
Oracle® Machine Learning for R
Use Cases

Release 2.0
G29016-02
April 2025

Oracle Machine Learning for R Use Cases, Release 2.0

G29016-02

Copyright © 2025, 2025, Oracle and/or its affiliates.

Primary Author: Sadhana Ashokkumar

Contributors: Mark Hornick, Sherry Lamonica, Qin Wang, Yu Xiang

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Overview

1.1 Machine Learning Overview 1-1

1.1.1 What Is Machine Learning? 1-1

1.1.2 Benefits of Machine Learning 1-2

1.1.3 Define Your Business Problem 1-3

1.1.4 What Do You Want to Do? 1-3

1.1.5 Discover More Through Interfaces 1-4

1.2 Machine Learning Process 1-5

1.2.1 Workflow 1-6

1.2.2 Define Business Goals 1-7

1.2.3 Understand Data 1-8

1.2.4 Prepare Data 1-8

1.2.5 Develop Models 1-9

1.2.6 Evaluate 1-10

1.2.7 Deploy 1-10

1.3 Machine Learning Techniques and Algorithms 1-11

1.3.1 What is a Machine Learning Algorithm 1-11

1.3.2 Supervised Learning 1-11

1.3.3 Unsupervised Learning 1-12

2 Get Started

2.1 Access OML Notebooks 2-1

2.1.1 Access Oracle Machine Learning User Interface 2-1

2.1.2 Create a Notebook from the Example Templates 2-2

2.1.3 Edit Your Notebook Classic 2-3

2.2 Access Autonomous Database 2-5

2.2.1 Provision an Autonomous Database 2-6

2.2.2 Create and Update User Accounts for Oracle Machine Learning Components on
Autonomous Database 2-6

2.2.3 Create User 2-6

2.2.4 Add Existing Database User Account to Oracle Machine Learning Components 2-8

iii

3 Use Cases

3.1 Classification Use Case 3-1

3.1.1 Load Data 3-2

3.1.2 Explore Data 3-3

3.1.3 Build Model 3-5

3.1.4 Evaluate 3-7

3.1.5 Deploy the Model 3-9

3.2 Clustering Use Case 3-11

3.2.1 Load Data 3-12

3.2.2 Explore Data 3-14

3.2.3 Build Model 3-18

3.2.4 Deploy the Model 3-21

4 Reference

4.1 About Machine Learning Classes and Algorithms 4-1

4.2 About Model Settings 4-3

4.3 Shared Settings 4-3

Index

iv

1
Overview

• Machine Learning Overview
Machine learning is a subset of Artificial Intelligence (AI) that focuses on building systems
that learn or improve performance based on the data they consume.

• Machine Learning Process
The lifecycle of a machine learning project is divided into six phases. The process begins
by defining a business problem and restating the business problem in terms of a machine
learning objective. The end goal of a machine learning process is to produce accurate
results for solving your business problem.

• Machine Learning Techniques and Algorithms
Machine learning problems are categorized into mining techniques. Each machine learning
function specifies a class of problems that can be modeled and solved. An algorithm is a
mathematical procedure for solving a specific kind of problem.

1.1 Machine Learning Overview
Machine learning is a subset of Artificial Intelligence (AI) that focuses on building systems that
learn or improve performance based on the data they consume.

• What Is Machine Learning?
Machine learning is a technique that discovers previously unknown relationships in data.

• Benefits of Machine Learning
Machine learning is a powerful technology that can help you find patterns and relationships
within your data.

• Define Your Business Problem
Enterprises face problems such as classifying documents, predicting the financial
outcomes, detecting hidden patterns and anomalies, and so on. Machine learning can help
solve such problems provided that you have clear understanding of the business problem
with enough data and learn to ask the right questions to obtain meaningful results.

• What Do You Want to Do?
Multiple machine learning techniques, also referred to as "mining function", are available
through Oracle Database and Oracle Autonomous Database. Depending on your business
problem, you can identify the appropriate mining function, or combination of mining
functions, and select the algorithm or algorithms that may best support the solution.

• Discover More Through Interfaces
Oracle supports programming language interfaces for SQL, R, and Python, and no-code
user interfaces such as OML AutoML UI and Oracle Data Miner, and REST model
management and deployment through OML Services.

1.1.1 What Is Machine Learning?
Machine learning is a technique that discovers previously unknown relationships in data.

1-1

Machine learning and AI are often discussed together. An important distinction is that although
all machine learning is AI, not all AI is machine learning. Machine learning automatically
searches potentially large stores of data to discover patterns and trends that go beyond simple
statistical analysis. Machine learning uses sophisticated algorithms that identify patterns in
data creating models. Those models can be used to make predictions and forecasts, and
categorize data.

The key features of machine learning are:

• Automatic discovery of patterns

• Prediction of likely outcomes

• Creation of actionable information

• Ability to analyze potentially large volumes of data

Machine learning can answer questions that cannot be addressed through traditional deductive
query and reporting techniques.

1.1.2 Benefits of Machine Learning
Machine learning is a powerful technology that can help you find patterns and relationships
within your data.

Find trends and patterns - Machine learning discovers hidden information in your data. You
might already be aware of important patterns as a result of working with your data over time.
Machine learning can confirm or qualify such empirical observations in addition to finding new
patterns that are not immediately distinguishable through simple observation. Machine learning
can discover predictive relationships that are not causal relationships. For example, machine
learning might determine that males with incomes between $50,000 and $65,000 who
subscribe to certain magazines are likely to buy a given product. You can use this information
to help you develop a marketing strategy. Machine learning can handle large volume of data
and can be used in financial analysis. Some of the benefits include stock price predictions
(algorithmic trading) and portfolio management.

Make data driven decisions - Many companies have big data and extracting meaningful
information from that data is important in making data driven business decisions. By leveraging
machine learning algorithms, organizations are able to transform data into knowledge and
actionable intelligence. With the changing demands, companies are able to make better
decisions faster by using machine learning techniques.

Recommend products - Machine learning results can also be used to influence customer
decisions by promoting or recommending relevant and useful products based on behavior
patterns of customers online or their response to a marketing campaign.

Detect fraud, anomalies, and security risks - The Financial Services sector has benefited from
machine learning algorithms and techniques by discovering unusual patterns or fraud and
responding to new fraud behaviors much more quickly. Today companies and governments are
conducting business and sharing information online. In such cases, network security is a
concern. Machine learning can help in detecting anomalous behavior and automatically take
corrective actions.

Retail analysis - Machine learning helps to analyze customer purchase patterns to provide
promotional offers for target customers. This service ensures superior customer experience
and improves customer loyalty.

Healthcare - Machine learning in medical use is becoming common, helping patients and
doctors. Advanced machine learning techniques are used in radiology to make an intelligent
decision by reviewing images such as radiographs, CT, MRI, PET images, and radiology

Chapter 1
Machine Learning Overview

1-2

reports. It is reported that machine learning-based automatic detection and diagnosis are at
par or better than the diagnosis of an actual radiologist. Some of the machine learning
applications are trained to detect breast cancer. Another common use of machine learning in
the medical field is that of automated billing. Some applications using machine learning can
also point out patient's risk for various conditions such as stroke, diabetes, coronary artery
diseases, and kidney failures and recommend medication or procedure that may be necessary.

To summarize, machine learning can:

• easily identify trends and patterns

• simplify product marketing and sales forecast

• facilitate early anomaly detection

• minimize manual intervention by "learning"

• handle multidimensional data

1.1.3 Define Your Business Problem
Enterprises face problems such as classifying documents, predicting the financial outcomes,
detecting hidden patterns and anomalies, and so on. Machine learning can help solve such
problems provided that you have clear understanding of the business problem with enough
data and learn to ask the right questions to obtain meaningful results.

You require skills in preparing data, applying ML techniques, and evaluating results. The
patterns you find through machine learning may be very different depending on how you
formulate the problem. For example, rather than trying to learn how to "improve the response
to a direct mail campaign," you might try to find the characteristics of people who have
responded to your campaigns in the past. You can then classify if a given profile of a prospect
would respond to a direct email campaign.

Many forms of machine learning are predictive. For example, a model can predict income level
based on education and other demographic factors. Predictions have an associated probability
(How likely is this prediction to be true?). Prediction probabilities are also known as confidence
(How confident can I be of this prediction?). Some forms of predictive machine learning
generate rules, which are conditions that imply a given outcome. For example, a rule can
specify that a person who has a bachelor's degree and lives in a certain neighborhood is likely
to have an income greater than the regional average. Rules have an associated support (What
percentage of the population satisfies the rule?).

Other forms of machine learning identify groupings in the data. For example, a model might
identify the segment of the population that has an income within a specified range, that has a
good driving record, and that leases a new car on a yearly basis.

1.1.4 What Do You Want to Do?
Multiple machine learning techniques, also referred to as "mining function", are available
through Oracle Database and Oracle Autonomous Database. Depending on your business
problem, you can identify the appropriate mining function, or combination of mining functions,
and select the algorithm or algorithms that may best support the solution.

For some mining functions, you can choose from among multiple algorithms. For specific
problems, one technique or algorithm may be a better fit than the other or more than one
algorithm can be used to solve the problem.

The following diagram provides a basic idea on how to select machine learning techniques that
are available across Oracle Database and Oracle Autonomous Database.

Chapter 1
Machine Learning Overview

1-3

Figure 1-1 Machine Learning Techniques

Machine Learning Techniques

What do
you want

to do?

Identify frequently
occurring pa�erns

and rules

Predict numeric
values

Determine important
 a�ributes

Identify unusual
cases

Predict likely
categories

Discover groups

Derive new
features

Classification

Time Series

Regression

A�ribute
Importance

Forecast
sequential data

Clustering

Feature
Extraction

Anomaly
Detection

Row ImportanceAssociation

Identify the most
influential rows

OML provides machine learning capabilities within Oracle Database by offering a broad set of
in-database algorithms to perform a variety of machine learning techniques such as
Classification, Regression, Clustering, Feature Extraction, Anomaly Detection, Association
(Market Basket Analysis), and Time Series. Others include Attribute Importance, Row
Importance, and Ranking. OML uses built-in features of Oracle Database to maximize
scalability, improved memory, and performance. OML is also integrated with open source
languages such as Python and R. Through the use of open source packages from R and
Python, users can extend this set of techniques and algorithms in combination with embedded
execution from OML4Py and OML4R.

1.1.5 Discover More Through Interfaces
Oracle supports programming language interfaces for SQL, R, and Python, and no-code user
interfaces such as OML AutoML UI and Oracle Data Miner, and REST model management and
deployment through OML Services.

Oracle Machine Learning Notebooks (OML Notebooks) is based on Apache Zeppelin
technology enabling you to perform machine learning in Oracle Autonomous Database
(Autonomous Data Warehouse (ADW), Autonomous Transactional Database (ATP), and
Autonomous JSON Database (AJD)). OML Notebooks helps users explore, visualize, and
prepare data, and develop and document analytical methodologies.

AutoML User Interface (AutoML UI) is an Oracle Machine Learning interface that provides you
no-code automated machine learning. When you create and run an experiment in AutoML UI, it
automatically performs algorithm and feature selection, as well as model tuning and selection,

Chapter 1
Machine Learning Overview

1-4

thereby enhancing productivity as well as model accuracy and performance. Business users
without extensive data science background can use AutoML UI to create and deploy machine
learning models.

