wc itself.

OCIWideCharStrcmp() Compares two wide character strings by binary, linguistic, or case-insensitive
comparison method.

Note: The UNICODE_BINARY sort method cannot be used with
OCIWideCharStrcmp() to perform a linguistic comparison of the supplied wide
character arguments.

OCIWideCharStrncmp() Similar to OCIWideCharStrcmp(). Compares two wide character strings by
binary, linguistic, or case-insensitive comparison methods. At most len1 bytes
form str1, and len2 bytes form str2.

Note: As with OCIWideCharStrcmp(), the UNICODE_BINARY sort method cannot
be used with OOCIWideCharStrncmp() to perform a linguistic comparison of the
supplied wide character arguments.

OCIWideCharStrcat() Appends a copy of the string pointed to by wsrcstr. Then it returns the number
of characters in the resulting string.

OCIWideCharStrncat() Appends a copy of the string pointed to by wsrcstr. Then it returns the number
of characters in the resulting string. At most n characters are appended.

OCIWideCharStrchr() Searches for the first occurrence of wc in the string pointed to by wstr. Then it
returns a pointer to the wchar if the search is successful.

OCIWideCharStrrchr() Searches for the last occurrence of wc in the string pointed to by wstr.

OCIWideCharStrcpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then it returns the number of characters copied.

OCIWideCharStrncpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then it returns the number of characters copied. At most n characters
are copied from the array.

OCIWideCharStrlen() Computes the number of characters in the wchar string pointed to by wstr and
returns this number.

OCIWideCharStrCaseConversion() Converts the wide character string pointed to by wsrcstr into the case specified
by a flag and copies the result into the array pointed to by wdststr.

OCIWideCharDisplayLength() Determines the number of column positions required for wc in display.

OCIWideCharMultibyteLength() Determines the number of bytes required for wc in multibyte encoding.

OCIMultiByteStrcmp() Compares two multibyte strings by binary, linguistic, or case-insensitive
comparison methods.

OCIMultiByteStrncmp() Compares two multibyte strings by binary, linguistic, or case-insensitive
comparison methods. At most len1 bytes form str1 and len2 bytes form str2..

OCIMultiByteStrcat() Appends a copy of the multibyte string pointed to by srcstr.

Chapter 10
Manipulating Strings in OCI

10-4

Table 10-2 (Cont.) OCI String Manipulation Functions

Function Description

OCIMultiByteStrncat() Appends a copy of the multibyte string pointed to by srcstr. At most n bytes from
srcstr are appended to dststr.

OCIMultiByteStrcpy() Copies the multibyte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied.

OCIMultiByteStrncpy() Copies the multibyte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied. At most n bytes are copied from
the array pointed to by srcstr to the array pointed to by dststr.

OCIMultiByteStrlen() Returns the number of bytes in the multibyte string pointed to by str.

OCIMultiByteStrnDisplayLength() Returns the number of display positions occupied by the complete characters
within the range of n bytes.

OCIMultiByteStrCaseConversion() Converts part of a string from one character set to another.

See Also:

Oracle Call Interface Programmer's Guide

10.6 Classifying Characters in OCI
Table 10-3 shows the OCI character classification functions.

Table 10-3 OCI Character Classification Functions

Function Description

OCIWideCharIsAlnum() Tests whether the wide character is an alphabetic letter or decimal digit

OCIWideCharIsAlpha() Tests whether the wide character is an alphabetic letter

OCIWideCharIsCntrl() Tests whether the wide character is a control character

OCIWideCharIsDigit() Tests whether the wide character is a decimal digit

OCIWideCharIsGraph() Tests whether the wide character is a graph character

OCIWideCharIsLower() Tests whether the wide character is a lowercase letter

OCIWideCharIsPrint() Tests whether the wide character is a printable character

OCIWideCharIsPunct() Tests whether the wide character is a punctuation character

OCIWideCharIsSpace() Tests whether the wide character is a space character

OCIWideCharIsUpper() Tests whether the wide character is an uppercase character

OCIWideCharIsXdigit() Tests whether the wide character is a hexadecimal digit

OCIWideCharIsSingleByte() Tests whether wc is a single-byte character when converted into multibyte

Chapter 10
Classifying Characters in OCI

10-5

See Also:

Oracle Call Interface Programmer's Guide

10.7 Converting Character Sets in OCI
Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode encoding)
is supported. Replacement characters are used if a character has no mapping from Unicode to
the Oracle character set. Therefore, conversion back to the original character set is not always
possible without data loss.

Table 10-4 summarizes the OCI character set conversion functions.

Table 10-4 OCI Character Set Conversion Functions

Function Description

OCICharSetToUnicode() Converts a multibyte string pointed to by src to Unicode into
the array pointed to by dst

OCIUnicodeToCharSet() Converts a Unicode string pointed to by src to multibyte into
the array pointed to by dst

OCINlsCharSetConvert() Converts a string from one character set to another

OCICharSetConversionIsReplacementUsed() Indicates whether replacement characters were used for
characters that could not be converted in the last invocation
of OCINlsCharSetConvert() or
OCIUnicodeToCharSet()

See Also:

• Oracle Call Interface Programmer's Guide

• "OCI Programming with Unicode"

10.8 OCI Messaging Functions
The user message API provides a simple interface for cartridge developers to retrieve their
own messages as well as Oracle messages.

Table 10-5 summarizes the OCI messaging functions.

Table 10-5 OCI Messaging Functions

Function Description

OCIMessageOpen() Opens a message handle in a language pointed to by hndl
OCIMessageGet() Retrieves a message with message number identified by msgno. If the buffer is not

zero, then the function copies the message into the buffer specified by msgbuf.

Chapter 10
Converting Character Sets in OCI

10-6

Table 10-5 (Cont.) OCI Messaging Functions

Function Description

OCIMessageClose() Closes a message handle pointed to by msgh and frees any memory associated with
this handle

See Also:

Oracle Call Interface Programmer's Guide

10.9 lmsgen Utility
Purpose

The lmsgen utility converts text-based message files (.msg) into binary format (.msb) so that
Oracle messages and OCI messages provided by the user can be returned to OCI functions in
the desired language.

Messages used by the server are stored in binary-format files that are placed in
the $ORACLE_HOME/product_name/mesg directory, or the equivalent for your operating system.
Multiple versions of these files can exist, one for each supported language, using the following
file name convention:

<product_id><language_abbrev>.msb

For example, the file containing the server messages in French is called oraf.msb, because
ORA is the product ID (<product_id>) and F is the language abbreviation (<language_abbrev>)
for French. The value for product_name is rdbms, so it is in the $ORACLE_HOME/rdbms/mesg
directory.

Syntax

LMSGEN text_file product facility [language] [-i indir] [-o outdir]

text_file is a message text file.
product is the name of the product.
facility is the name of the facility.
language is the optional message language corresponding to the language specified in the
NLS_LANG parameter. The language parameter is required if the message file is not tagged
properly with language.
indir is the optional directory to specify the text file location.
outdir is the optional directory to specify the output file location.

The output (.msb) file will be generated under the $ORACLE_HOME/product/mesg/ directory.

Text Message Files

Text message files must follow these guidelines:

• Lines that start with / and // are treated as internal comments and are ignored.

• To tag the message file with a specific language, include a line similar to the following:

Chapter 10
lmsgen Utility

10-7

 # CHARACTER_SET_NAME= Japanese_Japan.JA16EUC

• Each message contains three fields:

 message_number, warning_level, message_text

The message number must be unique within a message file.
The warning level is not currently used. Use 0.
The message text cannot be longer than 511 bytes.

The following example shows an Oracle message text file:

/ Copyright (c) 2006 by Oracle. All rights reserved.
/ This is a test us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/
00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

Example: Creating a Binary Message File from a Text Message File

The following table contains sample values for the lmsgen parameters:

Parameter Value

product myapp
facility imp
language AMERICAN
text_file impus.msg

One of the lines in the text message file is the following:

00128,2, "Duplicate entry %s found in %s"

The lmsgen utility converts the text message file (impus.msg) into binary format, resulting in a
file called impus.msb. The directory $ORACLE_HOME/myapp/mesg must already exist.

% lmsgen impus.msg myapp imp AMERICAN

The following output results:

Generating message file impus.msg -->
$ORACLE_HOME/myapp/mesg/impus.msb

Chapter 10
lmsgen Utility

10-8

11
Character Set Migration

This chapter discusses character set conversion and character set migration. This chapter
includes the following topics:

• Overview of Character Set Migration

• Changing the Database Character Set of an Existing Database

• Repairing Database Character Set Metadata

• The Language and Character Set File Scanner

11.1 Overview of Character Set Migration
Choosing the appropriate character set for your database is an important decision. When you
choose the database character set, consider the following factors:

• The type of data you need to store

• The languages that the database needs to accommodate now and in the future

• The different size requirements of each character set and the corresponding performance
implications

Oracle recommends choosing Unicode for its universality and compatibility with contemporary
and future technologies and language requirements. The character set defined in the Unicode
Standard supports all contemporary written languages with significant use and a few historical
scripts. It also supports various symbols, for example, those used in technical, scientific, and
musical notations. It is the native or recommended character set of many technologies, such
as Java, Windows, HTML, or XML. There is no other character set that is so universal. In
addition, Unicode adoption is increasing rapidly with great support from within the industry.

Oracle's implementation of Unicode, AL32UTF8, offers encoding of ASCII characters in 1 byte,
characters from European, and Middle East languages in 2 bytes, characters from South and
East Asian languages in 3 bytes. Therefore, storage requirements of Unicode are usually
higher than storage requirements of a legacy character set for the same language.

A related topic is choosing a new character set for an existing database. Changing the
database character set for an existing database is called character set migration. In this
case, too, Oracle recommends migrating to Unicode for its universality and compatibility. When
you migrate from one database character set to another, you should also plan to minimize data
loss from the following sources:

• Data Truncation

• Character Set Conversion Issues

See Also:

"Choosing a Character Set"

11-1

11.1.1 Data Truncation
When the database is created using byte semantics, the sizes of the CHAR and VARCHAR2 data
types are specified in bytes, not characters. For example, the specification CHAR(20) in a table
definition allows 20 bytes for storing character data. When the database character set uses a
single-byte character encoding scheme, no data loss occurs when characters are stored
because the number of characters is equivalent to the number of bytes. If the database
character set uses a multibyte character set, then the number of bytes no longer equals the
number of characters because a character can consist of one or more bytes.

During migration to a new character set, it is important to verify the column widths of existing
CHAR and VARCHAR2 columns because they may need to be extended to support an encoding
that requires multibyte storage. Truncation of data can occur if conversion causes expansion of
data.

The following table shows an example of data expansion when single-byte characters become
multibyte characters through conversion.

Table 11-1 Single-Byte and Multibyte Encoding

Character WE8MSWIN 1252 Encoding AL32UTF8 Encoding

ä E4 C3 A4

ö F6 C3 B6

© A9 C2 A9

€ 80 E2 82 AC

The first column of the preceding table shows selected characters. The second column shows
the hexadecimal representation of the characters in the WE8MSWIN1252 character set. The
third column shows the hexadecimal representation of each character in the AL32UTF8
character set. Each pair of letters and numbers represents one byte. For example, ä (a with an
umlaut) is a single-byte character (E4) in WE8MSWIN1252, but it becomes a two-byte
character (C3 A4) in AL32UTF8. Also, the encoding for the euro symbol expands from one byte
(80) to three bytes (E2 82 AC).

If the data in the new character set requires storage that is greater than the supported byte
size of the data types, then you must change your schema. You may need to use CLOB
columns.

See Also:

"Length Semantics"

11.1.1.1 Additional Problems Caused by Data Truncation
Data truncation can cause the following problems:

• In the database data dictionary, schema object names cannot exceed 30 bytes in length.
You must rename schema objects if their names exceed 30 bytes in the new database
character set. For example, one Thai character in the Thai national character set requires
1 byte. In AL32UTF8, it requires 3 bytes. If you have defined a table whose name is 11

Chapter 11
Overview of Character Set Migration

11-2

Thai characters, then the table name must be shortened to 10 or fewer Thai characters
when you change the database character set to AL32UTF8.

• If existing Oracle usernames or passwords are created based on characters that change in
size in the new character set, then users will have trouble logging in because of
authentication failures after the migration to a new character set. This occurs because the
encrypted usernames and passwords stored in the data dictionary may not be updated
during migration to a new character set. For example, if the current database character set
is WE8MSWIN1252 and the new database character set is AL32UTF8, then the length of
the username scött (o with an umlaut) changes from 5 bytes to 6 bytes. In AL32UTF8,
scött can no longer log in because of the difference in the username. Oracle recommends
that usernames and passwords be based on ASCII characters. If they are not, then you
must reset the affected usernames and passwords after migrating to a new character set.

• When CHAR data contains characters that expand after migration to a new character set,
space padding is not removed during database export by default. This means that these
rows will be rejected upon import into the database with the new character set. The
workaround is to set the BLANK_TRIMMING initialization parameter to TRUE before importing
the CHAR data.

See Also:

Oracle Database Reference for more information about the BLANK_TRIMMING
initialization parameter

11.1.2 Character Set Conversion Issues
This section includes the following topics:

• Replacement Characters that Result from Using the Export and Import Utilities

• Invalid Data That Results from Setting the Client's NLS_LANG Parameter Incorrectly

• Conversion from Single-byte to Multibyte Character Set and Oracle Data Pump

11.1.2.1 Replacement Characters that Result from Using the Export and Import
Utilities

The Export and Import utilities can convert character sets from the original database character
set to the new database character set. However, character set conversions can sometimes
cause data loss or data corruption. For example, if you are migrating from character set A to
character set B, then the destination character set B should be a superset of character set A.
The destination character set, B, is a superset if it contains all the characters defined in
character set A. Characters that are not available in character set B are converted to
replacement characters, which are often specified as ? or ¿ or as a character that is related to
the unavailable character. For example, ä (a with an umlaut) can be replaced by a.
Replacement characters are defined by the target character set.

Chapter 11
Overview of Character Set Migration

11-3

Note:

There is an exception to the requirement that the destination character set B should
be a superset of character set A. If your data contains no characters that are in
character set A but are not in character set B, then the destination character set does
not need to be a superset of character set A to avoid data loss or data corruption.

The following figure shows an example of a character set conversion in which the copyright
and euro symbols are converted to ? and ä is converted to a.

Figure 11-1 Replacement Characters in Character Set Conversion

Character Set

A

a

b

c

?

Character Set

B

To reduce the risk of losing data, choose a destination character set with a similar character
repertoire. Migrating to Unicode may be the best option, because AL32UTF8 contains
characters from most legacy character sets.

11.1.2.2 Invalid Data That Results from Setting the Client's NLS_LANG Parameter
Incorrectly

Another character set migration scenario that can cause the loss of data is migrating a
database that contains invalid data. Invalid data usually occurs in a database because the
NLS_LANG parameter is not set properly on the client. The NLS_LANG value should reflect the
client operating system code page. For example, in an English Windows environment, the
code page is WE8MSWIN1252. When the NLS_LANG parameter is set properly, the database
can automatically convert incoming data from the client operating system. When the NLS_LANG
parameter is not set properly, then the data coming into the database is not converted properly.
For example, suppose that the database character set is AL32UTF8, the client is an English
Windows operating system, and the NLS_LANG setting on the client is AL32UTF8. Data coming
into the database is encoded in WE8MSWIN1252 and is not converted to AL32UTF8 data
because the NLS_LANG setting on the client matches the database character set. Thus Oracle
assumes that no conversion is necessary, and invalid data is entered into the database.

This can lead to two possible data inconsistency problems. One problem occurs when a
database contains data from a character set that is different from the database character set
but the same code points exist in both character sets. For example, if the database character
set is WE8ISO8859P1 and the NLS_LANG setting of the Chinese Windows NT client is
SIMPLIFIED CHINESE_CHINA.WE8ISO8859P1, then all multibyte Chinese data (from the

Chapter 11
Overview of Character Set Migration

11-4

ZHS16GBK character set) is stored as multiples of single-byte WE8ISO8859P1 data. This
means that Oracle treats these characters as single-byte WE8ISO8859P1 characters. Hence
all SQL string manipulation functions such as SUBSTR or LENGTH are based on bytes rather
than characters. All bytes constituting ZHS16GBK data are legal WE8ISO8859P1 codes. If
such a database is migrated to another character set such as AL32UTF8, then character
codes are converted as if they were in WE8ISO8859P1. This way, each of the two bytes of a
ZHS16GBK character are converted separately, yielding meaningless values in AL32UTF8.
The following figure shows an example of this incorrect character set replacement.

Figure 11-2 Incorrect Character Set Replacement

Simplified Chinese
Windows NT

(WE8ISO8859P1)

Database Server
(WE8ISO8859P1)

0xB1 0xED OxB1ED

The second possible problem is having data from mixed character sets inside the database.
For example, if the data character set is WE8MSWIN1252, and two separate Windows clients
using German and Greek are both using WE8MSWIN1252 as the NLS_LANG character set, then
the database contains a mixture of German and Greek characters. The following figure shows
how different clients can use different character sets in the same database.

Figure 11-3 Mixed Character Sets

Greek Windows

Database Server
(WE8MSWIN1252)

0xE4 0xF6

 = 0xE4

 = 0xF6

German Windows

 = 0xE4

 = 0xF6

Chapter 11
Overview of Character Set Migration

11-5

For database character set migration to be successful, both of these cases require manual
intervention because Oracle Database cannot determine the character sets of the data being
stored. Incorrect data conversion can lead to data corruption, so perform a full backup of the
database before attempting to migrate the data to a new character set. Refer to the topic
"Changing the Database Character Set of an Existing Database" for more information about
using the Database Migration Assistant for Unicode (DMU) software for handling invalid
character data during character set migration to Unicode.

11.1.2.3 Conversion from Single-byte to Multibyte Character Set and Oracle Data
Pump

If Oracle Data Pump is being used, and if a character set migration from single-byte to
multibyte is performed, then the Data Pump PL/SQL packages must be reloaded.

11.2 Changing the Database Character Set of an Existing
Database

Database character set migration is an intricate process that typically involves three stages:
data scanning, data cleansing, and data conversion.

Before you change the database character set, you must identify possible database character
set conversion problems and truncation of data. This step is called data scanning. Data
scanning identifies the amount of effort required to migrate data into the new character
encoding scheme before changing the database character set. Some examples of what may
be found during a data scan are the number of schema objects where the column widths need
to be expanded and the extent of the data that does not exist in the target character repertoire.
This information helps to determine the best approach for converting the database character
set.

After the potential data issues are identified, they need to be cleansed properly to ensure the
data integrity can be preserved during the data conversion. The data cleansing step could
require significant time and effort depending on the scale and complexity of the data issues
found. It may take multiple iterations of data scanning and cleansing in order to correctly
address all of the data exceptions.

The data conversion is the process by which the character data is converted from the source
character set into the target character set representation. Incorrect data conversion can lead to
data corruption, so perform a full backup of the database before attempting to migrate the data
to a new character set.

There are two approaches for migrating the database character set:

• Migrating Character Data Using the Database Migration Assistant for Unicode

• Migrating Character Data Using a Full Export and Import

11.2.1 Migrating Character Data Using the Database Migration Assistant for
Unicode

The Database Migration Assistant for Unicode (DMU) offers an intuitive and user-friendly GUI
that helps you streamline the migration process to Unicode through an interface that minimizes
the manual workload and ensures that the migration tasks are carried out correctly and
efficiently.

Some advantages of the DMU are that it does the following:

Chapter 11
Changing the Database Character Set of an Existing Database

11-6

• Guides you through the workflow

An important advantage of the DMU is that it offers a logical workflow to guide you through
the entire process of migrating character sets.

• Offers suggestions for handling certain problems

The DMU can help you when you run into certain problems, such as errors or failures
during the scanning or cleansing of the data.

• Supports selective conversion of data

The DMU enables you to convert only the data that must be converted, at the table,
column, and row level.

• Offers progress monitoring

The DMU provides a GUI to visualize how the steps are progressing.

• Offers interactive visualization features

The DMU enables you to analyze data and see the results in the GUI in an interactive way.
It also enables you to see the data itself in the GUI and cleanse it interactively from
identified migration issues.

• Provides the only supported tool for inline conversion

With the DMU, Oracle Database supports inline conversion of database contents. This
offers performance and security advantage over other existing conversion methods.

• Allows cleansing actions to be scheduled for later execution during the conversion step

Postponing of cleansing actions, such as data type migration, ensures that the production
database and applications are not affected until the actual migration downtime window.

This release of the Database Migration Assistant for Unicode has a few restrictions with
respect to what databases it can convert. In particular, it does not convert databases with
certain types of convertible data in the data dictionary. The export/import migration methods
could be used to overcome these limitations.

In the current database release, the DMU is installed under the $ORACLE_HOME/dmu directory.

See Also:

Oracle Database Migration Assistant for Unicode Guide

11.2.2 Migrating Character Data Using a Full Export and Import
A full export and import can also be used to convert the database to a new character set. It
may be more time-consuming and resource-intensive as a separate target instance must be
set up. If you plan to migrate your data to a non-Unicode character set, which Oracle strongly
discourages, you can use the DMU to look for invalid character representation issues in the
database and use export and import for the data conversion. Note that the DMU will not
correctly identify data expansion issues (column and data type limit violations) if the migration
is not to Unicode. It will also not identify characters that exist in the source database character
set but do not exist in the non-Unicode target character set.

Chapter 11
Changing the Database Character Set of an Existing Database

11-7

See Also:

Oracle Database Utilities for more information about the Export and Import utilities

11.3 Repairing Database Character Set Metadata
If your database has been in what is commonly called a pass-through configuration, where the
client character set is defined (usually through the NLS_LANG client setting) to be equal to the
database character set, the character data in your database could be stored in a different
character set from the declared database character set. In this scenario, the recommended
solution is to migrate your database to Unicode by using the DMU assumed database
character set feature to indicate the actual character set for the data. In case migrating to
Unicode is not immediately feasible due to business or technical constraints, it would be
desirable to at least correct the database character set declaration to match with the database
contents.

With Database Migration Assistant for Unicode Release 1.2, you can repair the database
character set metadata in such cases using the CSREPAIR script. The CSREPAIR script works in
conjunction with the DMU client and accesses the DMU repository. It can be used to change
the database character set declaration to the real character set of the data only after the DMU
has performed a full database scan by setting the Assumed Database Character Set property
to the target character set and no invalid representation issues have been reported, which
verifies that all existing data in the database is defined according to the assumed database
character set. Note that CSREPAIR only changes the database character set declaration in the
data dictionary metadata and does not convert any database data.

You can find the CSREPAIR script under the admin subdirectory of the DMU installation. The
requirements when using the CSREPAIR script are:

1. You must first perform a successful full database scan in the DMU with the Assumed
Database Character Set property set to the real character set of the data. In this case, the
assumed database character set must be different from the current database character set
or else nothing will be done. The CSREPAIR script will not proceed if the DMU reports the
existence of invalid data. It will, however, proceed if changeless or convertible data is
present from the scan.

2. The target character set in the assumed database character set must be a binary superset
of US7ASCII.

3. Only repairing from single-byte to single-byte character sets or multi-byte to multi-byte
character sets is allowed as no conversion of CLOB data will be attempted.

4. If you set the assumed character set at the column level, then the value must be the same
as the assumed database character set. Otherwise, CSREPAIR will not run.

5. You must have the SYSDBA privilege to run CSREPAIR.

11.3.1 Example: Using CSREPAIR
A typical example is storing WE8MSWIN1252 data in a WE8ISO8859P1 database via the
pass-through configuration. To correct the database character set from WE8ISO8859P1 to
WE8MSWIN1252, perform the following steps:

1. Set up the DMU and connect to the target WE8ISO8859P1 database.

2. Open the Database Properties tab in the DMU.

Chapter 11
Repairing Database Character Set Metadata

11-8

3. Set the Assumed Database Character Set property to WE8MSWIN1252.

4. Use the DMU to perform a full database scan.

5. Open the Database Scan Report and verify there is no data reported under the Invalid
Representation category.

6. Exit from the DMU client.

7. Start the SQL*Plus utility and connect as a user with the SYSDBA privilege.

8. Run the CSREPAIR script:

SQL> @@CSREPAIR.PLB
Upon completion, you should get the message:

The database character set has been successfully changed to WE8MSWIN1252. You
must restart the database now.

9. Shut down and restart the database.

11.4 The Language and Character Set File Scanner
The Language and Character Set File Scanner (LCSSCAN) is a high-performance, statistically
based utility for determining the language and character set for unknown file text. It can
automatically identify a wide variety of language and character set pairs. With each text, the
language and character set detection engine sets up a series of probabilities, each probability
corresponding to a language and character set pair. The most statistically probable pair
identifies the dominant language and character set.

The purity of the text affects the accuracy of the language and character set detection. The
ideal case is literary text of one single language with no spelling or grammatical errors. These
types of text may require 100 characters of data or more and can return results with a very
high factor of confidence. On the other hand, some technical documents can require longer
segments before they are recognized. Documents that contain a mix of languages or character
sets or text such as addresses, phone numbers, or programming language code may yield
poor results. For example, if a document has both French and German embedded, then the
accuracy of guessing either language successfully is statistically reduced. Both plain text and
HTML files are accepted. If the format is known, you should set the FORMAT parameter to
improve accuracy.

This section includes the following topics:

• Syntax of the LCSSCAN Command

• Examples: Using the LCSSCAN Command

• Getting Command-Line Help for the Language and Character Set File Scanner

• Supported Languages and Character Sets

• LCSSCAN Error Messages

11.4.1 Syntax of the LCSSCAN Command
Start the Language and Character Set File Scanner with the LCSSCAN command. Its syntax is
as follows:

LCSSCAN [RESULTS=number] [FORMAT=file_type] [BEGIN=number] [END=number] FILE=file_name

The parameters are described in the rest of this section.

Chapter 11
The Language and Character Set File Scanner

11-9

RESULTS

The RESULTS parameter is optional.

Property Description

Default value 1
Minimum value 1
Maximum value 3
Purpose The number of language and character set pairs that are returned. They

are listed in order of probability. The comparative weight of the first choice
cannot be quantified. The recommended value for this parameter is the
default value of 1.

FORMAT

The FORMAT parameter is optional.

Property Description

Default Value text
Purpose This parameter identifies the type of file to be scanned. The possible

values are html, text, and auto.

BEGIN

The BEGIN parameter is optional.

Property Description

Default value 1
Minimum value 1
Maximum value Number of bytes in file

Purpose The byte of the input file where LCSSCAN begins the scanning process.
The default value is the first byte of the input file.

END

The END parameter is optional.

Property Description

Default value End of file

Minimum value 3
Maximum value Number of bytes in file

Purpose The last byte of the input file that LCSSCAN scans. The default value is the
last byte of the input file.

FILE

The FILE parameter is required.

Chapter 11
The Language and Character Set File Scanner

11-10

Property Description

Default value None

Purpose Specifies the name of a text file to be scanned

11.4.2 Examples: Using the LCSSCAN Command
Example 11-1 Specifying Only the File Name in the LCSSCAN Command

LCSSCAN FILE=example.txt

In this example, the entire example.txt file is scanned because the BEGIN and END parameters
have not been specified. One language and character set pair will be returned because the
RESULTS parameter has not been specified.

Example 11-2 Specifying the Format as HTML

LCSSCAN FILE=example.html FORMAT=html

In this example, the entire example.html file is scanned because the BEGIN and END
parameters have not been specified. The scan will strip HTML tags before the scan, thus
results are more accurate. One language and character set pair will be returned because the
RESULTS parameter has not been specified.

Example 11-3 Specifying the RESULTS and BEGIN Parameters for LCSSCAN

LCSSCAN RESULTS=2 BEGIN=50 FILE=example.txt

The scanning process starts at the 50th byte of the file and continues to the end of the file. Two
language and character set pairs will be returned.

Example 11-4 Specifying the RESULTS and END Parameters for LCSSCAN

LCSSCAN RESULTS=3 END=100 FILE=example.txt

The scanning process starts at the beginning of the file and ends at the 100th byte of the file.
Three language and character set pairs will be returned.

Example 11-5 Specifying the BEGIN and END Parameters for LCSSCAN

LCSSCAN BEGIN=50 END=100 FILE=example.txt

The scanning process starts at the 50th byte and ends at the 100th byte of the file. One
language and character set pair will be returned because the RESULTS parameter has not been
specified.

11.4.3 Getting Command-Line Help for the Language and Character Set
File Scanner

To obtain a summary of the Language and Character Set File Scanner parameters, enter the
following command:

LCSSCAN HELP=y

The resulting output shows a summary of the Language and Character Set Scanner
parameters.

Chapter 11
The Language and Character Set File Scanner

11-11

11.4.4 Supported Languages and Character Sets
The Language and Character Set File Scanner supports several character sets for each
language.

When the binary values for a language match two or more encodings that have a subset/
superset relationship, the subset character set is returned. For example, if the language is
German and all characters are 7-bit, then US7ASCII is returned instead of WE8MSWIN1252,
WE8ISO8859P15, or WE8ISO8859P1.

When the character set is determined to be UTF-8, the Oracle character set UTF8 is returned
by default unless 4-byte characters (supplementary characters) are detected within the text. If
4-byte characters are detected, then the character set is reported as AL32UTF8.

See Also:

"Language and Character Set Detection Support" for a list of supported languages
and character sets

11.4.5 LCSSCAN Error Messages
LCD-00001 An unknown error occured.
Cause: An error occurred accessing an internal structure.

Action: Report this error to Oracle Support.

LCD-00002 NLS data could not be loaded.
Cause: An error occurred accessing $ORACLE_HOME/nls/data.

Action: Check to make sure $ORACLE_HOME/nls/data exists and is accessible. If not found
check $ORA_NLS10 directory.

LCD-00003 An error occurred while reading the profile file.
Cause: An error occurred accessing $ORACLE_HOME/nls/data.

Action: Check to make sure $ORACLE_HOME/nls/data exists and is accessible. If not found
check $ORA_NLS10 directory.

LCD-00004 The beginning or ending offset has been set incorrectly.
Cause: The beginning and ending offsets must be an integer greater than 0.

Action: Change the offset to a positive number.

LCD-00005 The ending offset has been set incorrectly.
Cause: The ending offset must be greater than the beginning offset.

Action: Change the ending offset to be greater than the beginning offset.

Chapter 11
The Language and Character Set File Scanner

11-12

LCD-00006 An error occurred when opening the input file.
Cause: The file was not found or could not be opened.

Action: Check the name of the file specified. Make sure the full file name is specified and that
the file is not in use.

LCD-00007 The beginning offset has been set incorrectly.
Cause: The beginning offset must be less than the number of bytes in the file.

