4.2.12 Singular Value Decomposition
The overloaded svd
function performs singular value decomposition in parallel in the database.
The svd
function accepts an ore.frame
or an ore.tblmatrix
object as the x
argument. The ore.odmSVD
method distributes block SVD computation to parallel processes executing in the database. The method uses the global option ore.parallel
to determine the degree of parallelism to employ.
The function returns a list
object that contains the d
vector and v
matrix components of a singular value decomposition of argument x
. It does not return the left singular vector matrix u
, therefore the argument nu
is not used.
For details about the function arguments, call help(ore.odmSVD)
.
Example 4-69 Using the svd Function
IRIS <- ore.push(cbind(Id = seq_along(iris[[1L]]), iris))
svd.mod <- ore.odmSVD(~. -Id, IRIS)
summary(svd.mod)
d(svd.mod)
v(svd.mod)
head(predict(svd.mod, IRIS, supplemental.cols = "Id"))
svd.pmod <- ore.odmSVD(~. -Id, IRIS,
odm.settings = list(odms_partition_columns = "Species"))
summary(svd.pmod)
d(svd.pmod)
v(svd.pmod)
head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))
Listing for This Example
R> summary(svd.pmod)
R> d(svd.pmod)
R> v(svd.pmod)
R> head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))
Call:
ore.odmSVD(formula = ~. - Id, data = IRIS)
Settings:
value
odms.details odms.enable
odms.missing.value.treatment odms.missing.value.auto
odms.sampling odms.sampling.disable
prep.auto ON
scoring.mode scoring.svd
u.matrix.output u.matrix.disable
d:
FEATURE_ID VALUE
1 1 96.2182677
2 2 19.0780817
3 3 7.2270380
4 4 3.1502152
5 5 1.8849634
6 6 1.1474731
7 7 0.5814097
v:
ATTRIBUTE_NAME ATTRIBUTE_VALUE '1' '2' '3'
1 Petal.Length <NA> 0.51162932 0.65943465 -0.004420703
2 Petal.Width <NA> 0.16745698 0.32071102 0.146484369
3 Sepal.Length <NA> 0.74909171 -0.26482593 -0.102057243
4 Sepal.Width <NA> 0.37906736 -0.50824062 0.142810811
5 Species setosa 0.03170407 -0.32247642 0.184499940
6 Species versicolor 0.04288799 0.04054823 -0.780684855
7 Species virginica 0.05018593 0.16796988 0.551546107
'4' '5' '6' '7'
1 0.05479795 -0.51969015 0.17392232 -0.005674672
2 0.46553390 0.72685033 0.31962337 -0.021274748
3 -0.49272847 0.31969417 -0.09379235 -0.067308615
4 0.69139828 -0.25849391 -0.17606099 -0.041908520
5 -0.12245506 -0.14348647 0.76017824 0.497502783
6 0.19827972 0.07363250 -0.12354271 0.571881302
7 -0.07177990 0.08109974 -0.48442099 0.647048040
Parent topic: Explore Data