
Oracle® Machine Learning for Python
Use Case

Release 2.1 for Oracle Database 23ai
G33187-02
June 2025

Oracle Machine Learning for Python Use Case, Release 2.1 for Oracle Database 23ai

G33187-02

Copyright © 2025, 2025, Oracle and/or its affiliates.

Primary Author: Dhanish Kumar

Contributing Authors: Mark Hornick, Sherry Lamonica, Qin Wang, Yu Xiang

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Overview

1.1 Machine Learning Overview 1-1

1.1.1 What Is Machine Learning, AI, and Generative AI? 1-2

1.1.2 Benefits of Machine Learning 1-2

1.1.3 Define Your Business Problem 1-3

1.1.4 What Do You Want to Do? 1-4

1.1.5 Discover More Through Interfaces 1-5

1.2 Machine Learning Process 1-6

1.2.1 Oracle Machine Learning Process 1-6

1.2.2 Define Business Goals 1-7

1.2.3 Understand Data 1-8

1.2.4 Prepare Data 1-9

1.2.5 Develop Models 1-9

1.2.6 Evaluate 1-10

1.2.7 Deploy 1-10

1.3 Machine Learning Techniques and Algorithms 1-11

1.3.1 What is a Machine Learning Algorithm 1-11

1.3.2 Supervised Learning 1-11

1.3.3 Unsupervised Learning 1-12

2 Get Started

2.1 Access OML Notebooks 2-1

2.1.1 Access Oracle Machine Learning User Interface 2-1

2.1.2 Create a Notebook from the Example Templates 2-2

2.1.3 Edit Your Notebook Classic 2-3

2.2 Access Autonomous Database 2-5

2.2.1 Provision an Autonomous Database 2-6

2.2.2 Create and Update User Accounts for Oracle Machine Learning Components on
Autonomous Database 2-6

2.2.3 Create User 2-6

2.2.4 Add Existing Database User Account to Oracle Machine Learning Components 2-8

iii

3 Use Cases

3.1 Regression Use case 3-1

3.1.1 Load Data 3-2

3.1.1.1 Import Data 3-3

3.1.2 Explore Data 3-5

3.1.2.1 Data Preparation 3-9

3.1.3 Build Model 3-17

3.1.4 Evaluate 3-18

3.2 Classification Use Case 3-22

3.2.1 Load Data 3-24

3.2.2 Explore Data 3-24

3.2.3 Build Model 3-28

3.2.4 Evaluate 3-30

3.3 Clustering Use Case 3-36

3.3.1 Load Data 3-38

3.3.2 Explore Data 3-38

3.3.3 Build Model 3-43

3.3.4 Evaluate 3-45

3.4 Time Series Use Case 3-53

3.4.1 Access Data 3-54

3.4.2 Explore Data 3-55

3.4.3 Build Model 3-58

3.4.4 Evaluate 3-59

4 Reference

4.1 About Machine Learning Classes and Algorithms 4-1

4.2 About Model Settings 4-3

4.3 Shared Settings 4-4

Index

iv

1
Overview

• Machine Learning Overview
Machine Learning (ML) is a technique of data analysis that lets computers learn from and
base decisions on data without direct programming. It uses algorithms to find patterns, get
better over time, and automate tasks making it necessary to solve hard data-driven
problem

• Machine Learning Process
The lifecycle of a machine learning project is divided into six phases. The process begins
by defining a business problem and restating the business problem in terms of a machine
learning objective. The end goal of a machine learning process is to produce accurate
results for solving your business problem.

• Machine Learning Techniques and Algorithms
Machine learning problems are categorized into mining techniques. Each machine learning
function specifies a class of problems that can be modeled and solved. An algorithm is a
mathematical procedure for solving a specific kind of problem.

1.1 Machine Learning Overview
Machine Learning (ML) is a technique of data analysis that lets computers learn from and base
decisions on data without direct programming. It uses algorithms to find patterns, get better
over time, and automate tasks making it necessary to solve hard data-driven problem

Machine learning helps businesses make faster, smarter decisions by uncovering insights from
large data sets. It enables automation, enhances customer experiences, optimizes operations,
and supports predictive capabilities, leading to cost savings, efficiency, and competitive
advantage across various industries.

• What Is Machine Learning, AI, and Generative AI?
Machine learning is a subset of Artificial Intelligence (AI) that focuses on building systems
that learn or improve performance based on the data they consume.

• Benefits of Machine Learning
Machine learning is a powerful technology that can help you find patterns and relationships
within your data.

• Define Your Business Problem
Enterprises face problems such as classifying documents, predicting the financial
outcomes, detecting hidden patterns and anomalies, and so on. Machine learning can help
solve such problems provided that you have clear understanding of the business problem
with enough data and learn to ask the right questions to obtain meaningful results.

• What Do You Want to Do?
Multiple machine learning techniques, also referred to as "mining function", are available
through Oracle Database and Oracle Autonomous Database. Depending on your business
problem, you can identify the appropriate mining function, or combination of mining
functions, and select the algorithm or algorithms that may best support the solution.

1-1

• Discover More Through Interfaces
Oracle supports programming language interfaces for SQL, R, and Python, and no-code
user interfaces such as OML AutoML UI and Oracle Data Miner, and REST model
management and deployment through OML Services.

1.1.1 What Is Machine Learning, AI, and Generative AI?
Machine learning is a subset of Artificial Intelligence (AI) that focuses on building systems that
learn or improve performance based on the data they consume.

Machine learning is a technique that discovers previously unknown relationships in data. Some
relationships may be known, but the algorithm learns those patterns, example, for inferencing.
Machine learning and AI are often discussed together. An important distinction is that although
all machine learning is AI, not all AI is machine learning. Artificial intelligence refers to the
implementation and study of systems that exhibit autonomous intelligence or behavior of their
own. Machine learning deals with techniques that enable devices to learn from their own
performance and modify their own functioning. Machine learning automatically searches
potentially large stores of data to discover patterns and trends that go beyond simple statistical
analysis. Machine learning uses sophisticated algorithms that identify patterns in data creating
models. Those models can be used to make predictions and forecasts, and categorize data.

To compare machine learning with Generative AI (GenAI), GenAI is specifically designed for
producing new content like text, code, or images by generative AI models, which are trained on
vast data sets to create original outputs based on patterns they learn; essentially, one is about
making predictions based on data, while the other is about creating new data based on learned
patterns. Oracle Machine Learning concentrates on traditional machine learning tasks like
prediction and classification using established algorithms.

The key features of machine learning are:

• Automatic discovery of patterns

• Prediction of likely outcomes

• Creation of actionable information

• Ability to analyze potentially large volumes of data

Machine learning can answer questions that cannot be addressed through traditional deductive
query and reporting techniques.

1.1.2 Benefits of Machine Learning
Machine learning is a powerful technology that can help you find patterns and relationships
within your data.

Find trends and patterns: Machine learning discovers hidden information in your data. You
might already be aware of important patterns as a result of working with your data over time.
Machine learning can confirm or qualify such empirical observations in addition to finding new
patterns that are not immediately distinguishable through simple observation. Machine learning
can discover predictive relationships that are not causal relationships. For example, machine
learning might determine that males with incomes between $50,000 and $65,000 who
subscribe to certain magazines are likely to buy a given product. You can use this information
to help you develop a marketing strategy. Machine learning plays a pivotal role in credit risk
assessments by helping financial institutions predict the likelihood of a borrower defaulting on a
loan or credit. By analyzing historical data, machine learning models can identify patterns and
relationships between various factors (for example, income, credit history, debt levels, and
employment status) that contribute to a borrower's creditworthiness.

Chapter 1
Machine Learning Overview

1-2

Make data-driven decisions: Many companies have big data and extracting meaningful
information from that data is important in making data driven business decisions. By leveraging
machine learning algorithms, organizations are able to transform data into knowledge and
actionable intelligence. With the changing demands, companies are able to make better
decisions faster by using machine learning techniques.

Recommend products: Machine learning results can also be used to influence customer
decisions by promoting or recommending relevant and useful products based on behavior
patterns of customers online or their response to a marketing campaign.

Detect fraud, anomalies, and security risks: The Financial Services sector has benefited
from machine learning algorithms and techniques by discovering unusual patterns or fraud and
responding to new fraud behaviors much more quickly. Today companies and governments are
conducting business and sharing information online. In such cases, network security is a
concern. Machine learning can help in detecting anomalous behavior and automatically take
corrective actions.

Provide retail analysis: Machine learning helps to analyze customer purchase patterns to
provide promotional offers for target customers. This service ensures superior customer
experience and improves customer loyalty.

Transform healthcare: Machine learning in medical use is becoming common, helping
patients and doctors. Advanced machine learning techniques are used in radiology to make an
intelligent decision by reviewing images such as radiographs, CT, MRI, PET images, and
radiology reports. It is reported that machine learning-based automatic detection and diagnosis
are on par or better than the diagnosis of an actual radiologist. Some of the machine learning
applications are trained to detect breast cancer. Another common use of machine learning in
the medical field is that of automated billing. Some applications using machine learning can
also point out patient's risk for various conditions such as stroke, diabetes, coronary artery
diseases, and kidney failures and recommend medication or procedure that may be necessary.

To summarize, machine learning can:

• easily identify trends and patterns

• simplify product marketing and sales forecast

• facilitate early anomaly detection

• minimize manual intervention by "learning"

• handle multidimensional data

1.1.3 Define Your Business Problem
Enterprises face problems such as classifying documents, predicting the financial outcomes,
detecting hidden patterns and anomalies, and so on. Machine learning can help solve such
problems provided that you have clear understanding of the business problem with enough
data and learn to ask the right questions to obtain meaningful results.

You require skills in preparing data, applying ML techniques, and evaluating results. The
patterns you find through machine learning may be very different depending on how you
formulate the problem. For example, rather than trying to learn how to "improve the response
to a direct mail campaign," you might try to find the characteristics of people who have
responded to your campaigns in the past. You can then classify if a given profile of a prospect
would respond to a direct email campaign.

Many forms of machine learning are predictive. For example, a model can predict income level
based on education and other demographic factors. Predictions have an associated probability
(How likely is this prediction to be true?). Prediction probabilities are also known as confidence

Chapter 1
Machine Learning Overview

1-3

(How confident can I be of this prediction?). Some forms of predictive machine learning
generate rules, which are conditions that imply a given outcome. For example, a rule can
specify that a person who has a bachelor's degree and lives in a certain neighborhood is likely
to have an income greater than the regional average. Rules have an associated support (What
percentage of the population satisfies the rule?).

Other forms of machine learning identify groupings in the data. For example, a model might
identify the segment of the population that has an income within a specified range, that has a
good driving record, and that leases a new car on a yearly basis.

1.1.4 What Do You Want to Do?
Multiple machine learning techniques, also referred to as "mining function", are available
through Oracle Database and Oracle Autonomous Database. Depending on your business
problem, you can identify the appropriate mining function, or combination of mining functions,
and select the algorithm or algorithms that may best support the solution.

For some mining functions, you can choose from among multiple algorithms. For specific
problems, one technique or algorithm may be a better fit than the other or more than one
algorithm can be used to solve the problem.

The following diagram provides a basic idea on how to select machine learning techniques that
are available across Oracle Database and Oracle Autonomous Database.

Figure 1-1 Machine Learning Techniques

Machine Learning Techniques

What do
you want

to do?

Identify frequently
occurring pa�erns

and rules

Predict numeric
values

Determine important
 a�ributes

Identify unusual
cases

Predict likely
categories

Discover groups

Derive new
features

Classification

Time Series

Regression

A�ribute
Importance

Forecast
sequential data

Clustering

Feature
Extraction

Anomaly
Detection

Row ImportanceAssociation

Identify the most
influential rows

Chapter 1
Machine Learning Overview

1-4

OML provides machine learning capabilities within Oracle Database by offering a broad set of
in-database algorithms to perform a variety of machine learning techniques such as
Classification, Regression, Clustering, Feature Extraction, Anomaly Detection, Association
(Market Basket Analysis), and Time Series. Others include Attribute Importance, Row
Importance, and Ranking. OML uses built-in features of Oracle Database to maximize
scalability, improved memory, and performance. OML is also integrated with open source
languages such as Python and R. Through the use of open source packages from R and
Python, users can extend this set of techniques and algorithms in combination with embedded
execution from OML4Py and OML4R.

1.1.5 Discover More Through Interfaces
Oracle supports programming language interfaces for SQL, R, and Python, and no-code user
interfaces such as OML AutoML UI and Oracle Data Miner, and REST model management and
deployment through OML Services.

Oracle Machine Learning Notebooks (OML Notebooks) is based on Apache Zeppelin
technology enabling you to perform machine learning in Oracle Autonomous Database
(Autonomous Data Warehouse (ADW), Autonomous Transactional Database (ATP), and
Autonomous JSON Database (AJD)). OML Notebooks helps users explore, visualize, and
prepare data, and develop and document analytical methodologies.

AutoML User Interface (AutoML UI) is an Oracle Machine Learning interface that provides you
no-code automated machine learning. When you create and run an experiment in AutoML UI, it
automatically performs algorithm and feature selection, as well as model tuning and selection,
thereby enhancing productivity as well as model accuracy and performance. Business users
without extensive data science background can use AutoML UI to create and deploy machine
learning models.

Oracle Machine Learning Services (OML Services) extends OML functionality to support model
deployment and model lifecycle management for both in-database OML models and third-party
Open Neural Networks Exchange (ONNX) format machine learning models through REST
APIs. The REST API for Oracle Machine Learning Services provides REST API endpoints
hosted on Oracle Autonomous Database. These endpoints enable you to store machine
learning models along with its metadata, and create scoring endpoints for the model.

Oracle Machine Learning for Python (OML4Py) enables you to run Python commands and
scripts for data transformations and for statistical, machine learning, and graphical analysis on
data stored in or accessible through Oracle Autonomous Database service using a Python API.
OML4Py is a Python module that enables Python users to manipulate data in database tables
and views using Python syntax. OML4Py functions and methods transparently translate a
select set of Python functions into SQL for in-database execution. OML4Py users can use
Automated Machine Learning (AutoML) to enhance user productivity and machine learning
results through automated algorithm and feature selection, as well as model tuning and
selection. Users can use Embedded Python Execution to run user-defined Python functions in
Python engines spawned by the Autonomous Database environment.

Oracle Machine Learning for R (OML4R) provides a database-centric environment for end-to-
end analytical processes in R, with immediate deployment of user-defined R functions to
production environments. OML4R is a set of R packages and Oracle Database features that
enable an R user to operate on database-resident data without using SQL and to run user-
defined R functions, also referred to as "scripts",in one or more database-controlled R engines.
OML4R is included with Oracle Database and Oracle Database Cloud Service.

Oracle Machine Learning for SQL (OML4SQL) provides SQL access to powerful, in-database
machine learning algorithms. You can use OML4SQL to build and deploy predictive and
descriptive machine learning models that can add intelligent capabilities to applications and

Chapter 1
Machine Learning Overview

1-5

dashboards. OML4SQL is included with Oracle Database, Oracle Database Cloud Service,
and Oracle Autonomous Database.

Oracle Data Miner (ODMr) is an extension to Oracle SQL Developer. Oracle Data Miner is a
graphical user interface to discover hidden patterns, relationships, and insights in data. ODMr
provides a drag-and-drop workflow editor to define and capture the steps that users take to
explore and prepare data and apply machine learning technology.

1.2 Machine Learning Process
The lifecycle of a machine learning project is divided into six phases. The process begins by
defining a business problem and restating the business problem in terms of a machine learning
objective. The end goal of a machine learning process is to produce accurate results for
solving your business problem.

• Oracle Machine Learning Process
The machine learning process illustration is based on the Cross-Industry Standard Process
for Data Mining (CRISP-DM) methodology. Each stage is illustrated with points that
summarize the key tasks. The CRISP-DM methodology is the most a commonly used
methodology for machine learning.

• Define Business Goals
The first phase of machine learning process is to define business objectives. This initial
phase of a project focuses on understanding the project objectives and requirements.

• Understand Data
The data understanding phase involves data collection and exploration which includes
loading the data and analyzing the data for your business problem.

• Prepare Data
The preparation phase involves finalizing the data and covers all the tasks involved in
making the data in a format that you can use to build the model.

• Develop Models
In this phase, you select and apply various modeling techniques and tune the algorithm
parameters, called hyperparameters, to desired values.

• Evaluate
At this stage of the project, it is time to evaluate how well the model satisfies the originally-
stated business goal.

• Deploy
Deployment is the use of machine learning within a target environment. In the deployment
phase, one can derive data driven insights and actionable information.

1.2.1 Oracle Machine Learning Process
The machine learning process illustration is based on the Cross-Industry Standard Process for
Data Mining (CRISP-DM) methodology. Each stage is illustrated with points that summarize the
key tasks. The CRISP-DM methodology is the most a commonly used methodology for
machine learning.

The following are the phases of the machine learning process:

• Define business goals

• Understand data

• Prepare data

Chapter 1
Machine Learning Process

1-6

• Develop models

• Evaluate

• Deploy

Each of these phases are described separately. The following figure illustrates machine
learning process.

Figure 1-2 Machine Learning Process

• Plan enterprise deployment.
• Integrate models for business
 needs.
• Monitor and maintain models.
• Report on model effectiveness

Deploy

Evaluate

• Review business objectives.
• Assess results against success
 criteria.
• Determine next steps.

Define Business Goals

• Specify objectives.
• Determine ML goals.
• Define success criteria.
• Produce project plan.

Understand Data

• Access and collect data.
• Explore data.
• Assess data quality.

Prepare Data

• Clean, join and select data.
• Transform data.
• Engineer new features.

Develop Models

• Explore different algorithms.
• Build, tune and evaluate
 models

Data

Related Topics

• https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-
ensure-a-good-outcome

• https://www.sv-europe.com/crisp-dm-methodology/

1.2.2 Define Business Goals
The first phase of machine learning process is to define business objectives. This initial phase
of a project focuses on understanding the project objectives and requirements.