Action: Check the size of the file and specify a smaller beginning offset.

LCD-00008 No result was returned.
Cause: Not enough text was inputted to produce a result.

Action: A larger sample of text needs to be inputted to produce a reliable result.

Chapter 11
The Language and Character Set File Scanner

11-13

12
Customizing Locale Data

This chapter describes how to customize locale data and includes the following topics:

• Overview of the Oracle Locale Builder Utility

• Creating a New Language Definition with Oracle Locale Builder

• Creating a New Territory Definition with the Oracle Locale Builder

• Displaying a Code Chart with the Oracle Locale Builder

• Creating a New Character Set Definition with the Oracle Locale Builder

• Creating a New Linguistic Sort with the Oracle Locale Builder

• Generating and Installing NLB Files

• Upgrading Custom NLB Files from Previous Releases of Oracle Database

• Deploying Custom NLB Files to Oracle Installations on the Same Platform

• Deploying Custom NLB Files to Oracle Installations on Another Platform

• Adding Custom Locale Definitions to Java Components with the GINSTALL Utility

• Customizing Calendars with the NLS Calendar Utility

12.1 Overview of the Oracle Locale Builder Utility
The Oracle Locale Builder offers an easy and efficient way to customize locale data. It provides
a graphical user interface through which you can easily view, modify, and define locale-specific
data. It extracts data from the text and binary definition files and presents them in a readable
format so that you can process the information without worrying about the formats used in
these files.

The Oracle Locale Builder manages four types of locale definitions: language, territory,
character set, and linguistic sort. It also supports user-defined characters and customized
linguistic rules. You can view definitions in existing text and binary definition files and make
changes to them, or create your own definitions.

This section contains the following topics:

• Configuring Unicode Fonts for the Oracle Locale Builder

• The Oracle Locale Builder User Interface

• Oracle Locale Builder Pages and Dialog Boxes

12.1.1 Configuring Unicode Fonts for the Oracle Locale Builder
The Oracle Locale Builder uses Unicode characters in many of its functions. For example, it
shows the mapping of local character code points to Unicode code points. The Oracle Locale
Builder depends on the logical fonts Serif and SansSerif that are configured in Java Runtime to
display the characters. If a character cannot be rendered with the configured fonts, then it is
usually displayed as a rectangular box. If you cannot see some characters properly in the

12-1

Oracle Locale Builder user interface, then you may need to reconfigure the logical fonts to
include additional physical fonts supporting the missing characters.

Note:

The Java Runtime used by the Oracle Locale Builder is located in the jdk/jre
subdirectory of the Oracle Home directory.

See Also:

The technical note "Font Configuration Files" at https://docs.oracle.com/javase/8/
docs/technotes/guides/intl/fontconfig.html for more information about the font
configuration files used by the Java Runtime.

12.1.2 The Oracle Locale Builder User Interface
Ensure that the ORACLE_HOME parameter is set before starting Oracle Locale Builder.

In the UNIX operating system, start the Oracle Locale Builder by changing into
the $ORACLE_HOME/nls/lbuilder directory and issuing the following command:

% ./lbuilder

In a Windows operating system, start the Oracle Locale Builder from the Start menu as follows:
Start > Programs > Oracle-OraHome10 > Configuration and Migration Tools > Locale
Builder. You can also start it from the DOS prompt by entering the %ORACLE_HOME%
\nls\lbuilder directory and executing the lbuilder.bat command.

When you start the Oracle Locale Builder, the following screen appears.

Chapter 12
Overview of the Oracle Locale Builder Utility

12-2

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/fontconfig.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/fontconfig.html

Figure 12-1 Oracle Locale Builder Utility

12.1.3 Oracle Locale Builder Pages and Dialog Boxes
Before using Oracle Locale Builder for a specific task, you should become familiar with the
following tab pages and dialog boxes:

• Existing Definitions Dialog Box

• Session Log Dialog Box

• Preview NLT Tab Page

• Open File Dialog Box

Note:

Oracle Locale Builder includes online help.

12.1.3.1 Existing Definitions Dialog Box
When you choose New Language, New Territory, New Character Set, or New Linguistic
Sort, the first tab page that you see is labeled General. Click Show Existing Definitions to
see the Existing Definitions dialog box.

The Existing Definitions dialog box enables you to open locale objects by name. If you know a
specific language, territory, linguistic sort (collation), or character set that you want to start with,

Chapter 12
Overview of the Oracle Locale Builder Utility

12-3

then click its displayed name. For example, you can open the AMERICAN language definition file
as shown in the following screen.

Figure 12-2 Existing Definitions Dialog Box

Choosing AMERICAN opens the lx00001.nlb file. An NLB file is a binary file that contains the
settings for a specific language, territory, character set, or linguistic sort.

Language and territory abbreviations are for reference only and cannot be opened.

12.1.3.2 Session Log Dialog Box
Choose Tools > View Log to see the Session Log dialog box. The Session Log dialog box
shows what actions have been taken in the current session. Click Save Log to keep a record
of all changes. The following screen shows an example of a session log.

Figure 12-3 Session Log Dialog Box

Chapter 12
Overview of the Oracle Locale Builder Utility

12-4

12.1.3.3 Preview NLT Tab Page
The NLT (National Language Text) file is an XML file with the file extension .nlt that stores the
settings for a specific language, territory, character set, or linguistic sort. The Preview NLT tab
page presents a readable form of the file so that you can see whether the changes you have
made are correct. You cannot modify the NLT file from the Preview NLT tab page. You must
use the specific tools and procedures available in Oracle Locale Builder to modify the NLT file.

The following screen shows an example of the Preview NLT tab page for a user-defined
language called AMERICAN FRENCH.

Figure 12-4 Previewing the NLT File

12.1.3.4 Open File Dialog Box
You can see the Open File dialog box by choosing File > Open > By File Name. Then choose
the NLB (National Language Binary) file that you want to modify or use as a template. An NLB
file is a binary file with the file extension .nlb that contains the binary equivalent of the
information in the NLT file. The following screen shows the Open File dialog box with the
lx00001.nlb file selected. The Preview pane shows that this NLB file is for the AMERICAN
language.

Chapter 12
Overview of the Oracle Locale Builder Utility

12-5

Figure 12-5 Open File Dialog Box

12.2 Creating a New Language Definition with Oracle Locale
Builder

This section shows how to create a new language based on French. This new language is
called AMERICAN FRENCH. First, open FRENCH from the Existing Definitions dialog box. Then
change the language name to AMERICAN FRENCH and the Language Abbreviation to AF in
the General tab page. Retain the default values for the other fields. The following screen
shows the resulting General tab page.

Chapter 12
Creating a New Language Definition with Oracle Locale Builder

12-6

Figure 12-6 Language General Information

The following restrictions apply when choosing names for locale objects such as languages:

• Names must contain only ASCII characters

• Names must start with a letter and cannot have leading or trailing blanks

• Language, territory, and character set names cannot contain underscores or periods

The valid range for the Language ID field for a user-defined language is 1,000 to 10,000. You
can accept the value provided by Oracle Locale Builder or you can specify a value within the
range.

Note:

Only certain ID ranges are valid values for user-defined LANGUAGE, TERRITORY,
CHARACTER SET, MONOLINGUAL COLLATION, and MULTILINGUAL COLLATION definitions.
The ranges are specified in the sections of this chapter that concern each type of
user-defined locale object.

The following screen shows how to set month names using the Month Names tab page.

Chapter 12
Creating a New Language Definition with Oracle Locale Builder

12-7

Figure 12-7 Month Names Tab Page

All names are shown as they appear in the NLT file. If you choose Yes for capitalization, then
the month names are capitalized in your application, but they do not appear capitalized in the
Month Names tab page.

The following screen shows the Day Names tab page.

Chapter 12
Creating a New Language Definition with Oracle Locale Builder

12-8

Figure 12-8 Day Names Tab Page

You can choose day names for your user-defined language. All names are shown as they
appear in the NLT file. If you choose Yes for capitalization, then the day names are capitalized
in your application, but they do not appear capitalized in the Day Names tab page.

The following screen shows the Common Info tab page.

Chapter 12
Creating a New Language Definition with Oracle Locale Builder

12-9

Figure 12-9 Common Info Tab Page

You can display the territories, character sets, Windows character sets, and linguistic sorts that
have associations with the current language. In general, the most appropriate or the most
commonly used items are displayed first. For example, with a language of FRENCH, the
common territories are FRANCE, BELGIUM, CANADA, and DJIBOUTI, while the character
sets for supporting French are WE8ISO8859P1, WE8MSWIN1252, AL32UTF8, and
WE8ISO8859P15. As WE8MSWIN1252 is more common than WE8ISO8859P1 in a Windows
environment, it is displayed first.

12.3 Creating a New Territory Definition with the Oracle Locale
Builder

This section shows how to create a new territory called REDWOOD SHORES and use RS as a
territory abbreviation. The new territory is not based on an existing territory definition.

The basic tasks are as follows:

• Assign a territory name

• Choose formats for the calendar, numbers, date and time, and currency

The following screen shows the General tab page with REDWOOD SHORES specified as the
territory name, 1001 specified as the territory ID, and RS specified as the territory abbreviation.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-10

Figure 12-10 General Tab Page for Territories

The valid range for territory ID for a user-defined territory is 1000 to 10000.

The following screen shows settings for calendar formats in the Calendar tab page.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-11

Figure 12-11 Choosing Calendar Formats

Monday is set as the first day of the week, and the first week of the calendar year is set as an
ISO week.

See Also:

• "Calendar Formats" for more information about choosing the first day of the week
and the first week of the calendar year

• "Customizing Calendars with the NLS Calendar Utility" for information about
customizing calendars themselves

The following screen shows the Date & Time tab page.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-12

Figure 12-12 Choosing Date and Time Formats

When you choose a format from a list, Oracle Locale Builder displays an example of the
format. In this case, the Short Date Format is set to DD-MM-YY. The Short Time Format is set
to HH24:MI:SS. The Oracle Date Format is set to DD-MM-YY. The Long Date Format is set to
fmDay, Month dd, yyyy. The TimeStamp Timezone Format is not set.

You can also enter your own formats instead of using the selection from the drop-down menus.

See Also:

• "Date Formats"

• "Time Formats"

• "Choosing a Time Zone File"

The following screen shows the Number tab page.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-13

Figure 12-13 Choosing Number Formats

A period has been chosen for the Decimal Symbol. The Negative Sign Location is specified to
be on the left of the number. The Numeric Group Separator is a comma. The Number
Grouping is specified as 3 digits. The List Separator is a comma. The Measurement System is
metric. The Rounding Indicator is 4.

You can enter your own values instead of using values in the lists.

When you choose a format from a list, Oracle Locale Builder displays an example of the
format.

See Also:

"Numeric Formats"

The following screen shows settings for currency formats in the Monetary tab page.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-14

Figure 12-14 Choosing Currency Formats

The Local Currency symbol is set to $. The Alternative Currency Symbol is the euro symbol.
The Currency Presentation shows one of several possible sequences of the local currency
symbol, the debit symbol, and the number. The Decimal Symbol is the period. The Group
Separator is the comma. The Monetary Number Grouping is 3. The Monetary Precision or
number of digits after the decimal symbol, is 3. The Credit Symbol is +. The Debit Symbol is -.
The International Currency Separator is a blank space, so it is not visible in the field. The
International Currency Symbol (ISO currency symbol) is USD. Oracle Locale Builder displays
examples of the currency formats you have selected.

You can enter your own values instead of using the lists.

See Also:

"Currency Formats"

The following screen shows the Common Info tab page.

Chapter 12
Creating a New Territory Definition with the Oracle Locale Builder

12-15

Figure 12-15 Common Info Tab Page

You can display the common languages and time zones for the current territory. For example,
with a territory of CANADA, the common languages are ENGLISH, CANADIAN FRENCH, and
FRENCH. The common time zones are America/Montreal, America/St_Johns, America/Halifax,
America/Winnipeg, America/Regina, America/Edmonton, and America/Vancouver.

12.4 Displaying a Code Chart with the Oracle Locale Builder
You can display and print the code charts of character sets with the Oracle Locale Builder.
From the opening screen for Oracle Locale Builder, choose File > New > Character Set. The
following screen is displayed.

Chapter 12
Displaying a Code Chart with the Oracle Locale Builder

12-16

Figure 12-16 General Tab Page for Character Sets

Click Show Existing Definitions. Highlight the character set you want to display. The following
screen shows the Existing Definitions combo box with US7ASCII highlighted.

Figure 12-17 Choosing US7ASCII in the Existing Definitions Dialog Box

Click Open to choose the character set. The following screen shows the General tab page
when US7ASCII has been chosen.

Chapter 12
Displaying a Code Chart with the Oracle Locale Builder

12-17

Figure 12-18 General Tab Page When US7ASCII Has Been Chosen

Select the Character Data Mapping tab. The following screen shows the Character Data
Mapping tab page for US7ASCII.

Chapter 12
Displaying a Code Chart with the Oracle Locale Builder

12-18

Figure 12-19 Character Data Mapping Tab Page for US7ASCII

Click View CodeChart. The following screen shows the code chart for US7ASCII.

Chapter 12
Displaying a Code Chart with the Oracle Locale Builder

12-19

Figure 12-20 US7ASCII Code Chart

It shows the encoded value of each character in the local character set, the glyph associated
with each character, and the Unicode value of each character in the local character set.

If you want to print the code chart, then click Print Page.

12.5 Creating a New Character Set Definition with the Oracle
Locale Builder

You can customize a character set to meet specific user needs. You can extend an existing
encoded character set definition. User-defined characters are often used to encode special
characters that represent the following language elements:

• Proper names

• Historical Han characters that are not defined in an existing character set standard

• Vendor-specific characters

• New symbols or characters that you define

This section describes how Oracle Database supports user-defined characters. It includes the
following topics:

• Character Sets with User-Defined Characters

• Oracle Database Character Set Conversion Architecture

• Unicode Private Use Area

• User-Defined Character Cross-References Between Character Sets

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-20

• Guidelines for Creating a New Character Set from an Existing Character Set

• Example: Creating a New Character Set Definition with the Oracle Locale Builder

12.5.1 Character Sets with User-Defined Characters
User-defined characters are typically supported within East Asian character sets. These East
Asian character sets have at least one range of reserved code points for user-defined
characters. For example, Japanese Shift-JIS preserves 1880 code points for user-defined
characters. They are shown in Table 12-1.

Table 12-1 Shift JIS User-Defined Character Ranges

Japanese Shift JIS User-Defined
Character Range

Number of Code Points

F040-F07E, F080-F0FC 188

F140-F17E, F180-F1FC 188

F240-F27E, F280-F2FC 188

F340-F37E, F380-F3FC 188

F440-F47E, F480-F4FC 188

F540-F57E, F580-F5FC 188

FF640-F67E, F680-F6FC 188

F740-F77E, F780-F7FC 188

F840-F87E, F880-F8FC 188

F940-F97E, F980-F9FC 188

The Oracle Database character sets listed in Table 12-2 contain predefined ranges that
support user-defined characters.

Table 12-2 Oracle Database Character Sets with User-Defined Character Ranges

Character Set Name Number of Code Points Available for User-Defined
Characters

JA16DBCS 4370

JA16EBCDIC930 4370

JA16SJIS 1880

JA16SJISYEN 1880

KO16DBCS 1880

KO16MSWIN949 1880

ZHS16DBCS 1880

ZHS16GBK 2149

ZHT16DBCS 6204

ZHT16MSWIN950 6217

12.5.2 Oracle Database Character Set Conversion Architecture
The code point value that represents a particular character can vary among different character
sets. A Japanese kanji character is shown in the following figure.

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-21

Figure 12-21 Japanese Kanji Character

The following table shows how the character is encoded in different character sets.

Unicode Encoding JA16SJIS Encoding JA16EUC Encoding JA16DBCS Encoding

4E9C 889F B0A1 4867

Oracle Database defines all character sets with respect to Unicode code points. That is, each
character is defined as a Unicode code value. Character conversion takes place transparently
by using Unicode as the intermediate form. For example, when a JA16SJIS client connects to
a JA16EUC database, the Japanese kanji character shown in the above figure has the code
point value 889F when it is entered from the JA16SJIS client. It is internally converted to
Unicode (with code point value 4E9C), and then converted to JA16EUC (code point value
B0A1).

12.5.3 Unicode Private Use Area
In Unicode, the range of code points E000-F8FF is reserved for the Private Use Area (PUA).
The PUA is intended for end users' or vendors' private use character definition.

User-defined characters can be converted between two Oracle Database character sets by
using Unicode PUA as the intermediate form, which is the same as for the standard
characters.

12.5.4 User-Defined Character Cross-References Between Character Sets
Cross-references between different character sets are required when registering user-defined
characters across operating systems. Cross-references ensure that the user-defined
characters can be converted correctly across the different character sets when they are
mapped to a Unicode PUA value.

For example, when registering a user-defined character on both a Japanese Shift-JIS
operating system and a Japanese IBM Host operating system, you may want to assign the
F040 code point on the Shift-JIS operating system and the 6941 code point on the IBM Host
operating system for this character. This is so that Oracle Database can map this character
correctly between the character sets JA16SJIS and JA16DBCS.

User-defined character cross-reference information can be found by viewing the character set
definitions using the Oracle Locale Builder. For example, you can determine that both the Shift-
JIS UDC value F040 and the IBM Host UDC value 6941 are mapped to the same Unicode
PUA value E000.

See Also:

"Unicode Character Code Assignments"

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-22

12.5.5 Guidelines for Creating a New Character Set from an Existing
Character Set

By default, the Oracle Locale Builder generates the next available character set ID for you. You
can also choose your own character set ID. Use the following format for naming character set
definition NLT files:

lx2dddd.nlt

dddd is the 4-digit character set ID in hex.

When you modify a character set, observe the following guidelines:

• Do not remap existing characters.

• All character mappings must be unique.

• New characters should be mapped into the Unicode private use range of e000-f4ff.

Note:

The actual Unicode private use range is e000-f8ff. However, Oracle Database
reserves f500-f8ff for its own private use.

• No line in the character set definition file can be longer than 80 characters.

Note:

When you create a new multibyte character set from an existing character set,
use an 8-bit or multibyte character set as the original character set.

If you derive a new character set from an existing Oracle Database character set, then Oracle
recommends using the following character set naming convention:

<Oracle_character_set_name><organization_name>EXT<version>

For example, if a company such as Sun Microsystems adds user-defined characters to the
JA16EUC character set, then the following character set name is appropriate:

JA16EUCSUNWEXT1

The character set name contains the following parts:

• JA16EUC is the character set name defined by Oracle Database

• SUNW represents the organization name (company stock trading abbreviation for Sun
Microsystems)

• EXT specifies that this character set is an extension to the JA16EUC character set

• 1 specifies the version

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-23

12.5.6 Example: Creating a New Character Set Definition with the Oracle
Locale Builder

This section shows how to create a new character set called MYCHARSET with 10001 for its
character set ID. The example uses the WE8ISO8859P1 character set and adds 10 Chinese
characters.

The following screen shows the General tab page for MYCHARSET character set.

Figure 12-22 General Tab Page for MYCHARSET

Click Show Existing Definitions and choose the WE8ISO8859P1 character set from the
Existing Definitions dialog box.

The ISO Character Set ID and Base Character Set ID fields are optional. The Base Character
Set ID is used for inheriting values so that the properties of the base character set are used as
a template. The character set ID is automatically generated, but you can override it. The valid
range for a user-defined character set ID is 8000 to 8999 or 10000 to 20000.

Note:

If you are using Pro*COBOL, then choose a character set ID between 8000 and
8999.

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-24

The ISO Character Set ID remains blank for user-defined character sets.

In this example, the Base Character Set ID remains blank. However, you can specify a
character set to use as a template. The settings in the Type Specification tab page must match
the type settings of the base character set that you enter in the Base Character Set ID field. If
the type settings do not match, then you will receive an error when you generate your custom
character set.

The following screen shows the Type Specification tab page.

Figure 12-23 Type Specification Tab Page

The Character Set Category is ASCII_BASED. The BYTE_UNIQUE option is checked.

When you have chosen an existing character set, the fields for the Type Specification tab page
should already be set to appropriate values. You should keep these values unless you have a
specific reason for changing them. If you need to change the settings, then use the following
guidelines:

• FIXED_WIDTH is used to identify character sets whose characters have a uniform length.

• BYTE_UNIQUE means that the single-byte range of code points is distinct from the
multibyte range. The code in the first byte indicates whether the character is single-byte or
multibyte. An example is JA16EUC.

• DISPLAY identifies character sets that are used only for display on clients and not for
storage. Some Arabic, Devanagari, and Hebrew character sets are display character sets.

• SHIFT is used for character sets that require extra shift characters to distinguish between
single-byte characters and multibyte characters.

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-25

The following screen shows how to add user-defined characters.

Figure 12-24 Importing User-Defined Character Data

Open the Character Data Mapping tab page. Highlight the character that you want to add
characters after in the character set. In this example, the 0xff local character value is
highlighted.

You can add one character at a time or use a text file to import a large number of characters. In
this example, a text file is imported. The first column is the local character value. The second
column is the Unicode value. The file contains the following character values:

88a2 963f
88a3 54c0
88a4 611b
88a5 6328
88a6 59f6
88a7 9022
88a8 8475
88a9 831c
88aa 7a50
88ab 60aa

Choose File > Import > User-Defined Characters Data.

The following screen shows that the imported characters are added after 0xff in the character
set.

Chapter 12
Creating a New Character Set Definition with the Oracle Locale Builder

12-26

Figure 12-25 New Characters in the Character Set

12.6 Creating a New Linguistic Sort with the Oracle Locale
Builder

This section shows how to create a new multilingual linguistic sort called MY_GENERIC_M with a
collation ID of 10001. The GENERIC_M linguistic sort is used as the basis for the new linguistic
sort. The following screen shows how to begin.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-27

Figure 12-26 General Tab Page for Collation

Settings for the flags are automatically derived. SWAP_WITH_NEXT is relevant for Thai and
Lao sorts. REVERSE_SECONDARY is for French sorts. CANONICAL_EQUIVALENCE
determines whether canonical rules are used. In this example, CANONICAL_EQUIVALENCE
is checked.

The valid range for Collation ID (sort ID) for a user-defined sort is 1000 to 2000 for monolingual
collation and 10000 to 11000 for multilingual collation.

See Also:

• Figure 12-30 for more information about canonical rules

• "Linguistic Sorting and Matching"

The following screen shows the Unicode Collation Sequence tab page.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-28

Figure 12-27 Unicode Collation Sequence Tab Page

This example customizes the linguistic sort by moving digits so that they sort after letters.
Complete the following steps:

1. Highlight the Unicode value that you want to move. In the preceding screen, the \x0034
Unicode value is highlighted. Its location in the Unicode Collation Sequence is called a
node.

2. Click Cut. Select the location where you want to move the node.

3. Click Paste. Clicking Paste opens the Paste Node dialog box as shown in the following
screen.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-29

Figure 12-28 Paste Node Dialog Box

The Paste Node dialog box enables you to choose whether to paste the node after or
before the location you have selected. It also enables you to choose the level (Primary,
Secondary, or Tertiary) of the node in relation to the node that you want to paste it next to.

4. Select the position and the level at which you want to paste the node. In the preceding
screen, After and Primary options are selected.

5. Click OK to paste the node.

Use similar steps to move other digits to a position after the letters a through z.

The following screen shows the resulting Unicode Collation Sequence tab page after the digits
0 through 4 have been moved to a position after the letters a through z.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-30

Figure 12-29 Unicode Collation Sequence After Modification

The rest of this section contains the following topics:

• Changing the Sort Order for All Characters with the Same Diacritic

• Changing the Sort Order for One Character with a Diacritic

12.6.1 Changing the Sort Order for All Characters with the Same Diacritic
This example shows how to change the sort order for characters with diacritics. You can do this
by changing the sort for all characters containing a particular diacritic or by changing one
character at a time. This example changes the sort of each character with a circumflex (for
example, û) to be after the same character containing a tilde.

Verify the current sort order by choosing Tools > Canonical Rules. This opens the Canonical
Rules dialog box as shown in the following screen.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-31

Figure 12-30 Canonical Rules Dialog Box

This dialog box shows how characters are decomposed into their canonical equivalents and
their current sorting orders. For example, û is represented as u plus ^.

See Also:

"Linguistic Sorting and Matching" for more information about canonical rules

In the Oracle Locale Builder collation window (shown in Figure 12-26), select the Non-Spacing
Characters tab. If you use the Non-Spacing Characters tab page, then changes for diacritics
apply to all characters. The following screen shows the Non-Spacing Characters tab page.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-32

Figure 12-31 Changing the Sort Order for All Characters with the Same Diacritic

Select the circumflex and click Cut. Click Yes in the Removal Confirmation dialog box. Select
the tilde and click Paste. Choose After and Secondary in the Paste Node dialog box and click
OK.

The following screen shows the new sort order.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-33

Figure 12-32 The New Sort Order for Characters with the Same Diacritic

12.6.2 Changing the Sort Order for One Character with a Diacritic
To change the order of a specific character with a diacritic, insert the character directly into the
appropriate position. Characters with diacritics do not appear in the Unicode Collation
Sequence tab page, so you cannot cut and paste them into the new location.

This example changes the sort order for ä so that it sorts after Z.

Select the Unicode Collation tab. Highlight the character, Z, that you want to put ä next to.
Click Add. The Insert New Node dialog box appears, as shown in the following screen.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-34

Figure 12-33 Changing the Sort Order of One Character with a Diacritic

Choose After and Primary in the Insert New Node dialog box. Enter the Unicode code point
value of ä. The code point value is \x00e4. Click OK.

The following screen shows the resulting sort order.

Chapter 12
Creating a New Linguistic Sort with the Oracle Locale Builder

12-35

Figure 12-34 New Sort Order After Changing a Single Character

12.7 Generating and Installing NLB Files
After you have defined a new language, territory, character set, or linguistic sort, generate new
NLB files from the NLT files as follows.

1. As the user who owns the files (typically user oracle), back up the NLS installation boot
file (lx0boot.nlb) and the NLS system boot file (lx1boot.nlb) in the ORA_NLS10 directory.
On a UNIX platform, enter commands similar to the following example:

% setenv ORA_NLS10 $ORACLE_HOME/nls/data
% cd $ORA_NLS10
% cp -p lx0boot.nlb lx0boot.nlb.orig
% cp -p lx1boot.nlb lx1boot.nlb.orig

Note that the -p option preserves the timestamp of the original file.

2. In Oracle Locale Builder, choose Tools > Generate NLB or click the Generate NLB icon in
the left side bar.

3. Click Browse to find the directory where the NLT file is located. The location dialog box is
shown below.

Chapter 12
Generating and Installing NLB Files

12-36

Figure 12-35 Location Dialog Box

Do not try to specify an NLT file. Oracle Locale Builder generates an NLB file for each NLT
file.

4. Click OK to generate the NLB files.

The following screen shows the final notification about successfully generated NLB files for
all the NLT files in the directory.

Figure 12-36 NLB Generation Success Dialog Box

5. Copy the lx1boot.nlb file into the path that is specified by the ORA_NLS10 environment
variable. For example, on a UNIX platform, enter a command similar to the following
example:

% cp /directory_name/lx1boot.nlb $ORA_NLS10/lx1boot.nlb
6. Copy the new NLB files into the ORA_NLS10 directory. For example, on a UNIX platform,

enter commands similar to the following example:

% cp /directory_name/lx22710.nlb $ORA_NLS10
% cp /directory_name/lx52710.nlb $ORA_NLS10

Note:

Oracle Locale Builder generates NLB files in the directory where the NLT files
reside

7. Restart the database to use the newly created locale data.

8. To use the new locale data on the client side, exit the client and re-invoke the client after
installing the NLB files.

Chapter 12
Generating and Installing NLB Files

12-37

See Also:

"Locale Data on Demand" for more information about the ORA_NLS10 environment
variable

12.8 Upgrading Custom NLB Files from Previous Releases of
Oracle Database

Locale definition files are database release-dependent. For example, NLB files from Oracle
Database 9i and Oracle Database 10g are not directly supported in an Oracle Database 11
installation, and so forth. Even a patch set may introduce a small change to the NLB file
format, if it is necessary to fix a bug. Installation of a patch set or a patch set update (PSU)
may overwrite your customizations, if any Oracle-supplied NLB files have been modified in the
patch set.

In order to migrate your locale customization files from your current release of the database to
a new release or patch set, perform the following steps:

1. Create a directory and copy your customized NLB or NLT files there.

2. Install the new database release, patch set or patch set update into the existing Oracle
Home or into a new Oracle Home, as appropriate.

3. Use the Oracle Locale Builder from the new or updated Oracle Home to open each of the
files copied in step (1) and save them in the NLT format to the source directory.

4. Repeat the NLB generation and installation steps as described in the section "Generating
and Installing NLB Files", still using the new version of the Oracle Locale Builder and the
same source directory.

Note that Oracle Locale Builder can read and process previous versions of the NLT and NLB
files, as well as read and process these files from different platforms. However, Oracle Locale
Builder always saves NLT files and generates NLB files in the latest format for the release of
Oracle Database that you have installed.

12.9 Deploying Custom NLB Files to Oracle Installations on the
Same Platform

To add your customizations to another Oracle Home with exactly the same database release
and patch configuration and on the same platform as the Oracle Home used to generate the
original set of customizations, perform the following steps:

1. In the target Oracle Home, perform step 1 from "Generating and Installing NLB Files".

2. If the target Oracle Home is on another machine, copy your customized NLB files and the
generated lx1boot.nlb file to the target machine, using any method preserving the binary
integrity of the files, such as FTP in binary mode, copy to a remotely mounted file system,
rcp utility, and so on.

3. On the target machine, perform steps 5-8 from "Generating and Installing NLB Files" using
the directory containing your customized NLB files and the lx1boot.nlb file as
directory_name.

Chapter 12
Upgrading Custom NLB Files from Previous Releases of Oracle Database

12-38

12.10 Deploying Custom NLB Files to Oracle Installations on
Another Platform

While being release-dependent, NLB files are platform-independent. Platform-dependent
differences in the binary format (such as 32-bit versus 64-bit, big-endian versus little-endian,
ASCII versus EBCDIC) are processed transparently during NLB loading. Therefore, when
deploying your locale customization files into other Oracle Database installations running with
the same Oracle Database release and patch configuration, but under a different operating
system platform, you can choose one of the following two options:

1. Copy over the custom .NLT files to your new platform and repeat the NLB generation and
installation steps as described in "Generating and Installing NLB Files".

