Index
A
- ADMIN 6.2
- algorithms
- Apriori 9.8
- attribute importance 9.7
- Automated Machine Learning 10.1
- automatically selecting 10.5
- Automatic Data Preparation 9.5
- Decision Tree 9.9
- Expectation Maximization 9.10
- Explicit Semantic Analysis 9.11
- Exponential Smoothing 9.20
- Generalized Linear Model 9.12
- k-Means 9.13
- machine learning 9.1
- Minimum Description Length 9.7
- Naive Bayes 9.14
- Neural Network 9.15
- Non-Negative Matrix Factorization 9.19
- Random Forest 9.16
- settings common to all 9.3
- Singular Value Decomposition 9.17
- Support Vector Machine 9.18
- XGBoost 9.21
- algorithm selection class 10.2
- ALL_PYQ_DATASTORE_CONTENTS view 11.3.1
- ALL_PYQ_DATASTORES view 11.3.2
- ALL_PYQ_SCRIPTS view 11.4.1
- anomaly detection models 9.18
- Apriori algorithm 9.8
- attribute importance 9.7
- Automated Machine Learning
- about 10.1
- Automatic Data Preparation algorithm 9.5
- Automatic Machine Learning
- connection parameter 7.2.1
- Autonomous Database 7.1
C
- classes
- Automated Machine Learning 10.1
- GlobalFeatureImportance 9.6
- machine learning 9.1
- oml.ai 9.7
- oml.ar 9.8
- oml.automl.AlgorithmSelection 10.2
- oml.automl.FeatureSelection 10.3
- oml.automl.ModelSelection 10.5
- oml.automl.ModelTuning 10.4
- oml.dt 9.5, 9.9
- oml.em 9.10
- oml.esa 9.11
- oml.esm 9.20
- oml.glm 9.12
- oml.graphics 8.3
- oml.km 9.13
- oml.nb 9.14
- oml.nn 9.15
- oml.rf 9.16
- oml.svd 9.17
- oml.svm 9.18
- oml.xgb 9.21
- classification algorithm 9.16
- classification and regression algorithm 9.21
- classification and regression models 9.21
- classification models 9.5, 9.9, 9.12, 9.14, 9.15, 9.16, 9.18
- client
- Clustering algorithm 9.20
- clustering models 9.10, 9.11, 9.13
- Clustering models 9.20
- conda enviroment 6.2
- connection
- control arguments 11.5.1
- convert Python to SQL 2.3
- creating
- cx_Oracle.connect function 7.2.1
- cx_Oracle package 7.2.1
D
E
F
- feature extraction algorithm 9.11
- feature extraction class 9.17
- feature selection class 10.3
- function
- functions
- cx_Oracle.connect 7.2.1
- Embedded Python Execution 11.5.1
- for graphics 8.3
- for managing user-defined Python functions 11.5.7.1
- oml.boxplot 8.3
- oml.check_embed 7.2.1, 7.2.3
- oml.connect 7.2.1, 7.2.3
- oml.create 7.3.5
- oml.cursor 7.3.1, 7.3.5
- oml.dir 7.3.1, 7.3.4
- oml.disconnect 7.2.1, 7.2.3
- oml.do_eval 11.5.2
- oml.drop 7.3.5
- oml.ds.delete 7.4.6
- oml.ds.describe 7.4.5
- oml.ds.dir 7.4.4
- oml.ds.load 7.4.3
- oml.ds.save 7.4.2
- oml.grant 7.4.7
- oml.group_apply 11.5.4
- oml.hist 8.3
- oml.index_apply 11.5.6
- oml.isconnected 7.2.1, 7.2.3
- oml.row_apply 11.5.5
- oml.script.create 11.5.7.2
- oml.script.dir 11.5.7.3
- oml.script.drop 11.5.7.5
- oml.script.load 11.5.7.4
- oml.set_connection 7.2.1
- oml.sync 7.3.4
- oml.table_apply 11.5.3
- pyqEval 11.6.2
- pyqGroupEval 11.6.5
- pyqRowEval 11.6.4
- pyqTableEval 11.6.3
L
M
- machine learning
- classes 9.1
- methods
- Minimum Description Length algorithm 9.7
- models
- association rules 9.8
- attribute importance 9.7
- Clustering 9.20
- Decision Tree 9.5, 9.9
- Expectation Maximization 9.10
- explainability 9.6
- Explicit Semantic Analysis 9.11
- exporting and importing 9.4
- for anomaly detection 9.18
- for classification 9.5, 9.9, 9.12, 9.14, 9.15, 9.16, 9.18
- for classification and regression 9.21
- for clustering 9.10, 9.13
- for Clustering 9.20
- for feature extraction 9.11, 9.17
- for regression 9.12, 9.15, 9.18
- Generalized Linear Model 9.12
- k-Means 9.13
- Naive Bayes 9.14
- Neural Network 9.15
- Non-Negative Matrix Factorization 9.19
- parametric 9.12