Chapter 1
Machine Learning Process

1-7

https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome
https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome
https://www.sv-europe.com/crisp-dm-methodology/

Once you have specified the problem from a business perspective, you can formulate it as a
machine learning problem and develop a preliminary implementation plan. Identify success
criteria to determine if the machine learning results meet the business goals defined. Machine
learning can help solve problems provided that you have clear understanding of the business
problem with enough data and learn to ask the right questions to obtain meaningful results.
The patterns you find through machine learning may be very different depending on how you
formulate the problem. For example, rather than trying to learn how to "improve the response
to a direct mail campaign," you might try to find the characteristics of people who have
responded to your campaigns in the past. You can then classify if a given profile of a prospect
would respond to a direct email campaign.

Another example, your business problem might be: "How can I sell more of my product to
customers?" You might translate this into a machine learning problem such as: "Which
customers are most likely to purchase the product?" A model that predicts who is most likely to
purchase the product is typically built on data that describes the customers who have
purchased the product in the past.

To summarize, in this phase, you will:

• Specify objectives

• Determine machine learning goals

• Define success criteria

• Produce project plan

1.2.3 Understand Data
The data understanding phase involves data collection and exploration which includes loading
the data and analyzing the data for your business problem.

Assess the various data sources and formats. Load data into appropriate data management
tools, such as Oracle Database. Explore relationships in data so it can be properly integrated.
Query and visualize the data to address specific data mining questions such as distribution of
attributes, relationship between pairs or small number of attributes, and perform simple
statistical analysis.

Many forms of machine learning are predictive. For example, a model can predict income level
based on education and other demographic factors. Predictions have an associated probability
(How likely is this prediction to be true?). Prediction probabilities are also known as confidence
(How confident can I be of this prediction?). Some forms of predictive machine learning
generate rules, which are conditions that imply a given outcome. For example, a rule can
specify that a person who has a bachelor's degree and lives in a certain neighborhood is likely
to have an income greater than the regional average. Rules have an associated support (What
percentage of the population satisfies the rule?).

Other forms of machine learning identify groupings in the data. For example, a model might
identify the segment of the population that has an income within a specified range, that has a
good driving record, and that leases a new car on a yearly basis.

As you take a closer look at the data, you can determine how well it can be used to addresses
the business problem. You can then decide to remove some of the data or add additional data.
This is also the time to identify data quality problems such as:

• Is the data complete?

• Are there missing values in the data?

• What types of errors exist in the data and how can they be corrected?

Chapter 1
Machine Learning Process

1-8

To summarize, in this phase, you will:

• Access and collect data

• Explore data

• Assess data quality

1.2.4 Prepare Data
The preparation phase involves finalizing the data and covers all the tasks involved in making
the data in a format that you can use to build the model.

Data preparation tasks are likely to be performed multiple times, iteratively, and not in any
prescribed order. Tasks can include column (attributes) selection as well as selection of rows in
a table. You may create views to join data or materialize data as required, especially if data is
collected from various sources. To cleanse the data, look for invalid values, foreign key values
that don't exist in other tables, and missing and outlier values. To refine the data, you can apply
transformations such as aggregations, normalization, generalization, and attribute
constructions needed to address the machine learning problem. For example, you can
transform a DATE_OF_BIRTH column to AGE; you can insert the median income in cases where
the INCOME column is null; you can filter out rows representing outliers in the data or filter
columns that have too many missing or identical values.

Additionally you can add new computed attributes in an effort to tease information closer to the
surface of the data. This process is referred as Feature Engineering. For example, rather than
using the purchase amount, you can create a new attribute: "Number of Times Purchase
Amount Exceeds $500 in a 12 month time period." Customers who frequently make large
purchases can also be related to customers who respond or don't respond to an offer.

Thoughtful data preparation and feature engineering that capture domain knowledge can
significantly improve the patterns discovered through machine learning. Enabling the data
professional to perform data assembly, data preparation, data transformations, and feature
engineering inside the Oracle Database is a significant distinction for Oracle.

Note:

Oracle Machine Learning supports Automatic Data Preparation (ADP), which greatly
simplifies the process of data preparation.

To summarize, in this phase, you will:

• Clean, join, and select data

• Transform data

• Engineer new features

Related Topics

• Oracle Machine Learning for SQL User’s Guide

1.2.5 Develop Models
In this phase, you select and apply various modeling techniques and tune the algorithm
parameters, called hyperparameters, to desired values.

Chapter 1
Machine Learning Process

1-9

If the algorithm requires specific data transformations, then you need to step back to the
previous phase to apply them to the data. For example, some algorithms allow only numeric
columns such that string categorical data must be "exploded" using one-hot encoding prior to
modeling. In preliminary model building, it often makes sense to start with a sample of the data
since the full data set might contain millions or billions of rows. Getting a feel for how a given
algorithm performs on a subset of data can help identify data quality issues and algorithm
setting issues sooner in the process reducing time-to-initial-results and compute costs. For
supervised learning problem, data is typically split into train (build) and test data sets using an
80-20% or 60-40% distribution. After splitting the data, build the model with the desired model
settings. Use default settings or customize by changing the model setting values. Settings can
be specified through OML's PL/SQL, R and Python APIs. Evaluate model quality through
metrics appropriate for the technique. For example, use a confusion matrix, precision, and
recall for classification models; RMSE for regression models; cluster similarity metrics for
clustering models and so on.

Automated Machine Learning (AutoML) features may also be employed to streamline the
iterative modeling process, including algorithm selection, attribute (feature) selection, and
model tuning and selection.

To summarize, in this phase, you will:

• Explore different algorithms

• Build, evaluate, and tune models

Related Topics

• Oracle Machine Learning for SQL User’s Guide

1.2.6 Evaluate
At this stage of the project, it is time to evaluate how well the model satisfies the originally-
stated business goal.

During this stage, you will determine how well the model meets your business objectives and
success criteria. If the model is supposed to predict customers who are likely to purchase a
product, then does it sufficiently differentiate between the two classes? Is there sufficient lift?
Are the trade-offs shown in the confusion matrix acceptable? Can the model be improved by
adding text data? Should transactional data such as purchases (market-basket data) be
included? Should costs associated with false positives or false negatives be incorporated into
the model?

It is useful to perform a thorough review of the process and determine if important tasks and
steps are not overlooked. This step acts as a quality check based on which you can determine
the next steps such as deploying the project or initiate further iterations, or test the project in a
pre-production environment if the constraints permit.

To summarize, in this phase, you will:

• Review business objectives

• Assess results against success criteria

• Determine next steps

1.2.7 Deploy
Deployment is the use of machine learning within a target environment. In the deployment
phase, one can derive data driven insights and actionable information.

Chapter 1
Machine Learning Process

1-10

Deployment can involve scoring (applying a model to new data), extracting model details (for
example the rules of a decision tree), or integrating machine learning models within
applications, data warehouse infrastructure, or query and reporting tools.

Because Oracle Machine Learning builds and applies machine learning models inside Oracle
Database, the results are immediately available. Reporting tools and dashboards can easily
display the results of machine learning. Additionally, machine learning supports scoring single
cases or records at a time with dynamic, batch, or real-time scoring. Data can be scored and
the results returned within a single database transaction. For example, a sales representative
can run a model that predicts the likelihood of fraud within the context of an online sales
transaction.

To summarize, in this phase, you will:

• Plan enterprise deployment

• Integrate models with application for business needs

• Monitor, refresh, retire, and archive models

• Report on model effectiveness

Related Topics

• Oracle Machine Learning for SQL User’s Guide

1.3 Machine Learning Techniques and Algorithms
Machine learning problems are categorized into mining techniques. Each machine learning
function specifies a class of problems that can be modeled and solved. An algorithm is a
mathematical procedure for solving a specific kind of problem.

• What is a Machine Learning Algorithm
An algorithm is a mathematical procedure for solving a specific kind of problem. For some
machine learning techniques, you can choose among several algorithms.

• Supervised Learning
Supervised learning is also known as directed learning. The learning process is directed by
a previously known dependent attribute or target.

• Unsupervised Learning
Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

1.3.1 What is a Machine Learning Algorithm
An algorithm is a mathematical procedure for solving a specific kind of problem. For some
machine learning techniques, you can choose among several algorithms.

Each algorithm produces a specific type of model, with different characteristics. Some machine
learning problems can best be solved by using more than one algorithm in combination. For
example, you might first use a feature extraction model to create an optimized set of
predictors, then a classification model to make a prediction on the results.

1.3.2 Supervised Learning
Supervised learning is also known as directed learning. The learning process is directed by a
previously known dependent attribute or target.

Chapter 1
Machine Learning Techniques and Algorithms

1-11

Supervised machine learning attempts to explain the behavior of the target as a function of a
set of independent attributes or predictors. Supervised learning generally results in predictive
models.

The building of a supervised model involves training, a process whereby the software analyzes
many cases where the target value is already known. In the training process, the model
"learns" the patterns in the data that enable making predictions. For example, a model that
seeks to identify the customers who are likely to respond to a promotion must be trained by
analyzing the characteristics of many customers who are known to have responded or not
responded to a promotion in the past.

Oracle Machine Learning supports the following supervised machine learning techniques:

Table 1-1 Supervised Machine Learning Techniques

Function Description Sample Problem Supported Algorithms

Feature Selection or
Attribute Importance

Identifies the attributes
that are most important
in predicting a target
attribute

Given customer
response to an affinity
card program, find the
most significant
predictors

• cur Matrix
Decomposition

• Expectation
Maximization

• Minimum
Description Length

Classification Assigns items to discrete
classes and predicts the
class to which an item
belongs

Given demographic data
about a set of
customers, predict
customer response to an
affinity card program

• Decision Tree
• Explicit Semantic

Analysis
• XGBoost
• Generalized Linear

Model
• Naive Bayes
• Neural Network
• Random Forest
• Support Vector

Machine

Regression Approximates and
forecasts continuous
values

Given demographic and
purchasing data about a
set of customers, predict
customers' age

• XGBoost
• Generalized Linear

Model
• Neural Network
• Support Vector

Machine

Ranking Predicts the probability
of one item over other
items

Recommend products to
online customers based
on their browsing history

XGBoost

Time Series Forecasts target value
based on known history
of target values taken at
equally spaced points in
time

Predict the length of the
ocean waves, address
tactical issues such as
projecting costs,
inventory requirements
and customer
satisfaction, and so on.

Exponential Smoothing

1.3.3 Unsupervised Learning
Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in building
the model.

Chapter 1
Machine Learning Techniques and Algorithms

1-12

Unsupervised learning can be used for descriptive purposes. In unsupervised learning, the
goal is pattern detection. It can also be used to make predictions.

Oracle Machine Learning supports the following unsupervised machine learning techniques:

Table 1-2 Unsupervised Machine Learning Techniques

Technique Description Sample Problem Supported Algorithms

Anomaly Detection Identifies rows (cases,
examples) that do not
satisfy the
characteristics of
"normal" data

Given demographic data
about a set of
customers, identify
which customer
purchasing behaviors
are unusual in the
dataset, which may be
indicative of fraud.

• One-Class SVM
• Multivariate State

Estimation
Technique -
Sequential
Probability Ratio
Test

Association Finds items that tend to
co-occur in the data and
specifies the rules that
govern their co-
occurrence

Find the items that tend
to be purchased together
and specify their
relationship

Apriori

Clustering Finds natural groupings
in the data

Segment demographic
data into clusters and
rank the probability that
an individual belongs to
a given cluster

• Expectation
Maximization

• k-Means
• O-Cluster

Feature Extraction Creates new attributes
(features) using linear
combinations of the
original attributes

Given demographic data
about a set of
customers, transform the
original attributes into
fewer new attributes.

• Explicit Semantic
Analysis

• Non-Negative Matrix
Factorization

• PCA scoring
• Singular Value

Decomposition

Row Importance Row importance
technique is used in
dimensionality reduction
of large data sets. Row
importance identifies the
most influential rows of
the data set.

Given a data set, select
rows that meet a
minimum importance
value prior to model
building.

cur Matrix
Decomposition

Chapter 1
Machine Learning Techniques and Algorithms

1-13

2
Get Started

• Access OML Notebooks
To perform Oracle Machine Learning tasks, you can access Oracle Machine Learning
Notebooks from Autonomous Database

• Access Autonomous Database
Oracle Autonomous Database is a family of self-driving, self-securing, and self-repairing
cloud services. You can sign up for an Oracle Cloud Free Tier account and create a
database instance.

2.1 Access OML Notebooks
To perform Oracle Machine Learning tasks, you can access Oracle Machine Learning
Notebooks from Autonomous Database

• Access Oracle Machine Learning User Interface
You can access Oracle Machine Learning User Interface from Autonomous Database.

• Create a Notebook from the Example Templates
Using the Oracle Machine Learning Example Templates, you can create a notebook from
the available templates.

• Edit Your Notebook Classic
Upon creating an OML Notebook Classic, it opens automatically, presenting you with a
single paragraph using the default %sql interpreter. You can change the interpreter by
explicitly specifying one of %script, %python, %sql , %r , %md or %conda.

2.1.1 Access Oracle Machine Learning User Interface
You can access Oracle Machine Learning User Interface from Autonomous Database.

To access Oracle Machine Learning User Interface (UI) from Autonomous Database:

1. Select your Autonomous Database instance and on the Autonomous Database details
page click Database Actions.

2-1

Figure 2-1 Database Actions

2. On the Database Actions page, go to the Development section and click Oracle Machine
Learning. The Oracle Machine Learning sign in page opens.

Figure 2-2 Oracle Machine Learning option on Database Actions - Development tab

3. On the Oracle Machine Learning sign in page, enter your username and password.

4. Click Sign In.

This opens the Oracle Machine Learning user application.

2.1.2 Create a Notebook from the Example Templates
Using the Oracle Machine Learning Example Templates, you can create a notebook from the
available templates.

To create a notebook:

1. On the Example Templates page, select the template based on which you want to create a
notebook.

2. Click New Notebook.

Chapter 2
Access OML Notebooks

2-2

The Create Notebook dialog box opens.

3. In the Create Notebook dialog, the name of the selected template appears. In the Name
field, you can change the notebook name.

4. In the Comment field, if any comment is available for the template, then it is displayed.
You can edit the comment.

5. In the Project field, click the edit icon .

6. Select the project in which you want to save the notebook.

7. In the Connection field, the default connection is selected.

8. Click OK.

The notebook is created and is available on the Notebooks page.

2.1.3 Edit Your Notebook Classic
Upon creating an OML Notebook Classic, it opens automatically, presenting you with a single
paragraph using the default %sql interpreter. You can change the interpreter by explicitly
specifying one of %script, %python, %sql , %r , %md or %conda.

Set the context with a project with which your notebook is associated.

You can edit an existing Notebook Classic in your project. To edit an existing Notebook Classic:

1. On Oracle Machine Learning UI home page, select the project in which your notebook is
available.

2. Go to the Oracle Machine Learning UI navigator, and select Notebooks Classic. All
notebooks that are available in the project are listed.

3. Click the notebook that you want to open and edit.

The selected notebook opens in edit mode.

Chapter 2
Access OML Notebooks

2-3

4. In the edit mode, you can use the Oracle Machine Learning Notebooks Classic toolbar
options to run code in paragraphs, for configuration settings, and display options.

Figure 2-3 Notebook toolbar

You can perform the following tasks:

• Write code to fetch data

• Click to run one or all paragraphs in the notebook.

• Click to hide all codes from all the paragraphs in the notebook. Click it again to
display the codes.

• Click to hide all outputs from all the paragraphs in the notebook. Click it again
to view the outputs.

• Click to remove all outputs from all the paragraphs in the notebook. To view
the output, click the run icon again.

• Click to delete all the paragraphs in the notebook.

• Click to export the notebook.

• Click to search any information in the codes present in the notebook.

• Click to view the list of keyboard shortcuts.

Chapter 2
Access OML Notebooks

2-4

• Click to set the order for interpreter bindings for the notebook.

• Click to select one of the three notebook display options.

– Click default to view the codes, output, and metadata in all paragraphs in the
notebook.

– Click Simple to view only the code and output in all paragraphs in the notebook. In
this view, the notebook toolbar and all edit options are hidden. You must hover
your mouse to view the edit options.

– Click Report to view only the output in all paragraphs in the notebook.

• Click to access paragraph specific edit options such as clear output, remove
paragraph, adjust width, font size, run all paragraphs above or below the selected
paragraph and so on.

• Add dynamic forms such as the Text Input form, Select form, Check box form for easy
selection of inputs and easy filtering of data in your notebook. Oracle Machine
Learning supports the following Apache Zeppelin dynamic forms:

– Text Input form — Allows you to create a simple form for text input.

– Select form — Allows you to create a form containing a range of values that the
user can select.

– Check Box form — Allows you to insert check boxes for multiple selection of
inputs.

Note:

The Apache Zeppelin dynamic forms are supported only on SQL interpreter
notebooks.

5. Once you have finished editing the notebook, click Back.

This takes you back to the Notebooks Classic page.

2.2 Access Autonomous Database
Oracle Autonomous Database is a family of self-driving, self-securing, and self-repairing cloud
services. You can sign up for an Oracle Cloud Free Tier account and create a database
instance.

• Provision an Autonomous Database
A LiveLabs workshop (a set of labs) that teaches you to manage and monitor Autonomous
Database (ADB) is available. A part of the workshop aims to provision an Autonomous
Database instance on Oracle Cloud.

Chapter 2
Access Autonomous Database

2-5

• Create and Update User Accounts for Oracle Machine Learning Components on
Autonomous Database
An administrator can add an existing database user account to use with Oracle Machine
Learning components or create a new user account and user credentials with the Oracle
Machine Learning User Management interface.

• Create User
An administrator creates new user accounts and user credentials for Oracle Machine
Learning in Database Actions.

• Add Existing Database User Account to Oracle Machine Learning Components
As the ADMIN user you can add an existing database user account to provide access to
Oracle Machine Learning components.

2.2.1 Provision an Autonomous Database
A LiveLabs workshop (a set of labs) that teaches you to manage and monitor Autonomous
Database (ADB) is available. A part of the workshop aims to provision an Autonomous
Database instance on Oracle Cloud.