2. Copy over the entire set of .NLB files (both Oracle-supplied NLB files and custom NLB
files) to your new platform.

Note that option (2) may introduce some overhead at NLB loading time due to the transparent
platform processing required. However, this overhead should be negligible, because each NLB
file is usually loaded only once after an Oracle Database instance or an Oracle Client
application is started and it is cached until the instance or application is shut down. Moreover,
NLB files are loaded on demand. So, in most installations, only a small subset of all available
NLB files is ever loaded into memory.

Option (2) is especially useful to customize files for platforms on which Oracle Locale Builder is
not supported.

To copy over the entire set of NLB files to your new platform, perform the following steps:

1. Shut down all Oracle Database instances and Oracle Client applications using the target
Oracle Home.

2. As the user who owns the files (typically user oracle), move all NLB files from the
ORA_NLS10 directory of the target Oracle Home to a backup directory. On a UNIX platform,
enter commands similar to the following example:

% setenv ORA_NLS10 $ORACLE_HOME/nls/data
% cd $ORA_NLS10
% mkdir orig
% mv *.nlb orig

3. Copy all NLB files from the source Oracle Home NLB directory to the target Oracle Home
NLB ($ORA_NLS10) directory. Use any remote copy method preserving the binary integrity of
the files, such as FTP in binary mode, copy to a remotely mounted file system, rcp utility,
and so on.

4. Restart the database instances and/or applications, as desired.

12.11 Adding Custom Locale Definitions to Java Components
with the GINSTALL Utility

The Ginstall utility adds custom character sets, language, territory, and linguistic sorts to Java
components in your applications. You use Locale Builder to define your custom character sets,
language, territory, and linguistic sort. Locale Builder generates NLT files, which contain the
custom definitions. Then to add the custom definitions to the Java components, you run
Ginstall to generate gdk_custom.jar.

Chapter 12
Deploying Custom NLB Files to Oracle Installations on Another Platform

12-39

To add custom definitions for character set, language, territory, and linguistic sort:

1. Generate the NLT file using Oracle Locale Builder.

If you are upgrading custom NLB files from a previous release, follow the procedure
described in "Upgrading Custom NLB Files from Previous Releases of Oracle Database".

2. Run Ginstall with -add or -a option to generate gdk_custom.jar.

java -classpath $ORACLE_HOME/jlib/orai18n.jar:$ORACLE_HOME/lib/xmlparserv2.jar
Ginstall -[add | a] <Name of NLT file>

To generate multiple NLT files:

java -classpath $ORACLE_HOME/jlib/orai18n.jar:$ORACLE_HOME/lib/xmlparserv2.jar
Ginstall -[add | a] <NLT file1>
 <NLT file2>
 <NLT file3>

3. Copy gdk_custom.jar to the same directory as orai18n.jar or orai18n-mapping.jar.

To remove a custom definition:

• Run Ginstall as follows.

java -classpath $ORACLE_HOME/jlib/orai18n.jar:$ORACLE_HOME/lib/xmlparserv2.jar
Ginstall -[remove | r] <Name of NLT file>

To update a custom definition:

• Run Ginstall as follows.

java -classpath $ORACLE_HOME/jlib/orai18n.jar:$ORACLE_HOME/lib/xmlparserv2.jar
Ginstall -[update | u] <Name of NLT file>

12.12 Customizing Calendars with the NLS Calendar Utility
Oracle Database supports several calendars. Some of them may require the addition of ruler
eras in the future and some may require tailoring to local needs through addition or subtraction
of deviation days. To add the required information to your Oracle implementation, you can use
external files that are automatically loaded when the calendar functions are executed.

Calendar data is first defined in a text file. The text definition file must be converted into binary
format. You can use the NLS Calendar Utility (lxegen) to convert the text definition file into
binary format.

The name of the text definition file and its location for the lxegen utility are hard-coded and
depend on the platform. On UNIX platforms, the file name is lxecal.nlt. It is located in
the $ORACLE_HOME/nls directory. A sample text definition file is included in
the $ORACLE_HOME/nls/demo directory.

Depending on the number of different calendars referenced in the text definition file, the lxegen
utility produces one or more binary files. The names of the binary files are also hard-coded and
depend on the platform. On UNIX platforms, the names of the binary files are lxecalah.nlb
(deviation days for the Arabic Hijrah calendar), lxecaleh.nlb (deviation days for the English
Hijrah calendar), and lxecalji.nlb (ruler eras for the Japanese Imperial calendar). The binary
files are generated in the same directory as the text file and overwrite existing binary files.

After the binary files have been generated, they are automatically loaded during system
initialization. Do not move or rename the files. Unlike files generated by Oracle Locale Builder,
calendar customization binary files are not platform-independent. You should generate them for
each combination of Oracle software release and platform separately.

Chapter 12
Customizing Calendars with the NLS Calendar Utility

12-40

Invoke the calendar utility from the command line as follows:

% lxegen

See Also:

• "Calendar Systems"

• Oracle Database Examples Installation Guide for more information regarding
how to install demo files

• Operating system documentation for the location of the files on your system

Chapter 12
Customizing Calendars with the NLS Calendar Utility

12-41

A
Locale Data

This appendix lists the languages, territories, character sets, and other locale data supported
by Oracle Database. This appendix contains the following topics:

• Languages

• Translated Messages

• Territories

• Character Sets

• Language and Character Set Detection Support

• Linguistic Collations

• Calendar Systems

• Time Zone Region Names

• Obsolete Locale Data

• Desupported Locale Data

You can obtain information about character sets, languages, territories, and linguistic sorts by
querying the V$NLS_VALID_VALUES dynamic performance view.

See Also:

Oracle Database Reference for more information about the V$NLS_VALID_VALUES
view

A.1 Languages
Languages in Table A-1 provide support for locale-sensitive information such as:

• Day and month names and their abbreviations

• Symbols for equivalent expressions for A.M., P.M., A.D., and B.C.

• Default sorting sequence for character data when the ORDER BY SQL clause is specified

• Writing direction (left to right or right to left)

• Affirmative and negative response strings (for example, YES and NO)

By using Unicode databases and data types, you can store, process, and retrieve data for
almost all contemporary languages, including many that do not appear in Table A-1.

A-1

Table A-1 Oracle Database Supported Languages

Language Name Language
Abbreviation

Default Sort

ALBANIAN sq GENERIC_M

AMERICAN us binary

AMHARIC am GENERIC_M

ARABIC ar ARABIC

ARMENIAN hy GENERIC_M

ASSAMESE as binary

AZERBAIJANI az AZERBAIJANI

BANGLA bn binary

BASQUE eu GENERIC_M

BELARUSIAN be RUSSIAN

BRAZILIAN PORTUGUESE ptb WEST_EUROPEAN

BULGARIAN bg BULGARIAN

BURMESE my GENERIC_M

CANADIAN FRENCH frc CANADIAN FRENCH

CATALAN ca CATALAN

CROATIAN hr CROATIAN

CYRILLIC KAZAKH ckk GENERIC_M

CYRILLIC SERBIAN csr GENERIC_M

CYRILLIC UZBEK cuz GENERIC_M

CZECH cs CZECH

DANISH dk DANISH

DARI prs GENERIC_M

DIVEHI dv GENERIC_M

DUTCH nl DUTCH

EGYPTIAN eg ARABIC

ENGLISH gb binary

ESTONIAN et ESTONIAN

FINNISH sf FINNISH

FRENCH f FRENCH

GEORGIAN ka GENERIC_M

GERMAN DIN din GERMAN

GERMAN d GERMAN

GREEK el GREEK

GUJARATI gu binary

HEBREW iw HEBREW

HINDI hi binary

HUNGARIAN hu HUNGARIAN

ICELANDIC is ICELANDIC

Appendix A
Languages

A-2

Table A-1 (Cont.) Oracle Database Supported Languages

Language Name Language
Abbreviation

Default Sort

INDONESIAN in INDONESIAN

IRISH ga binary

ITALIAN i WEST_EUROPEAN

JAPANESE ja binary

KANNADA kn binary

KHMER km GENERIC_M

KOREAN ko binary

KYRGYZ ky GENERIC_M

LAO lo GENERIC_M

LATIN AMERICAN SPANISH esa SPANISH

LATIN BOSNIAN lbs GENERIC_M

LATIN SERBIAN lsr binary

LATIN UZBEK luz GENERIC_M

LATVIAN lv LATVIAN

LITHUANIAN lt LITHUANIAN

MACEDONIAN mk binary

MALAY ms MALAY

MALAYALAM ml binary

MALTESE mt GENERIC_M

MARATHI mr binary

MEXICAN SPANISH esm WEST_EUROPEAN

NEPALI ne GENERIC_M

NORWEGIAN n NORWEGIAN

ORIYA or binary

PERSIAN fa GENERIC_M

POLISH pl POLISH

PORTUGUESE pt WEST_EUROPEAN

PUNJABI pa binary

ROMANIAN ro ROMANIAN

RUSSIAN ru RUSSIAN

SIMPLIFIED CHINESE zhs binary

SINHALA si GENERIC_M

SLOVAK sk SLOVAK

SLOVENIAN sl SLOVENIAN

SPANISH e SPANISH

SWAHILI sw GENERIC_M

SWEDISH s SWEDISH

TAMIL ta binary

Appendix A
Languages

A-3

Table A-1 (Cont.) Oracle Database Supported Languages

Language Name Language
Abbreviation

Default Sort

TELUGU te binary

THAI th THAI_DICTIONARY

TRADITIONAL CHINESE zht binary

TURKISH tr TURKISH

TURKMEN tk GENERIC_M

UKRAINIAN uk UKRAINIAN

URDU ur GENERIC_M

VIETNAMESE vn VIETNAMESE

A.2 Translated Messages
Oracle Database error messages have been translated into the languages which are listed in
Table A-2.

Table A-2 Oracle Database Supported Messages

Name Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CATALAN ca

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

Appendix A
Translated Messages

A-4

Table A-2 (Cont.) Oracle Database Supported Messages

Name Abbreviation

SPANISH e

SWEDISH s

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

A.3 Territories
Table A-3 lists the territories that Oracle Database supports.

Appendix A
Territories

A-5

Table A-3 Oracle Database Supported Territories

Territory Territory Territory

AFGHANISTAN
ALBANIA
ALGERIA
AMERICA
ANGOLA
ANTIGUA AND BARBUDA
ARGENTINA
ARMENIA
ARUBA
AUSTRALIA
AUSTRIA
AZERBAIJAN
BAHAMAS
BAHRAIN
BANGLADESH
BARBADOS
BELARUS
BELGIUM
BELIZE
BERMUDA
BOLIVIA
BOSNIA AND HERZEGOVINA
BOTSWANA
BRAZIL
BULGARIA
CAMBODIA
CAMEROON
CANADA
CATALONIA
CAYMAN ISLANDS
CHILE
CHINA
COLOMBIA
CONGO BRAZZAVILLE
CONGO KINSHASA
COSTA RICA
CROATIA
CURACAO
CYPRUS
CZECH REPUBLIC
DENMARK
DJIBOUTI
DOMINICA
DOMINICAN REPUBLIC
ECUADOR
EGYPT
EL SALVADOR
ESTONIA
ETHIOPIA
FINLAND
FRANCE
FYR MACEDONIA
GABON

GEORGIA
GERMANY
GHANA
GREECE
GRENADA
GUATEMALA
GUYANA
HAITI
HONDURAS
HONG KONG
HUNGARY
ICELAND
INDIA
INDONESIA
IRAN
IRAQ
IRELAND
ISRAEL
ITALY
IVORY COAST
JAMAICA
JAPAN
JORDAN
KAZAKHSTAN
KENYA
KOREA
KUWAIT
KYRGYZSTAN
LAOS
LATVIA
LEBANON
LIBYA
LIECHTENSTEIN
LITHUANIA
LUXEMBOURG
MACAO
MALAWI
MALAYSIA
MALDIVES
MALTA
MAURITANIA
MAURITIUS
MEXICO
MOLDOVA
MONTENEGRO
MOROCCO
MOZAMBIQUE
MYANMAR
NAMIBIA
NEPAL
NEW ZEALAND
NICARAGUA
NIGERIA

NORWAY
OMAN
PAKISTAN
PANAMA
PARAGUAY
PERU
PHILIPPINES
POLAND
PORTUGAL
PUERTO RICO
QATAR
ROMANIA
RUSSIA
SAINT KITTS AND NEVIS
SAINT LUCIA
SAUDI ARABIA
SENEGAL
SERBIA
SIERRA LEONE
SINGAPORE
SLOVAKIA
SLOVENIA
SOMALIA
SOUTH AFRICA
SOUTH SUDAN
SPAIN
SRI LANKA
SUDAN
SURINAME
SWAZILAND
SWEDEN
SWITZERLAND
SYRIA
TAIWAN
TANZANIA
THAILAND
THE NETHERLANDS
TRINIDAD AND TOBAGO
TUNISIA
TURKEY
TURKMENISTAN
UGANDA
UKRAINE
UNITED ARAB EMIRATES
UNITED KINGDOM
URUGUAY
UZBEKISTAN
VENEZUELA
VIETNAM
YEMEN
ZAMBIA
ZIMBABWE

A.4 Character Sets
The character sets that Oracle Database supports are listed in the following sections according
to three broad categories.

• Recommended Database Character Sets

Appendix A
Character Sets

A-6

• Other Character Sets

• Client-Only Character Sets

In addition, common character set subset/superset combinations are listed. Some character
sets can only be used with certain data types. For example, the AL16UTF16 character set can
only be used as an NCHAR character set, and not as a database character set.

Also documented in the comment section are other unique features of the character set that
may be important to users or your database administrator. For example, the information
includes whether the character set supports the euro currency symbol, whether user-defined
characters are supported, and whether the character set is a strict superset of ASCII. (You can
use the Database Migration Assistant for Unicode to migrate an existing database to a new
character set, only if all of the schema data is a strict subset of the new character set.)

The key for the comment column of the character set tables is:

SB: single-byte encoding
MB: multibyte encoding
FIXED: fixed-width multibyte encoding
ASCII: strict superset of ASCII
EURO: euro symbol supported
UDC: user-defined characters supported

Oracle Database does not document individual code page layouts. For specific details about a
particular character set, its character repertoire, and code point values, you can use Oracle
Locale Builder. Otherwise, you should refer to the actual national, international, or vendor-
specific standards.

See Also:

• Oracle Database Migration Assistant for Unicode Guide

• "Customizing Locale Data"

A.4.1 Recommended Database Character Sets
Table A-4 lists the recommended and most commonly used ASCII-based Oracle Database
character sets. The list is ordered alphabetically within their respective language group.

Table A-4 Recommended ASCII Database Character Sets

Language
Group

Character Set Description Comments

Asian JA16EUC EUC 24-bit Japanese MB, ASCII

Asian JA16EUCTILDE The same as JA16EUC except for the way that the wave dash
and the tilde are mapped to and from Unicode.

MB, ASCII

Asian JA16SJIS Shift-JIS 16-bit Japanese MB, ASCII,
UDC

Asian JA16SJISTILDE The same as JA16SJIS except for the way that the wave dash
and the tilde are mapped to and from Unicode.

MB, ASCII,
UDC

Asian KO16MSWIN949 MS Windows Code Page 949 Korean MB, ASCII,
UDC

Appendix A
Character Sets

A-7

Table A-4 (Cont.) Recommended ASCII Database Character Sets

Language
Group

Character Set Description Comments

Asian TH8TISASCII Thai Industrial Standard 620-2533 - ASCII 8-bit SB, ASCII,
EURO

Asian VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese SB, ASCII,
EURO

Asian ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII,
UDC

Asian ZHT16HKSCS MS Windows Code Page 950 with Hong Kong Supplementary
Character Set HKSCS-2001 (character set conversion to and
from Unicode is based on Unicode 3.0)

MB, ASCII,
EURO

Asian ZHT16MSWIN950 MS Windows Code Page 950 Traditional Chinese MB, ASCII,
UDC

Asian ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII

European BLT8ISO8859P13 ISO 8859-13 Baltic SB, ASCII

European BLT8MSWIN1257 MS Windows Code Page 1257 8-bit Baltic SB, ASCII,
EURO

European CL8ISO8859P5 ISO 8859-5 Latin/Cyrillic SB, ASCII

European CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic SB, ASCII,
EURO

European EE8ISO8859P2 ISO 8859-2 East European SB, ASCII

European EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII,
EURO

European EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek SB, ASCII,
EURO

European EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European SB, ASCII,
EURO

European NE8ISO8859P10 ISO 8859-10 North European SB, ASCII

European NEE8ISO8859P4 ISO 8859-4 North and North-East European SB, ASCII

European WE8ISO8859P15 ISO 8859-15 West European SB, ASCII,
EURO

European WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European SB, ASCII,
EURO

Middle
Eastern

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

Middle
Eastern

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic SB, ASCII,
EURO

Middle
Eastern

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

Middle
Eastern

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew SB, ASCII,
EURO

Middle
Eastern

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII,
EURO

Middle
Eastern

WE8ISO8859P9 ISO 8859-9 West European & Turkish SB, ASCII

Appendix A
Character Sets

A-8

Table A-4 (Cont.) Recommended ASCII Database Character Sets

Language
Group

Character Set Description Comments

Universal AL32UTF8 Unicode 12.1 Universal Character Set (UCS), UTF-8
encoding scheme

MB, ASCII,
EURO

Table A-5 lists the recommended and most commonly used EBCDIC-based Oracle Database
character sets. The list is ordered alphabetically within their respective language group.

Table A-5 Recommended EBCDIC Database Character Sets

Language
Group

Character Set Description Comments

Asian JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC

Asian JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC

Asian KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC

Asian TH8TISEBCDICS Thai Industrial Standard 620-2533-EBCDIC Server 8-bit SB

European BLT8EBCDIC1112S EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB

European CE8BS2000 Siemens EBCDIC.DF.04 8-bit Central European SB

European CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

European CL8EBCDIC1025R EBCDIC Code Page 1025 Server 8-bit Cyrillic SB

European CL8EBCDIC1158R EBCDIC Code Page 1158 Server 8-bit Cyrillic SB

European D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO

European DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO

European EE8BS2000 Siemens EBCDIC.DF.04 8-bit East European SB

European EE8EBCDIC870S EBCDIC Code Page 870 Server 8-bit East European SB

European EL8EBCDIC423R IBM EBCDIC Code Page 423 for RDBMS server-side SB

European EL8EBCDIC875R EBCDIC Code Page 875 Server 8-bit Greek SB

European F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO

European I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO

European SE8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO

European WE8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

European WE8BS2000E Siemens EBCDIC.DF.04 8-bit West European SB, EURO

European WE8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB

European WE8EBCDIC1047E Latin 1/Open Systems 1047 SB, EBCDIC,
EURO

European WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West European SB, EURO

European WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West European SB, EURO

European WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West European SB, EURO

European WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West European SB, EURO

Middle
Eastern

AR8EBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB

Middle
Eastern

IW8EBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB

Appendix A
Character Sets

A-9

Table A-5 (Cont.) Recommended EBCDIC Database Character Sets

Language
Group

Character Set Description Comments

Middle
Eastern

TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB

A.4.2 Other Character Sets
Table A-6 lists the other ASCII-based Oracle Database character sets. The list is ordered
alphabetically within their language groups.

Table A-6 Other ASCII-based Database Character Sets

Language
Group

Character Set Description Comments

Asian BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII

Asian IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian Languages SB, ASCII

Asian JA16VMS JVMS 16-bit Japanese MB, ASCII

Asian KO16KSC5601 KSC5601 16-bit Korean MB, ASCII

Asian KO16KSCCS KSCCS 16-bit (Johab) Korean MB, ASCII

Asian TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII

Asian VN8VN3 VN3 8-bit Vietnamese SB, ASCII

Asian ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB, ASCII

Asian ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII

Asian ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII

Asian ZHT16DBT Taiwan Taxation 16-bit Traditional Chinese MB, ASCII

Asian ZHT16HKSCS31 MS Windows Code Page 950 with Hong Kong Supplementary
Character Set HKSCS-2001 (character set conversion to and
from Unicode is based on Unicode 3.1)

MB, ASCII,
EURO

Asian ZHT32SOPS SOPS 32-bit Traditional Chinese MB, ASCII

Asian ZHT32TRIS TRIS 32-bit Traditional Chinese MB, ASCII

Middle
Eastern

AR8ADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8ADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8APTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8ASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8MUSSAD768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8NAFITHA711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic SB, ASCII

Appendix A
Character Sets

A-10

Table A-6 (Cont.) Other ASCII-based Database Character Sets

Language
Group

Character Set Description Comments

Middle
Eastern

AR8NAFITHA721 Nafitha International 721 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8SAKHR706 SAKHR 706 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AR8SAKHR707 SAKHR 707 Server 8-bit Latin/Arabic SB, ASCII

Middle
Eastern

AZ8ISO8859P9E ISO 8859-9 Latin Azerbaijani SB, ASCII

Middle
Eastern

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian Languages SB, ASCII

Middle
Eastern

IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII

Middle
Eastern

IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII

Middle
Eastern

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

Middle
Eastern

TR8DEC DEC 8-bit Turkish SB, ASCII

Middle
Eastern

TR8MACTURKISHS Mac Server 8-bit Turkish SB, ASCII

Middle
Eastern

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

European BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII

European BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII

European BLT8CP921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic SB, ASCII

European BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII

European CDN8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII

European CEL8ISO8859P14 ISO 8859-14 Celtic SB, ASCII

European CL8ISOIR111 ISOIR111 Cyrillic SB, ASCII

European CL8KOI8R RELCOM Internet Standard 8-bit Latin/Cyrillic SB, ASCII

European CL8KOI8U KOI8 Ukrainian Cyrillic SB, ASCII

European CL8MACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII

European EE8MACCES Mac Server 8-bit Central European SB, ASCII

European EE8MACCROATIANS Mac Server 8-bit Croatian SB, ASCII

European EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII

European EL8DEC DEC 8-bit Latin/Greek SB, ASCII

European EL8MACGREEKS Mac Server 8-bit Greek SB, ASCII

European EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII

European EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII

European EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII

European ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

Appendix A
Character Sets

A-11

Table A-6 (Cont.) Other ASCII-based Database Character Sets

Language
Group

Character Set Description Comments

European HU8ABMOD Hungarian 8-bit Special AB Mod SB, ASCII

European HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII

European IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII

European LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

European LA8PASSPORT German Government Printer 8-bit All-European Latin SB, ASCII

European LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII

European LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII

European LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII

European LV8PC8LR Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

European LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII

European LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII

European N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB, ASCII

European RU8BESTA BESTA 8-bit Latin/Cyrillic SB, ASCII

European RU8PC855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII

European RU8PC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

European SE8ISO8859P3 ISO 8859-3 South European SB, ASCII

European US7ASCII ASCII 7-bit American SB, ASCII

European US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII

European WE8DEC DEC 8-bit West European SB, ASCII

European WE8DG DG 8-bit West European SB, ASCII

European WE8ISO8859P1 ISO 8859-1 West European SB, ASCII

European WE8MACROMAN8S Mac Server 8-bit Extended Roman8 West European SB, ASCII

European WE8NCR4970 NCR 4970 8-bit West European SB, ASCII

European WE8NEXTSTEP NeXTSTEP PostScript 8-bit West European SB, ASCII

European WE8PC850 IBM-PC Code Page 850 8-bit West European SB, ASCII

European WE8PC858 IBM-PC Code Page 858 8-bit West European SB, ASCII,
EURO

European WE8PC860 IBM-PC Code Page 860 8-bit West European SB, ASCII

European WE8ROMAN8 HP Roman8 8-bit West European SB, ASCII

Universal UTF8 Unicode 3.0 Universal character set, CESU-8 encoding
scheme

MB, ASCII,
EURO

Table A-7 lists the other EBCDIC-based Oracle Database character sets. The list is ordered
alphabetically within their language groups.

Table A-7 Other EBCDIC-based Database Character Sets

Language
Group

Character Set Description Comments

Asian TH8TISEBCDIC Thai Industrial Standard 620-2533 - EBCDIC 8-bit SB

Appendix A
Character Sets

A-12

Table A-7 (Cont.) Other EBCDIC-based Database Character Sets

Language
Group

Character Set Description Comments

Asian ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC

Asian ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC

Middle Eastern AR8EBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB

Middle Eastern IW8EBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB

Middle Eastern IW8EBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB

Middle Eastern TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

Middle Eastern WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

European BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB

European CL8EBCDIC1025 EBCDIC Code Page 1025 8-bit Cyrillic SB

European CL8EBCDIC1025C EBCDIC Code Page 1025 Client 8-bit Cyrillic SB

European CL8EBCDIC1025S EBCDIC Code Page 1025 Server 8-bit Cyrillic SB

European CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB

European CL8EBCDIC1158 EBCDIC Code Page 1158 8-bit Cyrillic SB

European D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

European D8EBCDIC273 EBCDIC Code Page 273/1 8-bit Austrian German SB

European DK8BS2000 Siemens 9750-62 EBCDIC 8-bit Danish SB

European DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB

European E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

European EE8EBCDIC870 EBCDIC Code Page 870 8-bit East European SB

European EE8EBCDIC870C EBCDIC Code Page 870 Client 8-bit East European SB

European EL8EBCDIC875 EBCDIC Code Page 875 8-bit Greek SB

European EL8GCOS7 Bull EBCDIC GCOS7 8-bit Greek SB

European F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

European F8EBCDIC297 EBCDIC Code Page 297 8-bit French SB

European I8EBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB

European S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB

European S8EBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB

European US8ICL ICL EBCDIC 8-bit American SB

European US8BS2000 Siemens 9750-62 EBCDIC 8-bit American SB

European WE8EBCDIC924 Latin 9 EBCDIC 924 SB, EBCDIC

European WE8EBCDIC37 EBCDIC Code Page 37 8-bit West European SB

European WE8EBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB

European WE8EBCDIC285 EBCDIC Code Page 285 8-bit West European SB

European WE8EBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB

European WE8EBCDIC1140C EBCDIC Code Page 1140 8-bit West European SB, EURO

European WE8EBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European SB, EURO

European WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

European WE8EBCDIC500 EBCDIC Code Page 500 8-bit West European SB

Appendix A
Character Sets

A-13

Table A-7 (Cont.) Other EBCDIC-based Database Character Sets

Language
Group

Character Set Description Comments

European WE8EBCDIC871 EBCDIC Code Page 871 8-bit Icelandic SB

European WE8ICL ICL EBCDIC 8-bit West European SB

European WE8GCOS7 Bull EBCDIC GCOS7 8-bit West European SB

Universal UTFE Unicode 3.0 Universal character set, UTF-EBCDIC encoding
scheme

MB, EURO

A.4.3 Character Sets that Support the Euro Symbol
Table A-8 lists the character sets that support the Euro symbol.

Table A-8 Character Sets that Support the Euro Symbol

Character Set Name Hexadecimal Code Value of the Euro Symbol

AL16UTF16 20AC

AL32UTF8 E282AC

AR8MSWIN1256 80

BLT8MSWIN1257 80

CL8EBCDIC1158 E1

CL8EBCDIC1158R 9F

CL8MSWIN1251 88

D8EBCDIC1141 9F

DK8EBCDIC1142 5A

EE8MSWIN1250 80

EL8EBCDIC423R FD

EL8EBCDIC875R DF

EL8ISO8859P7 A4

EL8MSWIN1253 80

F8EBCDIC1147 9F

I8EBCDIC1144 9F

IW8MSWIN1255 80

KO16KSC5601 A2E6

KO16KSCCS D9E6

KO16MSWIN949 A2E6

SE8EBCDIC1143 5A

TH8TISASCII 80

TR8MSWIN1254 80

UTF8 E282AC

UTFE CA4653

VN8MSWIN1258 80

Appendix A
Character Sets

A-14

Table A-8 (Cont.) Character Sets that Support the Euro Symbol

Character Set Name Hexadecimal Code Value of the Euro Symbol

WE8BS2000E 9F

WE8EBCDIC1047E 9F

WE8EBCDIC1140 9F

WE8EBCDIC1140C 9F

WE8EBCDIC1145 9F

WE8EBCDIC1146 9F

WE8EBCDIC1148 9F

WE8EBCDIC1148C 9F

WE8EBCDIC924 9F

WE8ISO8859P15 A4

WE8MACROMAN8 DB

WE8MACROMAN8S DB

WE8MSWIN1252 80

WE8PC858 DF

ZHS32GB18030 A2E3

ZHT16HKSCS A3E1

ZHT16HKSCS31 A3E1

ZHT16MSWIN950 A3E1

A.4.4 Client-Only Character Sets
Table A-9 lists the Oracle Database character sets that are supported as client-only character
sets. The list is ordered alphabetically within their respective language groups.

Table A-9 Client-Only Character Sets

Language
Group

Character Set Description Comments

Asian JA16EUCYEN EUC 24-bit Japanese with '\' mapped to the Japanese yen
character

MB

Asian JA16MACSJIS Mac client Shift-JIS 16-bit Japanese MB

Asian JA16SJISYEN Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen
character

MB, UDC

Asian TH8MACTHAI Mac Client 8-bit Latin/Thai SB

Asian ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB

Asian ZHS32GB18030 GB18030 32-bit Simplified Chinese MB

European CH7DEC DEC VT100 7-bit Swiss (German/French) SB

European CL8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB

European D7SIEMENS9780X Siemens 97801/97808 7-bit German SB

European D7DEC DEC VT100 7-bit German SB

European DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB

Appendix A
Character Sets

A-15

Table A-9 (Cont.) Client-Only Character Sets

Language
Group

Character Set Description Comments

European EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB

European EEC8EUROPA3 EEC EUROPA3 8-bit West European/Greek SB

European EE8MACCROATIAN Mac Client 8-bit Croatian SB

European EE8MACCE Mac Client 8-bit Central European SB

European EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB

European EL8MACGREEK Mac Client 8-bit Greek SB

European E7DEC DEC VT100 7-bit Spanish SB

European E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB

European F7DEC DEC VT100 7-bit French SB

European F7SIEMENS9780X Siemens 97801/97808 7-bit French SB

European I7DEC DEC VT100 7-bit Italian SB

European I7SIEMENS9780X Siemens 97801/97808 7-bit Italian SB

European IS8MACICELANDICS Mac Server 8-bit Icelandic SB

European IS8MACICELANDIC Mac Client 8-bit Icelandic SB

European NL7DEC DEC VT100 7-bit Dutch SB

European NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

European N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB

European SF7DEC DEC VT100 7-bit Finnish SB

European S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

European S7DEC DEC VT100 7-bit Swedish SB

European SF7ASCII ASCII 7-bit Finnish SB

European WE8ISOICLUK ICL special version ISO8859-1 SB

European WE8MACROMAN8 Mac Client 8-bit Extended Roman8 West European SB

European WE8HP HP LaserJet 8-bit West European SB

European YUG7ASCII ASCII 7-bit Yugoslavian SB

Middle
Eastern

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

Middle
Eastern

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

Middle
Eastern

IW8MACHEBREW Mac Client 8-bit Hebrew SB

Middle
Eastern

TR7DEC DEC VT100 7-bit Turkish SB

Middle
Eastern

TR8MACTURKISH Mac Client 8-bit Turkish SB

A.4.5 Universal Character Sets
Table A-10 lists the Oracle Database character sets that provide universal language support.
They attempt to support all languages of the world, including, but not limited to, Asian,
European, and Middle Eastern languages.

