Oracle® Cloud

Oracle Blockchain Platform Digital Assets
Edition

G16572-04
March 2025
ORACLE

Oracle Cloud Oracle Blockchain Platform Digital Assets Edition,
G16572-04
Copyright © 2024, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility Vi
Related Topics Vi
Conventions Vi
1 Overview
Oracle Blockchain Platform Digital Assets Edition 1-1
Additional Services and Applications 1-4
API Gateway 1-5
Oracle Visual Builder 1-6
Oracle Autonomous Database 1-7
Oracle Analytics Cloud 1-7
2 Create an Instance
Before You Create Your Instance 2-1
Create an Oracle Blockchain Platform Digital Assets Edition Instance Using the Console 2-2
Verify Your Instance 2-3
Digital Assets Page 2-3

3 Wholesale Central Bank Digital Currency Application

Wholesale CBDC Chaincode Package 3-1
Deploy and Test Wholesale CBDC Chaincode 3-3
Wholesale CBDC Wrapper APl Package 3-4
Customize Wrapper APIs for Wholesale CBDC 3-55
Deploy and Test Wrapper APIs for Wholesale CBDC 3-56
Oracle Database View Definitions for Wholesale CBDC 3-58
Wholesale CBDC Sample Application and Analytics Package 3-62
Wholesale CBDC Sample Analytics Package 3-62
Configure Oracle Analytics Cloud 3-62

View Dashboard Data 3-65
Wholesale CBDC Sample Application 3-65

ORACLE" il

Wholesale CBDC Sample Application Prerequisites 3-66

Configure Oracle Blockchain Platform for the Wholesale CBDC Sample Application 3-70
Import the Wholesale CBDC Sample Application into Visual Builder 3-75
Configure Visual Builder for the Wholesale CBDC Sample Application 3-77
Customize the Wholesale CBDC Application 3-84
Stage the Wholesale CBDC Application 3-85
Troubleshoot the Wholesale CBDC Sample Application 3-86
Wholesale CBDC Application Workflow 3-88

4 Bond Marketplace Application

Bond Marketplace Chaincode Package 4-1
Deploy and Test Bond Marketplace Chaincode 4-4
Bond Marketplace Wrapper API Package 4-6
Customize Wrapper APIs for Bond Marketplace 4-56
Deploy and Test Wrapper APIs for Bond Marketplace 4-57
5 Generic Token Frameworks
Fungible Token Framework 5-1
Fungible Token Framework Chaincode Package 5-2
Fungible Token Framework Wrapper API Package 5-5
Non-Fungible Token Framework 5-53
Non-Fungible Token Framework Chaincode Package 5-54
Non-Fungible Token Framework Wrapper API Package 5-57
Combined Token Framework 5-106
Combined Token Framework Chaincode Package 5-107
Combined Token Framework Wrapper API Package 5-110
Deploy and Test Generic Token Framework Chaincode 5-155
Deploy and Test Wrapper APIs for Generic Token Frameworks 5-158

6 Blockchain App Builder Enhancements

Wrapper APIs 6-1
Generate Wrapper APIs Using the CLI 6-2
Generate Wrapper APIs Using Visual Studio Code 6-5
Wrapper API Package Components 6-6
Deploy Wrapper APIs 6-9
Chaincode Events 6-12
Token Taxonomy Framework Enhancements 6-19
Bond Marketplace Model 6-46
Wholesale CBDC Model 6-91
ORACLE

Endorsement Support in Postman Collections 6-137

Auditor Roles 6-139
Method Level Access Controls 6-154
ORACLE

Preface

Preface

Learn how to use the service to use and manage blockchains.

Topics:
e Documentation Accessibility
* Related Topics

e Conventions

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Topics

These related Oracle resources provide more information.

* For afull list of guides, refer to the Books tab in the Oracle Blockchain Platform Help
Center.

e Oracle Public Cloud: http://cloud.oracle.com

e Managing and Monitoring Oracle Cloud

Conventions

Conventions used in this document are described in this topic.

Text Conventions

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://cloud.oracle.com

ORACLE

Preface

Videos and Images

Your company can use skins and styles to customize the look of the application, dashboards,
reports, and other objects. It is possible that the videos and images included in the product
documentation look different than the skins and styles your company uses.

Even if your skins and styles are different than those shown in the videos and images, the
product behavior and techniques shown and demonstrated are the same.

Vii

Overview

Oracle Blockchain Platform Digital Assets Edition is an extension of Oracle Blockchain
Platform.

Oracle Blockchain Platform Digital Assets Edition

ORACLE

Oracle Blockchain Platform Digital Assets Edition is an extension of Oracle Blockchain
Platform. Digital Assets Edition extends the transformative capabilities of blockchain into the
realm of digitally native assets, enabling organizations to create, manage, and transact
tokenized representations of physical and intangible assets. The platform empowers financial
institutions and other businesses to build end-to-end applications quickly and cost-effectively
using a scalable and secure architecture. Built on Hyperledger Fabric based permissioned
blockchain infrastructure, it ensures a secure, scalable, and enterprise-ready environment for
managing the complete lifecycle of digital assets - from issuance and transfer to tracking and
settlement.

Oracle Blockchain Platform Digital Assets Edition extends the general-purpose blockchain
platform with new features and supplies pre-built applications and components for use in
scenarios such as central bank digital currency (CBDC) and digital bond marketplaces as well
as numerous other digital asset use cases.

What does Oracle Blockchain Platform Digital Assets Edition include?

Oracle Blockchain Platform Digital Assets Edition includes the following components:

* An enhanced version of Oracle Blockchain Platform with added features and components
to facilitate deploying comprehensive digital assets solutions. Oracle Blockchain Platform
stores data on a permissioned blockchain based on the Linux Foundation open-source
Hyperledger Fabric project.

* An enhanced version of Blockchain App Builder, which assists with rapid development,
testing, debugging, and deployment of secure chaincodes that handle multiple digital
assets. Blockchain App Builder also provides tools for automated generation of wrapper
APIs from any generated chaincode, including the related Terraform scripts to deploy them
along with a Postman collection for quick testing of the APIs. For information about the
standard version of Blockchain App Builder, see Build Chaincodes with Low-Code
Blockchain App Builder. For information about the enhancements, see Blockchain App
Builder Enhancements.

* Prepackaged chaincodes for two domain-specific applications: wholesale central bank
digital currency (CBDC) and a bond marketplace, along with chaincode specification
templates for deposit token, generic fungible token, generic non-fungible token, and
combined token applications.

* Wrapper API packages for the wholesale CBDC and bond marketplace samples. These
also contain a Terraform script that provisions all of the necessary OCI resources, as well
as a Postman collection to quickly test the APIs.

* A sample Ul application for wholesale CBDC, based on Oracle Visual Builder. Oracle
Visual Builder is a cloud-based software development Platform as a Service (PaaS). The
sample application includes support for multiple personas.

1-1

ORACLE

Chapter 1
Oracle Blockchain Platform Digital Assets Edition

e Sample analytics dashboards for wholesale CBDC, based on Oracle Analytics Cloud. The
sample analytics dashboards provide real-time insights into wholesale CBDC transactions.

What Are the Advantages of Oracle Blockchain Platform Digital Assets Edition?

With its unique focus on digital asset tokenization and lifecycle management, it simplifies
complex processes such as compliance, asset transfers, and ownership verification while
ensuring real-time tracking and auditability.

Key features tailored to Oracle Blockchain Platform Digital Assets Edition include:

Pre-Built Application-Specific Templates

Tailored templates and modules reduce the complexity of implementing blockchain solutions
across diverse industries and use cases. These features empower you by embedding domain
expertise directly into the platform, enabling faster time to market and reducing dependence
on external expertise.

Low-Code Development Frameworks

The platform simplifies application creation with user-friendly tools and pre-configured smart
contracts. This approach ensures you can rapidly design, test, and deploy solutions, reducing
time to market and enhancing agility in a competitive environment. By lowering entry barriers,
you can focus on creating value and innovating without being hindered by technical overhead.

Scalable and Cost-Effective Architecture

The platform infrastructure eliminates the need for extensive initial investments by offering
ready-to-use solutions that scale with organizational needs. This reduces operational costs
and makes the digital assets innovation accessible to all.

Integrated Governance and Security Features

Built-in permissioned access and governance tools streamline digital assets adoption while
maintaining robust security protocols. Role-based access control provides a granular
permission model to secure privileges to perform token lifecycle operations and approval
models aligned with best practices for financial operations.

Modular Design that Accelerates Innovation

The platform supports iterative development with a composable architecture and modular
design, enabling real-time updates and seamless integration of advanced features. This
flexibility drives innovation, allowing you to stay ahead of market trends and evolving customer
demands.

Benefits of Oracle Blockchain Platform Digital Assets Edition

Instant domain expertise
* Instant access to specialized domain expertise enables faster market entry
* Avoid high costs of hiring experts for digital assets

* Leverage financial expertise to create digital asset solutions without the steep blockchain
learning curve

Rapid application development
e Shorten development cycles especially when building applications from scratch
e Ability to leverage an agile process due to quicker development cycles

e Prepackaged components and frameworks reduce development time and maintain
flexibility

1-2

ORACLE

Chapter 1
Oracle Blockchain Platform Digital Assets Edition

Cost-effective development

* Reduce high development costs for extensive in-house development resources and
overhead

* Reduce resource limitations for smaller teams

Lower barriers to entry for smaller businesses

e Overcome high entry barriers due to high capital expenditure, need for specialized
expertise, and lengthy product development

Accelerated innovation

e Streamlined processes speed up innovation cycles

Built-in secure controls

» Role-based access control provides protection from unauthorized access of senstive data
and systems

e Protects your brand and customer loyalty

1-3

Chapter 1
Additional Services and Applications

FastConnect

0OCI Region

Identity
& Access
Management

' Platform Owner

—* Site-to-Site == ======----
VPN ar

On-Premises

0

Participant-1
Users

L8,

Users

—=
=
=]
=
=

Systems
(e.g., RTGS,
GL, FMI)

Web Application

Creation/Retirement

Issuance/Transfer

Monitoring/Auditing

()

API
Gateway

>§@<

Visual Builder
or Integration
Cloud

I
P - -
I

o

Participant-1
Users

=

=

=]

=

=
On-Premises

Systems

(e.g., Funds

Mgmt)

2>

FastConnect

= =
= =
[=3
= =
= =
On-Premises On-Premises
Systems Systems
(e.g., Asset e.g., Core
Mgmt) anking)
FastConnect FastConnect

Blockchain
Network ()

Participant-1

(DLT) .*. ¢
=]

Blockchain
Platform
Digital
Assets
Edition

Blockchain Blockchain

Pllja_tfprr]n Plljatfprr]n
b igita igita
Rg'}ht';’m“’ Assets Assets
ataoase Edition Edition

Autonomous
Database

Oracle Analytics Cloud
Dashboards, Reports,
Forecasts

Blockchain
Platform
Digital
Assets
Edition

Additional Services and Applications

The following services and applications might be required to use some functions of Oracle
Blockchain Platform Digital Assets Edition.

You can incur additional costs based on usage of these services.

L

g_é

L

APls/
Events

Identity
Management

Web Application

Transfers

Purchase/Redeem

Monitoring/Auditing

Participant-2

APls/
Events

Identity
Management

Web Application

Transfers

Purchase/Redeem

Monitoring/Auditing

Participant-n

APls/
Events

Identity
Management

Web Application

Transfers

Purchase/Redeem

Monitoring/Txn History

ORACLE"

Chapter 1
Additional Services and Applications

e The wrapper APIs use the following Oracle Cloud Infrastructure (OCI) services:

— Oracle API Gateway service: The OCI AP| Gateway service enables you to publish
APIs with private endpoints that are accessible from within your network, and which
you can expose with public IP addresses if you want them to accept internet traffic.
See: Overview of APl Gateway

— Virtual Cloud Network (VCN): A virtual, private network that you set up in Oracle data
centers.
See: Overview of VCNs and Subnets.

— Identity and Access Management (IAM) Policies: IAM policies govern control of
resources in Oracle Cloud Infrastructure (OCI) tenancies.
See: |IAM Policies Overview.

— OCI Functions: When you have written the code for a function and it's ready to
deploy, you can use a single Fn Project command to perform all the deploy operations
in sequence.

See: Overview of Functions

— OCI Registry (OCIR): Container Registry makes it easy for you to store, share, and
manage container images (such as Docker images).
See: Overview of Container Registry

e The rich history database uses the following application:

— Oracle Autonomous Database: Oracle Blockchain Platform Digital Assets Edition
used Oracle Autonomous Database to store its rich history database. Oracle Analytics
then accesses this data to populate the pre-built analytics dashboard.

See: About Autonomous Database on Dedicated Exadata Infrastructure.

e Visual Builder: Oracle Blockchain Platform Digital Assets Edition includes pre-built Oracle
Visual Builder applications that are specific to industries and domains such as central bank
digital currency (CBDC) and NFT marketplaces.

e Oracle Analytics Cloud: Oracle Blockchain Platform Digital Assets Edition includes
prebuilt dashboards that use Oracle Analytics Cloud.

* Oracle REST Data Services: The analytics dashboards also require Oracle REST Data
Services.

These must be provisioned on OCI in the same tenancy as your Oracle Blockchain Platform
Digital Assets Edition instance.

Each additional service or application may incur additional costs while being used. For pricing
estimates, you can enter your services and resources into the OCI cost estimator: OCI Service
Cost Estimator

API| Gateway

ORACLE

Oracle Blockchain Platform Digital Assets Edition uses API Gateway service to deploy wrapper
APIs generated by Blockchain App Builder.

Wrapper API endpoints are published on API Gateway by using a Resource Manager stack on
Oracle Cloud Infrastructure (OCI). Stacks deploy and manage groups of cloud resources in a
predefined and repeatable manner, which can simplify the orchestration and automation of
infrastructure provisioning. The OCI APl Gateway service enables you to publish APIs with
private endpoints that are accessible from within your network, and which you can expose with
public IP addresses if you want them to accept internet traffic.

Oracle Blockchain Platform REST API endpoints require you to pass parameters such as the
chaincode name, timeout and sync values, and arguments including the method name every

1-5

https://docs.oracle.com/en-us/iaas/Content/APIGateway/Concepts/apigatewayoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/Overview_of_VCNs_and_Subnets.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/policieshow/Policy_Basics.htm
https://docs.oracle.com/en-us/iaas/Content/Functions/Concepts/functionsoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Registry/Concepts/registryoverview.htm
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbaa/
https://www.oracle.com/cloud/costestimator.html
https://www.oracle.com/cloud/costestimator.html

Chapter 1
Additional Services and Applications

time you invoke the API. In scenarios where the parameters are common to all methods, you
can use wrapper APIs to invoke the API using only the method arguments. Each chaincode
method will have a distinct wrapper APl endpoint. In some cases, multiple REST API endpoints
from different chaincodes and also Oracle Identity Cloud Service endpoints can be merged to
form a single wrapper API endpoint.

The following example shows calling the associateTokenToAccount method with Oracle
Blockchain Platform.

Endpoint: https://<blockchain instance>:7443/restproxy/api/v2/channels/
default/transactions

"chaincode": "{{bc-chaincode-name}}",
"args": [
"associateTokenToAccount",

"oaccount~78b47483e4033a0c6be3b678080264e7967d53f56d4b024edd96eb8957¢c452d4",
"t2"
1,
"timeout": {{bc-timeout}},
"sync": {{bc-sync}}

With the wrapper APIs supported by Oracle Blockchain Platform Digital Assets Edition, the
same invocation looks like the following example:

Endpoint: https://<blockchain instance>/appbuilder/associate

{

"accountId":"oaccount~efc22a0316a47dd06679920140717b686c7366a627a707c5e8c89015
bb21796a",

"tokenId":"t1"
}

API Gateway is configured as part of a stack deployment when you deploy your wrapper APIs
as described in Deploy Wrapper APIs.

Oracle Visual Builder

Oracle Visual Builder is a cloud-based software development Platform as a Service (PaaS) and
a hosted environment for your application development infrastructure. It provides an open-
source standards-based solution to develop, collaborate on, and deploy applications within
Oracle Cloud.

Oracle Blockchain Platform Digital Assets Edition includes a pre-built Oracle Visual Builder
application for the wholesale central bank digital currency (CBDC) scenario.

For more information, see Wholesale CBDC Sample Application.

ORACLE 6

Chapter 1
Additional Services and Applications

Oracle Autonomous Database

Oracle Blockchain Platform Digital Assets Edition uses Oracle Autonomous Database to store
its rich history database. Oracle Analytics then accesses this data to populate the pre-built
analytics dashboard.

For details on how to set up and use the rich history database, see Create the Rich History
Database.

Oracle Analytics Cloud

Oracle Blockchain Platform Digital Assets Edition uses Oracle Analytics Cloud to generate pre-
built dashboards and data visualizations for the wholesale central bank digital currency
(CBDC) scenario.

For more information, see Wholesale CBDC Sample Analytics Package.

ORACLE .

Create an Instance

As an Oracle Cloud Infrastructure administrator, you can create and set up an Oracle
Blockchain Platform Digital Assets Edition instance for your organization.

Before You Create Your Instance

ORACLE

Before you set up Oracle Blockchain Platform Digital Assets Edition using Oracle Cloud
Infrastructure Console, Oracle recommends that you take some time to plan your service.

Create a Cloud Account

Activate your Oracle Blockchain Platform Digital Assets Edition and sign in to Oracle Cloud
Infrastructure.

e Sign up for your Oracle Cloud Account

e Sign In For the First Time

Create a Compartment

When you sign up for Oracle Cloud Infrastructure, Oracle creates your tenancy with a root
compartment that holds all your cloud resources. You then create additional compartments
within the tenancy (root compartment) and corresponding policies to control access to the
resources in each compartment. Before you create an Oracle Blockchain Platform instance,
Oracle recommends that you set up the compartment where you want the instance to belong.

You create compartments in Oracle Cloud Infrastructure Identity and Access Management
(IAM). See:

e Setting Up Your Tenancy

e Managing Compartments

Plan Your Instance

Editions and Shapes

There are three shapes of Oracle Blockchain Platform Digital Assets Edition available:
e Medium: 8 OCPUs, 150 GB storage, 4 peers (additional can be added later)

e Large: 16 OCPUs, 150 GB storage, 6 peers (additional can be added later)

e X-Large: 32 OCPUs, 150 GB storage, 6 peers (additional can be added later)

If you create a Digital Assets shape, you can scale your Blockchain Platform up or down
resulting in a new shape called Digital Assets Custom. See Scale Your Instance for details.

Platform Versions

You can also select which platform version to use, which will determine if your network is
running on Hyperledger Fabric v1.4, v2.2, or v2.5. Oracle Blockchain Platform Digital Assets
Edition only supports Hyperledger Fabric v2.5 or later.

Billing

2-1

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/how-do-i-sign.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/sign-oracle-cloud-first-time1.html
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/settinguptenancy.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingcompartments.htm

Chapter 2
Create an Oracle Blockchain Platform Digital Assets Edition Instance Using the Console

Oracle Blockchain Platform OCPU-based meters use high precision billing, meaning that you
are billed per second. The minimum billing amount is for one minute; any instance running for
less than one minute will still be charged for one minute of time.

For pricing estimates, you can enter your services and resources into the OCI cost estimator:
OCI Service Cost Estimator

Create an Oracle Blockchain Platform Digital Assets Edition
Instance Using the Console

As an Oracle Cloud Infrastructure administrator, you can create and set up an Oracle
Blockchain Platform Digital Assets Edition instance for your organization.

ORACLE

There are two types of Oracle Blockchain Platform instances you can provision:

10.

11.

Founder organization: a complete blockchain environment, including a new network to
which participants can join later on.

Participant instance: if there is already a founder organization you want to join, you can
create a participant instance if your credentials provide you with access to the network.

Sign in to your Oracle Cloud Infrastructure account. You must sign in as a federated Oracle
Identity Cloud Service user.

In the Console, click the Navigation menu in the top-left corner.
Under Developer Services, select Blockchain Platform.

From the Compartment list, select the compartment in which you want to create the
service.

Click Create Blockchain Platform.

Enter a name for your Oracle Blockchain Platform instance.
The service instance name:

* Must contain one or more characters.

* Must not exceed 15 characters.

e Must start with an ASCII letter: a to z or A to z.
e Must contain only ASCII letters or numbers.

* Must not contain a hyphen.

e Must not contain any other special characters.
* Must be unique within the identity domain.
Optionally enter a description of your instance.

Select your platform version. This specifies the version of Hyperledger Fabric you want
your instance to run on. The founder and participants must all be on the same version of
Hyperledger Fabric.

Select if you are creating a new network, or creating a participant instance to join an
existing network.

Select the Oracle Blockchain Platform Digital Assets edition and the appropriate shape.
The editions and shapes are described in Plan Your Instance.

Oracle Blockchain Platform includes a certificate authority (CA), which is used to create
self-signed certificates for all blockchain nodes in your instance.

2-2

https://www.oracle.com/cloud/costestimator.html

Chapter 2
Verify Your Instance

If you want to use certificates from your own certificate authority and use the Oracle
Blockchain Platform certificate authority as an intermediary CA, you can upload your CA
archive. The certificate you upload will be used to sign the intermediary certificates for
Oracle Blockchain Platform nodes, thus including them under your root CA chain.

The archive is a zip file which contains the following files:

e CAchain - named ca-chain.pem. The entire CA file sequence from the signing CA to
the top-level CA should be present.

e key - named ca-key.pem. The key should be a 256-bit elliptic curve key. The
prime256v1 curve is recommended.

e certificate - named ca-cert.pem

The archive must be less than 2MB. The files must directly reside inside the zip archive
such that when the archive (.zip) is unzipped, the files are visible in the current directory at
the same level as the archive (.zip) file. The files should not be present inside a nested
directory inside the archive.

12. If you want to use tags for your instance, expand the Advanced Options section and add
your tags.

13. Click Create.

It takes about 15 minutes to create the service. Display the Instance page to check the current
status.

Verify Your Instance

Navigate to your service in the Oracle Cloud Infrastructure console, and sign in to verify that
your Oracle Blockchain Platform Digital Assets Edition instance is up and running.

For more information about signing into the Oracle Cloud Infrastructure console, see Signing In
to the Console.

1. On the Oracle Cloud Infrastructure console, click the Navigation menu in the top-left
corner.

2. Under Developer Services, select Blockchain Platform.

3. From the Compartment list, select the compartment that you used to create the instance.
4. Click the name of the new instance.

5. Click Service Console. This launches the Oracle Blockchain Platform console.

Now that your instance is created, you can manage the instance itself as described in Manage
the Lifecycle of an Instance.

You can also manage users, access and permissions as described in Set Up Users and
Application Roles.

Digital Assets Page

ORACLE

All of the Oracle Blockchain Platform Digital Assets Edition functionality is available from the
Digital Assets page in the console.

After you create an instance, click the Digital Assets tab to open the Digital Assets page. You
can access the following panes from the Digital Assets page.

2-3

https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/signingin.htm
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/signingin.htm

Chapter 2
Digital Assets Page

Wholesale CBDC Application
You can use the Wholesale CBDC Application pane to complete the following tasks. For more
information, see Wholesale Central Bank Digital Currency Application.

» Install, deploy, and invoke the wholesale CBDC sample chaincode online.
* Download the wholesale CBDC sample chaincode package.
* Download the wholesale CBDC wrapper API package.

» Download database view definitions, which you can use for analytics and the pre-built web
application.

* Download the sample web application, built in Oracle Visual Builder, and workbooks for
use with Oracle Analytics Cloud.

Bond Marketplace Application
You can use the Bond Marketplace Application pane to complete the following tasks. For more
information, see Bond Marketplace Application.

* Download the bond marketplace sample chaincode package.

* Download the bond marketplace wrapper APl package.

Fungible Token Framework
You can use the Fungible Token Framework pane to complete the following tasks.

e Download the fungible token framework sample chaincode package. For more
information, see Fungible Token Framework Chaincode Package.

e Download the fungible token framework wrapper API package. For more information, see
Fungible Token Framework Wrapper API Package.

Non-Fungible Token Framework
You can use the Non-Fungible Token Framework pane to complete the following tasks.

* Download the non-fungible token framework sample chaincode package. For more
information, see Non-Fungible Token Framework Chaincode Package.

* Download the non-fungible token framework wrapper API package. For more information,
see Non-Fungible Token Framework Wrapper API Package.

Combined Token Framework
You can use the Combined Token Framework pane to complete the following tasks.

* Download the combined token framework sample chaincode package. For more
information, see Combined Token Framework Chaincode Package.

* Download the combined token framework wrapper API package. For more information,
see Combined Token Framework Wrapper API Package.

ORACLE 4

Wholesale Central Bank Digital Currency
Application

The wholesale central bank digital currency (CBDC) sample application can support
transaction scenarios between a central bank and other financial institutions.

The wholesale CBDC sample represents the life cycle of a wholesale CBDC token. The
sample specification file uses the extended Token Taxonomy Framework standard that is
supported by Blockchain App Builder. The generated chaincode includes methods from
initializing a wholesale CBDC token, account operations, and role assignments to minting,
transfers, and burning of CBDC tokens. It also provides notary accounts for approving minting,
transfers, and burning operations, and it supports compliance through account-level daily limits
and auditing procedures.

The wholesale CBDC solution comprises the following downloadable packages.

* Blockchain App Builder specification file
e Pre-built wholesale CBDC chaincode
* Wrapper APIs for CBDC setup and lifecycle operations

* Oracle Database view definitions for columnar views of the JSON transaction data in rich
history database tables and use by analytics workbooks

* A sample application using Oracle Visual Builder, and a sample Oracle Analytics
dashboard

To get the wholesale CBDC packages, in the Oracle Blockchain Platform Digital Assets
console click the Digital Assets tab and then select Wholesale CBDC.

Wholesale CBDC Chaincode Package

ORACLE

Oracle Blockchain Platform Digital Assets Edition includes sample chaincode for the wholesale
central bank digital currency (CBDC) scenario.

The wholesale CBDC chaincode package is based on the extended Token Taxonomy
Framework standard supported by Blockchain App Builder. The package implements methods
for a system where tokens representing fiat currency are held at financial institutions and are
issued and managed by regulated financial institutions. The sample specification file generates
methods for initializing tokens, managing accounts, assigning roles, and completing operations
such as minting, transferring, and burning tokens. It also provides notary accounts for
approving minting and transfers, enforces compliance with account-level daily limits, and
enables auditing procedures. The chaincode can be generated by Blockchain App Builder from
the WholesaleCBDC.yml specification file in either TypeScript or Go.

The wholesale CBDC chaincode package is downloadable from the Oracle Blockchain
Platform console, and includes the following components.

°* WholesaleCBDC.zip, an archive file that contains the packaged chaincode for
deployment.

° WholesaleCBDC.yaml, a specification file that you can use with Blockchain App Builder
to scaffold the WholesaleCBDC chaincode.

3-1

Chapter 3
Wholesale CBDC Chaincode Package

* WholesaleCBDC postman collection.json, a Postman collection that enables you
to test the APlIs in the chaincode.

° README.md, a step-by-step guide for working with the chaincode.

To get the wholesale CBDC chaincode package, in the Oracle Blockchain Platform Digital
Assets console click the Digital Assets tab and then select Wholesale CBDC Application.

You can try out the wholesale CBDC chaincode in the same way as other samples. You must
be an administrator to install and deploy sample chaincodes.

1. Onthe Wholesale Central Bank Digital Currency page, click Install.

2. Inthe Install Chaincode window, specify one or more peers to install the chaincode on, and
then click Install.

3. Click Deploy.

4. In the Deploy Chaincode window, specify the channel to deploy the chaincode to. The
initial parameters of the chaincode will be used to specify the token administrator. These
values are not editable. They default to the organization ID and user ID of the user who is
logged in to the console. Click Deploy.

5. Click Invoke.

6. Inthe Invoke Chaincode window, specify the channel to run the transaction on. In the
Action list, specify an action to complete. Click Execute.

Specification File

The wholesale CBDC specification file (tholesale CBDC.yml) is based on the extended
Token Taxonomy Framework specification file. It includes a model attribute, which generates
the application-specific chaincode. In this case, model: wcbdc creates additional methods for
the wholesale CBDC application when the chaincode is generated. The following snippet from
the specification file shows the model attribute.

#
Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
#

assets:
Token asset to manage the complete lifecycle of Wholesale CBDC token.

- name: CBDC # Asset name
type: token # Asset type
standard: ttf+ # Token standard
events: true # Supports event code generation for non-GET methods
model: wcbdc # Supports creation of additional methods for Wholesale
CBDC application

anatomy:
type: fungible # Token type
unit: fractional # Token unit

behavior: # Token behaviors
- divisible:
decimal: 2
- mintable:
mint approval required: true

ORACLE -

Chapter 3
Wholesale CBDC Chaincode Package

- transferable
burnable:
burn approval required: true
holdable
- roles:
minter role name: minter
burner role name: burner
notary role name: notary
mint approver role name: notary
burn approver role name: notary

Deploy and Test Wholesale CBDC Chaincode

ORACLE

Deploying the Chaincode

You can deploy the chaincode directly from the Oracle Blockchain Platform console or by using
Blockchain App Builder. Before you deploy the chaincode, create enrollment IDs for each token
user and then map the token users to their respective enrollment IDs. Specify only one user for
each enrollment. For more information about adding enrollments, see Add Enroliments to a
REST Proxy in Using Oracle Blockchain Platform.

When you deploy the token chaincode, you must call the init method and pass the
organization ID and user ID of the Token Admin user.

For information about deploying from the Oracle Blockchain Platform console, see Use
Advanced Deployment in Using Oracle Blockchain Platform.

To deploy using Blockchain App Builder, complete the following steps.
1. Extract the WholesaleCBDC. zip archive file.

2. Import the WholesaleCBDC chaincode to the Blockchain App Builder extension in Visual
Studio Code.

3. Editthe .ochain. json file to update the value of the configFileLocation key to the
path of the WholesaleCBDC.yml specification file.

4. Open a terminal window and navigate to the chaincode folder, and then run the following
command.

npm install

For more information about deploying using Blockchain App Builder, see Deploy Your
Chaincode Using Visual Studio Code in Using Oracle Blockchain Platform.

Sample Process Flow for the Wholesale CBDC Chaincode

A typical process flow using the wholesale CBDC methods follows these basic steps.
1. Admins use the initializeCBDCToken method to initialize the wholesale CBDC system.

2. Admins use the createAccount and associateTokenToAccount methods to create
accounts and associate the token to accounts for all creators, central bank approvers,
issuers, financial institution officers, financial institution approvers, and financial institution
users in the system.

3. Admins use the addrole method to assign the minter role to the creator and the notary role
to the central bank approver.

3-3

10.

11.

12.

13.

Chapter 3
Wholesale CBDC Wrapper API Package

The token creator uses the requestMint method to submit a request to mint currency.

The central bank approver uses the approveMint method to review and approve the
request to mint currency. The currency is credited to the creator's account.

The issuer uses the getAccountBalance method to verify that the credited amount is
accurate.

The creator uses the transferTokens method to send currency to the issuer. The currency
is credited to the issuer's account.

The holdTokens method is used to request transfer of tokens to the financial institution
officer.

The central bank approver uses the executeHoldTokens method to validate and approve
the transfer request. The currency is transferred to the financial institution officer's account.

The financial institution officer uses the getAccountBalance method to verify their account
balance.

The financial institution officer uses the holdTokens method to request transfer of tokens to
the financial institution user.

The financial institution approver uses the executeHoldTokens method to validate and
approve the transfer request. The currency is transferred to the financial institution user's
account.

The financial institution user uses the getAccountBalance method to verify their account
balance.

For more details about using Postman collections, see the following topics in Using Oracle
Blockchain Platform.

Generate a Postman Collection Using the CLI
Generate a Postman Collection Using Visual Studio Code

Endorsement Support in Postman Collections

Wholesale CBDC Wrapper API Package

Oracle Blockchain Platform Digital Assets Edition includes a wrapper API package that
extends the REST API to support operations specific to wholesale CBDC.

ORACLE

The wrapper API package uses the API Gateway service and OCI Functions, which are
created using a Resource Manager stack on Oracle Cloud Infrastructure (OCI), to deploy API
routes specifically designed for the wholesale CBDC application. The wholesale CBDC
wrapper API package is downloadable from the Oracle Blockchain Platform console, and
includes the following components.

WholesaleCBDCWrapperAPI. zip, an archive file that contains the wrapper API
package including the Terraform scripts required for deployment. You deploy this file to a
Resource Manager stack on OCI to create the necessary Oracle resources for the
Wrapper APlIs.

WholesaleCBDC WrapperAPI.postman collection.json, a Postman collection
that enables you to test the deployed wrapper APIs. The collection includes pre-configured
requests with endpoints and payloads that correspond to the APIs defined in the wrapper
API package.

3-4

Chapter 3
Wholesale CBDC Wrapper API Package

Wrapper APIs

activateCBDCAccount
Original method name: activateAccount

This POST method activates a token account. This method can be called only by a Token
Admin or Org Admin of the specified organization. Deleted accounts cannot be activated.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

e On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"db0738d4a44f6d9c80b24fce7c518c07023f7bel%daab9b272eaf7886b4b925",
"payload": {
"assetType": "oaccountStatus",
"status_id":
"oaccountStatus~d5814d96d8517ac31727d60aace0519c58a425892ab0d378fcfb0a35771f65

ae",
"account id":
"oaccount~802bf8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6f826d6",
"status": "active"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 194

ORACLE .

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

addCBAdmin
Original method name: addTokenAdmin

This POST method adds a user as a Token Admin of the token chaincode. The method can be
called only by a Token Admin of the token chaincode. The first invocation is from the admin
who instantiates the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689%1lacdace3c557faebbc0ad%9a51671c10278ba6909350a6fedb08eed",
"payload": {

"msg": "User (Org Id: CB, User Id: cb) is already Token Admin."
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

3-6

Chapter 3
Wholesale CBDC Wrapper API Package

addCBAuditor
Original method name: addTokenAuditor

This POST method adds token auditors to the token chaincode. This method can be called
only by the Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"cd81lf6cdc9e7cl8ecel357dbf5¢c139%ef66ef2d6566be3blide5£6d0a3fddbb2£0",
"payload": {
"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 196
}
}
addFIAdmin

Original method name: addOrgAdmin

This method adds organization admins to the token chaincode. This method can be called
only by a Token Admin Or Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

ORACLE .

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"96a84dffcb9156£7271dfb414e8c43b540595044c£9145£5£d56e9873797fc4a",
"payload": {

"msg": "Successfully added Org Admin (Org Id: CB, User Id: cb)"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 197

addFIAuditor
Original method name: addOrgAuditor

This method adds organization auditors to the token chaincode. This method can be called
only by a Token Admin or Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

3-8

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"44bbad35a1478¢cb714e32f7¢c£d551897868a203520aab9cea5771d3aadclcf03",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 198

addRole
Original method name: addRole

This method adds the role to the specified user and token. Account IDs are formed by creating
a SHA-256 hash of the concatenated token ID, organization ID, and user ID. This method can
be called only by a Token Admin or Org Admin Of the specified organization.

Payload:

"tokenId": "{{bc-token-id}}",

"role": "role value (for example minter / burner / notary)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
e tokenId: string-— The ID of the token.
* role: string— The name of the role to add to the specified user.

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction

endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’
"result": {

"txid" .

ORACLE 29

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"29%ea766deeB8e6d273ebal3c40a%fea75alaal85dc3c280d40695£6224¢c5¢52d93c",
"payload": {

"msg": "Successfully added role 'notary' to Account Id:
oaccount~2eb5£8a9bc561£8f41a4ea3be9511958cc6684ef14£2337¢ca396efc301b627d8
(Org-Id: CB, User-Id: manager user cb)"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 201

approveCBDCCreation
Original method name: approveMint

Notaries can call this POST method to approve a mint request.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"sameOrgEndorser": true

Parameters:
* tokenId: string— The ID of the token.
° operationld: string— The unique operation ID of the mint request to approve.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"ad537e£34a955b023b7c205b9%abtf06a6c79e4£dd761£tb24£41b8eb34126b66c0",
"payload": {
"msg": "Successfully minted 10 tokens to Account Id:

oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB, User-Id: creator user cb)"

by
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 204

approveCBDCRetirement
Original method name: approveBurn

3-10

Chapter 3
Wholesale CBDC Wrapper APl Package

Notaries can call this POST method to approve a burn request.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"sameOrgEndorser": true

Parameters:
* tokenId: string— The ID of the token.
e operationId: string— The unique operation ID of the mint request to approve.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"8252371040e41753fd843bd086692f4elee7d89ffa3a50bfal21c5£1565£922£",
"payload": {
"msg": "Successfully burned 1 tokens from account id:

oaccount~0d7pb3£73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢
(Org-Id: CB, User-Id: retirer user cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 209

approveHoldCBDCTokens
Original method name: executeHoldTokens

Notaries call this method to approve a hold on tokens, which triggers the transfer of the tokens
from the payer to the payee in this business scenario. The quantity of tokens put on hold
previously by the token owner is now transferred to the recipient. If the quantity value is less
than the actual hold value, the remaining amount is available again to the owner of the token.
If the roles behavior is specified in the behaviors section of the token model and the
notary role name value is set, the caller account must have notary role. Otherwise, any caller
with an account can function as a notary.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",

ORACLE 311

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"quantity": 1,
"endorsers": {{endorsers}}

Parameters:

* tokenId: string— The ID of the token.

° operationld: string— The unique operation ID of the mint request to approve.
e quantity: number — The number of held tokens to transfer.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"cl1493aa486abc4931d9024c18dfcb230bb321723d1160b0b£f981c0011c4856a",
"payload": {
"msg": "Account Id:

oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4£fb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb) is successfully executed '10' tokens
from Operation Id '8e3145'."

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 213

associateTokenToAccount
Original method name: associateTokenToAccount

This POST method associates a specified account ID to a specified token. This method can
be called only by a Token Admin or Org Admin of the specified organization.

Payload:
"accountId": "account id value",

"tokenId": "{{bc-token-id}}",
"endorsers": {{endorsers}}

Parameters:
* accountld: string— The ID of the account.

e tokenId: string— The ID of the token.

3-12

Chapter 3
Wholesale CBDC Wrapper API Package

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"efc7381fb6fc6174a40e83f£5£09d2bbf7£6£490365e3bbf19d5502c2¢cfecd74",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~1lc6aa60e220b8fc70cafdcealed723ddb193a00321e5e0004def062816b77090",

"user id": "cbl2",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": [

"CBDC_ADMINS"

] 14

"max daily amount": 10000,

"daily amount": O,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-11T00:00:00.0002"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 216

createAccount
Original method name: createAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is an alphanumeric set of characters, prefixed with
oaccount~<token asset name>~ and followed by a hash of the user name or email ID
(user1d) of the instance owner or the user who is logged in to the instance, the membership
service provider ID (orgId) of the user in the current network organization. This method can
be called only by a Token Admin of the chaincode or by an 0rg Admin of the specified
organization.

ORACLE 313

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",

"tokenType": "fungible",

"applicationGroups": "[\"application groups value\"]",
"dailyLimits":

"{\"max_daily amount\":10000,\"max daily transactions\":100}",
"endorsers": {{endorsers}}

}

Parameters:

e orglId— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

e userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(1), periods (.), at signs (@), and hyphens (-).

* tokenType: TokenType — The type of token, which must be fungible.

° applicationGroups: string[] — A list of application groups the user Id belongs to, which
define the user's associations in the CBDC application.

°* dailyLimits: JSON object — A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max daily amount value is the maximum amount of tokens that can
be transacted daily and max_daily transactions value is the maximum number of
transactions that can be completed daily.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£8ccbd836b893969531ab768098cd4a99e3b89cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fb67e26ealea%ef62828b7a72dbf3beb8efd8d",
"user id": "admin user cb",

3-14

Chapter 3
Wholesale CBDC Wrapper APl Package

"org id": "CB",

"token type": "fungible",

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": [

"CBDC_ADMINS"

] ’

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.000z2"
} 4
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

getAllActiveCBDCAccounts
Original method name: getAllActiveAccounts

This GET method returns all of the active accounts that are associated with the specified
token ID.

Query:
/getAllActiveCBDCAccounts?tokenId={{bc-token-id}}
Parameters:

* tokenId: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"non_account role name": [
"token admin"

I

"role name": null,

ORACLE s

Chapter 3
Wholesale CBDC Wrapper API Package

"valuedson": {
"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":
"oaccount~cdc6fa5e64bc29£700£99da69£980d8chbb768c7elallddl7274e75651f6afafe",
"user id": "admin user cb",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 0,
"onhold balance": 0,
"application groups": |
"CBDC_ADMINS"
] ’
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.000z2"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"key":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"non_account role name": [

"token admin"

I

"role name": null,

"valuedson": {
"account id":

"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1y
"encode": "JSON"

ORACLE 316

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example (all other users):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"key":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"non_account role name": [

"token admin"

J ’

"role name": null,

"valueJdson": {
"account id":

"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1y
"encode": "JSON"

getAllSuspendedCBDCAccounts
Original method name: getAllSuspendedAccounts

This GET method returns all of the suspended accounts that are associated with the specified
token ID.

Query:
/getAllSuspendedCBDCAccounts?tokenId={{bc-token-id}}
Parameters:

e tokenId: string— The ID of the token.

Returns:

e On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

ORACLE 3-17

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
"errorﬂ: ""’
"result": {
"payload": [
{
llkey" .

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valuedson": {
"assetType": "oaccount",
"bapAccountVersion": 1,
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"user id": "userl fil",
"org id": "FI1",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 5,
"onhold balance": 0,
"application groups": [
"FI CBDC USERS"
] 14
"max daily amount": 10000,
"daily amount": O,
"max daily transactions": 1000,
"daily transactions": O,
"current date": "2024-11-20T00:00:00.0002"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~802b£8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":

ORACLE 318

Chapter 3
Wholesale CBDC Wrapper API Package

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385d£8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1,
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
" keyﬂ H

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD"

1y
"encode": "JSON"

getApproverActionHistory
Original method name: getActionHistory

This GET method retrieves the history of approvals or rejections made by the caller for mint,
burn, and transfer (issuance) operations, including details of the organization, and user IDs of

accounts involved (sender, recipient, and notary). This method can be called only by a Token
Admin, Token Auditor, Org Admin, Org Auditor or the notary

Query:

/getApproverActionHistory?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

ORACLE 319

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example:

"returnCode"
Herrorll: "",
"result": {

: "Success",

"payload": [

{

"from account id":

"oaccount~0d7b3f73aea28065017¢ce8b79c0bb19256dc0cb475a0b2a85192bd110£69535¢",

"from org id": "CB",

"from user id": "retirer user cb",
"holding id": "ohold~cbdc~USD~eaf6",
"holding status": "REJECT BURN",
"last updated time": "2024-11-26T21:43:22.000z",
"notary account id": null,
"notary org id": null,
"notary user id": null,
"operation id": null,

"quantity": 3,

"timetoexpiration": null,
"to_account id": "",

"to org id": null,

"to user id": null,

"token id": "USD",

"token name": null

"from account id":

"oaccount~0d7b3f73aea28065017¢ce8b79c0bb19256dc0cb475a0b2a85192bd110£69535¢",

I

"encode"

getCBDCAccount

"from org id": "CB",

"from user id": "retirer user cb",
"holding id": "ohold~cbdc~USD~0031",
"holding status": "REJECT BURN",
"last updated time": "2024-11-26T21:43:15.0002",
"notary account id": null,
"notary org id": null,
"notary user id": null,
"operation id": null,

"quantity": 2,

"timetoexpiration": null,
"to_account id": "",

"to org id": null,

"to user id": null,

"token id": "USD",

"token name": null

: "JSON"

Original method name: getAccount

3-20

Chapter 3
Wholesale CBDC Wrapper API Package

This GET method returns account details for a specified user and token. This method can be
called only by a Token Admin or Token Auditor of the chaincode, an Org Admin Or Org
Auditor of the specified organization, or the AccountOwner of the account.

Query:
/getCBDCAccount?tokenId={{bc-token-id}}&orgId={{bc-org-id}}&userId={{bc-user-

id}}

Parameters:
e tokenId: string-— The ID of the token.

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {

"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",
"status": "active",

"account id":
"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": |

"CBDC_ADMINS"

] 14

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"
} 14
"encode": "JSON"

getCBDCAccountBalance
Original method name: getAccountBalance

ORACLE 301

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

This GET method returns the current balance for a specified account and token. This method
can be called only by a Token Admin Or Token Auditor of the chaincode, an Org Admin Or Org
Auditor of the specified organization, or the AccountOwner of the account.

/getCBDCAccountBalance?tokenId={{bc-token-id}}&orgld={{bc-org-
id}}&userId={{bc-user-id}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"msg": "Current Balance is: 100",

"user balance": 100

t
"encode": "JSON"

getCBDCAccountsByUser
Original method name: getAccountsByUser

This method returns a list of all account IDs for a specified organization ID and user ID. This
method can be called only by a Token Admin or Token Auditor of the chaincode, an Org
Admin or Org Auditor of the specified organization, or the AccountOwner of the account.

/getCBDCAccountsByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld string— The membership service provider (MSP) ID of the user in the current
organization.

e userld string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{

3-22

ORACLE

Chapter 3
Wholesale CBDC Wrapper APl Package

"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":

"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal3a3426fa25¢cb8c28",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": [
"CBDC_ADMINS"

]I

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"

"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":

"oaccount~cdc6fa5e64bc29£700£99da69£980d8cbb768c7elallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": [
"CBDC_ADMINS"

]I

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"

"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":

"oaccount~28ac774001£374064029d51af4fbb7e26ealea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",
"org id": "CB",

"token type": "fungible",
"token id": "",

"token name": "",
"balance": 0,

"onhold balance": 0,
"application groups": [

3-23

Chapter 3
Wholesale CBDC Wrapper API Package

"CBDC_ADMINS"
]I
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 100,
"daily transactions": 0,
"current date": "2024-12-09T00:00:00.000z"

1,
"encode": "JSON"

getCBDCAccountTransactionHistory
Original method name: getAccountTransactionHistory

This method returns an array of account transaction history details for a specified user and
token. This method can be called only by a Token Admin Ofr Token Auditor of the chaincode,
an Org Admin Or Org Auditor of the specified organization, or the AccountOwner of the
account.

/getCBDCAccountTransactionHistory?tokenId={{bc-token-id}}&orgId={{bc-org-
id}}&userId={{bc-user-id}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transaction id":
"otransaction~64c5a4830949eael1424600£3d4a438c6f603a7¢c3ea31a68e374b899803999%e22

]
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:37:28.000Z",

"balance": 550,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REJECT MINT",

ORACLE 304

Chapter 3
Wholesale CBDC Wrapper APl Package

"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b9%abf06a6c79e4fdd761fb24f41b8eb34126b66c0

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9%fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.000z2",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aa1la7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

ORACLE -

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"encode": "JSON"

getAccountTransactionHistoryWithFilters
Original method name: getAccountTransactionHistoryWithFiltersFromRichHistDB

This method returns the account transaction history details from the rich history database.
This method can be called only by a Token Admin or Token Auditor of the chaincode, an Org
Admin or Org Auditor of the specified organization, or the AccountOwner of the account.

/getCBDCAccountTransactionHistoryWithFilters?tokenId={{bc-token-

id} }&orgId={{bc-org-id}}&userId={{bc-user-id}}&customEndpoint=custom endpoint
valuesbearerToken=bearer token

value&filters={"pageSize":20, "bookmark":"","startTime":"2022-01-16T15:16:36+00
:00", "endTime":"2022-01-17T715:16:36+00:00"}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e customEndpoint — The RESTful service endpoint of the rich history database to fetch the
transaction history from.

* DbearerToken — The token to use to call the RESTful endpoint to ensure that the request is
authorized.

e filters: JSON object — An optional parameter. If empty, all records are returned. The
pageSize property determines the number of records to return. If pagesize is 0, the default
page size is 20. The bookmark property determines the starting index of the records to
return. The startTime and endTime properties must be specified in RFC-3339 format.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transaction id":
"otransaction~64c5a4830949eael1424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

]
r

"transacted amount": 10,

"timestamp": "2024-12-11T13:37:28.000Z",
"balance": 550,

"onhold balance": 10,

"token id": "USD",

"category": "category value",
"description": "description value",

3-26

ORACLE

Chapter 3
Wholesale CBDC Wrapper APl Package

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b%bf06a6c79e4fdd761£b24£41b8eb34126b66c0

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9%fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.000z2",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aa1la7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.0002",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

3-27

Chapter 3
Wholesale CBDC Wrapper API Package

"transacted user id'": "creator user cb"

1,
"encode": "JSON"

getCBDCRetiredQuantity
Original method name: getBurnQuantity

This GET method returns the total quantity of burned tokens for a specified organization. This
method can be called only by a Token Admin, Token Auditor, Or @ user with the burner role.

/getCBDCRetiredQuantity?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
llerrorll: llll,
"result": {

"payload": {

"burnt quantity": 31
I
"encode": "JSON"

getNetCBDCTokens
Original method name: getNetTokens

This GET method returns the total net number of tokens available in the system for a specified
token. The net token total is the amount of tokens remaining after tokens are burned. This
method can be called only by a Token Admin or Token Auditor of the chaincode, or an Org
Admin or Org Auditor

/getNetCBDCTokens?tokenId={ {bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.
Return Value Example:
"returnCode": "Success",

"errorﬂ: ""’
"result": {

ORACLE 308

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"payload": {
"msg": "Net supply of token for Token Id: USD is 878 tokens.",
"quantity": 878

}I

"encode": "JSON"

getOnHoldIds
Original method name: getOnHoldIds

This GET method returns a list of all of the holding IDs for a specified account. This method
can be called only by a Token Admin Or Token Auditor of the chaincode, an Org Admin Or Org
Auditor of the specified organization, or the AccountOwner of the account.

/getOnHoldIds?tokenId={{bc-token-id}}&orgIld={{bc-org-id}}&userId={{bc-user-
id}}

Parameters:

* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"errorH: ""’
"result": {

"payload": {

"msg": "Holding Ids are:
ohold~cbdc~USD~8e3147, ohold~cbdc~USD~8e315",
"holding ids": [
"ohold~cbdc~USD~8e3147",
"ohold~cbdc~USD~8e315"

t
"encode": "JSON"

getPendingCBDCIssuance
Original method name: getPendingIssuance

This method retrieves all pending issuance (transfer) transactions where the caller is assigned
as an approver, including details of the organization, and user IDs of accounts involved

3-29

Chapter 3
Wholesale CBDC Wrapper API Package

(sender, recipient, and notary). This method can be called only by a Token Admin or Token
Auditor of the chaincode, an Org Admin Or Org Auditor, or the Notary.

/getPendingCBDCIssuance?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"asset type": "ONHOLD",
"category": "category value",
"from account id":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"from org id": "CB",
"from user id": "creator user cb",
"holding id": "ohold~cbdc~USD~8e314",
"notary account id":
"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",
"notary org id": "CB",

"notary user id": "manager user cb",
"operation id": "8e314",

"quantity": 10,

"timetoexpiration": "0",

"to_account id":
"oaccount~44b844deccc6c314e14b8bOb95b51db5c8ded99dbdbd3def2a44bab54c899¢c142",
"to org id": "FI1",

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

"asset type": "ONHOLD",

"category": "category value",

"from account id":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594",

"from org id": "CB",

"from user id": "issuer user cb",

"holding id": "ohold~cbdc~USD~8e315",

"notary account id":
"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"notary org id": "CB",

"notary user id": "manager user cb",
"operation id": "8e315",

"quantity": 10,

"timetoexpiration": "0",

ORACLE 330

Chapter 3
Wholesale CBDC Wrapper API Package

"to_account id":
"oaccount~44b844deccc6c314el4b8b9b95b51db5c8de499dbdbd3def2ad44ba54c899¢c142",
"to org id": "FI1",

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

1,
"encode": "JSON"

getPendingCBDCRequest
Original method name: getPendingRequest

This method retrieves all pending requests of a specified type where the caller is assigned as
an approver. This method can be called only by a Token Admin or Token Auditor of the
chaincode or the Notary.

/getPendingCBDCRequest?tokenId={{bc-token-id}}&requestType=request type value

Parameters:
* tokenId: string— The ID of the token.

° requestType: string— The transaction type. For example, mint or burn.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"valueJdson": {
"assetType": "ohold",
"holding id": "ohold~cbdc~USD~opl23",
"operation id": "opl23",
"token id": "USD",
"token name": "cbdc",
"operation type": "mint",
"status": "pending",
"from account id":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"to_account id": "",
"notary account id":
"oaccount~2eb5f8a%bc561f8f41ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"quantity": 10,
"time to expiration": "0",
"category": "category value",
"description": "description value"

ORACLE 331

Chapter 3
Wholesale CBDC Wrapper API Package

1,
"encode": "JSON"

getTotalBalanceByCallerOrgld
Original method name: getTotalBalanceByCallerOrgId

This method retrieves the total balance of the caller's organization. This method can be called
only by a Token Admin, Token Auditor, Org Admin, Org Auditor, OF any account owner.

/getTotalCBDCBalanceByCallerOrgId

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"totalBalance": 704

1y
"encode": "JSON"

getTotalCreatedCBDCTokens
Original method name: getTotalMintedTokens

This method returns the total number of minted tokens for a specified token. This method can
be called only by a Token Admin, Token Auditor, Org Admin, Of Org Auditor.

Query:
/getTotalCreatedCBDCTokens?tokenId={{bc-token-id}}
Parameters:

e tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"errorH: ""’

ORACLE 390

Chapter 3
Wholesale CBDC Wrapper API Package

"result": {
"payload": {
"msg": "Total minted token for Token Id: USD is 910 tokens.",
"quantity": 910
}I
"encode": "JSON"

getTransactionWithBlockNumber
Original method name: getTransactionWithBlockNumber

This GET method returns the details of the transaction for the specified transaction ID.
Query:

/getTransactionWithBlockNumber?tokenId={{bc-token-
id}}&transactionId=transaction id value

Parameters:
* tokenId: string— The ID of the token.

e transactionId: string— The ID of the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"blockNo": 82,
"key":
"otransaction~24£391919a8837d654beaa7346148ea8b2b9704624aef482ce68078c485f5b1b

n
r

"metadata": null,
"txnNo": 0,
"value": null,
"valueJdson": {
"assetType": "otransaction",
"transaction id":
"otransaction~24£391919a8837d654beaa7346148ea8b2b9704624aef482ce68078c485f5b1b

n
r

"token id": "USD",

"from account id": "",

"from account balance": 0,

"from account onhold balance": 0,

"to_account id":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"to_account balance": 100,

"to_account onhold balance": 0,

"transaction type": "REQUEST MINT",

ORACLE 333

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"amount": 200,

"timestamp": "2024-11-20T06:48:42.000zZ",
"number of sub transactions": 0,
"holding id": "",

"sub transaction": "false",
"description": ""

1,
"encode": "JSON"

getUserByCBDCAccountId
Original method name: getUserByAccountId

This method returns user details (orgId, userId, and tokenId) for a specified account. This
method can be called only by a Token Admin or Token Auditor of the chaincode, or an Org
Admin or Org Auditor of the specified organization.

Query:
/getUserByCBDCAccountId?accountId=account id value
Parameters:

e accountId: string-— The ID of the account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"token id": "USD",
"user id": "admin user cb",
"org id": "CB"

I
"encode": "JSON"

getUsersByRole
Original method name: getUsersByRole

This GET method returns a list of all users for a specified role and token. This method can be
called only by a Token Admin or Token Auditor of the chaincode.

3-34

ORACLE

Query:

Chapter 3
Wholesale CBDC Wrapper API Package

/getUsersByRole?tokenId={{bc-token-id}}&role=role value (for example minter /

burner / notary)

Parameters:

e tokenId: string— The ID of the token.

e role: string— The name of the role to search for.

Return Value Example:

"returnCode":
"erro:r_-": "",
"result": {

"payload":
"users":

{

b

"encode":

holdCBDCTokens

"Success",

Original method name: holdTokens

[
"token id": "USD",
"user id": "creator user cb",
"Orgiid" : HCB"
"token id": "USD",
"user id": "cb4",
"Orgiid" : HCB"
"JSON"

This method creates a hold on behalf of the owner of the tokens with the to_account id
account. A notary account is specified, which is responsible to either complete or release the
hold. When the hold is created, the specified token balance from the payer is put on hold. A
held balance cannot be transferred until the hold is either completed or released. The caller of
this method must have an account already created.

Payload:

{
"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"toOrgId": "to org id value",
"toUserId": "to user id value",
"notaryOrgId": "notary org id value",
"notaryUserId": "notary user id value",

"quantity": 1,

3-35

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"timeToExpiration": "time to expiration value",
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"endorsers": {{endorsers}}

}

Parameters:
* tokenId: string— The ID of the token.

° operationId: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

° toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.

* notaryOrgld: string— The membership service provider (MSP) ID of the notary in the
current organization.

° notaryUserId: string— The user name or email ID of the notary.
° quantity: number — The number of tokens to put on hold.

° timeToExpiration — The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:062%.

e infoDetails: JSON — The description and category as shown in the following example.

"category" : "category input",
"description" : "description input"

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e575d339299bb98afe83207e749cd07654£209673¢c84c6973738b6094da33062",
"payload": {
"msg": "AccountId

oaccount~51e676d7182a02ea7418e£58a6d54ecfe3858ef40b4ffb3d8590320da3921594
(Org-Id: CB , User-Id: issuer user cb) 1is successfully holding 10 tokens"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 211

3-36

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

init
Original method name: init

This method is called when the chaincode is deployed. The user information is saved as the
Token Admin of the chaincode.

Payload:

{
"adminList": "[{\"org id\":\"{{bc-org-id}}\",\"user id\":\"{{bc-admin-
user}\"}1"

}

Parameters:

* adminList array—Anarray of {user id, org_ id} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"£db7dc89832c8045a333823b77£a24ae628178148dc93b3550040e070d7cd807",
"payload": "",
"encode": "UTF-8",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 263

initializeCBDCToken
Original method name: initializeCBDCToken

This method creates a token and initializes the token properties. The asset and its properties
are saved in the state database. This method can be invoked only by a Token Admin of the
chaincode.

Payload:

{

"tokenAsset": "{\"token id\":\"{{bc-token-id}}
\",\"token desc\":\"token desc value\",\"Currency Name\":\"Currency Name
value\"}",

"sameOrgEndorser": true

}
Parameters:

° tokenAsset: <Token Class>— The token asset is passed as the parameter to this
method. The properties of the token asset are described in the model file.

3-37

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

e Onsuccess, a JSON representation of the token asset that was created.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"aaTadfdcc214ela041a5a6fb7¢ca7530£08256559e538c9£9582e6fd12¢c9e65c8",
"payload": {
"assetType": "otoken",

"events": false,
"token id": "tl",
"token name": "cbdc",
"token desc": "token desc value",
"token standard": "ttf+",
"token type": "fungible",
"token unit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"holdable",
"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner",
"notary role name": "notary",
"mint approver role name": "notary",
"burn approver role name": "notary"

}I
"mintable": {
"max mint quantity": 1000,
"mint approval required": true
}I
"burnable": {
"burn approval required": true
}I
"divisible": {
"decimal": 2
}I
"currency name": "currency name value",
"token to currency ratio": 999
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 267

3-38

Chapter 3
Wholesale CBDC Wrapper API Package

rejectCBDCCreation
Original method name: rejectMint

This method can be called by a minter notary to reject a minting request.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"sameOrgEndorser": true

Parameters:
° tokenId: string— The ID of the token to reject minting.
° operationld: string— The unique operation ID that represents the mint request.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"64c5a4830949eae1424600£3d4a438c6£603a7c3ea31a68e374b899803999%e22",
"payload": {
"msg": "Successfully rejected mint request with Operation Id

'opl234' to mint 10 tokens of token id USD"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 205

rejectCBDCRetirement
Original method name: rejectBurn

This method can be called by a notary to reject a burning request.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",

ORACLE 339

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

"sameOrgEndorser": true

Parameters:
° tokenId: string— The ID of the token to reject for burning.
° operationld: string— The unique operation ID that represents the burn request.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"474208183986c84fe3212a925670539db3b1lbc90b02fa65956ad8c771£££5bbe",
"payload": {
"msg": "Successfully rejected burn request with Operation Id

'burnl234' to burn 10 tokens of token id USD"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 210

rejectHoldCBDCTokens
Original method name: releaseHoldTokens

This POST method releases a hold on tokens. The transfer is not completed and all held
tokens are available again to the original owner. This method can be called by the
AccountOwner ID with the notary role within the specified time limit or by the payer, payee, or
notary after the specified time limit.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

° operationld: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

3-40

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"f04ba8895d52bc636d843£88476002bc99d01480c36be87¢c8fa259cd47a29380",
"payload": {
"msg": "Successfully released '1l0' tokens from Operation Id

'8e3144"' to Account Id:
oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb)."

I
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 214

removeCBAdmin
Original method name: removeTokenAdmin

This POST method removes a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode. An admin cannot remove themselves.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"6a3b9%90568d04b5beb29830f91efede8c6310b6cf36940cecfbdab690fbfde739",
"payload": {

"msg": "Successfully removed Token Admin (Org Id: CB, User Id:

ORACLE 341

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 218
}
}
removeCBAuditor

Original method name: removeTokenAuditor

This POST method removes a user as a Token Auditor of the chaincode. This method can
be called only by a Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"a886a6040fbc76374a3c78c89ab0ffc9f708391cc52390169b£3b878cf40c67b",
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 219
}
}
removeFIAdmin

Original method name: removeOrgAdmin

This POST method removes a user as a Org Admin of the chaincode. This method can be
called only by a Token Admin or Org Admin of the specified organization.

3-42

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e2a634£6093£8901984e20£f£86a513fabb7c3ade7cc9e27d9734b4aaf6c88597",
"payload": {

"msg": "Successfully removed Org Admin (Org Id: CB, User Id: cb)"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 220

removeFIAuditor
Original method name: removeOrgAuditor

This POST method removes a user as a Org Auditor of the chaincode. This method can be
called only by a Token Admin or Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

3-43

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"c3bc720461004a53b37¢c68d4bb264858088d980bc093a0a3ebb62a32974£fb306",
"payload": {
"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
cb)"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 221
}
}
removeRole

Original method name: removeRole

This method removes a role from a specified user and token. This method can be called only
by a Token Admin of the chaincode or by an 0rg Admin of the specified organization.

Payload:

"tokenId": "{{bc-token-id}}",

"role": "role value (for example minter / burner / notary)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
e tokenId: string-— The ID of the token.

* role: string— The name of the role to remove from the specified user. The mintable
and burnable behaviors correspond to the minter role name and burner role name
properties of the specification file. Similarly, the notary role corresponds to the
notary role name property of the specification file.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

3-44

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

e On success, a message with account details.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"274£0d0a2¢c4c3929817£fb85b2e857519695¢3¢c238¢ccf9903b084b87e9%beTeel2",
"payload": {
"msg": "Successfully removed role 'notary' from Account Id:

oaccount~2eb5f8a9bc561£8f41ad4ea3be9511958cc6684ef14£2337ca396efc301b627d8
(Org-Id: CB, User-Id: manager user cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 200

requestCBDCCreation
Original method name: requestMint

This method can be called by a minter to send a request to the minter notary to create a
specified amount of tokens.

Payload:

"tokenId": "{{bc-token-id}}",

"operationId": "operation id value",
"notaryOrgId": "notary org id value",
"notaryUserId": "notary user id value",
"quantity": 1,

"timeToExpiration": "time to expiration value",
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"sameOrgEndorser": true

Parameters:
e tokenId: string— The ID of the token to mint.
e operationId: string— The unique operation ID that represents the mint request.

° notaryOrgId: string— The membership service provider (MSP) ID of the minter notary
who will process the request.

* notaryUserId: string— The user name or email ID of the minter notary who will process
the request.

* quantity: number — The amount of tokens to mint.

3-45

Chapter 3
Wholesale CBDC Wrapper API Package

° timeToExpiration — The time after which the minting request expires and is no longer
valid.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"06035071415d74aal1a7¢c18449149c937d886cae76a832c44cf8d98e84586e76e",
"payload": {
"msg": "AccountId

oaccount~9d9806fa%2aalc4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB , User-Id: creator user cb) has successfully submitted request to
mint 10 tokens"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 202

requestCBDCRetirement
Original method name: requestBurn

This method can be called by a burner to send a request to the notary to destroy a specified
amount of tokens.

Payload:

"tokenId": "{{bc-token-id}}",

"operationId": "operation id value",
"notaryOrgId": "notary org id value",
"notaryUserId": "notary user id value",
"quantity": 1,

"timeToExpiration": "time to expiration value",
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"sameOrgEndorser": true

ORACLE 346

Chapter 3
Wholesale CBDC Wrapper API Package

Parameters:
e tokenId: string— The ID of the token to burn.
° operationld: string— The unique operation ID that represents the burn request.

° notaryOrgId: string— The membership service provider (MSP) ID of the burner notary
who will process the request.

e notaryUserlId: string— The user name or email ID of the burner notary who will process
the request.

* quantity: number — The amount of tokens to burn.

° timeToExpiration — The time after which the burning request expires and is no longer
valid.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

}

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"0adb57ca9776c8760468c40465e0£0d37472£0b4b32£d02561e£28b3£7b28cfl",
"payload": {
"msg": "AccountId

oaccount~0d7pb3£73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢
(Org-Id: CB , User-Id: retirer user cb) has successfully submitted request to
burn 10 tokens"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 206

setApplicationGroups
Original method name: setApplicationGroups

This POST method is used to set the application groups parameter in the account details
for the specified application groups. This method can be called only by a Token Admin of the
chaincode or by an org Admin of the specified organization.

ORACLE 3-47

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"applicationGroups": "[\"application groups value\"]",

"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
* tokenId: string— The ID of the token.

* applicationGroups: string[] — A list of application groups the user ID belongs to,
defining the user's associations in the CBDC application.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

e On success, a success message with the quantity of tokens burned and the account ID.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£8ccbd836b893969531ab768098cd4a99e3b89cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fb67e26ealea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "™,

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": |
"CBDC_ADMINS"

] 14

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

3-48

Chapter 3
Wholesale CBDC Wrapper API Package

"current date": "2024-12-09T00:00:00.000z2"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

setMaxDailyAmount
Original method name: setMaxDailyAmount

This POST method is used to set the maxDailyAmount parameter in the account details for the
specified amount. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"maxDailyAmount": 1,
"endorsers": {{endorsers}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userId: string— The user name or email ID of the user.
* tokenId: string— The ID of the token.

° maxDailyAmount: number — The maximum daily amount value for the specified account,
which defines the maximum amount that can be transacted daily.

° endorsers: string[] —An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"28682e0564e4721b6claBecl06£8c5c98319e9439959dbb9£83d8e6£111d9975",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651fcafafe",

"user id": "admin user cb",

"Org_id": "CBH’

ORACLE 349

Chapter 3
Wholesale CBDC Wrapper API Package

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": [

"CBDC_ADMINS"

] ’

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"
} 4
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 222

setMaxDailyTransactionCount
Original method name: setMaxDailyTransactionCount

This POST method is used to set the maxDailyTransactions parameter in the account details
for the specified amount. This method can be called only by a Token Admin of the chaincode
or by an Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"maxDailyTransactions": 1,
"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

* userId: string— The user name or email ID of the user.
* tokenId: string— The ID of the token.

* maxDailyTransactions: number — The maximum daily amount value for the specified
account, which defines the maximum number of transactions allowed per day.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

ORACLE 350

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"8b6fb01de697562ee098110054£05d4a314933bd11e£471991cb43e25b68bad9",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": [

" CBDC_ADMINS "

] 14

"max daily amount": 10000,

"daily amount": O,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.0002"
I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 223

suspendCBDCAccount
Original method name: suspendAccount

This method suspends a fungible token account. It throws an error if an accountStatus value
is not found in ledger. This method can be called only by a Token Admin of the chaincode or
by an 0rg Admin of the specified organization.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:

3-51

Chapter 3
Wholesale CBDC Wrapper API Package

* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£c97a6b1304247774397fed1294",
"payload": {
"assetType": "oaccountStatus",
"status id":
"oaccountStatus~d5814d96d8517ac31727d60aace0519c58a425892ab0d378£cfb0a35771£65

ae",
"account id":
"oaccount~802bf8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"status": "suspended"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 195

transferCBDCTokens
Original method name: transferTokens

This method transfers tokens from the caller to a specified account. The caller of the method
must have an account. The quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file.

Payload:

"tokenId": "{{bc-token-id}}",

"toOrgId": "to org id value",

"toUserId": "to user id value",

"quantity": 1,

"infoDetails": "{\"category\":\"category
value\",\"description\":\"description value\"}",

"endorsers": {{endorsers}}

}

Parameters:

* tokenId: string— The ID of the token.

ORACLE 350

Chapter 3
Wholesale CBDC Wrapper APl Package

° toOrgId: string— The membership service provider (MSP) ID of the receiver (payee) in
the current organization.

* toUserlId: string— The user name or email ID of the receiver.
e quantity: number — The number of tokens to transfer.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"d613b2494b965811b2£a2106152b7085£2d6d7d43e9490b10b8668722d3636fe7",
"payload": {
"msg": "Successfully transferred 10 tokens from account id:

oaccount~9d9806fa%92aalc4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB, User-Id: creator user cb) to account id:
oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb). Only 999 number of transactions and
1990 amount transfer left for today: 12/11/2024"

by

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 224

The wrapper API package also includes the createCBDCAccount API, which combines
chaincode APIs and Oracle Blockchain Platform console APIs into a single endpoint for
account creation.

createCBDCAccount
Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",

"applicationGroups": "[\"applicationGroups value\"]",

"tokenId": "{{bc-token-id}}",

"role": "role value (for example minter / burner / notary / tokenAdmin /

tokenAuditor / orgAdmin / orgAuditor)",

ORACLE -

Chapter 3
Wholesale CBDC Wrapper API Package

"dailyLimits": "{\"max daily amount\":1000,
\"max daily transactions\":100}"

}

Payload parameters:

* orgId— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

e applicationGroups — The application groups the account will belong to. For example,
CBDC_ADMINS.

* tokenId - The ID of the token associated with the account. The ID must begin with an
alphanumeric character and can include letters, numbers, and the special characters
underscore (_) and hyphen (-). It cannot exceed 16 characters in length.

* role — The role must be one of the following values: minter, burner, notary, tokenAdmin,
tokenAuditor, orgAdmin Or orgAuditor.

° dailyLimits — Two numeric fields that define the daily transaction limits:
max_daily amount and max daily transactions.

Return Value Example:

"payload": {

"msg": "Account created successfully and 'minter' role added to Account Id:
oaccount~4a86£2843¢c2b0105¢c97a77202bd%babl9c81ldcef27ecccld89125ae32770700
(Org-Id: CB, User-Id: creator user cb)"

"accountDetails":

{
"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":
"oaccount~ceb5c56d2068ce31b82136¢c8eeall0a80b9251595d361db70924¢c4e989032albe",
"user id": "creator user cb",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "",
"balance": 0,
"onhold balance": 0,
"application groups": [
"CBDC_CREATORS"
I
"max daily amount": 1000,
"daily amount": O,
"max daily transactions": 100,
"daily transactions": 0,
"current date": "2024-10-06T00:00:00.0002"

ORACLE _

Chapter 3
Wholesale CBDC Wrapper API Package

The createCBDCAccount API completes the following operations in sequence.

1.

2
3.
4.