Manage and Monitor Autonomous Database

2.2.2 Create and Update User Accounts for Oracle Machine Learning
Components on Autonomous Database

An administrator can add an existing database user account to use with Oracle Machine
Learning components or create a new user account and user credentials with the Oracle
Machine Learning User Management interface.

2.2.3 Create User
An administrator creates new user accounts and user credentials for Oracle Machine Learning
in Database Actions.

To create a user account:

1. On the Autonomous Databases page, under the Display Name column, select an
Autonomous Database.

2. On the Autonomous Database Details page, select Database Actions and click Database
Users.

3. On the Database Users page, in the All Users area click + Create User.

4. To create a new user enter a user name, a password, and enter the password again to
confirm the password.

5. Select the options you want for the user and select OML to enable Oracle Machine
Learning for the user.

Chapter 2
Access Autonomous Database

2-6

https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=553

6. Click Create User.

This creates a new database user and grants the required privileges to use Oracle Machine
Learning.

Note:

With a new database user, an administrator needs to issue grant commands on the
database to grant table access to the new user for the tables associated with the
user's Oracle Machine Learning notebooks.

Chapter 2
Access Autonomous Database

2-7

2.2.4 Add Existing Database User Account to Oracle Machine Learning
Components

As the ADMIN user you can add an existing database user account to provide access to
Oracle Machine Learning components.

To add an existing database user account:

1. On the Autonomous Databases page, under the Display Name column, select an
Autonomous Database.

2. On the Autonomous Database Details page, select Database Actions and click Database
Users.

3. In the All Users, search for the user of interest or select the user. For example, search the
user OML_ANALYST.

4. In the user's card, click and select Edit

5. In the Edit User panel, select OML.

For example:

Chapter 2
Access Autonomous Database

2-8

6. Click Apply Changes.

This grants the required privileges to use the Oracle Machine Learning application. In Oracle
Machine Learning this user can then access any tables the user has privileges to access in the
database.

Chapter 2
Access Autonomous Database

2-9

3
Use Cases

• Regression Use case
The Brooklyn housing dataset contains the sale prices of homes in brooklyn borough,
along with various factors that influence these prices, such as the area of the house, its
location, and the type of dwelling. You are tasked with analyzing years of historical home
sales data to estimate sales prices, which will help optimize real estate operations. In this
case study, you will learn how to predict sales prices using the regression technique and
the GLM algorithm.

• Classification Use Case
A retail store has information about its customers' behavior and the purchases they make.
Now with the available data, they would like you to analyze and identify the type of
customers they should target which would result in an increase in the volume of the most
profitable product sold, and an increase in profit. In this use case, you will demonstrate
how to identify such customers using the Random Forest algorithm.

• Clustering Use Case
A retail store has information about its customers' behavior and the purchases they make.
Now with the available data, they would like you to analyze and identify if there are any
similarities between the customers. Use Oracle Machine Learning to segment customers
by finding clusters in the data set which can be then used to support targeted marketing
campaigns to increase retail sales. In this use case, you will learn how to identify such
segments using the k-Means algorithm.

• Time Series Use Case
You work in an electronic store, and sales of laptops and tablets have increased over the
last two quarters. You want to forecast your product sales for the next four quarters using
historical timestamped data. You forecast sales using the Exponential Smoothing
algorithm, predicting changes over evenly spaced intervals of time using historical data.

3.1 Regression Use case
The Brooklyn housing dataset contains the sale prices of homes in brooklyn borough, along
with various factors that influence these prices, such as the area of the house, its location, and
the type of dwelling. You are tasked with analyzing years of historical home sales data to
estimate sales prices, which will help optimize real estate operations. In this case study, you
will learn how to predict sales prices using the regression technique and the GLM algorithm.

Related Contents

Topic Link

OML4Py GitHub Example OML4Py Regression GLM

About Generalized Linear Model About Generalized Linear Model

About Machine Learning Classes and Algorithms About Machine Learning Classes and Algorithms

Shared Settings Shared Settings

Before you start your OML4Py use case journey, ensure that you have the following:

3-1

https://github.com/oracle-samples/oracle-db-examples/blob/main/machine-learning/notebooks/python/OML4Py%20Regression%20GLM.dsnb

• Data Set
Download the data set from Brooklyn housing dataset .

• Database Select or create database out of the following options:

– Get your FREE cloud account. Go to https://cloud.oracle.com/database and select
Oracle Database Cloud Service (DBCS), or Oracle Autonomous Database. Create an
account and create an instance. See Autonomous Database Quick Start Workshop.

– Download the latest version of Oracle Database (on premises).

• Machine Learning Tools
Depending on your database selection,

– Use OML Notebooks for Oracle Autonomous Database.

– Install and use Oracle SQL Developer connected to an on-premises database or
DBCS. See Installing and Getting Started with SQL Developer.

• Other Requirements
Data Mining Privileges (this is automatically set for ADW). See System Privileges for
Oracle Machine Learning for SQL.

• Load Data
Load the data in your database and examine the data set and its attributes.

• Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric
outlier values.

• Build Model
Build your model using the training data set. Use the oml.glm function to build your model
and specify model settings.

• Evaluate
Before you make predictions using your model on new data, you should first evaluate
model accuracy. You can evaluate the model using different methods.

3.1.1 Load Data
Load the data in your database and examine the data set and its attributes.

You can download the dataset from Rolling sales data for the Brooklyn borough. If you are
using the Oracle Autonomous Database, you will upload files to the Oracle Cloud Infrastructure
(OCI) Object Storage, create a sample table, load data into the sample table from files on the
OCI Object Storage, and explore the data.

Examine Data

There are 110 attributes in the dataset; below are descriptions of a few important ones. For a
complete description of the attribute, see Rolling sales data.

Attribute Name Information

Borough The borough in which the tax lot is located.

BoroCode The borough in which the tax lot is located.

Year Built The year construction of the building was
completed.

Zip Code A ZIP code that is valid for one of the addresses
assigned to the tax lot.

Chapter 3
Regression Use case

3-2

https://s-media.nyc.gov/agencies/dcp/assets/files/pdf/data-tools/bytes/PLUTODD.pdf
https://cloud.oracle.com/database
https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=582
https://www.oracle.com/in/database/technologies/oracle-database-software-downloads.html
https://www.nyc.gov/site/finance/property/property-rolling-sales-data.page
https://www.nyc.gov/site/finance/property/property-rolling-sales-data.page

Attribute Name Information

Address An address for the tax lot

BUILDING CLASS A code describing the major use of structures on
the tax lot.

HEALTH CENTER DISTRICT The health center district in which the tax lot is
located. Thirty health center districts were created
by the City in 1930 to conduct neighborhood
focused health interventions

LAND USE CATEGORY A code for the tax lot's land use category

LOT AREA Total area of the tax lot, expressed in square feet
rounded to the nearest integer.

Building Area The total gross area in square feet. Same as
'gross_sqft'

Gross Square Feet The total area of all the floors of a building as
measured from the exterior surfaces of the outside
walls of the building, including the land area and
space within any building or structure on the
property.

Year Built Year the structure on the property was built.

Sales Price Price paid for the property.

• Import Data
Import data into the database by using Object Storage (for Cloud).

Related Topics

• Glossary of Terms for Property Sales Files

• PLUTO DATA DICTIONARY

3.1.1.1 Import Data
Import data into the database by using Object Storage (for Cloud).

If using a cloud account, one of the methods of importing the data is through Object Storage.
Upload the data set to an Object Storage. The Object Storage URI will be used in another
procedure.You can load data into your Oracle Autonomous Database (Autonomous Data
Warehouse [ADW] or Autonomous Transaction Processing [ATP]) using Oracle Database
tools, and Oracle and 3rd party data integration tools. You can load data:

• from local files in your client computer, or

• from files stored in a cloud-based object store

Follow the steps to upload your data file to the Object Storage bucket.

1. Login to your cloud account.

2. Click the left-side hamburger menu and select Storage from the menu.

3. Select Buckets from the Object Storage & Archive Storage option.

4. Select the compartment in which you want to upload the data.

5. Click Create Bucket.

6. Enter a name for your bucket. For example, Bucket1. Leave the rest of the fields as
default.

7. Click Create.

Chapter 3
Regression Use case

3-3

https://www.nyc.gov/site/finance/property/glossary-property-sales.page
https://s-media.nyc.gov/agencies/dcp/assets/files/pdf/data-tools/bytes/pluto_datadictionary.pdf

8. Click on the bucket that you created. Scroll down and click Upload under Objects.

9. Leave the Object Name Prefix field black. Click select files to navigate to the data file that
you want to upload or drag and drop the data file. In this use case, select the modified .csv
file.

10. Click Upload. The data file appears under Objects.

11. Click the ellipses on the right side of the data file to view the menu. Click View Object
Details.

12. Copy the URL PATH (URI) to a text file. This URI is used in the DBMS_CLOUD.COPY_DATA
procedure.

This procedure creates an object storage containing the data file in your cloud account.

Create Auth Token

The Auth Token is required in the DBMS_CLOUD.CREATE_CREDENTIAL procedure. You can
generate the Auth Token in your cloud account.

1. Login into your ADW Cloud account.

2. Hover your mouse cursor over the human figure icon at the top right of the console and
click User Settings from the drop-down menu.

3. Click Auth Tokens under Resources on the left of the console.

4. Click Generate Token. A pop-up dialog appears.

5. Enter a description (optional).

6. Click Generate Token.

7. Copy the generated token to a text file. The token does not appear again.

8. Click Close.

Create Object Storage Credential

The object storage credential is used in the DBMS_CLOUD.COPY_DATA procedure.

1. Login to the OML Notebooks page and create a notebook. See Create a Notebook Classic

2. Open the notebook that you just created.

3. Enter the following query to create an object storage credentials:

%script
begin
 DBMS_CLOUD.create_credential (
 credential_name => 'CRED',
 username => '<your cloud account username>',
 password => '<your Auth Token>'
);
end;
/

--------------------------- PL/SQL procedure successfully completed.

Examine the query:

Chapter 3
Regression Use case

3-4

https://docs.oracle.com/en/database/oracle/machine-learning/oml4sql/23/mlsql/access-oml-notebooks.html#GUID-F372F445-1036-403B-BEDF-D4ABF9E67407

• credential_name: The name of the credential to be stored. Provide any name. Here,
CRED is the name given.

• username: This is your cloud account username.

• password: Enter your Auth Token password that you copied after generating the Auth
Token.

4. Click the play icon to run the query in your notebook. Your credentials are stored in the
ADW user schema.

5. In another para, run the following query to check the user credentials:

SELECT* FROM USER_CREDENTIALS;

3.1.2 Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric outlier
values.

Data Understanding and Preparation

This stage focuses on building a clear understanding of the dataset through the following
steps:

• Import necessary libraries: Load essential Python libraries along with Oracle Machine
Learning (OML).

• Load the dataset: Import the dataset for initial exploration.

• Create a DataFrame proxy object: Represent the table using a proxy object to simplify
data manipulation.

• Perform initial analysis: Examine the dataset's structure, including its shape, data
types, missing values, and categorical feature cardinality.

These steps provide a solid foundation for deeper data exploration and preprocessing.

For data preparation and understanding run the following steps:

1. Import necessary libraries

Run the following script in a %python interpreter paragraph to import the oml modules, the
Panda's module, and set the display options:

import oml
import ssl
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

2. Load the dataset

url="https://objectstorage.us-ashburn-1.oraclecloud.com/n/adwc4pm/b/

Chapter 3
Regression Use case

3-5

OML_Data/o/brooklyn_sales.csv"
ssl._create_default_https_context = ssl._create_unverified_context
brooklyn_sales = pd.read_csv(url, engine='python')
z.show(brooklyn_sales.head())

Figure 3-1 Raw Brooklyn Data

3. Replace missing values (NaN with None)

df = brooklyn_sales.apply(lambda x: x.replace(np.nan, None) if x.dtypes ==
'object' else x)

4. Impute missing values based on data type

First, the code removes any columns that are entirely empty or contain only missing
values. Then, it goes through each remaining column, checks the data type of the non-
missing values, and fills in any missing data with the most appropriate replacement based
on the column's type.

Drop columns where all values are missing
brooklyn_sales1 = brooklyn_sales.dropna(axis=1, how="all")

d = {}

Iterate through each column and fill missing values based on its data
type
for col in brooklyn_sales1:
 x = brooklyn_sales1[col].dropna().tolist() # Get non-null values to
check the column type

 if len(x) > 0:
 # For text columns, replace missing values with an empty string
 if isinstance(x[0], str):
 y = brooklyn_sales1[col].fillna("")
 # For integer columns, missing values are left unchanged
 elif isinstance(x[0], int):
 y = brooklyn_sales1[col]
 # For other numeric columns (e.g., floats), replace missing values
with 0.0
 else:
 y = brooklyn_sales1[col].fillna(float(0))

 d[col] = y # Store the modified column

Chapter 3
Regression Use case

3-6

Convert the dictionary back into a DataFrame
brooklyn_sales2 = pd.DataFrame.from_dict(d)

Print the shape of the updated DataFrame
print(brooklyn_sales2.shape)

(390883, 110)

5. Create dataframe proxy object

try:
 oml.drop(table = 'BROOKLYN')
except:
 pass

Create a persistent table named BROOKLYN in the Oracle database
BROOKLYN = oml.create(brooklyn_sales2, table="BROOKLYN")

6. Analyze the dataframe

Examine and interpret the shape, data types, missing values and find columns having low
cardinality.

• Shape of DataFrame:

BROOKLYN.shape

(390883, 110)

• Data Types of Columns:

BROOKLYN.dtypes

ID <class 'oml.core.integer.Integer'>
borough <class 'oml.core.integer.Integer'>
neighborhood <class 'oml.core.string.String'>
building_class_category <class 'oml.core.string.String'>
tax_class <class 'oml.core.string.String'>
 ...
PFIRM15_FL <class 'oml.core.float.Float'>
Version <class 'oml.core.string.String'>
MAPPLUTO_F <class 'oml.core.float.Float'>
SHAPE_Leng <class 'oml.core.float.Float'>
SHAPE_Area <class 'oml.core.float.Float'>
Length: 110, dtype: object

• Identify columns with missing values (>75%):

def percent_missing(dat):
 per_miss={}
 large_miss_columns=[]

Chapter 3
Regression Use case

3-7

 for i in dat.columns:
 l=len(dat)
 a=100-(dat[i].count()/l)*100
 if a>=75:
 per_miss[i]=round(a)
 return per_miss

z.show(pd.DataFrame(list(percent_missing(BROOKLYN).items()),
columns=["Columns", "% Missing"]))

Figure 3-2 View columns and their missing percentage.

• Identify columns with low cardinality:

def unique_values_less_10(data):
 cols=[]
 for x in data.columns:
 unique_values=data[x].nunique()
 if unique_values< 10:
 cols.append(x)
 return cols

print(unique_values_less_10(BROOKLYN))

['borough', 'tax_class_at_sale', 'Borough', 'SanitBoro', 'ZoneDist4',
'Overlay1', 'Overlay2',
 'SPDist2', 'SPDist3', 'LtdHeight', 'SplitZone', 'Easements',
'OwnerType', 'AreaSource', 'Ext',
 'ProxCode', 'IrrLotCode', 'BsmtCode', 'BoroCode', 'CondoNo',
'ZMCode', 'PLUTOMapID',
 'FIRM07_FLA', 'PFIRM15_FL', 'Version', 'MAPPLUTO_F']

• Data Preparation
Data preparation is the process of cleaning (handling missing values, outliers, and
inconsistencies), transforming (scaling, encoding, and creating new features) and
organizing raw data to make it more compatible with machine learning algorithms.

Chapter 3
Regression Use case

3-8

3.1.2.1 Data Preparation
Data preparation is the process of cleaning (handling missing values, outliers, and
inconsistencies), transforming (scaling, encoding, and creating new features) and organizing
raw data to make it more compatible with machine learning algorithms.

Data Preparation

This stage focuses on building a clear understanding of the dataset through the following
steps:

• Redundant Columns:

– Clean the Data: Identify and remove duplicate records, redundant columns, and highly
correlated columns.

• Data Subset Creation: Filter/select relevant columns.

• Visualizations: Generate visual representations to understand data patterns and
relationships.

• Feature Engineering: Create new features like "Decade Built", "Sale Age", and "Street
Address".

• Clean the DataFrame: Handle missing values, outliers, and inconsistencies.

• Dataframe Dimensions: Ensure correct dimensions after cleaning.

These steps provide a solid foundation for data preparation.

Redundant Columns: Cleaning Up the Data

To identify redundant columns, compare column names and descriptions for clues. Then
analyze the data within the columns to see if the values are identical or highly correlated. Once
you identify the redundant columns, you need to decide which one to remove. The column with
more missing values, inconsistent formatting, or mostly a unique value can be removed.

Analyze Columns with Similar Naming Conventions

Analyse and compare pairs or groups of columns that appear similar due to their content or
variations in naming conventions or formatting. The goal is to ensure data consistency, detect
redundancy, and verify if columns represent the same information.

The following columns are compared:

• borough, Borough, and BoroCode

• YearBuilt and year_built

• ZipCode and zip_code

Similarly, this can be applied to other columns, such as building_class, BldgClass and
building_class_at_sale; Address and address; etc.

1. Compare columns: borough, Borough, and BoroCode

The column names “borough,” “Borough,” and “BoroCode” are quite similar, suggesting
they may contain the same information. To verify this, print five random samples from each
column for comparison. Additionally, based on the column descriptions, all three columns
represent the Brooklyn borough, with values such as “BK” or “3.0.” Since the data is

Chapter 3
Regression Use case

3-9

specific to Brooklyn, these columns are redundant and can be safely removed from the
dataset.

z.show(BROOKLYN[['borough','Borough', 'BoroCode']].sample(n=5))

2. Identify Matching Data Percentage

def matching_percentage(data, cols, threshold=0.9):
 # Filter rows where both columns have non-zero values
 filtered_df = data[(data[cols[0]] != 0) & (data[cols[1]] != 0)]

 # Calculate matching percentage
 total_rows = len(filtered_df)
 matching_rows = len(filtered_df[filtered_df[cols[0]] ==
filtered_df[cols[1]]])
 matching_percentage = matching_rows / total_rows if total_rows else 0

 # Output result
 if matching_percentage >= threshold:
 print(f"The columns have a high percentage ({matching_percentage *
100:.2f}%) of matching values, suggesting similarity.")
 else:
 print("The columns do not have a high percentage of matching
values.")