Appendix A
Character Sets

A-16

Table A-10 Universal Character Sets

Name Description Comments

AL16UTF16 Unicode 12.1 Universal character set, UTF-16BE encoding scheme MB, EURO, FIXED

AL32UTF8 Unicode 12.1 Universal character set, UTF-8 encoding scheme MB, ASCII, EURO

UTF8 Unicode 3.0 Universal character set, CESU-8 encoding scheme MB, ASCII, EURO

UTFE Unicode 3.0 Universal character set, UTF-EBCDIC encoding scheme MB, EURO

Note:

CESU-8 defines an encoding scheme for Unicode that is identical to UTF-8 except
for its representation of supplementary characters. In CESU-8, supplementary
characters are represented as six-byte sequences that result from the transformation
of each UTF-16 surrogate code unit into an eight-bit form that is similar to the UTF-8
transformation, but without first converting the input surrogate pairs to a scalar value.

See Also:

• Supporting Multilingual Databases with Unicode

• Unicode Technical Report #26 “Compatibility Encoding Scheme for UTF-16: 8-Bit
(CESU-8)” published on The Unicode Consortium website

A.4.6 Character Set Conversion Support
The following character set encodings are supported for conversion only. They cannot be used
as database character set or national character set.

Table A-11 Character Set Encodings Supported for Conversion Only

Character Set
Encoding

Description

UTF-16

(little-endian)

This is a 16-bit little-endian encoding form of Unicode. The corresponding Oracle Database
character set is AL16UTF16LE.

ISO2022-CN This encoding covers a variety of Chinese character encodings. They supports both simplified and
traditional characters using both GB and CNS/BIG5. Being distinguished by escape sequences
and shift characters, these character sets include ASCII, GB 2312-80, CNS 11643-1992 Planes 1
and 2. The corresponding Oracle Database character sets are ZHS16CGB231280, ZHS16GBK
and ZHT32TRIS.

ISO2022-JP This encoding is a mixture of ASCII, JIS-Romann, JIS C 6226-1978 and JIS X 0208:1997. It is a
subset of Oracle Database character set JA16EUC and can be converted to JA16EUC character
set after some calculation.

ISO2022-KR This encoding covers ASCII and KSC 5601 character sets. The corresponding Oracle Database
character sets are KO16MSWIN949 and KO16KSC5601.

HZ-GB-2312 This encoding covers GB 2312-80, ASCII and GB-Roman. The corresponding Oracle Database
character set is ZHS16CGB231280.

Appendix A
Character Sets

A-17

You can use the Oracle Database character sets related to these encodings as the values for
the CONVERT function parameters source_char_set and dest_char_set.

See Also:

• "The CONVERT Function"

• Oracle Database SQL Language Reference for more information about the
CONVERT function

A.4.7 Binary Subset-Superset Pairs
Oracle Database does not maintain a list of all subset-superset pairs of its character sets but it
does maintain a list of binary subset-superset pairs that it recognizes when checking
compatibility of two character sets.

Table A-12 lists all binary subset-superset relationships recognized by Oracle Database.

Table A-12 Binary Subset-Superset Pairs

Subset Superset

AR8ARABICMACT AR8ARABICMAC

AR8ISO8859P6 AR8ASMO8X

BLT8CP921 BLT8ISO8859P13

BLT8CP921 LT8MSWIN921

D7DEC D7SIEMENS9780X

D7SIEMENS9780X D7DEC

DK7SIEMENS9780X N7SIEMENS9780X

I7DEC I7SIEMENS9780X

I7SIEMENS9780X IW8EBCDIC424

IW8EBCDIC424 IW8EBCDIC1086

KO16KSC5601 KO16MSWIN949

LT8MSWIN921 BLT8ISO8859P13

LT8MSWIN921 BLT8CP921

N7SIEMENS9780X DK7SIEMENS9780X

US7ASCII See "Binary Supersets of US7ASCII"

UTF8 AL32UTF8

WE8DEC TR8DEC

WE8DEC WE8NCR4970

WE8ISO8859P1 WE8MSWIN1252

WE8ISO8859P9 TR8MSWIN1254

WE8NCR4970 TR8DEC

WE8NCR4970 WE8DEC

WE8PC850 WE8PC858

Appendix A
Character Sets

A-18

US7ASCII is a special case because so many other character sets are supersets of it.

Binary Supersets of US7ASCII

The following is a list of all the character sets that are binary supersets of US7ASCII that are
recognized by Oracle Database. These character sets are listed in the alphabetical order.

Table A-13 Character Sets That Are Binary Supersets of US7ASCII

Character Set Character Set Character Set Character Set

AL32UTF8
AR8ADOS710
AR8ADOS720
AR8APTEC715
AR8ARABICMACS
AR8ASMO8X
AR8ISO8859P6
AR8MSWIN1256
AR8MUSSAD768
AR8NAFITHA711
AR8NAFITHA721
AR8SAKHR706
AR8SAKHR707
AZ8ISO8859PE
BG8MSWIN
BG8PC437S
BLT8CP921
BLT8ISO8859P13
BLT8MSWIN1257
BLT8PC775
BN8BSCII
CDN8PC863
CEL8ISO8859P14
CL8ISO8859P5
CL8ISOIR111
CL8KOI8R
CL8KOI8U

CL8MACCYRILLICS
CL8MSWIN1251
EE8ISO8859P2
EE8MACCES
EE8MACCROATIANS
EE8MSWIN1250
EE8PC852
EL8DEC
EL8ISO8859P7
EL8MACGREEKS
EL8MSWIN1253
EL8PC437S
EL8PC851
EL8PC869
ET8MSWIN923
HU8ABMOD
HU8CWI2
IN8ISCII
IS8PC861
IW8ISO8859P8
IW8MACHEBREWS
IW8MSWIN1255
IW8PC1507
JA16EUC
JA16EUCTILDE
JA16SJIS
JA16SJISTILDE

JA16VMS
KO16KSC5601
KO16KSCCS
KO16MSWIN949
LA8ISO6937
LA8PASSPORT
LT8MSWIN921
LT8PC772
LT8PC774
LV8PC1117
LV8PC8LR
LV8RST104090
N8PC865
NE8ISO8859P10
NEE8ISO8859P4
RU8BESTA
RU8PC855
RU8PC866
SE8ISO8859P3
TH8MACTHAIS
TH8TISASCII
TR8DEC
TR8MACTURKISHS
TR8MSWIN1254
TR8PC857
US8PC437
UTF8

VN8MSWIN1258
VN8VN3
WE8DEC
WE8DG
WE8ISO8859P1
WE8ISO8859P15
WE8ISO8859P9
WE8MACROMAN8S
WE8MSWIN1252
WE8NCR4970
WE8NEXTSTEP
WE8PC850
WE8PC858
WE8PC860
WE8ROMAN8
ZHS16CGB231280
ZHS16GBK
ZHS32GB18030
ZHT16BIG5
ZHT16CCDC
ZHT16DBT
ZHT16HKSCS
ZHT16MSWIN950
ZHT32EUC
ZHT32SOPS
ZHT32TRIS

See Also:

"Subsets and Supersets" for discussion of what subsets and supersets of a character
set are

A.5 Language and Character Set Detection Support
Table A-14 displays the languages and character sets that are supported by the Language and
Character Set Detection utility (LCSSCAN) and the Globalization Development Kit (GDK).

Each language has several character sets that can be detected.

When the binary values for a language match two or more encodings that have a subset/
superset relationship, the subset character set is returned. For example, if the language is
German and all characters are 7-bit, then US7ASCII is returned instead of WE8MSWIN1252,
WE8ISO8859P15, or WE8ISO8859P1.

Appendix A
Language and Character Set Detection Support

A-19

When the character set is determined to be UTF-8, the Oracle Database character set UTF8 is
returned by default unless 4-byte characters (supplementary characters) are detected within
the text. If 4-byte characters are detected, then the character set is reported as AL32UTF8.

Table A-14 Languages and Character Sets Supported by LCSSCAN and GDK

Language Character Sets

Arabic AL16UTF16, AL32UTF8, AR8ISO8859P6, AR8MSWIN1256, UTF8

Bulgarian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8MSWIN1251, UTF8

Catalan AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Croatian AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Czech AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Danish AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Dutch AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

English AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Estonian AL16UTF16, AL32UTF8, NEE8IOS8859P4, UTF8

Finnish AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

French AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

German AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Greek AL16UTF16, AL32UTF8, EL8ISO8859P7, EL8MSWIN1253, UTF8

Hebrew AL16UTF16, AL32UTF8, IW8ISO8859P8, IW8MSWIN1255, UTF8

Hindi AL16UTF16, AL32UTF8, IN8ISCII, UTF8

Hungarian AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Indonesian AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Italian AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Japanese AL16UTF16, AL32UTF8, ISO2022-JP, JA16EUC, JA16SJIS, UTF8

Korean AL16UTF16, AL32UTF8, ISO2022-KR, KO16KSC5601, KO16MSWIN949, UTF8

Latvian AL16UTF16, AL32UTF8, NEE8ISO8859P4, UTF8

Lithuanian AL16UTF16, AL32UTF8, NEE8ISO8859P4, UTF8

Malay AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Norwegian AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Persian AL16UTF16, AL32UTF8, AR8MSWIN1256, UTF8

Polish AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Portuguese AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Romanian AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Appendix A
Language and Character Set Detection Support

A-20

Table A-14 (Cont.) Languages and Character Sets Supported by LCSSCAN and GDK

Language Character Sets

Russian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8KOI8R, CL8MSWIN1251, RU8PC866,
UTF8

Serbian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8MSWIN1251, UTF8

Simplified Chinese AL16UTF16, AL32UTF8, HZ-GB-2312, UTF8, ZHS16GBK, ZHS16CGB231280

Slovak AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Slovenian AL16UTF16, AL32UTF8, EE8ISO8859P2, EE8MSWIN1250, UTF8

Spanish AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Swedish AL16UTF16, AL32UTF8, US7ASCII, UTF8, WE8ISO8859P1, WE8ISO8859P15,
WE8MSWIN1252

Thai AL16UTF16, AL32UTF8, TH8TISASCII, UTF8

Traditional Chinese AL16UTF16, AL32UTF8, UTF8, ZHT16MSWIN950

Turkish AL16UTF16, AL32UTF8, TR8MSWIN1254, UTF8, WE8ISO8859P9

Ukranian AL16UTF16, AL32UTF8, CL8ISO8859P5, CL8MSWIN1251, UTF8

Vietnamese AL16UTF16, AL32UTF8, VN8VN3, UTF8

A.6 Linguistic Collations
Oracle Database provides three kinds of linguistic collations, monolingual, multilingual, and
UCA.

A monolingual collation is usually created to sort character data in a single language and is
named after the corresponding language. Some languages have multiple collations
implementing multiple sorting standards for each language. Some monolingual collations have
an extended version that handles special linguistic cases. The name of the extended version is
prefixed with the letter X. These special cases typically mean that one character is sorted like a
sequence of two characters or a sequence of two characters is sorted as one character. For
example, ch and ll are treated as a single character in XSPANISH. Extended monolingual
collations may also define special language-specific uppercase and lowercase rules that
override standard rules of a character set.

All the linguistic collations can additionally be specified as case-insensitive or accent-
insensitive by appending _CI or _AI to the linguistic collation name respectively.

Table A-15 lists the monolingual linguistic collations supported by Oracle Database.

See Also:

Table A-1, "Oracle Database Supported Languages" for a list of the default collation
for each language

Appendix A
Linguistic Collations

A-21

Table A-15 Monolingual Linguistic Collations

Basic Name Extended Name Special Cases

ARABIC - -

ARABIC_MATCH - -

ARABIC_ABJ_SORT - -

ARABIC_ABJ_MATCH - -

ASCII7 - -

AZERBAIJANI XAZERBAIJANI i, I, lowercase i without dot, uppercase I
with dot

BENGALI - -

BIG51 - -

BINARY - -

BULGARIAN - -

CATALAN XCATALAN æ, AE, ß

CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

CZECH_PUNCTUATION XCZECH_PUNCTUATION ch, CH, Ch, ß

DANISH XDANISH A, ß, Å, å

DUTCH XDUTCH ij, IJ

EBCDIC - -

EEC_EURO - -

EEC_EUROPA3 - -

ESTONIAN - -

FINNISH - -

FRENCH XFRENCH -

GBK1 - -

GERMAN XGERMAN ß

GERMAN XGERMAN_S ß, uppercase ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GERMAN_DIN XGERMAN_DIN_S ß, ä, ö, ü, uppercase ß, Ä, Ö, Ü

GREEK - -

HEBREW - -

HKSCS1 - -

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY, Gy,
NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

ICELANDIC - -

INDONESIAN - -

ITALIAN - -

LATIN - -

Appendix A
Linguistic Collations

A-22

Table A-15 (Cont.) Monolingual Linguistic Collations

Basic Name Extended Name Special Cases

LATVIAN - -

LITHUANIAN - -

MALAY - -

NORWEGIAN - -

POLISH - -

PUNCTUATION XPUNCTUATION -

ROMANIAN - -

RUSSIAN - -

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH - -

SWISS XSWISS ß

TURKISH XTURKISH æ, AE, ß

UKRAINIAN - -

UNICODE_BINARY - -

VIETNAMESE - -

WEST_EUROPEAN XWEST_EUROPEAN ß

1 The collations BIG5, GBK, and HKSCS are implemented using the multilingual collation format and emulate the
binary orders of the ZHT16BIG5, ZHS16GBK, and ZHT16HKSCS character sets, respectively.

Table A-16 lists the multilingual linguistic collations available in Oracle Database. All of them
include GENERIC_M (an ISO standard for sorting Latin-based characters) as a base. Multilingual
linguistic collations are used for a specific primary language together with Latin-based
characters. For example, KOREAN_M sorts Korean and Latin-based characters, but it does not
sort Chinese, Thai, or Japanese characters.

Table A-16 Multilingual Linguistic Collations

Collation Name Description

CANADIAN_M Canadian French collation supports reverse secondary, special
expanding characters

DANISH_M Danish collation supports sorting uppercase characters before lowercase
characters

FRENCH_M French collation supports reverse sort for secondary

GENERIC_M Generic sorting order which is based on ISO14651 and Unicode
canonical equivalence rules but excluding compatible equivalence rules

JAPANESE_M Japanese collation supports SJIS character set order and EUC
characters which are not included in SJIS

Appendix A
Linguistic Collations

A-23

Table A-16 (Cont.) Multilingual Linguistic Collations

Collation Name Description

KOREAN_M Korean collation: Hangul characters are based on Unicode binary order.
Hanja characters based on pronunciation order. All Hangul characters
are before Hanja characters

SPANISH_M Traditional Spanish collation supports special contracting characters

THAI_M Thai collation supports swap characters for some vowels and consonants

SCHINESE_RADICAL_M Simplified Chinese collation based on radical as primary order and
number of strokes order as secondary order

SCHINESE_STROKE_M Simplified Chinese collation uses number of strokes as primary order and
radical as secondary order

SCHINESE_PINYIN_M Simplified Chinese PinYin sorting order

TCHINESE_RADICAL_M Traditional Chinese collation based on radical as primary order and
number of strokes order as secondary order

TCHINESE_STROKE_M Traditional Chinese collation uses number of strokes as primary order
and radical as secondary order. It supports supplementary characters.

See Also:

Linguistic Sorting and Matching

Table A-17 illustrates UCA collations.

Table A-17 UCA Collations

Collation Name UCA
Version

Language Collation
Type

Default Setting for Collation Parameters

UCA1210_DUCET 12.1 All DUCET _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_ROOT 12.1 All (CLDR root) standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_ORADUCET 12.1 All (Oracle tailored) ORADUCE
T

_S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_ORAROOT 12.1 All (CLDR root,
Oracle tailored)

ORAROOT _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_CFRENCH 12.1 Canadian French standard _S4_VS_BY1_NY_EN_FN_HN_DN_MN

UCA1210_DANISH 12.1 Danish standard _S4_VS_BN_NY_EN_FU2_HN_DN_MN

UCA1210_JAPANESE 12.1 Japanese standard _S4_VS_BN_NY_EN_FN_HY3_DN_MN

UCA1210_KOREAN 12.1 Korean standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_SPANISH 12.1 Spanish standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_TSPANISH 12.1 Spanish traditional _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_THAI 12.1 Thai standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_SCHINESE 12.1 Simplified Chinese pinyin _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_SCHINESE1 12.1 Simplified Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

Appendix A
Linguistic Collations

A-24

Table A-17 (Cont.) UCA Collations

Collation Name UCA
Version

Language Collation
Type

Default Setting for Collation Parameters

UCA1210_SCHINESE2 12.1 Simplified Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_TCHINESE 12.1 Traditional Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA1210_TCHINESE1 12.1 Traditional Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_DUCET 7.0 All DUCET _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_ROOT 7.0 All CLDR root _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_ORADUCET 7.0 All DUCET _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_ORAROOT 7.0 All CLDR root _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_CFRENCH 7.0 Canadian French standard _S4_VS_BY4_NY_EN_FN_HN_DN_MN

UCA0700_DANISH 7.0 Danish standard _S4_VS_BN_NY_EN_FU5_HN_DN_MN

UCA0700_JAPANESE 7.0 Japanese standard _S4_VS_BN_NY_EN_FN_HY6_DN_MN

UCA0700_KOREAN 7.0 Korean standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_SPANISH 7.0 Spanish standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_TSPANISH 7.0 Spanish traditional _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_THAI 7.0 Thai standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_SCHINESE 7.0 Simplified Chinese pinyin _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_SCHINESE1 7.0 Simplified Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_SCHINESE2 7.0 Simplified Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_TCHINESE 7.0 Traditional Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0700_TCHINESE1 7.0 Traditional Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_DUCET 6.2 All DUCET _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_ROOT 6.2 All CLDR root _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_CFRENCH 6.2 Canadian French standard _S4_VS_BY7_NY_EN_FN_HN_DN_MN

UCA0620_DANISH 6.2 Danish standard _S4_VS_BN_NY_EN_FU8_HN_DN_MN

UCA0620_JAPANESE 6.2 Japanese standard _S4_VS_BN_NY_EN_FN_HY9_DN_MN

UCA0620_KOREAN 6.2 Korean standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_SPANISH 6.2 Spanish standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_TSPANISH 6.2 Spanish traditional _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_THAI 6.2 Thai standard _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_SCHINESE 6.2 Simplified Chinese pinyin _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_SCHINESE1 6.2 Simplified Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_SCHINESE2 6.2 Simplified Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_TCHINESE 6.2 Traditional Chinese stroke _S4_VS_BN_NY_EN_FN_HN_DN_MN

UCA0620_TCHINESE1 6.2 Traditional Chinese radical _S4_VS_BN_NY_EN_FN_HN_DN_MN

1 Default setting of _BY is unique for UCA1210_CFRENCH collation. For all other UCA 12.1 collations, the default setting is _BN.
2 Default setting of _FU is unique for UCA1210_DANISH collation. For all other UCA 12.1 collations, the default setting is _FN.
3 Default setting of _HY is unique for UCA1210_JAPANESE collation. For all other UCA 12.1 collations, the default setting is _HN.
4 Default setting of _BY is unique for UCA0700_CFRENCH collation. For all other UCA 7.0 collations, the default setting is _BN.

Appendix A
Linguistic Collations

A-25

5 Default setting of _FU is unique for UCA0700_DANISH collation. For all other UCA 7.0 collations, the default setting is _FN.
6 Default setting of _HY is unique for UCA0700_JAPANESE collation. For all other UCA 7.0 collations, the default setting is _HN.
7 Default setting of _BY is unique for UCA0620_CFRENCH collation. For all other UCA 6.2 collations, the default setting is _BN.
8 Default setting of _FU is unique for UCA0620_DANISH collation. For all other UCA 6.2 collations, the default setting is _FN.
9 Default setting of _HY is unique for UCA0620_JAPANESE collation. For all other UCA 6.2 collations, the default setting is _HN.

Note:

Oracle recommends that you do not use UCA 6.2 and 7.0 collations, nor the
UCA1210_DUCET and UCA1210_ROOT collations. See "Avoiding ORA-12742 Error" for
information about the issues affecting these collations.

A.7 Calendar Systems
By default, most territory definitions use the Gregorian calendar system. Table A-18 lists the
other calendar systems supported by Oracle Database.

Table A-18 Supported Calendar Systems

Name Default Date Format Character Set Used For Default Date
Format

Japanese Imperial EEYYMMDD JA16EUC

ROC Official EEyymmdd ZHT32EUC

Thai Buddha dd month EE yyyy TH8TISASCII

Persian DD Month YYYY AR8ASMO8X

Arabic Hijrah DD Month YYYY AR8ISO8859P6

English Hijrah DD Month YYYY US7ASCII

Ethiopian Month DD YYYY AL32UTF8

The Arabic Hijrah and English Hijrah calendars implemented in the Oracle Database are a
variant of the tabular Islamic calendar in which the leap years are the 2nd, 5th, 7th, 10th, 13th,
16th, 18th, 21st, 24th, 26th, and 29th in the 30-years cycle and in which the 1st of Muharram 1
AH corresponds to the 16th of July 622 AD. Users can apply deviation days to modify the
calendar to suit their requirements, for example, by following an alternative set of leap years.
See "Customizing Calendars with the NLS Calendar Utility" for more details about defining
deviation days. The only difference between Arabic Hijrah and English Hijrah calendars are
month names, which are written, correspondingly, in Arabic and in English transliteration.

The following example shows how July 11, 2019, appears in Japanese Imperial.

Appendix A
Calendar Systems

A-26

Figure A-1 Japanese Imperial Example

A.8 Time Zone Region Names
Table A-19 shows the time zone region names in the time zone files for version 11 that are
supplied with the Oracle Database. See "Datetime Data Types and Time Zone Support" for
more information regarding time zone files.

You can see the time zone region names by issuing the following statement:

SELECT DISTINCT(TZNAME) FROM V$TIMEZONE_NAMES;