Creates an enrollment ID for the user in Oracle Blockchain Platform. The enroliment ID
that is created is the same as the user ID, with some limitations. The ID can contain only
alphanumeric characters, hyphens (-), and underscores (). If the user ID contains any
other special characters, they are replaced with an underscores (_). For example, if the
user ID is adam.fripp@example.com, the enrollment ID that is created is
adam_fripp_example_com. If the enrollment already exists for the specified user ID,
another enrollment is not created.

Creates an account in the ledger with the details provided in the payload.
Associates the new account with the token specified in the payload.

Assigns the role specified in the payload to the user.

To ensure consistency and to avoid incomplete data, if any of the subsequent steps fail, the
enroliment ID that was created in the first step is deleted.

Customize Wrapper APIs for Wholesale CBDC

The wholesale CBDC wrapper API is a modified version of the wrapper API package that is
generated by Blockchain App Builder.

Complete the following steps if you regenerate the wrapper API package after adding custom
methods to the wholesale CBDC chaincode. To ensure that your changes are compatible, you
must modify the newly generated wrapper API package by using the wholesale CBDC wrapper
API package that is bundled with the product.

1.

ORACLE

Use Blockchain App Builder to generate a wrapper API package for the wholesale CBDC
chaincode.

Extract the files from the package.

Copy the createCBDCAccount folder from the wrapper API package that is bundled with
the product into the directory structure of the newly generated wrapper API package.

Add an entry at the end of the terraform.vars file for the createCBDCAccount
method, as shown in the following example JSON string.

\"createCBDCAccount\": {\"path\":\"/createCBDCAccount\", \"type\":
[\"POST\"]}

The following text shows the general format of the JSON string in the function_path
variable in the terraform.vars file.

{"<methodName>": {"path":"/<methodFolderName>", "type": ["<HTTP Method POST
or GET>"]}}

Replace the main. t £ file in the newly generated wrapper API package with the main.tf
file from the wrapper API package that is bundled with the product.

3-55

Chapter 3
Wholesale CBDC Wrapper API Package

Deploy and Test Wrapper APIs for Wholesale CBDC

Deploying the Wrapper APl Package

Before you can deploy the wrapper API package, you must update the required configuration
variables. Some configuration variables have default values, but you must manually update
any variable that contains a placeholder as its default value. Configuration variables are stored
inthe terraform. tfvars file in the wrapper API archive. For more information about
deploying wrapper APIs and about configuration variables, see Wrapper APIs. The following
table lists the configuration variables and their default values for the wholesale CBDC wrapper
API package. If the default value contains placeholders, it indicates that the user must
manually provide the necessary values.

Variable name Default value Description

compartment ocid <compartment ocid> The OCID of the compartment in
Oracle Cloud Infrastructure (OCI).

compartment name <compartment name> The name of the OCI
compartment.

identity domain <identity domain> The identity domain to use.

blockchain channel <blockchain channel> The name of the Oracle

Blockchain Platform channel
where the chaincode is deployed.

blockchain url <blockchain url> The Oracle Blockchain Platform
URL associated with the
chaincode deployment.

blockchain chaincode WholesaleCBDC The name of the chaincode to
generate wrapper APIs for.

blockchain sync true The sync value to include in the
payload for API calls.

blockchain timeout 6000 The timeout value to include in
the payload for API calls.

ven display name WholesaleCBDC The display name of the OCI
virtual cloud network.

application display name WholesaleCBDC The display name of the OCI
application.

gateway display name WholesaleCBDC The display name of API
Gateway.

deployment display name WholesaleCBDC The display name of the
deployment in API Gateway.

deployment path prefix /WholesaleCBDC The deployment path prefix in

API Gateway, which specifies the
path where routes are deployed.
The deployment path prefix
variable must begin with a slash
-
ocir repo name wholesalecbdc The OCI Registry repository

- name. The ocir repo name
variable must be all lowercase
letters.

ORACLE 356

ORACLE

Chapter 3
Wholesale CBDC Wrapper API Package

Variable name Default value Description

policy name WholesaleCBDC The name of the policy that

enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

For information about the Postman collection, see Wrapper APl Package Components.

Wholesale CBDC Sample Process Flow

A typical process flow using the wholesale CBDC wrapper APIs follows these basic steps.

1.

10.

11.

12.

13.

The administrator uses the initializeCBDCToken API to initialize the wholesale CBDC
system.

The administrator uses the createAccount and associateTokenToAccount APIS to create
accounts and associate the token to accounts for all creators, central bank approvers,
issuers, financial institution officers, financial institution approvers, and financial institution
users in the system.

The administrator uses the addrRole API to assign the minter role to the creator and the
notary role to the central bank approver.

The token creator uses the requestCBDCCreation APl to submit a request to mint currency.

The central bank approver uses the approveCBDCCreation API review and approve the
request to mint currency. The currency is credited to the creator's account.

The issuer uses the getCBDCAccountBalance API to verify that the credited amount is
accurate.

The creator uses the transferCBDCTokens API to transfer the currency to the issuer.

The holdCBDCTokens API is used to start the transfer of currency to a financial institution
officer.

The central bank approver uses the approveHoldCBDCTokens API to approve the transfer of
currency to the financial institution officer. The currency is credited to the financial
institution officer's account.

The financial institution officer uses the getCBDCAccountBalance API to verify that the
credited amount is accurate.

The financial institution officer uses the holdCBDCTokens API to start the transfer of
currency to a financial institution user.

The financial institution approver uses the approveHoldCBDCTokens API to approve the
transfer of currency to the financial institution user. The currency is credited to the financial
institution user's account.

The financial institution user uses the getCBDCAccountBalance API to verify that the
credited amount is accurate.

Postman Collection

The Postman collection in the wholesale CBDC wrapper API package includes additional
attributes and APIs that support the wholesale CBDC chaincode. For more information, see
Wrapper API Package Components.

3-57

Chapter 3
Oracle Database View Definitions for Wholesale CBDC

Oracle Database View Definitions for Wholesale CBDC

You can use the rich history database to retrieve account transaction history and resolve
incorrect balances in multiple transactions that occur in the same block.

ORACLE

You can use the GetAccountTransactionHistoryWithFiltersFromRichHistDB API to fetch
account transaction history from the rich history database. When you pass the

custom endpoint and bearer token parameters to the method, the account transaction history
is retrieved from the rich history database or the state database.

To retrieve transaction history from the rich history database, you must be running Oracle
Autonomous Database with Oracle REST Data Services (ORDS) and OAuth enabled.

1.

Enable and configure the rich history database.

For more information, see Enable and Configure the Rich History Database in Using
Oracle Blockchain Platform.

Enable rich history on the channels that contain the chaincode data that you want to write
to the rich history database. For more information, see Configure the Channels that Write
Data to the Rich History Database in Using Oracle Blockchain Platform.

Download and install Node.js version 18 or later.

On the Digital Assets page in Oracle Blockchain Platform, select Wholesale CBDC
Application.

Click Download the Database View Definitions package.
Extract the WholesaleCBDCViewsPackage. zip file.

Navigate to the ORDSscript folder and install the required dependencies by running the
following command.

npm install

Edit the . env file that is supplied with the script to configure it for your environment.

Oracle REST Data Services endpoints use the following general format.

<base URL>/<user name>/<resource link>

3-58

Chapter 3

Oracle Database View Definitions for Wholesale CBDC

Environment /
Configuration Type

Environment /
Configuration
Variables

Description

Example

DB Connection

CONNECTION STRING

The connection string
for the database.

CONNECTION STRING
=" (description=
(retry count=20)
(retry delay=3)
(address=(protoco
l=tcps)
(port=1522)
(host=adg.ap-
sydney-1.example.
com))

(connect data=
(service name=g53
6390e55ee33f4 db
high.adg.example.
com))
(security=(ssl se
rver dn match=yes

)"

View Configuration

VIEW NAME

The name of the view
for displaying account
transaction details. This
can be any value that
does not conflict with
existing assets in the
database.

VIEW NAME="viewTes
t"

View Configuration

CHAINCODE NAME

The name of the
chaincode to fetch
transaction details from
in the rich history
database.

CHAINCODE NAME="Bo
ndMarketplace"

View Configuration

INSTANCE NAME

The name of the
instance where the
chaincode is deployed.

INSTANCE NAME="Bon
dMarketplace"

View Configuration

CHANNEL NAME

The name of the
channel where the
chaincode is deployed.

CHANNEL_NAME:"defa
ult"

ORDS Endpoint
Setup

MODULE NAME

The name of the ORDS
module to use. This can
be any value that does
not conflict with existing
assets in the database.

MODULE_NAME="demot
est"

ORDS Endpoint
Setup

BASE PATH

The base path of the
ORDS URL. This can
be any value that does
not conflict with existing
assets in the database.

BASE PATH="demotes
tll

ORACLE

3-59

Chapter 3

Oracle Database View Definitions for Wholesale CBDC

Environment /
Configuration Type

Environment /
Configuration
Variables

Description

Example

ORDS Endpoint
Setup

PATTERN

The pattern name of

the ORDS URL. This
can be any value that
does not conflict with
existing assets in the
database.

PATTERN="accountTr
ansactionDetails"

ORDS Endpoint
Setup

ITEMS PER PAGE

The number of items to
display per page in the
ORDS query results.
This can be any value
that does not conflict
with existing assets in
the database.

ITEMS PER PAGE=120

ORDS REST Endpoint

ORDS_REST BASE_URL

The base URL of the
ORDS REST endpoint
of the database.

ORDS_REST BASE URL
="https://
g536390e55ee33£f4 d
b high.adg.ap-
sydney-1.example.c
om"

Alias
Configuration

ALTAS NAME

The alias to use in
place of a user name in
the REST endpoint
URL. This can be any
value that does not
conflict with existing
assets in the database.

ALIAS NAME="demote
stAlias"

ORDS Role

ROLE NAME

The ORDS role that is
assigned to the user.
This can be any value
that does not conflict
with existing assets in
the database.

ROLE NAME="demotes
t role"

ORDS Privilege

PRIVILEGE NAME

The ORDS privilege
that is assigned to the
user. This can be any
value that does not
conflict with existing
assets in the database.

PRIVILEGE NAME="de
motest priv"

ORDS Privilege

LABEL

A label for the ORDS
privilege. This can be
any value that does not
conflict with existing
assets in the database.

LABEL="demotest la
bel"

ORDS Privilege

DESCRIPTION

A description of the
ORDS privilege. This
can be any value that
does not conflict with
existing assets in the
database.

DESCRIPTION="demot
est description"

ORACLE

3-60

ORACLE

Chapter 3

Oracle Database View Definitions for Wholesale CBDC

Environment /

Configuration Type

Environment /
Configuration
Variables

Description

Example

OAuth
Configuration

CLIENT NAME

The client name to use
for OAuth
authentication with the
ORDS REST endpoint.
This can be any value
that does not conflict
with existing assets in
the database.

CLIENT NAME="demot
est client"

OAuth
Configuration

OWNER

The owner name to use
for OAuth
authentication with the
ORDS REST endpoint.
This can be any value
that does not conflict
with existing assets in
the database.

OWNER="demotest"

OAuth
Configuration

DESCRIPTION

A description of the
OAuth configuration.
This can be any value
that does not conflict
with existing assets in
the database.

DESCRIPTION="demot
est description"

OAuth
Configuration

SUPPORT EMATL

The support email
address for the OAuth
configuration. This can
be any value that does
not conflict with existing
assets in the database.

SUPPORT EMAIL="tes
t@example.com"

Analytics view names are included in the software code. The accounts view is
ACCOUNTS_MOD. The transaction view is TRANSACTION MOD. The accounts transaction view is
ACCOUNTS TRANSACTION MOD.

Run the ORDS script by using the following command.

npm run start --username='<username>'

--password="'<password>'

In this example, <username> and <password> are the credentials for the rich history

database, which must have the necessary permissions to create the view and the ORDS
endpoint. The user name and password must be enclosed in single quotes (') because of
limitations in the bash interface.

When the command runs, the following prompts are displayed.

Do you want to create the View and ORDS Endpoint? (y/n)
Enter y to create the view and endpoint. Enter n if you have already created the view and

endpoint.

Please select the language of your chaincode? (TS/GO)
If you entered y previously, enter Ts for TypeScript or co for Go.

Do you want to generate ORDS Endpoint URL and Bearer Token? (y/n)
Enter y to generate the endpoint credentials. Otherwise, enter n.

3-61

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

You might see the following error.

Error: ORA-20049: Cannot alter the URL mapping while the schema is enabled.
Try disabling the schema first.

This error occurs because the database schema is enabled and thus cannot be mapped to the
different alias that is specified in the . env file.
To work around this behavior, complete the following steps.

1. Use the same alias name that was used previously, or check the REST services in the
database for the schema alias.

2. Disable the database schema and run the script again. For more information, see Oracle
REST Data Services (ORDS) : Using SQL Developer.

Wholesale CBDC Sample Application and Analytics Package

Oracle Blockchain Platform Digital Assets Edition includes a sample application and Oracle
Analytics workbooks for the wholesale central bank digital currency (CBDC) scenario.

Wholesale CBDC Sample Analytics Package

Oracle Blockchain Platform Digital Assets Edition includes an Oracle Analytics workbook with
pre-built dashboards and data visualizations for the wholesale central bank digital currency
(CBDC) scenario.

The workbook, built with Oracle Analytics, lets you visualize the currency creation, retirement,
and transaction flows in the CBDC environment. After you provision the Oracle Analytics Cloud
service and connect it to the Oracle Database with the custom view definitions, you can import
the workbook. The workbook includes a complete set of data visualizations for the central bank
and a subset with only the data relevant to the accounts and transactions at each participating
institution. You can modify the data visualizations using developer mode in Oracle Analytics
Cloud.

Configure Oracle Analytics Cloud

ORACLE

Complete the following steps to configure Oracle Analytics Cloud and use the dashboards and
visualizations for the wholesale CBDC application.

1. Create an instance of Oracle Autonomous Database. For information on how to provision
Oracle Autonomous Database for the wholesale CBDC sample, see Provision
Autonomous Database.

2. Set up the database view definitions. For information on how to set up the database view
definitions for the wholesale CBDC sample, see Oracle Database View Definitions for
Wholesale CBDC.

3. Create an instance of Oracle Analytics Cloud in OCI.
a. Log on to the Oracle Cloud Infrastructure (OCI) console.
b. Click Analytics & Al > Oracle Analytics Cloud.
c. Click Create Instance and then add the required information.
d. Click Create and then wait for the instance creation to complete.

For more information about Oracle Analytics Cloud, see Oracle Analytics Cloud.

3-62

https://oracle-base.com/articles/misc/oracle-rest-data-services-ords-using-sql-developer
https://oracle-base.com/articles/misc/oracle-rest-data-services-ords-using-sql-developer
https://docs.oracle.com/en/cloud/paas/analytics-cloud/index.html

ORACLE

10.

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Under Sample wCBDC Web Application and Analytics Workbook on the Digital Assets
page in Oracle Blockchain Platform Digital Assets Edition, click Download sample VBCS
Ul and sample Analytics package. The WholesaleCBDCAnalyticsPackage. zip file,
which contains the sample application, is downloaded to your computer.

Extract the WholesaleCBDCAnalyticsPackage. zip file, which contains the
WholesaleCBDCAnalyticsPackage directory. The workbook (. dva) files are in the
WholesaleCBDCAnalyticsPackage directory

Back up both workbook files, CBDC FI Dashboard.dva and CBDC Central Bank
Dashboard.dva.

Navigate to Oracle Analytics Cloud in OCI console, and then click Analytics Home Page.

Click Import Workbook/Flow and import both workbook files. Enter OraAnalytic@2025
as the password. For more information, see Import a Workbook File.

Update the data source connection details for the WCBDC Connection dataset.
a. Go to the Data page in Oracle Analytics Cloud.

b. Find the WCBDC Connection dataset and then click Inspect/Edit > Update database
connection.

c. Map the database views.
d. Click Save.

For more information about connecting Oracle Autonomous Transaction Processing to
Oracle Analytics Cloud, see Connect to Oracle Autonomous Transaction Processing.

Set up roles and permissions for the central bank and financial institution dashboards.
a. In Oracle Analytics Cloud, click Console.

b. Click Roles and Permissions, then click Application Roles.

c. Click Create Application Role and create the CBRole application role.

d. Under Members, click Groups and then click Add Groups.

e. Assign groups to the CBRole and the BI Dataload Author roles. The BI Dataload
Author role is required for embedding Oracle Analytics Cloud data into Oracle Visual
Builder. The Oracle Identity Cloud Service (IDCS) groups that are associated with the
sample application must be mapped to the BI Dataload Author role. If the the CBRole
and the BI Dataload Author roles are not mapped, the analytics data will not be
shown in the sample application, even if Oracle Analytics Cloud is integrated with
Oracle Visual Builder. Map all relevant IDCS groups from the sample application to
these roles. For example, map the following groups.

* CB CBDC ADMINS
* CB CBDC AUDITORS
* CB CBDC CREATORS
e CB CBDC MANAGERS
f. Create roles for the financial institutions: FI1Role, FI2Role, and so on.

g. Assign groups to the financial institution roles and to the BI Dataload Author role.
You can create groups with any names, such as the following example groups. In the
following example groups, change the number of the financial institution in the group
name to match the corresponding financial institution role.

e FI1 CBDC_ADMINS

3-63

https://docs.oracle.com/en/cloud/paas/analytics-cloud/acubi/import-workbook-file.html
https://docs.oracle.com/en/cloud/paas/analytics-cloud/acsds/connect-oracle-autonomous-transaction-processing.html

ORACLE

11.

12.

13.

14.

15.

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

* FI1 CBDC AUDITORS
* FI1 CBDC MANAGERS
* FI1 CBDC OFFICERS
For more information, see Assign Application Roles to Groups.

Update the instance name parameters for the central bank and financial institution
dashboards.

a. Login as an adminstrator and open the central bank dashboard.
b. Click Edit.
c. Under Parameters, right-click to edit the parameter for the central bank instance name.

d. Enter the central bank instance name or the membership service provider (MSP) ID.
For example, enter CB.

e. Repeat the previous steps to update the central bank instance name in the financial
institution dashboard.

Update the roles in the financial institution dashboard.

a. Openthe CBDC FI dashboard.

b. On Analytic View Dashboard, click Edit.

c. Click the Data tab.

d. Double-click the CB_ACCOUNT_TRANS_MOD-FI view.

e. Add roles for the participant and create a filter for each role. The roles that you add
must also be present in the Roles and Permissions section of the dashboard. To add
roles to filters, complete the following steps.

i. On the dashboard, click Join Diagram.
ii. Click the plus sign (+) to add a role.

iii. Create a filter, and then add an Expression Filter that includes a query. For
example, add the following SQL query, which mentions the FI11 and FI2
participant organizations.

FROM ORG_ID = 'FI1' AND TO ORG_ID = 'FI2'

f. Click Console > Roles and Permissions.

g. Under Application Roles, add roles, assign user groups to roles, and verify existing
roles as needed.

h. Save your changes.

Move the dashboards to shared folders in Oracle Analytics Cloud.
a. Navigate to Catalog > My Folders.

b. Move the dashboards from My Folders to Shared Folders.

Test thoroughly to ensure that all visualizations, data connections, user access, and other
functions are working as expected.

To embed the analytics dashboards in the sample Oracle Visual Builder application,
complete the following steps.

a. Register the application as a safe domain in Oracle Analytics Cloud. See Register
Safe Domains.

3-64

https://docs.oracle.com/en/cloud/paas/analytics-cloud/acabi/assign-application-roles-groups.html
https://docs.oracle.com/en/cloud/paas/analytics-cloud/acabi/register-safe-domains.html
https://docs.oracle.com/en/cloud/paas/analytics-cloud/acabi/register-safe-domains.html

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

b. Embed the analytics URL in the iFrame in the application. See Use iFrame to Embed
Analytics Content into an Application or Web Page.

View Dashboard Data

After you configure Oracle Analytics Cloud for the wholesale CBDC application, you can log in
and view analytics data.

All of the central bank personas that are supported by the wholesale CBDC sample application
can view data from the wholesale CBDC workbook in the analytics interface. For financial
institution personas, you must have the FI_ADMINS role or the FI_CBDC MANAGERS role to access
analytics data. Financial institution personas see their organization's information only.

To view the data from Oracle Analytics Cloud, complete the following steps.
1. Loginto the wholesale CBDC Ul.
2. On the main page, click Navigator Menu.

3. Inthe list, select Dashboard. A page that displays the integrated Oracle Analytics Cloud
workbooks opens.

Wholesale CBDC Sample Application

ORACLE

A sample wholesale central bank digital currency (CBDC) application package using Oracle
Visual Builder Cloud Service is included in Oracle Blockchain Platform Digital Assets Edition,
allowing you to create your own Visual Builder instance, import the provided package, and
configure it.

Once you've imported the sample application, you'll update the backend configurations with
your instance URLS, set up authorization, and configure Business Objects as needed.

The web application, built using Oracle Visual Builder, lets you administer and work with tokens
in the wholesale CBDC life cycle. After you provision Oracle Visual Builder in your tenancy, you
can import the application. The application supports role-based access by users that are
defined in identity domains. Roles include admins, officers, managers, auditors, and regular
users at both the central bank and at participating institutions. You can modify the application
using developer mode in Oracle Visual Builder.

This structured, role-based approach ensures that every stage of the CBDC lifecycle—from
minting to burning—is secure, compliant, and transparent, fostering trust and efficiency in the
wholesale CBDC ecosystem.

Overview of the Sample Wholesale Central Bank Digital Currency Application

The end-to-end journey of a wholesale Central Bank Digital Currency (CBDC) application
involves multiple organizational roles, each responsible for specific functions that ensure
CBDC issuance, management, and transfer of CBDC tokens. This journey is facilitated by a
combination of Central Bank (CB) system roles and Financial Institution (FI) organization roles,
with strict approval workflows to maintain security and regulatory compliance.

The process begins with the CBDC admin who initializes the token system and creates and
manages the wholesale CBDC accounts. CBDC Creator initiates the minting of CBDC tokens.
Once a minting request is submitted, it moves to the CBDC Approver, who reviews and either
approves or rejects the request. Upon approval, the CBDC Creator transfers the newly minted
tokens to the CBDC Issuer, who is responsible for distributing these tokens to various Financial
Institution (FI) Officers. This ensures that only authorized entities within the financial ecosystem
receive CBDC tokens for further transactions.

3-65

https://docs.oracle.com/cd/E83857_01/paas/analytics-cloud/acsdv/use-iframe-embed-oracle-analytics-content-application-or-web-page.html#GUID-63C0A258-4FF9-4F27-9C8D-8602AE3CF747
https://docs.oracle.com/cd/E83857_01/paas/analytics-cloud/acsdv/use-iframe-embed-oracle-analytics-content-application-or-web-page.html#GUID-63C0A258-4FF9-4F27-9C8D-8602AE3CF747

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

At the financial institution level, the FI Admin manages and administers their specific
organization, while FI Auditors have read-only access to organizational data for oversight and
compliance purposes. Fl Officers play a key role in managing CBDC tokens within their
institutions. They receive tokens from the CBDC Issuer and can distribute them internally to Fl
Users or externally to officers in other organizations. However, any inter-organization or intra-
organization transfers must first be approved by the FI Approver/FI Manager, who reviews and
authorizes hold requests to ensure secure and compliant transactions.

In parallel, the system includes mechanisms for managing the lifecycle of CBDC tokens
beyond their initial issuance. When tokens need to be removed from circulation, the CBDC
Retirer initiates a burning request. Similar to the minting process, this request goes to the
CBDC Approver for approval. Once approved, the CBDC burning process is completed,
ensuring the reduction of CBDC supply is properly documented and regulated.

Throughout this journey, CBDC Auditors and FI Auditors maintain oversight, with read-only
access to ensure transparency and compliance with regulatory standards. While the CBDC
Auditor can view all the transactions involving central bank and any financial institutions, FI
auditors can view the transactions where that specific FI was involved in the transaction.

Additionally, CBDC Admins oversee and manage the entire CBDC system, ensuring that all
roles, transactions, and processes align with central bank policies. They are responsible for
system governance, user access management, and overall operational efficiency.

Wholesale CBDC Sample Application Prerequisites

Before importing the Oracle Visual Builder sample application package, it is essential to
complete several prerequisites, including the creation of all required Oracle Cloud
Infrastructure (OCI) resources and Oracle Identity Cloud Service (IDCS) groups as outlined
below.

Visual Builder Cloud Service

The Wholesale CBDC application sample is built using Oracle Visual Builder Cloud Service.
The package needs to be imported into Visual Builder to use it.

For more information on Visual Builder, see Visual Builder.

1. Sign in to your Oracle Cloud Infrastructure account.
Ensure you're in the correct compartment where you'll deploy the sample application.
2. Inthe Console, click the Navigation menu in the top-left corner.
3. Under Developer Services, select Visual Builder.
4. In the Visual Builder interface, click Create Instance.

a. Enter an instance name and choose the default network access or another option as
needed.

b. Click Create Visual Builder Instance.

Once Visual Builder is provisioned, you can explore Visual Builder Designer which is the
interface you'll use to interact with the wholesale CBDC sample app. See Tour the Designer.

ORACLE 366

https://docs.oracle.com/en-us/iaas/visual-builder/index.html
https://docs.oracle.com/en/cloud/paas/integration-cloud/visual-developer/step-designer.html

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Provision Autonomous Database

All account transaction data is stored in and fetched from the rich history database. To use the
rich history database, you must create an Oracle Autonomous Database.

For additional information on the rich history database in Oracle Blockchain Platform, see
Create the Rich History Database.

1. Sign in to your Oracle Cloud Infrastructure account.
Ensure you're in the correct compartment where you'll deploy the sample application.
2. Inthe Console, click the Navigation menu in the top-left corner. Select Oracle Database.

3. Select Autonomous Data Warehouse, Autonomous JSON Database, or Autonomous
Transaction Processing based on your workload.

See About Autonomous Database Workload Types.
4. Click Create Autonomous Database.
- Display Name: A user-friendly description (not unique).
- Database Name: Must consist of letters and numbers only (maximum 30 characters).
* Workload Type: Select Transaction Processing.
e Deployments Type: Select the default Serverless.

e Configure the database: Adjust the CPU and storage settings according to your
requirements. However, the CBDC Application is designed to function effectively with
the default values, so there is no need to modify these settings for the CBDC
Application.

« Backup retention: Keep the default settings.
* Network:
— Access Type: Select Secure access from allowed IPs and VCNs only.

— Access control list: Select CIDR block from the IP notation type, and enter the
value 0.0.0.0/0.

— Mutual TLS (mTLS) authentication: mTLS is not required.
5. After you select the settings, click Create Autonomous Database.

When the provisioning is complete, the Lifecycle State will be Available.

Provision Oracle Blockchain Platform Digital Assets Edition

ORACLE

You must have an Oracle Blockchain Platform Digital Assets Edition instance provisioned for
the sample application to use.

Users can create Oracle Blockchain Platform Digital Assets Edition instances with any name;
however, the application supports one Central Bank as the founder of the Oracle Blockchain

Platform network and six Financial Institutions (FI1, FI2, FI3, Fl4, FI5, and FI6) as participant
organizations within the network.

To ensure proper configuration, users must update the details of the founder organization in
the Central Bank (CB) section and the participant organizations in the Financial Institution (FI)
section. It is essential to maintain a fixed order for the participant organizations: FI1
corresponds to Participant 1, FI2 to Participant 2, and so on. The same details should be used
to update the respective FI details accordingly.

3-67

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

1. Signin to your Oracle Cloud Infrastructure account.
Ensure you're in the correct compartment where you'll deploy the sample application.

2. Inthe Console, click the Navigation menu in the top-left corner.

3. Under Developer Services, select Oracle Blockchain Platform.

4. Click Create Oracle Blockchain Platform.
a. Instance/Display Name: Must contain 1-15 characters, starting with an ASCII letter.
b. Description: Enter an optional description for your instance.

c. Platform Role: Choose Create a new network to create a founder organization. For a
participant instance, choose Join an existing network.

d. Platform Version: Choose Hyperledger Fabric v2.5.x.
e. Edition: Select Digital Assets.
5. Review your settings and click Create.

The instance can take approximately 15 minutes to create. You'll receive notification once
it's complete.

Create Users and User Groups with Oracle Identity Cloud Service

ORACLE

The CBDC application supports 11 personas, and the corresponding 11 application roles have
already been created in the Visual Builder package. These roles are necessary to define the
permissions and access levels for each persona in the application.

For a complete list of the roles and their operations, see Wholesale CBDC Application
Workflow.

Application roles in Visual Builder are created to:

« Define Access Levels: Each persona (example, Central Bank Admin, Participant User)
has specific permissions and access requirements in the application. Application roles
ensure that users only see and interact with the features relevant to their role.

* Enable Role-Based Access Control (RBAC): By mapping IDCS groups to these roles,
you can control who has access to what within the application.

« Simplify User Management: Instead of assigning permissions to individual users, you
assign them to roles, and users inherit these permissions through their IDCS group
membership.

Overview

The IDCS groups for 1 Central Bank (CB) and 6 Participants have already been mapped to
these application roles in Visual Builder. This means you only need to create IDCS groups and
add users to those groups as listed in the table below. The IDCS groups are already mapped
to the corresponding application roles in Visual Builder. Once users are added to the groups,
they will automatically get the correct access to the application.

You'll create the groups described in the table below, and add users to them. By creating the
IDCS groups with the exact names provided and adding users to these groups, you can easily
enable role-based access to the application. The mapping between IDCS groups and Visual
Builder roles is already configured, so no further setup is required.

For additional informing on creating IDCS groups and managing users, see: Manage Oracle
Identity Cloud Service Users and Manage Oracle Identity Cloud Service Groups.

3-68

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Table 3-1 Application Roles and their IDCS Groups and Bank Names

SNO Application Role IDCS User Groups Bank Name
1 CBDC_ADMINS CB_CBDC_ADMINS CB
2 CBDC_AUDITORS CB_CBDC_AUDITORS CB
3 CBDC_CREATORS CB_CBDC_CREATORS CB
4 CBDC_ESCROW CB_CBDC_MANAGERS CB
5 CBDC_ISSUERS CB_CBDC_ISSUERS CB
6 CBDC_RETIRERS CB_CBDC_RETIRERS CB
7 FI_ADMINS FI1_CBDC_ADMINS FI1, FI2, FI3, Fl4, FI5
(repeat this pattern for and FI6
remaining participant
orgs like
<org>_CBDC_ADMINS)
8 FI_CBDC_USERS FI1_CBDC_USERS FI1, FI2, FI3, Fl4, FI5
(repeat this pattern for ~ and FI6
remaining participant
orgs like
<org>_CBDC_USERS)
9 FI_CBDC_OFFICERS FI1_CBDC_OFFICERS FI1, FI2, FI3, FI4, FI5
(repeat this pattern for and FI6
remaining participant
orgs like
<org>_CBDC_OFFICER
S)
10 FI_CBDC_MANAGERS FI1_CBDC_MANAGERS FI1, FI2, FI3, Fi4, FI5
(repeat this pattern for ~ and FI6
remaining participant
orgs like
<org> CBDC_MANAGE
RS)
11 FI_CBDC_AUDITORS FI1_CBDC_AUDITORS FI1, FI2, FI3, FI4, FI5

(repeat this pattern for and FI6
remaining participant

orgs like

<org>_CBDC_AUDITOR

S)

Create Groups

1. Sign in to your Oracle Cloud Infrastructure account. Ensure you're in the correct
compartment where you'll deploy the sample application.

2. Inthe Console, click the Navigation menu in the top-left corner. Click ldentity & Security.
Under Identity select Domains.

3. On the Domains page, click Oracle Identity Cloud Service to open the Domains
Overview page.

4. Click Groups. Click Create Group.
* Name: Enter a unique name for the group (example CB_CBDC ADMINS).
« Description: Provide a brief description of the group's purpose.

e To allow users to request access to this group, select the option User can request
access.

Click Finish.

ORACLE 360

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Create Users and Assigh Them to Groups
1. On the Domains Overview page, click Users.
2. Click Create User.
* First Name: Enter the user's first name.
* Last Name: Enter the user's last name.
* User Name | Email: Enter a valid email address or username for login.
e Email: Enter the email address for communication and account activation.
3. On the Assign Group page, you will see a list of existing groups.

4. Select the checkbox next to each group you want to assign this user to. Ensure you select
the appropriate group that aligns with their role (example CB_CBDC_ADMINS).

5. After selecting the desired groups, click Finish to complete user creation.
Verifying Users and Groups

1. After creating groups and adding users, return to the Groups section in the IDCS Console.

2. Verify that all created groups and added users are listed correctly.

Configure Oracle Blockchain Platform for the Wholesale CBDC Sample Application

ORACLE

After you've created all the required instances of Oracle Blockchain Platform and it's
prerequisite products, you'll need to configure your users and roles, add any participant
organizations to the founder organization, and enable the rich history database.

Configure IDCS Groups to Oracle Blockchain Platform Instances

For additional information on the built-in Oracle Blockchain Platform roles and how to assign
users to them, see Set Up Users and Application Roles

For additional information on the wholesale CBDC sample application roles, see Wholesale
CBDC Application Workflow.

In Oracle Blockchain Platform, the following application role assignments should be
implemented:

* Central Bank (CB) Groups: Assign all Central Bank groups to the REST CLIENT
application role of CentralBank Oracle Blockchain Platform instance.

* Financial Institution (FI) Groups: Assign all Financial Institution groups to the
REST CLIENT application role as well of their respective organization.

* Administrative Roles: Assign the relevant administrative groups, such as CB_CBDC_ADMIN
and FI_CBDC_ADMINS, to the ADMIN application role of their respective organization.

This configuration ensures that both Central Bank and Financial Institution groups have the
necessary access through the REST CLIENT role, while administrative privileges are
appropriately managed through the ADMIN role.

Follow these steps to assign the groups to application roles.

1. Sign in to your Oracle Cloud Infrastructure account.
2. Inthe Console, click the Navigation menu in the top-left corner.

3. Under Identity, select Domains.

3-70

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

4. On the Domains page, click Oracle Identity Cloud Service.

5. Inthe Oracle Identity Cloud Service navigation menu, select Oracle Cloud Services.
Locate the Oracle Blockchain Platform instance for which you want to assign group roles.
Open that instance's Details page.

6. Go to the Application Roles tab to view the Oracle Identity Cloud Service application roles
listed in the Resources navigator.

7. Select the role you want to assign, and expand the role. Click the More menu for the role
and select Assign Groups.

8. Inthe Assign Groups dialog, select the groups you want to assign to the role, and click
Assign.

Fetch Clientld and ClientSecret

The Oracle Blockchain Platform clientID and ClientSecret will be utilized by Visual Builder.
You'll need to update these parameters in Visual Builder later as described in Configure Visual
Builder Backends.

To retrieve the client ID and client secret for an Oracle Blockchain Platform instance:

1. Sign in to your Oracle Cloud Infrastructure account. Ensure that you have sufficient
administrative privileges to manage OAuth settings.

In the Console, click the Navigation menu in the top-left corner.
Under Identity, select Domains.

On the Domains page, click Oracle Identity Cloud Service.

g & w Db

In the Oracle Identity Cloud Service navigation menu, select Oracle Cloud Services.
Locate the Oracle Blockchain Platform instance for which you want to fetch the client ID
and client secret. Open that instance's Details page.

6. When you open the instance details page, the default tab displayed will be the OAuth
Configuration tab. This tab contains essential information regarding OAuth settings for your
Oracle Blockchain Platform instance.

You will find fields labeled Client ID and Client Secret in the General Information section.
These credentials are used to authenticate API requests to the Oracle Blockchain
Platform.

Multiple Organization Configuration

If you're creating a complex Oracle Blockchain Platform network with multiple organizations,
add participants to the founder. An overview of this process is provided in the Oracle
Blockchain Platform Admin Guide: Add OBCS Participant Organizations to the Network.

Configure the Rich History Database for Oracle Blockchain Platform

For additional information about configuring and using the rich history database, see Create
the Rich History Database .

Before completing these steps, you must have created an Autonomous Database instance as
described in Provision Autonomous Database in order to enable the rich history database for
Oracle Blochain Platform.

1. Open the Oracle Blockchain Platform console for the network instance.

2. Click on the More Actions menu in the top-right corner and select Configure Rich
History.

ORACLE _—

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

3. Specify an Oracle database connection by providing the connection string and credentials
to access and write to the Oracle database. Note that the credentials you provide are the
database's credentials and Oracle Blockchain Platform doesn't manage them.

4. Click Save to configure the rich history database.

Create Enrollments

You must manually create the enrollments for the users in CB_CBDC_ADMINS and
FI_CBDC_ADMINS groups.

Enrollments in the Oracle Blockchain Platform's REST proxy provide a mechanism for users to
interact with the blockchain without requiring an enrollment certificate, simplifying API calls by
mapping application identities to blockchain members. To initiate any call to the chaincode,
enrollments must be established within the Oracle Blockchain Platform.

The wholesale CBDC application manages the creation of enrollments for users during
account setup; however, when a CBDC Admin user logs in for the first time, no enroliment
exists. Consequently, if this user attempts to create an account, the RestProxy call will fail.
Therefore, it is essential to create an enroliment for the CBDC ADMIN group.

When setting up accounts, enrollments are created for the respective organizations. For
instance, when accounts for the Central Bank (CB) are established, corresponding enroliments
will be generated. However, if any Financial Institution (FI) accounts are created through the
CBDC Admin page, enrollments will not be automatically created for those Fls. In this
wholesale CBDC workflow, it is necessary to set up FI admin accounts within the CB Admin
page. Therefore, users must manually create enrollments for the FI Admin group as these
enroliments will not be generated automatically due to the distinct organizational structure
between the Central Bank and Financial Institutions.

Refer to Add Enrollments to a REST Proxy for comprehensive information on how to create the
enrollments.

Fetch RestproxyId

The RestproxyId will be utilized by Visual Builder. You'll need to update this in Visual Builder
later as described in Configure Visual Builder Backends.

To retrieve the RestProxyId for an Oracle Blockchain Platform instance, users must invoke the
Oracle Blockchain Platform console APIs using an administrative user account. Authentication
can be performed via either basic authentication or OAuth 2.0.

Authentication Method

For OAuth 2.0, refer to the documentation at OAuth 2.0 Access Token Based Authentication to
implement the necessary authentication flow.

API Endpoint for Fetching RestProxyId

Use the Oracle Blockchain Platform console API to obtain the RestProxyId by sending a
request to the following endpoint:

GET <obp url>/console/admin/api/v2/nodes

This API call will return a response containing details about the REST proxies configured in
your instance.

For more details about the console API refer to following documentation: Get Node List.

Response Details

3-72

https://docs.oracle.com/en/cloud/paas/blockchain-cloud/restoci/UseOAuth.html
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/restoci/op-console-admin-api-v2-nodes-get.html

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

In the response, locate the section labeled RESTProxies, where you will find the corresponding
RestProxyId. The structure of the response will include various attributes associated with each
REST proxy node.

"RESTProxies": [
{
"status": "up",
"extInfo": [],
"displayName": "restproxy",

"RESTProxyId": "48021la2c-e62b-40bd-b7ca-71dda883521d-restproxy",
"url": "https://fibank3-oabcsl-
hyd.blockchain.ocp.oraclecloud.com:7443/restproxy",
"mspId": "FIBank3"
}

Deploy the Chaincode for the Wholesale CBDC Sample Application
You can now create a channel and deploy the sample application chaincode to it.

1. Create a channel.

a. Define a new channel with the necessary participants as per your organisational
requirements.

b. During the channel creation process, ensure Enable Rich History is selected. This
option activates the rich history feature, which was previously configured.

2. Deploy the chaincode.

Deploy the wholesale CBDC chaincode provided in the wholesale CBDC chaincode
package to the newly created channel. For details on how to deploy chaincodes, refer to
Typical Workflow to Deploy Chaincodes.

3. Use the wholesale CBDC Postman collection provided in the wholesale CBDC chaincode
package to invoke the init API. This step completes the initialization process, ensuring
the chaincode is ready for use.

See Wholesale CBDC Chaincode Package.
4. Check the replication status.
a. Go to the Channels tab.

b. Locate the channel and click on the More Actions menu on the right side of the
channel entry.

c. Select Rich History Status to view the replication status.

e |If the status is REPLICATING, it indicates that the channel data is actively replicating
to the rich history database.

» If the replication status is USER_DISABLED perform the following actions:
i. Restart the Peer: Restart the peer node associated with the channel.

ii. Invoke a Transaction: Trigger any transaction on the channel to initiate data
replication.

iii. Recheck the replication status to confirm that the data is now replicating to the
rich history database.

Note the channel name and chaincode name - you'll need to configure Visual Builder with
these in order to work with the sample application.

ORACLE 373

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Create Rich History Database Views

ORACLE

After you've created the rich history database for your Oracle Blockchain Platform instance,
you can run the Database View Creation script to create the views in the rich history database
and generate the ORDS endpoint.

The Oracle REST Data Services (ORDS) script is a Node.js application written in TypeScript,
designed to expose ORDS endpoints for retrieving account transaction details from the rich
history database. It creates a RESTful endpoint that allows users to fetch chaincode
transaction data (for both TypeScript and Go chaincodes) from the rich history database. In
addition, it provides essential credentials - such as the ORDS endpoint, clientId,
clientSecret, and Bearer token - to authenticate and access the endpoint.

1. Download the Database View Creation script.
a. Open the Oracle Blockchain Platform console.
b. Go to the Digital Assets tab.
c. Inthe left sidebar, go to the Wholesale CBDC application.

d. Download the script from the Oracle Database View Definitions for
WholesaleCBDC area.

2. After downloading the script, refer to Oracle Database View Definitions for Wholesale
CBDC for details on how to execute it.

When running the script, you will be prompted with a question: select TypeScript (TS) as
the language, since the wholesale CBDC chaincode is written in TypeScript.

3. The script returns the ORDS endpoint, client ID and client secret.

{
ORDSEndpoint: 'https://<base URL>ords/<user name|alias>/<resource link>',
clientId: '<clientId>',
clientSecret: '<clientSecret>',
bearerToken: {
access_token: '<BearerToken>',
token type: 'bearer',
expires in: 3600
}
}

The ORDS endpoint for accessing RESTful services follows this structure:

ORDS_REST_BASE_URL/ordS /AL TAS NAME /BASE_PATH/ PATTERN

e ORDS_REST BASE_URL: The base URL of the ORDS service.

e ALIAS_NAME: The database or schema alias configured in ORDS.
e« BASE_PATH: The base path for the RESTful services.

e PATTERN: The specific endpoint pattern for the RESTful service.

To generate a bearer token for authentication, use the OAuth2 token endpoint:

ORDS_REST BASE URL/ords/ALIAS NAME/oauth/token

3-74

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

The following parameters related to ORDS must be updated in the backend of Visual Builder to
retrieve data from the rich history database. This will be completed later in Configure Visual
Builder Backends.

e clientld
e clientSecret
* ORDS endpoint

* OAuth base URL: ORDS_REST BASE URL/ords/<userName|aliasName>

Import the Wholesale CBDC Sample Application into Visual Builder

ORACLE

After the prerequisites are complete, you can import the sample application into Oracle Visual
Builder.

Prerequisites:

e Access to Oracle Visual Builder: Ensure you have the necessary permissions to access
and modify the Visual Builder instance.

To import the sample application into Visual Builder, complete the following steps.

1. Download the Visual Builder sample application package from Oracle Blockchain Platform.
a. Open the Oracle Blockchain Platform console.
b. Click the Digital Assets tab.
c. Select Wholesale CBDC Application from the left sidebar.

d. Under Sample wCBDC Web Application and Analytics Workbook, select
Download sample VBCS Ul and sample Analytics package. This downloads the
WholesaleCBDCVBCS. zip file, which contains the sample application.

e. Extractthe WholesaleCBDCVBCS. zip, which contains the
WholesaleCBDCAnalyticsPackage folder and another file called
WholesaleCBDCVBCSPackage. zip, which is the Visual Builder application archive
file.

2. Sign in to Oracle Visual Builder.
3. Go to your Visual Applications Home page and click Import.
4. Inthe Import dialog box, click Application from file.
» Drag the visual application archive file on your local system into the dialog box.

* Alternatively, click the upload area in the dialog box and use the file browser to locate
the archive on your local system.

5. Enterthe Application Display Name and Application ID. Both fields are automatically
populated based on the archive name, but you might want to modify the name and the ID
to be unique in your identity domain.

6. Click Import.

When you importing the sample application into a new tenancy, you might see the following
warning.

Import warning: applicationRolelImport

This occurs if you did not create all of the users and user groups as described in Create Users
and User Groups with Oracle Identity Cloud Service. For example, if you created users and

3-75

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

groups for only the central bank and two financial institutions, you will see warnings related to
the mappings for the four remaining financial institutions. If Oracle Identity Cloud Service
(IDCS) groups that are mapped to application and user roles in the original package do not
exist in the target tenancy, the import process removes those mappings. You can safely ignore
these warnings.

To add another financial institution after you import the application, you must complete the
following steps to manually map IDCS user groups to the corresponding user roles.

1. Log on to the OCI console and then click Identity & Security > Oracle Identity Cloud
Service (IDCS).

2. Under Groups, if any of the required IDCS groups are missing, create them.

3. Navigate to the Users area in IDCS, and then add users to the IDCS groups based on
their roles.

4. Click Developer Services > Visual Builder, and then open the cbdcapp application.
5. In Oracle Visual Builder, click Settings > User Roles.

6. For each user role, select the role, click Edit Role Mapping, and then select the
appropriate IDCS group.

7. Save the changes.

After importing the package completes, you can see the wholesale CBDC application on the
Visual Applications home page. Click Web Applications in the Navigator to open the Web
Apps pane. You will see the cbdcapp application as shown in the following screen capture:

_ ORACLE

Visual Builder WholesaleCBDCVBCSPac...

3 Web Apps +

& |Cl Filter |

= [cbdeapp

=]

4 v B about
v By admin

i

v By banks

o,
n‘_':')
-

By dashboard

@ home default

EJ
+ 4+ 4+ + + + +

¥ [Fragments

v [J Resources

-+

» [Root Pages

3-76

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Configure Visual Builder for the Wholesale CBDC Sample Application

After you've configured all the other products associated with Oracle Blockchain Platform, you
can configure Oracle Visual Builder to connect to them.

Overview

The following details must be updated in the Oracle Visual Builder configuration. You get these
details when you configure Oracle Blockchain Platform as described in Configure Oracle
Blockchain Platform for the Wholesale CBDC Sample Application.

e REST proxy ID, instance URL and MSP IDs of the Oracle Blockchain Platform instance.
See: Fetch Restproxyld

« Client ID and client secret of the Oracle Blockchain Platform instance.
See: Fetch ClientId and ClientSecret.

e Oracle REST Data Services (ORDS) endpoint, client ID, client secret, and OAuth base
URL.
See: Create Rich History Database Views.

¢ Channel name and chaincode name.
See: Deploy the Chaincode for the Wholesale CBDC Sample Application.

Update Global Variables

1. On the Visual Builder Visual Applications home page, click Web Applications in the
Navigator to open the Web Apps pane.

2. Click the cbdcapp application. The app editor opens.
3. Select Variables.

4. In the Global Variables section, locate the configuration variable object and update the
following parameters in the object:

Parameter Description Default Value
Name

chaincodeNa The chaincodeName used inthe Oracle WholesaleCBDC

me Blockchain Platform network.

ordsUrl The ORDS endpoint URL, which is https://g53630e55ee33f4-
displayed in the output of the database test.xyz.abc.oraclecloudapps.co
view creation script. m/ords/obp/cbdc/

accountTrxDetails

Configure Visual Builder Backends

ORACLE

A backend service connection in Visual Builder is a way to establish communication between

your visual application and external systems by providing essential details such as connection
information, properties, and REST API endpoints needed to access those systems. You need

to update the backends with Oracle Blockchain Platform and rich history database details.

For more information, refer to What Are Backends?.

The following backends need to be updated:
* REST proxy calls

* Enrollments

3-77

https://docs.oracle.com/en/cloud/paas/integration-cloud/visual-developer/what-are-backends.html

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Rich history database configuration database

REST proxy calls

There is one backend and six service connections related to the REST proxy. These
components are used to make REST proxy calls to the Oracle Blockchain Platform instance.

Backend
CentralBank

Service connections
participantBank FI1

participantBank FI2

participantBank FI3

participantBank FI4

participantBank FI5

participantBank FI6

To update the backend server details:

1.

On the Visual Builder Visual Applications home page, click Services in the Navigator to
open the Services pane. Click Backends to see a list of backends.

Select the backend you want to update. Click Servers.

Click the Edit icon next to the default server.

Update the following in the Server Details:

Instance URL: Replace the default URL with the Oracle Blockchain Platform instance
URL by modifying the base URL portion of the default URL (test-xyz-
abc.blockchain.ocp.oraclecloud.com). For example:

https://centralbank-oabcsl-hyd.blockchain.ocp.oraclecloud.com: 7443/
restproxy/api/v2/channels/{channelName}

Server variables: Change channelNane to reflect the name of the channel where the
chaincode is deployed.

Authentication for logged-in users: OAuth 2.0 User Assertion is used for
authentication. Modify the URL to match the Oracle Blockchain Platform REST proxy
URL. For example:

https://centralbank-oabcsl-hyd.blockchain.ocp.oraclecloud.com: 7443/
restproxy

Client ID and client secret: Click the Edit icon next to ClientlD. Update the Client ID
and Client Secret fields to match your Oracle Blockchain Platform ID and secret.

Repeat these steps to update the service connections of each of the six participants by
selecting them in the Service Connections View in the Services pane.

3-78

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Enrollments

There are seven backends related to Oracle Blockchain Platform enroliments. These backends
are used to create the enrollments to the Oracle Blockchain Platform instance.

Backends
CustomEnrollementCB

CustomEnrollementFI1
CustomEnrollementFI2
CustomEnrollementFI3
CustomEnrollementFI4
CustomEnrollementFI5
CustomEnrollementFI6

To update the backend server details:

1. On the Visual Builder Visual Applications home page, click Services in the Navigator to
open the Services pane. Click Backends to see a list of backends.

2. Select the backend you want to update. Click Servers.
3. Click the Edit icon next to the default server.
4. Update the following in the Server Details:

« Instance URL: Replace the default URL with the Oracle Blockchain Platform instance
URL by modifying the base URL portion of the default URL (test-xyz-
abc.blockchain.ocp.oraclecloud.com). For example:

https://centralbank-oabcsl-hyd.blockchain.ocp.oraclecloud.com: 7443/
console/admin/api/v2/nodes/restproxies/{restProxyIld}/enrollments

e Server variables: Change restProxyId to reflect the actual REST proxy ID for your
Oracle Blockchain Platform instance.

e Authentication for logged-in users: OAuth 2.0 User Assertion is used for
authentication. Modify the URL to match the Oracle Blockchain Platform REST proxy
URL. For example:

https://centralbank-oabcsl-hyd.blockchain.ocp.oraclecloud.com: 7443/
restproxy

* Client ID and client secret: Click the Edit icon next to ClientID. Update the Client ID
and Client Secret fields to match your Oracle Blockchain Platform ID and secret.

5. Repeat these steps to update the backends of each of the six participants by selecting
them in the Backends View in the Services pane.

Rich history database configuration database

There is one backend related to the rich history database. This backend is used to fetch the
data from the rich history database.

3-79

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Backend
RichHistoryDBConfiguration DB

To update the backend server details:

1.

On the Visual Builder Visual Applications home page, click Services in the Navigator to
open the Services pane. Click Backends to see a list of backends.

Select the RichHistoryDBConfiguration DB backend. Click Servers.

Click the Edit icon next to the default server.

Update the following in the Server Details:

Instance URL: Replace the default URL with OAuth Base URL(ORDS REST BASE URL/
ords/<userName |aliasName>). For example the default URL:

https://g53630e55ee33f4-abc.def.gh-xyz-1.oraclecloudapps.com/ords/
aliasName

would be replaced by:

https://g53630e55ee33f4-rhijkdb.adb.ap-sydney-1.oraclecloudapps.com/ords/
vbcstest

Authentication for logged-in users: Basic is used for authentication.

Client ID and client secret: Click the Edit icon next to Username. Update the user
name with the Client ID and the password with the Client Secret to match your
ORDS endpoint ID and secret.

Configure Visual Builder Business Objects

ORACLE

A business object is a resource, such as an invoice or purchase order, similar to a database
table; it has fields that hold the data for your application. Like a database table, a business
object provides the structure for data. Business objects are stored in a database. The apps in
your visual application and other clients access the business objects via their REST endpoints.

On the Visual Builder Visual Applications home page, click Business Objects in the Navigator
to open the Business Objects pane. The wholesale CBDC objects should be listed.

3-80

ORACLE

Chapter 3

Wholesale CBDC Sample Application and Analytics Package

Business Objects

Objects Diagrams

O\ Filter

B CBCBDCStatusBO
@ CurrencyCodeDetails
B Earmarkinglist

B OrganizationNames
@ Pears

@ TransactionTypes

@ UpdateStatus

You can select any business object and go to its Data tab to update or modify its data.

Organization Names

This business objects has four fields in the Data tab and helps connect the Oracle Blockchain
Platform instances with the right backend for each bank. For example, if a user enters Bankl

details in the FI1 system, the application needs to link F11 with Bank1. That way, whenever a
user associated with Bank1 logs in, the system knows to pull data from the F11 backend.

In this business object, you need to update the BankName and mspId columns for the respective
orgNames. The updates should correspond to the number of participants (FIs) in the network.
For example, if there are 2 FIs (FI1, FI2) inthe network, you must update the BankName and
mspId columns for these two Fls. For the remaining FIs (FI3, FI4, FI5, FI6), the BankName
and nspId columns should be left empty.

Field Description Default Values Update Update
Name Needed Requirement
(YesINo)
BankNa This is the mapping used between CentralBank, Yes Required for active
me Oracle Blockchain Platform instance Bankl, Bank2, Flis; leave empty for
names and BankNames used in the Bank3, Bank4, unused Fls.

CBDC Application.

For example, if you created the Oracle
Blockchain Platform instance with the
name CentralBank but you want
BankName to be BSP in the application ,
this mapping creates the mapping
between the Oracle Blockchain Platform
instance and BankName.

Bank5 and Bank6

3-81

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Field Description Default Values Update Update
Name Needed Requirement
(YesINo)
mspld This column represents the actual CentralBank, Yes Required for active
Oracle Blockchain Platform instance Bankl, Bank2, Fls; leave empty for
MSP ID. You must update these values if Bank3, Bank4, unused Fls.
Oracle Blockchain Platform instances Bank5 and Bank6

are created with names other than
default values mentioned below.

OrgNam This column represents orgNames that CB, FI1, FI2, No
€ map with the backend. CB represents the FI3, FI4, FI5
founder and FI# represents the and FI6

participants.

Peers

This business object is designed to store information about the peers in all Oracle Blockchain
Platform instances within the network. To input the peer URL details into the business object,
you should enter the corresponding peer URL values in the peerURL column along with their
respective Oracle Blockchain Platform Membership Service Provider IDs (mspId).

For example, if there is one Central Bank (CB) and two Financial Institutions (FI#), each with
two peers, you must enter a total of six peer URLs along with their associated mspId.

Field Name Description
orgName Oracle Blockchain Platform instance mspId.
peerURL The peerURL value of Oracle Blockchain Platform
instances.
< Note:

The peers included in this Business Interface should be added to the common
channel that has been created.

Configure Oracle Analytics Cloud for Oracle Visual Builder

ORACLE

The Oracle Analytics Cloud instance and the Oracle Visual Builder instance must reside in the
same OCI tenancy.

The Oracle Analytics Cloud instance and the Oracle Visual Builder instance must also use the
same Oracle Identity Cloud Service for identity management. Users who access the Oracle
Visual Builder application must have the necessary privileges for both Oracle Analytics Cloud
and Oracle Visual Builder.

Before you complete the following steps, configure the wholesale CBDC analytics package.
For more information, see Wholesale CBDC Sample Analytics Package.

1. Get the Oracle Visual Builder domain URL.
a. Onthe OCI console, click Developer Services > Visual Builder.

b. Select your Visual Builder instance, and then click Service Homepage. The Visual
Applications interface page opens. Copy the domain name from your browser's
address bar.

3-82

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Example domain name: Example: https://wcbdc-vb-oabcsl.builder.ap-
hyderabad-1.ocp.example.com

Add the domain as a safe domain in Oracle Analytics Cloud.

a. Log into your Oracle Analytics Cloud instance, open the Oracle Analytics Cloud
console, and then click Navigator Menu.

b. Under Configuration and Settings, click Console > Safe Domains.

c. Click Add Domain, and then paste the Visual Builder domain URL that you copied
previously. The domain is added automatically when you click anywhere else on the
display.

d. Select the Allow Frames and Embedding check boxes associated with the domain
that you just added.

Get the Oracle Analytics Cloud host URL.
a. Log in to your Oracle Analytics Cloud instance.

b. Copy the Oracle Analytics Cloud host URL from your browser's address bar. Copy the
fully-qualified domain name up to .com, including https://.
Example host URL: https://<your-oac-
instance>.analytics.ocp.example.com

Add the Oracle Analytics Cloud host URL as an allowed origin in Oracle Visual Builder.
a. Log in to your Oracle Visual Builder instance, and then click Service Homepage.
b. Click Navigation Menu, then click Settings. The Tenant Settings page is displayed.

c. Inthe Allowed Origins section, click + New Origin, and then paste the Analytics Cloud
domain URL that you copied previously into the Origin Address field.

Update the configuration variables in the Visual Builder application.
a. Open the cbdcapp application in the app editor, and then select Variables.

b. Inthe Global Variables section, update the following parameters in the
configuration variable object.

OACHost
The Oracle Analytics Cloud instance URL, which you copied previously.

OACCBDCProjectPath
The project path for the central bank workbook in Analytics Cloud.

OACFIProjectPath
The project path for the financial institution workbook in Analytics Cloud.

c. To get the project path of a workbook, click Navigator > Catalog on the Analytics
Cloud home page.

d. Click the Actions menu for the workbook, and then select Inspect. The Inspect
window is displayed.

e. Click the General tab, and then click Copy that is associated with the Object ID.
Edit the HTML in Visual Builder.

a. Open the cbdcapp application in the app editor, and then navigate to the HTML
section.

3-83

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

b. Update the Analytics Cloud host URL on lines 30 and 31 to match your Analytics
Cloud instance, as shown in the following code snippet. Do not change the
subdirectory structure of the URL, only the domain portion up to .com.

<script src="https://abc-xyz-ia.analytics.ocp.example.com/public/dv/v1l/
embedding/jet/embedding.js" type="application/javascript"></script>

Customize the Wholesale CBDC Application

ORACLE

You can change the default token and the transaction types that are used by the wholesale
CBDC application.

CBDC Token

The default token in the application is USD. To change the default token, complete the
following steps.

1. Inthe global variables section, update the following parameters in the configuration
variable object.

currencySymbol
The symbol that represents the currency. The default value is the dollar sign ($).

tokenld
The token ID that represents the currency. The default value is USD.

2. Inthe CurrencyCodeDetails business object, update the following parameters.

currencyDesc
The description of the currency. The default value is US Dollar.

currencyName
The token ID that represents the currency. The default value is USD.

3. Update currency symbol in the CSS files.
a. Navigate to Web Apps and then expand the Resources section.
b. Openthe Resources/css/app.css file.
c. Update the value of the token-content variable on line 10 of the file. The default value
is the dollar sign ($), as shown in the following example.

:root
--token-content: "$";

Transaction Types

The TransactionTypes business object maps the transaction types in the chaincode to the
transaction types in the application. For example, the REQUEST MINT transaction in the
chaincode is mapped to the Creation Requested transaction in the application. You can
update the value fields in this business object to change the mappings, as shown in the
following table.

3-84

Chapter 3

Wholesale CBDC Sample Application and Analytics Package

TransactionType value Description Use Case
CREDIT Credit Tokens are credited to A CBDC Creator
the specified account. successfully requests
minting tokens and the
system credits the
tokens to their account.
DEBIT Debit Tokens are debited from A CBDC Creator

the specified account.

transfers tokens to the
CBDC lIssuer.

REQUEST MINT

Creation Requested

A request to mint tokens

is submitted for approval.

A CBDC Creator submits
a request to mint tokens.

APPROVE MINT

Creation Approved

A mint request is

A CBDC Manager

approved approves a mint request.
REJECT MINT Creation Rejected A mint request is A CBDC Manager
rejected. rejects a mint request.

REQUEST BURN

Retirement Requested

A request to burn tokens

is submitted for approval.

A CBDC Retirer submits
a request to burn tokens.

APPROVE BURN

Retirement Approved

A burn request is

A CBDC Manager

approved. approves a burn request.
REJECT BURN Retirement Rejected A burn request is A CBDC Manager
rejected. rejects a burn request.

EXECUTEHOLD Issuance Approved An issuance requestis A CBDC Manager
approved. approves an issuance
request.
RELEASEHOLD Issuance Rejected An issuance requestis A CBDC Manager
rejected. rejects an issuance
request.
ONHOLD Request Issuance A request to issue A CBDC Issuer submits

tokens is submitted for
approval.

a request to issue tokens
to an FI Officer.

Stage the Wholesale CBDC Application

You can stage the application in Oracle Visual Builder to test and review it before deploying it
to a production environment.

ORACLE

To stage the application, complete the following steps.

1. Loginto Oracle Visual Builder.

2. On the home page, click the icon of the application.

3. Click the Application Options icon, and then select Stage. The Stage Application window

opens.

4. The first time you stage the application, select Populate Stage with Development Data,
which copies all of the business object data from the development environment to the
stage environment. If you stage the application again, select Keep Existing Data in
Stage, which does not copy the business object data.

5. Access the staged application.

a. After the application is staged, navigate back to the home page.

b. On the application dashboard, locate the staged application. The status is shown as
Stage next to the application name (for example, WholesaleCBDCVBCSPackage).

3-85

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

c. Click the drop-down menu under stage and select the application name (for example,
cbdcapp).

d. Copy the link or open the staged application in a new browser tab or window to test
and review the application.

If you make changes to the application, repeat the previous steps.

If you make changes to the business objects after staging the application, complete the
following steps before you stage the application again.

1. Verify that the business object data in the development environment matches the data in
the stage environment.

a. Log on to Oracle Visual Builder.

b. Navigate to the application and then select Business Objects.

c. Click the Data tab that is associated with a business object.

d. Select Development from the list to view the data in the development environment.
e. Select Staging from the list to view the data in the stage environment.

2. If the data does not match, export the data from the stage environment in . csv format.
Import this data into the development environment.

3. After you confirm that the data in the development environment matches the data in the
stage environment, follow the previous steps to stage the application.

After staging the application and verifying that it functions correctly, you can publish the
application to production. You cannot change the published version of an application. To make
changes to the application, you must create a new version.

Troubleshoot the Wholesale CBDC Sample Application

ORACLE

You can manually enter account and token data if you lose data during the staging process.

The wholesale CBDC sample application stores account and token data in business objects in
Oracle Visual Builder. Specifically, account details are stored in the CBCBDCStatusBO business
object and token details are stored in the EarmarkingList business object. When you stage
the application for the first time, these business objects are empty. As you interact with the
application by initializing tokens and creating accounts, data is saved to these business
objects.

If you stage the application again and do not select Keep Existing Data in Stage, the
business objects are reset. This can lead to data mismatches between the business objects
and the ledger, which in turn can cause application malfunctions.

You can prevent this issue by backing up all stage data before you stage the application again,
and by using the Data Manager tool in Oracle Visual Builder to export and import business
object data between environments.

If you mistakenly select Stage Application with a Clean Database or Replace Stage Data
with Development Data when re-staging the application, you must manually re-enter the
account and token details by completing the following steps.

1. Use the getAllActiveAccounts and getAllSuspendedAccounts endpoints in the wholesale
CBDC Postman collection to get information about all accounts in the network.

2. Populate the CBCBDCStatusBO business object as described in the following tables.

3-86

ORACLE

Chapter 3

Wholesale CBDC Sample Application and Analytics Package

CBCBDCStatusBO Field

Source Field

Notes

bankAccountID account_id

bankName org id

bankStatus Active if the information comes
from the
getAllActiveAccounts
endpoint, InActive if the
information comes from the
getAllSuspendedAccounts
endpoint.

bankTokenID token id

bankUserID user id

bankUserRole role name, See the following table for role

non_account _role name mapping information.

groupName application_groups

userRole See the following table for role
mapping information.

Condition Value

role name is null AND NO

non_account role name is empty

role name is null AND Token Admin

non_account role name = token admin

role name is null AND Org Admin

non _account role name =org admin

role name is null AND
non_account role name = token auditor

Token Auditor

role name is null AND
non_account role name =org auditor

Org Auditor

non_account role name is empty AND
role name is not null

The value of role name

Leave all other fields in the CBCBDCStatusBO business object empty.

Use the CurrencyCodeDetails business object to get information about tokens and
populate the EarmarkingList business object with this information, as described in the
following table. You must re-enter information for all tokens that were previously initialized.

EarmarkingList field Source Description Example
currencyCode currencyName in Token ID used by the uUsD
CurrencyCodeDetail wholesale CBDC
s application
currencyString currencyDesc in Token description used US Dollar
CurrencyCodeDetail by the wholesale CBDC
s application
earmarkingString Purpose field entered [user defined]

when the token was
initialized

3-87

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Wholesale CBDC Application Workflow

After you install and configure the sample wholesale CBDC application, you can use it in
scenarios where a central bank and other financial institutions interact in an interbank market.

ORACLE

The sample application supports eleven roles, or personas. Each role has a different interface
and set of operations that support the entire workflow of token management in the wholesale
CBDC scenario.

Central Bank Roles

CBDC Admin: Manages the entire CBDC system.

CBDC Creator: Creates CBDC tokens. After a creation request is submitted, it is sent to
the CBDC approver, who either approves or rejects the request. After the minting request
is approved, tokens are credited to the CBDC creator's account. The creator can then
transfer these tokens to a CBDC issuer.

CBDC Approver/CBDC Escrow: Approves or rejects requests for minting, burning, and
holding CBDC tokens. Hold request approvals are used for transfers between
organizations.

CBDC Issuer: Transfers CBDC tokens to financial institution officers or to the CBDC
retirer for burning. Users in this role receive tokens from the CBDC creator and financial
institution officers. The CBDC approver must approve any transfers between
organizations.

CBDC Auditor: Has read-only access to all organizational data in the system.

CBDC Retirer: Burns CBDC tokens. This role receives tokens from the CBDC issuer.
After a burn request is submitted, it is sent to the CBDC approver.

Financial Institution Roles

FI Admin: Manages their specific organization.

FI Officer: Receives tokens from the CBDC issuer. They can transfer these tokens to
users in any organization or return tokens to the CBDC issuer. All transfers between
organizations must be approved by the financial institution approver.

FI User: Receives tokens from the officers of their respective organizations. They can
transfer these tokens to users and officers in any organization. All transfers between
organizationslt is essential to note that any inter-organizational transfers must be approved
by the financial institution approver.

FI Manager/FI Approver: Approves or rejects hold requests for their specific
organization. Hold requests and approvals are used for all transfers between or within
organizations.

FI Auditor: Has read-only access to data that is specific to their organization.

Onboarding

After you install, configure, and stage the application, complete the following steps to access
the application.

1.
2.

After the application is staged, navigate back to the home page.

On the application dashboard, locate the staged application. The status is shown as
Stage next to the application name (for example, WholesaleCBDCVBCSPackage).

3-88

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

3. Click the drop-down menu under sStage and select the application name (for example,
cbdcapp).

4. Copy the link or open the staged application in a new browser tab or window to test and
review the application.

When a user attempts to log in to the application, the system checks that the user has an
account and the appropriate role. If the account does not exist or if the required role is absent,
the following error is displayed.

Invalid Account. Please Contact Admin

The interface that is displayed after a user logs in depends on their role.

The first time that any user attempts to log in to the application, no user accounts have been
created yet. Only users from the CBDC_ADMINS group who also have the tokenAdmin role
assigned to them can log in. All other login attempts will fail. The following section includes
more information about the exception for the CBDC_ADMINS persona.

CBDC_ADMINS Exception

The login process is different for users with the CBDC_ADMINS persona. Users in the
CBDC_ADMINS group can log in even if their account has not yet been created, but these users
must have the tokenAdnin role.

When you deploy the chaincode, ensure that users in the CBDC_ADMINS group have the
tokenAdmin role. The parameters that are passed during chaincode initialization must include
the CBDC admin users as having the tokenAdnin role. This allows the CBDC_ ADMINS to log in to
the application for the first time to create the other user accounts.

If you log in to the application as a user in the CBDC_ADMINS group, and that user was not
included as an initialization parameter when the chaincode was deployed, you must manually
assign the tokenAdmin role to the user. You can manually assign the tokenAdmin role by using
a Postman collection.

Application Workflow

The following steps show the actions of the various roles in a complete application workflow.
The first seven steps must be completed to use the application.

1. The CBDC Admin logs in.
2. The CBDC Admin initializes the CBDC token.

3. The CBDC Admin creates their own bank account and then reloads the home page to see
the updated network details.

4. The CBDC Admin creates bank accounts for all CBDC personas, as shown in the following

table.

Application Group Role
CBDC_ADMINS Token Admin
CBDC_AUDITORS Token Auditor
CBDC_CREATORS Minter
CBDC_ESCROW Escrow
CBDC_ISSUERS none
CBDC_RETIRERS Burner

3-89

CBDC Admin

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

5. The CBDC Admin creates FI Admin bank accounts, which have the Org Admin role.
6. The FI Admin logs in and creates accounts for users of their financial institution.

7. The CBDC Admin assigns roles to the new financial institution users, as shown in the
following table.

Application Group Role
FI_ADMINS Org Admin
FI_CBDC_USERS none

FI CBDC OFFICERS none
FI_CBDC_MANAGERS Escrow

FI _CBDC AUDITORS Org Auditor

8. The CBDC Creator logs in and requests that tokens be minted.

9. The CBDC Approver logs in and approves or rejects the minting request. If the request is
approved, the tokens are credited to the CBDC Creator.

10. The CBDC Creator transfers the tokens to the CBDC Issuer.

11. The CBDC Issuer logs in and transfers the tokens to an Fl Officer. If the transfer is
approved by the CBDC Approver, the tokens are transferred. Alternately, the CBDC Issuer
can transfer the tokens to the CBDC Retirer for burning.

12. The CBDC Auditor logs in, selects auditing policies, and reviews the relevant transaction
data.

13. The CBDC Retirer logs in and requests that tokens be retired. If the CBDC Approver
approves, the tokens are burned.

14. The CBDC Approver logs in and approves or rejects the request to issue tokens. If the
transfer is approved, tokens are credited to the FI Officer, who can then transfer them to FI
Users.

15. The FI Officer logs in and transfers tokens to Fl Users, other FI Officers, or back to the
central bank. All transfers require the approval of the FI Manager.

16. The FI Manager logs in and approves or rejects transfer requests.
17. Fl Users log in and transfer tokens to other Fl Users at any organization.

18. The FI Auditor logs in, selects auditing policies, and reviews the relevant transaction data.

The CBDC Admin manages the entire wholesale CBDC system.

A CBDC Admin user belongs to the CBDC_ADMINS group. The CBDC Admin initiates the token
system and creates and manages accounts. The CBDC Admin can navigate to see and
manage all organizations (banks) and all users in the system. Comprehensive details about the
network and about users who are logged in are displayed, as well as filterable transaction
history.

In the Accounts Management pane, all banks are displayed. You can navigate to each bank to
suspend or activate user accounts, add or update roles, and edit user account details.

The Transaction History pane shows a list of filterable transactions. You can click any
transaction to open the Transaction Details window.

The following tasks are typical ones that a CBDC Admin completes.