Oracle Machine Learning Services (OML Services) extends OML functionality to support model
deployment and model lifecycle management for both in-database OML models and third-party
Open Neural Networks Exchange (ONNX) format machine learning models through REST
APIs. The REST API for Oracle Machine Learning Services provides REST API endpoints
hosted on Oracle Autonomous Database. These endpoints enable you to store machine
learning models along with its metadata, and create scoring endpoints for the model.

Oracle Machine Learning for Python (OML4Py) enables you to run Python commands and
scripts for data transformations and for statistical, machine learning, and graphical analysis on
data stored in or accessible through Oracle Autonomous Database service using a Python API.
OML4Py is a Python module that enables Python users to manipulate data in database tables
and views using Python syntax. OML4Py functions and methods transparently translate a
select set of Python functions into SQL for in-database execution. OML4Py users can use
Automated Machine Learning (AutoML) to enhance user productivity and machine learning
results through automated algorithm and feature selection, as well as model tuning and
selection. Users can use Embedded Python Execution to run user-defined Python functions in
Python engines spawned by the Autonomous Database environment.

Oracle Machine Learning for R (OML4R) provides a database-centric environment for end-to-
end analytical processes in R, with immediate deployment of user-defined R functions to
production environments. OML4R is a set of R packages and Oracle Database features that
enable an R user to operate on database-resident data without using SQL and to run user-
defined R functions, also referred to as "scripts",in one or more database-controlled R engines.
OML4R is included with Oracle Database and Oracle Database Cloud Service.

Oracle Machine Learning for SQL (OML4SQL) provides SQL access to powerful, in-database
machine learning algorithms. You can use OML4SQL to build and deploy predictive and
descriptive machine learning models that can add intelligent capabilities to applications and
dashboards. OML4SQL is included with Oracle Database, Oracle Database Cloud Service,
and Oracle Autonomous Database.

Oracle Data Miner (ODMr) is an extension to Oracle SQL Developer. Oracle Data Miner is a
graphical user interface to discover hidden patterns, relationships, and insights in data. ODMr
provides a drag-and-drop workflow editor to define and capture the steps that users take to
explore and prepare data and apply machine learning technology.

1.2 Machine Learning Process
The lifecycle of a machine learning project is divided into six phases. The process begins by
defining a business problem and restating the business problem in terms of a machine learning
objective. The end goal of a machine learning process is to produce accurate results for
solving your business problem.

• Workflow
The machine learning process workflow illustration is based on the CRISP-DM
methodology. Each stage in the workflow is illustrated with points that summarize the key
tasks. The CRISP-DM methodology is the most commonly used methodology for machine
learning.

• Define Business Goals
The first phase of machine learning process is to define business objectives. This initial
phase of a project focuses on understanding the project objectives and requirements.

Chapter 1
Machine Learning Process

1-5

• Understand Data
The data understanding phase involves data collection and exploration which includes
loading the data and analyzing the data for your business problem.

• Prepare Data
The preparation phase involves finalizing the data and covers all the tasks involved in
making the data in a format that you can use to build the model.

• Develop Models
In this phase, you select and apply various modeling techniques and tune the algorithm
parameters, called hyperparameters, to desired values.

• Evaluate
At this stage of the project, it is time to evaluate how well the model satisfies the originally-
stated business goal.

• Deploy
Deployment is the use of machine learning within a target environment. In the deployment
phase, one can derive data driven insights and actionable information.

1.2.1 Workflow
The machine learning process workflow illustration is based on the CRISP-DM methodology.
Each stage in the workflow is illustrated with points that summarize the key tasks. The CRISP-
DM methodology is the most commonly used methodology for machine learning.

The following are the phases of the machine learning process:

• Define business goals

• Understand data

• Prepare data

• Develop models

• Evaluate

• Deploy

Each of these phases are described separately. The following figure illustrates machine
learning process workflow.

Chapter 1
Machine Learning Process

1-6

Figure 1-2 Machine Learning Process Workflow

• Plan enterprise deployment.
• Integrate models for business
 needs.
• Monitor and maintain models.
• Report on model effectiveness

Deploy

Evaluate

• Review business objectives.
• Assess results against success
 criteria.
• Determine next steps.

Define Business Goals

• Specify objectives.
• Determine ML goals.
• Define success criteria.
• Produce project plan.

Understand Data

• Access and collect data.
• Explore data.
• Assess data quality.

Prepare Data

• Clean, join and select data.
• Transform data.
• Engineer new features.

Develop Models

• Explore different algorithms.
• Build, tune and evaluate
 models

Data

Related Topics

• https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-
ensure-a-good-outcome

• https://www.sv-europe.com/crisp-dm-methodology/

1.2.2 Define Business Goals
The first phase of machine learning process is to define business objectives. This initial phase
of a project focuses on understanding the project objectives and requirements.

Once you have specified the problem from a business perspective, you can formulate it as a
machine learning problem and develop a preliminary implementation plan. Identify success
criteria to determine if the machine learning results meet the business goals defined. For
example, your business problem might be: "How can I sell more of my product to customers?"
You might translate this into a machine learning problem such as: "Which customers are most
likely to purchase the product?" A model that predicts who is most likely to purchase the

Chapter 1
Machine Learning Process

1-7

https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome
https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome
https://www.sv-europe.com/crisp-dm-methodology/

product is typically built on data that describes the customers who have purchased the product
in the past.

To summarize, in this phase, you will:

• Specify objectives

• Determine machine learning goals

• Define success criteria

• Produce project plan

1.2.3 Understand Data
The data understanding phase involves data collection and exploration which includes loading
the data and analyzing the data for your business problem.

Assess the various data sources and formats. Load data into appropriate data management
tools, such as Oracle Database. Explore relationships in data so it can be properly integrated.
Query and visualize the data to address specific data mining questions such as distribution of
attributes, relationship between pairs or small number of attributes, and perform simple
statistical analysis. As you take a closer look at the data, you can determine how well it can be
used to addresses the business problem. You can then decide to remove some of the data or
add additional data. This is also the time to identify data quality problems such as:

• Is the data complete?

• Are there missing values in the data?

• What types of errors exist in the data and how can they be corrected?

To summarize, in this phase, you will:

• Access and collect data

• Explore data

• Assess data quality

1.2.4 Prepare Data
The preparation phase involves finalizing the data and covers all the tasks involved in making
the data in a format that you can use to build the model.

Data preparation tasks are likely to be performed multiple times, iteratively, and not in any
prescribed order. Tasks can include column (attributes) selection as well as selection of rows in
a table. You may create views to join data or materialize data as required, especially if data is
collected from various sources. To cleanse the data, look for invalid values, foreign key values
that don't exist in other tables, and missing and outlier values. To refine the data, you can apply
transformations such as aggregations, normalization, generalization, and attribute
constructions needed to address the machine learning problem. For example, you can
transform a DATE_OF_BIRTH column to AGE; you can insert the median income in cases where
the INCOME column is null; you can filter out rows representing outliers in the data or filter
columns that have too many missing or identical values.

Additionally you can add new computed attributes in an effort to tease information closer to the
surface of the data. This process is referred as Feature Engineering. For example, rather than
using the purchase amount, you can create a new attribute: "Number of Times Purchase
Amount Exceeds $500 in a 12 month time period." Customers who frequently make large
purchases can also be related to customers who respond or don't respond to an offer.

Chapter 1
Machine Learning Process

1-8

Thoughtful data preparation and feature engineering that capture domain knowledge can
significantly improve the patterns discovered through machine learning. Enabling the data
professional to perform data assembly, data preparation, data transformations, and feature
engineering inside the Oracle Database is a significant distinction for Oracle.

Note:

Oracle Machine Learning supports Automatic Data Preparation (ADP), which greatly
simplifies the process of data preparation.

To summarize, in this phase, you will:

• Clean, join, and select data

• Transform data

• Engineer new features

Related Topics

• Oracle Machine Learning for SQL User’s Guide

1.2.5 Develop Models
In this phase, you select and apply various modeling techniques and tune the algorithm
parameters, called hyperparameters, to desired values.

If the algorithm requires specific data transformations, then you need to step back to the
previous phase to apply them to the data. For example, some algorithms allow only numeric
columns such that string categorical data must be "exploded" using one-hot encoding prior to
modeling. In preliminary model building, it often makes sense to start with a sample of the data
since the full data set might contain millions or billions of rows. Getting a feel for how a given
algorithm performs on a subset of data can help identify data quality issues and algorithm
setting issues sooner in the process reducing time-to-initial-results and compute costs. For
supervised learning problem, data is typically split into train (build) and test data sets using an
80-20% or 60-40% distribution. After splitting the data, build the model with the desired model
settings. Use default settings or customize by changing the model setting values. Settings can
be specified through OML's PL/SQL, R and Python APIs. Evaluate model quality through
metrics appropriate for the technique. For example, use a confusion matrix, precision, and
recall for classification models; RMSE for regression models; cluster similarity metrics for
clustering models and so on.

Automated Machine Learning (AutoML) features may also be employed to streamline the
iterative modeling process, including algorithm selection, attribute (feature) selection, and
model tuning and selection.

To summarize, in this phase, you will:

• Explore different algorithms

• Build, evaluate, and tune models

Related Topics

• Oracle Machine Learning for SQL User’s Guide

Chapter 1
Machine Learning Process

1-9

1.2.6 Evaluate
At this stage of the project, it is time to evaluate how well the model satisfies the originally-
stated business goal.

During this stage, you will determine how well the model meets your business objectives and
success criteria. If the model is supposed to predict customers who are likely to purchase a
product, then does it sufficiently differentiate between the two classes? Is there sufficient lift?
Are the trade-offs shown in the confusion matrix acceptable? Can the model be improved by
adding text data? Should transactional data such as purchases (market-basket data) be
included? Should costs associated with false positives or false negatives be incorporated into
the model?

It is useful to perform a thorough review of the process and determine if important tasks and
steps are not overlooked. This step acts as a quality check based on which you can determine
the next steps such as deploying the project or initiate further iterations, or test the project in a
pre-production environment if the constraints permit.

To summarize, in this phase, you will:

• Review business objectives

• Assess results against success criteria

• Determine next steps

1.2.7 Deploy
Deployment is the use of machine learning within a target environment. In the deployment
phase, one can derive data driven insights and actionable information.

Deployment can involve scoring (applying a model to new data), extracting model details (for
example the rules of a decision tree), or integrating machine learning models within
applications, data warehouse infrastructure, or query and reporting tools.

Because Oracle Machine Learning builds and applies machine learning models inside Oracle
Database, the results are immediately available. Reporting tools and dashboards can easily
display the results of machine learning. Additionally, machine learning supports scoring single
cases or records at a time with dynamic, batch, or real-time scoring. Data can be scored and
the results returned within a single database transaction. For example, a sales representative
can run a model that predicts the likelihood of fraud within the context of an online sales
transaction.

To summarize, in this phase, you will:

• Plan enterprise deployment

• Integrate models with application for business needs

• Monitor, refresh, retire, and archive models

• Report on model effectiveness

Related Topics

• Oracle Machine Learning for SQL User’s Guide

Chapter 1
Machine Learning Process

1-10

1.3 Machine Learning Techniques and Algorithms
Machine learning problems are categorized into mining techniques. Each machine learning
function specifies a class of problems that can be modeled and solved. An algorithm is a
mathematical procedure for solving a specific kind of problem.

