9.3.7.2 Column-Parallel Use Case

The example uses the R summary function to compute in parallel summary statistics on the first four numeric columns of the iris data set.

Example 9-13 Using the ore.indexApply Function and Combining Results

The example combines the computations into a final result. The first argument to the ore.indexApply function is 4, which specifies the number of columns to summarize in parallel. The user-defined input function takes one argument, index, which will be a value between 1 and 4 and which specifies the column to summarize.

The example calls the summary function on the specified column. The summary invocation returns a single row, which contains the summary statistics for the column. The example converts the result of the summary invocation into a data.frame and adds the column name to it.

The example next uses the FUN.VALUE argument to the ore.indexApply function to define the structure of the result of the function. The result is then returned as an ore.frame object with that structure.

%r

res <- ore.indexApply(4,
      function(index) {
        ss <- summary(iris[, index])
        attr.names <- attr(ss, "names")
        stats <- data.frame(matrix(ss, 1, length(ss)))
        names(stats) <- attr.names
        stats$col <- names(iris)[index]
        stats
      },
      FUN.VALUE=data.frame(Min. = numeric(0),
        "1st Qu." = numeric(0),
        Median = numeric(0),
        Mean = numeric(0),
        "3rd Qu." = numeric(0),
        Max. = numeric(0),
        Col = character(0)), 
      parallel = TRUE)
res

The output is similar to the following:

Table 9-9 A data.frame: 4 x 7

Min. X1st.Qu. Median Mean X3rd.Qu. Max. Col
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
4.3 5.1 5.80 5.843333 6.4 7.9 Sepal.Length
2.0 2.8 3.00 3.057333 3.3 4.4 Sepal.Width
1.0 1.6 4.35 3.758000 5.1 6.9 Petal.Length
0.1 0.3 1.30 1.199333 1.8 2.5 Petal.Width

Listing for This Example

R> res <- ore.indexApply(4,
+       function(index) {
+         ss <- summary(iris[, index])
+         attr.names <- attr(ss, "names")
+         stats <- data.frame(matrix(ss, 1, length(ss)))
+         names(stats) <- attr.names
+         stats$col <- names(iris)[index]
+         stats
+       },
+       FUN.VALUE=data.frame(Min. = numeric(0),
+         "1st Qu." = numeric(0),
+         Median = numeric(0),
+         Mean = numeric(0),
+         "3rd Qu." = numeric(0),
+         Max. = numeric(0),
+         Col = character(0)),
+       parallel = TRUE)
R> res
  Min. X1st.Qu. Median  Mean X3rd.Qu. Max.          Col
1  2.0      2.8   3.00 3.057      3.3  4.4  Sepal.Width
2  4.3      5.1   5.80 5.843      6.4  7.9 Sepal.Length
3  0.1      0.3   1.30 1.199      1.8  2.5  Petal.Width
4  1.0      1.6   4.35 3.758      5.1  6.9 Petal.Length
Warning message:
ORE object has no unique key - using random order