3-90

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Initialize CBDC Token
Initializing the CBDC token is the first task that the CBDC Admin must complete.

1. Click Initialize CBDC Token. The Initialize CBDC Token window opens.

2. Select the token from the Currency list, and then optionally enter a Purpose. Separate
multiple purposes with commas (,). These purposes can be selected as options during
token transfers. The Currency Description field automatically populates based on the
selected token, and cannot be edited.

3. Click Initialize CBDC Token to complete the process.
Create Bank Account
Complete the following steps to create bank accounts and add roles to accounts.

1. Click Create Bank Account. The Create Bank Account window opens.

2. Enter the account information, as described in the following table.

Field Type Description

Token ID text, read-only The ID of the token that was
initialized for the system.

Bank Name list A list of all banks in the network.

Blockchain Network Member text, read-only The organization ID of the bank,

ID which is determined by the
selected Bank Name.

Bank User ID text A user ID for the account.

Role list A list of supported roles. The
default is NO.

Group list A list of application groups.

Daily Maximum Amount number The maximum amount of tokens

that can be transacted per day.

Daily Maximum Transactions number The maximum number of
transactions allowed per day.

3. Click Create Account. The account details are displayed.

For central bank users, an enrollment is also created from the user ID during account creation.
The enrollment ID can include only alphanumeric characters, hyphens (-), and underscores ().
All other characters are replaced by underscores.

Update Enrollments

1. Click Update Enrollment. The Update Enroliment window opens and all enroliments
associated with a particular organization are displayed.

2. Select an enrollment ID and then click Get User IDs. All users that are associated with the
enrollment ID are displayed.

3. To add a user to an enrollment, click Add User.

4. To delete a user from an enrollment, click Delete for that user.

CBDC Creator

The CBDC Creator mints tokens in the CBDC system and transfers them to issuers.

ORACLE 301

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

A CBDC Creator user belongs to the CBDC_CREATORS group and has the Minter role. The
CBDC Creator can navigate and see their own filterable transaction history.

The following tasks are typical ones that a CBDC Creator completes.

Create Tokens

1. Click Request Mint Tokens. The Request Mint Tokens window opens.

2. Enter a CBDC Quantity and a Memo. All other fields are automatically populated and are
read-only.

3. Click Request Mint. The transaction runs and is displayed in the Transaction History pane.

Issue Tokens

1. Inthe User Details pane, click Issue. The Transfer <TokenID> CBDC window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

CBDC Approver

CBDC Issuer

ORACLE

The CBDC Approver approves or rejects requetst to mint, burn, and transfer tokens in the
CBDC system.

A CBDC Approver user belongs to the CBDC_ESCROW group and has the Notary role. There can
be only one CBDC Approver account but multiple users can share the account.

Comprehensive details about all requests from all banks are displayed for the CBDC Approver.
The Approve / Reject CBDC Transfers to Member Banks pane shows all requests for three
categories: Issuance, Creation, and Retirement. The CBDC Approver can select some or all
requests to approve or reject them. The History page displays all requests that have been
approved or rejected by the CBDC Approver.

The CBDC Issuer transfers tokens to financial institution officers or to the CBDC Retirer.

A CBDC Issuer user belongs to the CBDC ISSUERS group. The CBDC Issuer can navigate and
see their own filterable transaction history.

The following tasks are typical ones that a CBDC Issuer completes.

Transfer Tokens to CBDC Retirer

1. Inthe Users pane, expand the central bank and then click Retirement. The Transfer
<TokenID> CBDC window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

Transfer Tokens to Financial Institution Officers

1. Inthe Users pane, expand a financial institution and then click Issue. The Transfer
<TokenID> CBDC to <FI Bank Name> window opens.

3-92

CBDC Auditor

CBDC Retirer

FI Admin

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

The CBDC Auditor applies auditing policies and reviews transactions that meet the specified
policy conditions.

A CBDC Auditor user belongs to the CBDC_AUDITORS group and has the Token Auditor role.
The CBDC Auditor can navigate and see filterable transaction history for all accounts in the
network.

The following tasks are typical ones that a CBDC Auditor completes.

Apply Policies
1. In the Auditing Policies pane, select the policies to apply, as described in the following
table.

Policy Information

Single Transfer Amount Select a symbol from the list and then enter an
amount to audit single transfers.

Number of Transfers Exceeding Enter a number of transfers and then select a
period of time from the list to audit the number of
transfers in that period.

Daily Transfer Total Amount Exceeding Enter a value to audit the total daily transfer
amount.

Any Transfers to Specific Account Select a recipient to audit.

Any Transfers from Specific Accounts Select a sender to audit.

2. Click Apply. The policies are applied and relevant transactions are displayed in the
Transaction History pane.

The CBDC Retirer burns CBDC tokens and transfers tokens to CBDC Issuers.

A CBDC Retirer user belongs to the CBDC RETIRERS group and has the Burner role. The CBDC
Retirer can navigate and see their own filterable transaction history.

The following tasks are typical ones that a CBDC Retirer completes.

Transfer Tokens to CBDC Issuers

1. Inthe User Details pane, click Transfer. The Transfer <TokenID> CBDC window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

The FI Admin manages a specific financial institution.

3-93

FI Officer

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

An FI Admin user belongs to the FI_ADMINS group and has the Org Admin role. The FI Admin
creates and manages accounts for a specific financial institution. The FI Admin can navigate to
see and manage all users in their financial insitution.

In the Accounts Management pane, all users for the specific bank are displayed. You can
suspend or activate user accounts and edit user account details.

The following tasks are typical ones that a FI Admin completes.

Create Bank Account
Complete the following steps to create bank accounts.

1. Click Create Bank Account. The Create Bank Account window opens.

2. Enter the account information, as described in the following table.

Field Type Description

Token ID text, read-only The ID of the token that was
initialized for the system.

Blockchain Network Member text, read-only The organization ID of the bank.

ID

Bank User ID text A user ID for the account.

Group list A list of application groups.

Daily Maximum Amount number The maximum amount of tokens
that can be transacted per day.

Daily Maximum Transactions number The maximum number of

transactions allowed per day.

3. Click Create Account. The account details are displayed.

An enrollment is also created from the user ID during account creation. The enrollment ID can
include only alphanumeric characters, hyphens (-), and underscores (_). All other characters
are replaced by underscores.

Update Enrollments

1. Click Update Enrollment. The Update Enroliment window opens and all enroliments
associated with a particular organization are displayed.

2. Select an enrollment ID and then click Get User IDs. All users that are associated with the
enroliment ID are displayed.

3. To add a user to an enrollment, click Add User.

4. To delete a user from an enroliment, click Delete for that user.

The FI Officer receives tokens from the CBDC issuer and transfers them to other users.

An FI Officer user belongs to the FI_CBDC OFFICERS group. The FI Officer receives tokens from
the CBDC issuer and transfers them to users in any organization. The FI Officer also returns
tokens to the CBDC Issuer. All transfers must be approved by the FI Manager. The FI Officer
can navigate and see their own filterable transaction history.

The following tasks are typical ones that a FI Officer completes.

3-94

Fl User

FI Manager

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

Transfer Tokens to CBDC Issuer

1. Inthe User Details pane, expand the central bank and then click Deposit to
<CentralBank>. The Transfer <TokenID> CBDC to <CentralBank> window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

Transfer Tokens to Financial Institution Accounts

1. Inthe Transfer to FI Accounts pane, expand a financial institution, select a user, and then
click Transfer. The Transfer <TokenlD> CBDC to <FI Bank Name> window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

The FI User receives tokens from the officers of their bank.

An Fl User user belongs to the FI_CBDC_USERS group. The FI User receives tokens from the FI
Officer of their bank. Fl Users can transfer tokens to users and officers of their own bank, and
users at any other bank. Any transfers between banks must be approved by the FI Manager.
The FI User can navigate and see their own filterable transaction history.

The following tasks are typical ones that a FI User completes.

Transfer Tokens

1. Inthe Transfer to FI Accounts pane, expand a financial institution, select a user, and then
click Transfer. The Transfer <TokenlD> CBDC to <FI Bank Name> window opens.

2. Enter a Purpose and a CBDC Quantity. All other fields are automatically populated and
are read-only.

3. Click Transfer <TokenlID> Token. The transaction runs and is displayed in the Transaction
History pane.

The FI Manager approves or rejects hold requests for their bank.

An Fl Manager user belongs to the FI_CBDC MANAGERS group and has the Notary role. Fl
Managers approve or reject hold requests for their financial institution. Hold requests are used
for transfers between banks.

Comprehensive details about transfer requests for their bank are displayed for the FI Manager.
The Approve / Reject CBDC Transfers to Member Banks pane shows all pending transfers.
The FI Manager can select some or all requests to approve or reject them. The Action History
page displays all requests that have been approved or rejected by the FI Manager.

3-95

FI Auditor

ORACLE

Chapter 3
Wholesale CBDC Sample Application and Analytics Package

The FI Auditor pplies auditing policies and reviews transactions that meet the specified policy
conditions for their bank.

An Fl Auditor user belongs to the FI_CBDC_AUDITORS group and has the Org Auditor role. The
FI Auditor can navigate and see filterable transaction history for all accounts at their bank.

The following tasks are typical ones that a FI Auditor completes.

Apply Policies
1. In the Auditing Policies pane, select the policies to apply, as described in the following
table.

Policy Information

Single Transfer Amount Select a symbol from the list and then enter an
amount to audit single transfers.

Number of Transfers Exceeding Enter a number of transfers and then select a
period of time from the list to audit the number of
transfers in that period.

Daily Transfer Total Amount Exceeding Enter a value to audit the total daily transfer
amount.

Any Transfers to Specific Account Select a recipient to audit.

Any Transfers from Specific Accounts Select a sender to audit.

2. Click Apply. The policies are applied and relevant transactions are displayed in the
Transaction History pane.

3-96

Bond Marketplace Application

The bond marketplace application can support issuing and redemption as well as buying and
selling of bonds, represented by fractional non-fungible tokens (NFTs).

The bond marketplace sample represents the life cycle of a traditional bond in the financial
ecosystem. The sample specification file uses the extended ERC-1155 standard that is
supported by Blockchain App Builder. The generated chaincode includes methods from
initialization of a non-fungible bond token, account operations, and role assignments to bond
issuance with a fixed coupon rate, bond purchases with wholesale CBDC, periodic coupon
payment, and redemption of bonds at maturity with simple interest payments.

The bond marketplace solution comprises the following downloadable packages.

* Blockchain App Builder specification file
e Pre-built bond marketplace chaincode
* Wrapper APIs for bond setup and lifecycle operations

To get the bond marketplace packages, in the Oracle Blockchain Platform Digital Assets
console click the Digital Assets tab and then select Bond Marketplace.

Bond Marketplace Chaincode Package

ORACLE

Oracle Blockchain Platform Digital Assets Edition includes sample chaincode for the bond NFT
marketplace scenario.

The bond marketplace chaincode supports managing and trading bonds, represented by
fractional non-fungible tokens (NFTs). You can use chaincode methods to issue, purchase,
redeem, and trade bond NFTs in a decentralized environment.

The bond marketplace chaincode package is downloadable from the Oracle Blockchain
Platform console, and includes the following components.

* BondMarketplace.zip, an archive file that contains the packaged chaincode for
deployment.

°* BondMarketplace.yaml, a specification file that you can use with Blockchain App
Builder to scaffold the WholesaleCBDC chaincode.

* BondMarketplace postman collection.json, a Postman collection that enables
you to test the APlIs in the chaincode.

e README.md, a step-by-step guide for working with the chaincode.

To get the bond marketplace chaincode package, in the Oracle Blockchain Platform Digital
Assets console click the Digital Assets tab and then select Bond Marketplace Application.

Specification File

The bond marketplace specification file (Bond Marketplace.yml) is based on the extended
ERC-1155 specification file. It includes a model attribute, which generates the application-
specific chaincode. In this case, model: bond creates additional methods for the bond

4-1

ORACLE

Chapter 4
Bond Marketplace Chaincode Package

marketplace application when the chaincode is generated. Additionally, specific parameters
must be set in the metadata section of the file.

#
Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
#

Token asset to manage the complete lifecycle of a Bond in a primary Bond
marketplace.

assets:
- name: Bond #Asset name
type: token #Asset type
standard: ercll55+ # Token standard
events: true # Supports event code generation for non-GET methods
model: bond # Supports creation of additional methods for Primary Bond
marketplace

anatomy:
type: nonfungible # Token type
unit: fractional #Token unit

behavior: # Bond token behaviors

- divisible:

- mintable:

- transferable

- burnable

- roles:
minter role name: minter
burner role name: burner

properties: # Custom asset attributes for non-fungible Bond token.

- name: status # Custom asset attribute maintains the status of the
Bond.
type: string
mandatory: true

metadata: # To maintain the metadata on-chain, this tag will be used.
Users won't be able to update the metadata attribute values after the bond
token is minted.

- name: ISIN # A unique alphanumeric code that identifies a
specific bond internationally.
type: string
mandatory: true

- name: Segment # The classification of bonds based on issuer type
or purpose, such as corporate, government, sovereign, or green bonds.
type: string

- name: Issuer # The entity, such as a corporation or government,
that issues the bond.
type: string
mandatory: true

4-2

Chapter 4
Bond Marketplace Chaincode Package

- name: FaceValue # The principal amount of the bond that will be
repaid at maturity.
type: number
mandatory: true

- name: IssueSize # The total monetary value or quantity of bonds
issued by the issuer.
type: number
mandatory: true

- name: CouponRate # The annual interest rate that the bond pays,
typically as a percentage of the face value.
type: float
mandatory: true

- name: InterestPaymentType # Specifies whether the bond pays
simple or compound interest.
type: string
mandatory: true
validate: /"\\s* (simple)\\s*$/

- name: InterestFrequency # The regularity with which interest
payments are made, such as monthly, quarterly, annually or at maturity.
type: string
mandatory: true
validate: /"\s*["]?((monthly|quarterly|annually|at maturity)\s*)
["]12\s*$/

- name: IssueDate # The date when the bond was initially issued.
type: date
mandatory: true

- name: MaturityDate # The date on which the bond’s principal
amount will be repaid to the bondholder.
type: date
mandatory: true

customMethods:

Table 4-1 Metadata Parameters for the Bond Marketplace Specification File
|

Entry Description

name: ISIN A string that is a unique 12-character alphanumeric code that
identifies a bond.

name: Segment A string that represents the segment type of the bond.

name: Issuer A string that represents the issuer of the bond.

name: FaceValue A number that represents the face value (price) of the bond
token.

name: IssueSize A number that represents the issue size (total quantity) of the
bond.

ORACLE

4-3

Chapter 4
Bond Marketplace Chaincode Package

Table 4-1 (Cont.) Metadata Parameters for the Bond Marketplace Specification File

Entry

Description

name: CouponRate

A number that represents the coupon rate (interest rate) of
the bond. It must be a per annum rate.

name: InterestRateType A string that represents the interest payment type. The only

supported value is simple.

name: InterestFrequency A string that represents the interest frequency of the bond

token. The following list shows the supported values.
e monthly

e quarterly
e annually
e at maturity

name: IssueDate

A date that represents the issue date of the bond.

name: MaturityDate

A date that represents the maturity date of the bond.

Deploy and Test Bond Marketplace Chaincode

ORACLE

Prerequisites

You must complete the following steps before you work with the bond marketplace chaincode.

1.

Create a confidential client application in Oracle Identity Cloud Service. The bond
marketplace wrapper API provides methods to create Identity Cloud Service users that can
be used by the clients in their signup flow. This requires a confidential client application
that has the privilege to create a new user in Identity Cloud Service. The bond marketplace
chaincode requires the client ID and client secret of this application. For more information
on adding a confidential application, see Add a Confidential Application.

Create user groups and configure them to the Oracle Blockchain Platform instance.
Identity Cloud Service user groups such as ADMIN GROUP, USER_GROUP, CLIENT GROUP, and
S0 on must be created and configured to the corresponding Oracle Blockchain Platform
instances based on the corresponding access and application roles such as admin,
restproxy user, ca user, and so on. For more information, see Set Up Users and
Application Roles.

Deploy the wholesale CBDC chaincode. The wholesale CBDC chaincode must be
deployed on the same Oracle Blockchain Platform instances where the bond marketplace
chaincode is deployed. The corresponding token and token account must be set up in the
wholesale CBDC chaincode as the default payment mode for the bond. You can do this
manually or by using the Postman collection generated by Blockchain App Builder. The
wholesale CBDC chaincode and the bond marketplace can be deployed on the same
channel or on different channels.

Deploying the Chaincode

You can deploy the chaincode directly from the Oracle Blockchain Platform console or by using
Blockchain App Builder. Before you deploy the chaincode, create enroliment IDs for each token
user and then map the token users to their respective enrollment IDs. Specify only one user for
each enrollment. For more information about adding enrollments, see Add Enroliments to a
REST Proxy.

When you deploy the token chaincode, you must call the init method and pass the
organization ID and user ID of the Token Admin user.

4-4

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

ORACLE

Chapter 4
Bond Marketplace Chaincode Package

For information about deploying from the Oracle Blockchain Platform console, see Use
Advanced Deployment.

To deploy using Blockchain App Builder, complete the following steps.

1.

2

Extract the BondMarketplace. zip archive file.

Import the BondMarketplace chaincode to the Blockchain App Builder extension in Visual
Studio Code.

Editthe .ochain. json file to update the value of the configFileLocation key to the
path of the BondMarketplace.yml specification file.

Open a terminal window and navigate to the chaincode folder, and then run the following
command.

npm install

For more information about deploying using Blockchain App Builder, see Deploy Your
Chaincode Using Visual Studio Code.

Bond Marketplace Sample Process Flow

A typical process flow using the bond marketplace methods follows these basic steps.

1.

10.

11.

Admins use the createUserAccount and createTokenAccount methods to create individual
NFT accounts for all users.

Admins use the addrRole method to assign the minter role to the officers of participating
financial institutions (for example, FI-1 Bond Issuer).

Financial institution officers (bond issuers) use the createBondToken method to issue
bonds as fractional NFTs.

Financial institution officers use the getTokenById method to review and confirm the details
of issued bonds.

Bond purchasers (for example, FI User) use the purchaseToken method to buy the
fractional NFT bond and to make a payment using the wholesale CBDC chaincode.

Purchasers use the balanceOfBatch method to verify the receipt of the bond in their wallet.

Purchasers use the getAccountBalance method (wholesale CBDC chaincode) to confirm
the transfer in their wholesale CBDC wallet.

Bond issuers use the payInterest method to pay periodic interest to bondholders using
the wholesale CBDC chaincode.

Purchasers use the requestTokenRedemption method to submit a request to redeem their
bond after it has matured.

Financial institution officers use the approveTokenRedemption method to approve the
redemption request and to transfer wholesale CBDC funds to the bond holder.

The bond holder uses the balance0fBatch method (bond marketplace chaincode) and
getAccountBalance method (wholesale CBDC chaincode) to verify that the bond was
redeemed and that they received funds in their wholesale CBDC wallet.

For more details about using Postman collections, see the following topics.

Generate a Postman Collection Using the CLI
Generate a Postman Collection Using Visual Studio Code

Endorsement Support in Postman Collections

4-5

Chapter 4
Bond Marketplace Wrapper API Package

Bond Marketplace Wrapper APl Package

ORACLE

Oracle Blockchain Platform Digital Assets Edition includes a wrapper API package that
extends the REST API to support operations specific to a bond NFT marketplace.

The wrapper AP| package uses the API Gateway service and OCI Functions to deploy API
routes specifically for managing the bond marketplace NFT life cycle. The bond marketplace
wrapper AP| package is downloadable from the Oracle Blockchain Platform console, and
includes an archive file that contains the wrapper API package including the Terraform scripts
required for deployment. You deploy this file to a Resource Manager stack on Oracle Cloud
Infrastructure (OCI) to create the necessary Oracle resources for the wrapper APIs. It also
includes a Postman collection that enables you to test the deployed wrapper APIs. The
collection includes pre-configured requests with endpoints and payloads that correspond to the
APIs defined in the wrapper API package.

Wrapper APIs

activateAccount
Original method name: activateAccount

This POST method activates a token account. This method can be called only by an admin or
account owner. Deleted accounts cannot be activated.

Payload:

{
"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

"assetType": "oaccountStatus",

"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7",

"account id":

4-6

Chapter 4
Bond Marketplace Wrapper API Package

"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287£f9cl",
"status": "active"

}

addTokenAdmin
Original method name: addTokenAdmin

This POST method adds other admins to the token chaincode. This method can be called only
by the token admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:
e On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

"msg": "Successfully added Admin (OrgId: appDev, UserId: userl)"
}

addRole
Original method name: addrole

This POST method adds a role to a specified user and token. This method can be called only
by a Token Admin of the chaincode. Non-fungible tokens are specified by the token name. The
specified user must have a non-fungible token account. The specified role must exist in the
specification file for the token.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"role": "role minter/burner"
"tokenDetails": "{"tokenName": "token name value"}"

ORACLE 4.7

Chapter 4
Bond Marketplace Wrapper API Package

"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
e role: string— The name of the role to add to the specified user.

e tokenDetails: TokenDetail — The details that specify the token. For non-fungible
tokens, use the following format:

{"tokenName":"artCollection"}

Returns:

* On success, a message with account details.

Return Value Example:

"msg": "Successfully added role 'minter' to Account Id:
oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d39769609961d7434d22a
(Org-Id: appdev, User-Id: idcqga)"

}

approveBondRedemption
Original method name: approveBondRedemption

This POST method can be called only by the token creator to approve a request for the
redemption of bond tokens. The approval operation transfers the bond NFT from the owner’s
account (the user who raised the request) to the creator’s account, and transfers CBDC
tokens from the bond creator’s to the owner’s account. Because of this, this method must be
executed in the context of an atomic transaction. The method also verifies the transfer
process, ensuring the appropriate CBDC chaincode is called with the correct orgId and
userId for the transfer. The orgId and userId must correspond to the account of the token
owner who raised the redemption request, and the CBDC token transfer value must be equal
to the calculated redemption price that was calculated by the chaincode while raising the
redemption request.

Payload:

"fromOrgId": "fromOrgId value",

"fromUserId": "fromUserId value",
"settlementId": "settlementId value",
"tokenId": "{{bc-token-id}}",

"CBDCTokenId": "CBDCTokenId value",

"CBDCFromOrgId": "CBDCFromOrgId value",

"CBDCFromUserId": "CBDCFromUserId value",

"CBDCQuantity": 0,

"CBDCRemark": "{\\\"category\\\":\\\"category value\\\",\\\"description\\

ORACLE 45

Chapter 4
Bond Marketplace Wrapper API Package

\":\\\"description value\\\"}",
"endorsers": {{endorsers}}

}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the user.

e fromUserId: string— The user name or email ID of the user.

e settlementId: string— The settlement ID for the redemption operation.

e tokenId: string-— The ID of the token.

° CBDCTokenId: string— The ID of the token in the CBDC chaincode.

e (CBDCOrgld: string— The MSP ID of the user in the CBDC chaincode.

e CBDCUserId: string— The user name or email ID of the user in the CBDC chaincode.
e CBDCQuantity: string— The quantity of tokens to transfer in the CBDC chaincode.

e CBDCRemark: string— A remark for the transfer in the CBDC chaincode, which must be in
the format shown previously.

Return Value Example:

"returnCode":"Success",

"errorll : " ",
"result":{
"transactions": |

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969f£962df5efda2ea6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£fb39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

b
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txi1d":"1245885b1al0c7£12c41£a2£2905549b8a5f37ab3a5e094b9%dcal22cb0611al17"
b

"commit": {

ORACLE 49

Chapter 4
Bond Marketplace Wrapper API Package

"txid":"3c83e20c7d470cdc9clble2e0ea8d9962d58ada8d1lb8£0d2606c8aalflae7741"

by
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

balanceOfBatch
Original method name: balanceOfBatch

This GET method completes a batch operation that gets the balance of token accounts. The
account details are specified in three separate lists of organization IDs, user IDs, and token
IDs. This method can be called only by a Token Admin of the chaincode or by account owners.
Account owners can see balance details only for accounts that they own.

Query:

/balanceOfBatch?orgIds=["{{bc-org-id}}"]&userIds=["{{bc-user-
id}}"]&tokenIds=["{{bc-token-id}}"]

Parameters:

e orglds: string[] — A list of the membership service provider (MSP) IDs in the current
organization.

e userlIds: string[] — A list of the user name or email IDs.

e tokenIds: string[] — A list of the token IDs.

Return Value Example:
In the following example, the token ID FNFT represents a fractional non-fungible token and the
token ID FT represents a fungible token.

"orgId": "appdev",

"userId": "idcqga",

"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7ff610beab8376d733a35¢c51£38",

"tokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"tokenId": "FNFT",

"balance": 100

}I

ORACLE 410

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"orgId": "appdev",

"userId": "idcqga",

"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"tokenAccountId":
"oaccount~21206£309941a2a23c4£f158a0felb8f12bb8e2b0c9a2e1358f5efebcOc7d410e",

"tokenId": "FT",

"balance": 50

"orgId": "appdev",

"userId": "userl minter",

"userAccountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91£757523d70£08ee494bda98bb352003b",

"tokenAccountId":
"oaccount~dcee860665db8740chb77b846e823752185a19a185814d0ach305890£5903446",

"tokenId": "ENFT",

"balance": 10

batchTransferFrom
Original method name: batchTransferFrom

This POST method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.

Payload:

"fromOrgId": "fromOrgId value",

"fromUserId": "fromUserId value",
"toOrgId": "toOrgld value",
"toUserId": "toUserId value",
"tokenIds": "[\"{{bc-token-id}}\"]1",
"quantity": "[quantity value]",

"endorsers": {{endorsers}}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender and token
owner in the current organization.

e fromUserId: string— The user name or email ID of the sender and token owner.

e toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.
* tokenIds: string[] — A list of token IDs for the tokens to transfer.

° quantity: number[] — The list of quantities of tokens to transfer, corresponding to the
token ID array.

4-11

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

Returns:

e On success, a message with details for each token transfer.

Return Value Example:

"msg": "Successfully transferred NFT token: 'FNFT' of 'l0' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: appdev, User-Id: idcga) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e€9a185814d0ach305890£5903446
(Org-Id: appdev, User-Id: userl minter)"

}I
{

"msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: appdev, User-Id: idcga) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298£f40b81£199627e4£67£3691c0£628237974c
(Org-Id: appdev, User-Id: userl minter)"

}I
{

"msg": "Successfully transferred NFT token: 'NFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: appdev, User-Id: idcga) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e€9%9a185814d0ach305890£5903446
(Org-Id: appdev, User-Id: userl minter)"

}
]

burnBatch
Original method name: burnBatch

This POST method deactivates, or burns, the specified tokens. Any user with the burner role
can call this method.

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenIds": "[\"{{bc-token-id}}\"]",
"quantity": "[quantity value]",

"sameOrgEndorser": true

Parameters:
* orgld: string— The membership service provider (MSP) ID in the current organization.
e userld: string— The user name or email ID.

e tokenIds: string[] — The list of the token IDs to burn

4-12

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

e quantity: number[] — The list of quantities of tokens to burn, corresponding to the token
ID array..

Returns:

* On success, a message with details about the burn operations.

Return Value Example:

{

"msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeblbd535899562a840d0c15a356db89%e24bc8b43acldba845a4282¢c6
(Org-Id: appdev, User-Id: idcga)"

}I
{

"msg": "Successfully burned 5 tokens of tokenId: tokenOne from Account-ID
oaccount~1422a74d262a3a55a37¢cd9023e£8836£765d0be7b49d397696b9961d7434d22a
(Org-Id: appdev, User-Id: idcga)"

}I
{

"msg": "Successfully burned 2 token share of tokenId: FNFT from Account-
ID oaccount~87bchb699d507368ee3966cd03ee6d7736f£fc55dde8c0f0el6b14866334ac504a
(Org-Id: AutoF1377358917, User-Id: idcga)"

}
]

createAccount
Original method name: createAccount

This POST method creates an account for a specified user and associated token accounts for
tokens. An account must be created for any user who will have tokens at any point. The user
account tracks the NFT account and the fungible token accounts that a user holds. Users
must have accounts in the network to complete token-related operations. This method can be
called only by a Token Admin of the chaincode.

A user account has a unique ID, which is formed by an SHA-256 hash of the orgId parameter
and the user1d parameter.

A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string £t separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).

A user can have only one non-fungible token account. Non-fungible token account IDs are
unigue and are formed by an SHA-256 hash of the orgId parameter, the user1d parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"ftAccount": true,
"nftAccount": true,

4-13

Chapter 4
Bond Marketplace Wrapper API Package

"endorsers": {{endorsers}}

}

Parameters:

* orgId— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

e ftAccount: boolean — If true, a fungible token account is created and associated with the
user account.

e nftAccount: boolean — If true, a non-fungible token account is created and associated
with the user account.

Returns:

e On success, a JSON object of the account that was created.

Return Value Example:

"assetType": "ouaccount",
"accountId":
"ouaccount~cf20877546f52687£387e7¢c91d88b9722¢c97e1a456¢cc0484f40¢c747£7804feae",
"userId": "userl",
"orgId": "appdev",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": |
{
"accountId":
"oaccount~60bb20cl14a83f6e426e1437¢c479c5891elc6477dfd7adl8b73acac5d80bc504b",
"tokenId": ""
}
]I

"associatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269f83cefd59b9d297fe2cdc5a9083828£a58"
}

createAccountWithEnrollment
Original method name: createAccountWithEnrollment

This POST method creates an enrollment for a user in the REST proxy of the instance, and
creates an NFT account in the bond marketplace chaincode.

Payload:

{

"orgId": "orgld value",

ORACLE Iy

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"userId": "userId value"

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e Onsuccess, a JSON object of the account that was created.

Return Value Example:

"blockNumber": 44,

"encode": "JSON",

"payload": {

"accountId":
"ouaccount~1930ec223036c0fe2ea%97c58£d%a8d2456d13c0£d0c98217¢ce075ceddb8addi2",
"assetType": "ouaccount",

"associatedFtAccounts": [],

"associatedNftAccount":
"oaccount~03£8a6949f6c5¢c453354a4a8eed8503a39766085b476430e95¢ce305769fba861",
"orgId": "BondMPTest",

"totalAccounts": 1,

"totalFtAccounts": O,

"userId": "uld"

}I

"sourceURL": "bondmptest-oabcsl-iad.blockchain.ocp.example.com:20010",
"txid": "9fa75a631f0de2ddf2ed85742dccd4ddb97b7afb0d3f9a07988e5¢cb9120ed633£"

createBondToken
Original method name: createBondToken

This POST method creates tokens. Every token that is defined has its own create method. For
non-fungible tokens, the caller of this method becomes the owner of the NFT. If roles
behavior is defined in the token model behaviors property and a minter role name iS
specified, the caller account must have the minter role.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\",\"tokenMetadata\":{\"ISIN\":\"ISIN
value\",\"Segment\":\"Segment value\",\"Issuer\":\"Issuer
value\",\"FaceValue\":999,\"IssueSize\":999, \"CouponRate\":999,\"InterestPayme
ntType\":\"InterestPaymentType
value\",\"InterestFrequency\":\"InterestFrequency
value\",\"IssueDate\":\"2023-03-28T15:16:36+00:00\", \"MaturityDate\":\"2023-03
-28T15:16:36+00:00\"},\"status\":\"status value\"}",

4-15

"quantity": 1,
"sameOrgEndorser": true

}

Parameters:

Chapter 4
Bond Marketplace Wrapper API Package

° tokenAsset: <Token Class>— The token asset. The properties of the asset are defined in

the model file.

° quantity: number — The number of tokens to mint. The only supported value for this

parameter is 1.

Returns:

e On success, a JSON object of the account that was created.

Return Value Example:

"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",

"IssueDate": "2023-03-28T15:16:36.0002",
"MaturityDate": "2023-03-28T15:16:36.000Z"

b
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

1,

"roles": {
n 1 LY n] n
minter role name": "minter",
"burner role name": "burner"

b
"mintable": {

"max mint quantity": 0
b
"quantity": 10,
"createdBy":

ORACLE

4-16

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"oaccount~85dfd98d1b99e5b8891e0alfdcd7d2e07£fc5d37958£5d2a5796290b6a9204a43",
"creationDate": "2024-12-03T12:07:24.000Z",
"divisible": {
"decimal": 0
}I
"isBurned": false,
"isLocked": false,

"tokenUri": "tokenUri wvalue",
"status": "created"

}

createIDSCUser

Original method name: createIDCSUser

This POST method creates an Identity Cloud Service user in the tenancy specified by the URL
inthe terraform. tfvars file and assigns the user to the specified user group.

Payload:

{

"userName": "userName value",
"firstName": "firstName value",
"lastName": "lastName value",
"email": "email value",
"groupName": "groupName value"
}

Parameters:

e userName: string-— The ID of the user.

e firstName: string— The first name of the user.
e lastName: string— The last name of the user.
* email: string— The email address of the user.

* groupName: string— The name of the Identity Cloud Service group to assign to the user.

Return Value Example:

{
"status": "Success",
"msg": "User userl is created and assigned to the group BOND ADMIN"

}

createTokenAccount
Original method name: createTokenAccount

This POST method creates a fungible or non-fungible token account to associate with a user
account.

A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string £t separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).

4-17

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

A user can have only one non-fungible token account. Non-fungible token account IDs are
unigue and are formed by an SHA-256 hash of the orgId parameter, the user1d parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.

This method can be called only by a Token Admin of the chaincode.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenType": "nonfungible",
"endorsers": {{endorsers}}
}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° tokenType: TokenType — The type of token account to create. The only supported token
types are nonfungible and fungible.

Returns:

e On success, a JSON object of the token account that was created.

Return Value Example:

"assetType": "ouaccount",
"accountId":
"ouaccount~24£f£d4d32a028a85b4b960£5d55536c837b5429%c7£346150adfa%904ec2937cc",
"userId": "user2",
"orgId": "appdev",
"totalAccounts": 1,
"totalFtAccounts": 1,
"associatedFtAccounts": [
{
"accountId":
"oaccount~1422a74d262a3a55a37¢d9023e£8836£765d0be7b49d397696b9961d7434d22a",
"tokenId": ""
}
]I

"associatedNftAccount": ""

createUserAccount
Original method name: createUserAccount

This POST method creates an account for a specified user. An account must be created for
any user who will have tokens at any point. The user account tracks the NFT account and the
fungible token accounts that a user has. Users must have accounts in the network to complete
token-related operations.

4-18

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

An account ID is an SHA-256 hash of the orgId parameter and the userId parameter. This
method can be called only by a Token Admin of the chaincode.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

* userlId: string— The user name or email ID of the user.

Returns:

e On success, a JSON object of the user account that was created.

Return Value Example:

"assetType": "ouaccount",

"accountId":
"ouaccount~24f£d4d32a028a85b4b960£5d55536c8370b5429%bc7£346150adfa904ec2937cc",

"userId": "user2",

"orgId": "appdev",

"totalAccounts": 0,

"totalFtAccounts": O,

"associatedFtAccounts": [],

"associatedNftAccount": ""

deleteAccount
Original method name: deleteAccount

This POST method deletes a token account. This method can be called only by a Token
Admin of the chaincode. This method throws an error if an accountStatus value for the
account is not found in the ledger.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}
Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

4-19

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON representation of the token account status.

Return Value Example:

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":

"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8al3ba68ladcfbe287£f9cl”,
"status": "deleted"

getAccount
Original method name: getAccount

This GET method returns token account details for a specified user. This method can be
called only by a Token Admin of the chaincode or the Account Owner of the account.

Query:

/getAccount?orgIld={{bc-org-id}}suserId={{bc-user-id}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

* tokenId?: string - For a non-fungible token account, an empty string. For a fungible
token account, the token ID.

Returns:

e On success, a JSON object that includes token account details.

Return Value Example

"assetType": "oaccount",

"accountId":
"oaccount~e88276a3beb47e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"userId": "user2",

"orgId": "AppBldFFFFMay22",

"tokenType": "nonfungible",

"noOfNfts": 3

getAccountBondSummary
Original method name: getAccountBondSummary

4-20

Chapter 4
Bond Marketplace Wrapper API Package

This GET method returns an account summary for the specified user, including details of
purchased or redeemed tokens and their purchase and redemption prices.

Query:

/getAccount?orgIld={{bc-org-id}}s&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON object that includes the token account summary.

Return Value Example

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfld",
"orgId":"BondMPTest",
"userId":"ull",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383fdab0ff17747ca25af3369
e26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.0002",

"purchasedFromAccountId":"ouaccount~e76f696c0d6c626b24d35b3ac21de377a6da24clbf
dab1411£67022507003al15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383fdab60ff17747ca25af3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

ORACLE 401

Chapter 4
Bond Marketplace Wrapper API Package

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

getAccountBondSummaryWithPagination
Original method name: getAccountBondSummaryWithPagination

This GET method returns an account summary for the specified user, including details of
purchased or redeemed tokens and their purchase and redemption prices. This method can
return results with pagination based on pagesize and bookmark values, and also filtered by
start time and end time.

Query:

/getAccountBondSummary?orgId={{bc-org-id}}&userId={{bc-user-
id} }&pageSize=1&bookmark={{bookmark}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
° pageSize: number — The page size of the returned result.

* bookmark: string— The bookmark of the returned result.

Returns:

e On success, a JSON object that includes the token account summary.

Return Value Example

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
O9b6f3c9cabfld",
"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9%979bfe6302dcc83b1b903bd383£da60£f£f17747ca25af3369

ORACLE 405

Chapter 4
Bond Marketplace Wrapper API Package

e26289747~bondl~opl",
"tokenId":"bondl",
"status":"Redeemed",
"purchasedAmount":11,
"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

getAccountDetailsByUser
Original method name: getAccountDetailsByUser

This GET method returns an account summary for a specified user and details of fungible and

non-fungible tokens that are associated with the user. This method can be called only by a
Token Admin Of the chaincode or the Account Owner of the account.

Query:
/getAccountDetailsByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

ORACLE 403

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

* On success, a JSON account object that includes and account summary for the specified
user and details of fungible and non-fungible tokens that are associated with the user. For
fractional non-fungible tokens, the tokenShare property in the associatedNFTs section
shows the share that the user owns.

Return Value Example:

"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7f£610beab8376d733a35¢c51£38",
"associatedFTAccounts": [

{
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"tokenId": "FT",
"balance": 50

]I
"associatedNFTAccount": {
"accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",
"associatedNFTs": [

{
"nftTokenId": "EFNFT",
"tokenShare": 100

"nftTokenId": "FNFT2",
"tokenShare": 110

"nftTokenId": "NFT"

getAccountStatus
Original method name: getAccountStatus

This GET method retrieves the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

Query:
/getAccountStatus?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Returns:

4-24

Chapter 4
Bond Marketplace Wrapper API Package

e Onsuccess, a JSON representation of the token account status.

Return Value Example:

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287£9cl”,

"status": "active"

getAccountStatusHistory
Original method name: getAccountStatusHistory

This GET method retrieves the history of the account status. This method can be called by the
Token Admin of the chaincode or by the token account owner.

Query:

/getAccountStatusHistory?orgId={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, the account status history in JSON format.

Return Value Example:

"trxId":
"d5¢c6d6£601257ba%6edaf5b7660£00adc13c37d5321b8f7d3a35afab2e93e63",
"timeStamp": "2022-12-02T710:39:14.000z2",

"value": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f£79d5e96
ar",

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8al3bat8ladctfbe287£9¢c1",

"status": "suspended"

}
}I
{
"trxId":

ORACLE o

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"e6c850cfal84dc20ad95fb2bb8165eef3a3bdb2alac867cccee57¢2003125183",
"timeStamp": "2022-12-02T10:37:50.000z",
"value": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287f9cl”,

"status": "active"

getAccountTransactionHistory
Original method name: getAccountTransactionHistory

This GET method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner.

/getAccountTransactionHistory?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"transactionId":
"otransaction~3a6b23c3003626£3947e990eddbd7ac23398d2200e2eb3eac745e6ddfael40bec
~7c88c736df38d5622512f1e8dcdd50710eb47¢953f1lecb24ac44790a%e2£475b",

"timestamp": "2023-06-06T14:48:08.000Z",

"tokenId": "FEFNFT",

"transactedAmount": 10,

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7f£610beab8376d733a35¢c51£38",

"transactedAccount":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890£5903446",
"transactionType": "DEBIT",

"balance": 90
b
{

"transactionId":
"otransaction~3a6b23c3003626£3947e990eddbd7ac23398d2200e2eb3eac745e6ddfael40be
~178e3730bc5bee50d02f1464a4eebf733a051905£651e5789039%adb4al3edc114",

"timestamp": "2023-06-06T14:48:08.000Z2",

"tokenId": "NFT",

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7f£610beab8376d733a35¢c51£38",

4-26

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"transactedAccount":
"oaccount~dcee860665db8740chb77b846e823752185a19a185814d0ach305890£5903446",

"transactionType": "DEBIT"

}I
{

"transactionId":
"otransaction~c369929e28e78de06c72d020£1418c9%al54a7dd280b2e22ebb4eadd85e249124
~aTcefb22ff39%9ee7e36967be71de27da6798548¢c872061a62dabc56d88d500930",

"timestamp": "2023-06-06T14:47:08.000zZ",

"tokenId": "NFT",

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"transactionType": "MINT"

}I
{

"transactionId":
"otransaction~114albc78d04be48ee6dcl40c32c042ee9481cb118959626£090eec744522422
~e4eb15d9354£694230df8835ade012100d82aa43672896a2c7125a86e3048£9f",

"timestamp": "2023-06-05T17:17:57.000Z",

"tokenId": "FNFT",

"transactedAmount": 100,

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"transactionType": "MINT",

"balance": 100

getAccountsByRole
Original method name: getAccountsByRole

This GET method returns a list of all account IDs for a specified role and token.
Query:

/getAccountsByRole?role=role value (for example minter /
burner) &étokenDetail={"tokenName":"tokenName value"}

Parameters:
e role: string— The name of the role to search for.

° tokenDetail: JSON — For fungible tokens, the token ID. For non-fungible tokens, the
require token name.

Return Value Example:

"accounts": [

4-27

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d397696b9961d7434d22a",

"oaccount~60bb20c14a83£f6e426e1437c479c5891elc6477dfd7adl8b73acac5d80bc504b"
]

getAllAccounts
Original method name: getAllAccounts

This GET method returns details of all user accounts. This method can be called only by a
Token Admin oOf the chaincode.

Query:

/getAllAccounts

Parameters:

. none

Returns:

e Onsuccess, a JSON array of all accounts.

Return Value Example:

"assetType": "ouaccount",
"accountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7ff610beab8376d733a35¢c51£38",
"userId": "user2",
"orgId": "appdev",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": [
{
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"tokenId": "loyl"

]I
"associatedNftAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734daddbfae83ab2e5¢98a10097371"
}I
{
"assetType": "ouaccount",
"accountId":
"ouaccount~9501bb774c156eb8354dfed89250a91£757523d70£08ee494bda%8bb352003b",
"userId": "userl minter",
"orgId": "appdev",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": |

4-28

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"accountId":
"oaccount~1089ee5122£367ee0ca38c6660298£4b81£199627e4£f67£3691c0£628237974c",
"tokenId": "loyl"
}
]I
"associatedNftAccount":
"oaccount~dcee860665db8740cb77b846e823752185a19a185814d0ach305890£5903446"
}I

getAllTokenAdmins
Original method name: getAl1TokenAdmins

This GET method returns a list of all users who are a Token Admin of the chaincode. This
method can be called only by a Token Admin of the chaincode.

Query:

/getAllTokenAdmins

Parameters:

° none

Returns:

e Onsuccess, an admins array in JSON format that contains orgId and userId objects.

Return Value Example:

"admins": [

{
"orgId": "appdev",
"userId": "user2"

b

{
"orgId": "appdev",
"userId": "userl"

getAllTokens
Original method name: getAl1Tokens

This method returns all of the token assets that are saved in the state database. This method
can be called only by a Token Admin of the chaincode. This method uses Berkeley DB SQL

rich queries and can only be called when connected to the remote Oracle Blockchain Platform
network.

/getAllTokens

4-29

ORACLE

Parameters:

° none

Returns:

Chapter 4
Bond Marketplace Wrapper API Package

* Alist of all token assets in JSON format.

Return Value Example:

[{
"tokenMetadata": {
"ISIN":
"Segment":
"Issuer":
"FaceValue":
"IssueSize":
"CouponRate":

999,
999,
999,

"InterestPaymentType":

"ISIN value",
"Segment value",
"Issuer value",

"simple",

"InterestFrequency": "monthly",

"IssueDate":
"MaturityDate":
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc":
"tokenStandard":
"tokenType":
"tokenUnit":
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I

"roles": {

"minter role name":
"burner role name":

by
"mintable": {

"2023-03-28T15:16:36.000Z",
"2023-03-28T15:16:36.000Z"

"tokenDesc value",
"ercll55+",
"nonfungible",
"fractional",

"minter",
"burner"

"max mint quantity": 0

b
"quantity": 10,
"createdBy":

"oaccount~85dfd98d1b99e5b8891e0alfdcd7d2e07£c5d37958£5d2a5796290b6a9204a43",

"creationDate":
"divisible": {

"decimal": 0
by

"isBurned": false,
"isLocked": false,
"tokenUri":

"2024-12-03T12:07:24.000Z",

"tokenUri value",

4-30

Chapter 4
Bond Marketplace Wrapper API Package

"status": "status value"

}

getAllTokensByUser
Original method name: getAl1TokensByUser

This GET method returns all of the token assets that are owned by a specified user. This
method uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network. This method can be called only by a Token Admin
of the chaincode or by the account owner.

Query:

/getAllTokensByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Return Value Example:

[{
"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000Z",
"MaturityDate": "2023-03-28T15:16:36.000Z"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll155+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": |
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles": {
"minter role name": "minter",

ORACLE 451

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"burner role name": "burner"
}I
"mintable": {
"max mint quantity": 0
}I
"quantity": 10,
"createdBy":
"oaccount~85dfd98d1b99e50b8891e0alfdcd7d2e07£fc5d37958£5d2a5796290b6a9204a43",
"creationDate": "2024-12-03T12:07:24.000z2",
"divisible": {
"decimal": 0
}I
"isBurned": false,
"isLocked": false,
"tokenUri": "tokenUri wvalue",
"status": "status value"

}

getAllTokensWithFilters
Original method name: getAl1TokensWithFilters

The admin can call this GET method to fetch all the tokens filtered by status.
Query:

/getAllTokensWithFilters?status=statusé&pageSize=pageSizesbookmark=bookmark

Parameters:
° status: string— The status of the token, which can either be CREATED or POSTED.
° pageSize: number — The page size of the returned result.

e bookmark: string - The bookmark of the returned result.

Return Value Example:

[{

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36.0002",
"MaturityDate":"2023-03-28T15:16:36.0002"

}I

"assetType":"otoken",

"events":true,

"tokenId":"bondl",

"tokenName":"bond",

4-32

Chapter 4
Bond Marketplace Wrapper API Package

"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl1l55+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter",
"burner role name":"burner"
}I
"mintable":{
"max mint quantity":0
}I
"quantity":100,

"createdBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl7b8525c0391ea3ba
36138e00",

"creationDate":"2024-12-02T12:42:09.0002",

"divisible":{

"decimal":0

}I

"isBurned":false,

"isLocked":false,

"tokenUri":"tokenUri value",

"status":"posted"

getTokenApprovalRequestByUser
Original method name: getTokenApprovalRequestByUser

Any account holder can call this GET method to get the details of all the token approval
requests (redemption requests) they have made.

Query:
/getTokenApprovalRequestByUser?status=status value

Parameters:

e status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

ORACLE 433

Chapter 4
Bond Marketplace Wrapper API Package

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4d",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~£df28b2d271ac9c0£fbd94a2dedb£f365728c77795£3e931ebada2dcf48
039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfld",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

"status":"APPROVED",

"orderId":"op3",

"redeemPrice":11,

"purchasedPrice":11,

"interestEarned":0

getTokenApprovalRequestForUserByStatus
Original method name: getTokenApprovalRequestByUser

Any account holder can call this GET method to get the details of all the token approval
requests (redemption requests) they have made.

ORACLE ey

Chapter 4
Bond Marketplace Wrapper API Package

Query:

/getTokenApprovalRequestForUserByStatus?status=status value

Parameters:

e status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5p2a94283ae95e3d6e5b76ffd6£75bTbf£231e4df270a82cdclfobadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa%9979fe6302dcc83b1b903bd383fda60ff
17747ca25a£3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6£f3c9cabfll",

"toAccountId":"ouaccount~e76£696c0dbc626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~fdf28b2d271ac9c0fbd94a2dedbf365728c77795£3e931eb5a4a2dcf48
039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa%9979%fe6302dcc83b1b903bd383fda60ff
17747ca25a£3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6£f3c9cabfll",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

ORACLE o

ORACLE

"status":"APPROVED",
"orderId":"op3",
"redeemPrice":11,
"purchasedPrice":11,
"interestEarned":0

getTokenById

Original method name: getTokenById

Chapter 4

Bond Marketplace Wrapper API Package

This GET method returns a token object if the token is present in the state database. For
fractional NFTs, the list of owners is also returned. This method can be called only by a Token
Admin of the chaincode or the token owner.

Query:

/getTokenById?tokenId={{bc-token-id}}

Parameters:

e tokenId: string— The ID of the token to get.

Return Value Example:

[{

"tokenMetadata": {

b

"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,

"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16

"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl155+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": |

"divisible",
"mintable",
"transferable",
"burnable",
"roles"

.000z",
:36.0002"

4-36

Chapter 4
Bond Marketplace Wrapper API Package

"roles":{
"minter role name":"minter",
"burner role name":"burner"

}I

"mintable": {

"max mint quantity":0

}I

"quantity":100,

"createdBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl70b8525c0391ea3ba

36138e00",
"creationDate":"2024-12-02T12:42:09.0002",
"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"
}
]
getTokenHistory

Original method name: getTokenHistory
This GET method returns the history for a specified token ID.
Query:

/getTokenHistory?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Returns:

* On success, a JSON array that contains the token history.

Return Value Example:

[{
"tokenMetadata": {

"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36.0002",
"MaturityDate":"2023-03-28T15:16:36.0002"

ORACLE 4-37

Chapter 4
Bond Marketplace Wrapper API Package

}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl155+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"burnable",

"roles"
]I
"roles":{

"minter role name":"minter",

"burner role name":"burner"
}I
"mintable":{

"max mint quantity":0
}I
"quantity":100,

"createdBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl70b8525c0391ea3ba

36138e00",
"creationDate":"2024-12-02T12:42:09.0002",
"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"
}
]
getUsersByRole

Original method name: getUsersByRole

This method returns a list of all users for a specified role and token. This method can be called
only by a Token Admin of the chaincode.

Query:

/getUsersByRole?role=role value (for example minter /
burner) &tokenDetail={"tokenName":"tokenName value"}

Parameters:

e role: string— The name of the role to search for.

ORACLE 438

Chapter 4
Bond Marketplace Wrapper API Package

° tokenDetail: JSON — For fungible tokens, the token ID. For non-fungible tokens, the
require token name.

Return Value Example:

"users": [

{

"accountId":
"oaccount~1422a74d262a3a55a37¢d9023e£8836£765d0be7b49d39769609961d7434d22a",
"orgId": "appdev",
"userId": "user2"
b
{

"accountId":
"oaccount~60bb20c14a83f6e426e1437¢c479c5891elc6477dfd7adl8b73acac5d80bc504b",

"orgId": "appdev",

"userId": "userl"

init
Original method name: init

This POST method is called when the chaincode is instantiated. Every Token Admin iS
identified by the userId and orgId information in the adminList parameter. The userId is the
user name or email ID of the instance owner or the user who is logged in to the instance. The
orgId is the membership service provider (MSP) ID of the user in the current network
organization. The adminList parameter is mandatory the first time you deploy the chaincode.
If you are upgrading the chaincode, pass an empty list ([1). If you are the user who initially
deployed the chaincode, you can also specify new admins in the adminList parameter when
you are upgrading the chaincode. Any other information in the adminList parameter is ignored
during upgrades.

Payload:

{
"adminList": "[{\"orgId\":\"{{bc-org-id}}\", \"userId\":\"{{bc-user-id}}\"}]"
}

Parameters:

e adminList array— Anarray of {orgId, userId} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Returns:

e On success, a message with no payload.

ORACLE 439

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

Return Value Example:

isInRole
Original method name: isInRole

This GET method returns a Boolean value to indicate if a user has a specified role. Non-
fungible tokens are specified by the token name. This method can be called only by a Token
Admin of the chaincode or the Account Owner of the account. The specified user must have a
token account that is associated with the fungible token, or a non-fungible token account for
NFT roles. The specified role must exist in the specification file for the token.

Query:

/isInRole?orgld={{bc-org-id}}s&userId={{bc-user-id}}&role=role value (for
example minter / burner)&tokenDetail={"tokenName":"tokenName value"}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e role: string— The name of the role to search for.

° tokenDetails: TokenDetail — The details that specify the token. For non-fungible
tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

"result": true,

"msg": "Account Id
oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d39769609961d7434d22a
(Org-Id: appdev, User-Id: idcga) has minter role"

}

isTokenAdmin
Original method name: isTokenAdmin

This GET method returns the Boolean value true if the caller of the function is a Token Admin,
otherwise it returns false. This method can be called only by a Token Admin of the chaincode.

/isTokenAdmin?orgId={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

4-40

Chapter 4
Bond Marketplace Wrapper API Package

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

{"result": true}

mintBatch
Original method name: mintBatch

This POST method creates (mints) multiple tokens in a batch operation. This method creates
only fungible tokens or fractional non-fungible tokens.

For fungible tokens, if the minter role is defined in the specification file, then any user with the
minter role can call this method. If not, any user can use this method to mint tokens. You
cannot mint more than the max _mint quantity property of the token, if that property was
specified when the token was created or updated.

For non-fungible tokens, if the minter role is defined in the specification file, then any user with
the minter role can call this method. If not, any user can use this method to mint tokens.
Additionally, the caller must also be the creator of the token. There is no upper limit to the
guantity of fractional non-fungible tokens that can be minted.

You cannot use this method to mint a whole non-fungible token.

Payload:

{

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenIds": "[\"{{bc-token-id}}\"1",
"quantity": "[quantity value]",

"sameOrgEndorser": true

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userId: string— The user name or email ID of the user.
e tokenIds: string[] — The list of token IDs to mint tokens for.

e quantity: number[] — The list of quantities of tokens to mint, corresponding to the token
ID array.

Returns:

e On success, a JSON object that includes details on the minted tokens.

ORACLE 4an

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

Return Value Example:

"msg": "Successfully minted batch of tokens for User-Account-Id
ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢c51£38
(Org-Id: appdev, User-Id: idcga).",

"details": [

{

"msg": "Successfully minted 100 tokens of fractional tokenId:

plot55 to Org-Id: appdev, User-Id: idcga"
I
{

"msg": "Successfully minted 100 tokens of tokenId: loyalty to
Token-Account-Id
oaccount~21206£309941a2a23c4£f158a0felb8f12bb8e2b0c9a2e1358f5efebcOc7d410e"

}

ownerOf
Original method name: ownerOf

This GET method returns the account ID, organization ID, and user ID of the owner of the
specified token ID. Anyone can call this method.

Query:

/ownerOf?tokenId={{bc-token-id}}

Parameters:

e tokenId: string— The ID of the token.

Return Value Example:

"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad1288d",
"orgId": "OrglMSP",
"yserId": "admin"
}I
{

"accountId":
"oaccount~74108eca702bab6d8548e740254f2cc7955d886885251d52d065042172a59db0",

"orgId": "OrglMSP",

"userId": "user"

payInterest
Original method name: owner0Of

4-42

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

This POST method can be called only by the token creator or admin to pay the interest earned
on the bond token. This method can be called only if the interest frequency of the token is
monthly, quarterly, or annually. Interest cannot be paid if the interest frequency is at maturity.
Interest is calculated by the chaincode based on the coupon rate of the token. The purchase
operation transfers CBDC tokens from the caller's account to the bond owner’s account.
Because of this, this method must be run in the context of an atomic transaction. The method
also verifies the transfer process, ensuring the appropriate CBDC chaincode is called with the
correct orgId and userId for the transfer. The orgId and userId must correspond to the token
owner, and the CBDC token transfer value must be equal to the interest calculated by the
bond chaincode.

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"orderId": "orderId value",

"CBDCTokenId": "CBDCTokenId value",

"CBDCFromOrgId": "CBDCFromOrgId value",

"CBDCFromUserId": "CBDCFromUserId value",

"CBDCQuantity": 0,

"CBDCRemark": "{\\\"category\\\":\\\"category value\\\",\\\"description\\\":\
\\"description value\\\"}",

"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user.

e userld: string— The user name or email ID of the user.

* tokenId: string— The ID of the token.

* orderId: string— The order ID for the operation.

° CBDCTokenId: string— The ID of the token in the CBDC chaincode.

e CBDCOrgId: string— The MSP ID of the user in the CBDC chaincode.

e CBDCUserId: string— The user name or email ID of the user in the CBDC chaincode.
e CBDCQuantity: string— The quantity of tokens to transfer in the CBDC chaincode.

* CBDCRemark: string — A remark for the transfer in the CBDC chaincode, which must be in
the format shown previously.

Return Value Example:

"returnCode":"Success",
"error":"",
"result":{
"transactions": [
{

"channel":"test",

4-43

Chapter 4
Bond Marketplace Wrapper API Package

"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969£962df5efda2eat6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txid":"5544e928d3242291fb39189e8329679a9¢c81d61dof72db60ca89135cd20fffef"
by
"rollback": {

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txid":"1245885b1lalc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611al17"
b

"commit": {

"txid":"3¢c83e20c7d470cdc9clbl0e2e0ea8d9962d58ada8d1b8£0d2606c8aalflae7741"
by
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

postBondToken
Original method name: postBondToken

This POST method can be called only by a token creator. The method submits the bond token
for listing in the marketplace. When a token is created, its status is initially set to created. This
method updates the status to posted. Users can run the getAl1TokensWithFilter method to
retrieve all NFTs with a posted status.

Payload:

{
"tokenId": "{{bc-token-id}}",

ORACLE vy

ORACLE

"sameOrgEndorser": true

}

Parameters:

o tokenId:

string — The ID of the token to post.

Return Value Example:

"isValid":true,
"payload":{

"createdBy":

36138e00",

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",

Chapter 4
Bond Marketplace Wrapper API Package

"IssueDate":"2023-03-28T15:16:36.0002",
"MaturityDate":"2023-03-28T15:16:36.000Z"

}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercll55+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"burnable",

"roles"
]I
"roles":{

"minter role name":"minter",

"burner role name":"burner"
}I
"mintable": {

"max mint quantity":0
}I
"quantity":100,

"oaccount~276bcfl324bladled93e22432db3b39f7a4b9%bl1708525¢c0391ea3ba

"creationDate":"2024-12-02T12:42:09.000z2",

"divisible":{
"decimal":0

b

4-45

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"created"

}I

"message":"Successfully updated asset with ID bondl"

purchaseBondToken
Original method name: purchaseBondToken

This POST method can be called by any account holder to purchase a listed bond NFT. The
purchase transfers the bond NFT from the creator's account to the caller's account, and
transfers CBDC tokens from the caller's account to the creator's account. Because of this, the
method must be run in the context of an atomic transaction. The method also verifies the
transfer process, ensuring that the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and userId must correspond to the token
creator, and the CBDC token transfer value must be equal to the face value of the bond token
multiplied by the quantity being purchased.

Payload:

{

"tokenId": "{{bc-token-id}}",
"quantity": 1,

"orderId": "orderId value",

"additionalFees": 1,

"CBDCTokenId": "CBDCTokenId value",
"CBDCFromOrgId": "CBDCFromOrgId value",
"CBDCFromUserId": "CBDCFromUserId value",
"CBDCQuantity": 0,

"CBDCRemark": "{\\\"category\\\":\\\"category value\\\",\\\"description\\\":\
\\"description value\\\"}",

"endorsers": {{endorsers}}

}
Parameters:

° tokenId: string— The ID of the token to purchase.

e orgld: string-— The membership service provider (MSP) ID of the user.

e userld: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the operation.

° CBDCTokenId: string— The ID of the token in the CBDC chaincode.

e CBDCOrgId: string— The MSP ID of the user in the CBDC chaincode.

e CBDCUserId: string— The user name or email ID of the user in the CBDC chaincode.
e CBDCQuantity: string— The quantity of tokens to transfer in the CBDC chaincode.

e CBDCRemark: string — A remark for the transfer in the CBDC chaincode, which must be in
the format shown previously.

4-46

Chapter 4
Bond Marketplace Wrapper API Package

Return Value Example:

"returnCode":"Success",

"errorll : mmn ,
"result":{
"transactions": |

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare":{

"txid":"e969£962df5efda2ea6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

b
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare":{

"txid":"1245885b1alc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611all7"
b

"commit": {

"txid":"3c83e20c7d470cdc9clb0e2e0eaB8d9962d58ada8dlb8f0d2606c8aalflae7741"

b
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

rejectBondRedemption
Original method name: rejectBondRedemption

The token creator can call this POST method to reject the redemption request. Token owners
can raise a redemption request again by using a different settlement ID.

ORACLE A-47

Chapter 4
Bond Marketplace Wrapper API Package

Payload:

{

"fromOrgId": "fromOrgIld value",
"fromUserId": "fromUserId value",
"settlementId": "settlementId value",
"tokenId": "{{bc-token-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the redemption operation.

* tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully rejected the token approval request"

removeRole
Original method name: removeRole

This POST method removes a role from a specified user and token. Fungible tokens are
specified by the token ID. Non-fungible tokens are specified by the token name. This method
can be called only by a Token Admin of the chaincode.

{
"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"role": "role value (for example minter / burner)",
"tokenDetail": "{\"tokenName\":\"tokenName value\"}",

"endorsers": {{endorsers}}

}

Parameters:

* orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e role: string— The name of the role to remove from the specified user.

e tokenDetails: TokenDetail — The details that specify the token. For non-fungible
tokens, use the following format:

{"tokenName":"artCollection"}

ORACLE 448

Chapter 4
Bond Marketplace Wrapper API Package

Return Value Example:

"msg": "Successfully removed role 'minter' from Account Id:
oaccount~60bb20c14a83f6e426e1437¢c479¢c5891elc6477dfd7adl8b73acac5d80bc504b
(Org-Id: appdev, User-Id: userl)"

}

removeTokenAdmin
Original method name: removeTokenAdmin

This POST method removes a user as a Token Admin Of the chaincode. This method can be
called only by a Token Admin of the chaincode. You cannot remove yourself as a Token
Admin.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Token
Admin of the chaincode.

Return Value Example:

{"msg": "Successfully removed Admin (OrgId: appDev, UserId: userl)"}

requestBondRedemption
Original method name: requestBondRedemption

This POST method can be called only by the token owner to raise a request for the
redemption of bond tokens after maturity. This method is also involved the calculation of the
redemption price by the chaincode. Redemption requests can be raised only on the entire
quantity of the bond token that the user owns. Users can raise multiple redemption requests
based on different settlement IDs but only one can be approved by the token creator.

Payload:

{

"settlementId": "settlementId value",
"tokenId": "{{bc-token-id}}",
"orderId": "orderId value",

ORACLE 449

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"additionalFees": 1,
"endorsers": {{endorsers}}

}

Parameters:

° settlementId: string— The settlement ID for the redemption operation.
* tokenId: string— The ID of the token.

e orderId: string— The order ID for the purchase operation.

e additionalFees: number — The additional fees to add to the redemption price.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~9%9e006057ac96ae997e3964531b1a08ad2316555701c7£fe%ec7b88e38e
20892bf",
"settlementId":"op4",

"userBondDetailsId":"ouserbonddetails~ed3aaa%9979%fe6302dcc83b1b903bd383fda60ff
17747ca25a£3369e26289747~bondl~op4d",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfld",

"toAccountId":"ouaccount~e76£696c0dbc626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

"status":"PENDING",

"orderId":"op4d",

"redeemPrice":11

safeBatchTransferFrom
Original method name: safeBatchTransferFrom

This POST method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user.

For NFTs, because the method transfers ownership of the NFT, the sender of the NFT must
own the token.

For fractional NFTs, if a user (including the creator of the token) transfers all of the shares that
they own, then they lose ownership of the token. If any share of a token is transferred to a
user, that user automatically becomes one of the owners of the fractional NFT.

The caller of the method must be the specified sender.

{
"fromOrgId": "fromOrgId value",

4-50

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

"fromUserId": "fromUserId value",
"toOrgId": "toOrgld value",
"toUserId": "toUserId value",
"tokenIds": "[\"{{bc-token-id}}\"]1",
"quantity": "[quantity value]",
"endorsers": {{endorsers}}

}
Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender and token
owner in the current organization.

e fromUserlId: string— The user name or email ID of the sender and token owner.

° toOrgId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.
* tokenIds: string[] — A list of token IDs for the tokens to transfer.

° quantity: number[] — The list of quantities of tokens to transfer, corresponding to the
token ID array.

Returns:

* On success, a message with details for each token transfer.

Return Value Example:

"msg": "Successfully transferred NFT token: 'FNFT' of 'l0' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: appdev, User-Id: idcqga) to Account-Id:
oaccount~dcee860665db8740cb770b846e823752185a1e9a185814d0ach305890£5903446
(Org-Id: appdev, User-Id: userl minter)"

}I
{

"msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c%a2e1358f5efebclc7d410e
(Org-Id: appdev, User-Id: idcqga) to Account-Id:
oaccount~1089ee5122£367ee0ca38c6660298£4b81£199627e4£67£3691c0£628237974c
(Org-Id: appdev, User-Id: userl minter)"

}I
{

"msg": "Successfully transferred NFT token: 'NEFT' from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: appdev, User-Id: idcqga) to Account-Id:
oaccount~dcee860665db8740cb770b846e823752185a1e9a185814d0achb305890£5903446
(Org-Id: appdev, User-Id: userl minter)"

}
]

4-51

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

suspendAccount
Original method name: suspendAccount

This POST method suspends a token account. This method can be called only by a Token
Admin of the chaincode. After an account is suspended, you cannot complete any operations
that update the account. A deleted account cannot be suspended.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Returns:

* On success, a JSON representation of the token account status.

Return Value Example:

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfbobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8a3ba68ladcfbe287£f9cl",

"status": "suspended"

}
updateBondToken

Original method name: updateBondToken

This POST method updates tokens. Every token that is defined has its own update method.
You cannot update token metadata or the token URI of non-fungible tokens. This method can
be called only by the token owner.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\",\"status\":\"status value\",
\"tokenMetadata\": {\"ISIN\":\"ISIN value\",\"Segment\":\"Segment
value\",\"Issuer\":\"Issuer
value\",\"FaceValue\":999,\"IssueSize\":999, \"CouponRate\":999,\"InterestPayme
ntType\":\"InterestPaymentType

4-52

ORACLE

Chapter 4
Bond Marketplace Wrapper API Package

value\",\"InterestFrequency\":\"InterestFrequency
value\",\"IssueDate\":\"2023-03-28T15:16:36+00:00\", \"MaturityDate\":\"2023-03
-28T15:16:36+00:00\"},\"status\":\"status value\"}",

"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset. The properties of the asset are defined in
the model file.

Returns:

e On success, the updated token asset in JSON format.

Return Value Example (Whole NFT

"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000Z",
"MaturityDate": "2023-03-28T15:16:36.0002"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {
"max mint quantity": 0
}I
"quantity": 10,
"createdBy":
"oaccount~85dfd98d1b99e5b8891e0a0fdcd7d2e07£c5d37958£5d2a5796290b6a%9204a43",

4-53

ORACLE

"creationDate":

"divisible": {

b

"decimal": 0

"isBurned": false,
"isLocked": false,

"tokenUri":

"status": "created"

URI

Original method name: URI

Chapter 4

Bond Marketplace Wrapper API Package

"2024-12-03T12:07:24.000Z",

"tokenUri value",

This method returns the URI of a specified token.

Query:

/URI?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"tokenUri":

"example.com"

The following table shows the mapping between the chaincode APl names and the updated
endpoints. For detailed information about the chaincode API, see Scaffolded TypeScript Token

Project.

Updated endpoint TypeScript chaincode Go chaincode API Method type
API name name

activateAccount activateAccount ActivateAccount Native ERC-1155
method

addAdmin addAdmin AddAdmin Native ERC-1155
method

addRole addRole AddRole Native ERC-1155
method

approveBondRedempti approveTokenRedempt ApproveTokenRedempt Modified

on ion ion

balanceOfBatch balanceOfBatch BalanceOfBatch Native ERC-1155
method

batchTransferFrom batchTransferFrom BatchTransferFrom Native ERC-1155
method

burnBatch burnBatch BurnBatch Native ERC-1155
method

createAccount createAccount CreateAccount Native ERC-1155

method

createAccountWithEn

rollment

createAccountWithEn

rollment

CreateAccountWithEn Added

rollment

4-54

ORACLE

Chapter 4

Bond Marketplace Wrapper API Package

Updated endpoint

TypeScript chaincode
API name

Go chaincode API
name

Method type

createBondToken createBondToken CreateBondToken Native ERC-1155
method

createIDCSUser createIDCSUser CreateIDCSUser Added

createTokenAccount createTokenAccount CreateTokenAccount Native ERC-1155
method

createUserAccount createUserAccount CreateUserAccount Native ERC-1155
method

deleteAccount deleteAccount DeleteAccount Native ERC-1155
method

getAccount getAccount GetAccount Native ERC-1155
method

getAccountBondSumma
ry

getAccountBondSumma
ry

GetAccountBondSumma
ry

Bond marketplace
method

getAccountBondSumma

getAccountBondSumma

GetAccountBondSumma

Bond marketplace

ryWithPagination ryWithPagination ryWithPagination method
getAccountDetailsBy getAccountDetailsBy GetAccountDetailsBy Native ERC-1155
User User User method
getAccountStatus getAccountStatus GetAccountStatus Native ERC-1155
method
getAccountStatusHis getAccountStatusHis GetAccountStatusHis Native ERC-1155
tory tory tory method
getAccountTransacti getAccountTransacti GetAccountTransacti Native ERC-1155
onHistory onHistory onHistory method
getAccountsByRole getAccountsByRole GetAccountsByRole Native ERC-1155
method
getAllAccounts getAllAccounts GetAllAccounts Native ERC-1155
method
getAllTokenAdmins getAllTokenAdmins GetAllTokenAdmins Native ERC-1155
method
getAllTokens getAllTokens GetAllTokens Native ERC-1155
method
getAllTokensByUser getAllTokensByUser GetAllTokensByUser Native ERC-1155
method
getAllTokensWithFil getAllTokensWithFil GetAllTokensWithFil Bond marketplace
ters ters ters method
getTokenApprovalReq getTokenApprovalReq GetTokenApprovalReq Bond marketplace
uestByUser uestByUser uestByUser method
getTokenApprovalReq getTokenApprovalReq GetTokenApprovalReq Bond marketplace
uestForUserByStatus uestForUserByStatus uestForUserByStatus method
getTokenById getTokenById GetTokenById Native ERC-1155
method
getTokenHistory getTokenHistory GetTokenHistory Native ERC-1155
method
getUsersByRole getUsersByRole GetUsersByRole Native ERC-1155
method
init init Init Native ERC-1155
method
isInRole isInRole IsInRole Native ERC-1155
method

4-55

Chapter 4

Bond Marketplace Wrapper API Package

Updated endpoint

TypeScript chaincode
API name

Go chaincode API
name

Method type

isTokenAdmin isTokenAdmin IsTokenAdmin Native ERC-1155
method
mintBatch mintBatch MintBatch Native ERC-1155
method
ownerOf ownerOf OwnerOf Native ERC-1155
method
payInterest payInterest PayInterest Modified
postBondToken postToken PostToken Bond marketplace
method
purchaseBondToken purchaseToken PurchaseToken Modified
rejectBondRedemptio rejectTokenRedempti RejectTokenRedempti Bond marketplace
n on on method
removeRole removeRole RemoveRole Native ERC-1155
method
removeTokenAdmin removeTokenAdmin RemoveTokenAdmin Native ERC-1155
method
requestBondRedempti requestTokenRedempt RequestTokenRedempt Bond marketplace
on ion ion method
safeBatchTransferFr safeBatchTransferFr SafeBatchTransferFr Native ERC-1155
om om om method
suspendAccount suspendAccount SuspendAccount Native ERC-1155
method
updateBondToken updateBondToken UpdateBondToken Native ERC-1155
method
URI URI URI Native ERC-1155
method

Customize Wrapper APIs for Bond Marketplace

The bond marketplace wrapper API is a modified version of the wrapper API package that is
generated by Blockchain App Builder.