• What is a Machine Learning Algorithm
An algorithm is a mathematical procedure for solving a specific kind of problem. For some
machine learning techniques, you can choose among several algorithms.

• Supervised Learning
Supervised learning is also known as directed learning. The learning process is directed by
a previously known dependent attribute or target.

• Unsupervised Learning
Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

1.3.1 What is a Machine Learning Algorithm
An algorithm is a mathematical procedure for solving a specific kind of problem. For some
machine learning techniques, you can choose among several algorithms.

Each algorithm produces a specific type of model, with different characteristics. Some machine
learning problems can best be solved by using more than one algorithm in combination. For
example, you might first use a feature extraction model to create an optimized set of
predictors, then a classification model to make a prediction on the results.

1.3.2 Supervised Learning
Supervised learning is also known as directed learning. The learning process is directed by a
previously known dependent attribute or target.

Supervised machine learning attempts to explain the behavior of the target as a function of a
set of independent attributes or predictors. Supervised learning generally results in predictive
models.

The building of a supervised model involves training, a process whereby the software analyzes
many cases where the target value is already known. In the training process, the model
"learns" the patterns in the data that enable making predictions. For example, a model that
seeks to identify the customers who are likely to respond to a promotion must be trained by
analyzing the characteristics of many customers who are known to have responded or not
responded to a promotion in the past.

Oracle Machine Learning supports the following supervised machine learning functions:

Chapter 1
Machine Learning Techniques and Algorithms

1-11

Table 1-1 Supervised Machine Learning Functions

Function Description Sample Problem Supported Algorithms

Feature Selection or
Attribute Importance

Identifies the attributes
that are most important
in predicting a target
attribute

Given customer
response to an affinity
card program, find the
most significant
predictors

• cur Matrix
Decomposition

• Expectation
Maximization

• Minimum
Description Length

Classification Assigns items to discrete
classes and predicts the
class to which an item
belongs

Given demographic data
about a set of
customers, predict
customer response to an
affinity card program

• Decision Tree
• Explicit Semantic

Analysis
• XGBoost
• Generalized Linear

Model
• Naive Bayes
• Neural Network
• Random Forest
• Support Vector

Machine

Regression Approximates and
forecasts continuous
values

Given demographic and
purchasing data about a
set of customers, predict
customers' age

• XGBoost
• Generalized Linear

Model
• Neural Network
• Support Vector

Machine

Ranking Predicts the probability
of one item over other
items

Recommend products to
online customers based
on their browsing history

XGBoost

Time Series Forecasts target value
based on known history
of target values taken at
equally spaced points in
time

Predict the length of the
ocean waves, address
tactical issues such as
projecting costs,
inventory requirements
and customer
satisfaction, and so on.

Exponential Smoothing

1.3.3 Unsupervised Learning
Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in building
the model.

Unsupervised learning can be used for descriptive purposes. In unsupervised learning, the
goal is pattern detection. It can also be used to make predictions.

Oracle Machine Learning supports the following unsupervised machine learning functions:

Chapter 1
Machine Learning Techniques and Algorithms

1-12

Table 1-2 Unsupervised Machine Learning Functions

Function Description Sample Problem Supported Algorithms

Anomaly Detection Identifies rows (cases,
examples) that do not
satisfy the
characteristics of
"normal" data

Given demographic data
about a set of
customers, identify
which customer
purchasing behaviors
are unusual in the
dataset, which may be
indicative of fraud.

• One-Class SVM
• Multivariate State

Estimation
Technique -
Sequential
Probability Ratio
Test

Association Finds items that tend to
co-occur in the data and
specifies the rules that
govern their co-
occurrence

Find the items that tend
to be purchased together
and specify their
relationship

Apriori

Clustering Finds natural groupings
in the data

Segment demographic
data into clusters and
rank the probability that
an individual belongs to
a given cluster

• Expectation
Maximization

• k-Means
• O-Cluster

Feature Extraction Creates new attributes
(features) using linear
combinations of the
original attributes

Given demographic data
about a set of
customers, transform the
original attributes into
fewer new attributes.

• Explicit Semantic
Analysis

• Non-Negative Matrix
Factorization

• PCA scoring
• Singular Value

Decomposition

Row Importance Row importance
technique is used in
dimensionality reduction
of large data sets. Row
importance identifies the
most influential rows of
the data set.

Given a data set, select
rows that meet a
minimum importance
value prior to model
building.

cur Matrix
Decomposition

Chapter 1
Machine Learning Techniques and Algorithms

1-13

2
Get Started

• Access OML Notebooks
To perform Oracle Machine Learning tasks, you can access Oracle Machine Learning
Notebooks from Autonomous Database

• Access Autonomous Database
Oracle Autonomous Database is a family of self-driving, self-securing, and self-repairing
cloud services. You can sign up for an Oracle Cloud Free Tier account and create a
database instance.

2.1 Access OML Notebooks
To perform Oracle Machine Learning tasks, you can access Oracle Machine Learning
Notebooks from Autonomous Database

• Access Oracle Machine Learning User Interface
You can access Oracle Machine Learning User Interface from Autonomous Database.

• Create a Notebook from the Example Templates
Using the Oracle Machine Learning Example Templates, you can create a notebook from
the available templates.

• Edit Your Notebook Classic
Upon creating an OML Notebook Classic, it opens automatically, presenting you with a
single paragraph using the default %sql interpreter. You can change the interpreter by
explicitly specifying one of %script, %python, %sql , %r , %md or %conda.

2.1.1 Access Oracle Machine Learning User Interface
You can access Oracle Machine Learning User Interface from Autonomous Database.

To access Oracle Machine Learning User Interface (UI) from the Autonomous Database:

2-1

1. Select your Autonomous Database instance and on the Autonomous Database details
page click Database Actions.

2. On the Database Actions page, go to the Development section and click Oracle Machine
Learning. The Oracle Machine Learning sign in page opens.

3. On the Oracle Machine Learning sign in page, enter your username and password.

4. Click Sign In.

This opens the Oracle Machine Learning user application.

2.1.2 Create a Notebook from the Example Templates
Using the Oracle Machine Learning Example Templates, you can create a notebook from the
available templates.

To create a notebook:

1. On the Example Templates page, select the template based on which you want to create a
notebook.

2. Click New Notebook.

The Create Notebook dialog box opens.

3. In the Create Notebook dialog, the name of the selected template appears. In the Name
field, you can change the notebook name.

Chapter 2
Access OML Notebooks

2-2

4. In the Comment field, if any comment is available for the template, then it is displayed.
You can edit the comment.

5. In the Project field, click the edit icon .

6. Select the project in which you want to save the notebook.

7. In the Connection field, the default connection is selected.

8. Click OK.

The notebook is created and is available on the Notebooks page.

2.1.3 Edit Your Notebook Classic
Upon creating an OML Notebook Classic, it opens automatically, presenting you with a single
paragraph using the default %sql interpreter. You can change the interpreter by explicitly
specifying one of %script, %python, %sql , %r , %md or %conda.

Set the context with a project with which your notebook is associated.

You can edit an existing Notebook Classic in your project. To edit an existing Notebook Classic:

1. On Oracle Machine Learning UI home page, select the project in which your notebook is
available.

2. Go to the Oracle Machine Learning UI navigator, and select Notebooks Classic. All
notebooks that are available in the project are listed.

3. Click the notebook that you want to open and edit.

The selected notebook opens in edit mode.

4. In the edit mode, you can use the Oracle Machine Learning Notebooks Classic toolbar
options to run code in paragraphs, for configuration settings, and display options.

Chapter 2
Access OML Notebooks

2-3

Figure 2-1 Notebook toolbar

You can perform the following tasks:

• Write code to fetch data

• Click to run one or all paragraphs in the notebook.

• Click to hide all codes from all the paragraphs in the notebook. Click it again to
display the codes.

• Click to hide all outputs from all the paragraphs in the notebook. Click it again
to view the outputs.

• Click to remove all outputs from all the paragraphs in the notebook. To view
the output, click the run icon again.

• Click to delete all the paragraphs in the notebook.

• Click to export the notebook.

• Click to search any information in the codes present in the notebook.

• Click to view the list of keyboard shortcuts.

• Click to set the order for interpreter bindings for the notebook.

Chapter 2
Access OML Notebooks

2-4

• Click to select one of the three notebook display options.

– Click default to view the codes, output, and metadata in all paragraphs in the
notebook.

– Click Simple to view only the code and output in all paragraphs in the notebook. In
this view, the notebook toolbar and all edit options are hidden. You must hover
your mouse to view the edit options.

– Click Report to view only the output in all paragraphs in the notebook.

• Click to access paragraph specific edit options such as clear output, remove
paragraph, adjust width, font size, run all paragraphs above or below the selected
paragraph and so on.

• Add dynamic forms such as the Text Input form, Select form, Check box form for easy
selection of inputs and easy filtering of data in your notebook. Oracle Machine
Learning supports the following Apache Zeppelin dynamic forms:

– Text Input form — Allows you to create a simple form for text input.

– Select form — Allows you to create a form containing a range of values that the
user can select.

– Check Box form — Allows you to insert check boxes for multiple selection of
inputs.

Note:

The Apache Zeppelin dynamic forms are supported only on SQL interpreter
notebooks.

5. Once you have finished editing the notebook, click Back.

This takes you back to the Notebooks Classic page.

2.2 Access Autonomous Database
Oracle Autonomous Database is a family of self-driving, self-securing, and self-repairing cloud
services. You can sign up for an Oracle Cloud Free Tier account and create a database
instance.

• Provision an Autonomous Database
A LiveLabs workshop (a set of labs) that teaches you to manage and monitor Autonomous
Database (ADB) is available. A part of the workshop aims to provision an Autonomous
Database instance on Oracle Cloud.

• Create and Update User Accounts for Oracle Machine Learning Components on
Autonomous Database
An administrator can add an existing database user account to use with Oracle Machine
Learning components or create a new user account and user credentials with the Oracle
Machine Learning User Management interface.

Chapter 2
Access Autonomous Database

2-5

• Create User
An administrator creates new user accounts and user credentials for Oracle Machine
Learning in Database Actions.

• Add Existing Database User Account to Oracle Machine Learning Components
As the ADMIN user you can add an existing database user account to provide access to
Oracle Machine Learning components.

2.2.1 Provision an Autonomous Database
A LiveLabs workshop (a set of labs) that teaches you to manage and monitor Autonomous
Database (ADB) is available. A part of the workshop aims to provision an Autonomous
Database instance on Oracle Cloud.

Manage and Monitor Autonomous Database

2.2.2 Create and Update User Accounts for Oracle Machine Learning
Components on Autonomous Database

An administrator can add an existing database user account to use with Oracle Machine
Learning components or create a new user account and user credentials with the Oracle
Machine Learning User Management interface.

2.2.3 Create User
An administrator creates new user accounts and user credentials for Oracle Machine Learning
in Database Actions.

To create a user account:

1. On the Autonomous Databases page, under the Display Name column, select an
Autonomous Database.

2. On the Autonomous Database Details page, select Database Actions and click Database
Users.

3. On the Database Users page, in the All Users area click + Create User.

4. To create a new user enter a user name, a password, and enter the password again to
confirm the password.

5. Select the options you want for the user and select OML to enable Oracle Machine
Learning for the user.

Chapter 2
Access Autonomous Database

2-6

https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=553

6. Click Create User.

This creates a new database user and grants the required privileges to use Oracle Machine
Learning.