3. Compare columns: YearBuilt and year_built

The column names "YearBuilt" and "year_built" are quite similar, suggesting they may
contain the same information. To verify this, we should print out 5 random samples from
each column.

matching_percentage(BROOKLYN, ['YearBuilt', 'year_built'])

The columns have a high percentage (99.25%) of matching values, suggesting
similarity.

The columns "YearBuilt", "year_built" contain similar information,so remove one. Remove
"year_built" from the dataset.

Chapter 3
Regression Use case

3-10

4. Compare columns: ZipCode and zip_code

matching_percentage(BROOKLYN, ['ZipCode', 'zip_code'])

The columns have a high percentage (98.72%) of matching values, suggesting
similarity.

The column names "ZipCode" and "zip_code" are quite similar, suggesting they may
contain the same information. To verify this, we should print out 5 random samples from
each column.

z.show(BROOKLYN[['ZipCode', 'zip_code']].sample(n=5))

Filter data by selecting the desired columns

To focus on more reliable data, only houses built after the 1800s are included in the dataset.
This is because houses built before the 1800s frequently have a single YearBuilt value of 0,
indicating potentially missing or inaccurate information and more is exaplained in the next step.

BROOKLYN2 = BROOKLYN[(BROOKLYN['YearBuilt']>= 1800)]
[['building_class_at_sale', 'HealthCent', 'YearBuilt', 'ResidFAR',
'sale_date', 'building_class_category', 'GarageArea', 'CD', 'YearAlter1',
'ID', 'SchoolDist', 'SanitDistr', 'PolicePrct','address',
'CT2010', 'commercial_units', 'BldgArea','NumFloors',
'sale_price','AssessTot', 'ResArea','land_sqft','LotFront',
'LotArea','AssessLand', 'SHAPE_Area','year_of_sale',
'gross_sqft','XCoord','YCoord', 'SHAPE_Leng']]

Dataframe dimension
BROOKLYN2.shape

(295356, 31)

Chapter 3
Regression Use case

3-11

Feature Engineering and Visualization

Create new columns and modify existing features based on insights gathered from
visualizations. The newly engineered features are then merged back into the dataset to
enhance its quality and readiness for modeling.

1. Built periods and their counts:

• Analyze the distribution of the periods in which the houses were built and identify the
least and most common periods within our dataset. The column, YearBuilt, is first
rounded to the nearest integer value. These rounded values will then be categorized
into predefined intervals, or bins. Count the number of YearBuilt within each bin to
determine the frequency distribution of built periods.

built_period = (BROOKLYN2['YearBuilt'] // 10) * 10 +
oml.Integer(BROOKLYN2['YearBuilt'] % 10 >= 5) * 10
bins_str =
built_period.cut(bins=[1700,1800,1880,1900,1920,1940,1960,1980,2000,2020
,2040])
bins = sorted(bins_str.drop_duplicates().pull())

z.show(pd.DataFrame({'Built Period':bins, 'Count':[oml.Integer(bins_str
== b).sum() for b in bins]}))

• Visualisation of built periods and their counts

Data might be incomplete when DECADE_BUILT < 1900

Nbins = 141
n, bins, patches = plt.hist(built_period.pull(), Nbins)
plt.xlabel('Built_Period')
plt.ylabel('number of records')
plt.yscale('log')
p = plt.xlim(1795, 2025)

Chapter 3
Regression Use case

3-12

2. Preview sale price and count by binning

• Analyze the distribution of the sale price of the houses and identify the least and most
common sale price within our dataset. The column, sale_price, is rounded and then
are categorized into predefined intervals, or bins. Count the number of sale_price
within each bin to determine the frequency distribution of sale_price.

Sale_Price=(BROOKLYN2['sale_price'].cut(bins=[-100000000,0,20000,40000,6
0000,80000,100000,1000000,10000000,500000000]))

bins_str =
decade_built.cut(bins=[1700,1800,1880,1900,1920,1940,1960,1980,2000,2020
,2040])
bins = sorted(Sale_Price.drop_duplicates().pull())

z.show(pd.DataFrame({'Sale Price':bins, 'Count':[oml.Integer(Sale_Price
== b).sum() for b in bins]}))

Chapter 3
Regression Use case

3-13

• Examine logarithmic sales price distribution

Most properties have 10^5 < sale_price < 10^6.5=3.2M
Nbins = 101

n, bins, patches = plt.hist((BROOKLYN2[BROOKLYN2['sale_price']>0]
['sale_price']).log(10).pull(), Nbins)
plt.xlabel('log10(sale_price)')
plt.ylabel('number of records')
p = plt.xlim(3.9, 7.1)

3. Preview building class category, count and count percentage

Analyze the categorical column, building_class_category, by computing a cross-tabulation.
Sort this table in descending order. Finally, determine the frequency of each building class
category.

build_category=
BROOKLYN2.crosstab('building_class_category').sort_values('count',
ascending=False)
count_percentage= ((build_category['count'] / len(BROOKLYN2)) *
100).round(decimals=2)
z.show(build_category.concat({'count_percentage':count_percentage}))

Chapter 3
Regression Use case

3-14

4. Examine logarithmic gross qft distribution

Values in the gross qft column, when log-transformed, approximate a normal distribution.

Most properties have 10^2.9=800 < sale_price < 10^3.7=5000
Nbins = 201

n, bins, patches = plt.hist((BROOKLYN2[BROOKLYN2['gross_sqft']>0]
['gross_sqft']).log(10).pull(), Nbins)
plt.xlabel('log10(sale_price)')
plt.ylabel('number of records')
p = plt.xlim(2.5, 4.2)

Feature Engineering

Feature engineering is the process of creating new input features from existing data which
explains the underlying patterns of a data. These new featues help to improce the model's
predictability.

Chapter 3
Regression Use case

3-15

The following features have been engineered:

• Built Period: The Period in which the house was built.

built_period=(BROOKLYN2['YearBuilt'] // 10) * 10 +
oml.Integer(BROOKLYN2['YearBuilt'] % 10 >= 5) * 10
BROOKLYN2=BROOKLYN2.concat({'Built_Period':built_period})

• Age_At_Sale: Age of the house at sale is the number of years from its construction to the
sale date.

Age_At_Sale2 = abs(BROOKLYN2['year_of_sale'] - BROOKLYN2['YearBuilt'])
BROOKLYN2= BROOKLYN2.concat({'Age_At_Sale2': Age_At_Sale2})

• Quarter: Refers to the quarter in which the house was built.

time_period = oml.Datetime.strptime(BROOKLYN2['sale_date'], format="MM/DD/
YYYY")
Quarter= (oml.Integer((time_period.month - 1)// 3 + 1))

Clean the Dataframe

After feature engineering, remove columns that no longer contribute to the analysis and drop
any rows that have a missing value.

BROOKLYN2=BROOKLYN2.drop(['sale_date'])
BROOKLYN2=BROOKLYN2.dropna()

Filter the data to include properties whose sale price, gross square footage, and the decade
year of construction fall within a specific, relevant range.

BROOKLYN3 = BROOKLYN2[(BROOKLYN2['sale_price']>=1.0e5) &
(BROOKLYN2['sale_price']<=5.0e6) &
 (BROOKLYN2['gross_sqft']>=800) & (BROOKLYN2['gross_sqft']<=5000)
&
 (BROOKLYN2['Built_Period']>=1900) &
(BROOKLYN2['Built_Period']<=2010)]

Apply a log transformation to normalize the column. The original, untransformed column is then
removed.

BROOKLYN3 = BROOKLYN3.concat({'log_gross_sqft':
BROOKLYN3['gross_sqft'].log(10)})
BROOKLYN3=BROOKLYN3.drop(['gross_sqft'])

To improve the model's performance, filter the data to focus on properties with higher
probabilities of belonging to specific building classes and categories.

BROOKLYN4 = BROOKLYN3[(BROOKLYN3['building_class_at_sale']=='A1') |
(BROOKLYN3['building_class_at_sale']=='A2')
 | (BROOKLYN3['building_class_at_sale']=='A4') |
(BROOKLYN3['building_class_at_sale']=='A5')
 | (BROOKLYN3['building_class_at_sale']=='B1') |
(BROOKLYN3['building_class_at_sale']=='B2')

Chapter 3
Regression Use case

3-16

 | (BROOKLYN3['building_class_at_sale']=='B3')]
BROOKLYN5 = BROOKLYN4[((BROOKLYN4['building_class_category']=='02 TWO FAMILY
HOMES') | (BROOKLYN4['building_class_category']=='01 ONE FAMILY HOMES'))]

Dataframe Dimensions

Run the following script to verify the dataframe dimensions:

BROOKLYN5.shape

(67083, 32)

3.1.3 Build Model
Build your model using the training data set. Use the oml.glm function to build your model and
specify model settings.

For a supervised learning, like Regression, before creating the model, split the data in to
training and test data. Although you can use the entire data set to build a model, it is difficult to
validate the model unless there are new data sets available. Therefore, to evaluate the model
and to accurately assess the performance of the model on the same data, you generally split
or separate the data into training and test data. You use the training data set to train the model
and then use the test data set to test the accuracy of the model by running prediction queries.
The testing data set already contains known values for the attribute that you want to predict. It
is thus easy to determine whether the model's predictions are correct.

Algorithm Selection

Before you build a model, choose the suitable algorithm. You can choose one of the following
algorithms to solve a regression problem:

• Extreme Gradient Boosting

• Generalized Linear Model

• Neural Network

• Support Vector Machine

When you want to understand the data set, you always start from a simple and easy baseline
model. The Generalized Linear Model algorithm is the right choice because it is simple and
easy to interpret since it fits a linear relationship between the feature and the target. You can
get an initial understanding of a new data set from the result of the linear model.

The following steps guide you to split your data and build your model with the selected
algorithm.

1. Split Data: Train/Test:

Split the data into training and test data, with a 80/20 ratio respectively. The seed
parameter is used for random splitting. The split method splits the data referenced by the
DataFrame proxy object BROOKLYN5 into two new DataFrame proxy objects train, and test.

TRAIN, TEST = BROOKLYN5.split(ratio = (0.8,0.2), seed=15)
TRAIN_X = TRAIN.drop('sale_price')
TRAIN_Y = TRAIN['sale_price']

Chapter 3
Regression Use case

3-17

TEST_X = TEST
TEST_Y = TEST['sale_price']

2. Model Building:

Specify the model settings and build a Generalized Linear Model (GLM) model object for
predicting the sale_price attribute, run the following script. The settings are given as key-
value or dictionary pairs where it refers to parameters name and value setting respectively.

try:
 oml.drop(model = 'BROOKLYN_GLM_REGRESSION_MODEL')
except:
 print('No such model')

setting = {'PREP_AUTO':'ON',
 'GLMS_ROW_DIAGNOSTICS':'GLMS_ROW_DIAG_ENABLE',
 'GLMS_FTR_SELECTION':'GLMS_FTR_SELECTION_ENABLE',
 'GLMS_FTR_GENERATION':'GLMS_FTR_GENERATION_ENABLE'}

glm_mod = oml.glm("regression", **setting)
glm_mod = glm_mod.fit(TRAIN_X,TRAIN_Y,model_name =
'BROOKLYN_GLM_REGRESSION_MODEL',case_id = 'ID')

Model setting parameters:

• PREP_AUTO: Used to specify fully automated or user-directed general data preparation.
By default, it is enabled with a constant value as 'PREP_AUTO': PREP_AUTO_ON.

• GLMS_ROW_DIAGNOSTICS: Enables or disables the row diagnostics. By default, row
diagnostics are disabled.

• GLMS_FTR_SELECTION: Enables or disables feature selection for GLM. By default,
feature selection is not enabled.

• GLMS_FTR_GENERATION: Specifies whether or not feature generation is enabled for
GLM. By default, feature generation is not enabled.

Note:

Feature generation can only be enabled when feature selection is also
enabled.

3.1.4 Evaluate
Before you make predictions using your model on new data, you should first evaluate model
accuracy. You can evaluate the model using different methods.

Information about Model settings

Evaluate the model by examining the various statistics generated after building the model. The
statistics indicate the model's quality.

Chapter 3
Regression Use case

3-18

• Model details: Run the following script for model details available through the GLM model
object, like the model settings, attribute coefficients, fit details, etc.

glm_mod

They can also be displayed and viewed individually as shown below.

• Attribute Coefficient: Run the following script to display the model's attribute coefficient.

z.show(glm_mod.coef.round(2).head())

• Fit Details: Run the following script to display the fit details of the model.

z.show(glm_mod.fit_details.round(2).head())

Score

Scoring is the process of applying the model on the test data to access its performance.

1. Predict sale price: Use the model to make predictions on test data.

BROOKLYN_RES = glm_mod.predict(TEST.drop('sale_price'), supplemental_cols
= TEST[:,['ID','sale_price']])
z.show(BROOKLYN_RES.round(2).head())

Chapter 3
Regression Use case

3-19

2. Evaluate Model Performance: Evaluate the model's performance by using the score
function.

model_coef = len(glm_mod.coef)
no_rows_test = TEST_X.shape[0]
R_squared = glm_mod.score(TEST_X, TEST_Y).round(3)

print(
 f"RMSE : {(((BROOKLYN_RES['PREDICTION'] - BROOKLYN_RES['sale_price'])
** 2).mean() ** .5).round(2)}\n"
 f"MAE: {((abs(BROOKLYN_RES['PREDICTION'] -
BROOKLYN_RES['sale_price'])).mean()).round(2)}\n"
 f"R squared: {R_squared}\n"
 f"Adjusted R^2: {(1 - (1 - R_squared)*(no_rows_test-1)/(no_rows_test
- model_coef -1)).round(4)}"
)

The interpreation of the model's performance based on the metrics are as follows:

• RMSE (286,137.56): The model's predictions, on average, deviate by approximately
286,137.56 units from the actual values.

• MAE (170,992.05): The average absolute error in predictions is 170,992.05 units,
which provides a sense of the model's accuracy without penalizing large errors.

• R² (0.581): The model explains 58.1% of the variance in the target variable, suggesting
a moderate fit to the data.

• Adjusted R² (0.5604): After adjusting for the number of predictors, the model explains
about 56.04% of the variance

Overall, the model demonstrates moderate predictive accuracy, with potential for further
improvement.

3. Residual Graph: The Residual plot is showing heteroscedastic pattern. This indicates that
the errors in the model are inconsistent. The non-linear relationship between the fitted
values (predicted values) and the residuals, suggests that the model can be improved
further.

import matplotlib.pyplot as plt

y_pred = BROOKLYN_RES['PREDICTION'].pull()
residuals = (BROOKLYN_RES['sale_price'] -
BROOKLYN_RES['PREDICTION']).pull()

Chapter 3
Regression Use case

3-20

plt.scatter(y_pred, residuals)

plt.xlabel('Predicted Sale Prices')
plt.ylabel('Residuals')
plt.title('Residual Plot', fontsize=16)
plt.grid(True)
plt.axhline(y=0, color='r', linestyle='--')
plt.show()

SQL Interface to Score Data and Display Prediction Details

You can score data and make predictions using the SQL interface. The test data is
materialized into BROOKLYN_GLM_TEST_DATA so that you can query it using SQL. The
materialized method writes the contents of an Oracle Machine Learning oml.DataFrame proxy
table to an Oracle Database table.

1. Materialize BROOKLYN_GLM_TEST_DATA for use in query below:

try:
 oml.drop(table = 'BROOKLYN_GLM_TEST_DATA')
except:
 pass
_ = TEST.materialize(table = 'BROOKLYN_GLM_TEST_DATA')

2. Display prediction with explanatory prediction details in SQL: The SQL command to score
and display the prediction details. The prediction functions apply a glm regressional model
named BROOKLYN_GLM_REGRESSION_MODEL to the data from the materialized table

Chapter 3
Regression Use case

3-21

BROOKLYN_GLM_TEST_DATA. The query includes information about the predictors that
have the greatest influence on the prediction.

SELECT ID,
 round(PREDICTION_YRS_RES,3) PRED_YRS_RES,
 round(PRED_LOWER_LIMIT,1) LOWER_BOUND,
 round(PRED_UPPER_LIMIT,1) UPPER_BOUND,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute1",17,100)),'rank="1"/>')
FIRST_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute2",17,100)),'rank="2"/>')
SECOND_ATTRIBUTE,
 RTRIM(TRIM(SUBSTR(OUTPRED."Attribute3",17,100)),'rank="3"/>')
THIRD_ATTRIBUTE
FROM (SELECT ID,
 PREDICTION(BROOKLYN_GLM_REGRESSION_MODEL USING *)
PREDICTION_YRS_RES,
 PREDICTION_BOUNDS(BROOKLYN_GLM_REGRESSION_MODEL USING
*).LOWER PRED_LOWER_LIMIT,
 PREDICTION_BOUNDS(BROOKLYN_GLM_REGRESSION_MODEL USING
*).UPPER PRED_UPPER_LIMIT,
 PREDICTION_DETAILS(BROOKLYN_GLM_REGRESSION_MODEL USING *) PD
 FROM BROOKLYN_GLM_TEST_DATA
 WHERE ID < 100015
 ORDER BY ID) OUT,
 XMLTABLE('/Details'
 PASSING OUT.PD
 COLUMNS
 "Attribute1" XMLType PATH 'Attribute[1]',
 "Attribute2" XMLType PATH 'Attribute[2]',
 "Attribute3" XMLType PATH 'Attribute[3]') OUTPRED

To conclude, you have successfully predicted the median house prices in Brooklyn using
Generalized Linear Model algorithm.

3.2 Classification Use Case
A retail store has information about its customers' behavior and the purchases they make. Now
with the available data, they would like you to analyze and identify the type of customers they
should target which would result in an increase in the volume of the most profitable product

Chapter 3
Classification Use Case

3-22

sold, and an increase in profit. In this use case, you will demonstrate how to identify such
customers using the Random Forest algorithm.