- persisting 9.1
- Random Forest 9.16
- Singular Value Decomposition 9.17
- Support Vector Machine 9.18
- XGBoost 9.21
- model selection 10.5
- model tuning 10.4
- moving data
O
- oml_input_type argument 11.5.1
- oml_na_omit argument 11.5.1
- oml.ai class 9.7
- oml.ar class 9.8
- oml.automl.AlgorithmSelection class 10.2
- oml.automl.FeatureSelection class 10.3
- oml.automl.ModelSelection class 10.5
- oml.automl.ModelTuning class 10.4
- oml.boxplot function 8.3
- oml.check_embed function 7.2.1, 7.2.3
- oml.connect function 7.2.1, 7.2.3
- oml.create function 7.3.5
- oml.cursor function 7.3.1, 7.3.5
- oml.Datetime 8.2.7
- oml.dir function 7.3.1, 7.3.4
- oml.disconnect function 7.2.1, 7.2.3
- oml.do_eval function 11.5.2
- oml.drop function 7.3.5
- oml.ds.delete function 7.4.6
- oml.ds.describe function 7.4.5
- oml.ds.dir function 7.4.4
- oml.ds.load function 7.4.3
- oml.ds.save function 7.4.2
- oml.dt class 9.5, 9.9
- oml.em class 9.10
- oml.esa class 9.11
- oml.esm class 9.20
- oml.glm class 9.12
- oml.grant function 7.4.7
- oml.graphics class 8.3
- oml.group_apply function 11.5.4
- oml.hist function 8.3
- oml.index_apply function 11.5.6
- oml.Integer 8.2.7
- oml.isconnected function 7.2.1, 7.2.3
- oml.km class 9.13
- oml.nb class 9.14
- oml.nn class 9.15
- oml.push function 7.3.2
- oml.revoke function 7.4.7
- oml.rf class 9.16
- oml.row_apply function 11.5.5
- oml.script.create function 11.5.7.2
- oml.script.dir function 11.5.7.3
- oml.script.drop function 11.5.7.5
- oml.script.load function 11.5.7.4
- oml.set_connection function 7.2.1, 7.2.3
- oml.svd class 9.17
- oml.svm class 9.18
- oml.sync function 7.3.4
- oml.table_apply function 11.5.3
- oml.Timedelta 8.2.7
- oml.Timezone 8.2.7
- oml.xgb class 9.21
- OML4Py 2, 5.1
- Exadata 5.2.2
- on-premises client
- on-premises server
- on-premises system requirements 4.1
- Oracle Machine Learning Notebooks 7.1
- Oracle Machine Learning Python interpreter 7.1
- Oracle wallets
- about 7.2.2
- ore.nmf function 9.19
P
- packages
- supporting for Linux on-premises 4.3
- parallel processing 11.5.1
- parametric models 9.12
- PL/SQL procedures
- predict.proba method 9.14
- predict method 9.14
- privileges
- required 4.4.4
- proxy objects 2.3
- pull method 7.3.3
- PYQADMIN role 4.4.4
- pyqEval function 11.6.2
- pyqGrant function 11.6.6, 11.7.2.7
- pyqGroupEval function 11.6.5
- pyqRowEval function 11.6.4
- pyqTableEval function 11.6.3
- pyquser.sql script 4.4.5
- Python 5.1
- Python interpreter 7.1
- Python objects
- storing 7.4.1
- python packages 6.2
- Python to SQL conversion 2.3
S
- scoring new data 2.2, 9.1
- script repository
- scripts
- pyquser 4.4.5
- server
- installing for Linux on-premises 4.4.2
- settings
- about model 9.2
- Apriori algorithm 9.8
- association rules 9.8
- Automatic data preparation algorithm 9.5
- Decision Tree algorithm 9.9
- Expectation Maximization model 9.10
- Explicit Semantic Analysis algorithm 9.11
- Exponential Smoothing Model 9.20
- Generalized Linear Model algorithm 9.12
- k-Means algorithm 9.13
- Minimum Description Length algorithm 9.7
- Naive Bayes algorithm 9.14
- Neural Network algorithm 9.15
- Random Forest algorithm 9.16
- shared algorithm 9.3
- Singular Value Decomposition algorithm 9.17
- sttribute importance 9.7
- Support Vector Machine algorithm 9.18
- XGBoost algorithm 9.21
- special control arguments 11.5.1
- SQL APIs
- SQL to Python conversion 2.3
- supporting packages
- for Linux on-premises 4.3
- SVD model 9.17
- SVM models 9.18
- synchronizing database tables 7.3.4
- sys.pyqScriptCreate procedure 11.6.8
- sys.pyqScriptDrop procedure 11.6.9