ORACLE

Complete the following steps if you regenerate the wrapper API package after adding custom
methods to the bond marketplace chaincode. To ensure that your changes are compatible, you
must modify the newly generated wrapper API package by using the bond marketplace
wrapper API package that is bundled with the product.

1. Use Blockchain App Builder to generate a wrapper API package for the bond marketplace

chaincode.

2. Extract the files from the package.

3. Copy the following folders from the wrapper API package that is bundled with the product
into the directory structure of the newly generated wrapper API package.

. createIDCSUser

o createAccountWithEnrollment

e purchaseBondToken Ofr purchaseToken

. “approveBondRedemption Or “approveedemption

¢ paylnterest

4-56

Chapter 4
Bond Marketplace Wrapper API Package

4. Add the following variables to the terraform.vars file.

idcs _url="<idcs url>"

idcs _port="<idcs port>"
cbdc_chaincode="<cbdc_chaincode>"
cbdc_channel="<cbdc channel>"
prepare timeout=<prepare timeout>
isolation level="<isolation level>"

5. Add an entry at the end of the terraform.vars file for the createIDCSUser and
createAccountWithEnrollment methods, as shown in the following example JSON string.

\"createIDCSUser\": {\"path\":\"/createIDCSUser\", \"type\": [\"POST\"]},
\"createAccountWithEnrollment\": {\"path\":\"/
createAccountWithEnrollment\", \"type\": [\"POST\"]}

The following text shows the general format of the JSON string in the function_path
variable in the terraform.vars file.

{"<methodName>": {"path":"/<methodFolderName>", "type": ["<HTTP Method POST
or GET>"11}}

6. Verify and update the names for the modified methods purchaseBondToken,
approveBondRedemption, payInterest to ensure that they are named correctly in the
function_path variable in the terraform.vars file.

7. Replace the main. tf file in the newly generated wrapper API package with the main.tf
file from the wrapper API package that is bundled with the product.

Deploy and Test Wrapper APIs for Bond Marketplace

ORACLE

Deploying the Wrapper APl Package

Before you can deploy the wrapper API package, you must update the required configuration
variables. Some configuration variables have default values, but you must manually update
any variable that contains a placeholder as its default value. Configuration variables are stored
inthe terraform. tfvars file in the wrapper API archive. For more information about
deploying wrapper APIs and about configuration variables, see Wrapper APls and Wholesale
CBDC Wrapper APl Package. The following table lists the configuration variables and their
defaults values for the bond marketplace wrapper API package.

Variable name Default value Description

compartment ocid <compartment ocid> The OCID of the compartment in
Oracle Cloud Infrastructure (OCI).

compartment name <compartment name> The name of the OCI
compartment.

identity domain <identity domain> The identity domain to use.

blockchain channel <blockchain channel> The name of the Oracle

Blockchain Platform channel
where the chaincode is deployed.

blockchain url <blockchain_url> The Oracle Blockchain Platform
URL associated with the
chaincode deployment.

4-57

ORACLE

Chapter 4

Bond Marketplace Wrapper API Package

Variable name

Default value

Description

ides_url <ides_url> The URL of the Identity Cloud
Service.
idecs port <idcs port> The port number of the Identity

Cloud Service.

cbdc_chaincode

<cbdc_chaincode>

The name of the wholesale
CBDC chaincode.

cbdc_channel

<cbdc_channel>

The channel where the wholesale
CBDC chaincode is deployed.

isolation level

<isolation level>

The isolation level for atomic
transactions. Typically, this is
serializable..

blockchain chaincode

WholesaleCBDC

The name of the chaincode to
generate wrapper APIs for.

blockchain sync

true

The sync value to include in the
payload for API calls.

blockchain timeout

6000

The timeout value to include in
the payload for API calls.

ven display name

WholesaleCBDC

The display name of the OCI
virtual cloud network.

application display name

WholesaleCBDC

The display name of the OCI
application.

gateway display name

WholesaleCBDC

The display name of API
Gateway.

deployment display name

WholesaleCBDC

The display name of the
deployment in API Gateway.

deployment path prefix

/WholesaleCBDC

The deployment path prefix in
API| Gateway, which specifies the
path where routes are deployed.
The deployment path prefix
variable must begin with a slash

0.

ocir repo name

wholesalecbdc

The OCI Registry repository
name. The ocir repo name
variable must be all lowercase
letters.

policy name

WholesaleCBDC

The name of the policy that
enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

Bond Marketplace Sample Process Flow

A typical process flow using the bond marketplace wrapper APIs follows these basic steps.

1. Admins use the createUserAccount and createTokenAccount methods to create individual

NFT accounts for all users.

2. Admins use the addrole method to assign the minter role to the officers of participating

financial institutions (for example, FI-1 Bond Issuer).

3. Financial institution officers (bond issuers) use the createBondToken method to issue

bonds as fractional NFTs.

4-58

ORACLE

10.

11.

Chapter 4
Bond Marketplace Wrapper API Package

Financial institution officers use the getTokenById method to review and confirm the details
of issued bonds.

Bond purchasers (for example, FI User) use the atomicTransaction method to call the
purchaseToken method to buy the fractional NFT bond and to make a payment using the
wholesale CBDC chaincode.

Purchasers use the balanceOfBatch method to verify the receipt of the bond in their wallet.

Purchasers use the getAccountBalance method (wholesale CBDC chaincode) to confirm
the transfer in their wholesale CBDC wallet.

Bond issuers use the atomicTransaction method to call the payInterest method to pay
periodic interest to bondholders using the wholesale CBDC chaincode.

Purchasers use the requestTokenRedemption method to submit a request to redeem their
bond after it has matured.

Financial institution officers use the atomicTransaction method to call the
approveTokenRedemption method to approve the redemption request and to transfer
wholesale CBDC funds to the bond holder.

The bond holder uses the balanceOfBatch method (bond marketplace chaincode) and
getAccountBalance method (wholesale CBDC chaincode) to verify that the bond was
redeemed and that they received funds in their wholesale CBDC wallet.

Postman Collection

The Postman collection in the bond marketplace wrapper API package includes additional
attributes and methods that support the bond marketplace chaincode. For more information,
see Wrapper APl Package Components.

4-59

Generic Token Frameworks

Oracle Blockchain Platform Digital Assets Edition includes chaincode and wrapper APIs for
generic token applications.

Fungible Token Framework

ORACLE

The fungible token framework uses the extended Token Taxonomy Framework standard that is
supported by Blockchain App Builder.

Fungible tokens are digital assets that are interchangeable and uniform in value. Blockchain
App Builder extends ERC-20 specification, which is based on the Token Taxonomy Framework
(TTF), to support all phases of the fungible token life cycle including creation, development,
management, and maintenance.

Example use cases:

Digital Currencies
Issuing digital representations of fiat currencies such as central bank digital currency (CBDC),
stablecoins, or deposit tokens for efficient transactions in a blockchain network.

Loyalty Programs
Creating reward points that can be earned and redeemed by customers, enhancing customer
engagement.

Micro-Payments
Enabling small-value transactions for blockchain transactions, marketplace services, Internet
of Things (I0T) systems, or content monetization platforms.

The enhanced version of Blockchain App Builder that is included with Oracle Blockchain
Platform Digital Assets Edition supports the following functions.

e Fractional units: Divide tokens into smaller units, allowing for precise value representation.

< Multiple fungible tokens: Create multiple fungible token types in a single smart contract (for
example, multiple currencies or rewards points).

e Minting and burning: Control the token supply in circulation by creating (minting) and
removing (burning) tokens.

e Account management: Manage account statuses, including activation, suspension, and
deletion, to ensure compliance and security. One user can have multiple token accounts
based on the various token types.

e Compliance controls: Enforce account-level daily limits and run auditing procedures to
adhere to regulatory requirements.

e Transfer: Move a specified amount of fungible tokens between accounts.

« Notary accounts: Require an additional approval step during minting, burning and transfer
operations, adding an extra layer of authorization to implement the maker-checker
principle.

5-1

Chapter 5
Fungible Token Framework

« Exchange pools: Exchange different types of tokens or assets atomically using liquidity
pools in the blockchain network.

* Role operations: Assign and enforce roles such as minter, burner, notary, auditor, and
organization auditor to provide specific privileges to any user account.

Oracle Blockchain Platform Digital Assets Edition includes a chaincode package and a
wrapper API package for the fungible token scenario. The chaincode package includes a
deposit token sample, which illustrates use of the framework. The wrapper API package
extends the REST API to support operations specific to the deposit token scenario.

Fungible Token Framework Chaincode Package

The fungible token framework uses the extended Token Taxonomy Framework standard that is
supported by Blockchain App Builder.

The deposit token sample illustrates the use of the fungible token generic framework, which is
based on the extended Token Taxonomy Framework standard supported by Blockchain App
Builder. The sample represents a system where deposit tokens represent fiat currency held at
financial institutions and are issued and managed by regulated financial institutions. The
sample specification file generates methods for initializing a deposit token, managing accounts,
assigning roles, and performing operations such as minting, transferring, and burning tokens. It
also provides notary accounts for approving minting and transfers, enforces compliance with
account-level daily limits, and enables auditing procedures.

The fungible token framework chaincode package is downloadable from the Oracle Blockchain
Platform console, and includes the following components.

* DepositToken.zip, an archive file that contains the packaged chaincode for
deployment.

* DepositToken.yaml, a specification file that you can use with Blockchain App Builder to
scaffold the DepositToken chaincode.

* DepositToken postman collection.json, a Postman collection that enables you to
test the APIs in the chaincode.

e README.md, a step-by-step guide for working with the chaincode.

To get the fungible token framework, in the Oracle Blockchain Platform Digital Assets console
click the Digital Assets tab and then select Fungible Token Framework.

For more details about using Postman collections, see the following topics.
* Generate a Postman Collection Using the CLI
e Generate a Postman Collection Using Visual Studio Code

* Endorsement Support in Postman Collections

Specification File

The specification file that is used to generate the deposit token chaincode includes the events
attribute. The chaincode events function supports event callbacks in generated chaincodes to
enable real-time notifications and trigger workflows. For more information about specification
files and the parameters used in specification files, see Input Specification File for Fungible
Tokens in Using Oracle Blockchain Platform.

ORACLE -

ORACLE

Chapter 5
Fungible Token Framework

The deposit token chaincode is based on the extended Token Taxonomy Framework standard,
with customizations to support the application scenario. The following behavior section of the
specification file is required to enable these customizations.

behavior: # Token behaviors

- divisible:
decimal: 2

- mintable:
mint approval required: true

- transferable

- burnable

- holdable

- roles:
minter role name: minter
notary role name: notary
mint approver role name: notary

The following code is the specification file for the deposit tokens sample.

#
Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.

#
assets:

This specification file is an example how to build any fungible token
application.

For a fungible token application, deposit token system has been used as an
example.

Deposit token is a digital representation of deposits held at commercial
banks, enabling transactions on blockchain networks while maintaining the
value and stability of traditional bank deposits.

- name: Deposit # Asset name
type: token # Asset type
standard: ttf+ # Token standard
events: true # Supports event code generation for non-GET methods

anatomy:
type: fungible # Token type
unit: fractional # Token unit

behavior: # Token behaviors

- divisible:
decimal: 2

- mintable:
mint approval required: true

- transferable

- holdable

- burnable

- roles:
minter role name: minter
notary role name: notary
mint approver role name: notary

5-3

ORACLE

properties:

Chapter 5
Fungible Token Framework

- name: Token Name # Custom attribute to represent the deposit

token name.
type: string

- name: Token to Currency Ratio # Custom attribute to specify the
token to currency ratio. This attribute is helpful for exchanging the tokens

with fiat currency.
type: number

customMethods:

Endorser Details in Chaincode Methods

Oracle Blockchain Platform Digital Assets Edition adds an endorsement parameter to the
request payload for all setter methods. The value of the parameter is either endorsers or
sameOrgEndorser. If the sameOrgEndorser parameter is true, transaction endorsements must
be from the same organization as the requester. The endorsers parameter specifies a list of
peers that must endorse the transaction. For more information, see Endorsement Support in
Postman Collections. The following table shows the endorser type for each method.

Method Endorser Type
activateAccount endorsers
addTokenAdmin sameOrgEndorser
addTokenAuditor sameOrgEndorser
addOrgAdmin sameOrgEndorser
addOrgAuditor sameOrgEndorser
addRole endorsers
approveMint sameOrgEndorser
executeHoldTokens endorsers
associateTokenToAccount endorsers
createAccount endorsers
getAccount endorsers
getAccountBalance endorsers
getAccountsByUser endorsers
getAccountTransactionHistory endorsers
getAccountTransactionHistoryWithFilters endorsers
FromRichHistDB

getNetTokens endorsers
getOnHoldIds endorsers
getTotalMintedTokens endorsers
getUserByAccountId endorsers
getUsersByRole endorsers
holdTokens endorsers

init endorsers
initializeDepositToken sameOrgEndorser
issueTokens sameOrgEndorser

5-4

Chapter 5
Fungible Token Framework

Method Endorser Type
rejectMint sameOrgEndorser
releaseHoldTokens endorsers
removeTokenAdmin sameOrgEndorser
removeTokenAuditor sameOrgEndorser
removeOrgAdmin sameOrgEndorser
removeOrgAuditor sameOrgEndorser
removeRole endorsers
requestMint sameOrgEndorser
burnTokens sameOrgEndorser
setMaxDailyAmount endorsers
setMaxDailyTransactionCount endorsers
suspendAccount endorsers
transferTokens endorsers
initializeExchangePoolUser sameOrgEndorser
createExchangePoolAccounts sameOrgEndorser
addConversionRate sameOrgEndorser
updateConversionRate sameOrgEndorser
mintWithFundingExchangePool sameOrgEndorser
tokenConversion endorsers
getConversionRate endorsers
getConversionHistory endorsers
getConversionRateHistory endorsers
getExchangePoolUser endorsers
getAccountOnHoldBalance endorsers
getAccountStatus endorsers
getAccountsByRole endorsers

Fungible Token Framework Wrapper APl Package

Oracle Blockchain Platform Digital Assets Edition includes a wrapper API package that
extends the REST API to support operations specific to a deposit token scenario.

ORACLE

The wrapper API package uses the API Gateway service and OCI Functions to deploy API
routes specifically designed for the deposit token application. The fungible token framework
wrapper API package is downloadable from the Oracle Blockchain Platform console, and

includes the following components.

* DepositTokenWrapperAPI.zip, an archive file that contains the wrapper API package
including the Terraform scripts required for deployment. You deploy this file to a Resource
Manager stack on Oracle Cloud Infrastructure (OCI) to create the necessary Oracle

resources for the Wrapper APIs.

* DepositToken WrapperAPI.postman collection.json, a Postman collection that
enables you to test the deployed wrapper APIs. The collection includes pre-configured
requests with endpoints and payloads that correspond to the APIs defined in the wrapper

API package.

5-5

Chapter 5
Fungible Token Framework

Wrapper APIs

activateAccount
Original method name: activateAccount

This POST method activates a token account. This method can be called only by a Token
Admin or the Org Admin of the specified organization. For any accounts created prior to the
account status functionality, you must call this method to see the account status to active.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Returns:

e On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"db0738d4a44f6d9c80b24fce7c518c07023f7bel%daab9b272eaf7886b4b925",
"payload": {
"assetType": "oaccountStatus",
"status_id":
"oaccountStatus~d5814d96d8517ac31727d60aace0519c58a425892ab0d378fcfb0a35771f65

ae",
"account id":
"oaccount~802bf8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6f826d6",
"status": "active"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 194

ORACLE -

Chapter 5
Fungible Token Framework

addTokenAdmin
Original method name: addTokenAdmin

This POST method adds a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

Payload:

{
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

* On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689%1lacdace3c557faebbc0ad%9a51671c10278ba6909350a6fedb08eed",
"payload": {

"msg": "User (Org Id: CB, User Id: cb) is already Token Admin."
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

addTokenAuditor
This POST method adds a user as a Token Auditor of the chaincode. This method can be
called only by a Token Admin of the chaincode.

ORACLE .

Chapter 5
Fungible Token Framework

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

* On success, a message that includes details of the user who was added as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"cd81lfocdc9e7clB8ece357dbf5¢c139%ef66ef2d6566be3bldde5f6d0a3fddbb2f0",
"payload": {
"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 196
}
}
addOrgAdmin

Original method name: addOrgAdmin

This POST method adds a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode or by an 0rg Admin of the specified
organization..

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

ORACLE -

ORACLE

Chapter 5
Fungible Token Framework

"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

e On success, a message that includes details of the user who was added as a Org Admin
of the chaincode.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {
"txid":

"06a84dffcb9156£7271dfb414e8c43b540595044c£9145£5£d56e9873797fc4a",
"payload": {
"msg": "Successfully added Org Admin (Org Id: CB, User Id: cb)"

}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 197

addOrgAuditor
This POST method adds a user as a 0rg Auditor of the chaincode. This method can be
called only by a Token Admin of the chaincode or an 0rg Admin of the specified organization.

Payload:

{
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"sameOrgEndorser": true

Parameters:

* orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

5-9

ORACLE

Chapter 5
Fungible Token Framework

Returns:

e On success, a message that includes details of the user who was added as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"44bbad35a1478cb714e32f7¢c£d551897868a203520aab9%cea5771d3aadclcf03",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"

b
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 198

addRole
Original method name: addrole

This method adds the role to the specified user and token.

Payload:

"tokenId": "{{bc-token-id}}",

"role": "role value (for example minter / burner / notary)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
e tokenId: string-— The ID of the token.
* role: string— The name of the role to add to the specified user.

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’

5-10

Chapter 5
Fungible Token Framework

"result": {

"txid":
"29%ea766deeB8e6d273ebal3c40a%fea75alaal85dc3c280d40695£6224¢c5¢52d93c",
"payload": {
"msg": "Successfully added role 'notary' to Account Id:

oaccount~2eb5£8a9bc561£8f41a4ea3be9511958cc6684ef14£2337ca396efc301b627d8
(Org-Id: CB, User-Id: manager user cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 201

approveMint
Original method name: approveMint

Notaries can call this POST method to approve a mint request.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"sameOrgEndorser": true

Parameters:
* tokenId: string— The ID of the token.
° operationld: string— The unique operation ID of the mint request to approve.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"ad537e£34a955b023b7c205b9%abtf06a6c79e4£dd761£tb24£41b8eb34126b66c0",
"payload": {
"msg": "Successfully minted 10 tokens to Account Id:

oaccount~9d9806fa92aalcdfdb34eaffacte830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB, User-Id: creator user cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 204

ORACLE -

ORACLE

Chapter 5
Fungible Token Framework

executeHoldTokens
Original method name: executeHoldTokens

Notaries call this method to approve a hold on tokens. The quantity of tokens put on hold
previously by the token owner is now transferred to the recipient. If the quantity value is less
than the actual hold value, the remaining amount is available again to the owner of the token.
If the roles behavior is specified in the behaviors section of the token model and the
notary role name Value is set, the caller account must have notary role. Otherwise, any caller
with an account can function as a notary.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"quantity": 1,

"endorsers": {{endorsers}}

Parameters:

* tokenId: string— The ID of the token.

* operationld: string— The unique operation ID of the mint request to approve.
* quantity: number — The number of held tokens to transfer.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"c1149aaa486abc4931d9024c18dfcb230bb321723d1160b0bf981c0011c4856a",
"payload": {
"msg": "Account Id:

oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb) is successfully executed '10' tokens
from Operation Id '8e3145'."

b
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 213

associateTokenToAccount
Original method name: associateTokenToAccount

This POST method associates a specified account ID to a specified token. It can be called by
a Token Admin Or Org Admin.

5-12

ORACLE

Chapter 5
Fungible Token Framework

Payload:

"accountId": "account id value",
"tokenId": "{{bc-token-id}}",
"endorsers": {{endorsers}}

Parameters:
e accountld: string— The ID of the account.
e tokenId: string-— The ID of the token.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"efc7381fb6fc6174a40e83f£5£09d2bbf7£6£490365e3bb£19d5502c2¢cfecd74",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~1lc6aa60e220b8fc70cafdcealed723ddb193a00321e5e0004def062816b77090",
"user id": "cbl2",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 0,
"onhold balance": 0,
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 100,
"daily transactions": 0,
"current date": "2024-12-11T00:00:00.000z2"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 216

createAccount
Original method name: createAccount

This method creates an account for a specified user and token. An account must be created

for any user who will have tokens at any point. Account IDs are formed by concatenating the
asset type and token ID and then creating a SHA-256 hash over a concatenation of the

5-13

Chapter 5
Fungible Token Framework

organization ID and user ID. This method can be called only by a Token Admin of the
chaincode or the org Admin of the specified organization..

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenType": "fungible",
"dailyLimits":

"{\"max_daily amount\":10000,\"max daily transactions\":100}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

* tokenType: TokenType — The type of token, which must be fungible.

* daily limits: DailyLimits — A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max daily amount value is the maximum amount of tokens that can
be transacted daily and max_daily transactions value is the maximum number of
transactions that can be completed daily.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£8ccbd836b893969531ab768098cd4a99e3b89cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fb67e26ealea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

ORACLE _—

ORACLE

Chapter 5
Fungible Token Framework

"token type": "fungible",

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.000z2"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

getAccount
Original method name: getAccount

This method returns account details for a specified user. This method can be called only by a
Token Admin Of the chaincode or the Account Owner of the account.

Query:
/getAccount?tokenId={{bc-token-id}}&orgIld={{bc-org-id}}s&userId={{bc-user-id}}
Parameters:

e tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {

"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",
"status": "active",

"account id":
"oaccount~cdc6fab5e64bc29£700£99da69£980d8cbb768cTelallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

5-15

ORACLE

Chapter 5
Fungible Token Framework

"onhold balance": 0,

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"

I
"encode": "JSON"

getAccountBalance
Original method name: getAccountBalance

This GET method returns the current balance for a specified account and token. This method
can be called only by a Token Admin or the AccountOwner of the account.

/getAccountBalance?tokenId={{bc-token-id}}&orgIld={{bc-org-id}}&userId={{bc-
user-id}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"msg": "Current Balance is: 100",

"user balance": 100

b
"encode": "JSON"

getAccountsByUser
Original method name: getAccountsByUser

This method returns a list of all accounts for a specified user. This method can be called only
by a Token Admin of the chaincode or the Account Owner of the account.

Query:

/getAccountsByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

5-16

Chapter 5
Fungible Token Framework

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal3a3426fa25¢cb8c28",

"user id": "admin user cb",
"org id": "CB",
"token type": "fungible",
"token id": "",
"token name": "",
"balance": 0,
"onhold balance": 0,
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.0002"

"bapAccountVersion": 0,

"assetType": "oaccount",

"account id":
"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.0002"

"bapAccountVersion": 0,

"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51afdfbo7e26ealea%9ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

ORACLE 5-17

ORACLE

Chapter 5
Fungible Token Framework

"org id": "CB",

"token type": "fungible",
"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"max daily amount": 10000,
"daily amount": 0,

"max daily transactions": 100,
"daily transactions": 0,
"current date": "2024-12-09T00:00:00.000z2"

1,
"encode": "JSON"

getAccountTransactionHistory
Original method name: getAccountTransactionHistory

This GET method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner.

/getAccountTransactionHistory?tokenId={{bc-token-id}}&orgld={{bc-org-
id}}&userId={{bc-user-id}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transaction id":
"otransaction~64c5a4830949eael1424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

n
r

"transacted amount": 10,

"timestamp": "2024-12-11T13:37:28.000Z",
"balance": 550,

"onhold balance": 10,

"token id": "USD",

"category": "category value",
"description": "description value",
"transacted _account":

5-18

ORACLE

Chapter 5
Fungible Token Framework

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b%bf06a6c79e4fdd761£b24£41b8eb34126b66c0

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9%fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.000z2",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aa1la7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

5-19

Chapter 5
Fungible Token Framework

1,
"encode": "JSON"

getAccountTransactionHistoryWithFiltersFromRichHistDB
Original method name: getAccountTransactionHistoryWithFiltersFromRichHistDB

This method returns the account transaction history details from the rich history database.
This method can be called only by a Token Admin or the AccountOwner of the account. Before
you can use this method, you must run Oracle Autonomous Database with Oracle REST Data
Services (ORDS) and OAuth enabled, as described in Oracle Database View Definitions for
Wholesale CBDC.

/getAccountTransactionHistoryWithFiltersFromRichHistDB?tokenId={{bc-token-
id}}&orgId={{bc-org-id}}&userId={{bc-user-id}}&customEndpoint=custom endpoint
valuesbearerToken=bearer token
value&filters={"pageSize":20, "bookmark":"", "startTime":"2022-01-16T15:16:36+00
:00","endTime":"2022-01-17T15:16:36+00:00"}

Parameters:
* tokenId: string— The ID of the token.

* orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e customEndpoint — The RESTful service endpoint of the rich history database to fetch the
transaction history from.

e bearerToken — The token to use to call the RESTful endpoint to ensure that the request is
authorized.

e filters: string— An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the default
page size is 20. The Bookmark property determines the starting index of the records to
return. The StartTime and EndTime properties must be specified in RFC-3339 format.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transaction id":
"otransaction~64c5a4830949eael1424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

n
r

"transacted amount": 10,
"timestamp": "2024-12-11T13:37:28.000Z",
"balance": 550,

ORACLE =20

ORACLE

Chapter 5
Fungible Token Framework

"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b9%abf06a6c79e4£dd761£b24£41b8eb34126b66c0

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9%fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.000z2",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aa1la7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.0002",
"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",
"description": "description value",

5-21

ORACLE

Chapter 5
Fungible Token Framework

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

1,
"encode": "JSON"

getNetTokens
Original method name: getNetTokens

This GET method returns the total net number of tokens available in the system for a specified
token. The net token total is the amount of tokens remaining after tokens are burned. This

method can be called only by a Token Admin of the chaincode, or an O0rg Admin of the
specified organization.

/getNetCBDCTokens?tokenId={ {bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
llerrorll: "",
"result": {

"payload": {

"msg": "Net supply of token for Token Id: USD is 878 tokens.",
"quantity": 878

b

"encode": "JSON"

getOnHoldIds
Original method name: getOnHoldIds

This GET method returns a list of all of the holding IDs for a specified user and token. This
method can be called only by a Token Admin, Org Admin, or the AccountOwner of the account.

/getOnHoldIds?tokenId={{bc-token-id}}&orgIld={{bc-org-id}}&userId={{bc-user-
id}}

Parameters:

* tokenId: string— The ID of the token.

5-22

Chapter 5
Fungible Token Framework

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’
"result": {

"payload": {

"msg": "Holding Ids are:
ohold~cbdc~USD~8e3147, ohold~cbdc~USD~8e315",
"holding ids": [
"ohold~cbdc~USD~8e3147",
"ohold~cbdc~USD~8e315"

b
"encode": "JSON"

getTotalMintedTokens
Original method name: getTotalMintedTokens

This GET method returns the total number of minted tokens for a specified token. This method
can be called only by a Token Admin Or Org Admin.

Query:
/getTotalMintedTokens?tokenId={{bc-token-id}}
Parameters:

* tokenId: string-— The ID of the token.

Return Value Example:

"returnCode": "Success",
"errorll: "",
"result": {

"payload": {

"msg": "Total minted token for Token Id: USD is 910 tokens.",
"quantity": 910

}I

"encode": "JSON"

getUserByAccountId
Original method name: getUserByAccountId

ORACLE e

ORACLE

Chapter 5
Fungible Token Framework

This GET method returns the user details for a specified account. This method can be called
by the Token Admin, Token Auditor, Or Org Auditor.

Query:
/getUserByAccountId?accountId=account id value
Parameters:

e accountld: string— The ID of the account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"token id": "USD",
"user id": "admin user cb",

"Org_id" : "CBH
t
"encode": "JSON"

getUsersByRole
Original method name: getUsersByRole

This method returns a list of all users for a specified role and token. This method can be called
only by a Token Admin.

/getUsersByRole?tokenId={{bc-token-id}}&role=role value (for example minter /
burner / notary)

Parameters:
e tokenId: string-— The ID of the token.

* role: string— The name of the role to search for.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"users": [

{
"token id": "USD",
"user id": "creator user cb",
"Org_id" . "CB"

5-24

Chapter 5
Fungible Token Framework

"token id": "USD",
"user id": "cb4",
"Org_id" : "CB"

I
"encode": "JSON"

holdTokens
Original method name: holdTokens

This method creates a hold on behalf of the owner of the tokens with the to_account id
account. A notary account is specified, which is responsible to either complete or release the
hold. When the hold is created, the specified token balance from the payer is put on hold. A
held balance cannot be transferred until the hold is either completed or released. The caller of
this method must have an account already created.

Payload:

"tokenId": "{{bc-token-id}}",

"operationId": "operation id value",

"toOrgId": "to org id value",

"toUserId": "to user id value",

"notaryOrgId": "notary org id value",
"notaryUserId": "notary user id value",
"quantity": 1,

"timeToExpiration": "time to expiration value",
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e operationId: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

e toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

* toUserlId: string— The user name or email ID of the receiver.

* notaryOrgld: string — The membership service provider (MSP) ID of the notary in the
current organization.

° notaryUserId: string— The user name or email ID of the notary.

° quantity: number — The number of tokens to put on hold.

ORACLE .

Chapter 5
Fungible Token Framework

° timeToExpiration — The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:067Z.

e infoDetails: JSON — The description and category as shown in the following example.

"category" : "category input",
"description" : "description input"

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e575d339299bb98afe83207e749cd07654£209673¢c84c6973738b6094da33062",
"payload": {
"msg": "AccountId

oaccount~51e676d7182a02ea7418e£58a6d54ecfe3858ef40b4f£fb3d8590320da3921594
(Org-Id: CB , User-Id: issuer user cb) is successfully holding 10 tokens"

b
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 211

init
Original method name: init

This method is called when the chaincode is deployed. The user information is saved as the
Token Admin of the chaincode.

Payload:

{
"adminList": "[{\"org id\":\"{{bc-org-id}}\",\"user id\":\"{{bc-admin-
user}}\"}1"

}

Parameters:

* adminList array—Anarray of {user id, org id} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

ORACLE -

Chapter 5
Fungible Token Framework

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"fdb7dc89832¢c8045a333823b77fa24ae628178148dc930b3550040e070d7cd807",
"payload": "",
"encode": "UTF-8",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 263

initializeDepositToken
Original method name: initializeDepositToken

This method creates a token and initializes the token properties. The asset and its properties
are saved in the state database. This method can be invoked only by a Token Admin of the
chaincode.

Payload:

{
"tokenAsset": "{\"token id\":\"{{bc-token-id}}
\",\"token desc\":\"token desc value\"}",
"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset is passed as the parameter to this
method. The properties of the token asset are described in the model file.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

e On success, a JSON representation of the token asset that was created.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"aaTladfdcc214elal041a5a6fb7¢ca7530£08256559e538c9£9582e6£d12¢c9e65¢c8",
"payload": {
"assetType": "otoken",

"events": false,
"token id": "tl1",

ORACLE 5-27

ORACLE

b

Parameters:

Chapter 5
Fungible Token Framework

"token name": "cbdc",
"token desc": "token desc value",
"token standard": "ttf+",
"token type": "fungible",
"token unit": "fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"burnable",

"holdable",
"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner",
"notary role name": "notary",
"mint approver role name": "notary",
"burn approver role name": "notary"

}I
"mintable": {
"max mint quantity": 1000,
"mint approval required": true
}I
"burnable": {
"burn approval required": true
}I
"divisible": {
"decimal": 2
}I
"token to currency ratio": 999

"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 267

getAccountHistory
Original method name: getAccountHistory

This GET method returns account history details for a specified user and token.

/getAccountHistory?tokenId={{bc-token-id}}&orgIld={{bc-org-id}}&userId={{bc-
user-id}}

tokenld: string— The ID of the token.

orgId: string— The membership service provider (MSP) ID of the user in the current
organization.

5-28

ORACLE

Chapter 5
Fungible Token Framework

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"errorﬂ: "",
"result": {
"payload": [
{

"trxId":"2gsdhl17£££222467e5667be042e33cel8e804b3e065ccalbde306£837e416d7c3e",
"timeStamp":1629718288,
"value": {
"assetType":"oaccount",

"account id":"oaccount~digicur~b4£45440aa2a7942db64443d047027e9d714d62cba5¢c3d5
46d64£368642£622f",

"user id":"userl",

"org id":"OrglMSp",

"token id":"digiCurrlO1",

"token name":"digicur",

"balance":100,

"onhold balance":0,

"bapAccountVersion": 1

"trxId":"9fd07£££222467e5667be042e33cel8e804b3e065ccalbde306£837e416d7c3e",
"timeStamp":1629718288,
"value": {
"assetType":"oaccount",

"account id":"oaccount~digicur~b4£45440aa2a7942db64443d047027e9d714d62cba5c3d5
46d64£368642£622f",

"user id":"userl",

"org id":"OrglMSp",

"token id":"digiCurrlO1",

"token name":"digicur",

"balance":0,

"onhold balance":0,

"bapAccountVersion": 0

1,
"encode": "JSON"

rejectMint
Original method name: rejectMint

This method can be called by a notary to reject a minting request.

5-29

ORACLE

Chapter 5
Fungible Token Framework

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"sameOrgEndorser": true

Parameters:
* token id: string— The ID of the token to reject minting.
* operation id: string— The unique operation ID that represents the mint request.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"64c5a4830949%eae1424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22",
"payload": {
"msg": "Successfully rejected mint request with Operation Id

'opl234"' to mint 10 tokens of token id USD"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 205

releaseHoldTokens
Original method name: releaseHoldTokens

This POST method releases a hold on tokens. The transfer is not completed and all held
tokens are available again to the original owner.

Payload:

"tokenId": "{{bc-token-id}}",
"operationId": "operation id value",
"endorsers": {{endorsers}}

Parameters:
* token id: string— The ID of the token.

* operation id: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

5-30

Chapter 5
Fungible Token Framework

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"f04ba8895d52bc636d843£88476002bc99d01480c36be87¢c8fa259cd47a29380",
"payload": {
"msg": "Successfully released '1l0' tokens from Operation Id

'8e3144' to Account Id:
oaccount~51e676d7182a02ea7418e£58a6d54ecfe3858ef40b4ffb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb)."

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 214

removeTokenAdmin
Original method name: removeTokenAdmin

This POST method removes a user as a Token Admin Of the chaincode. This method can be
called only by a Token Admin of the chaincode. An admin cannot remove themselves.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user_ id: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
llerrorﬂ: "ll,
"result": {

"tXid" .

ORACLE _—

ORACLE

Chapter 5
Fungible Token Framework

"6a3b9b568d04b5beb29830£91efede8c6310b6cE36940cectb4ab690fbfde739",
"payload": {
"msg": "Successfully removed Token Admin (Org Id: CB, User Id:

cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 218
}
}
removeTokenAuditor

Original method name: removeTokenAuditor

This POST method removes a user as a Token Auditor of the chaincode. This method can
be called only by a Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"a886a6040fbc76374a3c78c89ab0ffc9f708391cc52390169b£3b878cf40c67b",
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 219
}
}
removeOrgAdmin

Original method name: removeOrgAdmin

5-32

ORACLE

Chapter 5
Fungible Token Framework

This POST method removes a user as a Org Admin of the chaincode. This method can be
called only by a Token Admin or Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

e user id: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e2a634£6093£8901984e20£f£86a513fabb7c3ade7cc9e27d9734b4aaf6c88597",
"payload": {

"msg": "Successfully removed Org Admin (Org Id: CB, User Id: cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 220

removeOrgAuditor
Original method name: removeOrgAuditor

This POST method removes a user as a Org Auditor of the chaincode. This method can be
called only by a Token Admin or Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

5-33

ORACLE

Chapter 5
Fungible Token Framework

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"c3bc720461004a53b37¢c68d4bb264858088d980bc093a0a3ebb62a32974£b306",
"payload": {
"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
ch)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 221
}
}
removeRole

Original method name: removeRole

This method removes a role from a specified user. This method can be called only by a Token
Admin of the chaincode or an Org Admin of the specified organization.

Payload:

"tokenId": "{{bc-token-id}}",

"role": "role value (for example minter / burner / notary)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

* role: string— The name of the role to remove from the specified user. The mintable
and burnable behaviors correspond to the minter role name and burner role name
properties of the specification file.

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

5-34

ORACLE

Chapter 5
Fungible Token Framework

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"274£0d0a2¢c4c3929817£fb85b2e857519695¢3¢238¢ccf9903b084b87e9%beTeel2",
"payload": {
"msg": "Successfully removed role 'notary' from Account Id:

oaccount~2eb5f8a9bc561£f8f41adeal3be9511958cc6684ef14£2337ca396efc301b627d8
(Org-Id: CB, User-Id: manager user cb)"
by
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 200

requestMint
Original method name: requestMint

This method can be called by a minter to send a request to the notary to create a specified
amount of tokens.

Payload:

"tokenId": "{{bc-token-id}}",

"operationId": "operation id value",
"notaryOrgId": "notary org id value",
"notaryUserId": "notary user id value",
"quantity": 1,

"timeToExpiration": "time to expiration value",
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"sameOrgEndorser": true

Parameters:
e tokenId: string— The ID of the token to mint.
e operationId: string— The unique operation ID that represents the mint request.

* notaryOrgld: string— The membership service provider (MSP) ID of the minter notary
who will process the request.

* notaryUserId: string— The user name or email ID of the minter notary who will process
the request.

* quantity: number — The amount of tokens to mint.

5-35

ORACLE

Chapter 5
Fungible Token Framework

° timeToExpiration — The time after which the minting request expires and is no longer
valid.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"06035071415d74aal1a7¢c18449149c937d886cae76a832c44cf8d98e84586e76e",
"payload": {
"msg": "AccountId

oaccount~9d9806fa%2aalc4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB , User-Id: creator user cb) has successfully submitted request to
mint 10 tokens"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",

"blockNumber": 202

burnTokens
Original method name: burnTokens

This POST method deactivates, or burns, tokens from the transaction caller's account. The
caller of this method must have an account and the burner role. The quantity must be within
the decimal values specified by the decimal parameter of the divisible behavior in the
specification file. This method can be called by the AccountOwner of the account with the
burner role.

Payload:

"tokenId": "{{bc-token-id}}",

"quantity": 1,

"infoDetails": "{\"category\":\"category
value\",\"description\":\"description value\"}",

"sameOrgEndorser": true

Parameters:

5-36

ORACLE

Chapter 5
Fungible Token Framework

* tokenId: string— The ID of the token.
e quantity - The number of tokens to burn.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

* On success, a success message with the quantity of tokens burned and the account ID.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"aff0b2dbb163ec8076747525db81fbe8£678ac88a277c5£234337£0747ebla8d",
"payload": {
"msg": "Successfully burned 10 tokens from account id:

oaccount~9d9806fa92aalcd4fdb34eaffacte830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB, User-Id: creator user cb)"

b
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 96

setMaxDailyAmount
Original method name: setMaxDailyAmount

This POST method is used to set the maxDailyAmount parameter in the account details for the
specified amount. This method can be called only by a Token Admin of the chaincode or by an
Org Admin of the specified organization.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"maxDailyAmount": 1,
"endorsers": {{endorsers}}

5-37

Chapter 5
Fungible Token Framework

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
e tokenId: string— The ID of the token.

e maxDailyAmount: number — The maximum daily amount value for the specified account,
which defines the maximum amount that can be transacted daily.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"28682e0564e4721b6c1aB8ecl06£8c5¢c98319€9439959dbb9£83d8e6£111d9975",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~cdc6fa5e64bc29£700£99da69£980d8chbb768c7elallddl7274e75651f6afafe",
"user id": "admin user cb",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 0,
"onhold balance": 0,
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.000z2"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 222

setMaxDailyTransactionCount
Original method name: setMaxDailyTransactionCount

This POST method is used to set the maxDailyTransactions parameter in the account details
for the specified amount. This method can be called only by a Token Admin of the chaincode
or by an Org Admin of the specified organization.

ORACLE - 38

Chapter 5
Fungible Token Framework

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",
"maxDailyTransactions": 1,
"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
* tokenId: string— The ID of the token.

* maxDailyTransactions: number — The maximum daily amount value for the specified
account, which defines the maximum number of transactions allowed per day.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"8b6fb01de697562ee098110054£05d4a314933bd11e£471991cb43e25b68bad9",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"user id": "admin user cb",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 0,
"onhold balance": 0,
"max daily amount": 10000,
"daily amount": O,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.0002"
}
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 223

ORACLE i

ORACLE

Chapter 5
Fungible Token Framework

suspendAccount
Original method name: suspendAccount

This method suspends a fungible token account. It throws an error if an accountStatus value
is not found in ledger. This method can be called only by a Token Admin of the chaincode or
by an org Admin of the specified organization.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
e tokenId: string-— The ID of the token.

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£fc97a6b1304247774397fed1294",
"payload": {
"assetType": "oaccountStatus",
"status_id":

"oaccountStatus~d5814d96d8517ac31727d60aace0519c58a425892ab0d378£fcfb0a35771£65
ae",
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"status": "suspended"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 195

5-40

ORACLE

Chapter 5
Fungible Token Framework

transferTokens
Original method name: transferTokens

This method transfers tokens from the caller to a specified account. The caller of the method
must have an account. The quantity must be within the decimal values specified by the
decimal parameter of the divisible behavior in the specification file.

Payload:

"tokenId": "{{bc-token-id}}",
"toOrgId": "to org id value",

"toUserId": "to user id value",
"quantity": 1,
"infoDetails": "{\"category\":\"category

value\",\"description\":\"description value\"}",
"endorsers": {{endorsers}}

Parameters:
e tokenId: string— The ID of the token.

e toOrgId: string-— The membership service provider (MSP) ID of the receiver (payee) in
the current organization.

* toUserId: string— The user name or email ID of the receiver.
* quantity: number — The number of tokens to transfer.

e infoDetails: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"d613b2494b965811b2fa2106152b7085£2d6d7d43e949b10b8668722d3636£e7",
"payload": {
"msg": "Successfully transferred 10 tokens from account id:

oaccount~9d9806fa92aalc4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal
(Org-Id: CB, User-Id: creator user cb) to account id:
oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4£fb3d8590320da3921594
(Org-Id: CB, User-Id: issuer user cb). Only 999 number of transactions and

5-41

ORACLE

Chapter 5
Fungible Token Framework

1990 amount transfer left for today: 12/11/2024"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 224

initializeExchangePoolUser
Original method name: initializeExchangePoolUser

This method initializes the exchange pool user, which is a one-time activity. This method can
be called only by the Token Admin.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£c97a6b1304247774397£ed1294",
"payload": {
"assetType": "oconversion",

"convertor id":
"bcb1£3b1442¢c625d3¢ce205660c5e717c5858alfelel2c325d£799%9a851ceaalob”,
"org id": "OrglMSP",
"user id": "exchangepooluser"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 196

createExchangePoolAccounts
Original method name: createExchangePoolAccounts

5-42

Chapter 5
Fungible Token Framework

This method creates exchange pool token accounts for a given array of token IDs. This
method can be called only by a Token Admin of the chaincode.

Payload:

"tokenIds": "[{{bc-token-id}}]",
"sameOrgEndorser": true

Parameters:
* token_ids: string [] —An array of token IDs.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£c97a6b1304247774397£fed1294",
"payload": [
{
"account id":
"oaccount~cc9d84£6d4a5976532493e£5200c9603e138adc35166ffd5fdlaad9c1647£034",
"token id": "USD",
"status": "created"
}I
{
"account id":
"oaccount~3d4933111ec8bdbcclebb4d3f2b2c390deb929¢cfa534f9c6ada8eb3bac04alicl",
"token id": "INR",
"status": "created"

1,

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 197

addConversionRate
Original method name: addConversionRate

This method adds a conversion rate for a pair of tokens. The token conversion rate can be
specified up to eight decimal places. This method can be called only by a Token Admin of the
chaincode.

ORACLE - 43

Chapter 5
Fungible Token Framework

Payload:

{
"fromTokenId": "from token id value",
"toTokenId": "to token id value",

"tokenConversionRate": 10,
"sameOrgEndorser": true

Parameters:
e fromTokenId: string— The ID of the token to convert from.
e toTokenId: string— The ID of the token to convert to.

e tokenConversionRate: number — The rate at which to convert fromTokenId token to the
toTokenId token.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c00b802b01£fc97a6b1304247774397fed1294",
"payload": {
"assetType": "oconversionRate",

"conversion rate id":
"oconversionRate~91c7eeb0614e7a50b1ld5ecad559£fchbc80094034648b£405¢c9491dacf8d578
73b",

"from token id": "USD",

"to _token id": "INR",

"conversion rate": 10

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 189

updateConversionRate
Original method name: updateConversionRate

This method updates the current conversion rate for a pair of tokens. The token conversion
rate can be specified up to eight decimal places. This method can be called only by a Token
Admin of the chaincode.

ORACLE -

Chapter 5
Fungible Token Framework

Payload:

{
"fromTokenId": "from token id value",
"toTokenId": "to token id value",

"tokenConversionRate": 20,
"sameOrgEndorser": true

Parameters:
e fromTokenId: string— The ID of the token to convert from.
e toTokenId: string— The ID of the token to convert to.

e tokenConversionRate: number — The rate at which to convert fromTokenId token to the
toTokenId token.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c00b802b01£fc97a6b1304247774397fed1294",
"payload": {
"assetType": "oconversionRate",

"conversion rate id":
"oconversionRate~91c7eeb0614e7a50b1ld5ecad559£fchbc80094034648b£405¢c9491dacf8d578
73b",

"from token id": "USD",

"to _token id": "INR",

"conversion rate": 20

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 208

mintWithFundingExchangePool
Original method name: mintWithFundingExchangePool

This method mints tokens in the caller's account based on the specified token ID and quantity.

A percentage of tokens from the minted quantity is then transferred to the exchange pool
token account.

"tokenId": "{{bc-token-id}}",
"tokenQuantity": 100,

ORACLE c s

ORACLE

Chapter 5
Fungible Token Framework

"percentageTokenToExchangePool": 20,
"sameOrgEndorser": true

Parameters:
e tokenId: string— The ID of the token to mint.
* tokenQuantity: number — The total number of tokens to mint.

e percentageTokenToExchangePool: number — The percentage of minted tokens to transfer
to the exchange pool token account.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£c97a6b1304247774397£ed1294",
"payload": {

"msg": "Successfully minted 100 tokens to Account Id:
oaccount~abc74791148b761352b98df58035601b6£5480448ac2b4a3a7eb54bdbebf48eb
(Org-Id: OrglMSP, User-Id: admin) and Successfully transfered 20 tokens to
exchange pool Account with Account Id:
oaccount~cc9d84£6d4a5976532493e£5200c9603e138adc35166ffd5fdlaad9cl1647£034
(Org-Id: OrglMSP, User-Id: exchangepooluser) "

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 209

tokenConversion
Original method name: tokenConversion

This method converts tokens from the caller's account to the account specified by the

to token id, to org idand to user id values. This method can be called by the Token
Admin of the chaincode and by any token account owner. An exchange pool user cannot call
this method.

"fromTokenId": "from token id value",
"toTokenId": "to token id value",
"toOrgId": "to org id value",
"toUserId": "to user id value",
"tokenQuantity": 5,

"endorsers": {{endorsers}}

5-46

Chapter 5
Fungible Token Framework

Parameters:
e fromTokenId: string— The ID of the token to convert from.
e toTokenld: string— The ID of the token to convert to.

e toOrgId: string— The membership service provider (MSP) ID of the user in the current
organization to receive the tokens.

e toUserld: string— The user name or email ID of the user to receive the tokens.
* tokenQuantity: number — The total number of tokens to transfer.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"e21d91d98091df77£90105d84074c0b802b01£c97a6b1304247774397fed1294",
"payload": {

"msg": "Succesfully converted 5 of tokens with tokenId: [USD]
from AccountId:
oaccount~abc74791148b761352b98d£58035601b6£5480448ac2bd4a3a7eb54bdbebf48eb
(Org-Id: OrglMSP, User-Id: admin) to 100 of tokens with tokenId: [INR] to
AccountId:
oaccount~25e2e66718bbdbb59%aeadc32acebect0e09d912b2578d4933d377ae5d0628f1e
(Org-Id: OrglMSP, User-Id: user) as per the conversion rate of 20"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 213

getConversionRate
Original method name: getConversionRate

This GET method gets the current conversion rate for a pair of tokens. This method can be
called by the Token Admin, Token Auditor, Org Admin, OF Org Auditor

Query:
/getConversionRate?fromTokenId=from token id value&toTokenId=to token id value
Parameters:

e fromTokenId: string— The ID of the token to convert from.

e toTokenId: string— The ID of the token to convert to.

ORACLE 5-47

ORACLE

Chapter 5
Fungible Token Framework

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"assetType": "oconversionRate",

"conversion rate id":
"oconversionRate~91c7eeb0614e7a50bld5ecad559£fchbc80094034648b£405¢c9491dacf8d578
73b",

"from token id": "USD",

"to _token id": "INR",

"conversion rate": 20

I
"encode": "JSON"

getConversionHistory
Original method name: getConversionRate

This GET method returns the token conversion history for a specified token account. This
method can be called by the Token Admin, Token Auditor, Org Admin, Org Auditor, or the
token account owner.

Query:

/getConversionHistory?tokenId={{bc-token-id}}&orgId={{bc-org-id}}&userId={{bc-
user-id}}

Parameters:
e tokenId: string-— The ID of the token.

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transaction id":
"otransaction~34eddl9e03ec8bbbc77bc3372081410a824a5¢c10£9%9aa522b3a6390d7e8cbllct

]
4

"from account id":
"oaccount~abc74791148b761352b98d£58035601b6£5480448ac2b4a3a’eb54bdbebf48eb",
"to account id":

5-48

ORACLE

Chapter 5
Fungible Token Framework

"oaccount~25e2e66718b6dbb59%aea%c32acebec60e09d912b2578d4933d377ae5d0628f1e",
"transacted amount": 5,
"converted amount": 100,
"conversion rate": "20",
"from token id": "USD",
"to token id": "INR",
"balance": 75,
"onhold balance": 0,
"timestamp": "2022-11-30T11:03:20.000Z",
"transaction type": "TOKEN CONVERSION DEBIT"
}
]I
"encode": "JSON"

getConversionRateHistory
Original method name: getConversionRate

This method returns the token conversion rate history for a pair of tokens. This method can be
called by the Token Admin, Token Auditor, Org Admin, Org Auditor, and by any token
account owner.

/getConversionRateHistory?fromTokenId=from token id
value&toTokenId=to token id value

Parameters:

° fromTokenld: string — The ID of the token to convert from, for the purpose of calculating
the conversion rate.

° toTokenId: string— The ID of the token to convert to, for the purpose of calculating the
conversion rate.

Returns:

* On success, a JSON object with conversion rate history details.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"trxId":
"Oblba7bc2620e1438b6580365e5c0ab852247ccfabal3eb2157d3bacal2¢c0e521",
"timeStamp": "2022-11-30T10:23:38.000z2",
"value": {
"assetType": "oconversionRate",
"conversion rate id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559£fchbc80094034648b£405¢c9491dacf8d578
73b",

5-49

Chapter 5
Fungible Token Framework

"from token id": "USD",
"to token id": "INR",
"conversion rate": 20
}
}I
{
"trxId":
"36fc40ddb3dB8308ee7e156af700dal31d78d941£e390£c57985b7589e7035d5¢",
"timeStamp": "2022-11-30T10:13:18.000Z",
"value": {
"assetType": "oconversionRate",
"conversion rate id":
"oconversionRate~91c7eeb0614e7a50b1d5ecad559£fchbc80b94034648b£405¢c9491dacf8d578

73b",
"from token id": "USD",
"to token id": "INR",
"conversion rate": 10
}
}
]I
"encode": "JSON"
}
}
getExchangePoolUser

Original method name: getExchangePoolUser

This GET method returns the organization ID and user ID values for the exchange pool user.
This method can be called only by a Token Admin or Token Auditor of the chaincode.

Query:
/getExchangePoolUser
Parameters:

L none

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"assetType": "oconversion",

"convertor id":
"bcbl1£f3b1442c625d3¢ce205660c5e717¢c5858alfelel?2c325df799a851ceaalob”,
"org id": "OrglMSP",
"user id": "exchangepooluser"
b
"encode": "JSON"

ORACLE - 50

ORACLE

Chapter 5
Fungible Token Framework

getAccountOnHoldBalance
Original method name: getAccountOnHoldBalance

This GET method returns the current on-hold balance for a specified account and token. This
method can be called only by a Token Admin, Token Auditor, Org Admin, Org Auditor, or the
AccountOwner of the account.

Query:
/getAccountOnHoldBalance?tokenId={{bc-token-id}}&orgId={{bc-org-

id}}&userId={{bc-user-id}}

Parameters:
e tokenId: string— The ID of the token.

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

* userId: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"errorH: "",
"result": {

"payload": {

"msg":"Total Holding Balance is: 0","holding balance":0

I
"encode": "JSON"

getAccountStatus
Original method name: getAccountStatus

This GET method retrieves the current status of the token account. This method can be called
by the Token Admin, Token Auditor, Org Admin, Org Auditor, or by the token account owner.

Query:

/getAccountStatus?tokenId={{bc-token-id}}&orgId={{bc-org-id}}&userId={{bc-
user-id}}

Parameters:
e tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

5-51

Chapter 5
Fungible Token Framework

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"assetType": "oaccountStatus",
"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96

a7,
"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8al3ba68ladcfbe287£f9cl”,
"status": "active"

I
"encode": "JSON"

getAccountsByRole
Original method name: getAccountsByRole

This method returns a list of all account IDs for a specified role. This method can be called
only by a Token Admin of the chaincode.

Query:

/getAccountsByRole?tokenId={{bc-token-id}}&role=role value (for example
minter / burner / notary)

Parameters:
e tokenId: string-— The ID of the token.

* role: string— The name of the role to search for.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {

"payload": {

"accounts":
["oaccount~digicur~b4£45440aa2a7942db64443d047027e9d714d62cbabc3d546d64£368642
£622£f"]

}I
"encode": "JSON"

ORACLE -

Chapter 5
Non-Fungible Token Framework

Non-Fungible Token Framework

ORACLE

The non-fungible token framework uses the extended ERC-721 standard that is supported by
Blockchain App Builder.

Non-fungible tokens (NFTs) are unique digital assets that represent ownership of a specific
item or piece of content. Unlike fungible tokens, each NFT has distinct properties. Blockchain
App Builder extends the ERC-721 standard to support the creation and management of NFTs,
enabling developers to tokenize unique real-world assets (RWASs) and native digital assets
efficiently.

Example use cases:

Digital Art
Tokenizing artworks to provide artists with a platform to sell and track ownership of their
creations.

Collectibles
Creating digital collectibles such as trading cards, gaming items, and music, with verifiable
ownership.

Property Records
Representing records as NFTs to simplify the ownership, transfer, and management of

property.

Letters of Credit
Representing a letters of credit as NFTs to securely transfer trade finance documents,
ensuring authenticity, transparency, and automated completeion of global transactions.

Intellectual Property
Assigning ownership of patents or trademarks to NFTs, facilitating easier licensing and
transfer.

The enhanced version of Blockchain App Builder that is included with Oracle Blockchain
Platform Digital Assets Edition supports the following functions.

* Unique identifiers: Each NFT is assigned a distinct identifier, ensuring its uniqueness and
traceability. Only whole NFT creation is supported, which means each NFT represents a
unique, indivisible asset without fractional ownership. For information about fractional NFT
support, see Combined Token Framework.

* Metadata association: Attach metadata to tokens to provide detailed information about the
asset such as descriptions, images, or external links. Metadata properties are fixed once
the NFT is created.

e Custom attributes: Specify additional properties that can be updated by the NFT owner.

e Minting and burning: Manage the life cycle of the tokenized assets by creating (minting)
and removing (burning) NFTs.

* Ownership transfer: Transfer ownership of NFTs between parties with secure methods that
ensure authenticity and provenance.

e Locking: Lock an NFT in a vault so that it cannot be transferred to or burned by any user.

* Role operations: Assign and enforce roles such as minter, burner to provide specific
privileges to any user account.

Oracle Blockchain Platform Digital Assets Edition includes a chaincode package and a
wrapper API package for the non-fungible token scenario. The chaincode package includes the

5-53

Chapter 5
Non-Fungible Token Framework

NFT Art Collection Marketplace sample, which illustrates use of the framework. The wrapper
API package extends the REST API to support operations specific to the NFT Art Collection
Marketplace scenario.

Non-Fungible Token Framework Chaincode Package

ORACLE

The non-fungible token framework uses the extended ERC-721 standard that is supported by
Blockchain App Builder.

The NFT Art Collection Marketplace sample illustrates the use of the non-fungible token
generic framework, which is based on the extended ERC-721 standard supported by
Blockchain App Builder. The sample includes a chaincode to represent a marketplace for
buying and selling non-fungible tokens (NFTs) associated with works of art. In this sample,
museums can mint (create) NFTs for artworks in the blockchain network. Consumers can then
buy and then resell NFTs from the museums. The chaincode implements the methods that are
required for managing the non-fungible token life cycle, including token initialization, account
operations, role assignments, minting, transfers, and burning. It also provides notary accounts
for approving minting, transfer, and burning operations, and supports compliance through daily
limits and auditing procedures. The NFT Art Collection Marketplace sample is designed for
chaincode development in TypeScript.

The non-fungible token framework chaincode package is downloadable from the Oracle
Blockchain Platform console, and includes the following components.

° NFTCollectiblesWithERC721.zip, an archive file that contains the packaged
chaincode for deployment.

* NFTCollectiblesWithERC721-TypeScript.yaml, a specification file that you can
use with Blockchain App Builder to scaffold the NFTCollectiblesWithERC721 chaincode.

* NFTCollectiblesWithERC721 postman collection.json, a Postman collection
that enables you to test the APIs in the chaincode.

¢ README.md, a step-by-step guide for working with the chaincode.

To get the fungible token framework, in the Oracle Blockchain Platform Digital Assets console
click the Digital Assets tab and then select Non-Fungible Token Framework.

For more details about using Postman collections, see the following topics.
* Generate a Postman Collection Using the CLI
e Generate a Postman Collection Using Visual Studio Code

* Endorsement Support in Postman Collections

Specification File

The specification file that is used to generate the art collection marketplace chaincode includes
the events attribute. The chaincode events function supports event callbacks in generated
chaincodes to enable real-time notifications and trigger workflows. For more information about
specification files and the parameters used in specification files, see Input Specification File for
Non-Fungible Tokens in Using Oracle Blockchain Platform.

The art collection marketplace chaincode is based on the extended ERC-721 standard, as
shown in the following specification file.

#
Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
#

5-54

ORACLE

Chapter 5
Non-Fungible Token Framework

This specification file is an example how to build any whole non-fungible
token application.

For a whole non-fungible token application, art collection marketplace has
been used as an example.

Art collection marketplace is a digital marketplace that uses NFTs to
enable the buying, selling, and showcasing of unique art pieces, providing
secure ownership, provenance tracking, and exclusive rights for artists and
collectors.

assets:
- name: ArtCollection #Asset name
type: token #Asset type
symbol: ART # Token symbol
standard: erc721+ # Token standard
events: true # Supports event code generation for non-GET methods

anatomy:
type: nonfungible # Token type
unit: whole #Token unit

behavior:
- indivisible
- singleton
- mintable:
max mint quantity: 20000
- transferable
- lockable
- roles:
minter role name: minter

properties: # Custom asset attributes for non-fungible token

- name: Price # Custom asset attribute to set the price of a non-
fungible token in the marketplace
type: float

- name: On_Sale Flag # Custom asset attribute to maintain non-
fungible token selling status in the marketplace
type: boolean

metadata: # To maintain the metadata on-chain, this tag will be used.
Users won't be able to update the metadata attribute values after an NFT is
minted.

- name: Painting Name # Custom asset attribute to represent the
title given to a piece of artwork.
type: string

- name: Description # Custom asset attribute to represent a
detailed explanation or interpretation of the painting's concept, style, or
message.

type: string

- name: Painter Name # Custom asset attribute to represent the name

of the artist who created the painting.
type: string

5-55

ORACLE"

customMethods:
- executeQuery

Chapter 5

Non-Fungible Token Framework

- "post(token id: string, selling price: number)" # Post the non-fungible

token for selling in the marketplace.

- "buy(from org id: string, from user id: string, to _org id: string,
to user id: string, nonfungible token id: string, amount paid: number)" #
Buy the non-fungible token after paying the amount using any payment gateways.

Endorser Details in Chaincode Methods

Oracle Blockchain Platform Digital Assets Edition adds an endorsement parameter to the
request payload for all setter methods. The value of the parameter is either endorsers or
sameOrgEndorser. If the sameOrgEndorser parameter is true, transaction endorsements must
be from the same organization as the requester. The endorsers parameter specifies a list of
peers that must endorse the transaction. For more information, see Endorsement Support in
Postman Collections. The following table shows the endorser type for each method.

Method Endorser Type
activateAccount endorsers
addTokenAdmin sameOrgEndorser
addRole endorsers
addTokenSysRole endorsers
balanceOf endorsers
buy endorsers
createAccount endorsers
createArtCollectionToken sameOrgEndorser
deleteAccount endorsers
getAccountByUser endorsers
getAccountHistory endorsers
getAccountsByRole endorsers
getAccountsByTokenSysRole endorsers
getAccountStatus endorsers
getAccountStatusHistory endorsers
getAccountTransactionHistory endorsers
getAccountTransactionHistoryWithFilters endorsers
getAllAccounts endorsers
getAllLockedNFTs endorsers
getAllTokenAdmins endorsers
getAllTokens endorsers
getAllTokensByUser endorsers
getLockedNFTsByOrg endorsers
getTokenById endorsers
getTokenHistory endorsers
getTransactionById endorsers
getUserByAccountId endorsers
getUsersByRole endorsers

5-56

Chapter 5
Non-Fungible Token Framework

Method Endorser Type
getUsersByTokenSysRole endorsers

init endorsers
isInRole endorsers
isInTokenSysRole endorsers
isNFTLocked endorsers
isTokenAdmin endorsers
1ockNFET sameOrgEndorser
name endorsers
ownerOf endorsers

post endorsers
removeRole endorsers
removeTokenAdmin sameOrgEndorser
removeTokenSysRole endorsers
safeTransferFrom endorsers
suspendAccount endorsers
symbol endorsers
tokenURI endorsers
totalNetSupply endorsers
totalSupply endorsers
transferFrom endorsers
transferTokenSysRole endorsers
updateArtCollectionToken sameOrgEndorser

Non-Fungible Token Framework Wrapper API Package

Oracle Blockchain Platform Digital Assets Edition includes a wrapper API package that
extends the REST API to support operations specific to a collectible NFT marketplace.

ORACLE

The wrapper API package uses the API Gateway service and OCI Functions to deploy API
routes specifically designed for the collectible marketplace application. The non-fungible token
framework wrapper API package is downloadable from the Oracle Blockchain Platform
console, and includes the following components.

e NFTCollectiblesWithERC721WrapperAPI.zip, an archive file that contains the
wrapper API package including the Terraform scripts required for deployment. You deploy
this file to a Resource Manager stack on Oracle Cloud Infrastructure (OCI) to create the
necessary Oracle resources for the Wrapper APls.

* NFTCollectiblesWithERC721 WrapperAPI.postman collection.json,a
Postman collection that enables you to test the deployed wrapper APIs. The collection
includes pre-configured requests with endpoints and payloads that correspond to the APIs

defined in the wrapper API package.

Wrapper APIs

activateAccount

Original method name: activateAccount

5-57

ORACLE

Chapter 5
Non-Fungible Token Framework

This POST method activates a token account. This method can be called only by an admin.
For any accounts created prior to the account status functionality, you must call this method to
see the account status to active.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Returns:

e On success, a JSON representation of the account status object for the specified token
account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"db0738d4a44£6d9c80b24fce7c518c07023f7bel%daatdb272eaf7886b4b925",
"payload": {
"assetType": "oaccountStatus",
"status_id":

"oaccountStatus~d5814d96d8517ac31727d60aace0519¢c58a425892ab0d378fcfb0a35771f65
ae",
"account id":
"oaccount~802bf8da5579¢c6103b2dddaa6c4385df8e722d639a18029¢0e93d7a5d6£826d6",
"status": "active"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 194

addTokenAdmin
Original method name: addTokenAdmin

This POST method adds a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

5-58

ORACLE

Chapter 5
Non-Fungible Token Framework

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

* On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689%01lacdace3c557faebbc0ad%9a51671c10278ba6909350a6fedb08eed",
"payload": {

"msg":"Successfully added Admin (orgId: OrglMSP, userId: Userl)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 190

addRole
Original method name: addRole

This method adds the role to the specified user and token.

Payload:

{
"role": "role value (for example minter / burner)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:

5-59

Chapter 5
Non-Fungible Token Framework

* role: string— The name of the role to add to the specified user.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671c10278ba6909350a6fedb08eed",
"payload": {
"msg": "Successfully added role 'minter' to Account Id:

oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d
(Org-Id: OrglMSP, User-Id: admin)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

addTokenSysRole
Original method name: addTokenSysRole

This method adds 0rg Admins to the token chaincode.

Payload:

{
"role": "role value (for example vault)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
* role: string— The name of the role to add to the specified user.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

ORACLE = 60

ORACLE

Chapter 5
Non-Fungible Token Framework

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"96a84dffcb9156£7271dfb414e8c430b540595044cf9145£5£d56e9873797fc4a",
"payload": {

"msg": "Successfully added Org Admin (Org Id: CB, User Id: cb)"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 197

balanceOf
Original method name: balanceOf

This GET method returns the total number of NFTs that a specified user holds. This method
can be called only by a Token Admin of the chaincode or by the account owner.

Query:
/balanceOf?orgIld={{bc-org-id}}s&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

* userlId: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"errorll: "",
"result": {

"payload": {

"totalNfts": 0

I
"encode": "JSON"

buy
Original method name: buy

This POST method buys a token that is on sale.

5-61

ORACLE

Chapter 5
Non-Fungible Token Framework

Payload:
{
"fromOrgId": "from org id value",
"fromUserId": "from user id value",
"toOrgId": "to org id value",
"toUserId": "to user id value",
"nonfungibleTokenId": "nonfungible token id value",

"amountPaid": 1,
"endorsers": {{endorsers}}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender (owner) in
the current organization.

e fromUserId: string— The user name or email ID of the sender (owner).

° toOrgId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

* toUserId: string— The user name or email ID of the receiver.
* nonfungibleTokenlId: string — The ID of the token to buy
° amountPaid: number — The price of the token.

° endorsers: string[] —An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3cb57faebbc0ad9a51671cl10278ba6909350a6fedb08eed",
"payload": {
"msg": "Token ID: 'monalisa' has been successfully transferred to

UserID :oaccount~ec32cff8635a056£3dda3da70b1d6090d61£66c6al70c4a95£d008181£729
dba"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

createAccount
Original method name: createAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track the number of NFTs a user
owns. An account ID is an alphanumeric set of characters, prefixed with oaccount~ and
followed by an SHA-256 hash of the membership service provider ID (orgId) of the user in the

5-62

Chapter 5
Non-Fungible Token Framework

current network organization, the user name or email ID (userId) of the instance owner or the
user who is logged in to the instance, and the constant string nft. This method can be called
only by a Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenType": "nonfungible",
"endorsers": {{endorsers}}

Parameters:

* orgld — The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

° tokenType: TokenType — The type of token, which must be fungible.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad%9a51671¢c10278ba6909350a6fedb08eed",
"payload": {
"assetType": "oaccount",
"accountId":

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad1288d",
"bapAccountVersion": 0,
"userId": "admin",
"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 0
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

createArtCollectionToken
Original method name: createArtCollectionToken

ORACLE - 63

ORACLE

Chapter 5
Non-Fungible Token Framework

This POST method creates (mints) an NFT. The asset and associated properties are saved in
the state database. The caller of this transaction must have a token account. The caller of this
transaction becomes the owner of the NFT. If the token specification file includes the roles
section for behaviors and the minter role name property for roles, then the caller of the
transaction must have the minter role. Otherwise, any caller can mint NFTs.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\",\"metadata\":
{\"Painting Name\":\"Painting Name value\",\"Description\":\"Description
value\",\"Painter Name\":\"Painter Name
value\"},\"Price\":999,\"0On Sale Flag\":true}",

"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset to mint. For more information about the
properties of the token asset, see the input specification file.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fedb08eed",
"payload": {
"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"
}I
"assetType": "otoken",
"tokenId": "monalisa",
"tokenName": "artcollection",
"tokenDesc": "token description",

"symbol": "ART",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",

5-64

Chapter 5
Non-Fungible Token Framework

"roles"

]I

"roles": {

"minter role name": "minter"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"creationDate": "2022-04-05T08:30:42.000z",

"isBurned": false,

"tokenUri": "\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg\"",

"price": 100,

"on_sale flag": false

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

deleteAccount
Original method name: deleteAccount

This POST method deletes a token account. After an account is deleted, the account is in a
final state and cannot be updated or changed to any other state. To delete an account, the
account balance must be zero. This method can be called only by a Token Admin of the
chaincode.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON representation of the token account status.

ORACLE - 65

ORACLE

Chapter 5
Non-Fungible Token Framework

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fedb08eed",
"payload": {
"assetType": "oaccountStatus",
"statusId":

"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7",
"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8al3ba68ladcfbe287£f9cl”,
"status": "deleted"

I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

getAccountByUser
Original method name: getAccountByUser

This method returns account details for a specified user. This method can be called only by a
Token Admin Of the chaincode or the Account Owner of the account.

Query:
/getAccountByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",
"status": "active",
"accountId":
"oaccount~cc301bee057£14236a97d434909ec1084970921b008f6baab09c2a0£5£419%a9%a",
"userId": "idcqga",

"orgId": "appdev",

5-66

Chapter 5
Non-Fungible Token Framework

"tokenType": "nonfungible",
"noOfNfts": 0

I
"encode": "JSON"

getAccountHistory
Original method name: getAccountHistory

This method returns account history for a specified user. This is an asynchronous method.
This method can be called only by the Token Admin of the chaincode or by the account owner.