Related Contents

Topic Link

OML4Py GitHub Example Classification Random Forest

About Random Forest About Random Forest

Random Forest Random Forest Algorithm

Shared Settings Shared Settings

Before you start your OML4Py use case journey, ensure that you have the following:

• Data Set
The data set used for this use case is from the SH schema. The SH schema can be readily
accessed in Oracle Autonomous Database. For on-premises databases, the schema is
installed during the installation or can be manually installed by downloading the scripts.
See Installing the Sample Schemas.

• Database
Select or create database out of the following options:

– Get your FREE cloud account. Go to https://cloud.oracle.com/database and select
Oracle Database Cloud Service (DBCS), or Oracle Autonomous Database. Create an
account and create an instance. See Autonomous Database Quick Start Workshop.

– Download the latest version of Oracle Database (on premises).

• Machine Learning Tools
Depending on your database selection,

– Use OML Notebooks for Oracle Autonomous Database.

– Install and use Oracle SQL Developer connected to an on-premises database or
DBCS. See Installing and Getting Started with SQL Developer.

• Other Requirements
Data Mining Privileges (this is automatically set for ADW). See System Privileges for
Oracle Machine Learning for SQL.

• Load Data
Access the data set from the SH Schema and explore the data to understand the
attributes.

• Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric
outlier values.

• Build Model
Build your model using the training data set. Use the oml.rf function to build your model
and specify the model settings.

• Evaluate
Before you make predictions using your model on new data, you should first evaluate
model accuracy. You can evaluate the model using different methods.

Related Topics

• Create a Notebook

• Edit your Notebook

Chapter 3
Classification Use Case

3-23

https://github.com/oracle-samples/oracle-db-examples/blob/main/machine-learning/notebooks/python/OML4Py%20Classification%20SVM.dsnb
https://cloud.oracle.com/database
https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=582
https://www.oracle.com/in/database/technologies/oracle-database-software-downloads.html

• Installing Sample Schemas

3.2.1 Load Data
Access the data set from the SH Schema and explore the data to understand the attributes.

Examine Data

Attribute Name Information

CUST_ID The ID of the customer

EDUCATION Educational information of the customer

OCCUPATION Occupation of the customer

HOUSEHOLD_SIZE People per house

YRS_RESIDENCE Number of years of residence

AFFINITY_CARD Whether the customer holds an affinity card

BULK_PACK_DISKETTES Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

FLAT_PANEL_MONITOR Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

HOME_THEATER_PACKAGE Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

BOOKKEEPING_APPLICATION Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

PRINTER_SUPPLIES Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

Y_BOX_GAMES Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

OS_DOC_SET_KANJI Product. Indicates whether the customer already
owns the product.

1 means Yes. 0 means No

COMMENTS Comments from customers

To learn more about CUSTOMERS table in SH Schema, see SH Sample Schema .

3.2.2 Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric outlier
values.

Data Understanding and Preparation

To access database data from Python using OML4Py, you must first create a oml.DataFrame
proxy object in Python which represents a database table, view, or query. Create a
oml.DataFrame proxy object for SUPPLEMENTARY_DEMOGRAPHICS and CUSTOMERS

Chapter 3
Classification Use Case

3-24

and then merge them by inner join on an identical and unique column. Assess the data to
identify data types and noise in the data. Look for missing values (systematic or random),
outlier numeric values, or inconsistently labeled categorical values.

For data preparation and understanding run the following steps:

1. Run the following script in a %python interpreter paragraph to import the oml modules, the
Panda's module, and set the display options:

import pandas as pd
import oml

pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

2. Use the oml.sync function to create the Python object DEMOGRAPHICS as a proxy for a
database table SUPPLEMENTARY_DEMOGRAPHICS . The oml.sync function returns an
oml.DataFrame object or a dictionary of oml.DataFrame objects. The oml.DataFrame object
returned by oml.sync is a proxy for the database object.

DEMOGRAPHICS = oml.sync(table = "SUPPLEMENTARY_DEMOGRAPHICS", schema =
"SH")
z.show(DEMOGRAPHICS.head())

3. Run the shape function to view the rows and columns of an oml.DataFrame object DEMO.

print("Shape:",DEMOGRAPHICS.shape)

(4500, 14)

4. Use the oml.sync function to create the Python object CUSTOMERS as a proxy for a
database table SH.CUSTOMERS. Like the second step here no schema is used. With the
schema argument, you can specify the schema in which to create a Python environment
and proxy objects. Only one environment for a given database schema can exist at a time.
If schema=None, then objects are created in the current user's schema.

CUSTOMERS = oml.sync(query = 'SELECT CUST_ID, CUST_GENDER,
CUST_MARITAL_STATUS, CUST_YEAR_OF_BIRTH, CUST_INCOME_LEVEL,

Chapter 3
Classification Use Case

3-25

CUST_CREDIT_LIMIT FROM SH.CUSTOMERS')
z.show(CUSTOMERS.head())

5. Run the shape function to view the rows and columns of an oml.DataFrame object
CUSTOMERS.

print("Shape:",CUSTOMERS.shape)

(55500, 6)

6. Create a new oml.dataframe CUSTOMER_DATA by merging the table CUSTOMERS and
DEMOGRAPHICS with an inner join on the common column CUST_ID . The merge
function joins one oml.dataframe to another oml.dataframe . The suffixes parameter is
used when the two oml.dataframe have conflicting column names.

CUSTOMER_DATA = CUSTOMERS[["CUST_ID", "CUST_INCOME_LEVEL",
"CUST_CREDIT_LIMIT"]].merge(DEMOGRAPHICS[["CUST_ID", "HOUSEHOLD_SIZE",
"OCCUPATION", "HOME_THEATER_PACKAGE"]], how = "inner", on =
'CUST_ID',suffixes = ["",""])
z.show(CUSTOMER_DATA.head())

7. Run the shape function to view the rows and columns of an oml.DataFrame object
CUSTOMER_DATA.

print("Shape:", CUSTOMER_DATA.shape)

(4500, 6)

Chapter 3
Classification Use Case

3-26

8. Run the following script to view the data types of all the columns.

print("The datatypes of the column: ","\n")
print(CUSTOMER_DATA.dtypes)

9. To check if there are any missing values run the following script. The count function returns
the number of elements that are not NULL for each column and the len function returns the
number of rows in the dataset.

print("Number of missing values in each column is : \n")
print(len(CUSTOMER_DATA)-CUSTOMER_DATA.count())

10. Use the crosstab method to perform a cross-column analysis of an oml.DataFrame object
in the database. The crosstab method computes a cross-tabulation of two or more
columns. By default, it computes a frequency table for the columns unless a column and
an aggregation function have been passed to it. In this example, the crosstab function
displays the distribution of HOME_THEATER_PACKAGE responders.

z.show(CUSTOMER_DATA.crosstab('HOME_THEATER_PACKAGE'))

Chapter 3
Classification Use Case

3-27

11. To know how customers respond to HOME_THEATER_PACKAGE according to their
income level run the following code:

z.show(CUSTOMER_DATA.crosstab('CUST_INCOME_LEVEL','HOME_THEATER_PACKAGE').s
ort_values('count', ascending=False).rename(columns =
{'count':'NUM_CUSTOMERS'}))

This completes the data understanding and data preparation stage.

3.2.3 Build Model
Build your model using the training data set. Use the oml.rf function to build your model and
specify the model settings.

For a supervised learning, like Classification, before creating the model, split the data into
training and test data. Although you can use the entire data set to build a model, it is difficult to
validate the model unless there are new data sets available. Therefore, to evaluate the model
and to accurately assess the performance of the model on the same data, you generally split
or separate the data into training and test data. You use the training data set to train the model
and then use the test data set to test the accuracy of the model by running prediction queries.
The testing data set already contains known values for the attribute that you want to predict. It
is thus easy to determine whether the predictions of the model are correct.

Algorithm Selection

Before you build a model, choose the suitable algorithm. You can choose one of the following
algorithms to solve a classification problem:

• Decision Tree

• Generalized Linear Model

• Naive Bayes

• Neural Network

• Random Forest

• Support Vector Machine

Here you will be using Random forest algorithms as interpretability is not a major concern. The
Random Forest algorithm is a type of ensemble method used for classification. Random forest
builds a number of independent decision trees and combines the output of the multiple
decision trees to make predictions. Each of these decision trees is built using a random sample
from the input and each tree uses a random subset of the features. This avoids the problem of
overfitting while increasing accuracy. To build a model using a supervised learning algorithm

Chapter 3
Classification Use Case

3-28

(Random Forest Model), you need to first split the data into train and test data. After splitting
the data, build the model using the train data and once the model is built, score the test data
using the model.

1. You will split the CUSTOMER_DATA data with 60 percent of the records for the train data
set and 40 percent for the test data set. The seed parameter is used for random splitting.
The split method splits the data referenced by the DataFrame proxy object
CUSTOMER_DATA into two new DataFrame proxy objects train, and test. Run the
following script.

TRAIN, TEST = CUSTOMER_DATA.split(ratio = (0.6,0.4),seed=1)
TRAIN_X = TRAIN.drop('HOME_THEATER_PACKAGE')
TRAIN_Y = TRAIN['HOME_THEATER_PACKAGE']
TEST_X = TEST
TEST_Y = TEST['HOME_THEATER_PACKAGE']

2. Run the following statement to view a few rows of the test dataset.

z.show(TRAIN)

3. To specify model settings and build a Random Forest model object for predicting the
HOME_THEATER_PACKAGE attribute, run the following script. The settings are given as
key-value or dictionary pairs where it refers to parameters name and value setting
respectively. Here some of the settings specified are PREP_AUTO and
RFOR_NUM_TREES . The Random Forest makes use of the Decision Tree settings to
configure the construction of individual trees. The fit function builds the rf model according
to the training data and parameter settings.

try:
 oml.drop(model = 'MODEL_RF')
except:
 pass

settings = {'PREP_AUTO': 'ON',
 'ALGO_NAME': 'ALGO_RANDOM_FOREST',
 'RFOR_NUM_TREES': '25'}

rf_mod = oml.rf(**settings)
rf_mod.fit(TRAIN_X, TRAIN_Y, case_id = 'CUST_ID', model_name = 'MODEL_RF')

Model setting parameters:

• RFOR_NUM_TREES: Denotes the number of trees the random forest can have.

• PREP_AUTO: Used to specify fully automated or user-directed general data preparation.
By default, it is enabled with a constant value as 'PREP_AUTO': PREP_AUTO_ON.
Alternatively, it can also be given as 'PREP_AUTO': 'ON'.

Note:

Any parameters or settings not specified are either system-determined or
default values are used.

Chapter 3
Classification Use Case

3-29

3.2.4 Evaluate
Before you make predictions using your model on new data, you should first evaluate model
accuracy. You can evaluate the model using different methods.

Information about Model settings

Evaluate the model by examining the various statistics generated after building the model. The
statistics indicate the model's quality.

• Run the following script for model details available through the Random Forest model
object, like the model settings, coefficients, fit details, etc.

rf_mod

They can also be displayed and viewed individually as shown below.

• Run the following script to display the model's global statistics.

z.show(rf_mod.global_stats)

Chapter 3
Classification Use Case

3-30

• Run the following script to display the attribute importance of the rf_mod model.

z.show(rf_mod.importance)

Score

Here you will make predictions on the test case using the model and then evaluate the model
by using methods like Confusion Matrix, Lift Chart, Gains Chart, and ROC curve chart.

1. Make predictions on the test data and add the CASE_ID as a supplemental column so you
can uniquely associate scores with the original data. To do so run the below script:

Set the case ID attribute
case_id = 'CUST_ID'
Gather the Predictions
RES_DF = rf_mod.predict(TEST_X, supplemental_cols = TEST_X)
Additionally collect the PROBABILITY_OF_0 and PROBABILITY_OF_1
RES_PROB = rf_mod.predict_proba(TEST_X, supplemental_cols =
TEST_X[case_id])
Join the entire result into RES_DF
RES_DF = RES_DF.merge(RES_PROB, how = "inner", on = case_id, suffixes =
["", ""])

2. To evaluate the model, pass a proxy object oml.Dataframe containing predictions and the
target columns in a user-defined function named evaluate_model. Evaluate your model
using standard metrics. For a classification example, you can evaluate your model using
the following:

Chapter 3
Classification Use Case

3-31

• Confusion Matrix: It displays the number and type of correct and incorrect predictions
made with respect to the actual classification in the test data. It is an n-by-n matrix
where n is the number of classes.

• Lift Chart: Applies only to binary classification requiring the designation of the positive
class. It measures the degree to which the predictions of a classification model are
better than randomly generated predictions.

• ROC curve chart: Applies to binary classification and requires the designation of the
positive class. These are metrics for comparing predicted and actual target values in a
classification model.

Run the below script to generate the metrics and charts:

def evaluate_model(pred_data='', settings_name={''}, name='', target=''):
 """Evaluate the models by passing an proxy oml.Dataframe containing
Predictions
 and the target column,
 The Settings name (for the charts),
 The name of the model used (for the charts),
 Supply the target column name for evaluation
 for computing the confusion matrix with the test dataset"""
 import oml
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.metrics import auc
 from sklearn.metrics import roc_curve

 conf_matrix = pred_data.crosstab(target,'PREDICTION',pivot=True)

 # Extract Statistics from the Confusion Matrix
 cf_local = conf_matrix.pull()
 TN = int(cf_local[cf_local[target]==0]['count_(0)'])
 FN = int(cf_local[cf_local[target]==0]['count_(1)'])
 TP = int(cf_local[cf_local[target]==1]['count_(1)'])
 FP = int(cf_local[cf_local[target]==1]['count_(0)'])
 TPR = TP/(TP+FN)
 FPR = FP/(FP+TN)
 TNR = TN/(TN+FP)
 FNR = FN/(FN+TP)
 Precision = TP/(TP+FP)
 Accuracy = (TP+TN)/(TP+TN+FP+FN)
 NPV = TN/(FN+TN)
 DetectionRate = TN/(FN+TN)
 BalancedAccuracy = (TPR+TNR)/2

 # Estimated AUC via Triangle (not very precise) could be
 # AUC = (1/2)*FPR*TPR + (1/2)*(1-FPR)*(1-TPR) + (1-FPR)*TPR
 # Compute real AUC using roc_curve by loading the
 # data locally and using the roc_curve() function
 pred_local = pred_data.pull()
 fpr, tpr, _ =
roc_curve(pred_local[[target]],pred_local[['PROBABILITY_OF_1']])
 AUC = auc(fpr, tpr)
 opt_index = np.argmax(tpr - fpr)
 FPR_OPT = fpr[opt_index]
 TPR_OPT = tpr[opt_index]

Chapter 3
Classification Use Case

3-32

 F1Score = 2*Precision*TPR/(Precision+TPR)
 MathewsCorrCoef = ((TP*TN)-(FP*FN))/
((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))**0.5

 # Store all statistics to export
 statistics = {'Algorithm' : name,
 'Algorithm_setting' : settings_name,
 'TN' : TN,
 'TP' : TP,
 'FP' : FP,
 'FN' : FN,
 'TPR' : TPR,
 'FPR' : FPR,
 'TNR' : TNR,
 'FNR' : FNR,
 'Precision' : Precision,
 'Accuracy' : Accuracy,
 'NPV' : NPV,
 'DetectionRate' : DetectionRate,
 'BalancedAccuracy' : BalancedAccuracy,
 'AUC' : AUC,
 'F1Score' : F1Score,
 'MathewsCorrCoef' : MathewsCorrCoef
 }
 # Nice round stats for printing to screen
 TOTAL = TP+TN+FP+FN
 TN_P = round((TN/TOTAL*100),2)
 FP_P = round((FP/TOTAL*100),2)
 FN_P = round((FN/TOTAL*100),2)
 TP_P = round((TP/TOTAL*100),2)
 # Print the output nicely on Zeppelin native Table
 print("%table CONFUSION MATRIX\tPREDICTED 0\tPREDICTED 1\nACTUAL 0\t"+
 "True Negative: "+str(TN)+" ("+str(TN_P)+"%)\t"+
 "False Positive: "+str(FP)+" ("+str(FP_P)+"%)\nACTUAL 1\t"+
 "False Negative: "+str(FN)+" ("+str(FN_P)+"%)\t"+
 "True Positive: "+str(TP)+" ("+str(TP_P)+"%)\n"+
 "Accuracy: "+str(round(Accuracy*100,4))+"%\t"+
 "AUC: "+str(round(AUC,4))+"\t"+
 "F1Score: "+str(round(F1Score,4))
)

 # Multiple Charts for Evaluation
 fig, axes = plt.subplots(nrows=1, ncols=4,figsize=[22,5])
 ax1, ax2, ax3, ax4 = axes.flatten()
 fig.suptitle('Evaluation of the '+str(name)+' Model, with settings:
'+str(settings_name), size=16)

 # Statistics
 ax1.axis('off')

 # Function to return rounded numbers if the string is float, return
 # integers otherwise and return characters if not a number
 def round_if_float(content):
 try:
 val = float(content)
 except ValueError:

Chapter 3
Classification Use Case

3-33

 return(content)
 else:
 if val.is_integer():
 return(int(content))
 else:
 return(round(float(content),4))

 for num, name in enumerate(statistics):
 ax1.text(0.01,
 (-num*0.06+0.94),
 "{0}: {1}".format(name,round_if_float(statistics[name])),
 ha='left',
 va='bottom',
 fontsize=12)