Note:

With a new database user, an administrator needs to issue grant commands on the
database to grant table access to the new user for the tables associated with the
user's Oracle Machine Learning notebooks.

Chapter 2
Access Autonomous Database

2-7

2.2.4 Add Existing Database User Account to Oracle Machine Learning
Components

As the ADMIN user you can add an existing database user account to provide access to
Oracle Machine Learning components.

To add an existing database user account:

1. On the Autonomous Databases page, under the Display Name column, select an
Autonomous Database.

2. On the Autonomous Database Details page, select Database Actions and click Database
Users.

3. In the All Users, search for the user of interest or select the user. For example, search the
user OML_ANALYST.

4. In the user's card, click and select Edit

5. In the Edit User panel, select OML.

For example:

Chapter 2
Access Autonomous Database

2-8

6. Click Apply Changes.

This grants the required privileges to use the Oracle Machine Learning application. In Oracle
Machine Learning this user can then access any tables the user has privileges to access in the
database.

Chapter 2
Access Autonomous Database

2-9

3
Use Cases

• Classification Use Case
A retail store has information about its customers' behavior and the purchases they make.
Now with the available data, they want you to analyze and identify the type of customers
most likely to be positive responders to an Affinity Card loyalty program. High Affinity Card
responders are defined as those customers who, when given a loyalty or affinity card,
hyper-respond, that is, increase purchases more than the Affinity Card program's offered
discount. In our data set, a responder is designated with value 1, and a non-responder with
value 0. In this use case, you will demonstrate how to identify such customers using the
Support Vector Machine model.

• Clustering Use Case
A retail store has information about its customers' behavior and the purchases they make.
With that data, they would like you to analyze and identify if there are groups of customers
with similar characteristics. Use Oracle Machine Learning to segment customers by finding
clusters in the data set that can be then used to support targeted marketing campaigns to
increase retail sales. In this use case, you will learn how to identify such segments using
the k-Means algorithm.

3.1 Classification Use Case
A retail store has information about its customers' behavior and the purchases they make. Now
with the available data, they want you to analyze and identify the type of customers most likely
to be positive responders to an Affinity Card loyalty program. High Affinity Card responders are
defined as those customers who, when given a loyalty or affinity card, hyper-respond, that is,
increase purchases more than the Affinity Card program's offered discount. In our data set, a
responder is designated with value 1, and a non-responder with value 0. In this use case, you
will demonstrate how to identify such customers using the Support Vector Machine model.

Related Contents

Topic Link

OML4R GitHub Example Classification Support Vector Machines (SVMs)

About Support Vector Machines (SVMs) Classification Support Vector Machines (SVMs)

Shared Settings Shared Settings

Before you start your OML4R use case journey, ensure that you have the following:

• Data Set
The data set used for this use case is from the SH schema. The SH schema can be readily
accessed in Oracle Autonomous Database. For on-premises databases, the schema is
installed during the installation or can be manually installed by downloading the scripts.

• Database
Select or create database out of the following options:

3-1

https://github.com/oracle-samples/oracle-db-examples/blob/main/machine-learning/notebooks/r/OML4R%20Classification%20SVM.dsnb

– Get your FREE cloud account. Go to https://cloud.oracle.com/database and select
Oracle Database Cloud Service (DBCS), or Oracle Autonomous Database. Create an
account and create an instance. See Autonomous Database Quick Start Workshop.

– Download the latest version of Oracle Database (on premises).

• Machine Learning Tools
Depending on your database selection,

– Use OML Notebooks for Oracle Autonomous Database.

– Install and use Oracle SQL Developer connected to an on-premises database or
DBCS. See Installing and Getting Started with SQL Developer.

• Other Requirements
Data Mining Privileges (this is automatically set for ADW). See System Privileges for
Oracle Machine Learning for SQL.

• Load Data
You will be using the SUPPLEMENTARY_DEMOGRAPHICS data set available in the SH
schema. Use the ore.sync function to create an ore.frame proxy object in R that
represents a database table, view, or query.

• Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric
outlier values.

• Build Model
This model is designed to classify data into predefined categories by learning from training
data.

• Evaluate
Before you make predictions using your model on new data, you should first evaluate
model accuracy. You can evaluate the model using different methods.

• Deploy the Model
The machine learning model, SVM_CLASSIFICATION_MODEL, has been successfully trained
and exists in your schema as a first-class database object. While you can use this model
directly from R, for database applications, you can also run it directly from SQL queries.

Related Topics

• Create a Notebook

• Edit your Notebook

3.1.1 Load Data
You will be using the SUPPLEMENTARY_DEMOGRAPHICS data set available in the SH
schema. Use the ore.sync function to create an ore.frame proxy object in R that represents a
database table, view, or query.

Examine Data

Attribute Name Information

CUST_ID The ID of the customer

EDUCATION Education level attained

OCCUPATION Occupation of the customer

HOUSEHOLD_SIZE Number of people living at residence

Chapter 3
Classification Use Case

3-2

https://cloud.oracle.com/database
https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=582
https://www.oracle.com/in/database/technologies/oracle-database-software-downloads.html

Attribute Name Information

YRS_RESIDENCE Number of years customer lived at current
residence

AFFINITY_CARD Indicates whether the customer holds an affinity
card.

1 means Yes. 0 means No.

BULK_PACK_DISKETTES Product. Indicates whether the customer
purchased the bulk pack diskettes.

1 means Yes. 0 means No.

FLAT_PANEL_MONITOR Product. Indicates whether the customer
purchased flat panel monitor.

1 means Yes. 0 means No

HOME_THEATER_PACKAGE Product. Indicates whether the customer
purchased home theatre package.

1 means Yes. 0 means No

BOOKKEEPING_APPLICATION Product. Indicates whether the customer
purchased bookkeeping application.

1 means Yes. 0 means No

PRINTER_SUPPLIES Product. Indicates whether the customer
purchased printer supplies.

1 means Yes. 0 means No

Y_BOX_GAMES Product. Indicates whether the customer
purchased YBox Games.

1 means Yes. 0 means No

OS_DOC_SET_KANJI Product. Indicates whether the customer
purchased the Kanji character set for the operating
system documentation.

1 means Yes. 0 means No

COMMENTS Comments from customers

3.1.2 Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric outlier
values.

Identify Target Variable

For this use case, the task is to train a Support Vector Machine model that predicts which
customers most likely to be positive responders to an Affinity Card loyalty program. Therefore,
the target variable is the attribute AFFINITY_CARD.

Data Understanding and Preparation

To access database data from R using OML4R, you must first create an ore.frame proxy
object in R that represents a database table, view, or query. In this example, the proxy object is
created using a query. Create proxy objects for SUPPLEMENTARY_DEMOGRAPHICS and then assess
the data to identify data types and noise in the data. Look for missing values, outlier numeric
values, or inconsistently labeled categorical values.

For data preparation and understanding run the following steps:

Chapter 3
Classification Use Case

3-3

1. Run the following command in an R interpreter paragraph (using %r) to import the Oracle
Machine Learning for R libraries and to suppress warning regarding row ordering:

library(ORE)
options(ore.warn.order=FALSE)

2. Use the ore.sync function to create the ore.frame object that is a proxy for the
SUPPLEMENTARY DEMOGRAPHICS table in the SH schema database table.

ore.sync(query = c("SUP_DEM" = "select * from
SH.SUPPLEMENTARY_DEMOGRAPHICS"))
ore.attach()

3. Run the following command to display few rows from
SUPPLEMENTARY_DEMOGRAPHICS table

z.show(head(SUP_DEM))

4. To display the number of rows and columns in the ore.frame object
SUPPLEMENTARY_DEMOGRAPHICS, use z.show(dim(SUP_DEM))

z.show(dim(SUP_DEM))

(4500, 14)

5. View the data type of the columns in CUST_DF with the @desc operator.

SUP_DEM@desc

Chapter 3
Classification Use Case

3-4

6. Run the following command to check if there are any missing values in the data. The
following code gives you the total number of missing values in the CUST_DF proxy object.

sum(is.na(SUP_DEM))

205

The value 205 indicates that there are missing values in the SUP_DEM proxy object.

OML supports Automatic Data Preparation (ADP). ADP is enabled through the model
settings. When ADP is enabled, the transformations required by the algorithm are
performed automatically and embedded in the model. You can enable ADP during the
Build Model stage. The commonly used methods of data preparation are binning,
normalization, and missing value treatment.

See How ADP Transforms the Data to understand how ADP prepares the data for some
algorithms.

This completes the data understanding and data preparation stage.

3.1.3 Build Model
This model is designed to classify data into predefined categories by learning from training
data.

Algorithm Selection

You can choose one of the following in-database algorithms to solve a classification problem:

• Decision Tree

• Generalized Linear Model

• Naive Bayes

• Neural Network

Chapter 3
Classification Use Case

3-5

https://docs.oracle.com/en/database/oracle/machine-learning/oml4sql/21/dmapi/about-transformations.html#GUID-233283C0-337B-4CF5-8F08-759B9B526957

• Random Forest

• Support Vector Machine

Here you will be using the Support Vector Machine algorithms because the SVM classification
is one of the algorithms that supports binary classification.

1. Split the data into train and test data sets. The train set is used to train the model so that it
learns the hidden patterns and the test set is used to evaluate the trained model. Split the
DEMO_DF data with 60 percent of the records for the train data set and 40 percent for the
test data set.

sampleSize <- .4 * nrow(DEMO_DF)
index <- sample(1:nrow(DEMO_DF),sampleSize)
group <- as.integer(1:nrow(DEMO_DF) %in% index)

rownames(DEMO_DF) <- DEMO_DF$CUST_ID
DEMO_DF.train <- DEMO_DF[group==FALSE,]
class(DEMO_DF.train)

DEMO_DF.test <- DEMO_DF[group==TRUE,]
class(DEMO_DF.test)

'ore.frame'
'ore.frame'

2. After splitting the data, let's see the count of rows in train and test to see if any rows are
left out in either of the datasets.

cat("\nTraining data: ")
dim(DEMO_DF.train)
cat("\nTest data: ")
dim(DEMO_DF.test)

 Training data: 2700 13
 Test data: 1800 13

3. Build your model using the ore.odmSVM function, which creates a Support Vector Machine
model using the training data. The ore.odmSVM function is the R interface to the in-
database SVM algorithm. Then we will make the prediction using this model for our test
data.

ore.exec(
 "BEGIN DBMS_DATA_MINING.DROP_MODEL(model_name =>
'SVM_CLASSIFICATION_MODEL');
 EXCEPTION WHEN OTHERS THEN NULL; END;"
)

MOD <- ore.odmSVM(
 formula = AFFINITY_CARD ~ .,
 data = DEMO_DF.train,
 type = "classification",
 kernel.function = "system.determined",
 odm.settings = list(model_name = "SVM_CLASSIFICATION_MODEL")
)

Chapter 3
Classification Use Case

3-6

RES <- predict(
 object = MOD,
 data = DEMO_DF.test,
 type = c("raw", "class"),
 norm.votes = TRUE,
 cache.model = TRUE,
 supplemental.cols = c(
 "CUST_ID", "AFFINITY_CARD", "EDUCATION",
 "HOUSEHOLD_SIZE", "OCCUPATION", "YRS_RESIDENCE"
)
)

3.1.4 Evaluate
Before you make predictions using your model on new data, you should first evaluate model
accuracy. You can evaluate the model using different methods.

