4.1.8 Partition Data
In analyzing large data sets, a typical operation is to randomly partition the data set into subsets.
You can analyze the partitions by using OML4R Embedded R Execution, as shown in the following example.
Example 4-21 Randomly Partitioning Data
This example creates a data.frame
object with the symbol myData
in the local R session and adds a column to it that contains a randomly generated set of values. It pushes the data set to database memory as the object MYDATA
. The example calls the Embedded R Execution function ore.groupApply
, which partitions the data based on the partition column and then applies the lm
function to each partition.
N <- 200 k <- 5 myData <- data.frame(a=1:N,b=round(runif(N),2)) myData$partition <- sample(rep(1:k, each = N/k, length.out = N), replace = TRUE) MYDATA <- ore.push(myData) head(MYDATA) results <- ore.groupApply(MYDATA, MYDATA$partition, function(y) {lm(b~a,y)}, parallel = TRUE) length(results) results[[1]]Listing for This Example
R> N <- 200 R> k <- 5 R> myData <- data.frame(a=1:N,b=round(runif(N),2)) R> myData$partition <- sample(rep(1:k, each = N/k, + length.out = N), replace = TRUE) R> MYDATA <- ore.push(myData) R> head(MYDATA) a b partition 1 1 0.89 2 2 2 0.31 4 3 3 0.39 5 4 4 0.66 3 5 5 0.01 1 6 6 0.12 4 R> results <- ore.groupApply(MYDATA, MYDATA$partition, + function(y) {lm(b~a,y)}, parallel = TRUE) R> length(results) [1] 5 R> results[[1]] Call: lm(formula = b ~ a, data = y) Coefficients: (Intercept) a 0.388795 0.001015