 # Produce Lift Chart
 ax2.set_title('Lift Chart')
 data = pred_local.sort_values(by='PROBABILITY_OF_1', ascending=False)
 data['row_id'] = range(0,0+len(data))
 data['decile'] = (data['row_id'] / (len(data)/10)).astype(int)
 lift = data.groupby('decile')[target].agg(['count','sum'])
 lift.columns = ['count', target]
 lift['decile'] = range(1,11)

 data_ideal = pred_local.sort_values(by=target, ascending=False)
 data_ideal['row_id'] = range(0,0+len(data))
 data_ideal['decile'] = (data_ideal['row_id'] /
(len(data_ideal)/10)).astype(int)
 lift_ideal = data_ideal.groupby('decile')[target].agg(['count','sum'])
 lift_ideal.columns = ['count', 'IDEAL']
 lift['IDEAL']=lift_ideal['IDEAL']

 ax2.bar(lift['decile'],lift['IDEAL']/lift['count'],
 color='darkorange', label='Ideal')
 ax2.bar(lift['decile'],lift[target]/lift['count'],
 color='blue', alpha=0.6, label='Model')
 ax2.axhline((lift[target]/lift['count']).mean(),
 color='grey', linestyle='--', label='Avg TARGET')
 ax2.set_ylim(0,1.15)
 ax2.set_xlabel('Decile', size=13)
 ax2.set_ylabel('Percent of Actual Targets', size=13)
 # Print labels.
 for dec in lift['decile']:
 ax2.text(dec, lift[lift.decile==dec][target]/lift[lift.decile==dec]
['count'] + 0.05,
 ("%.0f" % int(round((lift[(lift.decile==dec)][target]/
lift[lift.decile==dec]['count'])*100,0)))+"%",
 ha='center', va='bottom')
 ax2.legend(loc="upper right")

 # Produce Gains Chart
 ax3.set_title('Distributions of Predictions')
 pred_local[pred_local[target]==1]['PROBABILITY_OF_1'].rename("Target =
1").plot(kind='density', bw_method=0.1, grid=True, ax=ax3)
 pred_local[pred_local[target]==0]['PROBABILITY_OF_1'].rename("Target =
0").plot(kind='density', bw_method=0.1, grid=True, ax=ax3)

Chapter 3
Classification Use Case

3-34

 ax3.axvline(.5, color='grey', linestyle='--', label='Cutoff at 0.5')
 ax3.set_xlim([0,1])
 ax3.set_xlabel('Probability of 1', size=13)
 ax3.set_ylabel('Density', size=13)
 ax3.legend(loc="upper right")

 # ROC curve Chart
 ax4.set_title('ROC Curve')
 ax4.plot(fpr, tpr, color='blue', lw=2, label='ROC curve')
 ax4.plot(FPR_OPT, TPR_OPT, color='orange', markersize=6)
 ax4.plot([0, 1], [0, 1], lw=2, linestyle='--', color='grey',
label='Random guess')
 ax4.annotate('Optimal Cutoff:\nTPR: '+str(round(TPR_OPT,2))+' FPR:
'+str(round(FPR_OPT,2)),
 fontsize=11, xy=(FPR_OPT, TPR_OPT), xycoords='data',
xytext=(0.98, 0.54),
 textcoords='data',
 arrowprops=dict(facecolor='gray', shrink=0.1, width=2,
 connectionstyle='arc3, rad=0.3'),
 horizontalalignment='right', verticalalignment='top')
 ax4.annotate('AUC ='+str(round(AUC,4)), xy=(0.5, 0.35),
 xycoords='axes fraction', size=13)
 ax4.annotate('Precision ='+str(round(Precision,4)), xy=(0.45, 0.3),
 xycoords='axes fraction', size=13)
 ax4.annotate('Recall ='+str(round(TPR,4)), xy=(0.4, 0.25),
 xycoords='axes fraction', size=13)
 ax4.annotate('Accuracy ='+str(round(Accuracy,4)), xy=(0.35, 0.2),
 xycoords='axes fraction', size=13)
 ax4.annotate('F1 Score ='+str(round(F1Score,4)), xy=(0.3, 0.15),
 xycoords='axes fraction', size=13)
 ax4.set_xlim([-0.02, 1.02])
 ax4.set_ylim([0.0, 1.02])
 ax4.set_xlabel('False Positive Rate', size=13)
 ax4.set_ylabel('True Positive Rate', size=13)
 ax4.legend(loc="lower right")

 return(statistics, pred_local)

_ = evaluate_model(pred_data=RES_DF, settings_name='Num Trees:25,Sampling
Ratio:0.5', name='Random Forest', target='HOME_THEATER_PACKAGE')

Chapter 3
Classification Use Case

3-35

3. Display the results of customers responding to HOME_THEATER_PACKAGE with a
probability greater than 0.5. Select the columns from the RES_DF dataset to display. To do
so, run the following script:

z.show(RES_DF[RES_DF['PROBABILITY_OF_1'] > 0.5])

4. Run the following script to get the model accuracy of the rf_mod. The score function makes
prediction on the Test data and the target test data and gives the mean accuracy.

print("RF accuracy score = {:.2f}".format(rf_mod.score(TEST_X, TEST_Y)))

RF accuracy score = 0.68

You obtain an accuracy of 0.68 or approximately 68% of the result are correctly predicted.

To conclude, you have successfully identified customers who are likely to purchase
HOME_THEATER_PACKAGE. This prediction helps to promote and offer home theater package to
the target customers.

3.3 Clustering Use Case
A retail store has information about its customers' behavior and the purchases they make. Now
with the available data, they would like you to analyze and identify if there are any similarities
between the customers. Use Oracle Machine Learning to segment customers by finding
clusters in the data set which can be then used to support targeted marketing campaigns to

Chapter 3
Clustering Use Case

3-36

increase retail sales. In this use case, you will learn how to identify such segments using the k-
Means algorithm.

Related Contents

Table 3-1 Related Contents

Topic Link

OML4Py GitHub Example Clustering k-Means

About Clustering About Clustering

Model Settings About Model Settings

Shared Settings Shared Settings

k-Means - Model Detail Views Model Detail Views for k-Means

(Optional) Enter contextual information here, including the purpose of the task.

Before you start your OML4Py use case journey, ensure that you have the following:

• Data Set
The data set used for this use case is from the SH schema. The SH schema can be readily
accessed in Oracle Autonomous Database. For on-premises databases, the schema is
installed during the installation or can be manually installed by downloading the scripts.
See Installing the Sample Schemas.

• Database
Select or create database out of the following options:

– Get your FREE cloud account. Go to https://cloud.oracle.com/database and select
Oracle Database Cloud Service (DBCS), or Oracle Autonomous Database. Create an
account and create an instance. See Autonomous Database Quick Start Workshop.

– Download the latest version of Oracle Database (on premises).

• Machine Learning Tools
Depending on your database selection,

– Use OML Notebooks for Oracle Autonomous Database.

– Install and use Oracle SQL Developer connected to an on-premises database or
DBCS. See Installing and Getting Started with SQL Developer.

• Other Requirements
Data Mining Privileges (this is automatically set for ADW). See System Privileges for
Oracle Machine Learning for SQL.

• Load Data
Access the data set from the SH Schema and explore the data to understand the
attributes.

• Explore Data
Once the data is accessible, explore the data to understand and assess the quality of the
data. At this stage assess the data to identify data types and noise in the data. Look for
missing values and numeric outlier values.

• Build Model
To evaluate a model's performance, it is common practice to split the data into training and
test sets. This allows you to assess how well the model generalizes to unseen data.
However, in unsupervised learning, such as clustering, there are no labels or predictors
available to calculate accuracy or evaluate performance. As a result, you can use the
entire dataset to build the model without the need to split it. Since there is no ground truth

Chapter 3
Clustering Use Case

3-37

https://github.com/oracle-samples/oracle-db-examples/blob/main/machine-learning/notebooks/python/OML4Py%20Clustering%20KM.dsnb
https://cloud.oracle.com/database
https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=582
https://www.oracle.com/in/database/technologies/oracle-database-software-downloads.html

to compare the results against, the training-test split is neither applicable nor useful in
unsupervised learning.

• Evaluate
Evaluate a model by assessing its performance using various metrics and techniques to
determine how effectively it generalizes to new, unseen data. This process involves
comparing predictions to actual outcomes using metrics like accuracy, precision, recall, F1
score, or mean squared error, depending on the model type. The evaluation helps identify
the model's strengths and weaknesses, guiding further improvement or tuning.

Related Topics

• Create a Notebook

• Edit your Notebook

• Installing Sample Schemas

3.3.1 Load Data
Access the data set from the SH Schema and explore the data to understand the attributes.

Remember:

The data set used for this use case is from the SH schema. The SH schema can be
readily accessed in Oracle Autonomous Database. For on-premises databases, the
schema is installed during the installation or can be manually installed by
downloading the scripts. See Installing the Sample Schemas.

To understand the data, you will perform the following:

• Access the data.

• Examine the various attributes or columns of the data set.

• Assess data quality (by exploring the data).

Access Data

You will use CUSTOMERS and SUPPLEMENTARY_DEMOGRAPHICS table data from the SH schema.

3.3.2 Explore Data
Once the data is accessible, explore the data to understand and assess the quality of the data.
At this stage assess the data to identify data types and noise in the data. Look for missing
values and numeric outlier values.

Assess Data Quality

To access database data from Python using OML4Py, you must first create a oml.DataFrame
proxy object in Python which represents a database table, view, or query. Create a
oml.DataFrame proxy object for SUPPLEMENTARY_DEMOGRAPHICS and CUSTOMERS
and then merge them by inner join on a key column, e.g., CUST_ID. Assess the data to identify
data types and noise in the data. Look for missing values, outlier numeric values, or
inconsistently labeled categorical values.

The following steps help you with the exploratory analysis of the data:

Chapter 3
Clustering Use Case

3-38

1. Run the following script in a %python interpreter paragraph to import the oml modules, the
Panda's module, and set the display options:

import pandas as pd
import matplotlib.pyplot as plt
import oml

pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

2. Use the oml.sync function to create the Python object DEMOGRAPHICS as a proxy for a
database table SUPPLEMENTARY_DEMOGRAPHICS. The oml.sync function returns an
oml.DataFrame object. The oml.DataFrame object returned by oml.sync is a proxy for the
database object.

Note:

Only one environment for a given database schema can exist at a time. If
"schema=None", then objects are created searched in the current user's schema.

DEMOGRAPHICS = oml.sync(table = "SUPPLEMENTARY_DEMOGRAPHICS", schema =
"SH")
z.show(DEMOGRAPHICS.head())

3. To determine the number of rows and columns in the oml.DataFrame object
DEMOGRAPHICS, use DataFrame.shape.

print("Shape:",DEMOGRAPHICS.shape)

(4500, 14)

Chapter 3
Clustering Use Case

3-39

4. Use the oml.sync function to create the Python object CUSTOMERS as a proxy for a
database table SH.CUSTOMERS. The query argument uses the SQL SELECT statement
for selecting columns to include for use through the proxy object.c

CUSTOMERS = oml.sync(query = 'SELECT CUST_ID, CUST_GENDER,
CUST_MARITAL_STATUS, CUST_YEAR_OF_BIRTH, CUST_INCOME_LEVEL,
CUST_CREDIT_LIMIT FROM SH.CUSTOMERS')
z.show(CUSTOMERS.head())

5. To determine the number of rows and columns in the oml.DataFrame object CUSTOMERS,
use DataFrame.shape.

print("Shape:",CUSTOMERS.shape)

(55500, 6)

6. Create a new oml.DataFrame CUSTOMER_DATA by merging the table CUSTOMERS and
DEMOGRAPHICS with an inner join on the common column CUST_ID. The merge
function joins one oml.DataFrame to another oml.DataFrame. The suffixes parameter is
used when the two oml.DataFrame have conflicting column names.

CUSTOMER_DATA = CUSTOMERS[["CUST_ID", "CUST_GENDER",
"CUST_MARITAL_STATUS", "CUST_YEAR_OF_BIRTH", "CUST_INCOME_LEVEL",
"CUST_CREDIT_LIMIT"]].merge(DEMOGRAPHICS[["CUST_ID",
"HOUSEHOLD_SIZE","YRS_RESIDENCE", "Y_BOX_GAMES"]], how = "inner", on =
'CUST_ID',suffixes = ["",""])

7. To determine the number of rows and columns in the oml.DataFrame object
CUSTOMER_DATA, use DataFrame.shape.

print("Shape:",CUSTOMER_DATA.shape)

Shape: (4500, 9)

8. Use the concat function to concatenate the new column CUST_AGE in an oml.DataFrame
object CUSTOMER_DATA. The column CUST_AGE contains the age based on the
column CUST_YEAR_OF_BIRTH where the year of birth is converted to age in the year
2005. The information in the CUST_YEAR_OF_BIRTH column has been modified and
maintained in CUST AGE, so drop the CUST_YEAR_OF_BIRTH column.

CUSTOMER_DATA=CUSTOMER_DATA.concat({'CUST_AGE':abs(CUSTOMER_DATA['CUST_YEAR
_OF_BIRTH'] -2005)})

Chapter 3
Clustering Use Case

3-40

CUSTOMER_DATA=CUSTOMER_DATA.drop('CUST_YEAR_OF_BIRTH')
CUSTOMER_DATA.head()

9. Run the following script to view the data type of each column.

print("The datatypes of the column: ","\n")
print(CUSTOMER_DATA.dtypes)

10. To check if there are any missing values run the following script. The count function returns
the number of elements that are not NULL for each column and the len() function returns
the number of rows in the dataset.

print("Number of missing values in each column is : \n")
print(len(CUSTOMER_DATA)-CUSTOMER_DATA.count())

11. Use the crosstab method to perform a cross-column analysis of an oml.DataFrame object
in the database. The crosstab method computes a cross-tabulation of two or more
columns. By default, it computes a frequency table for the columns unless a column and
an aggregation function have been passed to it. In this example, the crosstab function

Chapter 3
Clustering Use Case

3-41

displays the distribution of unique values of CUST_CREDIT_LIMIT along the x-axis and its
occurrence frequency along the y-axis.

z.show(CUSTOMER_DATA.crosstab(‘CUST_CREDIT_LIMIT’))

12. Use the transparency layer method describe to calculate descriptive statistics that
summarize the central tendency, dispersion, and shape of the CUSTOMER_DATA table in
each numeric column.

Note:

All computations are computed in the database and only the result statistics are
returned to the Python client, in this case, the notebook. Eliminating the need to
move data and using the database as a high-performance compute engine
greatly increases scalability.

CUSTOMER_DATA.describe()

13. Before building the model, it's important to ensure that the data is clean. Data often
contains outliers, which can form separate clusters that negatively impact model quality.
The following script defines a function, IQR, to calculate the interquartile range for a
dataframe. It takes two arguments: SUMMARY_DF (which contains summary statistics of

Chapter 3
Clustering Use Case

3-42

the dataframe, generated using the describe method) and a list of features. The IQR
function uses a for loop to compute the interquartile range for each feature in the list.

Run the script to calculate the interquartile range for the specified columns:

def IQR(SUMMARY_DF, features):
 result = [0]*len(features)
 for i, feature in enumerate(features):
 result[i] = abs(SUMMARY_DF[feature]['75%'] - SUMMARY_DF[feature]
['25%'])
 return result

print(IQR(CUSTOMER_DATA.describe(),['CUST_AGE', 'CUST_CREDIT_LIMIT',
'YRS_RESIDENCE', 'Y_BOX_GAMES']))

[20.0, 6000.0, 2.0, 1.0]

The user-defined function remove_outlier uses the interquartile range to find outliers in
the data and remove them. In boxplot, outliers are points that lie outside of the upper and
lower quartiles by 1.5 times the interquartile range (Q1 - 1.5 * IQR or Q3 + 1.5 * IQR).
Another form of outlier treatment is clipping or capping, where more extreme values are
replaced with a max or min value, e.g., the 1.5 IRQ values.

The following function removes rows with outliers of a given feature based on quantiles:

def remove_outlier(DF, SUMMARY_DF, features):
 iqrs = IQR(SUMMARY_DF, features)
 for i, iqr in enumerate(iqrs):
 H = 1.5*iqr
 DF = DF[(DF[features[i]] > SUMMARY_DF[features[i]]['25%'] - H)
& (DF[features[i]] < SUMMARY_DF[features[i]]['75%'] + H)]
 print(DF.shape)
 return DF

CUSTOMER_DATA_CLEAN= remove_outlier(CUSTOMER_DATA,
CUSTOMER_DATA.describe(), ['CUST_AGE', 'CUST_CREDIT_LIMIT',
'YRS_RESIDENCE', 'Y_BOX_GAMES'])

print("Shape:",CUSTOMER_DATA_CLEAN.shape)

Shape: (4233, 9)

This completes the data understanding and data preparation stage.

3.3.3 Build Model
To evaluate a model's performance, it is common practice to split the data into training and test
sets. This allows you to assess how well the model generalizes to unseen data. However, in
unsupervised learning, such as clustering, there are no labels or predictors available to
calculate accuracy or evaluate performance. As a result, you can use the entire dataset to

Chapter 3
Clustering Use Case

3-43

build the model without the need to split it. Since there is no ground truth to compare the
results against, the training-test split is neither applicable nor useful in unsupervised learning.

Algorithm Selection

Using OML4Py, you can choose one of the following algorithms to solve a clustering problem:

1. Expectation-Maximization (EM)

2. K-Means (KM)

The Expectation-Maximization (EM) algorithm uses a probabilistic clustering based on a
density estimation algorithm. The EM algorithm is used when data contains hidden
components or when some data points are absent. In contrast, the k-Means (KM) algorithm is
a distance-based clustering algorithm that partitions data into a specified number of clusters.
Distance-based algorithms are based on the principle that nearby data points are more closely
related to one another than to those that are farther away. This algorithm works iteratively to
minimize the within-cluster variance in relation to the nearest cluster centroid.

The k-Means algorithm is chosed, as it is simpler than the Expectation-Maximization (EM)
algorithm. Since, the optimal number of clusters is unknown, start with one cluster and
gradually increase the number of clusters. Use the Elbow meathod to determine the optimal
number of clusters.

To specify model settings and build a k-Means model object that will partition and segment the
data, run the following script. The settings are provided as key-value pairs, or dictionary pairs,
where each key represents a parameter name and its corresponding value represents the
setting. Some of the specified settings include KMNS_ITERATIONS and KMNS_DISTANCE.
The k-Means algorithm utilizes the number of clusters (k) along with these settings to configure
the algorithm.

The following steps guide you to build your model with the selected algorithm.