Show Model Accuracy

To check the accuracy of our model, we use a confusion matrix. The confusion matrix is a table
that shows the correct model predictions and incorrect predictions for each class. After creating
the confusion matrix, the code calculates the accuracy of the model by dividing the number of
correct predictions by the total number of predictions.

CMATRIX <- with(RES, table(AFFINITY_CARD, PREDICTION))

CMATRIX

 PREDICTION
AFFINITY_CARD 0 1
 0 1206 145
 1 180 269

To show the model accuracy, run the following statements:

ACCURACY <- CMATRIX / sum(CMATRIX)
round(sum(diag(ACCURACY)),3)*100

83.6

The result of the confusion matrix shows that the accuracy on the test set is 83.6%

Show Prediction Results

Here you will display the prediction results.

1. To display the prediction results, run the following code:

z.show(ore.sort(RES[(RES$"'1'" > 0.5),], by = c("'1'")))

Chapter 3
Classification Use Case

3-7

2. To display the prediction result using ROC Curve, Lift Chart, and Distribution Chart, run the
following code:

BAR PLOT
res <- ore.pull(RES)
sensitivity <- res[order(res$"'1'",decreasing = TRUE),]
sens <- sum(sensitivity$"'0'")/sum(sensitivity$"'0'") -
cumsum(sensitivity$"'0'")/sum(sensitivity$"'0'")
spec <- cumsum(sensitivity$"'1'")/sum(sensitivity$"'1'")

LIFT CHART
decile2 <- quantile(sensitivity$"'1'", probs = seq(.1, .9, by = .1))
df_sens <- as.data.frame(sensitivity$"'1'", col.names = c("sens"))
df_sens$decile = as.numeric(cut(1-cumsum(df_sens$sens), breaks=10))

DISTRIBUTION CHART
dx <- density(res$"'0'")
dx2 <- density(res$"'1'")

PLOTS 3x1
par(mfrow=c(3,3))
plot(1 - spec, sens, type = "l", col = "darkred", ylab = "Sensitivity",
xlab = "1 - Specificity", main = 'ROC Curve')
abline(c(0,0),c(1,1))
paste("AUC: ", round(sum(spec*diff(c(0, 1 - sens))),3))

barplot(table(df_sens$decile), xlab = 'Decile', ylab = 'Actual Targets',
main = 'Lift Chart', col = "darkred")

plot(dx, lwd = 2, col = "burlywood",
 main = "Density")
lines(dx2, lwd = 2, col = "darkred")
Add the data-poins with noise in the X-axis
rug(jitter(res$"'0'"),col='burlywood')
rug(jitter(res$"'1'"),col='darkred')

Chapter 3
Classification Use Case

3-8

3.1.5 Deploy the Model
The machine learning model, SVM_CLASSIFICATION_MODEL, has been successfully trained and
exists in your schema as a first-class database object. While you can use this model directly
from R, for database applications, you can also run it directly from SQL queries.

Using the SVM Model in SQL

To facilitate this, you will create a SQL table, SVM_TEST_TABLE, mirroring the structure of your R
data frame, DEMO_DF. This will allow you to seamlessly integrate the model's predictions into
your database work flows. To use the trained SVM model into your SQL environment, follow
the steps below:

• Create a table that mirrors the structure of your R data frame, enabling seamless
prediction workflows within the database.

Note:

The data provided to the model through SQL queries must be prepared in the
same manner as the data used to build the model in R.

ore.drop(table = "SVM_TEST_TABLE")
ore.create(DEMO_DF, table ="SVM_TEST_TABLE")

• Use the SQL Interface to score data and display the prediction results.

SELECT CUST_ID,
 round(PREDICTION_YRS_RES,3) PRED_YRS_RES,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute1",17,100)),'rank="1"/>')
FIRST_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute2",17,100)),'rank="2"/>')
SECOND_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute3",17,100)),'rank="3"/>')
THIRD_ATTRIBUTE
FROM (SELECT CUST_ID,
 PREDICTION(SVM_CLASSIFICATION_MODEL USING *)
PREDICTION_YRS_RES,
 PREDICTION_DETAILS(SVM_CLASSIFICATION_MODEL USING *) PD
 FROM SVM_TEST_TABLE

Chapter 3
Classification Use Case

3-9

 WHERE CUST_ID < 100015
 ORDER BY CUST_ID) OUT,
 XMLTABLE('/Details'
 PASSING OUT.PD
 COLUMNS
 "Attribute1" XMLType PATH 'Attribute[1]',
 "Attribute2" XMLType PATH 'Attribute[2]',
 "Attribute3" XMLType PATH 'Attribute[3]') OUTPRED

The SQL code demonstrates how to deploy and use a trained SVM classification model
(SVM_CLASSIFICATION_MODEL) within a database environment. It showcases the process of
scoring new data, extracting predicted values (PREDICTION_YRS_RES), and retrieving
relevant attributes (FIRST_ATTRIBUTE, SECOND_ATTRIBUTE, THIRD_ATTRIBUTE) using the
PREDICTION_DETAILS function.

Using the SVM Model in R

You can also make predictions and obtain prediction details directly from R using the following
code:

z.show(predict(
 object = MOD,
 newdata = DEMO_DF.test,
 supplemental.cols = c("CUST_ID"),
 topN.attrs = 3
)
)

The output appears as follows:

Deploying the Model to Other Databases or OML Services

To deploy the model to other databases or OML Services, follow these steps:

• Export the Model:

Chapter 3
Classification Use Case

3-10

– Use the DBMS_DATA_MINING.EXPORT_SERMODEL procedure to export the model to a
BLOB object.

– Save the BLOB object to a file or another storage location.

• Import the Model into Another Database:

– In the target database, use DBMS_DATA_MINING.IMPORT_SERMODEL to import the model
from the BLOB object.

• Deploy the Model to OML Services:

– Use the OML REST API to upload the model and create a REST endpoint for scoring.
Refer to the OML Services documentation for specific instructions.

For more information, see DBMS_DATA_MINING Package and OML Services Documentation.

This use case identified customers most likely to be positive responders to an Affinity Card
loyalty program using a Support Vector Machine (SVM) classification model. Thus, the model
can be used to predict which customers are likely to become high-value customers with the
Affinity Card program, allowing the store to focus their marketing resources more effectively.

3.2 Clustering Use Case
A retail store has information about its customers' behavior and the purchases they make. With
that data, they would like you to analyze and identify if there are groups of customers with
similar characteristics. Use Oracle Machine Learning to segment customers by finding clusters
in the data set that can be then used to support targeted marketing campaigns to increase
retail sales. In this use case, you will learn how to identify such segments using the k-Means
algorithm.

Data Understanding

To understand the data, perform the following tasks:

1. Access data

2. Explore data

• Load Data
Access the data set from the SH Schema and explore the data to understand the
attributes.

• Explore Data
Once the data is accessible, explore the data to understand and assess the quality of the
data. At this stage assess the data to identify data types and noise in the data. Look for
missing values and numeric outlier values.

• Build Model
To evaluate a model's performance, it is common practice to split the data into training and
test sets. This allows you to assess how well the model generalizes to unseen data.
However, in unsupervised learning, such as clustering, there are no labels or predictors
available to calculate accuracy or evaluate performance. As a result, you can use the
entire dataset to build the model without the need to split it. Since there is no ground truth
to compare the results against, the training-test split is neither applicable nor useful in
unsupervised learning.

• Deploy the Model
Here are several approaches to deploy your OML4R model and leverage its insights:

Chapter 3
Clustering Use Case

3-11

https://docs.oracle.com/en/database/oracle/oracle-database/19/dmprg/exporting-importing-mining-models.html
https://docs.oracle.com/en/database/oracle/machine-learning/

3.2.1 Load Data
Access the data set from the SH Schema and explore the data to understand the attributes.

Access Data

You will be using the CUSTOMERS and SUPPLEMENTARY_DEMOGRAPHICS tables available in the SH
schema.

See SH.CUSTOMERS for information about the CUSTOMERS table in SH Schema.

The following table displays information about the attributes from
SUPPLEMENTARY_DEMOGRAPHICS:

Attribute Name Data Type Information

CUST_ID Numeric The ID of the customer

EDUCATION Character Education level attained

OCCUPATION Character Occupation of the customer

HOUSEHOLD_SIZE Character Number of people living at
residence

YRS_RESIDENCE Numeric Number of years customer lived
at current residence

AFFINITY_CARD Character Indicates whether the customer
holds an affinity card.
1 means Yes. 0 means No.

BULK_PACK_DISKETTES Character Product. Indicates whether the
customer purchased the bulk
pack diskettes.
1 means Yes. 0 means No.

FLAT_PANEL_MONITOR Character Product. Indicates whether the
customer purchased flat panel
monitor.
1 means Yes. 0 means No

HOME_THEATER_PACKAGE Character Product. Indicates whether the
customer purchased home
theatre package.
1 means Yes. 0 means No

BOOKKEEPING_APPLICATION Character Product. Indicates whether the
customer purchased bookkeeping
application.
1 means Yes. 0 means No

PRINTER_SUPPLIES Character Product. Indicates whether the
customer purchased printer
supplies.
1 means Yes. 0 means No

Y_BOX_GAMES Character Product. Indicates whether the
customer purchased YBox
Games.
1 means Yes. 0 means No

Chapter 3
Clustering Use Case

3-12

https://docs.oracle.com/en/database/oracle/oracle-database/20/comsc/SH-sample-schema-table-descriptions.html#GUID-92E421F1-C6F0-4474-A4BE-040A9D233279

Attribute Name Data Type Information

OS_DOC_SET_KANJI Character Product. Indicates whether the
customer purchased the Kanji
character set for the operating
system documentation.
1 means Yes. 0 means No

COMMENTS Character Comments from customers

To access database data from R using OML4R, you must first create a proxy object in R that
represents a database table, view, or query. In this example, the proxy object is created using a
query. Create proxy objects for SUPPLEMENTARY_DEMOGRAPHICS and CUSTOMERS and
then merge them by inner join on a key column, in this case, CUST_ID. Assess the data to
identify data types and data quality issues. Look for missing values, outlier numeric values, or
inconsistently labeled categorical values.

1. Run the following command in an R interpreter paragraph (using %r) in an OML notebook
(or similar notebook environment) to import the Oracle Machine Learning for R libraries
and suppress warnings regarding row ordering. Alternatively, this code can be run from the
R command line or tools like RStudio.

library(ORE)
options(ore.warn.order=FALSE)

2. Use the ore.sync function to create the ore.frame object that is a proxy for the CUSTOMERS
table in the SH schema database table.

3. Use the ore.sync function to create the ore.frame object that is a proxy for the
SUPPLEMENTARY DEMOGRAPHICS table in the SH schema database table.

ore.sync(query = c("SUPPLEMENTARY_DEMOGRAPHICS" = "select CUST_ID,
HOUSEHOLD_SIZE, YRS_RESIDENCE, TO_CHAR(Y_BOX_GAMES) Y_BOX_GAMES from
SH.SUPPLEMENTARY_DEMOGRAPHICS"))
The TO_CHAR function is used to have Y_BOX_GAMES treated as a
categorical variable, not a numeric variable.
z.show(head(SUPPLEMENTARY_DEMOGRAPHICS))

Chapter 3
Clustering Use Case

3-13

3.2.2 Explore Data
Once the data is accessible, explore the data to understand and assess the quality of the data.
At this stage assess the data to identify data types and noise in the data. Look for missing
values and numeric outlier values.