Table A-19 Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

Africa/Abidjan No Asia/Qatar No

Africa/Accra No Asia/Qyzylorda No

Africa/Addis_Ababa No Asia/Rangoon No

Africa/Algiers No Asia/Riyadh Yes

Africa/Asmara No Asia/Saigon No

Africa/Asmera No Asia/Sakhalin No

Africa/Bamako No Asia/Samarkand No

Africa/Bangui No Asia/Seoul Yes

Africa/Banjul No Asia/Shanghai Yes

Africa/Bissau No Asia/Singapore Yes

Africa/Blantyre No Asia/Taipei Yes

Africa/Brazzaville No Asia/Tashkent No

Africa/Bujumbura No Asia/Tbilisi No

Africa/Cairo Yes Asia/Tehran Yes

Africa/Casablanca No Asia/Tel_Aviv Yes

Africa/Ceuta No Asia/Thimbu No

Africa/Conakry No Asia/Thimphu No

Africa/Dakar No Asia/Tokyo Yes

Appendix A
Time Zone Region Names

A-27

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

Africa/Dar_es_Salaam No Asia/Ujung_Pandang No

Africa/Djibouti No Asia/Ulaanbaator No

Africa/Doula No Asia/Ulan_Bator No

Africa/El_Aaiun No Asia/Urumqi No

Africa/Freetown No Asia/Vientiane No

Africa/Gaborone No Asia/Vladivostok No

Africa/Harare No Asia/Yakutsk No

Africa/Johannesburg No Asia/Yetaterinburg No

Africa/Kampala No Asia/Yerevan No

Africa/Khartoum No Atlantic/Azores No

Africa/Kigali No Atlantic/Bermuda No

Africa/Kinshasa No Atlantic/Canary No

Africa/Lagos No Atlantic/Cape_Verde No

Africa/Libreville No Atlantic/Faeroe No

Africa/Lome No Atlantic/Faroe No

Africa/Luanda No Atlantic/Jan_Mayen No

Africa/Lubumbashi No Atlantic/Madeira No

Africa/Lusaka No Atlantic/Reykjavik Yes

Africa/Malabo No Atlantic/South_Georgia No

Africa/Maputo No Atlantic/St_Helena No

Africa/Maseru No Atlantic/Stanley No

Africa/Mbabane No Australia/ACT Yes

Africa/Mogadishu No Australia/Adelaide Yes

Africa/Monrovia No Australia/Brisbane Yes

Africa/Nairobi No Australia/Broken_Hill Yes

Africa/Ndjamena No Australia/Canberra Yes

Africa/Niamey No Australia/Currie No

Africa/Nouakchott No Australia/Darwin Yes

Africa/Ouagadougou No Australia/Eucla No

Africa/Porto-Novo No Australia/Hobart Yes

Africa/Sao_Tome No Australia/LHI Yes

Africa/Timbuktu No Australia/Lindeman Yes

Africa/Tripoli Yes Australia/Lord_Howe Yes

Africa/Tunis No Australia/Melbourne Yes

Africa/Windhoek No Australia/NSW Yes

America/Adak Yes Australia/North Yes

America/Anchorage Yes Australia/Perth Yes

America/Anguilla No Australia/Queensland Yes

Appendix A
Time Zone Region Names

A-28

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

America/Antigua No Australia/South Yes

America/Araguaina No Australia/Sydney Yes

America/Argentina/
Buenos_Aires

No Australia/Tasmania Yes

America/Argentina/
Catamarca

No Australia/Victoria Yes

America/Argentina/
ComodRivadavia

No Australia/West Yes

America/Argentina/Cordoba No Australia/Yancowinna Yes

America/Argentina/Jujuy No Brazil/Acre Yes

America/Argentina/La_Rioja Yes Brazil/DeNoronha Yes

America/Argentina/Mendoza No Brazil/East Yes

America/Argentina/
Rio_Gallegos

Yes Brazil/West Yes

America/Argentina/Salta No CET Yes

America/Argentina/San_Juan Yes CST Yes

America/Argentina/San_Luis No CST6CDT Yes

America/Argentina/Tucuman Yes Canada/Atlantic Yes

America/Argentina/Ushuaia Yes Canada/Central Yes

America/Aruba No Canada/East-Saskatchewan Yes

America/Asuncion No Canada/Eastern Yes

America/Atikokan No Canada/Mountain Yes

America/Atka Yes Canada/Newfoundland Yes

America/Bahia No Canada/Pacific Yes

America/Barbados No Canada/Saskatchewan Yes

America/Belem No Canada/Yukon Yes

America/Belize No Chile/Continental Yes

America/Blanc-Sablon No Chile/EasterIsland Yes

America/Boa_Vista No Cuba Yes

America/Bogota No EET Yes

America/Boise No EST Yes

America/Buenos_Aires No EST5EDT Yes

America/Cambridge_Bay No Egypt Yes

America/Campo_Grande No Eire Yes

America/Cancun No Etc/GMT Yes

America/Caracas No Etc/GMT+0 Yes

America/Catamarca No Etc/GMT+1 Yes

America/Cayenne No Etc/GMT+10 Yes

America/Cayman No Etc/GMT+11 Yes

Appendix A
Time Zone Region Names

A-29

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

America/Chicago Yes Etc/GMT+12 Yes

America/Chihuahua No Etc/GMT+2 Yes

America/Coral_Harbour No Etc/GMT+3 Yes

America/Cordoba No Etc/GMT+4 Yes

America/Costa_Rica No Etc/GMT+5 Yes

America/Cuiaba No Etc/GMT+6 Yes

America/Curacao No Etc/GMT+7 Yes

America/Danmarkshavn No Etc/GMT+8 Yes

America/Dawson No Etc/GMT+9 Yes

America/Dawson_Creek No Etc/GMT-0 Yes

America/Denver Yes Etc/GMT-1 Yes

America/Detroit Yes Etc/GMT-10 Yes

America/Dominica No Etc/GMT-11 Yes

America/Edmonton Yes Etc/GMT-12 Yes

America/Eirunepe Yes Etc/GMT-13 Yes

America/El_Salvador No Etc/GMT-14 Yes

America/Ensenada Yes Etc/GMT-2 Yes

America/Fort_Wayne Yes Etc/GMT-3 Yes

America/Fortaleza No Etc/GMT-4 Yes

America/Glace_Bay No Etc/GMT-5 Yes

America/Godthab No Etc/GMT-6 yes

America/Goose_Bay No Etc/GMT-7 Yes

America/Grand_Turk No Etc/GMT-8 Yes

America/Grenada No Etc/GMT-9 Yes

America/Guadeloupe No Etc/GMT0 Yes

America/Guatemala No Etc/Greenwich Yes

America/Guayaquil No Europe/Amsterdam No

America/Guyana No - -

America/Halifax Yes Europe/Andorra No

America/Havana Yes Europe/Athens No

America/Hermosillo No Europe/Belfast Yes

America/Indiana/Indianapolis Yes Europe/Belgrade No

America/Indiana/Knox No Europe/Berlin No

America/Indiana/Marengo No Europe/Bratislava No

America/Indiana/Petersburg No Europe/Brussels No

America/Indiana/Tell_City No Europe/Bucharest No

America/Indiana/Vevay No Europe/Budapest No

America/Indiana/Vincennes No Europe/Chisinau No

Appendix A
Time Zone Region Names

A-30

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

America/Indiana/Winamac No Europe/Copenhagen No

America/Indianapolis Yes Europe/Dublin Yes

America/Inuvik No Europe/Gibraltar No

America/Iqaluit No Europe/Guernsey Yes

America/Jamaica Yes Europe/Helsinki No

America/Jujuy No Europe/Isle_of_Man Yes

America/Juneau No Europe/Istanbul Yes

America/Kentucky/Louisville No Europe/Jersey Yes

America/Kentucky/Monticello No Europe/Kaliningrad No

America/Knox_IN No Europe/Kiev No

America/La_Paz No Europe/Lisbon Yes

America/Lima No Europe/Ljubljana No

America/Los_Angeles Yes Europe/London Yes

America/Louisville No Europe/Luxembourg No

America/Maceio No Europe/Madrid No

America/Managua No Europe/Malta No

America/Manaus Yes Europe/Mariehamn No

America/Marigot No Europe/Minsk No

America/Martinique No Europe/Monaco No

America/Mazatlan Yes Europe/Moscow Yes

America/Mendoza No Europe/Nicosia No

America/Menominee No Europe/Oslo No

America/Merida No Europe/Paris No

America/Mexico_City Yes Europe/Podgorica No

America/Miquelon No Europe/Prague No

America/Moncton No Europe/Riga No

America/Monterrey Yes Europe/Rome No

America/Montevideo No Europe/Samara No

America/Montreal Yes Europe/San_Marino No

America/Montserrat No Europe/Sarajevo No

America/Nassau No Europe/Simferopol No

America/New_York Yes Europe/Skopje No

America/Nipigon No Europe/Sofia No

America/Nome No Europe/Stockholm No

America/Noronha Yes Europe/Tallinn No

America/North_Dakota/
Center

No Europe/Tirane No

America/North_Dakota/
New_Salem

No Europe/Tiraspol No

Appendix A
Time Zone Region Names

A-31

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

America/Panama No Europe/Uzhgorod No

America/Pangnirtung No Europe/Vaduz No

America/Paramaribo No Europe/Vatican No

America/Phoenix Yes Europe/Vienna No

America/Port-au-Prince No Europe/Vilnius No

America/Port_of_Spain No Europe/Volgograd No

America/Porto_Acre No Europe/Warsaw Yes

America/Porto_Velho No Europe/Zagreb No

America/Port_of_Spain No Europe/Zaporozhye No

America/Porto_Acre No Europe/Zurich No

America/Porto_Velho No GB Yes

America/Puerto_Rico No GB-Eire Yes

America/Rainy_River No GMT Yes

America/Rankin_Inlet No GMT+0 Yes

America/Recife No GMT-0 Yes

America/Regina Yes GMT0 Yes

America/Resolute No Greenwich Yes

America/Rio_Branco Yes HST Yes

America/Rosario No Hongkong Yes

America/Santiago Yes Iceland Yes

America/Santo_Domingo No Indian/Antananarivo No

America/Sao_Paulo Yes Indian/Chagos No

America/Scoresbysund No Indian/Christmas No

America/Shiprock Yes Indian/Cocos No

America/St_Barthelemy No Indian/Comoro No

America/St_Johns Yes Indian/Kerguelen No

America/St_Kitts No Indian/Mahe No

America/St_Lucia No Indian/Maldives No

America/St_Thomas No Indian/Mauritius No

America/St_Vincent No Indian/Mayotte No

America/Swift_Current No Indian/Reunion No

America/Tegucigalpa No Iran Yes

America/Thule No Israel Yes

America/Thunder_Bay No Jamaica Yes

America/Tijuana Yes Japan Yes

America/Tortola No Kwajalein Yes

America/Vancouver Yes Libya Yes

America/Virgin No MET Yes

Appendix A
Time Zone Region Names

A-32

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

America/Whitehorse Yes MST Yes

America/Winnipeg Yes MST7MDT Yes

America/Yakutat No Mexico/BajaNorte Yes

America/Yellowknife No Mexico/BajaSur Yes

Antarctica/Casey No Mexico/General Yes

Antarctica/Davis No NZ Yes

Antarctica/DumontDUrville No NZ-CHAT Yes

Antarctica/Mawson No Navajo Yes

Antarctica/McMurdo No PRC Yes

Antarctica/Palmer No PST Yes

Antarctica/South_Pole No PST8PDT Yes

Antarctica/Syowa No Pacific/Apia No

Arctic/Longyearbyen No Pacific/Auckland Yes

Asia/Aden No Pacific/Chatham Yes

Asia/Almaty No Pacific/Easter Yes

Asia/Amman No Pacific/Efate No

Asia/Anadyr No Pacific/Enderbury No

Asia/Aqtau No Pacific/Fakaofo No

Asia/Aqtobe No Pacific/Fiji No

Asia/Ashgabat No Pacific/Funafuji No

Asia/Ashkhabad No Pacific/Galapagos No

Asia/Baghdad No Pacific/Gambier No

Asia/Bahrain No Pacific/Guadalcanal No

Asia/Baku No Pacific/Guam No

Asia/Bangkok No Pacific/Honolulu Yes

Asia/Beirut No Pacific/Johnston No

Asia/Bishkek No Pacific/Kiritimati No

Asia/Brunei No Pacific/Kosrae No

Asia/Calcutta Yes Pacific/Kwajalein Yes

Asia/Choibalsan No Pacific/Majuro No

Asia/Chongqing No Pacific/Marquesas No

Asia/Chungking No Pacific/Midway No

Asia/Colombo No Pacific/Nauru No

Asia/Dacca No Pacific/Niue No

Asia/Damascus No Pacific/Norfolk No

Asia/Dhaka No Pacific/Noumea No

Asia/Dili No Pacific/Pago_Pago Yes

Asia/Dubai No Pacific/Palau No

Appendix A
Time Zone Region Names

A-33

Table A-19 (Cont.) Time Zone Region Names

Time Zone Name In the Smaller Time Zone
File?

Time Zone Name In the Smaller Time Zone
File?

Asia/Dushanbe No Pacific/Pitcairn No

Asia/Gaza No Pacific/Ponape No

Asia/Harbin No Pacific/Rarotonga No

Asia/Ho_Chi_Minh No Pacific/Rarotonga No

Asia/Hong_Kong Yes Pacific/Saipan No

Asia/Hovd No Pacific/Samoa Yes

Asia/Irkutsk No Pacific/Tahiti No

Asia/Istanbul Yes Pacific/Tarawa No

Asia/Jakarta No Pacific/Tongatapu No

Asia/Jayapura No Pacific/Truk No

Asia/Jerusalem Yes Pacific/Wake No

Asia/Kabul No Pacific/Wallis No

Asia/Kamchatka No Pacific/Yap No

Asia/Karachi No Poland Yes

Asia/Kashgar No Portugal Yes

Asia/Kathmandu No ROC Yes

Asia/Katmandu No ROK Yes

Asia/Kolkata No Singapore Yes

Asia/Krasnoyarsk No Turkey Yes

Asia/Kuala_Lumpur No US/Alaska Yes

Asia/Kuching No US/Aleutian Yes

Asia/Kuwait No US/Arizona Yes

Asia/Macao No US/Central Yes

Asia/Macau No US/East-Indiana Yes

Asia/Magadan No US/Eastern Yes

Asia/Makassar No US/Hawaii Yes

Asia/Manila No US/Indiana-Starke No

Asia/Muscat No US/Michigan Yes

Asia/Nicosia No US/Mountain Yes

Asia/Novosibirsk No US/Pacific Yes

Asia/Omsk No US/Pacific-New Yes

Asia/Oral No US/Samoa Yes

Asia/Phnom_Penh No UTC No

Asia/Pontianak No W-SU Yes

Asia/Pyongyang No WET Yes

Appendix A
Time Zone Region Names

A-34

See Also:

"Choosing a Time Zone File"

A.9 Obsolete Locale Data
This section contains information about obsolete linguistic sorts, character sets, languages,
and territories. The obsolete linguistic sort, language, and territory definitions are still available.
However, they are supported for backward compatibility only; they may be desupported in a
future release. You can obtain a listing of the obsolete character sets, languages, territories,
and linguistic sorts for the current database release by querying the V$NLS_VALID_VALUES view.

A.9.1 Obsolete Linguistic Sorts
Table A-20 contains linguistic sorts that have been obsoleted starting with Oracle Database
10g.

Table A-20 Obsolete Linguistic Sorts

Obsolete Sort Name Replacement Sort

THAI_TELEPHONE THAI_M

THAI_DICTIONARY THAI_M

CANADIAN FRENCH CANADIAN_M

JAPANESE JAPANESE_M

A.9.2 Obsolete Territories
Table A-21 contains territories that have been obsoleted starting with Oracle Database 10g.

Table A-21 Obsolete Territories

Obsolete Territory Name Replacement Territory

CIS RUSSIA

MACEDONIA FYR MACEDONIA

YUGOSLAVIA BOSNIA AND HERZEGOVINA, SERBIA, or MONTENEGRO

SERBIA AND MONTENEGRO SERBIA or MONTENEGRO

CZECHOSLOVAKIA CZECH REPUBLIC or SLOVAKIA

A.9.3 Obsolete Languages
Table A-22 contains languages that have been obsoleted starting with Oracle Database 10g.

Appendix A
Obsolete Locale Data

A-35

Table A-22 Obsolete Languages

Obsolete Language Name Replacement Language

BENGALI BANGLA

A.9.4 Obsolete Character Sets and Replacement Character Sets
Table A-23 lists the obsolete character sets. If you reference any of these character sets in
your code, then replace them with the new character set.

Table A-23 Obsolete Character Sets and Their Replacements

Obsolete Character Set Replacement Character Set

AR8ADOS710T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8ADOS720T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8APTEC715T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8ASMO708PLUS AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8HPARABIC8T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8MUSSAD768T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8NAFITHA711T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8NAFITHA721T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8SAKHR707T AR8ISO8859P6, AR8MSWIN1256, and AL32UTF8

AR8MSAWIN AR8MSWIN1256

AR8XBASIC AR8EBCDIC420S

CL8EBCDIC875S CL8EBCDIC875R

CL8MSWINDOW31 CL8MSWIN1251

EL8EBCDIC875S EL8EBCDIC875R

JVMS JA16VMS

JEUC JA16EUC

SJIS JA16SJIS

JDBCS JA16DBCS

KSC5601 KO16KSC5601

KDBCS KO16DBCS

CGB2312-80 ZHS16CGB231280

CNS 11643-86 ZHT32EUC

JA16EUCFIXED UTF8 and AL16UTF16

See the note following this table

ZHS32EUCFIXED UTF8 and AL16UTF16

ZHS16GBKFIXED UTF8 and AL16UTF16

JA16DBCSFIXED UTF8 and AL16UTF16

KO16DBCSFIXED UTF8 and AL16UTF16

ZHS16DBCSFIXED UTF8 and AL16UTF16

ZHS16CGB231280FIXED UTF8 and AL16UTF16

Appendix A
Obsolete Locale Data

A-36

Table A-23 (Cont.) Obsolete Character Sets and Their Replacements

Obsolete Character Set Replacement Character Set

ZHT16DBCSFIXED UTF8 and AL16UTF16

KO16KSC5601FIXED UTF8 and AL16UTF16

JA16SJISFIXED UTF8 and AL16UTF16

See the note following this table

ZHT16BIG5FIXED UTF8 and AL16UTF16

ZHT32TRISFIXED UTF8 and AL16UTF16

Note:

The character sets JA16EUCFIXED (1830) and JA16SJISFIXED (1832) are supported
on the database client side using:

• NLS_NCHAR client environment variable

• ncharset parameter of the OCIEnvNlsCreate() call

• OCI_ATTR_CHARSET_ID attribute of a bind or a define handle

A.9.5 Updates to the Oracle Database Language and Territory Definition
Files

Changes have been made to the content in some of the language and territory definition files
since Oracle Database 10g. These updates are necessary to correct the legacy definitions that
no longer meet the local conventions in some of the languages and territories that Oracle
Database supports. These changes include modifications to the currency symbols, month
names, and group separators. One example is the local currency symbol for Brazil. This was
updated from Cr$ to R$ in Oracle Database 10g.

Please refer to the "Oracle Database Language and Territory Definition Changes" table
documented in the $ORACLE_HOME/nls/data/old/data_changes.html file for a detailed list of
the changes.

You should review your existing application code to make sure that the latest locale definition
files that are included in this Oracle Database release are being used. If you are not able to
make locale-specific code changes to support your applications, then you may use the
Oracle9i locale definition files that are included in this Oracle Database release.

To revert back to the Oracle9i language and territory behavior:

1. Shut down the database.

2. Run the script cr9idata.pl from the $ORACLE_HOME/nls/data/old directory.

3. Set the ORA_NLS10 environment variable to the newly created $ORACLE_HOME/nls/data/
9idata directory.

4. Restart the database.

Steps 2 and 3 will need to be repeated for all the Oracle Database clients that need to revert
back to the Oracle9i definition files.

Appendix A
Obsolete Locale Data

A-37

Note:

Oracle strongly recommends that you use the latest locale definition files included in
this Oracle Database release. Oracle9i locale definition files will be desupported in a
future release.

A.10 Desupported Locale Data
This section contains information about desupported linguistic sorts and character sets. Oracle
will no longer fix bugs related to these features and Oracle can choose to remove the code
required to use these features.

A.10.1 Desupported Linguistic Sorts
Table A-24 contains the UCA 6.1 collations that have been desupported starting with Oracle
Database 21c. Oracle recommends to migrate schema objects, such as linguistic indexes and
data-bound collations created using the UCA 6.1 collations, to the UCA 12.1 collations. UCA
12.1 has incorporated all enhancements and upgrades on UCA since version 6.1. It also has
proper weight assignment for all new characters introduced to the Unicode standard since
Unicode 6.1.

Table A-24 Desupported UCA 6.1 Collations

Desupported Sort Name Replacement Sort

UCA0610_ROOT UCA1210_ROOT
UCA0610_DUCET UCA1210_DUCET
UCA0610_SPANISH UCA1210_SPANISH
UCA0610_TSPANISH UCA1210_TSPANISH
UCA0610_CFRENCH UCA1210_CFRENCH
UCA0610_DANISH UCA1210_DANISH
UCA0610_THAI UCA1210_THAI
UCA0610_JAPANESE UCA1210_JAPANESE
UCA0610_KOREAN UCA1210_KOREAN
UCA0610_SCHINESE UCA1210_SCHINESE
UCA0610_SCHINESE1 UCA1210_SCHINESE1
UCA0610_SCHINESE2 UCA1210_SCHINESE2
UCA0610_TCHINESE UCA1210_TCHINESE
UCA0610_TCHINESE1 UCA1210_TCHINESE1

A.10.2 AL24UTFFSS Character Set Desupported
The Unicode character set AL24UTFFSS was introduced in Oracle Database version 7 to
support the UTF-8 encoding scheme and was based on the Unicode standard 1.1.
AL24UTFFSS was desupported in Oracle9i. Oracle Database began offering the Unicode
database character set UTF8 in Oracle8 and AL32UTF8 in Oracle9i. The AL32UTF8 character
set has been updated to conform to Unicode 7.0 in Oracle Database 12c Release 2 (12.2),

Appendix A
Desupported Locale Data

A-38

Unicode 9.0 in Oracle Database 18c and Oracle Database 19c, and Unicode 12.1 in Oracle
Database 21c.

The migration path for an existing AL24UTFFSS database is to upgrade to UTF8 prior to
upgrading to Oracle Database 9i or later. You can use the Character Set Scanner for data
analysis in Oracle8 before attempting to migrate your existing database character set to UTF8.

Appendix A
Desupported Locale Data

A-39

B
Unicode Character Code Assignments

This appendix provides an introduction to Unicode character assignments. This appendix
contains the following topics:

• Unicode Code Ranges

• UTF-16 Encoding

• UTF-8 Encoding

B.1 Unicode Code Ranges
Table B-1 contains code ranges that have been allocated in Unicode for UTF-16 character
codes.

Table B-1 Unicode Character Code Ranges for UTF-16 Character Codes

Types of Characters First 16 Bits Second 16 Bits

ASCII 0000-007F -

European (except ASCII), Arabic, Hebrew 0080-07FF -

Iindic, Thai, certain symbols (such as the euro symbol), Chinese,
Japanese, Korean

0800-0FFF

1000 - CFFF

D000 - D7FF

F900 - FFFF

-

Private Use Area #1 E000 - EFFF

F000 - F8FF

-

Supplementary characters: Additional Chinese, Japanese, and Korean
characters; historic characters; musical symbols; mathematical symbols

D800 - D8BF

D8CO - DABF

DAC0 - DB7F

DC00 - DFFF

DC00 - DFFF

DC00 - DFFF

Private Use Area #2 DB80 - DBBF

DBC0 - DBFF

DC00 - DFFF

DC00 - DFFF

Table B-2 contains code ranges that have been allocated in Unicode for UTF-8 character
codes.

Table B-2 Unicode Character Code Ranges for UTF-8 Character Codes

Types of Characters First Byte Second Byte Third Byte Fourth Byte

ASCII 00 - 7F - - -

European (except ASCII), Arabic, Hebrew C2 - DF 80 - BF - -

Indic, Thai, certain symbols (such as the euro
symbol), Chinese, Japanese, Korean

E0

E1 - EC

ED

EF

A0 - BF

80 - BF

80 - 9F

A4 - BF

80 - BF

80 - BF

80 - BF

80 - BF

-

B-1

Table B-2 (Cont.) Unicode Character Code Ranges for UTF-8 Character Codes

Types of Characters First Byte Second Byte Third Byte Fourth Byte

Private Use Area #1 EE

EF

80 - BF

80 - A3

80 - BF

80 - BF

-

Supplementary characters: Additional
Chinese, Japanese, and Korean characters;
historic characters; musical symbols;
mathematical symbols

F0

F1 - F2

F3

90 - BF

80 - BF

80 - AF

80 - BF

80 - BF

80 - BF

80 - BF

80 - BF

80 - BF

Private Use Area #2 F3

F4

B0 - BF

80 - 8F

80 - BF

80 - BF

80 - BF

80 - BF

Note:

Blank spaces represent nonapplicable code assignments. Character codes are
shown in hexadecimal representation.

B.2 UTF-16 Encoding
As shown in Table B-1, UTF-16 character codes for some characters (Additional Chinese/
Japanese/Korean characters and Private Use Area #2) are represented in two units of 16-bits.
These are supplementary characters. A supplementary character consists of two 16-bit values.
The first 16-bit value is encoded in the range from 0xD800 to 0xDBFF. The second 16-bit value
is encoded in the range from 0xDC00 to 0xDFFF. With supplementary characters, UTF-16
character codes can represent more than one million characters. Without supplementary
characters, only 65,536 characters can be represented. The AL16UTF16 character set in
Oracle Database supports supplementary characters.

See Also:

"Code Points and Supplementary Characters"

B.3 UTF-8 Encoding
The UTF-8 character codes in Table B-2 show that the following conditions are true:

• ASCII characters use 1 byte

• European (except ASCII), Arabic, and Hebrew characters require 2 bytes

• Indic, Thai, Chinese, Japanese, and Korean characters as well as certain symbols such as
the euro symbol require 3 bytes

• Characters in the Private Use Area #1 require 3 bytes

• Supplementary characters require 4 bytes

• Characters in the Private Use Area #2 require 4 bytes

Appendix B
UTF-16 Encoding

B-2

In Oracle Database, the AL32UTF8 character set supports 1-byte, 2-byte, 3-byte, and 4-byte
values. In Oracle Database, the UTF8 character set supports 1-byte, 2-byte, and 3-byte
values, but not 4-byte values.

Appendix B
UTF-8 Encoding

B-3

C
Collation Derivation and Determination Rules
for SQL Operations

This appendix describes collation derivation and determination rules for SQL operations. This
appendix contains the following topics:

• Collation Derivation

• Collation Determination

• SQL Operations and Their Derivation- and Determination-relevant Arguments

C.1 Collation Derivation
The process of determining the collation of a character result of an SQL operation is called
collation derivation. Such operation may be an operator, column reference, character literal,
bind variable reference, function call, CASE expression, or a query clause.

Each character value in an SQL expression has a derived collation and a derived coercibility
level.

The derived collation and coercibility level of the basic expressions is described in the following
table.

Table C-1 Derived Collation and Derived Coercibility Level of Various Expression Types

Type of Expression Derived Collation Derived
Coercibility
Level

Result of the COLLATE operator The named collation or the pseudo-collation
specified in the COLLATE operator

0

Data container reference such as table, view, or
materialized view column reference

The declared named collation or the pseudo-
collation of the data container

2

Result of a PL/SQL function call or a user-defined
operator

USING_NLS_COMP collation 2

Character literal USING_NLS_COMP collation, if included in a top-
level statement; else default collation of a view, a
materialized view, or a PL/SQL unit, if included in
its source

4

Character bind variable reference when the
OCI_ATTR_COLLATION_ID attribute is not set on
the corresponding bind variable handle

USING_NLS_COMP collation 4

Character bind variable reference when the
OCI_ATTR_COLLATION_ID attribute is set on the
corresponding bind variable handle

Collation with ID passed as the attribute value 0

C-1

Note:

• Coercibility level 1 corresponds to no collation assigned

• Coercibility level 3 is reserved for future use

The derived collation and coercibility level of an operation’s result is based on the collations
and coercibility levels of the operation's arguments. A derivation-relevant character argument
of an operation is an argument used to derive the collation of the operator’s result. An operator
may have zero or more derivation-relevant character arguments, and zero or more other
character arguments, such as flags or other control information not directly interacting with the
derivation-relevant arguments. An argument is considered derivation-relevant, if its value is
included in the result, either after some transformation or without undergoing any
transformation.

An argument that is a format model, a pattern, a flag string, or a key into a virtual table of
system information is not considered a derivation-relevant argument. For example, the built-in
function TO_CHAR(arg1,arg2,arg3) has no derivation-relevant arguments, as the main
argument arg1 is not of a character data type. The two character arguments arg2 and arg3 are
not derivation-relevant arguments as they only define the format and parameters for the
conversion of the main argument arg1.

The derived collation and coercibility level of the result of an operation without derivation-
relevant arguments are the same as when a character literal would have been put in that
expression in the place of the operation.

The following are the collation derivation rules for operations that return character values and
have derivation-relevant arguments. These rules are applied recursively in an expression tree.
These rules are based on the SQL standard version ISO/IEC 9075-2:1999.

The derived collation of a result of an operation with derivation-relevant character arguments
arg1, arg2, …, argn is:

• If at least one argument has the coercibility level 0, then all the arguments with coercibility
level 0 must have the same collation, which is the derived collation of the result. The
coercibility level of the result is 0. If two arguments with coercibility level 0 have different
collations, then an error is reported.

• Otherwise, if at least one argument has the coercibility level 1, then the expression result
has the coercibility level 1 and no collation is assigned to it.

• Otherwise, if LCL is the numerically lowest coercibility level of the arguments, then:

– If all the arguments with LCL have the same collation, then this collation is the derived
collation of the result, and the coercibility level of the result is LCL.

– Otherwise, the result of the expression has the coercibility level 1 and no collation is
assigned to it.

Appendix C
Collation Derivation

C-2

Note:

Set operators have arguments that are expression lists. For set operators, collation
derivation is performed separately on corresponding elements of each of the
arguments of the expression list. For example, in the query:

SELECT expr1, expr2 FROM t1
UNION
SELECT expr3, expr4 FROM t2

the collation is derived separately for the first and the second column of the result set.
For the first column, the collation derivation rules are applied to expr1 and expr3. For
the second column, the rules are applied to expr2 and expr4.

See Also:

"SQL Operations and Their Derivation- and Determination-relevant Arguments"

Collation Derivation for Bind Variable References

In OCI, you can pass a collation for a bind variable in a query or a DML statement using the
value of the OCI_ATTR_COLLATION_ID attribute. The OCI_ATTR_COLLATION_ID attribute can be
set on a bind variable handle to any of the supported collation IDs using the OCIAttrSet()
function. The IDs of both named collations and pseudo-collations are allowed. In this case, the
derived coercibility level of the bind variable reference is 0.

When the OCI_ATTR_COLLATION_ID attribute value is set to OCI_COLLATION_NONE (the default
value) on a bind variable handle, the collation of the bind variable is USING_NLS_COMP and the
derived coercibility level of the bind variable reference is 4.

OCI does not check whether a collation is valid for a given data type of a bind variable. If the
OCI_ATTR_COLLATION_ID attribute value is set for a non-character data type variable, it is
ignored by the database server.

Collation of bind variables is currently ignored in PL/SQL expressions. For forward
compatibility reasons, the OCI_ATTR_COLLATION_ID attribute should not be set for bind
variables passed to an anonymous PL/SQL block, unless the variables are referenced
exclusively in SQL statements.

See Also:

Oracle Call Interface Programmer's Guide for more information about the
OCI_ATTR_COLLATION_ID attribute.

Appendix C
Collation Derivation

C-3

C.2 Collation Determination
Collation determination is the process of selecting the right collation to apply during the
execution of a collation-sensitive operation. A collation-sensitive operation can be an SQL
operator, condition, built-in function call, CASE expression or a query clause.

For Oracle Database releases earlier to 12.2, collation to be applied by an operation is
determined by only the NLS_SORT and NLS_COMP session parameters.

Note:

The optional second parameters to NLS_UPPER, NLS_LOWER, NLS_INITCAP, and
NLSSORT are exceptions.

Starting from Oracle Database 12.2, collation to be applied by an operation is determined by
the derived data-bound collations of its arguments. Once a pseudo-collation is determined as
the collation to use, NLS_SORT and NLS_COMP session parameters are checked to provide the
actual named collation to apply.

Note:

The collation determination does not have to apply to the same operation to which
collation derivation applies. For example, TO_CHAR function is not collation-sensitive,
so it does not need collation determination. But, TO_CHAR function returns a character
result that needs a collation declaration, hence collation derivation applies to it.
Conversely, INSTR function needs to match characters and needs a collation
determined for this match operation. However, the result of INSTR function is a
number, hence no collation derivation is required for it.

The determination-relevant character argument of an operation is an argument used to
determine the collation to be used by the operation. A collation-sensitive operation may have
one or more determination-relevant character arguments and zero or more other character
arguments, such as flags or other control information not directly interacting with the
determination-relevant arguments.

An argument is considered determination-relevant, if its value is compared during the
evaluation of an operation. An argument that is a format model, a flag string, or a key into a
virtual table of system information is not considered a determination-relevant argument.
However, a pattern argument can be a determination-relevant argument. For example, two of
the three arguments of the LIKE predicate – argument and pattern – are determination-relevant
arguments. The third argument – the escape character – is not considered determination-
relevant argument. Another example is the built-in function REGEXP_COUNT, which has four
arguments – source_char, pattern, position, and match_param. The determination-relevant
arguments are source_char and pattern, which contain the strings to be compared. The non-
determination-relevant character argument are position, which is numeric, and match_param,
which provides parameters for the matching operation.

Appendix C
Collation Determination

C-4

The following are the collation determination rules to determine the collation to use for an
operation with determination-relevant character arguments arg1, arg2, …, argn. These rules
are based on the SQL standard version ISO/IEC 9075-2:1999.

• If operation is the equality condition and is used to enforce a foreign key constraint, then
the collation to be used is the declared collation of the primary or unique key column being
referenced. This declared collation must be the same as the declared collation of the
foreign key column.

• Otherwise, if at least one argument has the derived coercibility level 0, then all the
arguments with coercibility level 0 must have the same collation, and this collation is used
by the operation. If two arguments with coercibility level 0 have different collations, then an
error is reported.

• Otherwise, if at least one argument has the derived coercibility level 1, then an error is
reported.

• Otherwise, if LCL is the numerically lowest coercibility level of the arguments, then:

– If all arguments with LCL have the same collation, then that collation is used by the
operation.

– Otherwise, an error is reported.

When the determined collation is a pseudo-collation, then the affected operation must refer to
the session or database settings NLS_SORT or NLS_COMP or both to determine the actual named
collation to apply. The database settings are used for expressions in virtual columns, CHECK
constraints, and fine grained auditing (FGA) rules.

The collation determination rules for an operation involving a CLOB or an NCLOB data type value
must result in the pseudo-collation USING_NLS_COMP, otherwise an error is reported.

Appendix C
Collation Determination

C-5

Note:

Some conditions, set operators, and query clauses have arguments which are
expression lists. In this case, collation determination is performed on the
corresponding compared elements of each of the arguments in the expression list.
For example, in the condition:

(expr1, expr2) IN (SELECT expr3, expr4 FROM t1)

the collation is determined separately for the pairs of compared elements. First, the
collation determination rules are applied to expr1 and expr3. Then, the rules are
applied to expr2 and expr4. When the condition is evaluated, values of expr1 are
compared to values of expr3 using the first determined collation and values of expr2
are compared to values of expr4 using the second determined collation. Similarly, in
the query:

SELECT expr1, expr2 FROM t1
MINUS
SELECT expr3, expr4 FROM t2

the collation determination rules are first applied to expr1 and expr3, then to expr2
and expr4. When the MINUS operator is evaluated, values of expr1 are compared to
values of expr3 using the first determined collation and values of expr2 are
compared to values of expr4 using the second determined collation.

In the query:

SELECT * FROM t1 ORDER BY expr1, expr2, expr3

rows are sorted first on values of expr1 using the derived collation expr1, then ties
are broken by sorting on values of expr2 using the derived collation expr2, and then
on values of expr3 using the derived collation expr3. Each position in the ORDER BY
list is treated like a separate comparison operator for row values.

See Also:

"SQL Operations and Their Derivation- and Determination-relevant Arguments"

C.3 SQL Operations and Their Derivation- and Determination-
relevant Arguments

The following table lists all the SQL operations that return a character value or are collation-
sensitive or both. For each operation returning a character value, the table lists operation’s
derivation-relevant arguments. If the operation has no such arguments, the fixed collation of
the operation's result is shown instead. The term Literal Collation means that the collation
derived for the operation's result is the collation of a character literal put in place of the
operation in an expression; this is either USING_NLS_COMP for top-level SQL statements or the

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-6

default collation of a view, materialized view, or a PL/SQL stored unit containing the expression
in its source. For each collation-sensitive operation, the following table lists the operation’s
determination-relevant arguments.

Table C-2 Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Pseudo-column
VERSIONS_OPERATION

Operation type in a
flashback version query

Literal collation —

Pseudo-column
COLUMN_VALUE

Value of nested table
element of character
data type

USING_NLS_COMP —

Operator
a1 || a2

Character Value
Concatenation

a1, a2 —

Operator
PRIOR a1

Hierarchical query parent
value

a1 —

Operator
CONNECT_BY_ROOT a1

Hierarchical query root
value

a1 —

Operator
SELECT a11,
a21,...am1
FROM ...

UNION ALL

SELECT a12,
a22,...am2
FROM ...

Non-distinct union of two
row sets a11, a12, a21,

a22, ...am1, am2

Collation for each
column of the resulting
row set is derived
separately by combining
collations of columns
from each of the two
argument row sets.

Special case: if an
argument ai2
(1<=i<=m) belongs to a
recursive member in a
WITH clause and it is
calculated recursively,
then the collation is
derived from the
corresponding argument
ai1 of the anchor
member.

—

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-7

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Operator
SELECT a11,
a21,...am1
FROM ...

UNION

SELECT a12,
a22,...am2
FROM ...

Distinct union of two row
sets a11, a12, a21,

a22, ...am1, am2

Collation for each
column of the resulting
row set is derived
separately by combining
collations of columns
from each of the two
argument row sets.

a11, a12, a21,
a22, ...am1, am2

Collation for
comparison of each
column of the
argument row set is
determined separately
by combining
collations of columns
from each of the two
argument row sets.