• Use the oml.km algorithm to build your model and specify the model settings. Run the
following script:

try:
 oml.drop(model="CUST_CLUSTER_MODEL")
except:
 pass

setting = {'KMNS_ITERATIONS': 10,
 'KMNS_DISTANCE': 'KMNS_EUCLIDEAN',
 'KMNS_NUM_BINS': 10,
 'KMNS_DETAILS': 'KMNS_DETAILS_ALL',
 'PREP_AUTO': 'ON'}

km_mod1 = oml.km(n_clusters = 1, **setting).fit(CUSTOMER_DATA_CLEAN,
model_name = "CUST_CLUSTER_MODEL", case_id = 'CUST_ID')

Examine the script:

– KMNS_ITERATIONS: Specifies the maximum number of allowed iterations, with a default
of 20.

– KMNS_DISTANCE: Specify the type of distance functions used, by default distance
function is the Euclidean distance.

– KMNS_NUM_BINS: Specifies the number of bins in the attribute histogram produced by k-
Means.

Chapter 3
Clustering Use Case

3-44

– KMNS_DETAILS: Determines the level of cluster details that are computed during the
build. The value KMNS_DETAILS_ALL indicates that the cluster hierarchy, record counts,
and descriptive statistics such as variances, modes, histograms, and rules are
computed.

– PREP_AUTO: Used for Automatic Data Preparation. By default, it is enabled as
'PREP_AUTO': PREP_AUTO_ON, which requires the DBMS_DATA_MINING package.
Alternatively, it can be set as 'PREP_AUTO': 'ON'. This allows the compiler to validate
that the PL/SQL constant name is correct.

3.3.4 Evaluate
Evaluate a model by assessing its performance using various metrics and techniques to
determine how effectively it generalizes to new, unseen data. This process involves comparing
predictions to actual outcomes using metrics like accuracy, precision, recall, F1 score, or mean
squared error, depending on the model type. The evaluation helps identify the model's
strengths and weaknesses, guiding further improvement or tuning.

Information and Model Settings

Note:

To get a complete list of information on the settings available in the k-Means module,
run the below script:

help(oml.algo.km)

The following steps help you to view different model detail views.

• Use km_mod1 to access the model details available through the k-Means model object, like
the model settings, coefficients, fit details, and more.

 km_mod1

Chapter 3
Clustering Use Case

3-45

• Use km_mod1.clusters to list the clusters information.

z.show(km_mod1.clusters)

• Run the following script to display the model's centroid concerning each column. It gives
mean, variance for a numeric attribute and mode for a categorical attribute.

z.show(km_mod1.centroids)

• To determine the optimal value of k you will use the Elbow method. Assuming that k lies in
a given range, search for the best k by running k-Means over each k in the given range.
For each k find the within-cluster variance. As the value of k increases within-cluster
variance should decrease. This is because more centers mean that the data points are on

Chapter 3
Clustering Use Case

3-46

average at less distance from each other for a given centroid. Imagine that each data point
is a center then within-cluster variance would be zero. Before the optimal value of k, the
decrease in within-cluster-variance will be relatively large as new clusters will have
increasingly closer data points within them. After the optimal value of k, the decrease will
be slow as the new clusters formed will be similar to each other. The range of k should be
chosen such that we can see the sharp decrease at optimal value and the slow decrease
afterward resulting in an almost linear pattern being formed in the plot. The entire curve
usually looks like an L shape and the best K lies in the turning point or the elbow of the L
shape.

incluster_sum = []
for cluster in range(1, 9):
 setting = {'kmns_iterations': 15, 'KMNS_RANDOM_SEED': 1}
 km_mod2 = oml.km(n_clusters = cluster,
**setting).fit(CUSTOMER_DATA_CLEAN)
 incluster_sum.append(abs(km_mod2.score(CUSTOMER_DATA_CLEAN)))

plt.plot(range(1, 9),incluster_sum)
plt.title('The Elobw Method Graph')
plt.xlabel('Number of clusters(k)')
plt.ylabel('wcss_list')
plt.show()

The elbow joint or the number of optimal clusters can be observed at k=3.

• Build the final model according to the optimal value of clusters.

try:
 oml.drop(model="CUST_CLUSTER_MODEL")
except:
 pass

setting = {'KMNS_ITERATIONS': 20,

Chapter 3
Clustering Use Case

3-47

 'KMNS_DISTANCE': 'KMNS_EUCLIDEAN',
 'KMNS_NUM_BINS': 10,
 'KMNS_DETAILS': 'KMNS_DETAILS_ALL',
 'PREP_AUTO': 'ON'}
km_mod3 = oml.km(n_clusters = 3, **setting).fit(CUSTOMER_DATA_CLEAN,
model_name = "CUST_CLUSTER_MODEL", case_id = 'CUST_ID')

• Run the following script to display the model's clusters and the parent-child relationship in
the cluster hierarchy.

z.show(km_mod3.clusters)

The clusters with cluster_id 3, 4, and 5 are the leaf clusters having 1369, 1442, and 1422
rows of data points in them. The cluster with cluster_id equal to 1 is the root of the binary
tree as its parent_cluster_id is equal to nan.

• Run the following script to get only the parent/child relationship.

z.show(km_mod3.taxonomy)

• To view the per cluster-attribute center (centroid) information of leaf clusters use the model
attribute centroids which displays model statistics like mean, variance, and mode value for
each cluster and attribute.

km_mod3.centroids[km_mod3.centroids["CLUSTER_ID"]>=3]

Chapter 3
Clustering Use Case

3-48

Cluster ID 3 has users with the highest mean for Y_BOX_GAMES and
CUST_INCOME_LEVEL.

• For the model km_mod3, use the model attribute cluster_hists to view the cluster
histogram details.To see the CUST_INCOME_LEVEL attribute's histogram details for
Cluster ID 5.

mod_histogram=km_mod3.cluster_hists

z.show(mod_histogram[(mod_histogram['cluster.id']==3) &
 ((mod_histogram['variable']=='CUST_INCOME_LEVEL:A: Below 30,000') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:B: 30,000 -
49,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:C: 50,000 -
69,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:D: 70,000 -
89,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:E: 90,000 -
109,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:F: 110,000 -
129,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:G: 130,000 -
149,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:H: 150,000 -
169,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:I: 170,000 -
189,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:J: 190,000 -
249,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:K: 250,000 -
299,999') |
 (mod_histogram['variable']=='CUST_INCOME_LEVEL:L: 300,000 and
above'))])

Chapter 3
Clustering Use Case

3-49

This histogram groups cluster-id 3 into bins based on the CUST_INCOME_LEVEL. The bin
with the highest count of customers earns salaries ranging from 190,000 to 249,999
annually.

• Check the support and confidence level of leaf clusters(3,4 and 5) using the model
attribute rules which give the conditions for a case to be assigned with some probability to
a cluster. Support and confidence are metrics that describe the relationships between
clustering rules and cases. Support is the percentage of cases for which the rule holds.
Confidence is the probability that a case described by this rule is assigned to the cluster.

km_mod3.rules

The columns headers in the above data frame specify the following:

– cluster.id: The ID of a cluster in the model rhs.support: The record count rhs.conf:

– rhs.support: The record count

– rhs.conf: The record confidence

– lhr.support: The rule support

– lhs.conf: The rule confidence

– lhs.var: The attribute predicate name

– lhs.var.support: The attribute predicate support

– lhs.var.conf: The attribute predicate confidence

– predicate: The attribute predicate

• Run the following script to get the cluster id and the total number of data points present in
each leaf node. The total number of data points at each tree level should always be
conserved. The total number of data points present in the root node should equal the sum
of all the data points present in the leaf nodes (1369+1442+1422=4233).

z.show(km_mod3.leaf_cluster_counts)

Chapter 3
Clustering Use Case

3-50

Score

The clusters discovered by k-Means are used to score a new record by estimating the
probabilities that the new record belongs to each of the k clusters. The cluster with the highest
probability is assigned to the record.

1. In this step, you will make predictions on the CUSTOMER_DATA_CLEAN and add the
CUST_ID as a supplemental column so that you can uniquely associate scores with the
data. To do so run the below script:

pred = km_mod3.predict(CUSTOMER_DATA_CLEAN, supplemental_cols =
CUSTOMER_DATA_CLEAN[["CUST_ID"]])
z.show(pred)

2. To make predictions that return probability for each cluster on the data use predict_proba
function.

pred = km_mod3.predict_proba(CUSTOMER_DATA_CLEAN, supplemental_cols =
CUSTOMER_DATA_CLEAN[["CUST_ID"]])
z.show(pred)

3. With Embedded Python Execution, all the above tasks can be achieved. You can invoke
user-defined Python functions in Python engines spawned and managed by the database

Chapter 3
Clustering Use Case

3-51

environment. Use the oml.do_eval function to run a user-defined input function that builds
a k-Means model, scores records, and displays the results.

def build_km_1():

 setting = {'KMNS_ITERATIONS': 20,
 'KMNS_DISTANCE': 'KMNS_EUCLIDEAN',
 'KMNS_NUM_BINS': 10,
 'KMNS_DETAILS': 'KMNS_DETAILS_ALL',
 'PREP_AUTO': 'ON'}

 # Create a KM model object and fit it.
 try:
 oml.drop(model="CUST_CLUSTER_MODEL_EPE")
 except:
 pass
 km_mod_epe = oml.km(n_clusters = 3,
**setting).fit(CUSTOMER_DATA_CLEAN, model_name = "CUST_CLUSTER_MODEL_EPE",
case_id = 'CUST_ID')

 # Show model details.
 #km_mod_epe
 pred=(km_mod_epe.predict(CUSTOMER_DATA_CLEAN, supplemental_cols
=CUSTOMER_DATA_CLEAN[:, ['CUST_ID']]))
 return pred

z.show(oml.do_eval(func = build_km_1))

4. Run the following script to display the probability score of customer c1 with CUST_ID
(102308) belonging to each cluster.

c1=CUSTOMER_DATA_CLEAN[CUSTOMER_DATA_CLEAN['CUST_ID']==102308]
km_mod3.predict_proba(c1, supplemental_cols =c1['CUST_ID'])

Chapter 3
Clustering Use Case

3-52

To sell a new gaming product, you must target customers who have already purchased
Y_BOX_GAMES and have a high credit limit. You have successfully segmented the population
into different clusters and the cluster with cluster-id 3 has the target population with the
greatest percentage of customers who have already purchased Y_BOX_GAMES, with a mean
CUST_CREDIT_LIMIT of 8322. So, you can confidently target customers in cluster-id 3 to sell
a new game product.

3.4 Time Series Use Case
You work in an electronic store, and sales of laptops and tablets have increased over the last
two quarters. You want to forecast your product sales for the next four quarters using historical
timestamped data. You forecast sales using the Exponential Smoothing algorithm, predicting
changes over evenly spaced intervals of time using historical data.

Table 3-2 Related Content

Topic Link

OML4Py GitHub Example Time Series - Exponential Smoothing

About Time Series About Time Series

About Model Setting About Model Setting

Shared Settings Shared Settings

Time Series Algorithm Time Series Algorithm

Before you start your OML4Py use case journey, ensure that you have the following:

• Data Set

The data set used for this use case is from the SH schema. The SH schema can be readily
accessed in Oracle Autonomous Database. For on-premises databases, the schema is
installed during the installation or can be manually installed by downloading the scripts.
See Installing the Sample Schemas.

You will use the SALES table from the SH schema. You can access the table by running the
SELECT statements in OML Notebooks.

• Database

Select or create a database using one of the following options:

– Get your FREE cloud account. Go to https://cloud.oracle.com/database and select
Oracle Database Cloud Service (DBCS), or Oracle Autonomous Database. Create an
account and create an instance. See Autonomous Database Quick Start Workshop.

– Download the latest version of Oracle Database (on premises).

• Machine Learning Tools

Use OML Notebooks for Oracle Autonomous Database.

Topics:

• Access Data
Access the data set from the SH Schema and explore the data to understand the
attributes.

Chapter 3
Time Series Use Case

3-53

https://github.com/oracle-samples/oracle-db-examples/blob/main/machine-learning/notebooks/python/OML4Py%20Time%20Series%20ESM.dsnb
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/machine-learning/oml4sql/21/mlsql&id=COMSC-GUID-3820972A-08D7-4033-9524-1E36676594EE
https://cloud.oracle.com/database
https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=582
https://www.oracle.com/in/database/technologies/oracle-database-software-downloads.html

• Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric
outlier values.

• Build Model
To build a model using the time series data, use the Exponential Smoothing algorithm on
the OML proxy object ESM_SH_DATA generated during the exploratory stage.

• Evaluate
Evaluate your model by viewing diagnostic metrics and performing quality checks.

Related Topics

• Create a Notebook

• Edit your Notebook

• Installing Sample Schemas

3.4.1 Access Data
Access the data set from the SH Schema and explore the data to understand the attributes.

Remember:

The data set used for this use case is from the SH schema. The SH schema can be
readily accessed in Oracle Autonomous Database. For on-premises databases, the
schema is installed during the installation or can be manually installed by
downloading the scripts. See Installing the Sample Schemas.

To understand the data, you will perform the following:

• Access the data.

• Examine the various attributes or columns of the data set.

• Assess data quality (by exploring the data).

Access Data

You will use SALES table data from the SH schema.

Examine Data

The following table displays information about the attributes from SALES:

Attribute Name Information

PROD_ID The ID of the product

CUST_ID The ID of the customer

TIME_ID The timestamp of the purchase of the product in
yyy-mm-dd hh:mm:ss format

CHANNEL_ID The channel ID of the channel sales data

PROMO_ID The product promotion ID

QUANTITY_SOLD The number of items sold

AMOUNT_SOLD The amount or sales data

Chapter 3
Time Series Use Case

3-54

Identify Target Variable

In this use case, the task is to train a model that predicts the amount sold. Therefore, the target
variable is the attribute AMOUNT_SOLD.

3.4.2 Explore Data
Explore the data to understand and assess the quality of the data. At this stage assess the
data to identify data types and noise in the data. Look for missing values and numeric outlier
values.

Note:

Each record in the database is called a case and each case is identified by a
case_id. Here, the case id is TIME_ID, which is an independent variable. You are
forecasting the sales for evenly spaced time.

The following steps help you with exploratory analysis of the data.

1. Import libraries

Run the following script in a %python interpreter paragraph to import the oml modules, the
Panda's module, and set the display options:

import oml
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

2. Create a DataFrame proxy object on the SH.SALES table

Use the oml.sync function to create the Python object SALES as a proxy for a database
table SALES. The oml.sync function returns an oml.DataFrame object.

Note:

Only one environment for a given database schema can exist at a time. If
"schema=None", then objects are created searched in the current user's schema.

SALES = oml.sync(table = "SALES", schema = "SH")
z.show(SALES.head())

Chapter 3
Time Series Use Case

3-55

3. Sales dataset row and column Count

To determine the number of rows and columns in the oml.DataFrame object SALES, use
DataFrame.shape.

print(f"Rows: {SALES.shape[0]}, Columns: SALES.shape[1]}")

Rows: 918843, Columns: 7

4. Sales Dataset Column Types

Run the following script to view the data type of each column.

print(f"Data types of each column in the Sales dataset:\n{SALES.dtypes}")

5. Count of missing values by column

To check if there are any missing values run the following script. The count function returns
the number of elements that are not NULL for each column and the len() function returns
the number of rows in the dataset.

print("Number of missing values in each column is : \n")
print(len(SALES)-SALES.count())

Chapter 3
Time Series Use Case

3-56

6. Prepare data to forecast sales by selecting needed columns and view content

Now, prepare a Python proxy object called ESM_SH_DATA by selecting the necessary
columns from SH.SALES table. For this use case, select TIME_ID and AMOUNT_SOLD.

ESM_SH_DATA= SALES[['TIME_ID', 'AMOUNT_SOLD']]
z.show(ESM_SH_DATA.head())

7. ESM_SH_DATA rows and columns

Determine the shape of ESM_SH_DATA:

print(f"Rows: {ESM_SH_DATA.shape[0]}, Columns: ESM_SH_DATA.shape[1]}")

Rows: 918843, Columns: 2

Chapter 3
Time Series Use Case

3-57

This completes the data exploration stage.

3.4.3 Build Model
To build a model using the time series data, use the Exponential Smoothing algorithm on the
OML proxy object ESM_SH_DATA generated during the exploratory stage.

Oracle provides the Exponential Smoothing algorithm for time series.

Exponential smoothing is a forecasting method for time series data. It is a moving average
method where exponentially decreasing weights are assigned to past observations.
Components of Exponential Smoothing Model (ESM) such as trend and seasonality
extensions, can have an additive or multiplicative form. For additive forms, the amplitude of the
variation is independent of the level, whereas for multiplicative forms, the variation is
connected to the level. The simpler additive models assume that error or noise, trend, and
seasonality are linear effects within the recursive formulation.

To build a model using a supervised learning algorithm you may use a subset of the data into
training and test data. Time series models usually use historical data to predict the future. This
is different from model validation for classification and regression, which normally involves
splitting data randomly into training and test sets. In this use case, there is no need to split the
data set because the model is always predicting the current value based on information from
the past. This means that although it seems that you train and test on the same data set, but
when the model is applied, the forecast is always based on the previous date. In this use case,
you will use the oml proxy object ESM_SH_DATA.

1. To get help on the Exponential Smoothing Model (ESM), run the following script:

help(oml.esm)

2. Create a Holt-Winters Model using quarterly setting
To build the model using the ESM_SH_DATA proxy object, run the following statement:

try:
 oml.drop(model = 'ESM_SALES_FORECAST_1')
except:
 pass

setting = {'EXSM_INTERVAL':'EXSM_INTERVAL_QTR', # accumulation interval =
quarter
 'EXSM_PREDICTION_STEP': '4', # prediction step = 4
quarters
 'EXSM_MODEL': 'EXSM_WINTERS', # ESM model = Holt-Winters
 'EXSM_SEASONALITY': '4', # seasonal cycle = 4
quarters
 'EXSM_SETMISSING': 'EXSM_MISS_AUTO'} # treat missing values as
an irregular time series

train_x=ESM_SH_DATA[:,0]
train_y=ESM_SH_DATA[:,1]

esm_mod = oml.esm(**setting).fit(train_x, train_y, time_seq = 'TIME_ID')

Examine the script:

Chapter 3
Time Series Use Case

3-58

• EXSM_INTERVAL: Specifies the interval of the data set or a unit of interval size, like day,
week, month, etc. This setting applies only to the time column with datetime type. For
example, if you want to predict for quarterly sales, the setting is EXSM_INTERVAL_QTR.