To gain a broader understanding of the data and identify potential issues, we will now explore
the dataset, focusing on data quality assessment and identifying missing or outlier values.

1. To determine the number of rows and columns in the ore.frame object CUSTOMERS, use
dim(CUSTOMERS).

dim(CUSTOMERS)
55500 6

2. To determine the number of rows and columns in the ore.frame object
SUPPLEMENTARY_DEMOGRAPHICS, use dim(SUPPLEMENTARY_DEMOGRAPHICS)

dim(SUPPLEMENTARY_DEMOGRAPHICS)
4500 4

3. Create a new ore.frame object CUST_DF by merging the table CUSTOMERS and
SUPPLEMENTARY_DEMOGRAPHICS with an inner join on the common column CUST_ID. The
merge function joins one ore.frame to another ore.frame.

CUST_DF <- merge(SUPPLEMENTARY_DEMOGRAPHICS,CUSTOMERS, by="CUST_ID")

4. To display first 5 rows of CUST_DF data run the following code:

z.show(head(CUST_DF,5))

5. To get the dimensions using CUST_DF proxy object, use 'dim':

dim(CUST_DF)

 4500 9

Chapter 3
Clustering Use Case

3-14

6. To transform the column CUST_YEAR_OF_BIRTH to CUST_AGE in the CUST_DF proxy object and
produce a barplot of the distribution of customer ages, use the following code.

Date1 <- format(Sys.Date(), "%Y")
Date2 <- as.numeric(Date1)
CUST_DF$CUST_AGE <- Date2-CUST_DF$CUST_YEAR_OF_BIRTH
CUST_DF$CUST_YEAR_OF_BIRTH <- NULL
tbl <- with(CUST_DF, table(CUST_AGE))
barplot(tbl, ylim=c(0,150), ylab = "Number of Customers", xlab = "Customer
Age", las=3)

7. View the data type of the columns in CUST_DF with the @desc operator, which is crucial for
understanding to understand your data and perform calculations accurately.

CUST_DF@desc

Chapter 3
Clustering Use Case

3-15

8. To check if there are any missing values in the data, run the following code. The following
code gives you the total number of missing values in the CUST_DF proxy object.

sum(is.na(CUST_DF))
0

The value 0 indicates that there are no missing values in the CUST_DF proxy object.

9. Use the crosstab method to perform a cross-column analysis of the ore.frame object in the
database. By default, it computes a frequency table for the columns unless a column and
an aggregation function have been passed to it. In this example, the crosstab function
displays the distribution of unique values of CUST_CREDIT_LIMIT along the x-axis and its
occurrence frequency along the y-axis.
In the output, click the Bar chart. In the Settings tab, choose “CUST_CREDIT_LIMIT” as
the Group By column, and use “Last” as the Aggregate Duplicates function.

ct <- ore.crosstab(~CUST_CREDIT_LIMIT, data=CUST_DF)
z.show(ct)

Chapter 3
Clustering Use Case

3-16

10. To compute the statistics of the CUST_DF table, use the summary function.

options(width = 80)
summary(subset(CUST_DF, select = -CUST_ID))

CUST_GENDER CUST_MARITAL_STATUS CUST_INCOME_LEVEL
 Length:4500 Length:4500 Length:4500
 Class :ore.character Class :ore.character Class :ore.character
 Mode :character Mode :character Mode :character

 CUST_CREDIT_LIMIT HOUSEHOLD_SIZE YRS_RESIDENCE Y_BOX_GAMES
 Min. : 1500 Length:4500 Min. : 0.000 Min. :0.0000
 1st Qu.: 5000 Class :ore.character 1st Qu.: 3.000 1st Qu.:0.0000
 Median : 9000 Mode :character Median : 4.000 Median :0.0000
 Mean : 7924 Mean : 4.022 Mean :0.3124
 3rd Qu.:11000 3rd Qu.: 5.000 3rd Qu.:1.0000
 Max. :15000 Max. :14.000 Max. :1.0000
 CUST_AGE
 Min. : 39.00
 1st Qu.: 49.00
 Median : 59.00
 Mean : 60.38
 3rd Qu.: 69.00
 Max. :112.00

This completes the data understanding stage.

Data Preparation

Before building the model you want to clean the data, if needed. Usually, data can contain
outliers that may form a separate cluster, which can affect model quality. The command below
defines the function filter_outliers to calculate the interquartile range for a dataframe
object. The function remove_outliers uses a for loop to compute the interquartile range for the
list of features. The user-defined function remove_outliers uses the interquartile range to find
outliers in the data and remove them.

create filter outliers function
filter_outliers <- function(x) {

 # calculate first quantile

Chapter 3
Clustering Use Case

3-17

 Quantile1 <- quantile(x, probs=.25)

 # calculate third quantile
 Quantile3 <- quantile(x, probs=.75)

 # calculate inter quartile range
 IQR = Quantile3-Quantile1

 # return true or false
 x < Quantile3 + (IQR*1.5) & x > Quantile1 - (IQR*1.5)
}

create remove outliers function
remove_outliers <- function(dataframe,
 columns=names(dataframe)) {

 # for loop to traverse in columns vector
 for (col in columns) {

 # remove observation if it satisfies outlier function
 dataframe <- dataframe[filter_outliers(dataframe[[col]]),]
 }
 ore.pull(dataframe)
}

CUST_DF_CLEAN <- remove_outliers(CUST_DF, c('CUST_AGE', 'CUST_CREDIT_LIMIT',
'YRS_RESIDENCE', 'Y_BOX_GAMES'))
CUST_DF_CLEAN <- ore.push(CUST_DF_CLEAN)
dim(CUST_DF_CLEAN)

4233 9

This completes the data preparation stage.

3.2.3 Build Model
To evaluate a model's performance, it is common practice to split the data into training and test
sets. This allows you to assess how well the model generalizes to unseen data. However, in
unsupervised learning, such as clustering, there are no labels or predictors available to
calculate accuracy or evaluate performance. As a result, you can use the entire dataset to
build the model without the need to split it. Since there is no ground truth to compare the
results against, the training-test split is neither applicable nor useful in unsupervised learning.

Algorithm Selection

Using OML4R, you can choose one of the following algorithms to solve a clustering problem:

1. K-Means (KM)

2. Expectation-Maximization (EM)

3. Orthogonal Partitioning Cluster (O-Cluster)

The k-Means(KM) algorithm is a distance-based clustering algorithm that partitions the data into
a specified number of clusters. Distance-based algorithms are based on the concept that
nearby data points are more related to each other than data points that are farther away. The
algorithm iteratively tries to minimize the within-cluster variance with respect to its nearest

Chapter 3
Clustering Use Case

3-18

cluster centroid. The Expectation-Maximization(EM) algorithm uses a probabilistic clustering
based on a density estimation algorithm. The Orthogonal Partitioning Cluster (O-
Cluster) algorithm is a density-based clustering method designed for large, high-dimensional
datasets.

A good starting point for clustering is the K-means algorithm. It works by assigning each data
point to the closest cluster center (centroid). Unlike some methods, K-means doesn't make
assumptions about the underlying shapes of the clusters. This simplicity makes it a user-
friendly choice for many applications, and it will be the method we use for this use case.

We will use the elbow method to determine the number of clusters in the dataset. The elbow
method uses the leaf clusters. In cluster analysis, the elbow method is a heuristic used in
determining the number of clusters in a data set. The method consists of plotting the variance
(or dispersion) as a function of the number of clusters and picking the elbow of the curve as the
number of clusters to use. We will start with one cluster, and continue specifying one cluster
through 8 clusters. We will look for the "elbow" in the resulting dispersion curve to assess
which number of clusters seems best.

To specify model settings and build a k-Means model object that will segment the data, run the
following command. The settings are given as key-value or dictionary pairs where it refers to
parameters name and value setting respectively. Here are some of the settings specified:
KMNS_ITERATIONS, KMNS_RANDOM_SEED, KMNS_CONV_TOLERANCE, KMNS_NUM_BINS,
KMNS_DETAILS, and PREP_AUTO. The k-Means algorithm uses the number of clusters (k) and
other settings to configure the algorithm, as shown here:

settings = list(
 KMNS_ITERATIONS = 15,
 KMNS_RANDOM_SEED = 1,
 KMNS_CONV_TOLERANCE = 0.001,
 KMNS_NUM_BINS = 11,
 KMNS_DETAILS = "KMNS_DETAILS_HIERARCHY",
 CASE_ID_COLUMN_NAME = "CUST_ID"
)

KM.MOD <- ore.odmKMeans(
 formula = ~.-CUST_ID,
 data = CUST_DF_CLEAN,
 num.centers = 3,
 odm.settings = settings
)

KM.MOD

The following is the list of algorithm settings used in this example:

• KMNS_ITERATIONS: Specifies the maximum number of iterations for k-Means that are
allowed. The default number of iterations is 20.

• KMNS_RANDOM_SEED: The random number generator uses a number called the
random seed to initialize itself. The random number generator generates random numbers
that are used by the k-Means algorithm to select the initial cluster centroid. This setting
controls the seed of the random generator used during the k-Means initialization. It must
be a non-negative integer value. The default is 0.

• KMNS_CONV_TOLERANCE: Convergence Tolerance is the threshold value for the
change in the centroids between consecutive iterations of the algorithm. This setting is
used to specify the minimum Convergence Tolerance for k-Means. The algorithm iterates

Chapter 3
Clustering Use Case

3-19

until the minimum Convergence Tolerance is satisfied or until the maximum number of
iterations, specified in KMNS_ITERATIONS, is reached. Decreasing the Convergence
Tolerance produces a more accurate solution but may result in longer run times. The
default Convergence Tolerance is 0.001.

• KMNS_NUM_BINS: Number of bins in the attribute histogram produced by k-Means. The
bin boundaries for each attribute are computed globally on the entire training data set. The
binning method is equi-width. All attributes have the same number of bins with the
exception of attributes with a single value that have only one bin.

• KMNS_DETAILS: This setting determines the level of cluster details that is computed
during the build. The value KMNS_DETAILS_ALL means that the cluster hierarchy, record
counts, and descriptive statistics (means, variances, modes, histograms, and rules) are
computed and this is the default value. The value KMNS_DETAILS_NONE means no cluster
details are computed and only the scoring information persisted. The value
KMNS_DETAILS_HIERARCHY means cluster hierarchy and cluster record counts are
computed.

• PREP_AUTO: Used to specify whether to use automatic data preparation or if the user is
responsible for algorithm-specific data preparation. By default, it is enabled with a constant
value as 'PREP_AUTO': PREP_AUTO_ON and requires the DBMS_DATA_MINING package.
Alternatively, it can also be specified as 'PREP_AUTO': 'ON'.

• ~.-CUST_ID: This argument is passed to the function to cluster the data in the
CUST_DF_CLEAN data frame, excluding the CUST_ID column.

• CUST_DF_CLEAN: The data frame that needs to be clustered.

• num.centers: Defines the number of clusters for a clustering model. A value greater than
or equal to 1. The default value is 10.

