5.2.5 Analyze the Frequency of Cross-Tabulations
The ore.freq
function analyses the output of the ore.crosstab
function and automatically determines the techniques that are relevant to an ore.crosstab
result.
The techniques depend on the kind of cross-tabulation tables, which are the following:
-
2-way cross-tabulation tables
-
Various statistics that describe relationships between columns in the cross-tabulation
-
Chi-square tests, Cochran-Mantel-Haenzsel statistics, measures of association, strength of association, risk differences, odds ratio and relative risk for 2x2 tables, tests for trend
-
-
N-way cross-tabulation tables
-
N 2-way cross-tabulation tables
-
Statistics across and within strata
-
The ore.freq
function uses Oracle Database SQL functions when available.
The ore.freq
function returns an ore.frame
in all cases.
Before you use ore.freq
, you must calculate crosstabs, as shown in the following example.
For details about the function arguments, call help(ore.freq)
.
Example 5-41 Using the ore.freq Function
This example pushes the iris
data set to the database and gets the ore.frame
object iris_of
. The example gets a crosstab and calls the ore.freq
function on it.
IRIS <- ore.push(iris) ct <- ore.crosstab(Species ~ Petal.Length + Sepal.Length, data = IRIS) ore.freq(ct)
Listing for This Example
R> IRIS <- ore.push(iris)
R> ct <- ore.crosstab(Species ~ Petal.Length + Sepal.Length, data = IRIS)
R> ore.freq(ct)
$`Species~Petal.Length`
METHOD FREQ DF PVALUE DESCR GROUP
1 PCHISQ 181.4667 84 3.921603e-09 Pearson Chi-Square 1
$`Species~Sepal.Length`
METHOD FREQ DF PVALUE DESCR GROUP
1 PCHISQ 102.6 68 0.004270601 Pearson Chi-Square 1
Parent topic: Explore Data