Index

Numerics  A  C  D  E  F  G  I  K  L  M  N  O  P  R  S  T  U  V  W  X  

Numerics

  • 3rd party package 6.3
  • 3rd party packages 6.2

A

  • ADMIN 6.2
  • algorithms
    • Apriori 9.8
    • attribute importance 9.7
    • Automated Machine Learning 10.1
    • automatically selecting 10.5
    • Automatic Data Preparation 9.5
    • Decision Tree 9.9
    • Expectation Maximization 9.10
    • Explicit Semantic Analysis 9.11
    • Exponential Smoothing 9.21
    • Generalized Linear Model 9.12
    • k-Means 9.13
    • machine learning 9.1
    • Minimum Description Length 9.7
    • Naive Bayes 9.14
    • Neural Network 9.15
    • Non-Negative Matrix Factorization 9.20
    • ONNX 9.16
    • Random Forest 9.17
    • settings common to all 9.3
    • Singular Value Decomposition 9.18
    • Support Vector Machine 9.19
    • XGBoost 9.22
  • algorithm selection class 10.2
  • ALL_PYQ_DATASTORE_CONTENTS view 13.3.1
  • ALL_PYQ_DATASTORES view 13.3.2
  • ALL_PYQ_SCRIPTS view 13.4.1
  • anomaly detection models 9.19
  • Apriori algorithm 9.8
  • attribute importance 9.7
  • Automated Machine Learning
  • Automatic Data Preparation algorithm 9.5
  • Automatic Machine Learning
    • connection parameter 7.2.1
  • auto model search
    • automated model search 1.4
    • automatic model search 1.4
  • Autonomous Database 7.1

C


D

  • data
  • database
    • connecting to an on-premises 7.2.3
  • Data lineage
    • build_source
      • query used for build data 1.4
  • data parallel processing 13.5.1
  • datastores
  • Date Types 8.2.7
  • DCLI
  • Decision Tree algorithm 9.9
  • Distributed Command Line Interface 5.2
  • doc2vec 1.4
  • Download environment from object storage 6.3
  • dropping

E

  • Embedded Python Execution
  • EM model 9.10
  • ESA embeddings 1.4
  • ESA model 9.11
  • Exadata 5.1
  • Expectation Maximization 1.4
  • Expectation Maximization algorithm 9.10
  • explainability 9.6
  • Explicit Semantic Analysis algorithm 9.11
  • Exponential Smoothing Model 1.4, 9.21
  • export
  • exporting models 9.4

F


G

  • GLM link functions 1.4
  • GLM models 9.12
  • granting
  • graphics
    • rendering 8.3

I


K


L


M


N

  • Naive Bayes model 9.14
  • Neural Network model 9.15
  • NMF models 9.20

O


P


R

  • Random Forest algorithm 9.17
  • ranking
    • attribute importance 9.7
  • read privilege
    • granting or revoking 7.4.7
  • regression models 9.12, 9.15
  • resources
    • managing 14
  • revoking
    • access to scripts and datastores 7.4.7
  • roles

S

  • scoring new data 2.2, 9.1
  • script repository
    • granting or revoking access to 7.4.7
    • managing user-defined Python functions in 13.5.7.1
    • registering a user-defined function 13.5.7.1
  • scripts
  • server
  • setting
  • settings
    • about model 9.2
    • Apriori algorithm 9.8
    • association rules 9.8
    • Automatic data preparation algorithm 9.5
    • Decision Tree algorithm 9.9
    • Expectation Maximization model 9.10
    • Explicit Semantic Analysis algorithm 9.11
    • Exponential Smoothing Model 9.21
    • Generalized Linear Model algorithm 9.12
    • k-Means algorithm 9.13
    • Minimum Description Length algorithm 9.7
    • Naive Bayes algorithm 9.14
    • Neural Network algorithm 9.15
    • Random Forest algorithm 9.17
    • shared algorithm 9.3
    • Singular Value Decomposition algorithm 9.18
    • sttribute importance 9.7
    • Support Vector Machine algorithm 9.19
    • XGBoost algorithm 9.22
  • special control arguments 13.5.1
  • SQL APIs
  • SQL to Python conversion 2.3
  • supporting packages
  • SVD model 9.18
  • SVM models 9.19
  • synchronizing database tables 7.3.4
  • sys.pyqScriptCreate procedure 13.6.8
  • sys.pyqScriptDrop procedure 13.6.9

T


U


V


W

  • wallets
  • WINSORIZE 1.4

X

  • XGBoost algorithm 9.22
  • XGBoost constraints 1.4
  • XGBoost survival analysis 1.4