Query:
/getAccountHistory?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {

"txid":

"bd7416689blacdace3c557faebbc0ad%9ab1671¢c10278ba6909350a6fedb08eed",
"payload": [
{
"trxId":

"6f£d0d94£234c12444a5d5aa559563b59d££4d2280b573fea956dc632bdafsd4"”,
"timeStamp": 1649151044,

"value": {
"assetType": "oaccount",
"bapAccountVersion" : 5,
"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884d",
"userId": "admin",

"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 1

"trxId":
"a605£1fa62e511¢c2945£ce5437£983a5e70ec814b82520d3ecd2d8le3ect53a3",
"timeStamp": 1649151022,
"value": {
"assetType": "oaccount",

ORACLE 5-67

Chapter 5
Non-Fungible Token Framework

"bapAccountVersion" : 4,

"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"userId": "admin",

"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 2

"trxId":
"cadc07b£f04240345de918cbf1f4£3dadb4d0ab044c5b8bead94343e427d%edde7",
"timeStamp": 1649150910,

"value": {
"assetType": "oaccount",
"bapAccountVersion" : 3,
"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"userId": "admin",

"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 1

"trxId":
"cfb52ffc8c34cT7£d86210fcf8c5£53d9£92a056¢c45ed3a33671d638020c1£9cb",
"timeStamp": 1649149545,

"value": {
"assetType": "oaccount",
"bapAccountVersion" : 2,
"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884d",
"userId": "admin",

"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 0

"trxId":
"e774703001a170£88688620956320e9402e1dd8edad8afb4818a08a34647337c",
"timeStamp": 1649147442,

"value": {
"assetType": "oaccount",
"bapAccountVersion" : 1,
"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884d",
"userId": "admin",

"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 1

ORACLE - 68

Chapter 5
Non-Fungible Token Framework

"trxId":
"d2d1£9c898707ae831e9361bc25da6369%eac37b10c87dc04d18d6£3808222£08",
"timeStamp": 1649137534,
"value": {
"assetType": "oaccount",
"bapAccountVersion" : 0,
"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"userId": "admin",
"orgId": "OrglMSP",
"tokenType": "nonfungible",
"noOfNfts": 0

1,
"encode": "JSON"

getAccountsByRole
Original method name: getAccountsByRole

This method returns a list of all account IDs for a specified role. This method can be called
only by a Token Admin of the chaincode.

Query:
/getAccountsByRole?role=role value (for example minter / burner)

Parameters:

e role: string— The name of the role to search for.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689%blacdace3c557faebbc0ad%9a51671¢c10278ba6909350a6fedb08eed",
"payload": {
"accounts": [

"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d"
]
t
"encode": "JSON"

getAccountsByTokenSysRole
Original method name: getAccountsByTokenSysRole

ORACLE - 6o

Chapter 5
Non-Fungible Token Framework

This method returns a list of all account IDs for a specified TokenSys role. This method can be
called only by a Token Admin of the chaincode.

Query:

/getAccountsByTokenSysRole?role=role value (for example vault)
Parameters:

e role: string— The name of the TokenSys role to search for.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"accountIds": [

"oaccount~bf07£584a94bed4781e49d9101bfaf58c6fbbe77addfebdb83c874c2caf03eba”
]
}I
"encode": "JSON"

getAccountStatus
Original method name: getAccountStatus

This GET method retrieves the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

Query:

/getAccountStatus?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON representation of the token account status.

Return Value Example:

"returnCode": "Success",
llerrorﬂ: "ll,
"result": {

ORACLE 5-70

Chapter 5
Non-Fungible Token Framework

"payload": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287f9cl”,

"status": "active"

I
"encode": "JSON"

getAccountStatusHistory
Original method name: getAccountStatusHistory

This GET method retrieves the history of the account status. This method can be called by the
Token Admin of the chaincode or by the token account owner.

Query:

/getAccountStatusHistory?orgId={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, the account status history in JSON format.

Return Value Example:

"returnCode": "Success",
"errOI": ""’
"result": {
"payload": [
{
"trxId":

"d5c6d6f601257ba9%6edaf5b7660£00adcl3c37d5321b8f7d3a35afab2e93e63",
"timeStamp": "2022-12-02T10:39:14.000Z",

"value": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f79d5e96
a7",

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8al3ba68ladcfbe287£9¢cl”,

"status": "suspended"

ORACLE _—

Chapter 5
Non-Fungible Token Framework

}I
{
"trxId":
"e6c850cfal84dc20ad95fb2bb8165eef3a3bdb2alac867cccee57¢2003125183",
"timeStamp": "2022-12-02T10:37:50.000z",

"value": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61lcd7fc8a3ba68ladcfbe287£f9cl”,

"status": "active"

}
1,
"encode": "JSON"

getAccountTransactionHistory
Original method name: getAccountTransactionHistory

This GET method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner.

/getAccountTransactionHistory?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transactionId":

"otransaction~6£f£d0d94£234¢c12444a5d5aa559563b59df£f4d2280b573fea956dc632bdaf5d4

n
r

"timestamp": "2022-04-05T09:30:44.000Z2",

"tokenId": "monalisal",
"noOfNfts": 1,
"transactedAccount":

"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad1288d",
"transactionType": "BURN"
}I
{

ORACLE —

ORACLE

Chapter 5
Non-Fungible Token Framework

"transactionId":
"otransaction~a605f1fa62e511c2945fce5437£983a5e70ec814b82520d3ecd2d81le3ecfb3a3

"
4

"timestamp": "2022-04-05T09:30:22.000Z",
"tokenId": "monalisal",
"transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"transactionType": "MINT"
}I
{
"transactionId":
"otransaction~cad4c07b£f04240345de918cbfl1f4f3dadb4d0ab044cob8bea94343e427d9%ed4de’

"
4

"timestamp": "2022-04-05T09:28:30.000zZ",
"tokenId": "monalisa",
"transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6al70c4a95£d008181£729dba",
"transactionType": "CREDIT"
}I
{
"transactionId":
"otransaction~cfb52f£fc8c34c7£d86210fcf8c5£53d9£92a056c45ed3a33671d638020c1£f9ch

"
4

"timestamp": "2022-04-05T09:05:45.000zZ",
"tokenId": "monalisa",
"transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6al70c4a95£d008181£729dba",
"transactionType": "DEBIT"
}I
{
"transactionId":
"otransaction~e7747b3001a170£88688620956320e9402el1dd8edad8afb4818a08a34647337¢

"
4

"timestamp": "2022-04-05T08:30:42.000Z",

"tokenId": "monalisa",

"transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"transactionType": "MINT"

1,
"encode": "JSON"

getAccountTransactionHistoryWithFilters
Original method name: getAccountTransactionHistoryWithFilters

This GET method returns account transaction history for a specified user, filtered by PageSize,
Bookmark, startTime and endTime. This is an asynchronous method. This method can only be

5-73

Chapter 5
Non-Fungible Token Framework

called when connected to the remote Oracle Blockchain Platform network. This method can
be called only by the Token Admin of the chaincode or by the account owner.

/getAccountTransactionHistoryWithFilters?orgId={{bc-org-id}}&userId={{bc-user-
id}}&filters={"pageSize":20, "bookmark":"", "startTime":"2022-01-16T15:16:36+00:
00", "endTime":"2022-01-17T15:16:36+00:00"}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e filters: object — An object of the Filter class that contains four attributes: pageSize,
bookmark, startTime and endTime.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"transactionId":

"otransaction~6££d0d94£234c12444a5d5aa559563b59df£4d2280b573£fea956dc632bdatf5d4

"
4

"timestamp": "2022-04-05T09:30:44.000z",
"tokenId": "monalisal",
"transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad12884d",
"transactionType": "BURN"
}I
{
"transactionId":
"otransaction~a605f1fa62e511c2945fce5437£983a5e70ec814b82520d3ecd2d8le3ect53a3

"
4

"timestamp": "2022-04-05T09:30:22.000z",
"tokenId": "monalisal",
"transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad12884d",
"transactionType": "MINT"
}I
{
"transactionId":
"otransaction~cad4c07bf04240345de918cbfl1f4f3dadb4d0ab044c5b8bea94343e427d%ed4de’

"
4

"timestamp": "2022-04-05T09:28:30.000z",

"tokenId": "monalisa",

"transactedAccount":
"oaccount~ec32cff8635a056£3dda3da70b1d6090d61f66c6al70c4a95£d008181£729dba",

"transactionType": "CREDIT"

b

ORACLE 5-74

ORACLE

Chapter 5
Non-Fungible Token Framework

"transactionId":
"otransaction~cfb52ffc8c34c7£d86210fcf8c5£53d9£92a056¢c45ed3a33671d638020c1f9ch

"
4

"timestamp": "2022-04-05T09:05:45.000zZ",
"tokenId": "monalisa",
"transactedAccount":
"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6al70c4a95£d008181£729dba",
"transactionType": "DEBIT"
}I
{
"transactionId":
"otransaction~e7747b3001a170£88688620956320e9402el1dd8edad8afb4818a08a34647337¢

"
4

"timestamp": "2022-04-05T08:30:42.000Z",

"tokenId": "monalisa",

"transactedAccount":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"transactionType": "MINT"

1,
"encode": "JSON"

getAllAccounts
Original method name: getAllAccounts

This GET method returns details of all user accounts. This method can be called only by a
Token Admin oOf the chaincode.

Query:

/getAllAccounts

Parameters:

. none

Returns:

e Onsuccess, a JSON array of all accounts.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d",
"valuedson": {

5-75

ORACLE

Chapter 5
Non-Fungible Token Framework

"assetType": "oaccount",

"accountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad1288d",

"userId": "admin",

"orgId": "OrglMSP",

"tokenType": "nonfungible",

"noOfNfts": 1

1,
"encode": "JSON"

getAllLockedNFTs
Original method name: getAl1lLockedNETs

This GET method returns a list of all locked NFTs. This method can be called only by a Token
Admin of the chaincode or by the Vault Manager (the user with the TokenSys vault role).

Query:

/getAllLockedNFTs

Parameters:

° none

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{

"key":"tokenl",

"valueJdson": {
"assetType":"otoken",
"tokenId":"tokenl",
"tokenName":"artcollection",
"symbol":"ART",
"tokenStandard":"erc721+",
"tokenType":"nonfungible",
"tokenUnit":"whole",
"behaviors": [

"indivisible",
"singleton",
"mintable",
"transferable",
"lockable",
"burnable",
"roles"

5-76

ORACLE

Chapter 5
Non-Fungible Token Framework

]I
"roles":{
"minter role name":"minter"
}I
"mintable": {
"max mint quantity":20000
}I

"createdBy":"oaccount~208e3345ac84b4849£0d2648b2£2£f018019886a1230£99304ebfflbb
a7733463",
"creationDate":"2023-10-20T710:26:29.000z2",

"owner":"oaccount~208e3345ac84b4849£0d2648b2£2£018019886a1230£99304ebfflb6a773
3463",

"isBurned":false,

"isLocked":true,

"tokenUri":"tokenl.example.com",

"price":120,

"on _sale flag":false

1,
"encode": "JSON"

getAllTokenAdmins
Original method name: getAl1TokenAdmins

This method returns a list of all users who are a Token Admin of the chaincode. This method
can be called only by the Token Admin of the chaincode.

Query:
/getAllTokenAdmins
Parameters:

° none

Returns:

e Onsuccess, an admins array in JSON format that contains orgId and userId objects.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"admins": [

{
"orgId":"OrglMSP",

5-77

ORACLE

b

"encode":

getAllTokens

Chapter 5

Non-Fungible Token Framework

"userId":"admin"

"JSON"

Original method name: getAl1Tokens

This method returns all of the token assets that are saved in the state database. This method
can be called only by a Token Admin of the chaincode. This method uses Berkeley DB SQL
rich queries and can only be called when connected to the remote Oracle Blockchain Platform

network.
Query:
/getAllTokens

Parameters:

. none

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key": "monalisa",

"valuedson": {

"metadata": {

"PaintingName": "Mona Lisa",
"Description": "Mona Lisa Painting",
"Image": "monalisa.]jpeg",
"PainterName": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisa",

"tokenName": "ravinft",

"tokenDesc": "token Description",

"symbol": "PNT",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",

5-78

ORACLE

Chapter 5
Non-Fungible Token Framework

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"createdBy":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"creationDate": "2022-04-07T21:17:48.000z2",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\\\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"NftBasePrice": 100

}
}I
{
"key": "monalisal",
"valuedson": {
"metadata": {

"PaintingName": "Mona Lisa",
"Description": "Mona Lisa Painting",
"Image": "monalisa.jpeg",
"PainterName": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisal",

"tokenName": "ravinft",

"tokenDesc": "token Description",

"symbol": "PNT",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

b
"mintable": {

"max mint quantity": 20000
b

"owner":

5-79

ORACLE

Chapter 5
Non-Fungible Token Framework

"oaccount~543c2258e351c3e7a40ea59081e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"createdBy":
"oaccount~543c2258e351c3e7a40ea59081e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"creationDate": "2022-04-07T21:17:59.000z2",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\\\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"NftBasePrice": 100

}

I

"encode": "JSON"

getAllTokensByUser
Original method name: getAl1TokensByUser

This GET method returns all of the token assets that are owned by a specified user. This
method uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network. This method can be called only by a Token Admin
of the chaincode or by the account owner.

Query:

/getAllTokensByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key": "monalisa",

"valueJdson": {
"metadata": {

"PaintingName": "Mona Lisa",
"Description": "Mona Lisa Painting",
"Image": "monalisa.jpeg",
"PainterName": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisa",

"tokenName": "ravinft",

5-80

ORACLE

Chapter 5
Non-Fungible Token Framework

"tokenDesc": "token Description",

"symbol": "PNT",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"createdBy":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"creationDate": "2022-04-07T21:17:48.000z2",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\\\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"NftBasePrice": 100

}
}I
{
"key": "monalisal",
"valuedson": {
"metadata": {

"PaintingName": "Mona Lisa",
"Description": "Mona Lisa Painting",
"Image": "monalisa.]jpeg",
"PainterName": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisal",

"tokenName": "ravinft",

"tokenDesc": "token Description",

"symbol": "PNT",
"tokenStandard": "erc721+",
"tokenType": "nonfungible",
"tokenUnit": "whole",
"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",

5-81

ORACLE

Chapter 5
Non-Fungible Token Framework

"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79£30ac5e08e7d0dfd1",

"createdBy":
"oaccount~543¢c2258e351c3e7a40ea59b81e62154d38fbfc9d1b5b79f30ac5e08e7d0dfd1",

"creationDate": "2022-04-07T21:17:59.000z",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\\\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"NftBasePrice": 100

}

1,
"encode": "JSON"

getLockedNFTsByOrg
Original method name: getLockedNFTsByOrg

This method returns a list of all locked non-fungible tokens for a specified organization and
optionally a specified user. This method can be called only by a Token Admin of the chaincode
or by the vault manager (the user with the TokenSys vault role).

Query:

/getLockedNFTsByOrg?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":"tokenl",

5-82

Chapter 5
Non-Fungible Token Framework

"valuedson": {
"assetType":"otoken",
"tokenId":"tokenl",
"tokenName":"artcollection",
"symbol":"ART",
"tokenStandard":"erc721+",
"tokenType":"nonfungible",
"tokenUnit":"whole",
"behaviors": |

"indivisible",
"singleton",
"mintable",
"transferable",
"lockable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter"
}I
"mintable": {
"max mint quantity":20000
}I

"createdBy":"oaccount~208e3345ac84b4849£0d2648b2£2£f018019886a1230£99304ebfflbb
a77334603",
"creationDate":"2023-10-20T10:26:29.0002",

"owner":"oaccount~208e3345ac84b4849£0d2648b2£2£018019886a1230£99304ebfflb6a773

3463",
"isBurned":false,
"isLocked":true,
"tokenUri":"tokenl.examplecom",
"price":120,
"on _sale flag":false
}
}
]I
"encode": "JSON"
}
}
getTokenById

Original method name: getTokenById

This method returns a token object if the token is present in the state database. This method
can be called only by a Token Admin of the chaincode or the token owner.

Query:

/getTokenById?tokenId={{bc-token-id}}

Parameters:

ORACLE - aa

° tokenId: string— The ID of the token to get.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"
}I
"assetType": "otoken",
"tokenId": "monalisa",
"tokenName": "artcollection",
"tokenDesc": "token description",

"symbol": "ART",
"tokenStandard": "erc721+",
"tokenType": "nonfungible",
"tokenUnit": "whole",
"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles": {
"minter role name": "minter"
}I
"mintable": {
"max mint quantity": 20000
}I

"owner":

Chapter 5
Non-Fungible Token Framework

"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d",

"createdBy":

"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d",

"transferredBy":

"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436ddlaae201d347ad1288d",

"creationDate": "2022-04-05T08:30:42.000z",
"transferredDate": "2022-04-05T09:28:30.000Z",

"isBurned": false,
"tokenUri": "https://

bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-

ipfs.io/?filename=Monalisa.jpeg",
"price": 100,
"on_sale flag": true

I
"encode": "JSON"

ORACLE

5-84

ORACLE

getTokenHistory
Original method name: getTokenHistory

Chapter 5
Non-Fungible Token Framework

This method returns the history for a specified token ID. This is an asynchronous method. This
method can only be called when connected to the remote Oracle Blockchain Platform network.

Anyone can call this method.

/getTokenHistory?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"trxId":

"cadc07b£04240345de918cbfl1£4£3dadb4d0ab044c5b8bead4343e427d%ed4e7",

"timeStamp": 1649150910,
"value": {
"metadata": {

"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"
}I
"assetType": "otoken",
"tokenId": "monalisa",
"tokenName": "artcollection",
"tokenDesc": "token description",

"symbol": "ART",

"tokenStandard": "erc721+",
"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",
"roles"

]I

"roles": {

"minter role name":

b

"minter"

5-85

Chapter 5
Non-Fungible Token Framework

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad12884d",

"transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"creationDate": "2022-04-05T08:30:42.000z",

"transferredDate": "2022-04-05T09:28:30.0002",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"price": 100,

"on_sale flag": true

"trxId":
"cfb52ffc8c34cT7£d86210fcf8c5£53d9£92a056¢c45ed3a33671d638020c1£9cb",
"timeStamp": 1649149545,

"value": {

"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisa",

"tokenName": "artcollection",

"tokenDesc": "token description",

"symbol": "ART",
"tokenStandard": "erc721+",
"tokenType": "nonfungible",
"tokenUnit": "whole",
"behaviors": [

"indivisible",

"singleton",

"mintable",

"transferable",

"burnable",

"roles"
]I
"roles": {

"minter role name": "minter"
}I
"mintable": {

"max mint quantity": 20000
}I
"owner":

"oaccount~ec32cff8635a056f3dda3da70b1d6090d61f66c6al70c4a95£d008181£729dba",

ORACLE -

Chapter 5
Non-Fungible Token Framework

"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"transferredBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"creationDate": "2022-04-05T08:30:42.000z",

"transferredDate": "2022-04-05T09:05:45.0002",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"price": 100,

"on_sale flag": true

"trxId":
"702e61cc8d6d2982521023d0d5£3195900£35e146d6a9%90ef66daae551e6075d2",
"timeStamp": 1649147729,

"value": {

"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisa",

"tokenName": "artcollection",

"tokenDesc": "token description",

"symbol": "ART",
"tokenStandard": "erc721+",
"tokenType": "nonfungible",
"tokenUnit": "whole",
"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles": {
"minter role name": "minter"
}I
"mintable": {
"max mint quantity": 20000
}I
"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884d",
"creationDate": "2022-04-05T08:30:42.000z",
"isBurned": false,
"tokenUri": "https://

ORACLE 5-87

Chapter 5
Non-Fungible Token Framework

bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"price": 100,

"on_sale flag": true

"trxId":
"e774703001a170£88688620956320e9402e1dd8edad8afb4818a08a34647337c",
"timeStamp": 1649147442,

"value": {

"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.]jpeg",
"painter name": "Leonardo da Vinci"

}I

"assetType": "otoken",

"tokenId": "monalisa",

"tokenName": "artcollection",

"tokenDesc": "token description",

"symbol": "ART",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [

"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",
"roles"

]I

"roles": {

"minter role name": "minter"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad12884d",

"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad12884d",

"creationDate": "2022-04-05T08:30:42.000z",

"isBurned": false,

"tokenUri": "\"https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg\"",

"price": 100,

"on_sale flag": false

]
"encode": "JSON"

ORACLE - a8

ORACLE

Chapter 5
Non-Fungible Token Framework

getTransactionById
Original method name: getTransactionById

This method returns transaction history for a specified transaction ID. This is an asynchronous
method. This method can be called only by a Token Admin of the chaincode.

Query:
/getTransactionById?transactionId=transactionId value

Parameters:

° transactionld: string— The id of the transaction, which is the prefix otransaction~
followed by the 64-bit hash in hexadecimal format.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"transactionId":

"otransaction~6££d0d94£234¢c12444a5d5aa559563b59dff4d2280b573fea956dc632bdaf5d4

n
r

"history": [
{
"trxId":
"6f£d0d94£234c12444a5d5aa5595630b59dff4d2280b573fea956dc632bdaf5d4",
"timeStamp": 1649151044,
"value": {
"assetType": "otransaction",
"transactionId":
"otransaction~6f£d0d94f234¢c12444a5d5aa559563b59dff4d2280b573fead56dc632bdaf5d4

n
r

"tokenId": "monalisal",

"fromAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad1288d",

"toAccountId": "",

"triggeredByAccountId":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad1288d",

"transactionType": "BURN",

"timestamp": "2022-04-05T09:30:44.000Z",

t
"encode": "JSON"

5-89

ORACLE

Chapter 5

Non-Fungible Token Framework

getUserByAccountId
Original method name: getUserByAccountId

This GET method returns the user details for a specified account.
Query:

/getUserByAccountId?accountId=accountId value
Parameters:

e accountld: string— The ID of the account.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"userId": "admin",

"orgId": "OrglMSP"

b
"encode": "JSON"

getUsersByRole
Original method name: getUsersByRole

This method returns a list of all users for a specified role.
/getUsersByRole?role=role value (for example minter / burner)

Parameters:

e role: string— The name of the role to search for.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"users": [
{
"userId": "admin",

"orgId": "OrglMSP"

b
"encode": "JSON"

5-90

Chapter 5
Non-Fungible Token Framework

init
Original method name: init

This method is called when the chaincode is deployed. The user information is saved as the
Token Admin oOf the chaincode.

Payload:

"adminList": "[{\"orgId\":\"{{bc-org-id}}\", \"userId\":\"{{bc-admin-user}}
\ll}]ll
}

Parameters:

* adminList array—Anarray of {user id, org_ id} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"£db7dc89832c8045a333823b77£a24ae628178148dc93b3550040e070d7cd807",
"payload": "",
"encode": "UTF-8",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 263

isInRole
Original method name: isInRole

This GET method returns a Boolean value to indicate if a user has a specified role. This
method can be called only by a Token Admin of the chaincode or the Account Owner of the
account.

Query:

/isInRole?orgld={{bc-org-id}}&userId={{bc-user-id}}&role=role value (for
example minter / burner)

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

ORACLE - o1

ORACLE

Chapter 5
Non-Fungible Token Framework

e userld: string— The user name or email ID of the user.

e role: string— The name of the role to search for.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’
"result": {

"payload": {

"result":"true"

b

"encode": "JSON"

isInTokenSysRole
Original method name: isInTokenSysRole

This GET method returns a Boolean value to indicate if a user has a specified TokenSys role.
This method can be called only by a Token Admin of the chaincode or the Account Owner of
the account.

Query:

/isInTokenSysRole?orgld={{bc-org-id}}&userId={{bc-user-id}}&role=role value
(for example vault)

Parameters:
* role: string— The name of the TokenSys role to search for.

* orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"result": true,
"msg": "Account Id

oaccount~bf07£584a94bed4781e49d9101bfaf58c6fbbe77addfebdb83c874c2cafl3eba
(Org-Id: OrglMSP, User-Id: userl) has vault role"
t

"encode": "JSON"

5-92

Chapter 5
Non-Fungible Token Framework

isNFTLocked
Original method name: isNFTLocked

This GET method returns a Boolean value to indicate if a specified token is locked. This
method can be called only by a Token Admin of the chaincode, the token owner, or the vault
manager (the user with the TokenSys vault role).

Query:

/1isNFTLocked?tokenId={{bc-token-1id}}

Parameters:

e tokenId: string-— The ID of the token.

Return Value Example:

"returnCode": "Success",
"errorH: "",
"result": {

"payload": {

"isNFTLocked":true

t
"encode": "JSON"

1ockNFT
Original method name: 1ockNET

This POST method locks a specified non-fungible token. To lock a token, there must be a user
with the TokenSys vault role, who acts as the vault manager.

Payload:

"tokenId": "{{bc-token-id}}",
"sameOrgEndorser": true

Parameters:
* tokenId: string— The ID of the token to lock.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’
"result": {

ORACLE - 93

Chapter 5
Non-Fungible Token Framework

"txid":
"bd7416689blacdace3c557faebbc0ad9a51671c10278ba6909350a6fe4b08eed”,
"payload": {

"assetType":"otoken",
"tokenId":"tokenl",
"tokenName":"artcollection",
"symbol":"ART",
"tokenStandard":"erc721+",
"tokenType":"nonfungible",
"tokenUnit":"whole",
"behaviors": [
"indivisible",
"singleton",
"mintable",
"transferable",
"lockable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter"
}I
"mintable": {
"max mint quantity":20000
}I

"createdBy":"oaccount~208e3345ac84b4849£0d2648b2£2£f018019886a1230£99304ebfflbb
a77334603",
"creationDate":"2023-10-20T10:26:29.000z2",

"owner":"oaccount~208e3345ac84b4849f0d2648b2£f2£018019886a1230£99304ebfflb6a773
3463",
"isBurned":false,
"isLocked":true,
"tokenUri":"tokenl.example.com",
"price":120,
"on sale flag":false
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

name
Original method name: name

This GET method returns the name of the token class. Anyone can call this method.
Query:

/name

Parameters: None

ORACLE -

Chapter 5
Non-Fungible Token Framework

Return Value Example:

"returnCode": "Success",
"errorﬂ: "",
"result": {
"payload": {"tokenName": "artcollection"},

"encode": "JSON"

ownerOf
Original method name: ownerOf

This GET method returns the account ID of the owner of the specified token ID. Anyone can
call this method.

Query:
/ownerOf?tokenId={{bc-token-id}}
Parameters:

* tokenId: string— The ID of the token.

Returns:

e A JSON object of the owner's account ID.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"owner":

"oaccount~d6d22c3167e3c6ab9ee5653e1a008c37c20ccd7ebb0229calaedfafe64c67508"

b
"encode": "JSON"

post
Original method name: post

This POST method posts a token for sale for a specified price.
Payload:

"tokenId": "{{bc-token-id}}",
"sellingPrice": 1,

ORACLE - o5

ORACLE

Chapter 5
Non-Fungible Token Framework

"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.
° sellingPrice: number — The price of the token.

° endorsers: string[] —An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671c10278ba6909350a6fe4b08eed",
"payload": {
"msg": "Token ID: 'monalisa' has been posted for selling in the
marketplace”
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

removeRole
Original method name: removeRole

This method removes a role from a specified user. This method can be called only by a Token
Admin of the chaincode.

Payload:

{
"role": "role value (for example minter / burner)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:

* role: string— The name of the role to remove from the specified user. The mintable
and burnable behaviors correspond to the minter role name and burner role name
properties of the specification file.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

5-96

ORACLE

Chapter 5
Non-Fungible Token Framework

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad%9a51671¢c10278ba6909350a6fe4b08eed",
"payload": {
"msg": "Successfully removed role 'minter' from Account Id:

oaccount~ec32cff8635a056£3dda3da70b1d6090d61£f66c6al70c4a95£d008181£729dba
(Org-Id: OrglMSP, User-Id: userl)"

by
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

removeTokenAdmin
Original method name: removeTokenAdmin

This POST method removes a user as a Token Admin Of the chaincode. This method can be
called only by a Token Admin of the chaincode. An admin cannot remove themselves.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"sameOrgEndorser": true

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user_ id: string— The user name or email ID of the user.
* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction

endorsements must be from the same organization as the requester.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689%1lacdace3c557faebbc0ad%9a51671c10278ba6909350a6fedb08eed",

5-97

Chapter 5
Non-Fungible Token Framework

"payload": {
"msg": "Successfully removed Admin (orgld: OrglMSP, userId:

Userl)"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 193

}

}
removeTokenSysRole

Original method name: removeTokenSysRole

This method removes a TokenSys role from a specified user and token. This method can be
called only by a Token Admin of the chaincode.

Payload:

{
"role": "role value (for example vault)",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:
e role: string— The name of the TokenSys role to remove from the specified user.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userId: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671c10278ba6909350a6fedb08eed",
"payload": {
"msg": "Successfully removed role 'vault' from Account Id:

oaccount~bf07£584a94bed44781e49d9101bfaf58c6fbbe77a4dfebdb83c874c2caf03eba
(Org-Id: OrglMSP, User-Id: userl)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

ORACLE - o8

ORACLE

Chapter 5
Non-Fungible Token Framework

safeTransferFrom
Original method name: safeTransferFrom

This is an asynchronous function. This POST method transfers ownership of the specified
NFT from the caller to another account. This method includes the following validations:

e The token exists and is not burned.

* The sender account and receiver account exist and are not the same account.

* The sender account owns the token.

* The caller of the function is the sender.

Payload:

"fromOrgId": "fromOrgId value",
"fromUserId": "fromUserId value",
"toOrgId": "toOrgld value",
"toUserId": "toUserId value",
"tokenId": "{{bc-token-id}}",
"data": "data value",
"endorsers": {{endorsers}}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender and token
owner in the current organization.

e fromUserId: string— The user name or email ID of the sender and token owner.

e toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.
* tokenId: string— The ID of the token to transfer.
° data: string— Optional additional information to store in the transaction record.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fe4b08eed",
"payload": {
"msg": "Successfully transferred NFT token: 'monalisa' from

5-99

Chapter 5
Non-Fungible Token Framework

Account-Id:
oaccount~42e89£4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad1288d
(Org-Id: OrglMSP, User-Id: admin) to Account-Id:
oaccount~ec32cff8635a056£3dda3da70b1d6090d61£66c6al70c4a95£d008181£729dba
(Org-Id: OrglMSP, User-Id: userl)"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 193

suspendAccount
Original method name: suspendAccount

This method suspends a fungible token account. It throws an error if an accountStatus value
is not found in ledger. This method can be called only by a Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fedb08eed",
"payload": {

"assetType": "oaccountStatus",

"statusId":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"accountId":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287f9cl”,

"status": "suspended"

}I
"encode": "JSON",

ORACLE =100

Chapter 5
Non-Fungible Token Framework

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

symbol
Original method name: symbol

This method returns the symbol of the token class. Anyone can call this method.
Query:

/symbol

Parameters:

° none

Return Value Example:

"returnCode": "Success",
"errorll: "",
"result": {

"payload": {

"symbol": "PNT"

b
"encode": "JSON"

tokenURI
Original method name: tokenURI

This method returns the URI of a specified token. Anyone can call this method.
Query:

/tokenURI?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"errorﬂ: ""’
"result": {

"payload": {

"tokenURI": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\.ipfs.infura-

ORACLE 101

Chapter 5
Non-Fungible Token Framework

ipfs.io/?filename=Monalisa.jpeg"
I
"encode": "JSON"

totalNetSupply
Original method name: totalNetSupply

This GET method returns the total number of minted tokens minus the number of burned
tokens. This method can be called only by a Token Admin of the chaincode.

/totalNetSupply

Parameters:

e none

Return Value Example:

"returnCode": "Success",
"errorll: "",
"result": {

"payload": {

"totalNetSupply": 1

I
"encode": "JSON"

totalSupply
Original method name: totalSupply

This GET method returns the total number of minted tokens. This method can be called only
by a Token Admin of the chaincode.

Query:

/totalSupply

Parameters:

. none

Return Value Example:

"returnCode": "Success",
"errorﬂ: "",
"result": {

"payload": {

"totalSupply": 3

ORACLE =100

Chapter 5
Non-Fungible Token Framework

I
"encode": "JSON"

transferFrom
Original method name: transferFrom

This is an asynchronous function. This method transfers ownership of the specified NFT from
a sender account to a receiver account. It is the responsibility of the caller to pass the correct
parameters. This method can be called by any user, not only the token owner. This method
includes the following validations:

* The token exists and is not burned.
 The sender account and receiver account exist and are not the same account.

The sender account owns the token.

Payload:

"fromOrgId": "fromOrgId value",

"fromUserId": "fromUserId value",
"toOrgId": "toOrgld value",
"toUserId": "toUserId value",

"tokenId": "{{bc-token-id}}",
"endorsers": {{endorsers}}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender in the
current organization.

e fromUserId: string— The user name or email ID of the sender.

e toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.
* tokenId: string— The ID of the token to transfer.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fedb08eed",
"payload": {
"msg": "Successfully transferred NFT token: 'monalisa' from

ORACLE - 103

ORACLE

Chapter 5
Non-Fungible Token Framework

Account-Id:
oaccount~ec32cff8635a056£3dda3da70b1d6090d61£66c6al70c4a95fd008181£729dba
(Org-Id: OrglMSP, User-Id: userl) to Account-Id:
oaccount~42e89£4c72dfde9502814876423c6da630d466e87436dd1laae201d347ad1288d
(Org-Id: OrglMSP, User-Id: admin)"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 193

transferTokenSysRole
Original method name: transferTokenSysRole

This method transfers a TokenSys role from a user to another user.

Payload:

{
"role": "role value (for example wvault)",
"fromOrgId": "fromOrgld value",
"fromUserId": "fromUserId value",
"toOrgId": "toOrgIld value",
"toUserId": "toUserId value",

"endorsers": {{endorsers}}

Parameters:
* role: string— The name of the TokenSys role to transfer.

e fromOrgId: string— The membership service provider (MSP) ID of the sender in the
current organization.

e fromUserld: string— The user name or email ID of the sender.

* toOrgId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

* toUserId: string— The user name or email ID of the receiver.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671¢c10278ba6909350a6fe4b08eed",
"payload": {
"msg": "Successfully transfered role 'vault' from Account Id:

ouaccount~£f4e311528£03£f££fa7810753d643£66289££6c9080£c£839902£28a1d3af£1789

5-104

Chapter 5
Non-Fungible Token Framework

(Org-Id: OrglMSP, User-Id: userl) to Account Id:
ouaccount~aebbe2ae8£98d6d32£5d02b43877d987114e7937c7bacbc30390dcce09996al19
(Org-Id: OrglMSP, User-Id: userz2)"

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",

"blockNumber": 193

updateArtCollectionToken
Original method name: updateArtCollectionToken

This method updates token properties. After a token asset is created, only the token owner
can update the token custom properties. If the user is both token owner and creator of a
token, they can also update the TokenDesc property. Token metadata cannot be updated. You
must pass all token properties to this method, even if you want to update only certain
properties.

Payload:

{
"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\",\"Price\":999,\"On_Sale Flag\":true}",
"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset to update. For more information about the
properties of the token asset, see the input specification file.

° endorsers: string[] —An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"bd7416689blacdace3c557faebbc0ad9a51671c10278ba6909350a6fe4b08eed",
"payload": {
"metadata": {
"painting name": "Mona Lisa",
"description": "Mona Lisa Painting",
"image": "monalisa.jpeg",
"painter name": "Leonardo da Vinci"
}I
"assetType": "otoken",
"tokenId": "monalisa",
"tokenName": "artcollection",
"tokenDesc": "token description",

ORACLE c 105

Chapter 5
Combined Token Framework

"symbol": "ART",

"tokenStandard": "erc721+",

"tokenType": "nonfungible",

"tokenUnit": "whole",

"behaviors": [

"indivisible",
"singleton",
"mintable",
"transferable",
"burnable",
"roles"

]I

"roles": {

"minter role name": "minter"

}I

"mintable": {

"max mint quantity": 20000

}I

"owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"createdBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",

"creationDate": "2022-04-05T08:30:42.000z",

"isBurned": false,

"tokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjcooddmsg\\.ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg",

"price": 100,

"on_sale flag": true

}I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 193

Combined Token Framework

ORACLE

The combined token framework uses the extended ERC-1155 standard that is supported by
Blockchain App Builder.

The combined token framework supports both fungible and non-fungible tokens (NFTs) in a
single smart contract, so that developers can manage multiple token types efficiently, reducing
complexity and improving scalability. Blockchain App Builder extends the ERC-1155 standard
to facilitate the development of applications that require a mix of token functionalities. The
combined token framework also supports fractional NFTs.

Example use cases:

Gaming Platforms
Issuing in-game currencies (fungible tokens) and unique items such as weapons or skins
(NFTs) in the same system.

5-106

Chapter 5
Combined Token Framework

Event Ticketing and Loyalty Points
Creating event tickets as NFTs with verifiable ownership and streamlining reward
accumulation and redemption with fungible tokens.

Real Estate
Managing properties as fractional NFTs to enable shared ownership, liquidity, and transparent
transactions on the blockchain.

The enhanced version of Blockchain App Builder that is included with Oracle Blockchain
Platform Digital Assets Edition supports the following functions.

« Multiple fungible tokens: Create multiple fungible token types in a single smart contract.

« Multiple token types: Create and manage fungible and non-fungible token types in a single
smart contract, streamlining deployment and interaction. One user can have multiple
accounts for each fungible token type but only one NFT account.

« Batch operations: Complete multiple token transfers or actions in a single transaction,
enhancing efficiency.

e Locking: Lock an NFT in a vault so that it cannot be transferred to or burned by any user.

* Role operations: Assign and enforce roles such as minter, burner to provide specific
privileges to any user account.

Oracle Blockchain Platform Digital Assets Edition includes a chaincode package and a
wrapper API package for the combined (fungible and non-fungible) token scenario. The
chaincode package includes the NFT Art Collection Marketplace sample, which illustrates use
of the framework. The wrapper API package extends the REST API to support operations
specific to the NFT Art Collection Marketplace scenario.

Combined Token Framework Chaincode Package

ORACLE

The combined token framework uses the extended ERC-1155 standard that is supported by
Blockchain App Builder.

The NFT Art Collection Marketplace sample illustrates the use of the combined token generic
framework. The sample includes a chaincode to represent a marketplace for buying and selling
non-fungible tokens (NFTs) associated with works of art. In this sample, the NFT platform
provider onboards museums who can mint (create) NFTs for artworks in the blockchain
network. Consumers can then buy NFTs from the museums using Eth coins or ERC-20 coins.
When consumers purchase NFTs, museums award loyalty tokens to their fungible token
accounts. Consumers can also resell NFTs. The chaincode implements the methods that are
required for managing token life cycles, including token initialization, account operations, role
assignments, minting, transfers, and burning. It also provides notary accounts for approving
minting, transfer, and burning operations, and supports compliance through daily limits and
auditing procedures. The NFT Art Collection Marketplace sample is designed for chaincode
development in TypeScript.

The combined token framework is downloadable from the Oracle Blockchain Platform console,
and includes the following components.

° NFTCollectiblesWithERC1155. zip, an archive file that contains the packaged
chaincode for deployment.

e NFTCollectiblesWithERC1155-TypeScript.yaml, a specification file that you can
use with Blockchain App Builder to scaffold the NFTCollectiblesWithERC1155 chaincode.

* NFTCollectiblesWithERC1155 postman collection.json, a Postman collection
that enables you to test the APIs in the chaincode.

5-107

Chapter 5
Combined Token Framework

° README.md, a step-by-step guide for working with the chaincode.

To get the fungible token framework, in the Oracle Blockchain Platform Digital Assets console
click the Digital Assets tab and then select Combined Token Framework.

For more details about using Postman collections, see the following topics.
e Generate a Postman Collection Using the CLI
e Generate a Postman Collection Using Visual Studio Code

e Endorsement Support in Postman Collections

Specification File

The specification file that is used to generate the art collection marketplace chaincode includes
the events attribute. The chaincode events function supports event callbacks in generated
chaincodes to enable real-time notifications and trigger workflows. For more information about
specification files and the parameters used in specification files, see Input Specification File for
Combined Tokens in Using Oracle Blockchain Platform.

The art collection marketplace chaincode is based on the extended ERC-1155 standard, as
shown in the following specification file.

#
Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
#

This specification file is an example how to build any whole combined token
application that includes fungible and non-fungible tokens together.

For a combined token application, art collection marketplace with loyalty
token has been used as an example.

Art collection marketplace is a digital marketplace for buying and selling
NET art that rewards users with fungible loyalty tokens for their
participation.

assets:
- name: ArtCollection #Asset name
type: token #Asset type
symbol: ART # Token symbol
standard: erc721+ # Token standard
events: true # Supports event code generation for non-GET methods

anatomy:
type: nonfungible # Token type
unit: whole #Token unit

behavior:
- indivisible
- singleton
- mintable:
max mint quantity: 20000
- transferable
- lockable
- roles:
minter role name: minter

properties: # Custom asset attributes for non-fungible token

ORACLE - 108

Chapter 5
Combined Token Framework

- name: Price # Custom asset attribute to set the price of a non-
fungible token in the marketplace
type: float

- name: On_Sale Flag # Custom asset attribute to maintain non-
fungible token selling status in the marketplace
type: boolean

metadata: # To maintain the metadata on-chain, this tag will be used.
Users won't be able to update the metadata attribute values after an NFT is
minted.

- name: Painting Name # Custom asset attribute to represent the
title given to a piece of artwork.
type: string

- name: Description # Custom asset attribute to represent a
detailed explanation or interpretation of the painting's concept, style, or
message.

type: string

- name: Painter Name # Custom asset attribute to represent the name
of the artist who created the painting.
type: string

- name: Loyalty #Asset name
type: token #Asset type
standard: ercllb55+ # Token standard
events: true # Supports event code generation for non-GET methods

anatomy:
type: fungible # Token type
unit: fractional #Token unit

behavior: # Token behaviors
- divisible:
decimal: 2
mintable:
max mint quantity: 100000
- transferable
burnable
- roles:
minter role name: minter

properties:
- name: Token Name # Custom attribute to represent the token name.
type: string

- name: Token to Currency Ratio # Custom attribute to specify the
token to currency ratio. This attribute is helpful for exchanging the tokens
with fiat currency.

type: number

customMethods:

- executeQuery
- "post(token id: string, selling price: number)" # Post the non-fungible

ORACLE c 100

Chapter 5
Combined Token Framework

token for selling in the marketplace

- "buyWithEthCoin (from org id: string, from user id: string, to org id:
string, to user id: string, nft id: string[], loyalty id: string[], eth qgty:
number[], loyalty reward gquantity: number([])" # Buy the non-fungible token
after paying the amount using Eth Coin and receive loyalty points in return

Combined Token Framework Wrapper API Package

ORACLE

Oracle Blockchain Platform Digital Assets Edition includes a wrapper API package that
extends the REST API to support operations specific to a collectible NFT marketplace.

The wrapper API package uses the API Gateway service and OCI Functions to deploy API
routes specifically designed for the collectible marketplace application. The non-fungible token
framework wrapper API package is downloadable from the Oracle Blockchain Platform
console, and includes the following components.

* NFTCollectiblesWithERC1155WrapperAPI.zip, an archive file that contains the
wrapper API package including the Terraform scripts required for deployment. You deploy
this file to a Resource Manager stack on Oracle Cloud Infrastructure (OCI) to create the
necessary Oracle resources for the Wrapper APIs.

* NFTCollectiblesWithERC1155 WrapperAPI.postman collection.json,a
Postman collection that enables you to test the deployed wrapper APIs. The collection
includes pre-configured requests with endpoints and payloads that correspond to the APIs
defined in the wrapper API package.

Wrapper APIs

activateAccount
Original method name: activateAccount

This POST method activates a token account. This method can be called only by an admin or
account owner. For existing accounts where an accountStatus is not found in the ledger, the
method returns an accountStatus object with the status set to active.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

° endorsers: string[] —An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Returns:

5-110

ORACLE

Chapter 5
Combined Token Framework

* Onsuccess, a JSON representation of the updated account status object for the fungible
token account.

Return Value Example:

"assetType": "oaccountStatus",
"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f£79d5e96

a7,
"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287£9cl”,
"status": "active"

addTokenAdmin
Original method name: addTokenAdmin

This POST method adds a user as a Token Admin of the chaincode. This method can be
called only by a Token Admin of the chaincode.

Payload:

{
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"endorsers": {{endorsers}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

* On success, a message that includes details of the user who was added as a Token
Admin of the chaincode.

Return Value Example:

"msg": "Successfully added Admin (OrgId: appDev, UserId: userl)"
}

addRole
Original method name: addRole

This POST method adds the role to the specified user and token. This method can be called
only by a Token Admin of the chaincode. The tokenDetails parameter Fungible tokens require

5-111

Chapter 5
Combined Token Framework

the tokenId value as input. Non-fungible tokens require the tokenName as input, to achieve
that we use tokenDetail parameter to specify details of fungible and nonfungible tokens
differently.

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"role": "role minter/burner"
"tokenDetails": "{"tokenName": "token name value"}"

"endorsers": {{endorsers}}

Parameters:
e tokenId: string— The ID of the token.

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.
* role: string— The name of the role to add to the specified user.

° tokenDetails: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:
{"tokenName":"artCollection"}

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"msg": "Successfully added role 'minter' to Account Id:
oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d397696b9961d7434d22a
(Org-Id: appdev, User-Id: user2)"

}

associateFungibleTokenToAccount
Original method name: associateFungibleTokenToAccount

This POST method associates a user's fungible token account to a specified token.

ORACLE o

ORACLE

Chapter 5
Combined Token Framework

Payload:

"tokenId": "{{bc-token-id}}",
"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:
* tokenId: string— The ID of the token.

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"assetType": "ouaccount",
"accountId":
"ouaccount~24f£d4d32a028a85b4b960£5d55536c837b5429bc7£346150adfa904ec2937cc",
"userId": "user2",
"orgId": "appdev",
"totalAccounts": 1,
"totalFtAccounts": 1,
"associatedFtAccounts": [
{
"accountId":
"oaccount~1422a74d262a3a55a37¢d9023e£f8836£765d0be7b49d397696b9961d7434d22a",
"tokenId": "tokenOne"
}
]I

"associatedNftAccount": ""

buyWithEthCoin
Original method name: buyWithEthCoin

Any account owner can use this POST method to buy an NFT using Ethereum and to transfer
loyalty tokens as reward points.

Payload:

"fromOrgId":"from org id value",
"fromUserId":"from user id value",
"toOrgId":"to org id value",
"toUserId":"to user id value",
"nftId":"[\"nft id value\"]",

5-113

Chapter 5
Combined Token Framework

"loyaltyId":"[\"loyalty id value\"]",

"ethQty":"[eth gty valuel",
"loyaltyRewardQuantity":" [loyalty reward quantity value]",
"endorsers":{{"endorsers"}}

Parameters:

° fromOrgId: string— The membership service provider (MSP) ID of the sender (owner) in
the current organization.

e fromUserId: string— The user name or email ID of the sender (owner).

° toOrglId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

e toUserld: string— The user name or email ID of the receiver.

* nftld: string— The ID of the token to buy.

* loyaltyId: string— The ID of the fungible token that represents loyalty points.
° ethQty: number — The price of the token in Ethereum.

e loyaltyRewardQuantity: string— The quantity of loyalty points to transfer.

° endorsers: string[] —An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Return Value Example:

"msg": "Token ID : 'artcollectionl' has been successfully transferred to
UserID : 'userl'"
}
balanceOfBatch

Original method name: balanceOfBatch

This GET method completes a batch operation that gets the balances of token accounts. This
method can be called only by a Token Admin of the chaincode or by the account owner.

Query:
/balanceOfBatch?orgIds=["{{bc-org-id}}"]&userIds=["{{bc-user-

id}}"]&tokenIds=["{{bc-token-id}}"]

Parameters:

° orglds: string[] — A list of the membership service provider (MSP) IDs in the current
organization.

e userlds: string[] — A list of the user name or email IDs.

° tokenIds: string[] — A list of the token IDs.

ORACLE 114

Chapter 5
Combined Token Framework

Return Value Example:

"orgId": "AppBldFFFFMay22",
"userId": "user2",
"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7ff610beab8376d733a35¢51£38",
"tokenAccountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",
"tokenId": "FNFT",
"balance": 100
}I
{
"orgId": "AppBldFFFFMay22",
"userId": "user2",
"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7f£610beab8376d733a35¢51£38",
"tokenAccountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"tokenId": "FT",
"balance": 50
}I
{
"orgId": "AppBldFFFFMay22",
"userId": "example minter",
"userAccountId":
"ouaccount~9501bb774c156eb8354dfed89250a91£757523d70£08ee494bda%98bb352003b",
"tokenAccountId":
"oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890£5903446",
"tokenId": "FNFT",
"balance": 10

batchTransferFrom
Original method name: batchTransferFrom

This POST method completes a batch operation that transfers tokens specified in a list of
token IDs from one user to another user. This method can be called by any user.

Payload:

"fromOrgId": "fromOrgIld value",

"fromUserId": "fromUserId value",
"toOrgId": "toOrgId value",
"toUserId": "toUserId value",
"tokenIds": "[\"{{bc-token-id}}\"]",
"quantity": "[quantity value]",

"endorsers": {{endorsers}}

Parameters:

ORACLE i

Chapter 5
Combined Token Framework

e fromOrgId: string— The membership service provider (MSP) ID of the sender.
e fromUserId: string— The user ID of the sender.

e toOrgId: string— The membership service provider (MSP) ID of the receiver.
e toUserld: string— The user ID of the receiver.

* tokenIds: string[] — A list of token IDs for the tokens to transfer.

° quantity: number[] — The list of quantities of tokens to transfer, corresponding to the
token ID array.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

* On success, a message with details for each token transfer.

Return Value Example:

"msg": "Successfully transferred NFT token: 'FNFT' of 'l10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~dcee860665db8740chb77b846e823752185a1e9a185814d0acb305890£5903446
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

}I
{

"msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298£f40b81£199627e4£67£3691c0£628237974c
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

}I
{
"msg": "Successfully transferred NFT token: 'NFT' from Account-Id:

oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e€9%9a185814d0ach305890£5903446
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

}
]

burnBatch
Original method name: burnBatch

This POST method deactivates, or burns, the specified fungible and non-fungible tokens. Any
user with the burner role can call this method.

Payload:

{
"orgId": "{{bc-org-id}}",

ORACLE 116

Chapter 5
Combined Token Framework

"userId": "{{bc-user-id}}",
"tokenIds": "[\"{{bc-token-id}}\"]",
"quantity": "[quantity value]",

"sameOrgEndorser": true

Parameters:

* orgld: string— The membership service provider (MSP) ID in the current organization.
e userld: string— The user name or email ID.

e tokenIds: string[] — The list of the token IDs to burn

e quantity: number[] — The list of quantities of tokens to burn, corresponding to the token
ID array..

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

* On success, a message with details about the burn operations.

Return Value Example:

"msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeblbd535899562a840d0c15a356db89e24bc8b43acldbal845a4282c6
(Org-Id: appdev, User-Id: user2)"

}I
{

"msg": "Successfully burned 5 tokens of tokenId: tokenOne from Account-ID
oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d39769609961d7434d22a
(Org-Id: appdev, User-Id: user2)"

}I
{

"msg": "Successfully burned 2 token share of tokenId: FNFT from Account-
ID oaccount~87bcb699d507368ee3966cd03eebd7736ffc55dde8c0f0el6b14866334ac504a
(Org-Id: AutoF1377358917, User-Id: user2)"

}
]

burnNFT
Original method name: burnNET

This POST method deactivates, or burns, the specified non-fungible token, and returns a
token object and token history. Any user with the burner role can call this method.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"tokenId": "{{bc-token-id}}",

ORACLE 5-117

Chapter 5
Combined Token Framework

"sameOrgEndorser": true

}

Parameters:

* orgld: string— The membership service provider (MSP) ID in the current organization.
e userld: string— The user name or email ID.

e tokenId: string— The ID of the non-fungible token to burn

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

e On success, a JSON array that contains a message about the burn operation.

Return Value Example:

"msg": "Successfully burned NFT token: 'art' from Account-Id:
oaccount~76cb672eeblbd535899562a840d0c15a356db89%e24bc8b43acldba845a4282¢c6
(Org-Id: appdev, User-Id: user2)"

}

createAccount
Original method name: createAccount

This POST method creates an account for a specified user and associated token accounts for
fungible or non-fungible tokens. An account must be created for any user who will have tokens
at any point. The user account tracks the NFT account and the fungible token accounts that a
user holds. Users must have accounts in the network to complete token-related operations.
This method can be called only by a Token Admin of the chaincode.

A user account has a unique ID, which is formed by an SHA-256 hash of the orgId parameter
and the userId parameter.

A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string £t separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).

A user can have only one non-fungible token account. Non-fungible token account IDs are
unigue and are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.

User account IDs start with with ouaccount~. Token account IDs start with caccount-~.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"ftAccount": true,
"nftAccount": true,

ORACLE r

ORACLE

Chapter 5
Combined Token Framework

"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e ftAccount: boolean — If true, a fungible token account is created and associated with the
user account.

e nftAccount: boolean — If true, a non-fungible token account is created and associated
with the user account.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"assetType": "ouaccount",
"accountId":
"ouaccount~cf20877546£52687£387e7c91d88b9722c97e1ad56cc0484£40c747£7804feae",
"userId": "userl",
"orgId": "appdev",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": [
{
"accountId":
"oaccount~60bb20c14a83f6e426e1437c479c5891elc6477dfd7adl8b73acac5d80bc504b",
"tokenId": ""
}
]I
"associatedNftAccount":
"oaccount~73c3e835dac6d0a56ca9d8def08269£83cefd59b9d297£fe2¢cdc5a9083828£a58"
}

createArtCollectionToken
Original method name: createArtCollectionToken

This POST method creates (mints) an NFT. The asset and associated properties are saved in
the state database. The caller of this transaction must have a token account. The caller of this
transaction becomes the owner of the NFT. If the token specification file includes the roles
section for behaviors and the minter role name property for roles, then the caller of the
transaction must have the minter role. Otherwise, any caller can mint NFTs.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\", \"tokenMetadata\":

{\"Painting Name\":\"Painting Name value\",\"Description\":\"Description

5-119

ORACLE

Chapter 5
Combined Token Framework

value\",\"Painter Name\":\"Painter Name
value\"},\"Price\":999,\"0On Sale Flag\":true}",
"quantity": 1,
"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset to mint. For more information about the
properties of the token asset, see the input specification file.

° quantity: number — The number of tokens to mint. The only supported value for this
parameter is 1.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000z2",
"MaturityDate": "2023-03-28T15:16:36.000Z"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {
"max mint quantity": 0
}I
"quantity": 10,

5-120

Chapter 5
Combined Token Framework

"createdBy":
"oaccount~85dfd98d1b99e5b8891e0alfdcd7d2e07£fc5d37958£5d2a5796290b6a9204a43",

"creationDate": "2024-12-03T12:07:24.000Z",

"divisible": {

"decimal": 0

}I

"isBurned": false,

"isLocked": false,

"tokenUri": "tokenUri value",
"status": "created"

}

createlLoyaltyToken

Original method name: createloyaltyToken

This POST method creates tokens. Every token that is defined has its own create method.
This method can be called only by a Token Admin of the chaincode.

Payload:

{
"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"Token Name\":\"Token Name value\",\"Token to Currency Ratio\":999}",
"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset. The properties of the asset are defined in
the model file.

e sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "loyalty",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll155+",
"tokenType": "fungible",
"tokenUnit": "fractional",
"behaviors": |

"divisible",

"mintable",

"transferable",

"burnable",

"roles"
]I
"roles": {

"minter role name": "minter",

ORACLE c 101

ORACLE

Chapter 5
Combined Token Framework

"burner role name": "burner"
}I
"mintable": {
"max mint quantity": 0
}I
"quantity": 10,
"createdBy":
"oaccount~85dfd98d1b99e50b8891e0alfdcd7d2e07£fc5d37958£5d2a5796290b6a9204a43",
"creationDate": "2024-12-03T12:07:24.000z2",
"divisible": {
"decimal": 0
}I
"isBurned": false,
"isLocked": false,

"tokenUri": "tokenUri wvalue",
"status": "created"

}

createTokenAccount

Original method name: createTokenAccount

This POST method creates a fungible or non-fungible token account to associate with a user
account.

A user can have multiple fungible token accounts with unique account IDs. Fungible token
account IDs are formed by an SHA-256 hash of the orgId parameter, the userId parameter,
the constant string £t separated by the tilde symbol (~), and a counter number that signifies
the index of the fungible account that is being created separated by the tilde symbol (~).

A user can have only one non-fungible token account. Non-fungible token account IDs are
unigue and are formed by an SHA-256 hash of the orgId parameter, the userIid parameter,
and the constant string nft separated by the tilde symbol (~). All non-fungible tokens that a
user owns, whether whole or fractional, are linked to this account.

This method can be called only by a Token Admin of the chaincode.

Payload:

"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenType": "nonfungible",
"endorsers": {{endorsers}}
}
Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e tokenType: TokenType — The type of token account to create. The only supported token
types are nonfungible and fungible.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

5-122

ORACLE

Chapter 5
Combined Token Framework

e Onsuccess, a JSON object of the token account that was created.

Return Value Example:

"assetType": "ouaccount",

"accountId":
"ouaccount~24f£d4d32a028a85b4b960£5d55536c837b5429bc7£346150adfa904ec2937cc",

"userId": "user2",

"orgId": "appdev",

"totalAccounts": 1,

"totalFtAccounts": 1,

"associatedFtAccounts": [

{

"accountId":
"oaccount~1422a74d262a3a55a37¢d9023e£f8836£765d0be7b49d397696b9961d7434d22a",
"tokenId": ""
}
1,

"associatedNftAccount":
"oaccount~1422a74d262a3a55a37¢d9023ef8836£765d0be7b49d397696b9961d7434d22a"

}

createUserAccount
Original method name: createUserAccount

This POST method creates an account for a specified user. An account must be created for
any user who will have tokens at any point. The user account tracks the NFT account and the
fungible token accounts that a user has. Users must have accounts in the network to complete
token-related operations.

An account ID is an SHA-256 hash of the orgId parameter and the userId parameter. This
method can be called only by a Token Admin of the chaincode.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

* On success, a JSON object of the user account that was created.

5-123

Chapter 5
Combined Token Framework

Return Value Example:

"assetType": "ouaccount",

"accountId":
"ouaccount~24£f£d4d32a028a85b4b960£5d55536c837b5429%c7£346150adfa%904ec2937cc",

"userId": "user2",

"orgId": "appdev",

"totalAccounts": 0,

"totalFtAccounts": O,

"associatedFtAccounts": [],

"associatedNftAccount": ""

deleteAccount
Original method name: deleteAccount

This POST method deletes a token account. After an account is deleted, the account is in a
final state and cannot be updated or changed to any other state. To delete an account, the
account balance must be zero. This method can be called only by a Token Admin of the
chaincode.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Returns:

* On success, a JSON representation of the token account status.

Return Value Example:

"assetType": "oaccountStatus",

"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f£79d5e96
a7",

"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8a3ba68ladcfbe287£f9cl”,

ORACLE c 104

ORACLE

Chapter 5
Combined Token Framework

"status": "deleted"

exchangeToken
Original method name: exchangeToken

This method exchanges tokens between specified accounts. This method only supports
exchanging between an NFT and a fungible token or a fungible token and an NFT. The NFT
can be whole or fractional. This method can be called only by the account owner.

Payload:

{

"fromTokenId": "fromTokenId value",
"fromOrgId": "fromOrgId value",
"fromUserId": "fromUserId value",

"fromTokenQuantity": 1,
"toTokenId": "toTokenId value",
"toOrgId": "toOrgld value",
"toUserId": "toUserId value",
"toTokenQuantity": 1,
"endorsers": {{endorsers}}

}

Parameters:
e fromTokenId: string— The ID of the token that the sender owns.

e fromOrgId: string— The membership service provider (MSP) ID of the sender in the
current organization.

e fromUserId: string— The user name or email ID of the sender.

e fromTokenQuantity: number — The quantity of tokens from the sender to exchange with
the receiver.

° toTokenId: string— The ID of the token that the receiver owns.

° toOrgId: string— The membership service provider (MSP) ID of the receiver in the
current organization.

* toUserlId: string— The user name or email ID of the receiver.

° toTokenQuantity: number — The quantity of tokens from the receiver to exchange with
the sender.

* endorsers: string[] — An array of the peers (for example, peerl, peer?) that must
endorse the transaction.

Returns:

e On success, a message with token exchange details.

Return Value Example:

"msg": "Succesfully exchanged 10 tokens of type nonfungible with tokenId:
[rl] from Account

5-125

ORACLE

Chapter 5
Combined Token Framework

oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(OrgId: AppBldFFFFMay22, UserId: user2) to 10 tokens of type fungible with
tokenId: [loyl] from Account
oaccount~1089ee5122£367ee0ca38c6660298£4b81£199627e4£67£3691c0£628237974c
(OrgId: AppBldFFFFMay22, UserId: example minter)"

}

getAccount
Original method name: getAccount

This GET method returns token account details for a specified user. This method can be
called only by a Token Admin of the chaincode or the Account Owner of the account.

Query:

/getAccount?orgIld={{bc-org-id}}s&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

Returns:

e On success, a JSON object that includes token account details.

Return Value Example

"assetType": "oaccount",

"accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"userId": "user2",

"orgId": "AppBldFFFFMay22",

"tokenType": "nonfungible",

"noOfNfts": 3

getAccountDetailsByUser
Original method name: getAccountDetailsByUser

This GET method returns account details for a specified user. This method can be called only
by a Token Admin of the chaincode or the Account Owner of the account.

Query:

/getAccountDetailsByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

5-126

ORACLE

Chapter 5
Combined Token Framework

e userld: string— The user name or email ID of the user.

Return Value Example:

"userAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7f£610beab8376d733a35¢c51£38",
"associatedFTAccounts": [

{
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"tokenId": "FT",
"balance": 50

]I
"associatedNFTAccount": {
"accountId":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",
"associatedNFTs": [

{
"nftTokenId": "EFNFT",
"tokenShare": 100

"nftTokenId": "FNFT2",
"tokenShare": 110

"nftTokenId": "NFT"

getAccountHistory
Original method name: getAccountHistory

This GET method returns account history for a specified token account. For NFT accounts, the
tokenId parameter must be empty. This method can be called only by the Token Admin of the
chaincode or by the account owner.

Query:

/getAccountHistory?orgld={{bc-org-id}}&userId={{bc-user-id}}&tokenId={{bc-
token-id}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

° tokenId: string— The ID of the fungible token.

5-127

ORACLE

Chapter 5
Combined Token Framework

Return Value Example:

"trxId":

"a2cfc6fc064334d6b9931cdf67193711ec2££5c50a4714£11855£e7384£00e35",
"timeStamp": "2023-06-06T14:44:31.000Z",

"value": {
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"assetType": "oaccount",

"balance": 100,

"orgId": "AppBldFFFFMay22",
"tokenId": "loyl",
"tokenName": "loyalty",
"tokenType": "fungible",
"userId": "user2"

"trxId":
"ded83cf7505ae4e7018c4b604c3ab9327¢c2fb1£802d9408e22735667¢c1d6997£",
"timeStamp": "2023-06-06T14:43:23.000Z",
"value": {
"assetType": "oaccount",
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"userId": "user2",
"orgId": "AppBldFFFFMay22",
"tokenType": "fungible",
"tokenId": "loyl",
"tokenName": "loyalty",
"balance": 0

"trxId":
"db053e653d3ad%aabb7b6e04b7cd5laacfbbd413272d857a155b60d2a6al2bf4d",
"timeStamp": "2023-06-05T16:59:08.000Z",
"value": {
"assetType": "oaccount",
"accountId":
"oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e",
"userId": "user2",
"orgId": "AppBldFFFFMay22",
"tokenType": "fungible",
"tokenId": "",
"balance": 0

getAccountStatus
Original method name: getAccountStatus

5-128

ORACLE

Chapter 5
Combined Token Framework

This GET method retrieves the current status of the token account. This method can be called
by the Token Admin of the chaincode or by the token account owner.

Query:

/getAccountStatus?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, a JSON representation of the token account status.

Return Value Example:

"assetType": "oaccountStatus",

"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f£79d5e96
a7",

"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8al3bat8ladctbe287£9¢c1",

"status": "active"

getAccountStatusHistory
Original method name: getAccountStatusHistory

This GET method retrieves the history of the account status. This method can be called by the
Token Admin of the chaincode or by the token account owner.

Query:
/getAccountStatusHistory?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

e On success, the account status history in JSON format.

Return Value Example:

5-129

ORACLE

Chapter 5
Combined Token Framework

"trxId":
"d5¢c6d6£601257ba%bbedaf507660£00adc13c37d5321b8f7d3a35afab2e93e63",

"timeStamp": "2022-12-02T10:39:14.000Z",

"value": {

"assetType": "oaccountStatus",

"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287£f9cl”,

"status": "suspended"

}
}I
{
"trxId":
"e6c850cfalB84dc20ad95fb2bb8165eef3a3bdb2alac867cccee57¢2003125183",
"timeStamp": "2022-12-02T710:37:50.000z",
"value": {

"assetType": "oaccountStatus",

"status_id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79£79d5€96
a7,

"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a61cd7fc8a3ba68ladcfbe287£f9cl”,

"status": "active"

getAccountTransactionHistory
Original method name: getAccountTransactionHistory

This GET method returns account transaction history. This method can be called only by a
Token Admin of the chaincode or by the account owner.

Query:
/getAccountTransactionHistory?orgId={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Return Value Example:

"transactionId":
"otransaction~3a6b23c3003626£3947e990eddbd7ac23398d2200e2eb3eac745e6ddfael40be
~7c88c736df38d5622512f1e8dcdd50710eb47¢c953f1ecb24ac44790a%9e2£475b",

"timestamp": "2023-06-06T14:48:08.000z2",

5-130

ORACLE

Chapter 5
Combined Token Framework

"tokenId": "FNFT",

"transactedAmount": 10,

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~dcee860665db8740chb77b846e823752185a19a185814d0ach305890£5903446",

"transactionType": "DEBIT",

"balance": 90

}I
{

"transactionId":
"otransaction~3a6b23c3003626£3947e990eddbd7ac23398d2200e2eb3eac745eb6ddfaeld0be
~178e3730bc5bee50d02f1464a4eebf733a051905£651e5789039%adb4al3edc114",

"timestamp": "2023-06-06T14:48:08.000zZ",

"tokenId": "NFT",

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~dcee860665db8740chb77b846e823752185a19a185814d0ach305890£5903446",

"transactionType": "DEBIT"

}I
{

"transactionId":
"otransaction~c369929e28e78de06c72d020£1418¢c9%al54a7dd280b2e22ebb4eadd85e249124
~aTcefb22ff39%9ee7e36967be71de27da6798548¢c872061a62dabc56d88d500930",

"timestamp": "2023-06-06T14:47:08.000zZ",

"tokenId": "NFT",

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"transactionType": "MINT"

}I
{

"transactionId":
"otransaction~114albc78d04be48ee6dcl40c32c042ee9481cb118959626£090eec744522422
~e4eb15d9354£694230df8835ade012100d82aa43672896a2c7125a86e3048£9f",

"timestamp": "2023-06-05T17:17:57.000Z",

"tokenId": "FNFT",

"transactedAmount": 100,

"triggeredByUserAccountId":
"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",

"transactedAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371",

"transactionType": "MINT",

"balance": 100

getAccountsByRole
Original method name: getAccountsByRole

This method returns a list of all account IDs for a specified role. This method can be called
only by a Token Admin of the chaincode.

5-131

Chapter 5
Combined Token Framework

Query:

/getAccountsByRole?role=role value (for example minter /
burner) &tokenDetail={"tokenName":"tokenName value"}

Parameters:
e role: string— The name of the role to search for.

e tokenDetails: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

"accounts": [
"oaccount~1422a74d262a3a55a37¢d9023e£8836£765d0be7b49d397696b9961d7434d22a",

"oaccount~60bb20c14a83f6e426e1437¢c479c5891elc6477dfd7adl8b73acac5d80bc504b"
]

getAllAccounts
Original method name: getAllAccounts

This GET method returns details of all user accounts. This method can be called only by a
Token Admin of the chaincode.

Query:

/getAllAccounts

Parameters:

° none

Returns:

e Onsuccess, a JSON array of all accounts.

Return Value Example:

"assetType": "ouaccount",
"accountId":

ORACLE = 130

Chapter 5
Combined Token Framework

"ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢51£38",
"userId": "user2",
"orgId": "AppBldFFFFMay22",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": |

{

"accountId":
"oaccount~21206£309941a2a23c4£f158a0felb8f12bb8e2b0c%9a2e1358f5efebcOc7d410e",
"tokenId": "loyl"

]I
"associatedNftAccount":
"oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371"
}I
{
"assetType": "ouaccount",
"accountId":
"ouaccount~9501bb774c156eb8354dfe489250ea91£757523d70£08ee494bda98bb352003b",
"userId": "example minter",
"orgId": "AppBldFFFFMay22",
"totalAccounts": 2,
"totalFtAccounts": 1,
"associatedFtAccounts": |

{

"accountId":
"oaccount~1089ee5122£367ee0ca38c6660298f4b81£199627e4f67£3691c0£628237974c",
"tokenId": "loyl"

1,
"associatedNftAccount":
"oaccount~dcee860665db8740cb770846e823752185a1€9a185814d0acb305890£5903446"

b

getAllTokenAdmins
Original method name: getAl1TokenAdmins

This GET method returns a list of all users who are a Token Admin of the chaincode. This
method can be called only by the Token Admin of the chaincode.

Query:
/getAllTokenAdmins

Parameters:

° none

Returns:

e Onsuccess, an admins array in JSON format that contains orgId and userId objects.

ORACLE c 133

Chapter 5
Combined Token Framework

Return Value Example:

"admins": [

{
"orgId": "appdev",
"userId": "user2"

b

{
"orgId": "appdev",
"userId": "userl"

getAllTokens
Original method name: getAl1Tokens

This GET method returns all of the token assets that are saved in the state database. This
method can be called only by a Token Admin of the chaincode. This method uses Berkeley DB
SQL rich queries and can only be called when connected to the remote Oracle Blockchain
Platform network.

Query:

/getAllTokens

Parameters:

° none

Return Value Example:

[{
"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000Z",
"MaturityDate": "2023-03-28T15:16:36.000Z"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",

ORACLE c 134

ORACLE

Chapter 5
Combined Token Framework

"tokenUnit": "fractional",

"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {
"max mint quantity": 0
}I
"quantity": 10,
"createdBy":
"oaccount~85dfd98d1b99e5b8891e0alfdcd7d2e07£fc5d37958£5d2a5796290b6a9204a43",
"creationDate": "2024-12-03T12:07:24.000Z",
"divisible": {
"decimal": 0
}I
"isBurned": false,
"isLocked": false,

"tokenUri": "tokenUri value",
"status": "status value"

H

getAllTokensByUser

Original method name: getAl1TokensByUser

This GET method returns all of the token assets that are owned by a specified user. This
method uses Berkeley DB SQL rich queries and can only be called when connected to the
remote Oracle Blockchain Platform network. This method can be called only by a Token Admin
of the chaincode or by the account owner.

Query:

/getAllTokensByUser?orgld={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Return Value Example:

[{
"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",

5-135

ORACLE

Chapter 5
Combined Token Framework

"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000z2",
"MaturityDate": "2023-03-28T15:16:36.0002"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {

"max mint quantity": 0
}I
"quantity": 10,
"createdBy":

"oaccount~85dfd98d1b99e5b8891e0al0fdcd7d2e07£c5d37958£5d2a5796290b6a9204a43",

}

getTokenById

"creationDate": "2024-12-03T12:07:24.000z2",
"divisible": {
"decimal": 0
}I
"isBurned": false,
"isLocked": false,
"tokenUri": "tokenUri value",
"status": "status value"

Original method name: getTokenById

This GET method returns a token object if the token is present in the state database. This
method can be called only by a Token Admin of the chaincode or the token owner. For
fractional NFTs, the response includes the list of token owners.