Operator
SELECT a11,
a21,...am1
FROM ...

INTERSECT

SELECT a12,
a22,...am2
FROM ...

Distinct intersection of
two row sets a11, a12, a21,

a22, ...am1, am2

Collation for each
column of the resulting
row set is derived
separately by combining
collations of columns
from each of the two
argument row sets.

a11, a12, a21,
a22, ...am1, am2

Collation for
comparison of each
column of the
argument row set is
determined separately
by combining
collations of columns
from each of the two
argument row sets.

Operator
SELECT a11,
a21,...am1
FROM ...

MINUS

SELECT a12,
a22,...am2
FROM ...

Distinct subtraction of
row sets a11, a12, a21,

a22, ...am1, am2

Collation for each
column of the resulting
row set is derived
separately by combining
collations of columns
from each of the two
argument row sets.

a11, a12, a21,
a22, ...am1, am2

Collation for
comparison of each
column of the
argument row set is
determined separately
by combining
collations of columns
from each of the two
argument row sets.

Expression
CASE
 WHEN c1 THEN r1
 WHEN c2 THEN r2
 ...
 WHEN cn THEN rn
ELSE
 rn+1
END

Searched case
expression r1,r2,...rn,rn+1

Each condition
c1,...cn has
independent collation
determination.

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-8

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Expression
CASE v
 WHEN s1 THEN r1
 WHEN s2 THEN r2
 ...
 WHEN sn THEN rn
ELSE
 rn+1
END

Simple case expression;
equivalent to:

CASE
 WHEN v=s1 THEN r1
 WHEN v=s2 THEN r2
 ...
 WHEN v=sn THEN
rn
ELSE
 rn+1
END

r1,r2,...rn,rn+1 v, s1, s2, ...sn

If collation of v does
not dominate over
collations of:

s1, s2, ...sn

then simple case is
transformed to
searched case
internally.

Expression Object Access Expression Reference to an object
method

USING_NLS_COMP —

Expression :name Bind variable reference Literal collation —

Expression
(a1,...an)

Expression list Each list element has its
collation derived
separately and
independently.

When two lists are
compared, the
collation
determination is
performed separately
and independently for
each of the two
character data type
elements at the same
index in both the lists.

Condition
a1 = a2
a1 <> a2
a1 < a2
a1 > a2
a1 >= a2
a1 <= a2

Simple comparison
conditions

—
a1, a2

If a1 and a2 are lists,
then see Expression
list above.

Condition
a1 = ANY (a2, ...an)
a1 <> ANY (a2, ...an)
a1 < ANY (a2, ...an)
a1 > ANY (a2, ...an)
a1 >= ANY (a2, ...an)
a1 <= ANY (a2, ...an)

(ANY may be replaced by
SOME or ALL)

List comparison
condition; equivalent to:

a1 <op> a2 AND|OR
a1 <op> a3 AND|OR
...
a1 <op> an

—
a1, a2
a1, a3
...
a1, an

Collations are
determined separately
for each pair. If a1 to
an are lists, then see
Expression list above.

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-9

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Condition
a1 = ANY
(SELECT a2 FROM ...)

a1 <> ANY
(SELECT a2 FROM ...)

a1 < ANY
(SELECT a2 FROM ...)

a1 > ANY
(SELECT a2 FROM ...)

a1 >= ANY
(SELECT a2 FROM ...)

a1 <= ANY
(SELECT a2 FROM ...)

(ANY may be replaced by
SOME or ALL)

Query comparison
conditions

— a1, a2
If a1 and a2 are lists,
then see Expression
list above.

Condition
a1 [NOT] LIKE [2|4|
C]
a2 ESCAPE a3

Check if pattern a2
matches string a1 using
a3 as escape character
in a2

—
a1, a2

Condition
REGEXP_LIKE(a1,a2,
[a3])

Check if regular
expression a2 matches
string a1 according to
flags in a3

—
a1, a2

Condition
a1 [NOT] BETWEEN
a2 AND a3

Range comparison;
equivalent to:

a1 >= a2 AND
a1 <= a3

—
a1, a2
a1, a3

Collation is
determined separately
for each comparison.

Condition
a1 [NOT] IN
(a2,a3,...an)

Membership comparison;
equivalent to:

a1 =
ANY(a2,a3,...an)

— See =ANY above

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-10

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
APPROX_COUNT_DISTINC
T(a1)

Approximate count of
distinct values of a1 in
the result set

— a1

Function
ASCIISTR(a1)

Escape non-ASCII
characters in a1 with
Unicode escapes

a1 —

Function
CAST(a1 AS
<character data
type>)

Cast value a1 to a
character data type

a1, if a1 is of character
data type; literal collation
otherwise.

—

Function
CHR(a1)

Convert numeric code a1
to character and return
as a VARCHAR2 string

Literal collation —

Function
COALESCE(a1,a2,...an)

First non-null value
among: a1, a2, ...an
COALESCE(a1,a2) is
equivalent to:

CASE
 WHEN a1 IS
 NOT NULL
 THEN a1
ELSE a2
END;

COALESCE(a1,a2,...an
) is equivalent to:

CASE
 WHEN a1 IS
 NOT NULL
THEN a1
ELSE
 COALESCE
(a2,...an)
END;

a1, a2, ...an
—

Function
COLLATION(a1)

Return name of derived
collation of a1 as string

Literal collation —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-11

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
COLLECT(
[DISTINCT] a1
ORDER BY a2)

Aggregate into a nested
table

— a1 for DISTINCT
a2 for ORDER BY

Function
COMPOSE(a1)

Normalize a1 to Unicode
NFC

a1 —

Function
CONCAT(a1,a2)

Concatenate strings a1
and a2

a1, a2 —

Function
CONVERT(a1[,a2[,a3]])

Convert character set of
a1 from a3 to a2

a1 —

Function
COUNT(DISTINCT a1)

Count distinct values of
a1 in the result set

— a1

Function
CORR_K(a1,a2,a3)

Kendall's tau-b
correlation coefficient

—
a1, a2

Collation is
determined
independently for
each argument.

Function
CORR_S(a1,a2,a3)

Spearman's rho
correlation coefficient

—
a1, a2

Collation is
determined
independently for
each argument.

Function
CUBE_TABLE(...)

OLAP cube or hierarchy
to relational table

Literal collation (for each
character data type
column in the generated
table)

—

Function
CV([a1])

Current dimension value
in a model clause

Collation of the
dimension column to
which CV() call
corresponds, a1 or
implicit

—

Function
DBTIMEZONE

Database time zone as
string

Literal collation —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-12

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
DECODE(v1,s1,r1,s2,r2
,...,sn,rn,rn+1)

Value selection
r1,r2,...rn,rn+1 v1, s1, s2, ...sn

Function
DECOMPOSE(a1,a2)

Unicode normalization
(NFD, NFKD); a2 is the
requested normalization
form

a1 —

Function
DENSE_RANK([a1,a2,...
an])

Dense rank of a value in
a group of values

— Ranking is based on
collation of the
elements in function’s
ORDER BY clause.

Function
DUMP(a1[,a2[,a3[,a4]]
])

Debugging dump of a4
bytes of value a1 in
format a2 from position
a3

Literal collation —

Function EMPTY_CLOB Empty CLOB locator USING_NLS_COMP —

Function
EXTRACT(
 TIMEZONE_REGION |
 TIMEZONE_ABBR
FROM a1)

Extract time zone
information from the
datetime value a1

Literal collation —

Function
EXTRACTVALUE(a1,a2[,a
3])

Extract element value
from XMLType

Literal collation —

Function
FIRST_VALUE(a1)

First value of a1 from a
set of rows

a1 —

Function
GREATEST(a1,a2,...an)

Largest value among
a1, ...an a1, a2, ...an a1, a2, ...an

Function
INITCAP(a1)

Capitalize initial letters of
a1

a1 —

Function
INSTR[B|2|4|C]
(a1,a2[,a3[,a4]])

Position of a4-th
occurrence of string a2 in
string a1 starting at
position a3

—
a1, a2

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-13

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
JSON_QUERY(a1,a2,...)

Retrieve fragment of the
JSON object a1
described by the JSON
path expression a2 as a
string

Literal collation —

Function
JSON_TABLE(a1,a2,...)

Present fragment of the
JSON object a1
described by the JSON
path expression a2 as a
virtual relational table

Literal collation (for each
character data type
column in the generated
table)

—

Function
JSON_VALUE(a1,a2,...)

Retrieve a scalar value
from the JSON object a1
described by the JSON
path expression a2 as an
SQL scalar value

Literal collation —

Function
LAG(a1[,a2[,a3]])

Value of a1 at row offset
a2, or a3, if outside of
window

a1 —

Function
LAST_VALUE(a1)

Last value of a1 from a
set of rows

a1 —

Function
LEAD(a1[,a2[,a3]])

Value of a1 at row offset
a2, or a3, if outside of
window

a1 —

Function
LEAST(a1,a2,...an)

Smallest value among
a1, ...an a1, a2, ...an a1, a2,...an

Function
LISTAGG(a1[,a2])

Aggregate values of a1
from multiple rows into a
list; a2 - separator

a1, if a1 is of character
data type, otherwise
literal collation if not RAW

—

Function
LOWER(a1)

Lowercase a1 a1 —

Function
LPAD(a1,a2[,a3])

Pad string a1 with string
a3 on the left up to
display length a2

a1 —

Function
LTRIM(a1[,a2])

Remove characters from
the beginning of a1 as
long as they can be
found in string a2

a1 a1

Function
MAX(a1)

Maximum value of a1 in
the result set

a1
a1

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-14

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
MIN(a1)

Minimum value of a1 in
the result set

a1 a1

Function
NCHR(a1)

Convert numeric code a1
to character and return
as a NVARCHAR2 string

Literal collation —

Function
NLS_CHARSET_NAME(a1)

Name of the character
set with ID a1

Literal collation —

Function
NLS_COLLATION_NAME(a
1)

Name of the collation
with ID a1

Literal collation —

Function
NLS_INITCAP(a1[,a2])

Capitalize initial letters of
a1 optionally using
collation specified in a2

a1 a1
Collation specified
with NLS_SORT in a2
overrides collation of
a1, but only at the
execution time.

COLLATION(NLS_INI
TCAP(a1, a2))
returns collation of a1

Function
NLS_LOWER(a1[,a2])

Lowercase a1 optionally
using collation specified
in a2

a1 a1
Collation specified
with NLS_SORT in a2
overrides collation of
a1, but only at the
execution time.

COLLATION(NLS_LOW
ER(a1, a2)) returns
collation of a1

Function
NLS_UPPER(a1[,a2])

Capitalize a1 optionally
using collation specified
in a2

a1 a1
Collation specified
with NLS_SORT in a2
overrides collation of
a1, but only at the
execution time.

COLLATION(NLS_UPP
ER(a1, a2)) returns
collation of a1

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-15

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
NLSSORT(a1[,a2])

Generate collation key
for a1 optionally using
collation specified in a2

— a1
Collation specified
with NLS_SORT in a2
overrides the collation
of a1, but only at the
execution time.

Function
NTH_VALUE(a1,n)

The n-th value of a1 from
a set of rows

a1 —

Function
NULLIF(a1,a2)

NULL, if a1=a2, otherwise
a1
This is equivalent to:

CASE
 WHEN a1=a2
 THEN NULL
ELSE a1
END;

a1
a1, a2

Function
NVL(a1,a2)

a1, if a1 is not NULL,
otherwise a2

a1, a2 —

Function
NVL2(a1,a2,a3)

a2, if a1 is not NULL,
otherwise a3.

a2, a3 —

Function
ORA_INVOKING_USER

Invoking user name Literal collation —

Function
PATH(a1)

Path to a resource Literal collation —

Function
PERCENT_RANK([a1,a2,.
..an])...

Percent rank of a value
in a group of values

— Ranking is based on
collation of the
elements in function’s
ORDER BY clause.

Function
PREDICTION

Data mining prediction Literal collation —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-16

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
PRESENTNNV(a1,a2,a3)

If the cell reference a1
exists before execution of
the enclosing model
clause and is not null
when the function is
evaluated, then a2 else
a3

a2, a3 —

Function
PRESENTV(a1,a2,a3)

If the cell reference a1
exists before execution of
the enclosing model
clause, then a2, else a3.

a2, a3 —

Function
PREVIOUS(a1)

Value of the cell
reference a1 at the
beginning of an iteration
in a model clause

a1 —

Function
RANK([a1,a2,...an])

Rank of a value in a
group of values

— Ranking is based on
collation of the
elements in function’s
ORDER BY clause.

Function
RAWTOHEX(a1)

Convert the RAW value
a1 to its hexadecimal
representation in a
VARCHAR2 string

Literal collation —

Function
RAWTONHEX(a1)

Convert the RAW value a1
to its hexadecimal
representation in a
NVARCHAR2 string

Literal collation —

Function
REGEXP_COUNT(a1,a2[,
a3[,a4]])

Number of times regular
expression a2 matches
substrings of string a1
according to flags a4
starting matching at
position a3

—
a1, a2

Function
REGEXP_INSTR(a1,a2[,
a3[,a4[,a5[,a6[,a7]]]
]])

Minimal position in a1 at
which regular expression
a2 matches substring of
string a1 for the a4-th
time according to flags
a6 starting matching at
position a3; a5 and a7
control which position is
actually returned

—
a1, a2

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-17

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
REGEXP_REPLACE(a1,a2[
,
a3[,a4[,a5[,a6]]]])

Replace with string a3 all
matches or the a5-th
match of regular
expression a2 with a
substring of string a1
according to flags a6
starting matching at
position a4

a1
a1, a2

Function
REGEXP_SUBSTR(a1,a2[,
a3[,a4[,a5[,a6]]]])

Return the a4-th
matching substring of
regular expression a2 in
string a1 according to
flags a5 starting
matching at position a3. if
a6 is specified, it is the
index of sub-expression
to return in place of the
whole matching
substring.

a1
a1, a2

Function
REPLACE(a1,a2[,a3])

a1 with every occurrence
of a2 replaced with a3

a1
a1, a2

Function
ROWIDTOCHAR(a1)

Convert the rowid a1 to a
VARCHAR2 string

Literal collation —

Function
ROWIDTONCHAR(a1)

Convert the rowid a1 to a
NVARCHAR2 string

Literal collation —

Function
RPAD(a1,a2[,a3])

Pad string a1 with string
a3 on the right up to
display length a2

a1 —

Function
RTRIM(a1[,a2])

Remove characters from
the end of a1 as long as
they can be found in
string a2

a1
a1

Function
SESSIONTIMEZONE

Database time zone as
string

Literal collation —

Function
SOUNDEX(a1)

Soundex representation
of a1 (for phonetic
comparison)

a1 —

Function
STATS_BINOMIAL_TEST(
a1,a2,a3[,a4])

Exact probability test of
dichotomous variables a1
and a2

—
a1

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-18

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
STATS_CROSSTAB(a1,a2[
,
a3])

Crosstab analysis of a1
and a2

—
a1, a2

Collation is
determined
independently for
each argument.

Function
STATS_F_TEST(a1,a2[,
a3[,a4]])

Variance analysis of a1
and a2

—
a1

Function
STATS_KS_TEST(a1,a2[,
a3])

Kolmogorov-Smirnov
function

—
a1, a2

Collation is
determined
independently for
each argument.

Function
STATS_MODE(a1)

Most frequent value of a1
in the result set

a1
a1

Function
STATS_MW_TEST(a1,a2[,
a3])

Mann Whitney test —
a1, a2

Collation is
determined
independently for
each argument.

Function
STATS_ONE_WAY_ANOVA(
a1,a2[,a3])

One-way analysis of
variance

—
a1

Function
STATS_T_TEST_INDEP(a
1,a2[,a3[,a4]])

T-test of independent
groups with same
variance

—
a1

Function
STATS_T_TEST_INDEPU(
a1,a2[,a3[,a4]])

T-test of independent
groups with unequal
variance

—
a1

Function
SUBSTR[B|2|4|C]
(a1,a2[,a3])

Substring of a1 starting
at position a2 of length a3

a1 —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-19

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
SYS_CONNECT_BY_PATH(
a1,a2)

Path of value a1 from
root to node, with column
values separated by
character a2

a1 —

Function
SYS_CONTEXT(a1,a2[,a3
])

Context parameter a2 of
length a3 from
namespace a1

Literal collation —

Function
TO_CHAR(a1)

/*character*/

Convert a1 from data
type CLOB, NCHAR,
NVARCHAR2, or NCLOB to
VARCHAR2

a1 —

Function
TO_CHAR(a1[,a2[,a3]])

/*datetime*/

Convert a1 from a
datetime data type to
VARCHAR2 with optional
format a2 and NLS
environment a3

Literal collation —

Function
TO_CHAR(a1[,a2[,a3]])

/*number*/

Convert a1 from a
numeric data type to
VARCHAR2 with optional
format a2 and NLS
environment a3

Literal collation —

Function
TO_CLOB(a1)

Convert a1 from data
type CHAR, VARCHAR2,
CLOB, NCHAR,
NVARCHAR2, or NCLOB to
CLOB

a1
(must yield
USING_NLS_COMP)

—

Function
TO_LOB(a1)

/*long*/

Convert a1 from data
type LONG to CLOB

a1
(must yield
USING_NLS_COMP)

—

Function
TO_MULTI_BYTE(a1)

Map normal-width
characters in a1 to full-
width characters

a1 —

Function
TO_NCHAR(a1)

/*character*/

Convert a1 from data
type NCLOB, CHAR,
VARCHAR2, or CLOB to
NVARCHAR2

a1 —

Function
TO_NCHAR(a1[,a2[,a3]]
)

/*datetime*/

Convert a1 from a
datetime data type to
NVARCHAR2 with optional
format a2 and NLS
environment a3

Literal collation —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-20

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
TO_NCHAR(a1[,a2[,a3]]
)

/*number*/

Convert a1 from a
numeric data type to
NVARCHAR2 with optional
format a2 and NLS
environment a3

Literal collation —

Function
TO_NCLOB(a1)

Convert a1 from data
type CHAR, VARCHAR2,
CLOB, NCHAR,
NVARCHAR2, or NCLOB to
NCLOB

a1
(must yield
USING_NLS_COMP)

—

Function
TO_SINGLE_BYTE(a1)

Map full-width characters
in a1 to normal-width
characters

a1 —

Function
TRANSLATE(a1,a2,a3)

Transform a1 by mapping
characters in a2 to
corresponding
characters in a3

a1
a1

Function
TRANSLATE(a1 USING
CHAR_CS|NCHAR_CS)

Convert a1 from one
character set form to
another

(roughly equivalent to:
TO_CHAR| TO_NCHAR /
character/)

a1 —

Function
TRIM([[LEADING|
TRAILING|BOTH] [a1]
FROM] a2)

Remove all occurrences
of character a1 at the
beginning and/or at the
end of a2

a2
a2

Function
TZ_OFFSET(a1)

Offset for the time zone
a1

Literal collation —

Function
UNISTR

Transform string a1 into
an NVARCHAR2 string
interpreting Unicode
escapes

a1 —

Function
UPPER(a1)

Capitalize string a1 a1 —

Function
USER

Login user name Literal collation —

Function
USERENV(a1)

USERENV context
parameter a1

Literal collation —

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-21

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Function
XMLCAST(a1 AS
<data type>)

Cast result of XMLQuery
to data type

Literal collation —

Function
XMLSERIALIZE(... a1
 [AS VARCHAR2 |
CLOB]...)

Serialize XML document
a1 to a string

Literal collation —

Function
XMLTABLE(...
COLUMNS
col1 <data type> ...
coln <data type>...)

Present content of an
XML object as a virtual
relational table

Literal collation (for each
character data type
column in the generated
table)

—

Clause
OVER(PARTITION BY
a1, a2, ...an)

Analytic clause
partitioning

—
a1
a2
...
an

Collation is
determined separately
for each character
argument in the
clause.

Clause
OVER(ORDER BY a1,
a2, ...an)

Analytic clause ordering —
a1
a2
...
an

Collation is
determined separately
for each character
argument in the
clause.

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-22

Table C-2 (Cont.) Derivation- and Determination-relevant Arguments for SQL Operations

Operation Type Operation Name Operation Description Derivation-relevant
Arguments or Fixed
Collation

Determination-
relevant Arguments

Clause
ORDER BY a1,
a2, ...an

Aggregate function
ordering

—
a1
a2
...
an

Collation is
determined separately
for each character
argument in the
clause.

Clause
ORDER BY a1,
a2, ...an

Query result ordering —
a1
a2
...
an

Collation is
determined separately
for each character
argument in the
clause.

Clause
GROUP BY a1,
a2, ...an

Query row grouping —
a1
a2
...
an

Collation is
determined separately
for each character
argument in the
clause.

Appendix C
SQL Operations and Their Derivation- and Determination-relevant Arguments

C-23

Glossary

accent
A mark that changes the sound of a character. Because the common meaning of the word
accent is associated with the stress or prominence of the character's sound, the preferred
word in Oracle Database Globalization Support Guide is diacritic.

See also diacritic.

accent-insensitive linguistic sort
A linguistic sort that uses information only about base letters, not diacritics or case.

See also linguistic collation, base letter, diacritic, case.

AL16UTF16
The default Oracle Database character set for the SQL NCHAR data type, which is used for the
national character set. It encodes Unicode data in the UTF-16BE (big endian) encoding
scheme.

See also national character set, UTF-16.

AL32UTF8
An Oracle Database character set for the SQL CHAR data type, which is used for the database
character set. It encodes Unicode data in the UTF-8 encoding scheme.

Starting from Oracle Database 12c Release 2, if you use Oracle Universal Installer (OUI) or
Oracle Database Configuration Assistant (DBCA) to create a database, then the default
database character set used is AL32UTF8.

See also database character set.

ASCII
American Standard Code for Information Interchange. A common encoded 7-bit character set
for English. ASCII includes the letters A-Z and a-z, as well as digits, punctuation symbols, and
control characters. The Oracle Database character set name is US7ASCII.

Glossary-1

base letter
A character stripped of its diacritics and case. For example, the base letter for a, A, ä, and Ä is
a.

See also diacritic.

binary collation
A type of collation that orders strings based on their binary representation (character
encoding), treating each string as a simple sequences of bytes.

See also collation, linguistic collation, monolingual linguistic collation, multilingual linguistic
collation, accent-insensitive linguistic sort, case-insensitive linguistic collation.

binary sorting
Ordering character strings using the binary collation.

byte semantics
Treatment of strings as a sequence of bytes. Offsets into strings and string lengths are
expressed in bytes.

See also character semantics and length semantics.

canonical equivalence
A Unicode Standard term for describing that two characters or sequences of characters are to
be semantically considered as the same character. Canonically equivalent characters cannot
be distinguished when they are correctly rendered. For example, the precomposed character ñ
(U+00F1 Latin Small Letter N With Tilde) is canonically equivalent to the sequence n (U+006E
Latin Small Letter N) followed by ˜ (U+0303 Combining Tilde).

case
Refers to the condition of being uppercase or lowercase. For example, in a Latin alphabet, A is
the uppercase form for a, which is the lowercase form.

case conversion
Changing a character from uppercase to lowercase or vice versa.

case-insensitive linguistic collation
A linguistic collation that uses information about base letters and diacritics but not case but not
when determining the ordering of strings.

See also base letter, case, diacritic, linguistic collation.

Glossary

Glossary-2

character
A character is an abstract element of text. A character is different from a glyph, which is a
specific representation of a character. For example, the first character of the English upper-
case alphabet can be displayed as monospaced A, proportional italic AA, cursive (longhand) A,
and so on. These forms are different glyphs that represent the same character. A character, a
character code, and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in computer
memory as a number. The number is called the encoding or the character code. The
character code for the first character of the English uppercase alphabet is 0x41 in the ASCII
encoding scheme. The character code is 0xc1 in the EBCDIC encoding scheme.

You must choose a font to display or print the character. The available fonts depend on which
encoding scheme is being used. Each font will usually use a different shape, that is, a different
glyph to represent the same character.

See also character code and glyph.

character classification
Information that provides details about the type of character associated with each character
code. For example, a character can be uppercase, lowercase, punctuation, or control
character.

character code
A character code is a sequence of bytes that represents a specific character. The sequence
depends on the character encoding scheme. For example, the character code of the first
character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme, but it is
0xc1 in the EBCDIC encoding scheme.

See also character.

character encoding form
A rule that assigns numbers to all characters in a character set.

character encoding scheme
A rule that maps numbers assigned by the character encoding form to particular sequences of
bytes (character codes). For example, the UTF-16 encoding form has the big-endian encoding
scheme (UTF-16BE) and the little-endian encoding scheme (UTF-16LE).

Most encoding forms have only one encoding scheme. Therefore, encoding form, encoding
scheme, and encoding are often used interchangeably.

Oracle character sets correspond to character encoding schemes. For example, AL16UTF16 is
the Oracle name for the UTF-16BE encoding scheme.

Glossary

Glossary-3

character repertoire
The characters that are available to be used, or encoded, in a specific character set.

character semantics
Treatment of strings as a sequence of characters. Offsets into strings and string lengths are
expressed in characters (character codes).

See also byte semantics and length semantics.

character set
A collection of elements that represent textual information for a specific language or group of
languages. One language can be represented by more than one character set.

A character set does not always imply a specific character encoding scheme. A character
encoding scheme is the assignment of a character code to each character in a character set.

In this manual, a character set usually does imply a specific character encoding scheme.
Therefore, a character set is the same as an encoded character set in this manual.

character set migration
Changing the character set of an existing database.

character string
A sequence of characters.

A character string can also contain no characters. In this case, the character string is called a
null string. The number of characters in a null string is 0 (zero).

client character set
The encoded character set used by the database client. A client character set can differ from
the database character set. The database character set is sometimes called the server
character set. If the client character set is different from the database character set, then
character set conversion must occur.

See also database character set.

code point
The numeric representation of a character in a character set. For example, the code point of A
in the ASCII character set is 0x41. The code point of a character is also called the encoded
value of a character.

See also Unicode code point.

Glossary

Glossary-4

code unit
The unit of encoded text for processing and interchange. The size of the code unit varies
depending on the character encoding scheme. In most character encodings, a code unit is 1
byte. Important exceptions are UTF-16 and UCS-2, which use 2-byte code units, and wide
character, which uses 4 bytes.

See also character encoding form.

collation
Ordering of character strings according to rules about sorting characters that are associated
with a language in a specific locale. Also called linguistic sort.

See also linguistic collation, monolingual linguistic collation, multilingual linguistic collation,
accent-insensitive linguistic sort, case-insensitive linguistic collation.

data scanning
The process of identifying potential problems with character set conversion and truncation of
data before migrating the database character set.

database character set
The encoded character set that is used to store text in the database. This includes CHAR,
VARCHAR2, LONG, and fixed-width CLOB column values and all SQL and PL/SQL text.

Database Migration Assistant for Unicode (DMU)
An intuitive and user-friendly GUI tool to migrate your character set. It helps you streamline the
migration process through an interface that minimizes the workload and ensures that all
migration issues are addressed.

diacritic
A mark near or through a character or combination of characters that indicates a different
sound than the sound of the character without the diacritical mark. For example, the cedilla in
façade is a diacritic. It changes the sound of c.

EBCDIC
Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded character
sets used mostly on IBM mainframe systems.

encoded character set
A character set with an associated character encoding scheme. An encoded character set
specifies the byte sequence (character code) that is assigned to each character.

Glossary

Glossary-5

See also character encoding form.

encoded value
The numeric representation of a character in a character set. For example, the code point of A
in the ASCII character set is 0x41. The encoded value of a character is also called the code
point of a character.

font
An ordered collection of character glyphs that provides a graphical representation of characters
in a character set.

globalization
The process of making software suitable for different linguistic and cultural environments.
Globalization should not be confused with localization, which is the process of preparing
software for use in one specific locale (for example, translating error messages or user
interface text from one language to another).

glyph
A glyph (font glyph) is a specific representation (shape) of a character. A character can have
many different glyphs.

See also character.

ideograph
A symbol that represents an idea. Some writing systems use ideographs to represent words
through their meaning instead of using letters to represent words through their sound. Chinese
is an example of an ideographic writing system.

ISO
International Organization for Standardization. A worldwide federation of national standards
bodies from 130 countries. The mission of ISO is to develop and promote standards in the
world to facilitate the international exchange of goods and services.

ISO 8859
A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also known as
ISO Latin1), and is used for Western European languages.

ISO 14651
A multilingual linguistic collation standard that is designed for almost all languages of the world.

Glossary

Glossary-6

See also multilingual linguistic collation.

ISO/IEC 10646
A universal character set standard that defines the characters of most major scripts used in the
modern world. ISO/IEC 10646 is kept synchronized with the Unicode Standard as far as
character repertoire is concerned but it defines fewer properties and fewer text processing
algorithms than the Unicode Standard.

ISO currency
The 3-letter abbreviation used to denote a local currency, based on the ISO 4217 standard. For
example, USD represents the United States dollar.

ISO Latin1
The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128
characters that include the most common Latin characters used in Western Europe. The
Oracle Database character set name is WE8ISO8859P1.

See also ISO 8859.

length semantics
Length semantics determines how you treat the length of a character string. The length can be
expressed as a number of characters (character codes) or as a number of bytes in the string.

See also character semantics and byte semantics.

linguistic collation
A type of collation that takes into consideration the standards and customs of spoken
languages.

See also collation, linguistic sorting, monolingual linguistic collation, multilingual linguistic
collation, accent-insensitive linguistic sort, case-insensitive linguistic collation.

linguistic index
An index built on a linguistic sort order.

linguistic sorting
Ordering character strings using a linguistic binary collation.

See also multilingual linguistic collation and monolingual linguistic collation.

Glossary

Glossary-7

locale
A collection of information about the linguistic and cultural preferences from a particular region.
Typically, a locale consists of language, territory, character set, linguistic, and calendar
information defined in NLS data files.

localization
The process of providing language-specific or culture-specific information for software
systems. Translation of an application's user interface is an example of localization.
Localization should not be confused with globalization, which is the making software suitable
for different linguistic and cultural environments.

monolingual linguistic collation
An Oracle Database collation that has two levels of comparison for strings. String are first
ordered based on major values for their characters and if they are found equal in this
comparison, they are further ordered based on minor values of their characters. Major values
correspond roughly to base letters while minor values correspond to diacritics and case. Most
European languages can be sorted with a monolingual collation, but monolingual collations are
inadequate for Asian languages and for multilingual text.

See also multilingual linguistic collation.

monolingual support
Support for only one language.

multibyte
Two or more bytes.