• EXSM_PREDICTION_STEP: Specifies how many predictions to make. For example, if you
want to display each value representing a quarter, then a value of 4 gives four values
(Quarters) prediction into the future.

• EXSM_MODEL: Specifies the type of exponential smoothing model to be used. As an
example, EXSM_WINTERS represents the Holt-Winters triple exponential smoothing
model with additive trend and multiplicative seasonality. This type of model considers
various combinations of additive and multiplicative trend, seasonality and error, with
and without trend damping.

• EXSM_SEASONALITY: Specifies how long a season lasts. The parameter specifies a
positive integer value as the length of seasonal cycle. The value it takes must be larger
than 1. For example, 4 means that every group of four values forms a seasonal cycle,
which makes sense if you are using 4 quarters to represent a year.

• EXSM_SETMISSING: Specifies how to handle missing values. In time series, the special
value EXSM_MISS_AUTO indicates that, if the series contains missing values it is to
be treated as an irregular time series.

This completes the model building stage.

3.4.4 Evaluate
Evaluate your model by viewing diagnostic metrics and performing quality checks.

Sometimes querying dictionary views and model detail views is sufficient to measure your
model's performance. However, you can evaluate your model by computing test metrics such
as conditional log-likelihood, Average Mean Squared Error (AMSE), Akaike Information
Criterion (AIC), and so on.

Information about Model settings

Evaluate the model by examining the various statistics generated after building the model. The
statistics indicate the model's quality.

• Review the forecast model settings

Run the following script for model details available through the GLM model object, like the
model settings, attribute coefficients, fit details, etc.

z.show(ESM_MOD)

Chapter 3
Time Series Use Case

3-59

• Review global diagnostics and model quality

Review the global diagnostics and model settings: Run the following script to display the
model's global statistics.

z.show(ESM_MOD.global_stats)

The attributes shown above are:

Chapter 3
Time Series Use Case

3-60

– -2 Log_LIKELIHOOD: It is a statistical measure that evaluates how well a model fits the
data. Specifically, it is calculated as twice the negative log-likelihood of the model.
Generally, a lower value indicates a better-fit model. It’s often used to compare
models, alongside criteria like AIC and BIC, for evaluating overall model performance.

– AIC: The Akaike Information Criterion (AIC) is used for model comparisions. It
penalizes model complexity. Lower AIC indicates a better model.

– AICC: The Corrected Akaike Information Criterion (AICc) is a statistical measure used
for model selection, particularly in the context of data analysis. It adjusts the Akaike
Information Criterion (AIC) for small sample sizes, providing a more accurate estimate
of the expected Kullback–Leibler discrepancy. The AICc is defined mathematically and
is particularly useful when dealing with models that have a large number of parameters
relative to the sample size.

– ALPHA: It is the smoothing parameter and ranges between 0 and 1. For exponential
smoothing algorithm(Holt-Winters) it signifies the sensitivity of the forcast to recent
changes in the data. Higher values indicate increased sensitivity.

– AMSE: AMSE, or Average Mean Squared Error measures the difference between the
actual and forcasted value. It penalizes the higger errors. Lower AMSE values means
better forcast accuracy.

Forecast

Here you will forecast sales for the next four quarters.

1. Forecast AMOUNT SOLD

The model, ESM_MOD, predicts 4 values into the future with LOWER and UPPER
condifence bounds. The results are sorted by descending time sequence so that the latest
points are shown first.

z.show(ESM_MOD.prediction.sort_values(by='TIME_SEQ',
 ascending=False))

2. Chart forecasted AMOUNT_SOLD values with confidence intervals

To see a visual representation of the predictions in OML Notebooks, run the above same
query with the following settings:

z.show(ESM_MOD.prediction.sort_values(by='TIME_SEQ'))

Chapter 3
Time Series Use Case

3-61

This completes the prediction step. The model has successfully forecast sales for the next four
quarters. This helps in tracking the sales and also gives us an idea on stocking our products.

Chapter 3
Time Series Use Case

3-62

4
Reference

• About Machine Learning Classes and Algorithms
These classes provide access to in-database machine learning algorithms.

• About Model Settings
You can specify settings that affect the characteristics of a model.

• Shared Settings
These settings are common to all of the OML4Py machine learning classes.

4.1 About Machine Learning Classes and Algorithms
These classes provide access to in-database machine learning algorithms.

Algorithm Classes

Class Algorithm Function of
Algorithm

Description

oml.ai Minimum
Description
Length

Attribute
importance for
classification or
regression

Ranks attributes according to their importance
in predicting a target.

oml.ar Apriori Association rules Performs market basket analysis by identifying
co-occurring items (frequent itemsets) within a
set.

oml.dt Decision Tree Classification Extracts predictive information in the form of
human-understandable rules. The rules are if-
then-else expressions; they explain the
decisions that lead to the prediction.

oml.em Expectation
Maximization

Clustering Performs probabilistic clustering based on a
density estimation algorithm.

oml.esa Explicit Semantic
Analysis

Feature extraction Extracts text-based features from a corpus of
documents. Performs document similarity
comparisons.

oml.glm Generalized
Linear Model

Classification

Regression

Implements logistic regression for classification
of binary targets and linear regression for
continuous targets.

oml.km k-Means Clustering Uses unsupervised learning to group data
based on similarity into a predetermined
number of clusters.

oml.nb Naive Bayes Classification Makes predictions by deriving the probability of
a prediction from the underlying evidence, as
observed in the data.

oml.nn Neural Network Classification

Regression

Learns from examples and tunes the weights of
the connections among the neurons during the
learning process.

4-1

Class Algorithm Function of
Algorithm

Description

oml.rf Random Forest Classification Provides an ensemble learning technique for
classification of data.

oml.svd Singular Value
Decomposition

Feature extraction Performs orthogonal linear transformations that
capture the underlying variance of the data by
decomposing a rectangular matrix into three
matrices.

oml.svm Support Vector
Machine

Anomaly detection

Classification

Regression

Builds a model that is a profile of a class,
which, when the model is applied, identifies
cases that are somehow different from that
profile.

oml.nmf Non-Negative
Matrix
Factorization

Feature extraction A state of the art feature extraction algorithm
used when there are many attributes and the
attributes are ambiguous or have weak
predictability.

oml.xgb XGBoost Classification

Regression

Can be used as a stand-alone predictor or
incorporate it into real-world production
pipelines for a wide range of problems such as
ad click-through rate prediction, hazard risk
prediction, web text classification, and so on.

oml.onnx Open Neural
Network
Exchange

Regression

Classification

Clustering

Embedding

An ONNX-format model can be loaded into the
database and used to score data using the
prediction operators of Oracle Machine
Learning. Although not an "algorithm", this
supports models from multiple algorithms and
machine learning techniques.

Repeatable Results

You can use the case_id parameter in the fit method of the OML4Py machine learning
algorithm classes to achieve repeatable sampling, data splits (train and held aside), and
random data shuffling.

Persisting Models

In-database models created through the OML4Py API exist as temporary objects that are
dropped when the database connection ends unless you take one of the following actions:

• Save a default-named model object in a datastore, as in the following example:

regr2 = oml.glm("regression")
oml.ds.save(regr2, 'regression2')

• Use the model_name parameter in the fit function when building the model, as in the
following example:

regr2 = regr2.fit(X, y, model_name = 'regression2')

• Change the name of an existing model using the model_name function of the model, as in
the following example:

regr2(model_name = 'myRegression2')

To drop a persistent named model, use the oml.drop function.

Chapter 4
About Machine Learning Classes and Algorithms

4-2

Creating a Model from an Existing In-Database Model

You can create an OML4Py model as a proxy object for an existing in-database machine
learning model. The in-database model could have been created through OML4Py, OML4SQL,
or OML4R. To do so, when creating the OML4Py, specify the name of the existing model and,
optionally, the name of the owner of the model, as in the following example.

ar_mod = oml.ar(model_name = 'existing_ar_model', model_owner = 'SH',
**setting)

An OML4Py model created this way persists until you drop it with the oml.drop function.

Scoring New Data with a Model

For most of the OML4Py machine learning classes, you can use the predict and
predict_proba methods of the model object to score new data.

For in-database models, you can use the SQL PREDICTION function on model proxy objects,
which scores directly in the database. You can use in-database models directly from SQL if you
prepare the data properly. For open source models, you can use Embedded Python Execution
and enable data-parallel execution for performance and scalability.

Deploying Models Through a REST API

The REST API for Oracle Machine Learning Services provides REST endpoints hosted on an
Oracle Autonomous Database instance. These endpoints allow you to store OML models
along with their metadata, and to create scoring endpoints for the models.

4.2 About Model Settings
You can specify settings that affect the characteristics of a model.

Some settings are general, some are specific to an Oracle Machine Learning function, and
some are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings for a model,
then you must specify the settings with the **params parameter when instantiating the model
or later by using the set_params method of the model.

For the _init_ method, the argument can be key-value pairs or a dict. Each list element’s
name and value refer to a machine learning algorithm parameter setting name and value,
respectively. The setting value must be numeric or a string.

The argument for the **params parameter of the set_params method is a dict object mapping
a str to a str. The key should be the name of the setting, and the value should be the new
setting.

Example 4-1 Specifying Model Settings

This example shows the creation of an Expectation Maximization (EM) model and the
changing of a setting. For the complete code of the EM model example, see Example 9-10.

Specify settings.
setting = {'emcs_num_iterations': 100}
Create an EM model object
em_mod = em(n_clusters = 2, **setting)

Chapter 4
About Model Settings

4-3

https://docs.oracle.com/en/database/oracle/machine-learning/omlss/omlss/index.html

Intervening code not shown.

Change the random seed and refit the model.
em_mod.set_params(EMCS_RANDOM_SEED = '5').fit(train_dat)

4.3 Shared Settings
These settings are common to all of the OML4Py machine learning classes.

The following table lists the settings that are shared by all OML4Py models.

Table 4-1 Shared Model Settings

Setting Name Setting Value Description

ODMS_DETAILS ODMS_ENABLE
ODMS_DISABLE

Helps to control model size in the database. Model details
can consume significant disk space, especially for
partitioned models. The default value is ODMS_ENABLE.

If the setting value is ODMS_ENABLE, then model detail
tables and views are created along with the model. You
can query the model details using SQL.

If the value is ODMS_DISABLE, then model detail tables are
not created and tables relevant to model details are also
not created.

The reduction in the space depends on the algorithm.
Model size reduction can be on the order of 10x .

ODMS_MAX_PARTITIONS 1 < value <= 1000000 Controls the maximum number of partitions allowed for a
partitioned model. The default is 1000.

ODMS_MISSING_VALUE_TREATM
ENT

ODMS_MISSING_VALUE_AUT
O
ODMS_MISSING_VALUE_MEA
N_MODE
ODMS_MISSING_VALUE_DEL
ETE_ROW

Indicates how to treat missing values in the training data.
This setting does not affect the scoring data. The default
value is ODMS_MISSING_VALUE_AUTO.

ODMS_MISSING_VALUE_MEAN_MODE replaces missing
values with the mean (numeric attributes) or the mode
(categorical attributes) both at build time and apply time
where appropriate. ODMS_MISSING_VALUE_AUTO
performs different strategies for different algorithms.

When ODMS_MISSING_VALUE_TREATMENT is set to
ODMS_MISSING_VALUE_DELETE_ROW, the rows in the
training data that contain missing values are deleted.
However, if you want to replicate this missing value
treatment in the scoring data, then you must perform the
transformation explicitly.

The value ODMS_MISSING_VALUE_DELETE_ROW is
applicable to all algorithms.

ODMS_PARTITION_BUILD_TYPE ODMS_PARTITION_BUILD_I
NTRA
ODMS_PARTITION_BUILD_I
NTER
ODMS_PARTITION_BUILD_H
YBRID

Controls the parallel building of partitioned models.

ODMS_PARTITION_BUILD_INTRA builds each partition in
parallel using all slaves.

ODMS_PARTITION_BUILD_INTER builds each partition
entirely in a single slave, but multiple partitions may be
built at the same time because multiple slaves are active.

ODMS_PARTITION_BUILD_HYBRID combines the other
two types and is recommended for most situations to
adapt to dynamic environments. This is the default value.

Chapter 4
Shared Settings

4-4

Table 4-1 (Cont.) Shared Model Settings

Setting Name Setting Value Description

ODMS_PARTITION_COLUMNS Comma separated list of
machine learning attributes

Requests the building of a partitioned model. The setting
value is a comma-separated list of the machine learning
attributes to be used to determine the in-list partition key
values. These attributes are taken from the input columns,
unless an XFORM_LIST parameter is passed to the model.
If XFORM_LIST parameter is passed to the model, then the
attributes are taken from the attributes produced by these
transformations.

ODMS_TABLESPACE_NAME tablespace_name Specifies the tablespace in which to store the model.

If you explicitly set this to the name of a tablespace (for
which you have sufficient quota), then the specified
tablespace storage creates the resulting model content. If
you do not provide this setting, then the your default
tablespace creates the resulting model content.

ODMS_SAMPLE_SIZE 0 < value Determines how many rows to sample (approximately).
You can use this setting only if ODMS_SAMPLING is
enabled. The default value is system determined.

ODMS_SAMPLING ODMS_SAMPLING_ENABLE
ODMS_SAMPLING_DISABLE

Allows the user to request sampling of the build data. The
default is ODMS_SAMPLING_DISABLE.

ODMS_TEXT_MAX_FEATURES 1 <= value The maximum number of distinct features, across all text
attributes, to use from a document set passed to the
model. The default is 3000. An oml.esa model has the
default value of 300000.

ODMS_TEXT_MIN_DOCUMENTS Non-negative value This text processing setting controls how many documents
a token needs to appear in to be used as a feature.

The default is 1. An oml.esa model has the default value
of 3.

ODMS_TEXT_POLICY_NAME The name of an Oracle Text
POLICY created using
CTX_DDL.CREATE_POLICY.

Affects how individual tokens are extracted from
unstructured text.

For details about CTX_DDL.CREATE_POLICY, see Oracle
Text Reference.

PREP_AUTO PREP_AUTO_ON
PREP_AUTO_OFF

This data preparation setting enables fully automated data
preparation.

The default is PREP_AUTO_ON.

PREP_SCALE_2DNUM pPREP_SCALE_STDDEV
PREP_SCALE_RANGE

This data preparation setting enables scaling data
preparation for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to take effect. The
following are the possible values:

PREP_SCALE_STDDEV: A request to divide the column
values by the standard deviation of the column and is often
provided together with PREP_SHIFT_MEAN to yield z-score
normalization.

PREP_SCALE_RANGE: A request to divide the column
values by the range of values and is often provided
together with PREP_SHIFT_MIN to yield a range of [0,1].

Chapter 4
Shared Settings

4-5

Table 4-1 (Cont.) Shared Model Settings

Setting Name Setting Value Description

PREP_SCALE_NNUM PREP_SCALE_MAXABS This data preparation setting enables scaling data
preparation for nested numeric columns. PREP_AUTO must
be OFF for this setting to take effect. If specified, then the
valid value for this setting is PREP_SCALE_MAXABS, which
yields data in the range of [-1,1].

PREP_SHIFT_2DNUM PREP_SHIFT_MEAN
PREP_SHIFT_MIN

This data preparation setting enables centering data
preparation for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to take effect. The
following are the possible values:

PREP_SHIFT_MEAN: Results in subtracting the average of
the column from each value.

PREP_SHIFT_MIN: Results in subtracting the minimum of
the column from each value.

Chapter 4
Shared Settings

4-6

Glossary

Glossary-1

Index

A
algorithms

machine learning, 4-1
settings common to all, 4-4

C
classes

machine learning, 4-1
clustering

use case, 3-36

K
k-means algorithm, 3-36

M
machine learning

classes, 4-1
models

persisting, 4-1

S
scoring new data, 4-1
settings

about model, 4-3
shared algorithm, 4-4

Index-1

	Contents
	1 Overview
	1.1 Machine Learning Overview
	1.1.1 What Is Machine Learning, AI, and Generative AI?
	1.1.2 Benefits of Machine Learning
	1.1.3 Define Your Business Problem
	1.1.4 What Do You Want to Do?
	1.1.5 Discover More Through Interfaces

	1.2 Machine Learning Process
	1.2.1 Oracle Machine Learning Process
	1.2.2 Define Business Goals
	1.2.3 Understand Data
	1.2.4 Prepare Data
	1.2.5 Develop Models
	1.2.6 Evaluate
	1.2.7 Deploy

	1.3 Machine Learning Techniques and Algorithms
	1.3.1 What is a Machine Learning Algorithm
	1.3.2 Supervised Learning
	1.3.3 Unsupervised Learning

	2 Get Started
	2.1 Access OML Notebooks
	2.1.1 Access Oracle Machine Learning User Interface
	2.1.2 Create a Notebook from the Example Templates
	2.1.3 Edit Your Notebook Classic

	2.2 Access Autonomous Database
	2.2.1 Provision an Autonomous Database
	2.2.2 Create and Update User Accounts for Oracle Machine Learning Components on Autonomous Database
	2.2.3 Create User
	2.2.4 Add Existing Database User Account to Oracle Machine Learning Components

	3 Use Cases
	3.1 Regression Use case
	3.1.1 Load Data
	3.1.1.1 Import Data

	3.1.2 Explore Data
	3.1.2.1 Data Preparation

	3.1.3 Build Model
	3.1.4 Evaluate

	3.2 Classification Use Case
	3.2.1 Load Data
	3.2.2 Explore Data
	3.2.3 Build Model
	3.2.4 Evaluate

	3.3 Clustering Use Case
	3.3.1 Load Data
	3.3.2 Explore Data
	3.3.3 Build Model
	3.3.4 Evaluate

	3.4 Time Series Use Case
	3.4.1 Access Data
	3.4.2 Explore Data
	3.4.3 Build Model
	3.4.4 Evaluate

	4 Reference
	4.1 About Machine Learning Classes and Algorithms
	4.2 About Model Settings
	4.3 Shared Settings

	Glossary
	Index