Query:

/getTokenById?tokenId={{bc-token-id}}

5-136

ORACLE

Parameters:

o tokenId:

string — The ID of the token to get.

Return Value Example:

[{

"createdBy":
36138e00",

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16
}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl155+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter",
"burner role name":"burner"
}I
"mintable": {
"max mint quantity":0
}I
"quantity":100,

.oooz",
:36.0002"

Chapter 5
Combined Token Framework

"oaccount~276bcfl324bladled93e22432db3b39f7a4b9%bl1708525¢c0391ea3ba

"creationDate":"2024-12-02T12:42:09
"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"

.oooz",

5-137

Chapter 5
Combined Token Framework

getTokenDecimal
Original method name: getTokenDecimal

This method returns the number of decimal places for a specified token. This method can be
called only by a Token Admin of the chaincode.

Query:

/getTokenDecimal?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"msg": "Token Id: tokenOne has 2 decimal places."

getTokenHistory
Original method name: getTokenHistory

This GET method returns the history for a specified token ID. Anyone can call this method.

/getTokenHistory?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

[{

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36.0002",
"MaturityDate":"2023-03-28T15:16:36.0002"

b

"assetType":"otoken",

"events":true,

"tokenId":"bondl",

ORACLE = 138

Chapter 5
Combined Token Framework

"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl1l55+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter",
"burner role name":"burner"
}I
"mintable":{
"max mint quantity":0
}I
"quantity":100,

"createdBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl7b8525c0391ea3ba

36138e00",
"creationDate":"2024-12-02T12:42:09.0002",
"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"
}
]
getTokensByName

Original method name: getTokensByName
This GET method returns all of the token assets for a specified token name. This method uses
Berkeley DB SQL rich queries and can only be called when connected to the remote Oracle

Blockchain Platform network. This method can be called only by a Token Admin of the
chaincode.

Query:

/getTokensByName?tokenName=tokenName value

Parameters:

* tokenName: string— The name of the token.

ORACLE £ 130

ORACLE

Return Value Example:

"key": "tokenOne",
"valuedson": {

"assetType": "otoken",
"tokenId": "tokenOne",
"tokenName": "moneytok",

"tokenStandard": "ercll55+",
"tokenType": "fungible",
"tokenUnit": "fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"roles"

1,

"roles": {
" 2 L1 n 4 n
mlnter_role_name . "minter",
"burner role name": "burner"

b
"mintable": {
"max mint quantity": 1000
b
"divisible": {
"decimal": 2

}

}I

{
"key": "tokenTwo",
"valuedson": {

"assetType": "otoken",
"tokenId": "tokenTwo",
"tokenName": "moneytok",

"tokenStandard": "ercll55+",
"tokenType": "fungible",
"tokenUnit": "fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"roles"

1,

"roles": {
" 2 L1 n 4 n
mlnter_role_name . "minter",
"burner role name": "burner"

b
"mintable": {
"max mint quantity": 1000
b
"divisible": {
"decimal": 2

Chapter 5
Combined Token Framework

5-140

ORACLE

Chapter 5
Combined Token Framework

getTransactionById
Original method name: getTransactionById

This GET method returns transaction history for a specified transaction ID. This is an
asynchronous method. This method can be called by any user.

Query:

/getTransactionById?transactionId=transactionId value

Parameters:

° transactionld: string— The id of the transaction, which is the prefix otransaction~
followed by the 64-bit hash in hexadecimal format.

Return Value Example:

"transactionId":
"otransaction~9ea7b05ab099f7£f4db8342b8c3609031£1d54£11205906e7£f1fe88661fe3chbe
~33b59ce0c89e96clel6449f24301581e8e71954£38ad977c7eb6f065e87£2a53",

"history": [

{
"trxId":
"%ea7b05ab099f7ff4db8342b8c3609031f1d54£11205906e7f1fe88661fe3chbe",
"timeStamp": "2022-12-08T09:01:28.000z2",
"value": {

"assetType": "otransaction",

"transactionId":
"otransaction~9ea7b05ab099f7£ff4db8342b8c3609031£1d54£11205906e7£f1fe88661fe3chbe
~33b59ce0c89e96clel6449f24301581e8e71954£38ad977c7eb6f065e87£2a53",

"tokenId": "tokenOne",

"fromAccountId":
"oaccount~1422a74d262a3a55a37¢d9023e£8836£765d0be7b49d39769609961d7434d22a",
"toAccountId": "",

"transactionType": "BURN",
"amount": 5,
"timestamp": "2022-12-08T09:01:28.000z2",
"triggeredByUserAccountId":
"ouaccount~24f£d4d32a028a85b4b960£5d55536c837b5429%0c7£346150adfa%04ec2937cc"
}

getUserByAccountId
Original method name: getUserByAccountId

This GET method returns the organization ID and user ID for a specified account ID.

5-141

Chapter 5
Combined Token Framework

Query:

/getUserByAccountId?accountId=accountId value

Parameters:

e accountld: string— The ID of the account.

Return Value Example:

"orgId": "AppBldFFFFMay22",
"userId": "user2"

getUsersByRole
Original method name: getUsersByRole

This GET method returns a list of all users for a specified role.
Query:

/getUsersByRole?role=role value (for example minter /
burner) &tokenDetail={"tokenName":"tokenName value"}

Parameters:
* role: string— The name of the role to search for.

° tokenDetail: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

"users": [
{
"accountId":
"oaccount~1422a74d262a3a55a37c¢d9023e£8836£765d0be7b49d397696b9961d7434d22a",
"orgId": "appdev",
"userId": "user2"
}I
{
"accountId":
"oaccount~60bb20c14a83£6e426e1437c479c5891elc6477dfd7adl8b73acac5d80bc504b",
"orgId": "appdev",

ORACLE c 140

Chapter 5
Combined Token Framework

"userId": "userl"

init
Original method name: init

This POST method is called when the chaincode is deployed. The user information is saved
as the Token Admin of the chaincode.

Payload:

{
"adminList": "[{\"orgId\":\"{{bc-org-id}}\", \"userId\":\"{{bc-user-id}}\"}]"
}

Parameters:

* adminList array—Anarray of {user id, org_ id} information that specifies the list of
token admins. The adminList array is a mandatory parameter.

Returns:

e On success, a message with no payload.

Return Value Example:

isInRole
Original method name: isInRole

This GET method returns a Boolean value to indicate if a user has a specified role. This
method can be called only by a Token Admin of the chaincode or the Account Owner of the
account.

Query:

/isInRole?orgld={{bc-org-id}}s&userId={{bc-user-id}}&role=role value (for
example minter / burner)&tokenDetail={"tokenName":"tokenName value"}

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userlId: string— The user name or email ID of the user.

e role: string— The name of the role to search for.

ORACLE e

ORACLE

Chapter 5
Combined Token Framework

° tokenDetail: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

"result": true,

"msg": "Account Id
oaccount~1422a74d262a3a55a37cd9023e£8836£765d0be7b49d39769609961d7434d22a
(Org-Id: appdev, User-Id: user2) has minter role"

}

isTokenAdmin
Original method name: isTokenAdmin

This GET method returns the Boolean value true if the caller of the function is a Token Admin,
otherwise it returns false. This method can be called only by a Token Admin of the chaincode.

Query:
/isTokenAdmin?orgId={{bc-org-id}}&userId={{bc-user-id}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

Returns:

* The method returns true if the caller is a Token Admin, otherwise it returns false.

Return Value Example:

"result": true

mintBatch
Original method name: mintBatch

This POST method creates (mints) multiple tokens in a batch operation. This method creates
only fungible tokens or fractional non-fungible tokens.

For fungible tokens, if the minter role is defined in the specification file, then any user with the
minter role can call this method. If not, any user can use this method to mint tokens. You

5-144

ORACLE

Chapter 5
Combined Token Framework

cannot mint more than the max_mint quantity property of the token, if that property was
specified when the token was created or updated.

For non-fungible tokens, if the minter role is defined in the specification file, then any user with
the minter role can call this method. If not, any user can use this method to mint tokens.
Additionally, the caller must also be the creator of the token. There is no upper limit to the
guantity of fractional non-fungible tokens that can be minted.

You cannot use this method to mint a whole non-fungible token.

Payload:

{
"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"tokenIds": "[\"{{bc-token-id}}\"]",
"quantity": "[quantity value]",

"sameOrgEndorser": true

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.
* tokenIds: string[] — The list of token IDs to mint tokens for.

° quantity: number[] — The list of quantities of tokens to mint, corresponding to the token
ID array.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Returns:

e On success, a JSON object that includes details on the minted tokens.

Return Value Example:

"msg": "Successfully minted batch of tokens for User-Account-Id
ouaccount~412de5e3998dcd100973elbad6e8729fddclc7££610beab8376d733a35¢c51£38
(Org-Id: AppBldFFFFMay22, User-Id: user2).",

"details": [

{

"msg": "Successfully minted 100 tokens of fractional tokenId:

plot55 to Org-Id: AppBldFFFFMay22, User-Id: user2"
}I
{

"msg": "Successfully minted 100 tokens of tokenId: loyalty to
Token-Account-Id
oaccount~21206£309941a2a23c4£158a0felb8f12bb8e2b0c9a2e1358f5efebc0c7d410e"

}

5-145

Chapter 5
Combined Token Framework

name
Original method name: name

This GET method returns the name of the token class. Anyone can call this method.
Query:

/name?tokenlId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

Return Value Example:

"tokenName": "artcollection"

ownerOf
Original method name: owner0Of

This GET method returns the account ID of the owners of the specified token ID. Anyone can
call this method.

Query:

/ownerOf?tokenId={{bc-token-id}}

Parameters:

e tokenId: string-— The ID of the token.

Returns:

e A JSON object of the account IDs of the owners.

Return Value Example:

"accountId":
"oaccount~42e89f4c72dfde9502814876423¢c6da630d466e87436dd1laae201d347ad1288d",
"orgId": "OrglMSP",
"yserId": "admin"
}I
{

"accountId":
"oaccount~74108eca702bab6d8548e740254f2cc7955d886885251d52d065042172a59db0",

"orgId": "OrglMSP",

"userId": "user"

ORACLE c 146

Chapter 5
Combined Token Framework

post
Original method name: post

This POST method posts a token for sale for a specified price.

Payload:

{

"tokenId": "{{bc-token-id}}",
"sellingPrice": 1,
"endorsers": {{endorsers}}

}

Parameters:
* tokenId: string— The ID of the token.
e sellingPrice: number — The price of the token.

e endorsers: string[] — An array of the peers (for example, peerl, peer2) that must
endorse the transaction.

Return Value Example:

"msg": "Token ID : 'artCollectionl' has been posted for selling in the
marketplace"

}

removeRole
Original method name: removeRole

This method removes a role from a specified user. This method can be called only by a Token
Admin of the chaincode.

Payload:

{
"orgId": "{{bc-org-id}}",

"userId": "{{bc-user-id}}",
"role": "role value (for example minter / burner)",
"tokenDetail": "{\"tokenName\":\"tokenName value\"}",

"endorsers": {{endorsers}}

}

Parameters:

e orgld: string-— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

e role: string— The name of the role to remove from the specified user.

ORACLE 5.147

ORACLE

Chapter 5
Combined Token Framework

° tokenDetail: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:
{"tokenName":"artCollection"}

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"msg": "Successfully removed role 'minter' from Account Id:
oaccount~60bb20c14a83f6e426e1437c479c5891elc6477dfd7adl8b73acac5d80bc504b
(Org-Id: appdev, User-Id: userl)"

}

removeTokenAdmin
Original method name: removeTokenAdmin

This POST method removes a user as a Token Admin Of the chaincode. This method can be
called only by a Token Admin of the chaincode. An admin cannot remove themselves.

Payload:

{

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",

"sameOrgEndorser": true

}

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

e user id: string— The user name or email ID of the user.

* sameOrgEndorser: boolean — A Boolean value that indicates whether transaction
endorsements must be from the same organization as the requester.

Return Value Example:

"msg": "Successfully removed Admin (OrgId: appDev, UserId: userl)"

safeBatchTransferFrom
Original method name: safeBatchTransferFrom

5-148

Chapter 5
Combined Token Framework

This POST method transfers ownership of the specified tokens from the caller to another
account. The caller of this method must be the sender of the tokens and must own the
specified tokens. For fractional NFTs, if a user transfers all of their shares to another user, they
lose ownership of the token.

Payload:

{
"fromOrgId": "fromOrgIld value",

"fromUserId": "fromUserId value",
"toOrgId": "toOrgIld value",
"toUserId": "toUserId value",
"tokenIds": "[\"{{bc-token-id}}\"]",
"quantity": "[quantity value]",

"endorsers": {{endorsers}}

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the sender and token
owner in the current organization.

e fromUserId: string— The user name or email ID of the sender and token owner.

e toOrgld: string— The membership service provider (MSP) ID of the receiver in the
current organization.

° toUserld: string— The user name or email ID of the receiver.
° tokenIds: string[] — An array of the IDs of the tokens to transfer.

° quantity: number[] — The list of quantities of tokens to transfer, corresponding to the
token ID array.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"msg": "Successfully transferred NFT token: 'ENFT' of '10' quantity
from Account-Id:
oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢98a10097371
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~dcee860665db8740cb770b846e823752185a1e9a185814d0ach305890£5903446
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

b
{

"msg": "Successfully transferred 10 FT token: 'FT' from Account-Id:
oaccount~21206f309941a2a23c4f158a0felb8f12bb8e2b0c9%9a2e1358f5efebc0c7d410e
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~1089ee5122f367ee0ca38c6660298f4b81f199627e4f67£f3691c0£628237974c
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

b
{

"msg": "Successfully transferred NFT token: 'NFT' from Account-Id:

ORACLE £ 149

ORACLE

Chapter 5
Combined Token Framework

oaccount~e88276a3be547e31b567346bdddde52d37734dadd5fae83ab2e5¢c98a10097371
(Org-Id: AppBldFFFFMay22, User-Id: user2) to Account-Id:
oaccount~dcee860665db8740cb77b846e823752185a1e9a185814d0acb305890£5903446
(Org-Id: AppBldFFFFMay22, User-Id: example minter)"

}
]

suspendAccount
Original method name: suspendAccount

This POST method suspends a fungible token account. It throws an error if an accountStatus
value is not found in ledger. This method can be called only by a Token Admin of the
chaincode.

Payload:

"orgId": "{{bc-org-id}}",
"userId": "{{bc-user-id}}",
"endorsers": {{endorsers}}

Parameters:

e orgld: string— The membership service provider (MSP) ID of the user in the current
organization.

e userld: string— The user name or email ID of the user.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"assetType": "oaccountStatus",
"status id":
"oaccountStatus~5a0b0d8blc6433af9fedfe0d9e6580e7cfobbbb62a0de6267aaf79f£79d5e96

a7,
"account id":
"oaccount~1c568151cdacbcdlbd265¢c766c677145760a6lcd7fc8a3ba68ladcfbe287£f9cl”,
"status": "suspended"

}

totalNetSupply
Original method name: totalNetSupply

This GET method returns the total number of minted tokens minus the number of burned
tokens. This method can be called only by a Token Admin of the chaincode.

Query (Fungible Tokens):

/totalNetSupply?tokenDetail={"tokenId":"{{bc-token-id}}"}

5-150

Chapter 5
Combined Token Framework

Query (Non-Fungible Tokens):

/totalNetSupply?tokenDetail={"tokenName":"tokenName value"}

Parameters:

e tokenDetail: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

Return Value Example:

"totalNetSupply": 105

totalSupply
Original method name: totalSupply

This GET method returns the total number of minted tokens. This method can be called only
by a Token Admin of the chaincode.

Query (Fungible Tokens):

/totalSupply?tokenDetail={"tokenId":"{{bc-token-id}}"}

Query (Non-Fungible Tokens):

/totalSupply?tokenDetail={"tokenName":"tokenName value"}

Parameters:

° tokenDetail: TokenDetail — The details that specify the token. For fungible tokens, use
the following format:

{"tokenId":"tokenl"}

For non-fungible tokens, use the following format:

{"tokenName":"artCollection"}

ORACLE _—

ORACLE

Chapter 5
Combined Token Framework

Return Value Example:

"totalSupply": 110

updateArtCollectionToken
Original method name: updateArtCollectionToken

This POST method updates token properties. Only the token owner can call this method. For
NFTs, the token metadata and token URI cannot be updated after the token is minted.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"tokenUri\":\"tokenUri value\",\"status\":\"status value\",
\"tokenMetadata\": {\"ISIN\":\"ISIN value\",\"Segment\":\"Segment
value\",\"Issuer\":\"Issuer
value\",\"FaceValue\":999,\"IssueSize\":999, \"CouponRate\":999,\"InterestPayme
ntType\":\"InterestPaymentType
value\",\"InterestFrequency\":\"InterestFrequency
value\",\"IssueDate\":\"2023-03-28T15:16:36+00:00\", \"MaturityDate\":\"2023-03
-28T15:16:36+00:00\"}, \"status\":\"status value\"}",

"sameOrgEndorser": true

}

Parameters:

e tokenAsset: <Token Class>— The token asset to update. For more information about the
properties of the token asset, see the input specification file.

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"tokenMetadata": {
"ISIN": "ISIN value",
"Segment": "Segment value",
"Issuer": "Issuer value",
"FaceValue": 999,
"IssueSize": 999,
"CouponRate": 999,
"InterestPaymentType": "simple",
"InterestFrequency": "monthly",
"IssueDate": "2023-03-28T15:16:36.000z2",
"MaturityDate": "2023-03-28T15:16:36.000Z"
}I
"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "bond",

5-152

ORACLE

"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {

"max mint quantity": 0
}I
"quantity": 10,
"createdBy":

"oaccount~85dfd98d1b99e5b8891e0alfdcd7d2e07£c5d37958£5d2a5796290b6a9204a43"
"creationDate": "2024-12-03T12:07:24.000z2",

"divisible": {
"decimal": 0

}I

"isBurned": false,

"isLocked": false,

"tokenUri": "tokenUri value",
"status": "created"

}

updateloyaltyToken

Original method name: updatelLoyaltyToken

Chapter 5
Combined Token Framework

4

This POST method updates token properties. Only the token owner can call this method. For
NFTs, the token metadata and token URI cannot be updated after the token is minted.

Payload:

{

"tokenAsset": "{\"tokenId\":\"{{bc-token-id}}\",\"tokenDesc\":\"tokenDesc
value\",\"Token Name\":\"Token Name value\",\"Token to Currency Ratio\":999}",

"sameOrgEndorser": true

}

Parameters:

° tokenAsset: <Token Class>— The token asset to update. For more information about the

properties of the token asset, see the input specification file.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must

endorse the transaction.

5-153

ORACLE

Return Value Example:

"assetType": "otoken",
"events": false,
"tokenId": "token2",
"tokenName": "loyalty",
"tokenDesc": "tokenDesc value",
"tokenStandard": "ercll55+",
"tokenType": "fungible",
"tokenUnit": "fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

}I
"mintable": {

"max mint quantity": 0
}I
"quantity": 10,
"createdBy":

Chapter 5
Combined Token Framework

"oaccount~85dfd98d1b99e5b8891e0a0fdcd7d2e07£c5d37958£5d2a5796290b6a9%9204a43",

"creationDate": "2024-12-03T12:07:24.0002",

"divisible": {

"decimal": 0O
}I
"isBurned": false,
"isLocked": false,
"tokenUri": "tokenUri value",
"status": "created"

URI
Original method name: URI

This GET method returns the URI of a specified token. Only the token creator can call this

method.
Query
/URI?tokenId={{bc-token-id}}

Parameters:

* tokenId: string— The ID of the token.

5-154

Chapter 5
Deploy and Test Generic Token Framework Chaincode

Return Value Example:

"tokenUri": "example.com"

Deploy and Test Generic Token Framework Chaincode

ORACLE

Deploying the Fungible Token Framework Chaincode

You can deploy the chaincode directly from the Oracle Blockchain Platform console or by using
Blockchain App Builder. Before you deploy the chaincode, create enrollment IDs for each token
user and then map the token users to their respective enrollment IDs. Specify only one user for
each enrollment. For more information about adding enrollments, see Add Enrollments to a
REST Proxy.

When you deploy the token chaincode, you must call the init method and pass the
organization ID and user ID of the Token Admin user.

For information about deploying from the Oracle Blockchain Platform console, see Use
Advanced Deployment.

To deploy using Blockchain App Builder, complete the following steps.
1. Extract the DepositToken. zip archive file.

2. Import the DepositToken chaincode to the Blockchain App Builder extension in Visual
Studio Code.

3. Editthe .ochain. json file to update the value of the configFileLocation key to the
path of the DepositToken.yml specification file.

4. Open aterminal window and navigate to the chaincode folder, and then run the following
command.

npm install

For more information about deploying using Blockchain App Builder, see Deploy Your
Chaincode Using Visual Studio Code.

Sample Process Flow for the DepositTokens Sample

A typical process flow using the fungible token framework methods follows these basic steps.
1. Admins use the initializeDepositToken method to initialize the deposit token system.

2. Admins use the createAccount and associateTokenToAccount methods to create
accounts and associate the token to accounts for all users.

3. Admins use the addrole method to assign the minter role to the creator and the notary role
to the approver.

4. The token creator uses the requestMint method to submit a request to mint deposit
tokens.

5. The approver uses the approveMint method to review and approve the request to mint
deposit tokens. The deposit tokens are credited to the creator's account.

5-155

ORACLE

Chapter 5
Deploy and Test Generic Token Framework Chaincode

6. The issuer uses the getAccountBalance method to verify that the credited amount is
accurate.

7. The creator uses the holdTokens method to request transfer of the tokens to the issuer.

8. The approver uses the executeHoldTokens method to validate and approve the transfer
request. The deposit tokens are transferred to the issuer's account.

9. The issuer uses the transferTokens method to send tokens to the first user. The deposit
tokens are credited to the first user's account.

10. The first user uses the getAccountBalance method to verify their account balance.

11. The issuer uses the transferTokens method to send tokens to the first user. The deposit
tokens are credited to the second user's account.

12. The second user uses the getAccountBalance method to verify their account balance.

13. The second user uses the burnTokens method to redeem their deposit tokens.

Deploying the Non-Fungible Token Framework Chaincode

You can deploy the chaincode directly from the Oracle Blockchain Platform console or by using
Blockchain App Builder. Before you deploy the chaincode, create enroliment IDs for each token
user and then map the token users to their respective enroliment IDs. Specify only one user for
each enrollment. For more information about adding enrollments, see Add Enroliments to a
REST Proxy.

When you deploy the token chaincode, you must call the init method and pass the
organization ID and user ID of the Token Admin user.

For information about deploying from the Oracle Blockchain Platform console, see Use
Advanced Deployment.

To deploy using Blockchain App Builder, complete the following steps.
1. Extractthe NFTCollectiblesWithERC721.zip archive file.

2. Import the NFTCollectiblesWithERC721 chaincode to the Blockchain App Builder
extension in Visual Studio Code.

3. Editthe .ochain. json file to update the value of the configFileLocation key to the
path of the NFTCollectiblesWithERC721-TypeScript.yml specification file.

4. Open a terminal window and navigate to the chaincode folder, and then run the following
command.

npm install

For more information about deploying using Blockchain App Builder, see Deploy Your
Chaincode Using Visual Studio Code.

Sample Process Flow for the NFTCollectiblesWithERC721 Sample

A typical process flow using the non-fungible token framework chaincode follows these basic
steps.

1. Admins use the createAccount method to create accounts for all stakeholders, including
museums/curators, buyers, and sellers.

2. Admins use the addRole method to assign the minter role to the curator, enabling them to
mint NFTs.

3. Curators use the createArtCollectionToken method to mint an art collection NFT.

5-156

ORACLE

Chapter 5
Deploy and Test Generic Token Framework Chaincode

4. Curators use the post method to set the price for an NFT and post it for sale in the
marketplace.

5. Buyers use the buy method to buy the NFT by using direct payment via a payment
gateway. The purchased NFT is transferred to the buyer's account and is no longer for
sale.

6. Optionally, buyers can use the post method to set a new price for an NFT and post it for
resale in the marketplace.

7. Optionally, buyers can use the burn method to redeem the NFT or permanently remove it
from circulation.

Deploying the Combined Token Framework Chaincode

You can deploy the chaincode directly from the Oracle Blockchain Platform console or by using
Blockchain App Builder. Before you deploy the chaincode, create enrollment IDs for each token
user and then map the token users to their respective enrollment IDs. Specify only one user for
each enrollment. For more information about adding enrollments, see Add Enrollments to a
REST Proxy.

When you deploy the token chaincode, you must call the init method and pass the
organization ID and user ID of the Token Admin user.

For information about deploying from the Oracle Blockchain Platform console, see Use
Advanced Deployment.

To deploy using Blockchain App Builder, complete the following steps.
1. Extractthe NFTCollectiblesWithERC1155. zip archive file.

2. Import the NFTCollectiblesWithERC1155 chaincode to the Blockchain App Builder
extension in Visual Studio Code.

3. Editthe .ochain. json file to update the value of the configFileLocation key to the
path of the NFTCollectiblesWithERC1155-TypeScript.yml specification file.

4. Open a terminal window and navigate to the chaincode folder, and then run the following
command.

npm install

For more information about deploying using Blockchain App Builder, see Deploy Your
Chaincode Using Visual Studio Code.

Sample Process Flow for the NFTCollectiblesWithERC1155 Sample

A typical process flow using the non-fungible token framework chaincode follows these basic
steps.

1. Admins use the createAccount method to create fungible and non-fungible token accounts
for all stakeholders, including museums/curators, buyers, and sellers.

2. Admins use the addrRole method to assign the minter role to the curator, enabling them to
mint NFTs.

3. Curators use the mintBatch method to mint art collection NFTs.

4. Curators use the post method to set the price for an NFT and post it for sale in the
marketplace.

5. Buyers and sellers use the createTokenAccount method to create consumer accounts for
fungible and non-fungible tokens on the platform.

5-157

Chapter 5
Deploy and Test Wrapper APIs for Generic Token Frameworks

6. Buyers use the buyWithEthCoin method to buy the NFT with Ethereum. Buyers receive
loyalty tokens from the curator during the transaction. Buyer can also pay directly via a
payment gateway. The purchased NFT is transferred to the buyer's account and is no
longer for sale.

7. Optionally, buyers can use the post method to set a new price for an NFT and post it for
resale in the marketplace.

8. Optionally, buyers can use the burnBatch method to redeem the NFT or permanently
remove it from circulation.

Deploy and Test Wrapper APIs for Generic Token Frameworks

ORACLE

For information about using the Postman collections included with each package, see Wrapper
API Package Components.

Deploying the Fungible Token Framework Wrapper APl Package

Before you can deploy the wrapper API package, you must update the required configuration
variables. Some configuration variables have default values, but you must manually update
any variable that contains a placeholder as its default value. Configuration variables are stored
inthe terraform. tfvars file in the wrapper API archive. For more information about
deploying wrapper APIs and about configuration variables, see Wrapper APIs. The following
table lists the configuration variables and their defaults values for the non-fungible token
framework wrapper API package. If the default value contains placeholders, it indicates that
the user must manually provide the necessary values.

Variable name Default value Description

compartment ocid <compartment ocid> The OCID of the compartment in
Oracle Cloud Infrastructure (OCI).

compartment name <compartment name> The name of the OCI
compartment.

identity domain <identity domain> The identity domain to use.

blockchain channel <blockchain channel> The name of the Oracle

Blockchain Platform channel
where the chaincode is deployed.

blockchain url <blockchain url> The Oracle Blockchain Platform
URL associated with the
chaincode deployment.

blockchain chaincode DepositToken The name of the chaincode to
generate wrapper APIs for.

blockchain sync true The sync value to include in the
payload for API calls.

blockchain timeout 6000 The timeout value to include in
the payload for API calls.

ven display name DepositToken The display name of the OCI
virtual cloud network.

application display name DepositToken The display name of the OCI
application.

gateway display name DepositToken The display nhame of API
Gateway.

deployment display name DepositToken The display name of the

deployment in API Gateway.

5-158

ORACLE

Chapter 5
Deploy and Test Wrapper APIs for Generic Token Frameworks

Variable name Default value Description

deployment path prefix /DepositToken The deployment path prefix in

API Gateway, which specifies the
path where routes are deployed.
The deployment path prefix
variable must begin with a slash

.

ocir repo name deposittoken The OCI Registry repository

name. The ocir repo name
variable must be all lowercase
letters.

policy name DepositToken The name of the policy that

enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

Fungible Token Framework Sample Process Flow

A typical process flow using the fungible token framework wrapper APIs follows these basic

steps.

1. Admins use the initializeDepositToken API to initialize the deposit token system.

2. Admins use the createAccount and associateTokenToAccount APIs to create accounts
and associate the token to accounts for all users.

3. Admins use the addrole API to assign the minter role to the creator and the notary role to
the approver.

4. The token creator uses the requestMint API to submit a request to mint deposit tokens.

5. The approver uses the approveMint API to review and approve the request to mint deposit
tokens. The deposit tokens are credited to the creator's account.

6. The issuer uses the getAccountBalance API to verify that the credited amount is accurate.

7. The creator uses the holdTokens API to request transfer of the tokens to the issuer.

8. The approver uses the executeHoldTokens API to validate and approve the transfer
request. The deposit tokens are transferred to the issuer's account.

9. The issuer uses the transferTokens API to a user. The deposit tokens are credit to the
first user's account.

10. The first user uses the getAccountBalance API to verify their account balance.

11. The issuer uses the transferTokens API to a user. The deposit tokens are credit to the
second user's account.

12. The second user uses the getAccountBalance API to verify their account balance.

13. The second user uses the burnTokens API to redeem their deposit tokens.

Deploying the Non-Fungible Token Wrapper APl Package

Before you can deploy the wrapper API package, you must update the required configuration
variables. Some configuration variables have default values, but you must manually update
any variable that contains a placeholder as its default value. Configuration variables are stored
inthe terraform. tfvars file in the wrapper API archive. For more information about

5-159

ORACLE

Chapter 5

Deploy and Test Wrapper APIs for Generic Token Frameworks

deploying wrapper APIs and about configuration variables, see Wrapper APIs. The following
table lists the configuration variables and their defaults values for the non-fungible token

framework wrapper API package. If the default value contains placeholders, it indicates that
the user must manually provide the necessary values.

Variable name

Default value

Description

compartment ocid

<compartment ocid>

The OCID of the compartment in
Oracle Cloud Infrastructure (OCI).

compartment name

<compartment name>

The name of the OCI
compartment.

identity domain

<identity domain>

The identity domain to use.

blockchain channel

<blockchain channel>

The name of the Oracle
Blockchain Platform channel
where the chaincode is deployed.

blockchain url

<blockchain url>

The Oracle Blockchain Platform
URL associated with the
chaincode deployment.

blockchain chaincode

NFTCollectiblesWithERC721

The name of the chaincode to
generate wrapper APIs for.

blockchain sync true The sync value to include in the
payload for API calls.
blockchain timeout 6000 The timeout value to include in

the payload for API calls.

ven display name

NFTCollectiblesWithERC721

The display name of the OCI
virtual cloud network.

application display name

NFTCollectiblesWithERC721

The display name of the OCI
application.

gateway display name

NFTCollectiblesWithERC721

The display name of API
Gateway.

deployment display name

NFTCollectiblesWithERC721

The display name of the
deployment in API Gateway.

deployment path prefix

/NFTCollectiblesWithERC721

The deployment path prefix in
API| Gateway, which specifies the
path where routes are deployed.
The deployment path prefix
variable must begin with a slash

().

ocir repo name

nftcollectibleswitherc7721

The OCI Registry repository
name. The ocir repo name
variable must be all lowercase
letters.

policy name

NFTCollectiblesWithERC721

The name of the policy that
enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

Non-Fungible Token Framework Sample Process Flow

A typical process flow using the non-fungible token framework wrapper APIs follows these

basic steps.

1. Admins use the createAccount API to create accounts for all stakeholders, including
museums/curators, buyers, and sellers.

5-160

ORACLE

Chapter 5

Deploy and Test Wrapper APIs for Generic Token Frameworks

2. Admins use the addrRole API to assign the minter role to the curator, enabling them to mint

NFTs.

3. Curators use the createArtCollectionToken API to mint an art collection NFT.

4. Curators use the post API to set the price for an NFT and post it for sale in the

marketplace.

5. Buyers use the buy API to buy the NFT by using direct payment via a payment gateway.
The purchased NFT is transferred to the buyer's account and is no longer for sale.

6. Optionally, buyers can use the post API to set a new price for an NFT and post it for resale

in the marketplace.

Deploying the Combined Token Wrapper APl Package

Before you can deploy the wrapper API package, you must update the required configuration
variables. Some configuration variables have default values, but you must manually update
any variable that contains a placeholder as its default value. Configuration variables are stored
inthe terraform. tfvars file in the wrapper API archive. For more information about
deploying wrapper APIs and about configuration variables, see Wrapper APIs. The following
table lists the configuration variables and their defaults values for the combined token
framework wrapper API package. If the default value contains placeholders, it indicates that
the user must manually provide the necessary values.

Variable name

Default value

Description

compartment ocid

<compartment ocid>

The OCID of the compartment in
Oracle Cloud Infrastructure (OCI).

compartment name

<compartment name>

The name of the OCI
compartment.

identity domain

<identity domain>

The identity domain to use.

blockchain channel

<blockchain channel>

The name of the Oracle
Blockchain Platform channel
where the chaincode is deployed.

blockchain url

<blockchain url>

The Oracle Blockchain Platform
URL associated with the
chaincode deployment.

blockchain chaincode WholesaleCBDC The name of the chaincode to
generate wrapper APIs for.

blockchain sync true The sync value to include in the
payload for API calls.

blockchain timeout 6000 The timeout value to include in

the payload for API calls.

ven display name

NFTCollectiblesWithERC1155

The display name of the OCI
virtual cloud network.

application display name

NFTCollectiblesWithERC1155

The display name of the OCI
application.

gateway display name

NFTCollectiblesWithERC1155

The display name of API
Gateway.

deployment display name

NFTCollectiblesWithERC1155

The display name of the
deployment in AP Gateway.

5-161

ORACLE

Chapter 5
Deploy and Test Wrapper APIs for Generic Token Frameworks

Variable name Default value Description

deployment path prefix / The deployment path prefix in

NFTCollectiblesWithERC1155 API Gateway, which specifies the
path where routes are deployed.
The deployment path prefix
variable must begin with a slash

.

ocir repo name nftcollectibleswithercl1155 The OCI Registry repository

name. The ocir repo name
variable must be all lowercase
letters.

policy name NFTCollectiblesWithERC1155 The name of the policy that

enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

Combined Token Framework Sample Process Flow

A typical process flow using the combined token framework wrapper APIs follows these basic

steps.

1. Admins use the createAccount API to create fungible and non-fungible token accounts for
all stakeholders, including museums/curators, buyers, and sellers.

2. Admins use the addrRole API to assign the minter role to the curator, enabling them to mint
NFTs.

3. Curators use the mintBatch API to mint art collection NFTs.

4. Curators use the post API to set the price for an NFT and post it for sale in the
marketplace.

5. Buyers and sellers use the createTokenAccount API to create consumer accounts for
fungible and non-fungible tokens on the platform.

6. Buyers use the buyWithEthCoin API to buy the NFT with Ethereum. The purchased NFT is
transferred to the buyer's account and is no longer for sale.

7. Optionally, buyers can use the post API to set a new price for an NFT and post it for resale
in the marketplace.

8. Optionally, buyers can use the burnBatch API to redeem the NFT or permanently remove it

from circulation.

5-162

Blockchain App Builder Enhancements

Oracle Blockchain Platform Digital Assets Edition includes an enhanced version of Blockchain
App Builder.

For information about the standard version of Blockchain App Builder, see Build Chaincodes
with Low-Code Blockchain App Builder.

The following functions are supported by the enhanced version of Blockchain App Builder.

e Automatic generation of complete chaincode applications for wholesale CBDC and bond
marketplace scenarios.

e Automatic generation of wrapper API packages for APl Gateway, with dedicated endpoints
for each chaincode method. You can configure the names of the endpoints to match your
organization's naming conventions.

» Support for chaincode events, which can send enable real-time notifications and trigger
workflows.

» Support for endorsement parameters in generated Postman collections.

* New account, role, and transaction functions in the extended Token Taxonomy Framework
standard.

Note:

Blockchain App Builder prerequisites include Go v1.23.2 or later, but not Go v1.24 or
later. For more information, see Install and Configure Blockchain App Builder CLI.
and Install and Configure the Blockchain App Builder Extension for Visual Studio
Code.

Wrapper APIs

ORACLE

The enhanced version of Blockchain App Builder can generate wrapper APIs for APl Gateway,
which support dedicated endpoints for each chaincode method.

A wrapper APl is an abstraction layer over an Oracle Blockchain Platform endpoint. Wrapper
APIs support configuring common parameters and API-specific endpoint names, which can
simplify usage and clarity.

In the base version of Oracle Blockchain Platform, an API endpoint requires parameters
including the chaincode name, timeout and sync values, arguments (including the method
name), channel name, and instance URL. These parameters must be passed with every
invocation. Because most of these parameters are common to all methods, you can use the
wrapper API functionality to create an endpoint for each method, which you then invoke using
only the method parameters. Instead of a common endpoint, either a transaction or a query,
you can have a custom endpoint name for each method. Whereas API endpoints in Oracle
Blockchain Platform use POST requests, wrapper APIs support both POST and GET requests.
You can also add an extra layer of authentication with wrapper APIs by using the APl Gateway
authentication mechanism.

6-1

Chapter 6
Wrapper APIs

The following example shows the createAccount method API in Oracle Blockchain Platform.

Endpoint: https://blockchain.example.com:7443/restproxy/api/v2/channels/default/
transactions

"chaincode": "{{bc-chaincode-name}}",
"args": |
"createAccount",
"{{bc-org-id}}",
"{{bc-user-id}}",
"fungible",
"{\"max_daily amount\":10000,\"max daily transactions\":100}"
]I
"timeout": {{bc-timeout}},
"sync": {{bc-sync}}

If you configure wrapper APIs, you can make the same method call as shown in the following
example.

Endpoint: https://apigateway.example.com/appbuilder/createAccount

"orgId": "{{bc-org-id}}",

"userId": "userl",
"tokenType": "fungible",
"dailyLimits":

"{\"max_daily amount\":10000,\"max daily transactions\":100}",

}

Generate Wrapper APIs Using the CLI

ORACLE

The enhanced version of Blockchain App Builder includes the generateFnAPI command, which
generates wrapper APIs for all controller APIs in a chaincode project.

Usage: ochain generateFnAPI [options]
Generation of WrapperAPI package for controller functions

Options:

-h, --help Output command usage information

-D, --debug Enable debug logging

-m, --mapping <mapping> Info about functions endpoints mapping is
mandatory.

-c, --config <config> Info about configuration variables is mandatory.
-a, --all <all> Generate the wrapperAPI package for entire
controller functions

-p, --project <path> Path to the Ochain chaincode project to generate

the WrapperAPI package. If not specified, it defaults to current directory.

6-2

ORACLE

Chapter 6
Wrapper APIs

The following example shows how to generate wrapper APIs for a local chaincode project.

ochain generateFnAPI --mapping <info object about function mapping> --config
<info about the config variables> --project <Path to the Ochain chaincode
project> --out <Path to the generated postman collection>

When you run the generateFnAPI command, you are prompted whether to overwrite any
previous wrapper API packages that exist in the selection location.

API Gateway limits the number of routes that can be created in a single deployment to 50. If
you try to use the generateFnAPI command to generate more than 50 wrapper APIs, you are
prompted whether to create multiple gateways. Creating multiple gateways with the same
deployment path prefix maintains a consistent base path across all wrapper API endpoints. If
you choose not to create multiple gateways, wrapper AP| generation is canceled.

Command Options

-m, --mapping <mapping>

The mapping option defines the configuration of controller APls, specifying the endpoint
names and which controller APIs require wrapper API generation. The map is a JSON object
of key/value pairs, where the key is the name of the controller API and the value is the custom
endpoint to associate with that controller API.

The following example shows a mapping for chaincode that uses the extended Token
Taxonomy Framework standard.

ochain generateFnAPI --mapping '{"addConversionRate":"/

addConversionRateTest", "addTokenAdmin": "/addTokenAdminTest", "approveBurn":
"/approveBurnTest", "createAccount": "/createAccount",
"associateTokenToAccount": "/associateTokenToAccountTest",
"getAllOrgAccounts": "/getAllOrgAccounts"}' --config <info about the config

variables> --project <Path to the Ochain chaincode project> --out <Path to
the generated postman collection>

-c, --config <config>

The config option is used to pass the configuration variables that are required for the wrapper
API package. It is a JSON object of key/value pairs, where the key is the configuration
variable name and the value is the configuration variable value. All of the configuration
variables are mandatory for generating a wrapper API package. If any of the following
variables are not passed to the command, wrapper API generation fails. You can edit these
values after you create the wrapper API by extracting the wrapper API . zip file.

Variable name Description

compartment ocid The OCID of the compartment in Oracle
Cloud Infrastructure (OCI).

compartment name The name of the OCI compartment.

identity domain The identity domain to use.

blockchain channel The name of the Oracle Blockchain
Platform channel where the chaincode is
deployed.

blockchain url The Oracle Blockchain Platform URL
associated with the chaincode
deployment.

6-3

ORACLE

Chapter 6

Wrapper APIs

Variable name Description

blockchain chaincode The name of the chaincode to generate
wrapper APIs for.

blockchain sync The sync value to include in the payload
for API calls.

blockchain timeout The timeout value to include in the payload
for API calls.

ven_display name The display name of the OCI virtual cloud
network.

application display name The display name of the OCI application.

gateway display name The display name of AP| Gateway.

deployment display name The display name of the deployment in
API Gateway.

deployment path prefix The deployment path prefix in API

Gateway, which specifies the path where
routes are deployed. The
deployment path prefix variable must
begin with a slash (/).

ocir repo name The OCI Registry repository name. The
ocir repo name variable must be all
lowercase letters.

policy name The name of the policy that enables
controlled management and access to
APIs through defined permissions for
groups and compartments within the
organization

The following example shows a mapping for chaincode that uses the extended Token
Taxonomy Framework standard.

ochain generateFnAPI -m '{"addConversionRate":"/addConversionRateTest",
"addTokenAdmin": "/addTokenAdminTest", "approveBurn": "/approveBurnTest",
"createAccount": "/createAccount", "associateTokenToAccount": "/
associateTokenToAccountTest", "getAllOrgAccounts": "/getAllOrgAccounts"}' -c
"{"compartment ocid": "compartment ocid value", "compartment name":
"compartment name value", "identity domain" : "OracleldentityCloudService",
"blockchain channel": "default", "blockchain url": "blockchain url value",
"blockchain chaincode": "blockchain chaincode value", "blockchain sync":
true, "blockchain timeout": 6000, "vcn display name": "vcn display name
value", "application display name": "application display name value",
"gateway display name": "gateway display name value",

"deployment display name": "deployment display name value",
"deployment path prefix": "deployment path prefix value", "ocir repo name":
"ocir repo name value", "policy name": "policy name value"}'

-a, --all <all>

The all option generates wrapper API for all controller APIs that are defined in the chaincode.
If true, this option overrides the mapping option. Every wrapper API is assigned a default
endpoint, which corresponds to the APl name. If you specify the all option, you must still
provide an empty JSON object ({}) for the mapping option.

6-4

Chapter 6
Wrapper APIs

The following example shows a mapping for chaincode that uses the extended Token
Taxonomy Framework standard.

ochain generateFnAPI -m '{}' -c '{"compartment ocid": "compartment ocid
value", "compartment name": "compartment name value", "identity domain"
"OracleIdentityCloudService", "blockchain channel": "default",

"blockchain url": "blockchain url value", "blockchain chaincode":
"blockchain chaincode value", "blockchain sync": true, "blockchain timeout":
6000, "vcn display name": "vcn display name value",

"application display name": "application display name value",

"gateway display name": "gateway display name value",

"deployment display name": "deployment display name value",
"deployment path prefix": "deployment path prefix value", "ocir repo name":
"ocir repo name value", "policy name": "policy name value"}' -a true

Generate Wrapper APIs Using Visual Studio Code

The enhanced version of Blockchain App Builder enables you to generate wrapper APIs in
Visual Studio Code.

When you generate wrapper APIs in Visual Studio Code, you are prompted whether to
overwrite any previous wrapper API packages that exist in the selection location.

API Gateway limits the number of routes that can be created in a single deployment to 50. If
you try to generate more than 50 wrapper APIs, you are prompted whether to create multiple
gateways. Creating multiple gateways with the same deployment path prefix maintains a
consistent base path across all wrapper API endpoints. If you choose not to create multiple
gateways, wrapper API generation is canceled.

1. Select the chaincode project in the Chaincodes pane.

2. Right-click the chaincode name and then select Generate Wrapper APl Package. The
Oracle Blockchain Platform - Wrapper APl Package Generation pane opens.

3. Enter the configuration variables as described in the following table.

Field Description Default value
Compartment OCID The OCID of the compartment none
in Oracle Cloud Infrastructure
(oci.
Compartment Name The name of the OCI none
compartment.
Identity Domain The identity domain to use. none
Blockchain Channel The name of the Oracle none

Blockchain Platform channel
where the chaincode is
deployed.

Blockchain URL The Oracle Blockchain Platform none
URL associated with the
chaincode deployment.

Location The system directory to none
generate the wrapper API
package in.

ORACLE g

Chapter 6
Wrapper APIs

Field Description Default value

Deployment Path Prefix The deployment path prefix in /<ChaincodeName>
API Gateway, which specifies
the path where routes are
deployed. The deployment path
prefix must begin with a slash
.
Blockchain Sync The sync value to include in the true
payload for API calls.

Blockchain Timeout The timeout value to includein 6000
the payload for API calls.

Policy Name The name of the policy that ChaincodeName
enables controlled management
and access to APIs through
defined permissions for groups
and compartments within the
organization

VCN Display Name The display name of the OCI ChaincodeName
virtual cloud network.

Application Display Name The display name of the OCI ChaincodeName
application.

Gateway Display Name The display name of API ChaincodeName
Gateway.

Deployment Display Name The display name of API ChaincodeName
Gateway.

OCI Repo Name The OCI Registry repository ChaincodeName in
name, which must be all lowercase characters
lowercase letters.

Click Save.

Click the Mapping tab. The Mapping pane shows a table of all of the controller APIs that
are available in the chaincode. Each method has a corresponding API Endpoint, which
you can edit as needed. Select the corresponding Generate Wrapper APIs check box to
include the controller API in the wrapper API package. Click Select All to include all
controller APIs.

Click Save.

Click Generate. The wrapper API package and associated Postman collection are
generated.

Wrapper API Package Components

Wrapper API packages contain an archive file of the wrapper APIs, a Terraform script for
deployment, and a corresponding Postman collection.

ORACLE

The wrapper API archive file is named <ChaincodeName>WrapperAPI.zip. It also
contains a Terraform script that must be deployed to the stack resource.

The Postman collection file is named
<ChaincodeName> WrapperAPI.postman collection.json. You can use this
collection to invoke all of the wrapper APIs.

Wrapper APl Package

The wrapper API package contains a Terraform script that provisions all of the Oracle Cloud
Infrastructure (OCI) resources that are necessary for creating the wrapper APIs. There are

6-6

ORACLE

Chapter 6
Wrapper APIs

additional Terraform support files and an Oracle Functions folder for each API. The wrapper
API packages creates the following OCI resources.

e Virtual Cloud Network (VCN): Establishes the network infrastructure for communication.
e Applications (Oracle Functions): Deploys serverless functions to handle API logic.

e APl Gateway: Creates the gateway to manage and route API requests.

e API Deployment: Configures and deploys the APIs on the API Gateway.

e API Deployment Policy: Sets up the necessary IAM policies to enable secure access.

e OCI Registry: Provides a container registry for managing Docker images.

After you generate wrapper APIs, if you want to change any configuration variables, you can
update them in Visual Studio Code, or you can extract the wrapper API package and update
the terraform. t fvars file with updated endpoints and resource names. Edit the
function paths variable the terraform. tfvars file to update an endpoint. The
function paths variable is a JSON object where the key is the APl name and the value is
another JSON object with the following two keys:

* path: Defines the endpoint for the API
* type: Specifies the request type (POST or GET)

The following text shows an example of a function paths variable.

function paths="{\"activateAccount\":{\"path\":\"/activateAccount\", \"type\":
[\"POST\"]}}"

Postman Collection

The Postman collection includes updated endpoints and payloads for all APIs. The following
code shows an example payload.

"orgId": "{{bc-org-id}}",
"userId": "userl",
"tokenType": "fungible",
"applicationGroups": "[\"application groups value\"]",
"dailyLimits":

"{\"max_daily amount\":10000,\"max daily transactions\":100}",
"endorsers": {{endorsers}}

}

The following table shows the Postman collection variables.

Variable Description Default value

bc-admin-user The admin user, which has admin bc-admin-user value
role where it has access to all
POST requests. By default, this
user is the caller of all POST
requests in the chaincode.

bc-admin-user-password Admin user password. bc-admin-user-password
value
bc-org-id The default organization ID inall bc-org-id value

POST requests where orgIdis
the parameter name

6-7

Chapter 6
Wrapper APIs

Variable

Description

Default value

bc-user-id

The default user ID in all POST
requests where userId is the
parameter name

bc-user-id value

bc-token-id The default token ID in all POST bc-token-id value
requests where tokenId is the
parameter name

endorsers The endorsers array lists the ["orgl-xyz-

specific peers (for example:
peerl, peer2) to endorse this
transaction.

abc.blockchain.ocp.ora
clecloud.com:20009",
"org2-xyz-

abc.blockchain.ocp.ora
clecloud.com:20009"]

https://

api-gateway-endpoint The endpoint of each request,
which serves as a base path for xyz.apigateway.region.

wrapper API endpoints. oci.customer-oci.com/
If there are fewer than 50 APIs, a cgpc

single endpoint is used. If there
are more than 50 APIs, the
endpoints are dynamically
generated as api-gateway-
endpointl, api-gateway-
endpoint2, and so on, based on
the number of APIs.

peer This variable exists only for the
confidential chaincode wrapper
API Postman collection, which
requires the peer header for all
setter APIs.

Org-xyz-—
abc.blockchain.ocp.ora
clecloud.com:20009

After you deploy the wrapper API package, the output from the stack resource deployment is a
JSON object that contains the gateway endpoint values. If you generate more than 50 APIs,
multiple gateway endpoints are generated, one for every 50 APIs. You must update the
Postman collection variables related to these endpoints. The endpoint-related variables in the
Postman collection must be updated with the appropriate values from the output of the wrapper
API package deployment in the Stack Resource Manager.

All setter APIs in the wrapper API Postman collection include either the endorsers or
sameOrgEndorser parameter in the request payload. The information that specifies which APIs
require the sameOrgEndorser parameter is defined in the
sameOrgEndorserOptionInWrapperAPI parameter in the .ochain. json file in the chaincode.
APIs listed in this parameter will have sameOrgEndorser set to true in their payloads. All other
setter APIs will include the endorsers parameter instead. The following example shows the
parameter for the wholesale CBDC chaincode.

"sameOrgEndorserOptionInWrapperAPI":
["addConversionRate", "addTokenAdmin", "addTokenAuditor", "approveBurn", "approveM
int", "burnTokens", "createExchangePoolAccounts", "deleteHistoricalTransactions",
"initializeCBDCToken","initializeExchangePoolUser", "mintWithFundingExchangePoo
1", "rejectBurn", "rejectMint", "removeTokenAdmin", "removeTokenAuditor", "requestB
urn", "requestMint", "updateCBDCToken", "updateConversionRate"]

ORACLE 68

Chapter 6
Wrapper APIs

You can customize the sameOrgEndorserOptionInWrapperAPI parameter in
the .ochain.json file as needed. When you generate wrapper APIs, the specified APIs will
then include the sameOrgEndorser parameter as true in their payloads.

For more details about using Postman collections, see the following topics.
* Generate a Postman Collection Using the CLI
* Generate a Postman Collection Using Visual Studio Code

* Endorsement Support in Postman Collections

Deploy Wrapper APIs

ORACLE

Oracle Blockchain Platform Digital Assets Edition allows the generation of wrapper APIs for all
controller APIs within App Builder generated chaincode. This topic provides detailed steps for
deploying the wrapper APIs package in the stack resource manager and testing the wrapper
APIs using the associated Postman collection.

When the wrapper API package is generated using Blockchain App Builder, it creates two files
with default naming conventions in the chosen directory:

1. <ChaincodeName>WrapperAPI.zip: This file contains the Terraform script required for
deploying the wrapper APIs in Oracle Cloud Infrastructure Resource Manager.

2. <ChaincodeName> WrapperAPI.postman collection.json: A Postman collection used for
testing the wrapper APIs after deployment.

To deploy the wrapper APIs, the WrapperAPI.zip file must be used within OCI Resource
Manager.

Prerequisites
The prerequisites for deploying the wrapper APIs package are as follows:

e The wrapper APIls package must be generated using App Builder.

* The package should include all required configuration variable values and endpoint values
for the wrapper APIs.

Deploying the Wrapper API package

1. Loginto OCI.
Open the OCI console and sign in: https://cloud.oracle.com/.
Ensure you're in the compartment where the stack will be deployed.

2. Expand the Navigation menu. Select Developer Services. Under Resource Manager,
select Stacks.

The Resource Manager interface for stacks opens. You can view existing stacks, create
new stacks, and manage your infrastructure as code using Terraform configurations.

3. Create a new stack by clicking Create Stack.
4. Configure the stack information.
a. Inthe Terraform Configuration section, select My Configuration.
b. In Stack Configuration, Terraform configuration source, select .Zip file.
c. Click Browse and navigate to your wrapper APIs Zip file.
d. Once it's uploaded, ensure the stack name is correct.

e. All remaining settings can be kept as default. Click Next.

6-9

https://cloud.oracle.com/

Chapter 6
Wrapper APIs

5. Configure the stack variables.

a. Verify that all configuration variable values are accurate and align with the
configuration variables specified in the wrapper API package to meet the requirements
for your deployment.

b. For ocir_user_name, enter the email address associated with your OCI account.

c. For ocir_user_password enter your password, which is your Oracle Cloud
Infrastructure Auth Token. This token can be generated in the OCI console under your
user settings. The Auth Token serves as a password for logging into the Oracle Cloud
Infrastructure Registry (OCIR).

For detailed instructions on generating the Auth Token, refer to Generating an Auth
Token.

d. All remaining settings can be kept as default. Click Next.
6. Review the stack information. If everything is correct, click Create.
7. Execute the Terraform plan.
a. On the stack's Details page, click Plan to initiate the creation of an execution plan.

b. Optionally configure the job plan. You can edit the default name or select advanced
options to change provider version of adjust settings.

c. Click Plan to create and run the plan job.

This will parse your Terraform configuration, generate an execution plan, and execute
the plan which does the following:

* Validates the Terraform script to ensure there are no syntax or configuration errors.

e Simulates the resource creation process without making any changes to the actual
infrastructure.

* Provides an output summary that lists the resources the script intends to create,
modify, or destroy.

d. Monitor the status in the Jobs section of your stack. Once the plan completes
successfully, review the output to confirm the number of resources that will be created
and verify that there are no issues.

8. Apply the Terraform plan to the stack.
a. On the stack's Details page, click Apply.
b. In the Terraform Apply panel, click Apply.
This will do the following:
* Provisions all of the following resources as defined in the Terraform script:
— Virtual cloud network (VCN)
— Applications (OCI Functions)
— APl Gateway
— API deployment
— |AM Policy
— OCI Registry repository
* Creates all the required infrastructure for the Wrapper APIs.

c. Monitor the status in the Jobs section of your stack to ensure the job completed
successfully with no errors.

ORACLE 510

https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsgenerateauthtokens.htm
https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsgenerateauthtokens.htm

ORACLE

Chapter 6
Wrapper APIs

9. Retrieve the API Gateway endpoints.

a. Once the Apply job has finished, go to the Outputs section of the Apply job page to
view the generated output values.

b. The output will return a JSON object where the keys represent endpoint names and
the values are their corresponding endpoint values.

For example:

api gateway endpoints{"api gateway endpoint":"https://
grgkdiwsugp3fp2m5z3zgpod.apigateway.ap-mumbai-1.oci.customer-oci.com/
WholesaleCBDC"}

c. Copy the endpoint - it's needed to updating the API Postman collection.

Testing Wrapper APIs with Postman

You can test the APIs in Postman. Configure all the variables in the wrapper APl Postman

collection by assigning the appropriate values. The api gateway endpoint value must be

obtained from the output of the stack deployment in OCI, where the dynamically generated
gateway endpoints will be provided.

Once the variables in the Postman collection have been updated, you can test the wrapper
APIs. Each API request in the collection includes the necessary payload specific to the
corresponding wrapper API.

Figure 6-1 Testing an APl Wrapper Collection with Postman

i) createAccount e v | Share [Fl Code snippet X

POST ~ {{api-gateway-endpoint}} fcreateAccount m = CURL ~ & O

curl --location 'https://
Params Authorizatione Headers (10) Bodys Scripts Tests Settings Cookies <> gragkdiwsugp3fp2m5z3zgpod. apigateway.
= ap-mumbai-1.oci.customer-oci.com/
none form-data x-www-form-urlencoded ©Q raw binary GraphQL JSON Beautify WholesaleCBDC/createAccount' \
% --header 'Content-Type: application/json' \
i --header 'Authorization: seeses o
rg-1 ' e --data ‘{
"userl", e "orgld": "CB",
“fungible®, "userId": "userl",
" "{\"max_daily_amount\":10000,\"max_daily_transactions\":180}", "tokenType": "fungible®,
” “dailyLimits®: "
¥ 1\ "max_daily_amount\":1808@,
\"max_daily transactions\":100%",
"endorsers": ["ch-oabcsl-bom.
blockchain.ocp.oxaclecloud.
com:20009"]

w4 o wm e

Troubleshooting
The following are some commonly encountered issues and their solutions.

Unauthorized: Invalid ocir_user_name or ocir_user_password
This error occurs when either the username or password credentials are incorrect. To resolve
this issue, follow these steps:

1. Navigate to the Variables section in the stack Details page.

2. Click Edit Variables to modify the username and password values.
3. Update the credentials with the correct information.

4. Once the changes are made, click Apply to redeploy the stack.

This should resolve the authentication issue and allow the deployment to proceed
successfully.

6-11

Chapter 6
Chaincode Events

Deployment Failure - "denied: Anonymous users are only allowed read access on
public repos"

Occasionally, the deployment might fail with the following error:

denied: Anonymous users are only allowed read access on public repos

This is an intermittent issue that is related to Docker operations within the stack's backend.
Specifically, this error occurs when attempting to push Docker images to the Oracle Cloud
Infrastructure Registry (OCIR) without proper authentication.

While the wrapper API package includes a script that performs docker login before pushing
the images, ensuring proper authentication, this error can still occur sporadically. It typically
happens when the Docker authentication step is not properly recognized by the system at the
time of image push.

If this error occurs, follow these steps to resolve the issue:

1. Destroy Existing Resources:

Click Destroy in the OCI Stack Resource Manager to destroy all the resources created
during the deployment process.

2. Reapply the Stack:

After destroying the resources, click Apply again to redeploy the stack. This will trigger
the creation of the necessary resources, including proper Docker authentication, and
should resolve the issue.

Generic Deployment Failure: Intermittent Issues
Sometimes, stack deployment may fail due to random like docker related issues. In such
cases, follow these steps to resolve the issue:

1. Click Destroy to remove all the resources created during the failed deployment.

2. Once the resources are destroyed, navigate back to the stack and click Apply to redeploy
the stack.

This process often resolves intermittent issues, allowing the deployment to proceed
successfully.

Chaincode Events

The enhanced version of Blockchain App Builder can generate chaincode events for token
operations.

Chaincode events are specific notifications that are emitted when transactions run. Events
include transaction information that can be used to notify external systems about specific
conditions or changes in the blockchain ledger state. You can use chaincode events to enable
real-time integration and interaction with applications that are not on the blockchain, and to
facilitate event-driven workflows and monitoring across the blockchain environment. Chaincode
events have two components, the event name and the payload.

Chaincode events are supported for all Blockchain App Builder specification files. If you enable
chaincode events, all controller functions in your scaffolded project will emit events, except for
getter methods. For example, in a token scenario, chaincode events will be emitted when
tokens are minted, transferred, burned, or locked

ORACLE 610

ORACLE

Chapter 6
Chaincode Events

You use the Boolean events parameter in the specification file to enable chaincode events, as
shown in the following example.

assets:
- name: FiatMoneyTOK # Asset name
type: token # Asset type
events: true # Generate events for create, update and delete APIs

If you enable events, the controller functions in your scaffolded chaincode project will include
event creation methods, as shown in the following examples.

TypeScript:

@validator (yup.string(), yup.string(), yup.string())
public async createAccount (org id: string, user id: string, token type:
string) {

await this.Ctx.Auth.checkAuthorization ("ACCOUNT.createAccount", "TOKEN",
{ org_id });

await this.Ctx.Model.createEvent (EVENT NAME.CREATE ACCOUNT, { org id,
user id, token type });

return await this.Ctx.Account.createAccount (org id, user id, token type);

}

Go:

func (t *Controller) CreateAccount (org id string, user id string, token type

string, daily limits ...account.AccountDailyLimits) (interface{}, error) {
auth, err := t.Ctx.Auth.CheckAuthorization ("Account.CreateAccount",
"TOKEN", map[string]string{"org id": org id})
if err != nil && 'auth {

return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())
}
err = t.Ctx.Model.CreateEvent (constants.CreateAccountEventName,
map[string]interface{}{"org id": org id, "user id": user id, "token type":
token type})
if err != nil {
return nil, err
}
return t.Ctx.Account.CreateAccount (org id, user id, token type,
daily limits...)
}

Chaincode events use the following default values for the name and payload components. You
can modify the default values as needed.

EventName
The name of the controller function.

Payload
A JSON object that contains all of the input parameters of the controller function.

A new events parameter was also added to the token details in the extended Token Taxonomy
Framework and ERC-1155 standards. If the events parameter in the specification file is set to
true, the events parameter in the generated token is set to true. If the events parameter in the

6-13

ORACLE

Chapter 6
Chaincode Events

specification file is set to false or not defined, the events parameter in the generated token is
set to false. The following examples show a token with the new events parameter for both

TypeScript and Go.

"metadata": {

"paintingName": "monalisa",
"description": "monalisa painting",
"image": "image link",
"painterName": "Leonardo da Vinci"

b

"assetType": "otoken",

"events": true,
"quantity": 1,

"tokenId": "artnft",

"tokenName": "artcollection",
"tokenDesc": "artcollection nft",
"tokenStandard": "ercll55+",
"tokenType": "nonfungible",
"tokenUnit": "whole",
"behaviors": |

"indivisible",

"singleton",
"mintable",

"transferable",

"burnable",

"roles"

]I

"roles": {
"minter role name": "minter",
"burner role name": "burner"

b

"mintable": {

"max mint quantity": 500

b

"owner":

"oaccount~42e89£4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884d",

"createdBy":

"oaccount~42e89£4c72dfde9502814876423c6da630d466e87436ddlaae201d347ad12884",

"creationDate":

"2022-12-29T04:08:35.0002",

"isBurned": false,
"tokenUri": "tu",

"price": 10000,

"onSaleFlag": false

"AssetType": "otoken",

"Behavior": |

"indivisible",

"singleton",
"mintable",

"transferable",

"burnable",
"roles"

6-14

ORACLE

Chapter 6
Chaincode Events

]I
"CreatedBy":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"CreationDate": "2022-12-29T09:57:03+05:30",
"Events": true,
"IsBurned": false,
"Mintable": {
"Max mint quantity": 500
}I
"OnSaleFlag": false,
"Owner":
"oaccount~42e89f4c72dfde9502814876423c6da630d466e87436dd1aae201d347ad12884d",
"Price": 100,
"Quantity": 1,
"Roles": {
"burner role name": "burner",
"minter role name": "minter"
}I
"TokenDesc": "token description",
"TokenId": "monalisa",
"TokenMetadata": ({
"Description": "Mona Lisa Painting",
"Image": "monalisa.]jpeg",
"PainterName": "Leonardo da Vinci",
"PaintingName": "Mona Lisa"
}I
"TokenName": "artcollection",
"TokenStandard": "ercll155+",
"TokenType": "nonfungible",
"TokenUnit": "whole",
"TokenUri": "https://
bafybeid6pmpp62bongoip5iy2skosvyxh3grir2e35x3ctvawjco6ddmsg\\\\ .ipfs.infura-
ipfs.io/?filename=Monalisa.jpeg"

}

Generating Events

The stub.setEvent method enables the chaincode to create and emit an event when a
transaction runs. The following code shows the TypeScript version of the method.

async setEvent (eventName: string, payload: Buffer): Promise<void>

In this example, eventName is the name to assign to the event, and payload is data associated
with the event. The payload can contain any information that you want to send with the event,
typically serialized in JSON format.

Chaincode Events for Batch Methods

The enhanced ERC-1155 standard supports batch methods. Batch methods operate on
multiple tokens that are passed as parameters. For batch methods, chaincode events are
emitted for only the tokens where the events parameter is set to true in the specification file.

For each transaction completed in the batch method, a corresponding chaincode event is
generated. The payload of each chaincode event contains the transaction details. For
example, if you use the BatchTransfer method to transfer quantities of five different tokens,
five corresponding chaincode events are emitted. The payload of each event contains the

6-15

ORACLE

Chapter 6
Chaincode Events

token details and the quantity transferred, along with common parameters that are applicable
to all batch transfers.

The following example shows events code using the enhanced ERC-1155 standard.

@validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.array () .of (yup.string()), yup.array().of (yup.number()))
public async batchTransferFrom(
fromOrgId: string,
fromUserId: string,
toOrgld: string,
toUserId: string,
tokenIds: stringl[],
quantity: number[]
) A
const fromAccountId =
this.Ctx.ERC1155Account.generateAccountId (fromOrgld, fromUserId,
ACCOUNT TYPE.USER ACCOUNT) ;
const toAccountId = this.Ctx.ERC1155Account.generateAccountId(toOrgld,
toUserId, ACCOUNT TYPE.USER ACCOUNT);
let tokenAssets = [];
for (let 1 = 0; 1 < tokenIds.length; i++) {
const tokenAsset = await this.Ctx.ERC1155Token.get (tokenIds[i]);
tokenAssets.push (tokenAsset) ;
}
await this.Ctx.Model.createEventForBatch (EVENT NAME.BATCH TRANSFER FROM,
{ fromOrgld, fromUserId, toOrgld, toUserId }, quantity, tokenAssets);
return await this.Ctx.ERC1155Token.batchTransferFrom(fromAccountlId,
toAccountId, tokenlIds, quantity);
}

Chaincode Events for Multiple Assets

The enhanced Token Taxonomy Framework and ERC-1155 standards support defining more
than one token asset in a specification file. The chaincode event behavior is different
depending on whether a method is token-specific (such as creating or updating a token) or
common (such as minting or burning).

For token-specific methods, chaincode events are generated for only the tokens where the
events parameter is set to true in the specification file.

For common methods, chaincode events are generated in the scaffolded project if any token
has the events parameter set to true in the specification file. The actual chaincode event
behavior is based on the number of token ID parameters passed to the method.

« Ifasingle token ID is passed as a parameter, chaincode events are generated only if the
events parameter in the corresponding token details is set to true.

< If multiple token IDs are passed as parameters, chaincode events are generated only if the
events parameter in any one of the token details is set to true.

e If notoken ID is passed as a parameter, chaincode events are always generated.

The following list shows common methods that must be passed two tokens. This list applies to
the extended Token Taxonomy Framework standard.

* addConversionRate (from token id: string, to_token id: string,
token conversion rate: number)

6-16

Chapter 6
Chaincode Events

updateConversionRate (from token id: string, to token id: string,
token conversion rate: number)

tokenConversion (from token id: string, to token id: string, to org id: string,
to user id: string,token quantity: number)

exchangeToken (fromTokenId: string, fromOrgId: string, fromUserId: string,
fromTokenQuantity: number, toTokenId: string, toOrglId: string,toUserId:
string, toTokenQuantity: number)

The following list shows common methods that do not take tokens as arguments The following
list applies to the extended Token Taxonomy Framework standard.

addTokenAdmin (org id: string, user id: string)
removeTokenAdmin (org id: string, user id: string)
addOrgAdmin (org id: string, user id: string)
removeOrgAdmin (org id: string, user id: string)
createAccount (org id: string, user id: string, token type: string)
deleteHistoricalTransactions (time to expiration: Date)

initializeExchangePoolUser (org id: string, user id: string)

This list shows common methods that do not take tokens as arguments for the extended
ERC-1155 standard.

addTokenAdmin (orgId: string, userId: string)
removeTokenAdmin (orgId: string, userId: string)

createAccount (orgId: string, userlId: string, ftAccount: boolean, nftAccount:
boolean)

createUserAccount (orgId: string, userId: string)

createTokenAccount (orgId: string, userId: string, tokenType: TokenType)
addTokenSysRole (orgId: string, userId: string, role: string)
removeTokenSysRole (orgId: string, userId: string, role: string)

transferTokenSysRole (fromOrgId: string, fromUserId: string, toOrgId: string,
toUserId: string, role: string)

deleteHistoricalTransactions (time to expiration: Date)

TypeScript SDK Methods for Chaincode Events

createEvent
This method generates events based on a specified event name and payload.

public async createEvent (eventName: any, eventPayload: any, assets?: any)

Parameters:

ORACLE

eventName: string— The event name to use when generating events.

eventPayload: map[string]linterface{} — The event payload to use when generating
events.

6-17

ORACLE

Chapter 6
Chaincode Events

* assets — Optionally, the token asset can be passed as a parameter to the method.

createEventForBatch
This method generates events for batch operations such as the mintBatch or burnBatch
methods.

public async createEventForBatch (eventName: any, eventPayload: any,
quantities: number[], assets: any)

Parameters:
° eventName: string— The event name to use when generating events.

° eventPayload: map[string]interface{} — The event payload to use when generating
events.

° quantities: number[] — A list of amounts, corresponding to each token ID, that
represent the number of tokens to use in the batch method transactions.

* assets — Optionally, the token asset can be passed as a parameter to the method.

Go SDK Methods for Chaincode Events

CreateEvent
This method generates events based on a specified event name and payload.

func (m *Model) CreateEvent (eventName string, eventPayload
map[stringlinterface{}, assets ...interface{})

Parameters:
° eventName: string— The event name to use when generating events.

° eventPayload: map[string]interface{} — The event payload to use when generating
events.

* assets — Optionally, the token asset can be passed as a parameter to the method.

CreateEventForBatch
This method generates events for batch operations such as the mintBatch or burnBatch
methods.

func (m *Model) CreateEventForBatch(eventName string, eventPayload
map[stringlinterface{}, quantities []float64, assets []interface{})

Parameters:
° eventName: string— The event name to use when generating events.

° eventPayload: map[string]interface{} — The event payload to use when generating
events.

e quantities: []float64 — A list of amounts, corresponding to each token ID, that
represent the number of tokens to use in the batch method transactions.

e assets — Optionally, the token asset can be passed as a parameter to the method.

6-18

Chapter 6
Token Taxonomy Framework Enhancements

Event Generation in Blockchain App Builder Chaincode

If the events parameter in the specification file is set to true, chaincode events code is
generated for all controller APIs except for those designated as getter APIs. The following
examples show controller APIs with chaincode events enabled for both TypeScript and Go.