• odm.settings: A list to specify in-database algorithm parameter settings. This argument is
applicable to building a model in Database 12.2 or later. Each list element's name and
value refer to the parameter setting name and value, respectively. The setting value must
be numeric or string.
The output appears as follows:

Call:
ore.odmKMeans(formula = ~. - CUST_ID, data = CUST_DF_CLEAN, num.centers =
3,
 odm.settings = settings)

Settings:
 value
clus.num.clusters 3
block.growth 2
conv.tolerance 0.001
details details.hierarchy
distance euclidean
iterations 15
min.pct.attr.support 0.1
num.bins 11
random.seed 1
split.criterion variance
odms.details odms.enable
odms.missing.value.treatment odms.missing.value.auto
odms.sampling odms.sampling.disable
prep.auto ON

Chapter 3
Clustering Use Case

3-20

3.2.4 Deploy the Model
Here are several approaches to deploy your OML4R model and leverage its insights:

Prediction using R API:

This is the simplest method, ideal for quick analysis or prototyping. You can directly use the
fitted model within your R environment to make predictions on new data.

pred <- predict(km.mod.ere, CUST_DF_CLEAN, supplemental.cols = "CUST_ID")

print(pred) # View predictions for new data

Deploy model in different database:

For production deployments within the different database, leverage the built-in functionalities:

• Export: Use DBMS_DATA_MINING.EXPORT_SERMODEL to export the trained model
(CUST_CLUSTER_MODEL_ERE) to a BLOB object in Database 1.

• Transfer: Move the BLOB object (e.g., BFile) to Database 2.

• Import: Use DBMS_DATA_MINING.IMPORT_SERMODEL in Database 2 to import the
model from the transferred BLOB object.

Running a user-defined R function from R and SQL, and on ADB REST:

For periodic model updates with new data, create a user-defined R function:

• Define model settings (number of clusters, distance metric, etc.).

• Drop any existing model named CUST_CLUSTER_MODEL_ERE (optional).

• Train the model using ore.odmKMeans.

• Optionally, generate predictions for new data and display them.

Schedule this script to run periodically using Oracle's scheduling features.

Example 3-1 Defining the R function in the script repository and running it from R

#suppress warnings#
options(warn=-1)

build.km.1 <- function(){
 settings = list('KMNS_ITERATIONS'='10',
 'KMNS_DISTANCE'='KMNS_EUCLIDEAN',
 'KMNS_NUM_BINS'='10',
 'KMNS_DETAILS'='KMNS_DETAILS_ALL',
 'PREP_AUTO'='ON',
 'MODEL_NAME'='CUST_CLUSTER_MODEL_ERE')

 ore.exec(paste("BEGIN
DBMS_DATA_MINING.DROP_MODEL('CUST_CLUSTER_MODEL_ERE'); EXCEPTION WHEN OTHERS
THEN NULL; END;", sep=""))

 km.mod.ere <- ore.odmKMeans(~ . -CUST_ID, CUST_DF_CLEAN, num.centers=3,
odm.settings=settings)

Chapter 3
Clustering Use Case

3-21

 # Show predictions
 pred <- predict(km.mod.ere, CUST_DF_CLEAN, supplemental.cols="CUST_ID")
 pred
}

ore.doEval(FUN = build.km.1)

The output appears as follows:

Example 3-2 Running the user-defined R script from SQL

--set the access token
exec rqSetAuthToken('<access token>');

--run user-defined R script from SQL
SELECT *
 FROM table(
 rqEval2(
 NULL,
 '{"CUST_ID": "NUMBER", "probability_of_cluster_3": "BINARY_DOUBLE",
"probability_of_cluster_4": "BINARY_DOUBLE",
 "probability_of_cluster_5": "BINARY_DOUBLE", "CLUSTER_ID":
"NUMBER"}',
 'build.km.1'));

The SQL output appears as follows:

Chapter 3
Clustering Use Case

3-22

Example 3-3 Running the R script from ADB REST using CURL command:

curl -i -X POST --header "Authorization: Bearer ${token}" \
--header 'Content-Type: application/json' --header 'Accept: application/json'
\
-d '{}' \
"<oml-cloud-service-location-url>/oml/api/r-scripts/v1/do-eval/build.km.1"

The REST response appears as follows:

{

 "result": [

 {

Chapter 3
Clustering Use Case

3-23

 "probability_of_cluster_5": 0.3084,

 "CUST_ID": 100100,

 "probability_of_cluster_4": 0.4691,

 "'2'": 0.2224,

 "CLUSTER_ID": 4

 },

 {

 "probability_of_cluster_5": 0.1115,

 "CUST_ID": 100200,

 "probability_of_cluster_4": 0.2713,

 "'2'": 0.6172,

 "CLUSTER_ID": 2

 },

 ……

 {

 "probability_of_cluster_5": 0.3974,

 "CUST_ID": 104498,

 "probability_of_cluster_4": 0.4256,

 "'2'": 0.177,

 "CLUSTER_ID": 4

 },

 {

 "probability_of_cluster_5": 0.273,

 "CUST_ID": 104499,

 "probability_of_cluster_4": 0.4102,

 "'2'": 0.3168,

 "CLUSTER_ID": 4

 }

Chapter 3
Clustering Use Case

3-24

]

}

Persistent Table for SQL Integration:

There are two different approaches for creating persistent data structures: a dynamic view
('CUST_DF_VIEW') for accessing the latest data and a materialized table
('CUST_DF_CLEAN') for capturing a snapshot of the data.

Example 3-4 Creating a persistent data structure using a dynamic view

• Use the following code to create a view

ore.drop(view="CUST_DF_VIEW")
ore.create(CUST_DF,view="CUST_DF_VIEW")

• Use the following SQL query to create a view named KM_PRED_VIEW. This view will
dynamically score data based on the existing view CUST_DF_VIEW.

CREATE OR REPLACE VIEW KM_PRED_VIEW AS
 SELECT CUST_ID, CLUSTER_ID(CUST_CLUSTER_MODEL_ERE USING *) AS
CLUSTER_ID, round (CLUSTER_PROBABILITY (CUST_CLUSTER_MODEL_ERE USING *),3)
AS PROB
 FROM CUST_DF_VIEW;

• Use the following code to display first 20 rows of dynamic scoring view 'KM_PRED_VIEW'

select * from KM_PRED_VIEW
where rownum < 21;

The output appears as follows:

Chapter 3
Clustering Use Case

3-25

Example 3-5 Creating a persistent data structure using a materialized table

• Use the following code to create a table named CUST_DF_CLEAN to store the cleaned data in
the database.

ore.drop(table="CUST_DF_CLEAN")
ore.create(CUST_DF_CLEAN,table="CUST_DF_CLEAN")

• Use the following code to create a table named KM_SCORE_TABLE, which will store a static
snapshot of the scoring results based on the data in the CUST_DF_CLEAN table.

DROP TABLE KM_SCORE_TABLE;

CREATE TABLE KM_SCORE_TABLE AS
 SELECT CUST_ID,
 CLUSTER_ID(CUST_CLUSTER_MODEL_ERE USING *) AS CLUSTER_ID,
 round(CLUSTER_PROBABILITY (CUST_CLUSTER_MODEL_ERE USING *),3) AS
PROB
 FROM CUST_DF_CLEAN;

• Use the following code to display the first 10 rows of the scoring snapshot table.

select * from KM_SCORE_TABLE where rownum <= 10;

The output appears as follows:

Chapter 3
Clustering Use Case

3-26

• Use the SQL Interface for scoring and then visualize the results using OML Notebooks.
Use the following code to query the table, apply the CLUSTER_SET function for prediction,
and extract details from the model output using XML parsing.

SELECT CUST_ID,
 CLUSTER_ID,
 ROUND(PROB*100,0) PROB_PCT,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute1",17,100)),'rank="1"/>')
FIRST_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute2",17,100)),'rank="2"/>')
SECOND_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute3",17,100)),'rank="3"/>')
THIRD_ATTRIBUTE
FROM (SELECT CUST_ID, S.CLUSTER_ID, PROBABILITY PROB,
 CLUSTER_DETAILS(KM_CLUSTERING_MODEL USING T.*) DETAIL
 FROM (SELECT V.*, CLUSTER_SET(KM_CLUSTERING_MODEL, NULL, 0.2 USING
*) PSET
 FROM CUST_DF_KM V
 WHERE cust_id = ${CUST_ID ='101362','101362'|'102087'|
'100456'}) T,
 TABLE(T.PSET) S
 ORDER BY 2 DESC) OUT,
 XMLTABLE('/Details'
 PASSING OUT.DETAIL
 COLUMNS
 "Attribute1" XMLType PATH 'Attribute[1]',
 "Attribute2" XMLType PATH 'Attribute[2]',
 "Attribute3" XMLType PATH 'Attribute[3]') OUTPRED

The output appears as follows:

Chapter 3
Clustering Use Case

3-27

Chapter 3
Clustering Use Case

3-28

4
Reference

• About Machine Learning Classes and Algorithms
These classes provide access to in-database machine learning algorithms.

• About Model Settings
You can specify settings that affect the characteristics of a model.

• Shared Settings
These settings are common to all of the OML4R machine learning classes.

4.1 About Machine Learning Classes and Algorithms
These classes provide access to in-database machine learning algorithms.

Algorithm Classes

Class Algorithm Function of
Algorithm

Description

ore.odmAI Minimum
Description
Length

Attribute
importance for
classification or
regression

Ranks attributes according to their importance
in predicting a target.

ore.odmAssocR
ules

Apriori Association rules Performs market basket analysis by identifying
co-occurring items (frequent itemsets) within a
set.

ore.odmDT Decision Tree Classification Extracts predictive information in the form of
human-understandable rules. The rules are if-
then-else expressions; they explain the
decisions that lead to the prediction.

ore.odmEM Expectation
Maximization

Clustering Performs probabilistic clustering based on a
density estimation algorithm.

ore.odmESA Explicit Semantic
Analysis

Feature extraction Extracts text-based features from a corpus of
documents. Performs document similarity
comparisons.

ore.odmGLM Generalized
Linear Model

Classification

Regression

Implements logistic regression for classification
of binary targets and linear regression for
continuous targets.

ore.odmKM k-Means Clustering Uses unsupervised learning to group data
based on similarity into a predetermined
number of clusters.

ore.odmNB Naive Bayes Classification Makes predictions by deriving the probability of
a prediction from the underlying evidence, as
observed in the data.

ore.odmNN Neural Network Classification

Regression

Learns from examples and tunes the weights of
the connections among the neurons during the
learning process.

4-1

Class Algorithm Function of
Algorithm

Description

ore.odmRF Random Forest Classification Provides an ensemble learning technique for
classification of data.

ore.odmSVD Singular Value
Decomposition

Feature extraction Performs orthogonal linear transformations that
capture the underlying variance of the data by
decomposing a rectangular matrix into three
matrices.

ore.odmSVM Support Vector
Machine

Anomaly detection

Classification

Regression

Builds a model that is a profile of a class,
which, when the model is applied, identifies
cases that are somehow different from that
profile.

ore.odmNMF Non-Negative
Matrix
Factorization

Feature extraction A state of the art feature extraction algorithm
used when there are many attributes and the
attributes are ambiguous or have weak
predictability.

ore.odmXGB XGBoost Classification

Regression

Can be used as a stand-alone predictor or
incorporate it into real-world production
pipelines for a wide range of problems such as
ad click-through rate prediction, hazard risk
prediction, web text classification, and so on.