When character codes are assigned to all characters in a specific language or a group of
languages, one byte (8 bits) can represent 256 different characters. Two bytes (16 bits) can
represent up to 65,536 different characters. Two bytes are not enough to represent all the
characters for many languages. Some characters require 3 or 4 bytes.

One example is the UTF-8 Unicode encoding form. In UTF-8, there are many 2-byte and 3-
byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000 characters.
Some character encoding schemes that are used in Taiwan use 4 bytes to encode characters.

See also single byte.

multibyte character
A character whose character code consists of two or more bytes under a certain character
encoding scheme.

Note that the same character may have different character codes under different encoding
schemes. Oracle Database cannot tell whether a character is a multibyte character without

Glossary

Glossary-8

knowing which character encoding scheme is being used. For example, Japanese Hankaku-
Katakana (half-width Katakana) characters are one byte in the JA16SJIS encoded character
set, two bytes in JA16EUC, and three bytes in AL32UTF8.

See also single-byte character.

multibyte character string
A character string encoded in a multibyte character encoding scheme.

multibyte character encoding scheme
A character encoding scheme in which character codes may have more than one byte.

See also multibyte fixed-width character encoding scheme, multibyte varying-width character
encoding scheme.

multibyte fixed-width character encoding scheme
A character encoding scheme in which each character code has the same fixed number of
bytes, greater than one. AL16UTF16 is a multibyte fixed-width character set.

multibyte varying-width character encoding scheme
A character encoding scheme in which each character code has a number of bytes from a
given range. The range is one to the maximum character width of the character set. Depending
on the encoding scheme, the maximum character width of the character set may be 2, 3, or 4
bytes. For example, ZHT16BIG5 has character codes with one or two bytes. UTF8 has
character codes with one, two, or three bytes. AL32UTF8 has character codes with one, two,
three, or four bytes. Oracle does not support encoding schemes with more than 4 bytes per
character code.

multilingual linguistic collation
An Oracle Database collation that evaluates strings on three levels. Asian languages require a
multilingual linguistic collation even if data exists in only one language. Multilingual linguistic
collations are also used when data exists in several languages.

In multilingual collations, strings are first ordered based on primary weights, then, if necessary,
secondary weights, then tertiary weights. For letters, primary weights correspond to base
letters, secondary weights to diacritics, and tertiary weights to case and specific decoration,
such as circle around the character. For ideographic scripts weights may represent other
character variations.

national character set
An alternate character set from the database character set that can be specified for NCHAR,
NVARCHAR2, and NCLOB columns. National character sets are AL16UTF16 and UTF8 only.

Glossary

Glossary-9

NLB files
Binary files used by the Locale Builder to define locale-specific data. They define all of the
locale definitions that are shipped with a specific release of Oracle Database. You can create
user-defined NLB files with Oracle Locale Builder.

See also Oracle Locale Builder and NLT files.

NLS
National Language Support. NLS enables users to interact with the database in their native
languages. It also enables applications to run in different linguistic and cultural environments.
The term has been replaced by the terms globalization and localization.

NLSRTL
National Language Support Runtime Library. This library is responsible for providing locale-
independent algorithms for internationalization. The locale-specific information (that is,
NLSDATA) is read by the NLSRTL library during run-time.

NLT files
Text files used by the Locale Builder to define locale-specific data. Because they are in text,
you can view the contents.

null string
A character string that contains no characters.

Oracle Locale Builder
A GUI utility that offers a way to view, modify, or define locale-specific data.

replacement character
A character used during character conversion when the source character is not available in the
target character set. For example, ? (question mark) is often used as the default replacement
character in Oracle character sets.

restricted multilingual support
Multilingual support that is restricted to a group of related languages.Western European
languages can be represented with ISO 8859-1, for example, but the use of ISO 8859-1
restricts the multilingual support. Thai or Chinese could not be added to the group.

SQL CHAR data types
Includes CHAR, VARCHAR, VARCHAR2, CLOB, and LONG data types.

Glossary

Glossary-10

SQL NCHAR data types
Includes NCHAR, NVARCHAR2, and NCLOB data types.

script
A particular system of writing. A collection of related graphic symbols that are used in a writing
system. Some scripts can represent multiple languages, and some languages use multiple
scripts. Examples of scripts include Latin, Arabic, and Han.

single byte
One byte. One byte usually consists of 8 bits. When character codes are assigned to all
characters for a specific language, one byte (8 bits) can represent 256 different characters.

See also multibyte.

single-byte character
A single-byte character is a character whose character code consists of one byte under a
specific character encoding scheme. Note that the same character may have different
character codes under different encoding schemes. Oracle Database cannot tell which
character is a single-byte character without knowing which encoding scheme is being used.
For example, the euro currency symbol is one byte in the WE8MSWIN1252 encoded character
set, two bytes in AL16UTF16, and three bytes in UTF8.

See also multibyte character.

single-byte character string
A single-byte character string is a string encoded in a single-byte character encoding scheme.
The term may also be used to describe a multibyte varying-width character string that happens
to consist only of single-byte character codes.See also multibyte varying-width character
encoding scheme.

sort
An ordering of strings. This can be based on requirements from a locale instead of the binary
representation of the strings, which is called a linguistic sort, or based on binary coded values,
which is called a binary sort.

See also multilingual linguistic collation and monolingual linguistic collation.

supplementary characters
The first version of the Unicode Standard was a 16-bit, fixed-width encoding that used two
bytes to encode each character. This enabled 65,536 characters to be represented. However,
more characters need to be supported because of the large number of Asian ideograms.

Unicode Standard version 3.1 defined supplementary characters to meet this need by
extending the numbering range for characters from 0000-FFFF hexadecimal to 0000-10FFFF

Glossary

Glossary-11

hexadecimal. Unicode 3.1 began using two 16-bit code units (also known as surrogate pairs)
to represent a single supplementary character in the UTF-16 form. This enabled an additional
1,048,576 characters to be defined. The Unicode 3.1 standard added the first group of 44,944
supplementary characters. More were added with subsequent versions of the Unicode
Standard.

surrogate pairs
See also supplementary characters.

syllabary
Provide a mechanism for communicating phonetic information along with the ideographic
characters used by languages such as Japanese.

UCS-2
An obsolete form for an ISO/IEC 10646 standard character set encoding form. Currently used
to mean the UTF-16 encoding form without support for surrogate pairs.

UCS-4
An obsolete name for an ISO/IEC 10646 standard encoding form, synonymous with UTF-32.

Unicode Standard
Unicode Standard is a universal encoded character set that enables information from any
language to be stored by using a single character set. Unicode Standard provides a unique
code value for every character, regardless of the platform, program, or language.

Unicode Standard also defines various text processing algorithms and related character
properties to aid in complex script processing of scripts such as Arabic or Devanagari (Hindi).

Unicode database
A database whose database character set is AL32UTF8 or UTF8.

Unicode code point
A value in the Unicode codespace, which ranges from 0 to 0x10FFFF. Unicode assigns a
unique code point to every character.

Unicode data type
A SQL NCHAR data type (NCHAR, NVARCHAR2, and NCLOB). You can store Unicode characters in
columns of these data types even if the database character set is not based on the Unicode
Standard.

Glossary

Glossary-12

unrestricted multilingual support
The ability to use as many languages as desired. A universal character set, such as Unicode
Standard, helps to provide unrestricted multilingual support because it supports a very large
character repertoire, encompassing most modern languages of the world.

UTFE
An Oracle character set implementing a 4-byte subset of the Unicode UTF-EBCDIC encoding
form, used only on EBCDIC platforms and deprecated.

UTF8
The UTF8 Oracle character set encodes characters in one, two, or three bytes. The UTF8
character set supports Unicode 3.0 and implements the CESU-8 encoding scheme. Although
specific supplementary characters were not assigned code points in Unicode until version 3.1,
the code point range was allocated for supplementary characters in Unicode 3.0.
Supplementary characters are treated as two separate, user-defined characters that occupy 6
bytes. UTF8 is deprecated.

wide character
A multibyte fixed-width character format that is useful for extensive text processing because it
enables data to be processed in consistent, fixed-width chunks. Multibyte varying-width
character values may be internally converted to the wide character format for faster
processing.

UTF-8
The 8-bit encoding form and scheme of the Unicode Standard. It is a multibyte varying-width
encoding. One Unicode character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in the UTF-8
encoding. Characters from the European scripts are represented in either 1 or 2 bytes.
Characters from most Asian scripts are represented in 3 bytes. Supplementary characters are
represented in 4 bytes. The Oracle Database character set that implements UTF-8 is
AL32UTF8.

UTF-16
The 16-bit encoding form of Unicode. One Unicode character can be one or two 2-code units in
the UTF-16 encoding. Characters (including ASCII characters) from European scripts and most
Asian scripts are represented by one code unit (2 bytes). Supplementary characters are
represented by two code units (4 bytes). The Oracle Database character sets that implement
UTF-16 are AL16UTF16 and AL16UTF16LE. AL16UTF16 implements the big-endian encoding
scheme of the UTF-16 encoding form (more significant byte of each code unit comes first in
memory). AL16UTF16 is a valid national character set. AL16UTF16LE implements the little-
endian UTF-16 encoding scheme. It is a conversion-only character set, valid only in character
set conversion functions such as SQL CONVERT or PL/SQL UTL_I18N.STRING_TO_RAW.Note that
most SQL string processing functionality treats each UTF-16 code unit in AL16UTF16 as a
separate character. The functions INSTR4, SUBSTR4, and LENGTH4 are an exception.

Glossary

Glossary-13

Index

Numerics
7-bit encoding schemes, 2-6, 2-7
8-bit encoding schemes, 2-7

A
abbreviations

languages, A-1
abstract data type

creating as NCHAR, 2-16
accent-insensitive linguistic sort, 5-16
ADD_MONTHS SQL function, 4-13
ADO interface and Unicode, 7-32
AL16UTF16 character set, 6-5, A-16
AL24UTFFSS character set, 6-5
AL32UTF8 character set, 6-5, 6-7, A-16
ALTER SESSION statement

SET NLS_CURRENCY clause, 3-28, 3-29
SET NLS_LANGUAGE clause, 3-15
SET NLS_NUMERIC_CHARACTERS clause,

3-26
SET NLS_TERRITORY clause, 3-15

application-locales, 8-37
ASCII encoding, 2-5

B
base letters, 5-4, 5-9
BFILE data

loading into LOBs, 9-13
binary sorts, 5-2

case-insensitive and accent-insensitive, 5-18
example, 5-19

binding and defining CLOB and NCLOB data in
OCI, 7-17

binding and defining SQL CHAR datatypes in
OCI, 7-14

binding and defining SQL NCHAR datatypes in
OCI, 7-15

BLANK_TRIMMING parameter, 11-3
BLOBs

creating indexes, 6-16
byte semantics, 2-9, 3-35

C
C number format mask, 3-29
Calendar Utility, 12-40
calendars

customizing, 12-40
parameter, 3-22
supported, A-26

canonical equivalence, 5-4, 5-13
case, 5-2
case-insensitive linguistic sort, 5-16
CESU-8 compliance, A-16
character data

converting with CONVERT SQL function, 9-4
character data conversion

database character set, 11-6
character data scanning

before character set migration, 11-6
character rearrangement, 5-14
character repertoire, 2-1
character semantics, 2-9, 3-35
character set

conversion, 12-21
data loss

during conversion, 2-13
detecting with Globalization Development Kit,

8-33
national, 7-4

character set conversion
between OCI client and database server, 7-12
parameters, 3-34

character set definition
customizing, 12-24
guidelines for editing files, 12-23
naming files, 12-23

character set encodings for conversion only, A-17
character set migration

identifying character data conversion
problems, 11-6

scanning character data, 11-6
character sets

AL16UTF16, 6-5
AL24UTFFSS, 6-5
AL32UTF8, 6-5
ASCII, A-7
changing after database creation, 2-19

Index-1

character sets (continued)
choosing, 11-1
conversion, 2-13, 2-21, 9-4
conversion using OCI, 10-6
customizing, 12-20
data loss, 11-3
EBCDIC, A-7
encoding, 2-1
ISO 8859 series, 2-5
migration, 11-1, 11-2
naming, 2-8
national, 6-9, 7-4
other ASCII-based, A-10
other EBCDIC-based, A-12
restrictions on character sets used to express

names, 2-14
supersets and subsets, A-18
supported, A-6
supporting different character repertoires, 2-4
universal, A-16
UTFE, 6-5

character snational, 2-15
character type conversion

error reporting, 3-35
characters

available in all Oracle database character
sets, 2-4

context-sensitive, 5-13
contracting, 5-12
user-defined, 12-21

choosing a character set, 11-1
client operating system

character set compatibility with applications,
2-13

client-only character sets, A-15
CLOB and NCLOB data

binding and defining in OCI, 7-17
CLOBs

creating indexes, 6-16
code chart

displaying and printing, 12-16
code point, 2-1
collation

column-level collation, 5-35
customizing, 12-27
data-bound collation, 5-36
Hiragana and Katakana, 5-7
linguistic collation, 5-3
monolingual, 5-3
multilingual, 5-4
Unicode Collation Algorithm, 5-6

comparisons
linguistic, 5-21

compatibility
client operating system and application

character sets, 2-13

composed characters, 5-12
context-sensitive characters, 5-13
contracting characters, 5-12
contracting letters, 5-15
control characters, encoding, 2-3
conversion

between character set ID number and
character set name, 9-7

CONVERT SQL function, 9-4
convert time zones, 4-39
converting character data

CONVERT SQL function, 9-4
converting character data between character sets,

9-4
Coordinated Universal Time, 4-4, 4-5
creating a database with Unicode datatypes, 6-8
creating a Unicode database, 6-8
CSREPAIR script, 11-8
currencies

formats, 3-28
CURRENT_DATE SQL function, 4-13
CURRENT_TIMESTAMP SQL function, 4-13

D
data conversion

in Pro*C/C++, 7-18
OCI driver, 7-24
ODBC and OLE DB drivers, 7-29
thin driver, 7-24
Unicode Java strings, 7-24

data expansion
during character set migration, 11-2
during data conversion, 7-13

data inconsistencies causing data loss, 11-4
data loss

caused by data inconsistencies, 11-4
during character set conversion, 2-13
during character set migration, 11-3
during datatype conversion

exceptions, 7-5
during OCI Unicode character set conversion,

7-12
from mixed character sets, 11-5

Data Pump PL/SQL packages and character set
migration, 11-6

data truncation, 11-2
restrictions, 11-2

data types
abstract, 2-16
datetime, 4-1
inserting values into datetime data types, 4-6
inserting values into interval data types, 4-11
interval, 4-1, 4-9
supported, 2-16

Index

Index-2

data-bound collation
collation derivation, C-1
collation derivation and determination rules for

SQL operations, C-1
collation determination, C-1

database character set
character data conversion, 11-6
choosing, 2-11
compatibility between client operating system

and applications, 2-13
performance, 2-14

Database Migration Assistant for Unicode (DMU),
11-6

database schemas
designing for multiple languages, 6-12

database time zone, 4-37
datatype conversion

data loss and exceptions, 7-5
implicit, 7-6
SQL functions, 7-7

date and time parameters, 3-16
date formats, 3-16, 3-17, 9-12

and partition bound expressions, 3-18
dates

ISO standard, 3-22, 9-12
NLS_DATE_LANGUAGE parameter, 3-19

datetime data types, 4-1
inserting values, 4-6

datetime format parameters, 4-15
Daylight Saving Time

Oracle support, 4-40
rules, 4-20

Daylight Saving Time Upgrade parameter, 4-16
days

format element, 3-19
language of names, 3-19

DBTIMEZONE SQL function, 4-13
detecting language and character sets

Globalization Development Kit, 8-33
detection

supported languages and character sets,
A-19

diacritic, 5-2
DMU

Database Migration Assistant for Unicode,
11-6

DST_UPGRADE_INSERT_CONV inititialization
parameter, 4-16

DUCET (Default Unicode Collation Element
Table), 5-6

E
encoding

control characters, 2-3
ideographic writing systems, 2-3

encoding (continued)
numbers, 2-3
phonetic writing systems, 2-3
punctuation, 2-3
symbols, 2-3

encoding schemes
7-bit, 2-6, 2-7
8-bit, 2-7
fixed-width, 2-7
multibyte, 2-7
shift-sensitive variable-width, 2-7
shift-sensitive variable-width multibyte, 2-7
single-byte, 2-6
variable-width, 2-7

environment variables
ORA_SDTZ, 4-16
ORA_TZFILE, 4-16

error messages
languages, A-4
translation, A-4

euro
Oracle support, 3-30

expanding characters, 5-15
characters

expanding, 5-13
EXTRACT (datetime) SQL function, 4-13

F
fixed-width multibyte encoding schemes, 2-7
fonts

Unicode, 12-1
format elements, 9-12

C, 9-12
D, 9-12
day, 3-19
G, 9-12
IW, 9-12
IY, 9-12
L, 9-12
month, 3-19
RM, 9-12
RN, 9-12

format masks, 3-26, 9-12
formats

currency, 3-28
date, 3-17, 4-15
numeric, 3-25
time, 3-19

FROM_TZ SQL function, 4-13

G
GDK application configuration file, 8-36

example, 8-41
GDK application framework for J2EE, 8-16

Index

Index-3

GDK components, 8-7
GDK error messages, 8-46
GDK Java API, 8-28
GDK Java supplied packages and classes, 8-42
GDK Localizer object, 8-22
Globalization Development Kit, 8-1

application configuration file, 8-36
character set conversion, 8-30
components, 8-7
defining supported application locales, 8-23
e-mail programs, 8-34
error messages, 8-46
framework, 8-16
integrating locale sources, 8-19
Java API, 8-28
Java supplied packages and classes, 8-42
locale detection, 8-20
Localizer object, 8-22
managing localized content in static files, 8-27
managing strings in JSPs and Java servlets,

8-26
non_ASCII input and output in an HTML

page, 8-24
Oracle binary and linguistic sorts, 8-31
Oracle date, number, and monetary formats,

8-31
Oracle language and character set detection,

8-33
Oracle locale information, 8-29
Oracle locale mapping, 8-29
Oracle translated locale and time zone

names, 8-34
supported locale resources, 8-19

globalization features, 1-4
globalization support

architecture, 1-1
Greenwich Mean Time, 4-4, 4-5
guessing the language or character set, 11-9

H
Hiragana, 5-7

I
IANA character sets

mapping with ISO locales, 8-24
ideographic writing systems, encoding, 2-3
ignorable characters, 5-10
implicit datatype conversion, 7-6
indexes

creating for documents stored as CLOBs,
6-16

creating for multilingual document search,
6-15

indexes (continued)
creating indexes for documents stored as

BLOBs, 6-16
linguistic, 5-27

initialization parameter
DST_UPGRADE_INSERT_CONV, 4-16

initialization parameters
NLS_DATE_FORMAT, 4-15
NLS_TIMESTAMP_FORMAT, 4-15
NLS_TIMESTAMP_TZ_FORMAT, 4-15

INSTR SQL functions, 7-8
Internet application

locale
determination, 8-6

monolingual, 8-2
multilingual, 8-2, 8-4

interval data types, 4-1, 4-9
inserting values, 4-11

ISO 8859 character sets, 2-5
ISO locales

mapping with IANA character sets, 8-24
ISO standard

date format, 9-12
ISO standard date format, 3-22, 9-12
ISO week number, 9-12
IW format element, 9-12
IY format element, 9-12

J
Java

Unicode data conversion, 7-24
Java strings

binding and defining in Unicode, 7-21
JDBC OCI driver

and Unicode, 7-3
JDBC programming

Unicode, 7-20
JDBC Server Side internal driver

and Unicode, 7-3
JDBC Server Side thin driver

and Unicode, 7-3
JDBC thin driver

and Unicode, 7-3

K
Katakana, 5-7

L
language

detecting with Globalization Development Kit,
8-33

language abbreviations, A-1
Language and Character Set File Scanner, 11-9

Index

Index-4

language definition
customizing, 12-6
overriding, 3-6

language support, 1-5
languages

error messages, A-4
languages and character sets

supported by LCSSCAN, A-19
LAST_DAY SQL function, 4-13
LCSCCAN

error messages, 11-12
LCSSCAN, 11-9

supported languages and character sets,
11-12, A-19

LCSSCAN command
BEGIN parameter, 11-10
END parameter, 11-10
examples, 11-11
FILE parameter, 11-10
HELP parameter, 11-11
online help, 11-11
RESULTS parameter, 11-10

length semantics, 2-9, 3-35
LIKE conditions in SQL statements, 9-6
linguistic collation

accent-insensitive collation, 5-16
case-insensitive collation, 5-16
overview, 5-3

linguistic collation definitions
supported, A-21

linguistic comparisons, 5-21
linguistic indexes, 5-27
linguistic sorts

BINARY, 5-19
BINARY_AI, linguistic sorts

BINARY_CI, 5-19
controlling, 9-11
customizing, 12-27

characters with diacritics, 12-31, 12-34
levels, 5-4
list of defaults, A-2–A-4
parameters, 3-32

list parameter, 3-25
lmsgen utility, 10-7
loading external BFILE data into LOBs, 9-13
LOBs

loading external BFILE data, 9-13
storing documents in multiple languages, 6-14

locale, 3-3
dependencies, 3-7
of Internet application

determining, 8-6
variant, 3-7

locale information
mapping between Oracle and other

standards, 10-3

locale-charset-map, 8-36
locale-determine-rule, 8-38
locale-parameter-name, 8-39
LOCALTIMESTAMP SQL function, 4-13

M
message-bundles, 8-39
migration

character sets, 11-1
mixed character sets

causing data loss, 11-5
monetary parameters, 3-27
monolingual Internet application, 8-2
monolingual linguistic collations

supported, A-21
monolingual linguistic sorts

example, 5-20
months

format element, 3-19
language of names, 3-19

MONTHS_BETWEEN SQL function, 4-13
multibyte encoding schemes, 2-7

fixed-width, 2-7
shift-sensitive variable-width, 2-7
variable-width, 2-7

multilexers
creating, 6-15

multilingual data
specifying column lengths, 6-12

multilingual document search
creating indexes, 6-15

multilingual Internet application, 8-4
multilingual linguistic collations

supported, A-23
multilingual linguistic sorts

example, 5-20
multiple languages

designing database schemas, 6-12
storing data, 6-13
storing documents in LOBs, 6-14

N
national character set, 2-15, 6-9, 7-4
NCHAR data type

creating abstract data type, 2-16
NCLOB datatype, 7-5
NEW_TIME SQL function, 4-13
NEXT_DAY SQL function, 4-13
NLB data

transportable, 12-39
NLB file, 12-4
NLB files, 12-1

generating and installing, 12-36
NLS Calendar Utility, 12-40

Index

Index-5

NLS parameters
default values in SQL functions, 9-2
list, 3-1
setting, 3-1
specifying in SQL functions, 9-2
unacceptable in SQL functions, 9-4

NLS Runtime Library, 1-1
NLS_CALENDAR parameter, 3-24
NLS_COMP parameter, 3-34
NLS_CREDIT parameter, 3-32
NLS_CURRENCY parameter, 3-28
NLS_DATE_FORMAT initialization parameter,

4-15
NLS_DATE_FORMAT parameter, 3-17
NLS_DATE_LANGUAGE parameter, 3-18
NLS_DEBIT parameter, 3-32
NLS_DUAL_CURRENCY parameter, 3-30
NLS_ISO_CURRENCY parameter, 3-29
NLS_LANG parameter, 3-3

choosing a locale, 3-3
client setting, 3-8
examples, 3-5
OCI client applications, 7-14
specifying, 3-5
UNIX client, 3-8
Windows client, 3-8

NLS_LENGTH_SEMANTICS initialization
parameter, 2-10

NLS_LENGTH_SEMANTICS session parameter,
2-10

NLS_LIST_SEPARATOR parameter, 3-34
NLS_MONETARY_CHARACTERS parameter,

3-31
NLS_NCHAR_CONV_EXCP parameter, 3-34
NLS_NUMERIC_CHARACTERS parameter, 3-26
NLS_SORT parameter, 3-33
NLS_TERRITORY parameter, 3-13
NLS_TIMESTAMP_FORMAT initialization

parameter, 4-15
NLS_TIMESTAMP_TZ_FORMAT initialization

parameter, 4-15
NLSRTL, 1-1
NLSSORT SQL function, 9-8

syntax, 9-9
NLT files, 12-1
numbers, encoding, 2-3
numeric formats, 3-25

SQL masks, 9-12
numeric parameters, 3-25
NUMTODSINTERVAL SQL function, 4-14
NUMTOYMINTERVAL SQL function, 4-14
NVARCHAR datatype

Pro*C/C++, 7-19

O
obsolete character sets, A-36
OCI

binding and defining CLOB and NCLOB data
in OCI, 7-17

binding and defining SQL NCHAR datatypes,
7-15

SQL CHAR datatypes, 7-14
OCI and Unicode, 7-2
OCI character set conversion, 7-12

data loss, 7-12
performance, 7-12

OCI client applications
using Unicode character sets, 7-14

OCI data conversion
data expansion, 7-13

OCI_UTF16ID character set ID, 7-11
OCICharSetConvert(), 10-6
OCINlsCharSetIdToName(), 10-2
OCINlsCharSetNameTold(), 10-2
OCINlsEnvironmentVariableGet(), 10-2
OCINlsGetInfo(), 10-2
OCINlsNumericInfoGet(), 10-2
OCIWideCharIsUpper(), 10-6
ODBC Unicode applications, 7-31
OLE DB Unicode datatypes, 7-32
operating system

character set compatibility with applications,
2-13

ORA_DST_AFFECTED SQL function, 4-14
ORA_DST_CONVERT SQL function, 4-14
ORA_DST_ERROR SQL function, 4-14
ORA_SDTZ environment variable, 4-16
ORA_TZFILE environment variable, 4-16
Oracle Call Interface and Unicode, 7-2
Oracle Data Provide for .NET and Unicode, 7-2
Oracle Data Pump and character set conversion,

11-6
Oracle Language and Character Set Detection

Java classes, 8-33
Oracle Locale Builder

choosing a calendar format, 12-11
choosing currency formats, 12-14
choosing date and time formats, 12-12
displaying code chart, 12-16
Existing Definitions dialog box, 12-3
Open File dialog box, 12-5
Preview NLT screen, 12-5
restrictions on names for locale objects, 12-7
Session Log dialog box, 12-4
starting, 12-2

Oracle ODBC driver and Unicode, 7-2
Oracle OLE DB driver and Unicode, 7-2
Oracle Pro*C/C++ and Unicode, 7-2
ORDER BY clause, 9-11

Index

Index-6

overriding language and territory definitions, 3-6

P
page-charset, 8-37
parameters

BLANK_TRIMMING, 11-3
calendar, 3-22
character set conversion, 3-34
linguistic sorts, 3-32
methods of setting, 3-1
monetary, 3-27
NLS_CALENDAR, 3-24
NLS_COMP, 3-34
NLS_CREDIT, 3-32
NLS_CURRENCY, 3-28
NLS_DATE_FORMAT, 3-17
NLS_DATE_LANGUAGE, 3-18
NLS_DEBIT, 3-32
NLS_DUAL_CURRENCY, 3-30
NLS_ISO_CURRENCY, 3-29
NLS_LANG, 3-3
NLS_LIST_SEPARATOR, 3-34
NLS_MONETARY_CHARACTERS, 3-31
NLS_NCHAR_CONV_EXCP, 3-34
NLS_NUMERIC_CHARACTERS, 3-26
NLS_SORT, 3-33
NLS_TERRITORY, 3-13
numeric, 3-25
time and date, 3-16

performance
choosing a database character set, 2-14
during OCI Unicode character set conversion,

7-12
phonetic writing systems, encoding, 2-3
PL/SQL and SQL and Unicode, 7-3
primary level sort, 5-4
Private Use Area, 12-22
Pro*C/C++

data conversion, 7-18
NVARCHAR datatype, 7-19
VARCHAR datatype, 7-19

punctuation, encoding, 2-3

R
regular expressions

character class, 5-33
character range, 5-33
collation element delimiter, 5-33
equivalence class, 5-33
examples, 5-34
multilingual environment, 5-32

replacement characters
CONVERT SQL function, 9-5

restrictions
data truncation, 11-2
passwords, 11-3
space padding during export, 11-3
usernames, 11-3

reverse secondary sorting, 5-14
ROUND (date) SQL function, 4-13
RPAD SQL function, 7-8

S
searching multilingual documents, 6-15
searching string, 5-31
secondary level sort, 5-5
session time zone, 4-38
SESSIONTIMEZONE SQL function, 4-14
shift-sensitive variable-width multibyte encoding

schemes, 2-7
single-byte encoding schemes, 2-6
sorting

reverse secondary, 5-14
specifying nondefault linguistic sorts, 3-33

space padding
during export, 11-3

special combination letters, 5-12, 5-15
special letters, 5-13, 5-15
special lowercase letters, 5-16
special uppercase letters, 5-15
SQL CHAR datatypes, 2-11

OCI, 7-14
SQL function

ORA_DST_AFFECTED, 4-14
ORA_DST_CONVERT, 4-14
ORA_DST_ERROR, 4-14

SQL functions
ADD_MONTHS, 4-13
CONVERT, 9-4
CURRENT_DATE, 4-13
CURRENT_TIMESTAMP, 4-13
datatype conversion, 7-7
DBTIMEZONE, 4-13
default values for NLS parameters, 9-2
EXTRACT (datetime), 4-13
FROM_TZ, 4-13
INSTR, 7-8
LAST_DAY, 4-13
LOCALTIMESTAMP, 4-13
MONTHS_BETWEEN, 4-13
NEW_TIME, 4-13
NEXT_DAY, 4-13
NLSSORT, 9-8
NUMTODSINTERVAL, 4-14
NUMTOYMINTERVAL, 4-14
ROUND (date), 4-13
RPAD, 7-8
SESSIONTIMEZONE, 4-14

Index

Index-7

SQL functions (continued)
specifying NLS parameters, 9-2
SYS_EXTRACT_UTC, 4-14
SYSDATE, 4-14
SYSTIMESTAMP, 4-14
TO_CHAR (datetime), 4-14
TO_DSINTERVAL, 4-14
TO_TIMESTAMP, 4-14
TO_TIMESTAMP_TZ, 4-14
TO_YMINTERVAL, 4-14
TRUNC (date), 4-13
TZ_OFFSET, 4-14
unacceptable NLS parameters, 9-4

SQL NCHAR datatypes
binding and defining in OCI, 7-15

SQL statements
LIKE conditions, 9-6

strict superset, 6-3
string comparisons

WHERE clause, 9-10
string literals

Unicode, 7-8
string manipulation using OCI, 10-3
strings

searching, 5-31
superset, strict, 6-3
supersets and subsets, A-18
supplementary characters, 5-4

linguistic collation support, A-24
supported datatypes, 2-16
supported territories, A-5
syllabary, 2-3
symbols, encoding, 2-3
SYS_EXTRACT_UTC SQL function, 4-14
SYSDATE SQL function, 4-14
SYSTIMESTAMP SQL function, 4-14