@validator(yup.string(), yup.string(), yup.string())
public async createAccount (org id: string, user id: string, token type:
string) {

await this.Ctx.Auth.checkAuthorization ("ACCOUNT.createAccount", "TOKEN",
{ org_id });

await this.Ctx.Model.createEvent (EVENT NAME.CREATE ACCOUNT, { org id,
user id, token type });

return await this.Ctx.Account.createAccount (org id, user id, token type);

}

func (t *Controller) CreateAccount (org id string, user id string, token type

string, daily limits ...account.AccountDailyLimits) (interface{}, error) {
auth, err := t.Ctx.Auth.CheckAuthorization ("Account.CreateAccount",
"TOKEN", map[string]string{"org id": org id})
if err != nil && 'auth {

return nil, fmt.Errorf("error in authorizing the caller %s",
err.Error())

}

err = t.Ctx.Model.CreateEvent (constants.CreateAccountEventName,

map[string]interface{}{"org id": org id, "user id": user id, "token type":
token type})
if err != nil {

return nil, err

}

return t.Ctx.Account.CreateAccount (org id, user id, token type,
daily limits...)
}

Chaincode events are generated with the following default values. You can modify these
values as needed.

e EventName: The name of the controller function.

* Payload: A JSON object that contains all of the input parameters of the controller function.

Token Taxonomy Framework Enhancements

ORACLE

The enhanced version of Blockchain App Builder includes new functionality related to the
extended Token Taxonomy Framework standard.

Daily Transaction Limits

You can restrict the number of transactions an account can complete daily, as well as the
number of tokens that can be acted on. The max_daily amount and max daily transactions
input parameters to the createAccount method control this behavior. These parameters are
optional.

You can achieve higher throughput if you do not set the daily transaction limits for an account.

6-19

Chapter 6
Token Taxonomy Framework Enhancements

createAccount (TypeScript)
@validator (yup.string(), yup.string(), yup.string(), yup.object().nullable())

public async createAccount (org id: string, user id: string, token type:
string, daily limits: DailyLimits) {

await this.Ctx.Auth.checkAuthorization ("ACCOUNT.createAccount", "TOKEN",
{ org_id });

return await this.Ctx.Account.createAccount (org id, user id, token type,
daily limits);

}

Additional Parameters:

* daily limits: JSON — An object specifying the maximum amount of tokens that can be
used in transactions daily (max_daily amount) and the maximum number of transactions
that can be completed daily (max_daily transactions) as shown in the following
example.

"max daily amount": 100000
"max daily transactions": 10000

CreateAccount (Go)

func (t *Controller) CreateAccount (org id string, user id string, token type
string, daily limits ...account.AccountDailyLimits) (interface{}, error) {
auth, err := t.Ctx.Auth.CheckAuthorization ("Account.CreateAccount"”, "TOKEN",
map[string]string{"org id": org id})

if err !'= nil && 'auth {

return nil, fmt.Errorf("error in authorizing the caller %s", err.Error())

}

return t.Ctx.Account.CreateAccount (org id, user id, token type,
daily limits...)

}

Additional Parameters:

* daily limits: JSON —A JSON object that includes a MaxDailyAmount parameter (the
maximum amount of tokens that can be used in transactions daily) and a
MaxDailyTransactions parameter (the maximum number of transactions that can be
completed daily), as shown in the following example.

"MaxDailyAmount": 100000
"MaxDailyTransactions": 10000

Returns:

e On success, a JSON object of the account that was created. The BapAccountVersion
parameter is defined in the account object for internal use.

ORACLE 520

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

Return Value Example:

"AssetType":"oaccount",

"AccountId":"oaccount~a73085a385bc96cd4adbaal2dff032e7dede82¢c0664dee5£396b7c5854
eeafd4bd",

"BapAccountVersion": 0,

"UserId":"userl",

"OrgId":"OrglMSP",

"AccountType":"fungible",

"TokenId":"",

"TokenName":"",

"Balance":0,

"BalanceOnHold":0

Approval Requirements for Minting and Burning

You can set up approvals for minting and burning tokens, so that users with the minter or
burner role must submit a request to an approver, instead of minting or burning tokens directly.
Approvers can accept or reject requests to mint or burn tokens. To enable approvals for
minting and burning, you use the mint approval required and burn approval required
parameters. You must then also specify values for mint approver role name and

burn approval role name, as shown in the following example.

behavior: # Token behaviors

- divisible:
decimal: 2

- mintable:
max mint quantity: 1000
mint approval required: true

- transferable

- burnable
burn approval required: true

- holdable

- roles:
minter role name: minter
notary role name: notary
mint approver role name: minter notary
burn_approver role name: burner notary

The following methods support requesting, accepting, and rejecting approvals to mint and burn
tokens.

TypeScript Methods for Minting and Burning Approval

requestMint
This method can be called by a minter to send a request to the minter notary to create a
specified amount of tokens.

@validator(yup.string(), yup.string(), yup.string(), yup.string(),
yup.number () .positive (), yup.date(), yup.object().nullable())

6-21

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

public async requestMint(token id: string, operation id: string,
notary org id: string, notary user id: string, quantity: number,
time to expiration: Date, info details?: InfoDetails) {

const token asset = await this.getTokenObject (token id);

const notary account id = await this.Ctx.Account.generateAccountId(token id,
notary org id, notary user id);

return await this.Ctx.Token.hold(operation id, null, notary account id,
quantity, time to expiration, token asset, HoldOperationType.MINT,

info details);

}

Parameters:
* token id: string— The ID of the token to mint.
* operation id: string— The unique operation ID that represents the mint request.

* notary org id: string— The membership service provider (MSP) ID of the minter
notary who will process the request.

* notary user id: string - The user name or email ID of the minter notary who will
process the request.

* quantity: number — The amount of tokens to mint.

* time to_expiration — The time after which the minting request expires and is no longer
valid.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874fa699
(Org-Id: OrglMSP, User-Id: admin) has successfully submitted request to mint
100 tokens",

}

approveMint
This method can be called by a minter notary to approve a minting request.

@validator (yup.string(), yup.string())
public async approveMint (token id: string, operation id: string) {
const token asset = await this.getTokenObject (token id);

6-22

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

return await this.Ctx.Token.executeHold(operation id, token asset);

}

Parameters:
* token id: string— The ID of the token to mint.

* operation id: string— The unique operation ID that represents the mint request.

Return Value Example:

{

msg:

"Successfully minted 100 tokens to Account Id:
oaccount~95be539b4e1e4136dd86a806020c97a93090932534048108fd88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

rejectMint
This method can be called by a minter notary to reject a minting request.

@validator (yup.string(), yup.string())

public async rejectMint (token id: string, operation id: string) {
const token asset = await this.getTokenObject (token id);

return await this.Ctx.Token.releaseHold(operation id, token asset);

}

Parameters:
* token id: string— The ID of the token to mint.

* operation id: string— The unique operation ID that represents the mint request.

Return Value Example:

{
msg: "Successfully rejected mint request with Operation Id 'operationl' to
mint 100 tokens of token id token"

}

requestBurn
This method can be called by a burner to send a request to the burner notary to destroy a
specified amount of tokens.

@validator (yup.string(), yup.string(), yup.string(), yup.string(),
yup.number () .positive(), yup.date(), yup.object().nullable())

public async requestBurn(token id: string, operation id: string,
notary org id: string, notary user id: string, quantity: number,

time to expiration: Date, info details?: InfoDetails) {

const token asset = await this.getTokenObject (token id);
const notary account id = await this.Ctx.Account.generateAccountId(token id,

6-23

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

notary org id, notary user id);

return await this.Ctx.Token.hold(operation id, null, notary account id,
quantity, time to expiration, token asset, HoldOperationType.BURN, null,
description);

}

Parameters:
* token id: string— The ID of the token to burn.
* operation id: string— The unique operation ID that represents the burn request.

* notary org id: string— The membership service provider (MSP) ID of the burner
notary who will process the request.

* notary user id: string— The user name or email ID of the burner notary who will
process the request.

e quantity: number — The amount of tokens to burn.

* time to_expiration — The time after which the burning request expires and is no longer
valid.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874fa699
(Org-Id: OrglMSP, User-Id: admin) has successfully submitted request to mint
100 tokens",

}

approveBurn
This method can be called by a burner notary to approve a burning request.

@validator (yup.string(), yup.string())

public async approveBurn(token id: string, operation id: string) {
const token asset = await this.getTokenObject (token id);

return await this.Ctx.Token.executeHold(operation id, token asset);

}

Parameters:
* token id: string— The ID of the token to burn.

* operation id: string— The unique operation ID that represents the burn request.

6-24

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

Return Value Example:

{

msg:

"Successfully burned 100 tokens from account id:
oaccount~95be539b4e1e4136dd86a806020c97a930909325340481b8£fd88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

rejectBurn
This method can be called by a burner notary to reject a burning request.

@validator (yup.string(), yup.string())

public async rejectBurn(token id: string, operation id: string) {
const token asset = await this.getTokenObject (token id);

return await this.Ctx.Token.releaseHold(operation id, token asset);

}

Parameters:
* token id: string— The ID of the token to burn.

* operation id: string— The unique operation ID that represents the burn request.

Return Value Example:

{
msg: "Successfully rejected burn request with Operation Id 'operationl' to
burn 100 tokens of token id token",

}

Go Methods for Minting and Burning Approval

RequestMint
This method can be called by a minter to send a request to the minter notary to create a
specified amount of tokens.

func (t *Controller) RequestMint (token id string, operation id string,
notary org id string, notary user id string, quantity floaté64,

timeToExpiration string, info details ...token.InfoDetails) (interface{},
error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

notary account id, err := t.Ctx.Account.GenerateAccountId(token id,
notary org id, notary user id)
if err != nil {

return nil, fmt.Errorf("error in getting notary account id from org id: %s
and user id: %s with token id: %s, error %s ", notary org id, notary user id,
token id, err.Error())

}

return t.Ctx.Token.Hold(operation id, "", notary account id, quantity,

6-25

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

timeToExpiration, tokenAssetValue.Interface(), constants.HoldMint,
info details...)

}

Parameters:
* token id: string— The ID of the token to mint.
* operation id: string— The unique operation ID that represents the mint request.

* notary org id: string— The membership service provider (MSP) ID of the minter
notary who will process the request.

* notary user id: string - The user name or email ID of the minter notary who will
process the request.

* quantity: number — The amount of tokens to mint.

° TimeToExpiration — The time after which the minting request expires and is no longer
valid.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"Category" : "category input",
"Description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874fa699
(org id: OrglMSP, user id: admin) has successfully submitted request to mint
100 tokens",

}

ApproveMint
This method can be called by a minter notary to approve a minting request.

func (t *Controller) ApproveMint (token id string, operation id string)
(interface{}, error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

return t.Ctx.Token.ExecuteHold (operation id, tokenAssetValue.Interface())

}

Parameters:

* token id: string— The ID of the token to mint.

6-26

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

* operation id: string— The unique operation ID that represents the mint request.

Return Value Example:

{

msg:

"Successfully minted 100 tokens to Account Id:
oaccount~95be539b4e1e4136dd86a806020c97a930909325340481b8£fd88d339874£a699
(org _id: OrglMSP, user id: admin)"

}

RejectMint
This method can be called by a minter notary to reject a minting request.

func (t *Controller) RejectMint(token id string, operation id string)
(interface{}, error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

return t.Ctx.Token.ReleaseHold(operation id, tokenAssetValue.Interface())

}

Parameters:
* token id: string— The ID of the token to mint.

* operation id: string— The unique operation ID that represents the mint request.

Return Value Example:

{
msg: "Successfully rejected mint request with Operation Id 'operationl' to
mint 100 tokens of token id token"

}

RequestBurn
This method can be called by a burner to send a request to the burner notary to destroy a
specified amount of tokens.

func (t *Controller) RequestBurn(token id string, operation id string,
notary org id string, notary user id string, quantity floaté64,

timeToExpiration string, info details ...token.InfoDetails) (interfacef{},
error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err !'= nil {

return nil, err

}

notary account id, err := t.Ctx.Account.GenerateAccountId(token id,
notary org id, notary user id)
if err !'= nil {

return nil, fmt.Errorf("error in getting notary account id from org id: %s
and user id: %s with token id: %s, error %s ", notary org id, notary user id,

6-27

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

token id, err.Error())

}
return t.Ctx.Token.Hold(operation id, "", notary account id, quantity,
timeToExpiration, tokenAssetValue.Interface(), constants.HoldBurn,
info details...)

}

Parameters:
* token id: string— The ID of the token to burn.
* operation id: string— The unique operation ID that represents the burn request.

* notary org id: string— The membership service provider (MSP) ID of the burner
notary who will process the request.

* notary user id: string— The user name or email ID of the burner notary who will
process the request.

e quantity: number — The amount of tokens to burn.

* time to_expiration — The time after which the burning request expires and is no longer
valid.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874fa699
(org id: OrglMSP, user id: admin) has successfully submitted request to mint
100 tokens",

}

ApproveBurn
This method can be called by a burner notary to approve a burning request.

func (t *Controller) ApproveBurn(token id string, operation id string)
(interface{}, error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

return t.Ctx.Token.ExecuteHold (operation id, tokenAssetValue.Interface())

}

Parameters:

6-28

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

* token id: string— The ID of the token to burn.

* operation id: string— The unique operation ID that represents the burn request.

Return Value Example:

{

msg:

"Successfully burned 100 tokens from account id:
oaccount~95be539b4e1e4136dd86a806020c97a93090932534048108fd88d339874£a699
(org _id: OrglMSP, user id: admin)"

}

RejectBurn
This method can be called by a burner notary to reject a burning request.

func (t *Controller) RejectBurn(token id string, operation id string)
(interface{}, error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

return t.Ctx.Token.ReleaseHold(operation id, tokenAssetValue.Interface())

}

Parameters:
* token id: string— The ID of the token to burn.

* operation id: string— The unique operation ID that represents the burn request.

Return Value Example:

{
msg: "Successfully rejected burn request with Operation Id 'operationl' to
burn 100 tokens of token id token",

}

Fetching Transaction History from the Rich History Database

You can synchronize data to the rich history database and then fetch the data using chaincode
API calls. The following method, shown in TypeScript and in Go, fetchs transaction history from
the rich history database. Before you can use these methods, you must run Oracle
Autonomous Database with Oracle REST Data Services (ORDS) and OAuth enabled, as
described in Oracle Database View Definitions for Wholesale CBDC.

getAccountTransactionHistoryWithFiltersFromRichHistDB (TypeScript)

@GetMethod ()

@validator (yup.string(), yup.string(), yup.string(), yup.string(),
yup.string (), yup.object().nullable())

public async getAccountTransactionHistoryWithFiltersFromRichHistDB (token id:
string, org id: string, user id: string, custom endpoint: string,

bearer token: string, filters?: Filters) {

6-29

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

const account id = await this.Ctx.Account.generateAccountId(token id, org id,
user id);

await

this.Ctx.Auth.checkAuthorization ("ACCOUNT.getAccountTransactionHistoryWithFilt
ers", "TOKEN", { account id });

return await
this.Ctx.Account.getAccountTrxHistoryWithFiltersFromRichHistDB (account id,

org id, user id.toLowerCase(), custom endpoint, bearer token, filters);

}

Parameters:
* token id: string— The ID of the token to mint.

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.
* custom endpoint — The RESTful service endpoint of the rich history database.
* Dbearer token — The access authorization token for the RESTful service endpoint.

e filters: string— An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the default
page size is 20. The Bookmark property determines the starting index of the records to
return. For more information, see the Hyperledger Fabric documentation. The StartTime
and EndTime properties must be specified in RFC-3339 format.

GetAccountTransactionHistoryWithFiltersFromRichHistDB (Go)

func (t *Controller)
GetAccountTransactionHistoryWithFiltersFromRichHistDB (token id string, org id
string, user id string, custom endPoint string, bearer token string,

filters ...account.AccountHistoryFilters) (interface{}, error) {
account id, err := t.Ctx.Account.GenerateAccountId(token id, org id, user id)
if err != nil {

return nil, err

}

auth, err :=

t.Ctx.Auth.CheckAuthorization ("Account.GetAccountTransactionHistoryWithFilters
", "TOKEN", map[string]string{"account id": account id})

if err != nil && 'auth {

return nil, fmt.Errorf("error in authorizing the caller %s", err.Error())

}

// sample format of filter: []string{"3", "", "2022-01-16T15:16:36+00:00",
"2022-01-17T715:16:36+00:00"}

transactionArray, err :=
t.Ctx.Account.GetAccountTransactionHistoryWithFiltersFromRichHistDB (account id
, org _1id, user id, custom endPoint, bearer token, filters...)

return transactionArray, err

}

Parameters:

* token id: string— The ID of the token to mint.

6-30

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

Chapter 6
Token Taxonomy Framework Enhancements

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.
* custom endpoint — The RESTful service endpoint of the rich history database.
* Dbearer token — The access authorization token for the RESTful service endpoint.

e filters: string— An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the default
page size is 20. The Bookmark property determines the starting index of the records to
return. For more information, see the Hyperledger Fabric documentation. The StartTime
and EndTime properties must be specified in RFC-3339 format.

Category and Description Attributes in Transaction Objects

e Category and description attributes must be included in the transferTokens, holdTokens,
issueTokens, requestMint, requestBurn, burnTokens and rejectBurn methods in the
controller file. The corresponding SDK methods must also include category and description
attributes.

* The category and description attribute input is in the form of a JSON object named
info details, as shown in the following example.

"category" : "category input",
"description" : "description input"

* The info details field is optional. You can pass only a category or only a description as
needed.

e The GET methods related to any transactions for transferTokens, holdTokens,
executeHold, releaseHold, requestMint, approveMint, rejectMint, requestBurn,
approveBurn and rejectBurn must include category and description attributes in the
payload response if they are present.

e The category field is limited 20 characters and the description field is limited to 250
Characters.

TypeScript Methods with Modified Inputs

The following methods support optional category and description attributes when you use the
enhanced version of Blockchain App Builder.

transferTokens
This method transfers tokens from the caller to a specified account.

@validator(yup.string(), yup.string(), yup.string(), yup.number ().positive(),
yup.object () .nullable())

public async transferTokens(token id: string, to org id: string, to user id:
string, quantity: number, info details?: InfoDetails) ({

const token asset = await this.getTokenObject (token id);

const to _account id = await this.Ctx.Account.generateAccountId(token id,

to org id, to user id);

return await this.Ctx.Token.transfer(to account id, quantity, token asset,

ORACLE 631

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

info details);

}

Parameters:
* token id: string— The ID of the token.

* to org id: string-— The membership service provider (MSP) ID of the receiver (payee)
in the current organization.

* to user id: string— The user name or email ID of the receiver.
e quantity: number — The number of tokens to transfer.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg: "Successfully transferred 100 tokens from account id:
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874£a699
(Org-Id: OrglMSP, User-Id: admin) to account id:
oaccount~7yuijg39b4eled136dd86a806020c97a930909325340481b8fdhjkl1iugbv699
(Org-Id: OrglMSP, User-Id: user)",
}

holdTokens
This method creates a hold on behalf of the owner of the tokens with the to_account id
account.

@validator (yup.string(), yup.string(), yup.string(), yup.string(),
yup.string(), yup.string(), yup.number().positive(), yup.date(),
yup.object () .nullable())
public async holdTokens(token id: string, operation id: string, to org id:
string, to user id: string, notary org id: string, notary user id: string,
quantity: number, time to expiration: Date, info details?: InfoDetails) {
const token asset = await this.getTokenObject (token id);
const to_account id = await this.Ctx.Account.generateAccountId(token id,
to _org id, to user id);
const notary account id = await
this.Ctx.Account.generateAccountId(token id, notary org id, notary user id);
return await this.Ctx.Token.hold(operation id, to_account id,
notary account id, quantity, time to expiration, token asset,
HoldOperationType.TRANSFER, info details);
}

Parameters:

6-32

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

* token id: string— The ID of the token.

* operation id: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

* to org id: string-— The membership service provider (MSP) ID of the receiver in the
current organization.

* to user id: string— The user name or email ID of the receiver.

* notary org id: string— The membership service provider (MSP) ID of the notary in the
current organization.

* notary user id: string— The user name or email ID of the notary.
° quantity: number — The number of tokens to put on hold.

* time to expiration — The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:062%.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4ele4136dd86a806020c97a930909325340481b8£d88d339874£a699
(Org-Id: OrglMSP, User-Id: admin) is successfully holding 100 tokens",

}

issueTokens
This method mints tokens, which are then owned by the caller of the method.

@vValidator (yup.string(), yup.number().positive(), yup.object().nullable())
public async issueTokens(token id: string, quantity: number, info details?:
InfoDetails) {

const token asset = await this.getTokenObject (token id);

return await this.Ctx.Token.mint(quantity, token asset, info details);

}

Parameters:
* token id: string— The ID of the token.

e quantity - The number of tokens to mint.

6-33

Chapter 6
Token Taxonomy Framework Enhancements

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"Successfully minted 100 tokens to Account Id:
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

burnTokens
This method deactivates, or burns, tokens from the transaction caller's account.

@validator (yup.string(), yup.number().positive(), yup.object().nullable())

public async burnTokens(token id: string, quantity: number, info details?:
InfoDetails) {

const token asset = await this.getTokenObject (token id);

return await this.Ctx.Token.burn(quantity, token asset, info details);

}

Parameters:
* token id: string— The ID of the token.
¢ quantity— The number of tokens to burn.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"Successfully burned 100 tokens from account id:
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£fd88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

ORACLE 634

Chapter 6
Token Taxonomy Framework Enhancements

Go Methods with Modified Inputs

The following methods support optional category and description attributes when you use the
enhanced version of Blockchain App Builder.

TransferTokens
This method transfers tokens from the caller to a specified account.

func (t *Controller) TransferTokens(token id string, to_org id string,
to user id string, quantity float64, info details ...token.InfoDetails)
(interface{}, error) {

tokenAssetValue, err := t.getTokenObject (token id)

if err != nil {

return nil, err

}

to_account id, err := t.Ctx.Account.GenerateAccountld(token id, to org id,
to user id)

if err != nil {

return nil, err

}
return t.Ctx.Token.Transfer(to account id, quantity,
tokenAssetValue.Interface(), info details...)

}

Parameters:
* token id: string— The ID of the token.

* to org id: string— The membership service provider (MSP) ID of the receiver (payee)
in the current organization.

* to_user id: string— The user name or email ID of the receiver.
e quantity: number — The number of tokens to transfer.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input”

Return Value Example:

{

msg: "Successfully transferred 100 tokens from account id:
oaccount~95be539b4ele4136dd86a806020c97a930909325340481b8£d88d339874£a699
(Org-Id: OrglMSP, User-Id: admin) to account id:
oaccount~7yuijg39b4eled4136dd86a806020c97a930909325340481b8fdhjklliugbv699
(Org-Id: OrglMSP, User-Id: user)",
}

ORACLE 635

Chapter 6
Token Taxonomy Framework Enhancements

HoldTokens
This method creates a hold on behalf of the owner of the tokens with the to_account _id
account.

func (t *Controller) HoldTokens(token id string, operation id string,
to org id string, to user id string, notary org id string, notary user id
string, quantity float64, timeToExpiration string,

info details ...token.InfoDetails) (interface{}, error) {
tokenAssetValue, err := t.getTokenObject (token id)
if err != nil {

return nil, err

}

notary account id, err := t.Ctx.Account.GenerateAccountId(token id,
notary org id, notary user id)
if err != nil {

return nil, fmt.Errorf("error in getting notary account id from org id: %s
and user id: %s with token id: %s, error %s ", notary org id, notary user id,
token id, err.Error())

}
to_account id, err := t.Ctx.Account.GenerateAccountId(token id, to org id,
to user id)
if err != nil {
return nil, fmt.Errorf("error in getting to account id from org id: %s and
user id: %s with token id: %s, error %s ", to org id, to user id, token id,
err.Error())

}
return t.Ctx.Token.Hold(operation id, to account id, notary account id,
quantity, timeToExpiration, tokenAssetValue.Interface(),
constants.HoldTransfer, info details...)

}

Parameters:
* token id: string— The ID of the token.

* operation id: string— A unique ID to identify the hold operation. Typically this ID is
passed by the client application.

* to org id: string-— The membership service provider (MSP) ID of the receiver in the
current organization.

* to user id: string— The user name or email ID of the receiver.

* notary org id: string— The membership service provider (MSP) ID of the notary in the
current organization.

* notary user id: string— The user name or email ID of the notary.
* quantity: number — The number of tokens to put on hold.

* time to expiration — The time when the hold expires. Specify 0 for a permanent hold.
Otherwise use the RFC-3339 format. For example, 2021-06-02T12:46:062%.

ORACLE 636

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"AccountId
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£d88d339874fa699
(Org-Id: OrglMSP, User-Id: admin) is successfully holding 100 tokens",

}

IssueTokens
This method mints tokens, which are then owned by the caller of the method.

func (t *Controller) IssueTokens(token id string, quantity floaté64,

info details ...token.InfoDetails) (interface{}, error) {
tokenAssetValue, err := t.getTokenObject (token id)
if err != nil {

return nil, err

}

return t.Ctx.Token.Mint (quantity, tokenAssetValue.Interface(),
info details...)

}

Parameters:
* token id: string— The ID of the token.
e quantity - The number of tokens to mint.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"Successfully minted 100 tokens to Account Id:
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£fd88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

6-37

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

BurnTokens
This method deactivates, or burns, tokens from the transaction caller's account.

func (t *Controller) BurnTokens(token id string, quantity float64,

info details ...token.InfoDetails) (interface{}, error) {
tokenAssetValue, err := t.getTokenObject (token id)
if err !'= nil {

return nil, err

}
return t.Ctx.Token.Burn(quantity, tokenAssetValue.Interface(),
info details...)

}

Parameters:
* token id: string— The ID of the token.
e quantity - The number of tokens to burn.

* info details: JSON — An object specifying the category (category) and description
(description) of the request, as shown in the following example.

"category" : "category input",
"description" : "description input"

Return Value Example:

{

msg:

"Successfully burned 100 tokens from account id:
oaccount~95be539b4eled136dd86a806020c97a930909325340481b8£fd88d339874£a699
(Org-Id: OrglMSP, User-Id: admin)"

}

TypeScript Methods with Modified Outputs

The following methods return the relevant organization and user IDs when you use the
enhanced version of Blockchain App Builder.

getAccountTransactionHistory
This method returns an array of account transaction history details for a specified user and
token.

@GetMethod ()

@validator (yup.string(), yup.string(), yup.string())

public async getAccountTransactionHistory(token id: string, org id: string,
user id: string) {

const account id = await this.Ctx.Account.generateAccountId(token id, org id,
user id);

await

this.Ctx.Auth.checkAuthorization ("ACCOUNT.getAccountTransactionHistory",

6-38

Chapter 6
Token Taxonomy Framework Enhancements

"TOKEN", { account id });
return await this.Ctx.Account.getAccountTransactionHistory(account id,
org id, user id.toLowerCase());

}

Parameters:
* token id: string— The ID of the token.

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Return Value Example:

"transaction id":
"otransaction~64c5a4830949eaeld24600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

]
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:37:28.0002",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b%bf06a6c79e4fdd761£b24£41b8eb34126b66C0

]
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.0002",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

]
4

"transacted amount": 10,

ORACLE 639

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

"timestamp": "2024-12-11T13:36:18.000Z",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aala7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

getAccountTransactionHistoryWithFilters
This method returns a filtered array of account transaction history details for a specified user
and token.

@GetMethod ()

@validator (yup.string(), yup.string(), yup.string(), yup.object().nullable())
public async getAccountTransactionHistoryWithFilters(token id: string,

org id: string, user id: string, filters?: Filters) ({

const account id = await this.Ctx.Account.generateAccountId(token id, org id,
user id);

await

this.Ctx.Auth.checkAuthorization ("ACCOUNT.getAccountTransactionHistoryWithFilt
ers", "TOKEN", { account id });

return await
this.Ctx.Account.getAccountTransactionHistoryWithFilters (account id, org id,
user id.toLowerCase(), filters);

}

Parameters:

* token id: string— The ID of the token.

6-40

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

org_id: string — The membership service provider (MSP) ID of the user in the current
organization.

user id: string— The user name or email ID of the user.

filters: string — An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the default
page size is 20. The Bookmark property determines the starting index of the records to
return. For more information, see the Hyperledger Fabric documentation. The StartTime
and EndTime properties must be specified in RFC-3339 format.

Return Value Example:

"transaction id":

"otransaction~64c5a4830949eaeld424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

n
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:37:28.000Z",
"balance": 550,

"onhold balance": 10,

"token id": "USD",

"category": "category value",
"description": "description value",
"transacted account":

"oaccount~9d9806fa%2aalcdfdbl34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"

"transaction id":

"otransaction~ad4537e£34a9550023b7¢c205b%abf06a6c79e4fdd761£fb24f41b8eb34126b66c0

n
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,

"onhold balance": 10,

"token id": "USD",

"description": "description value",
"transacted _account":

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"

"transaction id":

"otransaction~6237a759422bd9%fb112742e8cd7e6450df5a74a32236d9p1005571afed8904a4

n
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:36:18.000Z",
"balance": 540,

"onhold balance": 10,

6-41

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aala7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

Go Methods with Modified Outputs

The following methods return the relevant organization and user IDs when you use the
enhanced version of Blockchain App Builder.

GetAccountTransactionHistory
This method returns an array of account transaction history details for a specified user and
token.

func (t *Controller) GetAccountTransactionHistory(token id string, org id
string, user id string) (interface{}, error) {

account id, err := t.Ctx.Account.GenerateAccountld(token id, org id, user id)
if err !'= nil {

return nil, err

}

auth, err :=

t.Ctx.Auth.CheckAuthorization ("Account.GetAccountTransactionHistory",
"TOKEN", map[string]string{"account id": account id})

if err != nil && lauth {

return nil, fmt.Errorf("error in authorizing the caller %s", err.Error())

}

transactionArray, err :=
t.Ctx.Account.GetAccountTransactionHistory(account id, org id, user id)

6-42

Chapter 6
Token Taxonomy Framework Enhancements

return transactionArray, err

}

Parameters:
* token id: string— The ID of the token.

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Return Value Example:

"transaction id":
"otransaction~64c5a4830949eaeld24600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

]
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:37:28.0002",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~a4537e£34a955b023b7c205b%bf06a6c79e4fdd761£b24£41b8eb34126b66C0

]
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:32.0002",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

]
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.0002",
"balance": 540,

ORACLE 643

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aala7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

GetAccountTransactionHistoryWithFilters
This method returns a filtered array of account transaction history details for a specified user
and token.

func (t *Controller) GetAccountTransactionHistoryWithFilters(token id string,
filters ...account.AccountHistoryFilters) (interface{}, error) {

org id, err := t.Ctx.Model.GetTransientMapKeyAsString(constants.OrgIdCC)

if err != nil {

return nil, err

}

user id, err := t.Ctx.Model.GetTransientMapKeyAsString(constants.UserIdCC)

if err != nil {

return nil, err

}

account id, err := t.Ctx.Account.GenerateAccountId(token id, org id, user id)
if err != nil {

return nil, err

}

auth, err :=

t.Ctx.Auth.CheckAuthorization ("Account.GetAccountTransactionHistoryWithFilters
", "TOKEN", map[string]string{"account id": account id})

if err != nil && 'auth {

return nil, fmt.Errorf("error in authorizing the caller %s", err.Error())

}

6-44

ORACLE

Chapter 6
Token Taxonomy Framework Enhancements

// sample format of filter: []string{"3", "", "2022-01-16T15:16:36+00:00",
"2022-01-17T15:16:36+00:00"}

transactionArray, err :=
t.Ctx.Account.GetReconciledTransactionHistory(account id, org id, user id,
filters...)

return transactionArray, err

}

Parameters:
* token id: string— The ID of the token.

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

e filters: string— An optional parameter. If empty, all records are returned. The
PageSize property determines the number of records to return. If PageSize is 0, the default
page size is 20. The Bookmark property determines the starting index of the records to
return. For more information, see the Hyperledger Fabric documentation. The StartTime
and EndTime properties must be specified in RFC-3339 format.

Return Value Example:

"transaction id":
"otransaction~64c5a4830949eaeld424600£3d4a438c6f603a7c3ea31a68e374b899803999%e22

n
r

"transacted amount": 10,
"timestamp": "2024-12-11T13:37:28.000Z",
"balance": 550,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REJECT MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
b
{
"transaction id":
"otransaction~a4537e£34a955b023b7¢c205b9%abf06a6c79e4£dd761£fb24£41b8eb34126b66c0

n
r

"transacted amount": 10,

"timestamp": "2024-12-11T13:36:32.000Z",
"balance": 550,

"onhold balance": 10,

"token id": "USD",

6-45

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/blockchain-cloud&id=hlf-docs-2.2.-pagination

Chapter 6
Bond Marketplace Model

"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "APPROVE MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~6237a759422bd9fb112742e8cd7e6450df5a74a32236d9b1005571afed8904a4

"
4

"transacted amount": 10,
"timestamp": "2024-12-11T13:36:18.000z2",
"balance": 540,
"onhold balance": 10,
"token id": "USD",
"category": "category value",
"description": "description value",
"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"transaction type": "REQUEST MINT",
"transacted org id": "CB",
"transacted user id'": "creator user cb"
}I
{
"transaction id":
"otransaction~06b35071415d74aa1a7¢c18449149¢c937d886cae76a832c44c£8d98e84586e76e

"
4

"transacted amount": 10,

"timestamp": "2024-12-11T13:35:46.000Z",

"balance": 540,

"onhold balance": 10,

"token id": "USD",

"category": "category value",

"description": "description value",

"transacted account":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"transaction type": "REQUEST MINT",

"transacted org id": "CB",

"transacted user id'": "creator user cb"

Bond Marketplace Model

The enhanced version of Blockchain App Builder includes a model attribute that generates
additional methods for the bond marketplace scenario.

If you include the model: bond parameter in the specification file for tokens that use the
extended ERC-1155 standard, Blockchain App Builder application-specific chaincode,
including the following additional methods for use with the bond marketplace application.

ORACLE 646

Chapter 6
Bond Marketplace Model

TypeScript Methods for Bond Marketplace

The bond marketplace chaincode includes all methods available in the generic ERC-1155 NFT
chaincode. The following additional methods that are specific to the bond marketplace scenario
are available.

postToken

This method can be called only by a token creator. The method submits the bond token for
listing in the marketplace. When a token is created, its status is initially set to created. This
method updates the status to posted. Users can run the getAl1TokensWithFilter method to
retrieve all NFTs with a posted status.

public async postToken (tokenId: string)

Parameters:

° tokenId: string— The ID of the token to post.

Return Value Example:

"isValid":true,
"payload":{
"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36.0002",
"MaturityDate":"2023-03-28T15:16:36.0002"
}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl155+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter",
"burner role name":"burner"

ORACLE 6-47

ORACLE

Chapter 6
Bond Marketplace Model

}I
"mintable": {
"max mint quantity":0
}I
"quantity":100,

"createdBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl170b8525c0391ea3ba
36138e00",

"creationDate":"2024-12-02T12:42:09.0002",

"divisible":{

"decimal":0

}I

"isBurned":false,

"isLocked":false,

"tokenUri":"tokenUri value",

"status":"created"

}I

"message":"Successfully updated asset with ID bondl"

purchaseToken

This method can be called by any account holder to purchase a listed bond NFT. The
purchase transfers the bond NFT from the creator's account to the caller's account, and
transfers CBDC tokens from the caller's account to the creator's account. Because of this, the
method must be run in the context of an atomic transaction. The method also verifies the
transfer process, ensuring that the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and userId must correspond to the token
creator, and the CBDC token transfer value must be equal to the face value of the bond token
multiplied by the quantity being purchased.

public async purchaseToken (tokenId: string, quantity: number, orderId:
string, additionalFees: number)

Parameters:

° tokenId: string— The ID of the token to purchase.

° quantity: number — The amount of tokens to purchase.

* orderId: string— The order ID for the purchase operation.

e additionalFees: number — The additional fees to add to the purchase price.

Return Value Example:

"returnCode":"Success",

"errorll : " ",
"result":{
"transactions": |

{

"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",

6-48

ORACLE

Chapter 6
Bond Marketplace Model

"prepare": {

"txid":"e969£962df5efda2eat6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txid":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

by
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txid":"1245885b1lalc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611al17"
b

"commit": {

"txid":"3c83e20c7d470cdc9clble2e0ea8d9962d58ada8d1lb8£0d2606c8aalflae7741"

by
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

paylnterest

This method can be called only by the token creator or admin to pay the interest earned on the
bond token. This method can be called only if the interest frequency of the token is monthly,
quarterly, or annually. Interest cannot be paid if the interest frequency is at maturity. Interest is
calculated by the chaincode based on the coupon rate of the token. The purchase operation
transfers CBDC tokens from the caller's account to the bond owner’s account. Because of
this, this method must be run in the context of an atomic transaction. The method also verifies
the transfer process, ensuring the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and userId must correspond to the token owner,
and the CBDC token transfer value must be equal to the interest calculated by the bond
chaincode.

public async payInterest (orgId: string, userId: string, tokenId: string,
orderId: string)

Parameters:

6-49

Chapter 6
Bond Marketplace Model

* orgld: string-— The membership service provider (MSP) ID of the user.
e userld: string— The user name or email ID of the user.
e tokenId: string— The ID of the token.

e orderId: string— The order ID for the purchase operation.

Return Value Example:

"returnCode":"Success",

"error" : "",
"result":{
"transactions": [

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969£962df5efda2ea6287380e308cc974e£d79df££3567840ed3844b£936160"
b

"commit": {

"txid":"5544e928d3242291£fb39189e8329679a9¢c81d61d6£72db60ca89135cd20fffef"

b
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txid":"1245885b1a0c7£12c41£a2£2905549b8a5£37ab3a5e094b9dcal22¢cb0611al117"
b

"commit": {

"txid":"3c83e20c7d470cdc9clble2e0eaB8d9962d58ada8d1lb8£0d2606c8aalflae7741"

b
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

ORACLE 650

ORACLE

Chapter 6
Bond Marketplace Model

requestTokenRedemption

This method can be called only by the token owner to raise a request for the redemption of
bond tokens after maturity. This method is also involved the calculation of the redemption
price by the chaincode. Redemption requests can be raised only on the entire quantity of the
bond token that the user owns. Users can raise multiple redemption requests based on
different settlement IDs but only one can be approved by the token creator.

public async requestTokenRedemption (settlementId: string, tokenId: string,
orderId: string, additionalFees: number)

Parameters:

° settlementId: string— The settlement ID for the redemption operation.
* tokenId: string-— The ID of the token.

* orderId: string— The order ID for the purchase operation.

° additionalFees: number — The additional fees to add to the redemption price.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~9e006057ac96ae997e39645310b1a08ad2316555701c7fe%ecTb88e38e
20892bf",
"settlementId":"op4d",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1lb903bd383fda60ff
17747ca25af3369e26289747~bondl~op4",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
O9b6£f3c9cabflda",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21de377a6daz24clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

"status":"PENDING",

"orderId":"op4d",

"redeemPrice":11

approveTokenRedemption

This method can be called only by the token creator to approve a request for the redemption
of bond tokens. The approval operation transfers the bond NFT from the owner’s account (the
user who raised the request) to the creator’s account, and transfers CBDC tokens from the
bond creator’s to the owner’s account. Because of this, this method must be executed in the
context of an atomic transaction. The method also verifies the transfer process, ensuring the

6-51

Chapter 6
Bond Marketplace Model

appropriate CBDC chaincode is called with the correct orgId and user1d for the transfer. The
orgId and userId must correspond to the account of the token owner who raised the
redemption request, and the CBDC token transfer value must be equal to the calculated
redemption price that was calculated by the chaincode while raising the redemption request.

public async approveRedemption (fromOrgId: string, fromUserId: string,
settlementId: string, tokenId: string)

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

e settlementId: string— The settlement ID for the redemption operation.

* tokenId: string— The ID of the token.

Return Value Example:

"returnCode":"Success",

llerror" : ll",
"result":{
"transactions": [

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969£962df5efda2ea6287380e308cc974efd79dE££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

by
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txid":"1245885b1lalc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611al17"
b

"commit": {

"txid":"3c83e20c7d470cdc9clble2e0ea8d9962d58ada8d1lb8£0d2606c8aalflae7741"

by
"rollback":{

ORACLE 650

Chapter 6
Bond Marketplace Model

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

rejectRedemption
The token creator can call this method to reject the redemption request. Token owners can
raise a redemption request again by using a different settlement ID.

public async rejectRedemption (fromOrgId: string, fromUserId: string,
settlementId: string, tokenId: string)

Parameters:

* fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the redemption operation.

e tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully rejected the token approval request"

getAllTokensWithFilters
The admin can call this get method to fetch all the tokens filtered by status, either CREATED or
POSTED.

public async getAllTokensWithFilters(status: string, pageSize: number,
bookmark: string)

Parameters:
e status: string— The status of the token, which can either be CREATED or POSTED.
° pageSize: number — The page size of the returned result.

* Dbookmark: string— The bookmark of the returned result.

ORACLE -

ORACLE

Return Value Example:

[{

"createdBy":
36138e00",

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16
}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName" :"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercll55+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"roles":{
"minter role name":"minter",
"burner role name":"burner"
}I
"mintable": {
"max mint quantity":0
}I
"quantity":100,

.oooz",
:36.0002"

Chapter 6
Bond Marketplace Model

"oaccount~276bcfl324bladled93e22432db3b39f7a4b9%bl1708525¢c0391ea3ba

"creationDate":"2024-12-02T12:42:09
"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"

.oooz",

6-54

Chapter 6
Bond Marketplace Model

getTokenApprovalRequestByUser
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

public async getTokenApprovalRequestByUser (status: string)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, Or
APPROVED.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~£fdf28b2d271ac9c0£fbd%4a2dedbf365728¢c77795£3e931e5a4a2dcf48
039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbfdabl1411£670
2a507003al15",

ORACLE -

ORACLE

Chapter 6
Bond Marketplace Model

"tokenId":"bondl",
"quantity":1,
"status":"APPROVED",
"orderId":"op3",
"redeemPrice":11,
"purchasedPrice":11,
"interestEarned":0

getTokenApprovalRequestForUserByStatus
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

public async getTokenApprovalRequestForUserByStatus (status: string)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~£fdf28b2d271ac9c0£fbd%94a2dedbf365728¢c77795£3e931eb5ad4a2dcf48

6-56

ORACLE

Chapter 6
Bond Marketplace Model

039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4d",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

"status":"APPROVED",

"orderId":"op3",

"redeemPrice":11,

"purchasedPrice":11,

"interestEarned":0

getAccountBondSummary
Any account holder can call this get method to get an account summary that includes the
details of purchased or redeemed tokens and the purchase price and redemption price.

public async getAccountBondSummary (orgId: string, userId: string)

Parameters:
* orgld: string— The membership service provider (MSP) ID of the user.

e userld: string— The user name or email ID of the user.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfl4",
"orgId":"BondMPTest",
"userId":"ull",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383£fda60ff17747ca25a£3369
e26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.0002",

6-57

ORACLE

Chapter 6
Bond Marketplace Model

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

getAccountBondSummaryWithPagination

Any account holder can call this get method to get an account summary that includes details

of purchased or redeemed tokens and the purchase price and redemption price. This method
can return results with pagination based on pagesize and bookmark values, and also filtered

by start time and end time.

public async getAccountBondSummaryWithPagination (orgId: string, userId:
string, pageSize: number, bookmark?: string)

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user.
e userld: string— The user name or email ID of the user.

° pageSize: number — The page size of the returned result.

* bookmark: string— The bookmark of the returned result.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
O9b6£f3c9cabflda",

6-58

Chapter 6
Bond Marketplace Model

"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

Go Methods for Bond Marketplace

The bond marketplace chaincode includes all methods available in the generic ERC-1155 NFT
chaincode. The following additional methods that are specific to the bond marketplace scenario
are available.

PostToken
This method can be called only by a token creator. The method submits the bond token for
listing in the marketplace. When a token is created, its status is initially set to created. This

ORACLE 650

ORACLE

Chapter 6
Bond Marketplace Model

method updates the status to posted. Users can run the getAl1TokensWithFilter method to
retrieve all NFTs with a posted status.

func (t *Controller) PostToken(tokenId string)

Parameters:

o tokenId:

string — The ID of the token to post.

Return Value Example:

"isValid":true,
"payload": {

"CreatedBy":
36138e00",

"tokenMetadata": {
"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16
b
"AssetType":"otoken",
"Events":true,
"TokenId":"bondl",
"TokenName" : "bond",
"TokenDesc":"tokenDesc value",
"TokenStandard":"ercll55+",
"TokenType":"nonfungible",
"TokenUnit":"fractional",
"Behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
1y
"Roles": {
"minter role name":"minter",
"burner role name":"burner"
b
"Mintable": {
"max mint quantity":0
b
"Quantity":100,

(interface{},

.oooz",
:36.0002"

"oaccount~276bcfl324bladled93e22432db3b39f7a4b9%bl1708525c0391ea3ba

"CreationDate":"2024-12-02T12:42:09

.oooz",

6-60

Chapter 6
Bond Marketplace Model

"Divisible":{
"decimal":0

}I
"IsBurned":false,
"IsLocked":false,
"TokenUri":"tokenUri value",
"Status":"created"

}I

"message":"Successfully updated asset with ID bondl"

PurchaseToken

This method can be called by any account holder to purchase a listed bond NFT. The
purchase transfers the bond NFT from the creator's account to the caller's account, and
transfers CBDC tokens from the caller's account to the creator's account. Because of this, the
method must be run in the context of an atomic transaction. The method also verifies the
transfer process, ensuring that the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and userId must correspond to the token
creator, and the CBDC token transfer value must be equal to the face value of the bond token
multiplied by the quantity being purchased.

func (t *Controller) PurchaseToken(tokenId string, quantity float64, orderId
string, additionalFees float64) (interface{}, error)

Parameters:

° tokenId: string— The ID of the token to purchase.

° quantity: number — The amount of tokens to purchase.

* orderId: string— The order ID for the purchase operation.

e additionalFees: number — The additional fees to add to the purchase price.

Return Value Example:

"returnCode":"Success",

"errorll : " ",
"result":{
"transactions": |

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969f£962df5efda2ea6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60caB89135cd20fffef"

b
"rollback":{

ORACLE 661

ORACLE

Chapter 6
Bond Marketplace Model

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txid":"1245885b1lalc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611al17"
b

"commit": {

"txid":"3c83e20c7d470cdc9clble2e0ea8d9962d58ada8d1lb8£0d2606c8aalflae7741"

by
"rollback": {

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

PayInterest

This method can be called only by the token creator or admin to pay the interest earned on the
bond token. This method can be called only if the interest frequency of the token is monthly,
quarterly, or annually. Interest cannot be paid if the interest frequency is at maturity. Interest is
calculated by the chaincode based on the coupon rate of the token. The purchase operation
transfers CBDC tokens from the caller's account to the bond owner’s account. Because of
this, this method must be run in the context of an atomic transaction. The method also verifies
the transfer process, ensuring the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and user1d must correspond to the token owner,
and the CBDC token transfer value must be equal to the interest calculated by the bond
chaincode.

func (t *Controller) PaylInterestEarned(orgId string, userId string, tokenId
string, orderId string, additionalFees float64) (interface{}, error)

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user.
e userld: string— The user name or email ID of the user.

* tokenId: string— The ID of the token.

e orderId: string— The order ID for the purchase operation.

6-62

Chapter 6
Bond Marketplace Model

Return Value Example:

"returnCode":"Success",

"errorll : mmn ,
"result":{
"transactions": |

{
"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare":{

"txid":"e969£962df5efda2ea6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

b
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare":{

"txid":"1245885b1alc7£12c41£a2£2905549b8a5£37ab3a5e094b%dcal22cb0611all7"
b

"commit": {

"txid":"3c83e20c7d470cdc9clb0e2e0eaB8d9962d58ada8dlb8f0d2606c8aalflae7741"

b
"rollback":{

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

RequestTokenRedemption

This method can be called only by the token owner to raise a request for the redemption of
bond tokens after maturity. This method is also involved the calculation of the redemption
price by the chaincode. Redemption requests can be raised only on the entire quantity of the

ORACLE 663

Chapter 6
Bond Marketplace Model

bond token that the user owns. Users can raise multiple redemption requests based on
different settlement IDs but only one can be approved by the token creator.

func (t *Controller) RequestTokenRedemption (settlementId string, tokenId
string, orderId string, additionalFees float64) (interface{}, error)

Parameters:

° settlementId: string— The settlement ID for the redemption operation.
* tokenId: string— The ID of the token.

* orderId: string— The order ID for the purchase operation.

e additionalFees: number — The additional fees to add to the redemption price.

Return Value Example:

"TokenName": "bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~9e006057ac96ae997e3964531b1a08ad2316555701c7fe%ecTbB88e38e
20892bf",
"SettlementId":"op4",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83blb903bd383fdac0ff
17747ca25a£3369e26289747~bondl~op4d",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfl4d",

"ToAccountId":"ouaccount~e76f696c0d6c626b24d35b3ac21lde377a6da24clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":1,

"Status":"PENDING",

"OrderId":"op4",

"RedeemPrice":11

ApproveTokenRedemption

This method can be called only by the token creator to approve a request for the redemption
of bond tokens. The approval operation transfers the bond NFT from the owner’s account (the
user who raised the request) to the creator’s account, and transfers CBDC tokens from the
bond creator’s to the owner’s account. Because of this, this method must be executed in the
context of an atomic transaction. The method also verifies the transfer process, ensuring the
appropriate CBDC chaincode is called with the correct orgId and userid for the transfer. The
orgld and userId must correspond to the account of the token owner who raised the

ORACLE 664

Chapter 6
Bond Marketplace Model

redemption request, and the CBDC token transfer value must be equal to the calculated
redemption price that was calculated by the chaincode while raising the redemption request.

func (t *Controller) ApproveRedemption (fromOrgId string, fromUserId string,
settlementId string, tokenId string) (interface{}, error)

Parameters:

e fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the redemption operation.

e tokenId: string— The ID of the token.

Return Value Example:

"returnCode":"Success",

"errorll : "",
"result":{
"transactions": |

{

"channel":"test",
"chaincode":"BondMarketplace",
"txstatus":"Committed",
"prepare": {

"txid":"e969f£962df5efda2ea6287380e308cc974efd79df££3567840ed3844b£936160"
b

"commit": {

"txi1d":"5544e928d3242291£b39189e8329679a9c81d61d6£72db60ca89135cd20fffef"

b
"rollback":{

"channel":"cbdctest",
"chaincode":"cbdc",
"txstatus":"Committed",
"prepare": {

"txi1d":"1245885b1al0c7£12c41£a2£2905549b8a5f37ab3a5e094b9%dcal22cb0611al17"
b

"commit": {

"txid":"3c83e20c7d470cdc9clbl0e2e0ea8d9962d58ada8d1b8£0d2606c8aalflae7741"

b
"rollback":{

ORACLE 665

Chapter 6
Bond Marketplace Model

"globalStatus":"Success",
"globalTxid":"761bb7cc-1d66-4645-aeb2-50e4dbd23d83",
"txStartTime":"2024-12-05T12:01:21.8819880352"

RejectRedemption
The token creator can call this method to reject the redemption request. Token owners can
raise a redemption request again by using a different settlement ID.

func (t *Controller) RejectRedemption (fromOrgId string, fromUserId string,
settlementId string, tokenId string) (interface{}, error)

Parameters:

* fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the redemption operation.

* tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully rejected the token approval request"

GetAllTokensWithFilter
The admin can call this get method to fetch all the tokens filtered by status, either CREATED or
POSTED.

func (t *Controller) GetAllTokensWithFilters(status string, pageSize int32,
bookmark string)

Parameters:
e status: string— The status of the token, which can either be CREATED or POSTED.
° pageSize: number — The page size of the returned result.

* Dbookmark: string— The bookmark of the returned result.

Return Value Example:

"ISIN":"ISIN value",

ORACLE 666

ORACLE

"CreatedBy":
36138e00",

"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16
}I
"AssetType":"otoken",
"Events":true,
"TokenId":"bondl",
"TokenName": "bond",
"TokenDesc":"tokenDesc value",
"TokenStandard":"ercl155+",
"TokenType":"nonfungible",
"TokenUnit":"fractional",
"Behaviors": [
"divisible",
"mintable",
"transferable",
"burnable",
"roles"
]I
"Roles": {
"minter role name":"minter",
"burner role name":"burner"
}I
"Mintable":{
"max mint quantity":0
}I
"Quantity":100,

.oooz",
:36.0002"

Chapter 6
Bond Marketplace Model

"oaccount~276bcfl324bladled93e22432db3b39£7a4b%bl7b8525c0391ealba

"CreationDate":"2024-12-02T12:42:09
"Divisible":{

"decimal":0
}I
"IsBurned":false,
"IsLocked":false,
"TokenUri":"tokenUri value",
"Status":"posted"

.oooz",

6-67

Chapter 6
Bond Marketplace Model

GetTokenApprovalRequestByUser
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

func (t *Controller) GetTokenApprovalRequestByUser (status string)
(interface{}, error)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, Or
APPROVED.

Return Value Example:

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bT7bff231ed4df270a82cdclfbbadd
17deadb",
"SettlementId":"opl",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~opl",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6da24clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":2,

"Status":"APPROVED",

"OrderId":"opl",

"RedeemPrice":1,

"PurchasedPrice":11,

"InterestEarned":0

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~fdf28b2d271ac9c0£fbd%94a2dedbf365728¢c77795£3e931eb5a4a2dcf48
039a989",
"SettlementId":"op3",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~op3",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbfdabl1411£670

ORACLE .

ORACLE

Chapter 6
Bond Marketplace Model

2a507003a15",
"TokenId":"bondl",
"Quantity":1,
"Status":"APPROVED",
"OrderId":"op3",
"RedeemPrice":11,
"PurchasedPrice":11,
"InterestEarned":0

GetTokenApprovalRequestForUserByStatus
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

func (t *Controller) GetTokenApprovalRequestForUserByStatus (status string)
(interface{}, error)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"SettlementId":"opl",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~opl",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":2,

"Status":"APPROVED",

"OrderId":"opl",

"RedeemPrice":1,

"PurchasedPrice":11,

"InterestEarned":0

"TokenName":"bond",
"AssetType":"otokenApproval",

6-69

Chapter 6
Bond Marketplace Model

"Id":"otokenApproval~£df28b2d271ac9c0£fbd94a2dedb£f365728c77795£3e931ebada2dcf48
039a989",
"SettlementId":"op3",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab60ff
17747ca25af3369e26289747~bondl~op3",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4d",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":1,

"Status":"APPROVED",

"OrderId":"op3",

"RedeemPrice":11,

"PurchasedPrice":11,

"InterestEarned":0

GetAccountBondSummary
Any account holder can call this get method to get an account summary that includes the
details of purchased or redeemed tokens and the purchase price and redemption price.

func (t *Controller) GetAccountBondSummary (orgId string, userId string)
(interface{}, error)

Parameters:
* orgld: string— The membership service provider (MSP) ID of the user.

e userld: string— The user name or email ID of the user.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfl4",
"orgId":"BondMPTest",
"userId":"ull",
"accountSummary": [
{
"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1b903bd383£fda60ff17747ca25a£3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

ORACLE 6-70

ORACLE

Chapter 6
Bond Marketplace Model

"PurchasedAmount":11,
"PurchasedDate":"2024-12-02T00:00:00.0002",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"opl"

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus":"REJECTED"

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabt0£f£f17747ca25a£3369
e26289747~bondl~op2",

"TokenId":"bondl",

"Status":"Purchased",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.0002",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"op2",

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"APPROVED"

GetAccountBondSummaryWithPagination

Any account holder can call this get method to get an account summary that includes details
of purchased or redeemed tokens and the purchase price and redemption price. This method
can return results with pagination based on pagesize and bookmark values, and also filtered
by start time and end time.

func (t *Controller) GetAccountBondSummaryWithPagination (orgId string, userId
string, pageSize int32, bookmark string) (interface{}, error)

Parameters:

* orgld: string— The membership service provider (MSP) ID of the user.
e userld: string— The user name or email ID of the user.

° pageSize: number — The page size of the returned result.

* bookmark: string— The bookmark of the returned result.

Return Value Example:

6-71

ORACLE

Chapter 6
Bond Marketplace Model

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6£f3c9cabfl4l",
"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%9979bfe6302dcc83b1lb903bd383£fdabc0£ff17747ca25a£3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.0002",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"OrderId":"opl"

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus":"REJECTED"

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%9979bfe6302dcc83b1lb903bd383£fdabc0£ff17747ca25a£3369
e26289747~bondl~op2",

"TokenId":"bondl",

"Status":"Purchased",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.0002",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"op2",

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"APPROVED"

TypeScript SDK Methods for Bond Marketplace

paylInterest

The token creator or admin can call this method to pay the interest earned on a bond token.
This method can be called only if the interest frequency of the token is monthly, quarterly, or
annually. Interest cannot be paid if the interest frequency is at maturity. Interest is calculated
by the chaincode itself based on the coupon rate of the token. The purchase operation
transfers CBDC tokens from the caller's account to the bond owner’s account. Because of
this, this method must be run in the context of an atomic transaction. The method also verifies
the transfer process, ensuring the appropriate CBDC chaincode is called with the correct

6-72

ORACLE

Chapter 6
Bond Marketplace Model

orgId and userId for the transfer. The orgId and user1d must correspond to the token owner,
and the CBDC token transfer value must be equal to the interest that is calculated by the bond
chaincode.

this.Ctx.ERC1155AccountBondSummary.payInterest (userAccountId, tokenld,
orderId)

Parameters:
e userAccountId: string— The account ID of the user.
* tokenId: string— The ID of the token.

e orderId: string— The order ID for the purchase operation.

Return Value Example:

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383fdab0ff17747ca25af3369
€26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.0002",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl411£6702a507003a15",

"orderId":"opl"

"interestEarned": 11,

"interestEarnedDate": "2024-12-02T00:00:00.000Z2"

requestTokenRedemption

This method can be called only by the token owner to raise a request for the redemption of
bond tokens after maturity. This method is also involved the calculation of the redemption
price by the chaincode. Redemption requests can be raised only on the entire quantity of the
bond token that the user owns. Users can raise multiple redemption requests based on
different settlement IDs but only one can be approved by the token creator.

this.Ctx.ERC1155TokenApproval.requestTokenRedemption (callerUserAccountId,
settlementId, tokenId, orderId, quantity, additionalFees);

Parameters:

e callerUserAccountlId: string— The account ID of the user.

e settlementId: string— The settlement ID for the redemption operation.
* tokenId: string— The ID of the token.

* orderId: string— The order ID for the purchase operation.

6-73

ORACLE

Chapter 6
Bond Marketplace Model

° additionalFees: number — The additional fees to add to the redemption price.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~9%9e006057ac96ae997e3964531b1a08ad2316555701c7fe%ec7b88e38e
20892bf",
"settlementId":"op4",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~op4",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbfdabl411£670
2a507003al15",

"tokenId":"bondl",

"quantity":1,

"status":"PENDING",

"orderId":"op4d",

"redeemPrice":11

approveTokenRedemption

This method can be called only by the token creator to approve a request for the redemption
of bond tokens. The approval operation transfers the bond NFT from the owner’s account (the
user who raised the request) to the creator’s account, and transfers CBDC tokens from the
bond creator’s to the owner’s account. Because of this, this method must be executed in the
context of an atomic transaction. The method also verifies the transfer process, ensuring the
appropriate CBDC chaincode is called with the correct orgId and userid for the transfer. The
orgId and userId must correspond to the account of the token owner who raised the
redemption request, and the CBDC token transfer value must be equal to the calculated
redemption price that was calculated by the chaincode while raising the redemption request.

this.Ctx.ERC1155TokenApproval.approveTokenApprovalRequest (fromUserAccountId,
settlementId, tokenId)

Parameters:
e fromUserAccountId: string— The account ID of the user.
e settlementId: string— The settlement ID for the redemption operation.

* tokenId: string— The ID of the token.

Return Value Example:

"status":"success",

6-74

Chapter 6
Bond Marketplace Model

"msg":"Successfully approved the token approval request"

rejectRedemption
The token creator can call this method to reject the redemption request. Token owners can
raise a redemption request again by using a different settlement ID.

this.Ctx.ERC1155TokenApproval.rejectTokenApprovalRequest (fromUserAccountId,
settlementId, tokenId)

Parameters:

* fromOrgId: string— The membership service provider (MSP) ID of the user.
e fromUserId: string— The user name or email ID of the user.

° settlementId: string— The settlement ID for the redemption operation.

e tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully rejected the token approval request"

getAllTokensWithFilter
The admin can call this get method to fetch all the tokens filtered by status, either CREATED or
POSTED.

this.Ctx.ERC1155Token.getAllTokensWithFilters (status, pageSize, bookmark)

Parameters:
e status: string— The status of the token, which can either be CREATED or POSTED.
° pageSize: number — The page size of the returned result.

* Dbookmark: string— The bookmark of the returned result.

Return Value Example:

[{
"tokenMetadata": {

"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,
"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36.0002",

ORACLE 6-75

ORACLE

"createdBy":
36138e00",

"MaturityDate":"2023-03-28T15:16:36.0002"

}I
"assetType":"otoken",
"events":true,
"tokenId":"bondl",
"tokenName":"bond",
"tokenDesc":"tokenDesc value",
"tokenStandard":"ercl155+",
"tokenType":"nonfungible",
"tokenUnit":"fractional",
"behaviors": [

"divisible",

"mintable",

"transferable",

"burnable",

"roles"
]I
"roles":{

"minter role name":"minter",

"burner role name":"burner"
}I
"mintable":{

"max mint quantity":0
}I
"quantity":100,

Chapter 6
Bond Marketplace Model

"oaccount~276bcfl324bladled93e22432db3b39£7a4b%bl7b8525c0391ealba

"creationDate":"2024-12-02T12:42:09.0002",

"divisible":{

"decimal":0
}I
"isBurned":false,
"isLocked":false,
"tokenUri":"tokenUri value",
"status":"posted"

getTokenApprovalRequestByUser
Any account holder can call this get method to get the details of all the token approval

requests (redemption requests) they have made.

this.Ctx.ERC1155TokenApproval.getAllTokenApprovalRequestByUserByStatus (status)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, oOr

APPROVED.

6-76

Chapter 6
Bond Marketplace Model

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~£fdf28b2d271ac9c0£fbd%4a2dedbf365728¢c77795£3e931e5a4a2dcf48
039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4d",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":1,

"status":"APPROVED",

"orderId":"op3",

"redeemPrice":11,

"purchasedPrice":11,

"interestEarned":0

ORACLE -

Chapter 6
Bond Marketplace Model

getTokenApprovalRequestForUserByStatus
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

this.Ctx.ERC1155TokenApproval.getAllTokenApprovalRequestForUserByStatus (status
)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, Or
APPROVED.

Return Value Example:

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"settlementId":"opl",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~opl",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz24clbfdabl411£670
2a507003a15",

"tokenId":"bondl",

"quantity":2,

"status":"APPROVED",

"orderId":"opl",

"redeemPrice":1,

"purchasedPrice":11,

"interestEarned":0

"tokenName":"bond",
"assetType":"otokenApproval",

"id":"otokenApproval~£fdf28b2d271ac9c0£fbd%94a2dedbf365728¢c77795£3e931eb5a4a2dcf48
039a989",
"settlementId":"op3",

"userBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25a£3369e26289747~bondl~op3",

"fromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"toAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbfdabl1411£670

ORACLE 6-78

Chapter 6
Bond Marketplace Model

2a507003a15",
"tokenId":"bondl",
"quantity":1,
"status":"APPROVED",
"orderId":"op3",
"redeemPrice":11,
"purchasedPrice":11,
"interestEarned":0

getAccountBondSummary
Any account holder can call this get method to get an account summary that includes the
details of purchased or redeemed tokens and the purchase price and redemption price.

this.Ctx.ERC1155AccountBondSummary.getAllAccountBondSummary (userAccountId)

Parameters:

e userAccountId: string— The account ID of the user.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6£f3c9cabfl4d",
"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fda6c0£ff17747ca25a£3369
e26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6daz4clbf
dab1411£6702a507003a15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

ORACLE 6-79

Chapter 6
Bond Marketplace Model

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

getAccountBondSummaryWithPagination

Any account holder can call this get method to get an account summary that includes details
of purchased or redeemed tokens and the purchase price and redemption price. This method
can return results with pagination based on pagesize and bookmark values, and also filtered
by start time and end time.

this.Ctx.ERC1155AccountBondSummary.getAllAccountBondSummaryWithPagination (user
AccountId, pageSize, bookmark)

Parameters:
e userAccountId: string— The account ID of the user.
* pageSize: number — The page size of the returned result.

* bookmark: string— The bookmark of the returned result.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfl4",
"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383£fdab60ff17747ca25a£3369
e26289747~bondl~opl",

"tokenId":"bondl",

"status":"Redeemed",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.0002",

ORACLE 5.80

Chapter 6
Bond Marketplace Model

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"orderId":"opl"

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"REJECTED"

"purchasedQuantity":1,
"assetType":"oUserBondDetails",

"id":"ouserbonddetails~ed3aaa9979bfe6302dcc83b1lb903bd383£fdabc0£f£f17747ca25a£3369
e26289747~bondl~op2",

"tokenId":"bondl",

"status":"Purchased",

"purchasedAmount":11,

"purchasedDate":"2024-12-02T00:00:00.000z2",

"purchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"orderId":"op2",

"redeemPrice":11,

"quantityRedeem":1,

"redeemStatus":"APPROVED"

On success, 1t returns a message.

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6£f3c9cabfld",
"orgId":"BondMPTest",
"userId":"ull",
"accountSummary": [
{
"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%9979bfe6302dcc83b1lb903bd383£fdabc0£ff17747ca25a£3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.000z2",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21de377a6daz4clbf
dabl411£6702a507003a15",

ORACLE 681

Chapter 6
Bond Marketplace Model

"OrderId":"opl"
"RedeemPrice":11,
"QuantityRedeem":1,
"RedeemStatus":"REJECTED"

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%9979bfe6302dcc83b1lb903bd383£fdabt0£f£f17747ca25a£3369
e26289747~bondl~op2",

"TokenId":"bondl",

"Status":"Purchased",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.000z2",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dab1411£6702a507003a15",

"OrderId":"op2",

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"APPROVED"

Go SDK Methods for Bond Marketplace

PayInterest

The token creator or admin can call this method to pay the interest earned on a bond token.
This method can be called only if the interest frequency of the token is monthly, quarterly, or
annually. Interest cannot be paid if the interest frequency is at maturity. Interest is calculated
by the chaincode itself based on the coupon rate of the token. The purchase operation
transfers CBDC tokens from the caller's account to the bond owner’s account. Because of
this, this method must be run in the context of an atomic transaction. The method also verifies
the transfer process, ensuring the appropriate CBDC chaincode is called with the correct
orgId and userId for the transfer. The orgId and userId must correspond to the token owner,
and the CBDC token transfer value must be equal to the interest that is calculated by the bond
chaincode.

t.Ctx.ERC1155AccountBondSummary.PayInterestEarned (userAccountId, tokenId,
orderId, additionalFees)

Parameters:
e userAccountId: string— The account ID of the user.
* tokenId: string— The ID of the token.

° orderId: string— The order ID for the purchase operation.

ORACLE 680

ORACLE

Chapter 6
Bond Marketplace Model

Return Value Example:

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383£fda60ff17747ca25af3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.0002",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"opl"

"InterestEarned": 11,

"InterestEarnedDate": "2024-12-02T00:00:00.000Z"

RequestTokenRedemption

This method can be called only by the token owner to raise a request for the redemption of
bond tokens after maturity. This method is also involved the calculation of the redemption
price by the chaincode. Redemption requests can be raised only on the entire quantity of the
bond token that the user owns. Users can raise multiple redemption requests based on
different settlement IDs but only one can be approved by the token creator.

£.Ctx.ERC1155TokenApproval .RequestTokenRedemption (callerUserAccountld,
settlementId, tokenId, orderId, quantity, additionalFees)

Parameters:

e callerUserAccountlId: string— The account ID of the user.

° settlementId: string— The settlement ID for the redemption operation.
* tokenId: string— The ID of the token.

e orderId: string— The order ID for the purchase operation.

° additionalFees: number — The additional fees to add to the redemption price.

Return Value Example:

"TokenName": "bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~9%9e006057ac96ae997e3964531b1a08ad2316555701c7£fe%ec7b88e38e
20892bf",
"SettlementId":"op4",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~op4d",

6-83

ORACLE

Chapter 6
Bond Marketplace Model

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4l",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":1,

"Status":"PENDING",

"OrderId":"op4d",

"RedeemPrice":11

ApproveTokenRedemption

This method can be called only by the token creator to approve a request for the redemption
of bond tokens. The approval operation transfers the bond NFT from the owner’s account (the
user who raised the request) to the creator’s account, and transfers CBDC tokens from the
bond creator’s to the owner’s account. Because of this, this method must be executed in the
context of an atomic transaction. The method also verifies the transfer process, ensuring the
appropriate CBDC chaincode is called with the correct orgId and user1d for the transfer. The
orgId and userId must correspond to the account of the token owner who raised the
redemption request, and the CBDC token transfer value must be equal to the calculated
redemption price that was calculated by the chaincode while raising the redemption request.

t.Ctx.ERC1155TokenApproval .ApproveTokenApprovalRequest (fromUserAccountlId,
settlementId, tokenId)

Parameters:
e fromUserAccountId: string— The account ID of the user.
° settlementId: string— The settlement ID for the redemption operation.

e tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully approved the token approval request"

RejectRedemption
The token creator can call this method to reject the redemption request. Token owners can
raise a redemption request again by using a different settlement ID.

t.Ctx.ERC1155TokenApproval .RejectTokenApprovalRequest (fromUserAccountlId,
settlementId, tokenId)

Parameters:
e fromOrgId: string— The membership service provider (MSP) ID of the user.

e fromUserId: string— The user name or email ID of the user.

6-84

ORACLE

Chapter 6
Bond Marketplace Model

° settlementId: string— The settlement ID for the redemption operation.

* tokenId: string— The ID of the token.

Return Value Example:

"status":"success",
"msg":"Successfully rejected the token approval request"

GetAllTokensWithFilter
The admin can call this get method to fetch all the tokens filtered by status, either CREATED or

POSTED.

t.Ctx.ERC1155Token.GetAl1TokensWithFilters (status, pageSize, bookmark)

Parameters:

e status: string— The status of the token, which can either be CREATED or POSTED.

° pageSize: number — The page size of the returned result.

* Dbookmark: string— The bookmark of the returned result.