Persisting Models

In-database models created through the OML4R API exist as temporary objects that are
dropped when the database connection ends unless you take one of the following actions:

• Save a default-named model object in a datastore, as in the following example:

regr2 = ore.odmGLM("regression")
ore.save(regr2, name = 'regression2', overwrite=TRUE)

• Use the model_name parameter when building the model to explicitly name in-database
model proxy object, as in the following example:

ore.drop(model='RF_CLASSIFICATION_MODEL')
settings = list(RFOR_MTRY = 3, model_name="RF_CLASSIFICATION_MODEL")
MOD2 <- ore.odmRF(AFFINITY_CARD~., DEMO_DF.train, odm.settings= settings)
MOD2$name

• Change the name of an existing model using the model_name function of the model, as in
the following example:

regr2(model_name = 'myRegression2')

To drop a persistent named model, use the oml.drop function.

Scoring New Data with a Model

For most of the OML4R machine learning classes, you can use the predict method of the
model object to score new data.

For in-database models, you can use the SQL PREDICTION function on model proxy objects,
which scores directly in the database. You can use in-database models directly from SQL if you

Chapter 4
About Machine Learning Classes and Algorithms

4-2

prepare the data properly. For open source models, you can use Embedded R Execution and
enable data-parallel execution for performance and scalability.

Deploying Models Through a REST API

The REST API for Oracle Machine Learning Services provides REST endpoints hosted on an
Oracle Autonomous Database instance. These endpoints allow you to store OML models
along with their metadata, and to create scoring endpoints for the models.

4.2 About Model Settings
You can specify settings that affect the characteristics of a model.

Some settings are general, some are specific to an Oracle Machine Learning function, and
some are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings for a model,
then you must specify the settings with the **params parameter when instantiating the model
or later by using the set_params method of the model.

If a parameter is specified by both OML4R algorithm parameters and odm.settings, the value in
odm.settings is used.

Example 4-1 Specifying Model Settings

This example shows the creation of an Expectation Maximization (EM) model and the
changing of a setting.

settings = list(
 EMCS_NUM_ITERATIONS= 20,
 EMCS_RANDOM_SEED= 7)
EM.MOD <- ore.odmEM(~.-CUST_ID, CUST_DF, num.centers = 3, odm.settings =
settings)

4.3 Shared Settings
These settings are common to all of the OML4R machine learning classes.

The following table lists the settings that are shared by all Oracle Machine Learning for R
models.

Table 4-1 Shared Model Settings

Setting Name Setting Value Description

ODMS_DETAILS ODMS_ENABLE
ODMS_DISABLE

Helps to control model size in the database. Model details
can consume significant disk space, especially for
partitioned models. The default value is ODMS_ENABLE.

If the setting value is ODMS_ENABLE, then model detail
tables and views are created along with the model. You
can query the model details using SQL.

If the value is ODMS_DISABLE, then model detail tables are
not created and tables relevant to model details are also
not created.

The reduction in the space depends on the algorithm.
Model size reduction can be on the order of 10x .

Chapter 4
About Model Settings

4-3

https://docs.oracle.com/en/database/oracle/machine-learning/omlss/omlss/index.html

Table 4-1 (Cont.) Shared Model Settings

Setting Name Setting Value Description

ODMS_MAX_PARTITIONS 1 < value <= 1000000 Controls the maximum number of partitions allowed for a
partitioned model. The default is 1000.

ODMS_MISSING_VALUE_TREATM
ENT

ODMS_MISSING_VALUE_AUT
O
ODMS_MISSING_VALUE_MEA
N_MODE
ODMS_MISSING_VALUE_DEL
ETE_ROW

Indicates how to treat missing values in the training data.
This setting does not affect the scoring data. The default
value is ODMS_MISSING_VALUE_AUTO.

ODMS_MISSING_VALUE_MEAN_MODE replaces missing
values with the mean (numeric attributes) or the mode
(categorical attributes) both at build time and apply time
where appropriate. ODMS_MISSING_VALUE_AUTO
performs different strategies for different algorithms.

When ODMS_MISSING_VALUE_TREATMENT is set to
ODMS_MISSING_VALUE_DELETE_ROW, the rows in the
training data that contain missing values are deleted.
However, if you want to replicate this missing value
treatment in the scoring data, then you must perform the
transformation explicitly.

The value ODMS_MISSING_VALUE_DELETE_ROW is
applicable to all algorithms.

ODMS_PARTITION_BUILD_TYPE ODMS_PARTITION_BUILD_I
NTRA
ODMS_PARTITION_BUILD_I
NTER
ODMS_PARTITION_BUILD_H
YBRID

Controls the parallel building of partitioned models.

ODMS_PARTITION_BUILD_INTRA builds each partition in
parallel using all slaves.

ODMS_PARTITION_BUILD_INTER builds each partition
entirely in a single slave, but multiple partitions may be
built at the same time because multiple slaves are active.

ODMS_PARTITION_BUILD_HYBRID combines the other
two types and is recommended for most situations to
adapt to dynamic environments. This is the default value.

ODMS_PARTITION_COLUMNS Comma separated list of
machine learning attributes

Requests the building of a partitioned model. The setting
value is a comma-separated list of the machine learning
attributes to be used to determine the in-list partition key
values. These attributes are taken from the input columns,
unless an XFORM_LIST parameter is passed to the model.
If XFORM_LIST parameter is passed to the model, then the
attributes are taken from the attributes produced by these
transformations.

ODMS_TABLESPACE_NAME tablespace_name Specifies the tablespace in which to store the model.

If you explicitly set this to the name of a tablespace (for
which you have sufficient quota), then the specified
tablespace storage creates the resulting model content. If
you do not provide this setting, then the your default
tablespace creates the resulting model content.

ODMS_SAMPLE_SIZE 0 < value Determines how many rows to sample (approximately).
You can use this setting only if ODMS_SAMPLING is
enabled. The default value is system determined.

ODMS_SAMPLING ODMS_SAMPLING_ENABLE
ODMS_SAMPLING_DISABLE

Allows the user to request sampling of the build data. The
default is ODMS_SAMPLING_DISABLE.

ODMS_TEXT_MAX_FEATURES 1 <= value The maximum number of distinct features, across all text
attributes, to use from a document set passed to the
model. The default is 3000. An oml.esa model has the
default value of 300000.

Chapter 4
Shared Settings

4-4

Table 4-1 (Cont.) Shared Model Settings

Setting Name Setting Value Description

ODMS_TEXT_MIN_DOCUMENTS Non-negative value This text processing setting controls how many documents
a token needs to appear in to be used as a feature.

The default is 1. An oml.esa model has the default value
of 3.

ODMS_TEXT_POLICY_NAME The name of an Oracle Text
POLICY created using
CTX_DDL.CREATE_POLICY.

Affects how individual tokens are extracted from
unstructured text.

For details about CTX_DDL.CREATE_POLICY, see Oracle
Text Reference.

PREP_AUTO PREP_AUTO_ON
PREP_AUTO_OFF

This data preparation setting enables fully automated data
preparation.

The default is PREP_AUTO_ON.

PREP_SCALE_2DNUM pPREP_SCALE_STDDEV
PREP_SCALE_RANGE

This data preparation setting enables scaling data
preparation for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to take effect. The
following are the possible values:

PREP_SCALE_STDDEV: A request to divide the column
values by the standard deviation of the column and is often
provided together with PREP_SHIFT_MEAN to yield z-score
normalization.

PREP_SCALE_RANGE: A request to divide the column
values by the range of values and is often provided
together with PREP_SHIFT_MIN to yield a range of [0,1].

PREP_SCALE_NNUM PREP_SCALE_MAXABS This data preparation setting enables scaling data
preparation for nested numeric columns. PREP_AUTO must
be OFF for this setting to take effect. If specified, then the
valid value for this setting is PREP_SCALE_MAXABS, which
yields data in the range of [-1,1].

PREP_SHIFT_2DNUM PREP_SHIFT_MEAN
PREP_SHIFT_MIN

This data preparation setting enables centering data
preparation for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to take effect. The
following are the possible values:

PREP_SHIFT_MEAN: Results in subtracting the average of
the column from each value.

PREP_SHIFT_MIN: Results in subtracting the minimum of
the column from each value.

ODMS_BOXCOX ODMS_BOXCOX_ENABLE
ODMS_BOXCOX_DISABLE

This setting enables the Box-Cox variance-stabilization
transformation. It is useful when the variance increases as
the target value increases. It reduces variance and
transforms a multiplicative relationship with the target, with
a simpler additive relationship. This setting is applicable
only to the Exponential Smoothing algorithm. When a
value for EXSM_MODEL setting is not specified, the default
value is ODMS_BOXCOX_ENABLE and when a value for the
EXSM_MODEL setting is provided, the default value is
ODMS_BOXCOX_DISABLE.

Chapter 4
Shared Settings

4-5

Table 4-1 (Cont.) Shared Model Settings

Setting Name Setting Value Description

ODMS_EXPLOSION_MIN_SUPP X >= 0 It is the minimum required support for categorical values
that must be included in the explosion mapping. It removes
categorical values with insufficient row instances to have a
statistically significant effect on the model, because, they
could potentially degrade performance or exhaust memory.
The default is system determined depending on the
number of rows in the dataset. A value of 1 results into
mapping all categorical values.

Chapter 4
Shared Settings

4-6

Glossary

Glossary-1

Index

A
algorithms

machine learning, 4-1
settings common to all, 4-3

C
classes

machine learning, 4-1
clustering

use case, 3-11, 3-12, 3-14, 3-18

K
k-means algorithm, 3-11, 3-12, 3-14, 3-18

M
machine learning

classes, 4-1
models

persisting, 4-1

S
scoring new data, 4-1
settings

about model, 4-3
shared algorithm, 4-3

Index-1

	Contents
	1 Overview
	1.1 Machine Learning Overview
	1.1.1 What Is Machine Learning?
	1.1.2 Benefits of Machine Learning
	1.1.3 Define Your Business Problem
	1.1.4 What Do You Want to Do?
	1.1.5 Discover More Through Interfaces

	1.2 Machine Learning Process
	1.2.1 Workflow
	1.2.2 Define Business Goals
	1.2.3 Understand Data
	1.2.4 Prepare Data
	1.2.5 Develop Models
	1.2.6 Evaluate
	1.2.7 Deploy

	1.3 Machine Learning Techniques and Algorithms
	1.3.1 What is a Machine Learning Algorithm
	1.3.2 Supervised Learning
	1.3.3 Unsupervised Learning

	2 Get Started
	2.1 Access OML Notebooks
	2.1.1 Access Oracle Machine Learning User Interface
	2.1.2 Create a Notebook from the Example Templates
	2.1.3 Edit Your Notebook Classic

	2.2 Access Autonomous Database
	2.2.1 Provision an Autonomous Database
	2.2.2 Create and Update User Accounts for Oracle Machine Learning Components on Autonomous Database
	2.2.3 Create User
	2.2.4 Add Existing Database User Account to Oracle Machine Learning Components

	3 Use Cases
	3.1 Classification Use Case
	3.1.1 Load Data
	3.1.2 Explore Data
	3.1.3 Build Model
	3.1.4 Evaluate
	3.1.5 Deploy the Model

	3.2 Clustering Use Case
	3.2.1 Load Data
	3.2.2 Explore Data
	3.2.3 Build Model
	3.2.4 Deploy the Model

	4 Reference
	4.1 About Machine Learning Classes and Algorithms
	4.2 About Model Settings
	4.3 Shared Settings

	Glossary
	Index