T
territory

dependencies, 3-7
territory definition, 3-13

customizing, 12-10
overriding, 3-6

territory support, 1-5, A-5
territory variant, 3-7
tertiary level sort, 5-5
Thai and Laotian character rearrangement, 5-14
tilde, 7-28
time and date parameters, 3-16
time zone

abbreviations, 4-17
data source, 4-17
database, 4-37
environment variables, 4-16
file, 4-17

time zone (continued)
names, 4-17
session, 4-38

time zone file
choosing, 4-17
upgrading, 4-20

time zones
converting, 4-39
upgrading time zone file, 4-20

TIMESTAMP data type
when to use, 4-9

TIMESTAMP data types
choosing, 4-9

timestamp format, 3-20
TIMESTAMP WITH LOCAL TIME ZONE data type

when to use, 4-9
TIMESTAMP WITH TIME ZONE data type

when to use, 4-9
TO_CHAR (datetime) SQL function, 4-14
TO_CHAR SQL function

format masks, 9-12
group separator, 3-27
spelling of days and months, 3-19

TO_DATE SQL function
format masks, 9-12
spelling of days and months, 3-19

TO_DSINTERVAL SQL function, 4-14
TO_NUMBER SQL function

format masks, 9-12
TO_TIMESTAMP SQL function, 4-14
TO_TIMESTAMP_TZ SQL function, 4-14
TO_YMINTERVAL SQL function, 4-14
transportable NLB data, 12-39
TRUNC (date) SQL function, 4-13
TZ_OFFSET SQL function, 4-14
TZABBREV, 4-17
TZNAME, 4-17

U
UCS-2 encoding, 6-4
Unicode, 6-1

binding and defining Java strings, 7-21
character code assignments, B-1
character set conversion between OCI client

and database server, 7-12
code ranges for UTF-16 characters, B-1
code ranges for UTF-8 characters, B-1
data conversion in Java, 7-24
encoding, 6-2
fonts, 12-1
JDBC OCI driver, 7-3
JDBC programming, 7-20
JDBC Server Side internal driver, 7-3
JDBC Server Side thin driver, 7-3
JDBC thin driver, 7-3

Index

Index-8

Unicode (continued)
mode, 7-11
ODBC and OLE DB programming, 7-28
Oracle Call Interface, 7-2
Oracle Data Provide for .NET, 7-2
Oracle ODBC driver, 7-2
Oracle OLE DB driver, 7-2
Oracle Pro*C/C++, 7-2
Oracle support, 6-5
parsing an XML stream with Java, 7-34
PL/SQL and SQL, 7-3
Private Use Area, 12-22
programming, 7-1
reading an XML file with Java, 7-33
string literals, 7-8
UCS-2 encoding, 6-4
UTF-16 encoding, 6-3
UTF-8 encoding, 6-3
writing an XML file with Java, 7-33
XML programming, 7-32

Unicode database, 6-7
case study, 6-10

Unicode datatypes, 6-8
case study, 6-11

upgrade
Daylight Saving Time, 4-16
time zone data upgrade overview, 4-20
time zone data upgrade using the

DBMS_DST package, 4-22
time zone data upgrade using the utltz_*

scripts, 4-33
url-rewrite-rule, 8-40
US7ASCII

supersets, A-19

user-defined characters, 12-21
adding to a character set definition, 12-26
cross-references between character sets,

12-22
UTC, 4-4, 4-5
UTF-16 encoding, 6-3, B-2
UTF-8 encoding, 6-3, B-2
UTF8 character set, 6-7, A-16
UTFE character set, 6-5, A-16

V
VARCHAR datatype

Pro*C/C++, 7-19
variable-width multibyte encoding schemes, 2-7

W
wave dash, 7-28
WHERE clause

string comparisons, 9-10

X
XML

parsing in Unicode with Java, 7-34
reading in Unicode with Java, 7-33
writing in Unicode with Java, 7-33

XML programming
Unicode, 7-32

Index

Index-9

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	Changes in Oracle Database Globalization Support Guide for Oracle Database 21c
	New Features
	Desupported Features

	1 Overview of Globalization Support
	1.1 Globalization Support Architecture
	1.1.1 Locale Data on Demand
	1.1.2 Architecture to Support Multilingual Applications
	1.1.3 Using Unicode in a Multilingual Database

	1.2 Globalization Support Features
	1.2.1 Language Support
	1.2.2 Territory Support
	1.2.3 Date and Time Formats
	1.2.4 Monetary and Numeric Formats
	1.2.5 Calendar Systems
	1.2.6 Linguistic Sorting
	1.2.7 Character Set Support
	1.2.8 Character Semantics
	1.2.9 Customization of Locale and Calendar Data
	1.2.10 Unicode Support

	2 Choosing a Character Set
	2.1 Character Set Encoding
	2.1.1 What is an Encoded Character Set?
	2.1.2 Which Characters Are Encoded?
	2.1.2.1 Phonetic Writing Systems
	2.1.2.2 Ideographic Writing Systems
	2.1.2.3 Punctuation, Control Characters, Numbers, and Symbols
	2.1.2.4 Writing Direction

	2.1.3 What Characters Does a Character Set Support?
	2.1.3.1 ASCII Encoding

	2.1.4 How are Characters Encoded?
	2.1.4.1 Single-Byte Encoding Schemes
	2.1.4.2 Multibyte Encoding Schemes

	2.1.5 Naming Convention for Oracle Database Character Sets
	2.1.6 Subsets and Supersets

	2.2 Length Semantics
	2.3 Choosing an Oracle Database Character Set
	2.3.1 Current and Future Language Requirements
	2.3.2 Client Operating System and Application Compatibility
	2.3.3 Character Set Conversion Between Clients and the Server
	2.3.4 Performance Implications of Choosing a Database Character Set
	2.3.5 Restrictions on Database Character Sets
	2.3.5.1 Restrictions on Character Sets Used to Express Names

	2.3.6 Database Character Set Statement of Direction
	2.3.7 Choosing Unicode as a Database Character Set
	2.3.8 Choosing a National Character Set
	2.3.9 Summary of Supported Data Types

	2.4 Choosing a Database Character Set for a Multitenant Container Database
	2.5 Changing the Character Set After Database Creation
	2.6 Monolingual Database Scenario
	2.6.1 Character Set Conversion in a Monolingual Scenario

	2.7 Multilingual Database Scenario

	3 Setting Up a Globalization Support Environment
	3.1 Setting NLS Parameters
	3.2 Choosing a Locale with the NLS_LANG Environment Variable
	3.2.1 Specifying the Value of NLS_LANG
	3.2.2 Overriding Language and Territory Specifications
	3.2.3 Locale Variants
	3.2.4 Should the NLS_LANG Setting Match the Database Character Set?

	3.3 Character Set Parameter
	3.3.1 NLS_OS_CHARSET Environment Variable

	3.4 NLS Database Parameters
	3.4.1 NLS Data Dictionary Views
	3.4.2 NLS Dynamic Performance Views
	3.4.3 OCINlsGetInfo() Function

	3.5 Language and Territory Parameters
	3.5.1 NLS_LANGUAGE
	3.5.2 NLS_TERRITORY
	3.5.2.1 Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session

	3.6 Date and Time Parameters
	3.6.1 Date Formats
	3.6.1.1 NLS_DATE_FORMAT
	3.6.1.2 NLS_DATE_LANGUAGE

	3.6.2 Time Formats
	3.6.2.1 NLS_TIMESTAMP_FORMAT
	3.6.2.2 NLS_TIMESTAMP_TZ_FORMAT

	3.7 Calendar Definitions
	3.7.1 Calendar Formats
	3.7.1.1 First Day of the Week
	3.7.1.2 First Calendar Week of the Year
	3.7.1.3 Number of Days and Months in a Year
	3.7.1.4 First Year of Era
	3.7.1.4.1 Islamic Calendar
	3.7.1.4.2 Japanese Imperial Calendar

	3.7.2 NLS_CALENDAR

	3.8 Numeric and List Parameters
	3.8.1 Numeric Formats
	3.8.2 NLS_NUMERIC_CHARACTERS
	3.8.3 NLS_LIST_SEPARATOR

	3.9 Monetary Parameters
	3.9.1 Currency Formats
	3.9.2 NLS_CURRENCY
	3.9.3 NLS_ISO_CURRENCY
	3.9.4 NLS_DUAL_CURRENCY
	3.9.5 Oracle Database Support for the Euro
	3.9.6 NLS_MONETARY_CHARACTERS
	3.9.7 NLS_CREDIT
	3.9.8 NLS_DEBIT

	3.10 Linguistic Sort Parameters
	3.10.1 NLS_SORT
	3.10.2 NLS_COMP

	3.11 Character Set Conversion Parameter
	3.11.1 NLS_NCHAR_CONV_EXCP

	3.12 Length Semantics
	3.12.1 NLS_LENGTH_SEMANTICS

	4 Datetime Data Types and Time Zone Support
	4.1 Overview of Datetime and Interval Data Types and Time Zone Support
	4.2 Datetime and Interval Data Types
	4.2.1 Datetime Data Types
	4.2.1.1 DATE Data Type
	4.2.1.2 TIMESTAMP Data Type
	4.2.1.3 TIMESTAMP WITH TIME ZONE Data Type
	4.2.1.4 TIMESTAMP WITH LOCAL TIME ZONE Data Type
	4.2.1.5 Inserting Values into Datetime Data Types
	4.2.1.6 Choosing a TIMESTAMP Data Type

	4.2.2 Interval Data Types
	4.2.2.1 INTERVAL YEAR TO MONTH Data Type
	4.2.2.2 INTERVAL DAY TO SECOND Data Type
	4.2.2.3 Inserting Values into Interval Data Types

	4.3 Datetime and Interval Arithmetic and Comparisons
	4.3.1 Datetime and Interval Arithmetic
	4.3.2 Datetime Comparisons
	4.3.3 Explicit Conversion of Datetime Data Types

	4.4 Datetime SQL Functions
	4.5 Datetime and Time Zone Parameters and Environment Variables
	4.5.1 Datetime Format Parameters
	4.5.2 Time Zone Environment Variables
	4.5.3 Daylight Saving Time Session Parameter
	4.5.4 Daylight Saving Time Upgrade Parameter

	4.6 Choosing a Time Zone File
	4.7 Upgrading the Time Zone File and Timestamp with Time Zone Data
	4.7.1 Upgrading the Time Zone Data Using the DBMS_DST Package
	4.7.1.1 Prepare Window
	4.7.1.2 Upgrade Window
	4.7.1.3 Upgrade Example
	4.7.1.4 Upgrade Error Handling

	4.7.2 Upgrading the Time Zone Data Using the utltz_* Scripts
	4.7.2.1 Prepare Window
	4.7.2.2 Upgrade Window

	4.8 Clients and Servers Operating with Different Versions of Time Zone Files
	4.9 Setting the Database Time Zone
	4.10 Setting the Session Time Zone
	4.11 Converting Time Zones With the AT TIME ZONE Clause
	4.12 Support for Daylight Saving Time
	4.12.1 Examples: The Effect of Daylight Saving Time on Datetime Calculations

	5 Linguistic Sorting and Matching
	5.1 Overview of Oracle Database Collation Capabilities
	5.2 Using Binary Collation
	5.3 Using Linguistic Collation
	5.3.1 Monolingual Collation
	5.3.2 Multilingual Collation
	5.3.2.1 Multilingual Collation Levels
	5.3.2.1.1 Primary Level Collation
	5.3.2.1.2 Secondary Level Collation
	5.3.2.1.3 Tertiary Level Collation

	5.3.3 UCA Collation
	5.3.3.1 UCA Comparison Levels
	5.3.3.1.1 Primary Level
	5.3.3.1.2 Secondary Level
	5.3.3.1.3 Tertiary Level
	5.3.3.1.4 Quaternary Level

	5.3.3.2 UCA Collation Parameters

	5.4 Linguistic Collation Features
	5.4.1 Base Letters
	5.4.2 Ignorable Characters
	5.4.2.1 Primary Ignorable Characters
	5.4.2.2 Secondary Ignorable Characters
	5.4.2.3 Tertiary Ignorable Characters

	5.4.3 Variable Characters and Variable Weighting
	5.4.4 Contracting Characters
	5.4.5 Expanding Characters
	5.4.6 Context-Sensitive Characters
	5.4.7 Canonical Equivalence
	5.4.8 Reverse Secondary Sorting
	5.4.9 Character Rearrangement for Thai and Laotian Characters
	5.4.10 Special Letters
	5.4.11 Special Combination Letters
	5.4.12 Special Uppercase Letters
	5.4.13 Special Lowercase Letters

	5.5 Case-Insensitive and Accent-Insensitive Linguistic Collation
	5.5.1 Examples: Case-Insensitive and Accent-Insensitive Collation
	5.5.2 Specifying a Case-Insensitive or Accent-Insensitive Collation
	5.5.3 Examples: Linguistic Collation

	5.6 Performing Linguistic Comparisons
	5.6.1 Collation Keys
	5.6.2 Restricted Precision of Linguistic Comparison
	5.6.3 Avoiding ORA-12742 Error
	5.6.4 Examples: Linguistic Comparison

	5.7 Using Linguistic Indexes
	5.7.1 Supported SQL Operations and Functions for Linguistic Indexes
	5.7.2 Linguistic Indexes for Multiple Languages
	5.7.3 Requirements for Using Linguistic Indexes
	5.7.3.1 Set NLS_SORT Appropriately
	5.7.3.2 Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT NULL
	5.7.3.3 Use a Tablespace with an Adequate Block Size
	5.7.3.4 Example: Setting Up a French Linguistic Index

	5.8 Searching Linguistic Strings
	5.9 SQL Regular Expressions in a Multilingual Environment
	5.9.1 Character Range '[x-y]' in Regular Expressions
	5.9.2 Collation Element Delimiter '[. .]' in Regular Expressions
	5.9.3 Character Class '[: :]' in Regular Expressions
	5.9.4 Equivalence Class '[= =]' in Regular Expressions
	5.9.5 Examples: Regular Expressions

	5.10 Column-Level Collation and Case Sensitivity
	5.10.1 About Data-Bound Collation
	5.10.2 Default Collations
	5.10.3 Enabling Data-Bound Collation
	5.10.4 Specifying a Data-Bound Collation
	5.10.4.1 Effective Schema Default Collation
	5.10.4.2 Specifying Data-Bound Collation for a Schema
	5.10.4.3 Specifying Data-Bound Collation for a Table
	5.10.4.4 Specifying Data-Bound Collation for a View and a Materialized View
	5.10.4.5 Specifying Data-Bound Collation for a Column
	5.10.4.6 Specifying Data-Bound Collation for PL/SQL Units
	5.10.4.7 Specifying Data-Bound Collation for SQL Expressions
	5.10.4.7.1 Collation Derivation
	5.10.4.7.2 Collation Determination
	5.10.4.7.3 Expression Evaluation and the COLLATE Operator
	5.10.4.7.4 COLLATION Function
	5.10.4.7.5 NLS_COLLATION_ID and NLS_COLLATION_NAME Functions

	5.10.5 Viewing the Data-Bound Collation of a Database Object
	5.10.6 Case-Insensitive Database
	5.10.7 Effect of Data-Bound Collation on Other Database Objects
	5.10.8 Effect of Data-Bound Collation on Distributed Queries and DML Operations
	5.10.9 Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types
	5.10.10 Effect of Data-Bound Collation on Oracle XML DB

	6 Supporting Multilingual Databases with Unicode
	6.1 What is the Unicode Standard?
	6.2 Features of the Unicode Standard
	6.2.1 Code Points and Supplementary Characters
	6.2.2 Unicode Encoding Forms
	6.2.2.1 UTF-8 Encoding Form
	6.2.2.2 UTF-16 Encoding Form
	6.2.2.3 UCS-2 Encoding Form
	6.2.2.4 UTF-32 Encoding Form
	6.2.2.5 CESU-8 Encoding Form
	6.2.2.6 Examples: UTF-16, UTF-8, and UCS-2 Encoding

	6.2.3 Support for the Unicode Standard in Oracle Database

	6.3 Implementing a Unicode Solution in the Database
	6.3.1 Enabling Multilingual Support for a Database
	6.3.2 Enabling Multilingual Support with Unicode Data Types
	6.3.3 How to Choose Between Unicode Solutions

	6.4 Unicode Case Studies
	6.5 Designing Database Schemas to Support Multiple Languages
	6.5.1 Specifying Column Lengths for Multilingual Data
	6.5.2 Storing Data in Multiple Languages
	6.5.3 Storing Documents in Multiple Languages in LOB Data Types
	6.5.4 Creating Indexes for Searching Multilingual Document Contents
	6.5.4.1 Creating Multilexers
	6.5.4.2 Creating Indexes for Documents Stored in the CLOB Data Type
	6.5.4.3 Creating Indexes for Documents Stored in the BLOB Data Type

	7 Programming with Unicode
	7.1 Overview of Programming with Unicode
	7.1.1 Database Access Product Stack and Unicode

	7.2 SQL and PL/SQL Programming with Unicode
	7.2.1 SQL NCHAR Data Types
	7.2.1.1 The NCHAR Data Type
	7.2.1.2 The NVARCHAR2 Data Type
	7.2.1.3 The NCLOB Data Type

	7.2.2 Implicit Data Type Conversion Between NCHAR and Other Data Types
	7.2.3 Exception Handling for Data Loss During Data Type Conversion
	7.2.4 Rules for Implicit Data Type Conversion
	7.2.5 SQL Functions for Unicode Data Types
	7.2.6 Other SQL Functions
	7.2.7 Unicode String Literals
	7.2.8 NCHAR String Literal Replacement
	7.2.9 Using the UTL_FILE Package with NCHAR Data

	7.3 OCI Programming with Unicode
	7.3.1 OCIEnvNlsCreate() Function for Unicode Programming
	7.3.2 OCI Unicode Code Conversion
	7.3.2.1 Data Integrity
	7.3.2.2 OCI Performance Implications When Using Unicode
	7.3.2.3 OCI Unicode Data Expansion

	7.3.3 Setting UTF-8 to the NLS_LANG Character Set in OCI
	7.3.4 Binding and Defining SQL CHAR Data Types in OCI
	7.3.5 Binding and Defining SQL NCHAR Data Types in OCI
	7.3.6 Handling SQL NCHAR String Literals in OCI
	7.3.7 Binding and Defining CLOB and NCLOB Unicode Data in OCI

	7.4 Pro*C/C++ Programming with Unicode
	7.4.1 Pro*C/C++ Data Conversion in Unicode
	7.4.2 Using the VARCHAR Data Type in Pro*C/C++
	7.4.3 Using the NVARCHAR Data Type in Pro*C/C++
	7.4.4 Using the UVARCHAR Data Type in Pro*C/C++

	7.5 JDBC Programming with Unicode
	7.5.1 Binding and Defining Java Strings to SQL CHAR Data Types
	7.5.2 Binding and Defining Java Strings to SQL NCHAR Data Types
	7.5.2.1 New JDBC4.0 Methods for NCHAR Data Types

	7.5.3 Using the SQL NCHAR Data Types Without Changing the Code
	7.5.4 Using SQL NCHAR String Literals in JDBC
	7.5.5 Data Conversion in JDBC
	7.5.5.1 Data Conversion for the OCI Driver
	7.5.5.2 Data Conversion for Thin Drivers
	7.5.5.3 Data Conversion for the Server-Side Internal Driver

	7.5.6 Using oracle.sql.CHAR in Oracle Object Types
	7.5.6.1 oracle.sql.CHAR
	7.5.6.2 Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

	7.5.7 Restrictions on Accessing SQL CHAR Data with JDBC
	7.5.7.1 Character Integrity Issues in a Multibyte Database Environment

	7.6 ODBC and OLE DB Programming with Unicode
	7.6.1 Unicode-Enabled Drivers in ODBC and OLE DB
	7.6.2 OCI Dependency in Unicode
	7.6.3 ODBC and OLE DB Code Conversion in Unicode
	7.6.3.1 OLE DB Code Conversions

	7.6.4 ODBC Unicode Data Types
	7.6.5 OLE DB Unicode Data Types
	7.6.6 ADO Access

	7.7 XML Programming with Unicode
	7.7.1 Writing an XML File in Unicode with Java
	7.7.2 Reading an XML File in Unicode with Java
	7.7.3 Parsing an XML Stream in Unicode with Java

	8 Oracle Globalization Development Kit
	8.1 Overview of the Oracle Globalization Development Kit
	8.2 Designing a Global Internet Application
	8.2.1 Deploying a Monolingual Internet Application
	8.2.2 Deploying a Multilingual Internet Application

	8.3 Developing a Global Internet Application
	8.3.1 Locale Determination
	8.3.2 Locale Awareness
	8.3.3 Localizing the Content

	8.4 Getting Started with the Globalization Development Kit
	8.5 GDK Quick Start
	8.5.1 Modifying the HelloWorld Application

	8.6 GDK Application Framework for J2EE
	8.6.1 Making the GDK Framework Available to J2EE Applications
	8.6.2 Integrating Locale Sources into the GDK Framework
	8.6.3 Getting the User Locale From the GDK Framework
	8.6.4 Implementing Locale Awareness Using the GDK Localizer
	8.6.5 Defining the Supported Application Locales in the GDK
	8.6.6 Handling Non-ASCII Input and Output in the GDK Framework
	8.6.7 Managing Localized Content in the GDK
	8.6.7.1 Managing Localized Content in JSPs and Java Servlets
	8.6.7.2 Managing Localized Content in Static Files

	8.7 GDK Java API
	8.7.1 Oracle Locale Information in the GDK
	8.7.2 Oracle Locale Mapping in the GDK
	8.7.3 Oracle Character Set Conversion in the GDK
	8.7.4 Oracle Date, Number, and Monetary Formats in the GDK
	8.7.5 Oracle Binary and Linguistic Sorts in the GDK
	8.7.6 Oracle Language and Character Set Detection in the GDK
	8.7.7 Oracle Translated Locale and Time Zone Names in the GDK
	8.7.8 Using the GDK with E-Mail Programs

	8.8 The GDK Application Configuration File
	8.8.1 locale-charset-maps
	8.8.2 page-charset
	8.8.3 application-locales
	8.8.4 locale-determine-rule
	8.8.5 locale-parameter-name
	8.8.6 message-bundles
	8.8.7 url-rewrite-rule
	8.8.8 Example: GDK Application Configuration File

	8.9 GDK for Java Supplied Packages and Classes
	8.9.1 oracle.i18n.lcsd
	8.9.1.1 LCSScan
	8.9.1.1.1 Syntax of the LCSScan Command
	8.9.1.1.2 Examples of Using LCSScan

	8.9.2 oracle.i18n.net
	8.9.3 oracle.i18n.servlet
	8.9.4 oracle.i18n.text
	8.9.5 oracle.i18n.util

	8.10 GDK for PL/SQL Supplied Packages
	8.11 GDK Error Messages

	9 SQL and PL/SQL Programming in a Global Environment
	9.1 Locale-Dependent SQL Functions with Optional NLS Parameters
	9.1.1 Default Values for NLS Parameters in SQL Functions
	9.1.2 Specifying NLS Parameters in SQL Functions
	9.1.3 Unacceptable NLS Parameters in SQL Functions

	9.2 Other Locale-Dependent SQL Functions
	9.2.1 The CONVERT Function
	9.2.2 SQL Functions for Different Length Semantics
	9.2.3 LIKE Conditions for Different Length Semantics
	9.2.4 Character Set SQL Functions
	9.2.4.1 Converting from Character Set Number to Character Set Name
	9.2.4.2 Converting from Character Set Name to Character Set Number
	9.2.4.3 Returning the Length of an NCHAR Column

	9.2.5 The NLSSORT Function
	9.2.5.1 NLSSORT Syntax
	9.2.5.2 Comparing Strings in a WHERE Clause
	9.2.5.3 Controlling an ORDER BY Clause

	9.3 Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment
	9.3.1 SQL Date Format Masks
	9.3.2 Calculating Week Numbers
	9.3.3 SQL Numeric Format Masks
	9.3.4 Loading External BFILE Data into LOB Columns

	10 OCI Programming in a Global Environment
	10.1 Using the OCI NLS Functions
	10.2 Specifying Character Sets in OCI
	10.3 Getting Locale Information in OCI
	10.4 Mapping Locale Information Between Oracle and Other Standards
	10.5 Manipulating Strings in OCI
	10.6 Classifying Characters in OCI
	10.7 Converting Character Sets in OCI
	10.8 OCI Messaging Functions
	10.9 lmsgen Utility

	11 Character Set Migration
	11.1 Overview of Character Set Migration
	11.1.1 Data Truncation
	11.1.1.1 Additional Problems Caused by Data Truncation

	11.1.2 Character Set Conversion Issues
	11.1.2.1 Replacement Characters that Result from Using the Export and Import Utilities
	11.1.2.2 Invalid Data That Results from Setting the Client's NLS_LANG Parameter Incorrectly
	11.1.2.3 Conversion from Single-byte to Multibyte Character Set and Oracle Data Pump

	11.2 Changing the Database Character Set of an Existing Database
	11.2.1 Migrating Character Data Using the Database Migration Assistant for Unicode
	11.2.2 Migrating Character Data Using a Full Export and Import

	11.3 Repairing Database Character Set Metadata
	11.3.1 Example: Using CSREPAIR

	11.4 The Language and Character Set File Scanner
	11.4.1 Syntax of the LCSSCAN Command
	11.4.2 Examples: Using the LCSSCAN Command
	11.4.3 Getting Command-Line Help for the Language and Character Set File Scanner
	11.4.4 Supported Languages and Character Sets
	11.4.5 LCSSCAN Error Messages

	12 Customizing Locale Data
	12.1 Overview of the Oracle Locale Builder Utility
	12.1.1 Configuring Unicode Fonts for the Oracle Locale Builder
	12.1.2 The Oracle Locale Builder User Interface
	12.1.3 Oracle Locale Builder Pages and Dialog Boxes
	12.1.3.1 Existing Definitions Dialog Box
	12.1.3.2 Session Log Dialog Box
	12.1.3.3 Preview NLT Tab Page
	12.1.3.4 Open File Dialog Box

	12.2 Creating a New Language Definition with Oracle Locale Builder
	12.3 Creating a New Territory Definition with the Oracle Locale Builder
	12.4 Displaying a Code Chart with the Oracle Locale Builder
	12.5 Creating a New Character Set Definition with the Oracle Locale Builder
	12.5.1 Character Sets with User-Defined Characters
	12.5.2 Oracle Database Character Set Conversion Architecture
	12.5.3 Unicode Private Use Area
	12.5.4 User-Defined Character Cross-References Between Character Sets
	12.5.5 Guidelines for Creating a New Character Set from an Existing Character Set
	12.5.6 Example: Creating a New Character Set Definition with the Oracle Locale Builder

	12.6 Creating a New Linguistic Sort with the Oracle Locale Builder
	12.6.1 Changing the Sort Order for All Characters with the Same Diacritic
	12.6.2 Changing the Sort Order for One Character with a Diacritic

	12.7 Generating and Installing NLB Files
	12.8 Upgrading Custom NLB Files from Previous Releases of Oracle Database
	12.9 Deploying Custom NLB Files to Oracle Installations on the Same Platform
	12.10 Deploying Custom NLB Files to Oracle Installations on Another Platform
	12.11 Adding Custom Locale Definitions to Java Components with the GINSTALL Utility
	12.12 Customizing Calendars with the NLS Calendar Utility

	A Locale Data
	A.1 Languages
	A.2 Translated Messages
	A.3 Territories
	A.4 Character Sets
	A.4.1 Recommended Database Character Sets
	A.4.2 Other Character Sets
	A.4.3 Character Sets that Support the Euro Symbol
	A.4.4 Client-Only Character Sets
	A.4.5 Universal Character Sets
	A.4.6 Character Set Conversion Support
	A.4.7 Binary Subset-Superset Pairs

	A.5 Language and Character Set Detection Support
	A.6 Linguistic Collations
	A.7 Calendar Systems
	A.8 Time Zone Region Names
	A.9 Obsolete Locale Data
	A.9.1 Obsolete Linguistic Sorts
	A.9.2 Obsolete Territories
	A.9.3 Obsolete Languages
	A.9.4 Obsolete Character Sets and Replacement Character Sets
	A.9.5 Updates to the Oracle Database Language and Territory Definition Files

	A.10 Desupported Locale Data
	A.10.1 Desupported Linguistic Sorts
	A.10.2 AL24UTFFSS Character Set Desupported

	B Unicode Character Code Assignments
	B.1 Unicode Code Ranges
	B.2 UTF-16 Encoding
	B.3 UTF-8 Encoding

	C Collation Derivation and Determination Rules for SQL Operations
	C.1 Collation Derivation
	C.2 Collation Determination
	C.3 SQL Operations and Their Derivation- and Determination-relevant Arguments

	Glossary
	accent
	accent-insensitive linguistic sort
	AL16UTF16
	AL32UTF8
	ASCII
	base letter
	binary collation
	binary sorting
	byte semantics
	canonical equivalence
	case
	case conversion
	case-insensitive linguistic collation
	character
	character classification
	character code
	character encoding form
	character encoding scheme
	character repertoire
	character semantics
	character set
	character set migration
	character string
	client character set
	code point
	code unit
	collation
	data scanning
	database character set
	Database Migration Assistant for Unicode (DMU)
	diacritic
	EBCDIC
	encoded character set
	encoded value
	font
	globalization
	glyph
	ideograph
	ISO
	ISO 8859
	ISO 14651
	ISO/IEC 10646
	ISO currency
	ISO Latin1
	length semantics
	linguistic collation
	linguistic index
	linguistic sorting
	locale
	localization
	monolingual linguistic collation
	monolingual support
	multibyte
	multibyte character
	multibyte character string
	multibyte character encoding scheme
	multibyte fixed-width character encoding scheme
	multibyte varying-width character encoding scheme
	multilingual linguistic collation
	national character set
	NLB files
	NLS
	NLSRTL
	NLT files
	null string
	Oracle Locale Builder
	replacement character
	restricted multilingual support
	SQL CHAR data types
	SQL NCHAR data types
	script
	single byte
	single-byte character
	single-byte character string
	sort
	supplementary characters
	surrogate pairs
	syllabary
	UCS-2
	UCS-4
	Unicode Standard
	Unicode database
	Unicode code point
	Unicode data type
	unrestricted multilingual support
	UTFE
	UTF8
	wide character
	UTF-8
	UTF-16

	Index