Return Value Example:

b

"ISIN":"ISIN value",
"Segment":"Segment value",
"Issuer":"Issuer value",
"FaceValue":10,

"IssueSize":999,
"CouponRate":10,
"InterestPaymentType":"simple",
"InterestFrequency":"monthly",
"IssueDate":"2023-03-28T15:16:36
"MaturityDate":"2023-03-28T15:16

"AssetType":"otoken",
"Events":true,
"TokenId":"bondl",

"TokenName" :"bond",
"TokenDesc":"tokenDesc value",
"TokenStandard":"ercll55+",
"TokenType":"nonfungible",
"TokenUnit":"fractional",
"Behaviors": [

"divisible",
"mintable",
"transferable",
"burnable",
"roles"

.oooz",
:36.000Z"

6-85

ORACLE

Chapter 6
Bond Marketplace Model

]I

"Roles": {
"minter role name":"minter",
"burner role name":"burner"

}I

"Mintable": {
"max mint quantity":0

}I

"Quantity":100,

"CreatedBy" :"oaccount~276bcfl324bladled93e22432db3b39£7a4b9%bl7b8525c0391ea3ba
36138e00",

"CreationDate":"2024-12-02T12:42:09.0002",

"Divisible":{

"decimal":0

}I

"IsBurned":false,

"IsLocked":false,

"TokenUri":"tokenUri value",

"Status":"posted"

GetTokenApprovalRequestByUser
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

t£.Ctx.ERC1155TokenApproval.GetAllTokenApprovalRequestByUserByStatus (status)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd
17deadb",
"SettlementId":"opl",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~opl",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6f3c9cabfl4",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbfdabl411£670
2a507003al15",

6-86

Chapter 6
Bond Marketplace Model

"TokenId":"bondl",
"Quantity":2,
"Status":"APPROVED",
"OrderId":"opl",
"RedeemPrice":1,
"PurchasedPrice":11,
"InterestEarned":0

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~£df28b2d271ac9c0£fbd94a2dedb£f365728c77795£3e931ebada2dcf48
039a989",
"SettlementId":"op3",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~op3",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4l",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":1,

"Status":"APPROVED",

"OrderId":"op3",

"RedeemPrice":11,

"PurchasedPrice":11,

"InterestEarned":0

GetTokenApprovalRequestForUserByStatus
Any account holder can call this get method to get the details of all the token approval
requests (redemption requests) they have made.

t£.Ctx.ERC1155TokenApproval.GetAllTokenApprovalRequestForUserByStatus (status)

Parameters:

° status: string— The status of the request, which can be PENDING, REJECTED, oOr
APPROVED.

Return Value Example:

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~5b2a94283ae95e3d6e5b76££d6£75bTbff231ed4df270a82cdclfbbadd

ORACLE 6-87

ORACLE

Chapter 6
Bond Marketplace Model

17deadb",
"SettlementId":"opl",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~opl",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfl4d",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":2,

"Status":"APPROVED",

"OrderId":"opl",

"RedeemPrice":1,

"PurchasedPrice":11,

"InterestEarned":0

"TokenName":"bond",
"AssetType":"otokenApproval",

"Id":"otokenApproval~£df28b2d271ac9c0£fbd%4a2dedb£f365728c77795£3e931ebada2dcf48
039a989",
"SettlementId":"op3",

"UserBondDetailsId":"ouserbonddetails~ed3aaa9979%0fe6302dcc83b1b903bd383fdab0ff
17747ca25af3369e26289747~bondl~op3",

"FromAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985¢c506££57£d58221202
9b6£f3c9cabfld",

"ToAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac2lde377a6daz4clbfdabl411£670
2a507003a15",

"TokenId":"bondl",

"Quantity":1,

"Status":"APPROVED",

"OrderId":"op3",

"RedeemPrice":11,

"PurchasedPrice":11,

"InterestEarned":0

GetAccountBondSummary
Any account holder can call this get method to get an account summary that includes the
details of purchased or redeemed tokens and the purchase price and redemption price.

t£.Ctx.ERC1155AccountBondSummary.GetAllAccountBondSummary (userAccountId)

Parameters:

6-88

ORACLE

Chapter 6
Bond Marketplace Model

e userAccountId: string— The account ID of the user.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfl4",
"orgId":"BondMPTest",
"userId":"ulO",
"accountSummary": [
{
"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%997%bfe6302dcc83b1b903bd383£fda60ff17747ca25af3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.000z2",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"opl"

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"REJECTED"

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383£fda60ff17747ca25a£3369
e26289747~bondl~op2",

"TokenId":"bondl",

"Status":"Purchased",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T00:00:00.000z2",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21lde377a6da24clbf
dabl1411£6702a507003a15",

"OrderId":"op2",

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"APPROVED"

GetAccountBondSummaryWithPagination
Any account holder can call this get method to get an account summary that includes details
of purchased or redeemed tokens and the purchase price and redemption price. This method

6-89

Chapter 6
Bond Marketplace Model

can return results with pagination based on pagesize and bookmark values, and also filtered
by start time and end time.

t.Ctx.ERC1155AccountBondSummary.GetAllAccountBondSummaryWithPagination (userAcc
ountId, pageSize, bookmark)

Parameters:
e userAccountId: string— The account ID of the user.
° pageSize: number — The page size of the returned result.

* bookmark: string— The bookmark of the returned result.

Return Value Example:

"userAccountId":"ouaccount~df36ebaeb728c7768c0d5a3ecab435985c506££57£d58221202
9b6f3c9cabfld",
"orgId":"BondMPTest",
"userId":"ull",
"accountSummary": [
{
"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa997%bfe6302dcc83b1b903bd383fdab0ff17747ca25af3369
e26289747~bondl~opl",

"TokenId":"bondl",

"Status":"Redeemed",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T700:00:00.000z2",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21de377a6da24clbf
dabl411£6702a507003a15",

"OrderId":"opl"

"RedeemPrice":11,

"QuantityRedeem":1,

"RedeemStatus" :"REJECTED"

"PurchasedQuantity":1,
"AssetType":"oUserBondDetails",

"Id":"ouserbonddetails~ed3aaa%997%bfe6302dcc83b1b903bd383fdab0ff17747ca25af3369
e26289747~bondl~op2",

"TokenId":"bondl",

"Status":"Purchased",

"PurchasedAmount":11,

"PurchasedDate":"2024-12-02T700:00:00.000z",

"PurchasedFromAccountId":"ouaccount~e76£696c0d6c626b24d35b3ac21de377a6da24clbf

ORACLE 6.90

Chapter 6
Wholesale CBDC Model

dabl1411£6702a507003a15",
"OrderId":"op2",
"RedeemPrice":11,
"QuantityRedeem":1,
"RedeemStatus":"APPROVED"

Wholesale CBDC Model

ORACLE

The enhanced version of Blockchain App Builder includes a model attribute that generates
additional methods for the wholesale central bank digital currency (CBDC) scenario.

If you include the model: wcbdc parameter in the specification file for tokens that use the
extended Token Taxonomy Framework standard, Blockchain App Builder application-specific
chaincode, including the following additional methods and functionality for use with the
wholesale CBDC application.

TypeScript Methods for Wholesale CBDC

The wholesale CBDC chaincode includes all methods available in the generic Token Taxonomy
Framework NFT chaincode. The following additional methods that are specific to the wholesale
CBDC scenario are available.

setApplicationGroups

This method sets the application groups parameter in the account details for the specified
application groups in the API. This method can be called only by a Token Admin or Org Admin
of the specified organization.

public async setApplicationGroups (org id: string, user id: string, token id:
string, application groups: string[])

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user_id: string— The user name or email ID of the user.

* token id: string— The ID of the token.

* application groups: string[] — A list of application groups the user ID belongs to,
which define the user's associations in the CBDC application.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7f£d477987ef8ccbd8360893969531ab768098cd4a99%9e3b89¢cd38a391",
"payload": {

6-91

Chapter 6
Wholesale CBDC Model

"bapAccountVersion": 0,

"assetType": "oaccount",

"account id":

"oaccount~28ac774001£374064029d51af4fbb67e26ealea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": [

"CBDC_ADMINS"

] 14

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.000z2"
} 14
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

getAllActiveAccounts
This method returns all of the active accounts that are associated with the specified token ID.
Any user can call this method.

public async getAllActiveAccounts (token id: string)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~cdc6£a5e64bc29£700£99da69£980d8cbb768cTelallddl7274e75651f6afafe",
"non_account role name": [
"token admin"

1,

ORACLE 692

Chapter 6
Wholesale CBDC Model

"role name": null,
"valuedson": {

"bapAccountVersion": 0,

"assetType": "oaccount",

"account id":

"oaccount~cdc6fa5e64bc29£700£99da69£980d8chbb768c7elallddl7274e75651f6afafe",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "USD",

"token name": "cbdc",

"balance": 0,

"onhold balance": 0,

"application groups": [
"CBDC_ADMINS"

] ’

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 1000,

"daily transactions": 0,

"current date": "2024-11-20T00:00:00.000z2"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"key":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"non_account role name": [

"token admin"

I

"role name": null,

"valuedson": {
"account id":

"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

ORACLE 693

ORACLE

Chapter 6
Wholesale CBDC Model

"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"non_account role name": [
"token admin"
J 14
"role name": null,
"valueJdson": {
"account id":
"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1y
"encode": "JSON"

getAllSuspendedAccounts
This method returns all of the suspended accounts that are associated with the specified
token ID. Any user can call this method.

func (t *Controller) GetAllSuspendedAccounts(token id string) (interface{},
error)

Parameters:
* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",

6-94

Chapter 6
Wholesale CBDC Model

"errorll: "",
"result": {
"payload": [

{
"key":
"oaccount~802bf8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valuedson": {
"assetType": "oaccount",
"bapAccountVersion": 1,
"account id":
"oaccount~802bf8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"user id": "userl fil",
"org id": "FI1",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 5,
"onhold balance": 0,
"application groups": |
"FI_CBDC USERS"
] ’
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.000z2"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
"keyﬂ H

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD",

ORACLE 605

Chapter 6
Wholesale CBDC Model

"max daily amount": 10000,
"max daily transactions": 1000

1,
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD"

1y
"encode": "JSON"

getBurnQuantity
This method returns the total quantity of burned tokens for a specified organization. This
method can be called only by a Token Admin, Token Auditor, Or a user with the burner role.

public async getBurnQuantity(token id: string)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
Herror": "",
"result": {

"payload": {

"burnt quantity": 31

ORACLE 606

ORACLE

Chapter 6
Wholesale CBDC Model

b
"encode": "JSON"

getActionHistory

This method retrieves the history of approvals or rejections made by the caller for mint, burn,
and transfer (issuance) operations, including details of the organization, and user IDs of
accounts involved (sender, recipient, and notary).

public async getActionHistory(token id: string)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"from account id":
"oaccount~0d7b3f73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢",

"from org id": "CB",
"from user id": "retirer user cb",
"holding id": "ohold~cbdc~USD~eaf6",
"holding status": "REJECT BURN",
"last updated time": "2024-11-26T21:43:22.0002",
"notary account id": null,
"notary org id": null,
"notary user id": null,
"operation id": null,
"quantity": 3,
"timetoexpiration": null,
"to_account id": "",
"to org id": null,
"to user id": null,
"token id": "USD",
"token name": null

"from account id":
"oaccount~0d7b3£73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢",

"from org id": "CB",

"from user id": "retirer user cb",

"holding id": "ohold~cbdc~USD~0031",

"holding status": "REJECT BURN",

"last updated time": "2024-11-26T21:43:15.0002",

"notary account id": null,

"notary org id": null,

6-97

Chapter 6
Wholesale CBDC Model

"notary user id": null,
"operation id": null,
"quantity": 2,
"timetoexpiration": null,
"to_account id": "",

"to org id": null,

"to user id": null,
"token id": "USD",

"token name": null

1,
"encode": "JSON"

getPendingIssuance

This method retrieves all pending issuance (transfer) transactions where the caller is assigned
as an approver, including details of the organization, and user IDs of accounts involved
(sender, recipient, and notary). This method can be called only by a Token Admin Or Token
Auditor of the chaincode, an Org Admin or Org Auditor of the specified organization, or the
Notary.

public async getPendingIssuance (token id: string)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"asset type": "ONHOLD",
"category": "category value",
"from account id":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"from org id": "CB",
"from user id": "creator user cb",
"holding id": "ohold~cbdc~USD~8e314",
"notary account id":
"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",
"notary org id": "CB",

"notary user id": "manager user cb",
"operation id": "8e314",

"quantity": 10,

"timetoexpiration": "0",

"to _account id":
"oaccount~44b844deccc6c314e14b8bOb95b51db5c8ded99dbdbd3def2a44bab54c899¢c142",
"to _org id": "FI1",

ORACLE 608

ORACLE

Chapter 6
Wholesale CBDC Model

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

"asset type": "ONHOLD",

"category": "category value",

"from account id":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4£ffb3d8590320d4a3921594",

"from org id": "CB",

"from user id": "issuer user cb",

"holding id": "ohold~cbdc~USD~8e315",

"notary account id":
"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"notary org id": "CB",

"notary user id": "manager user cb",

"operation id": "8e315",

"quantity": 10,

"timetoexpiration": "0",

"to_account id":
"oaccount~44b844deccc6c314e14b8b9b95b51db5c8de499dbdbd3def2a44bab54c899c142",

"to org id": "FI1",

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

1,
"encode": "JSON"

getPendingRequest

This method retrieves all pending requests of a specified type where the caller is assigned as
an approver. This method can be called only by a Token Admin or Token Auditor of the
chaincode, an Org Admin or Org Auditor of the specified organization, or the Notary.

public async getPendingRequest (token id: string, request type: string)

Parameters:
* token id: string— The ID of the token.

* request type: string— The transaction type. For example, mint or burn.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{

"valueJdson": {

6-99

ORACLE

Chapter 6
Wholesale CBDC Model

"assetType": "ohold",

"holding id": "ohold~cbdc~USD~opl23",

"operation id": "opl23",

"token id": "USD",

"token name": "cbdc",

"operation type": "mint",

"status": "pending",

"from account id":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"to_account id": "",

"notary account id":
"oaccount~2eb5f8a%bc561f8f41ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"quantity": 10,

"time to expiration": "0",

"category": "category value",

"description": "description value"

1,
"encode": "JSON"

getTotalBalanceByCallerOrgld
This method retrieves the total balance of the caller's organization. It can be called by a Token
Admin, Token Auditor, Org Admin, Org Auditor, Or any account owner.

public async getTotalBalanceByCallerOrgId()

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
"totalBalance": 704

1y
"encode": "JSON"

6-100

Chapter 6
Wholesale CBDC Model

getTransactionWithBlockNumber
This method returns the details of the transaction for the specified transaction ID.

public async getTransactionWithBlockNumber (token id: string, transaction id:
string)

Parameters:
* token id: string— The ID of the token.

* transaction id: string— The ID of the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"blockNo": 82,
"key":
"otransaction~24£391919a8837d654beaa7346148ea80b2b9704624aef482ce68078c485f5b1b

n
r

"metadata": null,
"txnNo": 0,
"value": null,
"valuedson": {
"assetType": "otransaction",
"transaction id":
"otransaction~24£391919a8837d654beaa7346148ea80b2b9704624aef482ce68078c485f5b1b

n
r

"token id": "USD",

"from account id": "",

"from account balance": 0,

"from account onhold balance": 0,

"to_account id":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"to_account balance": 100,

"to_account onhold balance": 0,

"transaction type": "REQUEST MINT",

"amount": 200,

"timestamp": "2024-11-20T06:48:42.000Z",

"number of sub transactions": 0,

"holding id": "",

"sub transaction": "false",

"description": ""

1y
"encode": "JSON"

The following API is modified for the wholesale CBDC model.

ORACLE 6101

Chapter 6
Wholesale CBDC Model

createAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is formed by concatenating the asset type and token 1D
and then creating a SHA-256 hash over a concatenation of the organization ID and user ID.
This method can be called only by a Token Admin of the chaincode.

public async createAccount (org id: string, user id: string, token type:
string, application groups: string[], daily limits?: DailyLimits)

Parameters:

* orgId— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

e tokenType: TokenType — The type of token, which must be fungible.

* application groups: string[] — A list of application groups the user Id belongs to,
which define the user's associations in the CBDC application.

* daily limits: DailyLimits —A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max_daily amount value is the maximum amount of tokens that can
be transacted daily and max_daily transactions value is the maximum number of
transactions that can be completed daily.

e endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£8ccbd836b893969531ab768098cd4a99%e3b89¢cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fb67e26ealeadef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

ORACLE 6102

Chapter 6
Wholesale CBDC Model

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": [

"CBDC_ADMINS"

] ’

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.000z2"
} 4
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

Go Methods for Wholesale CBDC

The wholesale CBDC chaincode includes all methods available in the generic Token Taxonomy
Framework NFT chaincode. The following additional methods that are specific to the wholesale
CBDC scenario are available.

SetApplicationGroups

This method sets the application groups parameter in the account details for the specified
application groups in the API. This method can be called only by a Token Admin Or Org Admin
of the specified organization.

func (t *Controller) SetApplicationGroups (token id string, org id string,
user id string, application groups []string) (interface{}, error)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.
* token id: string— The ID of the token.

* application groups: string[] — A list of application groups the user ID belongs to,
which define the user's associations in the CBDC application.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"261c3dadbb6£1724bc8£674c7b001a9b986bc9900d0508363039424926b143ed",
"payload": {
"AssetType": "oaccount",

ORACLE 6103

Chapter 6
Wholesale CBDC Model

"AccountId":
"oaccount~cdc6fa5e64bc29£700£99da69£980d8chbb768c7elallddl7274e75651f6afafe",
"UserId": "admin user cb",
"OrgId": "CB",
"TokenType": "fungible",
"TokenId": "",
"TokenName": "",
"Balance": 0,
"BalanceOnHold": 0,
"BapAccountVersion": 0,
"ApplicationGroups": |
"CBDC_ADMINS"
] ’
"MaxDailyAmount": 10000,
"DailyAmount": O,
"MaxDailyTransactions": 100,
"DailyTransactions": 0,
"CurrentDate": "2024-12-09"
} 4
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 246

GetAllActiveAccounts
This method returns all of the active accounts that are associated with the specified token ID.
Any user can call this method.

func (t *Controller) GetAllActiveAccounts (token id string) (interfacef{},
error)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"NonAccountRoleName": "[\"token admin\"]",
"RoleName": null,
"key":
"oaccount~8dbl15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal3a3426fa25cb8c28",

"valuedson": {

ORACLE 6104

Chapter 6
Wholesale CBDC Model

"AccountId":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal3a3426fa25¢cb8c28",
"ApplicationGroups": |
"CBDC_ISSUERS"
]I
"AssetType": "oaccount",
"Balance": 0,
"BalanceOnHold": 0,
"BapAccountVersion": 0,
"CurrentDate": "2024-11-21",
"DailyAmount": O,
"DailyTransactions": 0,
"MaxDailyAmount": 10000,
"MaxDailyTransactions": 100,
"OrgId": "CB",
"TokenId": "USD",

"TokenName": "cbdc",
"TokenType": "fungible",
"UserId": "admin user cb"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": "[\"token auditor\"]",
"RoleName": null,
"key":
"oaccount~bd6262f£df582675dd9%2506c1d5488864feef0b9%9e297a9%9a3322b7¢c683ad6214",
"valueJdson": {
"AccountId":
"oaccount~bd6262f£df582675dd9%2506c1d5488864feef0b9%9e297a9%9a3322b7¢c683ad6214",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "auditor user cb",
"MaxDailyAmount": 10000,
"MaxDailyTransactions": 100,

1y
"encode": "JSON"

ORACLE 6105

Chapter 6
Wholesale CBDC Model

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": "[\"token admin\"]",
"RoleName": null,
"key":
"oaccount~8db15b42910eeecd01elbf22¢c69dfddl1c820ecc26539%9cal03a3426fa25ch8c28",
"valuedson": {
"AccountId":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal03a3426fa25¢cb8c28",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "admin user cb"

1y
"encode": "JSON"

GetAllSuspendedAccounts

This method returns all of the suspended accounts that are associated with the specified
token ID. Any user can call this method.

public async getAllSuspendedAccounts (token id: string)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"NonAccountRoleName": null,
"RoleName": "minter",
"key":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"valueJdson": {
"AccountId":

ORACLE 6106

Chapter 6
Wholesale CBDC Model

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"ApplicationGroups": [
"CBDC_ADMINS"
] I
"AssetType": "oaccount",
"Balance": 140,
"BalanceOnHold": 0,
"BapAccountVersion": 8,
"CurrentDate": "2024-11-21",
"DailyAmount": 70,
"DailyTransactions": 3,
"MaxDailyAmount": 10000,
"MaxDailyTransactions": 100,
"OrgId": "CB",
"TokenId": "USD",

"TokenName": "cbdc",
"TokenType": "fungible",
"UserId": "creator user cb"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": null,
"RoleName": "minter",
"key":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"valueJdson": {
"AccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "creator user cb",
"MaxDailyAmount": 10000,
"MaxDailyTransactions": 100,

1y
"encode": "JSON"

ORACLE 6-107

Chapter 6
Wholesale CBDC Model

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": null,
"RoleName": "minter",
"key":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"valuedson": {
"AccountId":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "creator user cb"

1,
"encode": "JSON"

GetBurnQuantity
This method returns the total quantity of burned tokens for a specified organization. This
method can be called only by a Token Admin, Token Auditor, Or a user with the burner role.

func (t *Controller) GetBurnQuantity(token id string) (interface{}, error)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
Herror": "",
"result": {

"payload": {

"BurnQuantity": 10

b
"encode": "JSON"

ORACLE 6108

Chapter 6
Wholesale CBDC Model

GetActionHistory

This method retrieves the history of approvals or rejections made by the caller for mint, burn,
and transfer (issuance) operations, including details of the organization, and user IDs of
accounts involved (sender, recipient, and notary).

func (t *Controller) GetActionHistory(token id string) (interface{}, error)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"FromAccountId":

"oaccount~0d7b3f73aea28065017¢ce8b79c0bb19256dc0cb475a0b02a85192bd110£69535¢",
"FromOrgId": "CB",
"FromUserId": "retirer user cb",
"HoldingId": "ohold~cbdc~USD~6e1223",
"HoldingStatus": "REJECT BURN",
"LastUpdatedTime": "2024-11-21T22:08:262",
"NotaryAccountId": null,
"NotaryOrgId": null,
"NotaryUserId": null,
"OperationId": null,
"Quantity": 5,
"TimeToExpiration”: null,
"ToAccountId": "",
"ToOrgId": null,
"ToUserId": null,
"TokenId": "USD",
"TokenName": null

"FromAccountId":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromOrgId": "CB",

"FromUserId": "creator user cb",

"HoldingId": "ohold~cbdc~USD~hold2",

"HoldingStatus": "RELEASEHOLD",

"LastUpdatedTime": "2024-11-21T21:54:332",

"NotaryAccountId": null,

"NotaryOrgId": null,

"NotaryUserId": null,

"OperationId": null,

"Quantity": 10,

"TimeToExpiration”: null,

"ToAccountId":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

ORACLE 6100

ORACLE

Chapter 6
Wholesale CBDC Model

"ToOrgId": "CB",

"ToUserId": "creator user cb",
"TokenId": "USD",

"TokenName": null

1,
"encode": "JSON"

GetPendingIssuance

This method retrieves all pending issuance (transfer) transactions where the caller is assigned
as an approver, including details of the organization, and user IDs of accounts involved
(sender, recipient, and notary). This method can be called only by a Token Admin Or Token
Auditor of the chaincode, an Org Admin or Org Auditor of the specified organization, or the
Notary.

func (t *Controller) GetPendingIssuance (token id string) (interface{}, error)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"AssetType": "ONHOLD",
"FromAccountId":
"oaccount~9d9806fa%92aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromOrgId": "CB",

"FromUserId": "creator user cb",
"HoldingId": "ohold~cbdc~USD~h123",
"NotaryAccountId":

"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",
"NotaryOrgId": "CB",
"NotaryUserId": "manager user cb",
"OperationId": "h123",
"Quantity": 10,
"TimeToExpiration": "0",
"ToAccountId":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594",
"ToOrgId": "CB",

"ToUserId": "issuer user cb",
"TokenId": "USD",
"TokenName": "cbdc"

1,
"encode": "JSON"

6-110

ORACLE

Chapter 6
Wholesale CBDC Model

GetPendingRequest

This method retrieves all pending requests of a specified type where the caller is assigned as
an approver. This method can be called only by a Token Admin or Token Auditor of the
chaincode, an Org Admin or Org Auditor of the specified organization, or the Notary.

func (t *Controller) GetPendingRequest(token id string, request type string)
(interface{}, error)

Parameters:
* token id: string— The ID of the token.

* request type: string— The transaction type. For example, mint or burn.

Return Value Example:

"returnCode":
Herror": "",
"result": {
"payload": [
{

"Success",

"valueJdson": {

"AssetType": "ohold",

"Category": "Category value",

"Description": "Description value",

"FromAccountId":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"HoldingId": "ohold~cbdc~USD~8e1232",

"NotaryAccountId":
"oaccount~2eb5f8a%bc561f8f4ladeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"OperationId": "8el232",

"OperationType": "mint",

"Quantity": 100,

"Status": "pending",

"TimeToExpiration":

"ToAccountId": "",

"TokenId": "USD",

"TokenName": "cbdc"

"O",

I

"encode": "JSON"

6-111

ORACLE

Chapter 6
Wholesale CBDC Model

GetTotalBalanceByCallerOrgId
This method retrieves the total balance of the caller's organization. It can be called by a Token
Admin, Token Auditor, Org Admin, Org Auditor, Or any account owner.

func (t *Controller) GetTotalBalanceByCallerOrgId() (interface{}, error)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
Herror": "",
"result": {
"payload": [
{
"TotalBalance": 180

1,
"encode": "JSON"

GetTransactionWithBlockNumber
This method returns the details of the transaction for the specified transaction ID.

func (t *Controller) GetTransactionWithBlockNumber (token id string,
transaction id string)

Parameters:
* token id: string— The ID of the token.

* transaction id: string— The ID of the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"blockNo": 152,
"key":
"otransaction~eee2de20b4b042884da83e3b7b85d8532ad56f26a546ee25d227acce33375¢clc

]
4

"metadata": null,
"txnNo": 0,
"value": null,
"valueJdson": {

6-112

ORACLE

Chapter 6
Wholesale CBDC Model

"Amount": 10,

"AssetType": "otransaction",

"Category": "Category value",

"Description": "",

"FromAccountBalance": 130,

"FromAccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromAccountOnHoldBalance": 10,

"HoldingId": "ohold~cbdc~USD~holdl",

"NumberOfSubTransactions": 0,

"SubTransaction": "false",

"SubTransactionType": "",

"Timestamp": "2024-11-21T20:43:59Z",

"ToAccountBalance": 10,

"ToAccountId":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594",

"ToAccountOnHoldBalance": 0,

"TokenId": "USD",

"TransactionId":
"otransaction~eee2de20b4b042884da83e3b7b85d8532ad56£f26a546ee25d227acce33375¢clc

"
4

"TransactionType": "EXECUTEHOLD"

1,
"encode": "JSON"

The following API is modified for the wholesale CBDC model.

CreateAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is formed by concatenating the asset type and token 1D
and then creating a SHA-256 hash over a concatenation of the organization ID and user ID.
This method can be called only by a Token Admin of the chaincode.

func (t *Controller) CreateAccount (org id string, user id string, token type
string, application groups []string,
daily limits ...account.AccountDailyLimits) (interface{}, error)

Parameters:

* orgld — The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(1), periods (.), at signs (@), and hyphens (-).

° tokenType: TokenType — The type of token, which must be fungible.

6-113

ORACLE

Chapter 6
Wholesale CBDC Model

* application groups: string[] — A list of application groups the user Id belongs to,
which define the user's associations in the CBDC application.

* daily limits: DailyLimits — A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max_daily amount value is the maximum amount of tokens that can
be transacted daily and max_daily transactions value is the maximum number of
transactions that can be completed daily.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must

endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"261c3dadbb6£1724bc8£674c70001a90986bc9900d0508363039424926b143ed",
"payload": {
"AssetType": "oaccount",
"AccountId":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"UserId": "admin user cb",

"OrgId": "CB",
"TokenType": "fungible",
"TokenId": "",
"TokenName": "",
"Balance": 0,
"BalanceOnHold": 0,
"BapAccountVersion": 0,
"ApplicationGroups": [
"CBDC_ADMINS"
] 14
"MaxDailyAmount": 10000,
"DailyAmount": 0,
"MaxDailyTransactions": 100,
"DailyTransactions": 0,
"CurrentDate": "2024-12-09"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 246

6-114

Chapter 6
Wholesale CBDC Model

TypeScript SDK Methods for Wholesale CBDC

setApplicationGroups
This method sets the application groups parameter in the account details for the specified
application groups in the API.

this.Ctx.Account.setApplicationGroups (account id, application groups)

Parameters:
* account id: string - The ID of the account.

* application groups: string[] — A list of application groups the user ID belongs to,
which define the user's associations in the CBDC application.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£8ccbd836b893969531ab768098cd4a99e3b89cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fbb7e26ealea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "",

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": |

"CBDC_ ADMINS"

] r

"max daily amount": 10000,

"daily amount": 0,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.000z"
} 14
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

ORACLE 6115

Chapter 6
Wholesale CBDC Model

getAllActiveAccounts
This method returns all of the active accounts that are associated with the specified token ID.

this.Ctx.CBDCToken.getAllActiveAccounts (token id)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~cdc6fa5e64bc29£700£99da69£980d8cbb768c7elallddl7274e75651f6afafe",
"non_account role name": [
"token admin"
] 4
"role name": null,
"valuedson": {
"bapAccountVersion": 0,
"assetType": "oaccount",
"account id":
"oaccount~cdc6fa5e64bc29£700£99da69£980d8cbb768c7elallddl7274e75651f6afafe",
"user id": "admin user cb",
"org id": "CB",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 0,
"onhold balance": 0,
"application groups": |
"CBDC_ADMINS"
] 4
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.000z2"

1,
"encode": "JSON"

ORACLE 6116

ORACLE

Chapter 6
Wholesale CBDC Model

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"key":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"non_account role name": [

"token admin"

I

"role name": null,

"valueJdson": {
"account id":

"oaccount~cdc6fa5e64bc29£700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",

"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1y
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~cdc6fab5e64bc29£700£99da69£980d8cbb768c7elallddl7274e75651f6afafe",
"non_account role name": [
"token admin"
1 ’
"role name": null,
"valueJdson": {
"account id":
"oaccount~cdc6fab5e64bc29£700£99da69£980d8cbb768c7elallddl7274e75651f6afafe",
"org id": "CB",
"user id": "admin user cb",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

6-117

ORACLE

Chapter 6
Wholesale CBDC Model

1,
"encode": "JSON"

getAllSuspendedAccounts
This method returns all of the suspended accounts that are associated with the specified
token ID.

this.Ctx.CBDCToken.getAllSuspendedAccounts (token id)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~802b£8da5579¢c6103b2dddaa6c4385d£8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJson": {
"assetType": "oaccount",
"bapAccountVersion": 1,
"account id":
"oaccount~802b£8da5579¢c6103b2dddaa6c4385d£8e722d639a18029e0e93d7a5d6£826d6",
"user id": "userl fil",
"org id": "FI1",
"token type": "fungible",
"token id": "USD",
"token name": "cbdc",
"balance": 5,
"onhold balance": 0,
"application groups": |
"FI_CBDC_USERS"
] ’
"max daily amount": 10000,
"daily amount": 0,
"max daily transactions": 1000,
"daily transactions": 0,
"current date": "2024-11-20T00:00:00.000z"

6-118

ORACLE

Chapter 6
Wholesale CBDC Model

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
"keyﬂ H

"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":
"oaccount~802b£f8da5579¢c6103b2dddaa6c4385df8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD",
"max daily amount": 10000,
"max daily transactions": 1000

1y
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"key":

"oaccount~802b£8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"non_account role name": null,
"role name": null,
"valueJdson": {
"account id":
"oaccount~802b£8da5579c6103b2dddaabc4385df8e722d639a18029e0e93d7a5d6£826d6",
"org id": "FI1",
"user id": "userl fil",
"token id": "USD"

6-119

Chapter 6
Wholesale CBDC Model

"encode": "JSON"

getBurnQuantity
This method returns the total quantity of burned tokens for a specified organization.

this.Ctx.CBDCToken.getBurnQuantity (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
llerrorll: ll",
"result": {

"payload": {

"burnt quantity": 31
b
"encode": "JSON"

getActionHistory

This method retrieves the history of approvals or rejections made by the caller for mint, burn,
and transfer (issuance) operations, including details of the organization, and user IDs of
accounts involved (sender, recipient, and notary).

this.Ctx.CBDCToken.getActionHistory (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
llerrorll: ll",
"result": {

"payload": [

{

"from account id":
"oaccount~0d7b3f73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢",

"from org id": "CB",

"from user id": "retirer user cb",

"holding id": "ohold~cbdc~USD~eaf6",

"holding status": "REJECT BURN",

"last updated time": "2024-11-26T21:43:22.0002",

ORACLE 6120

ORACLE

Chapter 6
Wholesale CBDC Model

"notary account id": null,
"notary org id": null,
"notary user id": null,
"operation id": null,
"quantity": 3,
"timetoexpiration": null,
"to_account id": "",

"to org id": null,

"to user id": null,
"token id": "USD",

"token name": null

"from account id":

"oaccount~0d7b3£73aea28065017ce8b79c0bbl9256dc0cb475a0b2a85192bd110£69535¢",

I

"from org id": "CB",

"from user id": "retirer user cb",
"holding id": "ohold~cbdc~USD~0031",
"holding status": "REJECT BURN",
"last updated time": "2024-11-26T21:43:15.0002",
"notary account id": null,
"notary org id": null,
"notary user id": null,
"operation id": null,

"quantity": 2,

"timetoexpiration": null,
"to_account id": "",

"to org id": null,

"to user id": null,

"token id": "USD",

"token name": null

"encode": "JSON"

getPendingIssuance

This method retrieves all pending issuance (transfer) transactions where the caller is assigned
as an approver, including details of the organization, and user IDs of accounts involved
(sender, recipient, and notary).

this.Ctx.CBDCToken.getPendingIssuance (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode":

nmn
4

"error":

"Success",

6-121

ORACLE

"result":
"payload": [

{

Chapter 6
Wholesale CBDC Model

"asset type": "ONHOLD",
"category": "category value",
"from account id":

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125cal",

"from org id": "CB",

"from user id": "creator user cb",
"holding id": "ohold~cbdc~USD~8e314",
"notary account id":

"oaccount~2eb5f8a%bc561f8f41adeal3be9511958cc6684ef14£2337cal39%6efc301b627d8",

"notary org id": "CB",

"notary user id": "manager user cb",
"operation id": "8e314",

"quantity": 10,

"timetoexpiration": "0",

"to_account id":

"oaccount~44b844deccc6c314el14b8b9b95b51db5c8ded499dbdbd3def2a44ba54c899c142™,

"to org id": "FI1",

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

"asset type": "ONHOLD",
"category": "category value",
"from account id":

"oaccount~5le676d7182a02ea7418ef58a6d54ecfe3858ef40b4££fb3d8590320da3921594",

"from org id": "CB",

"from user id": "issuer user cb",
"holding id": "ohold~cbdc~USD~8e315",
"notary account id":

"oaccount~2eb5f8a%bc561f8f41adeal3be9511958cc6684ef14£2337cal39%6efc301b627d8",

"notary org id": "CB",
"notary user id": "manager user cb",
"operation id": "8e315",

"quantity": 10,

"timetoexpiration": "0",
"to_account id":

"oaccount~44b844deccc6c314el14b8bOb95b51db5c8ded499dbdbd3def2a44ba54c899¢c142™,

I

"to org id": "FI1",

"to user id": "officer userl fil",
"token id": "USD",
"token name": "cbdc"

"encode": "JSON"

6-122

ORACLE

Chapter 6
Wholesale CBDC Model

getPendingRequest
This method retrieves all pending requests of a specified type where the caller is assigned as
an approver.

this.Ctx.CBDCToken.getPendingRequest (token id, request type)

Parameters:
* token id: string— The ID of the token.

* request type: string— The transaction type. For example, mint or burn.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"valueJdson": {
"assetType": "ohold",
"holding id": "ohold~cbdc~USD~opl23",
"operation id": "opl23",
"token id": "USD",
"token name": "cbdc",
"operation type": "mint",
"status": "pending",
"from account id":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"to_account id": "",
"notary account id":
"oaccount~2eb5f8a%bc561f8f41adeal3be9511958cc6684ef14£2337cal396efc301b627d8",

"quantity": 10,
"time to expiration": "0",
"category": "category value",
"description": "description value"

1y
"encode": "JSON"

getTotalBalanceByCallerOrgId
This method retrieves the total balance of the caller's organization.

this.Ctx.CBDCToken.getTotalBalanceByCallerOrgId()

Parameters:

* token id: string— The ID of the token.

6-123

ORACLE

Chapter 6
Wholesale CBDC Model

Return Value Example:

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
"totalBalance": 704

1y
"encode": "JSON"

getTransactionWithBlockNumber
This method returns the details of the transaction for the specified transaction ID.

this.Ctx.CBDCToken.getTransactionWithBlockNumber (token id, transaction id)

Parameters:
* token id: string— The ID of the token.

* transaction id: string— The ID of the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"blockNo": 82,
"key":
"otransaction~24£391919a8837d654beaa7346148ea8b2b9704624aef482ce68078c485f5b1b

n
r

"metadata": null,
"txnNo": 0,
"value": null,
"valueJdson": {
"assetType": "otransaction",
"transaction id":
"otransaction~24£391919a8837d654beaa7346148ea8b2b9704624aef482ce68078c485f5b1b

n
r

"token id": "USD",

"from account id": "",

"from account balance": 0,

"from account onhold balance": 0,

"to_account id":
"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"to_account balance": 100,

6-124

ORACLE

Chapter 6
Wholesale CBDC Model

"to_account onhold balance": 0,
"transaction type": "REQUEST MINT",
"amount": 200,

"timestamp": "2024-11-20T06:48:42.000zZ",
"number of sub transactions": 0,
"holding id": "",

"sub transaction": "false",
"description": ""

1,
"encode": "JSON"

The following SDK method is modified for the wholesale CBDC model.

createAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is formed by concatenating the asset type and token 1D
and then creating a SHA-256 hash over a concatenation of the organization ID and user ID.

this.Ctx.Account.createAccount (org id, user id, token type,
application groups, daily limits)

Parameters:

e orgld - The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(), periods (.), at signs (@), and hyphens (-).

* tokenType: TokenType — The type of token, which must be fungible.

* application groups: string[] — A list of application groups the user Id belongs to,
which define the user's associations in the CBDC application.

* daily limits: DailyLimits — A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max_daily amount value is the maximum amount of tokens that can
be transacted daily and max daily transactions value is the maximum number of
transactions that can be completed daily.

° endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

6-125

Chapter 6
Wholesale CBDC Model

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"453821c7££d477987e£f8ccbd836b893969531ab768098cd4a99e3b89cd38a391",
"payload": {
"bapAccountVersion": 0,
"assetType": "oaccount",

"account id":
"oaccount~28ac774001£374064029d51af4fb67e26ecalea%ef62828b7a72dbf3beb8efd8d",

"user id": "admin user cb",

"org id": "CB",

"token type": "fungible",

"token id": "™,

"token name": "",

"balance": 0,

"onhold balance": 0,

"application groups": [

" CBDC_ADMINS "

] 14

"max daily amount": 10000,

"daily amount": O,

"max daily transactions": 100,

"daily transactions": 0,

"current date": "2024-12-09T00:00:00.0002"
I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 188

Go SDK Methods for Wholesale CBDC

SetApplicationGroups
This method sets the application groups parameter in the account details for the specified
application groups in the API.

t.Ctx.CbdcToken.SetApplicationGroups (account id, application groups)

Parameters:
* account id: string— The ID of the account.

* application groups: string[] — A list of application groups the user ID belongs to,
which define the user's associations in the CBDC application.

ORACLE 6196

ORACLE

Chapter 6
Wholesale CBDC Model

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"261c3dadbb6£1724bc8£674c70001a90986bc9900d0508363039424926b143ed",
"payload": {
"AssetType": "oaccount",
"AccountId":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"UserId": "admin user cb",

"OrgId": "CB",
"TokenType": "fungible",
"TokenId": "",
"TokenName": "",
"Balance": 0,
"BalanceOnHold": 0,
"BapAccountVersion": 0,
"ApplicationGroups": [
"CBDC_ADMINS"
] 14
"MaxDailyAmount": 10000,
"DailyAmount": 0,
"MaxDailyTransactions": 100,
"DailyTransactions": 0,
"CurrentDate": "2024-12-09"
I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 246

GetAllActiveAccounts
This method returns all of the active accounts that are associated with the specified token ID.

t.Ctx.CbdcToken.GetAllActiveAccounts (token id)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
llerrorll: "",

6-127

Chapter 6
Wholesale CBDC Model

"result": {

"payload": [
{
"NonAccountRoleName": "[\"token admin\"]",
"RoleName": null,
n key" :

"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal3a3426fa25¢cb8c28",
"valuedson": {

"AccountId":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539eal3a3426fa25cb8c28",

"ApplicationGroups": |

"CBDC_ISSUERS"

]I

"AssetType": "oaccount",

"Balance": 0,

"BalanceOnHold": 0,

"BapAccountVersion": 0,

"CurrentDate": "2024-11-21",

"DailyAmount": O,

"DailyTransactions": 0,

"MaxDailyAmount": 10000,

"MaxDailyTransactions": 100,

"OrgId": "CB",

"TokenId": "USD",

"TokenName": "cbdc",
"TokenType": "fungible",
"UserId": "admin user cb"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": "[\"token auditor\"]",
"RoleName": null,
"key":
"oaccount~bd6262f£df582675dd9%2506c1d5488864feef0b9%9e297a9%9a3322b7¢c683ad6214",
"valueJdson": {
"AccountId":
"oaccount~bd6262f£df582675dd9%2506c1d5488864feef0b9%9e297a9%9a3322b7¢c683ad6214",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "auditor user cb",
"MaxDailyAmount": 10000,

ORACLE 6108

ORACLE

Chapter 6
Wholesale CBDC Model

"MaxDailyTransactions": 100,

1,
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": "[\"token admin\"]",
"RoleName": null,
"key":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal03a3426fa25¢cb8c28",
"valueJdson": {
"AccountId":
"oaccount~8db15b42910eeecd0lelbf22c69dfddl1c820ecc26539%9eal03a3426fa25¢cb8c28",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "admin user cb"

1y
"encode": "JSON"

GetAllSuspendedAccounts

This method returns all of the suspended accounts that are associated with the specified
token ID.

t.Ctx.CbdcToken.GetAllSuspendedAccounts (token id)

Parameters:

* token id: string— The ID of the token.

Returns:

* On success, a message that includes user details. The output varies based on the user's
role, as shown in the following examples.

Return Value Example (Token Admin, Token Auditor):

"returnCode": "Success",
llerrorll: llll,

6-129

Chapter 6
Wholesale CBDC Model

"result": {
"payload": [
{

"NonAccountRoleName": null,

"RoleName": "minter",

"key":

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"valueJdson": {

"AccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"ApplicationGroups": [
"CBDC_ADMINS"

] I
"AssetType": "oaccount",
"Balance": 140,
"BalanceOnHold": 0,
"BapAccountVersion": 8,
"CurrentDate": "2024-11-21",
"DailyAmount": 70,
"DailyTransactions": 3,
"MaxDailyAmount": 10000,
"MaxDailyTransactions": 100,
"OrgId": "CB",
"TokenId": "USD",

"TokenName": "cbdc",
"TokenType": "fungible",
"UserId": "creator user cb"

1,
"encode": "JSON"

Return Value Example (Organization Admin, Organization Auditor):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": null,
"RoleName": "minter",
"key":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"valueJdson": {
"AccountId":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "creator user cb",
"MaxDailyAmount": 10000,

ORACLE 6130

ORACLE

Chapter 6
Wholesale CBDC Model

"MaxDailyTransactions": 100,

1,
"encode": "JSON"

Return Value Example (all other users):

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"NonAccountRoleName": null,
"RoleName": "minter",
"key":
"oaccount~9d9806fa%92aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"valuedson": {
"AccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"OrgId": "CB",
"TokenId": "USD",
"UserId": "creator user cb"

1,
"encode": "JSON"

GetBurnQuantity
This method returns the total quantity of burned tokens for a specified organization.

t.Ctx.CbdcToken.GetBurnQuantity (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
Herrorll: "",
"result": {

"payload": {

"BurnQuantity": 10
b
"encode": "JSON"

6-131

Chapter 6
Wholesale CBDC Model

GetActionHistory

This method retrieves the history of approvals or rejections made by the caller for mint, burn,
and transfer (issuance) operations, including details of the organization, and user IDs of
accounts involved (sender, recipient, and notary).

t.Ctx.CbdcToken.GetActionHistory (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"FromAccountId":

"oaccount~0d7b3f73aea28065017ce8b79c0bb19256dc0cb475a002a85192bd110£69535¢",
"FromOrgId": "CB",
"FromUserId": "retirer user cb",
"HoldingId": "ohold~cbdc~USD~6e1223",
"HoldingStatus": "REJECT BURN",
"LastUpdatedTime": "2024-11-21T722:08:262",
"NotaryAccountId": null,
"NotaryOrgId": null,
"NotaryUserId": null,
"OperationId": null,
"Quantity": 5,
"TimeToExpiration": null,
"ToAccountId": "",
"ToOrgId": null,
"ToUserId": null,
"TokenId": "USD",
"TokenName": null

"FromAccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromOrgId": "CB",

"FromUserId": "creator user cb",

"HoldingId": "ohold~cbdc~USD~hold2",

"HoldingStatus": "RELEASEHOLD",

"LastUpdatedTime": "2024-11-21T21:54:33z2",

"NotaryAccountId": null,

"NotaryOrgId": null,

"NotaryUserId": null,

"OperationId": null,

ORACLE 6132

ORACLE

Chapter 6
Wholesale CBDC Model

"Quantity": 10,

"TimeToExpiration": null,

"ToAccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"ToOrgId": "CB",

"ToUserId": "creator user cb",

"TokenId": "USD",

"TokenName": null

1,
"encode": "JSON"

GetPendingIssuance

This method retrieves all pending issuance (transfer) transactions where the caller is assigned
as an approver, including details of the organization, and user IDs of accounts involved
(sender, recipient, and notary).

t.Ctx.CbdcToken.GetPendingIssuance (token id)

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",

"error": "",

"result": {

"payload": [
{
"AssetType": "ONHOLD",
"FromAccountId":
"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromOrgId": "CB",

"FromUserId": "creator user cb",
"HoldingId": "ohold~cbdc~USD~h123",
"NotaryAccountId":

"oaccount~2eb5f8a%bc561f8f41adeal3be9511958cc6684ef14£2337cal396efc301b627d8",
"NotaryOrgId": "CB",
"NotaryUserId": "manager user cb",
"OperationId": "h123",
"Quantity": 10,
"TimeToExpiration": "Q",
"ToAccountId":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594",
"ToOrgId": "CB",

"ToUserId": "issuer user cb",
"TokenId": "USD",
"TokenName": "cbdc"

6-133

ORACLE

Chapter 6
Wholesale CBDC Model

1,
"encode": "JSON"

GetPendingRequest

This method retrieves all pending requests of a specified type where the caller is assigned as
an approver.

t.Ctx.CbdcToken.GetPendingRequest (token id, request type)

Parameters:
* token id: string— The ID of the token.

* request type: string— The transaction type. For example, mint or burn.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"valuedson": {
"AssetType": "ohold",

"Category": "Category value",
"Description”: "Description value",
"FromAccountId":

"oaccount~9d9806fa%2aalcd4fdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",
"HoldingId": "ohold~cbdc~USD~8e1232",
"NotaryAccountId":
"oaccount~2eb5f8a%bc561f8f41adeal3be9511958cc6684ef14£2337cal396efc301b627d8",
"OperationId": "8el232",
"OperationType": "mint",
"Quantity": 100,
"Status": "pending",
"TimeToExpiration": "Q",
"ToAccountIid": "",
"TokenId": "USD",
"TokenName": "cbdc"

1y
"encode": "JSON"

6-134

ORACLE

GetTotalBalanceByCallerOrgId

This method retrieves the total balance of the caller's organization.

t.Ctx.CbdcToken.GetTotalBalanceByCallerOrgId ()

Parameters:

* token id: string— The ID of the token.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": [
{
"TotalBalance": 180

1y
"encode": "JSON"

GetTransactionWithBlockNumber

Chapter 6
Wholesale CBDC Model

This method returns the details of the transaction for the specified transaction ID.

t.Ctx.CbdcToken.GetTransactionWithBlockNumber (token id, transaction id)

Parameters:
* token id: string— The ID of the token.

* transaction id: string— The ID of the transaction.

Return Value Example:

"returnCode": "Success",
Herrorll: "",
"result": {
"payload": [
{
"blockNo": 152,
" keyﬂ H

"otransaction~eee2de20b4b042884da83e3b7b85d8532ad56f26a546ee25d227acce33375¢clc

n
r

"metadata": null,
"txnNo": 0,
"value": null,
"valueJdson": {
"Amount": 10,
"AssetType": "otransaction",

6-135

Chapter 6
Wholesale CBDC Model

"Category": "Category value",
"Description": "",
"FromAccountBalance": 130,
"FromAccountId":

"oaccount~9d9806fa%2aalcdfdb34eaffac6e830181b5d47e64fbce752195e83024125¢cal",

"FromAccountOnHoldBalance": 10,

"HoldingId": "ohold~cbdc~USD~holdl",

"NumberOfSubTransactions": 0,

"SubTransaction": "false",

"SubTransactionType": "",

"Timestamp": "2024-11-21T20:43:59Z",

"ToAccountBalance": 10,

"ToAccountId":
"oaccount~51e676d7182a02ea7418ef58a6d54ecfe3858ef40b4ffb3d8590320da3921594",

"ToAccountOnHoldBalance": 0,

"TokenId": "USD",

"TransactionId":
"otransaction~eee2de20b4b042884da83e3b7b85d8532ad56f26a546ee25d227acce33375¢clc

"
4

"TransactionType": "EXECUTEHOLD"

1,
"encode": "JSON"

The following SDK method is modified for the wholesale CBDC model.

CreateAccount

This method creates an account for a specified user and token. An account must be created
for any user who will have tokens at any point. Accounts track balances, on-hold balances,
and transaction history. An account ID is formed by concatenating the asset type and token 1D
and then creating a SHA-256 hash over a concatenation of the organization ID and user ID.

t.Ctx.Account.CreateAccount (org id, user id, token type, application groups,
daily limits...)

Parameters:

e orgld— The membership service provider (MSP) ID of the user to create the account for.
The ID must begin with an alphanumeric character and can include letters, numbers, and
special characters such as underscores (), periods (.), at signs (@), and hyphens (-).

* userId-— The user name or email ID of the user. The ID must begin with an alphanumeric
character and can include letters, numbers, and special characters such as underscores
(1), periods (.), at signs (@), and hyphens (-).

* tokenType: TokenType — The type of token, which must be fungible.

* application groups: string[] — A list of application groups the user Id belongs to,
which define the user's associations in the CBDC application.

ORACLE 6136

Chapter 6
Endorsement Support in Postman Collections

* daily limits: DailyLimits —A JSON object of the following type.

"max daily amount": 100000
"max daily transactions": 10000

In the example, the max daily amount value is the maximum amount of tokens that can
be transacted daily and max_daily transactions value is the maximum number of
transactions that can be completed daily.

* endorsers: string[] — An array of the peers (for example, peerl, peer?2) that must
endorse the transaction.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"261c3dadbb6£1724bc8£674c70001a9b986bc9900d0508363039424926b143ed",
"payload": {
"AssetType": "oaccount",
"AccountId":
"oaccount~cdc6fa5e64bc29£f700£99da69f980d8cbb768c7elallddl7274e75651f6afafe",
"UserId": "admin user cb",

"OrgId": "CB",
"TokenType": "fungible",
"TokenId": "",
"TokenName": "",
"Balance": 0,
"BalanceOnHold": O,
"BapAccountVersion": 0,
"ApplicationGroups": |
"CBDC_ADMINS"
] 4
"MaxDailyAmount": 10000,
"DailyAmount": O,
"MaxDailyTransactions": 100,
"DailyTransactions": 0,
"CurrentDate": "2024-12-09"
} 4
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 246

Endorsement Support in Postman Collections

ORACLE

Oracle Blockchain Platform Digital Assets Edition adds support for endorsement parameters to
the Postman collections generated by Blockchain App Builder.

6-137

ORACLE

Chapter 6
Endorsement Support in Postman Collections

Blockchain App Builder enables you to create a Postman collection that includes example
payloads for all of your chaincode controller APIs. For more information, see Generate a
Postman Collection Using the CLI and Generate a Postman Collection Using Visual Studio
Code.

Oracle Blockchain Platform Digital Assets Edition extends that functionality by including an
additional parameter in the request payload for all setter methods. The new parameter is either
endorsers Or sameOrgEndorser. The sameOrgEndorser parameter, if true, indicates that
transaction endorsements must be from the same organization as the requester. The
endorsers parameter specifies a list of peers that must endorse the transaction.

The sameOrgEndorserOptionInWrapperAPI parameter in the .ochain. json file in the
chaincode specifies which APIs require a sameOrgEndorser value. APIs that are associated
with the sameOrgEndorserOptionIniWirapperAPI parameter have the sameOrgEndorser
parameter set to true in their payloads. All other APIs include the endorsers parameter
instead of the sameOrgEndorser parameter.

The following snippet shows the sameOrgEndorserOptionInWrapperAPI parameter in
the .ochain. json file in the wholesale CBDC chaincode package.

"sameOrgEndorserOptionInWrapperAPI":
["addConversionRate", "addTokenAdmin", "addTokenAuditor", "approveBurn", "approveM
int", "burnTokens", "createExchangePoolAccounts", "deleteHistoricalTransactions",
"initializeCBDCToken","initializeExchangePoolUser","issueTokens", "mintWithFund
ingExchangePool", "rejectBurn", "rejectMint", "removeTokenAdmin", "removeTokenAudi
tor", "requestBurn", "requestMint", "updateCBDCToken", "updateConversionRate"]

You can customize this parameter as needed. When the wrapper APl is generated, the
specified APIs will have the sameOrgEndorser parameter set to true in their payloads.

The following example payloads show these endorsement parameters.

addOrgAdmin

"chaincode": "{{bc-chaincode-name}}",
"args": |
"addOrgAdmin",
"{{bc-org-id}}",
"{{bc-user-id}}"
]I
"timeout": {{bc-timeout}},
"sync": {{bc-sync}},
"endorsers": {{endorsers}}

addTokenAdmin

"chaincode": "{{bc-chaincode-name}}",
"args": |

"addTokenAdmin",

"{{bc-org-id}}",

"{{bc-user-id}}"

6-138

Chapter 6
Auditor Roles

1y

"timeout": {{bc-timeout}},
"sync": {{bc-sync}},
"sameOrgEndorser": true

Auditor Roles

ORACLE

The enhanced version of Blockchain App Builder includes support for auditor roles when using
the extended Token Taxonomy Framework standard.

The version of Blockchain App Builder supplied with Oracle Blockchain Platform Digital Assets
Edition supports two additional roles for chaincode projects that use the extended Token
Taxonomy Framework standard. The new roles are Token Auditor and Org Auditor. These
roles function similarly to the Token Admin and Org Admin roles, but auditor roles are limited to
read-only access. Admin roles have read-write access.

The following information describes the controller methods and SDK methods that support
auditor roles in both TypeScript and Go.

TypeScript Controller Methods
The following controller methods support the auditor role functions.

addTokenAuditor
This method adds a user as a Token Auditor of the chaincode. This method can be called
only by a Token Admin of the chaincode.

public async addTokenAuditor (org id: string, user id: string)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was added as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"cdB81lf6cdc9e7cl8ece357dbf5¢c139%e£66ef2d6566be3blide5£6d0a3fddbb2f0",
"payload": {
"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
cb)"
}I

6-139

ORACLE

Chapter 6
Auditor Roles

"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 196

removeTokenAuditor
This method removes a user as a Token Auditor of the chaincode. This method can be called
only by a Token Admin of the chaincode.

public async removeTokenAuditor (org id: string, user id: string)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"a886a6040fbc76374a3¢c78c89%ab0ffc9f708391¢cc523901690f3b878¢cf40c67b",
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
ch)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 219
}
}
getTokenAuditors

This method returns all Token Auditors of the chaincode. This method can be called only by
a Token Admin Or Token Auditor of the chaincode.

public async getTokenAuditors()

Return Value Example:

"returnCode": "Success",

6-140

Chapter 6
Auditor Roles

"errorll: "",
"result": {
"payload": {

"auditors": [

{
"Org_id": "CB",
"user id": "auditor user cb"

I
"encode": "JSON"

addOrgAuditor
This method adds a user as a Org Auditor of the chaincode. This method can be called only
by a Token Admin Oor Org Admin of the chaincode.

public async addOrgAuditor (org id: string, user id: string)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

« On success, a message that includes details of the user who was added as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"44pbbad35a1478cb714e32£7¢c£d551897868a203520aab9%ceab5771d3aadclcf03",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"

b
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 198

ORACLE 6141

ORACLE

Chapter 6
Auditor Roles

removeOrgAuditor
This method removes a user as a Org Auditor of the chaincode. This method can be called
only by a Token Admin Or Org Admin of the chaincode.

public async removeOrgAuditor (org id: string, user id: string)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"c3bc720461004a53b37¢c68d4bb264858088d980bc093a0a3ebb62a32974£b306",
"payload": {
"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 221
}
}
getOrgAuditors

This method returns all 0rg Auditors of the chaincode. This method can be called only by a
Token Admin, Token Auditor, Org Admin, Or Org Auditor.

public async getOrgAuditors()

Return Value Example:

"returnCode": "Success",
llerrorll: "",
"result": {

"payload": {

"auditors": [

{
"Org_id": "FIlll,
"user id": "auditor user fil"

6-142

Chapter 6
Auditor Roles

"org id": "FI2",
"user id": "auditor user fi2"

I
"encode": "JSON"

Go Controller Methods
The following controller methods support the auditor role functions.

AddTokenAuditor
This method adds a user as a Token Auditor of the chaincode. This method can be called
only by a Token Admin of the chaincode.

func (t *Controller) AddTokenAuditor (org id string, user id string)
(interface{}, error)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was added as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"£0888dd52£39dfa669275¢cc8£35d0b47b3708407d384493d16970fcbb377£937",
"payload": {

"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 268

ORACLE 6143

Chapter 6
Auditor Roles

RemoveTokenAuditor
This method removes a user as a Token Auditor of the chaincode. This method can be called
only by a Token Admin of the chaincode.

func (t *Controller) RemoveTokenAuditor (org id string, user id string)
(interface{}, error)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"2f01f48eceaf2dff175£98b9%6a5bdd22c949£48fc5683ce86d6141ccdB892aeeld”,
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 270
}
}
GetTokenAuditors

This method returns all Token Auditors of the chaincode. This method can be called only by
a Token Admin or Token Auditor of the chaincode.

func (t *Controller) GetTokenAuditors() (interface{}, error)

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"18ea2a81b04d43db64£28287bablcf6609¢2a1d8££84852££73849ddb9%a9%dfbal",
"payload": {

"auditors": [

ORACLE 6144

Chapter 6
Auditor Roles

"OrgIdll: "CB",
"UserId": "auditor user cb"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 269

AddOrgAuditor
This method adds a user as a Org Auditor of the chaincode. This method can be called only
by a Token Admin Oor Org Admin of the chaincode.

func (t *Controller) AddOrgAuditor(org id string, user id string)
(interface{}, error)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

« On success, a message that includes details of the user who was added as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"3d5ec46003¢c68c6208d43c82894bd6da5c0b763339¢c5212e09b71d39d0d80e2",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 271

ORACLE 615

Chapter 6
Auditor Roles

RemoveOrgAuditor
This method removes a user as a Org Auditor of the chaincode. This method can be called
only by a Token Admin Or Org Admin of the chaincode.

func (t *Controller) RemoveOrgAuditor (org id string, user id string)
(interface{}, error)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"713al20641lafbc4dfaeac73b82c9£d51df6fcfd7d4d9%9a82553d3¢c487bf11£530",
"payload": {
"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
cb)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 273
}
}
GetOrgAuditors

This method returns all 0rg Auditors of the chaincode. This method can be called only by a
Token Admin, Token Auditor, Org Admin, Or Org Auditor.

func (t *Controller) GetOrgAuditors() (interface{}, error)

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"07656bf434616d7a3d7fe4fb81dc80c8cc608991648adfd9f6f2f2b9f6ddf468",
"payload": {

"auditors": [

ORACLE 6146

ORACLE

Chapter 6
Auditor Roles

"OrgIdll: "CB",
"UserId": "cb"

"OrgIdll: "CB",
"UserId": "issuer user cb"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 272

TypeScript SDK Methods
The following SDK methods support the auditor role functions.
addTokenAuditor

This method adds a user as a Token Auditor of the chaincode.

this.Ctx.Admin.addTokenAuditor (org id, user id)

Parameters:

e org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was added as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"cdB81lf6cdc9e7clB8ece357dbf5¢c139%ef66ef2d6566be3blide5f6d0a3fddbb2f0",
"payload": {

"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
cb)"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 196

6-147

ORACLE

Chapter 6
Auditor Roles

removeTokenAuditor
This method removes a user as a Token Auditor of the chaincode.

this.Ctx.Admin.removeTokenAuditor (org id, user id)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was removed as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"a886a6040fbc76374a3c78c89%9ab0££c9£708391cc5239b169b£f3b878cf40c67b",
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
ch)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 219
}
}
getTokenAuditors

This method returns all Token Auditors of the chaincode.

this.Ctx.Admin.getAllTokenAuditors ()

Return Value Example:

"returnCode": "Success",
"errorH: "",
"result": {

"payload": {

"auditors": [

{
"Orgiid" : HCB",
"user id": "auditor user cb"

6-148

ORACLE

Chapter 6
Auditor Roles

I
"encode": "JSON"

addOrgAuditor
This method adds a user as a Org Auditor of the chaincode.

this.Ctx.Admin.addOrgAuditor (org id, user id)

Parameters:

* org_id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

* On success, a message that includes details of the user who was added as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"44bbad35a1478cb714e32f7¢c£d551897868a203520aab9%cea5771d3aadclcf03",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20009",
"blockNumber": 198

removeOrgAuditor
This method removes a user as a Org Auditor of the chaincode.

this.Ctx.Admin.removeOrgAuditor (org id, user id)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

6-149

Chapter 6
Auditor Roles

* On success, a message that includes details of the user who was removed as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"c3bc720461004a53b37¢c68d4bb264858088d980bc093a0a3ebb62a32974fb306",
"payload": {
"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
cb)"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 221
}
}
getOrgAuditors

This method returns all 0rg Auditors of the chaincode.

this.Ctx.Admin.getAl10rgAuditors ()

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"payload": {
"auditors": |

{
"org id": "FIL",
"user id": "auditor user fil"

"org id": "FI2",
"user id": "auditor user fi2"

t
"encode": "JSON"

Go SDK Methods

The following controller methods support the auditor role functions.

ORACLE 6150

Chapter 6
Auditor Roles

AddTokenAuditor
This method adds a user as a Token Auditor of the chaincode.

t.Ctx.Admin.AddTokenAuditor (org id, user id)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was added as a Token
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"£0888dd52£39dfa669275cc8£35d0b47b3708407d384493d16970£cbb377£937",
"payload": {
"msg": "Successfully added Token Auditor (Org Id: CB, User Id:
ch)"
}I
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 268
}
}
RemoveTokenAuditor

This method removes a user as a Token Auditor of the chaincode.

t.Ctx.Admin.RemoveTokenAuditor (org id, user id)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

e user id: string— The user name or email ID of the user.

Returns:

* On success, a message that includes details of the user who was removed as a Token
Auditor of the chaincode.

ORACLE 6151

ORACLE

Chapter 6
Auditor Roles

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"2f01f48eceaf2dff175f98b96a5bdd22¢c949£48fc5683ce86d6141ccd892aeel",
"payload": {
"msg": "Successfully removed Token Auditor (Org Id: CB, User Id:
cb)"
b
"encode": "JSON",
"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 270
}
}
GetTokenAuditors

This method returns all Token Auditors of the chaincode.

t.Ctx.Admin.GetAllTokenAuditors ()

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"18eaa81b04d43db64£28287bablcf6609¢2a1d8ff84852f£73849ddb9%a9%dfbal",
"payload": {
"auditors": [

{
"OrgIdH: "CB",
"UserId": "auditor user cb"

I

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 269

AddOrgAuditor
This method adds a user as a Org Auditor of the chaincode.

t.Ctx.Admin.AddOrgAuditor (org id, user id)

Parameters:

6-152

ORACLE

Chapter 6
Auditor Roles

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

* user id: string— The user name or email ID of the user.

Returns:

e On success, a message that includes details of the user who was added as a 0rg
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"3d5ec46003¢c68c6208d43c82894bd6da5c0b763339¢c5212e09b71d39d0d80e2",
"payload": {

"msg": "Successfully added Org Auditor (Org Id: CB, User Id: cb)"

I
"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 271

RemoveOrgAuditor
This method removes a user as a Org Auditor of the chaincode.

t.Ctx.Admin.RemoveOrgAuditor (org id, user id)

Parameters:

* org id: string— The membership service provider (MSP) ID of the user in the current
organization.

e user id: string— The user name or email ID of the user.

Returns:

* On success, a message that includes details of the user who was removed as a Org
Auditor of the chaincode.

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"713al20641lafbc4dfaeac73b82c9fd51df6fcfd7d4d%9a82553d3c487bf11£530",
"payload": {

"msg": "Successfully removed Org Auditor (Org Id: CB, User Id:
Cb) n

6-153

Chapter 6
Auditor Roles

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 273

GetOrgAuditors
This method returns all 0rg Auditors of the chaincode.

t.Ctx.Admin.GetAllOrgAuditors ()

Return Value Example:

"returnCode": "Success",
"error": "",
"result": {
"txid":
"07656bf434616d7a3d7fe4fb81dc80c8cc608991648adfd9f6f2f2b9f6ddf468",
"payload": {

"auditors": [
{
"OrgIdll: "CBH’
"UserId": "cb"

"OrgIdll: "CB",
"UserId": "issuer user cb"

b

"encode": "JSON",

"sourceURL": "cb-oabcsl-bom.blockchain.ocp.example.com:20010",
"blockNumber": 272

Method Level Access Controls

Auditor roles have read-only access to methods that use the extended Token Taxonomy
Framework standard.

The following table shows how the auditor roles affect access to methods in the extended
Token Taxonomy Framework standard.

Method name Roles that can access the method

isTokenAdmin Token Admin, Token Auditor, Org Admin of
any organization, Org Auditor of any
organization

getAllAdmins Token Admin, Token Auditor

ORACLE 6154

ORACLE

Chapter 6
Auditor Roles

Method name

Roles that can access the method

getOrgAdmins

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getAllTokens

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getTokenById

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getTokenDecimals

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getTokensByName

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

isInRole

Token Admin, Token

Auditor, Org Admin of

the particular organization, Org Auditor of the
particular organization, Account Owner

getTotalMintedTokens

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getNetTokens

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getTokenHistory

Token Admin, Token
any organization, Org
organization

Auditor, Org Admin of
Auditor of any

getAccountsByRole

Token Admin, Token

Auditor

getOrgAccountsByRole

Token Admin, Token
any organization, Org

Auditor, Org Admin of
Auditor of any

organization

getUsersByRole

Token Admin, Token Auditor

getOrgUsersByRole

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getTransactionById

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, transaction participant
(sender, recipient, notary)

getAllAccounts

Token Admin, Token Auditor

getAllOrgAccounts

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization

getAccountsByUser

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, multiple account owner

getUserByAccountId

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization

6-155

Chapter 6
Auditor Roles

Method name

Roles that can access the method

getAccount

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getAccountTransactionHistory

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getAccountTransactionHistoryWithFilters

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getSubTransactionsById

Token Admin, Token Auditor, transaction
invoker

getSubTransactionsById

Token Admin, Token Auditor, transaction
invoker

getAccountBalance

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getAccountOnHoldBalance

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getOnHoldIds

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getOnHoldDetailsWithOperationId

Token Admin, Token Auditor, hold transaction
participant (sender, recipient, notary)

getOnHoldBalanceWithOperationId

Token Admin, Token Auditor, hold transaction
participant (sender, recipient, notary)

getConversionHistory

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getAccountStatus

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getAccountStatusHistory

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, Account Owner

getConversionRate

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, any account owner

getConversionRateHistory

Token Admin, Token Auditor, Org Admin of
the particular organization, Org Auditor of the
particular organization, any account owner

getExchangePoolUser

Token Admin, Token Auditor

ORACLE

6-156

	Contents
	Preface
	Documentation Accessibility
	Related Topics
	Conventions

	1 Overview
	Oracle Blockchain Platform Digital Assets Edition
	Additional Services and Applications
	API Gateway
	Oracle Visual Builder
	Oracle Autonomous Database
	Oracle Analytics Cloud

	2 Create an Instance
	Before You Create Your Instance
	Create an Oracle Blockchain Platform Digital Assets Edition Instance Using the Console
	Verify Your Instance
	Digital Assets Page

	3 Wholesale Central Bank Digital Currency Application
	Wholesale CBDC Chaincode Package
	Deploy and Test Wholesale CBDC Chaincode

	Wholesale CBDC Wrapper API Package
	Customize Wrapper APIs for Wholesale CBDC
	Deploy and Test Wrapper APIs for Wholesale CBDC

	Oracle Database View Definitions for Wholesale CBDC
	Wholesale CBDC Sample Application and Analytics Package
	Wholesale CBDC Sample Analytics Package
	Configure Oracle Analytics Cloud
	View Dashboard Data

	Wholesale CBDC Sample Application
	Wholesale CBDC Sample Application Prerequisites
	Visual Builder Cloud Service
	Provision Autonomous Database
	Provision Oracle Blockchain Platform Digital Assets Edition
	Create Users and User Groups with Oracle Identity Cloud Service

	Configure Oracle Blockchain Platform for the Wholesale CBDC Sample Application
	Deploy the Chaincode for the Wholesale CBDC Sample Application
	Create Rich History Database Views

	Import the Wholesale CBDC Sample Application into Visual Builder
	Configure Visual Builder for the Wholesale CBDC Sample Application
	Configure Visual Builder Backends
	Configure Visual Builder Business Objects
	Configure Oracle Analytics Cloud for Oracle Visual Builder

	Customize the Wholesale CBDC Application
	Stage the Wholesale CBDC Application
	Troubleshoot the Wholesale CBDC Sample Application
	Wholesale CBDC Application Workflow
	CBDC Admin
	CBDC Creator
	CBDC Approver
	CBDC Issuer
	CBDC Auditor
	CBDC Retirer
	FI Admin
	FI Officer
	FI User
	FI Manager
	FI Auditor

	4 Bond Marketplace Application
	Bond Marketplace Chaincode Package
	Deploy and Test Bond Marketplace Chaincode

	Bond Marketplace Wrapper API Package
	Customize Wrapper APIs for Bond Marketplace
	Deploy and Test Wrapper APIs for Bond Marketplace

	5 Generic Token Frameworks
	Fungible Token Framework
	Fungible Token Framework Chaincode Package
	Fungible Token Framework Wrapper API Package

	Non-Fungible Token Framework
	Non-Fungible Token Framework Chaincode Package
	Non-Fungible Token Framework Wrapper API Package

	Combined Token Framework
	Combined Token Framework Chaincode Package
	Combined Token Framework Wrapper API Package

	Deploy and Test Generic Token Framework Chaincode
	Deploy and Test Wrapper APIs for Generic Token Frameworks

	6 Blockchain App Builder Enhancements
	Wrapper APIs
	Generate Wrapper APIs Using the CLI
	Generate Wrapper APIs Using Visual Studio Code
	Wrapper API Package Components
	Deploy Wrapper APIs

	Chaincode Events
	Token Taxonomy Framework Enhancements
	Bond Marketplace Model
	Wholesale CBDC Model
	Endorsement Support in Postman Collections
	Auditor Roles
	Method Level Access Controls

